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Summary 

Microbes are present in most of the environments on earth. By interacting with each other, macro-
organisms, and the surrounding habitat, they form diverse microbial communities denoted as 
microbiota. In soil, microbes contribute largely to the genetic diversity of their ecosystem, and are 
involved in diverse processes, such as nutrient cycling and vegetation dynamics. Soil-derived 
microbial communities associate to plant hosts and form the plant microbiota, which promotes 
nutrient uptake and protects the roots from pathogens. 

To understand microbiota composition and diversity, a variety of approaches have been developed, 
from classical strain isolation to culture-independent methods. By analysing high-throughput 
sequencing data derived from these experimental approaches, we can survey the microbial 
composition and determine the factors that affect the community assembly. In this thesis, I show 
how various bioinformatic tools can be applied to the analysis of the community profiling of natural 
and synthetic microbial communities, particularly of those associated with a plant host. Specifically, 
using the model plant Arabidopsis thaliana, we explored the mechanism of how root microbiota 
promotes nutrient uptake as well as the interplay between host innate immunity and microbiota 
regarding growth and defence. By comparing with other hosts, including the photosynthetic 
plant Lotus japonicus and model alga Chlamydomonas reinhardtii, we demonstrated host preference 
and shared features of their microbiota. 

As one of the most widely cultivated crops, maize has been an important model organism for 
microbiota research to understand the effects of plant breeding on the establishment of root 
microbiota. Furthermore, the relationship between multiple kingdom root microbiota, abiotic factors 
such as soil management, and plant growth is still unclear. In order to explore these interactions, we 
characterized the root microbial communities of maize grown in two long-term experimental fields 
under four soil managements. The sampling spanned from the vegetative to reproductive growth 
stage and included four inbred lines with one phosphate transporter mutant pht1;6. We found that, 
at the phylum level, microbial communities from different root compartments converged for 
bacteria, but not fungi. We also identified stable root microbial taxa that persisted through the host 
growth and these taxa were accompanied by dynamic members that covaried with root metabolites. 
By comparing wild-type and mutant plants, we discovered a potential plant growth phase-specific 
interaction between arbuscular mycorrhizal fungal symbiosis, root lipid status, and soil phosphate 
availability. Together, our work sheds light on the spatio-temporal dynamics of maize root-
associated microbiota and its impact on plant physiology and fitness.  

To better investigate the biological meaning behind the increasing amount of plant microbiota data, 
we developed a novel diversity and network analysis workflow into an open-access R package 
named ‘mina’. We integrated a large-scale plant- and alga-associated microbiota dataset, to which 
we applied the developed workflow. We extracted the representative community compositions and 
inferred a co-occurrence network based on them. Higher-order features, namely clusters of 
connected microbes in the network, were introduced to diversity analysis and decreased the 
unexplained variance compared to traditional diversity measurements. To assist the comparative 
analysis of microbial networks, we established an approach that relies on the calculation of network 
spectral distances and Monte Carlo permutation significance tests. We differentiated networks  
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constructed from samples originating from various conditions and identified the features with the 
highest contribution to the network differentiation.  

In summary, we show that by analysing microbial community profiling data, we gain insights into 
the assembly and function of plant microbiota. This is not limited to the natural conditions in 
ecological surveys but also applies to the reconstituted synthetic microbiota systems. With the novel 
diversity and network analysis tools that we developed, we can better describe microbiota diversity 
and determine distinctive features that drive the dynamics of microbial communities. 
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Zusammenfassung

Mikroben sind in den meisten Lebensräumen der Erde zu finden. Indem sie miteinander, mit 
Makroorganismen und mit dem sie umgebenden Lebensraum interagieren, bilden sie vielfältige 
mikrobielle Gemeinschaften, die als Mikrobiota bezeichnet werden. Im Boden tragen die Mikroben 
in hohem Maße zur genetischen Vielfalt ihres Ökosystems bei und sind an verschiedenen Prozessen 
wie dem Nährstoffkreislauf und der Vegetationsdynamik beteiligt. Aus dem Boden stammende 
mikrobielle Gemeinschaften verbinden sich mit Pflanzenwirten und bilden die Pflanzenmikrobiota, 
die die Nährstoffaufnahme fördert und die Wurzeln vor Krankheitserregern schützt. 
Um die Zusammensetzung und Vielfalt der Mikrobiota zu verstehen, wurde eine Vielzahl von 
Ansätzen entwickelt, von der klassischen Stammisolierung bis hin zu kulturunabhängigen 
Methoden. Durch die Analyse von Hochdurchsatz-Sequenzierungsdaten, die aus diesen 
experimentellen Ansätzen stammen, können wir die mikrobielle Zusammensetzung erfassen und die 
Faktoren bestimmen, die die Zusammensetzung der Gemeinschaft beeinflussen. In dieser Arbeit 
zeige ich, wie verschiedene bioinformatische Werkzeuge für die Analyse der Zusammensetzung 
natürlicher und synthetischer mikrobieller Gemeinschaften, insbesondere solcher, die mit einem 
pflanzlichen Wirt assoziiert sind, eingesetzt werden können. Anhand der Modellpflanze Arabidopsis 
thaliana untersuchten wir den Mechanismus, durch den die Wurzelmikrobiota die 
Nährstoffaufnahme fördert, sowie das Zusammenspiel zwischen der angeborenen Immunität des 
Wirts und der Mikrobiota in Bezug auf Wachstum und Abwehr. Durch Vergleiche mit anderen 
Wirten, einschließlich der photosynthetischen Pflanze Lotus japonicus und der Modellalge 
Chlamydomonas reinhardtii, konnten wir eine Wirtspräferenz assoziierter Baktieren und 
gemeinsame Merkmale ihrer Mikrobiota nachweisen. 
Als eine der am weitesten verbreiteten Kulturpflanzen ist Mais ein wichtiger Modellorganismus für 
die Erforschung der Mikrobiota, um die Auswirkungen der Pflanzenzüchtung auf die Etablierung 
der Wurzelmikrobiota zu verstehen. Darüber hinaus ist der Zusammenhang zwischen der 
Wurzelmikrobiota mehrerer Reiche, abiotischen Faktoren wie der Bodenbewirtschaftung und dem 
Pflanzenwachstum noch unklar. Um diese Wechselwirkungen zu erforschen, haben wir die 
mikrobiellen Wurzelgemeinschaften von Maispflanzen charakterisiert, die in zwei 
Langzeitversuchsfeldern unter vier Bodenbewirtschaftungsformen angebaut wurden. Die 
Probenahme erstreckte sich von der vegetativen bis zur reproduktiven Wachstumsphase und 
umfasste vier Inzuchtlinien mit einer Phosphattransporter-Mutante pht1;6. Wir stellten fest, dass die 
mikrobiellen Gemeinschaften aus verschiedenen Wurzelkompartimenten auf Phylum-Ebene bei 
Bakterien, nicht aber bei Pilzen konvergieren. Wir identifizierten auch stabile mikrobielle Taxa in 
der Wurzel, die während des Wirtswachstums bestehen blieben und von dynamischen Taxa begleitet 
wurden, die aber mit Wurzelmetaboliten kovariierten. Durch den Vergleich von Wildtyp und 
Mutanten entdeckten wir eine potenzielle pflanzenwachstumsphasenspezifische Interaktion 
zwischen arbuskulärer Mykorrhizapilzsymbiose, Wurzellipidstatus und P-Verfügbarkeit im Boden. 
Unsere Arbeit beleuchtet die räumlich-zeitliche Dynamik der Maiswurzel-assoziierten Mikrobiota 
und ihre Auswirkungen auf die Pflanzenphysiologie und -fitness.  
Um die biologische Bedeutung hinter der zunehmenden Menge an Pflanzenmikrobiota-Daten besser 
untersuchen zu können, haben wir einen neuartigen Diversitäts- und Netzwerkanalyse-Workflow in 
einem frei zugänglichen R-Paket namens 'mina' entwickelt. Wir haben einen großen pflanzen- und  
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algenassoziierten Mikrobiota-Datensatz integriert, auf den wir den entwickelten Arbeitsablauf 
angewendet haben. Wir extrahierten die repräsentativen Gemeinschaftszusammensetzungen und 
leiteten daraus ein co-occurrence-Netzwerk ab. Merkmale höherer Ordnung, nämlich Cluster 
miteinander verbundener Mikroben im Netzwerk, wurden in die Diversitätsanalyse eingeführt und 
verringerten die unerklärte Varianz im Vergleich zu herkömmlichen Diversitätsmessungen. Zur 
Unterstützung der vergleichenden Analyse von mikrobiellen Netzwerken haben wir einen Ansatz 
entwickelt, der auf der Berechnung von spektralen Netzwerkabständen und Monte-Carlo-
Permutations-Signifikanztests beruht. Wir differenzierten Netzwerke, die aus Proben verschiedener 
Bedingungen gebildet wurden, und identifizierten die Merkmale mit dem höchsten Beitrag zur 
Netzwerkdifferenzierung.  
Zusammenfassend lässt sich sagen, dass wir durch die Analyse von Daten zur Erstellung von 
Profilen mikrobieller Gemeinschaften Einblicke in den Aufbau und die Funktion der pflanzlichen 
Mikrobiota gewinnen können. Dies gilt nicht nur für die natürlichen Bedingungen in ökologischen 
Untersuchungen, sondern auch für die rekonstituierten synthetischen Mikrobiota-Systeme. Mit den 
neuartigen Diversitäts- und Netzwerkanalysewerkzeugen, die wir entwickelt haben, können wir die 
Diversität der Mikrobiota besser beschreiben und die charakteristischen Merkmale bestimmen, die 
die Dynamik der mikrobiellen Gemeinschaften bestimmen. 
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Chapter 1 Introduction 

1.1 Introduction to microbiota studies 

1.1.1 Microbes and microbial communities  

Microbes, the living organisms that are only visible with a microscope, are present in almost all 
environments on earth. The number of prokaryotic microbes on planet Earth may be as many as 4 to 
6 × 1030, accounting for more than half of the carbon biomass of living organisms in the global 
ecosystem (Whitman et al., 1998). Bacteria, the earliest used term for prokaryotic microbes, were 
found to be composed of multiple primary kingdoms, including typical bacteria and archaebacteria, 
using phylogenetic analysis based on ribosomal RNA (rRNA) sequences (Woese & Fox, 1977). The 
latter was proposed to be a new domain of life named Archaea (Woese et al., 1990) and together 
with Eukarya, which contains another microbial kingdom, Fungi, they form the widely accepted 
three-domain system for the tree of life. 

When inhabiting the same environment, microbes from multiple kingdoms constantly interact with 
each other in diverse ways and assemble into complex communities, denoted as microbiota. Along 
with their surrounding biotic and abiotic factors, these communities constitute the microbial 
ecosystems (Raes & Bork, 2008). Among different habitats, soil and marine environments are 
considered to be the two most heavily populated with microbes and these two habitats contribute 
equally to the global net primary production of carbon (Field, 1998). In soil, microbes account for a 
large proportion of genetic diversity of the ecosystem and are involved in various processes, 
including nutrient cycling and decomposition, promoting plant productivity, and influencing 
vegetation dynamics (van der Heijden et al., 2008). In the ocean, microbes of diverse kingdoms 
account for the majority of marine biomass with up to half of the carbon fixed by photosynthesis in 
the ocean being consumed by heterotrophic bacteria (Azam et al., 1983). These environmental 
microbiota are typically composed of highly diverse free-living microbes and thus are extremely 
complex and dynamic. 

For the microbiota that associated with specific host, for instance, human gut or plant root, the 
diversity of community has usually been found to be lower. However, these microbes interact not 
only with each other, but also with their hosts by, for example, promoting nutrient uptake (Musso et 
al., 2011) or protecting the host from pathogens (Smith & Goodman, 1999). Though the concept 
was initially introduced to describe the relationship between a host and a single symbiont (Margulis, 
1991), the term holobiont then came into broad use to refer to this symbiotic relationship between 
host macro-organisms and commensal microbiota. Based on this idea, the concept of a hologenome, 
which aggregates the host and associated microbial genomes, was proposed, as behaving as a 
discrete entity during adaptive evolution (Rosenberg et al., 2007). Other hypotheses such as 
coevolution concept emphasized the feedbacks and adaptations between hosts and their associated 
microbiota (Zaneveld et al., 2008), especially in the context of metabolic collaboration (Wilson & 
Duncan, 2015). Taken together, understanding the composition of microorganisms and their 
interactions within the microbiota is of fundamental importance for revealing the molecular 
mechanism underpinning the function and evolution of these ecosystems. 

1



1.1.2 Microbiota research: from isolates to communities 

To understand the principles governing microbial community assembly, approaches were developed 
to identify the involved microbes, which have included mainly culture-dependent methods such as 
strain isolation. However, for microbes present in extreme environments, such as the deep sea, at 
high temperatures or in anaerobic environments, isolation is time- and labor-intensive and 
sometimes problematic due to technical difficulties. As of today, it is thought that nearly half of the 
microbial taxa (at 97% 16S rRNA gene sequence similarity) have yet to be successfully cultivated 
(Martiny, 2019). Because of these unculturable bacteria, most of the ecological laws observed in 
plants and animals in macro-ecosystems, such as the relationships between body size and 
abundance in ecology (White et al., 2007), have yet to be tested for microbial communities. 
Therefore, to better understand microbial ecology, effective approaches to characterize the complete 
community structure are needed. 

Due to their conservation across living organisms and their intercalated mix of highly conserved 
and variable regions, rRNA genes have been successfully used for the identification and 
phylogenetic research of microorganisms without isolation (Woese & Fox, 1977). Generally, small 
subunit 16S and 18S rRNA genes are the most widely used markers for prokaryotic and eukaryotic 
microbes. Primers designed to bind to conserved regions have been used to amplify the variable 
sequences by PCR. Afterwards, these amplicon fragments, which reveal the genetic variation 
among species, are aligned to each other, allowing taxonomical classification. However, the 
presence of multiple copies and intra-organism variation in rRNA genes in bacterial genomes 
complicate correct assessment of relative abundance and taxonomic assignment when estimating 
the diversity of microbial communities. Therefore, conserved single-copy protein-coding genes 
have been proposed as alternatives. Comparative analysis of these protein markers shows good 
agreement with rRNA genes, with an increased resolution (Roux et al., 2011). For fungi, the 
internal transcribed spacer (ITS) region has been used as a universal marker to identify diverse 
fungi, with higher sensitivity compared to rRNA or protein-coding genes (Schoch et al., 2012). This 
region includes the ITS1, 5.8S rRNA gene, and ITS2 segments and is usually located in between the 
small subunit and large subunit of ribosomal RNA genes. Unfortunately, since the length of ITS in 
bacteria and archaea is highly variable and a large portion of rRNA genes are unlinked, its 
applicability is limited to fungal organisms (Brewer et al., 2020).  

The development of high-throughput DNA sequencing technologies facilitates microbial 
community surveys by allowing culture-independent approaches such as community profiling, 
meta-genomic, and meta-transcriptomic screenings. Among these technologies, amplicon 
sequencing of marker genes has become the most popular method for ecological surveys of 
microbiota, partially because of its low costs. Consequently, explosive growth in the archiving of 
raw next-generation sequencing data in all major DNA databases was observed (Kodama et al., 
2012). The analysis of high-throughput reads enables the acquisition of more comprehensive and 
accurate ecological information than the traditional culture method (Gupta et al., 2019). For 
instance, a global study across diverse habitats, including both normal and extreme conditions, 
showed that salinity is the major driver of bacterial diversity for environmental microbial samples 
(Lozupone & Knight, 2007). In another study, the analysis of 16S amplicon data obtained from 
samples collected in 68 different locations during the Tara Oceans expedition showed that the most 
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important factors determining epipelagic microbial community composition in the ocean were depth 
and temperature (Sunagawa et al., 2015). Moreover, using common laboratory and computational 
protocols, the Earth Microbiome Project carried out by hundreds of researchers worldwide achieved 
the complete characterization of Earth’s microbial diversity (Thompson et al., 2017).  

In parallel to the advances mentioned above in the characterization of environmental microbial 
communities, rapid developments in the analysis of host-associated microbiota using cultivation-
independent methods have also been made. The human gut microbiome has been the most 
intensively studied. The structures of the human microbiomes at diverse body sites (18 and 15 for 
women and men, respectively) were characterized (Huttenhower et al., 2012), and long-term studies 
of fecal microbiota samples collected for up to five years showed a stable bacterial composition 
(Faith et al., 2013). Factors that alter the human gut microbiome such as diet (David et al., 2014), 
age, geography, cultural traditions (Yatsunenko et al., 2012), and non-antibiotic medicines (Maier et 
al., 2018) have also been extensively investigated. However, as mentioned above, 16S rRNA 
sequences are highly conserved across kingdoms, which would result in confounding results due to 
contamination from host plastid and mitochondrial sequences when studying host-associated 
microbiota. To prevent such contamination in these studies, approaches such as peptide nucleic acid 
PCR clamps were developed to enrich for microbial sequences without introducing bias (Lundberg 
et al., 2013).  

Later, the emerging long-read technology allows the sequencing of full-length genes rather than 
only the amplified regions of marker genes. However, the information on genetic variation provided 
by amplicon sequencing is limited to the marker gene and to single nucleotide resolution. To 
compensate for this, meta-genomic and meta-transcriptomic sequencing have also been applied in 
microbiota studies. With these approaches, total DNA or RNA is extracted from the surveyed 
samples and then deep-sequenced, allowing the capture of all genes merely present or actively 
transcribed within the given samples, which is then denoted as the microbiome. Using this strategy, 
functions of bacterial genes that are enriched in plant root-associated habitats were identified, such 
as iron mobilization (Bulgarelli et al., 2015); parallel analysis of human microbiomes across 
individuals and body sites at the genomic and transcriptomic levels has revealed varying degrees of 
similarity, indicating divergence between functional potential and activity (Franzosa et al., 2014). 
Besides, the above-mentioned Tara Oceans expedition was able to identify the core functionality of 
the ocean microbiota (Sunagawa et al., 2015) and demonstrated their substantial overlap with the 
human gut microbiome (Li et al., 2014). Taken together, in microbial studies, community profiling 
allows the characterization of the community structure, meta-genomics provides information about 
the functional capacity of the microbiota assemblage, and meta-transcriptomics data identifies the 
actively expressed genes. Therefore, these strategies allow us to identify the organisms and genes 
that possibly contribute to the establishment of microbial communities. However, further studies of 
underlying molecular mechanisms are essential to validate the proposed microbiota assembly 
process. 

1.1.3 Deconstruction and reconstruction of microbiota 

To better understand microbiota after culture-independent surveys, e.g., elucidating the functions of 
identified microbes or genes that primarily shape the community structure, systematic collections of 
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isolates are needed. Community members have been isolated using classical methods and this 
process was denoted as microbiota “deconstruction”. With these monoculture isolates, pairwise 
interactions could be assessed and used to predict higher-order interactions in complex communities 
(Venturelli et al., 2018). For “reconstruction” of the microecosystem, culture strains with known 
genetics have been assembled into synthetic microbial communities (SynComs), which soon 
became the model system of choice, due to their high tractability as well as reduced complexity 
compared to most of the microbial communities formed naturally (De Roy et al., 2014). For 
instance, community members of kefir grain and fermented milk were isolated and used to 
investigate pairwise interactions via metabolic modelling and laboratory validation (Blasche et al., 
2021). Standard protocols were also developed for isolation and cataloguing of bacteria and fungi 
from cheese rinds, followed by reconstruction into tractable SynComs with representative strains to 
quantify microbiota dynamics (Cosetta & Wolfe, 2020). High-throughput anaerobic culturing 
techniques for gut microbiota were established a decade ago and inspired the culturing renaissance 
(Vrancken et al., 2019). Similar approaches were implemented in environmental systems; for 
example, to better understand the role of the soil microbiota in carbon and nitrogen cycling, a model 
community was constructed from the natural soil biota (McClure et al., 2020). Besides these 
progresses, a comprehensive evaluation of the extent to which SynComs recapitulate the diversity 
and dynamics of their original natural communities across micro-ecosystems is still missing. 

1.2 Plant-associated microbiota research 

1.2.1 Plant-associated microbial communities 

Plants live together and interact with diverse microbes in the form of complex communities, known 
as the plant microbiota, which colonize and interact with the plant host. These microbial 
communities are classified into distinct groups based on, for example, whether colonization is 
aboveground or belowground; and how close they are physically to the host. Among categories, 
phyllosphere and rhizosphere microbiota are the most studied compartments. The former represents 
the total aboveground surface of a plant that provides a niche for the colonization of 
microorganisms (Preece & Dickinson, 1971) that mostly include non-pathogenic bacteria (Vorholt, 
2012). The rhizosphere was first introduced as a concept by Lorenz Hiltner in 1904 to refer to the 
zone around roots with the most intense bacterial activity (Curl & Truelove, 1986). Later, other 
eukaryotic microbes were also found in this root compartment, such as fungi and oomycetes, and 
the term rhizosphere was extended to denote the micro-ecosystem inhabited by roots, soil, and the 
soil biota and the site of their interactions with each other (Lynch & de Leij, 2012). Taken together, 
the rhizosphere, rhizoplane (a term suggested by F.E. Clark in 1949 representing the surface of 
root), and the root endosphere, constitute the root-associated microbiota, whose community 
members are primarily derived from the soil.  

With the development of high-throughput sequencing, an increasing number of studies 
systematically characterizing the plant microbiota were conducted, which have aimed at 
understanding the structure, assembly pattern, and factors driving the assembly of the plant-
associated microbiota. An early study already showed that plant roots could modulate rhizosphere 
conditions (such as changing the pH) in response to nutrition deficiency and regulate the 
abundances of bacteria living there (Marschner et al., 1986). This prompted exploration of the co-
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evolution and adaptation of hosts and associated microbes as well as their interactions. The model 
plant Arabidopsis thaliana, commonly known as thale cress, was introduced as a model for plant-
microbe interactions, not only due to its well-studied genetics but also because it is a widespread 
plant native to different continents, including Europe, Asia, and Africa. These original habitats of A. 
thaliana span a huge range of geographical locations and soil physicochemical properties. By 
profiling more than 600 A. thaliana plants, the root microbiota was found to be distinct from the soil 
biota, and the conservation of taxa across diverse soils suggested that the assembly of root microbial 
communities might be driven by core ecological principles (Lundberg et al., 2012). Additionally, 
root-inhabiting bacterial communities were also defined by the soil type from which the microbes 
were derived (Bulgarelli et al., 2012). A comprehensive investigation of European Arabidopsis 
populations revealed strong effects of soil origin and geographic location on the composition of root 
bacteria and filamentous eukaryotic communities, respectively (Thiergart et al., 2020).  

1.2.2 Plant-microbiota interactions 

The plant microbiome was found to benefit the host by promoting nutrient uptake and augmenting 
immune functions (Musso et al., 2011). The most striking examples of the beneficial effects are 
mutualistic symbionts, including the colonization of nitrogen-fixing rhizobia and mycorrhizal fungi 
in the roots, organisms which have co-evolved with their plant hosts for ~400 million years (Martin 
et al., 2017). The characterization of the rhizosphere bacteria associated with sunflower plants 
demonstrates wide production of siderophore, which helps transporting certain compounds such as 
ferric iron (Ambrosini et al., 2012). By regulating the development of the diffusion barriers, which 
consistent of specialized cell layers in root, bacterial communities stabilize the mineral nutrients in 
the plant (Salas-González et al., 2021). When soil nutrients are limiting, for example through a 
reduction in the supply of phosphorus, A. thaliana roots engage in mutualistic interactions with 
microbes and consequently modulate microbial community structures (Robbins et al., 2018). 
However, the mechanism underlying these interactions and the extent to which this process 
promotes beneficial traits in response to nutritional limitation remain to be determined. In contrast 
to the beneficial root microbiota, pathogens that colonizing the root can disrupt host-microbe 
homeostasis and cause diverse diseases. Therefore, plants have evolved an innate immune system to 
protect them against these microbes. Due to the restriction of resource, plant needs to invest into 
either growth or defense, formulating the phenomenon known as growth-defense trade-off (Huot et 
al., 2014). However, it remains unclear how plants differentiate beneficial, commensal, and 
pathogenic microbes and mediates between growth and defense with the presence of root 
microbiota. 

Though most of the high-throughput profiling studies focus on the bacterial members of the plant 
microbiota, microbes from other kingdoms, particularly fungi, play an important role in shaping 
plant-associated microbial communities. A suppressive effect of bacteria on a fungal root pathogen 
was described in the rhizosphere of sugar beet (Mendes et al., 2011), indicating the existence of 
complex multi-kingdom interactions. These inter-kingdom relationships within the root microbiota 
were extensively examined at the community level in A. thaliana roots, and it was found that the 
root-associated bacterial community protects the host against pathogenic filamentous eukaryotes, 
including fungi and oomycetes (Durán et al., 2018). A survey of the root microbiota associated with 
legume Lotus japonicus also revealed a microbial interkingdom interaction; bacterial intraradical 
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colonization was found to be dependent on arbuscular mycorrhizal fungi (AMF) infection 
(Thiergart et al., 2019). 

Moreover, root-associated microbes derived from surrounding soil were found to mobilize nutrients 
for their plant hosts, thus reducing the need for additional fertilization (Pii et al., 2015). Therefore, 
understanding the composition and function of  the plant microbiota can contribute 
to  sustainable  agriculture,  through, for example, the  engineering of microbes that promote crop 
health and fitness. Owing to their global geographic spread and economic significance,  the 
root microbiota of maize and rice were surveyed to determine the effect of geographic location, soil 
type, host genetics, and growth stage in the field. Rhizosphere samples collected at weekly intervals 
suggest a continuously varying community structure over the life cycle of maize (Walters et al., 
2018), while rice samples collected in a similar way indicated a dynamic vegetative phase followed 
by a stable reproductive root microbiota (Edwards et al., 2018). Additionally, an effect of field site 
on root microbiota assembly was reported for host crops. Intensive farming practices, for example, 
the use of mineral fertilizers, has been broadly applied in recent decades to promote plant 
performance.  However, in the   long-term, these practices can change soil  physico-chemical 
properties, degrade soil quality, and indirectly affect the soil microbiome  (Bender et al., 
2016). These results are helping to untangle the complex interactions between crops and soil-borne 
microbes. 

1.2.3 Synthetic plant-associated microbial communities  

Based on microbial community alteration patterns, we developed hypotheses and models to explain 
the assembly of microbiota. However, it is necessary to validate these proposed hypotheses and 
models in tractable systems. Additionally, to gain fundamental systemic insights, such as into 
molecular mechanisms and functional interactions, highly controllable and reproducible 
experimental conditions are essential. To address these issues, the concept of a synthetic community 
(SynCom) was introduced to plant microbiota studies as an approach to recapitulate the key features 
of natural communities in the laboratory (Vorholt et al., 2017). Large-scale isolation of plant-
associated microbes allows the assembly and design of SynComs that allow researchers to survey 
the evolution and ecological features of these microbial assemblages. More than 400 root- and leaf-
derived bacteria of A. thaliana were isolated and the genome drafts indicated a large overlap of 
functional capacity between these microbes (Bai et al., 2015). By inoculating germ-free A. thaliana 
with microbial SynComs of different kingdoms, including bacteria, fungi, and oomycetes, Duran et 
al showed that the bacterial microbiota is essential for plant survival when filamentous microbial 
eukaryotes are present (Durán et al., 2018). The effects of plant metabolites on the root microbiota 
were studied by examining community shifts in SynComs (Voges et al., 2019). The colonization of 
synthetic bacterial communities at the roots of A. thaliana of multiple genotypes and under variable 
phosphate conditions shows differential and highly deterministic assembly patterns (Castrillo et al., 
2017; Finkel et al., 2019). By conducting drop-out experiments, where specific microbes were left 
out from communities formed by isolated native bacteria, a priority effect governing phyllosphere 
microbiota assembly was observed (Carlström et al., 2019). A further study has also shown that 
Variovorax could reverse the growth inhibition of Arabidopsis roots caused by other bacteria in 
both the monoculture and community context, through a auxin-degradation operon conserved in the 
genus (Finkel et al., 2020). Taken together, these SynCom-based studies provide mechanism 
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insights into the plant-microbe interactions and complement the discoveries gained from natural 
communities.  

1.3 Data processing and analysis of microbial community surveys 

1.3.1 Processing of community profiling data 

When next-generation sequencing was first developed, the mainstream technology was single-end 
sequencing with maximum read lengths of around ~600 bp (for Roche 454, GS FLX Titanium 
system, 2008). The quality of the reads using this approach decreased dramatically toward the end 
of the sequences, and this considerably restricted the sequences that could be amplified, sequenced, 
and compared for amplicon profiling. Later, the Illumina sequencing platform, in particular MiSeq, 
was developed, which yields 300-bp sequences for pair-end reads. With higher throughput and 
lower costs, this technology has become widely used in amplicon sequencing studies. These rapid 
improvements in sequencing technology benefit and foster community profiling; however, such 
technology also creates a demand for corresponding computational tools for data processing and 
analysis, especially when data generated from different platforms are involved. 

For the profiling of a bacterial taxon, the amplified 16S rRNA gene region has relatively 
conservative length. For example, for a MiSeq sequencing run of a V5 to V7 region amplicon 
(amplified by 799F and 1192R primer pairs), more than 94.14% of reads have a length within the 
range 359–389 bp. Typically, these sequencing reads are first filtered and trimmed for quality 
control. Afterwards, for pair-end reads, the forward and reverse reads are then merged based on 
their overlapping regions and are then assigned to each sample according to barcode sequences. 
Subsequently, chimaeras produced during PCR are identified and removed. For filamentous 
microbes, including fungi and oomycetes, the ITS region is used as marker gene. Since the whole 
region spanning 650 to 900 bp (Horton & Bruns, 2001) is longer than the sequencing length of most 
next-generation platforms, only ITS1 or ITS2 regions are sequenced, and the variation in length 
needs to be taken into account.  

To identify community members represented by the amplified and sequenced regions of marker 
genes, the concept of the operational taxonomic unit (OTU), originally introduced by Robert R. 
Sokal and Peter H. A. Sneath (Sokal & Sneath, 1963), was re-implemented in microbial ecology 
studies. Sequences with higher similarity than the arbitrary threshold, commonly 97%, are clustered 
together into one OTU that encompasses organisms from the same species or genus. This procedure 
decreases the random noise caused by sequencing errors. However, the non-deterministic and 
abundant-dependent feature of clustering algorithm also reduces the reproducibility of the OTU-
based approach and hinders cross-referencing between studies. Therefore, with the increases in 
sequencing throughput and accuracy, unique DNA sequences obtained after quality control and 
error correction are now used directly to represent community members, denoted as amplicon 
sequence variants (ASVs). Under this scheme, raw sequencing data are processed similarly as 
before, with the differences that extra error correction is applied, and no clustering is performed. 
Since ASVs capture exact nucleotide sequence variations, they represent distinct biological entities 
and can easily be compared between different studies. 
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1.3.2 Microbial community diversity analysis  

To compare the community structure, diversity analysis has become a ubiquitous approach in 
ecological surveys of microbiota. Alpha-diversity, which was initially used to assess the richness of 
species in macro-communities (Whittaker, 1960), has been applied to assess community differences 
between conditions by characterizing the intra-community diversity via measures of the richness 
and evenness. Additional approaches taken include the Shannon index, which was originally 
developed to evaluate the evenness of words distributed in strings (Shannon, 1948), the Simpson 
index, which assesses the diversity by measuring the possibility of obtaining the same species when 
randomly taking two entities from the community (Simpson, 1949), and the phylogenetic diversity, 
which takes into account the phylogenetic distances between community members (Faith, 1992). 
However, the sequencing depth, i.e., the sample size or library size, affects the diversity estimation, 
especially the assessment of richness (Willis, 2019). Therefore, it is essential to normalize the data 
before calculating and comparing the alpha-diversity between samples. Rarefaction, a process that 
randomly picks up a specific number of reads from all samples, is commonly used to reduce the bias 
caused by sequencing depth. However, some researchers advise against its use since it results in a 
high rate of false discoveries (McMurdie & Holmes, 2014), while others claim that the reported 
flaws are an artefact of the data simulation (Weiss et al., 2017). 

To measure differences in composition between communities, the concept of beta-diversity was 
introduced (Whittaker, 1960), which involves the comparison of presence/absence or relative 
abundance of all compositions between samples. Since the abundance tables of microbial 
communities are highly sparse, i.e., the presence of many zeros in the OTU/ASV table, the 
Euclidean distance is not often applied (Hugerth & Andersson, 2017). Instead, Bray-Curtis 
dissimilarity is one of the most commonly used statistics for quantification, where the more 
members two communities share, the less Bray-Curtis dissimilarity between the compared samples 
(Bray & Curtis, 1957). The index takes into account phylogenetic context, such as UniFrac, which 
has also been proposed as a metric for comparing the diversities between communities (Lozupone et 
al., 2006). Afterwards, dimensionality reduction approaches such as principal component or 
coordinate analysis (PCA or PCoA) need to be implemented before visualization. The former is 
restricted to Euclidean distance, which as mentioned earlier, is not commonly used in microbial 
community studies, and the latter can be applied together with any dissimilarity measurement. 
Typically, the first few components or coordinates already explain a relatively large amount of the 
variation between samples; therefore, the separation or clustering of samples shown by the PCoA 
plot can describe the dissimilarities between microbial communities adequately. Additionally, the 
variance between samples explained by each known factor and the combination of factors can be 
statistically tested by permutational multivariate analysis of variance (PERMANOVA, Anderson, 
2017). 

1.3.3 Microbial community network analysis  

Composition-based diversity analysis allows thorough characterization of community structure and 
differences between communities. However, throughout this process, interactions between the 
microbes and the system dynamics are ignored. To overcome this limitation, network analysis was 
introduced into profiling data analysis. As a theory based on mathematical graphs, network analysis 
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has been applied to diverse research fields, including social science and ecological systems, such as 
the food web (Dunne et al., 2002; Krause et al., 2003), plant-pollinator interactions (Olesen et al., 
2007), and plant-animal mutualisms (Bascompte et al., 2003). In these systems, nodes represent the 
objects or biological organisms, and their relationships are indicated by edges connecting them. For 
microbial community networks, community members are designated as nodes and interactions 
between microbes, i.e., edges, most commonly, are inferred by comparing the co-occurrence or co-
variance of microbes across  samples.  The number of samples, therefore, has an impact on the 
robustness of the constructed network, and, in particular, on the reliability of the inferred edges. 

Traditionally, Pearson or Spearman correlation coefficients are calculated between pairwise 
microbes. The former evaluates the linear relationship between two community members among 
samples and the latter focuses more on the monotonic property of compared variables. However, 
due to the compositional nature of the microbiota profiling data, i.e., only the relative abundances of 
community members are available, applying simple correlations to these abundances leads to 
spurious results (Aitchison, 1982). Therefore, novel methods with extra data transformation, such as 
SparCC (Friedman & Alm, 2012), were developed to reduce the bias introduced by compositional 
effects. By assuming sparse features of a microbial network and combining these with graphical 
model-based data transformation, SPIEC-EASI yields better performance for network inference 
(Kurtz et al., 2015). Besides, workflows aimed at improving accuracy by integrating multiple of the 
previously mentioned approaches, such as CoNet and NetCoMi, were also specifically developed 
for microbiome data (Faust & Raes, 2016; Peschel et al., 2021). However, evaluation of these 
strategies has shown varied sensitivity and precision when applied to microbial data sets and a 
golden benchmark, which is based on the ground truth of higher-order microbial interactions in a 
complex system, is still missing (Weiss et al., 2016; Faust, 2021). 

Due to the numerous members of natural microbial communities, the inferred networks are typically 
highly dimensional, and, therefore, direct comparison of adjacent matrices, which describe the 
whole network’s nodes and edges, is rarely implemented. Alternatively, features such as network 
density, centrality, clustering coefficients, and path length, which are governed by robust principles 
(Albert & Barabási, 2002), have usually been computed and used to describe the topological 
structure of networks. Comparison of time-lagged bacterial networks of ocean planktonic samples 
collected from different depths revealed that layer dynamics closer to the surface drive organism 
changes in deep layers (Cram et al., 2015). Co-occurrence network analysis indicated strong body 
site specialization of the human microbiome (Faust et al., 2012) and non-random association as well 
as common life-history strategies of global soil microbiota (Barberán et al., 2012). Despite these 
insights, the interpretation of microbial networks and validation of interactions remain challenging 
due to the complexity of micro-ecosystems. Experimental studies of microbe-microbe interactions 
mainly address pairwise relationships, although higher-order species interactions, i.e., the 
interactions between organisms when a third member is present, have been found to be influential 
for community dynamics (Bairey et al., 2016). 
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1.4 Thesis overview 

1.4.1 Outline 

The author of this thesis has developed and implemented standardized frameworks for profiling 
data analysis of natural and synthetic microbial communities to reveal the assembly and diversity  
of plant microbiota. In Chapter 2, a plant-beneficial interaction between A. thaliana and the root 
microbiota, dependent on the secretion of plant-derived coumarins under iron deprivation, is 
described. Crosstalk between root commensal bacteria and host innate immunity is extensively 
described in Chapter 3 and how those commensals are adapted to specific host species is explored 
in Chapter 4. As an analogous microenvironment to the rhizosphere, the phycosphere microbiota of 
modal alga Chlamydomonas reinhardtii was examined and compared with plant root microbiota, 
and this work is described in Chapter 5. In Chapter 6, by tracking the root-associated microbial 
community changes during the development of field-grown maize, authors found that field 
management, soil property, plant growth, and root metabolism were highly dynamic and covaried 
with each other, influencing root microbiota establishment. In the last chapter (Chapter 7), a 
framework of microbial community diversity and network analysis is presented and applied to 
plant-associated community profiling datasets, including thousands of bacterial and fungal samples 
integrated from the department's previous studies. The ecological networks from samples obtained 
under different experimental conditions were thoroughly compared to deepen our understanding of 
the principles governing plant microbiota assembly. 

1.4.2 Publications and author contributions 

Chapters 2 to 6 are adapted from the publications in chronological order that the author of this 
thesis (R.G.) contributed to. In the projects presented in Chapters 2 to 5, R.G. performed the 
bacterial amplicon sequencing data processing and analysis. For the project described in Chapter 6, 
R.G. conducted all sequencing data analysis; and contributed primarily to data interpretation, 
visualization, and manuscript writing. R.G. conducted the project reported in Chapter 7 and is 
preparing the corresponding manuscript. Details of author contributions for each project are listed at 
the end of each chapter. 
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Chapter 2 Root-secreted coumarins and the microbiota 
interact to improve iron nutrition in Arabidopsis 

2.1 Abstract 

Plants benefit from associations with a diverse community of root-colonizing microbes. 
Deciphering the mechanisms underpinning these beneficial services are of interest for improving 
plant productivity. We report a plant-beneficial interaction between Arabidopsis thaliana and the 
root microbiota under iron deprivation that is dependent on the secretion of plant-derived 
coumarins. Disrupting this pathway alters the microbiota and impairs plant growth in iron-limiting 
soil. Furthermore, the microbiota improves iron-limiting plant performance via a mechanism 
dependent on plant iron import and secretion of the coumarin fraxetin. This beneficial trait is strain-
specific yet functionally redundant across phylogenetic lineages of the microbiota. Transcriptomic 
and elemental analyses revealed that this interaction between commensals and coumarins promotes 
growth by relieving iron starvation. These results show that coumarins improve plant performance 
by eliciting microbe-assisted iron nutrition. We propose that the bacterial root microbiota, 
stimulated by secreted coumarins, is an integral mediator of plant adaptation to iron-limiting soils.

2.2 Introduction 

Plant roots are colonized by a diverse community of microbes, collectively termed the root 
microbiota, originating from the surrounding soil biome (Bulgarelli et al., 2012; Lundberg et al., 
2012; Bai et al., 2015). The structure of these communities is shaped by soil edaphic factors and 
root-secreted photosynthates and secondary metabolites (Berendsen et al., 2012; Bulgarelli et al., 
2013). The root microbiota provides indirect protection against soil-borne fungal pathogens (Durán 
et al., 2018; Carrión et al., 2019) and is thought to improve host nutrition by improving the 
bioavailability of nutrients (Hacquard et al., 2015). However, the extent to which plants can 
selectively alter their microbiota and harness these beneficial traits in response to nutritional stress 
is unknown. 

Iron is an essential mineral nutrient of plants, acting as a catalyst in many biological processes 
including photosynthesis and respiration. Although it is an abundant element in most soils, its 
bioavailability is often limiting due to its extremely low solubility at neutral and alkaline pH, as in 
calcareous soils containing a high proportion of calcium carbonate. Iron deficiency results in stunted 
plant growth and leaf chlorosis, and is responsible for decreased crop yields and nutrient content in 
~30% of arable land (Morrissey & Guerinot, 2009). As such, there is great economic interest in 
improving plant iron nutrition. In response to iron-limiting conditions, non-graminaceous plants, 
such as A. thaliana, mount an iron starvation response which is coordinated by FER-LIKE IRON 
DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT) (Jakoby et al., 2004; Colangelo & 
Guerinot, 2004) and a suite of associated basic helix-loop-helix (bHLH) type transcription factors 
(Ivanov et al., 2012). This response serves to improve the solubility of iron through rhizosphere 
acidification by H+-ATPase AHA2 (Santi & Schmidt, 2009) and reduction of iron(III) to more-
soluble iron(II) by plasma membrane protein FERRIC REDUCTION OXIDASE 2 (FRO2) 
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(Robinson et al., 1999). Iron(II) is imported into the root epidermis by IRON-REGULATED 
TRANSPORTER1 (IRT1) (Vert et al., 2002).

The secretion of coumarins, phenolic secondary metabolites deriving from the general 
phenylpropanoid pathway, is also induced by iron starvation and is thought to contribute to iron 
nutrition through direct mobilization of recalcitrant iron pools (Rodríguez-Celma & Schmidt, 2013; 
Schmid et al., 2014; Fourcroy et al., 2014, 2016; Schmidt et al., 2014; Sisó-Terraza et al., 2016; 
Siwinska et al., 2018; Tsai et al., 2018; Rajniak et al., 2018). Three main coumarin compounds are 
produced in A. thaliana via a linear biosynthetic pathway (Figure 2.1 a) (Tsai et al., 2018; Rajniak 
et al., 2018). FERULOYL-COA 6-HYDROXYLASE1 (F6’H1) synthesizes scopoletin (Kai et al., 
2008), which can be converted to fraxetin by SCOPOLETIN 8-HYDROXYLASE (S8H) (Tsai et 
al., 2018; Rajniak et al., 2018), and further converted to sideretin by CYTOCHROME P450, 
FAMILY 82C4 (CYP82C4) (Rajniak et al., 2018). Each of these coumarins can be exported by the 
ABC transporter PLEIOTROPIC DRUG RESISTANCE 9 (PDR9) (Fourcroy et al., 2014), though 
other efflux pumps may also contribute to the export of some coumarins (Ziegler et al., 2017). 
Coumarin secretion was recently shown to influence the structure of root microbial communities in 
artificially limed soil (Stringlis et al., 2018a) and synthetic media (Voges et al., 2019). However, the 
impact of coumarin secretion on the root microbiota in soils with different mineral nutrient 
availabilities and the consequences for plant productivity remain undefined. 

2.3 Results 

2.3.1 Coumarin biosynthesis is important for plant growth and root microbiota composition 
in iron-limiting soil 

Figure 2.1 Coumarin biosynthesis affects root microbiota composition in a naturally calcareous soil. 
(a) Diagram of pathways for coumarin biosynthesis and export, and reductive uptake of iron in Arabidopsis. 
(b) Constrained ordination of root bacterial community composition of coumarin pathway mutants, 
constrained for the interaction between soil and genotype. Ellipses delineate multivariate normal distribution 
at 95% confidence. Data are from one representative experiment of three (Col-0 n= 17, 15, f6’h1 n = 18, 14, 
s8h n = 15, 14, cyp82c4 n = 18, 15, and pdr9 n = 17, 14 in CAS and IS, respectively). P values represent 
significance of separations between genotypes within each soil determined by pairwise PERMANOVA. Only 
f6’h1 (orange) and s8h (purple) were significantly separated from Col-0 in IS. 
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To assess potential links between coumarin secretion, plant growth, and the root-associated 
microbiota, we grew A. thaliana Col-0 wild-type (WT) plants and mutants with defects in coumarin 
biosynthesis or export (Figure 2.1a) on two soils with contrasting iron availability. These mutants 
were previously shown to have abolished coumarin biosynthesis at their respective steps in the 
pathway (Schmid et al., 2014; Ziegler et al., 2017; Tsai et al., 2018; Rajniak et al., 2018). Cologne 
agricultural soil (CAS), obtained from a local site, is slightly acidic with pH 6.5, at which iron is 
sufficiently available. We also obtained soil from a vineyard in Italy, termed here Italian Soil (IS), 
which is alkaline and calcareous (pH 7.5, 9.7 % of active CaCO3). These conditions significantly 
reduce the availability of iron, despite this soil having a higher total iron content than CAS (Figure 
S1 in the published journal version article). 

Figure 2.2 Coumarin biosynthesis is important for plant growth in a naturally calcareous soil. (a) SFW 
and (b) total chlorophyll content of coumarin pathway mutants grown in a non-calcareous (CAS) and a 
calcareous (IS) soil. Statistical significance was determined by Kruskal-Wallis; each mutant was compared to 
Col-0 by Wilcoxon Ranked Sum post-hoc. Significance is indicated by red asterisks (*, **, ***, indicate p < 
0.05, 0.01, and 0.001, respectively). For shoot fresh weight measurements, Col-0 n= 171, 204, f6’h1 n = 168, 
272, s8h n = 93, 113, cyp82c4 n = 164, 209, and pdr9 n = 172, 169 in CAS and IS, respectively. Chlorophyll 
content was measured from pooled leaf samples, (Col-0 n= 35, 29, f6’h1 n = 34, 36, s8h n = 19, 14, cyp82c4 
n = 34, 30, and pdr9 n = 35, 30 in CAS and IS, respectively).

We observed a decrease in shoot fresh weight (SFW) and leaf chlorophyll content in f6’h1 and s8h 
plants grown on IS, whereas the measured performance parameters of all genotypes were 
indistinguishable on CAS (Figure 2.2). A similar growth deficit was observed in f6’h1 plants grown 
on other alkaline soils isolated from geographically diverse sites, and could be improved by 
supplementation with solubilized iron (Figure S1 in the published journal version article). These 
results show that coumarin biosynthesis is important for growth in naturally iron-limiting soils. The 
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performance of pdr9 plants, however, was indistinguishable from WT on both CAS and IS; thus, 
coumarin export via the ABC transporter PDR9 was not crucial for growth in iron-limiting soils 
(Figure 2.1, 2.2 and Figure S1 in the published journal version article). This is in contrast to 
reported germ-free growth on synthetic media (Rodriguez-Celma et al., 2013; Fourcroy et al., 
2014). These data suggest that in soil, sufficient coumarin export may occur via additional members 
of the diversified and promiscuous ABC transporter family (Ziegler et al., 2017; Borghi et al., 
2019).

The root-associated bacterial microbiota of plants grown on CAS and IS was assessed by culture-
independent 16S rRNA gene amplicon sequencing and analysed at the amplicon sequence variant 
(ASV) level. Alpha-diversity was greater in IS than CAS for both unplanted soil and root samples, 
but did not vary by genotype (Figure S2 in the published journal version article). Unconstrained 
principal coordinate analysis (PCoA) of Bray-Curtis distances between samples showed that the soil 
type and batch were the largest drivers of divergence between samples (Figure S2 in the published 
journal version article). PCoA analysis of beta-diversity constrained (CPCoA) for the interaction 
between genotype and soil type revealed a significant separation of f6’h1 and s8h plants from other 
genotypes when grown on IS, but not on CAS (Figure 2.1b). Analysis of bacterial community 
profiles from three batches of each soil type confirmed that f6’h1 plants separate significantly from 
other genotypes when grown in IS, but not in CAS (Figure S2 in the published journal version 
article). Together, these results indicate that coumarin biosynthesis, especially of scopoletin and 
fraxetin, is important for plant growth and determining root microbiota composition in a naturally 
iron-limiting calcareous soil, but is dispensable in an iron-replete soil. Furthermore, this illustrates 
that the interaction between soil type and plant genotype can serve as a major determinant of root 
microbiota structure, explaining 27.7% of community variation (Figure 2.1b). 

2.3.2 Coumarin biosynthesis restructures the root microbiota at the ASV level 

In order to explore the nature of the observed changes in community structure, we determined 
which ASVs were differentially enriched (deASVs) in each mutant genotype compared to WT in 
each soil. For this analysis, we pooled data from three batches of each soil (except s8h, which was 
included in only one batch). The greatest number of deASVs was observed in f6’h1 plants, with 
significantly more detected when grown in IS than CAS (260 deASVs in IS, 50 in CAS; Figure 
2.3a). The impact of deASVs on the microbiota structure in terms of relative abundance was also 
greatest in f6’h1 plants grown in IS (Figure S3 in the published journal version article). 

(Figure on next page) Figure 2.3 Coumarin biosynthesis restructures the root microbiota at the ASV 
level. (a) Number of deASVs detected in indicated mutants compared to Col-0 in each soil. Data are pooled 
from three experiments (except s8h, which was included in only one), and filtered for ASVs found in at least 
three samples with RA > 0.05%. Differential enrichment was calculated using a negative binomial 
generalized log-linear model at an FDR-adjusted p value of 0.05. (b) Family-level taxonomic classification 
of deASVs in f6’h1 plants growing on IS. Colours indicate if deASVs were enriched or depleted in f6’h1 
compared to Col-0. Hypergeometric enrichment test was performed to determine if each family was over- or 
under-represented in deASV list compared to all detected ASVs. Red asterisks indicate significance with 
FDR-adjusted p values. (c) Sample-wise aggregated relative abundance of the top three families most 
significantly over-represented in deASVs: Burkholderiaceae, Rhizobiaceae, and Streptomycetaceae. Each 
data point represents the average RA aggregated at the family level in a single sample. Significance between 
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genotypes in each soil was determined by Wilcoxon Ranked Sum test. *, **, and *** in (b) and (c) indicate p 
≤ 0.05, 0.01, and 0.001, respectively.

(Caption on previous page) Figure 2.3 Coumarin biosynthesis restructures the root microbiota at the 
ASV level.

Taxonomic analysis revealed that multiple bacterial families were significantly over- or under-
represented within the deASV subset for f6’h1 plants in IS compared to the full list of detected 
ASVs (Figure 2.3b and S3 in the published journal version article). Burkholderiaceae was the most 
prevalent family detected within the deASVs (56 deASVs; 2.65-fold enriched in deASVs subset 
compared to all ASVs detected). However, a correlation between coumarin production and deASV 
relative abundance could not be generalized at family-level resolution; most families contained 
deASVs which were more abundant in f6’h1 plants compared to WT, as well as deASVs which 
were less abundant. Some patterns were observed at the genus level (Figure S3 in the published 
journal version article), but due to the overall low number of deASVs in each genus, their statistical 
significance remains unclear. This indicates that coumarin production restructures the root 
microbiota at the ASV level within multiple bacterial families. Despite being the family containing 
the most deASVs, the relative abundance of Burkholderiaceae was not significantly altered in 
coumarin-deficient plants (Figure 2.3c). The relative abundances of the next two most-impacted 
families, Rhizobiaceae and Streptomycetaceae, however, were slightly but significantly altered in 
f6’h1 plants on IS. This indicates that, at the ASV level, disruption of coumarin biosynthesis has a 
quantitative impact within multiple root-associated commensal families, but with relatively minor 
effects on the microbiota structure at higher taxonomic ranks. This suggests the existence of ASV-
level compensatory mechanism(s) within bacterial families which, during root microbiota 
establishment, maintain higher taxonomic structure in coumarin-deficient plants on iron-limiting 
soil. An increase in the number of deASVs was also observed for s8h plants grown in IS compared 
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to CAS (Figure 2.3a), though fewer deASVs overall were detected compared to other mutants as 
this genotype was only included in one experimental replicate. Consistently, the taxonomic profile 
of s8h deASVs was also enriched for Burkholderiaceae, and had considerable, but not complete, 
overlap with the deASVs detected on f6’h1 plants in the same experiment (Figure S3 in the 
published journal version article). This indicates that production of both scopoletin and fraxetin 
impact the root microbiota.

As various coumarin compounds have been shown to exert antimicrobial activity, we examined the 
coumarin sensitivity of a panel of root commensal Burkholderiaceae strains, the most prevalent 
family within the deASVs on f6’h1 and s8h plants. These strains were previously isolated from 
roots of Arabidopsis growing in CAS soil (Bai et al., 2015). Bacterial growth was quantified in the 
presence of 50 µM scopoletin or fraxetin, a concentration within the physiological range of 
coumarins observed within roots (Siwinska et al., 2014; Siwinska et al., 2018; Stringlis et al., 2018). 
We observed prevalent growth inhibition to a range of degrees in the presence of fraxetin, and to a 
lesser extent in response to scopoletin (Figure 2.4). This indicates that fraxetin exerts variable 
antimicrobial activity on Burkholderiaceae strains. This strain-specific variation potentially explains 
part of the ASV-level shifts within Burkholderiaceae observed between WT and coumarin-deficient 
plants in iron-limiting soil.

Figure 2.4 Overnight growth of Burkholderiaceae bacterial strains in the presence of scopoletin or 
fraxetin. Optical density (OD) of cultures was normalized to the OD of each strain in the absence of 
coumarins. Significant differences (p ≤  0.05 by Tukey’s HSD) in growth compared to the control are 
indicated for scopoletin (S*) and fraxetin (F*) to the right of each strain. Data are averages of 2–4 
experiments, each with 2–3 technical replicates, per strain.

2.3.3 Taxonomically diverse root commensals improve iron-limiting plant performance 

To assess the impact of root commensals on plant performance under iron-limiting conditions, we 
employed an agar medium-based gnotobiotic system which allows control over both iron mobility 
and the presence of bacterial commensals. In this system, nutrient medium (1/2 MS) is strongly 
buffered at pH 7.4, similar to the pH of iron-limiting IS soil. Iron is provided at 100 µM in one of 
two forms: available iron (avFe) FeEDTA, a complex which retains solubility even at alkaline pH, 
or an unavailable form (unavFe) FeCl3, which forms Fe(OH)3 and is highly insoluble at alkaline pH. 
Providing unavFe mimics iron-limiting conditions in calcareous and alkaline soils such as IS; iron 
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is present but recalcitrant due to extremely low solubility and must be actively mobilized for 
utilization. Using this gnotobiotic system, we reconstituted plants with a synthetic community 
(SynCom) of bacterial commensals to assess the impact of the microbiota on iron-limiting plant 
performance. To achieve this, we took advantage of a diverse culture collection of bacterial 
commensals isolated from A. thaliana roots grown in CAS (Bai et al., 2015). We designed a 
taxonomically diverse SynCom of 115 members which reflects the root bacterial diversity observed 
by culture-independent methods at high taxonomic ranks (Figure 2.5a; Table S2 in the published 
journal version article) SFW and chlorophyll content were measured as readouts of plant 
performance and as a proxy measurement for iron nutritional status. A growth deficit and leaf 
chlorosis (Figure 2.5b, c), symptoms of iron starvation, were observed in plants grown on unavFe. 
Furthermore, elemental and transcriptomic analyses revealed decreased leaf iron content and 
induction of iron import components FRO2 and IRT1, and repression of ferritins, iron storage 
proteins (Figure S7 in the published journal version article). Together, these data confirm a robust 
induction of iron deficiency in this experimental system. We found that reconstitution of the 
microbiota with a bacterial SynCom greatly improved both SFW and chlorophyll content of plants 
grown on unavFe. This beneficial interaction was unexpected, given that iron starvation-induced 
coumarins exert antimicrobial activity against some commensals (Figure 2.4; Wang et al., 2014; 
Yang et al., 2016; Stringlis et al., 2018a; Voges et al., 2019). Iron starvation was also induced by 
reducing the supply of soluble iron to an insufficient amount (1 µM FeEDTA). However, 
commensal-mediated improvement of plant performance was not observed in plants grown on 
media containing only insufficient soluble iron (Figure 2.5c). Plant growth limitation on unavailable 
iron and growth rescue by a live SynCom were maintained when plant roots were shielded from 
light (Figure S4 in the published journal version article), supporting the robustness of this 
experimental system. These results suggest that bacterial commensals can improve plant 
performance by improving access to immobile sources of iron.

To survey the ability of various taxa to improve iron-limiting plant growth, we grew plants in 
mono-associations with bacterial strains on unavFe. Fifty-three taxonomically diverse SynCom 
strains were tested for their ability to rescue iron-limiting plant growth (Figure 2.5a, red arrows; 
Table S2 in the published journal version article). Within each broader taxonomic lineage, we 
observed growth-rescuing strains as well as strains lacking this ability (Figure 2.6), demonstrating 
the ubiquity of this beneficial activity as well as the strain-specific variation within all core 
taxonomic lineages of the root microbiota. Thus, in a community context, the capacity of bacterial 
commensals to rescue plant growth under iron-starved conditions is functionally redundant. 
Furthermore, the ability of these strains to grow in the presence of scopoletin and fraxetin was 
found not to correlate with plant growth rescue capacity, indicating that this plant-beneficial trait 
does not require selection via coumarin antimicrobial activity (Figure S4 in the published journal 
version article).

(Figure on next page) Figure 2.5 Taxonomically diverse root commensals improve iron-limiting plant 
performance. (a) Phylogenetic tree of 115-strain SynCom derived from At-RSPHERE culture collection 
(Bai et al., 2015) used for microbiota reconstitution. Red arrows indicate strains used in Figure 2.6. (b) 
Representative images of plants grown for two weeks on media containing available (avFe) and unavailable 
(unavFe) forms of iron inoculated with live SynCom or heat-killed control. (c) SFW and total chlorophyll 
quantification of Col-0 plants after two weeks of growth on indicated iron conditions. Data are pooled from 
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three experiments with avFe and unavFe: n=42–54 plants per condition, and chlorophyll measured in pooled 
samples, n=13–15 per group. Insufficient iron data are from one experiment, n = 18 plants. Letters indicate 
significant pairwise differences between groups (p-adj ≤ 0.05 by Dunn’s pairwise comparison with 
Bonferroni correction for SFW, and Tukey’s HSD corrected for multiple comparisons for chlorophyll 
content).

(Caption on previous page) Figure 2.5 Taxonomically diverse root commensals improve iron-limiting 
plant performance.

(Caption on next page) Figure 2.6 Iron-limiting growth rescue activity of SynCom strains in mono-
association.
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(Figure on previous page) Figure 2.6 Iron-limiting growth rescue activity of SynCom strains in mono-
association. SFW was measured and plotted as percent growth rescue of bacteria-inoculated plants on 
unavFe compared to the growth deficit between sterile plants on avFe vs unavFe. Black and red lines indicate 
0% (axenic plants on unavFe) and 100% growth rescue (axenic plants on avFe), respectively. Data are 
pooled from 1-4 experiments per strain and normalized to respective sterile controls (n = 18 plants per 
experiment). Asterisks indicate significance from sterile plants by Wilcoxon Ranked Sum test with fdr-
adjustment (*, **, ***, indicate p-adj ≤ 0.05, 0.01, and 0.001, respectively).

2.3.4 Microbiota-mediated plant growth rescue occurs via reductive import of iron and 
requires fraxetin secretion 

We utilized A. thaliana mutant lines deficient in genes involved in iron uptake and homeostasis to 
determine their importance for bacteria-mediated growth rescue under iron limitation. Mutants in 
components of the reduction-based iron uptake system (fro2 and irt1), rhizosphere acidification 
(aha2), and a negative regulator of the iron starvation response (bts) were grown on unavFe in the 
presence of a live SynCom, or a heat-killed SynCom as a negative control. Genotypes fro2 and irt1 
displayed an exaggerated growth deficit and leaf chlorosis (Figure 2.7), consistent with their 
reported hypersensitivity to iron starvation (Robinson et al., 1999; Vert et al., 2002). In contrast to 
WT plants, addition of the bacterial SynCom was unable to improve the phenotype of these iron 
import mutants. Performance of irt1 plants was further reduced in the presence of the SynCom. This 
indicates that without the iron import channel, plants may be unable to compete with bacterial 
commensals for access to the already limited pool of available iron. Moreover, bts plants, which are 
tolerant to iron deficiency (Selote et al., 2014; Hindt et al., 2017), were larger than WT plants on 
unavFe, not chlorotic, and still displayed slightly improved performance when inoculated with 
SynCom. No difference was observed between aha2 and WT controls, however, indicating that 
plant-mediated rhizosphere acidification is not rate-limiting for commensal-mediated plant growth 
rescue in strongly buffered alkaline conditions. When grown on avFe, the SynCom did not improve 
plant performance in any of these genotypes (Figure S5 in the published journal version article). 
These results validate our gnotobiotic system for microbiota reconstitution under iron-limiting 
conditions, confirm that the growth limitation and chlorosis on unavFe is due to iron starvation, and 
suggest that improved plant performance in the presence of commensals depends on the plant’s 
endogenous system for iron reduction and import.

We next investigated the role of coumarins in commensal-mediated plant growth rescue under iron 
limitation. The addition of SynCom provided no benefit to plant growth or chlorophyll content of 
f6’h1, s8h, or pdr9 plants grown on unavFe (Figure 2.8). In contrast, the SynCom improved 
performance of cyp82c4 plants similar to WT. These data suggest that plant biosynthesis of 
scopoletin and/or fraxetin (catalysed by F6’H1 and S8H, respectively) and their secretion (through 
PDR9) are required for bacteria-mediated plant growth rescue under iron limitation, while sideretin 
(synthesized by CYP82C4) is dispensable. No growth promotion by the SynCom was observed in 
these genotypes grown on avFe (Figure S5 in the published journal version article).

19

https://www.sciencedirect.com/science/article/pii/S1931312820305072
https://www.sciencedirect.com/science/article/pii/S1931312820305072


Figure 2.7 Microbiota-mediated plant growth rescue occurs via the reductive import of iron. (a) SFW 
and (b) leaf chlorophyll content of indicated mutants in the reductive import of iron pathway grown on 
unavFe media inoculated with heat-killed or live bacterial SynCom. Total chlorophyll content was measured 
in pooled-leaf samples from six plants. Data are from two independent experiments per genotype (n = 36 
plants, 6 chlorophyll samples). Each experiment included Col-0 control (n = 90 plants, 18 chlorophyll 
samples). Asterisks indicate significance between heat-killed- and live SynCom inoculated groups by 
Wilcoxon Ranked Sum test for SFW and Student’s T-test for chlorophyll content (*, **, ***, indicate p ≤ 
0.05, 0.01, and 0.001, respectively). 

To further assess the roles of scopoletin and fraxetin in commensal-mediated plant growth rescue, 
we chemically complemented f6’h1 plants by supplementing the growth medium with each 
compound (Figure 2.9a, b). Addition of scopoletin did not improve plant performance, while 
fraxetin fully restored the ability of the SynCom to improve both plant growth and leaf chlorophyll 
content in coumarin-deficient f6’h1 plants. That scopoletin was unable to complement f6’h1 plants 
suggests that external scopoletin is not sufficiently taken up by roots and converted to fraxetin after 
secretion. Furthermore, the ability of SynCom to rescue growth of s8h plants was also fully restored 
by supplementation with scopoletin and fraxetin (Figure 2.9c). This confirms that fraxetin is the 
necessary coumarin structure type for commensal-mediated growth rescue. Notably, 
supplementation with coumarins failed to rescue growth or chlorophyll content of germ-free f6’h1 
or s8h plants at 50 µM, a concentration lower than has been used to rescue iron starvation by 
directly mobilizing iron. This indicates that commensal-mediated improvement in iron-limiting 
plant growth is induced by fraxetin concentrations lower than are required for sufficient 
mobilization of iron in axenic conditions. Together, these results confirm that secreted fraxetin is 
both necessary and sufficient to elicit growth rescue activity from bacterial commensals under iron 
limitation. These findings argue for an indirect activity of fraxetin in recruiting commensal-
mediated mobilization of recalcitrant iron pools in addition to its direct iron-mobilizing activity.

(Figure on next page) Figure 2.8 Plant biosynthesis and secretion of fraxetin is necessary for 
microbiota-mediated growth rescue. (a) SFW and (b) leaf chlorophyll content of indicated coumarin 
biosynthesis and export mutants grown on unavFe media inoculated with heat-killed or live bacterial 
SynCom. SFW data are from two experiments (n = 36 plants). Chlorophyll content is from one experiment 
(n=3 pooled leaf samples). Asterisks indicate significance between heat-killed- and live SynCom-inoculated 
groups by Wilcoxon Ranked Sum test for SFW and Student’s T-test for chlorophyll content (*, **, ***, 
indicate p ≤ 0.05, 0.01, and 0.001, respectively). 
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(Caption on next page) Figure 2.8 Plant biosynthesis and secretion of fraxetin is necessary for 
microbiota-mediated growth rescue.

Figure 2.9 Supplementation with fraxetin restores microbiota-mediated growth rescue of f6’h1 and s8h 
plants. (a) SFW and (b) leaf chlorophyll content of Col-0 plants, and f6’h1 plants grown on unavFe 
supplemented with 50 µM scopoletin and/or fraxetin and inoculated with heat-killed or live SynCom. (c) 
SFW of Col-0, and f6’h1 and s8h plants grown on unavFe supplemented with 50 µM scopoletin and fraxetin 
and inoculated with heat-killed or live SynCom. Data in (a) and (b) are from two experiments (n = 30-42 
plants, 6 pooled-leaf chlorophyll samples). Data in (c) are from a single experiment (n = 18 plants). Letters 
indicate significant pairwise differences between groups (p-adj ≤ 0.05 by Dunn’s pairwise comparison with 
Bonferroni correction for SFW, and Tukey’s HSD corrected for multiple comparisons for chlorophyll 
content).
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2.3.5 Coumarins and the microbiota interact to alleviate iron starvation 

To determine if the observed iron starvation symptoms and their improvement by root commensals 
correlated with plant iron status, we measured leaf elemental content by inductively coupled plasma 
mass spectrometry (ICP-MS) (Figure 2.10a and Figure S6 in the published journal version article). 
Leaf iron concentration was significantly reduced on unavFe, confirming iron deficiency. 
Furthermore, addition of live SynCom to WT, but not f6’h1 plants, restored plant iron content to 
replete avFe levels. However, addition of SynCom had no impact on plant iron content on avFe. 
These results confirm that the plant growth rescue activity by commensals during iron starvation is 
due to improved iron nutrition. We next sought to determine if this nutritional benefit was a result of 
microbial stimulation of the plant iron deficiency response or increased iron availability in the 
presence of the SynCom. To identify plant pathways responding to the presence of coumarins and 
bacterial commensals under different iron regimes, we performed analysis of the whole-root 
transcriptome of WT and f6’h1 seedlings in our gnotobiotic system. An earlier time point (1 week) 
was chosen to observe potential stimulation of iron deficiency response genes by the SynCom 
(Verbon et al., 2019) that may lead to plant growth rescue. At this time point, SynCom-mediated 
plant growth rescue was observed in WT, but growth was still comparable between WT and f6’h1 
plants (Figure S7 in the published journal version article).

Figure 2.10 A bacterial SynCom improves plant iron nutrition and relieves the iron deficiency 
response. (a) Shoot iron content of Col-0 and f6’h1 plants grown on avFe and unavFe media with a live 
SynCom or heat-killed control measured by ICP-MS (n = 3-4 pooled plant samples per group). (b) PCA 
ordination of sample distances between root transcriptional profiles of Col-0 and f6’h1 plants grown for one 
week on avFe or unavFe media inoculated with a live SynCom or heat-killed control. Data are from two 
pooled experiments (n = 6 samples pooled from 6 plant roots each). Letters in (a) indicate significant 
pairwise differences between groups (p-adj≤0.05 by Tukey’s HSD corrected for multiple comparisons).

Plotting transcriptome sample distances by PCA (Figure 2.10b) revealed that the supplied iron form 
was the largest determinant of dissimilarity (PC1, 18% of variance), followed by SynCom status 
(PC2, 9% of variance). When grown on avFe, both Col-0 and f6’h1 plants clustered together, but 
separation was observed based on SynCom status. This indicates that a live SynCom impacts host 
transcriptional responses when iron is available, independently of plant coumarin status. The 
transcriptomes of plants grown on unavFe, however, were distinct from those of plants grown on 
avFe, and further separated based on both genotype and SynCom status. When inoculated with heat-
killed SynCom, both WT and f6’h1 on unavFe separated from the avFe cluster (upper-left 
quadrant). A larger genotype-driven separation was observed between Col-0 and f6’h1 plants when 
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inoculated with live SynCom on unavFe. Remarkably, WT plants inoculated with live SynCom on 
unavFe clustered closely with SynCom-inoculated WT plants on avFe (lower-right quadrant), while 
f6’h1 plants remained in the lower-left quadrant, clearly separated from the avFe cluster. This 
pattern indicates that the transcriptional responses to growth on unavFe are more pronounced in 
f6’h1 plants than WT, consistent with their hypersensitivity to iron starvation, Indeed, more iron-
responsive differentially-expressed genes (DEGs) were detected in f6’h1 than WT plants (Figure S7 
in the published journal version article). Furthermore, the number of iron-responsive DEGs 
indicates that the iron starvation-induced response was mitigated by the addition of SynCom in 
Col-0 but not f6’h1 plants.

Figure 2.11 The bacterial SynCom modulates a subset of defence genes in a coumarin-dependent 
manner. (a) Heat map of median-centered Z scores for 2,440 DEGs identified across samples, arranged by k-
means clustering. Significantly enriched iron homeostasis-related and defence-related GO terms of pertinent 
clusters are indicated on right of heat map. GO analysis was performed by comparing the indicated DEG 
cluster to the whole transcriptome (p-adj ≤ 0.05). (b) Expression of select iron deficiency response marker 
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genes. Data are log2-transformed, normalized counts. Letters in (b) indicate significant pairwise differences 
between groups (p-adj≤0.05 by Tukey’s HSD corrected for multiple comparisons).

We performed k-means clustering of all transcripts based on expression pattern and identified 
differentially-expressed genes (DEGs) to investigate the interaction between iron availability, 
SynCom, and genotype (Figure 2.11a). The identified clusters showed iron- and SynCom-
responsive gene sets (plots left of heat map clusters). Cluster 4 revealed a set of genes activated in 
axenically-grown Col-0 and f6’h1 plants in response to unavFe, which were more strongly induced 
in f6’h1 plants. Furthermore, their expression is reduced to homeostatic levels in Col-0 plants upon 
addition of SynCom but remained elevated in f6’h1 plants. This gene set corresponds to iron-
responsive genes that were also responsive to SynCom in a coumarin-dependent manner. Gene 
ontology analysis revealed that this cluster is enriched for genes belonging to the iron starvation 
response, iron homeostasis, and metal ion transport (Figure 2.11a, annotations right of heatmap). 
Genes in cluster 8 displayed the inverse pattern: downregulated on unavFe and restored in the 
presence of SynCom in Col-0, but not f6’h1. We compared our DEGs to a list of 25 previously 
identified core iron starvation marker genes (Mai et al., 2016) (Figure S7 in the published journal 
version article). Of the 12 genes reported to be induced under iron starvation, 11 were found in 
cluster 4, while 7 out of 13 genes reported to be down-regulated under iron starvation were present 
in cluster 8. The cluster assignment and expression patterns (Figure 2.11b and Figure S7 in the 
published journal version article) of selected iron homeostasis regulators and coumarin biosynthesis 
genes revealed that these genes are iron- and SynCom-responsive in a genotype-dependent manner. 
Importantly, the addition of live SynCom did not stimulate expression of iron deficiency genes. Iron 
starvation-upregulated genes (including bHLH39, FRO2, IRT1, and MYB72), as well as iron 
starvation-downregulated genes (including FER1) displayed expression patterns consistent with 
alleviation of the iron deficiency response by the SynCom in WT plants. This indicates that, rather 
than biostimulation of plant iron uptake, iron nutrition is improved by a commensal mechanism. In 
addition, the inability of the SynCom to alleviate the iron-starvation response in f6’h1 roots (cluster 
4 and 8 genes; Figure 2.11) supports a mechanism by which secreted coumarins are required to 
elicit microbiota-mediated iron nutrition, rather than two parallel mechanisms exerted by coumarins 
and the microbiota independently. Together, these data reveal a robust induction of iron starvation in 
plants grown on unavFe, which is alleviated by commensals in WT, but not in f6’h1 plants. This 
implies the existence of a coumarin- and microbiota-dependent mechanism that improves plant 
performance via iron nutrition.

Analysis of SynCom-responsive genes also revealed a core set of DEGs common to both genotypes 
independently of iron availability (clusters 3 and 10, Figure 2.11a; Figure S7 in the published 
journal version article). These clusters were enriched for genes related to defence responses and 
response to bacteria. Interestingly, genes associated with these terms were also significantly 
enriched in clusters 2 and 8, the expression patterns of which are dependent on host genotype, iron 
status and SynCom (Figure 2.11a). The presence of immune-related genes in clusters 2 and 8 
suggests that, in addition to the core SynCom-responsive genes, a subset of defence genes is 
regulated by the presence of commensals in a coumarin-dependent manner. Collectively, these 
results show that both coumarin secretion and the root microbiota have profound impacts on plant 
transcriptional responses to iron deprivation. Furthermore, this emergent interaction between 
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coumarins and the microbiota improves plant performance through bolstered iron nutrition, 
resolving the iron starvation response and regulating a subset of defence-related genes.

2.4 Discussion 

Our results reveal unexpected impacts of root-secreted coumarins governing plant-bacteria 
interactions, including soil type-dependent alteration of root microbiota composition, elicitation of a 
commensal-mediated mechanism of plant iron nutrition, and regulation of a subset of defence 
genes. We show that f6’h1 and s8h plants, which are deficient in the biosynthesis of scopoletin and 
fraxetin, assemble an altered root bacterial community. Individual members of the 
Burkholderiaceae, core members of the plant root microbiota that often exert plant-beneficial 
activities (Eberl & Vandamme, 2016; Thiergart et al., 2020), are impacted by fraxetin in a strain-
specific manner in both roots and growth in culture. This strain-specific sensitivity may in part 
underlie ASV-level changes in abundance on iron-limiting IS. The greater impact on the microbiota 
observed in f6’h1 compared to s8h plants, in terms of deASVs detected and their RA, suggests that 
both scopoletin and fraxetin impact bacterial microbiota assembly. Indeed, a metagenome analysis 
indicated an altered microbial multi-kingdom assemblage and provided evidence for selective 
scopoletin anti-fungal activity against soil-borne fungal pathogens in vitro (Carpinella et al., 2005; 
Kai et al., 2006; Ba et al., 2017; Stringlis et al., 2018b). However, we cannot exclude that iron 
malnutrition in f6’h1 plants has additional consequences on the microbiota.

Plant performance data, coupled with elemental content and transcriptomic analysis, confirms that 
benefits conferred by commensals under iron limitation occur via improved iron nutrition. In 
contrast to this beneficial interaction, under low phosphate concentrations A. thaliana must compete 
with a bacterial SynCom for access to the macronutrient, requiring integration of phosphate 
starvation and defence responses (Castrillo et al., 2017). We similarly observe emergent effects of 
coumarins and the microbiota on a subset of defence-related genes, indicating potential trade-offs 
between growth and defence. Of note, the impact of commensal communities on plant performance 
when phosphate is present in unavailable forms, as is characteristic of many soils, has not been 
tested. Importantly, in our system, growth promotion by microbes is observed only when iron is 
present but immobile, conditions characterizing most iron-limiting soils. Thus, our results highlight 
the importance of studying plant nutritional phenotypes in systems closely mimicking natural 
conditions, including the presence of commensals and defined forms of soil minerals that are 
unavailable to the plant host. To the best of our knowledge, experimental evidence for clear plant 
nutritional benefits from commensals in a community context has not been reported before. This is a 
significant step forward in understanding how plant nutrition and productivity can be bolstered by 
harnessing endogenous soil microbes. 

The presence of this beneficial activity across all core taxonomic lineages of the A. thaliana 
bacterial microbiota suggests that the underlying molecular mechanism(s) evolved independently 
rather than by common descent. As growth rescue depends on plant expression of the iron reductive 
import machinery, but does not involve microbial stimulation of its expression, the mechanism(s) 
must function upstream of reduction and import at the root surface. Multiple bacterial molecules 
can mobilize insoluble iron and are potentially utilized by plants, including siderophores and other 
metabolites, though the ability of plants to utilize microbially-mobilized iron in the context of an 
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intact microbiota has yet to be shown. The nutritional benefits provided by commensals requires 
plant-secreted fraxetin, but is independent of its antimicrobial activity. This suggests that the impact 
of coumarins on root microbiota composition and on commensal-mediated iron nutrition may be 
independent mechanisms. This would indicate that coumarins have multiple roles in mediating host-
microbe interactions. Importantly, our results were obtained using a bacterial culture collection 
derived from A. thaliana roots grown in CAS, in which coumarin status did not affect plant 
performance or microbiota structure. The observation that taxonomically diverse commensals 
isolated from an iron-replete soil are capable of rescuing iron-limiting plant growth further suggests 
the involvement of microbial functions which are ubiquitous across soil types and can be elicited by 
fraxetin. Future work with commensal culture collections derived from soils with contrasting iron 
availability are required to directly link plant phenotypes in natural calcareous soils and gnotobiotic 
systems. 

Root-secreted coumarins are inducible under iron starvation and mediate an interaction between the 
host and commensals that improves host iron nutrition. This genotype-environment interaction 
strongly suggests that the root microbiota is an integral component of plant edaphic adaptation to 
growth in iron-limiting soil. Quantitative variation in coumarin production has been demonstrated 
among A. thaliana accessions (Siwinska et al., 2014; Tsai et al., 2018), and was shown to correlate 
with performance under iron-limitation (Tsai et al., 2018). As coumarins are both ubiquitously 
present and chemically diverse among flowering plants (Bourgaud et al., 2014; Rajniak et al., 2018; 
Krieger et al., 2018), our findings provide an ecological framework for examining the consequences 
of their evolutionary diversification on microbiota-mediated mineral nutrition of plant hosts.

2.5 Materials and methods 

2.5.1 Experimental model and subject details 

Cologne agricultural soil (CAS) was obtained from a local site (GPS code : 50.958 N, 6.856 E) that 
has not been exposed to agriculture for >15 years. Italian soil (IS) was obtained from an organic 
vineyard in Tebano, Italy (GPS code : 44.292 N, 11.784 E) which has been maintained since 2007 
without irrigation or fertilization. Soil was homogenized, sieved, and stored at 4°C until used in 
experiments. All A. thaliana genotypes used in this study were in the Columbia wild-type (Col-0, 
N60000) background. Mutants related to coumarin biosynthesis (f6’h1-1, SALK_132418C; s8h-2, 
SM_3_23443; cyp82c4-1, SALK_001585) and export (pdr9-2, SALK_050885), regulation of the 
iron starvation response (bts-1, SALK_016526), and iron reductive import (aha2-4, SALK_082786; 
fro2, also known as frd1-1 (Robinson et al., 1999), and irt1-1 (Vert et al., 2002)) were employed in 
this study and are available from the Arabidopsis Biological Resource Center (ABRC). Each of 
these genes are expressed in roots. 

All bacterial strains used in this study were previously described (Bai et al., 2015) and are 
summarized in Table S2 in the published journal version article. Species phylogenetic trees were 
generated with iTOL version 5.5 (Letunic & Bork, 2007) from previous whole genome taxonomic 
classification (Bai et al., 2015). Each of these strains was originally isolated from A. thaliana roots 
grown in CAS soil. Strains were stored in 20% glycerol stocks and cultured on 50% tryptic soy agar 
(TSA) plates and 50% tryptic soy broth (TSB) at 25˚C.
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2.5.2 Plant growth conditions  

Seeds were surface-sterilized with 70% ethanol for 15 minutes under agitation, followed by two 
washes with 70% ethanol, one with 100% ethanol, and three with sterile distilled water. Sterilized 
seeds were stratified at 4˚C in the dark for 2–3 days either imbibed in water (for soil experiments) or 
on agar media plates (for agar-media experiments) before transfer to growth conditions.

In soil system, surface-sterilized, stratified seeds were germinated in 7x7 cm square pots filled with 
CAS or IS. Pots were watered from the top with non-sterile distilled water every 2 days. Plants were 
grown in the greenhouse under long-day conditions (16hrs light, 8 hours dark). Pots were 
distributed at random within trays. and shuffled periodically to minimize edge and location effects. 
In agar-media system, surface-sterilized seeds were sown on plates containing 1% agar (Agar, 
granulated, Difco) in 50% Murashige and Skoog (MS) medium with vitamins (2.2 g/L, Duchefa 
Biochemie) supplemented with 0.5% sucrose. After two days of stratification at 4°C, plates were 
positioned vertically in a climate chamber (Panasonic, MLR-352) and grown for six days (10 hours 
light, 21 ˚C; 14 hours dark, 19 ˚C). Uniform seedlings were then transferred to experimental 
condition plates prepared fresh on the day of seedling transfer.

2.5.3 Coumarin antimicrobial activity 

The antimicrobial activity of scopoletin and fraxetin (Sigma Aldrich) against single bacterial strains 
was assayed in liquid culture in 50% tryptic soy broth (TSB, 15g/L; Sigma Aldrich). Scopoletin and 
fraxetin stocks were prepared in sterile DMSO (Sigma Aldrich) and stored at -80˚C. Bacterial 
colonies were picked from TSA plates into liquid TSB and grown for 2–3 days at 25˚C with 180 
rpm agitation. Liquid cultures were subcultured by diluting 1:100 into fresh TSB and incubated for 
1–2 hours. In a clear flat-bottom 96-well microtiter plate, 100 µl of subculture were added to 100 µl 
of fresh TSB media supplemented with scopoletin or fraxetin for a final 50 μM concentration, or 
equivalent DMSO negative control. The microtiter plate was sealed with a clear adhesive film to 
prevent evaporation. Growth was monitored kinetically in a microplate reader (Infinite M200 PRO, 
Tecan) with 30 seconds of shaking followed by measurement of optical density (OD) at 600 nm in 
four locations per well every 30–60 minutes for 18–20 hours. The OD in each experiment was 
expressed as the average of triplicate wells per condition. Relative growth (Figure 2.4) was 
calculated by dividing the average final OD measurement of each strain and indicated condition by 
the average OD in the coumarin-free control.

2.5.4 Gnotobiotic system for iron limitation 

Iron limitation was achieved with a modified MS medium prepared from stock solutions. Stock 
solutions were prepared of ethylenediaminetetraacetic acid ferric sodium salt (Fe(III)EDTA, Sigma) 
in distilled water, and 100mM Fe(III)Cl3 (Merck) in 10 mM HCl (to prevent precipitation), sterile-
filtered and stored at 4˚C protected from light. A 2M stock solution of 4-(2-
Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-Hydroxyethyl)piperazine-Nʹ-(2-
ethanesulfonic acid) (HEPES) buffer (Roth) was prepared, and the pH was adjusted with KOH until 
a dilution to 10 mM in 50% MS resulted in a pH of 7.4 (approximately pH 8.2 for stock solution) 
and stored at 4˚C. 

27



As a base medium, modified 50% MS media without iron or pH buffer (750 μM MgSO4, 625 μM 
KH2PO4, 10.3 mM NH4NO3, 9.4 mM KNO3, 1.5 mM CaCl2, 55 nM CoCl2, 53 nM CuCl2, 50 μM 
H3BO3, 2.5  μM KI, 50  μM MnCl2, 520  nM Na2MoO4, 15  μM ZnCl2, and 9.4mM KCl) was 
prepared from individual stock solutions. Base media with 1% agar was autoclaved and cooled to 
50˚C before adding iron source (final 100 µM) and HEPES (final 10mM, pH 7.4) with constant 
stirring. Media were allowed to cool to ~45˚C, and 45 ml were measured into a conical tube. Live 
or heat-killed bacteria or SynCom (preparation see below) were added to a final OD600nm = 0.0001, 
corresponding to approximately 105 cells/ml. For coumarin complementation experiments, 
scopoletin and fraxetin were added to a final concentration of 50 µM, or equivalent DMSO-only 
control. Media was mixed thoroughly by inverting, poured into 12*12cm square petri dishes, dried 
with an open lid for 30 minutes, then allowed to solidify. Seedlings were transferred to experimental 
plates (six plants per plate, three replicate plates per experiment). Plates were returned to the growth 
chamber and grown vertically with random shuffling and re-distribution every 2–3 days for 
uniformity. After two weeks, SFW was measured and chlorophyll and root samples were collected. 
Plant growth rescue in mono-association assays (Figure 2.6) was expressed as percent growth 
rescue of the differential between axenic plant growth on avFe and unavFe using the formula:

2.5.5 Microbial community data analysis 

For 16S profiling, root samples were harvested and libraries were processed as in (Thiergart et al., 
2020). Plant roots were harvested at the early flowering stage, average 37 days after sowing. Paired-
end Illumina sequencing was performed in-house using the MiSeq sequencer and custom 
sequencing primers. Forward and reverse sequencing reads were demultiplexed separately 
according to the barcode sequence and output in individual fastq files per sample. A denoising 
pipeline, DADA2 (v1.12.1) (Callahan et al., 2016) was used to obtain the final ASV table. Raw 
sequencing reads were truncated to 260 bp for the forward reads and 240 bp for the reverse reads 
and filtered with the following parameters: maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE. 
Subsequently, error rates were inferred from filtered reads until convergence or exceeding a 
maximum consistent number of 20. Sequence variants were then inferred from the trimmed, filtered 
and error-corrected sequences and ASVs were obtained by merging the forward and reverse 
sequences together. Finally, chimeras were identified and removed when an ASV could be mapped 
to the left- and right-segments from two other, more abundant ASVs. Finally, the ASV table was 
generated by aggregating the number of reads mapped to each variant.

Analyses and visualization were performed in the R statistical environment (Version 4.0.1). 
Analysis was performed on samples with a sequencing depth of at least 2,000 high-quality reads. 
Alpha and beta diversity were calculated on ASV count tables that were rarefied to 2,000 reads. 
Alpha diversity (Shannon index) was calculated with using the “diversity” function in vegan (R 
package version 2.5-6) and differences were tested with ANOVA. Bray-Curtis dissimilarity index 
was calculated using the “vegdist” function in vegan and used for unconstrained ordination by 
Principal Coordinate Analysis (PCoA). Constrained PCoA (CPCoA) was performed with the 
“capscale” function in vegan, using the square-root distances of Bray-Curtis dissimilarity index. For 
ordination constrained on the interaction between genotype and soil type (Figure 2.1b), the formula 

% Growth Rescue =
SFWinoculated on unavFe − SFWaxenic on unavFe

SFWaxenic on avFe − SFWaxenic on unavFe
* 100%
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used was “distance.matrix ~Host.Genotype*Soil”. Statistical significance of genotype separations 
was determined using adonis function and pairwise PERMANOVA with 999 permutations using 
vegan and the RVAideMemoire package. 

Analyses and visualization were all performed in the R statistical environment (R Development 
Core Team, 2010). Analysis was performed on samples with a sequencing depth of at least 2,000 
high-quality reads. Relative abundance (RA) was calculated using non-rarefied ASV count data. To 
calculate deASVs between coumarin pathway mutants and Col-0 WT, data were pooled from three 
experiments (except s8h, which was included in only one experiment), and filtered for ASVs found 
in at least three samples at a RA > 0.05%. Statistically significant differential enrichment was 
determined with the edgeR package (Robinson et al., 2010) (version 3.24.3) using pair-wise 
genotype comparisons in a negative binomial generalized log-linear model at an FDR-adjusted p 
value of 0.05. Taxonomic classification of ASVs and culture collection strains was performed using 
the Silva 132 database (released Dec. 2017) (Quast et al., 2012). Hypergeometric enrichment test 
was performed using the stats package in R. Each family was tested for over- or under-
representation in the deASVs set by comparing to the list of all detected ASVs. Red asterisks 
indicate significance at an FDR-adjusted p value of 0.05.

2.5.6 RNA extraction and RNA-seq analysis 

For  transcriptomic  analysis, 6-day-old A.  thaliana  seedlings were transferred to avFe or unavFe 
media with live or heat-killed SynCom as above and grown for eight days. Roots from six plants 
(one plate) were pooled for one replicate, with a total of three replicates per condition in each of 
two experiments (final n=6). Roots were homogenized with Lysing Matrix E and TissueLyser II (30 
beats per second for 2x30 s; Qiagen) and RNA was extracted with the miRNeasy Mini Kit (Qiagen) 
according to the manufacturer’s instructions. RNA quality was determined using a 2100 
Bioanalyzer (Agilent Technologies). Preparation of Illumina sequencing libraries was conducted by 
the Max Planck Genome Center. Sequences were generated using the Illumina HiSeq2500 platform. 
Approximately 20M paired-end reads with a length of 150 bp were obtained per sample in one 
experiment, and 8M per sample in the second.

Initial paired-end RNA-Seq reads were pre-processed using fastp (Chen et al., 2018). High quality 
reads were aligned to A. thaliana reference transcriptome (TAIR 10) using kallisto (Bray et al., 
2016) with default settings. After removal of low abundant transcripts, 35,886 transcripts were 
imported using the tximport R package (Soneson et al., 2016). Batch effects were detected and 
removed using the SVA R package (Leek et al., 2012). Differential gene expression analysis was 
performed using DESeq2 (Love et al., 2014) by comparing the avFe and unavFe treatment with live 
or heat-killed SynCom in WT and f6’h1 plants, respectively. DEGs were selected with the threshold 
log2FoldChange > log2(1.5) and an adjusted p-value < 0.05. 

Scaled counts normalized to library size were generated using DESeq2 (‘rlog’ function) and 
transformed as median-centered z-score (by transcripts, ‘scale’ function). Then, z-scores were used 
to conduct k-means clustering for all transcripts. The cluster number (k=10) was determined by sum 
of squared error and Akaike information criterion. Transcripts with similar expression patterns were 
grouped in the same cluster. Differentially expressed transcripts and cluster results were visualized 
using heatmaps generated with the ComplexHeatmap package in R (Gu et al., 2016). Gene 
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expression in individual plots (Figure S7 in the published journal version article) was plotted using 
scaled counts data. Gene-set enrichment analyses were performed with the goseq package (Young et 
al., 2010) with gene ontology annotations from the Gene Ontology Consortium (Ashburner et al., 
2000; The Gene Ontology, 2019) (September 2019).

2.6 Data and code availability 

Raw sequencing data of 16S rRNA profiling experiments and RNA-Seq transcriptomic data have 
been deposited in the European Nucleotide Archive (ENA) under the accession number 
PRJEB3866. Datasets and scripts necessary to reproduce analyses and generate figures have been 
deposited to Mendeley Data with the DOI: 10.17632/tkdn6zbw7k.1. Scripts for RNASeq analysis 
and heatmap generation are available at https://github.com/YulongNiu/MPIPZ_CJ_RNASeq.
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P.S.-L., H.I., and M.H. conceived the project. C.J.H., M.H., H.I., and P.S.-L. designed the 
experiments. A.D.R. provided IS. M.H. and C.J.H. performed the root microbiota profiling 
experiments in natural soils. C.J.H., R.G., and R.G.-O. analyzed the microbiota profiling data. 
C.J.H. performed SynCom reconstitution experiments, bacterial growth assays, and RNA-seq 
experiments. RNA-seq data analysis was performed by Y.N., R.G.-O., and C.J.H.; R.G.-O., R.G., 
and Y.N. provided bioinformatic tools and support. S.K. advised and performed ICP-MS analyses. 
E.S.S. and M.J.E.E.E.V. provided scientific advice at an early stage of the project and feedback on 
the manuscript. P.S.-L. and R.G.-O. supervised the project. C.J.H. and P.S.-L. wrote the paper. 
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Chapter 3 Coordination of microbe-host homeostasis by 
crosstalk with plant innate immunity 

3.1 Abstract 

Plants grown in natural soil are colonized by phylogenetically structured communities of microbes 
known as the microbiota. Individual microbes can activate microbe-associated molecular pattern 
(MAMP)-triggered immunity (MTI), which limits pathogen proliferation but curtails plant growth, 
a phenomenon known as the growth-defense trade-off. We report that in mono-associations, 41% 
(62/151) of taxonomically diverse root bacterial commensals suppress Arabidopsis thaliana root 
growth inhibition (RGI) triggered by immune-stimulating MAMPs or damage-associated molecular 
patterns. Amplicon sequencing of bacteria 16S rRNA genes reveals that immune activation alters 
the profile of synthetic communities (SynComs) comprised of RGI-non-suppressive strains, while 
the presence of RGI-suppressive strains attenuates this effect. Root colonization by SynComs with 
different complexities and RGI-suppressive activities alters the expression of 174 core host genes, 
with functions related to root development and nutrient transport. Furthermore, RGI-suppressive 
SynComs specifically downregulate a subset of immune-related genes. Pre-colonization with RGI 
suppressive SynComs, or mutation of one commensal-downregulated transcription factor, MYB15, 
renders plants more susceptible to opportunistic Pseudomonas pathogens. Our results suggest that 
RGI-non-suppressive and suppressive root commensals modulate host susceptibility to pathogens 
by either eliciting or dampening MTI responses, respectively. This interplay buffers the plant 
immune system against pathogen perturbation and defense-associated growth inhibition, ultimately 
leading to commensal-host homeostasis.

3.2 Introduction 

Ubiquitous interactions within, and between, microbial communities and their plant hosts often 
shape host phenotypes and drive community diversification, leading to the conceptualization of 
plants and their associated microbes as discrete ecological units, or holobionts (Hassani et al., 
2018). Analysis of Arabidopsis thaliana grown in different locations has shown that plants 
accommodate a conserved core microbiota, microbial assemblages that represent a subset of 
microbes from the surrounding soil seeding inocula (Bulgarelli et al., 2012; Lundberg et al., 2012; 
Schlaeppi et al., 2014; Thiergart et al., 2020). While most microbiota members are commensals, a 
small number provide beneficial services for the host (Bulgarelli et al., 2013; Jacoby et al., 2017), 
or become pathogenic under favorable conditions. Recent studies have shed light on how 
specialized metabolites (Lebeis et al., 2015; Hu et al., 2018; Huang et al., 2019; Koprivova et al., 
2019) and abiotic stresses (Castrillo et al., 2017; Harbort et al., 2020) influence host-associated 
microbiota. However, how microbe-host homeostasis is maintained upon perturbation remains 
poorly understood. 

Plants have evolved a sophisticated innate immune system to protect themselves against pathogens. 
One arm of this system is activated by the extracellular perception of microbe/pathogen-associated 
molecular patterns (M/PAMPs) that are recognized by host pattern recognition receptor (PRRs). For 
example, the bacterial flagellin-derived epitope flg22 is detected by the cognate PRR FLS2.  Both 
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pathogenic and beneficial bacteria can carry flg22 epitope variants (Stringlis et al., 2018), resulting 
in MAMP-triggered immunity (MTI) (Saijo et al., 2018; Wan et al., 2019). MTI effectively restricts 
pathogen proliferation (Zipfel et al., 2004), but, if unrestrained, may result in plant growth 
penalties, a phenomenon known as the growth-defense trade-off (Huot et al., 2014). Pathogens have 
evolved diverse mechanisms to suppress MTI (Jones & Dangl, 2006), however, this property is not 
limited to harmful bacteria, as a previous report has shown that commensal Alphaproteobacteria 
from the Arabidopsis root culture collection (At-RSPHERE) (Bai et al., 2015) can also override 
flg22-mediated root growth inhibition (RGI) (Garrido-Oter et al., 2018). Similarly, the beneficial 
rhizobacterium Pseudomonas simiae suppresses more than half of the MAMP-triggered 
transcriptional responses in mono-association with Arabidopsis, possibly through acidification of 
the rhizosphere (Stringlis et al., 2018; Yu et al., 2019).  However, how plants tolerate a rich 
diversity of commensals without compromising effective resistance to pathogens is unknown. Here, 
we used a bottom-up approach to show that phylogenetically diverse root commensals can modulate 
plant immunity, and that their combined interactions in community contexts coordinate commensal-
host homeostasis under pathogen challenges (Hacquard et al., 2017; Teixeira et al., 2019).

3.3 Results 

3.3.1 Taxonomically widespread ability of root commensals to interfere with defense-
associated growth inhibition 

To facilitate screening of individual root commensals of the At-RSPHERE culture collection, we 
took advantage of a flg22-hypersensitive line, pWER::FLS2-GFP (Wyrsch et al., 2015; Emonet et 
al., 2021), in which the flg22 receptor is overexpressed but restricted to the root epidermis. This 
hypersensitivity leads to an enhanced signal-to-noise ratio for flg22-mediated RGI (Figure 3.1). 
After three weeks of co-culturing with individual bacterial isolates and flg22, 41% of the strains (62 
out of 151) were found to interfere with RGI. RGI-suppressive activity was detected across all four 
phyla of the microbiota – Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes – but was 
overrepresented among Actinobacteria and Gammaproteobacteria commensals (Figure 3.2a). Viable 
plate counting confirmed that the RGI non-suppressive strains still colonize roots in mono-
associations (Extended Data Fig. 1b in the published journal version article). In contrast, only three 
strains, Streptomyces strains 107 and 187, and Pseudomonas 401, had detrimental impacts on 
Arabidopsis in mono-associations, with Pseudomonas 401 most severely compromising plant 
growth (Extended Data Fig. 1c in the published journal version article).

(Caption on next page) Figure 3.1 pWER::FLS2-GFP transgenic Arabidopsis plants are hypersensitive 
to flg22.
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(Figure on previous page) Figure 3.1 pWER::FLS2-GFP transgenic Arabidopsis plants are 
hypersensitive to flg22. Representative images of 3-week-old plants treated with 1 μM flg22 grown on agar 
plate.

To examine whether root-derived bacteria were also able to suppress RGI elicited by an endogenous 
plant-derived danger-associated molecular pattern (DAMP), we treated plants with the DAMP 
Atpep1, which induces RGI and immune responses (Poncini et al., 2017). Using Atpep1-treated 
Col-0 wild type (WT) plants, we found that 12 out of 13 suppressive strains, representing members 
from diverse taxa, retained the capacity to interfere with RGI, while none of the eight non-
suppressive strains elicited this effect (Extended Data Fig. 2a in the  published journal version 
article). Thus, phylogenetically diverse root commensals can suppress both DAMP- and MAMP-
induced RGI. One isolate, Caulobacter strain 342, suppressed flg22- but not Atpep1-mediated RGI 
(Extended Data Fig. 2b in the published journal version article), suggesting the existence of at least 
two modes of RGI suppression: one interfering with both MAMP- and DAMP-induced RGI, the 
other possibly specific to flg22 perception.

Although germ-free pWER::FLS2-GFP (Wyrsch et al., 2015) plants respond to flg22 treatment with 
enhanced RGI, compared to Col-0 on synthetic medium, no growth differences were noted between 
these two genotypes when grown on natural soil (Extended Data Fig. 2c in the published journal 
version article). Given that root growth in natural soil likely proceeds in the face of chronic 
exposure to MAMPs and DAMPs, as well as colonization by both suppressive and non-suppressive 
commensals, we speculated that the aforementioned RGI suppression phenotype may act as a 
dominant community trait. To test this hypothesis, we composed four independent but 
taxonomically similar 5-member synthetic communities (SynComs) with contrasting capacities for 
RGI suppression, i.e., non-suppressive SynComs (SynCom NS1 and NS2) and suppressive 
SynComs (SynCom S1 and S2; Supplementary Table 1 in the published journal version article). We 
observed RGI-suppressive activity in plants inoculated with the suppressive SynComs, but not with 
the non-suppressive SynComs. Furthermore, full RGI suppressive activity was retained when these 
commensals were combined as 10-member SynComs (Figure 3.2 b). A recent study showed that 
auxin-mediated RGI could be rescued by Variovorax commensals (Finkel et al., 2020). However, 
our four tested SynComs neither induced RGI to a level comparable to flg22 treatment, nor did the 
presence of Variovorax 434 in SynCom NS1 rescue the flg22-mediated RGI phenotype (Figure 
3.2b). Therefore, we conclude that RGI is mainly caused by flg22 treatment, and is widely 
suppressed by At-RSPHERE members that function dominantly in our setup.

(Figure on next page) Figure 3.2 At-RSPHERE root commensals exhibit strain-specific variations to 
suppress flg22-mediated RGI in pWER::FLS2-GFP plants. (a) Phylogenetic tree showing the 
distribution of strains exhibiting RGI suppressive activity. The outer rings represent root lengths of 3-
week-old plants germinated on plates supplemented with 1μM flg22, and individual strains 
(OD600=0.0005), two independent replicates. The threshold for suppressive activity is indicated by the red 
line, i.e., root length > 2cm. (b) The impact of 4 independent 5-member SynComs (Supplementary Table 
1 in the published journal version article), differential in RGI suppressive activity, on flg22-mediated 
RGI. 2-week-old plants were germinated on plates supplemented with 1μM flg22, and the indicated 
SynCom. Shapes represent three (SynCom NS1 +S1) and four (SynCom NS2 +S2) independent replicates 
in (b). n=total number of biological samples. Different letters indicate statistical significance (two-sided 
Dunn’s Kruskal Wallis, p<0.05). The box plots centre on the median and extend to the 25th and 75th 
percentiles, and the whiskers extend to the furthest point within the range of 1.5× the interquartile range.
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(Caption on previous page) Figure 3.2 At-RSPHERE root commensals exhibit strain-specific 
variations to suppress flg22-mediated RGI in pWER::FLS2-GFP plants.

We speculated that the co-occurrence of RGI-non-suppressive and suppressive strains might reflect 
a need for commensal microbes to dampen plant immunity to balance root growth and defense 
trade-offs. Thus, we asked if a single suppressive strain is sufficient to achieve full RGI 
suppression. We found that the addition of diverse individual suppressive strains to a 5-member 
non-suppressive SynCom resulted in only partial RGI suppression (Extended Data Fig. 2d in the 
published journal version article). This result suggests that the identity of suppressive commensals, 
and the input proportion of suppressive to non-suppressive strains, affect RGI suppression capacity 
quantitatively.

The ability of specific strains to differentially suppress Atpep1- and flg22-mediated RGI prompted 
us to investigate the mechanisms underlying this biological process. Previously, commensal 
Pseudomonas spp. in mono-associations were shown to acidify the growth medium, rendering 
plants insensitive to flg22 (Yu et al., 2019). To determine if acidification is responsible for RGI 
suppression by our SynCom, we measured the growth medium pH of plants co-inoculated with 
different SynComs. We observed average reductions in pH, ranging from 5.18 in mock treated 
plants, to 4.62 and 3.97 in the presence of a SynCom S1 and NS1, respectively. This lack of 
correlation between RGI suppression and growth medium acidification, suggests that this 
mechanism is unlikely to explain suppression in our community setup. We then investigated 
whether type III secretion, a well-characterized virulence mechanism among Gram-negative 
bacteria pathogens, was required for the suppressive activity of root commensals tested. 
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Intriguingly, hrcC, a gene essential for a functional type III secretion system in pathogenic 
Pseudomonas, is dispensable for RGI suppression mediated by suppressive Pseudomonas strain 569 
(Extended Data Fig. 2e, f in the published journal version article). Next, we investigated whether 
root commensals can target the step upstream of flg22 perception. Only the culture filtrate of 
Janibacter 101, an Actinobacteria member, but not that of three other suppressive strains, de-
repressed both flg22 and Atpep1-induced RGI (Extended Data Fig. 3a-c in the published journal 
version article). Heat treatment and filtration of the culture filtrate showed that the molecule(s) 
responsible for the suppressive activity retained in the supernatant of Janibacter 101 is heat-labile, 
and is larger than 3 kDa (Extended Data Fig. 3d in the published journal version article). Mass 
spectrometry analysis further revealed that the filtrates of 101 and a closely related suppressive 
Janibacter, 563, elicited a significant reduction of intact flg22 peptide, as compared to three other 
tested suppressive commensals (Extended Data Fig. 3e in the published journal version article). 
Thus, the ability of these two Janibacter strains to suppress MTI resembles the activity of 
pathogenic bacteria (Pel et al., 2014), and is associated with an extracellular mechanism that can 
modify/degrade flg22 peptide. Together, these data reveal that commensals use diverse mechanisms 
to suppress elicitor-mediated RGI.

3.3.2 Activation of immunity shapes root microbiota establishment 

To determine if plant immunity affects microbiota establishment, we performed reconstitution 
experiments with gnotobiotic plants grown on an agar matrix. We designed three taxonomically 
similar SynComs with contrasting RGI suppression capacities, for community profiling experiments 
with strain-specific resolution (total of six SynComs; SynComs used in experiment 1 and 2 differ in 
two Gammaproteobacteria, and SynComs used in experiment 3 are composed of entirely different 
strains, see Supplementary Table 1 in the published journal version article). Principal Coordinate 
Analyses (PCoA) of Bray-Curtis dissimilarities revealed that root-associated bacterial communities 
were distinct from the corresponding unplanted or planted matrix samples (Extended Data Fig. 4 in 
the published journal version article), regardless of the SynCom composition and plant genotypes 
(Col-0 and pWER::FLS2-GFP). Constrained PCoA revealed that flg22 treatment elicited a 
consistent community shift in plants inoculated with non-suppressive SynComs, while samples 
from those inoculated with suppressive SynComs remained together. Consistent with a dominant 
effect of RGI suppression, roots inoculated with 10-member mixed communities (suppressive plus 
non-suppressive SynComs) were not affected by flg22 treatment (Figure 3.3a-c; Extended Data Fig. 
5a-c in the published journal version article). This is consistent with another report showing that 
roots of fls2 mutant and Col-0 plants have similar community profiles, consisting of a mixed 32-
mixed SynCom (Wippel et al., 2021).

To dissect the contribution of individual strains to the overall community shift, we quantified the 
relative abundance (RA) of individual strains. The detection of non-suppressive commensals as the 
most abundant strains in the mixed SynComs suggests that the ability to dominate in a community 
is not necessarily coupled to RGI suppression (Figure 3.3d-f; Extended Data Fig. 5d-f in the 
published journal version article). However, the RA of specific strains in a community was 
impacted by plant immunity. For example, flg22 treatment led to altered RA of Pseudomonas 9/68 
(up) and Variovorax 434 (down), while Microbacteriaceae 60 was unaltered (experiment 1, 2). 
Similarly, flg22 treatment altered the RA of Microbacteriaceae 1293 (up) and Comamonadaceae 

35

https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2
https://www.nature.com/articles/s41477-021-00920-2


568 (down), while Pseudomonas 71 was unaffected (experiment 3; Figure 3.3d-f). A similar trend 
was also detected in Col-0 (Extended Data Fig. 5d-f in the published journal version article), 
although the effect was more pronounced in pWER::FLS2-GFP plants, possibly due to enhanced 
MTI and/or altered root architecture. In addition, we found that flg22 treatment reduced within-
sample diversity of non-suppressive SynComs, (experiment 1, 2; Extended Data Fig. 5g in the 
published journal version article), suggesting that immune activation can affect the distribution of 
specific strains in community contexts.

Figure 3.3 Activation of immunity by flg22 affects community establishment. (a-c) Constrained 
coordination of the microbial profile of pWER::FLS2-GFP root samples showing the corresponding 
community shift of non-suppressive SynCom, upon flg22 treatment. Ellipses correspond to Gaussian 
distributions fitted to each cluster (95% confidence interval). p-values next to ellipses indicate statistical 
significance based on a PERMANOVA test between untreated and flg22-treated samples of each SynCom 
(permutation = 999, p < 0.05). (d-f) Relative abundance of strains upon flg22 treatment. Experiment 1: 
(a,d); experiment 2: (b,e); experiment 3: (c,f). These experiments were conducted using different 
SynComs and repeated twice with consistent result. The corresponding strains used in each SynCom are 
indicated on top of (d-f). Values in brackets are eigenvalues explained by the Principal Component (PC). 
Colors indicate SynComs used and shapes indicate flg22 treatment. n=total number of biological samples 
collected from three independent replicates. Asterisks indicate statistical significance (two-sided ANOVA, 
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p<0.05) and the p values are provided on top of each graph. The box plots centre on the median and 
extend to the 25th and 75th percentiles, and the whiskers extend to the furthest point within the range of 
1.5× the interquartile range.

3.3.3 Root transcriptomic changes and dampening of immunity by suppressive SynComs 

Although flg22-mediated RGI is closely associated with immune activation, its role as a bona fide 
immune output is unclear. Here, we sought to explore how inoculation with suppressive or non-
suppressive SynComs affected the root transcriptome of plants treated with flg22 and grown on an 
agar matrix (Supplementary Table 2-7 in the published journal version article). Principal component 
analyses (PCA) at the transcriptome level revealed distinct expression patterns between Col-0 plants 
inoculated with live bacteria, compared with germ-free plants (PC1, 20% variance; Figure 3.4a). 
Interestingly, the transcriptional output of roots inoculated with these two taxonomically similar 
SynComs was clearly distinguishable after two weeks of co-cultivation, even in the absence of flg22 
treatment (triangles, Figure 3.4a). In addition, we observed a separation according to the immune 
status of the plants, triggered by flg22 exposure, in all samples treated with heat-killed bacteria as 
well as with the non-suppressive SynCom (PC2, 7% variance; Figure 3.4a). By contrast, flg22 
treatment of plants colonized by the suppressive SynCom did not elicit significant changes. 
Independent transcriptome experiments using pWER::FLS2-GFP plants confirmed these results 
(Extended Data Fig. 6 and Supplementary Table 2-4 in the published journal version article).

Next, we performed k-means clustering of differentially expressed genes (DEGs) involved in the 
flg22 response, the SynCom response, or both (Figure 3.4b and Supplementary Table 5-7 in the 
published journal version article). We observed three large clusters (2,221 DEGs) that were induced 
(c4 and c5) or suppressed (c8) by live bacteria, independent of flg22 treatment (Figure 3.4b,c). Gene 
ontology (GO) enrichment analyses showed that the SynCom-responsive clusters were primarily 
enriched in functions related to detoxification, root development, nutrient transport, and response to 
hypoxia (Extended Data Fig. 7 in the published journal version article). To determine whether 
similar GO terms could also be identified in experiments with more complex SynComs, we 
compared our data with two independent Arabidopsis root transcriptome studies that employed 
SynComs consisting of both suppressive and non-suppressive commensals (35 members Teixeira et 
al., 2021; 115 members Harbort et al., 2020). Despite differences in technical setups and SynCom 
complexities, we identified 174 common SynCom-responsive DEGs in the absence of flg22 that 
were related to the same biological functions mentioned above (Extended Data Fig. 8 and 
Supplementary Table 8-12 in the published journal version article).

Importantly, we found a flg22-inducible cluster (c3), which was significantly upregulated by the 
non-suppressive SynCom, but downregulated by the suppressive community (Figure 3.4b,c), in a 
pattern matching the RGI phenotype of the plant (Figure 3.2b) and the bacterial community shifts 
(Figure 3.3). As expected, a portion of defense-related genes were enriched in c3, e.g., PER5, FRK1 
and RBOHD (70 genes; Figure 3.4b). However, additional defense-related DEGs were found 
outside c3 and were upregulated by flg22 treatment, even in the presence of the suppressive 
SynCom (348 genes; Figure 3.4b). Previously characterized examples include regulators of 
antimicrobial camalexin, e.g., MYB51 (Frerigmann et al., 2015, 2016; c5); systemic acquired 
resistance, e.g., FMO1 (c5) and SARD1 (c1) (Zhang et al., 2010; Hartmann et al., 2018); and 
endogenous peptides amplifying MTI, e.g., PIP1 and PIP2 (Hou et al., 2014; c5; Figure 3.4b). 
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Recent work showed that MAMP responsiveness in germ-free roots was gated by the expression of 
damage-induced PRRs (Zhou et al., 2020). However, the sustained expression of FLS2 (c1) in the 
presence of SynComs indicates that RGI suppression is not due to FLS2 downregulation (Figure 
3.4b). The ability of diverse root commensals to suppress Atpep1-mediated RGI (Extended Data 
Fig. 2a in the published journal version article) also highlights the interference from FLS2-
independent pathway(s). An independent study by Teixeira et al. also identified a cluster of DEGs 
that was highly induced in axenic Arabidopsis by flg22-treatment, but suppressed by the presence of 
a 35-member SynCom consisting of suppressive and non-suppressive root commensals (Teixeira et 
al., 2021)(Extended Data Fig. 9 in the published journal version article). Remarkably, this cluster 
showed the largest overlap with our cluster c3, with 58 common DEGs (at least 21 were defense-
related) that were downregulated by both SynComs (Extended Data Fig. 9 in the published journal 
version article). Even though we have shown that two Janibacter strains can degrade/modify flg22 
extracellularly, the downregulation of only a subset of flg22-mediated responses suggests that direct 
removal of the flg22 peptide is insufficient to account for the differential suppressive activities 
observed.

(Caption on next page) Figure 3.4 SynCom colonization and flg22 treatment induce root transcriptomic 
changes in WT Col-0 plants.
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(Figure on previous page) Figure 3.4 SynCom colonization and flg22 treatment induce root 
transcriptomic changes in WT Col-0 plants. (a) PCA plot separating samples inoculated with SynComs 
and flg22. Ellipses correspond to t-distributions fitted to each cluster (70% confidence interval). (b) Heat-
map (middle) and DEGs (Supplementary Table 5-7 in the published journal version article) obtained by 
pairwise comparison (right). k-means clusters (k = 10) are marked on the left. (c) Scaled counts of 
transcripts in six clusters and their expression patterns upon treatments. n=total number of biological 
samples collected from four replicates. The corresponding transcriptome data of pWER::FLS2-GFP 
plants are presented in Extended Data Fig. 6 (in the published journal version article), and Supplementary 
Table 2-4 (in the published journal version article). Colors used in (a) and (c) match those used in Figure 
3.3, and correspond to different SynComs. The box plots centre on the median and extend to the 25th and 
75th percentiles, and the whiskers extend to the furthest point within the range of 1.5× the interquartile 
range.

We further validated our findings by examining the expression of two flg22-inducible defense 
marker genes (Millet et al., 2010; Wyrsch et al., 2015; Castrillo et al., 2017) in roots of Arabidopsis 
by qPCR, in the presence of other suppressive SynComs. PER5 and FRK1 remained significantly 
elevated two weeks after co-inoculation with flg22 and a non-suppressive SynCom, but not with a 
suppressive SynCom (Extended Data Fig. 10a in the published journal version article). A non-
suppressive SynCom alone also significantly induced their expressions, indicating that non-
suppressive commensals stimulate specific root immune responses. As expected, a 10-member 
mixed SynCom, which was shown to suppress flg22-mediated RGI (Figure 3.2b), did not 
significantly induce the expression of PER5 and FRK1.  (Extended Data Fig. 10b in the published 
journal version article). We then examined whether the suppressive SynCom exerted an effect on 
the root defense response at earlier time points, upon flg22 stimulation. Intriguingly, we observed 
significant induction of PER5, FRK1, and MYB15, one hour after flg22 treatment. However, 
suppressive SynCom, in contrast to non-suppressive SynCom, specifically downregulated the 
expression of these three genes after 24 hours (Extended Data Fig. 10c in the published journal 
version article), suggesting that SynComs can modulate defense responses as early as 1 day after 
stimulation. 

To determine if MTI has a direct impact on commensal proliferation independent of any microbe-
microbe interactions, we focused on transcription factors (TFs) and investigated the contributions of 
the top three candidates identified in our dataset, WRKY30, MYB15, and WRKY28 (cluster c3; 
Extended Data Fig. 10d-e in the published journal version article). Null mutants of WRKY30 and 
WRKY28 have not been reported, and our attempts to knock out these TFs via CRISPR failed, 
suggesting that these genes are essential for plant viability (Zhao et al., 2018; Zou et al., 2019). We 
therefore focused on MYB15, a positive regulator of defense against the foliar pathogen PtoDC3000 
(Chezem et al., 2017). In myb15-1 plants, elimination of this single TF led to a significantly 
enhanced proliferation of the detrimental strain Pseudomonas 401, and the commensal Variovorax 
434 (p<0.05, Extended Data Fig. 10f-g in the published journal version article), which also showed 
a reduced RA upon flg22 treatment in community contexts (Figure 3.3d, e). Together, amplicon 
sequencing and transcriptome data support the idea that colonization of specific root commensals is 
affected by host MTI, which can be attenuated by suppressive strains. 

We then tested if our suppressive SynCom can also suppress defense responses triggered by a non-
proteinaceous elicitor, chitin, which is commonly found as a MAMP in the cell wall of eukaryotic 
fungi. We performed a time-resolved experiment to follow the expression of defense marker genes 
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FRK1, PER5 and chitinase (At2g43620), after one, six and 24 hours elicitor application. Unlike 
flg22, chitin treatment only marginally induced FRK1 expression after one hour, while PER5 and 
chitinase were significantly induced up to six hours (Extended Data Fig 10h in the published journal 
version article). This is consistent with a previous report showing that flg22 and chitin induce both 
overlapping and specific root responses (Stringlis et al., 2018). No stimulation of marker gene 
expression was detected after 24 hours chitin application. Interestingly, our SynComs exerted a 
cooperative effect on chitin-mediated signaling. For instance, chitin-induced PER5 expression was 
further stimulated by a suppressive SynCom after one hour but this stimulation was reversed such 
that the non-suppressive SynCom enhanced PER5 expression after six hours. After 24 hours, both 
suppressive and non-suppressive SynComs induced PER5 expression while the chitin-triggered 
response was no longer detectable (Extended Data Fig 10h in the published journal version article), 
suggesting that our SynComs interact differently with flg22- and chitin-triggered responses.  

3.3.4 Suppressive and non-suppresive commensals differentially impact plant susceptibility 
to opportunistic pathogens 

Since a subset of commensals dampens root immune responses, we hypothesized that colonization 
with a suppressive SynCom might render plants more susceptible to opportunistic pathogens. We 
identified three detrimental strains from At-RSPHERE. In particular, Arabidopsis plants inoculated 
with Pseudomonas 401 exhibited reduced growth and accumulated pigments in shoots reminiscent 
of stress-inducible anthocyanins (Extended Data Fig. 1c in the published journal version article), 
which indicates its pathogenic potential in a laboratory environment. Consistent with the fact that 
Pseudomonas 401 was originally isolated from healthy and asymptomatic Arabidopsis roots 
colonized by a diverse microbial community, the detrimental effect was attenuated when plants 
were colonized by our SynComs. Interestingly, the attenuation was stronger when plants were co-
colonized with the non-suppressive SynCom, compared to the suppressive SynCom (Figure 3.5a). 

Recent reports suggest a positive correlation between disease progression in natural Arabidopsis 
populations and bacterial biomass (Karasov et al., 2018, 2019). To determine whether Pseudomonas 
401 virulence is related to enhanced plant colonization, we quantified its absolute abundance on 
pWER::FLS2-GFP pre-colonized with suppressive or non-suppressive SynComs. Plants already 
colonized by suppressive SynComs harbored significantly higher Pseudomonas 401 titers compared 
to plants pre-colonized with non-suppressive SynComs (Figure 3.5b, c). Interestingly, this SynCom-
dependent difference appeared to be limited to roots since 401 growth in shoots was similarly 
restricted by co-colonization with either community (Figure 3.5b, c). Even though we are not 
excluding an impact of microbe-microbe interactions through niche competition, none of the 
individual strains antagonized 401 in vitro (Extended Data Fig. 10 in the published journal version 
article). This data further suggests that the underlying growth differences are unlikely to be the 
result of antibiosis.

To determine whether SynComs modulate plant susceptibility to a characterized opportunistic 
pathogen prevalent in natural A. thaliana populations, and exclude the possibility that differential 
impact of root commensals in roots and shoots is a result due to niche specialization of 401 on roots 
only, we inoculated plants with the opportunistic Pseudomonas leaf pathogen OTU5 (isolate p5.e6) 
(Extended Data Fig. 1c in the published journal version article). Plants colonized by suppressive 
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SynComs supported higher growth of Pseudomonas OTU5 compared to plants colonized by non-
suppressive SynComs, and this SynCom-specific effect was again observed only in roots but not in 
shoots (Figure 3.5b, c). Together with the RNASeq and targeted PCR data, these results suggest that 
pre-colonization with non-suppressive SynComs activated root immunity and this correlates with 
reduced growth of the tested opportunistic pathogens, whereas suppressive SynComs failed to 
provide pathogen protection.

Figure 3.5 Imbalance of specific bacteria impacts plant susceptibility to opportunistic Pseudomonas 
pathogens. (a) Symptoms of 3-week-old WT plants germinated with the indicated SynCom and 
Pseudomonas 401. Bacterial titer of Pseudomonas 401 and OTU5 on the roots (b) and shoots (c) of 
pWER::FLS2-GFP plants, pre-colonized with the indicated SynComs for 2 weeks. No flg22 was used in 
the above experiments. Shapes represent five (SynCom NS5 + S5), four (NS6 + S6) and five (NS7 + S7) 
biological replicates in (b). n=total number of biological samples. Different letters indicate statistical 
significance (two-sided Dunn’s Kruskal Wallis, p<0.05). The box plots centre on the median and extend to 
the 25th and 75th percentiles, and the whiskers extend to the furthest point within the range of 1.5× the 
interquartile range.
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3.4 Discussion 

In nature, a subset of soil-dwelling bacteria colonizes roots seemingly without influencing host 
traits, and are thus often considered as commensals. Using a bottom-up approach, we show here that 
phylogenetically diverse commensals, representing the core of the Arabidopsis root microbiota (Bai 
et al., 2015), share the capacity to suppress host defense responses, a microbial trait that is dominant 
in our community setup, and is thus easily overlooked in nature. The functional redundancy of 
members of the root microbiota to interfere with the host’s immune response is consistent with our 
observation that mixed communities consisting of non-suppressive and suppressive strains resist 
flg22-mediated community changes otherwise detected  in non-suppressive SynCom-colonized 
plants. This finding might explain why immune-related Arabidopsis mutants, tested in natural soil, 
show relatively mild changes in root microbiota composition (Lebeis et al., 2015). Here we showed 
that reduction of apoplastic pH and potential type-III secretion system-dependent mechanisms are 
insufficient to fully account for our MTI suppression phenotype. Two closely related Janibacter 
strains, but not three other tested suppressive commensals, were shown to degrade/modify flg22. 
Even though we cannot rule out the possible involvement of specific plant metabolites produced 
upon interactions with the suppressive bacteria, our findings suggest that root commensals can 
employ multiple mechanisms to target host immune responses, rendering this community trait 
difficult to overcome by the plant host. 

To date, information on Arabidopsis root transcriptomic changes evoked by commensals are limited 
to mono-associations (Stringlis et al., 2018; Garrido-Oter et al., 2018), leaving a gap in our 
understanding of how plant roots respond to commensal communities that can reach a steady-state 
as early as 13 days after inoculation (Edwards et al., 2015). We unexpectedly found that after 2 
weeks, root colonization by taxonomically similar commensal SynComs, differing in their capacity 
to suppress RGI, elicited 2,221 DEGs (cluster c4, c5, c8) with remarkable overall similarity. These 
changes, associated with presumably steady-state SynComs, contrast with the subtle response to 
heat-killed SynComs or flg22 treatment alone, reflecting an impact of active commensal 
colonization on host transcriptional outputs beyond plant responses to chronic exposure to MAMPs. 
In addition, we observed robust enrichment of specific GO terms related to root development, 
nutrient transport, response to hypoxia, and detoxification across experimental setups and SynCom 
complexities (Harbort et al., 2020; Teixeira et al., 2021). Indeed, rhizobacteria alone are known to 
modulate root traits (López-Bucio et al., 2007; Zamioudis et al., 2013; Garrido-Oter et al., 2018). In 
return, root-secreted photoassimilates feed up to 20% of root-associated bacteria (Hernández et al., 
2015). Since photoassimilates have been shown to serve as sources of organic carbon that limit 
bacterial growth (Aldén et al., 2001), we thus speculate that enrichment of these GOs is associated 
with altered nutrient flux, and reduced oxygen due to microbial respiration in roots. Although our 
SynComs are taxonomically diverse with predicted varied metabolic repertoires (Bai et al., 2015; 
Levy et al., 2018), convergence to core transcriptomic outputs indicate integrated responses to a 
state of “community commensalism”.   

The zigzag model of the plant immune system proposes that effective resistance is the result of 
quantitative outputs above a certain threshold following MAMP perception (Jones & Dangl, 2006) 
Colonization by suppressive SynComs led to the down-regulation of a subset of flg22-induced 
genes (Figure 3.4, cluster c3), whereas colonization by non-suppressive SynComs alone stimulated 
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these genes and further upregulated their expression together with flg22. Thus, the responsiveness 
of these defense-associated genes to SynCom colonization differs greatly with respect to the ability 
of the bacterial community to suppress RGI. However, roots in nature are co-colonized by both 
groups of commensals, and our experiments point to a quantitative output that is dependent on their 
ratio. Intriguingly, recent studies reported that 42% (Yu et al., 2019), and 28% (Teixeira et al., 
2021) of commensals from two other Arabidopsis root-derived culture collections quench early and 
late flg22-induced responses in mono-associations, respectively (Yu et al., 2019). Together with our 
study, this confirms a potential of the root microbiota to modulate plant growth-defense traits.

Figure 3.6 The balance between non-suppressive and suppressive strains integrates with plant 
innate immunity. This “rheostat model” buffers the system against pathogen challenge and defense-
associated trade-off.

We hypothesize that the imbalance between non-suppressive and suppressive commensals might 
reduce plant fitness under stress conditions. Indeed, plants pre-colonized by suppressive SynComs 
are as susceptible as germ-free plants to opportunistic Pseudomonas pathogens, whereas plants 
associated with non-suppressive SynComs are more resistant, but prone to MAMP-induced RGI. 
The observed defense-associated community shifts and potentially reduced alpha-diversity might 
hinder provision of microbiota-derived beneficial services (Saleem et al., 2019), or exert a 
detrimental impact on the host under dysbiosis (Chen et al., 2020). We thus propose a rheostat 
model (Figure 3.6), in which a balance between commensals with contrasting MTI modulating 
activities constitutes an integral feature of the holobiont to buffer plant resistance to pathogen 
perturbation and defense-associated growth reduction. 

It remains unclear which factors govern the state of equilibrium and the corresponding ratio 
between non-suppressive and suppressive strains. However, based on the result obtained using three 
pairs of SynComs (Figure 4.3), the initial input composition plays a key role to define the 
equilibrium state. The timing of colonization (Edwards et al., 2015) and abiotic factors (Hartman & 
Tringe, 2019) likely also exert an influence.  Consequently, these complex interactions allow 
community coexistence, and ultimately establish microbe-host homeostasis. Accordingly, their ratio 
will impact the amplitude and/or might set the threshold for effective resistance in the zigzag model. 
Plants in nature are influenced by fluctuating stresses and are colonized by more diverse microbial 
communities that modulate plant physiology through multiple mechanisms, including the 
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modulation of phytohormone signaling (de Zélicourt et al., 2018; Finkel et al., 2020). As our 
SynComs are constructed based on their ability to suppress flg22-mediated responses, we found that 
they exert a synergistic effect on chitin-mediated responses. Selective modulation of chitin and 
flg22-mediated responses e.g. by the cytoplasmic receptor-like kinase PBL27 has been reported 
(Shinya et al., 2014). The characterization of molecular mechanisms underlying 
immunosuppression by root commensals may identify immunity components that are specific to 
one or integrate multiple upstream signaling pathways. Another future task will be to test whether 
the rheostat model also applies to communities with different traits to alleviate abiotic stresses. 

3.5 Materials and methods 

Arabidopsis thaliana  ecotype Columbia (Col-0, CS60000), pepr1pepr2 were lab stocks. myb15 
(Chezem et al., 2017) (SALK_151976) was a gift from Nicole Clay (Yale University, USA). The 
transgenic line pWER::FLS2-GFP (Wyrsch et al., 2015) (fls2: SAIL691_C04 background) was 
provided by Niko Geldner (Université de Lausanne, Switzerland).Chitin was purchased from Sigma 
(C9752). 

flg22 (QRLSTGSRINSAKDDAAGLQIA) and Atpep1 (ATKVKAKQRGKEKVSSGRPGQHN) 
peptides were synthesized by EZbiolab.

3.5.1 Growth conditions for plants and culture conditions for bacteria 

Arabidopsis seeds were surface-sterilized in 70% ethanol twice for 5 min each followed by a brief 
wash with 100% ethanol. Seeds were then washed three times with sterile water. Cold-stratified 
seeds were sowed on agar plates (1%, Difco Agar Granulated, BD Biosciences, discontinued) or 
Bacto agar (BD Biosciences) prepared with half-strength Murashige and Skoog (MS) medium 
(Duchefa) and 0.1g/L 2-(N-morpholino)ethanesulfonic acid (MES, pH 5.7). Sugars were not 
provided as an additional carbon source unless otherwise specified. Plants were grown under short-
day conditions (10 hr light, 14 hr dark) at 21°C/19°C cycle, 65% relative humidity and light 
intensity of 120 mE m−2 sec−1.   For experiments involving myb15-1, surfaced sterilized seeds were 
sowed on half-strength MS agar plates supplemented with 5g/L sucrose.

Information on individual strains used can be found at At-RSPHERE (http://www.at-sphere.com/). 
OTU5(p5.e6) (Karasov et al., 2018) was kindly provided by Detlef Weigel (Max Planck Institute 
for Developmental Biology, Tübingen, Germany). Bacterial strains were prepared by taking an 
aliquot from the glycerol stock, followed by incubation on 50% tryptic soy broth (TSB) agar plate 
(Sigma-Aldrich, USA) at 25 °C from one to four days. Before the start of the experiments, strains 
were cultured in 50% TSB medium to saturation, and subcultured to log phase with fresh medium 
in a 1:5 ratio. Bacterial cultures were pelleted by centrifugation at 8k g for 5 min, followed by two 
washes with 10mM MgSO4. 

3.5.2 Screening for RGI suppressive strains in monoassociation 

After washing, bacteria were diluted with 10mM MgSO4 to an OD600concentration of about 0.1. A 
total of 150 µl bacterial suspension was added to still warm 50ml half strength MS agar medium at 
a final bacterial concentration of OD600= 0.0005. A final concentration of 1 µM flg22 was added 
accordingly. Plates were dried for 2 hrs before approximately 15 surface-sterilized pWER::FLS2-
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GFP seeds were sowed on each plate. The expression of the flg22 receptor FLS2 in pWER::FLS2-
GFP is limited to the root epidermis such that potential inter-organ shoot-to-root signal upon flg22 
perception is minimized. Plates were sealed with 3M tape and transferred to the phytochamber for 
incubation. One week after germination, plants with delayed germination were removed and the 
plates were trimmed to about 10 remaining plants. Pictures were taken 3 weeks after incubation and 
the primary root lengths were quantified by ImageJ. Shoots were separated from the roots and fresh 
shoot weight of individual plants was taken. For experiments using 1 µM Atpep1, wild-type Col-0 
plants were used instead.

A phylogenetic tree of selected strains from At-RSPHERE was performed previously (Bai et al., 
2015) and visualized by iTOL (Letunic & Bork, 2019). Strains leading to a rescue of RGI with root 
length longer than 2cm (average root length of germ-free flg22-treated pWER::FLS2-GFP 
plants=1.53cm; n=37) upon coinoculation with 1 µM flg22, and exhibiting consistent suppressive 
activity across two biological replicates, were considered as “suppressive”. Suppressive strains were 
indicated with a red triangle in Figure 1a.  For the inoculation of SynCom, each bacterium was 
inoculated to a final concentration of OD600= 0.0005, i.e., for a 5-member SynCom, the total 
bacteria added was OD600=0.0025. The 5-member SynCom is composed of Actinobacteria, Alpha-, 
Beta- and Gamma-proteobacteria.  Bacteriodetes and Firmicutes were not included in these 
SynComs since no strains with differential ability to suppress RGI were identified in these two 
phyla. Composition of SynComs used in this manuscript can be found in Supplementary Table 1 in 
the published journal version article.

3.5.3 Microbial community profiling and data processing 

For 16S community profiling, root samples were harvested and libraries were processed according 
to previously a published protocol (Bulgarelli et al., 2012). Forward and reverse sequencing reads 
were denoised and demultiplexed separately according to the barcode sequence using QIIME 
(Caporaso et al., 2010) with the following parameters: phred=30; bc_err=2. After quality-filtering 
andmerging of paired-end reads, amplicon tags were then aligned to a reference set of sequences 
obtained from the whole-genome assemblies of every strain included in each experiment by using 
USEARCH (uparse_ref command) (Edgar, 2010). A count feature table for each strain was 
generated by using only perfect matches to the reference sequence from the genome collection. This 
count table was employed for subsequent diversity and enrichment analyses. Alpha and beta 
diversities were calculated after normalizing count tables by the total number of reads per sample. 
The Simpson index was obtained using the diversity function in the vegan package. Bray-Curtis 
dissimilarity index was calculated using the vegdist function in the vegan package (Oksanen et al., 
2019) and used for unconstrained ordination by Principal Coordinate Analysis (PCoA). All data 
were used except for biological replicate c of experiment 1 due to a potential contamination issue or 
PCR error. Constrained PCoA (CPCoA) was performed with the vegan capscale function on the 
Bray-Curtis dissimilarity matrices, constraining by the interaction between flg22 treatment and 
SynCom variables and conditioning by technical parameters. Statistical significance of separation 
between community profiles according to flg22 treatment was determined using PERMANOVA 
with 999 permutations (anova.cca function in vegan). Finally, all amplicon data was visualized 
using the ggplot2 R package. 
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3.6 Data and code availability 

Raw transcriptome and 16S rRNA amplicon sequencing data from this project were deposited at 
NCBI under the accession number GSE157128. Mass spectrometry data have been deposited to 
Panorama Public (https://panoramaweb.org/flg22_RGI.url) and the ProteomeExchange 
(PXD020452). Source data are provided with this chapter. Scripts to reproduce figures are available 
at GitHub (https://github.com/YulongNiu/MPIPZ_microbe-host_homeostasis).
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K.-W.M. and P.S.-L. conceptualized the initial project. K.-W.M., R.G.-O. and P.S.-L. designed the 
experiments. K.-W.M. performed the initial screening of RGI-suppressive members; 16S amplicon 
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RNA-seq data analyses and developed all related pipelines for GO term enrichment, network 
studies and cross-study comparisons. K.-W.M., R.G. and R.G.-O. analyzed the 16S amplicon 
sequencing data. K.-W.M., Y.J., P.S.-L., H.N. and S.C.S. designed the mass spectrometry 
experiments. Y.J. performed the experiments. S.C.S and H.N. developed the protocol to detect flg22 
peptide and S.C.S. analyzed the data. A.E. and N.G. phenotyped the growth of the pWER::FLS2-
GFP transgenic line in natural soil. K.-W.M., Y.N., R.G.-O. and P.S.-L. wrote the manuscript with 
input from all co-authors. 
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Chapter 4 Host preference and invasiveness of commensals 
in the Lotus and Arabidopsis root microbiota 

4.1 Abstract 

Roots of different plant species are colonised by bacterial communities, that are distinct even when 
hosts share the same habitat. It remains unclear to what extent the host actively selects these 
communities and whether commensals are adapted to a specific plant species. To address this 
question, we assembled a sequence-indexed bacterial culture collection from roots and nodules of 
Lotus japonicus that contains representatives of most species previously identified using 
metagenomics. We analysed taxonomically paired synthetic communities from L. japonicus and 
Arabidopsis thaliana in a multi-species gnotobiotic system and detected signatures of host 
preference among commensal bacteria in a community context, but not in mono-associations. 
Sequential inoculation experiments revealed priority effects during root microbiota assembly, where 
established communities are resilient to invasion by late-comers, and that host preference of 
commensal bacteria confers a competitive advantage in their cognate host. Our findings show that 
host preference in commensal bacteria from diverse taxonomic groups is associated with their 
invasiveness into standing root-associated communities.

4.2 Introduction 

Plant roots associate with diverse microorganisms that are recruited from the surrounding soil 
biome and which assemble into structured communities known as the root microbiota. These 
communities provide the host with beneficial functions, such as indirect pathogen protection, or 
mineral nutrient mobilization (Durán et al., 2018; Zhang et al., 2019; Carrión et al., 2019). Despite 
conservation at higher taxonomic ranks (Bulgarelli et al., 2012; Fitzpatrick et al., 2018), 
comparison of community profiles across diverse land plants shows a clear separation according to 
host species (Yeoh et al., 2017; Fitzpatrick et al., 2018). These patterns could be explained by a 
process in which the root microbiota assemble according to niches defined by plant traits, that in 
turn diversify as a result of plant adaptation to their environment. Alternatively, variation of 
microbiota profiles along the host phylogeny may be at least partially caused by co-adaptation 
between the plant and its associated microbial communities.

Culture-independent amplicon sequencing allows characterization of community structures and 
taxonomic composition but does not allow the study of phenotypes of individual community 
members. To overcome this fundamental limitation in microbiota studies, comprehensive culture 
collections of sequenced strains isolated from root and leaf tissue have been established (Bai et al., 
2015; Levy et al., 2018; Durán et al., 2018; Zhang et al., 2019). Synthetic communities (SynComs) 
built from these collections can be used in gnotobiotic reconstitution systems of reduced complexity 
to explore the role of immune signaling (Lebeis et al., 2015), nutritional status (Castrillo et al., 
2017; Zhang et al., 2019), biotic and abiotic stress (Durán et al., 2018) and priority effects 
(Carlström et al., 2019) in the establishment of the root and leaf microbiota. 

In order to investigate plant host preference of commensal bacteria, we assembled a collection of 
cultured bacterial species from the roots and nodules of the model legume Lotus japonicus 
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(hereafter Lj) that is comparable to the collection previously established from Arabidopsis thaliana 
(hereafter At) roots (Bai et al., 2015) in terms of taxonomic and genomic composition, despite 125 
Myr of divergence between Lj and At (Van de Peer et al., 2017) whose crown groups evolved 65 
and 32 Mya, respectively (Koenen et al., 2021). These two collections originate from plants grown 
in the same soil, enabling us to design SynComs for microbiota reconstitution experiments. Using 
this set-up, we investigated host preference of commensal communities and the role of nitrogen-
fixing nodule symbiosis, immunity and root exudation in microbiota establishment.

4.3 Results 

4.3.1 Host-species-specific bacterial culture collections 

Figure 4.1 Diversity of Lotus and Arabidopsis root-associated bacterial communities. a, Alpha-
diversity analysis of soil- (n = 8), rhizosphere- (n = 13 for Gifu, n =15 for Col-0), and root-associated 
bacterial communities (n = 13 for Gifu, n =15 for Col-0) from L. japonicus and A. thaliana plants grown 
in natural soil (exp. A), assessed using the Shannon index. b, Principal coordinates analysis (PCoA) of 
Bray-Curtis dissimilarities of the same communities (n = 64). 

We compared the bacterial communities associated with roots of Lj and At plants grown in the same 
soil (exp. A; Extended Data Fig. 1a and Supplementary Table 2 in the published journal version 
article) (Durán et al., 2018; Zhang et al., 2019; Thiergart et al., 2019) and confirmed that both hosts 
associate with communities that are clearly distinct from those of the surrounding soil (Figure 4.1). 
This shift is characterized by a decrease in alpha-diversity (within-sample diversity; Figure 4.1a) as 
well as by a separation between root, rhizosphere, and soil samples (beta-diversity; Figure 4.1b, 
PCoA 2). In addition, Lj and At root samples formed two distinct clusters, indicating host species-
specific recruitment of commensals from identical pools of soil-dwelling bacteria (Figure 4.1b, 
PCoA 1), which is in line with previous studies (Zgadzaj et al., 2016; Thiergart et al., 2019). This 
separation (28% of variance; P = 0.001) was mainly explained by the different relative abundance 
of Proteobacteria, Actinobacteria, Bacteroidetes (Flavobacteria and Sphingobacteria), and 
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Firmicutes (Bacilli) in Lj compared to At (Extended Data Fig. 2 in the published journal version 
article).

Figure 4.2 Abundance and recovered Lotus and Arabidopsis root-associated bacterial OTUs. a and e, 
Rank abundance plots of OTUs found in the Lotus (c) and Arabidopsis (e) natural root communities. 
Community members captured in the corresponding culture collection are depicted as black while non-
recovered OTUs are shown in white. The vertical axis on the right shows the accumulated relative 
abundance in natural communities of all recovered OTUs. d and f, percentage of abundant OTUs (0.1% 
RA) associated with Lotus (d) or Arabidopsis (f) roots in nature (natural communities, NatComs) that are 
captured in the Lotus or the Arabidopsis indexed rhizobacterial libraries (At- and Lj-IRL).

To explore the mechanisms by which different plant species associate with distinct microbial 
communities, we established a taxonomically and functionally diverse culture collection of the Lj 
root and nodule microbiota (Extended Data Fig. 1b in the published journal version article). A total 
of 3,960 colony-forming units (CFUs) were obtained and taxonomically characterized by 
sequencing the bacterial 16S ribosomal RNA (rRNA; Supplementary Data 1 in the published 
journal version article), resulting in a comprehensive sequence-indexed rhizobacterial library from 
Lj (Lj-IRL). In parallel, a subset of the root samples was also subjected to amplicon sequencing to 
obtain culture-independent community profiles for cross-referencing with the Lj-IRL data. In the Lj 
collection, we were able to recover up to 53% of the most abundant bacterial OTUs (Operational 
Taxonomic Units, defined by 97% 16S rRNA sequence identity) found in the corresponding natural 
community profiles, compared with 57% for the At collection (Figures 4.2a, c; Supplementary Note 
in the published journal version article). The recovered bacterial taxa in the respective collection 
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accounted for 82% of all sequencing reads from Lj root samples and 59% from At. Approximately 
45% of the abundant OTUs found in the natural communities of one host were captured in the 
culture collection of the other species (Figure 4.2b, d), indicating a substantial overlap of the 
recovered bacterial taxa. Both culture collections include members of the Actinobacteria, 
Proteobacteria, Bacteroidetes, and Firmicutes, the four phyla robustly found in the root microbiota 
of diverse plant species (Yeoh et al., 2017; Fitzpatrick et al., 2018).

To establish a core Lj culture collection of whole-genome sequenced strains (Lj-SPHERE), we 
selected from the Lj-IRL a taxonomically representative subset of bacterial isolates maximizing the 
number of covered taxa, as previously done for At (Bai et al., 2015). A total of 294 isolates 
belonging to 20 families and 124 species, including both commensal and mutualistic bacteria, were 
subjected to whole-genome sequencing (Supplementary Data 2 in the published journal version 
article).  Comparative analyses of all sequenced isolates from both collections revealed an extensive 
taxonomic and genomic overlap between exemplars derived from Lj and At (Extended Data Fig. 3; 
Supplementary Note in the published journal version article). This indicates that the observed 
differences in natural community structures (Figure 4.1b) are likely not driven by the presence of 
host-specific bacterial taxonomic groups. Instead, the distinct root community profiles of the two 
hosts are possibly due to differences in the relative abundance of shared taxonomic groups 
(Extended Data Fig. 2 in the published journal version article).

4.3.2 Host-preference of commensal synthetic communities 

Given the overlap between the Lj- and At-SPHERE culture collections at a high taxonomic and 
whole-genome level, we speculated that strain-specific phenotypic variation in planta could allow 
commensal bacteria to preferentially colonize their cognate host. In order to test this hypothesis, we 
designed taxonomically paired SynComs for each host, representing 16 bacterial families present in 
both collections (Figure 4.3). 

Figure 4.3 Whole-genome phylogeny of the Lotus and Arabidopsis core culture collections. Maximum 
likelihood phylogeny, constructed from a concatenated alignment of 31 conserved, single copy genes 
(AMPHORA) showing the taxonomic overlap of the Lj-SPHERE (n = 294, blue track) and At-SPHERE 
(n = 194, red track) core culture collections. Arrows in the outer rings indicate the strains selected for four 
mixed communities used in reconstitution experiments.
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We then combined these SynComs into a mixed community composed of 32 strains (Supplementary 
Table 1 in the published journal version article). We allowed commensal bacteria to compete for 
colonization of the host from which they were derived (hereafter referred to as native strains) with 
strains isolated from the other plant species (non-native strains; Supplementary Fig. 1a in the 
published journal version article). We employed a gnotobiotic system (Kremer et al.; Durán et al., 
2018) to grow wild-type At (Col-0), Lj (Gifu), and a Lj mutant deficient in root nodule symbiosis 
(Ljnfr5) (Madsen et al., 2003) in the presence of the mixed community (Figure 4.4). After five 
weeks, we performed community profiling via 16S rRNA gene amplicon sequencing of the root, 
rhizosphere, and unplanted soil compartments. 

Figure 4.4 Scheme of competition experiments.

Analysis of community diversity revealed a significant separation of communities of root samples 
from those of rhizosphere and soil, which in turn clustered together (exp. B; Figure 4.5a). In 
addition, we observed that the two hosts are colonized by distinct root microbial communities 
starting from the same input, and that samples from wild-type Lj are differentiable from those of 
Ljnfr5 (Figure 4.5a). These results were confirmed by two independent, full factorial experiments 
using different mixed communities (exp. C and M; Extended Data Fig. 4a, c in the published 
journal version article). An additional experiment, where strains belonging to families found 
exclusively in the Lj or At culture collections (two and five families, respectively) were added to the 
mixed community, resulted in similar patterns of beta-diversity (exp. D; Extended Data Fig. 4b in 
the published journal version article). These results recapitulate the community shifts between 
compartment, host species, and plant genotype which were previously observed in culture-
independent community profiles obtained from plants grown in natural soils (Figure 4.1b) 
(Bulgarelli et al., 2012; Lundberg et al., 2012; Zgadzaj et al., 2016; Thiergart et al., 2019), thus 
validating our comparative reconstitution system to study host species-specific microbiota 
establishment.

Next, we tested whether communities of commensal bacteria would preferentially colonize roots of 
their cognate host species (i.e., from which they were originally isolated) compared to those of the 
other host. We found that the aggregated relative abundance of strains from the Lj-SPHERE 
collection was higher in wild-type Lj root samples than in those of At (Figure 4.5b; Extended Data 
Fig. 4d, 4e, and 4f in the published journal version article). Likewise, strains from the At-SPHERE 
collection were more abundant on their cognate host than on Lj. Commensal host preference and 
host species community separation was reduced but still present in the Ljnfr5 mutant (Figure 4.5b), 
suggesting that nodule symbiosis only partially contributes to commensal host preference. Further, 
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sequential in silico removal of individual bacterial families did not significantly alter the observed 
patterns of host preference at the community level (Extended Data Fig. 5 in the published  journal 
version article), indicating that host preference was not driven by a single taxonomic group. Mono-
association experiments with Lj and At wild-type plants grown on agar plates revealed that most 
community members maintained their root colonization capacity, but did not show a significant host 
preference in isolation (exp. E; Extended Data Fig. 6 in the published  journal version article), 
suggesting that this commensal phenotype requires a community context. Moreover, we found that 
shoot biomass of both host species was not affected by these strains, confirming their commensal 
lifestyle in mono-associations (Extended Data Fig. 7 in the published  journal version article).

Figure 4.5 Constrained PCoA and aggregated RA of the commensal communities in Lj- and At-
associated root compartments. (a) Constrained PCoA of Bray-Curtis dissimilarities (constrained by all 
biological factors and conditioned by all technical variables) of soil, rhizosphere, and root samples. L. 
japonicus wild type Gifu, nfr5 mutant, and A. thaliana wild type Col-0 plants co-cultivated with the mixed 
community LjAt-SC2 (exp. B, n = 155, variance explained 53.8%, P = 0.001). (b) Aggregated RA of the 16 
Lj-derived and the 16 At-derived strains in the live roots of Lotus and Arabidopsis plants inoculated with 
LjAt-SC2 (n = 66).

We then investigated if the phenotype of commensal host preference was conserved in a plant 
phylogenetic framework. We selected two additional plant species, L. corniculatus and A. lyrata, 
which diverged from Lj and At approximately 12.5 Mya and 13 Mya, respectively (Beilstein et al., 
2010; Ojeda et al., 2014), and are indigenous to the region from which the soil used to isolate these 
bacterial strains was collected (Steiner & Santos, 2001; Clauss & Mitchell-Olds, 2006). We 
inoculated these four species with a mixed community of Lj and At commensals and obtained 
amplicon profiles of root, rhizosphere and unplanted soil samples (exp. F). We observed a 
significant separation between Lotus and Arabidopsis root communities (Figure 4.6a; P=0.001), and 
to a lesser extent between samples from the sister species within the same genus (Extended Data 
Fig. 8 in the published journal version article), which is in line with similar results obtained from At 
relatives grown in natural sites (Schlaeppi et al., 2014). We found that the patterns of host 
preference observed in Lj and At were retained in their relative species (Figure 4.6b), suggesting 
that this community phenotype might be the result of commensal adaptation to root features 
conserved in a given host lineage.
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Figure 4.6 Constrained PCoA and aggregated RA of the commensal communities in Lotus and 
Arabidopsis roots. Constrained PCoA of Bray-Curtis dissimilarities (constrained by all biological factors 
and conditioned by all technical variables) of soil, rhizosphere, and root samples. Gifu, Col-0, A. lyrata 
MN47, and L. corniculatus co-cultivated with LjAt-SC3 (exp. F, n = 173, variance explained 65.1%, P = 
0.001). Aggregated RA of the 16 Lj-derived and the 16 At-derived strains in the live root of plants 
inoculated with LjAt-SC3 (n = 72).

4.3.3 Host factors driving preferred associations in the root microbiota 

Figure 4.7 Constrained PCoA and aggregated RA of the commensal communities in Lotus and 
Arabidopsis roots and toothpick control. (a) Dead roots of Gifu and Col-0, and toothpick cocultivated 
with LjAt-SC3 (exp. J, n = 250, variance explained 43.9%, P = 0.001). (b) Aggregated RA of the 16 Lj-
derived and the 16 At-derived strains in the dead roots of Lotus and Arabidopsis plants inoculated with 
LjAt-SC3 (n = 89).

Previous studies have reported shifts in At leaf or root microbiota structure in mutants impaired in 
different host immunity pathways (Lebeis et al., 2015; Chen et al., 2020). We speculated that the 
plant immune system might also play a role in selecting commensal bacteria in a host-specific 
manner. We thus tested whether host mutants impaired in perception of ubiquitous microbe-
associated molecular patterns (MAMPs) were also preferentially colonized by native commensal 
strains (exp. G). Community profiles of roots of At and Lj mutants lacking the receptor FLS2, which 
detects the bacterial flagellin epitope flg22 (Ljfls2 and Atfls2) (Zipfel et al., 2004; Mun et al., 2016), 

53

a b

30%

40%

50%

60%

70% Aggregated relative abundance

At-derived
strains

30%

40%

50%

60%

70%

Ag
gr
eg
at
ed
 re
la
tiv
e 
ab
un
da
nc
e

Lj-derived
strains

At Lj

a

a
b b

(dead roots)
At Lj

(dead roots)

0.0

0.1

−0.10 −0.05 0.00 0.05
CPCoA 1 (49.24%)

C
PC

oA
 2
 (3
9.
16
%
)

Detritusphere
Dead root
Soil

Arabidopsis (dead root)
Lotus (dead root)
Toothpick
Soil

a b

30%

40%

50%

60%

70% Aggregated relative abundance
At-derived
strains

30%

40%

50%

60%

70%

Ag
gr
eg
at
ed
 re
la
tiv
e 
ab
un
da
nc
e

Lj-derived
strains

a
a

b

b

b b

a a

At Lj Al Lc−0.10 −0.05 0.00 0.05
CPCoA 1 (60.76%)

−0.1

0.0

0.1

C
PC

oA
 2
 (2
3.
78
%
)

Rhizosphere
Root
Soil

Arabidopsis thaliana

Lotus japonicus
Lotus corniculatus
Soil

Arabidopsis lyrata

At Lj Al Lc
(live roots) (live roots)



were indistinguishable from those of their respective wild types (Extended Data Fig. 9a in the 
published journal version article). Similar results were obtained with an At mutant lacking MAMP 
co-receptors BAK1 and BKK1 as well as CERK1 receptor kinase, known to play a role in the 
perception of the bacterial MAMP peptidoglycan (Atbbc triple mutant) (Xin et al., 2016). In 
addition, bacterial host preference was retained in those mutants (Extended Data Fig. 9b in the 
published journal version article). A separate experiment using the dde2 ein2 pad4 sid2 (deps) 
mutant in At, which is simultaneously defective in all three major defense phytohormone signaling 
pathways (salicylic acid, jasmonate and ethylene) (Tsuda et al., 2009), showed comparable results 
(exp. H; Extended Data Fig. 9c and 9d in the published journal version article). Together, these data 
suggest that the tested MAMP receptors and immune signaling pathways do not play a crucial role 
in preferential colonization by native commensal bacteria.

Plant root exudates contain molecular cues that can be differentially metabolized or perceived as 
signals by root microbiota members (Bressan et al., 2009; Zhalnina et al., 2018). In particular, 
glucosinolates (GS), a group of nitrogen- and sulfur-containing metabolites found in root exudates 
throughout the family Brassicaceae, including At, are known to play a role in plant defense and 
serve as precursor of compounds that inhibit microbial growth (Bednarek, 2012; Pastorczyk & 
Bednarek, 2016; Klein & Sattely, 2017). Since legumes such as Lj lack genes required for GS 
biosynthesis, we speculated that secretion of these compounds by At might contribute to the 
observed differences in community structure. We therefore tested whether the At cyp79b2 cyp79b3 
double mutant (Zhao, 2002), which is defective in the production of microbe-inducible and 
tryptophan-derived metabolites, including indole GSs, was also preferentially colonized by native 
commensal strains (exp. H). Comparison of bacterial community profiling data suggests that indole 
GS had no impact on overall community structure or bacterial host preference in planta (Extended 
Data Fig. 10 in the published journal version article). Notably, incubation of bacterial SynComs in 
root exudates from Lj and At plants in an in vitro millifluidics system (exp. I) resulted in small but 
significant community separation according to the plant genotype (Supplementary Fig. 1a in the 
published journal version article; 5% of variance; P=0.002). However, in this system, we observed a 
loss of the host preference phenotype (Supplementary Fig. 1b in the published journal version 
article), indicating that root exudates from axenic plants are not sufficient to recapitulate this 
phenomenon. This observation prompted the question of whether live root tissue was required for 
preferential colonization by native commensals. We profiled the bacterial communities associated 
with dead root material from flowering Lj and At wild-type plants and with inert lignocellulose 
matrices (softwood birch toothpicks) at 5, 12, and 19 days after inoculation with a mixed 
community (exp. J). Diversity analyses showed that dead roots and toothpicks harbored distinct 
microbial communities that were separated from those of soil or detritusphere (soil surrounding 
dead roots), independently of the timepoint (Figure 4.7a). This separation was likely driven by a 
significant increase in the relative abundance of Flavobacteria, a taxon associated with the capacity 
to decompose complex polysaccharides (Lapébie et al., 2019), and which dominates the dead root 
communities (53% RA on average). Unlike the large separation between living Lj and At roots (36% 
of the variance), we observed only a small but significant differentiation between Lj and At dead 
root communities (6.4% of variance; P=0.001). Additionally, commensal host preference was 
undetectable in dead roots, where Lj- and At-derived strains reached similar aggregated relative 
abundances in root material harvested from either host (Figure 4.7b). Taken together, these results 
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suggest that a living root and other factors besides root exudates, such as a physical contact with the 
plant (i.e., host-commensal feedbacks) are required for host preference in the root microbiota.

4.3.4 SynCom-specific transcriptional responses of Lj and At roots 

Figure 4.8 SynCom-specific transcriptional outputs in Lotus and Arabidopsis roots. Whole 
transcriptome-level Principal Component Analysis (PC) of Arabidopsis (a, n = 12 biologically 
independent samples) and Lotus (b, n = 12) roots after co-inoculation with host-specific SynComs (Lj- 
and At-SC3; exp. K). In the case of Lotus plants, a nodule isolate from the Lj-SPHERE collection was 
added to all treatments to prevent transcriptional outputs to be dominated by symbiosis or nitrogen-
starvation responses. Heatmaps showing scaled counts of genes arranged according to k-means clustering 
results (only differentially expressed genes shown) for Lotus (c) and Arabidopsis (d). Distribution of 
expression patterns for clusters of genes upregulated after co-inoculation with native SynComs (e). 
Overlap in terms of homologues identified in the same clusters between the two host and a list of relevant 
transcription factors identified as potential key regulators of differential transcriptional responses (f).

Next, we sought to assess whether native, non-native or mixed commensal communities elicited a 
differential response in either host species. We grew wild-type Lj and At plants in our soil-based 
gnotobiotic system inoculated with Lj-, At- or mixed SynComs for five weeks (exp. K). Assessment 
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of plant performance revealed that treatment with commensal communities led to increased plant 
biomass and bacterial load compared to axenic controls, but not to differences according to 
SynCom treatment (Supplementary Fig. 2 in the published journal version article). Given the 
observation that a living root is required for commensal host preference, we conducted RNA 
sequencing of cross-inoculated Lj and At roots to explore host transcriptional responses that might 
mediate this process (exp. K). Analysis of these data showed that transcriptional outputs separated 
according to SynCom treatment in both hosts (Figure 4.8). Analysis of k-means clustering of whole 
transcriptomes revealed gene clusters associated with general response to bacterial colonization, as 
well as clusters specific to treatment with native or non-native SynComs. Among genes specifically 
induced by the native SynComs in both plant hosts we found several transcriptional regulators of 
immunity (e.g. WRKY20, WRKY32, and MYB15), well characterized MAMP receptor kinases 
(LYK4) and ethylene response factors (e.g. ERF34). This conserved pattern of differential response 
in the two plant species suggests a specific transcriptional response to native commensal 
communities that involves components of the host immune system. The differentially expressed 
transcription factors identified here constitute prime candidates for future exploration of the 
underlying mechanisms of differential microbiota assembly.

Figure 4.9 Setup of the sequential inoculation experiment. L. japonicus Gifu and A. thaliana Col-0 
plants were co-cultivated with the mixed community LjAt-SC3, or individual SynComs Lj-SC3 and At-
SC3, followed by inoculation with the contrasting SynCom (exp. L).

4.3.5 Invasiveness and persistence in the root microbiota. 

The results obtained from four independent experiments using five different mixed communities 
(Figure 4.4 – 4.7; Extended Data Figs. 4, 9 and 10 in the published journal version article) show 
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that native strains have a competitive advantage when colonizing roots of their cognate host. 
Ecological theory suggests that in the presence of a competitive hierarchy, the order of species 
arrival does not matter, as better adapted species tend to dominate irrespective of the history of the 
community (Fukami, 2015). To investigate the role that priority effects play in root community 
assembly we designed a series of sequential inoculation experiments using host-specific SynComs 
(exp. L; Figure 4.9). At and Lj wild-type plants were inoculated with taxonomically paired 
SynComs derived from Lj (Lj-SC3), At (At-SC3) or a mixed community (LjAt-SC3) for four weeks. 
Subsequently, we challenged the established root communities by adding the complementary 
SynCom (At-SC3 or Lj-SC3, respectively) to the soil matrix or, in the case of plants initially treated 
with the mixed community (LjAt-SC3), a mock solution (Figure 4.9). We then allowed all plants to 
grow for an additional two weeks before harvesting. 

Figure 4.10 Invasion and persistence of commensal bacteria. Constrained PCoA of Bray-Curtis 
dissimilarities (constrained by all biological factors and conditioned by all technical variables; n = 267; 
variance explained 14.7%, P = 0.001) of soil, rhizosphere, and root samples (a), and PCoA of root 
samples only (b, n = 137). Aggregated RA of the 16 Lj-derived and the 16 At-derived strains in Lotus and 
Arabidopsis root (c) (n = 120) and rhizosphere (d) (n = 120) samples in the indicated treatments.

Amplicon sequencing showed a significant separation of communities by compartment, and, within 
root samples, according to host species (Figure 4.10a; P=0.001), mirroring the patterns observed in 
culture-independent community profiles (Figure 4.1a). Interestingly, analysis of beta-diversity of 
root samples at strain-level resolution revealed an effect of the treatment on community structure 
(Figure 4.10b), demonstrating that the order of arrival of strains affects community assembly. 
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Examination of aggregated relative abundances showed that, in a competition context (i.e., initial 
inoculation with the mixed community LjAt-SC3), commensal SynComs preferentially colonized 
roots of their cognate host (Figure 4.10c), in line with results from the previous competition 
experiment shown in Figure 4.4 to Figure 4.7. However, in an invasion context, early-arriving 
SynComs invariably reached higher proportions in the output communities compared to the late-
arriving SynComs (Figure 4.10c, d). Notably, estimation of absolute bacterial abundances showed 
that a secondary inoculation with an invading SynCom did not result in a significant increase in 
total bacterial load (Supplementary Fig. 3 in the published journal version article). Together, the 
results from our sequential inoculation experiments (Figure 4.10b, c) are indicative of the existence 
of priority effects in the root and rhizosphere microbiota, a well-known phenomenon in microbial 
community assembly (Fukami, 2015). These effects could be explained by niche preemption, where 
early-arriving community members reduce the amount of resources available (e.g. nutrients, space) 
for latecomers (Chase, 2003); alternatively, they could be the result of a feedback process between 
the host and the early-arriving commensals.

Figure 4.11 Host preference of individual commensal strains across gnotobiotic experiments. Each 
strain is represented by a dot, whose color corresponds to its host preference index and whose size to its 
average relative abundance (n = 366). A significant host preference (Mann-Whitney test, FDR-corrected) is 
depicted by a black circle around a dot.

We hypothesized that commensal bacteria would be less affected by priority effects when 
colonizing their cognate host, given their competitive advantage with respect to non-native strains. 
In order to test this, we examined aggregated relative abundances of Lj- and At-derived SynComs in 
the root and rhizosphere communities. We found that host-specific SynComs were better able to 
invade a resident community in the roots of their cognate host compared to those of the other plant 
species (Figure 4.10c), thus reducing the strength of the priority effects. However, in the 
rhizosphere compartment of either plant species, host-specific SynComs showed neither host 
preference in a competition context nor differences in their ability to invade standing communities 
(Figure 4.10d). However, it is also possible that root communities did not reach equilibrium two 
weeks after invasion, and that the observed patterns could change over time.
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We then tested if host preference was directly linked to invasiveness and to what extent these traits 
were found in individual community members. First, we quantified the strength of host preference 
by calculating the ratio between the relative abundance of each strain in their cognate host 
compared to the other plant species (host preference index, details in part 4.5 Materials and 
methods). Notably, although Lj root samples did not include nodules, but possibly contained 
incipient symbiotic events, the strains with the highest host preference index were the nitrogen-
fixing Lj strains belonging to the Phyllobacteriaceae family (Figure 4.11), indicating that host 
preference of mutualistic rhizobia is not limited to nodule tissue. In addition, multiple other 
commensal strains showed significant host preference, with members of the families 
Pseudomonadaceae, Oxalobacteriaceae, Rhizobiaceae and Microbacteriaceae robustly displaying a 
high host preference index. Interestingly, members of these last two bacterial families also had a 
significant impact on community structure during invasion in a recent study with phyllosphere 
bacteria12. Next, we calculated an invasiveness index by comparing the ability of each strain to 
invade a standing community on their cognate host compared to the other plant species. We found a 
strong correlation between host preference and invasiveness of commensal bacteria which is 
independent of their relative abundance (r = 0.89; P = 4.3×10-10; Figure 4.12a). In contrast, this 
correlation was absent in the rhizosphere samples (Figure 4.12b), indicating that the link between 
these two bacterial traits is mediated by host attributes that do not extend to the rhizosphere. 
Together, our data show that host preference is prevalent in commensal bacteria from diverse 
taxonomic groups and that this trait is tightly linked to invasiveness and together play a role during 
root microbiota assembly.

Figure 4.12 Host preference is linked to invasiveness. Correlation between host preference and 
invasiveness index for each strain in root (a, n = 115) and rhizosphere samples (b, n = 119), respectively, 
obtained from the sequential inoculation experiment (exp. L). The color of each point designates the host 
of origin of each strain and the size denotes its mean relative abundance (log2-transformed). Each point is 
labeled with a numeric identifier that corresponds to the strains in Figure 4.11 (LjAt-SC3).

4.4 Discussion 

The current concept of host specificity in plant-microbe interactions was originally developed based 
on studies using microorganisms with either pathogenic or mutualistic lifestyles. Recently, it has 
been shown that soilborne, nitrogen-fixing Ensifer meliloti mutualists can adapt to local host 
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genotypes in only five plant generations, and proliferate to greater abundances in hosts with shared 
evolutionary histories (Batstone et al., 2020). We show here that in the Lj and At root microbiota, 
there is a gradient of host preference among commensals belonging to diverse taxonomic lineages. 
Maintenance of host preference in the sympatric relative species L. corniculatus and A. lyrata raises 
the possibility that these commensals might have adapted to host features conserved in the 
respective plant genera. Alternatively, the observed host preference patterns might be the 
consequence of other ecological processes, such as ecological fitting, whereby organisms are able to 
colonize and persist in a new environment using traits that they already possess (Agosta & 
Klemens, 2008). Diversification of plant traits as a result of adaptation to edaphic or other 
environmental factors is expected to result in new host features that constitute novel root niches for 
microbial colonization. It is also possible that host diversification is partly driven by the adaptation 
of plants to commensal microbiota in soils with contrasting properties. However, the observation 
that in our experimental conditions, colonization by native or non-native bacterial SynComs had no 
impact on plant growth suggests that host preference is the result of microbial adaptation to host 
features instead of co-evolution. However, it is possible that a significant impact on host fitness 
might be observed in long-term experimentation, or in the presence of biotic or abiotic stresses, 
which were absent in the tested conditions, or in direct competition with other plant species. This 
latter hypothesis is supported by the observation that similarity between the root microbiota of 
different species affects competitive plant-plant interactions and has an impact on host performance 
through plant-soil feedback5. Future experimentation using multi-species gnotobiotic systems and 
varying environmental conditions will serve to test these hypotheses.

In aquatic and terrestrial ecosystems, microbial traits such as growth rate, antagonistic activity or 
resource use efficiency are known determinants of invasiveness (Litchman, 2010; Kinnunen et al., 
2016). In microbial communities associated with eukaryotic organisms, the ability to interact with 
the host might also be required for successful invasion. Our results indicate that native commensals 
have a competitive advantage when invading standing communities in the root but not in soil or 
rhizosphere. One possibility is that increased invasiveness by native bacteria is enabled by the 
existence of unfilled host species-specific root niches that can be occupied by late-comers. 
Alternatively, direct interaction of commensals with their host may be required to trigger the 
formation of host species-specific root niches, which could be linked to the specific transcriptional 
reprogramming in roots observed during colonization by native SynComs. This latter hypothesis is 
further supported by the observation that bacterial SynComs colonizing dead roots or incubated in 
root exudates in vitro showed no significant host preference. Our study provides a framework to test 
these hypotheses and to investigate the molecular basis of host preference in multiple taxa of the 
bacterial root microbiota in comparison with host adaptation mechanisms in plant pathogens and 
mutualists.

4.5 Materials and methods 

4.5.1 Bacterial and plant material 

Bacterial strains were grown in tryptic soy broth (15 g/L, TSB, Sigma-Aldrich) liquid medium or on 
agar plates containing 15 g/L of Bacto Agar (Difco) at 25°C. Mesorhizobium strains LjNodule210, 
LjNodule215, and LjNodule218, isolated from L. japonicus root nodules, were cultured in TY 
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medium (5 g/L tryptone, 3 g/L yeast extract) supplemented with 10 mM CaCl2 or in YMB medium 
(5 g/L mannitol, 0.5 g/L yeast extract, 0.5 g/L K2HPO43H2O, 0.2 g/L MgSO47H2O, 0.1 g/L NaCl). 
The composition of synthetic bacterial communities (SynComs) is listed in Supplementary Table 1 
in the published journal version article. L. japonicus ecotype Gifu B-129 was used as wild type. 
Symbiosis-deficient mutant nfr5-2 (Madsen et al., 2003), and flagellin receptor-deficient mutant fls2 
(LORE1-30003492) (Mun et al., 2016) were derived from the Gifu B-129 genotype. For A. 
thaliana, ecotype Columbia-0 was used as wild type. Mutant genotypes fls2 (Zipfel et al., 2004), 
bbc (Xin et al., 2016), deps (Tsuda et al., 2009), and cyp79b2 cyb79b3 (Zhao, 2002) were available 
in our seed stock. L. corniculatus seeds, cultivated in the North-Western German lowland, were 
retrieved from Rieger-Hofmann GmbH, Blaufelden-Raboldshausen, Germany. A. lyrata MN47 
seeds were a gift from Prof. Juliette de Meaux, University of Cologne.

4.5.2 Establishment of the L. japonicus bacterial culture collection  

The L. japonicus culture collection combines strains isolated during three independent isolation 
events. Bacterial isolation, DNA isolation, and identification using Illumina sequencing were 
performed as previously described (Bai et al., 2015). Wild-type L. japonicus (ecotype Gifu B-129) 
plants were grown in natural soil (Cologne agriculture soil, CAS, batch 10 from Spring 2014, and 
batch 11 from spring 2015) in the greenhouse and harvested after four or eight weeks to cover 
different developmental stages. Root systems of 20 plants were subjected to DNA isolation and 
culture-independent community profiling via amplicon sequencing. From 45 plants, a 4-cm section 
of the roots was collected and rigorously washed 3x with phosphate-buffered saline (PBS; 130 mM 
NaCl [7.6 g/l], 7 mM Na2HPO4 [1.246 g/l], 3 mM NaH2PO4 [0.414 g/l], pH 7.0) and 3x with sterile 
water. Nodule and root parts were separated and homogenized independently. Homogenized roots 
from each individual plant were allowed to sediment for 15 min and the supernatant was diluted 
(1:20K, 1:40K, and 1:60K) with four different media: 3 g/L TSB, 50% TY, CY for enrichment of 
Myxococcales (3 g/L Casitone, 1.36 g/L CaCl22H2O, and 1 g/L yeast extract; pH adjusted to 7.2), 
and YAN, for enriching of Burkholderiales (10 g/L yeast extract, 1 g/L K2HPO4, and 0.5 g/L 
MgSO47H2O). Bacterial dilutions cultivated in 96-well microtiter plates. Homogenized nodules 
from each individual plant were directly diluted (1:20K, 1:40K and 1:60K) and cultivated in 96-
well microtiter plates. This procedure was carried out for individual plants to obtain bacterial 
isolates from different plant roots. After 10–20 days at room temperature, plates that showed visible 
bacterial growth in around 30 wells were chosen for high-throughput sequencing. Bacterial isolates 
were identified with a two-step barcoded PCR protocol described previously (Bai et al., 2015), with 
the difference that at the first step of the PCR, the v5-v7 fragments of the 16S rRNA gene were 
amplified by the degenerate primers 799F (AACMGGATTAGATACCCKG) and 1192R 
(ACGTCATCCCCACCTTCC), and indexing was done using Illumina-barcoded primers. The 
indexed 16S rRNA amplicons were pooled, purified, and sequenced on the Illumina MiSeq 
platform. Strains isolated from nodules were tested for their ability to form functional nodules in L. 
japonicus Gifu plants grown on agar plates.

Cross-referencing of IRL sequences with culture-independent profiles was used to identify 
candidate strains for further characterization, purification, and whole-genome sequencing (WGS). 
Two main selection criteria were used: maximum taxonomic coverage, selecting candidates from as 
many taxa as possible; priority to strains whose 16S sequences were highly abundant in the natural 
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communities. Whenever multiple candidates from the same phylogroup were identified, we aimed 
at obtaining multiple independent strains, if possible, coming from separate biological replicates to 
ensure they represented independent isolation events. After validation of selected strains, 294 
(including 9 isolated from nodules) were successfully subjected to WGS.

4.5.3 Culture-independent community profiling  

Bacterial communities were profiled by amplicon sequencing of the variable v5-v7 regions of the 
bacterial 16S rRNA gene. Library preparation for Illumina MiSeq sequencing was performed as 
described previously (Durán et al., 2018). In all experiments, multiplexing of samples was 
performed by double-indexing (barcoded forward and reverse oligonucleotides for 16S rRNA gene 
amplification).

L. japonicus Gifu and A. thaliana Col-0 were grown for five weeks in CAS soil (batch 15 from 
January 2020) in 7x7 cm pots alongside unplanted control pots under short-day conditions. Pots 
were watered with sterile water from the bottom as needed. Root, rhizosphere, and soil samples 
were harvested and processed as described previously (Thiergart et al., 2020). In total, 15, 13, and 8 
replicates were sampled for Col-0, Gifu, and unplanted controls, respectively. DNA was isolated 
from those samples using the MP Biomedicals FastDNA Spin Kit for Soil. 

4.5.4 Multi-species microbiota reconstitution experiments 

We utilized the gnotobiotic FlowPot system (Kremer et al.; Durán et al., 2018) to grow A. thaliana 
and L. japonicus plants with and without bacterial SynComs. In brief, the system allows for even 
inoculation of each growth pot with microbes by the flushing of pots with the help of a syringe 
attached to the bottom opening. Sterilized seeds are placed on the matrix (peat and vermiculite, 2:1 
ratio), and pots are incubated under short-day conditions (10 hours light, 21°C; 14 hours dark, 
19°C), standing in customized metal racks in sterile plastic boxes with filter lids (SacO2 
microboxes, www.saco2.com). For SynCom preparation, bacterial commensals were grown 
separately in liquid culture for 2-5 days to reach high density, harvested, and washed in 10 mM 
MgSO4. Equivalent amounts of each strain were combined to yield the desired SynComs with an 
optical density (OD600) of 1. An aliquot of 200 µL of the SynCom as reference sample for the 
experiment start, and aliquots of 50 µL of the individual strains were taken and stored at -80°C for 
sequencing. The SynCom was added to the desired medium to reach a final OD600 of 0.02. FlowPots 
were each flushed with 50 mL of inoculum (medium/SynCom mix). Generally, the medium used for 
inoculation was 0.25x B&D43 supplemented with 1 mM KNO3 for both plant species. In 
experiments D, F, K, and M (Supplementary Table 2 in the published journal version article), 0.5x 
MS (2.22 g/L Murashige+Skoog basal salts, Duchefa; 0.5 g/L MES anhydrous, BioChemica; 
adjusted to pH 5.7 with KOH) was used for Arabidopsis. The two plant species were grown in 
separate FlowPots side-by-side, with ten pots in total per plastic box. After five weeks of growth, 
roots were harvested and cleaned thoroughly from attached soil using sterile water and forceps. 
Lotus root segments containing nodules were omitted. Soil samples from planted and unplanted 
pots were collected as rhizosphere and soil samples, respectively. All root (epiphytic and endophytic 
compartments), rhizosphere, and soil samples were transferred to Lysing Matrix E tubes (FastDNA 
Spin Kit for Soil, MP Biomedicals), frozen in liquid nitrogen, and stored at -80°C for further 
processing. DNA was isolated from those samples using the FastDNA Spin Kit for Soil, and from 
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individual strains of the SynCom via quick alkaline lysis (Bai et al., 2015), and subjected to 
bacterial community profiling or absolute quantification of bacteria. For RNA isolation, samples 
were harvested the same way and processed using the RNeasy Plant Mini kit (Qiagen, Hilden, 
Germany). 

Mature root systems from Gifu and Col-0 plants grown in potting soil in the greenhouse were 
harvested from flowering plants (13-week old Lotus, 7-week old Arabidopsis), washed several 
times in water, padded on kitchen paper to remove moisture, and dried in big glass petri dishes at 
120°C for one hour. Note that Gifu plants had a few small, most likely ineffective root nodules. 
Pieces of the dried, dead roots were planted into FlowPots under sterile conditions, and SynCom 
(LjAt-SC3) inoculation was performed as described above. Dead roots were recovered from the 
FlowPots after 5, 12, and 19 days of incubation, and washed and stored as described above for live 
roots. 

4.5.5 SynCom invasion experiments 

FlowPots were sequentially inoculated with native and non-native strains. FlowPots were prepared 
as usual, with the addition of a round nylon filter (pore size 200 µm) at the bottom of the pot to 
avoid clogging of the bottom opening by matrix material. FlowPots were first inoculated with either 
the mixed SynCom (16 Lj- and 16 At-strains), the At SynCom (16 At-strains), the Lj SynCom (16 
Lj-strains), or the mock solution (medium only). The medium used for inoculation was 0.25x B&D 
(Broughton & Dilworth, 1971) supplemented with 1 mM KNO3 for both plant species. 

For sterilization, A. thaliana seeds were incubated for 5 min in 70% ethanol, then twice for 1 min in 
100% ethanol, washed 5x with sterile water, and stored at 4°C in the dark for stratification. L. 
japonicus seeds were scarified by abrading the surface using sand paper, incubated for 20 min in 
diluted bleach, and washed 5x with sterile water. Sterilized seeds were placed on sterile Whatman 
paper wetted with sterile water in a squared petri dish and allowed to germinate under short-day 
conditions. Sterilized Col-0 seeds and germinated sterile Gifu seeds were placed on the soil surface. 
Note that a few drops of Mesorhizobium culture (Lotus root nodule symbiont, strain LjNodule218, 
OD600 0.02) were applied to Gifu seedlings in the At SynCom treatment to allow for normal root 
nodule symbiosis to occur and ensure healthy plant growth. After growth for four weeks, a second 
inoculation was performed, where a mock inoculum (medium) was added to the mixed SynCom-
treated pots, the Lj SynCom was added to the At SynCom-treated pots, the At SynCom was added to 
the Lj SynCom-treated pots, and mock inoculum was added to the mock-treated pots. The pots were 
flushed in reverse by adding the inoculum from the top and applying vacuum from the bottom. On a 
sterile bench, FlowPots (cut 60-mL syringes with a male Luer Lok connector) were placed onto 
female Luer Lok connectors of a vacuum manifold (QIAvac 24 Plus, Qiagen), keeping the valves of 
the manifold closed. Vacuum was applied to the manifold with an attached vacuum pump. 20 mL of 
inoculum were carefully added to a pot with a 20-mL syringe and needle, avoiding damage of the 
plant shoots. Each pot was inoculated by opening and closing the corresponding valve. Pots were 
put back into the plastic containers and plants grown for another two weeks. Root, rhizosphere, and 
soil samples were harvested as described above.
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4.5.6 Collection of root exudates and millifluidics experiment 

Arabidopsis and Lotus plants were grown in a customized hydroponic system (original design by 
Manuela Peukert, University of Cologne, unpublished). This sterile growth setup consists of glass 
jars filled with glass beads and a stainless-steel mesh on top. Nutrient solution (modified 0.25x 
B&D medium; Fe-EDTA instead of Fe-citrate) was poured into the jars until the beads were 
covered in liquid and the liquid touched the metal mesh. We employed the same medium for both 
plant species in order to allow for direct comparison of exudate composition, and to minimize 
differential effects on the bacterial community originating from different media types. We chose the 
Lotus B&D medium since Arabidopsis grew reasonably well in it. Sterilized and pregerminated 
seeds were placed onto the mesh, jars were put into sterile plastic boxes with filter lids (SacO2 
microboxes), and plants were grown for five weeks. The medium containing root exudates was 
removed from the jars in the clean bench using a sterile metal needle and plastic syringe. After 
transfer to 50-mL Falcon tubes, exudates were frozen at -80°C, freeze-dried until a volume of 2-3 
mL was left, thawed, and adjusted with sterile water to 5 mL. Exudates were kept at -80°C until 
further usage. 

Bacterial incubation in root exudates was performed in a novel millifluidics system (MilliDrop 
Analyzer, MilliDrop, Paris, www.millidrop.com). This drop-based system allows incubation of 
bacteria in very small volumes of root exudates or growth medium. In brief, bacteria and exudates 
or growth medium are combined in wells of a 96-well plate using a pipetting robot Freedom Evo 
100 (Tecan, France). Droplets of approximately 100-200 nL are then sucked in from the wells of the 
loading plate by a tip on the robotic arm of the MilliDrop Analyzer, generating hundreds of droplets 
within an oil-filled tube, separated by air spacers. During incubation, the droplet “train” moves back 
and forth, so that during each round, each droplet passes a detector that counts the droplets. Culture 
droplets are collected after the experiment and subjected to community profiling. 

The mixed community LjAt-SC1 was used and was essentially prepared as described above for the 
in planta experiments, adjusted to OD600 of 0.1 and used as input for preparation of the loading 
plate. Pure exudates (pH between 7.0 and 8.0) or a defined M9+carbon growth medium (1x M9 
salts including phosphate buffer, 1 mM magnesium sulfate, 0.3 mM calcium chloride, 1x vitamin B 
solution, and artificial root exudates, pH 7.0) was used for incubation. Vitamin B solution contained 
0.4 mg/L 4-aminobenzoic acid, 1 mg/L nicotinic acid, 0.5 mg/L calcium-D-pantothenate, 1.5 mg/L 
pyridoxine hydrochloride, 1 mg/L thiamine hydrochloride, 0.1 mg/L biotin, and 0.1 mg/L folic acid 
(modified from Pfennig, 1978). Artificial root exudates (modified from Baudoin et al. 2003) were 
composed of 0.9 mM glucose, 0.9 mM fructose, 0.2 mM sucrose, 0.8 mM succinic acid, 0.6 mM 
sodium lactate, 0.3 mM citric acid, 0.9 mM serine, 0.9 mM alanine, and 0.5 mM glutamic acid. 
Bacteria were incubated for three days, during which the pH of the cultures stayed stable. Droplets 
were collected in 6 µL, and DNA isolated via quick alkaline lysis (Bai et al., 2015), which consisted 
of addition of 10 µL of buffer 1 (25 mM NaOH, 0.2 mM EDTA, pH 12), incubation at 95°C for 30 
min, addition of 10 µL of buffer 2 (40 mM Tris-HCl at pH 7.5), storage at -20°C. 

4.5.7 Mono-associations of SynCom members with host plants 

Lotus seeds were sterilized and placed on sterile wet Whatman paper for germination. Seedlings 
were transferred to squared petri dishes containing 0.25x B&D medium (with Fe-EDTA instead of 
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Fe-citrate) supplemented with 3 mM KNO3 and 1% Difco Bacteriological agar, and sterile filter 
paper was put on top of the sloped solidified medium prior to placing the seedlings to prevent root 
growth inside the agar. Arabidopsis seeds were sterilized and germinated on 0.5x MS medium plus 
1% Difco Bacteriological agar. Seedlings were transferred to squared petri dishes containing 0.5x 
MS medium (neutral pH, buffered with 2 mM HEPES) plus 1% agar. The 32 strains of the mixed 
community LjAt-SC3 were grown individually in liquid medium, harvested, and adjusted to an 
OD600 of 0.02. Seedlings were inoculated by adding 500 µL of bacterial culture to the roots. Plants 
were grown for 14 days under long-day conditions (16/8 day-night cycles) at 21°C. Three biological 
replicates were prepared for each genotype-bacteria combination.

4.5.8 Absolute quantification of bacteria 

Genomic DNA was isolated from roots of plants grown in FlowPots (experiments K and L). DNA 
concentration was determined with the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 
Scientific). 

To quantify bacterial load on plant roots, the amount of bacterial DNA relative to the amount of 
plant DNA was determined via qPCR. For bacteria, the v5-v7 region of the 16S rRNA gene was 
amplified using the AACMGGATTAGATACCCKG (799F) and ACGTCATCCCCACCTTCC 
(1192R) primers. For Col-0, a fragment of At1g12360 was amplified using the 
TCCGGTCAATATTTTTGTTCG and TATAGCAGCGAAAGCCTCGT primers, and for Gifu, a 
fragment of the NFR5 gene was amplified using the TCATATGATGGAGGAGTTGTCTGTT and 
ATATGAGCTTCGGAGCATGG primers. qPCR was performed as described previously (Lohmann 
et al., 2010). The amount of 16S rRNA was normalized to plant gene within each individual sample 
using the following equation: 16S rRNA gene over plant gene = 2-Ct(16S) / 2-Ct(plant).

For colony counts (exp. E), roots were harvested, washed, weighed, and crushed in 500 µl (Col-0) 
or 750 µl (Gifu) sterile water. Serial dilutions of 10-1, 10-2, 10-3, 10-4, and 10-5 of the crushed roots 
were prepared in sterile water. 10 µl each were spotted onto 10% TSB agar square plates. Single 
colonies were counted after 1-3 days. 

4.5.9 Processing of 16S rRNA gene amplicon data 

Amplicon sequencing data from L. japonicus and A. thaliana roots of plants grown in CAS soil in 
the greenhouse, along with unplanted controls, were demultiplexed according to their barcode 
sequence using the QIIME (Caporaso et al., 2010) pipeline. DADA2 (Callahan et al., 2016) was 
used to process the raw sequencing reads of each sample. Unique amplicon variants (ASVs) were 
inferred from error-corrected reads, followed by chimera filtering, also using the DADA2 pipeline. 
ASVs were aligned to the SILVA database (Quast et al., 2012) for the taxonomic assignment using 
the naïve Bayesian classifier implemented by DADA2. Raw reads were mapped to the inferred 
ASVs to generate a relative abundance table, which was subsequently employed for analyses of 
diversity and differential abundance using the R package vegan (Oksanen et al., 2019).

Amplicon sequencing reads from the Lotus and Arabidopsis (Bai et al., 2015) IRLs and from their 
corresponding culture-independent root community profiling were quality-filtered and 
demultiplexed according to their two-barcode (well and plate) identifiers using custom scripts and a 
combination of tools included in the QIIME (Caporaso et al., 2010) and USEARCH (Edgar, 2010) 
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pipelines. Sequences were clustered into Operational Taxonomic Units (OTUs) with a 97% 
sequence identity similarity using the UPARSE algorithm, followed by identification of chimeras 
using UCHIME (Edgar et al., 2011). Samples (wells) with fewer than 100 good quality reads were 
removed from the data set as well as OTUs not found in a well with at least ten reads. A purity 
threshold of 90% was chosen for identification of recoverable OTUs. We identified Lj-IRL samples 
matching OTUs found in the culture-independent root samples and selected a set of 294 
representative strains maximizing taxonomic coverage for subsequent validation and WGS, forming 
the basis of the core Lj-SPHERE collection.

Sequencing data from SynCom experiments (including FlowPot and millifluidics experiments) were 
pre-processed similarly as natural community 16S rRNA data. Quality-filtered, merged paired-end 
reads were then aligned to a reference set of sequences extracted from the whole-genome 
assemblies of every strain included in a given gnotobiotic experiment, using USEARCH 
(uparse_ref command) (Edgar, 2013). Only sequences with a perfect match to the reference 
database were retained. We checked that the fraction of unmapped reads did not significantly differ 
between compartment, experiment or host species. We generated a count table that was employed 
for downstream analyses of diversity with the R package vegan(Oksanen et al., 2019). We 
visualized amplicon data from all experimental systems using the ggplot2 R package (Wickham, 
2016).

4.5.10 Host preference and invasiveness indices 

In order to quantify the strength of the host preference of each bacterial strain individually, we 
calculated the ratio between the mean relative abundance of a given SynCom member in root 
samples of their cognate host and its mean relative abundance in root samples of the other plant 
species. The host preference indices depicted in Fig. 5a were calculated independently for each 
experiment. To avoid obtaining very high ratios due to small denominator values, strains with mean 
relative abundances below 0.1% in either of the two hosts were removed from the analysis. 
Similarly, an invasiveness index was calculated by obtaining the ratio between mean relative 
abundance of a strain when invading resident communities on roots of their cognate host, compared 
to the other plant species. The invasiveness index was calculated using samples from the sequential 
inoculation experiment (experiment L, Figure 4.8). The direct comparison between the two indices 
shown in Figure 4.10a and Figure 4.10b were calculated using samples from experiment L only, 
where invasion and competition treatments were performed in parallel. To test whether a SynCom 
member was significantly more abundant in the roots of their cognate host (i.e., significant host 
preference), we used the non-parametric Wilcoxon test controlling for false discovery rate (FDR) 
with α = 0.05.

4.5.11 Bacterial genome assembly, annotation, and phylogenomic analysis 

Paired-end Illumina reads were first subjected to length-trimming and quality-filtering using 
Trimmomatic (Bolger et al., 2014). Reads were assembled using the A5 assembly pipeline (Tritt et 
al., 2012), which uses the IDBA algorithm (Peng et al., 2012) to assemble error-corrected reads. 
Detailed assembly statistics and corresponding metadata can be found in Supplementary Data 2 in 
the published journal version article. Genomes with multi-modal k-mer and GC content 
distributions or multiple instances of marker genes from diverse taxonomic groups were flagged as 
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not originating from clonal cultures. These samples were processed using a metagenome binning 
approach (Pasolli et al., 2019). Briefly, contigs from each metagenome sample were clustered using 
METABAT2 (Kang et al., 2019), followed by an assessment of completeness and contamination of 
each metagenome-assembled genome (MAG) using CheckM (Parks et al., 2015). Only bins with 
completeness scores larger than 75% and contamination rates lower than 5% were retained and 
added to the collection (Supplementary Data 2 in the published journal version article; designated 
MAG in the column ‘type’). Functional annotation of genes was conducted using Prokka and 
employing a custom database based on KEGG Orthologue (KO) groups (Kanehisa et al., 2014) 
downloaded from the KEGG FTP server in November 2019. Hits to sequences in the database were 
filtered using an E value threshold of 10 × 10−9 and a minimum coverage of 80% of the length of the 
query sequence.

Genomes from the Lj- and At-SPHERE culture collections (Bai et al., 2015) were searched for the 
presence of a set of 31 conserved, single-copy marker genes, known as AMPHORA (Wu & Eisen, 
2008) genes. Sequences of each gene were aligned using Clustal Omega (Sievers et al., 2011) with 
default parameters. Using a concatenated alignment of each gene, we inferred a maximum 
likelihood phylogeny using FastTree (Price et al., 2010). We visualized this tree using the 
Interactive Tree of Life web tool (Letunic & Bork, 2019). Genomes from both collections (Lj-
SPHERE and At-SPHERE) were clustered into phylogroups, roughly corresponding to a species 
designation (Olm et al., 2020) using FastANI (Jain et al., 2018) and a threshold of average 
nucleotide identity at the whole genome level of at least 97%.

4.5.12 RNA-sequencing and data analysis 

RNA isolated from FlowPot samples was subjected to quality control, library preparation, and 
sequencing (on the Illumina HiSeq3000 platform) at the Max Planck-Genome center, Cologne, 
Germany (https://mpgc.mpipz.mpg.de/home/). Sequencing depth was 6 million reads per sample. 
Raw Illumina RNA-Seq reads were pre-processed using fastp (v0.19.10) (Chen et al., 2018) with 
default settings for pair-end reads High quality reads were pseudo-aligned to the Lotus japonicus 
Gifu Arabidopsis thaliana Col-0 transcriptome reference using kallisto (v0.46.1) (Bray et al., 2016). 
After removal of low abundant transcripts that were not present in at least two replicates under each 
condition, count data were imported using the tximport package (Soneson et al., 2016).

Differential expression analyses were performed using the DESeq2 package (Love et al., 2014). 
Firstly, raw counts were normalized with respect to the library size (rlog function) and transformed 
into log2 scale. We tested for sample effects by surrogate variable (SV) analysis using the sva 
package (Leek et al., 2012). Significant SVs were automatically detected and integrated into the 
model for differential analyses. Principal component analysis based on whole transcripts were then 
conducted and plotted to visualize the cluster and variance of biological replicates under each 
condition. Transcripts with fold-changes > 1.5 and adjusted P-value for multiple comparisons 
(Benjamini–Hochberg method) equal to or below 0.05 were considered significant.

The log2 scaled counts were normalized by the identified SVs using the limma package (Ritchie et 
al., 2015) (‘removeBatchEffect’ function), and transformed as median-centered z-score (by 
transcripts, ‘scale’ function). Then z-scores was used to conduct k-means clustering for all 
transcripts. The cluster number (k = 10) was determined by sum of squared error and Akaike 
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information criterion. Differential expressed transcripts and cluster results were visualized using 
heatmaps generated by ComplexHeatmap package (Gu et al., 2016).

Gene ontology (GO) enrichment for each cluster using the whole Lotus and Arabidopsis 
transcriptomes as backgrounds were performed with the goseq package(Young et al., 2010), which 
considers the transcripts length bias in RNA-Seq data. GO annotations were retrieved from the 
Gene Ontology Consortium (September 2019) (Ashburner et al., 2000; ‘The Gene Ontology 
Resource: 20 years and still GOing strong’, 2019). Significantly changed biological process GO 
terms (adjusted p-value < 0.05) were visualized in dot plots using the clusterProfiler package (Yu et 
al., 2012).

4.5.13 Statistics and reproducibility 

All experiments were performed with full factorial (biological and technical) replication. 
Competition experiments using SynComs were in addition repeated multiple times (see Extended 
Data Fig. 1 in the published journal version article) using independent bacterial communities. 
Whenever bacterial abundances or plant growth parameters were compared, we employed a two-
sided, non-parametric Mann-Whitney test or, in the case of multiple comparisons, a Kruskal-Wallis 
test, followed by a Dunn’s post hoc. Whenever appropriate, P-values were adjusted for multiple 
testing using the Benjamini–Hochberg method (α=0.005). Statistical tests on beta-diversity analyses 
were performed using a PERMANOVA test with 5,000 random permutations. Whenever boxplots 
where employed in figures, data was represented as median values (horizontal line), Q1–1.5 × 
interquartile range (IQR; box) and Q3 + 1.5 × IQR (whiskers).

4.6 Date and code availability 

The strains of the Lj-SPHERE collection will be deposited at and will be available upon request 
from the Leibniz Institute DSMZ in Braunschweig, Germany. Raw 16S rRNA amplicon reads will 
be deposited in the European Nucleotide Archive (ENA) under the accession number PRJEB37695. 
Similarly, sequencing reads and genome assemblies of the Lj-SPHERE core collection will be 
uploaded to the same database with the accession number PRJEB37696. The scripts used for the 
computational analyses described in this study are available at http://www.github.com/garridoo/
ljsphere, to ensure replicability and reproducibility of these results.
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Chapter 5 Shared features and reciprocal complementation 
of the Chlamydomonas and Arabidopsis microbiota 

5.1 Abstract 

Microscopic algae release organic compounds to the region immediately surrounding their cells, 
known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These 
bacteria take up algal photoassimilates and provide beneficial functions to their host, in a process 
that resembles the establishment of microbial communities associated with the roots and 
rhizospheres of land plants. Here, we characterize the microbiota of the model alga 
Chlamydomonas reinhardtii and reveal extensive taxonomic and functional overlap with the root 
microbiota of land plants. Reconstitution experiments using synthetic communities derived from C. 
reinhardtii and Arabidopsis thaliana show that phycosphere and root bacteria assemble into 
taxonomically equivalent communities on either host. We show that provision of diffusible 
metabolites is not sufficient for phycosphere community establishment, which additionally requires 
physical proximity to the host. Our data suggests that the microbiota of photosynthetic organisms, 
including green algae and flowering plants, assembles according to core ecological principles.

5.2 Introduction 

Plants associate with diverse microbes in their aerial and belowground tissues which are recruited 
from the surrounding environment. These microbial communities, known as the plant microbiota, 
provide the host with beneficial functions, such as alleviation of abiotic stresses (de Zélicourt et al., 
2018; Xu et al., 2018; Berens et al., 2019; Simmons et al., 2020), nutrient mobilization (Castrillo et 
al., 2017; Zhang et al., 2019; Harbort et al., 2020), or protection against pathogens (Durán et al., 
2018; Carrión et al., 2019). Characterization of the microbiota associated with a wide range of plant 
species including liverworts (Alcaraz et al., 2018), lycopods, ferns (Yeoh et al., 2017), 
gymnosperms (Beckers et al., 2017; Cregger et al., 2018), and angiosperms (Bulgarelli et al., 2012, 
2015; Lundberg et al., 2012; Schlaeppi et al., 2014; Edwards et al., 2015; Zgadzaj et al., 2016; 
Walters et al., 2018; Thiergart et al., 2020) shows a strong influence of host phylogeny as well as 
conserved and possibly ancestral community features. Furthermore, it has been speculated that the 
ability to form associations with members of these communities, such as mycorrhizal fungi, was a 
trait required for the colonization of land by plants 450 Mya, possibly inherited from their algal 
ancestor (Knack et al., 2015; Delaux et al., 2015). Algae are also known to associate with complex 
bacterial communities termed phycosphere microbiota, particularly in aquatic environments (Kim et 
al., 2014; Amin et al., 2015; Seymour et al., 2017; Cirri & Pohnert, 2019), where exchange of 
metabolites, including organic carbon (Moran et al., 2016; Wienhausen et al., 2017; Toyama et al., 
2018; Fu et al., 2020), soluble micronutrients (Amin et al., 2009), vitamins (Croft et al., 2005; 
Grant et al., 2014; Paerl et al., 2017), and other molecular currencies (Teplitski et al., 2004; 
Wichard et al., 2015) influence algal growth and development. These parallelisms suggest that the 
phycosphere is analogous to the rhizosphere environment, in which secreted diffusible compounds 
alter soil pH, oxygen availability, concentration of antimicrobials and organic carbon, and thus 
support distinct microbial communities by favoring the growth of certain bacteria while restricting 
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proliferation of others (Bell & Mitchell, 1972; Bulgarelli et al., 2013; Amin et al., 2015; Krohn-
Molt et al., 2017; Shibl et al., 2020). However, it is not yet known whether the ability to assemble a 
complex microbiota from the surrounding soil is also conserved in soil-borne microscopic algae, 
and to what extent they overlap with those of vascular plants.

In this study, we characterize the microbiota of the model green alga C. reinhardtii (Cr), and show 
significant taxonomic and functional similarities between the root and phycosphere microbiota. In 
addition, we report a comprehensive, whole-genome sequenced culture collection of Cr-associated 
bacteria that includes representatives of the major taxa found in associations with land plants. We 
then introduce a series of gnotobiotic systems designed to reconstruct artificial phycospheres that 
recapitulate natural communities using synthetic communities (SynComs) assembled from bacterial 
isolates. Cross-inoculation and competition experiments using the model plant Arabidopsis thaliana 
(At) and its associated bacterial culture collection (Bai et al., 2015) indicate a degree of functional 
equivalence between phycosphere and root bacteria in associations with a photosynthetic host. 
Finally, we show that physical proximity between Cr and its microbiota is required for the 
establishment of fully functional phycosphere communities, suggesting that this process is not 
exclusively driven by the exchange of diffusible metabolites.

5.3 Results 

5.3.1 C. reinhardtii assembles a distinct microbiota from the surrounding soil 

Figure 5.1 Schematic description of the greenhouse experiment. Pots containing CAS natural soil 
were either sown with At seeds, inoculated with Cr cultures or mock-treated. Samples were taken over 
time for bacterial community profiling.

To determine whether Cr shapes soil-derived bacterial communities similarly to land plants, we 
designed an experiment where At and Cr were grown in parallel in natural soil in the greenhouse 
(Figure 5.1). Briefly, pots containing Cologne Agricultural Soil (CAS) were inoculated with axenic 
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Cr (CC1690) cultures or sowed with surface-sterilized At (Col-0) seeds. We then collected samples 
from unplanted controls and from the surface of Cr-inoculated pots (phycosphere fraction) at 7-day 
intervals, and harvested the root and rhizosphere of At plants after 36 days. Bacterial communities 
from all compartments were characterized by 16S rRNA amplicon sequencing. 

Analysis of bacterial community profiles showed a decrease in α-diversity (Shannon index) in the 
phycosphere and root compartments compared to the more complex soil and rhizosphere 
communities (Figure 5.2a). In addition, analysis of β-diversity revealed a significant separation by 
compartment, where phycosphere and root samples formed distinct clusters that were also separated 
from those consisting of soil and rhizosphere samples (Figure 5.2b; 22.4% of variance; P<0.001). 
Further inspection of amplicon profiles showed an overlap between root- and phycosphere-
associated communities along the second and third components (Figure 5.2c), suggesting 
similarities between the bacterial communities that associate with Cr phycospheres and At roots.

Figure 5.2 Comparison of bacterial community structures associated with At roots and the Cr 
phycosphere in natural soil. (a) Alpha diversity estimates of soil, rhizosphere, root and phycosphere 
samples from At and Cr grown in CAS soil in the greenhouse. (b-c) PCoA of Bray-Curtis dissimilarities 
constrained by compartment (22.4% of variance explained; P<0.001). A separation between root, 
phycosphere and soil-derived samples can be observed in the first two components (b), while the root and 
phycosphere communities cluster together in the second and third PCoA axes (c).

To characterize the dynamics of these microbiota assembly processes, we analyzed the time-series 
data from soil and phycosphere and end-point community profiles from At roots. This revealed a 
gradual recruitment of bacterial taxa from soil, leading to the formation of distinct phycosphere 
communities that become significantly differentiated 21 days after inoculation, which is of 
comparable to that observed in At root-associated communities at day 36 (Figure 5.3a). Subsequent 
enrichment analysis of amplicon sequence variants (ASVs) in each compartment, compared to 
unplanted soil, showed an increase in the relative abundance of Cr- and At-enriched ASVs in 
phycosphere and root samples, respectively. In contrast, total relative abundance of soil-enriched 
ASVs progressively decreased in host-associated compartments, while remaining stable in 
unplanted soil (Figure 5.3 b-d). Although the magnitude of the changes in bacterial community 
composition in the phycosphere diminishes over time, it remains unclear whether these 
communities reach a steady state over the duration of the experiment. Taken together, these results 
indicate that, similarly to At, Cr is able to recruit a subset of bacterial taxa from the surrounding soil 
and assemble a distinct microbiota.
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Figure 5.3 Culture-independent analysis of phycosphere- and root-associated communities in a 
natural soil. (a) Bray-Curtis dissimilarities between phycosphere, root and soil communities, compared 
to the initial soil input (day 0). Boxplots are color-coded depending on the fraction. Significant differences 
are marked with different letters (Kruskal-Wallis, followed by a Dunn’s post hoc, with Bonferroni 
correction). (b-d) Dynamics of relative abundances of ASVs enriched in phycosphere (b), root (c) or soil 
samples (d) over time, compared to initial soil input (day 0; Wilcoxon test; P<0.05). Curves are color-
coded depending on the fraction indicated.

5.3.2 The C. reinhardtii phycosphere and the plant root share a core microbiota 

Given the observed similarities between phycosphere and root communities (Figure 5.2c), we 
compared the most abundant taxonomic groups found in association with the two photosynthetic 
hosts. We found a significant overlap between Operational Taxonomic Units (OTUs) with the 
highest relative abundances in either phycosphere or root samples (Figure 5.4; >0.1% relative 
abundance; 32% shared; P<0.001), which included members of every bacterial order except 
Myxococcales, which were only found in large relative abundances in At root samples 
(Supplementary Data 1 in the journal version article). In line with previous descriptions of the At 
root microbiota, we observed that these host-associated communities were dominated by 
Proteobacteria, and also included members of the Actinobacteria, Bacteroidetes, and Firmicutes 
phyla. At this taxonomic level, the major difference between the two photosynthetic hosts was given 
by a lower contribution of Actinobacteria and a larger relative abundance of Firmicutes in the Cr 
phycosphere compared to the At root compartment (Figure 5.4). Given that this latter phylum is 
most abundant in soil, this difference may be due to the difficulty of fully separating soil particles 
from the phycosphere fraction during sample collection.
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Figure 5.4 Phylogeny of 16S rRNA sequences of the most abundant OTUs found in At roots and Cr 
phycosphere community profiles. Leaf nodes are colored by taxonomic affiliation (phylum level). The 
two innermost rings (colored squares) represent abundant OTUs in each compartment. Squares 
highlighted with a black contour correspond to OTUs for which at least one representative bacterial strain 
exists in the IRL or IPL culture collections. The two outermost rings (barplots) represent log-transformed 
relative abundances of each OTU in At root or Cr phycosphere samples.

Next, we sought to assess whether the observed overlap in community structures between Cr and At 
could be extended to other land plant lineages. We performed a meta-analysis, broadening our study 
to include samples from phylogenetically diverse plant species found in a natural site, including 
lycopods, ferns, gymnosperms, and angiosperms (Yeoh et al., 2017), as well as the model legume 
Lotus japonicus (Lj) grown in CAS soil in the greenhouse  (Thiergart et al., 2019; Harbort et al., 
2020). First, we determined which taxonomic groups were present in each plant species (≥80% 
occupancy and ≥0.1% average relative abundance) and identified a total of six bacterial orders that 
consistently colonize plant roots (i.e., found in every host species). These taxa include 
Caulobacterales, Rhizobiales, Sphingomonadales, Burkholderiales, Xanthomonadales 
(Proteobacteria), and Chitinophagales (Bacteroidetes). We observed that the aggregated relative 
abundance of these six bacterial orders accounted for 39% of their respective communities on 
average (Figure 5.5). Interestingly, these taxa were also found among the most abundant in the Cr 
phycosphere (45% aggregated relative abundance), indicating that they are also able to associate 
with Cr. These results suggest the existence of a common principle for microbiota assembly across 
a wide phylogenetic range of photosynthetic hosts, which includes uni- and multicellular eukaryotic 
organisms.

(Figure on next page) Figure 5.5 Conservation of bacterial orders of the root and phycosphere 
microbiota across photosynthetic organisms. Phylogeny inferred from a multiple sequence alignment 
of the ribulose-bisphosphate carboxylase gene (rbcL) of 35 plant species and Chlamydomonas reinhardtii. 
The barplots represent the average aggregated relative abundance of the six bacterial orders found to be 
present in the root microbiota of each plant species (80% occupancy and ≥0.1% average relative 
abundance). Leaf nodes depicted with a star symbol denote community profiles of plants grown in CAS 
soil in the greenhouse (Thiergart et al., 2019; Harbort et al., 2020), whereas those marked with a circle 
were obtained from plants sampled at the Cooloola natural site chronosequence (Yeoh et al., 2017).
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(Caption on previous page) Figure 5.5 Conservation of bacterial orders of the root and phycosphere 
microbiota across photosynthetic organisms.

5.3.3 Reconstitution of phycosphere communities using reductionist approaches 

After the characterization of phycosphere-associated bacterial communities in natural soil, we 
sought to develop systems of reduced complexity that would allow controlled perturbation of 
environmental parameters, and targeted manipulation of microbial community composition. First, 
we established a mesocosm system using soil-derived microbial communities as start inocula 
(Figure 5.6). We co-inoculated axenic Cr (CC1690) cultures with microbial extracts from two soil 
types (CAS and Golm) in two different carbon-free media (TP and B&D), which ensures that the 
only source of organic carbon to sustain bacterial growth is derived from Cr photosynthetic activity. 
These phycosphere mesocosms were then incubated under continuous light for 11 days, during 
which we assessed Cr growth using cell counts, and profiled bacterial communities via 16S rRNA 
amplicon sequencing. In this system, Cr was able to steadily grow without a detrimental impact 
from co-inoculation with soil-derived bacterial extracts (Figure S3A in the journal version article). 

Analysis of diversity showed that Cr was able to shape soil-derived bacterial communities within 
the first 4 days, compared to the starting inocula, and that these phycosphere communities remained 
stable until the end of the experiment (Figure 5.7). Interestingly, cultivation of soil-derived bacteria 
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in the absence of organic carbon or supplemented with Artificial Photosynthates (AP) led to 
significantly differentiated bacterial communities (Figure 5.7a; 17.9% of variance; P<0.001). In 
addition, inoculation of soil-derived bacteria with heat-killed Cr cultures was not sufficient to 
recapitulate this community shift (Figure S3B in the journal version article), suggesting that the 
presence of live and metabolically active Cr is required for the establishment of synthetic 
phycospheres. We then tested whether larger eukaryotic microorganisms present in the soil 
microbial extracts, such as other unicellular algae or fungi, were also contributing to the observed 
changes in bacterial composition. A separate experiment, where microbial inocula were filtered 
through a 5 μm pore-size membrane, showed similar bacterial community shifts compared to non-
filtered extracts (Figure S3C in the journal version article). Similar to the results obtained using 
natural soil, the aggregated relative abundance of Cr-associated ASVs in the synthetic phycosphere 
samples increased over time, whereas ASVs enriched in the bacteria only control samples 
consistently decreased (Figure 5.7b). At the end of the experiment (day 11), the relative abundance 
of Cr-enriched ASVs accounted for 94% of the entire phycosphere community, in contrast to a 
lower contribution observed in the natural soil system (Figure 5.3b; 60% relative abundance at day 
36). This pattern could be a consequence of the unintended depletion of bacteria that are not capable 
of metabolizing Cr-secreted photoassimilates in a liquid environment, and in these specific culture 
media. Finally, an independent mesocosm experiment using day/night light cycles showed delayed 
but similar patterns to those using continuous light, indicating that phycosphere community 
establishment may be independent of Cr culture synchronization (Figure S3D in the journal version 
article).

Figure 5.6 Schematic description of the mesocosm experiments. In different liquid media (minimal 
media or AP-containing media), Cr cultures were co-incubated with soil-derived bacteria. Samples were 
taken over time for bacterial community profiling and assessment of Cr growth.

Next, we aimed to control community composition in this reductionist system by establishing a Cr-
associated bacterial culture collection following a similar approach as reported in previous studies 
with land plants (Lebeis et al., 2015; Bai et al., 2015; Garrido-Oter et al., 2018; Eida et al., 2018; 
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Zhang et al., 2021a; Wippel et al., 2021). We employed a limiting dilution approach using 7 day-old 
Cr phycospheres derived from CAS soil bacteria incubated in two minimal media (TP and B&D). 
The resulting sequence-indexed phycosphere bacterial library (Cr-IPL) contained a total of 1,645 
colony forming units (CFUs), which were taxonomically characterized by 16S rRNA amplicon 
sequencing. Comparison of these sequencing data with the community profiling of soil 
phycospheres revealed that we were able to recover 62% of the most abundant bacterial OTUs 
found in natural communities (Figure S4A and Supplementary Data 2 in the journal version article). 
Recovered OTUs accounted for up to 63% of the cumulative relative abundance of the entire 
culture-independent community, indicating that our collection is taxonomically representative of Cr 
phycosphere microbiota. These results are comparable to the recovery rates observed in previously 
reported culture collections from different plant species (e.g., 57% for A. thaliana, Bai et al., 2015; 
69% for rice, Zhang et al., 2019; 53% for L. japonicus; Wippel et al., 2021).

Figure 5.7 Mesocosm experiments recapitulate the establishment of phycosphere communities by 
Cr across soil types and growth media. (a) PCoA analysis of Bray-Curtis dissimilarities constrained by 
condition (17.9% of variance; P<0.001) show a significant separation between start inocula (soil washes, 
depicted in brown), phycosphere communities (green), and soil washes incubated in minimal media 
(blue), or media supplemented with artificial photoassimilates (APs, depicted in orange). (b) Dynamic 
changes in the phycosphere community composition in terms of the aggregate relative abundances of 
ASVs enriched in each condition with respect to the start inocula.

To establish a core collection of phycosphere bacteria, we selected a taxonomically representative 
set of strains from the Cr-IPL covering all major taxonomic groups found in the culture-
independent community profiles and subjected them to whole-genome sequencing. In total, we 
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sequenced the genomes of 185 bacterial isolates, classified into 42 phylogroups (97% average 
nucleotide identity), belonging to 5 phyla and 15 families (Supplementary Data 3 in the journal 
version article). Next, we performed comparative analyses of the genomes from the phycosphere 
core collection (Cr-SPHERE) with those established from soil, roots of A. thaliana, and roots and 
nodules of L. japonicus (At- and Lj-SPHERE) grown in the same soil (CAS). A whole-genome 
phylogeny of these bacterial strains showed that all major taxonomic groups that included root-
derived isolates were also represented in the Cr-SPHERE collection, but not in the soil collection 
(Figure S4B in the journal version article). Importantly, the phycosphere collection also included 
multiple representatives of each of the six bacterial orders that were found to consistently colonize 
plant roots in natural environments (Figure 5.5). Next, we assessed the functional potential encoded 
in the genomes of the sequenced phycosphere bacteria using the KEGG orthology database as a 
reference (Kanehisa et al., 2014). Principal coordinates analysis (PCoA) of functional distances 
showed that bacterial taxonomy accounted for most of the variance of the data (58.63%; P<0.001), 
compared to a much smaller impact of the host of origin of the genomes (4.22% of variance; 
P<0.001; Figure S4C in the journal version article).

Figure 5.8 Phycosphere reconstitution using bacterial SynComs derived from the Cr-SPHERE core 
culture collection. Cr growth in the gnotobiotic system axenically (n = 36) or in co-inoculation with the 
bacterial SynCom (n = 36), measured as algal cell densities (a), and chlorophyll fluorescence (b). A 
Mann–Whitney test was used to assess significant differences among groups (FDR-corrected;  P < 
0.05).  c  Strain-level beta-diversity analysis (CPCoA of Bray–Curtis dissimilarities; 40.4% of the 
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variance; P < 0.001) of bacterial communities from samples obtained from a liquid-based gnotobiotic 
system. Samples are color-coded based on the experimental condition: input SynCom samples (black; n = 
9), synthetic phycospheres (light green; n = 27), and SynCom only controls (blue; n = 25). d Bar charts 
showing relative abundances of individual SynCom members across conditions and time points.

Next, we tested whether synthetic communities formed by isolates from the Cr-SPHERE collection 
could recapitulate assembly patterns of natural phycospheres under laboratory conditions. Axenic 
Cr cultures (CC1690) were inoculated with a bacterial SynCom composed of 26 strains that could 
be distinguished at the 16S level and contained representative members of all major phycosphere 
taxonomic groups (Figure S1D and Supplementary Data 4 in the journal version article). 
Assessment of Cr growth using chlorophyll fluorescence and cell counts showed that the presence 
of the bacterial SynCom had no consistent beneficial or detrimental impact on Cr proliferation in 
this system (Figure 5.8a, b), similarly to what we observed in mesocosms (Figure S3A in the journal 
version article). Analysis of time-course amplicon profiles showed that Cr assembled a 
characteristic phycosphere community within the first 4 days of co-inoculation, which was 
significantly separated from both, start inocula and bacterial SynComs alone (Figure 5.8c, d). 
Together, these results demonstrate that we can recapitulate Cr assembly of distinct phycosphere 
communities in natural soils using culture-dependent and -independent gnotobiotic systems.

5.3.4 Cr- and At-derived SynComs form taxonomically equivalent communities on either 
host 

Figure 5.9 Schematic description of the cross-inoculation experiment. From the core culture Cr-
SPHERE collection, 26 representative strains were selected, pooled together and co-incubated with Cr in 
minimal media for 7 days.

Given the similarity between phycosphere and root communities observed in natural soils (Figure 
5.2), and the taxonomic and functional overlap across genomes from their corresponding core 
collections (Figure S4B, C in the journal version article), we hypothesized that SynComs with the 
same taxonomic composition would assemble into similar communities, regardless of their origin. 
To test this hypothesis, we used a soil-based gnotobiotic system in which we could grow Cr and At 
in parallel, in addition to the previously described liquid-based system. We designed taxonomically-
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paired SynComs composed of strains from either the IPL (Cr-SPHERE) or IRL (At-SPHERE) 
bacterial culture collections. In these SynComs we included one representative strain from each 
bacterial family shared between the two collections (n=9), ensuring that they could be differentiated 
by their 16S rRNA sequences (Supplementary Data 4 in the journal version article). We then 
inoculated axenic Cr cultures and At seeds with either IPL, IRL or mixed (IPL+IRL) SynComs and 
allowed to colonize either host for four weeks (Figure 5.9 and Figure S1E in the journal version 
article). Next, we harvested the root, soil, and phycosphere fractions, measured host growth, and 
performed 16S rRNA amplicon sequencing. Assessment of growth parameters (cell counts for 
bacteria and Cr, chlorophyll content for Cr and shoot fresh weight for At) showed no significant 
differences across SynCom treatments (Figure S5 in the journal version article). 

Figure 5.10 Root and phycosphere bacteria colonize At and Cr and assemble into taxonomically 
equivalent communities. (a-b) Beta diversity analysis of soil, root, and phycosphere community profiles 
obtained from gnotobiotic At and Cr, inoculated with bacterial SynComs derived from At roots (At-
SPHERE), Cr (Cr-SPHERE) or mixed (At- and Cr-SPHERE), grown in the FlowPot system analysis 
(CPCoA of Bray-Curtis dissimilarities aggregated at the family level; 16.4% of the variance; P<0.001). 
Similar as in natural soils (Figure 5.2 b, c), root and phycosphere samples were significantly separated 
from soil and from each other in the first two axes, while overlapping in the second and third components. 
(c-d) Aggregated relative abundances of At- and Cr-derived strains in the mixed SynCom show ectopic 
colonization and signatures of host preference in a soil-derived (FlowPot, panel c), and liquid-based 
(flask, panel d) gnotobiotic system.

However, analysis of community profiles of the mixed SynComs showed that Cr and At assemble 
distinct communities that could also be clearly separated from unplanted soil (Figure 5.10a). Similar 
to what we observed in natural soil (Figure 5.2c), there was an overlap between phycosphere and 
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root samples, which clustered together along the second and third components (Figure 5.10b). 
Interestingly, analysis of community composition at the family level showed that all SynComs (Cr-, 
At-derived, and mixed) formed taxonomically indistinguishable root or phycosphere communities, 
independently of their host of origin (Figure 5.10a, b). Furthermore, analysis of aggregated relative 
abundances from mixed communities showed that phycosphere-derived strains could successfully 
colonize At roots (48.32% relative abundance), and root-derived strains established associations 
with Cr in both soil and liquid systems (42.94% and 25.70% relative abundance, respectively; 
Figure 5.10c, d). Despite this capacity for ectopic colonization, we observed significant signatures 
of host preference in SynComs from the two culture collections, indicated by the fact that Cr-
derived strains reached higher aggregated relative abundances in the phycosphere compared to the 
root, while the opposite pattern was identified for At-derived bacteria (Figure 5.10c). This tendency 
was accentuated in the liquid system, where Cr bacteria outcompeted At strains in the presence of 
the algae but not when they were incubated alone (Figure 5.10d). Taken together, these results 
suggest the presence of conserved features in bacterial members of the Cr and At microbiota at a 
high taxonomic level, with signatures of host preference at the strain level.

5.3.5 Physical proximity is required for the assembly of phycosphere communities and 
promotion of Cr growth 

Next, we sought to investigate whether the observed formation of distinct phycosphere communities 
is driven by the secretion of diffusible photoassimilates and to what extent physical proximity to 
bacteria is required to establish other forms of interactions. To test this hypothesis, we developed a 
gnotobiotic split co-cultivation system where synthetic phycospheres could be grown 
photoautotrophically (Figure 5.11). In this system, two growth chambers were connected through a 
0.22 μm-pore polyvinylidene fluoride (PVDF) membrane that allows diffusion of compounds but 
not passage of bacterial or algal cells. We co-cultivated axenic Cr cultures (C), bacterial SynComs 
(SC), and synthetic phycospheres (C+SC) in these split chambers containing minimal carbon-free 
media (TP) in multiple pair-wise combinations (Figure 5.11; Supplementary Data 4 in the journal 
version article). 

Analysis of 16S rRNA amplicon profiles after 7 days of incubation revealed that SC and C+SC 
samples were distinguishable from the input bacterial SynComs (Figure 5.12a). In addition, samples 
clustered according to the presence of Cr in the same compartment, causing SC and C+SC samples 
to be significantly separated, independently of the community present in the neighboring chamber 
(Figure 5.12a, indicated by colors; 21.4% of variance; P<0.001). Comparison of amplicon profiles 
of samples taken from chambers containing C+SC further showed a significant impact of the 
content of the neighboring compartment in community structures (Figure 5.12b, indicated by 
shapes; 39.5% of variance; P<0.001). Interestingly, we also observed that the presence of Cr in the 
neighboring compartment was sufficient to change SC communities where the bacterial SynCom 
was incubated alone (Figure 5.12c; SC|C or SC|C+SC versus SC|–; P=0.001), possibly by secreting 
diffusible compounds or inducing changes in the composition of the culture medium (e.g., minerals, 
pH). Furthermore, SC communities where Cr was present in the neighboring compartment could be 
differentiated depending on whether Cr was in direct contact with bacteria or grown axenically 
(Figure 5.12c; SC|C versus SC|C+SC). These community shifts could be explained by competition 
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for diffusible metabolites with the neighboring compartment containing the SynCom together with 
the algae (C+SC), or by physiological changes in Cr induced by physical proximity with bacteria.

Figure 5.11 Schematic description of the split co-cultivation system. Co-cultivation chamber separated 
by a 0.22 um filter were used to inoculate Cr, the phycosphere SynCom alone or both together in different 
combinations. Samples were harvested after 7 days for community profiling and Cr growth 
measurements. 

In parallel to bacterial community profiles, we assessed Cr growth by measuring chlorophyll 
fluorescence and algal cell counts in all vessels. We observed significant differences in the growth 
of axenic Cr cultures depending on the contents of the neighboring chamber, where the bacterial 
SynCom alone (C|SC) had a positive impact on the microalgae compared to the control (C|–; Figure 
5.12d, e). Remarkably, the presence of a synthetic phycosphere in the neighboring compartment had 
the strongest positive impact on axenic Cr cultures (C|C+SC; Figure 5.12d, e), suggesting that 
changes in bacterial community composition driven by physical proximity to Cr lead to a beneficial 
impact on algal growth. In addition, chlorophyll fluorescence and cell counts of synthetic 
phycospheres (C+SC) were higher when no other microorganisms were incubated in the 
neighboring chamber (C+SC|– versus C+SC|C or C+SC|SC; Figure 5.12d, e), possibly due to 
competition for diffusible compounds. An additional full-factorial replicate experiment using a 
modified version of this split co-cultivation system showed consistent results both in community 
structures and Cr growth parameters (Figure S6 in the online article), despite of a large technical 
variation in cell density measurements (Figure 5.12d). Together, these results indicate that physical 
proximity of bacteria to Cr is required for assembly and growth of phycosphere communities, 
which in turn may benefit host growth by providing metabolites and / or other compounds including 
carbon dioxide, which in this experimental setup is likely limiting autotrophic growth of Cr. Future 
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experimentation with synthetic phycospheres composed by SynComs designed using combinatorial 
approaches, coupled with metabolomic and transcriptomic profiling, will be needed to decipher the 
molecular and genetic mechanisms driving these interactions.

Figure 5.12 Physical proximity to Cr is required for the establishment of phycosphere bacterial 
communities. Beta-diversity analyses of Bray-Curtis dissimilarities of SynComs grown in a split 
gnotobiotic system show a significant separation of samples regarding physical proximity to Cr (21% of 
variance; P<0.001, a), or the content of the neighboring vessel (39.4-39.5% of variance; P<0.001, panels 
b-c). (d-e) Cr growth across conditions measured using relative chlorophyll fluorescence (RFU; panel d) 
and algal cell densities (panel e).

5.4 Discussion 

Microscopic algae release photoassimilated carbon to the diffusible layer immediately surrounding 
their cells, which constitutes a niche for heterotrophic bacteria. Microbes from the surrounding 
environment compete for colonization of this niche and assemble into complex communities that 
play important roles in global carbon and nutrient fluxes. These ecological interactions have been 
well studied in aquatic environments, where each year approximately 20 Gt of organic carbon fixed 
by phytoplankton are taken up by heterotrophic bacteria (Moran et al., 2016), which can account for 
up to 82% of all algal-derived organic matter (Horňák et al., 2017). For multiple species of green 
algae, optimal growth in turn requires interactions with their associated phycosphere bacteria, which 
can provide beneficial services to their host, such as mobilization of non-soluble iron (Amin et al., 
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2009), or exogenous biosynthesis of organic compounds such as vitamins (Croft et al., 2005; Paerl 
et al., 2017). Despite the known importance of these interactions in marine environments, the role 
of algae-bacterial associations in terrestrial ecosystems remains understudied. This gap in our 
understanding could be explained by the fact that aquatic phytoplankton are more readily noticed 
and more amenable to systematic study compared to edaphic microalgae. However, exploring the 
role of soil-borne unicellular photosynthetic organisms as hosts of complex microbial communities 
could expand our understanding of carbon and energy fluxes in terrestrial ecosystems.

The results from our culture-independent and gnotobiotic experiments using the ubiquitous algae 
Cr, which was originally isolated from soil (Sasso et al., 2018), illustrate that green algae can 
recruit and sustain the growth of heterotrophic, soil-borne bacteria. This process resembles the 
establishment of the microbial communities that associate with the roots and rhizospheres of land 
plants, suggesting common organizational principles shared between chlorophytes and 
embryophytes. Our in-depth characterization of the Cr microbiota shows clear differences as well as 
striking similarities in the taxonomic affiliation of abundant root and phycosphere community 
members (Figure 5.3). Notably, these similarities are found despite biochemical differences between 
extracellular organic carbon compounds released by At roots and Cr, as well as by differences in 
cell wall composition, which in the case of the plant root mostly consists of complex 
polysaccharides such as cellulose, whereas in Cr it is primarily composed of (glyco)proteins (Harris 
et al., 2009). Among the bacterial lineages shared between the root and phycosphere microbiota, we 
found groups that are known to establish intimate interactions with multicellular plants, ranging 
from symbiotic to pathogenic, such as Rhizobia, Pseudomonas, Burkholderia, or Xanthomonas 
(Suárez-Moreno et al., 2012; Karasov et al., 2018; Garrido-Oter et al., 2018; Timilsina et al., 
2020).Meta-analyses of available data from multiple studies further confirm this pattern by 
revealing the presence of a set of six bacterial orders, found as abundant members not only in the 
root communities of all analyzed land plants, but also in the Cr phycosphere (Figure 5.5). These 
findings suggest that the capacity to associate with a wide range of photosynthetic organisms is a 
common trait of these core bacterial taxa, which might predate the emergence of more specialized 
forms of interaction with their host. This hypothesis was implicitly tested in our cross-inoculation 
gnotobiotic experiments, where bacterial strains originally isolated from the roots of At or the 
phycosphere of Cr competed for colonization of either host (Figure 5.9). The observation that Cr-
derived strains could colonize At roots in a competition setup, whereas At-derived bacterial 
SynComs also populated Cr phycospheres (Figure 5.10c) supports the existence of shared bacterial 
traits for establishing general associations with photosynthetic hosts. Despite these patterns of 
ectopic colonization, we also detected significant signatures of host preference, illustrated by the 
observation that native bacterial SynComs outcompeted non-native strains in the presence of either 
host, but not in their absence (Figure 5.12c). These findings are in line with a recent comparative 
microbiota study where similar results were observed for bacterial commensals from two species of 
land plants (A. thaliana and L. japonicus; Wippel et al., 2021). In addition, SynComs composed of 
strains exclusively derived from the At- or the Cr-SPHERE collections, assembled into 
taxonomically equivalent communities on either host, which were indistinguishable at the family 
level (Figure 5.10a, b). Together, our findings suggest that these bacterial taxa have in common the 
ability to assemble into robust communities and associate with a wide range of photosynthetic 
organisms, including unicellular algae and flowering plants.
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Carbon is assumed to be the main factor limiting bacterial growth in soil (Demoling et al., 2007). 
Thus, secretion of organic carbon compounds by photosynthetic organisms constitutes a strong cue 
for the assembly of soil-derived microbial communities (Bulgarelli et al., 2013; Zhalnina et al., 
2018; Huang et al., 2019).The observed similarities between the root and phycosphere microbiota at 
a high taxonomic level suggest that the release of photoassimilates acts as a first organizing 
principle driving the formation of these communities. This hypothesis is also supported by a recent 
study with marine bacterial mesocosms where community composition could be partially predicted 
by the addition of phytoplankton metabolites (Fu et al., 2020). However, the results from our split 
system (Figures 5.11, 5.12), where bacterial SynComs formed distinct communities and had a 
beneficial effect on Cr growth depending on their physical proximity, indicate that the provision of 
diffusible carbon compounds is not sufficient to explain the observed patterns of microbial diversity. 
In addition, shed Cr cell wall components, which may not be diffusible through the 0.22 µm-pore 
membrane, could be degraded by bacteria only in close proximity. The importance of proximity to 
the algal cells could also be a consequence of gradients in concentrations and variations in the 
diffusivity of different compounds, which in aquatic environments is predicted to cause highly 
chemotactic, copiotrophic bacterial populations to outcompete low-motility oligotrophic ones 
(Smriga et al., 2016). Together with the algal growth data, the observed variations in SynCom 
structures suggest that, in addition to physical proximity, bi-directional exchange of metabolic 
currencies and / or molecular signals may be required for the assembly and sustained growth of a 
phycosphere microbiota capable of providing beneficial functions to their host. Future 
experimentation using this system will be aimed at elucidating core molecular and ecological 
principles that govern interactions between photosynthetic organisms and their microbiota.

5.5 Materials and methods 

5.5.1 Culture-independent bacterial 16S rRNA sequencing and data analysis 

Total DNA was extracted from the aforementioned samples using the FastDNA™ SPIN Kit for Soil 
following instructions from the manufacturer (MP Biomedicals, Solon, USA). DNA samples were 
eluted in 50 μL nuclease-free water and used for microbial community profiling. DNA from liquid 
samples was extracted using alkaline lysis (Bai et al., 2015). Briefly, 12 μL of the sample were 
diluted in 20 μL of Buffer I (NaOH 25 mM, EDTA(Na) 0.2mM, pH 12), mixed by pipetting and 
incubated at 94 °C for 30 min. Next, 20 μL of Buffer II (Tris-HCl 40 mM, pH 7.46) were added to 
the mixture and stored at -20 °C.

DNA samples were used in a two-step PCR amplification protocol. In the first step, V2–V4 (341F: 
CCTACGGGNGGCWGCAG; 806R: GGACTACHVGGGTWTCTAAT) or V4-V7 (799F: 
AACMGGATTAGATACCCKG; 1192R: ACGTCATCCCCACCTTCC) of bacterial 16S rRNA 
were amplified. Sequencing data from Cr or At roots grown in CAS soil in the greenhouse, along 
with unplanted controls, were demultiplexed according to their barcode sequence using the QIIME 
pipeline (Caporaso et al., 2010). Afterwards, DADA2 (Callahan et al., 2016) was used to process 
the raw sequencing reads of each sample. Unique amplicon sequencing variants (ASVs) were 
inferred from error-corrected reads, followed by chimera filtering, also using the DADA2 pipeline. 
Next, ASVs were aligned to the SILVA database (Quast et al., 2012) for taxonomic assignment 
using the naïve Bayesian classifier implemented by DADA2. Raw reads were mapped to the 
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inferred ASVs to generate an abundance table, which was subsequently employed for analyses of 
diversity and differential abundance using the R package vegan (Oksanen et al., 2019).

Amplicon sequencing reads from the Cr IPL and from the corresponding mesocosm culture-
independent community profiling were quality-filtered and demultiplexed according to their two-
barcode (well and plate) identifiers using custom scripts and a combination of tools included in the 
QIIME and USEARCH (Edgar, 2010) pipelines. Next, sequences were clustered into Operational 
Taxonomic Units (OTUs) with a 97% sequence identity similarity using the UPARSE algorithm, 
followed by identification of chimeras using UCHIME (Edgar et al., 2011). Samples from wells 
with fewer than 100 good quality reads were removed from the data set as well as OTUs not found 
in a well with at least ten reads. 

5.5.2 Isolation and genome sequencing of Chlamydomonas-associated bacteria 

Soil bacteria associated with Cr after co-cultivation were isolated from mesocosm cultures using a 
dilution-to-extinction approach (Bai et al., 2015; Wippel et al., 2021). Briefly, cultures containing 
Cr and bacteria from CAS soil washes as described above were incubated in TP or B&D media. 
After 7 days of co-cultivation mesocosm samples were fractionated by sequential centrifugation and 
sonication (Kim et al., 2014) prior to dilution. For fractionation, cultures were centrifuged at 400×g 
for 5 min to recover the supernatant. The pellet was washed with 1x TE buffer followed by 
sonication in a water bath at room temperature for 10 min and centrifugation at 1,000×g for 5 min. 
The supernatant from the first and second centrifugation were pooled together and diluted at either 
1:10,000 or 1:50,000. Diluted supernatants were then distributed into 96-well microtiter plates 
containing 20% TSB media. After 3 weeks of incubation in the dark at room temperature, plates that 
showed visible bacterial growth were chosen for 16S rRNA amplicon sequencing. For identification 
of the bacterial isolates, a two-step barcoded PCR protocol was used as previously described 
(Wippel et al., 2021). Briefly, DNA extracted from the isolates was used to amplify the v5-v7 
fragments of the 16S rRNA gene by PCR using the primers 799F (AACMGGATTAGATACCCKG) 
and 1192R (ACGTCATCCCCACCTTCC), followed by indexing of the PCR products using 
Illumina-barcoded primers. The indexed 16S rRNA amplicons were subsequently pooled, purified, 
and sequenced on the Illumina MiSeq platform. Recovery rates were estimated by calculating the 
percentage of the top 100 most abundant OTUs found in natural communities (greenhouse 
experiment) that had at least one isolate in the culture collection (62%), and the total aggregated 
relative abundances of recovered OTUs (63%).

Next, cross-referencing of IPL sequences with mesocosm profiles allowed us to identify candidate 
strains for further characterization, purification, and whole-genome sequencing. Two main criteria 
were used for this selection: first, we aimed at obtaining maximum taxonomic coverage and 
selected candidates from as many taxa as possible; second, we gave priority to strains whose 16S 
sequences were highly abundant in the natural communities. Whenever multiple candidates from 
the same phylogroup were identified, we aimed at obtaining multiple independent strains, if 
possible, coming from separate biological replicates to ensure they represented independent 
isolation events. We identified IPL samples matching OTUs found in the culture-independent root 
samples and selected a set of 185 representative strains maximizing taxonomic coverage for 
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subsequent validation and whole-genome sequencing, forming the basis of the Cr-SPHERE 
collection. 

5.5.3 Genome assembly, annotation and comparative analyses of the Cr-SPHERE culture 
collections 

Paired-end Illumina reads were first trimmed and quality-filtered using Trimmomatic (Bolger et al., 
2014). QC reads were assembled using the IDBA assembler (Peng et al., 2012) within the A5 
pipeline (Tritt et al., 2012). Assembly statistics and metadata from the assembled genomes can be 
found in Supplementary Data 3 in the journal version article. Genome assemblies with either multi-
modal k-mer and G+C content distributions or multiple cases of marker genes from diverse 
taxonomic groups were flagged as not originating from clonal cultures. Such assemblies were then 
processed using a metagenome binning approach (Pasolli et al., 2019). Briefly, contigs from each of 
these samples were clustered using METABAT2 (Kang et al., 2019) to obtain metagenome-
assembled genomes (MAGs). Each MAG was analyzed to assess completeness and contamination 
using CheckM (Parks et al., 2015). Only bins with completeness scores larger than 75% and 
contamination rates lower than 5% were retained and added to the collection (Supplementary Data 3 
in the journal version article; designated MAG in the column ‘type’). Classification of the bacterial 
genomes into phylogroups was performed by calculating pair-wise average nucleotide identities 
using FastANI (Jain et al., 2018) and clustering at a 97% similarity threshold. Functional annotation 
of the genomes was conducted using Prokka (Seemann, 2014) with a custom database based on 
KEGG Orthologue (KO) groups (Kanehisa et al., 2014) downloaded from the KEGG FTP server in 
November 2019. Hits to sequences in the database were filtered using an E-value threshold of 10 × 
10−9 and a minimum coverage of 80% of the length of the query sequence.

The genomes from the Cr-, At- and Lj-SPHERE culture collections (Bai et al., 2015; Wippel et al., 
2021) were queried for the presence of 31 conserved, single-copy marker genes, known as 
AMPHORA genes (Wu & Eisen, 2008). Next, sequences of each gene were aligned using Clustal 
Omega (Sievers et al., 2011) with default parameters. Using a concatenated alignment of each gene, 
we inferred a maximum likelihood phylogeny using FastTree (Price et al., 2010). This tree was 
visualized using the Interactive Tree of Life web tool (Letunic & Bork, 2019). Finally, genomes 
from the three collections (Cr-SPHERE, At-SPHERE and Lj-SPHERE) were clustered into 
phylogroups, roughly corresponding to a species designation (Olm et al., 2020) using FastANI (Jain 
et al., 2018) and a threshold of average nucleotide identity at the whole genome level of at least 
97%. Functional comparison among the genomes from the Cr-, Lj- and At-SPHERE collections was 
performed by comparing their annotations. KO groups were gathered from the genome annotations 
and aggregated into a single table. Lastly, functional distances between genomes based on Pearson 
correlations were used for principal coordinate analysis using the cmdscale function in R.

5.5.4 Preparation of SynCom inocula and analysis of amplicon sequencing data 

Bacterial cultures from the strains selected for the different SynComs (Supplementary Data 4 in the 
journal version article) were started from glycerol stocks which were used to streak agar plates 
containing TSA 50% media. Plates were cultured at 25 °C for five days and later used to inoculate 
culture tubes with 1 mL of 50% TSB media. The tubes were incubated for six days at 25 °C and 180 
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RPM. After 6 days, the cultures were washed three times by centrifugation at 4,000 ×g for 5 min, 
the supernatant discarded, and the pellet resuspended into 2 mL of TP or TP10 media. The washed 
cultures were further incubated with shaking at 25 °C for an additional day. Bacterial concentration 
in washed cultures was determined by measuring OD600 and, subsequently pooled in equal ratios. 
Cell counts of the pooled SynCom were measured using the Multisizer 4e and adjusted to 106, to 
inoculate together with 104 cells of Cr (prepared as described above) in 50 mL of TP10 in 200-mL 
flasks. These flasks were inoculated in triplicate and three biological replicates were prepared for 
both bacteria and Cr start inocula. As controls, Cr-only cultures and SynCom-only cultures were 
incubated in parallel, and samples taken at 0, 1, 4, 7 for community profiling, and at 0, 4, 7, 14 days 
for Cr cell counts.

Sequencing data from SynCom experiments was pre-processed similarly as natural community 16S 
rRNA data. Quality-filtered, merged paired-end reads were then aligned to a reference set of 
sequences extracted from the whole-genome assemblies of every strain included in a given 
SynCom, using Rbec (Zhang et al., 2021b). We then checked that the fraction of unmapped reads 
did not significantly differ between compartment, experiment or host species. Next, we generated a 
count table that was employed for downstream analyses of diversity with the R package vegan. 
Finally, we visualized amplicon data from all experimental systems using the ggplot2 R package 
(Wickham, 2016).

5.5.5 Multi-species microbiota reconstitution experiments 

The gnotobiotic FlowPot (Kremer et al., 2021) system was used to grow Cr or A. thaliana plants 
with and without bacterial SynComs. This system allows for even inoculation of each FlowPot with 
microbes by flushing of the pots with the help of a syringe attached to the bottom opening. After 
FlowPot assemblage, sterilization and microbial inoculation sterilized seeds were placed on the 
matrix (peat and vermiculite, 2:1 ratio), and pots were incubated under short-day conditions (10 
hours light, 21°C; 14 hours dark, 19°C), standing in customized plastic racks in sterile 
‘TP1600+TPD1200’ plastic boxes with filter lids (SacO2, Deinze, Belgium). For SynCom 
preparation, bacterial strains from either Cr- or At-SPHERE were grown separately in liquid culture 
for 2-5 days in 50% TSB media and then centrifuged at 4,000 xg for 10 min and re-suspended in 10 
mM MgCl2 to remove residual media and bacteria-derived metabolites. Equivalent ratios of each 
strain, determined by optical density (OD600) were combined to yield the desired SynComs (Table 
S1 in the journal version article). An aliquot of the SynComs as reference samples for the 
experiment microbial inputs were stored at −80°C for further processing. SynCom bacterial cells 
(107) were added to either 50 mL of TP10 or ½ MS (Duchefa Biochemie, Haarlem, Netherlands), 
which were then inoculated into the FlowPots using a 60 mL syringe. For Cr-inoculated pots, 105 of 
washed Cr cells were added to the 50mL of media with or without microbes to be inoculated into 
the FlowPots.

Chlamydomonas or Arabidopsis FlowPots were grown side-by-side in gnotobiotic boxes, with six 
pots in total per box. This experiment was repeated in three independent biological replicates. After 
five weeks of growth, roots were harvested and cleaned thoroughly from attached soil using sterile 
water and forceps. Surface of Chlamydomonas pots were used as phycosphere samples (cells were 
harvested from visibly green surface areas, top soil samples). In addition, to remove any possible 
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background effect from carry-over soil particles, the surface-harvested samples were washed in 
sterile TE supplemented with 0.1% of Triton X-100 by manually shaking in 2-mL Eppendorf tubes. 
Then, the tubes rested for a few minutes and the supernatant was used as “cell fraction” samples. 
Finally, soil from unplanted pots were collected as soil samples and treated similarly as 
Chlamydomonas-inoculated pots for microbial community comparison. All phycosphere, root 
(comprising both the epiphytic, and endophytic compartments), and soil (soil from unplanted pots) 
samples were transferred to Lysing Matrix E tubes (MP Biomedicals, Solon, USA), frozen in liquid 
nitrogen, and stored at −80°C for further processing. DNA was isolated from those samples using 
the MP Biomedicals FastDNA™ Spin Kit for Soil, and from the input SynCom by alkaline lysis, 
and subjected to bacterial community profiling.

To ensure sufficient surface for phycosphere harvesting, we set up an additional experiment based 
on sterile peat without FlowPots. Experiments with the mixed SynCom of Cr- and At-SPHERE 
strains were conducted using sterile ‘TP750+TPD750’ plastic boxes (SacO2, Deinze, Belgium). 
Sterile soil and vermiculite were mixed in a 2:1 ratio and added to each box. Next, the boxes were 
inoculated by adding 95 mL of TP10 or ½ MS, for the Chlamydomonas or Arabidopsis boxes 
respectively, containing 2x107 bacterial cells.

5.5.6 Split co-cultivation system 

Co-cultivation devices were built by adapting 150 mL Stericup-GV filtration devices (Merck 
Millipore, Darmstadt, Germany) harboring a 0.22 µm filter membrane (Alvarez et al., 2018). Each 
co-cultivation device was assembled inside a clean hood 150 mL and 100 mL of TP10 were added 
into the big and small chamber of the filtration device, respectively. Chambers were inoculated at 
different cell concentrations depending on the content of the chamber (Figure S1F in the journal 
version article). The concentrations used were 105 and 107 cells/mL for Chlamydomonas and 
SynCom respectively. For the C+SC condition, the inoculum concentration was the same as for 
individual content chambers. After inoculation the devices were transferred to a shaking platform 
and incubated under the same conditions used for Cr liquid cultures described above.  Four samples 
per chamber were harvested for DNA extraction, fluorescence, and cell growth at the start of the 
incubation and 7 days after inoculation. These experiments were repeated in three independent 
biological replicates, containing one technical replicate each.

Additionally, a full-factorial replicate of the experiment was carried out using a custom-made co-
cultivation device (Cat. #0250 045 25, WLB Laborbedarf, Möckmühl, Germany). Briefly, two 250 
mL borosilicate glass bottles (Figure S1F in the journal version article) were modified by adding on 
the sidewall of each bottle a glass neck with a NW25 flange. The flange holds a disposable 0.22 μm-
pore PVDF Durapore filtration membrane (Merck Millipore, Darmstadt, Germany) and is kept in 
place by an adjustable metal clamp. In this device, each bottle holds 150 mL of TP10 and the initial 
cell concentrations were the same as the ones used in the previously described co-cultivation 
device. Similar to the Stericup system, four samples per chamber were harvested for DNA 
extraction. Chlorophyll fluorescence and cell growth measurements were collected at the start of the 
incubation and 7 days after inoculation. These experiments were repeated in three independent 
biological replicates, containing one technical replicate each.
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5.6 Data and code availability 

Raw sequencing will be deposited into the European Nucleotide Archive (ENA) under the accession 
number PRJEB43117. The scripts used for the computational analyses described in this study are 
available at http://www.github.com/garridoo/crsphere, to ensure replicability and reproducibility of 
these results.
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Chapter 6 Maize field study reveals covaried microbiota 
and metabolic changes in roots over plant growth 

6.1 Abstract  

Plant roots are colonized by microbial multi-kingdom communities from the surrounding soil, 
termed root microbiota. Despite their importance for plant growth, the relationship between soil 
management, the root microbiota, and plant performance remains unknown. We characterized here 
the maize root-associated bacterial, fungal and oomycetal communities during the vegetative and 
reproductive growth stages of four maize inbred lines and the phosphate transporter mutant pht1;6. 
These plants were grown in two long-term experimental fields under four contrasting soil 
managements, including phosphate-deficient and -sufficient conditions. We showed that the maize 
root-associated microbiota is influenced by soil management and changes during host growth 
stages. We identified stable bacterial and fungal root-associated taxa that persist through the host 
life-cycle. These taxa were accompanied by dynamic members that covary with changes in root 
metabolites. Unexpectedly, we observed an inverse stable-to-dynamic ratio between root-associated 
bacterial and fungal communities. We also found a host footprint on the soil biota, characterized by 
a convergence between soil, rhizosphere and root bacterial communities during reproductive maize 
growth. Our study reveals the spatio-temporal dynamic of maize root-associated microbiota and 
suggests that the fungal assemblage is less responsive to changes in root metabolites than the 
bacterial community.

6.2 Introduction  

In nature, plant roots are colonized by diverse soil-dwelling microbes, which are collectively known 
as the root microbiota, and this microbial multi-kingdom community promotes plant growth and 
health (Berendsen et al., 2012; Bulgarelli et al., 2013; Hacquard et al., 2015; Hassani et al., 2018). 
Numerous microbiota members assist with nutrient mobilization of macro and micro-nutrients from 
the soil for host nutrition. For instance, in orthophosphate (P)-limiting soils, P-solubilizing 
rhizosphere bacteria can elevate the amount of bioavailable P, and long-distance transport of soluble 
P is mediated by hyphae of symbiotic arbuscular mycorrhizal fungi (AMF) or certain fungal root 
endophytes to the host (Bucher, 2007; Pii et al., 2015; Hiruma et al., 2016). In iron (Fe)-limiting 
calcareous soil, the bacterial root microbiota serves a critical role in mobilizing insoluble ferric iron 
for plant Fe nutrition (Harbort et al., 2020). Lastly, interactions between microbes from different 
kingdoms are important for plant survival, as shown by Duran et al. (Durán et al., 2018) who 
described the protective function of the root-associated bacterial community against a 
taxonomically broad range of soil-dwelling and harmful filamentous eukaryotes in Arabidopsis 
thaliana. Although bacteria and fungi are considered the main microbial kingdoms of the root 
microbiota, roots are also colonized by the kingdom Stramenopiles (formerly Oomycota), with 
common oomycete phytopathogenic members (Kamoun et al., 2015) and some strains belonging to 
Pythium spp. that are known to promote plant growth by preventing biotic stress (Benhamou et al., 
2012). 
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Plant breeding allows the selection of the best traits that favor optimal plant fitness under high 
fertilization conditions, but the innate capacity of inbred lines to establish beneficial plant-microbe 
associations has not received as much attention. The choice of long-term soil management can 
indirectly affect plant growth by modifying the diversity and connectivity of root-associated 
microbial communities (Banerjee et al., 2019; Chowdhury et al., 2019; Schmidt et al., 2019). 
Organic fertilization appears to contribute to the maintenance of more abundant and diverse soil 
microbial communities (Fließbach et al., 2007; Francioli et al., 2016). However, little is known 
about the relationship of soil-dwelling microbial communities with soil nutrient status, such as how 
limiting soil nutrients influence the capacity of plant roots to be colonized by microbes that boost 
plant growth (Castrillo et al., 2017; Harbort et al., 2020). 

Though several studies have linked temporal changes in the root-associated microbiota to plant 
development in both field and controlled environment experiments, not much is known about how 
maize-associated microbiota are altered between plant growth stages (Shi et al., 2015; Edwards et 
al., 2015, 2018; Walters et al., 2018). As one of the most widely cultivated crops in the world, 
maize has been used as a model to characterize plant-microbe interactions in agricultural contexts, 
specifically to assess the effects of plant genotype and age, biogeography, and soil management on 
microbial community assembly (Peiffer et al., 2013; Walters et al., 2018; Schmidt et al., 2019; 
Wagner et al., 2020). Additionally, the architecture of the maize root system is modified over time 
(Tai et al., 2016). Fungal  communities were shown to vary for axial and lateral root types and 
aerial roots of a particular maize landrace secrete a carbohydrate-rich mucilage enriched in 
diazotrophic bacteria (Yu et al., 2018; Van Deynze et al., 2018). In the crop root system, the 
different types of roots function in dissimilar manners regarding nutrient and water foraging and 
uptake (Rogers & Benfey, 2015; Tai et al., 2016), which can affect microbial root colonization, as 
shown for AMF (Gutjahr et al., 2009). However, the spatio-temporal variability of the root 
microbiota of maize has not been extensively explored, and few studies have considered the diverse 
multi-kingdom microbial communities associated with maize or the roots of other species, in their 
entirety (Durán et al., 2018; Brisson et al., 2019; Schmidt et al., 2019; Wagner et al., 2020). 

Rhizodeposits, including soluble root exudates, represent a major source of organic carbon for soil-
dwelling bacteria surrounding roots (Jones et al., 2009). Root exudates were shown to change 
consistently during the early vegetative and senescence developmental stages of the annual grass 
Avena barbata (Zhalnina et al., 2018). Specifically, chemical succession in A. barbata exudates 
interacts with microbial metabolite substrate preferences in heterotrophic bacteria isolated from soil, 
in which Avena dominates (Zhalnina et al., 2018). The age-correlated A. barbata exudation and 
microbial substrate uptake explain part of the bacterial community assembly and dynamics in the 
rhizosphere of this annual plant. However, in perennial Arabis alpina the comparison of vegetative 
and reproductive stage of non-flowering wild type and a naturally occurring and perpetually 
flowering mutant did not show any impact of flowering time on root bacterial community profiles, 
but a clear effect of soil residence time (Dombrowski et al., 2017). This shows that the genetically 
determined program of flowering time (transition to reproductive growth) can be uncoupled from 
dynamic changes in the root microbiota. In annual A. thaliana, root samples from young and 
fruiting plants clustered together, indicating that vegetative and reproductive growth phases do not 
have a major effect on overall bacterial community composition (Lundberg et al., 2012). By 
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contrast, perennial Boechera stricta was found to alter its root-associated bacterial community over 
the growing season (Wagner et al., 2016). Moreover, similar results were observed in field grown 
rice, presenting a shift in bacterial and archaeal root microbiota, over plant growth from juvenile to 
adult plant stages (Edwards et al., 2018). Collectively, these findings suggest plant species-specific 
variation in root microbiota dynamics that is not necessarily linked to the genetically programmed 
developmental growth stages of the host. 

Figure 6.1 Experimental design of field-grown maize microbiota survey. Five different maize 
genotypes including four inbred lines (B73, DK105, PH207, F2) and one phosphate transporter mutant 
line (pht1;6), compromised in phosphate transport from fungi to the plant, were planted in two long-term 
experimental fields, DEMO (fertilization DEMOnstration experiment, Reckenholz) and DOK (Dynamic, 
organic and conventional managements, Therwil), in Switzerland. Two soil managements per field were 
tested. NK and NPK soil fertilization were practiced in DEMO (one plot per management) and CONMIN 
and BIODYN were used in DOK (three plots per management). Six soil samples per plot were collected 
before sowing. Later, at the vegetative and reproductive stages of plant growth, six plants per genotype 
were harvested. For each plant, rhizosphere and root samples were collected. Additional bulk soil was 
sampled from each planted plot (n = 3) at both stages.

The composition of root metabolites, which include various compound classes such as soluble 
carbohydrates, amino acids, fatty acids, organic acids and specialized metabolites (Bais et al., 
2006), change during the life-cycle of flowering plants (Walker et al., 2003). In maize, several 
studies have shown that benzoxazinoids (BXs), specialized metabolites that display insecticidal, 
antimicrobial, and allelopathic activities and are predominantly secreted by roots at an early growth 
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stage, influence the root-associated microbiota by inhibiting colonization by specific microbial taxa 
and plant pathogens (Hu et al., 2018; Kudjordjie et al., 2019). The BX breakdown product 6-
methoxy-benzoxazolin-2-one (MBOA), which accumulates in the soil, acts indirectly by altering 
root-associated microbiota and is necessary and sufficient to promote maize tolerance to herbivore 
attack in the next plant generation (Hu et al., 2018). In addition, BXs regulate global maize root 
metabolism and influence the root microbiota via BX-dependent metabolites, especially flavonoids 
(Cotton et al., 2019). 

Here, we examined how soil-dwelling and root-associated microbial communities from four maize 
inbred lines (B73, PH207, DK105, F2) respond to contrasting organic (BIODYN) and mineral (NK, 
NPK, CONMIN) soil managements, in long-term fertilization fields at two different locations 
(Figure 6.1). In addition, considering the major role of soil orthophosphate availability on crop 
growth and the positive interaction between maize and AMF, we included the P transporter mutant 
pht1;6 in our study. We surveyed 1,104 samples (of soil, rhizosphere and root compartments, at 
three different time points) by amplicon sequencing of bacterial, fungal and oomycete marker genes 
to reveal the dynamics of soil and root microbiota. Comparison of maize samples collected at 
vegetative and reproductive growth stages shows that the root-associated microbiota is influenced 
by soil management and is dynamic over the host’s life-cycle. Moreover, we found a convergence 
of bacterial soil, rhizosphere and root communities at the phylum level over the growing season. By 
performing parallel profiling of root lipids, amino acids, soluble carbohydrates, and the root 
ionome, we show that root metabolites covary with root-associated microbial communities. 
Comparison of wild type and pht1;6 mutant plants revealed a potential plant growth stage-specific 
link between AMF symbiosis, root lipid status and soil P availability. We discuss the potential 
interplay between the root microbiota, root metabolites, and soil management over the life cycle of 
field-grown maize, and highlight how the dynamics of plant-microbe associations could affect plant 
physiology and fitness depending on soil nutrient availability.

6.3 Results 

6.3.1 Dynamics of the soil and root-associated microbiota diversity 

We assessed the community composition of the three main microbial kingdoms – bacteria (B), fungi 
(F) and oomycetes (O) – in the respective soil samples: NK and NPK in DEMO field, CONMIN 
(Conventional solely mineral fertilized) and BIODYN (Biodynamic mixed) in DOK field (Figure 
6.1). These two fields are geographically separated by approx. 100 km. First, we characterized the 
chemical properties of unplanted soil before sowing, and its soil-dwelling microbial communities 
(Figure 6.2). 

We observed a differentiation of soil physicochemical properties between soil samples from DEMO 
and DOK fields (Figure 6.2a), of which the former soil type is a Gleyic Cambisol and the latter is a 
Haplic Luvisol on alluvial loess according to FAO (WRB, 2015). Principal Coordinate Analysis 
(PCoA) of Bray-Curtis dissimilarities between samples based on ASVs revealed that samples 
clustered together by field and plot (Figure 6.2d, e, f). The bacterial biota of soil was more affected 
by variability in soil physicochemical features between plots (PCo1, 13.86%) than variations 
between fields (PCo2, 8.66%). Filamentous eukaryotic community structure, meanwhile, was more 
strongly determined by field location (PCo1, 19.25%). Except for these well-known factors effect 
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on the microbial kingdoms, an impact of soil properties on unplanted bulk soil biota was observed, 
where bacterial communities of plots with the lowest pH values (5.97 +- 0.13 in NK and 5.91 +- 
0.16 in CONMIN-2, Figure 6.2b) were clustered together (Figure 6.2d), and microbial communities 
from the plots with the highest clay content (P < 0.05, CONMIN-3 and BIODYN-3, Figure 6.2c) 
exhibited lower dissimilarities in all three kingdoms (Figure 6.2d, e, f). 

Figure 6.2 Soil properties and microbial diversity of unplanted soil in long-term experimental fields. 
(a) PCA of Euclidean distance of soil properties (34 properties in 48 samples were analyzed). Variability 
of pH (b) and clay content (c) of the soil between plots in each field (n = 48, Wilcoxon test was used for 
statistical analysis with FDR correction, P < 0.05). Beta-diversity (Bray-Curtis dissimilarity) of bacterial 
(d), fungal (e), and oomycetal (f) communities in unplanted soil collected before sowing (n = 48). 

In planted soil, besides the field, management and plot effects, micobial communities were also 
clustered by the corresponding host growth stage when sampling (Figure 6.3a). Although plant 
growth phase influenced the diversity of soil microbes from all three kingdoms with relatively high 
explained variance ratios (B: 10.10%, F: 7.28% and O: 10.71%; P < 0.001, PERMANOVA), this 
effect was more clearly observed in bacterial communities (Figure 6.3a). Furthermore, the 
separation between fields was observed for fungi only. For oomycetes, the community shift was 
largely driven by soil management. Moreover, soil bacterial communities exhibited varying alpha-
diversities, associated to soil chemistry and plant growth stage (Figure 6.3b). The Shannon index 
was significantly higher in the DOK field (CONMIN and BIODYN) compared to the DEMO field 
(NK and NPK) for bacteria (P < 0.001). In addition, regardless of soil management, we found a 
significant increase in bacterial diversity in the soil over time (with the exception of the NK 
condition), while alpha-diversity for fungi and oomycetes remained relatively stable.
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Figure 6.3 Soil physicochemical properties, heterogeneity, and plant growth phase drive shifts in 
microbial soil biota composition. (a) PCoA indicates that soil bacterial community shifts are driven by 
plant growth phase and intra-field soil heterogeneity, whereas fungal and oomycetal communities are 
affected by biogeography and soil management. (b) Soil microbial alpha-diversity (Shannon index) is 
impacted by plant growth phase and soil management (three plots per management in DOK field, n = 6 
per plot; CO: CONMIN, BI: BIODYN, Un: Unplanted soil, V: vegetative stage, R: reproductive stage). 
The Wilcoxon test was used for statistical analysis with FDR correction. Capital letters indicate 
significant differences between managements; lowercase letters indicate significant differences between 
time points. 

We extended the characterization of all three microbial kingdom communities to all tested 
compartments, including soil, rhizosphere and root, at vegetative and reproductive growth phases 
(Figure 6.4). Bacterial and fungal communities were clustered by compartment (Figure 6.4a), and 
distinguished by host growth stage and management practices along the fourth and third axis, 
respectively (Figure S6.1a, b). The oomycetal communities showed a larger dispersion and partially 
clustered by soil management (Figure 6.4a). The main drivers observed to be responsible for 
variations in the soil and root-associated microbiota were confirmed by PERMANOVA (Figure 
S6.1c). For all microbial kingdoms, we observed a decrease in diversity (Shannon indices) from soil 
to rhizosphere and root (Figure 6.4b). However, the bacterial alpha-diversity increased in both soil 
and rhizosphere from the vegetative to the reproductive growth phase, while remaining stable in the 
root compartment over both growth stages. In contrast, for fungi and oomycetes, a decrease in 
diversity was observed in both rhizosphere and root over the growing season.

In both root-associated compartments (rhizosphere and root), filamentous eukaryotic communities 
(fungi and oomycetes) were separated by soil management, whereas bacterial samples additionally 
clustered by the local heterogeneity of soil chemistry at the plot scale (Figure S6.2a, b). Moreover, 
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soil management was also found to influence the alpha-diversity of the rhizosphere and root 
microbiota (Figure S6.2c, d), and the effect of plant growth stage shown earlier in Figure 6.4b was 
independently observed under most types of management. Additionally, a small but significant 
effect of plant genotype on microbiota was observed in roots (explained variance by genotype, B: 
2.37%, F: 3.04%, O: 5.22%; P < 0.001).

Figure 6.4 Root compartment, plant growth phase, and soil management shape the root-associated 
microbiota in field-grown maize. (a) PCoA of all harvested samples, including all three compartments 
(soil, rhizosphere and root), four soil managements (NK; NPK; CONMIN plot 1, 2, and 3; and BIODYN 
plot 1, 2, and 3) and three sampling times (before sowing, vegetative stage and reproductive stage). For 
bacteria, fungi and oomycetes, n = 1,079, 1,103, and 1,103 respectively. (b) Alpha-diversity (Shannon 
index) of all samples. Wilcoxon test (P < 0.05) was used for statistical analysis with FDR correction. 
Capital letters indicate significant differences between compartments; asterisks indicate significant 
differences between different plant growth phases within each compartment. 

6.3.2 Stable root-associated microbial taxa over host growth 

Despite the aforementioned dynamics of microbial communities over the growing season, we were 
also able to investigate the stability of root-associated microbial members (Figure 6.5) by 
examining the widespread (found in > 80% samples in the corresponding condition) taxa that are 
persistent, i.e. detected at both the vegetative and reproductive plant growth stages. We identified 26 
stable bacterial OTUs in the root compartment (Figure 6.5a), consisting of Proteobacteria and 
Actinobacteria (16 and 10 OTUs, respectively) and representing more than half of the entire root 
community (50.94% aggregated Relative Abundance; aRA). Furthermore, 15 of the 26 stable OTUs 
were shared between root and rhizosphere compartments. These 15 OTUs accounted in the 
rhizosphere for 17.30% and 20.89% aRA in vegetative and reproductive growth phases (Figure 
6.5d), respectively, and their aRA increased in the root compartment (to 37.44% and 39.35%, 
respectively) independent of field location or soil management (Figure 6.5b). This finding indicates 
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their progressive enrichment when moving from rhizosphere to root compartments. Most of these 
OTUs were assigned to Proteobacteria (12 / 15 OTUs), and the remaining three to Actinobacteria. A 
similar pattern was found for the fungal community. We identified 24 stable fungal OTUs between 
rhizosphere and root compartments (Figure 6.5c), irrespective of management practices and field 
location and representing on average 80.49% aRA in reproductive roots (Figure 6.5d). Most of these 
members were affiliated to four classes of Ascomycota (23/24 OTUs), namely Dothideomycetes, 
Eurotiomycetes, Leotiomycetes and  Sordariomycetes. Interestingly, we found an inverse stable-to-
dynamic ratio of bacterial and fungal root-associated assemblages (0.65 and 4.13 in roots at 
reproductive stage, respectively; calculation described in Figure 6.5 legend).

Figure 6.5 Stable bacterial and fungal OTUs are enriched from rhizosphere to root compartment 
over plant growth, irrespective to soil management. The Venn diagram shows the number of bacterial 
(a) and fungal (c) OTUs found in more than 80% of samples in each compartment at both plant growth 
stages (including NK, NPK, CONMIN and BIODYN soil managements and B73, DK105, PH207 and F2 
plant genotypes). Relative abundance of stable OTUs were aggregated and demonstrated for bacteria (b) 
and fungi (d). Stable-to-dynamic ratio was calculated as the ratio of aRA between stable and dynamic 
community members, shown in (b) and (d). For example, the stable aRA of root-associated bacteria at the 
reproductive stage is 39.35% (b), hence the dynamic aRA is (100 - 39.35) = 60.65%, thus the stable-to-
dynamic ratio for bacteria in the root at the reproductive stage is 60.65 / 39.35 = 0.65. 

6.3.3 Microbial community assembly patterns at different phylogenetic levels 

To better understand the community composition and to identify the principles governing 
community differentiation patterns, we compared community profiles and diversity at different 
taxonomic levels (Figures 6.6, 6.7). Examination of the relative abundance (RA) values of each 
individual bacterial phylum demonstrated an unexpected convergence over time of microbial 
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communities in the root microbiota, rhizosphere and planted soil (Figure 6.6). In soil samples, RAs 
of Chloroflexi and Plantomycetes was decreased over time, accounting for the main difference 
between the microbial biota of unplanted and planted soil. A significant enrichment of four 
taxonomic groups, namely Actinobacteria, Alpha-, Beta- and Gamma-proteobacteria, was identified 
in root samples compared to other compartments, independently of plant growth (P < 0.001). 
Moreover, a progressive decrease in the RA of Acidobacteria, Bacteroidetes, Chloroflexi, 
Deltaproteobacteria, Firmicutes, Gemmatimonadetes, Planctomycetes and Verrucomicrobia was 
observed in a gradient from soil to rhizosphere to root samples, from the vegetative to the 
reproductive stage. In soil and rhizosphere, we also observed that Acidobacteria was significantly (P 
< 0.001) enriched in the plots with the lowest pH values (NK and CONMIN-2) compared to the 
other plots under the same soil management, contributing to the higher similarities between those 
bacterial communities observed before (Figure 6.3a).

Figure 6.6 Bacterial community profiles at the phylum level. The relative abundance (RA) of the 12 
most abundant bacterial taxonomic groups. Taxonomic group “Others" gathers bacterial phyla with less 
than 0.1% RA. 

In order to characterize the effect of plant growth stage on bacterial community structure at a higher 
taxonomic level, beta-diversity analyses were performed at the phylum level (Figure 6.7). As 
previously shown for bacteria at the ASV level, the dissimilarities between samples were largely 
due to compartment, and communities of samples from soil, rhizosphere, and root were separated 
from each other. At the phylum level, however, samples from different growth stages within each 
compartment were separated. In particular, the later soil and rhizosphere communities were 
harvested, the more similar these communities became to those from roots. To quantify the 
observed effect of the plant on community structure across compartments, we calculated the 
distance between each sample, and the initial (unplanted soil) and final (reproductive phase of the 
root samples) bacterial communities. The distances were then compared between compartments and 
sampling times at the ASV and phylum levels (Figure 6.7b). Within each compartment, an obvious 
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separation between samples from different stages was found only at the phylum level, consistent 
with what we observed from the PCoA (Figures 6.4a and 6.7a). For instance, distance distributions 
of soil samples from the vegetative and reproductive stages were almost overlapping at the ASV 
level (0.0037 average distance difference; n.s.) but were significantly separated (0.23; P < 0.001) at 
the phylum level. 

Figure 6.7 Plant growth phase shapes bacterial community at the phylum level. (a) PCoA of Bray-
Curtis dissimilarity based on the RA of each phylum between communities (n = 1,104). (b) Comparison 
of bacterial communities at the ASV and phylum levels. “Distance” in the x-axis indicating the Euclidean 
distance between the Bray-Curtis dissimilarity of each sample to the initial (unplanted soil) and final 
(reproductive root) condition community. The vertical line indicates the average distance of 
corresponding condition. Un: unplanted soil, V: vegetative soil and R: reproductive soil. 

The structure of fungal communities was shaped by the compartment and the plant growth stage, 
which is highlighted by the significant (P < 0.001) enrichment of Glomeromycota in the root 
(Figure S6.3a). The RA of this phylum decreased over the course of plant growth in rhizosphere and 
root (P < 0.001). We also performed beta-diversity analysis at the phylum level for fungal 
communities (Figure S6.3b), which revealed an influence of compartment and host growth stage 
that is similar to the ASV level (Figure 6.4a). This pattern was further confirmed by the distance 
distributions of samples from different compartments and growth stages (Figure S6.3c). For 
rhizosphere samples, the average distances between vegetative and reproductive samples at ASV 
and phylum levels were similar (0.16 and 0.15, respectively). For root samples, a stronger 
separation at the ASV level than phylum level was observed (0.15 and 0.048, respectively; P < 
0.001). Taken together, ASV and phylum level distance distributions differ significantly for bacteria 
but not fungi.

6.3.4 Plant growth phase is a major driver of both root metabolism and root microbiota 
dynamics 

To assess the temporal dynamics of plant metabolism under different soil management regimes, we 
characterized the root metabolome and ionome of wild-type plants at vegetative and reproductive 
growth stages, respectively (Figure 6.8). Of all examined metabolite classes, the profile of root 

100

Distance

5
10
15

0
0 0.2 0.4

0 0.2 0.4

5
10
15

0

20

0 0.2 0.4

5
10
15

0

20

5
10
15

0

5
10
15

0

5
10
15

0

20

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

Unplanted soil (Un)

Vegetative stage (V)

Reproductive stage (R)

Soil

Rhizosphere

Root

Un soil
V soil
R soil

V rhizosphere
R rhizosphere

V root
R root

Ph
yl
um

A
S
V

Ph
yl
um

Ph
yl
um

A
S
V

A
S
V

a b

P
C
o2
 (1
8.
83
%
)

PCo1 (44.26%)
-0.50 -0.25 0.00 0.25

-0.2

0.0

0.2

D
en
si
ty



lipids was the most strongly affected by the plant growth phase (along the 1st axis), followed by 
field location and soil management, explaining 34 - 38% of the variance between samples of the 
four tested maize inbred lines (Figure 6.8a). When analyzing the individual lipids, we observed a 
general increase at the reproductive compared to the vegetative stage for most of lipid classes, 
irrespective of soil management and genetic background (Figure S6.4). This response was more 
evident when comparing the soil managements CONMIN and BYODYN at both developmental 
stages. In this case, levels of most of the annotated monogalactosyldiacylglycerols (MGDGs), 
digalactosyldiacylglycerols (DGDGs) and triacylglycerols (TAGs) were substantially increased at 
the reproductive stage. An effect of soil management was also evident, especially at the vegetative 
stage. For instance, levels of most of the MGDGs, DGDGs, and TAGs were reduced under 
CONMIN and BIODYN compared to NK and NPK. Some exceptions were MGDGs 34.3, 36.5, and 
36.6 and the phosphatidylcholine PC 36.6 that showed an opposing response. At the reproductive 
stage, phosphatidylserine (PS), sulfoquinovosyldiacylglycerol (SQDG), and diacylglycerol (DAG) 
lipids also decreased under CONMIN and BIODYN compared to NK and NPK. We found similar 
but lower overall profile changes for amino acids (24 - 32% of variance for different inbred lines; 
Figure 6.8b) and the ionome (15 - 19% of variance for different inbred lines; Figure 6.8c), with 
plant growth phase again being the main explanatory factor. We also determined the sugar 
composition of roots, but the corresponding metabolite profiles were limited to the DEMO field 
(Figure S6.5). This confirmed that host growth phase is the most important explanatory variable for 
root metabolite dynamics of all metabolite classes tested.

(Caption on next page) Figure 6.8 Root metabolites and total element compositions are affected by 
plant growth phase. 

101

−0.25

0.00

0.25

−0.1 0.0 0.1
CPCo 1 (83.44%)

CP
Co

 2
 (9
.0
67
%
)

35.08 %; p = 0.001

−0.50

−0.25

0.00

−0.1 0.0 0.1
CPCo 1 (78.2%)

CP
Co

 2
 (1
0.
2%

)

35.67 %; p = 0.001

−0.4

−0.2

0.0

0.2

−0.1 0.0 0.1
CPCo 1 (78.79%)

CP
Co

 2
 (1
0.
42
%
)

33.86 %; p = 0.001

−0.50

−0.25

0.00

−0.2 −0.1 0.0 0.1
CPCo 1 (79.76%)

CP
Co

 2
 (9
.3
84
%
)

38.06 %; p = 0.001

−0.4

−0.2

0.0

0.2

−0.1 0.0 0.1 0.2 0.3
CPCo 1 (75.96%)

CP
Co

 2
 (1
0.
04
%
)

27.98 %; p = 0.001

−0.4

−0.2

0.0

0.2

−0.1 0.0 0.1 0.2 0.3
CPCo 1 (72.44%)

CP
Co

 2
 (1
2.
4%

)

30.42 %; p = 0.001

−0.50

−0.25

0.00

0.25

−0.1 0.0 0.1 0.2 0.3
CPCo 1 (70.86%)

CP
Co

 2
 (9
.7
79
%
)

24.22 %; p = 0.001

−1.2

−0.8

−0.4

0.0

0.4

−0.1 0.0 0.1 0.2 0.3
CPCo 1 (87.73%)

CP
Co

 2
 (6
.0
14
%
)

31.78 %; p = 0.001

−0.3

0.0

0.3

0.6

−0.2 −0.1 0.0 0.1 0.2 0.3
CPCo 1 (37.72%)

CP
Co

 2
 (2
3.
1%

)

15.12 %; p = 0.001

−0.25

0.00

0.25

0.50

0.75

−0.3 −0.2 −0.1 0.0 0.1 0.2
CPCo 1 (50.46%)

CP
Co

 2
 (1
7.
57
%
)

19.23 %; p = 0.001

−0.4

−0.2

0.0

0.2

−0.3 −0.2 −0.1 0.0 0.1 0.2
CPCo 1 (42.39%)

CP
Co

 2
 (2
0.
15
%
)

14.63 %; p = 0.001

−0.2

0.0

0.2

−0.4 −0.2 0.0 0.2
CPCo 1 (42.07%)

CP
Co

 2
 (1
9.
79
%
)

16.21 %; p = 0.001

B73 PH207 DK105 F2
a

b

c

Li
pi
ds

Am
in
o

ac

id
s

Io
no

m
e

Stage Vegetative Reproductive Management NK NPK CONMIN BIODYN



(Figure on previous page) Figure 6.8 Root metabolites and total element compositions are affected by 
plant growth phase. Constrained PCoA (CPCoA) based on Euclidean distances between samples 
regarding the root lipid (a), amino acids (b), and ionomic (c) profiles of the four inbreed lines. PCoA was 
constrained by soil management and plant growth phase, for four inbred lines (59 lipid compounds were 
analyzed, n = 361; 15 amino acid compounds were analyzed, n = 376, 20 total elements were analyzed, n 
= 384). Each single point represents one analyzed root sample. 

We then tested for covaried microbial taxa and root lipids, and identified a group of predictive taxa 
including both stable (widespread and persistent from vegetative to reproductive stage) and 
dynamic OTUs (Figure 6.9). 

Figure 6.9 The root associated microbiota covaries with root lipid profile over plant growth. The 
most discriminatory (with highest mean squared error calculated by Random Forest, n = 25) bacterial (a) 
and fungal OTUs (b) for lipid in root and their phylum affiliation were shown. Salmon corresponds to the 
persistent OTUs in root shown in Fig. 2 and grey indicates non-persistent OTUs. (c) Network of the most 
predictive bacterial and fungal OTUs and lipids compounds. Strong (abs > 0.5) and significant (P < 0.05) 
Spearman correlations were kept as edges, n = 25 OTUs for both microbial kingdoms. Circle of each node 
shows the ratio of average RA of corresponding OTU or lipid between vegetative (light green) and 
reproductive stage (dark green) root. 
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Approximately half of the most significantly covaried taxa (OTUs with top 25 max mean squared 
error value) were stable bacterial (12 OTUs, 10 from Proteobacteria and two Actinobacteria, out of 
26 stable root OTUs in Figure 6.5a) and fungal (10 OTUs, nine Ascomycota and one 
Glomeromycota, out of 27 stable root OTUs in Figure 6.5c) taxa in the root (Figure 6.9a, b). We 
identified the microbial taxa that were significantly (P < 0.05) and strongly (|r|> 0.5) correlated with 
lipids (Figure 6.9c). Predictive Proteobacteria taxa were mainly found to be positively correlated 
with lipid profiling and Chloroflexi, a phylum that was decreased during plant growth in the root 
(Figure 6.6), was negatively correlated to most of the lipids. For fungal predictive OTUs, except for 
one Ascomycota, most taxa were negatively correlated to lipids (Figure 6.9c). Taken together, our 
data indicate that both the root metabolome and the root microbiota respond most strongly to plant 
growth phase, and that there is a correlation between stable and dynamic root microbial taxa and 
root lipids during plant growth.

6.3.5 Genotype-dependent response of root microbiota, metabolism, and plant biomass to 
soil P availability 

To assess the response of the host plant, root metabolism and root microbiota to nutrient 
availability, we introduced a P transporter mutant pht1;6 of B73, whose transport of bioavailable P 
from AMF to the plant host is impaired, thereby compromising the establishment of maize AMF 
symbiosis (Willmann et al., 2013). We firstly compared the degree of mycorrhizal root colonization 
and the RA of Glomeromycota in root samples of wild-type and mutant, under different 
managements and at different growth stages (Figure S6.6). As expected, in the pht1;6 mutant we 
found a significant decrease in mycorrhizal colonization (based on microscopy) and RA of 
Glomeromycota (based on amplicon sequencing) at the vegetative stage (Figure S6.6). Surprisingly, 
at the reproductive stage of wild-type plants, the mycorrhizal colonization ratio, which was 
calculated only in fine roots by microscopy, increased (Figure S6.6a), while the average RA of 
Glomeromycota in the entire root system decreased (Figure S6.6b). 

Afterwards, to specify the P effect, we examined root lipid, root microbiota and plant phenotypic 
data of samples derived from wild-type B73 and the mutant pht1;6 plants grown in NK and NPK 
soil managements only (Figure 6.10). Root lipid compositions were mainly influenced by growth 
stage (1st axis) and plant genotype (2nd axis) (Figure 6.10a). In addition, at the reproductive stage, P 
soil amendment (NPK versus NK managements) differentiated lipid profiles in pht1;6 roots (Figure 
6.10a), indicating a potential plant growth phase-specific link between AMF symbiosis, root lipid 
status and soil P availability. The soil P availability-dependent change in root lipid profiles was 
paralleled by alterations in root-associated bacterial and fungal communities (Figure 6.10b).  The 
main drivers of the bacterial community shift were P amendment (1st axis), followed by growth 
phase and plant genotype (13.39%, 9.47% and 3.34% of variance explained, respectively), whereas 
for fungi, samples clustered primarily according to plant growth stage (25.54%). We also detected a 
trend of lower bacterial and fungal alpha diversity in pht1;6 roots compared to wild type, and in NK 
compared to NPK grown plants at the vegetative stage (Figure 6.10c), indicating that AMF and soil 
P deficiency have a broad effect on bacterial and fungal root-associated assemblages. This effect 
was undetectable at the reproductive growth stage, suggesting compensatory changes in the maize 
root microbiota over time. Consistent with this interpretation, we found that marked differences in 
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tested plant performance parameters in pht1;6 compared to wild-type plants, seen at the vegetative 
growth phase, were mostly compensated at the reproductive growth stage (Figure 6.10d).

Figure 6.10 Genotype-dependant effect of phosphate depletion on root lipids, microbiota, and plant 
biomass. (a) The CPCoA based on Euclidean distance of the root lipid profile of the wild type (WT) and 
P transporter-defective line pht1;6 at both growth stage (71 lipid compounds were analyzed, n = 41, data 
could be found in the folder “00.data/meta_data” on GitHub). (b) The CPCoA based on Bray-Curtis 
dissimilarity of the root bacterial and fungal communities (n = 48 for bacterial and fungal communities) 
and constrained by plant genotype, plant growth stage, and soil management (depletion/amendment of P 
on soil). (c) Effect of genotype, plant growth stage, and P fertilization on microbial community alpha-
diversity. (n = 6 per plot; V: vegetative stage, R: reproductive stage). (d) Effect of genotype, plant growth 
stage, and P fertilization on four plant biomass parameters (n = 43). Wilcoxon test was used for statistical 
analysis followed by FDR correction (P < 0.05). Capital letters indicate significant differences between 
growth stages; lowercase letters indicate significant differences between genotypes in specific soil 
management, within each growth stage. 
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6. 4 Discussion 

6.4.1 Soil physicochemical properties drive soil and plant-associated microbial community 
shifts across different microbial kingdoms 

Our results showed that in a long-term agricultural system, soil biota composition was strongly 
impacted by abiotic factors determined by geographical location (DEMO: Fertilization 
DEMOnstration experiment and DOK: Dynamic, Organic and Conventional fields; with approx. 
100 km distance between them), soil management (including mineral NK, NPK, CONventional 
MINeral, and organic BIODYNamic) and plot location (one plot in DEMO and three plots in DOK 
for each management). These factors were responsible for variability in soil physicochemical 
properties and further differentially shaped the communities of bacteria, fungi and oomycetes in 
rhizosphere and root compartments. 

We found a slightly higher alpha-diversity for the bacterial communities in DOK (Figure 6.3b), 
possibly linked to differences in the size distribution of soil aggregation between the DEMO and 
DOK fields. The particle size influences the oxygen concentration and moisture availability of the 
soil micro environment (Fierer, 2017), and therefore will affect all microbes living there. Moreover, 
differences in climatic conditions, such as rainfall and air temperature, likely contribute to the effect 
of geographical location. Consistent with recently characterized natural populations of A. thaliana 
and cultivated and native Agave species (Coleman-Derr et al., 2016; Thiergart et al., 2020), we 
observed that the community of filamentous eukaryotes is stronger influenced by geographical 
location compared to the bacterial community (Figures 6.2, 6.3, 6.4). However, because the two 
fields were not managed identically, this confounds the effects of geographical and management 
factors. 

Through modification of the edaphic parameters within a given field, soil management also modifies 
the soil biota (Edwards et al., 2015; Hartmann et al., 2015; Schmidt et al., 2019). These effects are 
mainly apparent with respect to community structure and are not as strong with regard to alpha-
diversity (Hartmann & Widmer, 2006). Consistent with this, in the DEMO field, mineral NK and 
NPK fertilizations possessed distinguishable soil biota communities (Figures 6.2, 6.3, 6.4), probably 
depending on soil P level, but resulted in non-significant differences of bacterial and fungal alpha-
diversity. This indicates that the alpha-diversity of the microbial soil biota is largely resilient to 
long-term P nutrient supplementation, as previously suggested by another P fertilization field 
experiment (Robbins et al., 2018). In the DOK field, comparison of CONMIN and BIODYN soil 
properties featured higher pH and elevated contents of Corg, POXC, total N, C/N, and available P in 
the organic treatment. Previous studies in the same field showed a positive effect of farmyard 
manure (FYM), used in BIODYN management, on microbial abundance and activity (Widmer et 
al., 2006; Birkhofer et al., 2008), and community composition (Hartmann et al., 2015). In line with 
the concept of r-/K selection theory in ecology applied to soil microbial communities, in which 
selection of bacterial communities is driven by nutrient availability and their ecological strategies, 
we found oligotrophs such as Acidobacteria (K-strategist) enriched in CONMIN (Fierer et al., 
2007). The abundant nutrients provided by FYM in BIODYN plots promotes high-growth-rate 
microbes defined as copiotrophs, such as some Bacteroidetes (r-strategist), which may be able to 
degrade complex organic compounds (Lapébie et al., 2019). 
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At a local scale within each management, multiple soil properties were highly variable between 
different plots (Figure 6.2). Bacteria were more impacted than filamentous eukaryotes by 
heterogeneity in soil chemistry at the plot scale (Figure 6.3). The sensitivity of bacteria to pH, 
which has also been reported previously (Fierer & Jackson, 2006; Rousk et al., 2010), and to clay, 
highlights the importance of edaphic parameters for bacterial community structure. A shift of 
around one pH unit led to an enrichment of Acidobacteria in the NK and CONMIN-2 plots, 
regardless of their contrasting managements and field locations (Figure 6.6). 

Horizontal gene transfers from fungi to oomycetes converge within the radiation of oomycetes 
capable of colonizing plant tissues and are associated with the transition to their predominant 
phytopathogenic lifestyle (Richards et al., 2011). We observed a strong effect of soil management 
on the root-associated microbiota (Figures 6.3, 6.4), notably for oomycetes, suggesting that adapted 
agricultural practices can be instrumental in reducing damage caused by these ubiquitous 
phytopathogens. We found that the interaction between host genotype and management also 
explained a large degree of the variance in communities. This interaction suggests that plant 
microbiota composition is not only impacted by soil management, but also determined by the 
degree to which specific plant genotypes are adapted to specific environments.

6.4.2 Temporal changes in maize root-associated bacterial communities covary with root 
metabolite dynamics 

We have shown that the effect of soil management and plant genotype interaction on shaping root 
microbiota was relatively stable between vegetative and reproductive growth stages for the three 
microbial kingdoms. Time-course experiments in rice have shown a rapid acquisition and stable 
taxonomic structure of the bacterial root microbiota within 14 days after transplantation from sterile 
media to soil (Edwards et al., 2015). The root-associated bacterial communities of these two-week-
old seedlings were most similar to the root microbiota of six-week-old rice plants, which was 
interpreted as evidence that the root microbiota in vegetatively growing rice might approach a 
steady-state (Edwards et al., 2015). A subsequent study comparing the bacterial and archaeal root 
microbiota of field grown rice during three growing seasons, including four cultivars, revealed 
changes in microbial composition from the vegetative to the reproductive stage, and identified 
predictive microbiota reflecting plant age (Edwards et al., 2018). A plant age-dependent variation in 
rhizosphere bacterial communities of field-grown maize over a 20-week period with weekly 
sampling, spanning vegetative and reproductive growth phases, showed gradual rather than two-
stage community shifts (Walters et al., 2018). In light of these findings, the distinctive microbial 
profiles detected in our study at vegetative and reproductive growth stages for rhizosphere and root 
compartments are likely two snapshots of a gradual maize root-associated microbiota dynamic over 
time. In field-grown maize with weekly samplings, a core of seven bacterial OTUs shared in all 
rhizosphere samples was identified (Walters et al., 2018). In this study, we found 15 stable bacterial 
OTUs, shared between rhizosphere and root compartments as well as between vegetative and 
reproductive growth phases, representing approximately one third of the root microbiota (Figure 
6.5). A comparison of the seven common rhizosphere bacterial OTUs found in US fields with the 15 
OTUs identified here in European field-grown maize shows an overlap at the rank of family (5/7 US 
and 7/15 European OTUs with shared family assignment, respectively), including 
Bradyrhizobiaceae, Comamonadaceae, Pseudomonadaceae and Sinobacteraceae. This overlap 
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indicates the existence of stable community members that define the maize bacterial root microbiota 
across two continents, despite different host genotypes, soil managements, climates and soil types.     

The gradual shift in microbiota composition over maize growth (Walters et al., 2018), and the 
uncoupling of genetically determined flowering time in A. alpina from soil residence time-
dependent changes in its root microbiota (Dombrowski et al., 2017), makes it unlikely that 
genetically determined vegetative and reproductive growth stages control the temporal dynamics of 
the bacterial root microbiota. Instead, dynamics of root metabolites over the growing season (Figure 
6.8) could drive bacterial succession in a ‘shell’ surrounding a stable microbiota core, enabled by 
bacterial immigration from the soil biome. According to our study, this dynamic shell comprises up 
to two thirds of the bacterial root microbiota. This model is supported by a study in 
monocotyledonous A. barbata, in which it is shown that chemical succession in root exudation over 
the growing season explains part of the bacterial community assembly and dynamics in the 
rhizosphere (Zhalnina et al., 2018). However, we found that the majority of the fungal root 
community is stable over the tested maize growth phases, indicating that the root-associated fungi 
are less responsive to changes in root metabolites. 

At a high taxonomic level, we found a shift in the bacterial community towards a structure 
resembling that of later-stage roots in all of the compartments, including planted soil (Figures 6.6, 
6.7). The large expansion of the maize root system over time in the field might extend the spatial 
chemical gradient from the plant to the soil, inducing this shift. This plant footprint was observed 
only at the phylum level, indicating that the root shapes bacterial communities based on their 
conserved metabolic (functional) potential, independently of intra-species (ASV-level) diversity 
(Bai et al., 2015). We propose that this plant footprint on the bacterial communities is partially 
driven by the dynamics of root metabolites over time that spread via exudation beyond the 
rhizosphere into the soil. BXs, and its stable degradation product MBOA, are candidate maize root-
secreted chemicals that could contribute to this mechanism (Hu et al., 2018; Cotton et al., 2019; 
Kudjordjie et al., 2019). By contrast, for fungal communities, we found similar assembly patterns at 
the ASV and phylum levels over the growing season across all tested compartments, corroborating 
that fungi are more resistant to changes in root metabolism. It remains to be tested whether this 
difference reflects fundamentally different preferences of bacteria and fungi for root-derived 
nutrients and/or sensitivity to phytochemicals. 

6.4.3 Soil P availability induces changes in root metabolism, microbiota, and plant 
performance 

By comparing wild-type and P transporter pht1;6 mutant plants we showed a potential plant growth 
phase-specific link between AMF symbiosis, root lipid status and soil P availability (Figure 6.10). In 
AMF-deficient pht1;6 plants during reproductive maize growth, root lipid status varied the most in 
response to P availability. Establishment of AMF symbiosis in roots is promoted under P-limiting 
conditions (NK), and during symbiosis the fungi can provide the dominant route for plant P supply 
(Smith et al., 2003; Willmann et al., 2013). In return, host-derived lipids are a major source of 
organic carbon delivered to fatty acid auxotrophic AMF for fungal growth (Bravo et al., 2017; Jiang 
et al., 2017; Luginbuehl et al., 2017; Keymer et al., 2017). 
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We found that root lipid status between wild type and AMF-deficient pht1;6 plants differed more 
strongly in NK compared to NPK conditions, which is likely linked to a perturbed cross-kingdom 
lipid transfer from host to AMF in the mutant roots. We also observed that the performance of 
pht1;6 mutants compared to wild type was reduced as previously shown (Willman 2013, Fabianska 
2020), and more severely at the vegetative growth phase. These performance differences were 
partially compensated at the reproductive growth phase under P-sufficient condition (NPK). Lack of 
full growth compensation points to either additional AMF-independent functions of the Pht1;6 
transporter for maize growth and/or additional beneficial AMF symbiosis activities independently of 
P supply to the host. Additionally, we found that contrasting P availability induced changes in the 
bacterial root microbiota that exceeded host growth phase-dependent microbiota variation in both 
wild type and pht1;6 plants. This indicates that the bacterial root microbiota actively responds to 
host P status as shown in A. thaliana by a direct integration of P stress and plant immune responses 
(Castrillo et al., 2017; Finkel et al., 2019), thereby likely contributing to overall host performance. 

This work provides insights into the spatio-temporal dynamic of maize root-associated microbiota 
by revealing an inverse stable-to-dynamic ratio between root-associated bacterial and fungal 
communities over the growing season. Future development of a gnotobiotic maize growth system 
and defined (synthetic) microbial communities should allow direct tests of whether changes in root 
metabolites drive succession in the dynamic shell of the bacterial root community, whereas stable 
bacterial and fungal root microbiota members have adapted to host metabolite alterations.  

6.5 Materials and methods  

6.5.1 Experimental design 

The experiment was performed on two long-term fields located in Switzerland: DEMO 
(Fertilization DEMOnstration experiment Agroscope, 47°25′31″ N, 8°30′59″ E; MAT 9.4 °C, MAP 
1031 mm, Zürich-Reckenholz; established in 1987) and DOK (Dynamic, Organic and Conventional 
managements, (47°30′09″ N, 7°32′21″ E; MAT 10.5 °C, MAP 842 mm, Therwil; established in 
1978; Hartmann et al., 2015), where different soil managements (encompasses a combination of 
soil fertilization and agricultural practice) were applied (Figure 6.1). The soil type at DEMO is a 
Gleyic Cambisol and at DOK is a Haplic Luvisol field according to FAO (WRB, 2015). In the 
DEMO field, NPK (Nitrogen, Phosphate and Potassium) and NK (Nitrogen and Potassium) 
management were compared. In DOK, the Biodynamic mixed (BIODYN) and the Conventional 
solely mineral fertilized (CONMIN) managements, with three replicate plots dispersed within the 
field (at location 1, 2, 3), were used. 

Within each plot, five maize genotypes were planted: inbred lines B73 and PH207 from genetic 
pool dent and DK105 and F2 from flint, in addition to mutant line pht1;6 derived from B73 with a 
mutation in the mycorrhiza-specific P transporter gene Pht1;6 (Willmann et al., 2013). The 
examined genetic pools correspond to a classification that considers the structure of the grain and 
differentiation in traits such as flowering time and cold tolerance (Unterseer et al., 2016). For each 
genotype, six rows (with 75 cm distance) of five plants each (15 cm distance) were distributed per 
plot (n = 30). Plants were grown and harvested at two time points, at seven weeks (July 2017) and 
15 weeks (September 2017) after sowing, corresponding approximately to the vegetative (V6) and 
reproductive (R2) stages of plant development, respectively (Abendroth et al., 2011). 
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6.5.2 Soil and Plant sampling 

For soil properties measurement, six disturbed soil samples (2 kg) from each plot were collected 
before sowing (n = 48). Topsoil samples were collected from 5 to 20 cm below surface along a 
linear transect to assess the effect of spatial variability within each plot, and 38 soil parameters were 
measured. For soil microbiota analysis, a subsample of 50 g from each soil sample was flash-frozen 
in liquid nitrogen and stored at –80°C until analysis. 

For each genotype, six healthy plants were harvested at each time point. To prevent any border or 
cross-genotype effect, plants in the middle of the plot (harvesting area) with at least one plant from 
the border or a different genotype were harvested, preferentially. After removing most of the 
attached soil, the representative sample of the root system (including different types of roots) was 
collected and flash-frozen in liquid nitrogen. Additionally, for each planted plot at each time point, 
10 g of bulk soil (n = 3) were collected (-5 to -20 cm from surface) between two rows of plants for 
microbiota analyses.

6.5.3 Plant biomass and root metabolism measurement 

For each harvested plant, the stem length, leaf number, and developmental status were determined. 
After measuring the fresh weight, the shoot was cut into pieces, dried at 65°C at Reckenholz over 
several days and ground, and then the dry weight was measured. Cobs of each plant were weighed 
similarly. For metabolome (lipid, sugar and free amino acids) and total elemental composition, 
frozen washed root tissues were homogenized into fine powder and 50 to 100 mg were used. Fine 
roots of maize plants were harvested at vegetative and reproductive stages in 70% EtOH and 
mycorrhizal colonization was assessed using ink staining. 

6.5.4 Soil and root microbial community profiling 

The collected root samples were fractionated into rhizosphere and endosphere (here after referred to 
as root) fractions in the laboratory with a protocol adapted from Bulgarelli et al., (2012). Total 
genomic DNA was extracted from bulk soil, rhizosphere and root samples from at least 250 mg of 
material using the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, USA). The concentration of 
DNA samples was measured by fluorescence (Quant-ITTMPicogreen, Invitrogen, Oregon, USA). 
DNA samples diluted to 3.5 ng/µl were amplified in triplicate in a two-step PCR using specific 
primer sets for profiling of bacterial (V5–V7 region of 16S rRNA; 799F/1192R), fungal (ITS2; 
fITS7/ITS4) and oomycetal (ITSI; ITS1-O/5.8s-O-rev) communities, as described in Robbins et al., 
(2018). Illumina sequencing was performed at the Cologne Center for Genomics (CCG) using the 
MiSeq platform and custom sequencing primers.

6.5.5 Amplicon sequencing data processing and microbial community diversity analysis 

The sequenced amplicon profiling data were processed with workflow based on DADA2 (v1.12.1, 
https://github.com/Guan06/DADA2_pipeline) (Callahan et al., 2016). Forward and reverse reads 
were demultiplexed. For bacterial samples, raw sequencing reads were subsequently truncated to 
260 bp (forward) or 240 bp (reverse) and filtered with “maxN=0, maxEE=c(2,2), truncQ=2, 
rm.phix=TRUE”. For fungal and oomycetal communities, we mapped the primers to the sequencing 
reads to trim the non-amplified region and then filtered with “maxN=0, maxEE=c(2, 2)”. After 
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learning the error rates, ASVs were generated by merging the corrected forward and reverse reads, 
and chimeras were removed.

Taxonomy of ASVs were assigned by the naïve Bayesian classifier (Wang et al., 2007), using 
SILVA (v132), UNITE (release 02.02.2019) and an in-house database described in Durán et al., 
(2018) for bacteria, fungi and oomycetes, respectively. ASV tables were rarefied to depth 1,000, 
10,000 and 2,000 for bacteria, fungi and oomycetes, respectively. The Shannon index of alpha-
diversity was then calculated as the average value of 999 independent rarefactions. The average was 
then computed as alpha-diversity of communities. Bray-Curtis dissimilarity (BC) between samples 
was calculated based on rarefied ASV tables for beta-diversity analysis at the ASV level. 
Permutational multivariate analysis of variance (PERMANOVA) was performed with the adonis() 
function in R package vegan (Oksanen et al., 2019). Bacterial OTUs were clustered with identity of 
97% from ASVs.

For the diversity analysis at the phylum level, relative abundance of ASVs belonging to the same 
phylum were summed up to obtain the relative abundance of the corresponding phylum, and based 
on this, the BC matrix was calculated. Mean BC between each sample, and samples from unplanted 
soil (the most soil-like condition, xn) and reproductive-stage root (the most root-like condition, yn) 
were calculated. Samples with minimum xn were defined as the starting point (x0, y0) of the 
community and the Euclidean distance between this sample and all other samples was calculated. 
Additionally, the relative abundance of each phylum was compared between conditions by analysis 
of variance (ANOVA) and Tukey’s post-hoc test (De Mendiburu & Yassen, 2020).

6.5.6 Predictive taxa for root lipid identification and network construction 

To identify the predictive taxa for root lipid dynamics, we used function ‘ramdomForest()’ from R 
package randomForest (Liaw & Wiener, 2002) with parameter ‘ntree = 1000’ using OTU table (for 
bacteria and fungi respectively) and lipid profiling dataset in the model. Afterwards, mean squared 
error (MSE) was calculated with function ‘impartance()’ using ‘scale = TRUE’. Taxa with highest 
MSE (n = 25) was then extracted as predictive OTUs. We calculated Spearman correlation between 
predictive OTUs and lipids and filtered the correlation matrix by keeping only significant (P < 0.05) 
and strong (with absolute value > 0.5) coefficients. Subsequently, the network was visualized by 
Cytoscape (v 3.8.2, Shannon, 2003).

6.6 Data and code availability    

The raw sequencing data described in the manuscript were uploaded to the European Nucleotide 
Archive under accession number PRJEB44300. The modified DADA2 pipeline for data processing 
(https://github.com/Guan06/DADA2_pipeline) and scripts as well as clean data for visualization 
(https://github.com/Guan06/Bourceret_and_Guan_et_al_2022) are both available on GitHub.
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parameters. A.B. performed microbial community profiling, K.D. carried out soil sampling and 
physico-chemical measurements before sowing. A.O. and D.B.M. characterized root lipid profiles, 
J.H. characterized root sugar and free amino acid profiles. N.G. determined root ionome profiles and 
conducted microscopic mycorrhizal colonization analyses. R.G. and A.B. analyzed the data with 
support of R.G.-O. R.G. and A.B. created the Figures. A.B., R.G., and P.S.-L. wrote the manuscript 
with support from S.S. and R.G.-O. 
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Chapter 7 Studying plant-associated microbial communities 
using novel diversity and network analyses  

7.1 Abstract

With the rapid development of sequencing technologies, an increasing number of plant microbiome 
datasets have been generated. At present, microbiota diversity analyses are conducted by comparing 
changes in community composition across samples. However, these approaches ignore interactions 
between microbiota members and limit the study of community dynamics. To better understand 
the  assembly of  plant microbiota, we integrated  extensive amplicon datasets  and developed a 
framework for  microbial community diversity and network analysis.  Examining 
this combined dataset showed the absence of well-defined core microbiota at the level of amplicon 
sequence variant. Therefore, we proposed to extract the most abundant and prevalent members as 
representative microbiota and demonstrated that they capture the most community diversity and 
network dynamics.  Based on the selected members, we  inferred  a large-scale co-occurrence 
network, from which microbes with co-varying abundances were clustered into groups for diversity 
measurement. We  show  that the unexplained variance was decreased compared to traditional 
composition-based methods. Furthermore, we introduced  a bootstrap- and  permutation-
based statistical approach to compare microbial networks from diverse conditions at the global and 
local scales; through the latter, we extract the distinctive features contribute to microbial community 
dynamics. We provide these computational tools as an open-access R package, named ‘mina’.  

7.2 Introduction 

Microbes  live in most ecosystems and form complex communities by interacting with each other 
and their surrounding environment (Raes & Bork, 2008). The assembly and stability of these 
microbial communities are affected by both biotic and abiotic environmental factors, such as the 
presence of a host and the availability of nutrients. The composition of these microbial communities 
could be determined by amplifying and sequencing marker genes, for instance rRNA genes, 
conserved single-copy protein genes, and internal transcribed spacer regions (Woese & Fox, 1977; 
Roux et al., 2011; Schoch et al., 2012). The development of sequencing technology makes the high-
throughput profiling of microbial  communities possible (Woese & Fox, 1977; Roux et al., 2011; 
Schoch et al., 2012). Using this approach, the composition of a community can be represented by 
operational taxonomic units (OTUs; Sokal & Sneath, 1963) or amplicon sequence variants (ASVs; 
Callahan et al., 2017), extracted from sequences. OTUs are obtained by clustering the sequencing 
reads with arbitrary thresholds (e.g.,  the most commonly used 97% sequence identity), and ASVs 
are the error-corrected reads that can be distinguished by single  nucleotide difference, therefore 
provide a finer resolution of component estimation. Typically, analysis of these data includes 
estimating within and between sample diversities (alpha- and beta-diversity, respectively) based on 
community profiles. Conventionally, alpha-diversity is evaluated by comparing richness and 
distribution evenness of potential community members, i.e., OTUs or ASVs. Beta-diversity is 
quantified using distances or dissimilarities calculated by comparing the abundance of each OTU or 
ASV between samples (Whittaker, 1960). Novel approaches which taking into account the 
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phylogenetics or microbial interactions are also developed for beta-diversity analysis (Lozupone et 
al., 2006; Schmidt et al., 2017). 
To distinguish the communities from different conditions and thereafter identify the factors that 
affect the microbiota assembly, concepts such as “core members” were introduced (Turnbaugh et 
al., 2009; Lundberg et al., 2012). By focusing on specific members for hypothesis validation, the 
subsequent analysis is simplified due to the highly diverse and sparse properties of the microbiota 
from most natural conditions (Shade & Handelsman, 2012). For instance, in a plant root-associated 
microbiota study, OTUs that are enriched in A. thaliana roots and detected in different soil types 
were identified as “core microbiota” to facilitate the design of plant-associated SynComs (Lundberg 
et al., 2012). Moreover, a “core microbiome” of the human gut at the gene rather than organismal 
level was detected among 154 individuals (Turnbaugh et al., 2009), indicating the assembly of gut 
microbiota might be a function driven process. Meanwhile, the factors determining the 
compositions of core microbiota has been evaluated for marine sponge microbiotas, highlighting the 
effect of habitat (Astudillo-García et al., 2017). Examining the abundance-occupancy distribution of 
micro-organisms offers the approach to prioritize  core member selection for plant-associated and 
other microbiomes studies (Shade & Stopnisek, 2019). Though significant differences were detected 
in diversity analyses, the major conclusions were not affected by changes in the determining criteria 
(Astudillo-García et al., 2017). However, a consensus definition of the core microbiota is still 
missing, so is a thorough assessment of to which extent the diversities are skewed when only 
considering those core compositions. Moreover, due to the fact that most of the core members are 
defined by taxonomic units, their  contribution to the functional capacity of the whole community 
across different ecosystems are predominantly unknown (Lemanceau et al., 2017).   

In addition to the compositional approaches that characterize community structure and measure the 
differences between samples, the dynamics of the system such as interactions between microbes can 
also be examined by inferring co-occurrence networks (Barberán et al., 2012; Faust et al., 2015; 
Mandakovic et al., 2018; Banerjee et al., 2019; Mamet et al., 2019; Huang et al., 2019b; Lima et 
al., 2020; Zamkovaya et al., 2021; Yuan et al., 2021). In these microbial community networks, 
nodes represent community members and relationships between microbes are indicated by 
undirected edges, which are  inferred by comparing the covariance of microbes across  samples. 
However, the compositional nature of the microbial community profiles, i.e., only the relative 
abundances are available, leads to spurious results when applying simple correlations (Aitchison, 
1982). Therefore, novel methods with extra data transformation, such as SparCC (Friedman & Alm, 
2012) and SPIEC-EASI (Kurtz et al., 2015), or integrated workflows, including CoNet (Faust & 
Raes, 2016) and NetCoMi (Peschel et al., 2021), were developed to reduce the bias introduced by 
compositional effect. However, due to the lack of a   ground truth, these newly developed 
approaches cannot be proved to perform better than classical correlation methods (such as Pearson 
and Spearman) for microbiota studies, which usually involve the complex natural communities 
(Weiss et al., 2016; Hirano & Takemoto, 2019).  

Another challenge in microbial network inference is performing data analyses when the number of 
available samples is low. Due to the labour and sequencing cost, the number of conditions and 
replicates for each condition is usually limited. Typically, thousands to tens of thousands of 
community members were represented by OTUs or ASVs for plant-associated microbiota, 
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especially in rhizosphere and soil, while only tens to hundreds of samples were available (Barberán 
et al., 2012). To compensate for this, community profiles are usually filtered by prevalence (Röttjers 
& Faust, 2018; Zamkovaya et al., 2021; Yuan et al., 2021) before constructing the network to 
reduce the sparsity of the data. Concepts such as the above-mentioned core microbiota are also 
applied for this purpose. Although disregarding the unknown or unassigned community members is 
also an option, it comes with information leakage according to a recent study that showed the 
unknown or unassigned microbes captured by sequencing have an important effect on the network 
topology (Zamkovaya et al., 2021). 

To compare networks from different environments, typical methods focus on the comparison of 
specific topology features inferred from the adjacency matrices, including clustering complexity 
(Xiong et al., 2021), clustering coefficient (Mandakovic et al., 2018; Yuan et al., 2021), density 
(Faust et al., 2015), centrality (Mamet et al., 2019; Lima et al., 2020; Zamkovaya et al., 2021), and 
connectivity (Banerjee et al., 2019; Huang et al., 2019b). To calculate these network features, edges 
are firstly filtered according to criteria based on such as P-value   (Ma et al., 2020; Lima et al., 
2020), correlation coefficient (Mamet et al., 2019), or the top-ranking (Faust et al., 2012). To 
overcome this cut-off determination, approaches such as random matrix theory was applied to 
generate the thresholds for edge selection automatically (Yuan et al., 2021). Moreover, the statistical 
tests for these comparisons are highly dependent on the non-parametric permutation procedure, 
therefore are computationally expensive and time-consuming (Peschel et al., 2021). Alternatively, 
approaches that directly quantify global network structural differences have been developed (e.g., 
spectral distances), but are not commonly used for the comparison of microbial networks. A likely 
reason for this is the lack of methods to assess whether these distances are statistically significant. 

After the network comparison, factors that contribute to the distances between networks of different 
conditions are typically the most biological relevant feature to be examined. For example, key genes 
were recovered by applying differential network analysis algorithms on the gene co-expression data 
(Lichtblau et al., 2016), while similar approaches are still missing in microbial network studies, 
most likely due to the lack of corresponding computational tools. As one of the most comprehensive 
workflows for microbial network analysis, NetComi offers the quantification of differences in 
connections of single taxa or groups of taxa between conditions (Peschel et al., 2021). However, it 
is still unclear how to decide on the taxa that to be compared and whether taxa are the best units for 
the assessment of contribution to the network dynamics. 

In this chapter, we describe a computational and statistical framework implemented in an R package 
called ‘mina’ (microbial community  diversity  and  network  analysis), which is developed for 
microbial community data processing with a focus on network comparison. By applying this 
approach to the plant root microbiota dataset that we integrated from published studies (Zgadzaj et 
al., 2016; Durán et al., 2018; Thiergart et al., 2019, 2020; Harbort et al., 2020; Wippel et al., 2021), 
we show that ‘mina’ diversity analysis was able to decrease the unexplained variance ratio. We 
introduce a test based on and Spectral distances and Monte Carlo permutation that can be used to 
statistically assess differences between ecological networks. Using this method, we are able to 
compare networks constructed from samples collected under different conditions that associated 
with the same soil type (Cologne Agricultural Soil, CAS), obtain novel patterns of community 
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network dynamics between environments, and identify the distinctive features that contributed 
significantly to the network deviation.

7.3 Results 

7.3.1 Meta-analysis of the plant microbiota 

7.3.1.1 Dataset overview

By colonizing and interacting with plant, microbes derived from soil assemble into multi-kingdom 
complex communities, denoted as root microbiota. Based on the physical distance to the plant host, 
these communities are categorized into different compartment groups, including endosphere/root, 
rhizoplane, rhizosphere, and soil. To understand the principles governing the assembly of plant-
associated microbiota, we assembled a  large-scale dataset for both bacteria and fungi. Published 
datasets of former studies (Zgadzaj et al., 2016; Durán et al., 2018; Thiergart et al., 2019, 2020; 
Harbort et al., 2020; Wippel et al., 2021) using the same primer set (bacteria: 16S rRNA gene V5 to 
V7; fungi: ITS2 region) were included. We integrated these samples, comprising 3,809 bacterial 
16S rRNA and 2,232 fungal ITS2 amplicon profiles, as well as their corresponding meta-data, into a 
large-scale dataset spanning diverse soil types, host species and microhabitats (Table 7.1). 
Table 7.1 Dataset overview. Conditions with less than 30 samples are shown as “Others”, including 
different compartments from host species Capsella Rubella and Medicago truncatula. Neighbour indicates 
the neighbouring grass beside the wild A. thaliana described in Thiergart et al., 2020. 

7.3.1.2 Data processing and diversity analysis 

Raw data analysis was performed by applying standardized quality filtering step, followed by error-
correction using DADA2 (Callahan et al., 2016), leading to the identification of 42,060 bacterial 
and 9,337 fungal ASVs (details described in the method Section 7.5.1). Analyses of alpha-diversity 
(within-sample diversity) showed a decrease in the complexity of both bacterial and fungal 
microbial assemblages from the highly diverse soil communities to the rhizosphere, rhizoplane and 
root compartments (Figure 7.1a, b). This result is in line with previous studies, which show a 
decrease in alpha-diversity as the strength of the association with the host increase, in a pattern 
which is thought to reflect a process of recruitment by the plant of selected community members 
(Bai et al., 2015; Zgadzaj et al., 2016; Durán et al., 2018; Thiergart et al., 2019, 2020). 
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Host Compartment Bacteria Fungi

Zea mays l Rhizosphere 498 540
Root 497 541

Lotus japonicus Rhizosphere 113 88
Root 113 78

Chlamydomonas reinhardtii Phycosphere 48 NA

Arabidopsis thaliana
Rhizosphere 486 186
Rhizoplane 209 107

Root 909 101

Neighbor
Rhizosphere 42 44
Rhizoplane 36 29

Root 32 42
NA Soil 760 476
Others NA 66 NA
Total 3809 2232



Figure 7.1 Community diversity of plant-associated microbiota. Average Shannon indices of 999 times 
rarefaction and calculation were shown for bacterial (a) and fungal (b) samples under each condition. PCoA 
of Bray-Curtis dissimilarities between bacterial (c) and fungal (d) communities are shown here. R2 indicates 
the variance between samples which cannot be explained by compartment, soil type, host species, host 
genotype, and experimental condition (natural site or green house).  

We examined the community structure at the higher taxonomic rank and consistently with previous 
studies (Bai et al., 2015; Zgadzaj et al., 2016; Durán et al., 2018; Thiergart et al., 2019, 2020), the 
bacterial phyla Proteobacteria,  Bacteroidota,  Actinobacteriota  and  Chloroflexi  were the most 
abundant (Figure 7.2a). As the most abundant phylum, aggregated RAs of Proteobacteria increased 
from soil to rhizosphere, rhizoplane, and root, ending with up to an average of 47.37% - 87.17% for 
different hosts.  On the contrary,  Chloroflexi  showed an opposite  trend  from soil to root, 
with RAs  decreasing  from 4.86% - 27.77% in the soil  to 0.39% - 9.46% in the root. Notably, 
higher RAs of Firmicutes, accounting for 16.67% on average, were found in  the phycosphere of 
Chlamydomonas, contrasting to a relative abundance of 1.64% - 9.53% in soil and 0.78% - 9.28% 
in rhizosphere conditions.  For fungal communities, the most abundant phyla were Ascomycota, 
Basidiomycota, Mortierellomycota and Olpidiomycota (Figure 7.2b). With absolute dominant RA, 
the Ascomycota increased its portion from soil to root, up to 97.83% in the root samples 
of Arabidopsis collected in Spain. For the maize-associated samples, a decrease of Basidiomycota 
from soil to root were observed (9.49% and 10.43% for DEMO and DOK soil types respectively). 
Mortierellomycota  was detected particularly abundant in CAS soil, with an aggregated  RA of 
34.72%.  Olpidiomycota  was mainly enriched in the rhizoplane of  Arabidopsis, consisting of 
15.72% to 39.39% in different soil types, with an outlier of 2.50% in Sweden samples. 

(Figure on next page) Figure 7.2 Taxonomic profiling of community structure at the phylum rank. The 
most abundant (with aRA > 0.1%) bacterial (a) and fungal (b) phyla are shown and samples from different 
host species, soil types, and compartments are compared here.
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(Caption on previous page) Figure 7.2 Taxonomic profiling of community structure at the phylum rank.

7.3.1.3 A core microbiota was observed only at the higher taxonomic ranks

To explore changes in community composition across microhabitats, we analyzed the beta-diversity 
(between-sample diversity) of bacterial and fungal amplicon profiles. We observed a strong effect of 
compartment and host species in differentiation microbial communities, which were the most 
important drivers of diversity in the dataset (Figure 7.1c, d). Despite these patterns, a large 
percentage of the variance of the data (51.3% for bacteria and 46.0% for fungi) was not explained 
by any biological (including compartment, soil type, experimental condition, host species and 
genotype) or technical factor (namely sequencing run). We hypothesized that this unaccounted 
variance could be caused by stochastic variation of rare taxa (i.e., found only in a subset of 
samples). Therefore, we investigated the prevalence of bacterial and fungal ASVs in our dataset and 
found that the ASV prevalence across samples followed an exponential distribution within each 
environment, with most amplicon tags observed only in a small subset of samples (Figure 7.3a, b). 
We observed an almost complete absence of core ASVs (i.e., found in the majority of samples) in 
our dataset. 

Later, we examined the distribution of taxa at different taxonomic ranks and core taxa were 
distinguished at the higher levels. For example, clear cores were observed for all compartments at 
the class rank, indicated by both increased number and contribution to the accumulated RA (aRA) 
of taxa detected in most of the samples within each condition (Figure 7.3c-d). Moreover, we 
observed similar results when assessing the prevalence of microbes in different compartments from 
each host species, for both kingdoms. Specifically, samples from the rhizosphere compartment show 
stronger enrichment of widespread taxa in lower taxonomic levels compared to others within each 
host species (Figure S7.1). Notably, for  bacterial communities from the root 
of Lotus japonicus, the core was observed already at the genus rank (Figure S7.1).
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Figure 7.3 Occupancy and accumulative relative abundance of microbes in root-associated 
compartments. The distribution of bacterial ASVs (a), fungal ASVs (b), bacterial Classes (c) and fungal 
Classes (d) are shown here.  

7.3.1.4 Representative members capture most of the community diversity

Due to the observation of a general lack of a core bacterial and fungal core microbiota at the ASV 
level in our dataset, we sought an alternative selection criterion to identify representative ASVs and 
remove the effect of highly variable and rare taxa. Recently, a strategy to select representative 
microbiota members based on abundance-occupancy distributions was proposed (Shade & 
Stopnisek, 2019). Following this approach, we ranked ASVs according to their relative abundance 
(RA) and occupancy, and used Procrustes Analysis to quantify their contributions to the patterns of 
beta-diversity observed for the entire dataset (detailed methods in section 7.5.3).  
We identified 2,047 bacterial (ranked top 6% RA and occupancy) and 370 fungal (ranked top 6% 
RA and 7% occupancy) representative ASVs (repASVs, Figure 7.4), whose aggregated relative 
abundances reached 45.28% and 54.12% in soil, respectively, and accounted for the majority of the 
community in the rhizosphere (58.19% and 71.20%), rhizoplane (61.64% and 49.18%), and root 
(72.33% and 77.88%) compartments (Figure S7.2a, b). A similar trend was observed for each host 
species, where repASVs dominated their respective communities, with small variation between 
different soil types (Figure S7.2c, d). Alpha- and beta-diversity analyses based only on repASVs 
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recapitulated the patterns observed for the entire dataset (Figures 7.1, S7.3). Bray-Curtis 
dissimilarities based on repASVs showed high consistency with the results based on all ASVs 
(M2=0.031 for bacteria and M2=0.038 for fungi when compared by Procrustes Analysis), including a 
clear separation of samples according to compartment and host species (Figures 7.1c, d; S7.3a, b). 
Importantly, the percentage of unexplained variance using only repASVs decreased by 8.2% for 
bacteria (from 51.3% to 43.1%) and by 7.0% for fungi (from 46.0% to 39.0%). Together, the results 
from these analyses indicate that, despite the absence of a core microbiota at the ASV level, we can 
identify microbial taxa that are representative of the whole community. This approach has the 
advantage of increasing the variance of the data explained by biological factors, and reducing that 
associated with technical factors.

Figure 7.4 Distance between the diversity of full and examined subset community members. Subset 
members of bacterial (A) and fungal (B) communities were chosen and assessed for both RA and occupancy 
with thresholds from 1% to 20%. Vertical dash lines indicate the determined threshold for representative 
ASVs. 

7.3.2 Network analysis of the plant microbiota 

To reduce the noise introduced by rare taxa, we implemented the network analysis on the integrated 
dataset for bacteria and fungi respectively with determined repASVs, which in turn decreased the 
computing time and resource. Correlation coefficients between pairwise representative community 
members were computed according to their co-variance among samples, denoted as the edges in the 
global  networks that connecting the nodes, i.e., microbial taxa that was represented by ASVs 
(detailed methods in section 7.5.4). To compare the connections of nodes between networks inferred 
from different correlation coefficients, we calculated the density for both positive and negative 
edges (Figure 7.5a, b) and compared the distribution of node degree, which represents the number 
of edges that connecting to each node (Figure 7.5c, d). A noteworthy bias introduced by the network 
construction method was observed for both kingdoms (Figure 7.5), where the use of Pearson 
correlation coefficients lead to more sparsely connected networks, while networks inferred using 
SparCC had the highest portion of negative connections. To verify if this observed bias is caused by 
the heterogenous and complexity of samples integrated for network construction, we inferred the 
networks separately for each compartment samples. We then examined the same features for the 
constructed networks individually and observed similar variances between applied correlation 
coefficients (Table S7.1). Even though we noted the density differences between compartments, due 
to the bias and random pattern demonstrated by compared methods, extreme cautions need to be 
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paid when trying to conclude any meaningful insights. To conclude, despite the complexity of 
samples used for network inference, the bias introduced by different correlation coefficients 
prevents the drawing of convincible conclusions when comparing networks only based on 
mentioned features such as the network density and degree distribution. 

Figure 7.5 Density and degree distribution of the global network. Bacterial (a) and fungal (b) networks 
were constructed based on the co-vary of repASVs in all samples using different correlation coefficients. 

7.3.3 R package ‘mina’: microbial community diversity and network analysis 

7.3.3.1 Network cluster-based community diversity analysis

The diversity analyses based on community compositions measured the differences between 
samples at the individual taxa level. Additionally, microbe-microbe interaction dynamics were 
characterised by co-occurrence networks. To provide a more comprehensive analysis of our dataset, 
we combined these two approaches and developed a network-based diversity index (Figure 7.6). 
First, we generated microbial interaction networks based on pairwise ASV correlation coefficients 
(Step 2 in Figure 7.6). Next, we grouped co-occurring ASVs into network clusters (NCLs) using 
two alternative algorithms: Markov cluster (MCL, Enright, 2002) and affiliation propagation (AP, 
Frey & Dueck, 2007). Afterwards, the number and RA of network nodes (i.e. ASVs), belonging to 
the same network cluster were aggregated as the unweighted and weighted RA of the corresponding 
cluster, respectively (Step 3 in Figure 7.6).   Later, pairwise distances or dissimilarities between 
samples were calculated based on the RAs of NCLs and used for community diversity analyses, 
similar as before (Steps 4, 5 in Figure 7.6). The implementation of the corresponding workflow was 
standardized as the diversity analysis part of the R package ‘mina’ (details in Section 7.3.3.3).

(Figure on next page) Figure 7.6 Network cluster-based community diversity analysis. Conventionally, 
distance matrix (1) is calculated from composition matrix (0), in which the relative abundance of each 
composition in each sample was characterized, and afterwards visualized by PCoA (5). We introduce here 
steps (2 to 4) to first compute the correlation between pairwise compositions (2) and then cluster the closely 
co-varied members (3), based on which the aggregated number or relative abundance are added up. Based on 
the obtained NCL matrix, the distance between samples were calculated (4) and visualized (5).
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(Caption on previous page) Figure 7.6 Network cluster-based community diversity analysis. 
7.3.3.2 Network comparison and discriminative feature selection

As previously shown in section 7.3.2, network analysis has been broadly applied to the microbial 
profiling data to  compare  the  higher-level dynamics  between different conditions. However, the 
prevalent tools are mainly focused on the comparison between derived network properties (Faust et 
al., 2015; Mandakovic et al., 2018; Huang et al., 2019a; Banerjee et al., 2019; Mamet et al., 2019; 
Lima et al., 2020; Xiong et al., 2021; Zamkovaya et al., 2021), which either overwhelmingly biased 
by the network construction method or represent only a few perspectives of the network structure. 
To allow the application of alternative approach that quantify structural differences, we have 
developed a Monte-Carlo permutation test (Nichols & Holmes, 2002) that can be used to 
statistically assess the calculated network differences between microbial networks at the global and 
local scales (Methods and Figure 7.7).  

To perform this analysis, samples were initially assigned to groups according to their real 
experimental set-up (referred as observed dataset later, Figure 7.7a). Afterwards, same samples 
were randomly labelled and formed the permutated dataset (Figure 7.7b). To avoid biases given by 
an uneven number of samples from different conditions when inferring networks, count matrices 
with the same dimensions were subsampled in parallel for the observed and permutated datasets 
respectively. Based on which, co-occurrence networks were constructed, and their distances were 
then computed. We applied here two measurements for network comparison at the global level, 
Spectral and Jaccard distance. For each pairwise comparison, eigenvectors of networks were 
calculated from their Laplacian matrix (L), which was obtained by subtracting adjacency matrix (A, 
the correlation network matrix) by the degree matrix (D). Based on this, Euclidean distance between 
the first k (adjust according to the dimension of correlation matrix) eigenvalues of two Laplacian 
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matrices was computed as the Spectral distance between networks. Alternatively, the Jaccard 
distance was calculated by dividing the sum of matrix contrast by the sum of the maximum of 
absolute value between two networks represented by correlation matrices. 

For the evaluation of the significance value, we compared the observed distances between networks 
from different environments or conditions to the estimated null distribution, which were obtained by 
calculating pair-wise distances between permutated networks (Figure 7.7b). The P-value of the test 
is obtained by calculating the proportion of distances between permutated networks (dp) greater 
than the observed values (d) with formula P = (Nd>dp + 1) / (N + 1) where Nd>dp is the times when d 
is larger than dp; and N is the time of pairwise comparisons between the real and permutated 
distances. To obtain a meaningful significance evaluation, a large N is needed. To reduce the 
demanded computing time and resource for network inference and distance calculation, we 
increased the number of subsampling for both original and permutation datasets simultaneously. 

Figure 7.7 Permutation-based network comparison.   Samples were labelled to different groups in the 
observed (E1 and E2; a) and permutated (Ep1 and Ep2; b) dataset according to their experimental setup. 
Sample labels in the permutation dataset were randomly assigned. For each condition, N times subsampling 
were applied. Afterwards, correlation networks were inferred for both observed (E1 network and E2 network) 
and permutated (Ep1 network and Ep2 network) datasets and their distance (d1,2 and dp1,2) were calculated 
respectively. The significance of network distance was then evaluated via comparing to the distance between 
randomized networks. 
Furthermore, to validate the influence of a specific community member or group of members on 
network distance, we also generated the corresponding node-specific permutation dataset, where the 
metadata of samples were only randomized for specific community compositions. By comparing the 
distances between observed networks and partially permutated networks, the impact of these nodes 
could be quantified and statistically evaluated.  

7.3.3.3 Integrating the microbial analysis framework into an R package

To ensure the repeatability and reproducibility, we integrated the above-mentioned data processing 
and novel diversity and network analysis methods into an R package ‘mina’ (for microbial 
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community diversity and network analysis; https://bioconductor.org/packages/release/bioc/html/
mina.html). As indicated by the package name, the ‘mina’ workflow could be divided into two main 
parts: community diversity analysis (green functions; Figure 7.8), and network analysis (purple 
functions; Figure 7.8). By processing the microbial community profiling results, usually represented 
by a table that stores the counted number of OTU or ASV within each sample, ‘mina’ calculates and 
compares the network cluster-based diversities of microbiota. Moreover, ‘mina’ constructs and 
statistically evaluates the networks inferred for groups determined by the metadata of samples. We 
could apply this workflow to other non-microbiota related datasets straightforwardly, as long as a 
quantitative table describes the relative abundance of features in samples and a descriptive table 
defines the metadata of each sample available, such as the high-throughput transcriptomic data in a 
classical case-control set-up experiment. 

Figure 7.8 Overview of the R package ‘mina’. Ellipse and rectangles indicate fields and functions of the 
object ‘mina’ respectively. Color indicates different types of functions and data attribute.  
The whole package was built around a data structure object, also called ‘mina’, which contains all 
the relevant features as its slots and can be accessed for all steps in the workflow. The data object 
‘mina’ expects the present of count data such as the commonly used OTU or ASV table to indicate 
the abundance of each community member in each sample (‘tab’; Figure 7.8). In addition, a 
descriptive metadata table, including the group information of samples, is also required for the most 
downstream analysis as input (e.g., comparison between treatments; ‘des’ in Figure 7.8). With 
defined count data ‘tab’ and metadata ‘des’, community diversity and network analyses could be 
performed following the workflow and the detailed vignette of the package (https://
bioconductor.org/packages/release/bioc/vignettes/mina/inst/doc/mina.html). Alternatively, the user 
can also perform each step on self-defined feature matrices (e.g., ASV/OTU tables; detailed could 
be found in the vignette) independently without using the ‘mina’ object. Notably, the ‘mina’ 
package is not limited to the application in plant microbiota but also appliable to all types of 
microbial community studies. 
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7.3.4 The R package ‘mina’ provides novel insights into plant microbiota 

We applied ‘mina’ to the integrated plant microbiota dataset and assessed the novel network cluster-
based diversity analysis. Moreover, we computed network distances between different conditions 
(soil type, compartment, and host species) and statistically assessed their significances. To identify 
the most influential taxon for network differentiation, we further evaluated the contribution of each 
taxon individually.  

7.3.4.1 ‘mina’ diversity analysis decreased the unexplained variance of plant microbiota

Assessment of bacterial and fungal community diversity using ‘mina’ (detailed methods in section 
7.5.5.1) showed a considerable decrease of unexplained variance compared to the conventional 
composition-based method (14-34% decrease for bacteria and 8-31% for fungi; Table 7.2). 
Particularly, networks inferred using SparCC and clustered using Affinity Propagation outperformed 
all others, with a decrease of 20% unexplained variance for bacteria and 15% for fungi (Table 7.2). 
At the same time, the separation of samples according to biological factors (e.g., compartment, host 
species) was more evident using network cluster-based diversity indices (Figure S7.4), suggesting 
an increased signal-to-noise ratio. 

Table 7.2 Unexplained variance of ASV- and NCL-based diversity analyses. P = 0 was used for AP 
clustering. Column No. indicates the number of ASVs or network clusters applied for diversity analysis; 
column % is the unexplained variance ratio.  

7.3.4.2 Network dynamics of plant microbiota between different compartments

We further compared the microbial networks that we inferred for different compartment groups for 
bacteria and fungi, respectively, using ‘mina’. Spectral distances between networks were visualized 
with PCA (Figure 7.9). As expected, networks of different groups were separated from each other 
for both kingdoms. For bacteria, networks of root and soil are closer to each other, indicating 
similar interactions between microbes in these two compartments. For fungi, the rhizosphere and 
soil networks overlap, showing a similar connection topology. Particularly, rhizoplane samples 
derived distinctive networks from others in both kingdoms, which could be due to the single host 
species of this compartment. In the corresponding permutation dataset, where the samples were 
randomly labelled, the dividing patterns between conditions were disappeared. Although the 
subsampling process was randomized and therefore the computation of the network distance 
process was non-deterministic, highly consistent results were obtained between different runs when 
repeating the analyses. We also performed the network comparison step with higher number 
subsampling process (99 times for both observed and permutated datasets, Figure S7.5), and the 
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Network Clustering Bacteria Fungi
No. % No. %

/ ASVs 42,060 51.3 9337 46.0
RepASVs 2047 43.1 370 39.0

Pearson MCL 45 15.7 36 26.2
AP 191 29.4 58 31.5

Spearman MCL 4 10.6 4 7.6
AP 81 23.1 21 24.1

SparCC MCL 3 9.3 2 10.7
AP 78 23.1 29 23.6



results showed a similar separation as observed before (Figure 7.9), indicating that the small 
number subsampling is already capable of capturing the network dynamics. 

Figure 7.9 Bootstrap-permutation network analysis of plant-associated microbiota. Observed (a 
bacteria, b fungi) and permutated (c bacteria, d fungi) networks are represented by points. Subsampling time 
n = 33 for both observed and permutated datasets for both kingdoms. 
Furthermore, we examined the mean pairwise distance between compartments and their 
significance. Surprisingly, the distance between some of the comparisons was not significant (Figure 
S7.6), such as between root and rhizosphere networks of bacteria (average d = 47, P = 0.059) and 
fungi (average d = 19, P = 0.14), indicating the stringency of the F-test. Besides, as observed in 
Figure 7.9, networks of fungal rhizosphere and soil are close to each other, and their corresponding 
distance was found to be non-significant (d = 14, P = 0.20). 

7.3.5 Assembly of alga- and root-associated microbiota in Cologne Agricultural Soil 

To focus on the impact of compartment and host species on microbial network structure variation, 
we applied these methods to a subset of samples derived from studies conducted in the greenhouse 
using the same soil type (Cologne Agricultural Soil; CAS), where environmental factors were kept 
stable. We compared 854 plant root- (including A. thaliana and L. japonicus) and soil-borne alga- 
(C. reinhardtii) associated communities (Table. 7.3). 
7.3.5.1 CAS-associated microbial community diversities

We first investigated the diversities of CAS-derived root- and alga-associated microbial 
communities (Figure 7.10) and observed a clear separation of samples from different compartments, 
as well as a clustering of samples derived from the same host species (Figure 7.10a), indicating the 
diversification of microbiota structures associated with different photosynthetic organism. 
Phycosphere samples associated with C. reinhardtii clustered closer to soil compared to rhizosphere 
compartments, indicating a lower host effect for the alga than for the other two plant hosts. 
Furthermore, we assessed the unexplained variance of diversities between samples and at the ASV 
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level, the R2 value was up to 47.4%. Moreover, Shannon indices were compared between samples 
and the same decreasing from soil to rhizosphere to root for both L. japonicus (referred as Lj later) 
and A. thaliana (referred as At henceforth) was observed (Figure 7.10b) as reported earlier (Section 
7.3.1.1). Notably, a slightly higher (P < 0.001) alpha diversity of phycosphere samples were 
identified compared to root compartments of Lj and At, consistent with the observation in Chapter 5 
(Figure 5.2).

Table 7.3 Sample number of CAS-derived conditions. 

We examined the occupancy distribution of community members under each condition and 
confirmed a similar pattern at all taxonomic ranks as reported earlier (Section 7.3.1.2). Particularly, 
we compared the occupancy and the accumulated RA distribution of taxa at the ASV and family 
levels (Figure 7.10c). At the ASV level, most of the compositions were identified in very few 
samples, and they account for a relatively small proportion of aRA for the whole community, 
usually less than 25% (Figure 7.10c). Consistent with what we described earlier, at the higher 
taxonomic level, a group of core taxa emerged for each condition. Notably, these taxa with high 
occupancy account for a large proportion of aRA, indicated by the steep increase of the aRA curve 
in the end (Figure 7.10c).

(Caption on next page) Figure 7.10 Community diversity and taxa distribution of CAS microbiota.
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(Figure on previous page) Figure 7.10 Community diversity and taxa distribution of CAS microbiota. 
(a) PCoA of beta-diversity between samples. R2 is the ratio of community diversity variance that cannot be 
explained by compartment, soil batch, host species, and host genotype; (b) Alpha-diversity of samples from 
each condition calculated based on all ASVs; (c) occupancy and accumulated RA at different taxonomic 
ranks, i.e., ASVs and families, in each condition. From upper to lower, conditions are soil; phycosphere; 
rhizosphere and root of L. japonicus; rhizosphere, rhizoplane, and root of A. thaliana. Shannon diversities 
between conditions were tested with the Wilcoxon test with FDR correction. 

7.3.5.2 A reduced set of repASVs recapitulates whole-community microbiota diversity patterns

Previously, we have shown that repASVs of the integrated dataset that identified using occupancy 
and RA criteria were able to recapitulate most of the community diversities (Section 7.3.1.3). To 
assess whether these repASVs, derived from the whole dataset, maintain its representative for the 
CAS dataset, we checked the aRA, the Shannon diversity, and community dissimilarities captured 
by these predefined repASVs (Figure S7.7). In most samples, more than half of the entire 
community was represented by the repASVs, and the proportion increased to on average 80.94% 
and 81.40% in Lj and At roots, respectively (Figure S7.7a). Similar patterns were observed when 
calculating the alpha-diversities using only repASVs (Figure S7.7b) comparing to the whole 
communities (Figure 7.10b). Notably, the diversity differences between soil and other root-
associated compartments are decreased, suggesting the non-repASVs with relatively low RA and 
occupancy contributed to the high alpha-diversity of soil microbial communities. Moreover, among 
all the conditions, the phycosphere possessed the lowest aRA and alpha diversity, as well as the 
largest decrease of alpha diversity when leaving out rare ASVs. This indicates a different 
community shift compared to other plant-associated compartments and/or the bias caused by the 
number of samples from the specific condition included in the dataset when identifying repASVs 
(Table 7.1). We also compared community beta-diversity basing on repASVs (Figure S7.7c) and 
obtained highly consistent patterns as before (Figure 7.10a). Samples from different compartments 
were separated, and different host species drove the community shift distinctively. Meanwhile, the 
R2 decreased slightly (from 47.4% to 40.7%) when comparing sample dissimilarities based only on 
the repASVs, indicating the reduced noise when excluding rare taxa for diversity analysis. 

7.3.5.3 CAS derived microbial community diversity analysis using ‘mina’

We surveyed the occupancy and accumulated RA of representative members, i.e. repASVs, only 
(Figure 7.11). At the ASV level, a substantial portion of aRA was contributed by prevalent repASVs 
within each condition, indicated by the increasing slope of the cumulative aRA curve when 
occupancy increased. For example, in rhizosphere and root samples of Lj, more than half of the aRA 
were contributed by repASVs present in more than 75% of the samples (Figure 7.11a). At the 
family level, as expected, we observe the enrichment of prevalent taxa, where the number of taxa 
with high occupancy was increased, and these taxa accounted for a large portion of aRA, shown by 
the cumulative aRA curve (Figure 7.11b). a substantial portion of aRA was also contributed by more 
prevalent repASVs within each condition at the ASV level. For example, in rhizosphere and root 
samples of Lj, more than half of the aRA were contributed by repASVs present in more than 75% of 
the samples (Figure 7.11a).  

(Figure on next page) Figure 7.11 Occupancy and the corresponding cumulated aRA distribution of 
taxa and network clusters. Scaled density distribution of CAS, Cr-, At- and Lj-associated microbiota at the 
ASV (a), family (b), and network clusters (c) levels of repASVs.  
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(Caption on next page) Figure 7.11 Occupancy and the corresponding cumulated aRA distribution of 
taxa and network clusters. 

Moreover, a CAS-associated network was constructed using repASVs and communities were then 
compared based on the derived network clusters by ‘mina’. Similar as we observed in Section 
7.3.3.2, the unexplained variance ratio between different conditions was decreased for NCL-based 
diversity analysis. NCLs clustered by AP from the Spearman correlation network outperformed 
others by reducing the most R2 (from 0.474 to 0.240, Table S7.2) while maintaining the 
dissimilarities patterns (Figure S7.8). Moreover, we surveyed the occupancy and accumulated RA 
of those network clusters (Figure 7.11c) and compared them with the distribution of community 
compositions at both the ASV (Figure 7.11a) and family ranks (Figure 7.11b). A comparable 
distribution pattern of occupancy and aRA among conditions was observed for network clusters, 
where a precipitate increase of aRA was observed, contributed by the clusters of microbes with 
higher occupancy (Figure 7.11c).   

7.3.5.4 Network dynamics between CAS-associated conditions

We compared networks of different hosts and compartments using ‘mina’ network analysis 
workflow (Figure 7.12). Assessment of network Spectra distances (Figure 7.12a) revealed a 
separation along the first principal component (82.97% of the variance) between microbial networks 
derived from soil-based microhabitats (unplanted soil and rhizosphere) and host epi- and endophytic 
compartments (rhizoplane, root endosphere and algal phycosphere). The observed clustering of 
network groups was collapsed in the permutation dataset, indicating the differentiations between 
compared conditions were significant (Figure S7.9). Despite the similarities of community structure 
between  phycosphere  and rhizosphere (Figure 7.10), when comparing the networks, the 
phycosphere were more similar to the root samples, especially to the Lj root (Figure 7.12a, b). This 
suggests that close associations with a photosynthetic host lead to significant changes in microbial 
co-occurrence patterns, which could be driven by higher concentrations of diverse organic carbon 
compounds or by direct interactions with the host.  
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Within each host species, network dynamics between compartments varied differently. For At, the 
rhizosphere and root compartments drove changes to different directions in the first two principal 
components space of the Spectra distance. Surprisingly, the distance between rhizosphere and root 
(d = 83; P = 0.010) is larger than the distance between soil and root networks (d = 72; P = 0.13). 
While for Lj, root compartment shifted the networks from soil (d = 108; P = 0.0016) in the same 
direction as the rhizosphere networks (d = 47; P = 0.20). To inspect this unexpected non-significant 
distance given the compared networks clustered separately in the PCA (Figure 7.12a), we examined 
the distribution of the distance between root and soil in the observed dataset and permutated 
datasets, respectively, for both plant hosts (Figure S7.10). Distances between At root and CAS 
shown a clear separation with a slight   overlap in the distribution (Figure S7.10a), caused the non-
significant P value due to the rigid statistical test. For Lj, the observed and permutated distances 
between root and CAS were merely intersected, therefore leading to the significance of their 
network divergence (Figure S7.10b).

Figure 7.12 Network distances between different CAS-associated conditions. (a) PCA of network 
Spectra distance shows a clear separation between different compartments and host species. (b) Average of 
Spectra distance indicating a similar result as observed in (a). (c) Average of Jaccard distance between 
networks from different compartments and host species. R2 indicates the variance of Spectra distances 
between networks, which cannot be explained by compartment and host species.  

We also compared the Jaccard distances between networks of different CAS-associated conditions 
(Figures 7.12c). Even though all the network distances were significant, due to the highly similar 
distances between different inter-condition comparisons, this approach failed to characterize the 
network differences effectively. For example, when comparing root and rhizosphere to rhizoplane 
of At, both compartments have an average distance of 0.98, while they were very different 
demonstrated by Spectra distance (d = 28 and 99 for root and rhizosphere, respectively; Figure 
7.12b). Despite the different sensitivities between two network distance measurements, similar 
patterns were found between them. For example, when comparing between networks of soil and 
rhizosphere, Lj shown a slightly stronger selection effect compared to At, with an average higher 
distance differences of 5 and 0.5 for Spectral and Jaccard distances, respectively (Figure 7.12b, c). 

7.3.5.5 Distinctive features contribute to CAS-associated network dynamics

To assess the contribution of each group of nodes, i.e., family or network cluster, to the observed 
differences between networks, we applied the partial permutation method as described in Section 
7.3.3.2. Distance changes between networks constructed from the observed and partially permutated 
dataset were quantified (Figure 7.13). As demonstrated by the decrease of each permutation, most 
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families and network clusters contributed inconsequentially, with an average of around 0. Moreover, 
the effect of each group on the distance between different conditions was various, such as the 
highlighted comparisons between soil and root from both host species (Figure 7.13).  

Figure 7.13 Distance decrease of each permutation group compared to the actual network distance. 
Distance changes caused by each permutated family (a) and network cluster (b) were sorted by the average 
decrease of distance between different comparisons (shown in purple). The comparison between CAS and At 
root was shown in green, CAS and Lj root was in orange and other comparisons in grey. 

Figure 7.14 Correlation between partially permutation distance change and other features.  Y-axis 
shows the average distance change for each family (a) or network cluster (b) permutation, compared to the 
distance between bootstrap networks inferred from the original dataset. For each panel, from left to right, the 
x-axis shows the mean value of features among compared conditions, including the number of present ASVs 
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in the group, the aRA of the group, the aRA normalized by the number of present ASVs, and the occupancy 
of the groups. The teal line is the linear regression of the data points. Pearson correlations are computed, and 
all coefficients here are significant (P < 0.001). 
To investigate the factors that might influence the change of Spectral distance when permutating 
each group, we calculated their correlation with features including the group size (the number of 
ASVs contained in the group), aRA, normalized aRA, and occupancy (Figure 7.14). For the mean 
distance change among all comparisons, all tested features were significantly correlated when 
permutating the group (P < 0.001). Stronger coefficients were found for most features when ASVs 
were grouped by network cluster than taxonomy, except for the aRA (0.58 for families and 0.57 for 
network clusters, respectively). The number of ASVs in the group had the strongest correlation with 
changes in network distances, followed by node occupancy.

Figure 7.15 Network distance change for all inter-condition comparisons. Nodes grouped by family (a) 
and network cluster (b) are shown here. Distance change of cumulative group permutation datasets when 
nodes are grouped by network clusters. Boxplot shows the distance decrease ratio compared to the average 
distance calculated by bootstrapping the original dataset. The line plot shows the P-value calculated from the 
permutation test. The shape of points indicates the significance of the Wilcoxon test with FDR correction 
(full points are significant comparisons and empty points are non-significant ones). Dash line in gold shows 
the cutoff of significance (P = 0.05). The solid grey line indicates 0.5 for the right side of the y-axis, and the 
dash lines below and above are 0.45 and 0.55, respectively. 

To investigate how many permutations of families or network clusters is needed to diminish the 
separation between networks, we permutated the groups of nodes accumulatively, following the 
descending order of mean distance change when they were permutated individually (Figure 7.15). 
For all tested comparisons, and both grouping approaches, we observed an increasing distance 
change ratio in the beginning of accumulating permutation, reaching saturation after a relatively 
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small number of groups. The P values calculated by the Monte Carlo permutation test, i.e., counting 
the times when permutation distances are larger, fluctuated around 0.5 after cumulative permutation 
of groups, indicating the process reached the randomization (Figure 7.15). We examined the 
distance decrease and changes in significance of all 21 pairwise comparisons between seven CAS-
associated conditions. To quantify the contribution of groups to the network separation, we 
identified the changing point, at which the majority (12 out of 21) comparisons became not 
significant anymore testing by the Wilcoxon (FDR correction) for both taxonomic and network 
cluster grouping. Chitinophagaceae was identified as the distinctive point for family-based partial 
permutation, ranking 26 among all groups (Figure 7.15a). For the network clusters, also the 26th 
group (Cluster_51 here) was identified as the changing point (Figure 7.15b). Although the same 
number of groups was found before the changing point, nodes included in the network clusters (N = 
736) were much less than families (N = 985). The saturation of distance decrease ratio for both 
groups at the determined changing point indicates the trivial effect of following groups, therefore, 
groups ranked before the changing point were extracted as distinctive groups. We confirmed the 
majority contribution of distinctive groups to the network separation by plotting the PCA of 
network distances when cumulatively permutating these groups, and networks of different groups 
were dispersed randomly (Figure S7.11a, b). Moreover, when comparing the networks basing only 
on these distinctive groups, similar differentiation patterns were observed, suggesting similar 
distinctive power of the subset groups as the full dataset (Figure S7.11c, d).  

7.4 Discussion 

In this chapter, we integrated plant-associated microbial community samples from diverse 
environments and showed the representative bacteria and fungi recapitulate the microbiota diversity. 
We introduced higher-order features to community diversity analysis to improve the comparison 
and developed the network evaluation to assist the understanding of system dynamics. 

7.4.1 Core and representative members of plant microbiota 

By characterizing the community structures, specifically the abundance of each composition, of 
plant microbiota from conditions including different compartments, host species, and soil types, we 
have shown here that a well-defined core microbiota was absent at the ASV level for both bacteria 
and fungi. This consistent long-normal distribution of species abundances between micro- and 
macro-ecosystems indicates that macroecological laws could be used to quantitatively describe the 
microbial ecosystem (Grilli, 2020). Nonetheless, common taxa were observed at the higher 
taxonomic ranks, similar to the observation of core root microbiome across plant phyla along a 
natural soil chronosequence (Yeoh et al., 2017). Taken together the phylogenetically conserved 
bacterial metabolism (Isobe et al., 2019), and functional overlap of plant microbiome across 
compartments and species  (Bai et al., 2015; Durán et al., 2021; Wippel et al., 2021), we 
hypothesize that the assembly of plant microbiota was driven by the functional capacity across 
various soil type and host species.  

To compensate for the lack of core ASVs, we applied Procrustes Analysis to rationalize the 
extraction of influential members. The selected compositions confirmed the previously described 
abundance-occupancy distribution (Shade & Stopnisek, 2019) in turn. We further demonstrate that 
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they recapitulate the majority of aggregated relative abundance (aRA), community diversity and 
network dynamics of the whole community system, therefore, we proposed the term representative 
ASVs (repASVs). Moreover, we showed that these repASVs derived from the integrated large 
datasets maintained their representative when applied for community diversity analysis of a specific 
subset of samples, such as the CAS-associated conditions we assessed in this chapter. Although the 
bias towards the conditions that are well represented in our datasets needs to be evaluated 
additionally when future datasets are integrated, this repASVs set has proven to be able to be used 
as a base representative composition set for plant microbiota research, especially for those studies 
with limited sample numbers, assisting the cross-reference between different ecological surveys.  

7.4.2 Community diversity analysis based on higher-order features 

There is a long-lasting debate between using OTU or ASV as the unit for microbial community 
diversity analysis. By clustering highly similar sequences (with >97% identity usually) to one unit, 
OTU clustering decreases the random noise introduced by sequencing and data processing. 
However, the fact that the clustering is a nondeterministic progress makes the comparison between 
studies impossible. For ASVs, since each unit corresponds to one specific sequence, it could be 
connected to a certain biological entity and this makes it possible to compare between datasets. 
However, the common presence of polymorphism in some taxa (Moreno et al., 2002; Větrovský & 
Baldrian, 2013) introduces more artefactual community members and inflation in the alpha-
diversity in the analysis of community structure when using ASVs.  

To take advantage of both approaches, we introduced the previously described microbial guild 
concept, which considering the co-varied microbes as a unit, into plant microbiota. The application 
of this approach in human gut microbiome research has already proven to be capable of reducing 
the dimension and sparsity, and assisting the identification of candidate community members that 
related to host health (Wu et al., 2021). Under this scheme, community members were represented 
by ASVs, and sequences were clustered according to their covariation or cooccurrence instead of 
their similarity. This approach provides similar yet broader advantages against random noise 
compared to OTU clustering. In addition, since the different copy 16S rRNA sequences from the 
same strain would always co-occur, this approach also reduces the bias introduced by the presence 
of polymorphic copies of the amplicon sequences. Subsequently, the inferred network clusters could 
be interpreted as microbial guilds and thus provide novel ecological insights. Implementing the 
developed network cluster-based diversity analysis on the integrated plant microbiota dataset 
showed the a decreased in the unexplained variance, indicating the higher signal-to-noise ratio of 
this method compared to OTU- and ASV-based approaches.  

7.4.3 Network comparison at the local and global scales 

One of the challenges of using co-occurrence networks for the comparative study of microbial 
communities resides in identifying statistically significant differences between networks from 
different environments. Here, we established a comparison workflow based on the Spectral distance 
along with a Monte Carlo permutation significance test. We computed the distances between 
complete adjacency matrices that described the networks and then compared those distance matrices 
using the tools that were broadly implemented in diversity analysis to demonstrate the comparison. 
PCA and PERMANOVA results (Figure 7.10, 7.12) indicated we were able to differentiate the 
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networks and evaluate the variances that could be explained by known factors, i.e., meta-data of 
microbiota samples, with our workflow. 

After identifying the differently connected networks, we implemented a similar concept to compare 
those networks at the local scale to discover the distinctive features contributing to the network 
distances. To reduce the number of examined feature, community compositions were grouped 
according to their taxonomy (at the family level) and ecological interaction (correlation network 
clusters). We show that network cluster, which represent microbial guild, is a better unit for 
comparison between microbial communities than approach based on microbial taxa (Figure 7.15). 
Therefore, for the previous network topology comparison studies that based on OTU, a taxonomic 
unit (Faust et al., 2015; Mandakovic et al., 2018; Banerjee et al., 2019; Mamet et al., 2019; Xiong 
et al., 2021), we would expect an increased sensitivity when the network cluster based analysis are 
applied. We also identified the distinctive groups that contribute to network differentiations between 
CAS-associated conditions. Analysis of correlations between group features, including network 
distance change, aRA, and occupancy (Figure 7.14) indicate that the more abundant and prevalent 
groups also have a higher influence on the network differentiation. This could further guide the 
future experimental design, particularly the selecting of community compositions to assemble 
SynComs for the validation of data-driven hypothesis.  

To summarize, we described an R package ‘mina’ for microbial community diversity and network 
analysis. By applying a network cluster-based diversity analysis on the plant microbiota dataset we 
integrated, we show that this new method decreases the noise while maintain the variances between 
samples from different environments. Moreover, using a novel statistical framework for network 
comparison, we show that we can identify significant differences between ecological networks and 
identify relevant community features. We observed different clustering patterns of plant microbiota 
dynamics when paralleling microbial diversity and network analysis results. By applying the same 
variance analysis and visualization approach developed in ‘mina’ workflow, we were able to 
demonstrate those differences more intuitively, comparing to conventional microbial network 
comparison methods.  

7.5 Materials and Methods 

7.5.1 Pre-processing of microbial community profiling data 

As mentioned in Chapter 1, for microbial community surveys, the available technology developed 
from pyrosequencing represented by Roche 454, which was widely applied in the early 2010s, to 
Illumina sequencers, namely MiSeq and HiSeq. The integrated dataset used in this Chapter contains 
samples from various studies (Zgadzaj et al., 2016; Durán et al., 2018; Thiergart et al., 2019, 2020; 
Harbort et al., 2020; Wippel et al., 2021) amplified by the same primer set. To limit the bias 
between different studies and benefit cross-referencing, a standardized data processing pipeline was 
developed and implemented (https://github.com/Guan06/DADA2_pipeline) to process the data the 
same way so that the biological variances was maintained.  

7.5.1.1 Bacterial 16S rRNA gene sequencing data processing 
The bacterial community data processing pipeline is mainly based on DADA2 (v1.12.1) (Callahan 
et al., 2016). For Roche 454 pyrosequencing, single-end reads are generated with lengths ranging up 
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to 700 bp and thus may contain sequences outside the examined region. Therefore, after 
demultiplexing, the forward and reverse primers were mapped to the sequencing reads and trimmed 
the part outside the region (Figure 7.16a). Afterwards, reads are filtered by length, longer than 
200bp and shorter than 540bp, and quality, with parameter “maxN=0, maxEE = 2, truncQ=2”. 

Figure 7.16 Pre-processing of bacterial amplicon sequencing data. Reads sequenced by Roche 454 (a) 
and Illumina MiSeq (b) are shown here. Regions in between dash lines in (b) are the overlap between 
forward and reverse reads. 
Later on, the Illumina sequencing platform was widely used because of the higher throughput and 
lower cost. Pair-end sequencing was conducted to compensate for the shorter sequencing length 
compared to Roche 454 (Figure 7.16b). Raw sequencing reads were truncated to 260 bp for the 
forward reads, and 240 bp for the reverse reads and filtered with the following parameters: 
“maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE”. Subsequently, error rates were inferred from 
filtered reads until convergence or exceeding a maximum consistent number of 20 and corrected. 
Sequences of the amplified region were then obtained by merging the forward and reverse 
sequences together according to their overlap. 

7.5.1.2 Eukaryotic microbial profiling data processing

Meanwhile, for the eukaryotic microbes, we amplified the ITS region for the profiling sequence. 
Unlike the 16S region, the length of ITS is highly variable between different taxa. By mapping the 
forward and reverse primers to the sequencing reads, the length of the ITS region could be 
estimated (Figure 7.17). When the ITS region is shorter than the sequencing length, reverse primer 
sequence could be identified in forwards reads and vice versa. For the ITS regions longer than the 
sequencing length, an overlap sequence could be identified between forward and reverse reads and 
used for merging the two single-end reads. For the cases that the amplified region is shorter than 
sequencing length, ITS regions were kept after trimming the forward and reverse reads according to 
the aligned coordinates of primers. 
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Figure 7.17 Pre-processing of fungal ITS reads by pair-end sequencing. MiSeq sequencer was applied 
for studies mentioned in the thesis. Dash lines indicate the overlap between forward and reverse reads. 

7.5.2 Sequence and diversity analysis for microbial communities  

Natural community profiling is the isolation-independent strategy where the total DNA of plant 
microbiota were extracted, and specific amplicons for each microbial kingdom was sequenced. 
Typically, natural root-associated microbial communities are highly diverse and thus need deeper 
sequencing depth to characterize the composition. After pre-processing, sequences were clustered 
into OTUs or used as ASVs directly. In this thesis, all analyses were implemented at the ASV level, 
and some have OTUs as additional results to assist the cross-reference. By mapping the reads to 
these composition reference sequences, the aligned reads number of each community member in 
each sample was obtained and formatted as a matrix, named OTU or ASV table. For bacteria and 
fungi, sequences were mapped to silva (v138, Quast et al., 2012) and unite (release 04.02.2020, 
Nilsson et al., 2019) databases for taxonomic assignments, respectively.

Afterwards, alpha- and beta-diversity was performed for both bacterial and fungal communities. To 
remove the sequencing depth bias, normalization was introduced before the comparison of 
community diversities. Samples were rarefied to the same sequencing depth to remove the bias 
introduced by the uneven number of reads. Bacterial and fungal samples were rarefied to depth 
1500 and 2000, respectively, using the norm_tab() functions in ‘mina’. Afterwards, the Shannon 
index of each sample is calculated using the diversity() function from ‘vegan’ (Oksanen et al., 2019) 
to characterize the number of community members and the evenness of their relative abundance 
distribution. To reduce the random error of rarefaction, this process was repeated 999 times, and the 
average was used as alpha-diversities of corresponding samples. Bray-Curtis dissimilarity was 
calculated to evaluate the dissimilarities, i.e. beta-diversity, between samples, with 
the parDist() function from ‘parallelDist’ package using 80 threads considering the large ASV and 
sample numbers. Unexplained variance ratio was calculated as described in (Anderson, 2001) using 
the get_r2() function in ‘mina’ package.
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7.5.3 Representative ASVs selection 

Community members with the highest relative abundance and occupancy were extracted as the 
subset ASV table and Procrustes Analysis was implemented to compare the community shifts when 
only considering those ASVs. Function ‘procrustes()’ from package ‘vegan’ (Oksanen et al., 2019) 
was used to calculate the M2 value, the sum of squared distances between paired points in the Bray-
Curtis dissimilarity matrices of the compared ASV tables. ASVs ranked top i and j percentage 
occupancy and RA were selected as subset ASVs; and parameters i, j were evaluated from 1 to 20 
separately. To account for the trade-off between community distortion and complexity, we chose 
parameters that caused the most considerable decrease of M2 when increasing the number of ASVs 
added to the subset. 

7.5.4 Network inference and clustering 

The correlation coefficient between repASVs was computed according to their co-variance between 
samples. Pearson and Spearman were calculated with rcorr() function from the ‘Hmisc’ package 
using the renormalized ASV table after rarefaction, and SparCC was inferred by fastspar (Friedman 
& Alm, 2012; Watts et al., 2019) with the raw ASV table without any rarefaction or normalization. 
For SparCC, 1000 times permutations were implemented to estimate the P values of the edges. 
Non-significant edges (P < 0.05) were filtered to obtain the sparse adjacency matrix for later feature 
computation. Network density was calculated by dividing the number of edges with the biggest 
possible number of connections given the number of nodes. Positive and negative connections were 
computed separately, and therefore, both densities would distribute in the range of 0 to 0.5. The 
degree was calculated by counting the number of other nodes to which each ASV was connected. 

Markov Clustering (MCL, Enright, 2002) and Affinity Propagation (AP, Frey & Dueck, 2007) were 
applied for clustering the nodes within each kingdom network using function net_cls() in ‘mina’, 
which was implemented based on the mcl() function from ‘MCL’ package and apcluster() function 
from ‘apcluster’ package. The former method was limited to only positive edges and was applied to 
networks with parameter “-I 2.5” for the inflation. For AP, both positive and negative edges were 
considered during clustering and “p = 0” was applied for the input preference.  

7.5.5 Community diversity and network analysis using ‘mina’ 

7.5.5.1 Community diversity analysis using ‘mina’

We determined network clusters by inferring global bacterial and fungal networks from all samples 
(see also in section 7.3.2). Afterwards, Bray-Curtis dissimilarities were calculated based on the aRA 
of network clusters, which were aggregated RAs of repASVs assigned to the same cluster 
afterwards. The unexplained variance between the communities was then calculated with get_r2() 
function and compared with the ASV-based diversity analysis. 

7.5.5.2 Community network analysis using ‘mina’

Samples were assigned to compartments randomly in the permutation datasets. Networks of each 
compartment in both original and permutated datasets were inferred with parameters “g_size = 80, 
s_size = 50, rm = FALSE, sig = TRUE, bs = 33, pm = 33” using bs_pm() function from ‘mina’. To 
validate the stability of results, network inference with more subsampling replicates were computed, 
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with parameters “g_size = 80, s_size = 50, rm = FALSE, sig = TRUE, bs = 99, pm = 99”. Distances 
for the pairwise comparison of compartments was calculated with net_dis() function, and both 
Jaccard and Spectra distances were shown in the Results session. PCA of Spectral distance was 
plotted for visualization, and P values were calculated by the Monte Carlo permutation test.  

7.5.6 CAS-associated microbial community analysis 

7.5.6.1 CAS dataset diversity and network comparison

For the CAS-derived root microbiota, the unexplained variance of community diversities based on 
all ASVs, repASVs, and network clusters were compared using get_r2() function from ‘mina’. The 
global network of CAS dataset was inferred and clustered as before (Section 7.5.4). 

The original and permutated networks of CAS-associated conditions were constructed the same as 
earlier stated (Section 7.5.5.2) for the whole dataset. Due to the limitation of sample numbers, 
parameter “g_size = 40, s_size = 20, rm = FALSE, sig = TRUE, bs = 33, pm = 33, individual = 
TRUE, out_dir = bs_pm_dir” were used. The network matrices of all conditions inferred from the 
subsampling samples of both original and permutated datasets were stored in the defined “out_dir”. 
Network distance was then calculated and statistically tested with the function net_dis()from 
‘mina’. As mentioned, the subsampling is completely random; therefore, the network distance 
calculation process is indeterministic. However, the results and conclusions from different runs are 
highly consistent. 

7.5.6.2 Distinctive features selection of CAS networks

Node contrast and distance between compared conditions were calculated with net_node_cmp() 
function from ‘mina’. The connectivity of families was calculated by adding up the connectivity of 
the ASVs assigned to each family from the original and permutated network matrices, respectively. 
Group distance, including family and network cluster, were computed using net_grp_cmp() function 
of ‘mina’ and the fold change of distance between permutation and origin networks were calculated. 
The partial permutation was performed by randomly assigning the groups to the sample for selected 
group members. Afterwards, the ASV table was renormalized, and networks were then constructed. 

7.6 Data and code availability 

Data processing and visualization scripts used in this study are publicly available and could be 
found at https://github.com/Guan06/DADA2_pipeline and https://github.com/Guan06/Chapter_7. 
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Guan and Garrido-Oter (in preparation)  

R.G.-O. conceived the project, R.G. carried out the project with the supervision of R.G.-O.; R.G. 
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Supplementary figures and tables 

Figure S6.1 Root compartment, soil management, and plant growth phase are the main drivers of 
shifts in the root-associated microbiota in field-grown maize. (a and b) PCoA of all harvested samples for 
the three microbial kingdoms (n  =  1,079, 1,103, and 1,103 samples for bacteria, fungi, and oomycetes, 
respectively) at PCo1 and -3 (a) and PCo3 and -4 (b). (c) The explained variance (percent) of each factor was 
calculated by PERMANOVA. Significant factors (P < 0.001) explaining more than 1% of the variance are 
shown here, and other factors are integrated into “Others.” Technical factors (TF) include batch effects of the 
sequencing run and all other related parameters.  
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Figure S6.2 The microbiota of rhizosphere and root is shaped by soil management and host growth. 
PCoA based on Bray-Curtis dissimilarity between samples from rhizosphere (a) and root (b) of each 
kingdom are shown here (n = 480 for both compartment). Alpha-diversity (Shannon index) of rhizosphere (c) 
and root (d) for all microbial kingdoms are compared. The Wilcoxon test was used for statistical analysis 
with FDR correction (P < 0.05).  V: vegetative stage, R: reproductive stage, NK: N and K fertilization, NPK: 
N, P and K fertilization, CON: CONMIN (conventional mineral fertilization) and BIO: BIODYN 
(biodynamic). 
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Figure S6.3 Compartment and plant growth phase affect the fungal community similarly at the ASV 
and phylum levels. (a) RA values of the 15 most abundant fungal phyla. The taxonomic group “Others” 
gathers phyla with <0.1% RAs. (b) PCoA of Bray-Curtis dissimilarities based on the RA of each phylum 
between communities. (c) Comparison of fungal communities at the ASV and phylum levels. “Distance” on 
the x axis indicates the Euclidean distance between the Bray-Curtis dissimilarity of each sample and those of 
the initial (unplanted soil) and final (reproductive root) condition communities. The vertical line indicates the 
average distance of the corresponding condition. Un, unplanted soil before sowing; V, vegetative soil; R, 
reproductive soil.  
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Figure S6.4 Plant growth stage shapes root lipid profile. Heatmap of the 59 lipid compounds in root 
samples from two growth stages, four soil managements and four inbred lines. Average of log-transformed 
and range normalized lipid profiles from each condition were shown. 

Figure S6.5 Root sugar composition is affected by plant growth stage. CPCoA (~ Management * Stage) 
based on Euclidean distance of the root sugar composition (sucrose, fructose and glucose) for the four inbred 
maize lines, grown in DEMO field (NK and NPK, n = 93). 
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Figure S6.6 Relative abundance of Glomeromycota and mycorrhizal colonization in roots is influenced 
by soil management, P transporter Pht1;6 and plant growth stage. (a) The degree of colonization of 
mycorrhizal fungi over the course of plant growth in the B73 wild-type line and pht1;6 mutant in the four 
soil managements. Colonization was estimated by microscopic counting on fine roots. (b) The RA of 
Glomeromycota in the B73 wild-type line and P transporter mutant line over the course of plant growth. 
Wilcoxon test was used for statistical analysis with FDR correction (P < 0.05; n = 6 for NK and NPK, n = 18 
for CONMIN and BIODYN). Lowercase letters indicate significant differences between managements at the 
two growth stages within each genotype. Capital letters indicate significant differences between two 
genotypes and asterisks indicate significant differences between two growth stages including all 
managements. 
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Figure S6.7 Effects of genotype, plant growth stage, and P fertilization on plant biomass parameters. 
Biomass including dry weight cob (a), dry weight shoot (b), stem length (c), and total leaf number (d) were 
measured (n = 43). A Wilcoxon test followed by FDR correction was used for statistical analysis (P < 0.05). 
Capital letters indicate significant differences between growth stages; lowercase letters indicate significant 
differences between genotypes in specific soil management, within each growth stage. ns, not significant. 
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Figure S7.1 Density plots for microbial occupancies in different compartments and host species. 
Bacterial (a) and fungal (b) microbes at each taxonomic levels, from ASV to phylum, are shown here. At: 
Arabidopsis thaliana; Zm: Zea mays; Lj: Lotus japonicus. 
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Figure S7.2 Aggregated relative abundance of the subset ASVs selected by Procrustes Analysis. The 
aRA of bacterial (a) and fungal (b) ASVs in each compartments were shown, with multiple host species 
indicated by the shape of the points. Samples from different compartment, host species and soil types were 
demonstrated separately for bacterial (c) and fungal (d) communities.  
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Figure S7.3 Community diversity of plant-associated microbiota based on repASVs. PCoA of Bray-
Curtis dissimilarities between bacterial (a) and fungal (b) communities are shown here. R2 indicates the 
variance between samples which cannot be explained by compartment, soil type, host species, host genotype 
and experiment condition.

Figure S7.4 Community diversity of plant-associated microbiota based on repASVs-based network 
clusters. PCoA of Bray-Curtis dissimilarities between bacterial (a) and fungal (b) communities are shown 
here. Network clusters inferred from Spearman correlation matrices (with significant connections only, P < 
0.05) using AP were used for dissimilarity calculation. R2 indicates the variance between samples which 
cannot be explained by compartment, soil type, host species, host genotype and experiment condition. 
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Figure S7.5 Bootstrap-permutation network analysis of plant-associated microbiota. Original (a 
bacteria, b fungi) and permutated (c bacteria, d fungi) networks are represented by points. Subsampling time 
n = 99 for both original and permutated datasets for both kingdoms.

Figure S7.6 Average Spectra distance between networks from different compartments. Bacterial (a) and 
fungal (b) networks constructed from the samples of different compartments were compared here. 
Significances of the distances were tested with the stringent F-test.
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Figure S7.7 RepASVs recapitulate the aRA and diversity of the whole community for CAS-associated 
samples. (a) The aRA of repASVs comparing to the all ASVs. (b) Alpha-diversity of samples from each 
condition calculated based on repASVs. (c) PCoA of beta-diversity between samples, indicating 
compartment effect and host preference. R2 is the ratio of variance cannot be explained by compartment, soil 
batch, host species and genotype.

Figure S7.8 Beta-diversity of CAS-associated communities based on network clusters. R2 is the ratio of 
variance cannot be explained by compartment, soil batch, host species and genotype. Clusters were inferred 
by AP from the Spearman correlation networks and Bray-Curtis dissimilarities were calculated based on the 
aRA of network clusters.
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Figure S7.9 Network comparison between different CAS-associated conditions in the permitted 
dataset. PCoA of Spectra distance show no separation when networks were constructed from the permutated 
dataset. R2 indicates the variance of Spectra distances between networks which cannot be explained by 
compartment and host species. 

Figure S7.10 Distribution of distances computed from the observed and permutated networks. Scale 
density of Spectra distance between CAS and At root (a), CAS and Lj root (b) are shown here.
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Figure S7.11 Network comparison between different CAS-associated conditions of distinctive groups. 
Groups before the distinctive point (n = 26 for both), i.e. family Chitinophagaceae (a) and network 
Cluster_51 (b), were accumulatively permutated.   For (c) and (d), only distinctive groups (n = 26 for both) 
were used for network inference and comparison. PCA of their Spectra distance was shown here. R2 
indicates the variance of Spectra distances between networks that cannot be explained by compartment and 
host species.   
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Table S7.1 Density of bacterial network inferred from all and each compartment samples.

Table S7.2 Unexplained variance ratio when applying network cluster based diversity analysis. 
MCL: Marcov clustering; AP: Affinity propagation.
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Network Clustering Number of taxa Unexplained ratio (%)

ASVs 14,844 47.4
repASVs 1,774 40.7

Pearson MCL 58 11.0
AP 199 30.3

Spearman MCL 26 7.5
AP 134 24.0

SparCC MCL 3 25.4
AP 74 24.8

Pearson Spearman SparCC
+ (%) - (%) + (%) - (%) + (%) - (%)

All 21.32 22.93 36.73 35.64 39.99 43.67
Soil 12.43 6.12 19.94 13.58 31.37 34.35

Rhizosphere 17.22 15.12 26.57 25.87 34.81 38.16
Rhizoplane 7.27 0.39 12.94 2.94 9.03 12.73

Root 16.74 7.30 28.45 18.15 37.11 39.17



Abbreviations 

ASV amplicon sequence varaint
AMF arbuscular mycorrhizal fungi
AP affiliation propagation
APs artificial photoassimilates
avFe available iron
BC Bray-Curtis dissimilaritu
bHLH basic helix-loop-helix
BIODYN BIODYNamic
BXs benzoxazinoids
CAS Cologne agricultural soil
CFUs colony-forming units
CONMIN CONventional MINeral
CPCoA constrained principal coordinate analysis
CYP82C4 CYTOCHROME P450, FAMILY 82C4
DAG diacylglycerol
DAMP danger-associated molecular pattern
deASVs differentially enriched ASVs
DEGs differentially-expressed genes
DEMO fertilization DEMOnstration experiment
DGDGs digalactosyldiacylglycerols
DOK Dynamic, organic and conventional managements
ENA European Nucleotide Archive
F6'H1 Feruloyl-CoA 6'-Hydroxylase1
FIT Fer-like iron deficiency induced transcription factor
FRO2 Ferric reduction oxidase 2
FYM farmyard manure
ICP-MS inductively coupled plasma mass spectrometry
IRL sequence-indexed rhizobacterial library
IRT1 Iron-regulated transporter1
IS Italian soil
KO KEGG Orthologue
M/PAMPs microbe/pathogen-associated molecular patterns
MAG metagenome-assembled genome
MAMP microbe-associated molecular pattern
MBOA 6-methoxy-benzoxazolin-2-one
MCL Markov cluster
MGDGs monogalactosyldiacylglycerols
mina microbial community diversity and network analysis
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MTI MAMP-triggered immunity
NK Nitrogen and Potassium
NPK Nitrogen, Phosphate and Potassium
OD optical density
OTU Operational Taxonomic Unit
PC Principal Component
PCA Principal component analyses
PCoA principal coordinate analysis
PDR9 PLEIOTROPIC DRUG RESISTANCE 9
PRR pattern recognition receptor
PS phosphatidylserine
PVDF polyvinylidene fluoride
RA relative abundance
rbcL ribulose-bisphosphate carboxylase gene
repASVs representative ASVs
RGI root growth inhibition
rRNA ribosomal RNA
S8H SCOPOLETIN 8-HYDROXYLASE
SFW shoot fresh weight
SQDG sulfoquinovosyldiacylglycerol
SV surrogate variable
SynCom Synthetic community
TAGs triacylglycerols
TFs transcription factors
TSA tryptic soy agar
TSB tryptic soy broth
unavFe unavailable iron
WT wild-type
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