
The Kummer Constructions in Families

Inaugural-Dissertation

Zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Jakob Studsgaard Bergqvist

aus Hvidovre

Düsseldorf, April 2023



Aus dem Mathematischen Institut
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
der Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Stefan Schröer
Koreferent: Prof. Dr. Markus Reineke

Tag der mündlichen Prüfung: 19.06.2023



Summary

The aim of this thesis is to study generalized Kummer constructions in families. This involves
many different overlapping areas of study and I introduce them in turn. I provide a thorough in-
troduction to the theory of group schemes, focusing in particular on finite and diagonalizable group
schemes. Then, the focus turns to group scheme actions and quotients by these with the existence of
quotients being discussed. I explain how an action by a diagonalizable group scheme may be viewed
as a grading, and how one may use this to compute quotients. It is also outlined how one may inter-
pret group scheme actions using Lie algebras and how this technique allows for computing a quotient.
I briefly outline some general surface theory, focusing on rational double point singularities, and the
conditions (Si) and (Ri) of Serre. To give perspective, the thesis includes a detailed explanation of
the classical Kummer construction over fields, and later an outline of how the classical construction
behaves in families. Turning the focus to families, I study quotients of families. Special attention is
paid to when taking fibers and quotients commute. I discuss simultaneous resolution of singularities,
as a preparation for the main result of the thesis. I outline the generalized Kummer constructions in
characteristic 2 with α2 and µ2 of Schröer and Schröer and Kondo. The thesis then concludes with
the new results; I show that the family of singular surfaces (C × C)/µ2, with C the cuspidal curve,
admits a simultaneous resolution after a finite base change of degree at most 5184, and conclude that
the generalized Kummer construction with µ2 works in families after this base change.
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Introduction

The study of surfaces is a vast area of algebraic geometry. In the study of smooth surfaces, one
major landmark is the Enriques-Kodaira classification. The first part was Enriques’ classification of
projective complex surfaces [24, Chapter VI-VIII] which was followed by Kodaira’s classification
of the compact complex surfaces [42, 43, 44, 45]. Finally, the classification of algebraic surfaces in
positive characteristic was done by Mumford [54] and Bombieri and Mumford [14, 13]. As we are
interested in algebraic surfaces, a surface will from now on mean an algebraic surface. In concrete
terms, a smooth surface is a smooth, proper, irreducible scheme of dimension 2. The classification
separates smooth surfaces X into four classes dependent on their Kodaira dimension, which can be
−∞, 0, 1 or 2, and then into further subclasses based on certain invariants.

For example, we have four subclasses of minimal surfaces when the Kodaira dimension is 0. These
are determined by their second Betti number b2. They are the Abelian (b2 = 6), K3 (b2 = 22),
Enriques (b2 = 10) and Bielliptic (b2 = 2) surfaces respectively. In this thesis, we are interested in
the first two of these. One could define these in terms of their Betti numbers. Alternatively one may
take the following: Abelian surfaces are those smooth surfaces which are also Abelian varieties. That
is, they are the underlying schemes of proper, connected, geometrically reduced, group schemes of
dimension 2. They arise naturally from products of elliptic curves or as Jacobians of genus 2 curves.
A K3 surface is a smooth, proper, geometrically integral scheme of dimension 2 such that ωX = X

and H1(X,X) = 0, where ωX is the dualizing sheaf. Any smooth quartic X ⊆ P3 is a K3 surface.
In characteristic not 2, this includes the Fermat quartic X4

0 +X4
1 +X4

2 +X4
3 = 0.

This partition of Kodaira dimension 0 surfaces into these four classes leads to questions as to how
these classes interact or are related. One example of this is the classical Kummer construction. It
gives a process by which one may construct a K3 surface from an Abelian surface. It proceeds as
follows: An Abelian surface A comes equipped with an involution map ι, which is the inversion
morphism of the group scheme structure on A. That this map is self-inverse ensures that we may
view this as an action of the group {±1} on A. General theory then ensures that in this case one
has a quotient scheme A/{±1}. This scheme is again a surface, however it comes with singularities.
Supposing the base field k is of characteristic not 2, there are sixteen singularities which arise from
sixteen fixed points of the {±1}-action onA. As the quotient is again a surface, a minimal resolution
of singularities exists [1]. These singularities are as mild as can be, specifically they are rational dou-
ble points of type A1 (see Proposition 3.3.3). Furthermore, the minimal resolution of A/{±1} is a
K3 surface. The K3 surfaces which arise in this way are called Kummer surfaces. In some sources
the unresolved quotient is also called a Kummer surface.

By rational double point we mean the following: A singularity with resolution π : Y → Z is rational
if R1π∗Y = 0 where R1π∗Y is the first higher direct image sheaf. The point z ∈ Z is said to be a
double point if the local ring Z,z has multiplicity two. Rational double points are also called rational
Gorenstein singularities, Du Val singularities or ADE singularities. They come in various types and
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are all classified by an associated Dynkin diagram called the dual graph. After passing to a suitable
field extension, say an algebraic closure, this diagram describes a singularities’ exceptional fiber as
either Ar, Dr, E6, E7 or E8, where each node corresponds to a copy of P1 with self intersection −2
[4, 20, 21, 22] and the edges describe how these components intersect. In the case of the Kummer
construction, the 16 singularities are so mild that they are all A1 singularities. That is, they may
be resolved by a single blow-up, with each one having P1 with self-intersection −2 as exceptional
divisor.

In characteristic 2, the classical situation becomes more complicated. Here the construction might
fail to yield aK3-surface. One may take the quotient all the same, but the singularities can get worse.
In a lot of cases, the quotient singularities are still rational, but Shioda and Katsura [65, 38] showed
that the quotient obtains an elliptic singularity if and only if A is a so-called supersingular Abelian
surface, and that in this case the resolution is not K3. It turns out that one instead gets a rational
surface [63, Prop. 5.1-3], i.e. a surface birational to P2.

That this construction can fail in characteristic 2 begs the question if there are analogous construc-
tions in characteristic 2 which do provide K3 surfaces, and somehow "fill the gap" for the super-
singular case. Such "generalized Kummer constructions" are the overarching subject of this thesis,
specifically in families. A construction was presented by Schröer [62], with continued work by
Schröer and Kondo [46]. In both of these cases the surface A is replaced by a self-product C × C
of the rational cuspidal curve C = Spec k[u2, u3] ∪ Spec k[u−1]. This is a natural choice, as the
cuspidal curve arises as a degeneration of certain supersingular elliptic curves to characteristic 2,
hence C×C comes from a degeneration of certain supersingular Abelian surfaces. The construction
also replaces the group Z/2Z by the group scheme of nilpotents of order 2, α2, in the first article loc.
cit. and either α2 or the group scheme of second roots of unity, µ2, in the second one. Outside of
characteristic 2, the constant group scheme of Z/2Z is isomorphic to µ2. As an action of the abstract
group Z/2Z may be viewed instead as an action by its associated constant group scheme, it makes
sense to view the action in the classical Kummer construction as coming not from Z/2Z, but instead
from µ2. As such, taking an action by µ2 when working with a characteristic 2 generalization is a
very natural choice. In both cases one obtains only rational double point singularities in the quotient
(except for a single degenerate case of the α2-action). If we assume for simplicity that the base field
is algebraically closed, the singularities are (omitting the degenerate case): Both cases have a D4

singularity [62, Proposition 5.3], [46, Proposition 3.2] coming from the singular point lying on both
factors of C × C, what we call the quadruple point. Then there are the fixed point singularities.
For α2 one gets either four D4 singularities or two D8 singularities, while the µ2 case is extremely
similar to the classical construction as it has sixteen A1 singularities.

Now we come to the problem of families which is a central part this thesis. By a family, we mean
a flat, proper morphism X → S where S is a base scheme and X is an algebraic space. A family
of curves is then a family such that each fiber is a curve. For example, the equation y2 = x3 + 2
defines a family of curves over Z with smooth fibers except for the primes 2 and 3 where the fiber
is cuspidal. A family of Abelian surfaces is a proper flat morphism of finite presentation A → S
such that A is also a relative group scheme. It can be shown (see Section 4.4) that given a family
of Abelian surfaces, one may obtain a quotient family A/{±1} where the fibers are the quotients
As/{±1}. Furthermore, one may simultaneously resolve the singularities locally on the base, after
finite base change. That is to say, the classical Kummer construction works locally in families up to
a finite base change.

It is in then natural to ask if the generalized Kummer construction discussed above works in families,
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and to what extent. Consider a base S = SpecR of characteristic 2. The α2-actions of [62] are
determined by vector fields (u−2+ r)Du+(v−2+ s)Dv where r, s ∈ R and u, v are the coordinates
of each factor in C×C×S, see Section 2.4. If one looks at the induced α2 action on each fiber, then
it will change, depending on what the residue class of r, s is in a given residue field. So the action
moves in the family. It is shown in the article loc.cit. that this generalized construction works in fam-
ilies after possibly a certain inseperable base change. That is to say, the fibers of the quotient family
(CS ×S CS)/α2 are the quotients of the fibers, and the family admits a simultaneous resolution of
singularities after this mentioned base change.

The objective of this thesis is to investigate whether the generalized Kummer construction with µ2
presented in [46] works in families. That is, whether one can take the quotient of our family over
a general base, obtain a family where the fibers are the quotients arising in the construction over a
field, and then get a simultaneous resolution of singularities, to obtain a family, where the fiber are
the generalized Kummer surfaces of the fibers in the original family. So fix a base S which is a
scheme over some fixed field k of characteristic 2. Let C be the cuspidal curve SpecS S [u

2, u3] ∪
SpecS S [u

−1] over S. We consider the self product C × C with a diagonal group scheme action
determined by a vector field

δ = (λ4u
−4 + λ2u

−2 + τu−1 + λ0)Du−1 + (σ4v
−4 + σ2v

−2 + τv−1 + σ0)Dv−1 ,

where the σi, λi, τ are all global sections of the base S with λ4, σ4 and τ assumed to be units. That
τ is a unit ensures that this vector field defines a µ2 action in every fiber (otherwise τ could be zero
in some fiber, which would mean the action degenerated to an α2 action. The assumption on λ4, σ4
is to ensure normality of the fibers [46, Proposition 3.1].

There are two main questions to settle here: First, whether the fibers of the quotient (C ×C)/µ2 are
(Cs×Specκ(s)Cs)/µ2 for s ∈ S, so that the quotient gives us a family of quotients. Secondly, whether
this family admits a simultaneous resolution of singularities. We also analyze the singularities over a
non-algebraically closed base. It turns out, that since µ2 is a diagonalizable group scheme, forming
quotients commutes with arbitrary base change, so that the first property is immediately satisfied, see
Section 1.4 and 2.3. The second question takes a bit more work. This leads us into main result of the
thesis, which is Theorem 5.3.1 of Chapter 5:

Theorem. The quotient family (C × C)/µ2 admits a simultaneous resolution of singularities over
the base change

S′ = S ⊗k[λ4,λ2,λ0,σ4,σ2,σ0,τ ] k

[︄
3

√︄
λ2

λ24
, 3

√︄
σ2

σ24
, α1, α2, α3, α4, β1, β2, β3, β4

]︄
.

Here αi and βi are the roots of λ24a
4 + λ22a

2 + τ2a+ λ20 and σ24b
4 + σ22b

2 + τ2b+ σ20 respectively, λ

and σ are the canonical choice of representatives of λ4 and σ4 in k, and 3

√︂
λ2

λ24
, 3

√︂
σ2

σ2
4

are any choice

of third roots. This is a finite base change of degree at most 32(4!)2 = 5184. The only possible prime
divisors of the degree of the base change are 2 and 3.

One then obtains the following as an immediate consequence

Corollary. The generalized Kummer construction with µ2 works in families after a finite base change
of degree at most 32(4!)2 = 5184. The only possible prime divisors of the degree of the base change
are 2 and 3.
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To prove the above theorem we analyze the singularities in two sets. First the one coming from the
quadruple point and then the fixed point singularities. For the quadruple point singularity, it turns
out one can emulate the analyzis of the quadruple point in [62, Proposition 5.4]. Namely, we will see
that the deformation of an infinitesimal neighbourhood of the singularity is isomorphic to a constant
deformation, after a base change adding third roots of λ24 and σ24 . This implies that this singularity
allows for simultaneous resolution. One could expect more trouble from the fixed point singularities.
Indeed, for the α2 construction in [62, Theorem 12.1] these singularities necessitate a large amount
of additional techniques. We will see that no such techniques are necessary when the group scheme
is µ2. Instead we settle the question of the fixed point singularities using the same technique as
for the quadruple point, by studying deformations. The base change necessary, is to ensure that the
polynomial equations defining these fixed point singularities split, so that we do not have a differing
number of singularities across different fibers. Using these we will arrive at the above result.

The Structure of the Thesis

The study of these generalized Kummer constructions involve quite a lot of notions, and equiva-
lences. For example, to compute the quotients by µ2 actions in Chapter 5 we interpret them using
Lie algebras, but to argue that this quotient is a family of quotients, we use that a µ2 action can be
interpreted locally as giving a Z/2Z-grading.

I have attempted to make the thesis more or less self-contained in that most results taken as refer-
ence are stated in the text, with the reference given in the proof. This is done so that the reader will
have a consistent language, terminology and notation throughout the references. Furthermore, to set
the theory presented in the text into perspective, each section contains multiple examples of varying
levels of complexity. If one wants to simply read and understand the main result of the thesis, one
should skim Sections 1.1-1.4, focusing on anything involving µ2, and then read Chapter 2, Section
3.1, Sections 4.1-4.2 and Chapter 5.

As the generalized Kummer constructions involve quotients by group scheme actions, Chapter 1 and
2 of the thesis are devoted to studying group schemes and their actions respectively. As the notions
presented in these two chapters are so central, they take up nearly half of the thesis. The Sections
1.1 and 1.2 introduce the basic notions of group schemes as well as provide multiple examples. In
Section 1.3 and 1.4 we study specific types of group schemes, namely those that are finite and di-
agonalizable. The group scheme µ2 falls into both of these classes, and so these sections illuminate
this group scheme from different angles. The final section of this chapter, 1.5, provides some more
theoretical examples of group schemes, namely the Abelian varieties and the automorphism group
scheme of a proper scheme.

In the next chapter, Section 2.1 introduces group scheme actions with some basic properties, while
Section 2.2 gets into the meat of a for us central notion: A group scheme quotient. This section deals
with existence questions and properties of the quotient. Then, in Section 2.3 we study how actions by
diagonalizable group schemes may be reinterpreted in terms of gradings on rings. We see how this
allows one to easily give examples of actions and provides a great tool for computing invariant rings
and so also quotients. As a curiosity, this section also outlines how the classical Proj-construction of
algebraic geometry may be interpreted as a quotient. Finally, Section 2.4 closes out the chapter with
an introduction to the Lie algebra of a group functor and we study how one can view a group scheme
action as a morphism of Lie algebras.

Chapter 3 is a collection of various topics associated with algebraic surfaces. Section 3.1 provides a
basic introduction to the theory of rational double points and their associated Dynkin diagrams. The
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second section, 3.2, introduces the conditions (Ri) and (Si) of Serre. These become relevant later, in
Section 4.1, when base change properties of quotients are discussed. The final section of this chapter
outlines in detail the classical Kummer construction in characteristic not 2.

In Chapter 4, we study families parametrized over a general base. Section 4.1 deals with quotients
of families and the fibers of these. In Section 4.2 we study simultaneous resolutions and discuss the
challenges that occur. This section also outlines the method used to study simultaneous resolutions
in Chapter 5. In Section 4.4 the classical Kummer construction is studied in families.

Chapter 5 contains the main results of the thesis. If one is willing to accept a large amount of black-
boxes (or is completely familiar with the prerequisites) it can be read as a self-contained piece. The
first section, 5.1, outlines in brief the ideas of the work of Schröer [62], and Kondo and Schröer [46]
that form the basis for the work done in this thesis. Section 5.2 forms the bulk of the chapter, and
is new content. Section 5.3 then summarizes and collects the results of the previous chapter into
the main results. The final section provides a forward looking perspective and outlines two further
questions one could investigate.
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Chapter 1

Group Schemes

In this chapter we introduce the basic theory of group schemes with examples, before focusing on
finite and diagonalizable group schemes. For a general reference on group schemes, see [17] or the
original French text [16].

We denote by S a base scheme. Any and all notions presented are considered relative to this base.
For example, by "a morphism", we mean "a morphism over S" and "a scheme" is an S-scheme. We
usually supress the base scheme, but once in a while we make it explicit for emphasis, as is the case
with the first definition presented.

1.1 Basic Definition and Examples

Definition 1.1.1. A group scheme over S is a scheme G over S together with S-morphisms

m : G×S G −→ G, ι : G −→ G, e : S −→ G,

such that for each S-scheme T , these morphisms endow G(T ) with the structure of a group. The
morphisms m, i, and e are called the multiplication, inverse and identity, respectively.

Note that the ’neutral element’ e is in fact a section. There are numerous equivalent ways of
defining group schemes (over S), the shortest of which is to say it is "a group object in the category
of S-schemes". One could also omit the morphisms m, ι and e, and simply require that a group
scheme is a scheme such that its associated functor of points hG is a functor of groups. Another
equivalent definition, is that the morphisms m, i, and e satisfy the standard commutative diagrams of
associativity, identity and inverse:

G×G×G
(id,m) →→

(m,id)
↓↓

G×G
m

↓↓
(associativity)

G×G m
→→ G

G×G

m
↘↘

S ×G
(e,id)←←

pr2
↓↓

(the identity element)

G× S

(id,e)

↑↑

pr1
→→ G
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G

e
→→

(id,ι)

↓↓

(ι,id) →→ G×G
m
↓↓

(two sided inverse)

G×G m
→→ G

Here (id, ι) is a shorthand forG ∆−→ G×G id×ι−−−→ G×G, where ∆ is the diagonal. Note the particular
case where the base is the spectrum of a field k. In this case the identity is determined by an honest
closed rational point e ∈ G(k). With the definition comes also an obvious notion of a subgroup
scheme: A subscheme H in G is a subgroup scheme if H(X) is functorially a subgroup of G(X)
for any scheme X .

Remark 1.1.2. An important tool when working with group schemes, is the fact that any sheaf on
the site (Sch/S) is completely determined by the corresponding sheaf on the site (AffSch/S). In
particular, this holds for any scheme. Whether one chooses the Zariski, étale, fppf, or so forth sites,
is of no consequence [9, Exposé III Theorem 4.1]. In more "down-to-earth" terms, this means that
any scheme is completely determined by its functor of points on affine schemes over S. In particular,
it is enough to define G, m, i and e for all affine schemes over S. Furthermore, given a scheme
X , to show that X may be endowed with the structure of a group scheme, it is enough to show that
X(T ) may be given a functorial group structure for each affine scheme T = SpecR over S. In
particular, given a functor of groups on (Sch/S), it is enough to show that the induced functor on
(AffSch/S) is representable. Indeed, if a functor is representable at the level of affine schemes, then
it is automatically a sheaf, and so extends to all schemes. This last bit is incredibly powerful, as we
will see.

Remark 1.1.3 (Hopf Algebras). Dual to the notion of group schemes, there is a corresponding notion
in the realm of commutative algebra: The Hopf algebras. A Hopf algebra is anR-algebraA equipped
with morphisms m# : A → A ⊗R A, e# : R → A and ι# : A → A called comultiplication, counit
and antipode satisfying commutative diagrams

A⊗A⊗A A⊗A
(id,m#)←←

(coassociativity)

A⊗A

(m#,id)

↑↑

A

m#

↑↑

m#
←←

A⊗A
(e#,id) →→

(id,e#)
↓↓

R⊗A
(coidentity)

A⊗R A

m#

←←

←←

↑↑

A A⊗A←← A⊗A
(ι#,id)←←

(antipode)

A⊗A

↑↑

R

←←

A⊗A

(id,ι#)

↑↑

A
m#

←←

m#

↑↑

e#

←←

where in the antipode diagram the homomorphism R → A is the structure homomorphism and the
homomorphisms A⊗ A → A is the multiplication. We note that these diagrams are just the dual of
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those following Definition 1.1.1. That is, the notions of Hopf algebras and affine group schemes are
anti-equivalent. With this anti-equivalence in hand, we will often, as an abuse of terminology, also
refer to the homorphisms defining the Hopf algebra structure as multiplication, identity and inverse,
as they are equivalent to these for the Group scheme structure.

This anti-equivalence can be generalized further. A sheaf of Hopf S-algebras is an S-algebra A,
such that for each open U in S, the algebra Γ(U,A) has the structure of a Hopf algebra compatible
with the restriction maps of A.

Proposition 1.1.4. The category of group schemes affine over S is anti-equivalent to the category of
quasi-coherent sheaves of Hopf S-algebras.

Proof: Recall that we have a one-to-one correspondence between schemes X affine over S and
quasi-coherent sheaves of S-algebras: If f : X → S is the structure morphism, we denote by
A(X) = f∗X and we have X = SpecS A(X) where SpecS denotes the relative spectrum. So
what we need to prove is that X is canonically a group scheme if f∗X is a sheaf of Hopf algebras
and vice versa. Suppose f∗X is a sheaf of Hopf algebras. Given an affine open covering {Ui} of S,
X is covered by Vi = SpecΓ(Ui,A(X)). As Γ(Ui,A(X)) is a Hopf algebra, each of these spectra
are affine group schemes (over Ui). The fact that the Hopf algebra structures are compatible with re-
striction maps, implies that the morphisms determining the group scheme structures of Γ(Ui,A(X))
glue to global morphisms determining a group scheme structure of X . For the sake of brevity, we
give the details of how one gets the section of X , and then leave the rest to the reader. Now, each
Vi is a group scheme over Ui, meaning it comes with a section ei : Ui → Vi. As the Hopf algebra
structures are compatible on overlaps, we have ei|Ui∩Uj = ej |Ui∩Uj , which implies that these glue to
a global morphism e : S → X .

Suppose now X is an affine group scheme over S. We must show that the group scheme structure of
X induces a group scheme structure on each Vi = Spec Γ(Ui,A(X)). As f is affine, f−1(Ui) = Vi.
Furthermore, the structure morphism of X ×X is f × f and

(f × f)−1(Ui) = Vi × Vi.

This implies that the multiplicationX×X → X , which is a morphism over S, restricts to a morphism
mi : Vi × Vi → Vi. Similarly, we obtain ei : Ui → Vi and ιi : Vi → Vi. That these satisfy the desired
diagrams then follows from being restrictions of the corresponding morphisms of X .

Before we get further into the general theory, let us consider a few examples, to get a feel for
what group schemes are. As we will see in these examples, the preceding remark is particularly
useful when defining concrete group schemes, as it is often easier to work with a functor concretely
on affine schemes than on general ones. Indeed, it all boils down to defining a functor of groups on
(AffSch/S) and then proving that the functor is representable i.e. is isomorphic to hX = Hom(−, X)
for some scheme X . The next three examples also show how ubiquitous group schemes are. Indeed,
these three well known functors from (Ring) to (Ab) extend to (Sch) and are in fact representable.
We present all of these over Z to ease notation slightly, but they have obvious analogues over any
scheme S. These are obtained either by base change (as we will see in Proposition 1.2.6, the base
change of any group scheme yields a group scheme over the new base), or may be constructed
correctly in a manner analogous to what we present below. However, if constructing directly over a
general base S, one must replace Z by S , the ring R by a quasi-coherent sheaf F, and the spectrum
by the relative spectrum.
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Example 1.1.5 (The multiplicative group scheme). Consider the functor from (Sch) to (Ab) which
to a scheme T associates the abelian group Γ(T,×T ) of units of global sections. We claim that it
is representable by the scheme SpecZ[x, x−1], and so defines a group scheme. This scheme is
called the multiplicative group scheme, and we denote it by Gm. In particular, for an affine scheme
Gm(R) = R×, which explains its name. By base change, this defines a group scheme over any
scheme S, which is also denoted Gm when no confusion is possible.

As noted in Remark 1.1.2, we need only consider affine schemes. So let R be a commutative
ring. We must show we have a natural isomorphism

HomZ(Z[x, x−1], R) ∼= Γ(SpecR,×SpecR) = R×.

Now, to give a homomorphism Z[x, x−1] → R amounts to giving an element u ∈ R as the image
of x, which must be a unit since x is. Conversely, any such element defines a homomorphism. This
defines an isomorphism. To see that it is natural is routine, so our functor is representable.

Let us concretely describe the multiplication map m on SpecZ[x, x−1]. Denote by φu the homo-
morphism mapping x to u ∈ R×. Then the group operation on Hom(Z[x, x−1], R) is simply

φu · φu′ = φuu′ .

Identifying Hom(Z[x, x−1], R) × Hom(Z[x, x−1], R) with Hom(Z[x, x−1] ⊗ Z[x, x−1], R), the
group structure should coincide with precomposing with m#, i.e. we need an equality

φr · φr′ = (φr ⊗ φr′) ◦m#,

as homomorphisms Z[x, x−1] → R. From this description we see that the multiplication must be
given by

m# : Z[x, x−1] −→ Z[x, x−1]⊗Z Z[x, x−1] x ↦−→ x⊗ x.

Similarly, the inverse and identity are

ι# : Z[x, x−1] −→ Z[x, x−1]
x ↦−→ x−1,

and
e# : Z[x, x−1] −→ Z

x ↦−→ 1.

Note that Z[x, x−1] = Z[Z]. In Section 1.4 we will see that Gm is just a special example of the larger
class of so-called diagonalizable group schemes which all arise in similar fashion from spectra of
group rings.

Example 1.1.6 (The additive group scheme). We now instead look at the functor from Sch to Ab
which to T associates the abelian group (Γ(T, T ),+). We claim that this functor is represented by
the scheme A1 = SpecZ[x]. The resulting group scheme is called the additive group scheme and is
denoted Ga to distinguish it from the affine line, which is ’just’ a scheme with no additional structure.
As before, this defines a group scheme over any S via base-change.

The argument is like before. We must show HomZ(Z[x], R) ∼= (R,+) in a natural way. But to
give a homomorphism Z[x]→ R is equivalent to giving an element r ∈ R as the image of x. This is
natural and so the functor described is representable by SpecZ[x].

As before, we obtain explicit expressions for the multiplication, inverse and identity:

m# : Z[x] −→ Z[x]⊗Z Z[x], x ↦−→ x⊗ 1 + 1⊗ x

ι# : Z[x] −→ Z[x]
x ↦−→ −x and

e# : Z[x] −→ Z
x ↦−→ 0
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Example 1.1.7 (The general linear group scheme). Now consider for n ≥ 1 the functor GLn from
(Sch) to (Ab) which to T associates the group GLn(Γ(T, T )). This is in fact also representable, and
so defines a group scheme.

Like the previous two examples, this group scheme is affine. To give the concrete ring, let d =∑︁
σ∈Sn

sgn(σ)
∏︁n
i=1 Tiσ(i) i.e. d is the determinant polynomial. We then consider the polynomial

ring over Z, localized at d, Z[Tij , 1/d]1≤i,j≤n. We claim this represents GLn. As before, we regard
the set

Hom

(︄
Z
[︃
Tij ,

1

d

]︃
1≤i,j≤n

, R

)︄
.

Then note that giving such a homomorphism is equivalent to giving an element rij ∈ R for each Tij ,
such that the image of d is a unit. Now, the image of d is, by definition,

det

⎛⎜⎝r11 . . . r1n
...

. . .
...

rn1 . . . rnn

⎞⎟⎠ .

So, to give such a homomorphism, is equivalent to giving an invertible matrix with entries in R i.e.
an element of GLn(R). Hence GLn is representable by the scheme SpecZ[Tij , 1/d]1≤i,j≤n. We call
it the general linear group scheme. Note that the underlying scheme is actually a distinguished open
subset of An2

, namely the set D(d). As before, we give concrete descriptions of the multiplication,
inverse and identity morphisms:

m# : Z[Tij , 1/d] −→ Z[Tij , 1/d]⊗Z Z[Tij , 1/d]
Tij ↦−→

∑︁n
l=1(Til ⊗ Tlj).

ι# : Z[Tij , 1/d] −→ Z[Tij , 1/d]

Tij ↦−→
(−1)i+j

d

∑︂
σ∈Sn
σ(i)=i

⎛⎜⎝sgn(σ)
n∏︂
s=1
s ̸=j

Tsσ(s)

⎞⎟⎠
e# : Z[Tij , 1/d] −→ Z

Tij ↦−→
{︃

1 if i = j
0 otherwise

These formulas are more involved than those of the previous examples, and may at first look seem
random. But interpreting the first two as the multiplication and inverse of GLn, we see that the
multiplication corresponds to mapping the (i, j)’th entry of a matrix to the (i, j)’th entry of a product.
Similarly, the inverse may be viewed as mapping the (i, j)’th entry to the (i, j)’th entry of the inverse
matrix via Cramer’s rule. Note the special case n = 1 where GL1 = Gm.

Example 1.1.8 (Subgroup schemes of GLn). Let us introduce two subgroup schemes of GLn. The
definitions are analogous to those in the preceding examples, so we will be brief. First we have the
special linear group scheme SLn which associates to a ring R the special linear group of that ring
SLn(R). The underlying scheme of this is SpecZ[Tij ]1≤i≤n/(d − 1), where d is the determinant
polynomial, which is a closed subscheme of both An2

and SpecZ[Tij , 1/d]1≤i≤n. As such, SLn
defines a closed subgroup scheme in GLn.

Secondly, we have the diagonal group scheme Dn which to a ringR associates the invertible diagonal
matrices over R. Its underlying scheme is the closed subscheme in D(d) = SpecZ[Tij , 1/d]1≤i,j≤n
defined by the ideal (Tij)i ̸=j . This gives a closed subgroup scheme in GLn.
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Having studied these examples, let us turn our attention to a very specific, but also very important,
class of group schemes. Given a group M and a scheme S we may construct a scheme HS by setting

MS =
∐︂
σ∈M

S.

Take notice of the particular case where S is the spectrum of a field. In this case MS becomes a
discrete space consisting of closed points, one for each σ ∈ M . We will return to this case later.
This scheme inherits the structure of a group scheme over S from the group structure of M in the
following way: Explicitely the inverse maps the σ component to the σ−1 component, and the identity
maps S to the component corresponding to 1M . The multiplication is defined on each component of
MS ×S MS → MS by mapping the ’component’ S ×S S ∼= S corresponding to (σ, σ′) identically
to the σσ′ component of MS . Working over Z, this way of associating a group scheme to a group in
fact embeds the category (Grp) as a full subcategory of the category of group schemes.

Definition 1.1.9. The group scheme MS is called the constant group scheme over S associated to
H .

Proposition 1.1.10. Given a group M and a scheme T , the T -rational points of the constant group
scheme HS consists of all locally constant functions f : T →M .

Proof: By definition, a T -rational point of MS is just a morphism T → MS or equivalently a T -
morphism f : T → MS ×S T = MT . As a space HT consists of a copy of Tσ for each element
σ ∈M . Each such copy is open in HT so by continuity Uσ = f−1(Tσ) is open in T . These Uσ form
a disjoint open cover of T and it follows that defining g(t) = σ if t ∈ Uσ gives a locally constant
function g : T →M . Conversely, given such a g, it defines a morphism of schemes f : T →MT by
simply mapping each set U on which g is constant isomorphically to its copy inside the Tσ part of
MT .

In particular, if T = Spec k for some field k we have MS(k) = MSpec k(k) = M . To make the
multiplication of a constant group scheme more explicit, let us consider the following example.

Example 1.1.11. Suppose the base is S = SpecZ and take the finite group M = Z/2Z. To
distinguish M from the copies of Z, denote the elements of M by σ, τ , with σ being the neutral
element. Then MS = Spec(Zσ × Zτ ) and

MS ×S MS = Spec((Zσ × Zτ )⊗Z (Zσ × Zτ )) ∼= Spec(Zσσ × Zτσ × Zστ × Zττ ),

where, as a matter of notation, we write Zg for the component corresponding to g ∈ G. As σ =
σσ = ττ and τ = τσ = στ , it follows that the multiplication should correspond to

Zσ × Zτ −→ Zσσ × Zτσ × Zστ × Zττ
(n,m) ↦−→ (n,m,m, n).

Passing through the natural isomorphism

Zσσ × Zτσ × Zστ × Zττ −→ (Zσ × Zτ )⊗Z (Zσ × Zτ )
(α, β, γ, δ) ↦−→ (α, β)⊗ (1, 0) + (γ, δ)⊗ (0, 1),

we arrive at the multiplication map

Zσ × Zτ −→ (Zσ × Zτ )⊗Z (Zσ × Zτ )
(n,m) ↦−→ (n,m)⊗ (1, 0) + (m,n)⊗ (0, 1).
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The inverse map is simply interchanging factors

ι# : Zσ × Zτ −→ Zσ × Zτ , (n,m) ↦−→ (m,n),

while the unit is projecting from the first factor

e# : Zσ × Zτ → Z, (n,m) ↦−→ n.

The above observations generalize, and so in general, if the base is affine S = SpecR, and M
is cyclic of order n, the multiplication map of the constant group scheme MS is given explicitely
as (r1, r2, . . . , rn) ↦→

∑︁n−1
i=0 α

−i(r1, r2, . . . , rn) ⊗ αi(1, 0, 0, . . . , 0) where α is the permutation
(123 · · ·n). The unit is projection and inverse is interchanging of factors according to the group law
of M .

As a final observation on constant group schemes, we note that given two finite groups M and N we
have (M ×N)S =MS ×NS . In particular, if M is finitely generated abelian M = Zr × Z/n1Z×
· · · × Z/nmZ we obtain a corresponding decomposition of the associated constant group scheme

MS = ZrS × Z/n1ZS × · · · × Z/nmZS .

Proposition 1.1.12. Every group scheme G over a field k is separated.

Proof: A rational point Spec k → G is a closed immersion, and the diagonal map ∆: G → G×G
may be obtained as the base change of the identity section e : Spec k → G by the structure morphism
G→ Spec k.

1.2 Morphisms and More Examples

Having now a number of examples fresh in mind, we establish a bit more formalism. First, we should
define what a morphism of group schemes is. In simple terms, it is just a morphism of schemes
which is compatible with the multiplication maps. For the sake of formalism, we put this in a strict
definition:

Definition 1.2.1. Let G and H be group schemes. A morphism of group schemes f : G → H is a
morphism of schemes f : G→ H such that for every scheme T , the induced map f : G(T )→ H(T ),
obtained by post-composition, is a homomorphism of groups. Equivalently, the following diagram is
commutative

G×G f×f →→

mG

↓↓

H ×H
mH

↓↓
G

f →→ H.

The final bit of this definition makes it easy to define morphisms of certain group schemes.
Indeed, by the Yoneda lemma, to define a morphism of schemes, it is enough to define a morphism
between their functors of points. As such, to define a morphism of group schemesG andH , we need
only give a functorial homomorphism G(T )→ H(T ).

Suppose we have a morphism of group schemes f : G → H . Then there is an obvious functor
associated to this, namely that which to each scheme T associates the kernel of fT : G(T )→ H(T ).
This is actually representable by a scheme.
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Definition 1.2.2. Let G and H be group schemes over a scheme S, and let f : G → H be a mor-
phisms of group schemes. The kernel of f , denoted ker(f) or ker f , is the scheme defined as the
pullback of G along the identity eH : S → H

ker(f) →→

↓↓

G

↓↓
S

eH →→ H.

Proposition 1.2.3. Let G and H be group schemes over a scheme S, and let f : G → H be a
morphism of group schemes. Then ker(f)(T ) = ker(G(T ) → H(T )) for any S-scheme T . In
particular, ker(f) has a canonical structure as a group scheme which is a subgroup scheme in G. If
H is separated, ker(f) is closed in G.

Proof: By definition ker(f) is the fiber over the identity, so in particular ker(f)(T ) consists of those
T valued points of G which map to the identity in H(T ). This gives the description of the T -points.
For the last point, suppose H is separated. Then the section eH : S → H is a closed embedded
because the composition S → H → S is the identity, hence a closed embedding, and H → S is
separated. As ker(f)→ G is by definition the base change of eH : S → H , it follows that it must be
a closed embedding in this case.

The fact that any kernel of group schemes with separated target is closed in particular implies
that kernels of affine group schemes are again affine. This is the case for the following two examples
which give two important group schemes that arise as kernels. The first one is especially important
for us as it is the main group scheme considered in Chapter 5.

Example 1.2.4 (n’th roots of unity). Consider the group scheme Gm and fix an n ∈ Z. For each
scheme T , we define a homomorphism Gm(T ) → Gm(T ) by mapping g ∈ Gm(T ) = Γ(T,×T ) to
gn. This is obviously functorial in T , and so defines a morphism of group schemes Gm → Gm.

As a shorthand, we simply write Gm
g ↦→gn−−−→ Gm. Now, by Proposition 1.2.3 the kernel of this

homomorphism is a group scheme, and we denote it by µn. The definition of µn as the kernel of
g ↦→ gn directly implies that

µn(T ) = {f ∈ Γ(T,×T ) | f
n = 1}.

Hence, we call µn the scheme of n’th roots of unity. It is a closed subgroup scheme of Gm. In
Proposition 1.3.2 we will see that its underlying scheme is Z[x]/(xn − 1). As it is a subgroup
scheme of Gm, its multiplication, inverse and neutral element maps are simply the same as those
given for Gm in Example 1.1.5.

The group scheme µn is absolutely central to the contents of this thesis. Indeed, we are primarily
interested in quotients by actions of this scheme. As we will see later, µp is non-canonically isomor-
phic to (Z/pZ)S whenever S is not of characteristic p and has primitive p’th roots of unity. We will
return to studying µn, when we study finite group schemes in general.

Example 1.2.5 (q’th order nilpotent elements). Suppose our base scheme S has characteristic p > 0,
and fix a prime power q = pn. Consider then the functor which to an S-scheme T associates

αq(T ) = {f ∈ Γ(T, T ) | f q = 0}.

As the characteristic of S is p, we have (f+g)p = f q+gq and so this set actually comes with a group
structure by addition. This is clearly functorial, giving us a functor of groups. In fact it is a group

8 of 84



scheme by Proposition 1.2.3, as it may be realized as the kernel of Ga
g ↦→gq−−−→ Ga. This αq is called

the scheme of q’th nilpotent elements and is thus a closed subgroup scheme of Ga. Note that it only
exists as a group scheme in positive characteristic. For S = SpecR, we will see in Proposition 1.3.3
the underlying scheme of αp is R[x]/(xp). The multiplication, inverse and identity are then given on
the level of Hopf algebras by extending those of R[x] to the quotient, see Example 1.1.6.

These two group schemes are closely linked. In fact, we will see in Section 1.3 that their under-
lying schemes are isomorphic and so they are distinguished only by their group scheme structures.
While the description of the kernel in Proposition 1.2.3 tells us it has the structure of a group scheme,
the fact that it is defined as the pull-back of a group scheme, actually gives us that fact for free, as
the following result shows.

Proposition 1.2.6. Let G be a group scheme and T a scheme. Then the base change GT = G×T is
a group scheme over T . Furthermore, for any T -scheme Z, viewed as an S-scheme via Z → T → S,
the natural isomorphism GT (Z) ∼= G(Z) of sets is also an isomorphism of groups.

Proof: The morphisms mT , ιT and eT are all obtained by base-changing m, ι and e respectively
along T → S. For example, mT is obtained via the universal property described by the following
diagram

GT ×T GT ∼= G×S G×S T
pr1×pr1 →→

∃!mT

→→

pr3

→→

G×G
m

→→
GT

pr1 →→

pr2
↓↓

G

↓↓
T →→ S

That mT , ιT and eT define a group scheme structure on GT is simply the fact that base change re-
spects composition, i.e. the diagrams of Definition 1.1.1 remain commutative after base-change.

For the second part, we note that, in general, the natural isomorphism GT (Z) → G(Z) maps a T -
morphism f : Z → GT to the S-morphism pr1 ◦ f . Now, the commutativity in the top parallelogram
of the previous diagram, i.e.

GT ×T GT
pr1×pr1 →→

mT

↓↓

G×G
m

↓↓
GT

pr1 →→ G

is exactly the requirement that GT (Z)→ G(Z) is a homomorphism.

In chapter 5 we will be working in positive characteristic. So let us discuss some of the unique
aspects of working with group schemes in characteristic p > 0, starting with the Frobenius.

Remark 1.2.7 (The absolute and relative Frobenius). Suppose now that our base is a field k of
characteristic p > 0. Then each k-algebra R has a Frobenius homomorphism FR : R→ R defined
by F (r) = rp. Note that this is not necessarily a k-homomorphisms, but it is a homomorphisms over
Fp. However, denote by FR the k-algebra with the underlying ring R, but structure homomorphism

k
Fk−→ k → R. Then the Frobenius defines a homomorphism of k-algebras FR : FR → R. In the

case of schemes, any X over k comes equipped with the so-called absolute Frobenius morphism
FX : X → X , which we again note is not necessarily a k-morphism, but is an Fp-morphism. It is
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the identity on topological spaces, while as a map of sheaves X → X , it maps a ↦→ ap. Given an
Fp-morphism f : X → Y of schemes over k, the absolute Frobenius fits in the commutative diagram

X
FX →→

f
↓↓

X

f
↓↓

Y
FY →→ Y.

Viewing Spec k as a scheme over Spec k via the absolute Frobenius, we obtain a k-scheme X(p) as
the base change of X to Spec k along the absolute Frobenius

X(p) = X ×k Spec k →→

↓↓

X

↓↓
Spec k

FSpec k →→ Spec k.

We then view X(p) as a scheme over k via the second projection. The universal property of the
fibered product then induces a k-morphism called the relative Frobenius, which we denote FX/k,
via

X
∃!FX/ Spec k

↘↘

FX

↘↘

↘↘

X(p) →→

↓↓

X

π

↓↓
Spec k

FSpec k

→→ Spec k.

Note that we could actually have replace Spec k by any base S of characteristic p. This gives a notion
of a relative Frobenius FX/S over any such S. Note also that when viewed as maps of topological
spaces, the relative Frobenius and the projection X(p) → X are homeomorphisms. As such, the
Frobenius morphisms are, in a certain sense, purely algebraic in nature. Finally, we highlight the
special case where we consider a group scheme G over S. Then Proposition 1.2.6 tells us that G(p)

is again a group scheme. In fact, the relative Frobenius is a group scheme morphism as we know
prove.

Proposition 1.2.8. Let S be a base of characteristic p > 0 and let G be a group scheme over S.
Then the relative Frobenius FG/S : G→ G(p) is a morphism of group schemes.

Proof: Recall that given a k-algebra R, we obtain a homomorphism of k-algebras FR : FR→ R. In
particular, we obtain a homomorphism of groups

G(R)
G(FR) →→ G(FR)

We then make two claims:

1. We have a natural isomorphism of groups φ : G(p)(R) −→ G(FR) given by f ↦→ pr1 ◦ f ;

2. We have a commutative diagram of maps of sets

G(R)
G(FR) →→

FG/k(R) ↘↘

G(FR)

G(p)(R)

φ

∼

↑↑

10 of 84



Suppose we have proven these claims. ThenFG/k(R) will be a group homomorphism sinceFG/k(R)) =
φ−1 ◦G(FR) and each of these are group homomorphisms.

Claim 1: This is a special case of the second part of Proposition 1.2.6. Indeed, FR is just another

way of writing R viewed as a k-algebra via k
Fk−→ k → R.

Claim 2: The statement to be proven is essentially as follows: Given a morphism f : SpecR → G
we obtain an equality of morphism Spec FR→ G

pr1 ◦ FG/k ◦ f = f ◦ FR

where the projection is on G(p). To see this, we recall that the absolute Frobenius fits in the commu-
tative diagram

SpecR
FR →→

f
↓↓

SpecR

f
↓↓

G
FG

→→ G

that is, f ◦ FR = FG ◦ f . But by the universal property of G(p) we have pr1 ◦ FG/k = FG, so we get

pr1 ◦ FG/k ◦ f = FG ◦ f = f ◦ FR,

as desired.

The group schemes arising as kernels of iterations of the relative Frobenius are aptly named
Frobenius kernels. As we have just seen, both µp and αp are examples of these. Such schemes also
have a different name:

Definition 1.2.9. Suppose S is of characteristic p > 0. A group scheme G over S is said to be of
height ≤ r for r ≥ 0 if the r’th iterated relative Frobenius map F rG/S is trivial on G. In particular G
is of height ≤ 1 if it is a kernel for FG/S .

In this terminology µp and αp are group schemes of height≤ 1. Before moving on to finite group
schemes, we finish out the section with two results and an example which highlight the difference
between group schemes in 0 and positive characteristic. From [59, Premiere Partie, V, Corollaire 3.9]
we obtain the following:

Proposition 1.2.10. Suppose S = Spec k is of characteristic 0. Then every group scheme over S is
geometrically reduced.

The examples µp and αp are non-reduced in characteristic p > 0 and so this result is false in
positive characteristic. One could hope that at least the reduced subscheme was a group scheme
which one could then work with. However, this is not always the case as the following example
(which is supposedly due to Raynaud) shows.

Example 1.2.11. Fix a base field k and consider the additive group Ga. Take the group scheme
morphism φ : Ga × Ga → Ga which is defined on points by (x, y) ↦→ xp + typ for some t ∈ k×.
The kernel N of this is again a group scheme by Proposition 1.2.3. On points N(R) consists of
all pairs (x, y) ∈ Ga(R) × Ga(R) satisfying xp + typ = 0. It is affine with underlying scheme
k[x, y]/(xp + typ) so it is irreducible. Now, we have to cases, based on whether or not t is a p’th
power in k. The simple case, is when t ∈ (k×)p with t′p = t. Then

k[x, y]/(xp + typ) ∼= k[x, y]/
(︁
(x+ t′y)p

)︁ ∼= k[x]⊗k k[x+ t′y]/
(︁
(x+ t′y)p

)︁
.
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One sees this is compatible with the group operations so that N ∼= Ga × αp.

Now suppose t ̸∈ (k×)p. If k is non-perfect it is always possible to make such a choice. Then N
is reduced but consider the group scheme

G = N ⊕N = Spec(k[x, y, u, v])/ (xp + typ, up + tvp) .

This is non-reduced as the ideal contains the element

vp (xp + typ) + yp (up + tvp) = (xv + yu)p,

but not the element xv+ yu. Now suppose, to derive a contradiction, that Gred is a subgroup scheme
and consider the quotient G/(Gred). We take for granted that such a quotient exists. See [19, Exposé
VIB, Remarque 9.3]. Note that H = G/(Gred) is not trivial but Hred is, so H ̸= Hred. Now, since
N is commutative, giving any morphism f : G = N ⊕ N → H is equivalent to giving a pair of
morphisms f1, f2 : N → H . Since N is reduced, these must factor over Hred. But then f must also
factor over Hred. In particular, the quotient map factors implying H = Hred which is a contradiction.

Note how the above example heavily depends on the existence of an element which is not a p’th
power. In other words it rests on k not being perfect. This is no coincidence, as over a perfect field,
the reduced subscheme is in fact a subgroup scheme.

Proposition 1.2.12. Let G be a group scheme over a perfect feld. Then Gred has a structure of a
group scheme induced from that of G.

Proof: The inclusion Gred → G gives a morphism

Gred ×Gred →→ G×G m →→ G.

As Gred × Gred is reduced by [69, Tag 020I and 035Z] this morphism factors over Gred giving the
multiplication morphism. The rest is similar.

1.3 Finite Group Schemes

We now turn our attention to those group schemes which are finite as schemes. Recall that a mor-
phism f : X → Y is finite if the codomain Y has an open affine cover {Ui}i∈I such that each
Vi = f−1(Ui) is affine, and Γ(Ui, Y ) is a finite algebra over Γ(Vi,X). One should note that this is
property is local on the base. A scheme is finite if its structure morphism is finite. Furthermore, it
is useful to keep in mind that a morphism is finite if and only if it is proper and each fiber is a finite
discrete set, see [32, Corollaire 18.12.4].

Finite morphisms are in particular affine, so it is immediate from the definition that, a finite
scheme over an affine base is again affine. Further, over a field k the finite schemes are spectrums
of finite k-algebras. It follows that such a scheme must be the spectrum of a finitely generated Artin
ring R i.e. R =

∏︁n
i=1Ri where the Ri are local Artin rings. As a topological space such a SpecR is

a discrete space consisting of n points corresponding to the factors Ri.

As we will discuss later, quotients by group scheme actions are not necessarily well behaved, and
might not even exist. However, if the group scheme is finite, we will see the situation is somewhat
simpler. As such, it is desirable to have a collection of finite group schemes. We will give examples
in this section, and Section 1.4 will provide even more examples. As non-examples one can take
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the additive and multiplicative group scheme. Indeed (over S) the underlying scheme of these are
SpecS S [x] and SpecS S [x, x

−1] respectively and neither of these are finite.

The first class of examples is provided by the following result:

Proposition 1.3.1. If G is a finite group, then the constant group scheme GS is finite over S. In
particular, if S = Spec k for some field k, then Gk is the spectrum of an Artinian ring.

Proof: The problem is local on the base, so we may assume S = SpecR to be affine. Let n = |G|.
In this case GS =

⨆︁n
i=1 SpecR = Spec (

⨁︁n
i=1R) so G is the spectrum of a finite R-algebra.

Proposition 1.3.2. For any n ∈ N the underlying scheme of µn is SpecS(S [x]/(x
n − 1)). In partic-

ular, the scheme µn is finite.

Proof: As the base change of a finite morphism is finite, and using that µn,S = µn,Z×S, it is enough
to show that µn,Z is finite. We prove that Spec(Z[x]/(xn − 1)) represents the functor µn. As the
functor of points is completely determined by what it does on affine schemes, we need only prove
this in the affine case. So let R be a ring. Giving a homomorphism φ ∈ Hom(Z[x]/(xn − 1), R) is
equivalent to giving an element r ∈ R such that rn = 1, the isomorphism being φ ↦→ φ(x). This is
clearly canonical, and so µn is finite over Z.

An alternative approach to the above direct proof would be the following: In the next section,
we will explore the theory of diagonalizable group schemes, which is a class of commutative group
schemes constructed from abelian groups. It will turn out that such a group scheme is finite if and
only if the associated abelian group is finite, and that µn is in fact the diagonal group scheme of
Z/nZ, hence a fortiori it is finite.

Proposition 1.3.3. Let S be a base of characteristic p > 0. The underlying scheme of αp is
SpecS S [x]/(x

p). In particular, the scheme αp is finite.

Proof: As in Proposition 1.3.2, we prove that k[x]/(xp) represents the functor αp on affine schemes
over some field k of characteristic p. So let R be a k-algebra. Giving a homomorphism φ ∈
Hom(k[x]/(xp), R) is equivalent to giving an element r ∈ R such that rp = 0, explicitelyφ ↦→ φ(x).
As in the previous proposition, this is canonical.

Remark 1.3.4 (Comparing αp and µp). The schemes SpecZ[x]/(xp − 1) and SpecZ[x]/(xp) both
make sense in characteristic zero, and we may even consider µn in this case. However, the Frobenius
maps only exist in positive characteristic, hence the group scheme αp only exists in characteristic
p > 0. Now, in characteristic p we have xp − 1 = (x − 1)p, so we obtain an explicit isomorphism
of schemes SpecZ[x]/(xp − 1) → SpecZ[x]/(xp) given on rings by x ↦→ x − 1. However, this
isomorphism is not an isomorphism of group schemes. We will discuss this distinction of µp and αp
more in Section 2.4.

As noted finite group schemes are desirable when one wants to form quotients by group scheme
actions. However, there is a more special class of group schemes which is even better for this,
namely those which are "infinitesimal". In Theorem 2.2.8 we will see that taking a quotient by an
infinitesimal group scheme is always possble. We now give the definition and show that µp and αp
are examples.

Definition 1.3.5. A group scheme G is infinitesimal if the structure morphism is finite locally free
G → S and the unit section e : S → G induces a homeomorphism on the underlying topological
spaces e : |S| → |G|.
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Proposition 1.3.6. Suppose S is of characteristic p. The group schemes µp and αp are infinitesimal.

Proof: The definition is local so we may assume the base is affine, S = SpecR. We argue in the case
of µp as the case of αp is symmetric. We check the defining properties finite locally free and that the
distinguished section defines a homeomorphism. The underlying scheme of µp is R[x]/(xp − 1) =
R[x]/(x−1)p. As a moduleR[x]/(x−1)p = R·1⊕R·(x−1)⊕· · ·⊕R·(x−1)p−1, which is both finite
and free. For the second bit, the prime ideals ofR[x]/(x−1)p are all those ofR[x] containing (x−1),
as any prime ideal containing (x−1)p must also contain its radical

√︁
(x− 1)p = (x−1). Concretely,

the section e : R[x]/(x − 1)p → R maps a polynomial a0 + a1(x − 1) + · · · + ap−1(x − 1)p−1 to
a0. Thus, for any prime ideal p ⊂ R we have

e−1(p) = p⊕R(x− 1)⊕ · · · ⊕R(x− 1)p−1 = (p, (x− 1)p).

Thus e is bijective. The above respects inclusions of ideals, hence is gives homeomorphism on the
level of spectra.

More generally, any finite group scheme of finite height is infinitesimal, by essentially the same
argument.

1.4 Diagonalizable Group Schemes

For us, the most important class of group schemes will be those which are diagonalizable (a term
we will define shortly). As we will see in Proposition 2.3.2, actions by these group schemes may
be interpreted in terms of gradings by certain groups, which it turns out will make for a powerful
tool when treating quotients. In our case, this is incredibly useful as the scheme µn turns out to be
diagonalizable.

Suppose we are given an abelian group M . Aside from the constant group scheme, there is a canon-
ical way in which to associate to M a group scheme affine over the base S, which we now outline.
To M , there is an associated S-algebra, namely S [M ] which is the sheaf of group rings over S . Con-
cretely, for an open set U ⊂ S, we have Γ(U, S [M ]) = Γ(U, S)[M ]. This actually comes equipped
with the structure of a Hopf S-algebra given by

m# : S [M ] −→ S [M ]⊗ S [M ], m ↦−→ m⊗m
ι# : S [M ] −→ S [M ], m ↦−→ −m
e# : S [M ] −→ S , m ↦−→ 1

As such, the relative spectrum SpecS S [M ] may in a canonical way be equipped with the structure
of a group scheme over S.

Definition 1.4.1. The group scheme with underlying scheme SpecS S [M ] is denoted DS(M), or
simply D(M) if the base is clear, and is called the diagonalizable group scheme of M over S.

We note that the group operation on the functor of points is incredibly simple. Indeed, for S =
SpecR, some R algebra A and f, g ∈ D(M)(A) = HomR-alg(R[M ], A) = HomGrp(M,A×) the
product is is the morphism defined by mapping m to f(m)g(m). We note that this is not simply
pointwise multiplication, as pointwise multiplication would not beR-linear. The reason for the name
"diagonalizable" is that the affine diagonalizable group schemes can be embedded as a subgroup
scheme in the diagonal matrices. Given generators {mi}i∈I of M , one maps an element f to the
matrix with the images of mi under f along the diagonal.
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Example 1.4.2. The multiplication, inverse and unit of the diagonalizable group schemes should
remind the reader of Example 1.1.5 and Example 1.2.4. This is no coincidence. In fact, the homo-
morphisms are defined in the same way because those previous examples are special cases of this one.
Indeed, both Gm and µm are diagonalizable group schemes with Gm = SpecR[x, x−1] ∼= SpecR[Z]
and µn = SpecR[Z/nZ] when the base is S = SpecR.

The following proposition is taken from [18, Exposé VIII Proposition 2.1] and provides a nice
list of some basic properties of diagonalizable group schemes.

Proposition 1.4.3. Let M be an abelian group and G = D(M).

(i) G is faithfully flat and affine over S.

(ii) M is finitely generated if and only if G is of finite type over S if and only if G is of finite
presentation over S.

(iii) M is finite if and only if G is finite over S if and only if G is of finite type over S and G is
annihilated by some integer n > 0. In this case the degree of G over S is |M |.

(iv) M is a torsion group if and only if G is integral over S.

(v) M is trivial if and only if G is the unit group over S

(vi) M is finitely generated and the order of its torsion subgroup is prime to the characteristic of
the residue fields of S if and only if G is smooth over S.

Proof: (i) By definition G = SpecS S [M ]. All relative spectrums are affine by construction, so this
in particular holds for G. Now, as a module S [M ] is free, so it is in particular faithfully flat.

(ii) If M is finitely generated with generators m1, . . . ,mn, then S [M ] is the polynomial sheaf
S [m1, . . . ,mn] so G is of finite type. Among the generators of M there are only finitely many
relations (as Z is a Noetherian ring), soG is actually of finite presentation. For the converse, suppose
G is of finite type. Locally, any element m ∈ M may be viewed as an element of a ring R[M ] of
finite type over R. Picking generators x1, . . . , xn any m is then some finite polynomial in the xi. For
each xi, it may be expressed as a finite R-linear combination of elements of M . Taking such a finite
subset of M for each xi, we obtain a finite set of generators of M .

(iii) That M is finite if and only if G is finite is, mutatis mutandis, the same argument as in (ii). For
the last bit we note that the requirement that G is annihilated by n is equivalent to mn = 1M for any
m ∈ M . As G being of finite type is equivalent to M being finitely generated by (ii), this means
that combining the two assumptions is equivalent to M being finitely generated with every element
of finite order. This is equivalent to M being finite.

(iv) Being integral is a local property so we assume S = SpecR. Then G being integral over S
means by definition tohat each element of R[M ] satisfies some monic polynomial equation over R.
In particular, this means each m ∈M viewed as an element of R[M ] satisfies some

mn + rn−1m
n−1 + · · ·+ r1m+ r0 = 0

As R[M ] is a free R-module, this means that each ri = 0, so mn = 0.

Finally, (v) is immediate from the definitions and (vi) is proven in detail in [18, Exposé VIII Propo-
sition 2.1 e)].
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We obtain the following which is a generalization of the structure theorem of finitely generated
Abelian groups.

Proposition 1.4.4. Let M = Zn × (Z/n1Z) × · · · × (Z/nrZ) be a finitely generated group. Then
D(M) ∼= Gn

m × µn1 × · · · × µnr . In particular, any diagonalizable group scheme of finite type is
expressible as a product of Gm and µni .

Proof: This follows from the fact that for any groups N and N ′ we have R[N × N ′] ∼= R[N ] ⊗R
R[N ′]. The second part follows from Proposition 1.4.3.

Both diagonalizable group schemes and constant group schemes are built from groups, so it
makes sense to wonder if one can compare them in any way. Let us consider an example.

Example 1.4.5 (Comparing µ2 and (Z/2Z)S). Suppose we are over an affine base S = SpecR and
that 2 is invertible in R i.e. no residue field of R is of characteristic 2. The underlying scheme of
(Z/2Z)S is simply Spec(R×R), and we have a morphism

Spec(R×R)→ SpecR[x]/
(︁
x2 − 1

)︁
determined on rings by x ↦→ (1,−1) which is an isomorphism by the Chinese Remainder Theorem.
One can check this respects the explicit morphisms defining the group scheme structures. How-
ever, if 2 is not invertible in R, then the two ideals (x + 1) and (x − 1) are not comaximal and so
R[x]/

(︁
x2 − 1

)︁
→ R[x]/(x− 1)× R[x]/(x+ 1) ∼= R × R is not surjective. In terms of geometry,

2 not being invertible means that some residue field is of characteristic 2, and so over this point, the
group scheme µ2 collapses to a single non-reduced "thick" point, whereas the constant group scheme
(Z/2Z)R remains a scheme of two points. This is already the case over the base Z and the following
illustration describes in pictures the difference between the group schemes µ2 and (Z/2Z)S :

SpecZ
2

µ2

SpecZ
2

(Z/2Z)SpecZ

The previous example generalises, however, one needs to ensure that the polynomial xn − 1
actually splits. Recall that a scheme Y is said to be a twisted form of another scheme X , if there is
some base change S′ → S such that there exists an isomorphism X ×S S′ ∼= Y ×S S′.

Proposition 1.4.6. Let n ≥ 1 be an integer, suppose S = SpecR is affine and that n is invertible in
R. If R contains a primitive n’th root of unity, then µn and the constant group scheme (Z/nZ)S are
isomorphic. The isomorphism is non-canonical except when n = 2. In particular, µn and (Z/nZ)S
are twisted forms of each other over any base on which n is invertible.

Proof: Let ζn denote the primitive n’th root of unity. The explicit isomorphism is given by the
Chinese Remainder Theorem

R[x]/ (xn − 1) −→ R[x]/(x− 1)×R[x]/(x− ζ)× · · ·R[x]/(x− ζn−1) ∼= R× · · · ×R⏞ ⏟⏟ ⏞
n−times

.

That the isomorphism is possibly non-canonical follows from the fact that we have to make choice
in taking a primitive n’th root of unity, except when n = 2.

Proposition 1.4.7. If M is finite, the order of M is invertible on the base, and the base contains
a primitive |M |’th root of unity, then D(M) is isomorphic to the constant group scheme MS . The
isomorphism is usually non-canonical.
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Proof: For any groupsN ,N ′ we haveR[N×N ′] ∼= R[N ]⊗RR[N ′]. Using the structure theorem of
finitely generated Abelian groups, we may expressM as a product of finite cyclic groups. Combining
these two facts with Proposition 1.4.6 gives the result.

More generally, one can prove that the diagonalizable group scheme of M is dual to constant
group scheme and vice versa in the sense that Hom(MS ,Gm) = D(M) , MS = Hom(D(M),Gm),
where the hom set is as group schemes over S. This is an equivalent way of defining diagonalizable
group schemes, see [18, Exposé VIII, Theorem 1.2] and the general exposé loc. cit. for more details.

1.5 Further Examples

As the title suggest we will spend this last section looking at some more theoretical examples of
group schemes. The first we will discuss is the class of Abelian varieties.

1.5.1 Abelian Varieties

In this section, we fix a base field k.

Definition 1.5.1. An Abelian variety is a proper, connected, geometrically reduced group scheme
over k.

Note that for a proper, connected group scheme, being geometrically reduced is equivalent to
smooth, so an Abelian variety is in particular smooth. Any connected group scheme is automatically
irreducible [69, Tag 0B7Q], so it follows that any Abelian variety is geometrically irreducible. Be-
fore looking at the one-dimensional case, the ubiquitous elliptic curves, we show why these group
schemes are called Abelian.

Proposition 1.5.2. An Abelian variety A is commutative as a group scheme.

Proof: The main idea is to argue that the inverse ι : A → A is a morphism of group schemes. One
can prove [55, p. 41 Corollary 1] that given abelian varieties A′, A′′ any morphism of schemes
f : A′ → A′′ may be expressed as f = ta ◦ h where h is a morphism of group schemes and ta is
the right translation by a fixed a ∈ A′′ defined by ta(b) = m(b, a) for any b ∈ A′′. In particular, the
morphism ι : a ↦→ a−1 may be expressed in this fashion. As this does not involve any translation,
it must be a morphism of group schemes, i.e. it defines a homomorphism of groups on points. It
follows that on points a−1b−1 = (ab)−1. But by its nature (ab)−1 = b−1a−1. See also [55, p. 41
Corollary 2]

Now, let us study the 1-dimensional case. A Weierstrass equation over k is an equation in
variables x and y with coefficients a1, a2, a3, a4, a6 ∈ k of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Such an equation is inhomogeneous, but has a so-called homogenization

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

This homogenization then defines a closed subscheme C of P2 = Proj k[X,Y, Z]. As is a common
convention, we write the variables of the homogenization using capital letters. Except for the point
(0 : 1 : 0), this curve is completely contained in the D+(Z) chart of P2

R and the affine equation
above defines this curve completely. Formally, one has x = X

Z and y = Y
Z . As the inhomogeneous

equation is enough, one usually writes these equations in this simpler form. Note that such a curve
has genus g = (3−1)(3−2)

2 = 1 by the genus degree formula:
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Lemma 1.5.3. Let C be a closed dimension 1 subscheme of P2 defined by a homogeneous equation
is of degree d. Then C has arithmetic genus

pa(C) =
(d− 1)(d− 2)

2
.

Proof: By definition the arithmetic genus is pa(C) = 1−χ(C). First, we note that by Grothendieck
vanishing theorem the cohomology of a proper scheme vanishes in degrees above dimensions, i.e.
Hn(C, C) = 0 for n ≥ 2. Thus, the only contribution to χ(C) comes from degree 0 and 1. Consider
then the standard short exact sequence

0 →→ P2(−d) →→ P2 →→
C

→→ 0.

This gives us a long exact sequence in cohomology

0 →→ H0(P2, P2(−d)) →→ H0(P2, P2) →→ H0(C, C)

→→ H1(P2, P2(−d)) →→ H1(P2, P2) →→ H1(C, C)

→→ H2(P2, P2(−d)) →→ H2(P2, P2) →→ 0 →→ · · ·

Let us analyze the terms of this sequence. First, we use that the intermediate cohomology of any
P2(n) disappears (see [35, III.5.1]), so

H1(P2, P2(−d)) = 0 = H1(P2, P2)

Next, recall that the space of global sections of P2(n) is the vector space generate by degree n
monomials in 3 variables. This directly gives us H0(P2, P2(−d)) = 0 and H0(P2, P2) = k. Putting
this together with the previous implies that

H0(C, C) ∼= H0(P2, P2) = k.

In particular we get an equality pa(C) = h1(C). We remind that the canonical sheaf on Pn is
Pn(−n− 1). It then follows by Serre duality

H2(P2, P2) = H0(P2, P2(−3))∨ = 0

H2((P2, P2(−d)) = H0(P2, P2(−3 + d))∨

We thus have H1(C, C) ∼= H2((P2, P2(−d)) ∼= H0(P2, P2(−3 + d)). If d = 1, 2, then −3 + d < 0,
so H0(P2, P2(−3 + d)) = 0. In this case pa(C) = 0, which satisfies the formula. Now, there are(︁
d+n−1
n−1

)︁
monomials of degree d in n variables, so if d ≥ 3 we have

h0(P2(−3 + d)) =

(︃
d− 1

2

)︃
=

(d− 1)(d− 2)

2
,

which proves the formula.

One associates to Weiestrass equations a few quantities, one of which is the discriminant defined as

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6
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where the bi are quantities defined from the coefficients aj by

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

It then holds that C is smooth if and only if ∆ ̸= 0 [67, Proposition III.1.4(i)]. If char k ̸= 2, one
can simplify the equation to

y2 = 4x3 + b2 + 2b4x+ b6

And if one further assumes char k ̸= 3 then one gets the short Weierstrass form

y2 = x3 +Ax+B,

where A = −27(b22 − 24b4) and B = −54(−b32 + 36b2b4 − 216b6).

Example 1.5.4. Consider the equation y2 = x3 + 5x + 8. This has determinant ∆ = −35648 =
−26 · 557, hence defines a smooth curve if and only the base field has characteristic ̸= 2, 557.

We take the following non-standard definition.

Definition 1.5.5. An elliptic curve is an Abelian variety of dimension 1.

The more standard definition is that an elliptic curve is a smooth, connected, projective, genus one
curves with a distinguished rational point. Furthermore, any smooth curve defined by a Weierstrass
equation is elliptic as we now argue. The converse is also true, though we will not prove this.

Proposition 1.5.6. A smooth curve defined by a Weierstrass equation is elliptic.

Proof: A curve defined by a Weierstrass equation is automaticall projective (hence proper) and irre-
ducible. If it is smooth it is also geometrically reduced. In Section 4.3.1 we will see more generally
that any scheme defined by a Weierstrass equation over a general base is in a canonical way a group
scheme.

Example 1.5.7. The curve y2 = x3 + 5x + 8 in Example 1.5.4 is elliptic over base fields not of
characteristic 2 or 557.

For curves given by Weierstrass equations, it is possible to give very concrete descriptions of the
group law on rational points, both in terms of geometry by using lines intersecting the curve and by
explicit formula. For more on this see [67, Chapter III]. We will not go into more detail as elliptic
curves are a gigantic subject in their own right and there are multiple long texts on the subject, such
as [66], [67] and [68]. But having this one-dimensional case in mind, we mention the following easy
fact, which allows for many examples.

Proposition 1.5.8. A product of abelian varieties is again an abelian variety.

Proof: Products of proper, connected and smooth schemes remain so. Furthermore a product of
group schemes naturally inherits the structure of a group scheme.

Example 1.5.9. Using Proposition 1.5.8 one may construct Abelian varieties of arbitrary dimension.
For example, the scheme of dimension 3

Proj k[X,Y, Z]/(y2 − x3 +2)×Proj k[X,Y, Z]/(y2 − x3 +3)×Proj k[X,Y, Z]/(y2 − x3 +13)

is an Abelian variety if the base field is of characteristic not 2, 3 or 13. The scheme

Proj k[X,Y, Z]/(y2 − x3 + 1)×4,

is an Abelian variety in all characteristics.

For further reading about Abelian varieties, there are many books on the subject, such as [55].

19 of 84



1.5.2 The Automorphism Group Scheme

The final example we will consider in this section is the automorphism group scheme. We will apply
the same tactic as in many of our earliest examples. That is, we will consider a specific functor of
groups, and then argue that it is representable by a scheme.

Definition 1.5.10. Let X be a scheme over S. The functor AutX/S is defined as the contravariant
functor of groups which to an S-scheme T associates the group of T -automorphisms AutT (X×ST ).
To a morphism T → T ′, the associated morphism AutT ′(X ×S T ′)→ AutT (X ×S T ) is obtained
by pull-back.

Remark 1.5.11. Before considering the automorphism group scheme, we first make an observation
on the nature of morphisms of schemes. Consider a morphism f : X → Y of schemes over some
base S. Then this morphism comes with its associated graph morphism Γf : X → X ×S Y . Now,
assume Y is separated. This ensures that Γf is a closed immersion, and so the image of X under
Γf yields a closed subscheme of X ×S Y , which we also denote Γf . Note that this identification is
actually one to one i.e. if Γf = Γg then f = g. Indeed, we have

f = pr2 ◦ Γf = pr2 ◦ Γg = g,

where pri : X ×S Y → Y is the projection. Furthermore, if Z ⊆ X ×S Y is a closed subscheme,
then Z = Γf for some f , if and only if pr1|Z : X → X is an isomorphism. The only if part is just
a restatement that the morphism Γf is a closed immersion. Conversely, if pr1|Z is an isomorphism
then it has an inverse (pr1|Z)−1 : X → Z so we obtain a morphism f = pr2 ◦ (pr1|Z)−1 : X → Y
for which Z = Γf .
Finally, it holds that f is an isomorphism if and only if pr2|Γf

: Γf → Y is an isomorphism. This
follows from the fact that pr2|Γf

◦ Γf = f , and Γf is an isomorphism onto its image.
In conclusion we obtain a 1-1 identification of isomorphisms X → Y (where Y is separated) with
closed subschemes of X ×S Y which are isomorphic to X and Y via the projections. In particular,
automorphisms of a separated scheme X correspond to a certain class of closed subschemes of the
fiber product X ×S X .

Proposition 1.5.12. Let X be a projective scheme over a field k. The functor AutX/k which to a
k-scheme T associated the group Aut(XT ) of automorphisms of XT = X ×k T over T , is rep-
resentable by a scheme. This scheme is denoted AutX/k and is called the automorphism group
scheme.

Proof: As noted in Remark 1.5.11 we may identify the automorphisms f : XT → XT with their
graph Γf ⊆ XT ×T XT . As proven by Grothendieck in [29, IV: Theorem 3.2 and p. 17] there exists
a scheme HilbX×kX/k parametrizing closed subschemes ofX×kX in the sense that HilbX×kX/k(T )
corresponds one-to-one to closed subschemes of XT ×T XT . Now, as outlined in the discussion of
Remark 1.5.11 the automorphisms of Aut(XT ) correspond to closed subschemes of XT ×T XT

such that both projections restrict to an isomorphism onto XT . Thus, the automorphisms Aut(XT )
correspond to a specific class of T -rational points of the Hilbert scheme HilbX×kX/k. As explained
in the proof of [26, Theorem 5.23] (which our statement is a special case of) the condition that a
closed subscheme represents a morphism from XT to XT for some T is an open condition. As
such, the set of closed subschemes representing automorphisms, may be viewed as the intersection
of the two open subschemes representing morphisms from X to X and to X from X (these two are
distinct, as direction matters in this case). Thus, the automorphisms of X constitute an open subset
of HilbX×kX/k, hence the set of automorphisms inherits a unique induced scheme structure.
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In fact, one can prove more generally, that the automorphism functor is representable if X is
simply proper. This is a main result of [51, Theorem 3.7]

Proposition 1.5.13. IfX is a proper scheme over a field k then AutX/k is representable by a scheme
which is locally of finite type.
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Chapter 2

Group Schemes in Action

As usual, we fix a base scheme S. Any notion presented is relative to this base.

In this chapter we will study group scheme actions and quotients. This is a central component of
the classical and generalized Kummer constructions studied in later chapters, and we will spent quite
some time studying how one can interpret actions in varying fashions. As in Chapter 1 we refer to
[16, 17] for further reading.

2.1 Definitions and Basic Results

To fix notation, let G be a group scheme.

Definition 2.1.1. An action of G on a scheme X is a morphism σ : G × X → X such that
σT : G(T )×X(T )→ X(T ) defines a group action for each scheme T .

Equivalently, an action of G on X is a morphism σ : G × X → X such that the following
diagrams are commutative

G×G×X σ×idX →→

idX×σ
↓↓

G×X
σ
↓↓

X →→

idX
→→

S ×X e×idX →→ G×X
σ
↓↓

G×X σ →→ X. X

Or, in written equalities σ ◦ (idG × σ) = σ ◦ (m× idX) and σ ◦ (e× idX) = idX . These equalities
are just generalisations of the standard axioms of group actions on sets, namely compatibility and
identity.

In this chapter we will be juggling actions of both group schemes and groups on X . These notions
are of course connected but there are subtleties to keep in mind. Indeed, an action of a group M
on X means that each m ∈ M determines an automorphism of the scheme X , whereas an action
of a group scheme G means that each T -rational point of G determines an automorphism of the set
X(T ). Note that given an action of a group on a scheme, we do get an induced action on each set of
T -rational points. Indeed, a T -rational point is a morphism T → X , and so post-composition with
the automorphism φM gives another T -rational point. This obviously satisfies the axioms of a group
action on a set. In fact, we can say more:

Remark 2.1.2. SupposeM is a group acting on a schemeX . Then each elementm ∈M determines
an automorphism σm : X → X . Using this, we obtain a morphism MS ×X → X , by mapping the
m component of MS×X =

∏︁
m∈M X to X via σm. Thus we obtain an action of the constant group

scheme MS on X .
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Example 2.1.3. Take as a base S = SpecR, and consider as schemes G = Gm and X = An. For
any R-algebra A we then have a classical action of Gm(A) = A× on An(A) by scaling.

As we wish to study actions by group schemes, an particularly quotients by these, it becomes
useful to have different ways of defining actions. This will lead us to different tools to compute
quotients. We are especially interested in finite group schemes. Such group schemes are in particular
affine, and actions by such schemes have nice properties. As in Proposition 1.1.4 we let A denote
the functor from the category of schemes affine over S to the category of quasi-coherent S-algebras,
given by sending a scheme to the pushforward of its structure sheaf.

Lemma 2.1.4. Suppose G is affine over S. The category of schemes affine over S with G-action is
equivalent to the category of S-algebra with a A(G)-comodule structure over S .

Proof: To fix notation, let X be a scheme affine over S. An action of G on X is just a morphism
µ : G × X → X compatible with the group scheme structure on G. Now, the category of affine
schemes over S is equivalent to the category of quasi-coherent S-algebras, so to give such a µ, is
nothing but a morphism of the corresponding sheaves,

µ : A(X) −→ A(X)⊗A(G),

where A(G) is a Hopf algebra by Proposition 1.1.4 One can then transfer the requirements for µ to
be a group scheme action into the category of S-algebras, and we see that it corresponds to commu-
tativity of the following diagrams which are dual to those given following Definiton 2.1.1:

A(X)
µ →→

µ

↓↓

A(X)⊗A(G)

id⊗∆

↓↓
A(X)⊗A(G)

µ⊗id
→→ A(X)⊗A(G)⊗A(G),

(CM1)

and
A(X)

id

→→
µ →→ A(X)⊗A(G)

id⊗e →→ A(X)⊗ S
∼ →→ A(X), (CM2)

where ∆ denotes the comultiplication of the Hopf algebra A(G) and e : A(G) → S is the counit.
These diagrams are exactly the definition of a comodule structure.

This leads us to the following definition:

Definition 2.1.5. Let F be an S-module and suppose G is affine over S. A G-action on F is an
A(G)-comodule structure of F over S .

Note that by Lemma 2.1.4 this is completely compatible with the definition given earlier.

Example 2.1.6. As an example, take the algebra A[x1, . . . , xn] and the group scheme Gm. We saw
in Example 1.1.5 that the underlying scheme of Gm is SpecA[y, y−1], and that the multiplication
and identity of the Hopf algebra structure are given by ∆: y ↦→ y ⊗ y and e : y ↦→ 1. So to
give a comodule structure of A[x1, . . . , xn] over A[y, y−1], we just need to give a homomorphism
A[x1, . . . , xn]→ A[x1, . . . , xn]⊗A[y, y−1] that is compatible with these. As an example, take

µ : A[x1, . . . , xn] −→ A[x1, . . . , xn]⊗A[y, y−1], xni ↦→ xni ⊗ yn.

One checks that
(id⊗∆)(µ(xni )) = xni ⊗ yn ⊗ yn = (µ⊗ id)(µ(xni ))
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while (id ⊗ e)(µ(xni )) = xni ⊗ 1 as desired. Note that this is just the same action as in Example
2.1.3. One can construct other actions by simply replacing y by ym, which corresponds to scaling by
an m’th power.

Let us now turn to the notion of free actions. As in the classical case of group actions on sets,
these are particularly nice actions.

Definition 2.1.7. Suppose we have an action σ : G × X → X . The action is said to be free if the
morphism

σ × idX : G×X → X ×X, (g, x) ↦→ (σ(g, x), x)

is a monomorphism.

One should note that the above definition is different (and less restrictive) than the one taken in
[56, Definition 0.8]. In some sense, the definition given here is more natural, as it simply means that
for each scheme T the action of G(T ) on G(X) is free. Related to this notion is that of a fixed point.

Definition 2.1.8. Suppose we have an action σ : G × X → X . A schematic fixed point is a point
x ∈ X such that σ(g, x) = x and such that the induced homomorphism of residue fields σ : κ(x)→
κ(x) is the identity.

The first requirement, σ(g, x) = x, means that the point x is a topological fixed point. The
extra requirement on the induced homomorphism is not an empty assumption at all. There really is a
difference between topological and schematic fixed points. To illustrate this difference, let us study
an explicit example.

Example 2.1.9. Consider a field K and a finite Galois extension L/K. We then have an action of
G = Gal(L/K) on L hence also on SpecL. The topological space | SpecL| consists of only a
single point, which is then invariably a topological fixed point for the action of G. However, the
point SpecL, which by its nature carries an algebraic structure, is not a schematic fixed point, as the
action of G does not fix the field L.

We also have the following example, which further shows how easily one can happen upon
actions that are non-free.

Example 2.1.10. Given a group scheme G it comes equipped with the involution morphism ι : G→
G. By its nature this morphism satisfies ι◦ι = id and so we have a canonical action of Z/2Z = {±1}
on the group scheme G. Furthermore, the multiplication map G×G→ G defines for each n ∈ Z a
self map nG : G→ G called multiplication by n. Concretely, a point inG is mapped via the diagonal
map to the n-times self-product of G and then back to G via successive multiplication of two factors
at a time. This of course determines an action of Z on G. Furthermore, the fixed scheme of the
Z/2Z action is exactly the kernel of the map 2G. For an abelian variety A of dimension g over an
algebraically closed field the kernel of nA consists of n2g points if the characteristic of the base field
does not divide n [55, p. 60-61]. Over a non-algebraically closed field, the kernel simply has length
n2g. In particular, if A is an abelian surface the fixed scheme of the {±1}-action consists of exactly
24 = 16 points after passing to an algebraic closure of the base. For the case where the characteristic
of k divides n, see the reference loc. cit. or [25, Definition 1.8].

2.2 Quotients

Our main results deal with singularities on quotient families. In this subsection we will have a look at
how one constructs quotients in algebraic geometry. We will primarily consider finite group schemes
with the only non-finite one being Gm. The concept of quotients by group actions in algebraic
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geometry is wide ranging topic in its own right, called Geometric invariant Theory (GIT). There are
many books and articles dedicated to the subject such as Mumford’s originating text [53] and its
later editions [56]. If one dives into the details of GIT there are many considerations to be made and
terms such as "good categorical quotient" crop up. We will simply not bother with these types of
considerations, as the situations we consider do not need them. We are content to take the following
as out notion of quotient.

Definition 2.2.1. Given a group schemeG acting on a schemeX , a quotient ofX byG is a surjective
G-invariant morphism π : X → X/G to a scheme over which G-invariant morphisms factor i.e.
for all G-invariant morphisms φ : X → Y there is a unique morphism ψ : X/G → Y such that
φ = ψ ◦ π. If G is finite, π must be integral.

Of course, the universal property means that any such quotient, if it exists, is unique up to unique
isomorphism. The big question is whether such a morphism actually exists. As the next few existence
results show, there is no great universal "yes" or "no" answer. It is more of a case-by-case study,
depending on the specific group scheme or type thereoff, the type of action, the base or all of these.
However, a point to make is that having the group scheme be finite is usually a good starting point.
Having the action be free is also desirable, but this is not the situation in the problems we consider
later. In any case, we will see that our quotients are locally given by spectra of rings of invariants.

Definition 2.2.2. Let G be a group scheme affine over the base acting on an affine scheme SpecA
via σ : G × SpecA → SpecA. The ring AG = {a ∈ A | σ(a) = 1 ⊗ a} is called the ring of
invariants, where σ also denotes σ : A→ A(G)⊗A. If G acts acts on a scheme SpecS F affine over
the base , then FG is called the sheaf of invariants.

Note that the above definition is equivalent to letting AG be the kernel of

σ − id⊗ 1: A −→ A(G)⊗A.

Remark 2.2.3. Take S = SpecR. There is of course also the well known notion of invariant rings
under group actions. If M is a group acting on a ring A the M -invariants are

AM = {a ∈ A|ma = a ∀m ∈M}.

If M is a group, then the two notions of invariants coincide, meaning that if M acts on some R-
algebra A, then AM = AMS . Indeed, the action of M on A gives an action of M on SpecA which
in turn determines an action of MS on SpecA as in Remark 2.1.2. Denote this action

σ : MS × SpecA −→ SpecA.

This corresponds to a homomorphism of R-algebras

σ : A→ (R×R× · · · ×R)⊗R A ∼= A|M |.

Analyzing the morphism in detail, one arrives at the fact that the morphism is

σ : A −→ A|M | a ↦−→ (1Ma,m2a, . . . ,m|M |a).

With this interpretation, theMS invariant elements ofA should be those such that σ(a) = (a, a, . . . , a).
But the element (1Ma,m2a, . . . ,m|M |a) of A|M | corresponds to

(1, 0, 0, . . . , )⊗ a+ (0, 1, 0, 0, . . . , 0)⊗m2a+ · · ·+ (0, 0, . . . , 1)⊗m|M |a,
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in (R × R × · · · × R) ⊗R A ∼= A|M |. So the criterion (1Ma,m2a, . . . ,m|M |a) = (a, a, . . . , a)
translates to

σ(a) = (1, 1, . . . , 1)⊗ a = 1⊗ a.

Replacing S = SpecR by a general base and A by a coherent S-algebra F in the above one gets the
same interpretation for the more general case. As such, there is no chance of confusion when talking
about invariant rings or sheaves as all notions coincide.

We take the following for granted:

Proposition 2.2.4. Let M be a finite group acting on a scheme X . Then the quotient π : X → X/M
exists and the natural homomorphism X/M → π∗

G
X is an isomorphism if and only if each orbit of the

action is contained in an open affine.

Proof: See [33, Exposé V, Proposition 1.8].

As we just saw in Remark 2.2.3 that rings of invariants coincide whether we consider a group
or its constant group scheme, this at least gives a criterion for existence of quotients by actions of
constant group schemes.

The next result considers quotients over base fields. As we are, in the end, interested in families i.e.
schemes over bases with more than one point, this will not be sufficient for our purposes when we
reach the main results. However, it is good for computing examples, and it gives existence for the
classical kummer construction studied in Section 3.3.

Theorem 2.2.5. Suppose S = Spec k for a field k. Let X be a scheme of finite type and G a
finite group scheme acting on X . If the orbit of any point is contained in an affine open subset of
X , then the quotient π : X → X/G exists and the natural homomorphism X/G → π∗(X)

G is an
isomorphism. In particular, if X = SpecA then X/G = SpecAG. If the action of G is free, and
dimΓ(G,G) = n, then π is flat of degree n.

Proof: This is part of [55, Theorem 1, p.104-105]. The assumption of finite type is not present in
the statement loc. cit. but is a standing assumption in the text. The result loc. cit. is only given over
an algebraically closed ground field, but the assumption is not necessary for the proof.

The above reduces computing quotients to simply computing rings of invariants

Example 2.2.6. Consider the action of ⟨−1⟩ on A1
C = SpecC[T ] defined by [−1] : T ↦→ −T . Then

C[T ]⟨−1⟩ = C[T 2] so A1/⟨−1⟩ = SpecC[T 2]. Indeed, each polynomial f(T ) ∈ C[T ] may be
written uniquely as

f(T ) = g(T 2) + h(T 2)T g(T ), h(T ) ∈ C[T ],

i.e. it may be split into terms of even and odd degree. Then one simply notes that [−1]f(T ) =
f([−1]T ) = f(T ) if and only if h(T 2) = 0.

It is important to know that taking quotients rarely commute with other operations such as prod-
ucts and more specifically base change. Later, in Section 4.1 we will focus more on this question,
and see examples that not even taking fibers commute with quotients. For now we are content with
the following example that products do not behave as one might hope.

Example 2.2.7. Let k be a base field of characteristic not 2. Take as in Example 2.2.6 the action of
G = ⟨−1⟩ on Spec k[T ] by [−1] : T ↦→ −T . Then A1/G × A1/G = Spec k[T 2

1 , T
2
2 ]. But, if we

consider the induced action on A1 × A1, then this is determined by

[−1] : k[T1]⊗ k[T2] = k[T1, T2] −→ k[T1, T2], Ti ↦→ −Ti.
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Using a similar argument to before, one finds that k[T1, T2]G = k[T 2
1 , T

2
2 , T1T2]. But k[T 2

1 , T
2
2 ] ̸∼=

k[T 2
1 , T

2
2 , T1T2] so

A1/G× A1/G ̸∼= (A1 × A1)/G.

The existence result we will apply for the main results is the following:

Theorem 2.2.8. If G is a finite infinitesimal group scheme acting on a scheme X , then the quotient
X/G exists. The quotient morphism is finite and surjective. If X is affine the quotient is X/G =
SpecAG.

Proof: This follows from [16, III, §6, 6.1 Corollaire]. The corollaire loc. cit. is a special case of [16,
III,§2, Theorem 3.2] for which the precise description of the quotient in the affine case is described
in the proof. The result quoted does not mention finiteness of the quotient morphism, but this is
obtained from the description of the quotient as the spectrum of the G-invariant ring.

Now, let σ : G × X → X denote the action. According to the first result quoted, we should
argue that the projection p2 : G × X → X is finite locally free and that the set theoretic orbits
[x] = {y ∈ X | ∃g ∈ G s.t. σ(g, x) = y} are all contained in open affines. For the first part, we
simply remark that any infinitesimal group scheme is by definition finite locally free, and that this
property is preserved by base change. It follows that p2, which is the base change of the structure
morphism G→ S by X → S, is necessarily finite locally free. For the condition on orbits, note that
since G is infinitesimal, the identity section e : S → G is a homeomorphism on topological spaces,
in particular it is surjective. It follows that on the level of points, any point g ∈ G is the target of
some s ∈ S and so m(g, x) = m(e(s), x) = idX(x) = x for any x ∈ X . Thus these set theoretical
orbits consist of just one point each.

Note the following fact which is implicit in the proof above: A quotient by an infinitesimal group
scheme does not change the underlying topological space. That is, if G is infinitesimal acting on X ,
then X/G is homeomorphic to X . We now prove a few general lemmas on properties of quotients.
In these, we have a standing assumption that the quotient X/G = SpecRG actually exists.

Lemma 2.2.9. Let X be a scheme acted on by a finite group scheme G.

(i) If the base S is locally Noetherian and X is of finite type, then X/G is of finite type.

(ii) If X is separated then X/G is separated.

(iii) If X is proper then X/G is proper.

Proof: (i): For the quasi compactness suppose V ⊂ S is an open affine, and let f : X → S and
g : X/G → S be the structure morphisms. Then f−1(V ) = π−1(g−1(V ) is quasi-compact. As π is
surjective, π(π−1(g−1(V )) = g−1(V ), which is then quasi-compact since π is continuous. For the
locally of finite type, we give essentially the same proof as in [55, p.63 Theorem]. We may assume
everything is affine X = SpecA and that S = SpecR is Noetherian. As A is of finite type, it has
some finite generating set x1, . . . , xn. AsAG → A is integral each generator xi satisfies some monic
polynomial equation. Let B ⊂ AG be the finite type subalgebra generated by the coefficients of
these equations. As A is integral over B, and of finite type over R, hence B, it is finite over B. As
B is of finite type over the Noetherian ring R, it is Noetherian. So any B-submodule of A is again
finite over B. Thus AG is finite over B hence of finite type over R.
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(ii): We must show the image of X under the diagonal ∆X/G : X/G → X/G × X/G is closed.
Letting π : X → X/G be the quotient map, we have a commutative square

X
∆X →→

π
↓↓

X ×X

π×π
↓↓

X/G
∆X/G →→ X/G×X/G

Now, since X is separated, ∆X(X) is closed in X × X . But π is finite, hence so is π × π and in
particular this last map is closed. So ∆X/G(X/G) = π × π(∆X(X)) is closed in X/G×X/G.

(iii): As X is separated and of finite type, so is X/G. By its nature, the quotient map X → X/G is
surjective. But then X/G is proper by [48, Proposition 3.3.16 (f)].

We will see later, in Example 2.3.17, that the finiteness assumption in parts (ii) and (iii) above is
not superfluous so that one can obtain non-separated quotients when the group scheme is not finite.
Concerning (i), a famous example by Nagata [57] shows that the ring of invariants of a finite type ring
is not necessarily of finite type. However, there are cases of quotients by non-finite group schemes
where the quotient of a finite type scheme remains of finite type. For example [18, Exposé VII
corollaire 5.8] shows that finite type/presentation is preserved if the group scheme is diagonalizable
and acts freely.

The following lemma is immensely useful as it tells us that forming quotient may be done after
flat base change. This is useful especially if one is working over a field, as it means one can, without
trouble, pass to a field extenstion, for example an algebraic closure.

Lemma 2.2.10. Taking G invariants commutes with flat base change. In particular, forming quo-
tients commutes with flat base change.

Proof: By definition FG = {f ∈ F|µ(f) = f ⊗ 1} where µ : F → F⊗A(G) is the homomorphism
corresponding to the G-action. This may be realized as the kernel of

F → F ⊗A(G), f ↦→ µ(f)− f ⊗ 1.

But forming kernels commutes with flat base change, and so we are done.

The previous lemma already becomes useful in the following specific case. Suppose R is an
integral domain with a G-action. Then there is an induced action on Frac(R) given by acting on
numerator and denominator. Now, since Frac(R) is flat over R the lemma immediately gives the
equality Frac(R)G = Frac(RG).

Lemma 2.2.11. If X is normal so is X/G.

Proof: The questions is local, so we consider a local integral domain A. The statement to show is
that AG is integrally closed in its field of fractions. Let F = Frac(A). As noted, Lemma 2.2.10
implies Frac(AG) = FG. Then let a ∈ FG be an element integral over AG. As FG ⊂ F we have
a ∈ F . But a is integral over AG, hence also over A, so A being normal implies a ∈ A. Finally, note
that a ∈ FG means a is G-invariant, hence a ∈ AG. So AG is integrally closed in FG as desired.

Lemma 2.2.12. If X is irreducible, respectively reduced, then X/G is irreducible, respectively re-
duced. In particular, if X is integral then X/G is integral.
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Proof: For the irreducibility, we note that the quotient morphism X → X/G is surjective, hence
X/G is the continuous image of an irreducible space, hence irreducible. For the reducedness, we
may argue locally. The G-invariant subring AG of a ring A is exactly that: a subring. Hence A
reduced implies AG is reduced.

Lemma 2.2.13. If X is of dimension n and G is finite then X/G is of dimension n.

Proof: If G is finite, then X → X/G is finite and surjective hence it preserves dimension, so
dim(X) = dim(X/G).

As already alluded to, just the existence of a quotient of a given action is already a big question
on its own. As such it is desirable to have certain conditions under which one can easily say the
quotients exists. Now as noted, the condition required is often that finite collections of points are
contained in open affines. This is the AF ("affine finie") property. This is covered in [61, Appendix
B]

Definition 2.2.14. A scheme is said to be AF if every finite set of points is contained in an open
affine subscheme.

Proposition 2.2.15. If S = Spec k is a field, X has the AF property and G is finite, then X/G exists
as a scheme. In particular this holds if X is projective.

Proof: As X is AF, every finite collection of points in A is contained in an open affine. In particular,
any orbit is contained in an open affine, which implies the quotient exists by Theorem 2.2.5 since G
is finite. For the final bit note that projective schemes are AF by [61, Appendix B].

2.3 Actions and Gradings

As usual, we fix a base scheme S and work relative to this base. Furthermore, M will denote an
Abelian group. Our first goal of this section is to prove that actions by D(M) in a certain sense
correspond to M -gradings. Let us illuminate the idea by means of an example.

Example 2.3.1. Consider a ring A and suppose it has a Z-grading A =
⨁︁
Ad. Then we get an

induced action of the group A× on A by setting α ∗ a = αda for α ∈ A×, a ∈ Ad and distributing
over addition. Another way of regarding this, is that the Z-grading induces a Gm action on SpecA.
Indeed, the grading of A induces a grading on A⊗ B for any algebra B in a functorial manner, and
so an action of B× on this tensor product.
Another perspective is the following: Recall that an action of Gm on X is nothing but a morphism
of schemes Gm ×X → X satisfying the equalities listed after Definition 2.1.1. Such a morphism is
equivalently a homomorphism of rings A→ Z[x, x−1]⊗A such that certain diagrams commute, so
to give the desired action it is enough to give such a homomorphism. So we simply use the grading
on A and define

A −→ Z[x, x−1]⊗A,
∑︂
d

ad ↦−→
∑︂
d

(xd ⊗ ad).

One could then use the explicit description of the co-multiplication on Z[x, x−1] found in Example
1.1.5 to check that this satisfies the necessary equalities.

This way of viewing an action of a group scheme as a comodule structure is the viewpoint we
will take. So consider G = D(M) over S. Furthermore, take a scheme X affine over the base. Then
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we recall from Lemma 2.1.4 that an action of G on X is equivalent to giving a comodule structure
µ : A(X)→ A(X)⊗A(G). Note that since A(G) = S [M ] =

∏︁
m∈M Sm we may view this as

µ : A −→
∏︂
m∈M

A⊗mS .

So we may view such a morphism as a collection (µm)m∈M of S-module endomorphisms of A

indexed by M . Then we can write µ =
∑︁

m∈M µm ⊗ m. Note the similarity with the map A →
Z[x, x−1]⊗A in the example above, which is a special example of this. Recall also from Definition
2.1.5 that more generally an action of G on any S-module F is just an A(G)-comodule structure on
F.

Proposition 2.3.2. An action of a diagonalizable group schemeD(M) on a quasi-coherent S-module
F is equivalent to a grading of F by M .

Proof: As noted just before the proof, an action of G = D(M) determines a morphism µ : F →
F ⊗ A(G) or equivalently a collection (µm)m∈M of S-module endomorphisms of F indexed by
M . For this to determine an action, µ should fit in the commutative diagrams (CM1) and (CM2) of
Lemma 2.1.4. Let us express these axiom diagrams in terms of the µm using µ =

∑︁
m∈M µm ⊗m.

We have

µ ◦ µ = µ

(︄∑︂
m∈M

µm ⊗m

)︄
=
∑︂
m′∈M

∑︂
m∈M

µm ⊗m⊗m′.

Similarly,

∆ ◦ µ = ∆

(︄∑︂
m∈M

µm ⊗m

)︄
=
∑︂
m∈M

µm ⊗m⊗m.

Now, we see that the two expressions agree, i.e. µ satisfies (CM1), if and only if

µm′ ◦ µm =

{︃
0 if m ̸= m′

µm if m = m′.

In more compact notation
µm′ ◦ µm = δmm′µm (∗)

where δmm′ is the Kronecker delta. For (CM2), let φ denote the canonical isomorphism F⊗ S → F.
Then

φ ◦ (id⊗ e) ◦ µ = φ ◦ (id⊗ ε)

(︄∑︂
m∈M

µm ⊗m

)︄
= φ

(︄∑︂
m∈M

µm ⊗ 1

)︄
=
∑︂
m∈M

µm

So (CM2) is equivalent to requiring ∑︂
m∈M

µm = id. (∗′)

Now, we claim that having a µ satisfying (∗) and (∗′) are equivalent to giving a grading of F by M .
For the first direction, suppose we are given µ satisfying (∗) and (∗′). Set Fm = im (µm), i.e. F is
the sheafification of the presheaf associating the image of µm|U to any open set U of S. We claim
F = ⊕m∈MFm. Note that Fm ↪→ F for all m. So we have a morphism

ψ :
⨁︂
m∈M

Fm −→ F, (fm)m∈M ↦−→
∑︂
m∈M

fm.
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Note that the sum
∑︁
fm does make sense as only finitely many fm are non-zero. Similarly, we have

the canonical map φ : F →
⨁︁

m∈M Fm which locally is given by f ↦→ (µm(f))m∈M . These two
morphisms are inverses. Indeed, locally

ψ(φ(f)) = ψ((µm(f))m∈M ) =
∑︂
m∈M

µm(f)
(∗′)
= f.

Similarly, locally

φ(ψ((fm)m∈M )) = φ

(︄∑︂
m∈M

fm

)︄
=

(︄
µm′

(︄∑︂
m∈M

fm

)︄)︄
m′∈M

=

(︄∑︂
m∈M

µm′(fm)

)︄
m′∈M

Since Fm = imµm, and we are working locally, each fm = µm(gm) for some gm of F. So(︄∑︂
m∈M

µm′ (fm)

)︄
m′∈M

=

(︄∑︂
m∈M

µm′(µm(gm))

)︄
m′∈M

(∗)
=

(︄∑︂
m∈M

δmm′(µm(gm))

)︄
m′∈M

=(µm′(g′m))m′∈M

=(fm′)m′∈M .

Thus φ and ψ are canonical inverses, proving F =
⨁︁

m∈M Fm. To construct µ from the decompo-
sition, one defines for f =

∑︁
fm in

⨁︁
Fm the morphisms µm(f) = fm. That this satisfies (∗) and

(∗′) is immediate.

Corollary 2.3.3. An action of D(M) on a quasi-coherent S-algebra A is equivalent to an algebra
grading of A by M .

Proof: It is enough to argue that the grading of Proposition 2.3.2 as an S-module respects the algebra
structure of A. Note that we now assume µ to be an algebra homorphism, though the µm remain only
module homomorphisms. Suppose α and β are sections of A of degreem,n ∈M respectively. Then
we get, locally,

µ(αβ) = µ(α)µ(β) = µm(α)µn(β) = (α⊗m)(β ⊗ n) = (αβ)⊗mn.

We here used µ(α) = µm(α), which is a consequence of (∗) of the previous proof. But this compu-
tation exactly shows αβ is of degree mn.

We emphasize the previous corollary in a specific case:

Corollary 2.3.4. An action of D(M) on an affine scheme SpecA is equivalent to a grading of A by
M .

This allows us to give multiple examples of group scheme actions in terms of gradings. For
example, we can immediately construct actions by Gm and µn simply by giving gradings by Z and
Z/nZ. This immediately gives a whole host of actions on polynomial rings and quotients of these.

Example 2.3.5. Consider the ring R[x]. The usual grading by Z via degree of polynomials corre-
sponds via Lemma 2.3.4 to an action of D(Z) = Gm = SpecR[x, x−1]. The concrete map is

µ : R[x] −→ R[x]⊗R[u, u−1], xn ↦−→ xn ⊗ un,
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which corresponds to µ : A1⊗Gm → A1. Let us study this on A rational points, for some R-algebra
A. Fix φ ∈ Gm(A) = Hom(A[u, u−1], A) = A× determined by φ(u) = a ∈ A×. This gives an
endomorphism of R[x] given by

R[x]
µ−→ R[x]⊗R[u, u−1]

id⊗φ−−−→ R[x], x ↦→ ax,

Thus, given concrete α ∈ A1(A) = A i.e. a homomorphism ψ : A[x]→ A determined by ψ(x) = α,
we obtain a new homomorphism via (ψ ◦ id)⊗ (ϕ ◦ µ) which simply maps x to aα. Thus the usual
grading ofR[x] in terms of polynomial degree is the grading corresponding to the scalar action of Gm

on A1. This of course generalizes, and we see that the polynomial degree grading of R[x1, . . . , xn]
induces an action by Gm which is exactly the multiplication by scalars. Note also that the fixed
scheme of this action is exactly the origin and so there is an induced action on An \{0} which is free.

Example 2.3.6. Let R = k be a field and consider the ring k[x, y]/(y2 − x3 − a2x2 − a4x − a6).
Let us construct a Z/2Z = ⟨−1⟩-grading i.e an action of D(Z/2Z) = µ2-action. The k-algebra is
generated by the elements x and y, so let us fix these as homogeneous. Whether y has degree 1 or
−1, y2 must have degree 1, hence so must x3−a2x2−a4x−a6. This forces x to be homogeneous of
degree 1. Thus there are only two possible choices of grading. This also works if we take a general
Weierstrass equation y2 + a1xy + a3y − (x3 + a2x

2 + a4x + a6). Now, suppose char k ̸= 2. By
Proposition 1.4.6 we have a canonical isomorphism of group schemes (Z/2Z)k = D(Z/2Z). Since
any automorphism of order two would determine an action by the group Z/2Z, hence also by the
constant group scheme (Z/2Z)k, this implies that any curve defined by a Weierstrass equation (in
particular elliptic curves) can have only a single automorphism of order two fixing the distinguished
point if char k ̸= 2.

When studying isolated singularities, it is often useful to pass to a formal neighbourhood. We
will need the following lemma specifically for quotient singularities. As we will see later, it will give
that the structure of an action is preserved in fixed points.

Lemma 2.3.7. Suppose (Ai)i∈I is a direct system ofR-algebras graded by an abelian groupM such
that the maps Ai → Aj are morphisms of graded algebras. Then there is an induced grading on
A = lim−→Ai.

Proof: Recall that a grading of Ai by M is nothing but a morphism Ai → Ai ⊗ R[M ] satisfying
certain axioms. By composition, these give maps Ai → A⊗ R[M ] which by the universal property
of A induce a unique A→ A⊗R[M ] which by construction must satisfy the necessary axioms.

The following lemma is short, but incredibly important, as it tells us exactly how one can compute
a quotient from an action given in terms of a grading.

Lemma 2.3.8. Suppose G = D(M) acts on SpecR. Then RG = Re where e ∈ M is the neutral
element and Re is the part of R corresponding to e in the M -grading R =

⨁︁
m∈M Rm.

Proof: By definition, Re is the image of µe, i.e. it contains exactly those r ∈ R such that µ(r) =
r ⊗ e. This is exactly the definition of RG.

The above naturally leads into the following result on existence of quotients by actions of diago-
nalizable group schemes.

Theorem 2.3.9. Let M be an abelian group, G = D(M) and X = SpecS F a scheme affine over S
defined by the sheaf of algebras F. Suppose G acts freely on X . Then the quotient X/G exists and
X/G = SpecS F

G = SpecS Fe. If X is of finite type, respectively of finite presentation, then so is
X/G.
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Proof: See [18, Exposé VIII, Théorème 5.1] and [18, Exposé VIII, Corollaire 5.8].

This shows that understanding gradings can help us compute quotients. As an aside, we will now
study how the Proj construction as a quotient of a scheme by Gm. First, let us consider an example.
I personally find this example incredibly fascinating, as it puts the "strange" proj construction into a
broader context of projective space being defined as a quotient.

Example 2.3.10. In classical topology, one constructs the projective space as the quotient space of
lines through the origin. In algebraic geometry however, one classically obtains the projective n-
space over an N-graded ring R as PnR = ProjR[x0, . . . , xn]. In light of Theorem 2.3.9 we may
now see that the Proj construction is simply a different way of interpreting this quotient construction:
Consider A2 \ {0} with the action of Gm as in Example 2.3.5. Then A2 \ {0} has two Gm-invariant
open sets covering it, namely Spec k[x, y]x and Spec k[x, y]y (removing the second and first axes
respectively). Said in another way, the grading by degree induces a grading on k[x, y]x and k[x, y]y.
The degree 0 part, i.e. the Gm-invariant subring, of each of these is exactly k[x, y](x) and k[x, y](y).
Thus the quotient is exactly

(A2 \ {0})/Gm
∼= P1.

Thus, we have now recovered the Proj construction of P1 as a quotient similar to the classical topo-
logical situation. Of course, one easily obtains (An+1 \ {0})/Gm

∼= Pn in a similar manner.

The above example works much more generally. We will not directly need this fact later, but
it is an interesting observation and we include the formal statement with a proof for the sake of
completion. Before we do so, we first make the following elementary observation, which describes
when a grading might "collapse" in a quotient:

Lemma 2.3.11. Let B be graded by an abelian group M and I ⊂ B an ideal. Then there is an
induced grading onB/I byM if and only if I is a homogeneous ideal i.e. generated by homogeneous
elements.

Proof: By an induced grading we mean that we have a commutative diagram

B
µ →→

↓↓

B ⊗R[M ]

↓↓
B/I

µI →→ B/I ⊗R[M ].

where the bottom arrow is µI([f ]) =
∑︁

[µm(f)]⊗m. Of course, this simply means that this µI is a
well-defined homomorphism. This means that the quotient B → B/I should preserve degree except
when something is mapped to zero.

In the case that I is homogeneous, the grading of B/I is explicitely given as

(B/I)m = Bm/(I ∩Bm).

This is covered in most books on commutative algebra such as [10]. The converse is rarely covered
in detail, so we give the full argument here: Suppose I is not generated by homogeneous elements.
Then there is some f1+ · · ·+ fn ∈ I with all fi ̸∈ I where each fi is of distinct degree deg fi = mi.
Now, obviously the residue class [f1 + · · ·+ fn] = 0, so we must have µI([f1 + · · ·+ fn]) = 0. But
we also have

µI([f1 + · · ·+ fn]) =

n∑︂
i=1

[µmi(fi)]⊗mi =

n∑︂
i=1

[fi]⊗mi.
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Where the last equality is because fi ∈ Bmi . Now, we claim that this cannot be zero. Indeed, R[M ]
is free as an R-module, implying B/I ⊗R[M ] =

⨁︁
M B/I as an R-module. But this implies, since

the mi are distinct and fi ̸∈ I , that
∑︁n

i=1[fi]⊗mi ̸= 0. Thus, µI is not well-defined in this case.

Proposition 2.3.12. Suppose B is an N-graded ring. Let B+ =
⨁︁

n>0Bn, the irrelevant ideal.
Then V (B+) is the fixed locus of the action by G = Gm = D(Z) induced by the grading of B, and
(SpecB \ V (B+))/G = ProjB.

Proof: First, let us show that Z = V (B+) is exactly the fixed point locus. For this, we show that it
is G-invariant, and in the process we will get for free that the action is trivial. Now, saying that Z is
G-invariant is the same as saying that the G-action on SpecB induces one on Z. Equivalently, the
grading on B should induce a grading on B/B+. This simply means B+ should be a homogeneous
ideal, which it is. Furthermore, B/B+ = B0, so the induced grading is the trivial one. This corre-
sponds to the trivial action, so Z is G-invariant with trivial action i.e. Z is fixed by G. To see that
it contains every fixed point, suppose p ∈ SpecB is fixed by the action. Then B/p has an induced
grading which is trivial. This implies b = 0 for any b ∈ B+. That is, B+ ⊂ p or equivalently p ∈ Z.

For the final part, we begin by noting that the induced action of G on SpecB \ V (B+) is free,
so the quotient exists as a scheme by Theorem 2.3.9. Next, note that SpecB is covered by SpecBf
for homogeneous elements f , as B is generated by homogeneous elements. Now, these SpecBf are
G-invariant because f is homogeneous, so Bf has an induced grading given by setting

deg(f−1) = −deg(f).

Furthermore, V (B+) ⊂ V (f) if deg f ̸= 0. So SpecBf is disjoint from V (B+) in this case and
thus SpecB \ V (B+) is covered by the affine schemes SpecBf with deg f ̸= 0. Thus the quotient
(SpecB \ V (B+))/Gm is glued together from SpecBGm

f . Here BGm
f is exactly the degree 0 part

of Bf , which is also known as the homogeneous localization B(f). But we know ProjB is exactly
glued together from these.

Corollary 2.3.13. Suppose A is an N-graded quasi-coherent algebra. Let A+ = ⊕n̸=0An, the sheaf
of irrelevant ideals. Then V (A+) is the fixed locus of the action by Gm = D(Z) on SpecS A induced
by the grading of A. Furthermore, (SpecS A \ V (A+))/G = ProjS A.

Proof: The scheme SpecS A is covered by affine schemes Γ(U,A) for U affine. Each of these
Γ(U,A) is in a functorial way a graded algebra, hence they constitute G-invariant open affines of
Γ(U,A). As all the questions here are completely local, we are then immediately reduced to the
affine case which is Proposition 2.3.12.

The fixed locus statement in the above can be generalised to any grading by a commutative
monoid with no inverses which embeds in an abelian group. However, for general gradings the
situation can be more subtle. If the ring B has a non-trivial grading by a finite group or is graded by
a group M such that for some m both Bm and B−m are non-empty, then the irrelevant ideal will not
actually be an ideal. Indeed, in this case one has for b ∈ Bm and b′ ∈ B−m that bb′ ∈ Be.

Example 2.3.14. As an explicit example of the above phenomenon, take k[x, x−1] with degree grad-
ing. Then xx−1 = 1 is not in the ideal generated by non-zero degrees. For an even "worse" example,
take R = k[x]/(x6). As notation let Z/3Z = {1, ω3, ω

2
3} and define a grading on R such that

deg x = ω3 and deg x2 = ω2
3 . Then x3 has trivial degree, and the set of polynomials of positive

degrees is not an ideal.
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As the above example alludes to, if the grading monoid has inverses, say if a ring has a grading by
Z with both non-trivial positive and negative parts, then one needs to be careful, and instead consider
the ideal generated by non-zero parts.

Proposition 2.3.15. Let A be an M -graded quasi-coherent algebra and I the sheaf of ideals I =
(⊕n̸=0An). Then V (I) is the locus of fixed points for the action ofD(M) on SpecS A corresponding
to the M -grading.

Proof: Proceeds as Proposition 2.3.12.

Example 2.3.16. Consider the rational cuspidal curve SpecR[u2, u3] ∪ SpecR[u−1] and let us
compute the fixed points of a concrete µ2-action. Such an action corresponds to a grading by
Z/2Z = {±1}. Set the degree of u to be 1. Formally, the element u is in neither ring, but both
embed into R[u, u−1]. So we may give a grading on this ring, making sure that it induces one on
both R[u2, u3] and R[u−1]. This will ensure that the grading i.e. action is compatible on overlaps,
and that the two affine charts are µ2-invariant. With the degree deg u = −1, we get deg u2 = 1 and
deg u3 = deg u−1 = −1. It follows that the fixed points on the R[u2, u3] chart are given by the ideal
(u3) and the fixed points on the R[u−1] chart are given by the ideal (u−1). Thus each chart has a
single fixed point. Note that these points are distinct.

Example 2.3.17 (The affine line with two origins as a quotient). For ease, take a field as the base,
and consider A2 with the Gm action given by λ · (x, y) = (λx, λ−1y). This corresponds to a true
Z-grading of A = k[x, y] where x is homogenous of degree 1, and y is homogeneous of degree −1.
Thus Ad = kxd ⊕ kxd+1y ⊕ · · · for d ≥ 0 and Ad = kyd ⊕ kyd+1x ⊕ · · · for d ≤ 0. Looking
topologically, the fixed locus should be the origin, which we confirm algebraically by noting that
I =

(︂⨁︁
d ̸=0Ad

)︂
= (x, y). It follows that the action is free on A2 \ {0}. Furthermore, the action is

invariant on each of the affine charts U1 = Spec k[x, y]x and U2 = Spec k[x, y]y which are the affine
plane with each of the axes removed. So we may use these to compute the quotient (A2 \ {0})/Gm

using these charts. As the G-invariant part is the degree 0 part we have

k[x, y]Gx = k[xy] and k[x, y]Gy = k[xy]

At first glance one might be tempted into thinking that since these rings are the same, the quotient is
just an A1, but one must be careful here, keeping in mind the gluing datum. The charts U1 and U2

are glued by along U1 ∩U2 = Spec k[x, y]xy, so π(U1) and π(U2) are glued along Spec k[x, y]Gxy =
k[xy]xy. Algebraically speaking, every prime ideal of k[xy] has a corresponding prime ideal in
k[xy]xy except for the ideal (xy). Geometrically, this means that the lines π(U1) and π(U2) are
identified at every point, except for the origin. Thus the resulting quotient scheme (A2 \ {0})/Gm is
in fact the affine line with two origins.
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The above drawing illustrates the orbits of rational points with an orbit consisting of all lines of the
same color. Two of the orbits are the coordinate axes, while the rest are the orbits of diagonal points.
Two black lines have been drawn to show how one can parametrize all points but one in two distinct
ways, illustrating how the two coordinate axes yield the double origin.

2.4 Group Scheme Actions and Lie Algebras

In this section we will take a look at Lie algebras in algebraic geometry. Specifically, we will give
a brief overview how one may reinterpret actions by group schemes in terms of Lie algebras and
furthermore how this can sometimes be used to compute quotients. This method of computing quo-
tients will be the one we apply in chapter 5. In fact, we will work with something slightly more
general than group schemes. Instead, we will talk about functors of groups, which will implicitely
mean functors from the category of R-algebras to the category of groups where R is a fixed base
ring. The reason for this level of generality is that with this setting we do not have to worry about
representability of the functor AutX/R. Recall that for a scheme X over a ring R, the automorphism
functor AutX/R is the functor of groups which to anR-algebraA associates the automorphism group
AutX/R(A) = AutA(X ×SpecR SpecA). We will be brief and refer to [16, II,§4 and §7] for further
reading and details. Let us now see how one may express group scheme actions in terms of this
functor of groups.

Remark 2.4.1 (Group scheme actions in terms of AutX/R). Now suppose we have a group scheme
G acting on X . The statement that G acts on X , means that for each R-scheme T each element
of the group G(T ) determines an automorphism of X(T ). As usual it is enough to consider affine
schemes over SpecR. That is, for eachR-algebraAwe have in a functorial way a homomorphism of
groups G(A) → Aut(X(A)) = Aut(XSpecA(A)). By functoriality, this is a morphism of functors
of groups G→ AutX/R.

In the following we will write R[ε] for the ring of dual numbers R[x]/(x2) over R.

Definition 2.4.2. Let G be a functor from the category of R-algebras to the category of groups. Let
p : R[ε] → R be the quotient homomorphism. We define the Lie algebra of G, denoted Lie(G), to

be the kernel Lie(G) = ker(G(R[ε])
G(p)−−−→ G(R)).

We remark that this definition is of course functorial in R. As such, one also gets a Lie algebra
functor. We will not get into this in more detail, but will simply refer to [16, II, §4]. Next we compute
a few examples:
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Example 2.4.3 (The Lie algebra of a diagonalizable group scheme). Consider an abelian group M
and its diagonalizable group scheme G = D(M). Recall from Section 1.4 that for any R-algebra
A we have D(M)(A) = HomGrp(M,A×). We have R[ε]× = {a + εb | a ∈ R×, b ∈ R} since
a+ εb has inverse (a−1 + εa−2(−b)). Thus, by definition, Lie(D(M)) consists of those morphisms
HomGrp(M,R[ε]×) which map to the morphism M → R× defined by being identically 1. It follows
that mapping HomGrp(M,R) → D(M)(R(ε)) via φ ↦→ 1 + εφ identifies HomGrp(M,R) with
Lie(D(M)). In particular we have

Lie(Gm) = Lie(D(Z)) = HomGrp(Z, R) = R.

Example 2.4.4 (The Lie algebra of µn). The example above gives one description of the Lie algebra
of µn = D(Z/nZ) as

HomGrp(Z/nZ, R) = {r ∈ R | nr = 0}.

It is a good exercise to compute the Lie algebra of this directly from the definitions. Recall from
Example 1.2.4 that µn(A) = {a ∈ A× | an = 1}. So

µn(R[ε]) = {a+ εb ∈ R[ε] | a ∈ R×, b ∈ R, (a+ εb)n = 1}.

As ε2 = 0 we get

(a+ εb)n = an +
n∑︂
i=1

(︃
n

i

)︃
an−i(εb)i = an + nεan−1b.

The condition (a+ εb)n = 1 then is equivalent to nb = 0. Thus, the Lie algebra of µn i.e. the kernel
of µn(R[ε])→ µn(R), is

Lie(µn) = {1 + εb ∈ R[ε] | nb = 0} = {b ∈ R | nb = 0}.

Note the special case where R is of positive characteristic p and n = p. In this case the above
simplifies as pb = 0 is always satisfied. So in this case we have

Lie(µp) = {1 + εb ∈ R[ε]} ∼= εR ∼= R.

Example 2.4.5 (The Lie algebra of αp). We now consider a base R of characteristic p > 0. Recall
from Example 1.2.5 that αp(A) = {a ∈ A|ap = 0}. For R[ε] these are all a+ εb such that

0 = (a+ εb)p = ap + εpbp = ap.

As the kernel are all those a+ εb with a = 0 we get

Lie(αp) = εR.

Remember that our goal is to reinterpret certain group actions in terms of Lie algebras. With
that perspective the previous two examples are a bit demoralizing, as they show µp and αp have
Lie algebras which are isomorphic, not just as sets but as groups! So clearly the Lie algebra as we
have defined it is not enough on its own to distinguish these two group schemes. As in differential
geometry, the Lie algebra comes with an additional structure: The Lie bracket. One could hope
this would be the distinguishing feature, but unfortunately this is not enough. Indeed, they are both
1-dimensional, and so the Lie bracket will be trivial. There is however an additional structure distin-
guishing them, namely the so-called p-map. We will return briefly to this point in a bit, but first we
focus on the Lie algebra of the functor AutX/R.
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Proposition 2.4.6. LetX be a scheme over a ringR. There is an isomorphism between Lie(AutX/R)
and DerR(X ,X).

Proof: This is [16, II, §4, 2.4 Proposition]. We give the morphism in each direction and otherwise
refer the reader to the reference given. Suppose we are given a derivation d : Y → Y , then we obtain
an automorphism of XR[ε]

= X ⊕ εX by

d ↦→ (φ : X ⊕ εX → X ⊕ εX , a+ εb ↦→ a+ ε(b+ da)) .

Conversely, suppose we are given ψ ∈ LieAutX/R. This is then an automorphism of XR[ε] which
becomes the identity when pulled back to R. Suppose we have a global section f of X . We may
view this a global section of XR[ε

= X ⊕ εX by f = f + ε0. Then we can apply ψ to this and obtain
some ψ(f) = a+ εb. We then set Dψ(f) = b.

As DerR(X ,X) = HomX (Ω
1
X/R,X) = H0(X,ΘX/R),m where ΘX/R is the dual sheaf of ΩX/R,

this result gives us hope that we can interpret certain group scheme actions in terms of H0(X,ΘX/R).

Now, we can not avoid mentioning so-called restricted Lie algebras or p-Lie algebras. We take most
of this content as a complete blackbox, referring to [16, II,§7] for the details. The results here are
presented merely for the sake of internal reference and to give a broad overview of the ideas. In
broad terms, a restricted Lie algebra is a Lie algebra L equipped with a map L→ L usually denoted
x ↦→ x[p] satisfying certain axioms with respect to scalar multiplication and the adjoint operator
which may also be interpreted in terms of the Lie bracket. A vector x ∈ L is said to be p-closed
if x ̸= 0 and x[p] = λx for some λ ∈ k, i.e the p-map fixes the linear span of x which is thus a
restricted sub-Lie algebra. See [16, II, §7, 3.3] for precise definitions. See also [62, section 1] [46,
Section 1] and [64, Section 1] for further perspectives. The reason we are interested in restricted Lie
algebras at all are the following results:

Proposition 2.4.7. Let R be a ring of characteristic p > 0. For any group scheme G over R the Lie
algebra Lie(G) is in a canonical way a restricted Lie algebra. Furthermore, if X is a scheme over R
and G → AutX/R a homomorphism of functors of groups, then the induced Lie(G) → Der(X) =
H0(X,ΘX/R) is a homomorphism of restricted Lie algebras.

Proof: This is [16, II, §7, 3.4 Proposition].

Theorem 2.4.8. Let R be a ring of characteristic p >, X a scheme over R and G be a group scheme
over R of height ≤ 1. For each homomorphism of restricted Lie algebras ψ : Lie(G) → Der(X) =
H0(X,ΘX/R) there is a morphism φ : G→ AutX/R, i.e. an action of G on X .

Proof: See [16, II, §7, 3.10].

Note that the p-map of Der(X) is p-fold composition. What this theorem tells us, is that to give
an action of a group scheme of height ≤ 1, it is enough to give such a morphism. For αp and µp this
simplifies further. It is shown in [16, II, §7, 2.2] that the p-map of αp is x[p] = 0 and that for µp we
have Lie(µp) = Homgrp(Z/pZ, R) and the p-map is p-fold compositiion.

Corollary 2.4.9. Let R be a ring of characteristic p > 0 and let X be a scheme over R.

(i) Actions of µp on X correspond one-to-one to p-closed sections δ ∈ H0(X,ΘX/R) satisfying
δ[p] = δ;

(ii) Actions of αp on X correspond one-to-one to p-closed sections δ ∈ H0(X,ΘX/R) satisfying
δ[p] = 0.
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Proof: We know that Lie(αp) is the free module εR with vanishing p-map and Lie(µp) is the free
module εR with p-map corresponding to p-fold composition. Let G denote either αp or µp. As both
Lie algebras are free modules of rank 1, it follows that to define a morphism Lie(G)→ H0(X,ΘX/R)
(indeed into any other Lie algebra) it suffices to specify a single section of δ ∈ H0(X,ΘX/R) as the
target of the generating element of Lie(G). For this morphism to be a morphism of restricted Lie
algebras, this δ must satisfy the identities of the p-map of G. For αp this gives δ[p] = 0. For µp the
p-map is trivial on the generating vector, giving the desired. That the correspondence is one-to-one
is contained in [16, II, §7, 3.12 Corollary].

The following proposition is the reason behind this whole section. It tells us that we may compute
certain quotients of group scheme actions by computing kernels of derivatons. This is the method
employed in Chapter 5.

Proposition 2.4.10. Let R be a ring of characteristic p > 0 and X = SpecA an affine scheme
over R. Let δ ∈ Der(A) = H0(X,ΘX/R) determine a G = αp or G = µp action. Then X/G =
Spec ker δ.

Proof: The quotient exists by Proposition 2.2.8. The rest is [16, III,§2,6.4].

Example 2.4.11. Let R be a ring of characteristic p = 2 and consider the rational cuspidal curve
C = SpecR[u2, u3] ∪ SpecR[u−1]. It is outlined in the proof of [62, Proposition 3.2] that the Lie
algebra H0(X,ΘX/R) is 4 dimensional with generators u−2Du, Du, uDu and u2Du. It also follows
from the computations of [62, Proposition 3.1] that each vector of H0(X,ΘX/R) is p-closed. It
follows that any vector field

δ = (λ0u
2 + τu+ λ2λ4u

−2)Du = (λ4u
−4 + λ2u

−2 + τu−1 + λ0)Du−1

determines an action of either α2 or µ2. It is shown in the Proposition 3.2 loc. cit. that the p-map
is trivial precisely on the span of u2Du, Du and u−2Du. Thus, δ determines an action of α2 if and
only if τ = 0 and an action of µ2 otherwise. Now, the quotient C/G, with G either α2 or µ2, exists
by Proposition 2.2.8. As the vector field descends to a derivation on both R[u2, u3] and R[u−1], it
follows that the charts determined by these rings are G-invariant. So we may use Proposition 2.4.10
to compute the quotient.

So consider the derivation δ : R[u−1]→ R[u−1] determined by δ = (λ4u
−4 + λ2u

−2 + τu−1 +
λ0)Du−1 . Then

δ(u−n) = λ4nu
−n−3 + λ2nu

−n−1 + τnun + λ0u
−n+1.

This implies that ker δ = R[u−2]. A similar computation shows that the kernel on theR[u2, u3] chart
is R[u2]. It follows that C/G = P1.
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Chapter 3

Surface Theory

3.1 Rational Double Points

Fix a base field k. We assume, for now, that it is algebraically closed. To further fix terminology,
a surface will mean a irreducible scheme of finite type and dimension 2. In this section we will
take a look at a specific type of singularity occuring on surfaces. A big part of chapter 5 is analyzing
exactly which singularity types arise in the generalized Kummer construction, so we give here a brief
introduction to the subject. The book [15], specifically Chapter 3 and 4, are good sources for further
reading.

Note that while resolution of singularities is in general an open question in arbitrary characteristic
(and we specifically care about characteristic 2 in the end), resolutions of surface singularities exist
also in positive characteristic by [1] and [2].

Definition 3.1.1. A normal surface singularity is a pair (Y, y) such that Y is a normal surface and
y is a closed point. A resolution of (Y, y) is a proper morphism π : X → Y such that X is regular
in a neighbourhood of π−1(y) and π|X\π−1(y) is an isomorphism. In particular, such a resolution is
birational. The singularity is said to be rational if R1π∗X = 0.

We usually simply write Y with the closed point y being understood. In the setting of proper
surfaces, rationality may be reinterpreted in the following way:

Proposition 3.1.2. Let Y be a proper, normal surface and X a proper, smooth surface. Suppose we
have a morphism π : X → Y such that there is a closed point y ∈ Y such that π is an isomorphism
outside of π−1(y) and π−1(y) is a curve, e.g. Y has a singularity at the point y and π is the resolution.
Then R1π∗X = 0 if and only if χ(X) = χ(Y ).

Proof: We have π∗X = Y by [69, Tag 0AY8]. Since the fibers are all of dimension at most one
Rqπ∗X = 0 for q ≥ 2. The Leray-Serre spectral sequence Epq2 = Hp(Y,Rqπ∗X) ⇒ Hp+q(X,X)
gives us an exact sequence

0 →→ H1(Y, Y ) →→ H1(X,X) →→ H0(Y,R1π∗X) →→ H2(Y, Y ) →→ H2(X,X) →→ 0.

By additivity of the Euler characteristic this implies that χ(Y )−χ(X) = dimH0(Y,R1π∗X). By defi-
nition, the global sections ofR1π∗X are exactly its stalk at y so dimH0(Y,R1π∗X) = dim(R1π∗X)y
which is zero if and only if R1π∗X = 0 since as noted the sheaf is supported only at y.

See also [15, Lemma 3.8] for further equivalent statements.
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Example 3.1.3. Consider Y = Spec(k[x, y, z]/(xy − z2))(x,y,z) and let π : X → Y be the blowing
up in the point p corresponding to (x, y, z). One can show that X is smooth, that π is a minimal
resolution and that π−1(p) = P1. The theorem of formal functions [34, III, Theorem 11.1] tells us
that

(R1π∗X)
∧
p = lim←−

n

H1(Xn, (X)n)

where Xn = X ×Y Spec Y,y/m
n
y is the thickened fiber and (X)n is the pullback of X to Xn, which

is just Xn . In our case, since Y,y/my = k, we may write

Xn = X ×Y Spec Y,y/my ×k Spec Y,y/mn
y = P1 ×k Spec Y,y/mn

y .

Then
H1(P1 ×k Spec Y,y/mn

y ,Xn) = H1(P1,X)⊗ Y,y/m
n
y = 0.

This implies (R1π∗X)p = 0. As π is an isomorphism outside the exceptional divisor we have
R1π∗X = 0.

We briefly recall the notion of multiplicity and Gorenstein. Consider a ring A and an A-module
M . The length of M , denoted length(M), is the length of the longest sequence of submodules
M0 ⊂ · · · ⊂ Mn for which all the quotients Mi/Mi−1 are simple. If there is no upper bound, M is
of infinite length. Otherwise it is of finite length n. Suppose now A is finite dimensional and local
with maximal ideal m. For sufficiently largem the length length(A/mm+1) is a polynomial function
in m of degree d = dimA. The multiplicity of A is then the leading coefficient of this polynomial
times d!. Now set m = dimA. The local ring A is said to be Gorenstein if Extn(A/m, A) = A/m
and Exti(A/m, A) = 0 for i ̸= m. If A is of dimension 2 and normal being Gorenstein is equivalent
to ωSpecA being trivial on SpecA \ {m}, see [15, Corollary 3.13].

Definition 3.1.4. A rational singularity Y is a rational double point if it satisfies the following
equivalent statements

(i) Y,y has multiplicity 2;

(ii) Y,y is a Gorenstein local ring.

For the equivalence of these statements, see [15, Corolary 4.19]. In my native tongue we have a
saying which roughly translates to "A child held dear goes by many names" and this is certainly the
case with rational double points. Among other names, they are also known as rational Gorenstein
singularities, ADE-singularities, Du Val singularities and Kleinian singularities. Let us consider an
example:

Example 3.1.5. Take the rational singularity defined by A = (k[x, y, z]/(xy − z2))(x,y,z). We have
equalities

length(A/mm+1) =

m∑︂
i=0

length(mi/mi+1) =

m∑︂
i=0

dimk m
i/mi+1.

Now, for i = 0 we have dimk A/m = 1 and for i ≥ 1 we have dimk m
i/mi+1 =

(︁
2+i
2

)︁
−
(︁
i
2

)︁
= 1+2i.

Thus

m∑︂
i=0

dimk m
i/mi+1 = 1 +

n∑︂
i=1

(1 + 2i) = 1 +
n∑︂
i=1

1 + 2
n∑︂
i=1

i = 1 + n+ n · (n− 1) = 1 + n2.

As this polynomial is of degree 2 with leading coefficient 1, it follows that the multiplicity of A is 2.
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Remark 3.1.6 (Exceptional fibers and Dynkin diagrams). Suppose we have a curve C with irre-
ducible components C1, . . . , Cn. Then one can simply draw a graph of nodes and edges where one
views each node as a curve, and each edge as describing an intersection. For exceptional divisors of
rational double points, we obtain simply laced Dynkin diagrams. Given such an exceptional divisor,
the Dynkin diagram describing its configuration of irreducible curve is called its dual graph. The
possible diagrams we will see are the simply laced Dynkin diagrams, i.e. those with no multiple
edges. These come in the following five types, where n denotes the number of nodes:

An: Dn:

E6: E7:

E8:

Here each node corresponds to a copy of P1 with self-intersection −2 and the edges indicate how
these curves intersect. For example the Dynkin diagrams of type An and E8 translate to

An:
C1 C2 C3 Cn−1 Cn C1 C2 C3 Cn−1 Cn

E8:
C8 C7 C6 C5 C4 C3 C1

C2

C4

C2 C3

C1

C5

C6 C7 C8

Rational double points were studied in three papers by Du Val [20], [21], and [22], explaining
one of their many names. He showed that resolving a rational double point on a projective surface
yields an exceptional divisor divisor with dual graphAn,Dn,E6,E7 orE8. Later, Artin [3, Theorem
2.7] proved the following. See also [15, Theorem 3.15].

Theorem 3.1.7. LetX be a proper, normal surface andE ⊂ X a curve with irreducible components
E1, . . . , En. Then the following are equivalent

(i) There exists a morphism π : X → Y such that Y is normal, π(E) = y is a Gorenstein point
on Y , π : X \ E → Y \ {y} is an isomorphism, and π∗(ωY ) ∼= ωX ;

(ii) The intersection matrix (Ei ·Ej)i,j is negative definite, theEi are nonsingular rational curves,
and E2

i = −2 for all i.

Moreover, if either of these holds χ(X) = χ(Y ).
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In [3] is mentioned the following consequence. See also [15, Theorem 3.32].

Corollary 3.1.8. A proper, normal surface singularity is a rational double point if and only if it is of
type An, Dn, E6, E7, or E8.

This equivalence explains why rational double points are also called ADE-singularities. In [4]
Artin gives a way to compute multiplicity of points in using the so-called fundamental cycle of their
exceptional divisors. Using this, one may separately show that any exceptional divisor with dual
graph An, Dn, E6, E7 or E8 comes from a point of multiplicity 2.

Remark 3.1.9 (Infinitesimal study). An important tool in analyzing singularity types is that of for-
mal neighbourhoods. Suppose Y = SpecA is a surface singularity. Then ˆ︁Y = Spec ˆ︁A is called a
formal neighbourhood of the singular point m, where ˆ︁A denotes the formal completion with respect
to the maximal ideal m. The result [15, Lemma 4.2] tells us that resolving the singularity ˆ︁Y yields the
same exceptional divisor as when resolving Y . As such, it is sufficient to determine singularity types
after passing to an infinitesimal neighbourhood. This allows for computations in power series rings
k[|x, y, z|] rather than just polynomial k[x, y, z]. This is useful, as simplifying polynomial equations
is easier in such rings. We will see concrete examples of such simplifications in the proofs of Propo-
sition 5.2.5 and Proposition 5.2.8. It also allows for neat lists of simplified equations determining
the various singularities. These are called the normal forms. Tables can be found in [27, Tables II.1
and II.2]. Some computations and a less neatly arranged list may be found in [8]. For example, our
earlier example xy − z2 is the normal form of an A1 singularity.

Now, what if the base field k is not algebraically closed? The definition rational double point still
makes sense, but different configurations may show up in the exceptional divisor.

Remark 3.1.10 (Computing singularity types after base change). Consider a separable polynomial
f ∈ k[x, y, z] defining a rational surface singularity Y . Suppose L/k is a Galois extension. Base
changing Y to Y × SpecL gives a singularity over L. It turns out we can analyze the singularity
Y using Y × SpecL and what we know about quotients. We have an action of the Galois group
G = Gal(L/k) on Y × SpecL where the quotient exists with

(Y × SpecL)/G = Y × Spec k = Y.

Now let X → Y be a minimal resolution with exceptional divisor E. By [69, Tag 085S] taking a
blow-up commutes with flat base change, so the resolution of Y ×SpecL is simplyX×SpecL with
exceptional divisor E × SpecL. Furthermore, X = (X × SpecL)/G and E = (E × SpecL)/G.
This is useful, as it allows us to study singularities by first passing to a base change and then looking
at the Galois action on the irreducible components of the exceptional divisor. The upshot is that
the dual graph may no longer be simply laced. For example, given E × SpecL with irreducible
components C1, . . . , C4 in a D4 configuration the Galois action may identify C1 and C2, which
makes the quotient E of B3 type

D4:

C2

C1

G
C3 C4

B3:

We will see a very concrete example of this principle in Proposition 5.2.4.
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3.2 The Conditions (Si) and (Ri)

When studying quotients of families it is desirable to have certain base change properties. Ideally, the
fibres of the quotient would be the quotient of the fibres. This is true for quotients by finite diagonal
group schemes, see Theorem 4.1.5. More generally though, it does not hold, and it takes some work
to settle whether this is the case or not. It turns out, see Theorem 4.1.7, that the S2 condition is useful
in certain cases.

We first outline the (Si)- and (Ri)-conditions following [31, 5.7 and 5.8]. In the following we
will need the notion of depth which we quickly recall. For more details, we refer to [30, 0 16.4]
or [34, §3]. Let us fix notation. Let A be a Noetherian ring, I ⊂ A an ideal and M a finitely
generated A-module. Recall that a sequence of elements f1, . . . , fn ∈ A is said to be M -regular or
regular for M if ai is a non-zero divisor on M/(f1, . . . , fi−1)M i.e. fim = 0 implies m = 0 in
M/(f1, . . . , fi−1)M . The I-depth of M , denoted depthIM , is then the largest integer n possible
for any M -regular sequence. We refer to the texts loc. cit. for the arguments that this is well-
defined i.e. does not depend on the choice of M -regular sequence. If A is local with maximal ideal
m we simply refer to the m-depth as the depth. It is a fact [34, Corollary 3.6] that depthIM =
infp∈V (I) depthMp. Thus, one generalizes depth to schemes in the following way: Suppose X is
locally Noetherian, Y ⊂ X a closed subset and F a coherent sheaf on X . Then the Y -depth of F is
defined as depthY F = infx∈Y (depthFx).

Definition 3.2.1. A Noetherian ring A is said to satisfy condition (Si) for an integer i if for all
p ∈ SpecA we have

(Si) : depth(Ap) ≥ inf{i,dimAp}.

A locally Noetherian scheme X is said to satisfy (Si) if X,x satisfies (Si) for all x ∈ X .

There is a corresponding definition for finitely generated modules. We simply give the general
definition for sheaves, of which the module definition is a special case. Recall that the dimension
of a finitely generated module M is defined as dim(A/AnnM). Obviously the dimension of a ring
coincides with its dimension as a module over itself.

Definition 3.2.2. LetX be locally Noetherian scheme and a coherent sheaf F on a locally Noetherian
scheme X . We say that F satisfies (Si) if for all x ∈ X

(Si) : depth(Fx) ≥ inf{i,dimFx}.

The other type of conditions, the so-called (Ri)-conditions, are defined as follows:

Definition 3.2.3. A locally Noetherian schemeX is said to satisfy (Ri) or to be regular in codimen-
sion ≤ i if

(Ri) : X,x is regular whenever dimX,x ≤ i.

Equivalently, the set of non-regular points is of codimension > i.

One can apply these conditions in "S2-type argument". Essentially, an "S2-type argument" pro-
ceeds by arguing that a certain property can be checked outside of a codimension 2 subset. In the
case of surfaces, we will see that this usually amounts to arguing that something can be checked
outside a dimension 0 closed subset that consists of the singular points. More details will follow in
the next section.

It turns out that normal surfaces are in fact determined by satisfying S2 and R1. This is a result
due to Serre. From [31, Proposition 5.8.5 and Theorem 5.8.6] we have:

Proposition 3.2.4 (Serre’s Normality Criterion). Let X be a locally Noetherian scheme. Then:
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(i) X is reduced if and only if it satisfies properties (S1) and (R0);

(ii) X is normal if and only if it satisfies properties (S2) and (R1).

We mention as a side remark that this characterization of normality makes it immediate why
normal curves are regular.

3.2.1 Cohen–Macaulay Schemes

Definition 3.2.5. A locally Noetherian scheme X is said to be Cohen–Macaulay if it satisfies (Sn)
for all n. A coherent sheaf on X is said to be Cohen–Macaulay if it satisfies (Sn) for all n.

This of course also gives us a notion of Cohen–Macaulay rings and modules. The rings are
often defined as rings which satisfy depthRp = dimRp for all prime ideals p. As we always have
depthRp ≤ dimRp, the two notions are easily recognized to be equivalent. As our focus is on the
use of S2-conditions on surfaces especially, we take the above as our definition.

Lemma 3.2.6. Let be an invertible sheaf. If X satisfies (Si) then so does .

Proof: The property is local on X and the stalks of coincide with X,x.

For the sake of easier referencing we give the full statement of the following cohomological
interpretation of depth which we will need in a few different instances. The cohomology groups are
the local cohomology groups which we take as a blackboxed tool. For the theory of these see [34].
Note also that Theorem 3.2.7 gives a characterization of Cohen–Macaulay schemes as those which
satisfy Hnx(X,X) = 0 for all n < dimX and all x ∈ X .

Theorem 3.2.7 (The Cohomological Interpretation of Depth). LetX be a locally Noetherian scheme,
Z ⊂ X a closed subset, and F a coherent sheaf onX . Then the following are equivalent for all n ∈ Z

1. HiZ(F) = 0 for all i < n;

2. depthZ F ≥ n.

Proof: This is [34, Theorem 3.8]. Note that Hartshorne here uses the dated terminology of prescheme
which is just a scheme in modern language.

Proposition 3.2.8. A coherent sheaf F is S2 if and only if for each closed subset Z ⊂ X of codimen-
sion ≥ 2, the canonical map F → i∗i

∗F is an isomorphism, where i : X \ Z → X is the canonical
embedding.

Proof: Both S2 and being an isomorphism of sheaves are local properties (since the morphism exists
globally), so we may assume X to be affine and Noetherian. As X is Noetherian and F is coher-
ent, F is the sheaf associated to H0(X,F) and similarly for i∗F and H0(X \ Z,F). So the global
isomorphism of sheaves is equivalent to an induced isomorphism of these global sections. Now, by
[34, Corollary 1.9] there is an exact sequence linking local cohomology of sheaves with their global
cohomology

0 →→ H0
Z(X,F)

→→ H0(X,F) →→ H0(X \ Z, i∗F) →→ H1
Z(X,F)

→→ 0.

Here the last term is zero, since X is affine so H1(X,X) = 0 by Serre vanishing. Thus H0(X,F) ∼=
H0(X \ Z, i∗F) if and only if

H0
Z(X,F) = H1

Z(X,F) = 0.

By Theorem 3.2.7 this is equivalent to depthZ F ≥ 2. If we pick x such that Z is the closure of x,
this translates into depthFx ≥ 2.
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Lemma 3.2.9. Let f : X → Y be a morphism of locally Noetherian schemes and F an S2 sheaf on
X . Suppose f∗F is coherent. If there is a a closed codimension at least 2 subscheme Z ⊂ X such
that f(Z) ⊂ Y is closed of codimension at least 2, then f∗F is S2 on Y .

Proof: Being S2 is a local condition, so we may assume Y is affine. As notation, let U = X \Z and
V = Y \ f(Z). Then, by Proposition 3.2.8, it is enough to show H0(Y, f∗F) = H0(V, f∗F|V ). Now,
by definition of the pushforward H0(Y, f∗F) = H0(X,F). Then we use that F is an S2 sheaf, which
implies that H0(X,F) = H0(U,F). Since V = Y \ f(Z), it follows that f |U maps to V , so

H0(U,F) = H0(V, f∗F).

Putting all these equalities together gives the desired.

An immediate situation where the preceding lemmas are applicable is that of normal surfaces.
Indeed, by Proposition 3.2.4 these are Cohen–Macaulay.

3.3 The Classical Kummer Construction

In this section we will outline the Kummer construction in the classical setting. This construction
gives a canonical way of associating a K3 surface to a given Abelian surface.

So let us set the scene. In this section, fix a base field k of characteristic not 2. For simplicity we
assume for now that the base field k is algebraically closed. Let A be an abelian surface and consider
the sign involution i : A → A. This morphism satisfies i2 = id and so we recall from Example
2.1.10 how it determines an action on A of the group scheme (Z/2Z)k which is isomorphic to µ2
since char k ̸= 2. In the following, we generally view it simply as an action of the group {±1} for
simplicity. Also recall that this action has 16 fixed points, up to base change, which are also called
2-torsion points. In the following, we will give arguments that the quotient Y = A/{±1} exists as
a scheme, has singularities which we will classify, and that the resolution X → Y is a K3-surface.
We fix notation for the quotient map π : A→ Y and the resolution f : X → Y .

Proposition 3.3.1. The quotient Y exists as a scheme.

Proof: This can be seen from Proposition 2.2.15 as any abelian variety is projective.

Thus, we now have a quotient Y to study as a scheme. We begin by listing some properties:

Proposition 3.3.2. The surface Y is a proper, normal surface.

Proof: We noted earlier in Lemma 2.2.9 that the quotient of a proper scheme is again proper. We
also saw in Lemma 2.2.11 that the quotient of a normal scheme is again normal.

As recalled earlier, A has 16 fixed points. As we now prove, Y comes with singularities corre-
sponding to these fixed points. Luckily, however, the singularities are as mild as can be.

Proposition 3.3.3. Y has 16 isolated singularities corresponding one-to-one to the fixed points of
A. Each of these is a rational double point of type A1. Y is smooth outside of these sixteen points.

Proof: We first prove that Y is smooth away from these sixteen notable points. As notation, let
a1 = e, a2, . . . , a16 denote the sixteen fixed points, where e is the distinguished rational point
of A. Further, let y1, . . . , y16 denote the correspondings points on Y . To see that these are the
only possible singular points, we note that the action of G is free when restricted to the open set
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U = A\{a0, . . . , a16}. Indeed, an action by a group of order two is free if and only if it has no fixed
points. Thus Theorem 2.2.5 implies that π|U : U → V = Y \ {y1, . . . , y16} is flat. In particular, the
fact that U is smooth implies that so is V [50, 21.D Theorem 51].

Now let us analyze the situation at the fixed points. The situation is the same at all of them, so
we simply treat one a ∈ A. We note that this point being fixed by the {±1}-action means we have an
induced action on SpecA,a. Indeed, the stalk is given as A,a = lim−→U⊂A Γ(U,A). Taking open subsets
U ∩ i(U) gives a refinement, and taking the limit over these opens makes each U G-invariant hence
the Γ(U,A) have compatible Z/2Z-gradings. It follows that so does A,a by Lemma 2.3.7. Now pick
generators u, v of ma. Then we have

∧
A,a = k[|u, v|].

This comes with an induced grading, and after a linear change of basis in u and v, we may assume u
and v are homogeneous. In this case both u and v must be of degree −1. Indeed, if this was not the
case, the ideal of fixed points in ∧

A,a would be of height ≤ 1 meaning that a would have some formal
neighbourhood on whichG-acted trivially. But if both are of degree−1, we get that theG-invariants,
i.e the degree 1 part, must be

k[|u, v|]G = k[|u2, uv, v2|] = k[|x, y, z|]/(z2 − xy).

This we recognize as the normal form of an A1-singularity, see Remark 3.1.9

Recall that a K3 surface is a smooth, proper, geometrically integral scheme of dimension 2 such
that ωX = X and H1(X,X) = 0, where ωX is the canonical sheaf of X . By the Enriques-Kodaira
classification [42, 43, 44, 45, 54, 14, 13] these are one of four types of smooth proper surfaces with
numerically trivial ωX . The other three are the Abelian, Enriques and bielliptic surfaces. They may
be classified by their second Betti number b2 = h2(X) as

Abelian K3 Enriques Bielliptic
b2 6 22 10 2

Proposition 3.3.4. The minimal resolution f : X → Y is a K3 surface.

Proof: Our tactic of proof is to appeal to the Enriques-Kodaira classification. First we will argue that
ωX is numerically trivial, which will limit the possibilites for what type of smooth surface X can
be. Note that since Y has only rational double points, it follows that ωX = f∗ωY by Theorem 3.1.7.
Thus, it is enough to show that ωY is numerically trivial. For this, we must by definition show that
(ωY · C) = 0 for any curve C ⊂ Y .

First, we make an observation on π∗ωY . As in the proof of the previous proposition we use that the
morphism

π|U : U = A \ {a1, . . . , a16} → V = Y \ {y1, . . . , y16}

is flat by Theorem 2.2.5. In fact, it is also finite by the same result, so π|U is even étale by [32, Corol-
laire 17.6.2 b)]. This implies (π|U )∗ωY = ωA|U . As Y is smooth outside of the fixed points, ωY |U is
locally free. Furthermore, each singularity of Y is a rational double point, in particular Gorenstein,
so ωY is also locally free at these points as well, hence ωY is locally free. Then π∗ωY is locally free,
as is ωA because A is smooth. Next, as A is normal, any invertible sheaf on A is S2 by Proposition
3.2.4 and Lemma 3.2.6. It then follows by Lemma 3.2.8 that π∗ωY = ωA as they are isomorphic
outside of the set {a1, . . . , a16} which has codimension 2.

Let us compute (ωY ·C). As Y is projective by [15, Theorem 3.9] we may write Y (C) as a difference
of very ample sheaves. Thus it is enough to show (ωY · C) = 0 for very ample curves. Moving the
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curve, we can assume C does not intersect any singularity of Y , and so C is smooth. Then, because
π is finite and as noted π∗ωY = ωA

2(ωY · C) = deg(π)(ωY · C) = (π∗ωY · π−1(C)) = (ωA · π−1(C)).

Now, since A is an abelian variety ωA ∼= A and so we have ωA · C ′ = 0 for any curve C ′ on A.
So(ωY · C) = 0. Thus ωY and hence also ωX are numerically trivial.

Since ωX is numerically trivial andX is smooth, the Enriques-Kodaira classification of surfaces tells
us that X is either Abelian, K3, Enriques or bielliptic, depending on whether b2 = dimk H

2(X,X)
is 6, 22, 10 or 2 respectively. We will argue it cannot be less than 16, hence must be 22 and so X is
K3. The surface A has exactly sixteen fixed points giving singularities on Y . Thus X has sixteen
disjoint distinguished curves E1, . . . , E16 on arising as the exceptional divisors of the singularities
on Y . As these singularities are all A1, i.e. rational double points, these curves are −2-curves. We
claim that they give linearly independent classes of Num(X). This is straightforward. Indeed, as the
Ei are disjoint −2-curves

(Ei · Ej) =
{︃

0 if j ̸= i
−2 if j = i.

Then suppose we have an equality
∑︁16

i=1 aiEi = 0 in Num(X). Then using the intersection numbers
just listed gives

0 = (Ej ·
16∑︂
i=1

aiEi) = −2aj .

So ai = 0 for all i i.e. the Ei are linearly independent in Num(X). Thus the Picard number of X
defined as ρ = rankNum(X) is at least 16. But the Igusa-Severi inequality [37] or [12, Exposé
XVIII Proposition 5.2] says that ρ ≤ b2. So 16 ≤ b2, hence b2 = 22 and X is K3.

Definition 3.3.5. The K3 surface X is called the Kummer surface of A and is denoted Kum(A).

Remark 3.3.6. The surface Kum(A) defined above may be defined in a different but equivalent
fashion as outlined in [15, 10.5] and [36, Example 1.3 (iii)]. We give a brief description: first,
one defines a scheme g : ˜︁A → A as the blowing up of A in the closed subscheme of fixed points
{a1, . . . , a16}. As these points are fixed by the involution i, it follows by the universal property of
the blowing up, that there exists a unique morphism˜︁i : ˜︁A→ ˜︁A such that i ◦ g = g ◦˜︁i. This˜︁i satisfies˜︁i2 = id ˜︁A and so induces an action of {±1} on ˜︁A. By the same arguments as above, the quotient˜︁A/{±1} exists. By the universal property of the quotient, there is a map ˜︁A/{±1} → A/{±1}which
by the universal property of the blowing-up gives a comparison map ˜︁A/{±1} → Kum(A). One can
then show that this map is in fact an isomorphism:

˜︁A →→

↓↓

A

↓↓
Kum(A) = ˜︁A/{±1} →→ A/{±1}.

Remark 3.3.7 (Non-algebraically close base fields). Most of the arguments made in the above re-
main valid over non-algebraically closed ground fields. The only point where one has to modify
the argument slightly, is in computing b2. Indeed, if k not algebraically closed, we can not say that
the fixed scheme on A has 16 points. However, the invariant b2 does not depend on the base field,
so we may pass to an algebraic closure, to ensure we have the 16 curves, and proceed by the same
argument. As such, the classical Kummer construction remains perfectly valid over arbitrary ground
fields.
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Remark 3.3.8 (The characteristic 2 case). In the preceding, we made the assumption that the base
field k should be of characteristic not 2. This is not a superflous assumption. Indeed, in characteristic
2 the construction might fail to yield a K3-surface. One may take the quotient all the same, but
the singularities can get worse. Indeed, the quotient has an elliptic singularity if and only if A is a
so-called supersingular Abelian surface [65, 38] and in this case the resolution is not K3. However,
the singularities arising in this case are well understood [63, Prop. 5.1-3]. In fact, the resulting
surface has Kodaira dimension −∞ and is rational i.e. birational to P2. The possible failure of this
construction in characteristic 2 naturally offers the question whether there is another, possibly better,
generalization to characteristic 2. This is in some sense the framing question of Chapter 5 of this
thesis.
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Chapter 4

Schemes in Families

As usual we fix a base scheme S. In this section, we will study families over S. That is to say,
collections of objects parametrized by S. In the end, we are interested in families of surfaces.

Definition 4.0.1. A family over a scheme S is a proper, flat morphism X → S where X is an
algebraic space.

In the outset of any concrete construction we do, we will only consider families that are schematic.
However, to talk about simultaneous resolution of singularities in Section 4.2 it is necessary that we
allow algebraic spaces. We will not go into much detail on this subject, but we give the definition
and indicate how they are generalization of schemes.

By the Yoneda lemma any scheme may be viewed as a functor from the category (Sch/S) to the
category of sets. More precisely it determines a sheaf on the étale site (Sch/S), see Remark 1.1.2.
With this viewpoing, schemes are simply a certain class of functors, namely those sheaves on the
étale site (Sch/S) which are representable. As such, the natural way to try and generalize schemes,
is to look at larger classes of sheaves on this site. An algebraic space X is a sheaf X on the étale site
(Sch/S) such that

(i) the diagonal morphism ∆: X → X ×S X is representable by schemes, i.e. for any scheme
Y and morphism Y → X ×S X the sheaf obtained by the fiber product Y ×X×SX X is
representable by a scheme.

(ii) there is a scheme U and a surjective étale morphism U → X .

A scheme X is trivially an algebraic space as Y ×X×X X is always a scheme and X id−→ X is an
étale surjection. As Olsson [58] puts it, one can think of an algebraic space as "a geometric object
obtained by gluing together schemes using the étale topology rather than the Zariski topology". For
more see Artins originating papers [5, 6], or the books of Knutson [41] and Olsson [58].

4.1 Quotients of Families

Consider now a base S consisting of more than one point, e.g. a DVR. Suppose further, that we have
a scheme X over S, with an action of a group scheme G over S. Suppose a quotient X/G exists,
a natural question to then ask is whether the formation of quotients commutes with taking fibers?
That is, do we have a canonical isomorphism Xs/Gs ∼= (X/G)s? This property is desirable for
multiple reasons. Firstly, we would be able to describe the quotient family, by computing quotients
over fields. Secondly, the action might be simpler on certain fibers, allowing for easier computations.
Say for example one of the fibers is an elliptic curve, and the action turns out to be the involution
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action on this fiber. Then we know the quotient must be P1. This can also be fruitful, if one knows
the singularities of these quotients in the fibers.

Unfortunately, such an isomorphism does not hold in general, as we will see shortly. From the
universal property of the quotient, we at least obtain a comparison map, which would have to be the
desired isomorphism (by the universality)

Xs/Gs −→ (X/G)s,

but there is nothing guaranteeing that this is an isomorphism in general. We will explain in more
detail how to construct this morphism in Remark 4.1.4. If the action of G is free, then this is an
isomorphism, but this is not a necessary condition. Indeed, let us now consider two examples. The
first will show that even for non-free actions, taking quotients might commute with fibers, and the
second will show that this can fail for non-free actions.

Example 4.1.1. Let R = C[|u|] and note that this is a DVR. We take as our base S = SpecR and
as usual we denote the closed point by σ and the open point by η. Let A = C[|t|] and consider
X = SpecA as an S-scheme via C[|u|] → C[|t|], u ↦→ t2. There is then an action of G = Z/2Z
on A over S via t ↦→ −t. This action is non-free. Indeed, for the point x = (t) of X the induced
morphism on κ(x) = C is just the identity. As the base is C, we may apply (Z/2Z)C ∼= µ2. The
action gives a grading for which R = AG. So X/G = S, hence the fiber of the quotient X/G at any
s ∈ S is just the spectrum of the residue field at the point, i.e.

(X/G)σ = κ(σ) = SpecC and (X/G)σ = κ(η) = SpecC((u))

Consider now the fiber Xσ which is the spectrum of

C[|t|]⊗C[|u|] C[|u|]/u = C[|t|]/t2 = C[t]/t2.

The induced action is still given by t ↦→ −t. Here the ring of invariants becomes (C[t]/t2)G = C, so

Xσ/Gσ = SpecC.

Note how in the preceding example the base being characteric 0 allowed us to use (Z/2Z)C ∼= µ2.
That fibers and quotients commute is then less surprising, as µ2 is a very well behaved group scheme
and indeed we will see in Theorem 4.1.5 that this particular group scheme satisfies this base change
property. In the following example, we take instead a base of mixed characteristic and again a Z/2Z-
action. A key fact here is that the base has a point of characteristic 2, so that (Z/2Z)k ̸∼= µ2. As we
will see, things then start to break down.

Example 4.1.2. Now instead consider R = Z2 = Z[|u|]/(u − 2) as the base. This ring has field of
fraction Q2. Our idea is to take a degree 2 field extension L/Q2 such that the integral closure A of
R is ramified over σ = 2Z2 as a scheme over S, i.e. σA = p2 for some prime ideal p. Concretely,
we take L = Q2(

√
2). Then the integral closure of R is A = Z2[

√
2], and σA = (

√
2A)2. Now set

G = Gal(L/Q2) = Z/2Z. We obtain an induced action of G on A, hence also on X = SpecA.
Concretely, the action of −1 (which is the only non-trivial element) is determined by

√
2 ↦→ −

√
2.

As Q2 is the fixed field of G, and Q2 ∩ A = R, we must have AG = R. Thus X/G = S, so
(X/G)σ = Specκ(σ).

Consider then the fiber over σ. We have κ(σ) = F2, and so Xσ is the spectrum of the tensor
product Z2[

√
2] ⊗Z2 Z2/(2) = F2[t]/t

2. As the induced −1 action on F2[t]/t
2 maps generator to

generator (as an F2-algebra), it must be determined by
√
2 ↦→ λ

√
2 for some λ ∈ F×

2 . But F2 has a
single unit element, so λ = 1, hence the induced action onXσ is trivial. But thenXσ/Gσ = Xσ ̸= S,
so the quotient of the fiber differs from the fiber of the quotient.
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Now, we will construct and study this comparison map. First we note that the morphism Xs →
X → X/G is G-equivariant

Proposition 4.1.3. Let s ∈ S, f : Xs → X be the canonical morphism and π : X → X/G. The
composition π ◦ f : Xs → X/G is G-equivariant.

Proof: We must show that the following diagram is commutative

G×Xs
µf →→

ρ2

↓↓

Xs

π◦f
↓↓

Xs
π◦f →→ X/G,

where ρ2 is the second projection. For this, we essentially slot this into a larger diagram of three
squares known to be commutative.

G×Xs
µf →→

id×f

↓↓

Xs

f

↓↓

G×X µ →→

ρ2

↓↓

X

π

↓↓

G×Xs

id×f
↓↓

ρ2

←←
As

f →→

G×X
ρ2
↓↓

G×X µ
→→ X X π

→→ X/G X.

The individual commutativity of these diagrams is easy. The first is because µf is obtained by base
change, the second is because π is G-equivariant by construction (it is universal with this property),
and the last is just a general fact about fibered products. Slotting these three diagrams together we
get a commutative diagram

G×Xs
µf →→

id×f
↓↓

ρ2

↙↙

Xs

f

↓↓
Xs

f
↘↘

G×X µ →→

ρ2

↓↓

X

π

↓↓
X

π →→ X/G,

which implies the desired by following the two outer paths from G×Xs to X/G.

With this proposition in hand, we can construct the comparison map.

Remark 4.1.4 (The comparison map). We want a canonical comparison morphism φ : Xs/G →
(X/G)s. As π ◦ f : Xs → X/G is G-equivariant by Proposition 4.1.3, the universal property of
the quotient Xs/G yields the existence of a unique morphism ψ : Xs/G → X/G. Secondly, the
universal property of the fibered product (X/G)s = X/G× Specκ(s) gives the unique morphism

φ : Xs/G −→ (X/G)s.

Alternatively, one could use base change to get π × idκ(s) : Xs → (X/G)s which is G-equivariant
since it is the base change of one such map. Then this induces the desired map. We remark that in
this way π × idκ(s) = φ ◦ πs (we will use this to show surjectivity in Proposition 4.1.6).
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We want to study this φ in detail in order to give two results on when taking fibers commutes
with quotients. The first, Theorem 4.1.5 is very direct, and simply says things go well when the
action is by a finite diagonalizable group schemes, e.g. such as µn. The second one, Theorem 4.1.7,
is more technical in nature.

Theorem 4.1.5. Let M be a finite abelian group and suppose G = D(M) acts on a scheme X such
that the quotient X/G exists e.g. G = µ2 in characteristic 2. Then the comparison map φ : X/G×S
T → X ×S T/G is an isomrphism for any S-scheme T .

Proof: This property is local, so we may assume X = SpecA, T = SpecB and S = SpecR affine,
hence also G = SpecR[M ] is affine. By Proposition 2.3.2 the action of G on X is equivalent to
a grading of A by M , where the G-invariant subring is the summand corresponding to the neutral
element eM ,

A =
⨁︂
m∈M

Am.

We compute X × T/G and (X × T/G)s explicitely. Concretely X × T is the spectrum of A⊗R B.
The action on X × T is the induced one by base-change. As the group M is finite, the tensor ⊗B
distributes over the decomposition of A and so the action on X × T is expressible in terms of an
induced grading

A⊗B =
⨁︂
m∈M

(Am ⊗B)

where the degree m summand is Am⊗B. The quotient X ×T/G is then the spectrum of the degree
eM part, which is AeM ⊗ B. Now, we look at (X/G) × T . Concretely, X/G = SpecAeM , and
so (X/G) × T = SpecAeM ⊗ B. As the comparison map is the one induced from the universal
property of the tensor product, it must be an isomorphism in this case, in fact the identity.

Denoting by g the closed embedding g : (X/G)s → X/G, we have by constructions g ◦ φ = ψ.
We will use this in the following.

Proposition 4.1.6. If G is finite over the base and X is proper, then the comparison morphism
φ : Xs/G→ (X/G)s is finite and surjective .

Proof: Recall the commutativite diagram illustrating our setup

Xs
f →→

πs
↓↓

X

π

↓↓
Xs/G

φ
↘↘

ψ →→ X/G.

(X/G)s

g

↗↗

As Specκ(s)→ S is a monomorphism it is separated, and it follows that the base change

g : (X/G)s −→ X/G,

is also separated. Now if the composition ψ = g ◦ φ is finite and g is separated, then φ is finite [69,
Tag 035D]. So to show φ finite it suffices to show ψ is finite. Now, Lemma 2.2.9 tells us that X/G
and Xs/G are proper. Since X/G is then also separated, it follows that ψ is proper [48, Proposition
3.3.16]. Thus we are done if we show ψ is also affine.
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So suppose V ⊆ X/G is affine, and consider ψ−1(V ). By the construction of the quotient, affine
open sets onXs/G correspond exactly toG-invariant affine open sets onXs. So it is enough to show
that π−1

s ψ−1(V ) is affine and G-invariant. Now, by commutativity of the diagram above,

π−1
s ψ−1(V ) = f−1π−1(V ).

As π is the quotient map it follows that U = π−1(V ) is both affine and G-invariant. But this implies
f−1(U) is also affine and G-invariant. Indeed, it is affine because f−1(U) = U × Specκ(s). It is
also G-invariant, because µf : G ×Xs → Xs is obtained by base change via f , so µ|G×U mapping
to U implies that µf maps G× f−1(U) to f−1(U).

To see that φ is surjective we simply note the following: The quotient π is surjective, hence so is the
base change π × idκ(s). But as noted in Remark 4.1.4 π × idκ(s) = φ ◦ πs, so φ is also surjective.

Theorem 4.1.7. Suppose X is proper, Xs/G and (X/G)s are both S2 and that G is finite. Let
Z ⊂ X be the fixed scheme and suppose further Zs and (Z/G)s each have codimension at least 2
in Xs and (X/G)s. Finally, assume that the action of G is free outside of Z. Then the comparison
morphism φ : Xs/G→ (X/G)s is an isomorphism.

Proof: In Proposition 4.1.6 we showed that φ is finite. In particular it is affine, so Xs/G is com-
pletely determined by the push forward F = φ∗Xs/G. Thus, to show that φ is an isomorphism, it is
enough to show that F is isomorphic to (X/G)s . We will argue that F is an S2-sheaf, and that the two
are isomorphic outside a set of codimension at least 2. This will give the desired isomorphism by
Proposition 3.2.8.

First let us prove that F is S2. For this we will apply Lemma 3.2.9. By assumption, Zs = Z ∩ Xs

is of codimension 2 in Xs. As X is proper, both Xs and (X/G)s are of finite type over Specκ(s).
But a finite and surjective morphism of schemes of finite type over a field preserves codimension, so
π × idκ(s)(Zs) = φ(Zs/G) is of codimension 2 in (U/G)s. Finite morphisms are closed, so this set
is closed.

Now, let U = X \ Z. By assumption, the induced action on U is free, hence the comparison
morphism φ is an isomorphism on the restriction φ : Us/Gs → (U/G)s. This implies that F and
(X/G)s are isomorphic on (U/G)s. Now, by definition φ(Zs/G) is the complement of (U/G)s in
(X/G)s. But as just noted this is closed of codimension 2.

4.2 Resolving Singularities in Families

In this section we will discuss the notion of simultaneous resolutions. As we will see, this is a
somewhat delicate matter. We suppose S is Noetherian.

Definition 4.2.1. Let f : X → S be a family of surfaces. A simultaneous resolution of f is a family
of smooth surfaces X → S together with a proper morphism X → X such that fiberwise Xs → Xs

is a resolution of singularities.

When speaking of a resolution of a family of singularities we always mean a simultaneous one.
In [7] Artin showed that the resolution functor which to T associates the set resolutions of the pull-
back X × T is representable by an algebraic space, provided the singular locus is finite over S.
Unfortunately, this does not mean a resolution exists. Indeed, the functor could be trivial and simply
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output the empty set. Something can be said though. As alluded to in Section 3.1 rational double
points are a particularly nice type of singularity, and indeed [7, Corollary 1.3] says that one can at
least locally find a simultaneous resolution of singularities. The main morale is this: Simultaneous
resolutions are difficult.

What then are we then to do? First let us study some examples.

Example 4.2.2 (A constant family). Consider a singular surface Y over an algebraically closed base
field k. Then Y × S is a constant family of singular surfaces over S. Now, consider the minimal
resolution π : X → Y and Z the closed subset of Y such that X = BlZ(Y ). Then we obtain a
simultaneous resolution of Y ×S by simply blowing up in Z×S and we get that πS : X×S → Y ×S
is this simultaneous resolution.

Example 4.2.3 (Example of necessary base change). Consider the singularity defined by z2 − xy
i.e. an A1 singularity, over some field k. We then construct a family from the singularity by adding
the indeterminate t to the polynomial z2 − xy + t. This extends our base to k[t]. Taking a fiber,
then corresponds to setting t equal to some fixed value in k. Computing partial derivatives we get the
same Jacobian matrix for each fiber (︁

−y −x 2z
)︁
.

A fiber is then singular at a point if this has rank 0. From this, we see that in characteristic not 2,
this defines a family of surfaces which are all smooth except for the one above the point (t) which
has an A1 singularity at the point (0, 0, 0). This singularity does not arise in any other fiber as this
coordinate set does not satisfy the equation z2 − xy + t = 0 for non-zero t. Now, in characteristic
2, we instead have a family of surfaces which are all singular. Then it is natural to ask if this has a
simultaneous resolution of singularity over k[t]. The answer is no, as the structure of the singularity
is different. Indeed, the singular locus is given by k[z, t]/(z2 − t). This has non-reduced fiber for t
a square, such as t = 0, but reduced otherwise. Now, if one passes to the base change k[

√
t], then

the structure of the singularity does not change, and the family allows a simultaneous resolution of
singularities.

This previous example illustrates how after a base change we obtain a closed subscheme which
we may use as the center of a blowing-up to resolve singularities. This process is the way we will
deal with simultaneous resolutions in chapter 5.

Remark 4.2.4 (Formal neighbourhoods in families). In Remark 3.1.9 we saw how one could study
infinitesimal neighbourhoods in order to understand a singularity. Given a family of singular surfaces,
one can instead study how a formal neighbourhood of the singularity deforms in the family. If one
can show that a deformation is constant in the family, it means that one has a center which one may
use for blowing-up to resolve the singularities simultaneously. In concrete cases, one then tries to
figure out which base change is necessary for such a deformation to be constant, just as in Example
4.2.3. We will see concrete examples of this principle in Proposition 5.2.8.

4.3 Families of Abelian Varietes

Recall from Section 1.5.1 that an abelian variety over a field is a group scheme which is smooth,
connected and proper. We will now study a generalization of this notion.

Definition 4.3.1. A family of Abelian varieties is a proper, flat, morphism of finite presentation
f : A→ S, together with a structure of a relative group scheme on A, such that each fiber of A is an
Abelian variety.
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We note that it suffices to check whether the geometric fibers are abelian varieties, that is:

Proposition 4.3.2. A proper flat relative group scheme A of finite presentation is a family of Abelian
varieties if and only if each fiber over a geometric point is an Abelian variety.

Proof: Indeed, to see this, one compares the fibers A ⊗ κ(s) and A ⊗ κ(s)alg. As A is proper,
each fiber is automatically proper, so we need to argue A ⊗ κ(s) is smooth and connected, if and
only if A ⊗ κ(s)alg is. First, smooth is a geometric property, i.e. holds if and only if it holds over
any base change. Furthermore, each fiber is locally Noetherian as it is of finite presentation over
a field. Now, it is a fact that a locally Noetherian smooth scheme X is connected if and only if
it is geometrically irreducible (in particular geometrically connected). In particular, this is true for
smooth schemes of finite type over fields. It is difficult to find this in literature, so we include a proof
here for completion’s sake:
As X is regular, its local rings are regular, in particular they are integral domains. Since X is locally
Noetherian a point lies on only finitely many irreducible components. Putting these two together we
get that any point of X lies on a single irreducible component. But X is connected, so there can only
be one and X is irreducible. As X is smooth, this argument holds after any base change, so X is
geometrically irreducible.

We note further that the structure morphism of a family of abelian varieties is smooth. Indeed,
by [32, Theorem 17.5.1], f : A→ S is smooth if and only if it is flat with smooth fibers.

To illustrate a family, we supply the following picture where, for ease, we illustrate S as connected.

A

S

e(S)
e(s)

s

As

e

As A is a relative group scheme over S, it comes equipped with an identity section e : S → A,
where the image e(s) of a point s ∈ S determines the identity section of the Abelian variety arising
as the fiber As.
Furthermore, one should take note that the group scheme structure on the fibers is intrinsic toA. That
is, there is a distinct difference between our definition, and proper flat schemes of finite presentation
where each fiber may be endowed with the structure of an abelian variety. Such a family would
instead be a called a family of para-abelian varieties, see for example [47] or [11]. The difference is
that in a family of abelian varieties, the group structure also "moves in the family", so to say.

This difference is quite important. Indeed, if in the definition above, one replaces the group scheme
A by an algebraic space endowed with a relative group law, then a result of Raynaud [25, Theorem
1.9] says that the algebraic space is automatically schematic. So taking A to be a scheme is not at all
the restriction as it may seem at first glance. However, this is not the case for families of para-Abelian
varieties [60, Chapter XIII, Section 3.2]. In fact, one can show that a family of para-abelian varieties,
is a family of abelian varities if and only if it has a rational point, [47, Proposition 4.3].This is similar
to the case of para-abelian varieties, which need only have a rational point to be abelian.
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Finally, one should note that while Abelian varieties over fields are always projective, this is not
true for families over more general bases. Indeed, this fails already over C[ε] [60, Remarque XII 4.2].
This creates challenges when forming quotients by finite group schemes. Indeed, projective schemes
always satisfy the AF property which makes forming quotients by finite group schemes possible.
However, something can be said if the base is affine. Recall from Definition 2.2.14 that a scheme has
the AF property if any finite collection of points is contained in an open affine.

Lemma 4.3.3. If for any finite set of points a1, . . . , an ∈ A there is an open affine subset V ⊂ S
such that a1, . . . , an, then there is an open affine U ⊂ A containing a1, . . . , an. In particular, A has
the AF property if S is affine.

Proof: This is part (b) in the theorem of Raynaud in [25, Theorem 1.9].

Before giving a way to construct a whole class of examples, we note the two following properties.
The first one is immediate

Proposition 4.3.4. A product of families of Abelian varieties is again a family of Abelian varieties.

In Section 4.3.1 we will see that a family defined by a Weierstrass equation is a family of Abelian
varieties, provided no fibers are singular. In fact, it gives a family of elliptic curves. This gives a way
of constructing families of Abelian varieties with fibers of arbitrary constant dimension. Indeed, we
can construct a family of Abelian surfaces, by simply taking the product of two families of elliptic
curves.

Proposition 4.3.5. LetA→ S be a family of Abelian varieties. The function s ↦→ dim(As) is locally
constant on S. In particular, all fibers have the same dimension if the base is connected.

Proof: See [69, Tag 0D4J].

4.3.1 An Example: Schemes Defined by Weierstrass Equations

Recall from Section 1.5.1 that a Weierstrass equation over a field k is an equation in variables x and
y with coefficients a1, a2, a3, a4, a6 ∈ k of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Now, there is nothing that prevents us from just taking a general ring R instead of k. The homoge-
nization defines a closed subscheme C of P2 = ProjR[X,Y, Z] all the same, and we can define all
the quantities we saw, such as the discriminant ∆. We claim the following:

Theorem 4.3.6. A scheme E given by a Weierstrass equation over a ring R with ∆ ∈ R× may be
endowed with a canonical structure of a group scheme. This makes E a family of Abelian varieties.

As ∆ ∈ R× is generally a very easy requirement to fulfill, the important part here is of course
that this gives us a large class of families of Abelian varieties. As usual, we denote the base by
S = SpecR. First, we make the quick observation that ∆ ∈ R× is actually a necessary condition.

Proposition 4.3.7. If ∆ ̸∈ R×, then E has a non-smooth fiber. In particular, E has a non-elliptic
fiber.

Proof: If ∆ ̸∈ R×, then there is some prime ideal p ⊂ R containing ∆. Then the residue class of ∆
in κ(p) is 0. But then the fiber Ep is non-smooth.

57 of 84



The real works lies in showing that E may be given the structure of a group scheme, which we
show in Theorem 4.3.10. In concrete terms, we will show thatE(T ) may be identified with the group
Pic0(ET /T ) in a functorial way. We note that E needs a distinguished section but will see in the
theorem loc. cit. that there is a canonical choice. What could in theory go wrong? Well, each fiber
might be a group scheme, but the structure might not be well-behaved when passing between fibers.
Suppose we have divisors running across the family, then the equations necessary for the addition of
points could conceivably change in uncontrollable ways between fibers. However, this can actually
not happen, as we will see.
With the assumption that ∆ ∈ R×, we proceed by checking the defining properties of a family of
Abelian varieties one-by-one.

Proposition 4.3.8. A scheme E given by a Weierstrass equation over a ring R is proper, flat and of
finite presentation over S.

Proof: First, note that E is projective, hence proper. Furthermore, E is defined by a single equation,
hence also of finite presentation. For flatness, we remark that the equation defines a projective scheme
E0 over the Noetherian integral domain R0 = Z[a1, a2, a3, a4, a6]. Then

E = E0 ⊗R0 R.

As flatness is preserved by base change, it is sufficient to argue that E0 is flat. So replace E by E0

and R by R0. Then we may apply [35, Theorem III.9.9] which states that in our case E is flat if and
only if the polynomials χ(Es(t)) in t do not depend on s ∈ S. So we calculate χ(Es(t)). Now, each
fiber Es is a degree 3 hypersurface in P2 = P2

κ(s) and so Es fits in the short exact sequence

0 →→ P2(−3) →→ P2 →→
Es

→→ 0

Tensoring by the locally free sheaf P2(t) we get another short exact sequence

0 →→ P2(t− 3) →→ P2(t) →→
Es(t) →→ 0

Using the additivity of the Euler characteristic, it then follows that

χ(Es(t)) = χ(P2(t))− χ(P2(t− 3)) =

(︃
2 + t

2

)︃
+

(︃
−t− 3 + 2

2

)︃
−
(︃
2 + t− 3

2

)︃
−
(︃
−t+ 2

2

)︃
.

But this clearly does not depend on s, so by the Theorem loc. cit., E is flat.

Note that we actually used very few of our assumptions when showing flatness in the preceding proof.
Indeed, we used simply the integrality of the base, and the fact that each fiber was a hypersurface of
constant degree in Pn. Note also that what we have just shown implies that if ∆ ∈ R×, i.e. all fibers
of E are smooth, then E is smooth [69, Tag 01V8].

It remains only to check that E may be equipped with a group scheme structure which makes
each fiber Es into an Abelian variety. One may prove, more generally, that a proper scheme of finite
presentation and of relative dimension 1 with a distinguished section and geometrically connected
smooth fibers each of genus one is in a canonical way a group scheme, see [39, Theorem 2.1.2]. Note
that E has smooth fibers and in the coming proof we will show it has a section, so that our case is
actually a special case of the one loc. cit.

For this proof, we need to recall the notion of degree of an invertible sheaf as well as discuss
certain sets associated with the Picard group. Recall that the degree of an invertible sheaf on a
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proper scheme C of dimension 1 over a field is deg() = χ() − χ(C). For X proper with fibers
of dimension 1, we let Picn(X) denote the set of sheaves which are fiber-by-fiber of degree n, i.e
deg(|Xs) = n for all s. Now, [69, Tag 0AYV] implies that fiberwise deg(⊗ ′) = deg() + deg(′) and
deg(−1) = −deg(). Thus, Pic0(E) in fact becomes a group when equipped with the tensor product
as operation. Note that in our case, χ(Es) = 0 for any s, as each fiber is an elliptic curve, so here
we have deg() = χ() fiberwise. In general, the degree measures certain things, among them the
existence of global sections, and we will need the following lemma

Lemma 4.3.9. Let C be an integral proper scheme of dimension 1 over a field. Suppose ∈ Pic(C)
and deg() < 0. Then h0() = 0.

Proof: We prove the converse, i.e. if there is a global section, then deg() ≥ 0. So suppose there
is a non-zero s ∈ H0(C, ). This global section of defines a map C → defined concretely as
multiplication by s. Since C is integral, the sheaf C consists of integral domains, i.e. has no zero-
divisors. But locally, the map is a homomorphism of free modules of rank 1, hence must be injective,
as the restriction of s is a non-torsion element. Then we get a short exact sequence

0 →→
C

→→ →→ F →→ 0

where F is the cokernel. In fact, by [39, 1.1.3], F is the sheaf D of some cartier divisor on C. By the
additivity of the Euler characteristic

deg = χ()− χ(C) = χ(D).

But D is zero-dimensional, so by Grothendieck vanishing χ(D) = h0(D) ≥ 0.

Now, consider the Picard group Pic(S) of the base. We have a morphism Pic(S) → Pic(ES)
defined by pullback N ↦→ f∗N. Clearly, this respects the tensor product, i.e. the group structure on
the Picard group, and any base change, so we in fact get a morphism of sheaves of groups on the site
(AffSch/S). Furthermore, since N is invertible, we get

f∗N|Es = f−1Ns ⊗f−1
S,s Es = f−1

S,s ⊗f−1
S,s Es = Es

where by S,s we here, as an abuse of notation, mean the sheaf which on Es is constantly the local
ring S,s. Thus, any invertible sheaf on S gives an invertible sheaf on E which is fiber-by-fiber of
degree 0. Thus the morphism Pic(S) → Pic(E) factors through Pic0(E). It follows, since the
degree is fiberwise additive on E, that if we denote the image of Pic(S) in Pic(E) by G, then
Picn(E) · G ⊂ Picn(E). Thus we can define Picn(E/S) as the image of the set Picn(E) in the
quotient of groups Pic(E)/G. Note that this is apriori only a set, except for Pic0(E/S) which is a
group. Again, this respects any base change.

Proposition 4.3.10. A smooth schemeE given by a Weierstrass equation over a ringR has a section,
denoted e. Furthermore, assuming that ∆ ∈ R×, there is a unique structure of a group scheme on E
such that e is the zero section.

Proof: For this, we first need a distinguished section, so let us argue thatE(R) is non-empty. In fact,
there is even a canonical choice of such a section. Considering the ringR[X,Y, Z], the homogeneous
ideal (X,Z) contains the polynomial X3 + a2X

2Z + a4XZ
2 + a6Z

3−Y 2Z − a1XY Z − a3Y Z2,
and so in particular, we obtain an inclusion of closed subschemes in P2 as

V+(X,Z) ⊂ E.

But V+(X,Z) = ProjR[X,Y, Z]/(X,Z) = P0 = SpecR, so this inclusion gives a section of E.
We will denote this canonical section by e.
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Now we come to the most involved part, namely the group scheme structure itself. In our case
we follow, in general terms, the same overall approach as [39, Theorem 2.1.2] but deviate slightly
by using the existence of a Weierstrass equation to ease certain arguments. We also do not need to
reduce to the case of an affine base, as our base is already SpecR.

We must show that E(T ) may, in a functorial way, be endowed with a group structure for any
R-scheme T . In fact, we may take T = SpecA to be affine, as noted in Remark 1.1.2. By abuse
of notation, we also denote the base change eT by e. The main idea, is to construct an isomorphism
E(T ) → Pic0(ET /T ) of sets, and use the group structure on the codomain to induce one on the
domain.

Now, consider the set Pic1(ET /T ) which by the discussion preceding this proof consists of
isomorphism classes of invertible sheaves on ET which are fiber-by-fiber of degree one, modulo the
equivalence relation ∼ ⊗ f∗TN for any invertible sheaf N on T . By [39, Lemma 1.2.7], giving a
section of ET is equivalent to giving an effective Cartier divisor on ET of degree 1. As such, each
section σ : T → E has an associated ideal sheaf ET

(−σ) which is fiber-by-fiber of degree 1. For
now, assume we know that the map

E(T ) −→ Pic1(ET /T ), σ ↦−→ (σ)

is a bijection. Then consider the abelian group Pic0(ET /T ) consisting of isomorphism classes of
invertible sheaves onET which are fiberwise of degree zero, modulo the subgroup consisting of those
which arise as pullbacks f∗TN of invertible sheaves N on T . As degree is additive when multiplying
sheaves on curves of genus one, and (−e) is of degree −1, we then have an obvious bijection of sets

Pic1(ET /T ) −→ Pic0(ET /T ), ↦−→ ⊗ (−e).

Composing these two bijections, we obtain a bijection E(T ) → Pic0(ET /T ) defined by σ ↦→
(σ) ⊗ (−e) and so the abelian group law on Pic0(ET /T ), which is functorial in T , induces the
same on E(T ). Note in particular that the distinguished section e gives the neutral element, as
(e)⊗ (−e) = T .

It remains to show that the map E(T ) → Pic1(ET /T ) is actually a bijection. As we could sim-
ply replace E by ET and SpecR by T , it suffices to treat the case T = SpecR. In fact, we restrict
further. As in the proof of Proposition 4.3.8, we note that E may be obtained as the base change
of the scheme E0 defined by the same equation over Z[a1, a2, a3, a4, a6,∆−1]. If the scheme E0

may be made a group scheme, then it follows that so may E. Indeed, as a functor, E is simply the
restriction of E0 to a smaller category. So we may replace E by E0 and R by the Noetherian integral
domain Z[a1, a2, a3, a4, a6,∆−1].

Let us prove surjectivity first. So take on E which is fiberwise of degree one. We should construct a
section mapping to the class of , or equivalently an effective cartier divisorD of degree one onE such
that = (D) in Pic1(E/S). Recall that a Cartier divisor may be viewed as an invertible ideal sheaf of
. To find one such, we first note that the canonical sheaf of any elliptic curve is trivial. Furthermore,
fiberise deg(−1) = −1, so −1 has fiberwise no global sections by Lemma 4.3.9. Combining this with
Serre duality, we get

h1 (Es, |Es) = h0
(︁
Es,

−1|Es ⊗ ωEs

)︁
= h0

(︁
Es,

−1|Es

)︁
= 0.

This implies h0(Es, |Es) = χ(|Es) and so, since the Euler characteristic and degree coincide on Es,
we have

h0(Es, |Es) = deg(|Es) = 1.
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As the base R is integral, we may now apply the criterion of Grauert [35, Corollary III.12.9] which
then implies f∗ is locally free. Furthermore, this result says the formation of f∗ commutes with base
change, i.e. H0(Es, |Es)

∼= ⊗ κ(s). Thus, the rank of remains constant and so by our dimension
computations must be of rank 1.

Recall then there is a canonical map f∗f∗ → . One obtains this in the following manner: As
functors, f∗ and f∗ form an adjoint pair with f∗ being left adjoint and f∗ being right adjoint. Thus
the identity f∗ → f∗ determines a map f∗f∗ → . When f−1(f(U)) is a open for U open affine in
E, the map has a concrete description as the multiplication map

Γ(f−1(f(U)), )⊗Γ(f(U),S) Γ(f
−1(f(U)),E)→ Γ(f−1(f(U)), )

We claim that this canonical map is injective in our case. As R is an integral domain, E itself is
integral, so the map being injective, is equivalent to it being non-zero, since is invertible. But on the
fibers over S, the map becomes

H0(Es, |Es)⊗κ(s) Es −→ |Es

As shown, H0(Es, |Es) is a κ(s)-vector space of dimension 1, and so the above map is completely
determined by picking a basis σ of H0(Es, |Es) as σ⊗1 ↦→ σ. Hence, the map is non-zero because σ
is. So f∗f∗ → is injective. Tensoring by −1 is exact, and so we get an injective map f∗f∗ ⊗ −1 →
so that f∗f∗ ⊗ −1 = (−D) for an effective Cartier divisor D. It is necessarily of degree 1, because
is. Then D satisfies = (−D) because (−D)−1 = ⊗ (f∗f∗)

−1 = ⊗ f∗(f∗)−1 which equals in
Pic1(E/S).

For the injectivity, suppose we are given two effective Cartier divisors of degree one, D1, D2, on E,
such that (D1) = (D2) in Pic1(E/S) i.e. (D1) ∼= (D2)⊗ f∗N for some invertible sheaf N on S. We
claim it is enough to show that they agree on the generic fiber. Indeed, let η denote the generic point
of the base. The Di arise as sections, so (Di)η is non-empty, and (Di)η ⊂ Di. In fact we must have
(Di)η = Di as Di is reduced. But then it is sufficient to show that (D1)η = (D2)η.

So we may restrict to the case S = Spec k. Then the isomorphism reduces to (D1)s ∼= (D2)s, as
over a field N is globally free, so f∗N = Es . Thus the two divisorsD1 andD2 are linearly equivalent
i.e. differ by a principal divisor. But each is effective of degree one, so D1−D2 is, as a Weil divisor,
the difference of two points. Such a divisor can only be principal if it is trivial, as a rational function
on an elliptic curve cannot have only a single root and a single pole. Thus D1 = D2, and the map is
injective as well.

Weierstrass equations over a smooth curve define so called Weierstrass fibrations. These are a
special case of elliptic surfaces (i.e. surfaces with almost all fibers elliptic curves). It can be shown
that any minimal elliptic surface has an associated Weierstrass fibration (called its Weierstrass model)
and that any Weierstrass fibration has a so-called Weierstrass data which realises the fibration in
terms of a Weierstrass equation (where the coefficients are now sections of a sheaf). The only pos-
sible singular fibers in an elliptic surface, are cuspidal and nodal curves with rational double point
singularities. For more, see the excellent notes of Miranda [52]. Now, let us consider some examples.

Example 4.3.11. Consider the equation y2 = x3 + 2. The equation certainly defines a scheme X
of relative dimension 1 over Z. However, the discriminant is ∆ = −2633 ̸= ±1 and so is not a
unit in Z, hence X has a non-smooth fiber (actually two), by Proposition 4.3.7. The two so-called
degenerate fibers are at the primes 2 and 3. Indeed, over κ((2)) = F2, the equation becomes y2 = x3

which is a cuspidal curve. Over κ((3)) = F3, the equation is still expressed as y2 = x3 + 2. But
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2 = −1 (mod 3), and so the equation is actually y2 = (x− 1)3, which is again a cuspidal curve. In
some sense, this can be viewed as starting with the curve y2 = x3 + 2 over Q (the generic fiber in
this case), and asking if it extends to a family over the ring Z which has Q as fraction field, i.e. base
at the generic point.

Q
SpecZ

X

F2 F3

Example 4.3.12. Now that we have this example in mind, a natural question is the following: Sup-
pose we have a DVR R with fraction field F and residue field k. Given an elliptic curve E over F ,
does it extend to a family of elliptic curves over R?

SpecR

E∃?

Even more concretely, the question is what the closed fiber looks like when extending a Weierstrass
equation from F to R. From our arguments above, we see that this can fail only when the closed
fiber becomes non-smooth, i.e. for us to obtain a family of elliptic curves, we need ∆ ∈ R×. As an
example take the curve y2 = x3 + 2 now defined over Q2. Before we calculated ∆ = −2633 and as
before this is a unit in Q2, since it is non-zero. The equation certainly defines a scheme X of relative
dimension 1 over the DVR Z2. However, 2 is a divisor of ∆ and so ∆ is not a unit in Z2, henceX has
a non-smooth fiber, by Proposition 4.3.7. This is very easy to see if one looks directly at the closed
fiber. Indeed, the residue field of Z2 is F2, so similar to the previous example the closed fiber of X
is the singular curve C given by the equation y2 = x3.
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SpecZ2

EC

This equation behaves similarly over Z3, but over Zp, p ̸= 2, 3 the discriminant is a unit, and so in
these cases we get a family of elliptic curves.

The above examples are closely linked with the Tate algorithm. This algorithm computes the
closed fiber of the Néron model of an elliptic curve over a field explicitely from its Wierstrass equa-
tion, see [70].

4.4 The Classical Kummer Construction in Families

To finish out the chapter, we study the classical Kummer construction in families. Recall from Sec-
tion 3.3 that the classical Kummer construction over a field not of characteristic 2 associates a K3
surface Kum(A) to an Abelian surface A by as the minimal resolution of singularites of the quotient
A/i. In this section, we will outline that this construction works well in families, and what exactly is
meant by this terminology.

So to fix notation, let A be a family of Abelian surfaces over a base scheme S. We assume
that 2 is invertible on the base, i.e. no residue field of S has characteristic 2. Further assume that
S is Noetherian. The scheme A comes with the structure of a group scheme and so has an inverse
morphism ι : A → A. As usual, this gives an action of G = {±1} on A. What we would like is a
simultaneous resolution of singularities on X → A/{±1}, with the property that the fibers Xs are
all precisely the K3 surfaces Kum(As). But first of all, we need to study the quotient A/{±1} and
argue that it even exists.

Lemma 4.4.1. A/{±1} exists as a scheme.

Proof: By Lemma 4.3.3 A has the AF property, so the quotient exists by Proposition 2.2.4.

Next, we consider As equipped with the induced Gs action over κ(s) or equivalently G action
over S. As A is a family of abelian varieties, this is by definition just the involution on the abelian
variety As. So As/Gs is a quotient we understand well, since we studied it in Section 3.3. We would
like to compare the fibers of A/G with the quotients of fibers As. Specifically, we would like the
comparison map As/Gs → (A/G)s to be an isomorphism (it will be in this case). Recall that this
hope of an isomorphism is a non-trivial case. Indeed, we have seen in Example 4.1.2 that this is not
always the case. To obtain this map we first make the following observation.

Proposition 4.4.2. The comparison morphism As/G→ (A/G)s is an isomorphism.

Proof: As 2 is invertible on the base Proposition 1.4.6 tells us that (Z/2Z)S ∼= µ2, and so the action
corresponds to a µ2 action. By Theorem 4.1.5 taking quotients with respect to such actions commutes
with arbitrary base change.
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Thus, we know that the quotient family A/G is a family of projective surfaces with rational
double point singularities. Furthermore, each fiber has at most sixteen singularities.

Proposition 4.4.3. Let f : A/G → S be the structure morphism. Each point s ∈ S has a neigh-
bourhood U such that f−1(U) admits a simultaneous resolution of singularity after a base change.
In particular, the Kummer construction works in families up to a base change.

Proof: As each fiber has only rational double point singularities, this is [7, Corollary 1.3].
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Chapter 5

Generalized Kummer Constructions and
Main Results

5.1 Generalized Kummer Constructions in Characteristic 2

Throughout the rest of the text, I fix a base S of characteristic 2 which is a scheme over a field k of
characteristic 2. In this section I will outline the general ideas of [62] and [46] that inspired my own
work. This new work is presented in the next few sections.

Suppose for now the base is a field k which is perfect. As outlined in Remark 3.3.8, the classical
Kummer construction fails in characteristic 2 and the natural question is then whether there is a
more natural generalization to characteristic 2. One such generalization is presented in [62]. This
construction is very much in the spirit of the classical one. The idea is the following: The problems
of the classical construction arise in the case of supersingular abelian surfaces, i.e. those A which are
in fact products A = E × E of supersingular elliptic curves. The insight in [62] was to replace the
curveE by the rational cuspidal curve C = Spec k[u2, u3]∪Spec k[u−1]. The choice of the cuspidal
curve is a natural one, as it arises as the degeneration of elliptic curves. Thus one instead considers
the non-normal surface C × C = (Spec k[u2, u3] ∪ Spec k[u−1])× (Spec k[v2, v3] ∪ Spec k[v−1]).
Furthermore, the Z/2Z-action, is replaced by a diagonal action of α2 determined by a vector field

δ = (u−2 + r)Du + (v−2 + s)Dv = (u−4 + ru−2)Du−1 + (v−4 + sv−2)Dv−1 ,

as outlined in Section 2.4. To avoid a degenerate case we assume r, s are not both simultaneously
zero. The quotient (C × C)/α2, which exists by Theorem 2.2.8, becomes a normal surface with
rational double point singularities. However, the singularities arising from the fixed locus are not
the A1 singularities we saw in Section 3.3. Instead, one gets D4 or D8 singularities, depending on
the quantities r and s. Moreover, the quotient (C × C)/α2 has an additional singularity, coming
from the singular point u2 = u3 = v2 = v3 = 0 in C × C which is called the quadruple point.
This singularity turns out to be either a D4 or B3 singularity depending on whether or not the base
field contains a primitive third root of unity. The results of [62] tell us that the minimal resolution
of (C × C)/α2 becomes a K3-surface. The close link with the classical construction then makes it
reasonable to call this a Kummer surface of C × C, denoted Km(C × C).

Now, over a more general base, it is also shown in [62] that forming the quotient (C × C)/α2

commutes with base change. The result [62, Theorem 12.1] is then that a simultaneous resolution
exists for this family of singularities after a purely inseparable base change. In other words, this
generalized Kummer construction works in families after this base change.
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The work in [46] builds on these principles. The work in the article loc. cit. is over algebraically
closed ground fields. The surface considered is the same product C × C, but the actions considered
here are determined by vector fields

δ = (λ4u
−4 + λ2u

−2 + τu−1 + λ0)Du−1 + (σ4v
−4 + σ2v

−2 + τv−1 + σ0)Dv−1

= (λ0u
2 + τu+ λ2 + λ4u

−2)Du + (σ0v
2 + τv + σ2 + σ4v

−2)Dv.

Such vector fields determine a diagonal action by a group scheme G which is µ2 if τ ̸= 0 and α2

otherwise, see Section 2.4. The vector field of [62] is then a special case of this with λ4 = σ4 = 1,
λ2 = r, σ2 = s and λ0 = σ0 = τ = 0. Under the assumption that λ4 and σ4 are both non-zero, the
quotient surface (C×C)/G is normal. By [46, Proposition 3.2] it always has a rational double point
singularity coming from the quadruple point, which is a D4 singularity. Furthermore, if G = µ2 i.e.
τ ̸= 0, the singularities from the fixed points are sixteen A1 singularities, which one should note is
strikingly similar to the classical case. If G = α2 one gets D4 or D8 singularities, as long as one
avoids the degenerate case where λ2 = σ2 = 0. Finally, the minimal resolution of (C × C)/G is a
K3 surface if and only if the singularities are rational double points.

In the following sections, I will study this construction with µ2-actions in families. I will show that
the singularities allow simultaneous resolution after finite separable base change and give concrete
descriptions of the base change necessary for the resolution of singularities. In summary, showing
that the generalized Kummer construction with µ2 works in families after a base change.

5.2 Generalized Kummer Constructions in Families

Our goal is to generalize much of the work in [46] from algebraically closed base fields to families
over a general base. For this we emulate the work in [62].

Our setup is the following: We take some base S of characteristic 2 and let C be the rational cuspidal
curve over S given by SpecS S [u

−2, u−3] ∪ S [u
−1]. We study the product family of surfaces C × C

where we use u as variable in the left factor and v in the right factor. We have a diagonal action on
C × C given by the vector field

δ = (λ4u
−4 + λ2u

−2 + τu−1 + λ0)Du−1 + (σ4v
−4 + σ2v

−2 + τv−1 + σ0)Dv−1

= (λ0u
2 + τu+ λ2 + λ4u

−2)Du + (σ0v
2 + τv + σ2 + σ4v

−2)Dv.

Where the σi, λi and τ are global sections of S . Having an action defined by such a vector field,
means that the action moves in the family. Concretely, a coefficient could dissappear in one fiber,
while being non-zero in another. In our case, we want a µ2 action. As outlined in [46, section 1 and
2] over a field this amounts to assuming τ ̸= 0. Over a general base, this translates to τ being non-
zero everywhere i.e. being a unit. By [46, Proposition 3.1] the surface (C × C)/µ2 is normal if and
only if λ4 and σ4 are non-zero. Again, over a general base, this translates to these two coefficients
being units. Thus we make the following standing assumption:

We assume that the coefficients τ, λ4 and σ4 are units of Γ(S, S).

The quotient (C × C)/µ2 exists by Theorem 2.2.8 and by Theorem 4.1.5 its formation commutes
with arbitrary base change. It is covered by four relatively affine charts

SpecS S [u
2, u3]× SpecS S [v

2, v3], SpecS S [u
2, u3]× SpecS S [v

−1],
SpecS S [u

−1]× SpecS S [v
2, v3], SpecS S [u

−1]× SpecS S [v
−1].
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As the formation commutes with base change ((C × C)/µ2)s = (C × C)s/µ2 for any s ∈ S, so by
the work of [46] we know that the singularities of the fibers lie only on the charts of S [u2, u3, v2, v3]
and S [u

−1, v−1]. We will tackle each of these charts in turn. First though we make the following
observation: The base S lives over some field k of characteristic 2 (if nothing else, F2), and we note
that if the coefficients of δ are all in k, and λ4, σ4, τ ̸= 0, then the action does not change across
the family, and so the quotient family (C ×C)/µ2 is actually a constant family of singular surfaces,
hence simultaneous resolution is possible. The same is true if one assumes τ = 0, but then the
quotient is by α2. These are the trivial cases.

5.2.1 The Quadruple Point

For simplicity, assume S = SpecR is affine. If one objects to this, one may in the following simply
replace R by the sheaf S , all spectrums by relative spectrums and elements of R by global sections
of S .

Remark 5.2.1 (The Universal Situation). As µ2 = D(Z/2Z), it follows by Theorem 4.1.5 that the
formation of the quotient (C × C × S)/µ2 commutes with arbitrary base change. In particular, we
can reduce the analysis from a complicated base to a more simple one, provided the action also exists
over this simpler base. That is, for some S → S′ we want

(C × C × S)/µ2 = (C ×k C ×k S′)/µ2 ×S′ S.

Essentially we are speaking of a deformation or what we will call a universal situation. We have the
following very concrete S′ in mind: Suppose our action is determined by the vector field

δ = (λ4u
−4 + λ2u

−2 + τu−1 + λ0)Du−1 + (σ4v
−4 + σ2v

−2 + τv−1 + σ0)Dv−1

= (λ0u
2 + τu+ λ2 + λ4u

−2)Du + (σ0v
2 + τv + σ2 + σ4v

−2)Dv.

Everything lives over some base field k of characteristic 2 (if nothing else, F2), and we have a k-
morphism S → Spec k[x1, . . . , x7] determined by the k-homomorphism k[x1, . . . , x7] −→ Γ(S , S)
defined by

x1 ↦→ λ0, x2 ↦→ λ2, x3 ↦→ λ4, x4 ↦→ σ0, x5 ↦→ σ2, x6 ↦→ σ4, x7 ↦→ τ.

Then we may realize the action determined by δ over S by base change of the vector field over
k[x1, . . . , x7] given by

(x1u
2 + x7u+ x2 + x3u

−2)Du + (x4v
2 + x7v + x5 + x6v

−2)Dv.

The upshot is that we can compute the quotient (C × C × S)/µ2 by instead computing the quotient
(C × C ⊗ k[x1, . . . , x7])/µ2 and then taking the base change along S → Spec k[x1, . . . , x7]. By a
slight abuse of notation, we will denote the xi of k[x1, . . . , x7] by λ0, λ2, λ4, σ0, σ2, σ4 and τ when
treating the universal situation.

We will analyze the singularity of the quadruple point. The general analysis for the case λ4 =
σ4 = 1 and τ = λ0 = σ0 = 0 is treated in [62, Section 5] and it is shown that the quadruple
point is a rational double point of either type D4 or B3, depending on whether or not the base field
contains a third root of unity or not. The case for more general vector fields is the work of Kondo
and Schröer [46] which shows that the quadruple point gives a D4 singularity over an algebraically
closed base. As already mentioned in [46] this is similar to the situation in [62, Section 5]. However,
the computations are slightly more complicated, there are slight variations in the arguments, and we
wish to understand the situation over general base fields which is not covered in [46]. Thus we do the
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analysis in full here while emulating the proofs of the section 5 loc. cit. It turns out that τ , λ0 and σ0
have no influence on the singularity type. However, in Proposition 5.2.4 I show that if λ4 ̸= σ4 then
a G2 singularity may show up. We consider the chart of R[u2, u3, v2, v3] so our G-action is given by

δ = (λ0u
2 + τu+ λ2 + λ4u

−2)Du + (σ0v
2 + τv + σ2 + σ4v

−2)Dv.

Proposition 5.2.2. Let A = R[u2, u3, v2, v3]. The G-invariant subring of SpecA under the action
determined by δ is AG = R[u2, v2, (σ0v

4 + σ2v
2 + σ4)u

3 + (λ0u
4 + λ2u

2 + λ4)v
3 + τu3v3].

Proof: As outlined Remark 5.2.1 it is enough to treat the universal situation where

R = k[λ0, λ2, λ4, σ0, σ2, σ4, τ ].

We determineAG by computing the kernel of δ. AsDu(u
2) = 2u = 0 and by symmetryDv(v

2) = 0
so at least R[u2, v2] ⊂ AG. Note that since R is a polynomial ring over a field the ring R[u2, v2] is a
UFD and so A is a free module over R[u2, v2] with basis given by 1, u3, v3 and u3v3. As the entire
span of 1 is in the kernel, we need only consider when expressions of the form αu3 + βv3 + γu3v3

are in the kernel for α, β, γ ∈ R[u2, v2]. We find that

δ(αu3 + βv3 + γu3v3) =α(λ0u
4 + τu3 + λ2u

2 + λ4) + β(σ0v
4 + τv3 + σ2v

2 + σ4)

+ γ((λ0u
4 + τu3 + λ2u

2 + λ4)v
3 + (σ0v

4 + τv3 + σ2v
2 + σ4)u

3)

=α(λ0u
4 + λ2u

2 + λ4) + β(σ0v
4 + σ2v

2 + σ4)

+ (γ(λ0u
4 + λ2u

2 + λ4) + βτ)v3 + (γ(σ0v
4 + σ2v

2 + σ4) + ατ)u3.

As R[u2, u3, v2, v3] is free over R[u2, v2], the above expression is zero if and only if each coefficient
is. That is, we obtain three equations

α(λ0u
4 + λ2u

2 + λ4) + β(σ0v
4 + σ2v

2 + σ4) = 0

γ(λ0u
4 + λ2u

2 + λ4) + βτ = 0

γ(σ0v
4 + σ2v

2 + σ4) + ατ = 0.

The second equation
γ(λ0u

4 + λ2u
2 + λ4) = βτ

implies, since R[u2, v2] is a UFD, that β is a multiple of λ0u4 + λ2u
2 + λ4 and γ is a multiple of τ .

Similarly, the third equation
γ(σ0v

4 + σ2v
2 + σ4) = ατ

yields that α must be a multiple of σ0v4 + τv3 + σ2v
2 + σ4 (and also that γ is a multiple of τ , but

we know that already). The first equation in conjunction with the others finally implies that all other
factors of α, β and γ. must be common. Thus we obtain the desired.

Having computed this invariant ring, we want to exhibit it as a quotient of a polynomial ring.
This will give us a defining equation with which we can analyze the singularity.

Proposition 5.2.3. We have

AG = R[a, b, c]/(c2 + σ20a
3b4 + σ22a

3b2 + σ24a
3 + λ20a

4b3 + λ22a
2b3 + λ24b

3 + τ2a3b3)
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Proof: For ease of notation, let f(a, b, c) = c2 + σ20a
3b4 + σ2a

3b2 + σ4a
3 + λ0a

4b3 + λ2a
2b3 +

λ4b
3 + τa3b3 and recall from Proposition 5.2.2 that

AG = R[u2, v2, (σ0v
4 + σ2v

2 + σ4)u
3 + (λ0u

4 + λ2u
2 + λ4)v

3 + τu3v3].

We have naive candidates for an isomorphism and its inverse namely

φ : R[a, b, c]/(f) −→ AG

a ↦−→ u2

b ↦−→ v2

c ↦−→ (σ0v
4 + σ2v

2 + σ4)u
3 + (λ0u

4 + λ2u
2 + λ4)v

3 + τu3v3.

and the assignment in the other direction which we denote ψ. The only real question here is whether
or not φ and ψ are well-defined. We have an obvious homomorphism φ fromR[a, b, c] toAG defined
in the same way as φ. Then we simply need to show that this factors over R[a, b, c]/(f) i.e. (f) is in
the kernel. We compute

φ(c)2 = σ20v
8u6 + σ22v

4u6 + σ24u
6 + λ20u

8v6 + λ22u
4v6 + λ24v

6 + τ2u6v6

= φ(σ20a
3b4 + σ22a

3b2 + σ24a
3 + λ20a

4b3 + λ22a
2b3 + λ24b

3 + τ2a3b3),

which implies that (f) is in the kernel ofφ, henceφ is well-defined. Thatψ is well-defined follows by
a symmetric calculation: Let g = (σ0v

4+σ2v
2+σ4)u

3+(λ0u
4+λ2u

2+λ4)v
3+τu3v3. Any polyno-

mial
∑︁

i,j,l αi,j,l(u
2)i(v2)jgl may be expressed uniquely as

∑︁
i,j βi,j(u

2)i(v2)lg+
∑︁

i′,j′ γi′,j′(u
2)i

′
(v2)j

′
.

It may be written in this way using the relaton

g2 = σ20v
8u6 + σ22v

4u6 + σ24u
6 + λ20u

8v6 + λ22u
4v6 + λ24v

6 + τ2u6v6,

and the fact that it must be unique comes from the fact that R[u2, u3, v2, v3] is a free module over
R[u2, v2]. Since this method of rewriting only requires use of the relation above, it follows that ψ
will be well-defined as long as it respects this relation. But this is a simple computation.

With this equation in hand, we can now analyse the singularity completely. The following result
should be seen as an analogue of [62, Proposition 5.3], the proof of which we emulate.

Proposition 5.2.4. SupposeR = k. The singularity of the quadruple point is a rational double point.
Let f(b) = b3 − σ2

4

λ24
.

(i) If k contains no roots of f then the singularity is of type G2;

(ii) If k contains only a single root of f then the singularity is of type B3;

(iii) If k contains all roots of f then the singularity is of type D4.

Proof: We compute the blowing-up

p : Z −→ AG = R[a, b, c]/(c2 + σ20a
3b4 + σ22a

3b2 + σ24a
3 + λ20a

4b3 + λ22a
2b3 + λ24b

3 + τ2a3b3)

in the ideal (a, b, c). The blowing up Z is the relative proj of the powers of (a, b, c) and is covered by
two affine open charts D+(a) and D+(b). Setting b′ = b

a and c′ = c
a , the first chart is the spectrum

of

k[a, b′, c′]/(c′2 + σ20a
5b′4 + σ22a

3b′2 + σ24a+ λ20a
5b′3 + λ22a

3b′3 + λ24ab
′3 + τ2a4b′3).
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The exceptional divisor of this is determined by the ideal

(a, b, c)k[a, b′, c′] =

(︃
a,
b

a
· a, c

a
· a
)︃

= (a).

Let us compute the singularities on this. The Jacobian of D+(a) yields(︁
σ24 + λ24b

′3 + a2(σ20a
2b′4 + σ22b

′2 + λ20a
2b′3 + λ22b

′3) a(λ20a
4 + λ22a

2 + λ24 + τa3)b′2 0
)︁

We see that this vanishes on the exceptional divisor if and only if λ24b
′3 = σ24 or equivalently b′3 = σ2

4

λ24
.

As such, the singular points on the exceptional divisor are defined by the ideal (a, b′3− σ2
4

λ24
). Now we

have a bit of case work based on the splitting of the polynomial b′3 − σ2
4

λ24
. First suppose k contains

all roots of b′3 − σ2
4

λ24
and let α denote one such root. Note that since λ4, σ4 ̸= 0 this also holds for α.

We then have a splitting

b′3 − σ24
λ24

= (b′ − α)(b′ − ζ3α)(b′ − ζ23α),

where ζ3 is a primitive third root of unity. Then the non-singular locus on the exceptional divisor
consists of three points given by the ideals (a, b′ − ζi3 3

√
α) for i = 0, 1, 2. We compute the blowing

up in one of these, as the other two are symmetric. It will turn out that a single blow-up resolves the
singularity replacing it by a P1. First, we make a linear change of base by mapping b′ ↦→ b′ + α. We
substitute this in the defining equation, and keeping in mind λ24α

3 = σ24 i.e. the sum of these is zero,
one finds that

c′2 =λ24a(b
′3 + αb′2 + α2b′) + a3(λ22b

′3 + (σ22 + λ22α)b
′2 + λ22α

2b′ + σ22α
2 + λ22α

3) (*)

+ τ2a4(b′3 + αb′2 + α2b′ + α3) + a5(σ20b
′4 + λ20b

′3 + λ20αb
′2 + λ20α

2b′ + σ20α
4 + λ20α

3).

The blowing up is covered by two new affine charts D+(a) and D+(b
′), where the first is a slight

abuse of notation. We wish to show the exceptional divisor is a copy of P1, so we study it on each of
these two charts. The D+(a) chart replaces b′ by b′′ = b′

a and c′ by c′

a . So the equation (∗) yields

c′′2 =λ24α
2b′′ + a(λ24αb

′′2 + σ22α
2 + λ22α

3) + a2(λ24b
′′3 + λ22α

2b′ + τ2α3) (**)

+ a3((σ22 + λ22α)b
′′2 + τ2α2b′′ + σ20α

4 + λ20α
3) + a4(λ2b

′′3 + τ2αb′′2 + λ20α
2b′′)

+ a5(τ2b′′3 + λ20αb
′′2) + λ20a

6b′′3 + σ20a
7b′′4.

The exceptional divisor is defined by the ideal of (a) in k[a, b
′

a ,
c′

a ]. Modding out by a in (∗∗) gives
the much simpler equation

c′′2 = λ24α
2b′′.

As noted λ4, α ̸= 0 hence the product of their squares is invertible and we get 1
λ4α

c′′ =
√
b′′.

Summarizing, it follows that on the D+(a) chart the exceptional divisor is given by

k[a, b′′, c′′]/(∗∗)/(a) = k[b′′, c′′]/(c′′2 + λ24α
2b′′) = k

[︂√
b′′
]︂
= k

[︄√︃
b′

a

]︄
.

The computation on the D+(b
′) are essentially the same, so we give only brief details. One replaces

a by a′ = a
b′ and c by c′′′ = c′

b′ and obtains the following defining equation from (∗) as before

c′′2 =λ24α
2a′ + b′(λ24αa

′ + (σ22α
2 + λ22α

3)a′3) + b′2(λ24αa
′ + λ22α

2a′3 + τ2α3a′5)

+ b′3((σ22 + λ22α)a
′3 + α2a′4 + λ20α

3a′5) + b′4(λ22a
′3 + τ2αa′4 + λ20α

2a′5)

+ b′5(τ2a′4 + λ20αa
′5) + λ20b

′6a′5 + σ20b
′7a′5.
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Using this one finds that the exceptional divisor, which is defined by the ideal (b′) is given on the
D+(b

′) chart as the spectrum of k[
√︁

a
b′ ]. It follows that the exceptional divisor is a P1 as desired.

The multiplicity of the singularity may be read from the defining equation as 2, and together with the
configuration of curves we see it is a rational double point. Thus the singularity is a D4 singularity in
the case where b′3 − σ2

4

λ24
splits completely. We will use this first case, as well as the method outlined

in Remark 3.1.10 to easily handle the other two cases. Consider first the case where k contains only
a single root of f denoted α as before. Then we have a splitting

(b′3 − α) = (b′ − α)(b′2 + αb′ + α2).

Passing to the splitting field of (b′2 + αb′ + α2) brings us to the situation of the first case. This
splitting field is the degree two extension k(ζ3). The Galois group Gal(k(ζ3)/k) is cyclic of order
two generated by the k-automorphism φ defined by ζ3 ↦→ ζ23 . As such, the Galois action permutes
the two singularities arising from the splitting of b′2 + α · b′ + α2. Thus the action also permutes the
corresponding two components in the resolution:

φ

It follows that in this second case, the singularity is a B3 singularity.
For the final case we suppose that k contains no roots of f . The splitting field of f is then instead the
degree 6 extension k(α, ζ3). The Galois group of this is S3 generated by the two homomorphisms
defined by

φ :

{︃
α ↦→ α
ζ3 ↦→ ζ23

ψ :

{︃
α ↦→ ζ3α
ζ3 ↦→ ζ3

Similar to before, we see how this action permutes the roots and so identifies the different components
in the exceptional divisor. The following diagram illustrates this identification.

ψ

ψ

ψ

Thus the singularity is a G2 singularity in this final case.

We remark the we never used τ ̸= 0 in the preceding. Thus this analysis is also valid for α2 ac-
tions determined by our general vector fields. Also note that the first case does not occur if λ4 = σ4
as the polynomial b3 − 1 always has the trivial root 1. This explains why the G2 singularity does not
show up in [62, Proposition 5.3] as in this case λ4 = σ4 = 1.

We wish to understand this singularity in families. Indeed, our hope is that it gives an honest
divisor which may be used as the center of a blowing up. The challenge is that the structure of
the singularity may be different depending on the fiber as the action moves in the family. Indeed,
as we saw in Example 4.2.3 a singular locus could be reduced in one fiber and non-reduced in another.

Our base is now again a ring R. Suppose m ⊂ R is a maximal ideal such that R/m = k i.e.
m corresponds to a k-rational point of SpecR. To study the singularity in the fiber over m, we
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may pass to an infinitesimal neighbourhood of the singularity i.e. we complete with respect to the
corresponding ideal. We then wish to show, that as we deform this neighbourhood, the deformation
is constant. Similar to the earlier proofs, we can emulate a proof strategy, specifically that of [62,
Proposition 5.4].

The following proposition deals with the completed tensor product. We briefly recall the defi-
nition in our specific case. Suppose we have a ring A with ideal I and A-algebras B and C with
ideals JB and JC respectively, such that IB ⊂ JB and IC ⊂ JC . Equipping A, B and C with the
topologies defined by these ideals makes B and C into topological algebras over the topological ring
A.

B⊗̂AC = lim←−B ⊗A C/(J
n
B ⊗ C +B ⊗ JmC ) = lim←−B/J

n
B ⊗ C/JmC .

For more on the completed tensor product see [28, Chapter 0, 7.7] and [31, 7.5]. Note that since
k embeds in the k-algebra R, there is a canonical choice of representative of each residue class in
R/m = k.

Proposition 5.2.5. Let m ∈ SpecR be a k-rational point,

B = R[a, b, c]/(c2 + σ20a
3b4 + σ22a

3b2 + σ24a
3 + λ20a

4b3 + λ22a
2b3 + λ24b

3 + τ2a3b3)

and B0 = B ⊗R R/m. Consider then the ideals (a, b, c)B and (a, b, c)B0. As a deformation ofˆ︂B0 the deformation ˆ︁B is isomorphic to the constant deformation ˆ︂B0⊗̂R/mR if λ
2

λ24
and σ2

σ2
4

have third
roots in R, where λ and σ are the canonical representatives of the residue classes of λ4 and σ4 in
R/m = k.

Proof: Concretely we have

ˆ︁B = R[|a, b, c|]/(c2 + σ20a
3b4 + σ22a

3b2 + σ24a
3 + λ20a

4b3 + λ22a
2b3 + λ24b

3 + τ2a3b3),

and

ˆ︂B0⊗̂R/mR = R[|a, b, c|]/(c2+[σ20]a
3b4+[σ22]a

3b2+[σ24]a
3+[λ20]a

4b3+[λ22]a
2b3+[λ24]b

3+[τ2]a3b3),

where [−] denotes the residue class in R/m = k but we view each class as an element of R via the
k-algebra structure embedding k in R. To ease our notation later on, let λ and σ denote the canonical
representatives for the residue classes of λ4 and σ4 respectively. Note that since we have assumed
σ4, λ4 ∈ R× these cannot be in the maximal ideal m, and so λ and σ will never be 0.

First, we wish to reduce to a simpler case by showing that the equations can be modified. We
prove that ˆ︁B ∼= R[|a, b, c|]/(c2+σ24a3+λ24b3). To do this, we must show there is anR-algebra auto-
morphism of R[|a, b, c|] mapping c2+σ20a

3b4+σ22a
3b2+σ24a

3+λ20a
4b3+λ22a

2b3+λ24b
3+ τ2a3b3

to the simpler c2 + σ24a
3 + λ24b

3. This reduction is essentially the content of the proof of [62, Propo-
sition 5.4], but we emulate it here so that the interested reader will not have to translate notation and
because our equation is slightly more complicated. To ease notation, set f = c2 + σ24a

3 + λ24b
3 and

take any power series g ∈ (a3b2, a2b3). Note specifically, that the bit of the equation we want to
’delete’ is in this ideal. We then show that we can inductively define an automorphism φ such that
φ(f + g) = f . We do this by removing terms of g one-by-one while making sure to also delete any
extraneous terms along the way.

So let g =
∑︁

i,j≥2, i+j≥5 γija
ibj . From this, take the non-zero monomials with minimal total

degree i+j and let γmnambn be the unique one with minimal degreem in a. Note that by assumption
n,m ≥ 2. Let us first suppose m ≥ 3 and leave the other case for last. We have a concrete
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automorphism φmn of R[|a, b, c|] defined by a ↦→ a + γmna
m−2bn while fixing b and c. Note that

for any l ≥ 1 we have

φmn(a
2l) = a2l +

l∑︂
s=1

γ2smn

(︃
l

s

)︃
a2l+2(m−3)sb2ns

φmn(a
2l+1) = a2l+1 + γmna

m+2(l−1)bn +
l∑︂

s=1

(︃
l

s

)︃
γ2smna

2l+2(m−3)s+1b2ns

+

l∑︂
s=1

(︃
l

s

)︃
γ2s+1
mn a2l+2(m−3)s+m−2bn(2s+1).

We want to ensure φmn adds only terms of increasing degree to f + g. For this, there are a few
things to note here. First, that φmn maps any monomial of degree ≥ 2 in a to itself plus something
in (a2b3, a3b2). Secondly, as m ≥ 3, n ≥ 2 we have for even exponents i = 2l

2l + 2(m− 3)s+ 2n+ j > 2l + j.

While for odd exponents i = 2l + 1

m+ 2(l − 1) + n+ j >2l + 1 + j,

2l + 2(m− 3)s+ 1 + 2ns+ j >2l + 1 + j,

2l + 2(m− 3)s+m− 2 + n(2s+ 1) + j >2l + 1 + j.

So any monomial aibj is mapped to itself plus additional summands which are all of total degree
> i+ j. Note that in particular

φmn(a
3) = a3 + γmna

mbn + γ2mna
2m−3b2n + γ3mna

3m−6b3n.

Where we remark that the second term is the least term in g and the last two terms have a total degree
strictly greater than the total degree m + n of γmnambn. Thus φmn maps f to f plus γmnambn

plus some terms of higher total degree. It follows from the above that φmn(f + g) = f + g′ where
g′ ∈ (a2b3, a3b2) with all terms of total degree> m+n or total degree = m+n but degree> m in a.
This argument also solves the casem = 2, as we can simply repeat it with a and b interchanged. As in
each step we only add terms of higher degree, we may proceed by defining our desired automorphism
φ inductively using the above procedure. Then φ becomes defined by an inductive assignment

a ↦−→ a+
∑︁
γijai−2bj , b ↦−→ b+

∑︁
ηija

ibj−2 where γij , ηij ∈ R.

This then shows that ˆ︁B ∼= R[|a, b, c|]/(c2 + σ24a
3 + λ24b

3) and by symmetric argument ˆ︂B0⊗̂R/mR ∼=
R[|a, b, c|]/(c2 + σ2a3 + λ2b3).

Now we are reduced to showing that there is an automorphism of R[|a, b, c|] which maps the
polynomial c2+σ24a

3+λ24b
3 to c2+σ2a3+λ2b3. This is where we need our additional assumption.

Of course, if σ4 = σ and λ4 = λ i.e. σ4, λ4 ∈ k then the equations are on the nose equal and the
problem is trivial. However, if they are not necessarily equal, suppose λ2

λ24
and σ2

σ2
4

have third roots

3

√︂
λ2

λ24
and 3

√︂
σ2

σ2
4

in R. As λ4, σ4 are both units, it follows that the inverses λ24
λ2

and σ2
4
σ2 also have third

roots, which are the inverses of the third roots just described. Then we obtain an automorphism of
R[|a, b, c|] defined by

a ↦−→ 3

√︄
σ2

σ24
a, b ↦−→ 3

√︄
λ2

λ24
b, c ↦−→ c,

which is the desired.
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It might be possible that no base-change is necessary. If one looks at the locus of non-smoothness
for the family of formal neighbourhoods R[|a, b, c|]/(c2 + σ24a

3 + λ24b
3), one sees that it is defined

by the ideal
(σ24a

2, λ24b
2, c2 + σ24a

3 + λ24b
3) = (σ24a

2, λ24b
2, c2) = (a2, b2, c2),

where in the last equality we used that λ4 and σ4 are units. The reduced locus of non-smoothness
is then given by the ideal (a, b, c). This closed subscheme has as its fiber over s ∈ S the reduced
singularity of the fiber (SpecB)s. Thus (a, b, c) determines a closed subscheme which may be used
as the center of a blowing up, which fiberwise gives the first blowing up in a resolution of singularity.
However, this single blowing up is not enough to resolve the singularities, and one would then have
to study the locus of non-smoothness on this new scheme obtained by blow-up.

5.2.2 The Fixed Point Singularities

We consider now the chart of A = R[u−1, v−1]. The G = µ2 action is then given by the derivation

δ = (λ4u
−4 + λ2u

−2 + λ0)Du−1 + (σ4v
−4 + σ2v

−2 + σ0)Dv−1 + τ(u−1Du−1 + v−1Dv−1),

where we assume λ4, σ4, τ ∈ R×. The quotient chart corresponding to SpecA was computed in [46]
as:

Proposition 5.2.6. AG = R[a, b, c]/(c2 + τ2ab+ (σ24b
4 + σ22b

2 + σ20)a+ (λ24a
4 + λ22a

2 + λ20)b).

Proof: In [46, Proposition 3.2] this is computed for the case R = k an algebraically closed field,
but the computations work for any k-algebra and are completely analogous to Proposition 5.2.2 and
Proposition 5.2.3.

It is also mentioned in [46, Proposition 3.2] that over an algebraically closed field this chart has
sixteen A1 singularities. When we study the deformation in Theorem 5.2.8 we will obtain this for
free, as we will see the singularities may be exhibited by the normal form of an A1 singularity. Now,
the above expression for the quotient chart tells us that singularities on this chart are determined by
the vanishing of the Jacobian matrix(︁

τ2b+ σ24b
4 + σ22b

2 + σ20 τ2a+ λ24a
4 + λ22a

2 + λ20 0
)︁
.

So the singular locus is determined by the ideal (σ24b
4 +σ22b

2 + τ2b+σ20, λ
2
4a

4 +λ22a
2 + τ2a+λ20).

We wish to derive a result similar to Proposition 5.2.5 to determine when these singularities lie in
the family in a uniform manner. Recall that a polynomial is separable in positive characteristic if
and only if its formal derivative is non-zero. As we have assumed τ is a unit, we see that each of
the two polynomials defining the singular locus are separable. This means that each polynomial
has 4 distinct roots, giving a total of sixteen points after base changing so that the polynomials split.
Before continuing with the analysis of these we make a brief analysis of how one actually solves such
polynomials in characteristic 2. This analysis will be useful if one in the future wishes to compute
examples.

Solving Depressed Quartic Equations in Characteristic 2

The solution of the quartic equation is classical, going back to the 16th hundred italian school of
mathematics with the work of Ferrari, who settled the quartic dependent on the solution of the cubic,
and Cardano, who solved the cubic, in the Ars Magna [40]. However, the classical formulas are not
directly transferable to characteristic 2 (or 3 for that matter) due to the fractions involved, see [23, p.
630-635]. As such one has to carefully go through the proofs and transfer them to characteristic 2.
As I do not know of any source that has these formulas readily available, I have decided to include
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the process of deriving the quartic solution here. In our case we are interested in factorizing the
polynomial λ24a

4 + λ22a
2 + τ2aλ20 as well as the similar polynomal in b. As we have assumed λ4 is

a unit in R, we may scale by λ−2
4 to obtain a monic polynomial a4 + λ22

λ24
a2 + τ2

λ24
a +

λ20
λ24

. This is a
depressed quartic so we want to solve such polynomials. We first set

p =
λ22
λ24
, q =

τ2

λ24
, r =

λ20
λ24
.

Note that as τ, λ4 ∈ R× we have q ∈ R× and so the polynomial is separable, and remains so
when reduced modulo any maximal ideal. In the following we will need the concept of 2-roots: For
non-zero γ we call a solution to the Artin-Schrier polynomial x2 + x + γ a 2-root of γ. Given one
2-root, the other may be obtained by adding 1, so we simply denote one root by R(γ) and the other
R(γ) + 1. Recall, or confirm, that an equation ax2 + bx + c = 0 in characteristic 2 with a, b units
has root baR(

ac
b2
). Further recall that a polynomial of degree n is said to be depressed if it has term of

degree n− 1. Polynomial equations involving depressed polynomials are in general easier to solve,
and there are classical methods of putting a given polynomial into depressed form. We now treat the
solution to a general depressed quartic x4 + px2 + qx+ r where q is a unit.

Proposition 5.2.7. A depressed quartic x4 + px2 + qx+ r with q a unit splits as

x4 + px2 + qx+ r =

⎛⎝x−mR
⎛⎝(m2 + p)R

(︂
r

(m2+p)2

)︂
m2

⎞⎠⎞⎠
·

⎛⎝x−mR
⎛⎝(m2 + p)R

(︂
r

(m2+p)2

)︂
m2

+ 1

⎞⎠⎞⎠
·

⎛⎝x−mR
⎛⎝(m2 + p)

(︂
R
(︂

r
(m2+p)2

)︂
+ 1
)︂

m2

⎞⎠⎞⎠
·

⎛⎝x−mR
⎛⎝(m2 + p)

(︂
R
(︂

r
(m2+p)2

)︂
+ 1
)︂

m2
+ 1

⎞⎠⎞⎠ ,

where m may be taken as

m = 3

√︄
qR

(︃
p3 + q2

q2

)︃
+ ζ3q +

3

√︄
qR

(︃
p3 + q2

q2

)︃
+ ζ23q,

or some other root of m3 + pm+ q = 0.

Proof: The assumption that q is a unit implies that the polynomial is separable. So we have a splitting

x4 + px2 + qx+ r = (x2 +mx+ n)(x2 + sx+ t).

The coefficients m,n, s, t are subject to the relations

m+ s = 0, n+ t+ms = p, mt+ ns = q, nt = r.

The first of these simply implies s = m, so the second and third simplify to

n+ t+m2 = p, m(n+ t) = q
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We can use these to determine m in terms of p, q and r. Indeed, let us first observe that since q ∈ R×

and m(n+ t) = q implies m is a factor of q, we get that m and n+ t are units. So we may isolate to
get n+ t = q

m . Adding this to the equation n+ t+m2 = p results in

m2 = 2n+ 2t+m2 = p+
q

m
,

from which we obtain
m3 + pm+ q = 0.

This is a depressed cubic, and so we need to solve such an equation in characteristic 2. Luckily, this
is done in [49]. In this paper Mann shows that a depressed cubic in characteristic 2 has Lagrange
resolvents 3

√
θ + ζ3q and 3

√︁
θ + ζ23q where θ is any root of x2 + qx + p3 + q2 and ζ3 is a primitive

third root of unity. One then obtains the solutions to m3+pm+ q = 0 in what Mann calls "the usual
manner", described in [71, p. 179] as

3
√
θ + ζ3q +

3
√︁
θ + ζ23q, ζ3

3
√
θ + ζ3q + ζ23

3
√︁
θ + ζ23q and ζ23

3
√
θ + ζ3q + ζ3

3
√︁
θ + ζ23q.

So we are to solve the quadratic equation x2 + qx+ p3 + q2. The roots of this are given by

qR

(︃
p3 + q2

q2

)︃
and q

(︃
R

(︃
p3 + q2

q2

)︃
+ 1

)︃
.

Thus, we obtain an expression for m as

m = 3

√︄
qR

(︃
p3 + q2

q2

)︃
+ ζ3q +

3

√︄
qR

(︃
p3 + q2

q2

)︃
+ ζ23q.

Next, if we multiply n+ t+m2 = p by n and use nt = r we obtain

n2 + (m2 + p)n+ r = 0.

In the same way, multiplying by t instead of n gives t2 + (m2 + p)t+ r = 0. Thus t and r are both
roots in the polynomial x2 + (m2 + p)x+ r = 0. But since as noted n+ t must be a unit, it follows
that they are distinct roots. Thus we get

n = (m2 + p)R
(︂

r
(m2+p)2

)︂
t = (m2 + p)

(︂
R
(︂

r
(m2+p)2

)︂
+ 1
)︂
.

Note here that we have used m2 + p = n + t to infer that the first is in fact a unit so the fractions
above make sense. Thus, we get a factorization

a4 + pa2 + qa+ r = (a2 +ma+ n)(a2 +ma+ t)

=

⎛⎝a−mR
⎛⎝(m2 + p)R

(︂
r

(m2+p)2

)︂
m2

⎞⎠⎞⎠
·

⎛⎝a−mR
⎛⎝(m2 + p)R

(︂
r

(m2+p)2

)︂
m2

+ 1

⎞⎠⎞⎠
·

⎛⎝a−mR
⎛⎝(m2 + p)

(︂
R
(︂

r
(m2+p)2

)︂
+ 1
)︂

m2

⎞⎠⎞⎠
·

⎛⎝a−mR
⎛⎝(m2 + p)

(︂
R
(︂

r
(m2+p)2

)︂
+ 1
)︂

m2
+ 1

⎞⎠⎞⎠

In our case, we have explicit descriptions of p, q and r so that p
3+q2

q2
=

λ62
λ24τ

4 + 1.
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5.2.3 Deformation of the Fixed Point Singularities

We wish to understand the fixed point singularities in the family. To do so, we wish to pass to a
formal neighbourhood. So first, let us move the singularities to the origin. Consider the polynomials
a4 + p1a

2 + q1a+ r1 and b4 + p2b
2 + q2b+ r2, where

p1 =
λ22
λ24
, q1 =

τ2

λ24
, r1 =

λ20
λ24
, p2 =

σ2
2

σ2
4
, q2 =

τ2

σ2
4
, r2 =

σ2
0

σ2
4
.

As noted, τ being a unit implies that these polynomials are separable. Suppose all the roots lie
in R (if not, we adjoin them) and let α and β denote some root of a4 + p1a

2 + q1a + r1 and
b4 + p2b

2 + q2b+ r2 respectively. Using the substitution a ↦→ a+ α and b ↦→ b+ β, the polynomial
c2 + τ2ab+ (σ24b

4 + σ2b
2 + σ20)a+ (λ24a

4 + λ22a
2 + λ20)b becomes

c2 + τ2(a+ α)(b+ β)

+
(︁
σ24(b+ β)4 + σ22(b+ β)2 + σ20

)︁
(a+ α)

+
(︁
λ24(a+ α)4 + λ22(a+ α)2 + λ20

)︁
(b+ β) = c2 + τ2ab+

(︁
σ24b

4 + σ22b
2
)︁
a+

(︁
λ24a

4 + λ22a
2
)︁
b

+ λ24βa
4 + λ22βa

2 +
(︁
σ24β

4 + σ22β
2 + τ2β + σ20

)︁
a

+ σ24αb
4 + σ42αb

2 +
(︁
λ24α

4 + λ22α
2 + τ2α+ λ20

)︁
b

+
(︁
λ24α

4 + λ22α
2 + τ2α+ λ20

)︁
β +

(︁
σ24β

4 + σ22β
2 + σ20

)︁
α

= c2 + τ2ab+
(︁
σ24b

4 + σ22b
2
)︁
a+

(︁
λ24a

4 + λ22a
2
)︁
b+ λ24βa

4

+ λ22βa
2 + σ24αb

4 + σ22αb
2 + τ2βα,

where we have used that α and β are roots in λ24a
4 + λ22a

2 + τ2a+ λ20 and σ24b
2 + σ22b

2 + τ2b+ σ20
respectively. We then obtain a result analogous to Proposition 5.2.5:

Proposition 5.2.8. Let m ∈ SpecR be a k-rational point and

h = c2 + τ2ab+ (σ24b
4 + σ22b

2)a+ (λ24a
4 + λ22a

2)b+ λ24βa
4 + λ22βa

2 + σ24αb
4 + σ22αb

2 + τ2αβ.

Further, let C = R[a, b, c]/(h), and C0 = C ⊗R R/m. Consider then the ideals (a, b, c)C and
(a, b, c)C0. As a deformation of ˆ︂C0 the deformation ˆ︁C is isomorphic to the constant deformationˆ︂C0⊗̂R/mR which is simply R[|a, b, c|]/(c2 + ab).

Proof: We employ the same method of proof as in Proposition 5.2.5. Like earlier

ˆ︁C = R[|a, b, c|]/(h).

We will show there is an R-algebra automorphism of R[|a, b, c|] mapping the defining equation to
c2+ ab. This implies the desired. We construct this automorphism in steps. First, we note that α and
β are in fact squares. Indeed, σ24α

4 + σ22α
2 + τ2α+ σ20 = 0 which implies that

α =
1

τ2
(︁
σ24α

4 + σ22α
2 + σ20

)︁
,

since τ is a unit. As the right hand side is a square, so is α, and by symmetry β. Now, as a matter of
notation let α′ and β′ denote the elements such that α′2 = α and β′2 = β respectively. Then we may
define an automorphism φ by fixing a and b, and mapping

c ↦→ c+ λ4β
′a2 + λ2β

′a+ σ4α
′b2 + σ2α

′b+ τβ′α′.

Then
φ(h) = c2 + τ2ab+ (σ24b

4 + σ22b
2)a+ (λ24a

4 + λ22a
2)b.
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Next consider the automorphism ψ on R[|a, b, c|] defined by a ↦→ a+
σ2
2
τ2
ab. Then

ψ(τ2ab) = τ2ab+ σ22ab
2,

while

ψ((σ24b
4 + σ22b

2)a) = (σ24b
4 + σ22b

2)a+

(︃
σ24σ

2
2

τ2
b5 +

σ42
τ2
b3
)︃
a.

As this only adds new terms of degree 1 in a and total degree > 3, we may continue via induction as
in Proposition 5.2.5. Thus we obtain an automorphism ψ′ of R[|a, b, c|] defined via induction such
that

ψ′ (︁c2 + τ2ab+
(︁
σ24b

4 + σ22b
2
)︁
a+

(︁
λ24a

4 + λ22a
2
)︁
b
)︁
= c2 + τ2ab+

(︁
λ24a

4 + λ22a
2
)︁
b.

Applying the same principle, beginning with the substitution b ↦→ b+
λ22
τ2
ab, we obtain an inductively

defined automorphism ψ′′ such that

ψ′′ (︁c2 + τ2ab+
(︁
λ24a

4 + λ22a
2
)︁
b
)︁
= c2 + τ2ab.

Now we finally apply the automorphism ψ′′′ defined by a ↦→ 1
τ a, b ↦→ 1

τ b, c ↦→ c to obtain

ψ′′′(c2 + τ2ab) = c2 + ab.

Composing all of these automorphisms now gives the desired.

Note that this proof gives for free that the singularities we are treating are all A1 singularities, as
the defining equation is exactly the normal form of this singularity type.

5.3 Concluding Results

The result of the preceding sections lead us to the following results (which are essentially the same
result reformulated). First, we combine the results of Proposition 5.2.5 and Proposition 5.2.8 into a
statement on the simultaneous resolution of the quotient family (C × C)/µ2:

Theorem 5.3.1. The quotient family (C × C)/µ2 admits a simultaneous resolution of singularities
over the base change

S′ = S ⊗k[λ4,λ2,λ0,σ4,σ2,σ0,τ ] k

[︄
3

√︄
λ2

λ24
, 3

√︄
σ2

σ24
, α1, α2, α3, α4, β1, β2, β3, β4

]︄
.

Here αi and βi are the roots of λ24a
4 + λ22a

2 + τ2a+ λ20 and σ24b
4 + σ22b

2 + τ2b+ σ20 respectively, λ

and σ are the canonical choice of representatives of λ4 and σ4 in k, and 3

√︂
λ2

λ24
, 3

√︂
σ2

σ2
4

are any choice

of third roots. This is a finite base change of degree at most 32(4!)2 = 5184. The only possible prime
divisors of the degree of the base change are 2 and 3.

Proof: Keep in mind Remark 4.2.4. By this remark, having the deformation of a singularity be con-
stant, means that the singularity may be simultaneously resolved. Now, as outlined in the previous
section (C × C)/µ2 has fiberwise the fixed point singularities and the singularity coming from the
quadruple point. Adjoining the roots of λ24a

4+λ22a
2+ τ2a+λ20 and σ24b

4+σ22b
2+ τ2b+σ20 allows

for the linear substitutions a ↦→ a+ αi and b ↦→ b+ βi. The result of Proposition 5.2.8 then tells us
that each of the fixed point singularities deforms in a constant manner, hence can be simultaneously
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resolved after the base change which adds these roots.

In the same manner, Proposition 5.2.5 shows that the singularities coming from the quadruple point
may be simultaneously resolved after adjoining 3

√︂
λ2

λ24
and 3

√︂
σ2

σ2
4

.

As an immediate consequence we obtain:

Corollary 5.3.2. The generalized Kummer construction with µ2 works in families after a finite base
change of degree at most 32(4!)2 = 5184. The only possible prime divisors of the degree of the base
change are 2 and 3.

5.4 Questions remaining

There are a few immediate questions left related to these generalized constructions that might be of
interest to anyone who finds the subject relevant to pursue.

• There is a further case in pure characteristic 2. In the vector field δ we assumed τ to be a unit.
This amounts to forcing the action defined by δ to stay a µ2-action in the whole family. But
what if one lifted this restriction? Then the group scheme acting varies in the family. The two
main things to solve are then the base change property, i.e. taking fibers and quotients com-
mute, and the simultaneous resolution of singularities. The first part I suspect one can solve
by emulating the proof of [62, Proposition4.2]. For the second bit, at least the computations
of 5.2.4 remain valid with no assumption on τ , hence also works for α2-actions. So at least
the D4 singularity should admit simultaneous resolution after the finite base change described.
But the other singularities are more tricky as their types vary in the family. I suspect one would
need at least the techniques of [62, Theorem 12.1]. At least one could say that the construction
would work locally, as each point will have a neighbourhood in which τ is either a unit or
identically zero, which restricts to the µ2 and α2 cases separately.

• Then there is the case of mixed characteristic. In Section 5.2, we saw how the involution action
on a family of Abelian surfaces is just an action by µ2. As such, one could take a concrete
family over a base, say Z, such that the family is Abelian outside of the prime 2, but degenerates
to a product of cuspidal curves over 2. Such an example could be the self product of the
Weierstrass fibration y2−x3−2 over Z2 or y2−x3−2x over Z. As the action is always given
by µ2, the quotient exists and we know its fibers. It is then interesting to see if this quotient
family admits a simultaneous resolution. I have done some rough preliminary computations
with the first equation, and the A1 singularities seem to work out as in Proposition 5.2.8. The
possible problem here seems to be the D4 singularity as it only appears in one fiber.
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