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Abstract

Intrinsically disordered proteins (IDPs) are abundant in the human proteome and of-

ten associated with amyloid-related diseases, such as Alzheimer’s and Huntington’s

disease. While IDPs can aggregate into insoluble fibrillar β -sheet aggregates, they

can also form soluble, intermediate-size aggregates called oligomers that are highly

toxic and are polymorphic. Studying oligomers in detail has been a significant chal-

lenge, and the availability of experimental methods for their thermodynamic and

kinetic characterization is limited due to the low abundance and the transit nature

of the oligomer. Molecular dynamics (MD) simulation provides a powerful tool to

investigate their behavior on the atomistic scale. Additionally, advanced methods

for analyzing MD simulations, such as Markov state models and transition networks,

have enable a detailed exploration of the conformational landscapes of the oligomers.

To this end, we utilized all-atom MD simulations to investigate the aggregation of

amyloid-β (Aβ) peptides and Huntingtin (Htt) proteins into small oligomers. Specif-

ically, our studies include the following: (i) In our first study, we conducted multiple

MD simulations totaling 0.3 ms of Aβ42 oligomers, including dimers, tetramers, and

hexamers, which were then analyzed using Markov state models and transition net-

works. Our analysis revealed that the oligomers can occupy multiple states, and tran-

sitions between these states occur within microseconds. These findings demonstrate

the feasibility of characterizing the kinetics and thermodynamics of Aβ42 oligomers

using network analysis. (ii) We conducted research on the structures and mecha-

nisms of aggregation for different Aβ variants into oligomers. Our findings indicated

that Aβ variants lacking the ability to fold into a β -hairpin structure, as present in

the Aβ40 peptide, are unable to form oligomers. (iii) We also compered the for-

mation of Aβ42 dimers in solution and at the neuronal membrane. In solution, the

dimerization process involves a transition from a random coil to a β -sheet structure,

which is a key step towards amyloid aggregation. However, our findings show that

when Aβ42 dimers interact with the neuronal membrane, they are less likely to adopt

a β -sheet structure. (iv) Finally, we investigated the conformational and dynami-

cal effects of polyglutamine expansion and its flanking domains on the folding and

dimerization of Htt proteins. Our findings revealed significant distinctions between

the nonpathogenic and pathogenic Htt monomers, which directly affect their dimer-

ization. In summary, by utilizing MD simulations and advanced analysis methods, our

approach provides a detailed understanding of the aggregation of Aβ oligomers and
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Htt proteins at the atomic level. The investigations conducted in this thesis are valu-

able in comprehending the initial stages of the amyloid aggregation process, which

can facilitate the development of prospective treatments for Amyloid-related diseases.
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Chapter

1.
Introduction

Proteins are vital components of living systems and play a crucial role in carrying out

essential biological functions such as catalyzing biochemical reactions, transporting

ions and molecules across membranes, and facilitating cell replication. The majority

of proteins fold into unique, three-dimensional native structures that enable them to

perform their functions. However, some proteins, known as intrinsically disordered

proteins (IDPs), feature flexible, three-dimensional structures that are critical to their

function.

One aspect of protein behavior that has received much attention is protein aggrega-

tion, where proteins self-assemble into large structures. The aggregation of amyloid

proteins into neurotoxic oligomers and fibrils is a common characteristic of several

neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s dis-

ease (HD) and Parkinson’s disease (PD) [1, 2]. Despite the significant global impact

of these diseases, there is still no cure available for many of them [3]. In the progres-

sion of several neurodegenerative diseases, amyloid aggregation affects the brain or

neurons, where the misfolded amyloid proteins assemble into soluble intermediate

aggregates known as oligomers and protofibrils, which eventually accumulate into

rigid structures known as amyloid fibrils (Figure 1.1). These fibrils are character-

ized by their rich intermolecular β -sheet structures. However, it is believed that the

most toxic species are the smaller, heterogeneous, and mobile oligomers, as they can

diffuse across cells and interact with cell membranes, disrupting membrane-related

functions [4]. Despite the critical importance of understanding the aggregation of
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amyloid proteins, it remains a challenging task due to the difficulties in structurally

and dynamically characterizing IDPs by experimental and computational methods

[5]. As such, there is an urgent need to gain a deeper understanding of the molecular

basis of oligomer aggregation mechanisms.

Figure 1.1.: Protein aggregation from monomers to fibrils that accumulate in the
brain leads to neurodegenerative disease.

Computer simulations have become a valuable tool for modeling the aggregation

of amyloid proteins at the atomic level, providing a better understanding of their

mechanisms and structures on various time scales [6]. Despite the increasing compu-

tational costs associated with simulating large systems and longer simulation times,

recent advancements in technology, software, and simulation techniques have made

it possible to produce more accurate predictions. In this thesis, we employ computer

simulations to study the aggregation mechanisms and structures of small oligomers

of amyloid-β (Aβ) peptides and Huntingtin (Htt) proteins, which are challenging to

study experimentally. Through molecular dynamics simulations, we aim to gain a

deeper understanding of the conformations and aggregation kinetics of these amy-

loidogenic proteins. Additionally, we use network models such as transition networks

and Markov state models to analyze the simulation data and shed light on their un-

derlying mechanisms.

2



1.1. Intrinsically Disordered Proteins

1.1. Intrinsically Disordered Proteins

Some proteins have well-defined three-dimensional structures that are inseparably

associated with their biological functions. Indeed, knowing the structures of the

protein is the way to define their function [7]. Such a protein is called a "folded"

protein. Even though folded proteins are frequently described as having static three-

dimensional structures, they can sample different conformations throughout their

biological lifetime by responding to thermal fluctuations or other conditions [8]. In

general, protein fluctuations allow them to carry out their prescribed functions. Given

the fundamental role that protein motions play in defining their functions, the pro-

tein structures should be determined as a structural ensemble of accessible states

that a protein can adopt [9]. Most of the experimental methods determine the pro-

tein structures by averaging over structural ensembles. In the case of a folded protein

with well-defined free energy minima, such an approach is convenient, since long-

timescale observations will show only slight variations in the measurements. Thus,

the ensemble average captures a protein’s essential structural features, which can

help in understanding its function (Figure 1.2). In constant, IDPs do not have a sin-

gle equilibrium structure and instead exist as dynamic, heterogeneous ensembles of

conformations resulting from their relatively flat free-energy landscapes [10]. Fur-

thermore, due to their disordered nature, structural characterization is difficult, as

the average over long timescales or over the entire ensemble of structures obscure

states and processes that occur on short timescales or that are less populated [11]

(Figure 1.2). Thus, using the same approaches to determine the IDP structures as

for folded protein is not convenient where the ensemble-averaged structure does not

represent any structure in the ensemble. The flat energy landscape of IDPs consists

of different local energy minima separated by small energy barriers, the transitions

between those energy minima happen frequently and quickly, generating an ensem-

ble of structurally distinct states with nearly equal energies. In fact, determination of

the transition rates between the conformational states in the IDP ensemble is quite

challenging to capture by experimental or computational methods. Consequently, ad-

vanced methods are required to understand the structures of IDPs and therefore get

a better understanding of their function.

Disordered proteins are very common in nature and perform a variety of biolog-

ical processes, such as cell cycle control, storage of small molecules, cellular signal

3



1.1. Intrinsically Disordered Proteins

Figure 1.2.: Energy landscapes of a natively folded protein, human nucleoside
diphosphate kinase (Left) and of an intrinsically disorder peptide, CcdA
C-terminus (Right). The local free energy is shown as spectral, with the
red highest and blue the lowest energies. Reproduced with Copyright
©2014 Polymers [12].

transduction, cell signaling, protein phosphorylation, protein-protein interaction, and

self-assembly regulation. Around 25% of the human proteome is completely disor-

dered and classified as IDPs and 40% contain one or more intrinsically disordered

regions (IDPRs) that have lengths of at least 30 amino acids [13, 14]. The number

of proteins identified as disordered protein is ever-increasing. A hallmark of IDPs

(and IDPRs) is a low proportion of hydrophobic and aromatic amino acids, but a rel-

atively high number of polar and charged amino acids, resulting in a high net charge.

Many of these proteins play essential roles in many pathological pathways, particu-

larly, the self-assembly of IDPs is linked to many neurodegenerative diseases known

as amyloidoses. For example, aggregation of α-synuclein in the brains can lead to

Parkinson’s disease [15]. Huntington’s disease is associated with the aggregation of

Huntingtin proteins [2, 16]. Likewise, aggregation of the tau and Aβ proteins are

the pathological features in the progression of Alzheimer’s disease [17, 18]. Further-

more, malfunction of IDPs can as well lead to pathogenic faults in signaling pathways

[19]. While the important role of IDPs in various biological functions and pathologi-

cal pathways is prominent, their structural heterogeneity imposes notable challenges

in studying those proteins and revealing their exact function.

Disordered proteins can be transformed into structured forms in multiple ways, driven

4



1.2. Amyloid Aggregation

by either intramolecular or intermolecular interactions. A common way is known as

folding-upon-binding in which the disordered protein converts to a structured form

upon binding to a specific binding partner [20]. IDPs can also form ordered confor-

mation driven mainly by intermolecular side-chain interactions via self-assembly into

thermodynamically stable structures (amyloid fibrils) which will be explained in the

next section.

1.2. Amyloid Aggregation

Protein aggregation, or the self-assembly of proteins, is a widespread phenomenon

with significant impacts on biotechnology, protein biochemistry, and medicine [21].

Many folded proteins naturally form small, reversible oligomers through self-assembly

in vivo. At high protein concentrations, these proteins aggregate to create larger

oligomers that can eventually form mature fibrils. For instance, insulin proteins form

reversible oligomers and fibrils [22], and interleukin-1 receptor antagonist proteins

can create reversible oligomers at high protein concentrations [23]. However, cer-

tain proteins, particularly IDPs, tend to form irreversible aggregates associated with

numerous neurodegenerative diseases [24, 25]. These diseases are characterized by

disordered or misfolded proteins aggregating into intra-cellular inclusions or extra-

cellular plaques (amyloids) in tissues. The progression of amyloidosis is thought to

result from the accumulation of plaques, either through the "Gain of Toxicity" mech-

anism, which destroys the nearby tissues and cells, or through the "Loss of Normal

Function" mechanism, which results in a dysfunctional cellular activity due to insulat-

ing other proteins in plaques and the subsequent development of disease [26, 27].

In protein aggregation, similar disordered proteins interact to form dimers, trimers,

oligomers, protofibrils, and eventually amyloid fibrils. The structure of amyloid fib-

rils is highly ordered, characterized by cross β -sheet motifs, though it can exhibit

polymorphism [28, 29]. The aggregation pathway of different proteins can vary and

result in diverse fibrillar structures or amorphous aggregates. Various mechanisms

have been proposed to explain the self-assembly of disorder proteins into amyloid

fibrils, including nucleated or non-nucleated growth polymerization [30–32]. The

nucleated growth polymerization pathway is divided into three stages: nucleation,

elongation, and equilibrium (Figure 1.3) [30]. The nucleation phase involves the
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1.2. Amyloid Aggregation

Figure 1.3.: Schematic representation of amyloid aggregation. The nucleated-
polymerization model consists of three phases: nucleation, elongation,
and equilibrium. Oligomers are intermediate structures in the fibril for-
mation process and mainly exist in the nucleation phase and elongation
phase. Some oligomers, labeled as fibrillar oligomers, can rapidly form
protofibrils and fibrils via the fibril-formation pathways. Other oligomers,
on the other hand, such as amorphous and high-weight oligomers are
structurally distinguished from fibrillar oligomers, and they are off-
pathway of the fibril formation, which could contribute to fibril forma-
tions after a structural conversion to fibrillar oligomers.

slow assembly of monomers into a thermodynamically unfavorable nucleus, followed

by exponential growth of the fibril through the addition of more monomers in the

elongation phase. Finally, the equilibrium phase is reached when no further elon-

gation occurs and mature fibrils are formed through lateral association of soluble

species. However, the aggregation mechanism can be influenced by environmental

conditions, such as cell membranes, which play a role in the toxicity of the aggregates

in neurodegenerative diseases such as Alzheimer’s [33, 34]. More research is needed

to fully understand the molecular mechanism of peptide-membrane interactions and
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the resulting membrane damage.

So far, the majority of research on amyloids has been focused on mature fibrils due

to the challenges of studying the early-stage oligomers that are transient and have

a high tendency to aggregate. As a result, the current understanding of aggregation

mechanisms is mostly based on studies of fibrils. Although molecular simulations

have been helpful, their results are limited by the accuracy of the used force fields.

Force fields are not capable of accurately predicting the aggregation potential of pro-

tein sequences, leading to fast aggregation kinetics in many cases. However, recent

advancements have seen the development of force fields specifically designed for

IDPs, making the predictions more precise and trustworthy [35–38]. Despite these

improvements, the structures and formation mechanisms of oligomers remain elusive

and poorly understood.

1.3. Amyloid-β Peptide

Aβ is a soluble disordered peptide that is naturally produced in neurons and other

cells in the brain through the enzymatic cleavage of a transmembrane protein known

as an amyloid precursor protein (APP). The cleavage process of APP is catalyzed by

two enzymes, β -secretase and γ-secretase that cleave the N-terminal and C-terminal,

respectively (Figure 1.4) [39, 40]. Normally, the clearance mechanism controls the

peptide levels in the brain, however, defects in Aβ clearance mechanism cause ab-

normally high levels of the peptide leading to its accumulation and deposition as

extracellular plaques in the brain; a characteristics feature of AD [41]. AD is a neu-

rodegenerative disorder and the most prevalent form of dementia. It affects millions

of people around the globe, particularly people aged 65 and older [1], and the num-

bers are going to escalate over the next decades. The disease was first diagnosed by

Alois Alzheimer in 1907. Since then, the pathological cause of AD was ambiguous

and several hypotheses suggested [42]. Nowadays, the most vastly accepted theory

is the amyloid cascade hypothesis [43–45]. It proposes that Aβ peptide aggregates

as the central pathological cause of the disease progression, suggesting that the Aβ

peptide accumulates extracellularly in senile plaques, and the misfolded tau protein

accumulates intracellularly in neurofibrillary tangles which leads to memory loss and

a decline in cognitive function over time [46].
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Figure 1.4.: The cleavage of the amyloid precursor protein by β -secretase and γ-
secretase producing Aβ peptide.

The cleavage of APP at its C-terminal by γ-secretase generates Aβ peptides with 36 to

43 amino acid residues. The most prevalent species are Aβ40 and Aβ42 [47], where the

latter has two additional hydrophobic residues at its C-terminal. The Aβ sequences

are composed of four regions: the hydrophilic N-terminal region or the metal binding

region and two hydrophobic segments in the center (residues 16-22) and in the C-

terminal region of the sequence (residues 30-42), which lead to form a β -hairpin

structure, separated by the central polar region (residues 23-29) (Figure 1.5). Aβ40

is the most abundant in the brain, while Aβ42, which is more aggregation-prone and

toxic, is more commonly found in senile plaques [48–50]. The higher aggregation

tendency of Aβ42 is due to the additional two hydrophobic residues at the C-terminal

that affect the flexibility of the peptide by enhancing the formation of a second β -

hairpin by residues 31 to 34 and 38 to 41 [51].

In the last years, a considerable amount of literature has been published on the

smaller soluble Aβ oligomers as the main toxic aggregate species instead of the ma-

ture fibrils [53–56]. Therefore, there is an increasing interest in an intensive inves-

tigation of Aβ oligomerization and its role in AD at the molecular scale to better

understand the aggregation process.
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Figure 1.5.: The sequence of the Aβ42 can be divided into four regions: the metal-
binding region (red), the central hydrophobic core region (gray), the cen-
tral polar region (blue), and the C-terminal hydrophobic region (green).
Residues marked in red, blue, green, and black are negatively charged,
positively charged, polar and hydrophobic, respectively. Reproduced
with Copyright ©2017 Elsevier [52].

1.4. Huntingtin Proteins

Huntingtin (Htt) protein is linked to the neurodegenerative disorder Huntington’s

disease (HD), which is classified as a polyglutamine (polyQ) disease along with a

group of other inherited disorders which are all characterized by the abnormal ex-

pansion of a polyQ stretch due to a genetic mutation of trinucleotide CAG repeats

encoding glutamine amino acids (Figure 1.6A) [57, 58]. In HD, the mutated Htt pro-

tein misfolds and aggregates within brain neurons, leading to their malfunction and

death, resulting in cognitive decline and motor disturbance for HD patients [59, 60].

The Htt protein is a large protein consisting of 3,144 amino acids, with the polyQ

stretch located at the very N-terminal region (Htt exon1). Normal (non-mutated) Htt

has a polyQ stretch length ranging from 5 to 35, while mutated Htt in HD patients has

a polyQ length expanded to over 35 repeats. The length of the polyQ is highly cor-

related with the age of onset and disease severity, with those having a polyQ length

of 36 to 39 repeats having a later onset compared to those with 40 or more polyQ

repeats [61, 62]. Numerous studies have demonstrated the cytotoxicity of mutated

Htt in both its monomer and aggregate forms [63–66]. These studies suggest that

mutated Htt exon1 causes neuronal toxicity through the formation of amyloid fib-

rils within neurons [67] or from monomers and oligomers interfering with cellular

proteins and causing their malfunction [68].

Htt protein takes a role in many biological functions and widely interacts with various

interaction partners, thus, the exact function of this protein is still unknown. Up to to-

day, the crystallographic structure information at an atomistic resolution of the entire

Htt is inaccessible. As IDP, the monomer state of Htt exon1 is a mostly random coil
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Figure 1.6.: (A) Htt protein is encoded by Htt gene located on chromosome 4. The Htt
gene contains repeats of the CAG codon that encoded the glutamine (Q)
amino acids. If the CAG repeats expand to 36 or more the Htt protein
becomes pathogenic. (B) Htt exon 1 amino acid sequences. The Nt17
region is highlighted in blue, polyQ in red, and PRD in violet.

conformation [69–72]. Current experiments and simulation studies revealed that Htt

exon1 has polymorphic structures and can be found in multiple conformations [73,

74]. Nevertheless, mutated Htt exon1 proteins transform into β -sheet-rich structures

formed by the polyQ stretches, which assemble into amyloid fibril structures similar

to Aβ fibrils found in AD [75–77]. Outside the polyQ stretch of Htt exon1, there are

two flanking regions of interest: the N-terminal region consisting of 17 amino acids

(Nt17) that precedes the polyQ stretch and the proline-rich domain (PRD) that follow

the polyQ stretch (Figure 1.6B). The polyQ flanking domains have different struc-

tures and play distinct roles in the aggregation mechanism [78–81]. Interestingly,

Nt17 forms amphipathic α-helices [82–84] that modulate the aggregation mechanism

through helix-helix interactions [85–89]. On the other hand, the PRD has a rela-
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tively rigid structure promoted by PPII helix formation, which suppresses the β -sheet

formation and thereby decreases the aggregation rate [90–94].

Unveiling the aggregation mechanism and discovering the structures of early-stage

Htt-exon1 oligomers is crucial in comprehending the pathological effects of Htt-

exon1. However, studying these proteins is challenging due to their high hetero-

geneity and limitations in computational resources. Currently, there are conflicting

computational observations due to the usage of different force fields, water models,

and protein models [72], leading to a need for extensive atomistic simulations of

full-length Htt-exon1 using an appropriate force field designed for IDPs.

1.5. Aims

A vast number of researchers are conducting scientific investigations on amyloid pro-

teins. These studies are crucial in filling our current knowledge gaps about how

amyloid diseases develop and potentially finding new treatments. Oligomers, which

are known to be the primary cause of neurotoxicity in the aggregation process, are

highly dynamic and exhibit various sizes and heterogeneous structures of aggregates.

Experimental techniques have limitations in fully resolving the structures, thermody-

namics, and kinetics of these oligomers. Moreover, previous computational studies

that used older force fields not suitable for IDPs have resulted in inaccurate conforma-

tional ensembles of IDPs. Recent advancements in force fields have led in particular

to the all-atom Charmm36m force field [35] which has been shown to accurately

predict the conformational ensemble of IDPs [36, 37] and amyloid aggregates [38],

make it essential to use Charmm36m to obtain accurate conformational ensembles

of Aβ aggregates. We aim to investigate the conformational ensembles of small Aβ

oligomers and to extract thermodynamics and kinetics information using network

models like transition networks and Markov state models. In this thesis, we focus

on studying the aggregation of Aβ42 into small oligomers by conducting multiple MD

simulations with an accumulated simulation time of 0.3 ms, enabling us to explore

the oligomers’ conformational ensembles. This understanding of Aβ42 aggregation at

the atomic level can provides valuable insights into disease-related oligomers. Fur-

thermore, our aim is to understand how the structures, dynamics and aggregation of

the Htt-exon 1 proteins are influenced by the polyQ expansions and their adjacent
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domains.

The thesis consists of three chapters: In chapter 2, we introduce the research methods

and computational approaches used in this thesis. In chapter 3, we extensively dis-

cuss the Aβ peptide aggregation by simulating the aggregation of various Aβ species

into small oligomers (dimers, tetramers, and hexamers) which is supported by ex-

perimental results done by our collaboration partners from Stockholm University. We

further study the effects of the neuronal membrane on Aβ dimerization. In chapter 4,

we investigate the folding and the dimerization of Htt-exon1 proteins by conducting

MD simulation of Htt-exon1 monomer and dimer with normal polyQ region for the

non-pathogenic protein and expanded polyQ region for the pathogenic one. The the-

sis finish by drawing overall conclusion and providing an outlook on future research

that could emerge from this work.
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Chapter

2.
Methods

The methods chapter introduces the computational approaches and the models used

to describe the mechanism of the process under investigation. It is divided into three

parts: First, a general overview of molecular dynamics simulation principles and some

practical aspects of the method and algorithms are discussed. Afterward, we intro-

duce the theoretical framework for constructing Markov state models for biomolec-

ular systems, as well as some related techniques as dimensional reduction methods

such as time-lagged independent component analysis, and K-means clustering. Lastly,

the theoretical background of transition networks for structural characterization and

aggregations of IDPs is given. In addition, the descriptor functions and the program

for the construction of the transition networks are also presented.

2.1. Molecular Dynamics

Molecular dynamics (MD) simulations are essential tools aimed to characterize and

predict the macroscopic properties of molecular systems at the atomic level [95, 96].

In recent years, with the availability of more powerful and faster computers, ad-

vanced algorithms, and software, MD simulations are increasingly used to explore

complex biological processes. As well as providing information about conformations

and dynamics of biological processes, MD simulation can also provide thermody-

namic and kinetic data. This approach is widely applied to different applications in-
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cluding: predict protein structures and dynamics [97], elucidating the protein folding

problem [98], protein complexes interactions [99], ligand docking [100], membrane-

embedded proteins [101], etc. Computer simulations can be considered powerful

complementary tools to experimental methods due to their capability to provide high

spatial (down to single atoms) and high temporal (femtoseconds) resolutions as well

as the probe of the conformational energy landscape, hence, it may be used to obtain

insights into mechanisms and processes that are difficult to capture by the experi-

ments in the laboratory. Consequently, simulations can be used as a link between

theoretical modeling and experimental results [102].

Molecular dynamics (MD) simulations use classical molecular mechanics (MM) to

model molecular systems and predict their behavior [103, 104]. In a molecular

model, atoms are represented as point charges with soft repulsive potentials, and

their dynamics are determined by Newtonian mechanics [105]. The forces between

particles in the model consist of bonded and nonbonded interactions, collectively

referred to as the forcefield. Bonded interactions are between atoms that are chem-

ically bonded, such as covalent bonds, while nonbonded interactions are between

atoms that are not chemically bonded. The forcefield is typically described by sim-

ple mathematical formulas, including Hooke’s law, the Lennard-Jones potential, and

the Coulomb potential, which enable Newton’s equations of motion to be numeri-

cally solved. Through these simulations, we can evaluate structural fluctuations over

time, which provide insights into molecular behavior and the conformational energy

landscape.

2.1.1. Molecular Dynamics Theory

Molecular dynamics simulations describe the motions of molecular systems by solving

Newton’s 2nd law of motions for N-particle system. The net force Fi acting on the

particle i with mass mi and acceleration ai within the system is given as:

Fi = miai = mi

i̸= j

∑
j

Fi j

m j
(2.1)

where Fi j is the force of particle j acting on particle i. Alternatively, the force Fi can
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be derived from the gradient of the system’s potential energy function U(q) as:

Fi(q) =−∂U(qi)

∂qi
(2.2)

Here, q = (q1,q2, . . . ,qN) is the complete set of 3N coordinates. Using equations 2.1

and 2.2, the change of positions and velocities as a function of time can be related to

the gradient of the potential energy function:

−∂U(qi)

∂qi
= mi

d2qi
d2t

(2.3)

Equation 2.3 represents the fundamental relation of MD simulations, the solution of

this equation required defining the initial configuration of positions and velocities of

the system particles at time t, then determining the new positions and velocities at

time t+∆t. The repetition of this process generates a successive sequence over time of

the position and velocity of the system particles called a trajectory (Figure 2.1). The

initial structure of the biomolecular systems is commonly determined through exper-

imental methods such as NMR spectroscopy, electron microscopy and X-ray crystal-

lography [106]. Thus, the computational simulation can be applied to investigate the

dynamics of the biomolecular system once it is structure is known.

2.1.2. Force Fields

In computational simulations of biomolecules, force fields (FFs) are used to estimate

the potential energy surface. These FFs can be classified into two categories: atom-

istic or coarse-grained, depending on how the atoms in the system are modeled [107].

Atomistic force fields use classical mechanics at an atomic level and represent the

molecular system as a ball-and-stick model. The potential energy function is made

up of mathematical formulas that describe the bonded and nonbonded interactions

and their associated constant parameters. These parameters are primarily modeled

based on experimental data [108] or ab initio quantum calculations [109]. Bonded

interactions describe the energetic contributions of covalent bond motions, bond an-

gles, and dihedral torsion angles. Nonbonded interactions include Lennard-Jones and
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Figure 2.1.: An overview of the basic steps in MD simulation.

electrostatic interactions (Figure 2.2). Here, we provide the potential energy function

U(q) applied by several CHARMM FFs:

U(q) = ∑
bonds

kb(b−b0)
2 + ∑

angles
kθ (θ −θ0)

2

+ ∑
dihedrals

Vϕ(1+ cos(nϕ −δ ))+ ∑
impropers

kω(ω −ω0)
2

+ ∑
i, j(LJ)

ε
min
i j

[(
Rmin,i j

ri j

)12

−2
(

Rmin,i j

ri j

)6
]
+ ∑

i, j(Coul.)

qiq j

4πε0ri j

+ ∑
Urey−Bradly

kUB(s− s0)
2 + ∑

CAMP
UCAMP(φ ,ψ)

(2.4)

The potential energy function describes the energetic contributions of intramolecular

motions, including bond oscillation around equilibrium bond length b0 with spring

constant kb, angle oscillation about the equilibrium angle θ0 with force constant kθ ,

torsions around two sequentially covalent bonds, which can be defined using the di-

hedral angle ϕ, periodicity n, phase shift δ , and energy barrier Vϕ , as well as improper

torsion (out-of-plane bending) with the equilibrium angle at ω0 and force constant
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kω . The intermolecular interactions contribute energy through both Lennard-Jones

(LJ) and Coulombic interactions between two non-bonded particles i and j. The LJ

potential, a 12−6 potential, consists of two terms: The repulsive term 1/r12 approx-

imates the strong repulsion at short distances between interacting particles caused

by overlapping electron orbitals, and the attractive term 1/r6 accounts for the attrac-

tion forces induced by London dispersion forces, which are also referred to as van der

Waals (vdW) interactions. The distance separating a pair of interacting particles i and

j is denoted by ri j, the potential well-depth is represented by εi j, as well as, Rmin,i j

corresponds to the distance where the LJ potential between two interacting particles

reaches its minimum value. This distance is associated with the van der Waals radius

of particles i and j. The Coulomb potential approximates the electrostatic interac-

tions between atoms i and j, where each atom has a partial atomic charge qi and

q j, respectively, and are separated by distance ri j. The permittivity of vacuum is rep-

resented by ε0. The bonded and nonbonded terms described above are common to

all atomistic biomolecular force fields, such as CHARMM [110], AMBER [111], GRO-

MOS [112], and OPLS-AA [113]. However, different parameterization and constraint

methods may result in additional terms.

The potential energy of CHARMM force fields includes two correction terms to im-

prove its accuracy: (i) The Urey-Bradley (UB) term was added to refine the accuracy

of angle bending modeling due to the coupling between the bond length and the

bond angle, it is estimated by harmonic function describing oscillation around equi-

librium distance s0 with force constant kUB, where s represents the distance between

the first and third atoms that determine the bond angle. This term was added to

improve the consent of the vibrational spectra, thus the term didn’t add to most

force fields. (ii) The second correction term the CMAP potential was developed to

refine the sampling of the protein backbone conformations. This correction term is

a two-dimensional grid-based energy correction that considers the correlation effects

between backbone dihedral angles φ and ψ. The CMAP potential is calculated us-

ing quantum mechanics calculations and further optimized using experimental data

[114–116]. Although CMAP correction was initially implemented to CHARMM22

FF, it has since been applied in other force fields, such as AMBER12SB [117], AM-

BER19SB [118] and AMBER99IDPs [119] to improve the protein ensemble modeling,

particularly for IDPs.

The potential energy in equation 2.4 depends on the positions of all particles (3N) in
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Figure 2.2.: A schematic representation of the components of all-atom force fields
used in molecular dynamics simulations. The interactions among the
atoms within the system can be categorized into two types: bonded and
nonbonded interactions. The harmonic potentials are utilized to charac-
terize the oscillation of bonds and bond-angle bending and the torsion
around bonds is modeled by periodic functions. The non-bonded inter-
actions, described by Coulomb and Lennard-Jones potentials, consider
interactions between atoms that separated by a minimum of three bonds
or between atoms belonging to different molecules. Reprinted with per-
mission (https://en.wikipedia.org/wiki/Force field (chemistry)).

the system, leading to certain complexity for systems containing many particles. This

complexity imposes solving the equations of motion by numerical methods, which is

not possible by using the analytical solution. The integration algorithm used in this

work will be introduced later in Section 2.1.4.

2.1.3. Water Models

Given the central role of water in biological systems, there has been of significant

interest in developing high-quality interaction potentials on the molecular scale to

simulate its properties. Therefore, many water models have emerged and improved

over the past decades [120]. The water surrounding a protein can be modeled uti-
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lizing explicit water models, such as TIP3P, TIP4P, TIP5P [121–123] and Berendsen’s

SPC/E models [124], or using an implicit solvent model [125]. In the case of IDPs,

explicit modeling of the water molecules generally produces better outcomes.

The simplest and most commonly used atomistic water models are rigid, fixed-charge,

and non-polarizable models [121, 124]. The TIP3P water model is one of the popular

models due to it is computational efficiency as well as it is simplicity making it con-

venient for atomistic simulations in most cases [126]. TIP3P represents a rigid, 3-site

water molecule whose three atoms are charged and assigned Lennard-Jones parame-

ters. The model was reparameterized by Jorgensen with 3 site models of transferable

intermolecular potential (TIP) functions [121, 127]. Lifson et al. describe the inter-

actions between the sites of the water molecules by 12-6-1 functions which consist

of the Lennard-Jones potentials of the short-range interactions between the oxygen

atoms plus Coulomb potentials for long-range interactions between all intermolec-

ular pairs of charges, respectively [128]. The overall TIP3P energy is the sum of

dimerization energy for water molecules m and n:

ET IP3P = ∑Emn = ∑

[
A

R12
oo

− C
R6

oo
+

1
4πε0

on m

∑
i

on n

∑
j

qiq j

ri j

]
(2.5)

where i and j represent the 3 sites of water atoms, A and C are the interaction pa-

rameters, and roo is the distance between two oxygens of the molecules m and n.

2.1.4. Integration Algorithm: The Leap-Frog Algorithm

Several numerical algorithms used to integrate the equations of motion 2.2, include

the leap-frog algorithm [129, 130], Verlet algorithm [131, 132], and velocity Verlet

algorithm [133, 134]. These algorithms use a Taylor series expansion to estimate

the positions and velocities of the particles at each time step, which is defined as a

discrete interval of simulation time with a fixed duration ∆t [135, 136]. To simulate

the behavior of particles over long periods of time, numerical algorithms must be

able to maintain energy and momentum conservation while accurately resolving the

fastest motions of the system
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The leap-frog algorithm is a popular choice for MD simulations due to its time-

reversibility and computational efficiency, making it well-suited for simulating com-

plex systems with large numbers of particles. This integrator used a second-order

Taylor expansion in which the positions and velocities are not calculated at the same

time points, but at alternating time points (Figure 2.3) where the positions are calcu-

lated at time t and velocities at time t + 1
2∆t, as in the following equations:

vi(t +
1
2

∆t) = vi(t −
1
2

∆t)+
1
2

ai(t)∆t +O(∆t)2 (2.6)

qi(t +∆t) = qi(t)+vi(t +
1
2
)∆t +O(∆t)2 (2.7)

Figure 2.3.: Schematic representation illustrates the workflow of the leap-frog algo-
rithm.

The leap-frog integrator has an advantage in that it explicitly incorporates the veloc-

ities in the integration scheme, enabling the system to be coupled to a thermal bath.

The velocity at time t can be approximated as:

vi(t) =
1
2

[
vi(t −

1
2

∆t)+vi(t +
1
2

∆t)
]

(2.8)

Thus, the evolution of the positions and velocities can be started by assigning the

initial positions and velocities of all the system particles. The initial velocities v(t =

0) = v0 of the system can be drawn from the Maxwell-Boltzmann distribution at the

target temperature T :
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ρ(vi) =

(
mi

2πkBT

) 1
2

exp
(
− miv2

i
2kBT

)
(2.9)

where ρ(vi) is the probability distribution of velocities for particle i, and kB is the

Boltzmann constant. In Eq. 2.9 the velocities are randomly assigned, therefore the

initial thermodynamic state of the system could be far from equilibrium. As a result,

the velocities required further equilibration, and to achieve this, the temperature is

gradually increased until thermal equilibrium is reached at the desired temperature.

Next, the rescaled velocities and positions are calculated, and so on until the desired

simulation time has been achieved. Here, the estimated errors in the simulation

are a result of the numerical approximation used in the integration scheme, which

scales with the time step ∆t. the estimated errors of the positions and velocities of

the leap-frog integrator are on the order of ∆t2. A higher-order integrator, such as

the velocity Verlet algorithm, provides a more accurate numerical approximation by

using higher-order derivatives of the particle positions and velocities. However, this

comes at the cost of increased computational complexity and may not be necessary

for all simulations.

2.1.5. Simulation Ensembles

Early MD simulations were mostly conducted on thermally isolated systems, gen-

erating microcanonical ensembles (NV E) [137]. In such ensembles, the system’s

volume V , number of atoms N, and energy E remain constant in the equilibrium

thermodynamic state. However, laboratory experiments are usually conducted under

constant temperature or pressure, making it desirable to simulate the same experi-

mental conditions. Therefore, simulations in canonical ensembles (NV T ) at constant

temperature and volume [138, 139] or isobaric-isothermal ensembles (NPT ) at con-

stant pressure and temperature [140, 141] ensembles are commonly used to sample

configurations.

In the microcanonical ensemble, the total energy is conserved during the simula-

tion. Therefore, fluctuations in temperature of the system result from the exchange

of kinetic energy and potential energy. The equipartition theorem can couple ther-

mal energy to kinetic energy, and the atomic velocities can be used to calculate the
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instantaneous temperature.

1
2

NkBT =
1
2

miv2
i (2.10)

To maintain a constant temperature during simulations, atomic velocities must be

rescaled. This is accomplished by using a thermostat. Similarly, to maintain constant

pressure, the system density must be constant, which requires adjusting the simula-

tion box volume by modifying its dimensions. To achieve this, a barostat is applied.

There are several algorithms developed to control the temperature and pressure dur-

ing MD simulations, such as the extended-ensemble Nosé-Hoover thermostat [142–

144], Berendsen thermostat [142, 145, 146], and the velocity rescaling thermostat

[147, 148] for simulations at constant temperature. In the case of the NPT ensemble,

the thermostat is coupled with a barostat such as Berendsen algorithm [149], or the

extended-ensemble Parrinello-Rahman barostat [150]. In most cases, the Parrinello-

Rahman barostat is employed to preserve the pressure during the simulations and

generate the NPT ensemble. In the following sections, the Nosé-Hoover thermostat

and Parrinello-Rahman barostat, which are commonly applied to preserve constant

temperature and pressure in MD simulations, will be introduced in more detail.

Nosé-Hoover Thermostat

The Nosé-Hoover thermostat was first introduced by Nosé [151] and improved by

Hoover [152]. In this approach, an additional degree of freedom ζ is added as

an external heat path, which allows for maintaining a constant temperature dur-

ing simulations. The Hamiltonian of the system is modified by adding a potential

term 3NkBT̄ lnζ to produce the dynamic equations of ζ , thus ensuring that canonical

ensemble averages are retrieved. The resulting Hamiltonian is:

H = K +U +
p2

ζ

2Q
+3NkBT̄ lnζ (2.11)

where K is the kinetic energy, pζ is the momentum of the heat path parameter, T̄ is

the target temperature and Q is the mass parameter of the reservoir that defines the
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coupling strength. The modified Newton’s equations of motion are given as follows:

d2qi
dt2 =

Fi

mi
−

pζ

Q
dqi
dt

(2.12)

The equation of motion of the heat bath ζ given by:

d pζ

dt
= (T − T̄ ) (2.13)

Here, T is the current system temperature.

Parrinello-Rahman Barostat

In the Parrinello-Rahman barostat, an additional degree of freedom is introduced to

modify the Hamiltonian of the system. To maintain constant pressure and density

in a simulation, the volume of the simulation box must be adjusted by modifying its

dimensions using a barostat. This approach generates the NPT ensemble and the

modified Hamiltonian as follows:

H = K +U −∑
i

PiiV +
1
2

W∑
i, j

(
dbi j

dt

)2

(2.14)

Here, W is the piston mass that determines the strength of the coupling and the box

deformation, Pii represents the diagonal matrix of the pressure P, and bi j is the box

vectors. The equation of motion of the box vectors is

d2b
dt2 =

V

Wb
′ (P− P̄) (2.15)

where b represent the box matrix and P̄ are the target pressures.
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2.1.6. Periodic Boundary Conditions

Figure 2.4.: A schematic of a two-dimensional periodic system. The original box is
shown with light-red background whereas the image boxes have with a
white background.

The periodic boundary conditions (PBCs) are used to enable us to simulate (artificial)

large-volume systems and avoid producing artifacts at the simulation boundaries due

to the long-range interactions. The PBCs in MD simulations are applied by replicat-

ing the system periodically in all dictations, creating an infinite lattice (Figure 2.4).

The utilized approaches enables the simulation of a large volume system by means

of a finite number of particles [153]. To ensure that the simulated system’s particles

interact with their closest neighboring particles, regardless of whether they are in

the same box or periodic images, the minimum image convention is applied [154].

During the simulation, particles within the periodic images move in a manner iden-

tical to that of the particles within the original box. Thus, if a particle exits a box,

its image enters the box from the opposite side through a corresponding face. These

image boxes have the same volume and shape and contain the same number of par-

ticles as the original box. Thus, the coordinates are only saved for the particles in

the original box. It is essential to note that imposing PBCs resolve artifacts originat-

ing from short-range non-bonded interactions such as the Lennard-Jones forces by

truncating the intermolecular forces using a cut-off radius, in this case only images

adjoining the original are considered. But, it fails for long-range electrostatic inter-

actions which extend beyond the boundary of a box; truncating these interactions

using a cut-off radius produces nonphysical distributions of the particles at the cutoff
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boundary along accompanied by discontinuous forces and energies. Consequently,

lattice sum methods such as Particle Mesh Ewald (PME) [155] are required for the

estimation of electrostatic interactions under PBCs.

An advantage of applying PBC is that it enables us to avoid artificial distributions and

at the same time we could reduce computational costs by reducing the number of

solvent molecules in the simulation box by selecting a suitable box geometry. Nev-

ertheless, the box should be sufficiently large to avoid self interaction of the images.

The simulation box geometry might be chosen as a simple cubic box, as well as an

octahedron or a rhombic dodecahedron since most of the protein systems, adopt an

approximately spherical shape (Figure 2.5).

Figure 2.5.: Typical box types used in MD simulations of biomolecular systems.

2.1.7. Temperature Replica Exchange MD Simulations

While conventional MD simulations are useful for studying biomolecular systems,

they are limited in their ability to explore the free-energy landscape within reasonable

simulation timescales and it usually gets trapped in one of the local energy minima,

particularly for complex biomolecular systems and protein aggregations. Therefore,

many advanced sampling protocols have been improved in the last years to over-

come this difficulty [156, 157], including metadynamics [158], Gaussian accelerated

molecular dynamics [159], and replica exchange molecular dynamics (REMD) [160].

In this context, REMD is presented as a highly efficient advanced sampling technique

utilized for investigating the structure and dynamics of biomolecular systems.

The REMD method was initially introduced by Okamoto et al. to study protein fold-

ing [160]. The method simulates several copies (replicas) of the original system in

parallel, independently at different temperatures, or using different Hamiltonians at

25



2.1. Molecular Dynamics

Figure 2.6.: Illustration of REMD protocol. A number of replicas (MD simulations)
are carried out in parallel at different temperatures. The exchange at-
tempts every few steps of neighboring replicas with transition probability
identified by the Metropolis criterion. Reprinted with Copyright ©2020
Elsevier [162].

the same temperature, to generate a generalized ensemble of the system. In the

REMD protocol as shown in Figure 2.6, an exchange is attempted between neigh-

bored replicas every recurring interval with transition probability given by Metropo-

lis criterion [161]. Through this, REMD is capable to enhance the sampling of the

conformational landscape by facilitating the crossing of the high-energy barriers at

higher temperatures. Another advantage of REMD is that it does not require a prior

selection of collective variables, unlike some other advanced sampling techniques.

However, REMD demands high computational resources due to the increased size of

the system, which requires a high increase in the number of replicas and, therefore,

the number of degrees of freedom

REMD Method. Assume a system of N particles of mass mk (k = 1, . . . ,N), coordinate

vectors q ≡ {q1 . . .qN} and momentum vectors p ≡ {p1 . . .pN}, the Hamiltonian of the

system H(q, p) [156, 163]:

H(q, p) = K(p)+U(q) (2.16)
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where U(q) is the potential energy and K(p) is the kinetic energy:

K(p) =
N

∑
k=1

p2
k

2mk
(2.17)

The probability of a system to be in a specific state x ≡ (q, p) and temperature T can

be determined using the canonical ensemble as:

ρB(x,T ) = exp[−βH(q, p)] (2.18)

The inverse temperature, denoted as β , is defined as β = 1/kBT , where kB is the Boltz-

mann constant. The average ensemble value of the kinetic energy at temperature T

can be determined as:

< K(p)>T=

〈
N

∑
k=1

p2
k

2mk

〉
T

=
3
2

NkBT (2.19)

In REMD, the generalized ensemble comprising of M non-interacting replicas, each in

the canonical ensemble but at different temperatures Tm where m ranges from 1 to M.

This arrangement guarantees that each temperature has one corresponding replica.

In other words, the mapping between replicas and temperatures is one-to-one, where

the replica i (i = 1, . . . ,M) is a permutation of temperature Tm (m = 1, . . . ,M), and

conversely stated:

{
i = i(m)

m = m(i)
(2.20)

Let X = (X [i(1)]
i , . . . ,X [i(M)]

i ) = (X [i]
m(1), . . . ,X

[M]
m(M)

) represent the state of the generalized

ensemble consisting of M sets of substates xi
m ≡ (q[i], p[i])m that are characterized by

specific coordinates q[i] and momentums p[i] in replica i at temperature Tm. Since the

replicas are independent of each other, the probability of state X in the generalized

ensembles is:
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ρREM(X) = exp

{
−

M

∑
i=1

βm(i)H(q[i], p[i])

}

= exp

{
−

M

∑
m=1

βmH(q[i(m)], p[i(m)])

} (2.21)

The summations in the last equation are taken over each replica or temperature. Let’s

now consider swapping a pair of replicas in the generalized ensemble. Assuming

exchange replicas i at temperatures Tn and j at temperatures Tm:

X = (. . . ,x[i]m , . . . ,x
[ j]
n , . . .)→ X ′ = (. . . ,x[ j]

′
m , . . . ,x[i]

′
n , . . .) (2.22)

or in more particular as:

{
x[i]m ≡ (q[i], p[i])m → x[ j]

′
m ≡ (q[ j], p[ j]

′
)m

x[ j]n ≡ (q[ j], p[ j])n → x[i]
′

n ≡ (q[i], p[i]
′
)n

(2.23)

It should be noted that exchanging temperatures Tm and Tn between the two replicas

i and j is equivalent to exchanging the two configurations at the two temperatures.

In the last equation, the momentums should be rescaled by the square root of the two

temperatures ratio:

 p[i]
′ ≡

√
Tn
Tm

p[i]

p[ j]
′ ≡

√
Tm
Tn

p[ j]
(2.24)

Thus, the velocities of all the particles in the replica were rescaled uniformly to satisfy

the desired temperature conditions in Eq. 2.19. The replica exchange transition

probability w(X → X ′) and the backward transition w(X ′ → X) are required to satisfy

the detailed balance conditions as the following:

28



2.2. Markov State Models

ρREM(X)w(X → X ′) = ρREM(X ′)w(X ′ → X) (2.25)

Using Eqs. 2.16, 2.17, 2.21, 2.24 and 2.25, we have:

w(X → X ′)
w(X ′ → X)

=
ρREM(X ′)
ρREM(X)

= exp(−∆) (2.26)

Since all the kinetic energy terms in the last equation are canceled out, ∆ ≡ [βn −
βm](U(q[i])−U(q[ j])). Thus, the transition probability of replica exchange w(X → X ′)

is determined via the Metropolis criterion [161]:

w(X ′ → X)≡ w(x[i]m | x[ j]n ) = min
(

1,
ρREM(X ′)
ρREM(X)

)
= min(1,exp(−∆)) (2.27)

According to Eq.2.27, the transition acceptance probability depends on the overlap

between the potential energy distributions of the two neighboring replicas. This cri-

terion allows for efficient exploration of the phase space and ensures that the samples

generated are representative of the desired distribution.

2.2. Markov State Models

Due to the increasing complexity of simulated biomolecular systems and the need for

thermodynamic and kinetic information, common MD analysis is insufficient for in-

terpreting MD simulation data. To address these challenges, several discrete kinetic

models, including master equation models or Markov state models (MSMs), have

been successfully employed. These approaches are based on the mathematical theory

of conformational dynamics introduced by Schütte et al. [164]. Markov state mod-

els, in particular, can map free energy minima and transitions (memoryless jumps)

between them in a network that underlies the essential structures and dynamics of

biological processes, making it easily understandable to humans. Markovian models

assume that states transition only based on their current state, not on their previous

state [165]. MSMs have the distinct advantage of being able to predict long-timescale
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processes by utilizing several shorter trajectories [165]. This is a significant benefit

as it allows to model biological processes that occur over extended timescales.

The following sections outline a general workflow for estimating MSMs for molecular

systems, time-lagged independent component analysis as a dimension reduction tech-

nique, the k-means clustering algorithm, and the theoretical background for estimat-

ing Markov state models and multi-ensemble Markov models is briefly discussed.

2.2.1. An Overview of Constructing MSMs

Constructing MSMs involves several steps, including defining the relevant features,

dimensionality reduction, microstate identification, transition matrix construction,

and model validation. Here, we present a general workflow for estimating MSMs

from MD simulation data. The initial step in estimating MSMs is identifying a set of

coordinates, known as features, that accurately reflect the process under investiga-

tion. For example, intermolecular distance is a useful feature for analyzing protein

aggregation, while backbone torsion angles can be used to describe protein folding.

However, the features selected can be very high dimensional, making discretization

difficult and potentially leading to poor results [166]. To address this issue, linear

transformation methods such as time-lagged independent component analysis can be

utilized for dimension reduction. This method identifies a set of slow reaction coor-

dinates with maximum autocorrelation at a specific lag time, which is followed by

discretizing the conformational landscape into a defined number of microstates using

clustering algorithms like k-means clustering. From these microstates, MSMs can be

estimated by computing the transition probability matrix at a specific lag time τ. The

optimal lag time can be determined by testing different models at various lag times

to ensure convergence of the implied timescales. Finally, the Chapman-Kolmogorov

test can be used to validate the Markovianity of the model. Additionally, coarse-

grained Markov models or Hidden Markov state models (HMM) with fewer states

can be generated for a simpler description of the thermodynamics and kinetics of the

investigated system.

There are several software packages that can be used to generate MSMs from MD

trajectories of molecular systems, such as PyEMMA [167], MSMBuilder [168], and

Deeptime [169]. These packages offer a range of methods, such as dimension reduc-
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tion techniques, clustering algorithms, Markov modeling, and model validation, to

aid in the construction and analysis of MSMs.

2.2.2. Dimension Reduction

Generating extensive MD simulation data for complex biomolecular systems has be-

come increasingly feasible. However, interpreting the high-dimensional time series

output from these simulations can be difficult. While a larger number of dimensions

provides better insight into biomolecular dynamics, not all dimensions are essential

for the underlying slow dynamic events in the data. Therefore, it is possible to reduce

the dimensionality drastically while keeping a high number of essential features.

For Markov models, it is desirable to use a linear transformation that maximizes

the timescale separation of the components rather than maximizing the variance of

the components, as in principal component analysis (PCA) [170–172]. The latter

is not necessarily associated with slow kinetics. Therefore, the optimal method for

identifying slow collective variables (CVs) is time-lagged independent component

analysis (TICA). This method is widely used due to its ability to identify a set of

slow reaction coordinates with maximum autocorrelation at a specific lag time [173,

174].

Time-Lagged Independent Component Analysis

TICA is a linear transformation method that was proposed by Schuster et al. [175]

for identifying collective variables with maximum autocorrelation at a given lag time.

The goal is to define a transformation matrix U consisting of a set of basis vectors

U = [u1, . . . ,um], where ui is a collective coordinate vector with m components. Let

x(t) = [x1, . . . ,xd]∈Rd be the future vectors with d components. The first step of TICA

is to define the mean-free future vectors by subtracting the means x̄ from every feature

vector xi(t), where the mean-free future vectors x̃i(t) obtain by x̃i(t) = xi(t)− x̄i. Then,

the instantaneous covariance matrix C(0) and the time-lagged covariance matrix C(τ)

are calculated:
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ci j(0) = ⟨x̃i(t)x̃ j(t)⟩t (2.28)

ci j(τ) = ⟨x̃i(t)x̃ j(t + τ)⟩t (2.29)

The independent components ui are obtained after solving the generalized eigenvalue

problem:

C(τ)ui = C(0)λi(τ)ui (2.30)

where λi(τ) are the eigenvalues which are related to relaxation timescales as fol-

lows:

ti(τ) =− τ

ln |λi(τ)|
(2.31)

Next, the new set of coordinates y(t) are give by the projection of the future vector

x(t) using the transformation matrix U:

y(t) = UT x(t) (2.32)

By selecting a subspace of the transformation matrix U consisting of m dominant

independent components, the dimensions can be reduced from d to m. It has been

demonstrated that the slowest TICA component provides optimal approximations to

the first eigenfunction and their associated relaxation timescales underlying Markov

models [173].

2.2.3. K-means Clustering Algorithm

MSMs require a discrete configuration space, so the input data must be discretized.

Clustering algorithms are typically used to achieve this, which group data points into

clusters. Clustering aims to maintain high similarity within clusters and maximum
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difference between clusters. The K-means algorithm is a popular method for clus-

tering, developed by Lloyd [176]. It partitions data points into predefined clusters

iteratively, using centroids as cluster centers. The centroid is usually the mean value

of data points within a cluster, minimizing the squared Euclidean distance between

all points and the cluster center [177].

The K-means algorithm involves the following steps: (1) randomly select K data

points as initial cluster centroids; (2) assign data points to the nearest cluster cen-

troid; (3) calculate new centroids for each cluster; (4) keep iterating steps 2 and 3

until the optimal centroids are defined, where data points are no longer changing

clusters. However, different initial centroids can lead to different final clusters since

the K-means algorithm may not converge to a global minimum but is stuck in a local

minimum. To reach optimal convergence, it is recommended to use the K-means++

algorithm, which initializes the algorithm from different initial centroids [178].

2.2.4. Estimation of Markov State Models

A Markov State Model (MSM) approximates the kinetics of a molecular system by

a conditional transition probability matrix that describes transitions among discrete

states. Let n be the number of discrete states, denoted as s1(t), . . . ,sn(t). The transition

probability between state si at time t and state s j after a lag time τ is given by:

pi j(τ) = P(s j(t + τ)|si(t)) (2.33)

An essential property of an MSM is its ability to predict longer time-scale kinetics

using the power of the transition matrix:

P(s j(t + kτ)|si(t)) =
[
Pk(τ)

]
i j

(2.34)

In case of an infinitely long trajectory, the transition matrix P(τ) can be obtained in

terms of the count matrix C(τ). Each element ci j represents the number of transitions

from state si to state s j:
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P(τ) =
ci j

∑ j ci j
(2.35)

Here, ∑ j ci j is the normalization of the row of the count matrix, representing the num-

ber of times the trajectory visited state si. However, for limited-length trajectories,

the transition matrix is not unique. Different transition matrices can be generated

by different count matrices. To construct a certain transition matrix, the product of

all these transition probabilities can be taken into account by defining the maximum

likelihood transition matrix [179]:

P(C(τ)|P(τ)) =
n

∏
i, j=1

pci j(τ)
i j (2.36)

and the transition matrix according to the posterior probability is given by:

P(P(τ)|C(τ)) = P(P)
n

∏
i, j=1

pci j(τ)
i j (2.37)

For equilibrium molecular dynamics, an MSM can predict a unique stationary distri-

bution π in terms of the transition matrix by:

π
T = π

T Pk(τ) (2.38)

which also fulfills the detailed balance (reversibility condition):

πi pi j = π j p ji (2.39)

Further useful information is obtained by determining the eigenvectors ri of transition

matrix P(τ) and eigenvalues λi which can provide valuable insights into the dynamics

of the system:
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P(τ)ri = riλi (2.40)

Each eigenvector ri of the transition matrix can be associated with a dynamic pro-

cess of the system, while its corresponding eigenvalue λi provides a metric for the

relaxation time of that process. The maximum eigenvalue, λ0 = 1, corresponds to the

stationary distribution π of the system, towards which the system tends to shift in

the long-time limit. All other eigenvalues λi̸=0 correspond to a finite timescale, and

higher eigenvalues represent slower processes while lower values represent faster

ones. These implied timescales ti are related to eigenvalues λi as:

ti(τ) =− τ

ln |λi(τ)|
(2.41)

As λi → 1, ti → ∞, which provides the basis for predicting the stationary distribution

π as in Eq. 2.38 from Eq. 2.40.

Despite the advantage of MSMs in estimating the kinetic relations between microstates

using the transition matrix, the resulting model might have systematic errors that de-

pend on the state-space discretization and the lag time [180, 181]. To select an

appropriate lag time, it should be sufficiently long to guarantee that the system is

memoryless but short enough to describe dynamic processes that occur on time scales

exceeding the lag time. In other words, the implied timescale for the chosen lag time

should be approximately constant within the statistical error. Therefore, the model

should be able to predict results at longer timescales (kτ) within statistical error es-

timated at lag time τ. To validate the kinetic model and determine whether it is

Markovian, one can use the Chapman-Kolmogorov test [179]:

P(kτ)≈ Pk(τ) (2.42)

The Chapman-Kolmogorov test examines whether the transition matrix P(τ), which is

calculated using a lag time τ, matches the transition matrix P(kτ) calculated at longer

lag times kτ within statistical errors.
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2.2.5. Multiensembles Markov Models

Despite the potential of Markov models to reduce the MD sampling problem through

adaptive sampling techniques, which involve running multiple short trajectories rather

than one long trajectory, sampling rare events and satisfying the detailed balance re-

quirements remains challenging due to the limitations of unbiased MD simulations.

The complexity of larger protein complexes also exacerbates the problem, as com-

puter resources are often insufficient to model these processes. To accelerate rare-

event sampling, various enhanced sampling methods could be used, including meta-

dynamics [158], parallel tempering [182, 183], umbrella sampling (US) [184, 185],

and REMD [160]. These methods use bias potentials or higher temperatures at dif-

ferent ensembles to facilitate sampling. Multiensemble Markov models (MEMMs),

developed by Wu et al., integrate the advantages of enhanced sampling methods and

MSMs [186]. Wu et al. improved the transition-based reweighted analysis method

(TRAM) [187–189] as estimator for MEMM. TRAM has the advantage of extracting

thermodynamics and kinetics from high-dimensional MD data gathered from multi-

ple ensembles. In the following, we briefly present the theoretical background of the

TRAM.

TRAM Suppose simulations contain K different ensembles with a dimensionless

bias potential has a unit of thermal energy β−1 = kBT . The bias potential of the kth

ensemble bk(x) is modeled depending on the sampling method being used as detailed

in the following examples:

For umbrella sampling:

• The simulations are performed with different potential energy functions, where

the potential energy of the kth simulation is the sum of potential energy function

U(x) and the kth umbrella potential Bk(x).

• The bias potential is given by bk(x) = βBk(x), where β−1 = kBT is the thermal

energy unit.

For replica exchange:
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• The simulations are carried out at different temperatures T1, . . . ,Tk.

• The bias potential bk(x) of the kth temperature is related to the reference en-

semble as bk(x) =U(x)(β k −β ).

The local equilibrium distribution µk
i (x) for the kth ensemble and the state si is given

by:

µ
k
i (x) = e f k

i − f k(x)
µ

k(x) for x ∈ si (2.43)

Here, f k
i is the local free energy of state si in the kth ensemble, f k is the relative

free energy needed to normalize the equilibrium distribution µk(x), and µk(x) =

e f k−bk(x)µ(x) is the equilibrium distribution of the kth ensemble, where bk(x) is the

bias potential for the kth ensemble. The simulations are assumed to sample from

these local equilibrium distributions, but they may not be in global equilibrium dis-

tributions, which is a critical aspect of the MSM framework.

In the TRAM estimator, the local equilibrium likelihood (LEQ) and the MSMs likeli-

hood are combined as follows:

LT RAM = ∏
k

Lk
MSM.Lk

LEQ

= ∏
k,i, j

(pk
i j)

ck
i j(τ) ∏

x∈Xk
i

µ(x)e f k
i −bk(x) (2.44)

Here, Xk
i is the set of all configurations sampled in the kth ensemble and in the state

si. The count matrix ck
i j(τ) represents the number of times the transition from state

i to state j is observed in the kth ensemble after a lag time τ. The TRAM likelihood

represents the probability that a set of trajectories, sampled from different ensembles,

visit a particular sequence of discrete states (Lk
MSM) and sample local configurations

within these discrete states (Lk
LEQ). In the last equations, the transition probabilities

pk
i j, the point densities µ(x), and local free energies f k

i are unknown. The optimal

solution of the TRAM problem can be obtained by maximizing the TRAM likelihood
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under the detailed balance and normalization constraints:

e− f k
i pk

i j = e− f k
j pk

ji for all i, j,k (2.45)

∑
j

pk
i j = 1 for all i,k (2.46)

∑
x∈X

µ(x) = 1 (2.47)

where Eq. 2.45 is the detailed balance equation coupled with the transition probabil-

ities and local equilibrium distributions. However, the detailed balanced constraints

impose difficulties in finding the optimal solution. A fixed-point iteration method can

be used to solve this problem (for more details see [186]).

TRAMMBAR Estimator The TRAM estimator requires simulations that are longer

than the lag time. In REMD simulations, however, the exchange between ensembles

is usually short, which makes it difficult to use TRAM to extract thermodynamics

and kinetics information. Therefore, a new estimator called TRAMMBAR has been

developed. This estimator combines the TRAM method with the multistate Bennett

acceptance ratio (MBAR) to extract information from REMD simulations with unbi-

ased MD simulation data [190–192]. The TRAMMBAR estimator analyzes simulation

data by splitting it into two parts: (i) REMD simulations data is analyzed with the

MBAR estimator, which assumes that the data achieve the equilibrium distributions of

the relevant ensembles. (ii) Unbiased MD simulations data, which is not sufficient to

achieve the equilibrium distributions of the relevant ensembles, is analyzed with the

TRAM estimator. The TRAMMBAR likelihood is obtained as a product of the TRAM

and MBAR likelihoods:

LT RAMMBAR = LT RAM.LMBAR (2.48)

The TRAM likelihood considers the probability of transitions between states and the

equilibrium distribution of each state, while the MBAR likelihood considers the free

energy differences between states [190, 193]:
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LT RAM = ∏
k,i, j

(pk
i j)

ck
i j(τ) ∏

x∈Xk
T RAM

⋂
si

µ(x)e f k
i −bk(x) (2.49)

LMBAR = ∏
k

∏
x∈Xk

MBAR

µ(x)e f k
i −bk(x) (2.50)

The solutions of the TRAMMBAR problem can be obtained under the same constraints

as the TRAM problem. The algorithm for finding the optimal solution of TRAMMBAR

by maximizing the likelihood can be found in [194]. According to the assumption

that the XMBAR achieves the global equilibrium distributions, every state si visited in

the XMBAR must be sampled in a reversible manner. Hence, any irreversible transition

in the unbiased MD simulations implicitly becomes reversible if its end states are

visited in an XMBAR.

2.3. Transition Networks

Declaration Parts of this section are published in Schäffler, M., Khaled, M., Strodel,

B. ATRANET – Automated generation of transition networks for the structural char-

acterization of intrinsically disordered proteins. Methods. Volume 206, Pages 18-26,

ISSN 1046-2023 (2022).

2.3.1. Introduction

The transition networks (TN) approach utilizes geometric clustering, as opposed to

the kinetic clustering involved in Markov state modeling, to identify the essential

features of protein conformational transitions, including protein folding, IDP confor-

mation switching, and protein aggregation [10, 195–199]. The advantage of utilizing

network models in analyzing MD trajectory data lies in their ability to reveal the hid-

den mechanisms of molecular processes that are masked by the vast amount of MD

simulation data. While MSMs can provide insights into biological pathways and their

kinetics, the construction of MSMs from MD data is challenging for large biomolecular

systems due to fulfilling the criteria, such as detailed balance, that require extensive
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MD simulations [200]. In such cases, the TN approach may serve as an alternative to

MSMs for the study of nonequilibrium simulations.

To construct a TN, a set of descriptor functions is selected to characterize the pro-

cess being studied, such as the amount of specific secondary structure elements or

the aggregate size and the type and number of intermolecular contacts in protein

aggregation studies. The descriptors are applied to each frame of the MD trajectory,

mapping it to a set of states and the transitions between these states. This information

can then be used to form a transition matrix and create a visual representation.

2.3.2. Background

In order to construct a TN, one has to define a set of descriptor functions { fi} that

discretize a given MD trajectory. Application of these descriptor functions to each

time point t of the MD trajectory (also denoted as MD frame) generates a state S

which contains the values of the descriptor functions for the molecular conformations

x(t),

S(t) = [ f1(x(t)), f2(x(t)), . . . , fn(x(t))] (2.51)

where n is the number of descriptor functions chosen. The key step in the TN analy-

sis is to select a set of descriptor functions that optimally reflects the structures and

dynamics of the system. Here, a balance between complexity and simplicity has to

be found. While using more descriptors could provide a more precise picture of the

process under study, it may also increase the complexity of the network to the point

that humans no longer understand it intuitively. The balancing between these two

aspects can be achieved by quantifying the quality of descriptor combinations. This

requires the selection of descriptors with high sensitivity and no or only small corre-

lation between them. The sensitivity of a descriptor is defined by how much of the

theoretically possible value range of a descriptor is indeed sampled during the simu-

lations. A descriptor is highly sensitive toward the system if the complete theoretical

value range is present in the data set. The correlation between two descriptors fi and

f j is defined by the correlation coefficient ccorr
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ccorr =
Σt( fi(x(t))− f i)( f j(x(t))− f j)√

Σt( fi(x(t))− f i)
2
√

Σt( f j(x(t))− f j)
2

(2.52)

where f i and f j are arithmetic mean values of the corresponding descriptor values

along the trajectory. If the correlation between two descriptors is high, using both of

them would not add substantial information to a TN yet would increase its complexity.

Therefore, it is recommended to choose only one of the correlated descriptors to

generate the TN.

Descriptor Functions

In the following, we describe a number of descriptor functions that are typically used

to characterize protein structures and aggregates and may thus be used to generate a

TN. All descriptor functions explained are available in ATRANET.

Secondary Structure. One typically wants to know about the formation of α-

helices, β -sheets, or other secondary structure elements during conformational tran-

sitions of a protein. In terms of a TN, this can be quantified by the number of residues

adopting a specific secondary structure, which is calculated by the dictionary of pro-

tein secondary structures (DSSP) method [201, 202].

Backbone Torsion Angles. For short peptides, such the Aβ16−22 fragment of Aβ

it can be advantageous to use the Ramachandran angles ϕ (C−Cα −N−C) and ψ

(N−C−Cα −N) to assign the secondary structure of the peptide instead of applying

DSSP. The angles ϕ and ψ allow identifying extended peptide structures belonging

to the β -sheet basin of the Ramachandran space, which by DSSP would be assigned

to the random coil state. Here, the peptide- and time-averaged Ramachandran plot

is generated first for the MD trajectory under analysis and a k-means clustering is

applied to cluster the (ϕ,ψ) data to a specified number of cluster centers. If Nres is

the number of peptide residues and F is the number of frames in the MD trajectory,

the Nres −1 (ϕ,ψ)-tuples of the peptide are saved in the matrix A ∈ RF×Nres−1:
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A =


(ϕ,ψ)11 (ϕ,ψ)12 . . . (ϕ,ψ)1(Nres−1)

... . . . . . . ...

(ϕ,ψ)F1 (ϕ,ψ)F1 . . . (ϕ,ψ)F(Nres−1)

 (2.53)

This matrix is then being discretized, producing Ac, by assigning each element to its

closest cluster center where whole numbers are used to denote the cluster centers,

e.g., 0 for the β -sheet basin and 1 for the right-handed α-helical region. To assign

an overall structural tendency to the peptide at the different time points t, the matrix

entries along the rows are summed up, producing one number per time frame:

ai = ∑
j
(Ac)i j ≡ a(t) (2.54)

It should be mentioned that the numbers chosen to denote the cluster centers need

consideration. If one only wants to distinguish between β -strands and α-helices, one

can use 0 and 1. Then, low values of ai correspond to extended peptide structures,

while high values indicate that a high amount of the dihedral angles are located in

the α-helical area. If one wants to add random coil or right-handed helices to this

analysis, the number for this new cluster needs to be larger than Nres −1 in order to

avoid overlap with the case ai = Nres−1 where all Nres−1 residues adopt an α-helical

conformation.

Intra- or Interprotein Contacts. Protein structure formation or aggregation are

driven by favorable residue–residue contacts, in particular by hydrophobic contacts.

Such contacts are monitored by the descriptor that counts the number of intra- or in-

terprotein contacts. For instance, in the case of hydrophobic contacts, amino acids A,

F, I, L, M, V, W, and Y are included in the contact calculations. To this end, the min-

imum distances between all possible hydrophobic residue pairings are determined,

and two residues are considered to be in contact with each other if their minimum

distance is within the pre-defined cutoff distance. The readout value is the total num-

ber of the contacts under consideration for each MD frame.
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Salt-bridge Contacts. A special case of contacts are salt bridges that form between

oppositely charged amino acids or protein termini. The descriptor that reports on the

number of salt bridges counts the number of intra- or interpeptide attractive Coulomb

interactions using the distance between the oppositely charged groups, which has to

fall below a defined cutoff distance to be counted as a salt bridge.

End-to-end Distance. This descriptor measures the spatial proximity between the

termini of the protein. For each MD frame, the distance between the N atom of the

first amino-acid residue and the C atom of the last residue of the protein is calculated

and assigned to the bin it falls into. For the binning of the distances, a user-defined

bin width is used. In order to provide a sensible bin width, one should first identify

the minimum and maximum end-to-end distance.

Compactness. The compactness measures how compact or extended a protein or

protein aggregate is. It is defined as the ratio between the lowest and largest mo-

ment of inertia, multiplied by 10 and rounded to the nearest integer. Thereby, the

descriptor’s theoretical value range is between 0 and 10, corresponding to a com-

pletely extended structure (a stick as the extreme case of a prolate spheroid) and a

globular structure (a sphere), respectively.

Aggregate Size. The aggregate size is the number of proteins that assembled into a

higher-order complex. To determine this quantity, it is assessed which of the proteins

are in contact with each other and are thus neighbors. All proteins that are direct or

indirect neighbors form one aggregate. Two proteins are considered to be in contact

if any two atoms of them are within a certain cutoff. In the case of a monomer, the

descriptor function returns the value 1, for a dimer it is 2, etc. During an aggregation

process, monomers and oligomers of different sizes can be present in the system.

By default, the descriptor function reports the largest aggregate size present at a

particular MD time point.

Spatial Orientation of β -strands. If one studies the aggregation of proteins into

amyloid structures, which are characterized by β -sheet layers that form fibrils, one is
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usually interested to know whether these are parallel or antiparallel β -sheets. This

information can be deduced from the polar and nematic order parameters P1 and

P2, respectively, that characterize the spatial orientation of the β -strands [203, 204].

These two order parameters complement each other. P2 describes the systems’ ori-

entational order and distinguishes between ordered and disordered conformations,

while P1 indicates the polarity of the system and discriminates between parallel, an-

tiparallel, and mixed conformations. The descriptor function returns values of +1 for

parallel β -strands, −1 for antiparallel alignments, and 0 or neither of them, including

mixed parallel and antiparallel alignments as well as disordered β -strands:

f =


1, P2 ≥ 0.7 and P1 ≥ 0.7

−1, P2 ≥ 0.7 and P1 ≤−0.7
0, else

(2.55)

Transition-Network Calculation and Visualization

ATRANET is a Python script developed by our group that calculates transition net-

works using a combination of descriptor functions as described in the previous section

[197]. This tool is user-friendly and can accommodate the addition of new descriptor

functions to optimize the analysis for specific systems. The ATRANET script utilizes

MDTraj [205] and MDAnalysis [206] to calculate the specified descriptors and gener-

ates a transition matrix file that contains the populations and number of transitions

between states. The transition matrix is saved as a .gexf file and can be visualized us-

ing Gephi [207]. The transition matrix visualization presents the states as disks with

varying sizes based on their population and edges connecting the nodes, with thick-

ness indicating transition probability and arrows indicating transition directions.
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Chapter

3.
Amyloid-β Aggregation

The primary objective of this thesis is to examine the structures and aggregation of

Aβ peptides. In this chapter, a summary of our research on Aβ aggregation into

oligomers is presented. To achieve this, all-atom MD simulations were performed

to investigate the following topics: (i) the formation of small oligomers of Aβ42,

(ii) the aggregation of various Aβ variants (Manuscript I), (iii) Aβ42 dimerization in

both the aqueous phase and at the neuronal membrane (Publication II). The original

manuscript and publication are included in this thesis as sections A.2 and A.3.

3.1. Amyloid-β42 Oligomers

3.1.1. Introduction

Aβ42 peptide is known to be more prone to aggregation and consequently more toxic

than Aβ40 peptide in both in vitro and in vivo [208–211]. Due to the disordered nature

of Aβ peptides they can not maintain a stable structure in an aqueous environment

[212, 213]. Instead, these peptides aggregate into oligomers, protofibrils, and fibrils,

with the former two considered intermediate aggregates with lower mass compared

to the fibril. Although oligomers and protofibrils lack a specific structure unlike the

Aβ fibril, the β -content increases with the increase of the oligomer molecular weight
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[214]. Additionally, the β -sheet structures within the oligomers can be both antipar-

allel and parallel, indicating that they undergo structural rearrangements to form

fibrils where the β -sheet arrangement is parallel [215, 216]. Therefore, understand-

ing the aggregation mechanism leading to low-molecular-weight Aβ oligomers and

their structures is critical for identifying the oligomerization pathways and designing

potential inhibitors of AD.

In our study, we aimed to gain insights into the aggregation mechanism of Aβ42,

focusing on dimers, tetramers, and hexamers. To achieve this, we conducted exten-

sive all-atom MD simulations. To ensure accurate modeling of the Aβ42 oligomers,

we employed the Charmm36m force field, which has been shown to outperform

other force fields in the context of peptide aggregation [38]. Our investigation of

Aβ42 dimerization involved analyzing the thermodynamics and kinetics ensembles

obtained through MSM coupled with both conventional MD (cMD) and temperature

REMD simulations. MSM is a powerful technique for analyzing the behavior of com-

plex systems over long timescales, by constructing a model that describes the transi-

tions between a set of discrete states. By combining MSM with both cMD and REMD

simulations, we were able to explore both the thermodynamic and kinetic properties

of Aβ42 dimers. Similarly, we explored the thermodynamic and structural proper-

ties of Aβ42 tetramers through both cMD and REMD simulations, which allowed us to

sample a wide range of conformations. To further refine our analysis, we used dimen-

sionality reduction techniques, such as TICA and k-means clustering, to reduce the

dimensionality of the simulation data and identify clusters of similar conformations.

Finally, we investigated the aggregation into Aβ42 hexamers through cMD simula-

tions and TN analysis, which yielded insights into the hexamer conformations and

transitions between them. Overall, our study provides a detailed understanding of

the structures and aggregation mechanism of low-molecular-weight Aβ42 oligomers

and may have important implications for the development of therapies for AD.
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3.1.2. Results and Discussion

3.1.3. Amyloid-β42 Dimer

We utilized multi-ensemble Markov models (MEMM) to characterize the Aβ42 dimer-

ization process. Specifically, we employed a transitions-based reweighing analysis

method (TRAM) to construct an MSM of Aβ42 dimerization, which integrates 40 µs of

unbiased MD simulations with 64 µs of REMD simulations (see Materials and Meth-

ods). This approach effectively enhances the sampling of the conformational land-

scape, which overcomes the limitation of cMD simulations in capturing rare events

and their reversible transitions. As a result, the MSM provides a comprehensive un-

derstanding of the thermodynamic and kinetic properties of the Aβ42 dimerization

process.

TICA suggests compact and extended Aβ42 dimer structures

The time-lagged independent component analysis (TICA) analysis was applied to re-

duce the dimensions as described in Materials and Methods. The projection of the

interpeptide trajectories to the first two TICA reveals slow kinetics across the dimer-

ization landscape. When projecting the sampled configuration space of the 40 µs

cMD into these two modes it becomes obvious that IC1 separates the Aβ42 dimer con-

figurations into two states with IC1 < 0 and IC1 > 0 (Figure A.1). A single transition

between the two dimer states (IC1 > 0) and (IC1 < 0) was observed through the

cMD simulations, and therefore an MSM constructed from the cMD contained two

disconnected states. According to TICA analysis, the transitions between the two

states along the first independent component constitute the slowest dynamics. The

motions along the second independent component are faster, and more transitions

between the substates present for IC1 > 0 were observed. These transitions were

better sampled in the REMD simulation. Moreover, a larger variety of dimer struc-

tures was observed in the REMD simulation, leading to a larger basin for this dimer

form.

To obtain a better understanding of how the conformations vary over the TICA space,
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Figure 3.1.: The conformational landscape of Aβ42 dimers colored by structural prop-
erty values, the compactness (left), hSASA (middle), and the β -sheet
content propensity (right).

we computed the structure compactness, hydrophobic solvent accessible surface area

(hSASA), and the β -sheet content probability (Figures 3.1 and A.2). The compactness

decreases with increasing IC1 values, while it shows a bimodal distribution along

IC2, centering around IC2 = 0 and distinguish between compact structures (IC2 >

0) and extended structures (IC2 < 0). The formation of compact structures (IC1 >

0) is associated with a decrease in hSASA. Moreover, the variation of the structures

along IC2 is also associated with changes in the β -sheet amount, which reduces by

the increase of IC2. The conformational variations along IC2 suggest a correlation

between compactness and the β -sheet content. This can be seen by increasing the

β -sheet content, the dimer tends to adopt more extended structures.

Markov state model of Aβ42 dimer

To obtain an overview of the Aβ42 dimer conformations, an MSM was constructed

as described in the Materials and Methods. The conformational landscape was dis-

cretized into eight metastable states and an MSM was built using these eight states

(Figure 3.5A). An overview of the MSM is presented as a network plot in Figure
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3.2 and a representative dimer structure of the metastable states are shown. Each

metastable state is represented as a node whose radius is proportional to its station-

ary distribution. The stationary distribution of the states are shown in table A.1.

Edges connecting the nodes correspond to state transformations, with line thickness

proportional to transition rates between pairs of states. The MSM has two highly pop-

ulated metastable states with probabilities of 24-25%, four states with probabilities of

9-13%, and two states with a 3-4% occupancy. In order to identify the different con-

formations across the metastable states the compactness, β -sheet content probability

and hSASA for the metastable states were calculated (Figure 3.2B, C and D).

Figure 3.2.: (A) MSM of Aβ42 dimers with representative structures. The states are
shown as nodes and the transitions as edges (the direction of transition is
clockwise). The dimers are shown in secondary structure representation
and the peptides are colored red and blue, and the N and C-terminus
is indicated as red and blue ball, respectively. The average compactness
(B), β -sheet content probability (C) and hSASA (D) for the states are
shown as bar plots. The error bars represent the standard deviations.
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The analysis of compactness distributions among the eight metastable states of the

dimer confirms our earlier observations that it can adopt both extended and compact

conformations. States S6, S7, and S8, which together account for 33% of the dimers,

mostly contain compact dimer structures, while states S1, S2, and S3 (occupancy of

35%) exhibit more extended dimers, and states S4 and S5 (occupancy of 32%) show

intermediate extended structures. The dominant state S7, which has a population of

25%, contains a bimodal distribution of compact and extended conformations (Figure

A.3), with a higher population of compact structures likely resulting from transitions

from more extended conformations in states S2, S3, and S4.

All states display an average β -sheet content of around 38%, which increases to 42%

in S2 and decreases to 27% in S6 (Figure 3.2B). Our previous study using the same

force field demonstrated that the Aβ monomer mostly adopts disordered conforma-

tions with an average β -sheet content of around 15% during a 30 µs MD simulation

[36]. Therefore, the dimerization enhanced the β -sheet formation. Nevertheless,

the amount of β -sheet sampled through this study exceedes that of previous simu-

lations, where the β -sheet amount ranged between 11.3% to 24.3%, depending on

the force field used [217]. Even when using the same force field Charmm36m with

different water model (an implicit Generalized Born (GB) water model) the amount

is about 13% [218]. Moreover, we also observed a correlation between compactness

and β -sheet content, with an increase in β -sheet content generally leading to more

extended dimer conformations. For example, states S1 and S2, which exhibit the

most extended conformations, also have the highest β -sheet content, while states S6

and S8, which have the lowest β -sheet content, display the most compact confor-

mations. This relationship is also reflected in the decreased hSASA of these dimers

(Figure 3.2D), indicating the formation of a hydrophobic core in the more compact

structures.

Structures analysis

We performed secondary structure analysis to quantify the differences in conforma-

tion between the metastable states of the Aβ42 dimers. Specifically, we calculated the

average probabilities of the secondary structure elements forming β -sheets, distin-

guishing between intra- and interpeptide β -sheets and β -turns/bends for each state
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Figure 3.3.: (A) The average secondary structure contents of total β -sheet, intra- and
interpeptide β -sheet and bend/turn for the MSM states. (B) The sec-
ondary structure probability of Aβ42 dimer peptide residues for the MSM
states. The bars represent the additive secondary structure probabilities
consisting of helix (green), β -strand/bridge (red), and turn or bend (vi-
olet). The difference to 1.0 presents the random coil.

(Figure 3.3A). Our analysis revealed that for most states (S1, S2, S3, S4, and S5), the

dimer had more intraprotein β -sheet content. However, this was not the case for the

compact states (S6, S7 and S8), where the intra- and interpeptide β -sheet contents

were relatively equal. We found that the differences in the structure of the states

primarily arose from the formation of turns/bends rather than β -sheet structures. In

fact, the average turn/bend content of the dimer was 19% that ranged between 15%

to 26%, while random coil structures made up 34% with a range of 32% to 36% of the

conformations observed. Interestingly, we did not observe any significant α-helical

structures in the Aβ42 dimer.

To gain a deeper understanding of the secondary structures present in the Aβ42 dimer,

we analyzed the probabilities of different secondary structures per residue within
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each MSM state (Figure 3.3B). Our results revealed that the central hydrophobic core

region (residues Q15 to F20) and the C-terminal hydrophobic region (residues A30

to V40) exhibited high β -sheet probabilities across most states. Specifically, S1 and

S2 displayed two long β -hairpins in each peptide, formed in the regions E11 to F20

and I31 to I41, with the exception of H14/Q15 and G37/G38, which tended to form

turns. Notably, the residues E11-H14 had a significantly higher β -sheet content in

S1 and S2 than in other states, up to 50%. In contrast, S6 generally had two β -

strands for each peptide in the central hydrophobic core and G29 to V36 regions of

the C-terminal hydrophobic region, occasionally with a third β -strand involving the

C-terminal residues I40-A41. Interestingly, we observed β -strand formation in the N-

terminal region (residues A2-H6) of S1, S2, and S5, accounting for around 10-20%

of the β -sheet content. This is consistent with a disease-relevant Aβ42 fibril model

[219, 220]. Overall, the Aβ dimer had heterogeneous structures, and high β -sheet

content was mainly formed in the two hydrophobic regions but was also observed

in other regions, including residues 11-14, C-terminal residues 37-42, and the N-

terminal region (residues 2-6). Various experiments have suggested that Aβ adopts a

long hairpin structure where both peptides exhibit β -hairpin structures in the regions

10-23 and 30-42 [215, 220].

Intra- and interpeptide interactions

By analyzing the interactions between residues, we observed conformational differ-

ences between the various Aβ42 dimer states. Intrapeptide distance matrices (see

Figure 3.4A) showed that all states had similar contact likelihood in the Y10 to V24

and Q27 to V40 regions, which correspond to the formation of a β -hairpin stabi-

lized by strong hydrophobic interactions in the V18-F20 and I32-L34 regions. Two

intrapeptide salt bridge contacts were also present in these regions, specifically E22-

K28 and D23-K28 in S1, and D23-K28 in S2 and S3 (see Figure A.4A). The different

conformational states of the Aβ42 dimer exhibit varying tendencies to form further

intrapeptide contacts, resulting in extended and compact conformations. States S6,

S7, and S8 have a higher likelihood of forming these contacts, which occur in regions

such as A2-Y10/I32-V40 and D1-Y10/Q15-E22 in one of the dimer peptides. The

most compact state, S8, has a higher number of contacts within the two peptides, in-

cluding regions D1-D7/L17-M35 of peptide 1 and A2-V12/Q15-I41 of peptide 2. This

52



3.1. Amyloid-β42 Oligomers

Figure 3.4.: The intra- and interpeptide contact maps for Aβ42 dimers. (A) The aver-
age intrapeptide contacts of the MSM states. The intrapeptide contacts
within peptide 1 are shown below the main diagonal and within peptide
2 above the main diagonal. (B) The average interpeptide contacts of the
MSM states. The color bar on the right shows the average distance be-
tween the residues (in nm).

state also exhibits a salt bridge between the N-terminal residue with D22 and E23

(Figure A.4A). The N-terminal salt bridges between neighboring residues E3-R5 and

D7-R5 were also observed in this study and are consistent with experimental results

[221].

To better understand the interaction interfaces between the two peptides in the
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dimers, we calculated the residue-residue distance between the peptides and gen-

erated distance matrices for each state (Figure 3.4B). Our analysis revealed that the

central hydrophobic core and C-terminal hydrophobic regions are the primary inter-

peptide interface in all states, except for S3, which represents the central hub state

of MSM and harbors weakly connected dimers or two monomers. For S1, the highest

contact densities were observed between the two hydrophobic C-terminal regions,

A30 to V40, which have high β -propensity. In addition, the dimers exhibited pre-

ferred contacts between Y10 to F20 region interacted with the C-terminal region of

the other peptide, as well as interactions between the central hydrophobic core re-

gions of both peptides. The two peptides in this state tend to arrange themselves

in a parallel β -sheet conformation between the two C-terminal regions (Figure A.5).

S1 also showed preferred contact regions between regions 3-10 of one peptide with

regions 11-16 and region 35-42 of the other peptide, which could include some in-

terpeptide salt-bridge contacts like E3-K28, D7-K16, and Cter-R5 (Figure A.4B). State

S2 shares the same contact-density regions with S1 but with weaker contacts, and it

does not show dominant antiparallel or parallel interpeptide β -sheet conformations

(Figure A.5).

The compact Aβ42 states exhibit distinct interaction interfaces, including the interac-

tion of N-terminal residues with the central hydrophobic core region of the other

peptide. In S6, we observe contacts between the N-terminal (residues 1-5) and

residues 26-30, with a high interaction tendency between the central hydrophobic

core region that favors the formation of a parallel interpeptide β -sheet. On the other

hand, S8 displays interactions between the N-terminal and residues 10-15, and fre-

quent interactions between the C-terminal hydrophobic regions of the two peptides,

which preferentially form a parallel interpeptide β -sheet. Notably, the interpeptide

C-terminal/C-terminal interactions are crucial for stabilizing compact structures and

are observed in S6, S7, and S8, with S7 being the most populated state (Figure A.6).

This observation suggests that the stability of conformation S7 and its compactness

are primarily attributed to the interpeptide C-terminal/C-terminal interactions and

the formation of parallel interpeptide β -sheets.

The compact states of Aβ42 show a remarkable formation of interpeptide salt bridges

involving the C-terminal, including Cter-K16 in S6 and Cter-K28 in S7 and S8 (Figure

A.4B). These findings support previous experimental and computational evidence

that highlight the crucial role of C-terminal interactions in forming highly stable
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dimer structures and driving the aggregation process [222–224]. The importance

of C-terminal interactions is further emphasized by the fact that the two hydrophobic

residues at the C-terminal of Aβ42 enhance the aggregation propensity and neurotox-

icity more than other alloforms, such as Aβ40.

In summary, while the primary stabilization of the Aβ42 dimer is due to interpeptide

hydrophobic interactions between central hydrophobic core regions and C-terminal

hydrophobic regions, our study also reveals other potential interpeptide interaction

interfaces. These include the N-terminal with central hydrophobic core and N-terminal

with residues 10-15. Despite the unstructured nature of the N-terminal region in most

amyloid fibrils, it plays a crucial role in forming oligomer species by influencing both

intrapeptide and interpeptide interactions. Such interactions have a direct impact on

aggregation kinetics by stabilizing the β -hairpin structures.

Figure 3.5.: (A) The coarse-grained MSM states projected on the first two TICA com-
ponents. (B) The MFPT between the coarse-grained MSM states. The
direction of the transitions is from row to column. The color bar on the
right shows the MFPT range, while the exact MFPT is given as red num-
ber (in µs).

MSM reveal the slow dimerization kinetics

To gain a better understanding of how a protein transitions between different states,

we used transition path theory (TPT) to calculate the mean first passage times (MFPT)
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between the coarse-grained MSM states (Figure 3.5). Our analysis showed that the

time it takes for the dimer to transition between states varies between a few nanosec-

onds and a hundred microseconds. Of particular interest were the transitions to

and from the compact S6 and S8 states. These transitions had the slowest kinet-

ics, with MFPT values of approximately 45 and 97 µs, respectively. In contrast, the

transitions from these states to their neighboring states S5 and S7 were the fastest,

taking only 1.6 and 0.3 µs, respectively. The transitions between states S2, S3, and

S4 were relatively faster among the metastable states. These states are character-

ized by low-density profiles of intra-/interpeptide interactions. We also observed that

the association and disassociation of the two peptides took approximately 0.45 and

5.83 µs, respectively. Overall, our findings provide insights into the kinetics of dimer

conformational transitions, which have important implications for understanding Aβ

aggregation.

Collisions cross-sections

State S1 S2 S3 S4

CCS (Å2) 1421±54 1446±68 1556±90 1408±52

State S5 S6 S6 S8

CCS (Å2) 1422±54 1362±61 1463±88 1336±46

Table 3.1.: Collision cross-sections of the MSM states for the Aβ42 dimer.

The collision cross-sections (CCS) values were obtained in our simulations by calcu-

lating the average of the top 30 cluster structures of the coarse-grained MSM states

(Table 3.1). The average CCS over all the states is 1427± 91 Å2 which ranges be-

tween 1336 Å2 for the most compact dimer state to 1446 Å2 for the most extended

dimer state, excluding S3 which contains two monomer structures resulting in higher

CCS values. These calculated CCS values are larger compared to the experimental re-

sults estimated by an ion-mobility mass-spectrometry (IM-MS) with a value of 1256

Å2 [225]. In addition, a computational study using different force fields estimates a

CCS value in the range 1255-1286 Å2. However, β -sheet content probabilities in this

study ranged between 11-20% [217]. The higher CCS values observed in our sim-

ulations can be explained by the fact that our Aβ42 dimers have more β -sheets and

therefore adopt more extended structures compared to the earlier studies. The CCS
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values obtained from the MD simulations are higher than the experimental values,

likely because the structures become more compact when transitioning from solution

to the gas phase [226]. Furthermore, it is important to mention that CCS values are

only approximate and are also subject to uncertainty from the calculation tool.

3.1.4. Amyloid-β42 Tetramer

We conducted 22 µs of cMD and 80 µs of REMD simulations to explore the struc-

tures of Aβ42 tetramers. The resulting trajectories were projected using TICA onto

two dimensions to provide a more comprehensive view of the conformational land-

scape (Figure A.7). Subsequently, we discretized the conformational landscape into

100 microstates, which were then grouped into 15 cross-grained states. Finally, we

employed the MBAR algorithm to reweight the probabilities of these states (see Ma-

terials and Methods).

Conformational landscape of Aβ42 tetramer

Figure 3.6.: The conformational landscape colored by structural property values, the
compactness (left), hSASA (middle), and the β -sheet content propensity
(right).

Figure 3.6 demonstrates the conformational landscape of the Aβ42 tetramers, which

we characterized by three structural properties: compactness, hydrophobic hSASA

and β -sheet content propensity. To analyze this landscape, we used TICA to project
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the interpeptide Cα-distances trajectories onto the first two TICA components. This

analysis suggests that the slow kinetics of the tetramer is associated with forming

highly compact structures. The tetramer’s conformational landscape is diverse, with

multiple polymorphic structures characterized by different distributions of compact-

ness, β -sheet content propensity, and hSASA. By inspecting these projections, we can

gain insight into the correlation between these features. However, the non-linear cor-

relation between these features is a result of the intrinsic disorder of the Aβ peptide.

The distribution of compactness is partially positively correlated with the amount of

β -sheet content, and the distributions of compactness and hSASA suggest that the

tetramer’s transition to compact structures is a slow process achieved by minimizing

hSASA and forming a hydrophobic core.

Figure 3.7.: (A) The discretized conformational landscape of Aβ42 tetramer with rep-
resentative structures. The tetramers are shown in secondary structure
representation and the peptides are colored differently, and the N- and
C-terminis are shown as red and blue ball, respectively. The average com-
pactness (B), β -sheet content probability (C) and hSASA (D) for tetramer
states. The error bars represent the standard deviations.
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The conformational landscape of the Aβ42 tetramer was grouped into 15 states; and

their probabilities were obtained by the MBAR reweighting method. Figure 3.7A

displays the conformational landscape and representative structures of the tetramer

states. The states exhibit diversity in their distributions of compactness, β -sheet con-

tent propensity, and hSASA (Figure 3.7B, C, and D). Based on their compactness

values, the tetramer shapes can be classified as extended (compactness ≤ 0.5) with a

probability of 27.9% (states S1, S2, S3, and S4), compact (compactness ≥ 0.6) with

a probability of 27.4% (states S5, S8, S11, S14, and S15), and intermediate compact

structures (0.5 ≤ compactness ≤ 0.6) in the remaining states. These results suggest

that the tetramer’s extended structures are less favorable. The formation of compact

and extended tetramer structures is associated with lower and higher hSASA, respec-

tively. It is important to note that states that are far apart in terms of their shape index

are considered metastable since the transition between them is practically slow. In

summary, the tetramer shapes can be classified into extended, compact, and inter-

mediate compact structures based on their compactness values, and the formation of

these structures is associated with different hSASA values and β -sheet content prob-

ability.

The disordered nature of Aβ implies that even if the structures are kinetically con-

nected, there is still a high degree of variation and flexibility in the configurations

within the same states. This can be observed from the large standard deviation error

bars in Figure 3.7B, C, and D.

Although the Aβ42 tetramer structure is highly disordered, it has a tendency to form

both short and long β -sheet structures, with 26% to 42% of peptide residues adopt-

ing a β -sheet conformation and an average β -sheet content of 35% (Figure 3.7C).

In the majority of states, the peptides tend to form β -hairpin structures or hairpin-

like conformations (Figure A.8). The most stable β -sheet structures observed in the

residues are those involving the two hydrophobic regions and transit β -strands found

in residues 2-5, 10-13, and 38-41. While most states exhibit a tendency for β -hairpin

with 2 or 3 β -strands (Figure A.8), some states like S6 and S8 show a reduced prob-

ability of β -sheet formation due to completely disordered peptides. The β -sheet con-

formations, on the other hand, are predominantly composed of interpeptide β -sheet

structures formed by different peptides, with an average probability of approximately

22%. Among these, around 13% of the β -sheet content is intrapeptide (Figures A.9

and A.10). State S6 stands out from the others due to the unfolding of one pep-
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tide, which leads to a decrease in interpeptide β -sheet content and an increase in

hSASA.

Figure 3.8.: The number of inter-chains contacts for the tetramer states.

Figure 3.8 shows the number of side chain contacts between tetramer peptides. We

observed significant differences in the interaction among peptide pairs. In the case

of extended states like S1 and S2, the peptide is arranged in a way such as three

pairs show notable levels of contact between them and the other three pairs show

a few numbers of contacts. In S1, the tetramer is formed by two peptide pairs, (1,

3) and (2, 4), that show high contacts propensity where the peptides 1 and 2 are

arranged in the tetramer center and 3 and 4 are at the edges. The formation of com-

pact tetramer structures, on the other hand, leads to more contact formation among

the different peptides pairings. Based on this, it can be inferred that the peptides

within the tetramer possess a distinct character in which the properties of chains are

heterogeneous. This variation in characteristics may be attributed to differences in

peptide exposure to the solvent and varying β -sheet content among the tetrameric

structures. These findings suggest that the peptides within the tetramer possess a

unique character that still differs from fibril structures, where the properties of pep-

tides are homogeneous.
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β -barrel structure

Figure 3.9.: A snapshot for the β -barrel-like structures observed in S15. The peptides
are shown in the secondary structures representation and the β -strands
are colored in red and other conformations in white.

The experimental structure of Aβ42 oligomer is not yet known, but it is suggested

to adopt different conformations. One such conformation is the β -barrel structure,

which has previously been modeled using truncated Aβ42 peptides [227–229]. In

addition, a β -barrel conformation has been observed experimentally form by Aβ42

hexamer in peptide-micelle environments [230]. The β -barrel oligomer refers to a

closed form of the β -sheet, where each β -strand is adjacent to at least two other

β -strands. One example of such a β -barrel-like structure is S15 (Figure 3.9), where

the tetramer is compact and the peptides have significant interchain contacts (Fig-

ure 3.8). However, our simulations show that the probability of this β -barrel-like

structure formation is low and unstable (probability 0.016%). This observation may

explain why peptide-micelle environments are required to stabilize the β -barrel con-

formation in experimental studies.

3.1.5. Amyloid-β42 Hexamer

Aβ42 hexamer structures were sampled by performing 80 µs MD simulations. The

resulting trajectories were analyzed based on the transition networks using three

descriptors compactness, hSASA, and the β -sheet content probability (see Materials
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and Methods). The resulting TN is shown in Figure 3.10, where the clusters are

colored differently. The TN for the hexamer has distinct regions, i.e. a region (S1,

S2, S3 and S4) containing extended hexamer structures and a region with compact

states (S5 and S6), indicating that the hexamer can adopt different shapes. The TN

shows that the hexamer prefers to sample more extended conformations with 56%

total occupation, while compact conformations are sampled with 44% probability.

Moreover, a significant difference in the compactness index between states suggests

the presence of a high free energy barrier separating them. Such states, which are

distant in terms of their compactness index, are considered metastable due to the

slow transition between them.

Figure 3.10.: Transition network of Aβ42 hexamers using three descriptors: i) the
compactness, ii) the hSASA and iii) the β -sheet content. The nodes are
colored according to their cluster membership. Representative struc-
tures for the most populated state of each cluster are shown. The aver-
age descriptor values for compactness, hSASA (nm2), β -sheet content
propensity and probability per cluster in parentheses are given.

The compact clusters can be classified into two groups, based on their characteristics.

The larger, dominant cluster S6, consists of structures with 37% β -sheet content and

a compactness index of 5.9. The smaller, but the most compact cluster S5, possesses
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low hSASA and β -sheet content structures. The clusters S2 and S3 include the nodes

with the largest size, which means they correspond to more stable configurations that

are visited more often compared to the other states. The clusters have a similar com-

pactness index (4.3) and β -sheet contact propensity (0.29) but differ in their hSASA.

The other extended clusters S1 and S4 include nodes with small sizes indicating their

low probability and thus the instability of the configurations. Cluster S1 contains the

most extended structures with high β -sheet content compared to other clusters. On

the contrary, the other cluster S4 is visited less frequently, and with average descrip-

tor values of (4.24, 86, 0.21); the configurations exhibit a large hSASA and lower

β -sheet content. The transition from clusters S1 and S4 to the compact clusters S5

and S6 includes S2 and S3 as intermediate states. In summary, the TN reveals that

the hexamer samples compact and extended configuration with the latter being more

favorable, and the transitions to the most compact states are expected to be a slow

process.

3.1.6. Amyloid-β42 Oligomers

Figure 3.11.: The probability distributions of structural properties for Aβ42 oligomers.
(A) The probability distributions of the oligomer shape index include
compactness and height. (B) The probability distributions of total β -
sheet content, intrapeptide β -sheet content and interpeptide β -sheet
content. The inserts show the probability distributions of the number of
residues of the respective β -sheet analysis.

To compare the Aβ42 dimers, tetramers and hexamers structures, we analyzed the

probability distributions of oligomer shape, including compactness and height (Figure

63



3.1. Amyloid-β42 Oligomers

3.11A). Our findings indicate that dimers tend to be more compact. The tetramers

are similar to the dimer but have less extended configurations. Hexamers, on the

other hand, tend to form more extended structures. Our observations are consistent

with data obtained from mass spectrometry, which showed that the isotopic growth

of the oligomer deviates from linear growth after reaching tetramer size (see Section

3.2). This indicates that the oligomers undergo a change in growth pattern after

reaching a certain size, which is supported by our findings. We also measured the

heights of the oligomers, which ranged from 1.2-2.2 nm, 1.6-3.0 nm, and 2.0-3.1

nm for dimers, tetramers, and hexamers, respectively. These results are consistent

with early experimental studies that measured oligomer heights ranging from 2-5 nm

[231, 232].

Figure 3.12.: The average secondary structure probability of Aβ42 peptide residues
calculated from concatenated trajectories for dimer, tetramer and hex-
amer. The bars represent the additive secondary structure probabilities
consisting of helix (green), β -strand/bridge (red), and turn or bend (vi-
olet).

We have analyzed the probability distributions of β -sheet content in Aβ42 oligomers,

including total, intra- and interpeptide β -sheet structures (Figure 3.11B). Our results

indicate that Aβ42 oligomers are primarily composed of disordered structures, but

with a significant amount of β -sheet content. The β -sheet mainly forms by the two

hydrophobic regions (Figure 3.12) and lees frequently by residues 2-5, 10-13, and 38-

41. Experimental studies have identified turns in the Aβ42 oligomer at residues 13-15;

24-27, 25-28, 25-29; and 37-38, which connect β -strands at regions 13-23, 15-24,

17-21; 31-36; and 28-42, 29-42 [232–234]. The amount of the of the β -sheet content

decreases with the oligomer size (Figure 3.11B). In particular, the dimer can adopt

structures with high amount of β -sheet, which results from the intrapeptide β -hairpin

formation. In contrast, these interactions are destabilized with an increase in the
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oligomer size, leading to a decrease in intrapeptide β -sheet content. The interpeptide

β -sheet distributions, on the other hand, are shifted towards higher probabilities for

tetramers and hexamers.

3.1.7. Conclusion

In our study, we investigated how Aβ42 assembles into β -sheet rich oligomers by em-

ploying all-atom simulations using the force field Charmm36m and the TIP3P water

model. A combination of computational approaches containing MD simulations and

enhanced sampling MD simulations on microseconds timescales, MSM and TNs anal-

ysis was applied, enabling us to reveal the mechanism of Aβ42 assembly into dimers,

tetramers and hexamers with different structures, containing compact and extended

conformations. The compact and extended conformations of Aβ oligomers were pre-

viously observed in ion-mobility mass-spectrometry [235], atomic force microscopy

[236] and MD simulations [237].

Our analysis reveals that the oligomer contains significant β -sheet conformations,

primarily composed of two hydrophobic regions that form β -hairpin structures. How-

ever, we also observed transitions to β -sheet structures in other peptide regions, such

as residues 2-5, 10-14, and 38-41. These findings are consistent with previous theo-

retical and experimental studies of Aβ42 oligomers [232–234, 238] and experimental

data on Aβ42 fibrils [239, 240]. Recent studies by Im et al. have shown that mu-

tating hydrophobic region residues with polar uncharged amino acids suppresses the

aggregation of Aβ42 [241]. This replacement disturbs the hydrophobic interactions

and affects the clustering of Aβ42 hydrophobic residues, interfering with the assembly

dynamics to effectively inhibit amyloid aggregation. Oligomerization provides stabil-

ity to the β -sheet structure in the oligomer, although the resulting β -content is lower

than that found in fibrils. This indicates that the oligomer undergoes structural rear-

rangement to transition into the fibrils. Understanding the mechanisms behind this

transition is crucial, as it may provide insights into the pathogenesis of AD.

The dimerization of Aβ42 exhibits a wide range of heterogeneous structures and ki-

netic features, as revealed by MSM analysis. The kinetic model shows that the tran-

sition timescales range from a few nanoseconds to a hundred microseconds. The for-

mation of a stable compact dimer occurs primarily due to inter-/intrapeptide contacts
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in the dimer. The extended and compact dimers exhibit rich β -sheet conformations

but are aggregated through different mechanisms. The compact dimers are stabilized

by interactions within the central hydrophobic core and the C-terminal hydropho-

bic region, as well as intrapeptide interactions of the N-terminal region. The strong

hydrophobic interaction between peptides in the hydrophobic C-terminus makes it

more stable than the N-terminus and central hydrophobic core. This highlights the

vital role of the C-terminus in stabilizing the oligomer, particularly in the late stages

of aggregation when fibril-like aggregates are formed. Targeting the C-terminal re-

gion by small compounds has been shown to increase protofibril and fibril formation

in several studies [242, 243]. Similarly, targeting the N-terminal region alters the

progress of aggregation [220, 231]. These findings suggest that interactions of the N-

terminal and C-terminal regions could lead to the aggregation into different oligomer

conformations on- or off-pathway toward amyloid fibrils.

The findings of this study have important implications for understanding the contribu-

tions of different segments of Aβ42 to the aggregation process. Our results show that

intrapeptide interactions generally facilitate the formation of β -hairpin structures.

However, these interactions can also hinder the unfolding of complexes, leading to

a delay in the formation of fibril-like structures. On the other hand, interpeptide

contacts are essential for stabilizing interpeptide β -sheets and clustering hydropho-

bic residues, which promotes oligomerization. These findings suggest that multiple

oligomerization pathways exist, and the oligomers must rearrange their conformation

to form fibrils or favor the oligomeric state due to strong hydrophobic interactions.

3.1.8. Materials and Methods

Simulations Setup

The MD simulations of the dimer, tetramer, and hexamer systems were conducted us-

ing GROMACS 2020.4 [244, 245], with the Charmm36m force field [35] and TIP3P

water model. The systems were solvated in a dodecahedron box with water molecules

and 150 mM NaCl, and neutralized by adding more Na+ than Cl−. Table 3.2 shows

the MD sampling methods, atom numbers, box dimensions and temperature for each

simulated system. After solvating the peptides, their initial structures were energy-
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minimized using the steepest-descent algorithm [246]. The minimized systems were

then equilibrated in the NVT ensemble for 200 ps at 298 K using the velocity-rescale

thermostat method [247] and a pressure of 1.0 bar using the Parrinello-Rahman pres-

sure coupling method [248, 249]. This was followed by a 200 ps equilibration in the

NpT ensemble at 1.0 bar, also maintained using the Parrinello-Rahman pressure cou-

pling method [248, 249]. The production MD simulations were run using the NpT

ensemble, with periodic boundary conditions and a real-space cutoff of 1.2 nm. The

Particle-mesh Ewald method [250] was used to calculate electrostatics. Bond lengths

were constrained using the LINCS algorithm [251], and the equation of motions was

integrated using the leapfrog integrator with a time step of 2 fs [252].

Aβ42 oligomer MD Simulation lengths Atom numbers Box dimensions (nm3) Temperatures (K)

Dimer
cMD 20 × 2 µs 43,000 8.5 × 8.5 ×6.0 298

REMD 64 × 1 µs 45,000 8.6 × 8.6 × 6.1 298-400

Tetramer
cMD

6 × 3 µs

2 × 2 µs
100,000 11.2 × 11.2 × 8.0 298

REMD 80 × 1 µs 82,000 11.2 × 11.2 × 8.0 298-400

Hexamer cMD 8 × 10 µs 152,000 13.0 × 13.0 × 9.2 298

Table 3.2.: MD simulations setups

REMD Simulations

The temperature REMD simulations [160, 162] were conducted using the same sim-

ulation setup, with exchange attempts between neighboring replicas set every 2 ps.

For the dimer systems, simulations were performed with temperatures ranging from

298 K to 400 K for 64 replicas, yielding 64 µs of data. The exchange probabilities for

all replicas were above 0.30, with an average of approximately 0.34. Similarly, for

the tetramer systems, simulations were performed with temperatures ranging from

298 K to 400 K for 80 replicas, yielding 80 µs of data. The exchange probabilities for

all replicas were above 0.27, with an average of approximately 0.31.

The consistently high exchange probabilities between neighboring replicas indicate

that configurations were successfully exchanged between different temperatures. This

is further supported by the observed random walk pattern in the replica space (data
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not shown), demonstrating that exchange events occurred between any neighboring

replicas.

Starting Structures and Modeling

To explore the dimer conformation landscape, we initially performed unbiased MD

simulations for a total of 40 µs (20 × 2 µs). We started four simulations from 3 µs

cluster structures of Aβ42 monomers by ensuring that the two monomers were at least

1.0 nm apart. The peptides were added into the simulation boxes using PACKMOL

[253]. The initial monomer structures were folded structures similar to β -hairpin

conformations, or hairpin-like conformations. The rest of the dimer simulations were

started from randomly selected dimer structures from previous simulations. Subse-

quently, we initiated REMD to accelerate sampling simulations using six initial dimer

structures that had different conformational states from the unbiased MD simulations

to accelerate sampling.

For the Aβ42 tetramer system, we performed unbiased MD simulations for a total of

22 µs by adding two monomers to the dimer structures obtained from the previous

dimer simulations. The added monomer structures were folded structures with β -

hairpin conformations or hairpin-like conformations. We placed the two monomers

at least 1.0 nm away from the dimer structures. To initiate REMD simulations, we

selected six tetramer structures from the unbiased tetramer MD simulations from

different conformation states.

For the Aβ42 hexamer systems, we performed MD simulations for a total of 80 µs (8

× 10 µs) by adding two monomers to tetramer structures from our previous simu-

lations. The added monomer structures were folded structures with β -hairpin con-

formations or hairpin-like conformations. We placed the two monomers at least 1.0

nm away from the tetramer structures. The tetramer structures were selected from

different conformational states to improve the sampling.
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Analysis

We employed various tools to analyze the MD simulation data, including the GRO-

MACS, MDAnalysis [254], and MDTraj Python packages [205]. The analysis of the

dimer and tetramer states was conducted by averaging and calculating the standard

deviations over all structures in the states. The secondary structure analysis was

conducted by DSSP [201, 202]. The secondary structure content probability was

calculated as the number of residues in specific secondary structures divided by the

total number of residues, and was used to characterize the secondary structure con-

tent of the oligomers. The β -sheet structures were classified as either intrapeptide or

interpeptide β -sheet, depending on whether they had contact within 0.3 nm with a

β -strand in another peptide. The interpeptide β -sheet structures were further catego-

rized as parallel or antiparallel based on the cross product of the residues that make

up the interpeptide β -sheet. GROMACS analysis tools were used for contact matrix

calculations, number of contacts, and solvent-accessible surface area (SASA) analy-

sis. To determine the residue contacts, the minimum distances were calculated for all

pairs of residues, resulting in distance matrices that present the ensemble-averaged

distances between the residues. The number of contacts was calculated using a cut-

off of 0.3 nm. The hydrophobic SASA (hSASA) values were calculated for specific

residue sets (ALA, VAL, ILE, LEU, MET, PHE, TYR, GLY) to characterize the hydropho-

bic surface exposure of the oligomers. Compactness, defined as the ratio between

the lowest and largest moment of inertia of the oligomers, was used to measure how

extended or compact the oligomers were. The theoretical range for the compactness

value is between 0 and 1, with 0 representing a completely extended structure, like a

prolate spheroid, and 1 representing a globular structure, like a sphere. To calculate

the height of the oligomers, the semiaxes a,b,c were used, which were obtained from

the moments of inertia I1, I2, I3. The calculations were performed using the following

formulas: a2 = 5
4m(I2 + I3 − I1), b2 = 5

4m(I1 + I3 − I2), and c2 = 5
4m(I1 + I2 − I3); where m

represents the mass of the oligomer. The height of the oligomer was determined by

multiplying the smallest semiaxis by 2. The collision cross-section (CCS) values were

calculated using Collidoscope with the trajectory method [255].
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Markov State Model of Aβ42 Dimers

To create a Markov state model (MSM) of the Aβ42 dimer, we used unbiased MD

and REMD trajectories. First, we selected the Cα–Cα distances between the pep-

tides as features, and used augmented time-lagged independent component analysis

(TICAgg) [256, 257] to reduce the number of dimensions. TICAgg was applied to the

40 µs cMD trajectories with a lag time of 5 ns, resulting in a reduction of dimensions

from 1764 to two dimensions that describe the slowest kinetics of the system (Figure

A.1). Next, we applied k-means clustering [258] to discretize the trajectories into

100 clusters. We then projected the combined data from cMD and REMD simulations

onto the first two eigenvectors obtained from TICA of unbiased MD data, and assigned

them to the 100 k-means cluster centers. The resulting 100 microstates were used

for multi-ensembles Markov model (MEMM) constructions at a lag time of 100 ns

using the TRAMMBAR method [186, 194] as implemented in the PyEMMA package

[167]. TRAMMBAR combines the Bennett acceptance ratio (MBAR) as a free energy

estimator and transition-based reweighing analysis methods (TRAM) to estimate the

kinetic. The lag time of 100 ns for MSM was selected based on the convergence of

the implied time scales obtained from the cMD data (Figure A.11). We used Robust

Perron cluster cluster analysis (PCCA++) [259] to group the microstates into eight

macrostates (Figure 3.5). Finally, we used the transition path theory (TPT) [260,

261] to calculate the transitions rate and mean first-passage time (MFPT) between

the macrostates.

Dimension Reduction and Clustering of Aβ42 Tetramers

To reduce the dimensionality of the Aβ42 tetramer trajectories, we applied the time-

lagged independent component analysis (TICA) method [256, 257] to all intermolec-

ular Cα-Cα distances, using a lag time of 50 ns. The resulting data was discretized

into 100 clusters using k-means clustering [258]. To calculate the free energy of the

states, we used the Bennett acceptance ratio (MBAR) approach [186, 192]. In order

to refine the clustering results, we grouped the 100 clusters into 15 states using k-

means clustering. This was achieved by reducing the variance between three cluster

features, namely compactness, β -sheet content, and hSASA. The probabilities of the

states are obtained by the summations of the reweighted probabilities of the clusters
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in the state.

Transition Networks of Aβ42 Hexamer

We constructed transition networks for the Aβ42 hexamer using ATRANET [262, 263],

using three descriptors to discretize the states and build the transition matrix. These

descriptors were the compactness of the protein, hSASA, and the β -sheet content.

To discretize these descriptors, we multiplied the compactness indexes by 10 and

rounded them to the nearest integer, while hSASA was grouped into 5 nm2 wide

bins (e.g., 65-70 → 70 nm2). We visualized the resulting transition network as a

set of states represented by nodes in the network, and the transitions between states

were represented as edges connecting the nodes. Using the Gephi software [207], we

further clustered the nodes into modularity classes to identify groups of states that

are highly interconnected and potentially related [264].
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3.2. Manuscript I: Amyloid-β Variants

A hairpin motif in the Amyloid-β peptide is important for formation of disease-

related oligomers

Khaled, M., Rönnbäck, I., L. Ilag, L., Gräslund, Strodel, B., A Österlund, N. (2023)

The full manuscript is reproduced in Section A.2.

3.2.1. Background

In this study, we utilized a combination of MD simulations and native mass spectrom-

etry (MS) to investigate the structures and aggregation mechanisms of Aβ oligomers.

MD simulations offer a powerful complementary approach to experimental tech-

niques, providing insights into high-resolution structures and dynamics at the atom-

istic scale. The MS provided detailed information about the different assembly sizes

present in a heterogeneous mixture, while the coupling of MS with ion mobility

(IM) spectrometry offered additional insight into the oligomer shape through col-

lision cross section (CCS) measurements [265]. We examined Aβ peptides of various

lengths, including Aβ(1-40), Aβ(1-38), Aβ(1-28), and Aβ(1-16), as well as Aβ(1-

40)CC, which contains a double mutation of A21C and A30C in the hinge region of

Aβ that forms an intramolecular disulfide bond. The intrapeptide disulfide bond was

found to stabilize the oligomers, but it did not result in the formation of amyloid

fibrils [266].

3.2.2. Results

MS revealed a different distribution of oligomer states among different Aβ variants

(data not shown, see Manuscript I). Specifically, Aβ(1-40) exhibited a wide range

of oligomers, from dimers to octamers, without a clear preference for any specific

oligomeric state. In contrast, the Aβ(1-40) scrambled variant (Aβ(1-40)Scr), which

has the same amino acid sequence as Aβ(1-40) but in a random order, showed a

limited tendency to aggregate, with the highest oligomeric state detected being a
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dimer. Our observations of the wide range of oligomeric states present in Aβ(1-40)

indicate a frustrated energy landscape for Aβ(1-40) oligomers, where no state has

a clear energetic advantage over the others. Aβ(1-40)CC showed similar oligomeric

states as Aβ(1-40), but with a significant increase in larger oligomers, particularly

those larger than tetramers. However, when the C-terminus was truncated, the num-

ber of larger oligomers was reduced. Aβ(1-28) were mostly observed in dimeric and

trimeric states, with the hexameric state being the largest oligomeric state detected.

Figure 3.13.: (A) Measured collision cross sections (CCS) for Aβ(1-40) (blue circles)
and Aβ(1-40)Scr (red circles) oligomeric states. (B) Measured CCS for
Aβ(1-40)CC oligomeric states are shown as circles colored according
to relative intensity within an oligomeric state (white to green). (C)
Measured CCS for Aβ(1-28) oligomeric states (pink circles). The solid
lines represent the theoretical growth behavior of isotropic growth (I)
and linear growth (L).

The results from IM spectrometry show that small oligomers of Aβ(1-40) grow in

an isotropic manner (Figure 3.13A), meaning that as the oligomeric state (n) in-

creases, the oligomers expand in a spherical shape following the equation CCSn =

CCSn=1 × n2/3. The IM spectrometry also revealed different conformations for dif-

ferent oligomeric states, as indicated by their varying CCS values. However, it was

observed that Aβ(1-40) oligomeric species continue to expand isotropically up to

oligomeric states n = 4 or n = 6, after which the growth deviates from isotropic ex-

pansion and becomes linear. This deviation from isotropic growth suggests that ag-

gregate expansion is occurring at a faster rate in one particular direction, leading to

the formation of extended structures. It has been shown that deviation from isotropic

growth observed in other amyloidogenic peptides is associated with an increase in

β -sheet content [267]. Moreover, this may indicate that monomers, dimers, and
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trimers are largely unstructured, while oligomers larger than tetramers begin to form

more extended β -sheet structures. It is notable that the Aβ(1-40)CC variant showed

a significant increase in larger and linearly growing oligomers, suggesting that the

disulfide bridge specifically enhanced the peptides to arrange into oligomer struc-

tures (Figure 3.13B). In contrast, it was observed that the formation of Aβ(1-28)

oligomers only occurred within an isotropic growth manner, providing additional ev-

idence that the formation of the hairpin β -sheet structure is linked to the aggregation

of extended states (Figure 3.13C).

Figure 3.14.: (A) The top cluster structure of Aβ(1-40)Scr dimer, colored according
to hydrophobicity (orange = hydrophobic, blue = hydrophilic). The
top cluster of Aβ(1-28) dimer (B) and Aβ(1-38) dimer (C), colored
according to secondary structure (coil = gray, sheet = magenta, he-
lix = cyan). (D) The top cluster structure of Aβ(1-40)CC monomer,
dimer and tetramer. Colored according to hydrophobicity (orange =
hydrophobic, blue = hydrophilic). (E) Average β -strand/bridge content
probability for Aβ(1-40) (blue) and Aβ(1-40)CC (green) for monomers,
dimers and tetramers. (F) Probability of β -strand/bridge of peptides
residue for Aβ(1-40) (blue) and Aβ(1-40)CC (green) for dimers (top)
and tetramers (bottom). The two regions with high β -strand/bridge
probability are marked in yellow.

The MD simulations ranged from 2 µs to 10 µs per simulation, depending on the sys-

tem. These simulations were used to determine the secondary structures and other

structural properties of the Aβ variants. The Aβ(1-40)Scr variant was found to fold
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into amphipathic α-helix through molecular dynamics simulations (Figure 3.14A),

which was observed to form only dimers through the MS experiments. This amphi-

pathic helix structure appeared to have the ability to form a relatively stable dimer.

Furthermore, the truncation of the C-terminal hydrophobic region in Aβ(1-28) results

in the loss of the propensity to form a β -hairpin structure at the monomeric state,

which causes it assembly into unstructured aggregates instead of β -sheet oligomers

(Figure 3.14B). This is consistent with the low aggregation tendency of this pep-

tide observed by circular dichroism (CD) spectroscopy and the loss of large (n > 6)
oligomers in MS. This suggests that the isotropic growth may be associated with

less structured aggregates that do not effectively nucleate into amyloid. In contrast,

Aβ(1-40) and Aβ(1-40)CC oligomers were found to form β -hairpin structures which

are critical for the aggregation growth mechanism (Figure 3.14D). The β -hairpin

structures are not stable in the monomeric state which is highly disordered. The MD

simulations showed an increase in β -sheet content as the oligomeric state increases,

i.e., the β -hairpin structure becomes more stable (Figure 3.14E). However, the in-

crease of the β -sheet with oligomer size of Aβ(1-40)CC is lower compared to the

Aβ(1-40) variant. This reduction in the β -sheet content in the CC variant could also

be seen by the β -sheet formation propensity by the two hydrophobic regions of Aβ

peptide. Both variants formed an antiparallel β -sheet in the central hydrophobic core

and the C-terminal hydrophobic regions. However, Aβ(1-40) showed a higher prob-

ability of forming β -sheets (Figure 3.14F). The formation of antiparallel structure

in Aβ(1-40)CC is compatible with the disulfide bridge, which is also consistent with

the oligomer increase observed by MS. The MD simulation of the monomeric state

of Aβ(1-38) shows a β -hairpin structure as for Aβ(1-40), which also stays stable in

the dimeric state (Figure 3.14C). According to these observations, the formation of

the β -hairpin structure and oligomerization rely significantly on the two hydrophobic

regions of the Aβ peptide.

3.2.3. Conclusion

Here, we have emphasized using computational and experimental methods that the

folding into the β -hairpin motif in the monomeric state is essential for larger Aβ

oligomer formation, especially for oligomeric species larger than tetramers (n ≥ 4).
This β -hairpin consists of the two hydrophobic regions of the Aβ peptides that show
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a high propensity to form β -strands. The folding into the β -hairpin enables the for-

mation of oligomers with larger β -sheet structures, which is not possible in the case

of Aβ(1-40)Scr that folded into a helical structure. Furthermore, our results showed

that the intramolecular disulfide bond does not stabilize the β -hairpin structure in

the Aβ(1-40)CC monomer state, which mostly adopts a random coil structure. In

addition, the truncation of the C-terminal hydrophobic region of the peptide leads

to more disordered structures by critically reducing it is tendency for intrapeptide

interactions.

The elongated structures observed for oligomeric states are larger than tetramers,

which could be explained as a result of the formation of extended β -sheet structures.

These oligomers are likely to have distinct structures, which could later undergo a

structural rearrangement to transform into fibrillar structures. The absence of signif-

icantly larger oligomers in MS can be explained by the nucleation process starting

from elongated oligomeric states. The observation of increased populations of AβCC

oligomers can be traced back to the inability of AβCC to adopt a fibrillar conformation

and initiate amyloid nucleation.
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3.3. Publication II: Amyloid-β and the Neuronal Membrane

Amyloid-β peptide dimers undergo a random coil to β -sheet transition in the

aqueous phase but not at the neuronal membrane

Fatafta H., Khaled, M., Owen M. C., Sayyed-Ahmad, A., Strodel, B. (2021). PNAS,

118(39), e2106210118.

The original publication is reproduced in Section A.3.

3.3.1. Background

Several studies suggested that the source of the toxicity of Aβ oligomers results from

its interactions with the neuronal membrane, causing membrane damage or altering

the lipid bilayer features. However, capturing these interactions via experimental

methods is difficult due to their transient nature. Here, we conducted MD simulations

of Aβ42 dimers in solution and at the neuronal membrane, detecting the effect of the

neuronal membrane on the dimerization pathway.

3.3.2. Results

We compared the dimerization of Aβ42 in solution and in the existence of the neu-

ronal membrane via accumulating 24 µs of all-atom MD simulations. The model

lipid bilayer was built to mimic the structure of a neuronal cell membrane. We

designed a model lipid bilayer consisting of six lipid types based on the composi-

tion of the membrane of a neuron (Figure 3.15) [268–270]: 38% 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC), 24% 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE), 5% 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-ser-

ine (POPS), 20% cholesterol (CHOL), 9% sphingomyelin (SM), and 4% monosialote-

trahexosylganglioside (GM1). Our simulations excel previous simulations in two

terms: First, the simulation time scales of this work exceed previous studies investi-

gating interactions of Aβ and membrane by an order of magnitude. Second, the lipid

membrane modeled at the atomistic level with six lipid types is more complex.
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Figure 3.15.: A snapshot of the neuronal membrane containing 38% POPC, 24%
POPE, 5% POPS (collectively shown as gray surface with their phos-
phorous atoms indicated by gray spheres), 20% CHOL (red sticks), 9%
SM (green spheres), and 4% GM1 (yellow spheres).

The findings show that dimer formation occurs in both systems but with significant

structural differences. The dimer in solution transforms from random coil to β -sheet

structures, comparable to those detected in Aβ fibrils. We concluded that Aβ dimers

formed in the solution are on the pathway to amyloid aggregation. On the other hand,

the Aβ peptide’s propensity of β -sheet formation is impaired by the interactions with

the neuronal membrane (Figure 3.16A).

The simulations of the Aβ42 dimer on the neuronal membrane have revealed that the

dimer adsorbs to the membrane, but no insertion of the peptide into the hydrophobic

region of the membrane is observed. The membrane adsorption of Aβ is primarily in-

duced by electrostatic and Lennard-Jone interactions between the charged N-terminal

region and the central polar region (residues F20 to A30) of Aβ42 with the lipid head-

groups of POPC, POPE, and POPS, as well as hydrogen bonds formed nearly between

all peptide residues with the sugar groups of the GM1 lipids (Figure 3.16B). Since

the peptides interact only with the headgroups of the lipids and are not embedded

into the membrane, the membrane structure is only slightly affected by those inter-

actions. Moreover, the simulations have show that the main interaction type between

the peptides and the membrane are the hydrogen bonds formed via the headgroups

of GM1 and the peptides, which appear preferable compared to the intrapeptide and

interpeptide hydrogen bonds. As a result of that, the β -sheet formation is reduced at

the neuronal membrane.
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Figure 3.16.: (A) Probability of secondary structures to form in each residue of the
peptides. The bars represent the cumulative secondary structure proba-
bilities consisting of helix (green), β -strand/bridge (magenta), and turn
or bend (gray). The difference from 1.0 presents the probability of the
random coil state. (B) The average interaction energies of peptide 1
(Left) and peptide 2 (Right) with each lipid of the neuronal membrane.
Electrostatic and Lennard-Jones energies are shown in blue and green,
respectively. The more negative the energy is, the more attractive is the
corresponding interaction.

Furthermore, we used transition networks to elucidate the dimerization pathways for

Aβ42 both in solution and at neuronal membrane. The TNs were computed using

three descriptors to define the conformational states: oligomer size, number of in-

terpeptide hydrophobic contacts, and number of residues in β -strand conformation

(Figure 3.17). According to the TNs, the dimerization pathways started with two

peptides in monomeric random coil conformations represent by state [1, 0, 0] that

lead to dimer assembly with few hydrophobic contacts and β -strand conformation

as shown in states [2, h1, b1-b6], which subsequently forms more stable dimers as

the interpeptide hydrophobic contacts increase which goes along with the increase

of the β -strand content. The TNs exhibit that the dimer in solution has a higher

conformational flexibility than the dimer at the membrane, wherein in the latter the

dimer-membrane interactions limit the flexibility of the peptides.

79



3.3. Publication II: Amyloid-β and the Neuronal Membrane

Figure 3.17.: The TN for Aβ42 dimerization in the aqueous phase (Top) and in the
presence of the neuronal membrane (Bottom). Each node is defined by
three descriptors: oligomer size, number of interpeptide hydrophobic
contacts, and number of residues in β -strand conformation. The last
two descriptors are grouped in blocks of five and are named h1 to h12
for hydrophobic contacts and b1 to b6 for the number of residues in β -
strand conformation. The nodes are connected by edges that represent
transitions between the connected peptide states. The size of the nodes
and the thickness of the edges are proportional to the respective state
or transition probability. For the nodes circled in green representative
peptide conformations are shown (peptide 1 and peptide 2 are shown
as cartoons in red and blue, respectively, with their termini indicated by
spheres (N, light blue; C, light red)).

80



3.3. Publication II: Amyloid-β and the Neuronal Membrane

3.3.3. Conclusion

We observed dimerization of Aβ42 whether in solution or in the presence of a neu-

ronal membrane, but with significant structural differences. The dimer in solution is

distinguished by its high proportion of β -sheet structure, revealing a structural tran-

sition from a random coil configuration to a β -sheet structure. The dimer structures

in solution exhibit resemblances to the U-shaped structure of Aβ42 fibrils. The study

found that in the presence of a neuronal membrane, the dimer structure of Aβ42 is

more disordered and contains less β -sheet content. Additionally, it was discovered

that the GM1 lipids of the membrane are the preferred sites for Aβ42 to interact with,

which is consistent with the findings of previous research. As a result of these ob-

servations, the conclusion was drawn that GM1 may provide neuroprotective effects

against toxicity caused by Aβ .

81



Chapter

4.
Huntingtin Proteins

In this chapter, we present a brief overview of the research on the folding and dimer-

ization of pathogenic and non-pathogenic Huntingtin proteins.

4.1. Publication III: Monomers and Dimers of Huntingtin
Proteins

Comparative molecular dynamics simulation studies of pathogenic and non-

pathogenic Huntingtin protein monomer and dimer

Khaled, M., Strodel, B., Sayyed-Ahmad, A. (2023). Frontiers in Molecular Bio-

sciences, Volume 10:1143353.

The full publication is reprinted in section (A.4).

4.1.1. Background

The expansion of the polyQ tract of Htt-ex1 has significant effects on the proteins’

structures and dynamics. In HD, the length of the polyQ tract in the Htt-ex1 proteins

must exceed 35 glutamine amino acids in order for it to be considered pathogenic.
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Several studies showed that pathogenic Htt-ex1 undergoes a misfolding to β -sheet

structures that afterward aggregate into amyloid fibrils. Many pieces of evidence in-

dicate that Htt-ex1 oligomers are the most toxic species to the brain’s neuron cells.

However, the disordered nature of Htt-ex1 proteins, particularly in the case of the

pathogenic ones, imposes difficulties to capture the structures and the aggregation

mechanism by experimental techniques. In this study, we performed MD simulations

to investigate the structural properties of Htt-Qn monomers and dimers with n= 23 for

non-pathogenic Htt-ex1 and n = 48 for pathogenic Htt-ex1 (Figure 4.1). These simu-

lations help us to understand the differences between non-pathogenic and pathogenic

Htt-ex1 at the molecular level.

Figure 4.1.: Sequence of Htt-Q23 and Htt-Q48 studied in this work. The Nt17 region
is highlighted in red, polyQ in blue, and the PRD is shown in yellow for
polyP11 and polyP10 and rose for the other PRD parts.

4.1.2. Results

Htt-ex1 monomers

Our MD simulations, for 5 µs per protein, illustrate the significant structural differ-

ences between Htt-Q23 and Htt-Q48 monomers. Figure 4.2A and 4.2B elucidates the

differences in the secondary structure profiles. Htt-Q48 has a higher propensity to

form β -sheet, bend, and turn conformations, while Htt-Q23 has a higher tendency to
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Figure 4.2.: Secondary structure preferences per residue of Htt-Q23 (A) and Htt-Q48
(B) monomers. The bars represent the additive secondary structure
probabilities consisting of α-helix (gray), β -strand/bridge (cyan), and
β -turn/bend (magenta). The difference to 1.0 presents the random coil
state. Representative structures were determined from conformational
clustering using an RMSD cutoff of 0.5 nm for Htt-Q23 (C) and Htt-Q48
(D). The population of each cluster is given. The Nt17 region is shown in
red, polyQ in blue, polyP11 and polyP10 in yellow, and the rest of the PRD
in rose. (F) Intraprotein distance matrices of Htt-Q23 (Left) and Htt-Q48
(Right). The color bar on the right shows the average residue-residue
distance (in nm).

form α-helix and random coil conformations. The higher β -sheet content of Htt-Q48

is consistent with previous experimental data and MD simulations [271–273]. Figure

4.2C and 4.2D show the three most populated clusters for the proteins. The Nt17

region of Htt-Q48 tends to form an α-helix, which is contrary to the Nt17 region Htt-

Q23 that tends to form disordered structures in the first 10 residues. The following

residues form an α-helix that extends up to 16 glutamines into the polyQ region. On

the other hand, the polyQ region of Htt-Q48 mainly adopts a randomly collapsed coil

or PPII helix conformations, while the terminal residues of the polyQ region show

a considerable tendency to form β -sheet structures. The PRD in both proteins are
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highly disordered but have a high tendency of forming PPII helices. While the PRD

of the Htt-Q23 forms a PPII-turn-PPII motif, the PRD of Htt-Q48 contains more kinks

and turns.

Further structural differences are defined by the distance maps (Figure 4.2F) to char-

acterize the coupling between Htt-ex1 domains. The results confirm our observation

that Htt-Q48 tends to adopt more compact structures, indicated by the significant con-

tacts between Htt-Q48 residues. A notable difference between the two proteins is the

strong contacts of the Nt17 region with the PRD region in Htt-Q48, while this is not

the case for Htt-Q23. These interactions seem to stabilize the helical structures of the

first ten residues of Nt17 by forming a hydrophobic core in Htt-Q48. In general, the in-

traprotein interactions among Htt-ex1 are largely influenced by the increasing polyQ

length and increased protein flexibility in the polyQ region, allowing a hydrophobic

core to form in Htt-Q48. Many experiments and simulations indicate that polyQ tracts

prefer to adopt collapsed conformations because they are poorly soluble in water

[273]. However, we find that our findings only partly agree with this, as the polyQ

tract of Htt-Q48 shields the hydrophobic residues of Nt17 from the water, resulting in

more collapsed conformations as compared to Htt-Q23 with shorter polyQ tract that

does not provide equivalent shielding.

Htt-ex1 dimers

To gain insights into the first step of oligomerization, we conducted MD simulations

for a total of 6 µs per protein to study the dimerization between Htt-ex1 monomers.

The secondary structures and intra-peptide interactions are very similar to those of

the monomers (Figure 4.2A and B). Therefore, our simulations did not show con-

siderable structural transitions as a result of the aggregation. Figures 4.3A and B

display the representative structures of the two most populated clusters. In general,

the interaction interfaces between the Htt-Q23 proteins are primarily governed by

the interactions of the partly amphipathic Nt17/polyQ helices. These two helices are

typically oriented parallel to each other, and their interactions contribute to helical

stability. In contrast, the polyP regions have little involvement in the interaction in-

terface and are oriented away from it (Figure 4.3C). The Htt-Q48 dimer clusters, on

the other hand, exhibit a more diverse aggregation behavior, with various interaction
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Figure 4.3.: The two most populated cluster structures for the Htt-Q23 (A) and Htt-
Q48 (B) dimer. The proteins are shown as cartoons and colored red for
the negatively charged residues, blue for the positively charged ones,
and white otherwise. The side chains at the protein interfaces are shown
as sticks. (C) The interprotein contacts between residues for Htt-Q23
(Left) and Htt-Q48 (Right) dimers. The color bar on the right shows the
average distances (in nm). (D) The distribution of the polar (Top) and
hydrophobic (Bottom) SASAs of the four most populated clusters Htt-Q48
dimers are shown.

interfaces involving both the polyP and the PRD. The primary interactions observed

involve the polyP regions, as well as interactions between polyP and mixed regions

in the PRD, and between polyP and polyQ. In addition, the polyQ interacts with the

entire protein, while the Nt17 region interacts with polyP11, polyQ, and the C-terminal

of the PRD (Figure 4.3C).

Several studies proposed that the Htt-ex1 aggregation is initiated via the Nt17 head-

piece, by forming oligomers with helical Nt17 in the core [89, 94]. In our simulations,

we captured the interaction between Nt17 headpieces for Htt-Q48. Dimerization via
the Nt17 helices results in a decrease of the hydrophobic surface area and increases

the polar surface area, compared to the other dimerization pattern (Figures 4.3D

and B, cluster 2). This interaction pattern is expected to stabilize the helix-mediated
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dimer, making it very likely aggregation mechanism.

4.1.3. Conclusion

Our MD simulations revealed significant structural differences between the Htt-ex1

monomers. Specifically, the non-pathogenic Htt-Q23 forms a long helix that extends

from the second half of the Nt17 region to the majority of the polyQ region, while its

PRD forms a PPII-turn-PPII motif. On the other hand, the Htt-Q48 monomer tends to

be disordered, with the Nt17 region forming a helical structure while the polyQ re-

gion remains largely disordered with high PPII helix and random coil conformations.

Consequently, the disordered polyQ leads to compact structures, with multiple in-

traprotein interactions and the formation of short β -sheet conformations. The helical

structure of the Nt17 is stabilized by hydrophobic interactions between the Nt17 and

the PRD. Both proteins exhibited mainly PPII structures in their polyP regions. How-

ever, in Htt-Q48, these structures were disrupted by kinks, which is consistent with the

compact conformations observed in this protein. In contrast, in Htt-Q23, the polyP11

and polyP10 segments were straight and aligned antiparallel to each other, resulting

in an elongated shape due to the 25-residue N-terminal helix and the PPII-turn-PPII

motif. This overall fold was relatively stable, with structural fluctuations primarily

arising from the first and last ten residues of Htt-Q23.

The results for the dimers indicate that the N-terminal helix plays a crucial role in the

dimerization of both Htt-Q23 and Htt-Q48, with a more significant impact observed

in the Htt-Q23. In this protein, the helix-helix interaction stabilized the second part

of the helix, which includes almost residues from the polyQ23 region, explaining the

resistance of this region against β -sheet formation. In contrast to Htt-Q23, different

modes of dimerization were observed in the Htt-Q48, one of which involves the two

N-terminal helices. However, we expect the dimerization mediated by the Nt17 helix

to be more stable due to the larger burying of hydrophobic residues. A crucial aspect

of the Htt-Q48 dimerization is the significant involvement of the disordered polyQ

regions, which ultimately enable the formation of β -sheets over a longer timescale

(not simulated in this study). Nevertheless, the observable interactions with the PRD

obstruct this structural transition.

Overall, our results indicate that the extension of polyQ affects the conformational
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ensemble of Htt-ex1 at the monomer level and has a significant impact on dimer-

ization. Our findings shed light on how the flanking domains of polyQ modulate

conformations and aggregation pathways.
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Chapter

5.
Conclusions

In this thesis, we employed computational approaches to investigate the aggregation

of amyloid proteins into small oligomers. Our focus was on two IDPs: the Aβ pep-

tide, which is a peptide involved in pathology of AD, and the Htt protein, which is

associated with HD. These diseases are characterized by the aggregation of amyloid

proteins into amyloid fibrils, as well as pre-fibrillar aggregates such as protofibrils and

amyloid oligomers. Experimental evidence suggests that the toxicity of the oligomers

generated during the aggregation pathway is a crucial factor in the degeneration of

neuronal cells in the brain. The oligomers are of low abundance, conformational het-

erogeneity, and high transit nature which makes them challenging to study through

experiments. Therefore, computational approaches have become an intense area of

investigation to understand the oligomer aggregation mechanism. To date, many

computational studies on amyloid aggregation have used unsuitable force fields and

water models, resulting in inaccurate ensembles that are not representative of IDPs.

Accurately modeling the aggregation process requires careful consideration of the

force fields and water models employed. By investigating the aggregation process

of Aβ peptides and Htt proteins using appropriate force fields such as Charmm36m,

we can enhance our understanding of amyloid proteins and their role in the related

diseases.

In chapter 3, we focused on investigating the aggregation of the Aβ peptide into

small oligomers through three topics: the aggregation into small oligomers of Aβ42,

the aggregation of various Aβ variants, and the effects of the neuronal membrane
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on Aβ42 dimerization. In chapter 3.1, we have extensively simulated the aggre-

gation of Aβ42 peptides into dimer, tetramer, and hexamer structures. We utilized

long-timescale MD simulations of Aβ42 dimers to construct an MSM, which revealed

conversion timescales between states ranging from a few nanoseconds to a hundred

microseconds, with the slowest process being the transitions to the most compact

structures. The formation of extended and compact dimer structures results from

inter- and intrapeptide interactions. The compact dimers are stabilized by interac-

tions within the central hydrophobic core, the C-terminal hydrophobic region, and

intrapeptide interactions of the N-terminal region. The strong hydrophobic interac-

tion among peptides in the C-terminus highlights its crucial role in stabilizing Aβ42

peptide oligomers. Additionally, the presence of two extra residues in the C-terminus

of Aβ42 compared to Aβ40 enhances oligomerization. These findings suggest that in-

teractions between the N-terminal and C-terminal regions can result in the formation

of different oligomer conformations on or off pathways leading to amyloid fibrils.

Our analysis demonstrates that the oligomer is rich in β -sheet conformations, mainly

comprising two hydrophobic regions that form β -hairpin structures. However, we

also observed transitions to β -sheet structures in other areas, such as residues 2-5,

10-14, and 38-41. Although the β -content of the oligomers is lower than that found

in fibrils, it indicates that the oligomer undergoes structural changes to transform

into the fibril structure. The oligomers can form compact structures by reducing

their hydrophobic SASA. Although there is no dominant structure among the three

oligomer sizes studied here, a slight preference to form compact structures in dimers

and tetramers, and an extended structure in the hexamer, was observed. In summary,

our findings suggest that intrapeptide interactions generally facilitate the formation

of β -hairpin structures, but they can also hinder the unfolding of complexes, delaying

the formation of fibril-like structures. Conversely, interpeptide interactions are cru-

cial for stabilizing β -contacts across peptides and clustering hydrophobic residues,

which promotes oligomerization. These findings suggest that multiple oligomeriza-

tion pathways exist, and the oligomers must rearrange their conformation to form

fibrils or prefer the oligomeric state due to strong hydrophobic interaction.

In chapter 3.2, we used computational and experimental approaches to investigation

the aggregation of different Aβ variants. The finding demonstrated that a hairpin

structure is crucial for the formation of oligomeric species of Aβ peptides. In par-

ticular, oligomers larger than tetramers require the folding of Aβ peptides into the
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hairpin structure. This hairpin structure results from the high β -strand propensity of

two hydrophobic regions in the Aβ peptide, which transiently fold onto each other.

The formation of a hairpin structure in Aβ allows for the addition of monomers to

the oligomer, resulting in the formation of larger β -sheet structures. As the size of

the oligomer increases, the propensity for β -sheet formation also increases, suggest-

ing that the folding process is cooperative. The elongated structures observed for

oligomeric states larger than tetramers are believed to be the result of the forma-

tion of extended β -sheet structures. Nonetheless, these elongated oligomers have

structures distinct from fibrils. Our MD simulations revealed that Aβ peptides adopt

characteristic anti-parallel β -sheet structures in the oligomers. Therefore, nucle-

ation requires a structural rearrangement that involves breaking intrapeptide hydro-

gen bonds and forming new interpeptide hydrogen bonds. Elongated oligomers are

more likely to undergo conversion as their size increases, but it remains a rare event

[274].

This study provides insights into the structural changes that occur during the initial

stages of Aβ aggregation, which are thought to be particularly toxic and relevant to

the development of AD. Our findings indicate that oligomers are inherently polydis-

perse and possess a complex energy landscape. This may contribute to their toxicity,

as they have a strong tendency to interact with other cellular components and other

biomolecules to minimize their energy levels [275–280]. Inhibiting the folding of Aβ

into the hairpin structure could be a potential strategy for preventing Aβ toxicity. This

could be accomplished through the development of therapeutic peptides or proteins

that can effectively bind to regions of Aβ with a high β -sheet propensity, thus com-

peting with Aβ -Aβ interactions. Our findings indicate that the interaction between

two hydrophobic regions plays a critical role in oligomer formation, suggesting that

targeting these regions could effectively reduce oligomerization. Alternatively, ther-

apeutic molecules designed to specifically recognize and bind to Aβ in the hairpin

structure could also be suggested as a potential approach.

In chapter 3.3, we simulated the dimerization of Aβ42 with a complex model lipid

bilayer at the atomistic level. The bilayer consisted of six lipid components, which

mimicked the composition of the neuronal membrane. We observed that Aβ42 dimer-

izes both in solution and in the presence of the neuronal membrane, but with notable

structural differences compered to solution. We found that GM1 lipids of the neuronal

membrane are the preferred lipid interaction sites of Aβ42. Moreover, the interactions

91



of the dimer with monosialotetrahexosylganglioside (GM1) lipids in the membrane

inhibit the formation of β -sheet and reduce the order level of the dimer in contrast

to the Aβ42 dimer in solution. These results support earlier studies that suggest the

neuroprotective role of GM1 lipid. Furthermore, we showed that the dimer in so-

lution has a high proportion of β -sheet, indicating a transition from a random coil

conformation to a β -sheet structure.

In chapter 4, we conducted multiple MD simulations to explore the structures of two

Htt-ex1 proteins: the pathogenic Htt-Q48 and the nonpathogenic Htt-Q23 at both the

monomer and dimer levels. Our results indicate distinct monomer structures for these

two proteins. In the Htt-Q23, the N-terminal helix includes both the Nt17 and most

of the polyQ23 residues, whereas in the Htt-Q48, the Nt17 tend to form helical struc-

ture and the polyQ tract is disordered, resulting in more bend/turn and PPII helix

conformations across the polyQ and the PRD regions. This leads to compact pro-

tein structures with small intraprotein β -sheets. Although both Htt-Q23 and Htt-Q48

exhibit PPII structures in their PRD regions, they differ in terms of the PRD shape.

The PRD of the Htt-Q48 is disrupted by kinks, consistent with its compact conforma-

tions, whereas the PRD in the Htt-Q23 has an elongated shape due to the presence

of a PPII-turn-PPII motif and a 25-residue N-terminal helix. Our results on dimer-

ization demonstrate that the N-terminal helix mediates the process for both Htt-Q23

and Htt-Q48 but to a greater extent in Htt-Q23. The helix interaction with itself and

the polyQ23 region stabilizes the helix and inhibits β -sheet formation. Moreover, the

amphipathic α-helix Nt17 headpieces interact and reduce the hydrophobic surface,

increasing the stability of this dimer conformation. In contrast, we observed differ-

ent dimerization modes in the Htt-Q48, with the one involving the two N-terminal

helices. However, we predict that the Nt17 helix-mediated dimer is more stable be-

cause of greater burial of hydrophobic residues. Dimerization of the Htt-Q48 involves

the disordered polyQ regions, allowing for β -sheet formation on a longer timescale,

but interactions with the PRD slow down the formation. Our findings reveal that the

length of polyQ has a significant impact on the structures of the Htt-ex1 monomers

level, which subsequently affects its dimerization. Our results provide insight into

how the adjacent domains of polyQ can influence the conformations and aggregation

pathways of Htt-ex1, and offer an explanation for several experimental findings at

the atomic scale.

It is important to note that there are various challenges and limitations associated
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with all-atom MD simulations used to model protein aggregation. These simulations

require a significant amount of computing resources, which restricts the time scales

that can be simulated. Furthermore, simulating the complex process of aggregation

involves addressing various issues. Firstly, a large number of intramolecular inter-

actions with intricate behavior need to be considered. Secondly, the intermolecular

behavior of aggregation-prone proteins presents similar difficulties, as the sheer num-

ber of possible interactions requires long sampling times to properly account for them.

This will result in slowing down the conformational transitions and make it difficult to

obtain the required data for constructing thermodynamic or kinetic ensembles. Even

with applying enhanced sampling techniques, capturing sufficient transitions among

different conformations to construct kinetic models can be difficult and require long

timescale simulations. To overcome these challenges and fulfill the requirements

of building a kinetics model, such as detailed balance, transition networks provide a

valuable alternative to kinetic models as they are solely based on geometric clustering

by extracting the essential features of the conformational transitions. When working

with Markov models, it is important to consider statistical limitations that affect both

temporal and spatial resolution. These limitations arise from the lag time and confor-

mational space discretization, which can impact the accuracy of the resulting model.

Nevertheless, the limited conformational space can also have some benefits, as it may

aid in the interpretability of the results. In this work, we have employed conventional

MD and REMD simulations to model the protein aggregation process. These simula-

tions were able to sample a wide range of conformations, covering significant parts of

the conformational space, which was essential in successfully modeling the aggrega-

tion process. Overall, through the use of computational approaches, we have gained

a deeper understanding of the molecular mechanisms behind amyloid aggregation,

supported by available experimental data. Our findings provide high resolution de-

tails of the systems under investigation that cannot be obtained through experimental

means.
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Chapter

A.
Appendix

A.1. Appendix to Amyloid-β42 Oligomers

State S1 S2 S3 S4

Stationary population 10.6% 11.1% 13.0% 23.9%

State S5 S6 S7 S8

Stationary population 8.7% 4.2% 24.8% 3.9%

Table A.1.: The stationary distributions of the MSM states for the Aβ42 dimer.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.1.: The sample density along the first two TICA components for unbiased
MD and REMD dimer simulations.

Figure A.2.: The sample density of the projections of the combined cMD and REMD
dimer trajectories into the first two slowest collective coordinates. The
average compactness and the average number of residues in β -sheet con-
formation with their standard deviations along the IC1 and IC2 are shown
in blue and gray, respectively. The structures illustrating 100 representa-
tive conformations for extended and compact conformations.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.3.: The compactness distributions of the MSM states for the Aβ42 dimer. The
state number and compactness average value are printed in the top cor-
ner for each subplot.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.4.: The probabilities of intrapeptide (A) and interpeptide (B) salt-bridges
formation within of the MSM states for the Aβ42 dimer. The salt bridge
is defined between the charged side chain atoms when the distance be-
tween two specified atoms is within 4.6 Å. The possible atoms are: N
atom in the N-terminal, CG atom in Asp or CD atom in Glu; NH2 atom
in Arg, NZ atom in Lys, or C atoms in the C-terminal.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.5.: The probability of Aβ42 residues of the dimer to be in parallel (red) or
antiparallel (blue) interpeptide β -sheet conformation. The antiparallel
β -sheet probabilities are showed in negative y-axis.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.6.: The distances between the Cα atoms of the residue pairs (i, i) in the Aβ42
dimer for the MSM states, where the residue index i ranges from 1 to 42.
The gray shades represented the standard deviations.

Figure A.7.: The sample density along the first two TICA components for unbiased
MD and REMD tetramer simulations.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.8.: The β -sheet probability of Aβ42 residues of the four peptides in the differ-
ent Aβ42 tetramers states. The peptides 1, 2, 3 and 4 are colored yellow,
blue, green, and red, respectively.

Figure A.9.: The average content probabilities of intra- and interpeptide β -sheet for
the tetramer states.
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A.1. Appendix to Amyloid-β42 Oligomers

Figure A.10.: The β -sheet probability of Aβ42 tetramer per peptide for the tetramer
states. The bars are colored in green and blue for intra- and interpeptide
β -sheet probabilities, respectively.

Figure A.11.: Implied time scales of the slowest MSMs process at different lag times
obtained from the cMD simulations of Aβ42 dimer.
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ABSTRACT 

The Amyloid-β (Aβ) peptide is an aggregation-prone peptide linked to neurodegeneration in Alzheimer’s 

disease (AD). Aβ self-assembles spontaneously in aqueous solution to form aggregates of various sizes, with 

smaller pre-fibrillar oligomeric aggregates being especially neurotoxic. Such small oligomers are however 

difficult to study as they are transient, low abundant and heterogenous. Here we use a combination of native 

ion mobility-mass spectrometry and molecular dynamics simulations to systematically study the structure and 

assembly mechanisms of Aβ oligomers in vitro. It is found that oligomers cannot be formed by a peptide variant 

that does not have propensity to fold into a β-hairpin motif present in the wild type Aβ peptide. This specific 

structure motif seems to be a more important determinant for aggregation than the overall hydrophobicity of 

the peptide. Introduction of an intramolecular disulfide bond in the Aβ peptide increases oligomerization, even 

though the monomeric peptide is not stabilized in the hairpin conformation. This is probably achieved by pre-

arranging the peptide in a conformation which is compatible with oligomeric, but not fibrillar structures. As 

oligomerization is driven by formation of the hairpin motif it was furthermore possible to decrease the oligomer 

population by truncating one of the β-strands, and thus decreasing the hairpin propensity of the peptide. These 

studies provide increased understanding of the earliest steps in Aβ aggregation where species related to AD 

toxicity might be formed. Prevention of Aβ folding into the hairpin conformation, or specific binding to the 

hairpin motif could be strategies to design AD therapies.   
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INTRODUCTION 

The amyloid-β (Aβ) peptide is a neurotoxic peptide formed by enzymatic processing of the Amyloid Precursor 

Protein (APP), a type-I membrane protein found in the neuronal membrane. N-terminal cleavage by β-

secretases in the soluble extracellular part of APP, in combination with C-terminal cleavage by γ-secretase in 

the transmembrane domain, releases Aβ peptides consisting of 38-43 amino acids (1). These amphiphilic 

peptides are highly aggregation prone and spontaneously assemble in aqueous solution at concentrations 

higher than their equilibrium solubility (2, 3). Aggregation starts with an unstructured Aβ monomer which 

evolves into β-sheet structured amyloid fibrils, typically deposited in neuritic plaques associated with 

Alzheimer’s disease (AD). The exact mechanism for the peptide’s toxicity, and its link to AD pathology is not 

known in detail. The so-called Amyloid cascade hypothesis suggests that it is the accumulation and aggregation 

of Aβ in the brain that is the main cause of AD (4, 5). Aβ populates several intermediate aggregation states on 

the way towards the fibrillar end-product, and a solution of very high polydispersity is consequently formed (6). 

The fact that Aβ peptides convert from an unstructured state into a β-sheet state means that the aggregation 

occurs by non-classical nucleation, in which both aggregate size and β-sheet content must increase on the path 

towards nucleation (7, 8).  This structure conversion is associated with a high energy barrier, and primary 

nucleation is thus relatively slow (9). Structural templating using existing fibrils, so-called secondary nucleation, 

greatly reduces the activation barrier and is therefore the dominating nucleation mechanism for Aβ aggregation 

(10).  

 

The pre-fibrillar Aβ aggregates have risen as especially interesting species in the aggregation process, as they 

have been observed to correlate better with neurodegeneration compared to the mature fibrillar aggregates 

(11, 12). Pre-fibrillar aggregates range from dimers all the way up to large megadalton particles (6, 13–15) with 

the smaller aggregates sometimes called oligomers (“oligo”, a few), while larger and more fibrillar-like 

aggregates are often termed protofibrils (16). However, no universally accepted terminology for different types 

of aggregates exists within the amyloid field. Pre-fibrillar aggregates have been the target for novel strategies 

to treat AD (17, 18). Most recently monoclonal antibodies that specifically target such aggregates have been 

developed, which are promising drug candidates (19–21). Much is however still elusive about pre-fibrillar 

aggregates on the molecular level. The main reason for this is that they remain difficult to study due to their low 

abundance, low stability, and polydispersity. A recent study found that Aβ(1-42) oligomers are very dynamic 

and rapidly dissociate into monomers (7). It was also quantified that the pool of soluble Aβ(1-42) oligomers never 

reaches more than 1.5% of the total peptide concentration in a buffered aqueous solution (7).  

 

The Aβ peptide contains two hydrophobic segments, in the middle (the central hydrophobic core, CHC, residues 

16-22) and in the most C-terminal parts of the sequence (residues 30-42), separated by a relatively hydrophilic 

“hinge” segment (Figure S1). Proline scanning of the Aβ sequence has revealed that the E22P substitution in the 

hinge region increases the toxicity of the peptide, possibly due to stabilization of a turn motif that enables the 

two hydrophobic segments to interact more favorably (22). Phosphorylation of the S28 residue in the hinge 

segment has on the other hand been found to destabilize this turn-motif due to repulsive electrostatic effects, 



 3 

which also leads to a loss in aggregation propensity (23). Transient back-folding of the C-terminal segment and 

formation of a transient β-hairpin structure (Figure 1A) is consequently believed to be important in Aβ 

aggregation and its associated disease-related toxicity (24). This is further supported by the fact that the hinge-

region is a segment where many disease-related mutations are located. Such disease related variants include 

the Flemish (A21G), Dutch (E22Q), Italian (E22K), and Arctic (E22G) variants (25–28). The Arctic variant is 

particularly interesting as this variant is enriched in toxic pre-fibrillar aggregates, which have been used as 

targets to develop the promising anti-AD antibody drug Lecanemab (29). Stabilization of a partially folded 

hairpin state in Aβ has also been reported using an intermolecular disulfide-bridge in the hinge region (A21C 

A30C double-mutant, AβCC). This restriction of conformational dynamics under oxidizing conditions similarly to 

the Arctic variant leads to formation of stable and highly toxic pre-fibrillar oligomers, but no amyloid fibrils (30). 

These AβCC structures have recently also been used to develop anti-AD antibodies to target especially 

neurotoxic Aβ species (31). 

 

In this study the role of the seemingly very important β-hairpin motif in the earliest steps in Aβ peptide self-

assembly is systematically examined biophysically. We use a combination of experimental in vitro techniques 

and molecular dynamics (MD) simulations to study the smallest Aβ aggregates, oligomers consisting of only a 

few monomeric units. Experimental studies of oligomers are generally challenging as only a small fraction of 

the total peptide ensemble is in the oligomeric state at each given moment (7). One well-suited technique for 

studying Aβ oligomerization is native mass spectrometry (MS), which provides highly resolved size information 

on the different co-existing assembly states in a heterogenous mixture, even for sparsely populated states (15, 

32). Coupling of MS to ion mobility (IM) spectrometry furthermore provides low resolution information on 

oligomer shape. The combination of IM-MS and MD simulations is very complementary: MD provides high 

resolution information on oligomer structure and dynamics, which is not obtainable by IM-MS. MS on the other 

hand reports on the relative populations of assembly states, which is challenging to obtain by MD as the entire 

energy landscape can rarely be sufficiently sampled (9, 33). This combination of MD and native IM-MS to 

systematically examine different Aβ sequence variants here gives us valuable insights into the molecular 

mechanisms for Aβ aggregation and the nature of neurotoxic pre-fibrillar oligomers which are highly interesting 

species in AD biology and drug development. 

 

RESULTS AND DISCUSSION 

Aβ oligomerization is driven by specific structure motifs 

Mass spectrometry analysis of Aβ(1-40) results in detection of various oligomeric states at low relative 

abundance (Figure 1A), as has been previously reported (14, 15, 34). We here annotate the oligomers by their 

oligomeric state/charge state (n/z) ratio, as electrospray ionization generates species with multiple charges. It 

should however be noted that oligomers can overlap in the m/z dimension of the mass spectrum, and for 

example the n/z = 1/2 peak could hence consist of monomeric (+2), dimeric (+4), trimeric (6+)… components. 

These components can however usually be deconvoluted using the ion mobility (IM) dimension where ions are 

separated by a shape factor termed the collision cross section (CCS). There have previously been various reports 
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regarding the oligomeric states populated by Aβ, with an early paper claiming that Aβ(1-40) only oligomerizes 

up to a tetrameric state (34). We here observe no such limitations with Aβ(1-40) oligomers detected at least up 

to an octameric state. There is also no specificity in which states are populated, with no preferred oligomeric 

state and a gradual decrease in intensity with increasing oligomeric state. This is in contrast to other more 

specific proteins detected by native MS (35), as well as to Aβ(1-42) oligomers formed in the presence of 

zwitterionic detergent, where a preferred assembly state is formed (36, 37). This indicates that Aβ oligomers in 

solution exist on a frustrated energy landscape where no single aggregate state is significantly more favorable 

than the other.  

 

Observation of oligomers in ESI-MS could theoretically be due to artificial clustering during the ionization 

process, if two species are present in the same electrospray droplet upon desolvation. Low peptide 

concentrations and small droplet sizes (nanoESI) are here used to counteract this. Monte-Carlo simulations have 

previously suggested that such non-specific artifacts become relevant in nanoESI at protein concentrations 

greater than 50 µM (38), which is well above the concentration used here (20 µM).  

 

To confirm that the detected oligomers are indeed specific aggregates we analyzed a scrambled Aβ variant, 

Aβ(1-40)Scr under identical conditions as the wild type Aβ(1-40). The Aβ(1-40)Scr peptide has the same amino 

acid composition as Aβ(1-40) but hydrophobic residues are more evenly distributed of over the sequence, in 

contrast to Aβ(1-40) where the hydrophobic residues are clustered in two segments (Figure S1). A scrambled 

peptide is a perfect control in a native MS experiment as it has all the same average physico-chemical properties 

as the original peptide, including the same mass. The mass spectrum for Aβ(1-40)Scr shows a very similar charge 

state envelope as Aβ(1-40), centered around the +3 state (Figure 1B). Two differences are however noted: Aβ(1-

40)Scr significantly populates also the +5 state, indicating a slightly larger solvent assessable surface area (SASA). 

Aβ(1-40)Scr does also importantly not form any oligomers other than a dimer. The slightly larger size and 

decrease in oligomers for the scrambled peptide are seen also in the size exclusion chromatograms of the two 

peptides (Figure S2).  
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Figure 1. Self-assembly of Aβ(1-40) and Aβ(1-40)Scr.  Mass spectra of 20 μM (A) Aβ(1-40) and (B)  Aβ(1-40)Scr, 

in 200 mM ammonium acetate pH 6.8, with the oligomeric region magnified. Peaks are annotated by their 

oligomeric state/charge state ratio (n/z). The top cluster monomeric structures from 2 μs MD simulations are 

shown for each peptide, colored according to hydrophobicity (orange = hydrophobic, blue = hydrophilic). The 

N-terminus is highlighted in blue, while the C-terminus is highlighted in red. C) Time dependent aggregation 

assays on Aβ(1-40) (blue) and Aβ(1-40) Scr (red) aggregation, as monitored by CD spectroscopy (top) and ThT 

fluorescence (bottom). D) Top cluster structures from 10 μs MD simulations of Aβ(1-40) (blue) and Aβ(1-40)Scr 

(red) dimers, colored according to hydrophobicity. E) Calculated hydrophobic Solvent Accessible Surface Area 

(SASA)/total SASA ratio (top) and β-strand/bridge content probability (bottom) from MD simulations, for Aβ(1-

40) (blue) and Aβ(1-40)Scr (red) monomers and dimers. F) Measured collision cross sections (CCS) for each 

oligomeric state (blue circles for Aβ(1-40), red circles for Aβ(1-40)Scr). Solid lines represent the theoretical 

isotropic growth originating from each monomer state. The insert shows a magnification of the n = 1 and n = 2 

oligomeric states. 

 

The reason for this observed difference in oligomerization propensity must be that the specific sequence in 

Aβ(1-40) is responsible for the clustering into oligomers, rather than a more general phenomenon such as 

clustering of hydrophobic peptides in aqueous solution or desolvation of multiple species from the same 

electrospray droplet. An explanation for the difference in oligomerization propensity could be found by 

examining the structure propensity of the two peptides. Structure prediction using AlphaFold2 predicts that 

Aβ(1-40) forms a β-hairpin structure where the two hydrophobic segments self-interact (Figure S3A). This is 
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similar to the NMR structure of Aβ(1-40) formed in the presence of an affibody (39). The more even distribution 

of hydrophobicity in Aβ(1-40)Scr is however predicted by AlphaFold2 to facilitate folding into an amphipathic 

helix (Figure S3B). To test if such structures could be stable in solution, we performed 2 µs MD simulations for 

each peptide monomer. While the helical motif in Aβ(1-40)Scr  remained during the MD simulation, most of the 

β-hairpin structure was not present in the top cluster MD model of the Aβ(1-40) monomer (Figure 1A, top). 

Circular dichroism (CD) spectroscopy confirms that fresh samples of both Aβ(1-40) and Aβ(1-40)Scr are mostly 

unstructured, as seen by a spectral minima around 196 nm, which is characteristic for a random coil (Figure 1B, 

top). The Aβ(1-40) peptide, as expected, spontaneously evolves into large ThT-active aggregates upon 

incubation (Figure 1C, bottom blue), which have β-sheet structure as seen by CD spectroscopy (Figure 1C, top 

blue). Aβ(1-40)Scr does however not form any such β-sheet amyloid aggregates (Figure 1C, red) upon 

incubation.  

 

Further 10 μs MD simulations were performed to study the differences between dimers formed by the two 

peptides. Aβ(1-40)Scr was observed to interact within the dimer with the hydrophobic faces of the amphiphilic 

helices facing inwards (Figure 1D, Figure S4). This structure where hydrophobic patches have specific preferred 

interactions could explain why Aβ(1-40)Scr is less frustrated compared to Aβ(1-40) and does not go on to form 

higher oligomers. Aβ(1-40) instead forms a dimeric structure by interpeptide interactions involving the β-

strands in the most hydrophobic parts of the sequence (Figure 1D). Aβ(1-40) is found in the MD simulations to 

expose slightly fewer hydrophobic residues to the surrounding solvent compared to Aβ(1-40)Scr (Figure 1E, top), 

highlighting that average hydrophobicity might not be the only driving force for oligomerization. Instead, the 

large difference in β-sheet propensity (Figure 1E, bottom) and distribution of hydrophobic residues over the 

sequence could be important. It is easy to imagine how a β-sheet structure would enable continued growth of 

larger aggregates by addition of monomeric units, without satisfying any particular aggregate number. This is 

demonstrated by modeling Aβ(1-40) tetramerization in MD simulations (also for 10 μs), where an even larger β-

sheet core is formed (Figure S5A). Previous MD simulations of Aβ oligomers combined with transition network 

analysis have shown that several open and closed oligomeric structures of various aggregate sizes can be 

populated during further aggregation, in agreement with the mass spectrum in Figure 1A (40). The β-

strand/bridge content of Aβ(1-40) increases in our MD simulations with increasing assembly state, from 19% in 

the monomer, to 22% in the dimer and 30% in the tetramer (Figure S5B). Proline substitutions that reduce 

aggregation propensity and neurotoxicity were also found to be in or close to the segments modeled as β-

strands in our MD models of Aβ(1-40) (Figure S6A). Proline is a hydrophobic residue that acts as a β-sheet 

breaker. Loss of the β-hairpin motif in Aβ(1-40) is indeed suggested by AlphaFold2 when modeling the F19P 

variant (Figure S6B), which has previously been found to have decreased oligomerization propensity (41).  

 

Small Aβ oligomers grow isotropically 

We next turned to ion mobility spectrometry to study the shapes of the Aβ(1-40) and Aβ(1-40)Scr oligomers. All 

oligomeric states of the peptides display several conformations as seen by different collision cross sections 

(CCS) (Figure 1F), which could represent either different solution state structures or gas phase structures. The 
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experimental CCS values for Aβ(1-40) and Aβ(1-40)Scr are similar for low z but are slightly increased for Aβ(1-

40)Scr at higher z (Figure 1F, insert). Calculated CCS values for the top clusters from MD simulations are also 

similar, with the Aβ(1-40) monomer having a CCS of 740 Å2 and the Aβ(1-40)Scr monomer having a CCS of 780 

Å2. This is fairly close to the experimental values for monomers that range between 530 Å2 (z = 2) and 830 Å2 (z 

= 5).  

 

A more careful analysis shows that the experimental CCS start to increase significantly above z = 3 for 

monomers, and above z = 4 for dimers (Figure S7). High charge density in the gas phase will lead to strong 

Coulomb repulsion due to the low permittivity of vacuum. We therefore conclude that the compact ion mobility 

conformations observed at z = +2 and +3 for the monomer and +3 and +4 for the dimer are solution state-like 

structures while the higher charge states which have significantly increased CCSs are structures that may have 

been significantly altered in the gas phase by repulsive intrachain coulomb-coulomb interactions. It can also be 

seen that most oligomers observed have CCS values that agree with isotropic growth starting from the compact 

z = +2 or +3 monomers, which we annotate as I2 and I3 respectively (Figure 1F, blue solid lines). Isotropic growth 

means that the oligomers grow as spheres according to:  CCSn = CCSn=1 * n2/3 (42). Higher oligomers above n = 6 

do however deviate from this isotropic growth, indicating a change in aggregate shape. The top cluster 

structures for n = 1, 2 and 4 generated from MD simulations also appear to grow isotopically (Figure S8). The 

absolute CCS values of the MD models are however larger than the experimental values, which is probably due 

to compaction of the structures upon transfer from solution into the gas phase (43).  

 

An intramolecular crosslink in the hinge region increases oligomerization 

As the sequence specific β-hairpin structure motif seems to be important for the oligomerization of Aβ(1-40) we 

next attempted to stabilize this structure to see if this leads to an enhancement of the peptide’s oligomerization 

propensity. Stabilization of the β-hairpin state of the monomer has previously been explored by the introduction 

of an intramolecular disulfide bridge in the hinge-segment (A21C, A30C) (30). This double-mutant peptide called 

AβCC does not have a higher tendency to form amyloid fibrils, aggregation is instead halted at pre-fibrillar states. 

The Aβ(1-40)CC is co-expressed together with an affibody, which stabilizes the monomeric peptide in the β-

hairpin conformation for which the structure has been solved using solution state NMR (30, 44). An MD 

simulation starting from an Aβ(1-40)CC monomer in this hairpin state performed here for 2 μs suggests that the 

hairpin motif is not stable without the affibody, even though the two hydrophobic segments remain close to 

each other (Figure 2A). CD spectroscopy confirms this loss of β-sheet structure, as the Aβ(1-40)CC variant 

displays a spectrum typical for a random coil, very similar to wildtype Aβ(1-40) (Figure 2A). Mass spectrometry 

analysis of Aβ(1-40)CC reveals a general increase in oligomeric species compared to the wildtype variant, with a 

most notable increase for larger oligomers (n>6) (Figure 2B, orange fields). Notable shifts in the ion mobility 

dimension are also seen, with shifts towards larger oligomers in peaks that overlap in the m/z dimension (Figure 

S9). This increase in oligomers again points towards an important role of the hairpin structure in formation of 

oligomers.  
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Taking the relative intensity of charge states within an oligomeric state into account reveals yet more 

interesting features. The most populated charge states for each oligomeric state ≤ 4 follow isotropic growth 

that originates from the z = +3 monomeric state (I3). The I3 family extends from n=1 to n=6 but is not present for 

larger oligomers (Figure 2C, dark green line). A less populated and more compact isotropic family I2 also exists 

that originates from the z = +2 monomeric state, that is populated between n=1 and n=4 (Figure 2C, light green 

line). Above n = 4 the most populated charge states have CCSs that instead belong to a linearly growing family, 

L (Figure 2C, orange) that extends for as long as oligomers are detectable (at least n = 10). The ratio between 

the experimental population weighted average CCS for an oligomeric state and its theoretical isotropic I3 CCS 

for each oligomeric state clearly illustrates that the Aβ oligomers grow almost perfectly isotropic until n = 4, 

above which they start to deviate from isotropic growth (Figure 2D). Such a deviations indicate that the growth 

rate of the aggregates is faster in one specific direction, leading to formation of elongated structures. Deviation 

from isotropic growth has also been shown to correlate with an increase in β-sheet content in studies of other 

amyloidogenic peptides (45). This could therefore indicate that monomers, dimers and trimers are 

predominantly unstructured while oligomers >4 start to form more extended β-sheets. If the relative oligomer 

signals in the mass spectra for wildtype and CC variants are compared it can be seen that indeed it is the 

oligomers with n ≥ 4 and especially with n ≥ 8 that are increased for the CC variant. Interestingly the CC variant 

has similar or slightly lower amounts of dimers and trimers compared to the WT (Figure 2E).  

 

 
Figure 2. Self-assembly of Aβ(1-40) and Aβ(1-40)CC A) Far-UV CD spectra of 40 μM Aβ(1-40)CC (green) and 

Aβ(1-40) (blue) in 20 mM phosphate buffer pH 7.4, shown together with the top cluster structure after 2 μs MD 

simulations of the Aβ(1-40)CC monomer, colored according to hydrophobicity (orange = hydrophobic, blue = 

hydrophilic). The N-terminus is highlighted in blue, while the C-terminus is highlighted in red. The disulfide bond 

formed between C21 and C30 is shown in magenta.  B) Mass spectra of 20 μM Aβ(1-40)CC (left) and Aβ(1-40) 
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(right) in 200 mM ammonium acetate pH 6.8, with the oligomeric region magnified. Peaks are annotated by 

their oligomeric state/charge state ratio (n/z).  States that are especially enriched in the CC variant are marked 

in orange. C) CCS of oligomers plotted against oligomeric state. The experimental measurements are shown as 

circles colored according to relative intensity within an oligomeric state (white to green). Solid lines represent 

the theoretical growth behavior of isotropic growth (I) and linear growth (L). D) Ratio between detected 

experimental CCS (intensity-weighted average) and the theoretical isotropic growth according to I3. The dashed 

lines represent fits to the data points, between n = 1 and n = 4, and between n = 4 and n = 10.  E) Ratio between 

the relative intensity of oligomers in Aβ(1-40)CC and in Aβ(1-40). Values above 1 indicate that the oligomeric 

state is increased in Aβ(1-40)CC compared to in Aβ(1-40).  

 

Oligomer growth is linked to folding into the hairpin motif 

Native IM-MS suggest growth of oligomers with a shift in structure occurring upon formation of larger 

assemblies. The technique is however not capable of determining the structure of the oligomers. For this we 

instead analyze MD simulations of some of the species detected by mass spectrometry. We let the unstructured 

Aβ(1-40)CC assemble into dimers, which in turn assemble into tetramers (Figure 3A). The β-sheet propensity of 

Aβ(1-40)CC increases when the oligomer size increases, but is overall lower compared to the wild-type variant 

(Figure 3B). The increase in β-sheet propensity can also be seen in the top cluster structures (Figure 3A), as 

unstructured Aβ(1-40)CC aggregates into a tetramer where a core of short antiparallel β-sheets is formed by the 

most hydrophobic segment. Three out of four monomer units in the top cluster tetramer have folded into a 

hairpin structure similar to the β-hairpin found in the affibody complex from which the starting monomeric 

structure was derived (Figure S10). It can be seen that the two hydrophobic segments (Figure S1) in the central 

hydrophobic core (CHC, residues 16 - 22) and the C-terminal hydrophobic regions (residues 30 - 40) are indeed 

the segments with β-sheet propensity both in the wild type and CC variant. These regions show β-sheet 

probabilities of around 60 to 90% in wild-type tetramers and around 40% to 70% in the CC variant tetramers 

(Figure 3C).  For both peptides, the N-terminal region (residues 1 to 15) and the hinge region (residues 21 to 28), 

which link the β-strands, are highly disordered and tend to form β-bend/turn or random coil conformations 

(Figure S11).   

 

The flexibility of the N-terminal region is also seen by analyzing the intramolecular contacts where residues 5-

10 make multiple short-range contacts with the entire peptide chain both in the dimer (Figure 3D, top) and in 

the tetramer (Figure S12). The other significant interaction pattern is the intrapeptide interaction between the 

CHC and the C-terminal region, which enables the formation of the hairpin motif. In Aβ(1-40)CC the interaction 

between the most C-terminal residues (35-40) and the CHC is reduced, which results in shorter β-sheets 

compared to the wild type oligomers. The interpeptide contacts in the oligomers are also mostly between the 

hydrophobic segments with high β-sheet propensity. These interactions are CHC with CHC, CHC with C-

terminal hydrophobic region, and C-terminal hydrophobic region with C-terminal hydrophobic region (Figure 

3D, bottom). The interpeptide contacts are reduced in the Aβ(1-40)CC dimers compared to the wild type. For 

the wild-type dimer, the highest contact density is observed between the two CHC regions, the regions with the 
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highest β-sheet propensity (Figure 3C), which also display stronger interaction energies than interactions 

between the C-terminal hydrophobic regions (Figure S13). The interaction energies reveal that the Lennard-

Jones interactions within the wild-type dimer are stronger than those within the Aβ(1-40)CC dimer.  Moreover, 

attractive interactions between the oppositely charged residues K16-D23 in Aβ(1-40) and E11-K28 in Aβ(1-40)CC 

are observed. Similar patterns for interpeptide interactions are observed in the wild-type and CC tetramers 

(Figure S12). Overall, Aβ(1-40)CC appears to be less ordered than the wild-type variant, especially for the 

monomeric and dimeric states. This can also be seen by higher root mean square fluctuations (RMSF) of the Cα 

atoms in the Aβ(1-40)CC dimer compared to the Aβ(1-40) dimer (Figure S14). It seems that the disulfide bond 

adds extra forces to the peptide that increase its flexibility, thereby suppressing intrapeptide interactions and 

intramolecular hydrogen bonds away from the enforced intramolecular A21C-A30C contact. Aβ(1-40)CC 

furthermore has a slightly higher amount of exposed hydrophobic surfaces compared to wild-type Aβ(1-40) in 

monomers and dimers (Figure 3E).  

 

The flexibility of the peptides is further seen by analyzing the compactness of the oligomeric species (Figure 

3F). Dimers of both peptide variants populate a wide distribution. The Aβ(1-40) dimer population is centered 

around a compactness value of 0.5, while the Aβ(1-40)CC dimer displays a bimodal distribution with two peaks 

around 0.4 and 0.6. Aβ(1-40)CC dimers display both a wider distribution of compactness and also populate 

slightly more extended (less compact) states (Figure 3F, top). The tetramers of both peptide variants are less 

polydisperse, with sharper distributions (Figure 3F, bottom), compared to the dimers. This is in agreement with 

folding into more well-defined β-sheet structures upon oligomer growth. Aβ(1-40)CC tetramers populate more 

compact conformations represented by values between 0-6-0.8, in addition to structures with the same 

compactness as Aβ(1-40), around 0.5.  
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Figure 3. Structural properties obtained by MD simulations for Aβ(1-40) and Aβ(1-40)CC. A) The most 

populated cluster structure of Aβ(1-40)CC monomer, dimer and tetramer. Colored according to hydrophobicity 

(orange = hydrophobic, blue = hydrophilic). The clustering was performed by gromos algorithm and a cutoff 

distance of 0.4 nm. B) Average β-strand/bridge content probability for Aβ(1-40) (blue) and Aβ(1-40)CC (green) 

for monomers, dimers and tetramers. C) Probability of β-strand/bridge of peptides residue for Aβ(1-40) (blue) 

and Aβ(1-40)CC  (green) for dimers (top) and tetramers (bottom). The two regions with high β-strand/bridge 

probability are marked in yellow. D) The intra- (top) and interpeptide (bottom) contacts between residues for 

Aβ(1-40) dimer (left, blue) and Aβ(1-40)CC dimer (right, green). The intrapeptide contacts within peptide 1 are 

shown below the main diagonal and within peptide 2 above the main diagonal. The color bar shows the average 

intra/inter-residue distance (in nm).  E) The ratio of the average hydrophobic solvent accessible surface area 

(SASA) over the average total SASA ratio for Aβ(1-40) (blue) and Aβ(1-40)CC (green) for monomers, dimers and 

tetramers. F) The compactness distribution probabilities of Aβ(1-40) (blue) and Aβ(1-40)CC (green) for dimers 

(top) and tetramers (bottom). The compactness values range from 0 (extended) to 1 (compact). 

 

C-terminal truncation leads to a decrease in oligomerization propensity 

The results indicate that folding of monomeric units into the β-hairpin structure is essential for formation of 

larger Aβ oligomers, as they assemble by formation of extended antiparallel β-sheets. We next tested this by 

analyzing Aβ peptide variants which have been truncated from the C-terminal end, namely Aβ(1-38), Aβ(1-28) 

and Aβ(1-16) (Figure 4A). As the hairpin is formed by interactions between the C-terminal and the middle 

segments of Aβ the truncation should lead to a lower propensity to fold into the hairpin structure, and therefore 

a lower propensity to form higher oligomers. In Aβ(1-38) two hydrophobic valine residues, V39 and V40, are 

removed which has previously been found to greatly reduce the amyloid aggregation rate (46). In Aβ(1-28), the 
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part of the peptide that is found extracellularly in APP, the entire C-terminal hydrophobic region 

(29GAIIGLMVGGVV40) is removed. The peptide thus only contains the N-terminal region, the CHC, and the hinge 

region. The N-terminal region in isolation, Aβ(1-16), was also analyzed.  

 

An MD simulation of the Aβ(1-38) monomer shows that a compact hairpin-like state where the CHC and the C-

terminal region are close to each other is still able to form (Figure 4B, top). MD simulations do however 

unsurprisingly show a complete loss of hairpin structure in Aβ(1-28), as the entire second β-strand has been 

removed. The Aβ(1-28) monomer instead forms an entirely unstructured random coil (Figure 4B, bottom). CD 

spectrometry indicates that the truncated variants have similar random coil-dominated spectral signatures as 

Aβ(1-40). Truncation does however lead to a decrease in the aggregation propensity when incubated without 

agitation at 37 °C (Figure 4C). 

 

Aβ(1-38) populates multiple oligomeric states (Figure 4D), similar to those populated by Aβ(1-40). This is in 

agreement with MD simulations of the Aβ(1-38) dimer that shows formation of a similar antiparallel β-sheet 

structure as in Aβ(1-40). Truncation of the entire C-terminal region has a more drastic effect with the oligomeric 

population of Aβ(1-28) shifted towards mostly dimeric and trimeric states (Figure 4E). As an example, the n/z = 

2/3 is especially highlighted (Figure 4D, Figure 4E, colored boxes). This signal contains overlapping dimeric, 

tetrameric and hexameric states in Aβ(1-38), with the tetramer being the main component. In Aβ(1-28) the 

distribution is heavily shifted towards the dimer, and the hexameric component is completely absent.  Only 

minor pentameric (n/z = 5/7, 5/6) and hexameric (n/z = 3/4, 6/7) signals are overall seen for Aβ(1-28), with the 

hexamer being the highest oligomeric state detected in the spectrum. Ion mobility analysis show that Aβ(1-38) 

oligomers follow similar growth trends as Aβ(1-40) (Figure S16). Aβ(1-28) on the other hand seems to only grow 

isotropically, according to the most compact I2 family (Figure 4F). Aβ(1-28) forms a mostly unstructured dimer 

in MD simulations (Figure 4E), rather than β-strand interactions between the CHC regions in the two 

monomeric units as in Aβ(1-38) and Aβ(1-40) (Figure S17). The CHC is probably however involved in the 

formation of the observed small Aβ(1-28) oligomers, as the N-terminal segment Aβ(1-16) only forms monomers 

and dimers (Figure S18). This can be seen in the intermolecular contact map for the Aβ(1-28) dimer, where the 

interactions are vague but clearly involves residues 15-20 (Figure S17).  
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Figure 4. C-terminally truncated Aβ variants. A) Overview of the different truncation variants. B) Top cluster 

structures of Aβ(1-38) (top) and Aβ(1-28) (bottom) after 2 μs MD simulations. Colored according to 

hydrophobicity (orange = hydrophobic, blue = hydrophilic). The N-termina are highlighted in blue, while the C-

termina are highlighted in red.  C) Far-UV CD spectra of 40 μM Aβ(1-40) (blue), Aβ(1-38) (purple), and Aβ(1-28) 

(pink) in 20 mM phosphate buffer pH 7.4. CD spectra recorded every 2 h for 16 hour are shown. Arrows indicate 

changes at 196 nm (random coil signal) and 215 nm (β-sheet signal). (D-E) The oligomeric regions from the mass 

spectra of 20 μM Aβ(1-38) (D) and Aβ(1-28) (E) in 200 mM ammonium acetate pH 6.8. Peaks are annotated by 

their oligomeric state/charge state ratio (n/z). Note that the x-axes of the mass spectra are shown as oligomeric 

state (n) / charge state (z) (m/z divided by monomeric mass of the peptide variant) to enable easy comparison 

between the two variants. The ion mobility (drift time, dt) distribution for the n/z = 2/3 state (highlighted in a 

colored box) is shown as an insert for both variants. The top clusters of dimers of Aβ(1-38) (D) and Aβ(1-28) (E) 

are also shown as inserts, colored according to secondary structure (coil = gray, sheet = magenta, helix = cyan). 

F) Measured collision cross sections (CCS) for each oligomeric state in Aβ(1-28), solid lines represent the 

theoretical isotropic growth originating from each monomer state 

 

Discussion 

We have here exemplified, using both experimental and computational methods and by probing different Aβ 

variants, that a hairpin motif is important for formation of oligomeric species. Especially the formation of larger 

oligomers (n ≥ 4) seems to require folding into the hairpin motif (Figure 2E). This hairpin motif arises due to the 

high β-strand propensity of two hydrophobic segments in the Aβ peptide, and the transient folding of these 

segments onto each other. Such a β-hairpin structure enables continued addition of monomeric units to form a 

larger β-sheet structure, which is not possible in the Aβ(1-40)Scr peptide which displays high helical propensity 

(Figure 1). The β-sheet propensity of Aβ increases with aggregation number (n), indicating some cooperativity 
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in the folding process. The monomeric hairpin fold does not seem to be stable by itself in solution (Figure 2A), 

which is also supported by solution state NMR spectroscopy data (47). Assembly of a larger β-sheet core does 

however seem to make the folding process more favorable and increases the stability of the structures. This 

could be compared to a “folding upon binding” event commonly observed for intrinsically disordered proteins, 

with the unstructured Aβ monomer folding upon binding to a more structured Aβ oligomer. A gradual increase 

in β-sheet structure has previously been observed by CD spectroscopy of isolated Aβ(1-40) oligomers stabilized 

by intermolecular photo-induced crosslinking of unmodified peptides (PICUP) (48) Those PICUP-CD 

spectroscopy results report a β-sheet content of 24% in the monomer, which increases to 45% in the crosslinked 

tetramer. This can be compared to 19% for monomer and 30% for tetramer in our here reported MD simulations.  

 

An elongation in the structure occurs for oligomers larger than the tetramer. This could be interpreted as 

formation of an extended sheet structure (Figure 5A), as deviation from isotropic growth has been previously 

reported to correlate with an increase in β-sheet content in other amyloidogenic peptides (45). It is also 

interesting to note that our previous study in membrane-mimicking micelles showed that all detected Aβ 

oligomers follow isotropic growth in such an environment, and that oligomerization stops at the hexamer (49). 

We here observe that isotropic growth according the I3 family also occurs until at the hexamer in a simple 

aqueous solution (Figure 1F, Figure 2C). The conformation distribution for the hexamer is however heavily 

shifted towards the linearly growing oligomer family, which goes on to form even larger oligomers. This would 

suggest that the enrichment of oligomers in the micellar environment arises from stabilization of the globular-

like (isotropic) Aβ structures by interactions with the micelle. This inhibits continued growth into the extended 

and linearly growing oligomers observed in absence of micelles. The micelles also inhibit formation of amyloid 

fibrils (49, 50), indicating that the extended oligomers could be on-pathway for fibril formation. The same holds 

true for the Aβ(1-28) peptide which has very low aggregation propensity and does also not form the extended 

oligomers (Figure 4F).  

 

 

Figure 5. Overview of suggested steps in the early self-assembly process of Aβ peptides. A) Aβ peptides 

have a propensity to fold into a β-hairpin structure by interactions between the two hydrophobic segments in 

the peptide. Growth of Aβ oligomers follow isotropic growth until n = 4, at which point linear growth starts to 

dominate, indicating formation of more elongated structures. A gradual increase of β-sheet content is also seen 
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upon formation of larger oligomers in a “folding upon self-assembly” mechanism. B) The structure in oligomers 

(generated by MD simulations) is distinct from the structure of fibrils (cryo-EM pdb 7q4b (51)) and formation of 

amyloid fibril require a structural rearrangement. Residues 21 and 30, which are substituted to cysteines in AβCC 

are shown as pink spheres.  

 

It is however important to note that the elongated oligomers are most likely not fibrillar-like structures. The 

different oligomer conformations detected by IM was recently suggested to correspond to different fibrillar 

morphologies (14). We consider this unlikely as oligomers are known to be structurally distinct from fibrils, as 

they for example are recognized by different antibodies (52, 53). The difference between fibrils and oligomers 

has also been recently exemplified by fitting the growth of oligomers over time to kinetic models (7). Such 

models show that the occurrence of detectable metastable oligomers is not in agreement with direct formation 

of fibrils by elongation of oligomers as was suggested in ref (14). This is because elongation is energetically a 

very favorable process and would result in five orders of magnitude lower amounts of oligomers than what is 

being experimentally observed (7). Our MD simulations also give rise to Aβ peptides in distinct anti-parallel β-

sheet structures which have been classified as being characteristic for oligomeric Aβ aggregates (37, 54–56). It 

is on the contrary known from solid state NMR spectroscopy and cryo-electron microscopy that mature fibrils 

typically have parallel β-sheets (51, 57). A structural rearrangement therefore needs to occur upon nucleation 

where the β-strands twist 90°, which involves breaking of intramolecular hydrogen bonds and formation of new 

intermolecular hydrogen bonds (Figure 5B). It is also from this obvious why the AβCC peptides cannot form 

mature fibrils in their oxidized state, as such a rearrangement is not possible if residues 21 and 30 are crosslinked 

together (Figure 5B, pink spheres). If the extended oligomers observed by IM were fibrillar-like we would 

therefore expect them to be absent rather than increased in AβCC. 

 

Oligomers with n = 12 (52 kDa) are also not large complexes for native MS detection. It is therefore intriguing 

why we do not observe significantly larger oligomers in the mass spectra. One interesting and related question 

is at which point the Aβ oligomers convert into amyloid-like structures. Determining the critical size of the Aβ 

nucleus (nc) is difficult experimentally as the nucleus represents a state with high free energy and is thus sparsely 

populated. Modeling however suggests that nc occur at relatively low n, typically between n = 6 and 14 (58–60). 

The critical size has also been shown in such studies to depend on peptide concentration (7, 60), and is also most 

likely also highly dependent on other solution conditions. A recent experimental study using fluorescence 

correlation spectroscopy showed that the BRICHOS chaperone, which inhibits fibril-dependent secondary 

nucleation, binds to Aβ aggregates as small as n = 8 (61). This indicates that such small aggregates might already 

have converted to fibrillar-like aggregates which can induce secondary nucleation. It is thus possible that the 

elongated oligomers that we observe in MS are species which are able to convert into fibrillar states which 

quickly elongate. The propensity to convert should increase with increasing n according to modeling, but 

conversion is still a rare event (7). The inability for AβCC to convert (Figure 5B) into the fibril state agrees with 

the observed increase of larger AβCC oligomers. We also observe rather surprisingly that the introduction of the 

intramolecular disulfide bond in Aβ(1-40)CC does not stabilize the monomer in the β-hairpin state. We however 
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observe folding into this motif, similar to the wild-type peptide, in the tetrameric state, in a “folding upon self-

assembly” mechanism. The experimental IM-MS results show similar charge state distributions, detected 

oligomeric states and collision cross sections for Aβ(1-40)CC compared to the wild type, indicating that the 

disulfide bond is compatible with the wild-type oligomer structures. The experimentally observed enrichment 

of large oligomers and decrease in smaller oligomers in Aβ(1-40)CC could therefore also (in addition to the 

inhibition of the rearrangement step into fibril) be due to structural effects caused by the introduced crosslink 

that affects the monomeric state more than the oligomeric state.  

 

CONCLUDING REMARKS 

This study increases our understanding of the structural transitions occurring at the very early stages of Aβ 

aggregation. Such early structures are believed to be especially toxic and could therefore be related to AD 

pathology. Our results show that oligomers are intrinsically polydisperse, indicating an underlying frustrated 

energy landscape. This is probably in part a reason for the toxicity of these species as they are very prone to 

interact with other cellular species to reduce their chemical potential. Such cellular species could for example 

be the cellular membrane, resulting in a loss of cell or organelle integrity and uncontrolled leakage (62–64). The 

oligomers could also co-aggregate with other biomolecules such as functionally important cellular proteins, 

resulting in breakdown of cellular function and loss of cellular proteostasis (65, 66). Such events would under 

normal cellular conditions be prevented by control systems such as chaperone proteins. Interestingly it has been 

suggested that some chaperone proteins with anti-amyloid activity such as BRICHOS and the Hsp40-type 

DNAJB6 chaperone might bind their clients by forming complementary β-strand/β-strand interactions (67). 

DNAJB6 is known to bind Aβ oligomers rather than monomers or fibrils, and therefore must be able to 

discriminate between these structures (68, 69). DNAJB6 also has a higher affinity for tetramers compared to 

dimers (69), which could indicate that it is indeed the β-hairpin motif that is recognized by the chaperone, as 

the β-sheet propensity is here shown to clearly increase upon going from dimer to tetramer.  Such binding 

therefore inhibits the formation of the extended oligomers which are able to nucleate into amyloid.  

 

The findings presented here combined with observations from nature’s own anti-amyloid systems could provide 

useful insights into how to rationally design therapies against AD. Antibodies can be raised against epitopes of 

unknown structure, but other approaches would require more in-depth information about the molecular 

structures of the target species. It would be reasonable to imagine that inhibition of folding into the hairpin 

motif could be a possible strategy for preventing Aβ toxicity. This could be achieved be design of therapeutic 

peptides or proteins that bind with high affinity to the regions in Aβ with high β-sheet propensity and in that 

way out-compete the Aβ-Aβ interactions. The perhaps best example of this is anti-amyloid peptides that use 

the Aβ(16-20) sequence (KLVFF) from the CHC (70–74). Our results clearly show how CHC-CHC interactions are 

important interactions in oligomer formation, meaning that this segment is indeed very promising to target to 

decrease oligomer formation. Another approach would be to design therapeutic molecules that recognize and 

bind Aβ specifically in the hairpin motif, similar to the above-described chaperones. This could be achieved by 

designed small affinity proteins (so-called affibodies) (75, 76) or RNA aptamers (77). A combination of MD 
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simulations and IM-MS could furthermore prove to be important tools in drug-discovery studies. It would be 

anticipated that the β-sheet oligomers observed as linearly growing species in IM could be interesting to 

monitor upon introducing modulating molecules. IM-MS provides very quick detection of effects on the 

oligomer population and could be used to screen many molecules (78). MD simulations could then be employed 

to pinpoint the effects on oligomer structure by interesting molecules identified from the experiments.  

 

METHODS 

Peptide preparation 

Lyophilized recombinant Aβ(1-40) was purchased from AlexoTech (Umeå, Sweden). Lyophilized recombinant 

Scrambled Aβ(1-40) (Figure S1) (Aβ(1-40)Scr), Aβ(1-38) and Aβ(1-28), as well as lyophilized synthetic Aβ(1-16) 

was purchased from rPeptide (Georgia, USA). All peptides were dissolved in 6 M guanidine hydrochloride and 

purified and buffer exchanged into 200 mM ammonium acetate pH 6.8 (for IM-MS) or 20 mM phosphate buffer 

pH 7.4 (for optical spectroscopy) using either a Superdex Increase 75 10/300 (Cytiva, Sweden) or Superdex 

Icrease 30 10/300 (Cytiva, Sweden) size exclusion column.  

 

Recombinant Aβ(1-40)CC peptides were kindly gifted by Professor Torleif Härd, SLU, and Professor Cecilia 

Emanuelsson, Lund University and were provided as a co-expressed Aβ -affibody complex as earlier described 

(30). This Aβ-affibody complex was immobilized on a 5 mL HisTrap (Cytiva, Sweden) column. Aβ(1-40)CC was 

separated from the immobilized affibody by washing with 20 mM phosphate buffer pH 7.7 with 150 mM NaCl 

10 mM imidazole and 6 M guanidine hydrochloride. The Aβ(1-40)CC peptides were then further purified and 

buffer exchanged using size exclusion chromatography as described above.   

 

The concentration of the obtained peptide fractions was determined using UV absorption of the Y10 (ε = 1490 

M-1cm-1) residue by near-UV spectroscopy at 280 nm. 

 

Native IM-MS 

Native ESI-IM-IM was performed on a Synapt G2-S equipped with an ion mobility cell. The peptides were diluted 

to a final concentration of 20 μM in 200 mM ammonium acetate buffer, pH 6.8. Samples were ionized in a 

nanoESI source using commercial metal coated borosilicate spray emitters (ThermoScientific). All peptides 

were ionized in the positive ion mode using a capillary voltage of 1.5 kV. The remaining settings were as follow: 

cone voltage 50 V at an offset of 50 V, 25 °C source temperature, trap gas 10 mL/min. IM parameters were set 

at wave height 40 V and wave velocity at 1200 m/s. The collision energy in the ion mobility cell was set at 5 V.  

 

Drift time information from each measurement was retained using the program DriftScope (Waters, USA). Drift 

times from IM-MS for peptides were calibrated to obtain CCS values as previously describes (79). Bovine 

ubiquitin (Sigma-Aldrich), Bovine β-Lactoglobulin (Sigma-Aldrich) and honeybee Melittin (Sigma-Aldrich) were 

used to create the collision cross-section calibration curve as these proteins span the size scale of Aβ oligomers. 
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The reference CCS values for the calibrant proteins were obtained from literature (35, 80) The obtained raw data 

from mass spectrometry were analyzed using the software massLynx V4.1.(Waters, USA). 

 

Circular dichroism spectroscopy 

Circular dichroism (CD) spectrometry was performed on a Chirascan spectrometer (Applied Photophysics, U.K.) 

using a 2 mm quartz cuvette. The ellipticity between 250-190 nm (1 nm step size, 4 s sampling time per point) 

was measured on samples of 40 μM peptide in 20 mM phosphate buffer, pH 7.4. The secondary structures of Aβ 

peptides were studied over time in aggregation kinetics experiments for a total of 18 hours at 37°C without 

agitation.  

 

Molecular dynamics simulations 

The simulations of the wild-type Aβ(1-40) monomer were initiated from a β-hairpin conformation (pdb 2otk 

(30)). The mutated Aβ(1-40)CC with the disulfide bond was built from the same structure by mutating the wild-

type Aβ(1-40) amino acids A21 and A30 to C21 and C30 using Charmm-GUI  (81), and, to mimic the experimental 

conditions, a methionine amino acid was added to the N-terminal using PyMOL (Schrödinger) (82) and the 

Modloop server (83) to relax the N-terminal residues. The initial structures of Aβ(1-40) scrambled (Aβ(1-40)Scr), 

Aβ3(1-38) and Aβ(1-28) peptides were predicted by AlphaFold2 (84). The initial structures were placed in a cubic 

box, water molecules and 150 mM NaCl were added, and the systems were neutralized by inserting extra Na+ 

ions. After that, the systems underwent energy minimization using the steepest descent algorithm to remove 

clashes between atoms (85), followed by two equilibration steps each for 1 ns under canonical (NVT) and 

isobaric-isothermic (NPT) ensemble conditions. During the equilibration, the pressure was kept at 1.0 bar using 

the Parrinello-Rahman pressure coupling method (86, 87) and the temperature was kept at 298 K using the 

velocity-rescale thermostat method (88). The production MD simulations were conducted under NPT ensemble 

conditions. Electrostatic interactions were calculated using the particle mesh Ewald method (PME) with a real-

space cutoff distance of 1.2 nm; van der Waals interactions were also cut off at 1.2 nm  (89). Each monomer was 

simulated for 2 μs. For the dimer systems, two monomers obtained from the highest populated clusters were 

added to the simulation box at 0.8 nm away from each other to initiate the dimer simulations. The dimers were 

simulated for 10 μs for Aβ(1-40) and Aβ(1-40)CC and 2 μs for Aβ(1-40)Scr, Aβ(1-38), and Aβ(1-28). Moreover, in 

the cases of Aβ(1-40) and Aβ(1-40)CC, tetramers were also simulated, each for 10 μs, starting from the highest 

populated dimer structures placed at 0.8 nm away from each other. The same simulation setups as used in the 

monomer simulations were used for the dimer and tetramer simulations. All MD simulations were performed 

using GROMACS 2020/2022 (90, 91) with the Charmm36m force field (92) and the TIP3P water model. 
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Supporting Information 

 

 

Figure S1. Overview of peptide sequences, Aβ(1-40) (left) and Aβ(1-40)Scr (right). Structure predictions by jpred 

(93) are shown on the top. Sheets are represented by blue arrows, helices by red ovals. Calculated 

hydrophobicity by the Eisenberg method is plotted against the sequence, using an averaging window of 5 

residues.  

 

 

Figure S2. Size exclusion chromatography of Aβ(1-40) (blue) and Aβ(1-40)Scr (red) performed on a Superdex 75 

10/300 Increase (Cytiva) column. The insert shows a magnification of aggregates in the chromatogram.  
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Figure S3. Predicted AlphaFold2 Models for A) Aβ(1-40)  and B) Aβ(1-40)Scr. The generated models are colored 

according to their pLDDT-score (red to blue). Scores >90 (blue) are expected to be modeled with high accuracy. 

Scores between 70-90 (white to blue) are expected to be modeled well. Intramolecular contact maps are shown 

below each structure model.  

 

Figure S4. Top cluster structure of Aβ(1-40)Scr dimers obtained from MD simulation, colored according to 

hydrophobicity (orange = hydrophobic, blue = hydrophilic). One peptide in the dimer is shown as cartoon and 

the other one is shown as surface, illustrating the binding between the hydrophobic helix face and hydrophobic 

patches.  
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Figure S5. A) Structural development of Aβ(1-40) monomer and oligomers in MD simulations. The starting 

structure is taken from the NMR-derived structure of Aβ(1-40) in an affibody complex (pdb 2otk). Sheets are 

colored magenta. B) β-strand/bridge propensity (average plus standard deviation) for Aβ(1-40) species 

calculated from the MD simulations.  

 

Figure S6. A) Top cluster structures from MD simulations of Aβ(1-40) colored according to the effect of proline 

substitutions in reference (22) (orange-red represents inhibition of aggregation, blue represents no effect on 

aggregation). B) AlpaFold2 models of wild-type Aβ(1-40) and two proline substitutions. The G9P substitution 

does not affect the hairpin fold and does not inhibit aggregation. The F19P substitution breaks the hairpin and 

inhibits aggregation. Data on aggregation propensity was collected from reference (22). 
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Figure S7. (Left) Experimental CCS values of Aβ(1-40) (blue) and Aβ(1-40)Scr (red) for different charge states. 

Solid lines represent linear fits to the experimental data. Higher charge states display a steep increase in CCS 

with charge, likely due to intrachain repulsion in the gas phase. (Right) Positively charged residues in the two 

peptide variants are shown as spheres in the MD derived structures.  

 

 

Figure S8. Calculated CCS values for the top clusters of Aβ(1-40) generated from MD simulations are shown as 

open blue circles. The theoretical isotropic growth originating from the MD monomer is shown as a black solid 

line, indicating that the MD models grow isotopically (spherically) with respect to oligomeric state. 

Experimental CCS values are shown with solid blue circles for comparison. 
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Figure S9. Example experimental drift time profiles for some n/z signals from Aβ(1-40) (blue) and Aβ(1-40)CC 

(green). The profiles are normalized with respect to their total signal intensity to compare the relative 

abundances within each n/z signal between the two variants.  

 

Figure S10. Structures of monomeric units of Aβ(1-40)CC in the top clusters of oligomers obtained from MD 

simulations, illustrating the increase in β-sheet propensity upon oligomer growth. The starting structure for the 

MD simulation (derived from pdb 2otk) of the monomer is also shown for comparison. The structures are 

colored according to secondary structure, gray for coil, magenta for sheets and cyan for helices. The disulfide 

bond is to shown in yellow.  
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Figure S11.  Probability of secondary structure of the residues of Aβ(1-40) (left) and Aβ(1-40)CC (right) for dimers 

(top) and tetramers (bottom). The bars represent the average additive secondary structure probabilities 

consisting of helix (blue), β-strand/bridge (red), and turn or bend (violet). The difference to 1.0 (shown in white) 

presents the random coil state. 
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Figure S12. The average intra- (top) and interpeptide (bottom) contacts, shown as distances between residues 

for tetramers of Aβ(1-40) (left) and Aβ(1-40)CC (right), obtained from MD simulations. The intrapeptide contacts 

were averaged over the four peptides in the tetramers and the results are shown as symmetric matrices. For the 

interpeptide contacts, the distances were averaged over all possible peptide pairings. The resulting matrices are 

almost symmetric as in converged simulations one should obtain d(i,j’) = d(i’,j) where the prime indicates that 

the two residues i and j’ belong to different peptides. The color bar on the right shows the average intra-/inter-

residue distance (in nm). 
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Figure S13.  Average interpeptide interaction energies between residues, decomposed into Coulomb (top) and 

Lennard-Jones (bottom) interactions, for Aβ(1-40) (left) and Aβ(1-40)CC dimers (right). Please note that energies 

are only calculated for relevant residue numbers: 1-7, 11, 16-23 and 28-40. Moreover, the energy scales in the 

four plots are different from each other (see color bars) in order to provide a good resolution of the energies. 

 

 

Figure S14. The root means square fluctuations (RMSF) of the Cα atoms, averaged over both peptides of the 

Aβ(1-40) dimer (blue) and the Aβ(1-40)CC dimer (green). The RMSF values were calculated after alignment of 

the trajectory in question and using the average structure as reference. The residues 21 and 30 are highlighted 

by orange bars. 
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Figure S15.  A) Average β-strand/bridge probability for Aβ(1-40), Aβ(1-38) and Aβ(1-28) monomers and dimers. 

B) The ratio between the average hydrophobic SASA and the average total SASA for Aβ(1-40), Aβ(1-38) and 

Aβ(1-28) monomers and dimers. 

 

 

Figure S16. Measured collision cross sections (CCS) for each oligomeric state of Aβ(1-38). Solid purple lines 

represent the theoretical isotropic growth originating from each monomer state. A black solid line represents a 

linear fit to the experimental values for larger oligomers that deviate from isotropic growth.  
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Figure S17. The average intra- (top) and interpeptide (bottom) contacts, shown as distances between residues 

for dimers of Aβ(1-38) (left) and Aβ(1-28) (right), as obtained from MD simulations. The intrapeptide contacts 

are shown per peptide composing the dimers in the upper left and lower right triangle of the maps. The 

interpeptide contacts are shown as distances d(i,j’) where the prime indicates that the two residues i and j’ 

belong to different peptides. The resulting matrices are almost symmetric as in converged MD simulations one 

should obtain d(i,j’) = d(i’,j). The color bar on the right shows the average intra-/inter-residue distance (in nm). 

 

Figure S18. Mass spectrum of Aβ(1-16) with peaks annotated by their oligomeric state/charge state. The NMR 

structure of Aβ(1-16) (pdb 1ze7 (94)) is shown and is colored according to hydrophobicity (orange = hydrophobic, 

blue = hydrophilic). The N-terminus is highlighted in blue, while the C-terminus is highlighted in red.   
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Mounting evidence suggests that the neuronal cell membrane is
the main site of oligomer-mediated neuronal toxicity of amyloid-β
peptides in Alzheimer’s disease. To gain a detailed understanding
of the mutual interference of amyloid-β oligomers and the neu-
ronal membrane, we carried out microseconds of all-atom molec-
ular dynamics (MD) simulations on the dimerization of amyloid-β
(Aβ)42 in the aqueous phase and in the presence of a lipid bilayer
mimicking the in vivo composition of neuronal membranes. The
dimerization in solution is characterized by a random coil to β-
sheet transition that seems on pathway to amyloid aggregation,
while the interactions with the neuronal membrane decrease the
order of the Aβ42 dimer by attenuating its propensity to form a
β-sheet structure. The main lipid interaction partners of Aβ42 are
the surface-exposed sugar groups of the gangliosides GM1. As the
neurotoxic activity of amyloid oligomers increases with oligomer
order, these results suggest that GM1 is neuroprotective against
Aβ-mediated toxicity.

Alzheimer’s disease | amyloid-β | neuronal membrane | molecular
dynamics | transition network

In Alzheimer’s disease (AD), amyloid-β peptide (Aβ) aggre-
gates into fibrils and subsequently accumulates as plaques

within the neural tissue (1). An increasing number of studies
suggest that the smaller soluble oligomers formed in the ear-
lier stages of the aggregation process are the main cytotoxic
species affecting the severity and progression of AD (2–4). Aβ
dimers have been reported to be the smallest toxic oligomer that
affects synaptic plasticity and impairs memory (5, 6). Therefore,
a detailed characterization of Aβ dimerization is an essential
step toward developing a better understanding of the aggrega-
tion process. However, its transient nature (resulting from its
high aggregation tendency), its plasticity, and its equilibrium
with both the monomer and higher-order oligomers all make
the Aβ dimer extremely challenging to study experimentally. In
fact, a large amount of the experimental studies performed on
Aβ dimers employ some kind of cross-linking to stabilize them
(7–9). On the other hand, covalently cross-linked Aβ dimers
are certainly of biological relevance, as such species have been
retrieved from the brains of AD patients and their neurotox-
icity has been demonstrated (6, 10). Apart from this, recent
technological developments, such as advanced single-molecule
fluorescence spectroscopy and imaging, opened the way to char-
acterize amyloid oligomers without the need to stabilize them by
cross-linking (11, 12). Molecular dynamics (MD) simulations are
also able to provide atomic insight into the temporal evolution
of the dimer structure without the need of cross-linking (13, 14).
Previous simulations of Aβ dimers were modeled in the aque-
ous phase only, and thus they lacked essential details from the
cellular context. Consideration of the latter is particularly impor-
tant if one wishes to reveal the mechanism of toxicity that has

been shown to rely on direct contact with the lipid membrane of
neurons by Aβ oligomers (15, 16).

Many studies have been done to understand the conse-
quences of Aβ–membrane interactions; however, it is extremely
difficult to capture these transient interactions with experi-
mental methods. This becomes possible with MD simulations
and this problem is addressed in the current work. We use
an aggregate of 24 µs of MD simulations to investigate the
dimerization of the full-length Aβ42 peptide both in solu-
tion and in the presence of a model lipid bilayer includ-
ing six lipid types to mimic the composition of a neuronal
cell membrane (17–19): 38% 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC), 24% 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoethanolamine (POPE), 5% 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-L-serine (POPS), 20% cholesterol (CHOL),
9% sphingomyelin (SM), and 4% monosialotetrahexosylgan-
glioside (GM1) (Fig. 1A). For modeling Aβ we employ
Charmm36m, a force field adjusted for intrinsically disordered
proteins (IDPs), to model their preference to adopt extended
structures. When applied to monomeric Aβ, Charmm36m yields
more than 80% of the structures in a random coil and extended
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Fig. 1. (A) A snapshot of the neuronal membrane containing 38% POPC,
24% POPE, 5% POPS (collectively shown as gray surface with their phospho-
rous atoms indicated by gray spheres), 20% CHOL (red sticks), 9% SM (green
spheres), and 4% GM1 (yellow spheres). In the following, PC, PE, and PS are
synonymously used for POPC, POPE, and POPS, respectively. (B and C) Radial
distribution functions for (B) lipid pairings of identical type and (C) lipid–
CHOL pairings. The P atoms of PC, PE, PS, and SM and the O atoms of CHOL
and GM1 were used as reference atoms for the RDF calculations. The RDFs
are averaged over both membrane leaflets. The x axis shows the distances
between the respective atom pairs. Since CHOL resides deeper inside the
membrane, it is possible that the O atom of CHOL and the reference atoms
of the other lipids are above each other, explaining why not all of the RDFs
approach zero for x = 0. The colors of the functions refer to the lipids as
indicated in the color key in B. Pairs with RDF > 1 are considered to form
clusters.

state, and the remaining ones feature transient β-hairpins, which
is in acceptable agreement with experimental data (20). More-
over, Charmm36m outperforms other force fields when it comes
to modeling peptide aggregation (21, 22). To the best of our
knowledge, this simulation study breaks ground on two fronts:
1) It exceeds the simulation time of previous studies modeling
Aβ–membrane interactions by an order of magnitude, and 2)
it studies the aggregation of Aβ on a bilayer containing more
than three different lipid types. Lipid bilayers of a complexity
comparable to the one modeled here have been thus far stud-
ied only at the coarse-grained level (23, 24). We also analyze
the aggregation pathways by transition networks (25–27), which
elucidate the similarities and differences between Aβ dimer-
ization steps both in solution and at the neuronal membrane.
We find that the neuronal membrane reduces the dynamics
of membrane-bound Aβ42 while it also inhibits β-sheet for-
mation. Here, the sugar groups of GM1 form hydrogen bonds
with the peptide, thereby reducing the possibilities for other
hydrogen bonds to otherwise form. In contrast, the dimerization
in the aqueous phase is characterized by a random coil to β-
sheet transition, leading to β-sheet structures similar to the ones
found in Aβ fibrils.

Results
The Neuronal Membrane Is in a Liquid Ordered Phase. Before we
analyze the interaction of Aβ with the neuronal membrane, we
determine the characteristics of the latter. The mass density
profile of each lipid and water along the membrane z axis (SI
Appendix, Fig. S1) shows the distribution of the bilayer com-
ponents, as well as the bilayer thickness. The positions of the
headgroups are at similar locations for POPC (PC), POPE (PE),
POPS (PS), and SM. CHOL, on the other hand, is shifted toward
the hydrophobic core of the bilayer, while GM1 is farther away
from the bilayer center, due to the protrusion of the sugar groups
from the xy surface of the membrane (Fig. 1A). The headgroup-
to-headgroup distance of PC, PE, and PS indicates a bilayer
thickness of 4.65± 0.03 nm.

We calculated the acyl chain order parameter SCH of the C–H
bonds of all the lipid tails (SI Appendix, Fig. S2) to gain insight
into their arrangement within the membrane. Values of 0.35 to
0.4 for the order parameters of carbon atoms 4 to 10 are reached,
which is an increase compared to the order parameters found in
other membranes (28, 29). This is due to the effects of cholesterol
and sphingomyelin, which are known for their role in increasing
lipid order. Notably, we find the acyl chains of GM1 and SM to
be the most ordered. We can thus conclude that the neuronal
membrane is in the liquid-ordered state, which is in agreement
with previous observations (24, 30).

GM1 Forms Ganglioside Clusters. The radial distribution function
(RDF) of all possible lipid pairings was calculated to moni-
tor the effect of these pairwise interactions on lipid clustering
(Fig. 1 B and C and SI Appendix, Fig. S3). A distinct RDF
peak is seen at ≈0.45 nm for the self-clustering of GM1 and
pronounced peaks are seen at 0.55 and 0.6 nm for the forma-
tion of CHOL and SM clusters, respectively, while all other
lipids do not tend to self-associate. The self-clustering of GM1
is considerably stronger than that of the other lipids. Thus, tak-
ing the relatively low concentration of GM1 (4%) into account,
one can conclude that GM1 has a strong tendency to self-
associate that can result in its sorting. No strong clustering
between mixed lipid pairs is observed. Notable coassociation
is seen only for SM with POPE, CHOL, and GM1. Interest-
ingly, the RDF of PE–PS has a higher peak compared to that of
PE–PE and PS–PS, respectively. The dispersion of PS is under-
standable given that it is negatively charged. The negative charge
of both GM1 and PS also explains why these two lipids avoid
coclustering.

To elucidate the dominant lipid–lipid interactions underlying
the RDFs, the average numbers of hydrogen bonds (H bonds)
between the different lipid pairs were evaluated. SI Appendix,
Fig. S4 shows that the sorting of GM1 results from its abil-
ity to build a network of H bonds via its sugar headgroups,
despite its negative charge. The propensity of SM to form H
bonds with itself also gives rise to its self-clustering, whereas the
minor self-clustering seen for CHOL is a result of the cholesterol
condensing effect. This effect does not result from attractive
van der Waals interactions between CHOL molecules, but from
a reduced membrane perturbation energy if small cholesterol
domains are formed (31). However, such cholesterol clusters
are not particularly stable, as evidenced by only a small peak
in the RDF for CHOL–CHOL. The coclustering of CHOL and
SM is facilitated by H bonds formed between the hydroxyl of
CHOL and the amide group of SM, which agrees with previ-
ous findings (32). The RDF profile of SM–GM1 can also be
explained by H-bond formation. We conclude that H bonds play
an essential role in stabilizing lipid clusters within the neuronal
membrane.

Aβ42 Dimerizes at the Neuronal Membrane and Interacts with GM1.
To understand the effects of the neuronal membrane on the
aggregation of Aβ42, we analyzed the 6× 2 µs of MD data in
the presence of the lipid bilayer and compared the aggregation
to the 6× 2 µs of MD simulations done in the aqueous phase.
We first assess whether and how the two peptides bind to and
interact with the membrane.

To follow the association between Aβ42 and the neuronal
membrane, we calculated the minimum distance of both pep-
tides from the lipid bilayer surface for each of the six simulations
(SI Appendix, Fig. S5). It can be seen that peptide 1 usually
interacts with the membrane at a closer distance than pep-
tide 2 does, which can be explained by the fact that the initial
structures of five of the six simulations were selected from the
initial 2-µs simulation. This allows us to better elucidate the
effects of the membrane on the preferentially membrane-bound

2 of 10 | PNAS
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peptide as their mutual interaction time is larger than it would
have been if both peptides had the same interaction probabil-
ity. Nonetheless, both peptides tend to be associated with the
membrane as an intact dimer, since if one peptide is >0.5 nm
away from the membrane, implying that this peptide is in solu-
tion, then very often this is also the case for the other peptide.
Fig. 2 shows representative snapshots for the membrane associ-
ation of Aβ42, including one for loose binding in Fig. 2A. Fig.
2B represents the situation where peptide 1 is in close contact
with the membrane, while peptide 2 is a bit farther away. The
opposite, less prevalent situation with peptide 2 being closer is
depicted in Fig. 2C and is less common, while Fig. 2D shows
how both peptides can bind tightly to the membrane. Fig. 2 fur-
ther suggests that Aβ42 tends to interact with GM1 instead of
the other lipids and that β-sheets are the dominating secondary
structure in peptide 2 but not in the more membrane-bound pep-
tide 1. The analysis of the contacts between Aβ42 and the various
lipids confirms that the peptide has a high tendency to associate
with GM1, followed by PC, PE, and PS (SI Appendix, Fig. S6).
Here, we emphasize that these contacts are not normalized but
absolute values. Considering that only 4% of the lipids are GM1
while the phospholipids make up for more than two-thirds of the
membrane, one can thus conclude that Aβ42 is highly attracted
to GM1. Interestingly, almost no contacts are made with
CHOL or SM.

To rationalize the driving force that controls Aβ42 interac-
tion with the membrane surface, the interaction energy of each
Aβ42 residue with each of the lipid components was calculated
and partitioned into its electrostatic (ECoul) and Lennard-Jones
(ELJ) contributions (Fig. 3). Notably, the lipid interactions of
peptide 1 are more favorable than those of peptide 2, agreeing
with the observation that peptide 1 interacted more strongly with
the membrane. Our results suggest that the major driving force
for the association of the peptides to the membrane is the elec-
trostatic attraction to PC, PE, and PS, especially via the highly
charged N-terminal region and residues F20 to A30. Residues
at the N terminus had the strongest interactions with the mem-
brane, such as D1, E3, and D7 with PE; D1 with PC; and R5
with PS. The latter interaction involves H-bond formation (SI
Appendix, Fig. S7), which is enabled via the carboxylate group of
PS, whereas the primary ammonium group of PE forms H bonds
with D1, E3, and D7. The tertiary ammonium group of PC, on
the other hand, does not support H-bond formation, leading to a
relatively low H-bond propensity between PC (via its phosphate
group) and Aβ42. The interactions between GM1 and Aβ42 are
driven by both Coulomb and Lennard-Jones energies (Fig. 3) and
are facilitated by the sugar headgroups of GM1, which protrude

from the membrane and are therefore particularly accessible to
Aβ42. Moreover, the interactions with GM1 derive from a con-
siderable number of H bonds, which involve almost all residues
of both peptides, but particularly those of peptide 1.

No direct interaction between Aβ42 and CHOL was observed
(SI Appendix, Fig. S6), due to the deeper, unexposed position
of CHOL within the membrane. Interestingly, even though SM
has the same headgroup as PC, which is also located at a similar
position along the bilayer normal, Aβ42 hardly interacted with
SM. This can be understood by considering the preference of SM
to form H bonds with other lipids including itself, which reduces
its tendency to create H bonds with the peptide.

The Aβ42 Dimer Does Not Affect the Neuronal Membrane. To deter-
mine whether the peptides affect the structure of the lipid
membrane, we calculated the lipid order parameter for the lipids
that are within 0.5 nm of the peptide when adsorbed to the
membrane (SI Appendix, Fig. S2). The results suggest no notable
change in the lipid order parameter due to the interactions with
Aβ42. Moreover, only a slight deviation of about ±0.1 nm was
seen in the bilayer thickness (SI Appendix, Fig. S8) at the site of
peptide interaction. We thus conclude that the peptides interact
only with the lipid headgroups without inserting into the mem-
brane, thereby preventing larger changes in the membrane order
and thickness.

Different Aggregation Pathways in Solution and at the Neuronal
Membrane. To unravel differences within the aggregation path-
ways, we computed transition networks (TNs) for the Aβ42
dimerization both in the aqueous phase and in the presence of
the neuronal membrane. To this end, we characterized the con-
formations by assigning the aggregate state (monomer or dimer),
the number of hydrophobic contacts between the peptides in a
dimer, and the number of residues in β-strand conformation as
descriptors. To further simplify the TNs, we grouped both the
number of hydrophobic contacts and the number of residues in
β-strand conformation in blocks of five such that we end up with
ranges h1 to h12 and b1 to b6. For example, h1 and b1 stand
for hydrophobic contacts and the number of residues in β-strand
conformation, respectively, ranging from 1 to 5. The maximum
state h12 involves between 56 and 60 hydrophobic contacts and
the b6 state means that between 26 and 30 residues per peptide
adopted a β-strand conformation.

The resulting TNs (Fig. 4) are characterized by two regions:
the monomeric region (on the left side of the TNs) and the
dimeric region (in the middle and the right side of the TNs),
where the former evolves into the latter. These regions are

Fig. 2. Snapshots of Aβ42 interacting with the neuronal membrane. Peptide 1 and peptide 2 are shown as cartoons in red and blue, respectively, with their
termini indicated by spheres (N, light blue; C, light red). The color coding for the membrane is the same as in Fig. 1A. Representative interaction patterns
are provided: (A) both peptides being loosely attached to the bilayer surface, (B) peptide 1 being in close interaction with the membrane and peptide 2
being bound to peptide 1, (C) the opposite situation to that in B, and (D) both peptides being in close contact with the membrane.
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Fig. 3. The average interaction energies of peptide 1 (Left) and peptide 2 (Right) with each lipid of the neuronal membrane. Electrostatic and Lennard-Jones
energies are shown in blue and green, respectively. The more negative an energy is, the more attractive is the corresponding interaction.

connected by several bridging nodes, which, on average, are char-
acterized by a higher amount of β-sheet (i.e., larger n in the
descriptor bn) in the case of the solution system. In both TNs,
a representative bridging node is indicated by a green circle,
[2, h2, b6] for the solution system and [2, h2, b2] for the
membrane system, which are further augmented by a character-
istic structure. In solution, there are more transitions between
monomers and dimers, which indicates a higher number of
association and dissociation events. In general, the TN for the
solution system exhibits more nodes and transitions.

A closer inspection of both TNs reveals how the two pep-
tides evolve from the monomeric random coil state, which is
represented by node [1, 0, 0] with no interpeptide hydrophobic
contacts and no residues in β-strand conformation, to dimers
with only a few hydrophobic contacts, as present in states [2, h1,
bn]. Here bn ranges from b1 to b6, indicating an increase in β-
strand content as the structure changes along the path through
nodes [1, 0, bn] and [2, 0, bn]. The dimers with no hydrophobic
contacts are so-called encounter complexes, where the minimal
distance between the two monomers fell below 4.5 nm, and sub-
sequently form stable dimers by increasing their contact area as
interpeptide contacts form. This process stabilizes the dimer and
is accompanied by an increase in β-strand content. In solution,
the dimers form more interpeptide hydrophobic contacts, reach-
ing states [2, h12, b6] and [2, h13, b5] wherein 50 to 70% of all
Aβ42 residues form a β-sheet. In the presence of the neuronal
membrane, both the hydrophobic contact area and β-sheet con-
tent are reduced, with the maximal values being [2, h10, b4] and
[2, h9, b5], explaining the smaller number of nodes in this TN.
Some of the interpeptide contacts are replaced by peptide–lipid
contacts, which in turn inhibits β-sheet formation. This conclu-
sion is confirmed by the representative structures shown in Fig.
4 and those illustrating the membrane adsorption of the dimer
(Fig. 2). The membrane-adsorbed dimer structures are more
compact than the dimer structures in solution, which feature
extended β-sheets.

Long β-Strands in Solution and Compact Aβ42 Structures at the
Membrane. To quantify the effect of both aggregation and mem-
brane adsorption on the peptide secondary structure, we deter-

mined the propensity of each residue to adopt a helical con-
formation, to be part of a β-sheet, or to be in a turn or bend
conformation (Fig. 5A). For the dimer both in solution and on
the membrane, β-sheet formation is observed. Using the same
force field, mostly disordered conformations were sampled for
the Aβ monomer during a 30-µs MD simulation, with an aver-
age β-sheet content of about 15% (20). This rises to 36% for the
dimer in solution, which indicates that dimerization causes Aβ42
to undergo a disorder-to-order transition with β-sheet folding.
The β-sheet content for the membrane-adsorbed dimer is 28%
and thus smaller compared to that for the solvated dimer. This
decrease is particularly pronounced for peptide 1, which inter-
acts more strongly with the membrane than peptide 2 does.
Instead, peptide 1 exhibits more turns, bends, and random coil
structures, which suggests that the membrane inhibits β-sheet
formation. Also, no pronounced helix formation is observed
for the membrane-bound dimer, which one might expect based
on NMR results (33) and previous simulation studies of Aβ
that employed implicit membrane models (34, 35). However,
a closer inspection of these studies reveals that for helices to
be present, the affected Aβ residues need to be inserted into
the hydrophobic membrane core, which did not occur here.
It remains to be shown what comes first: helix formation or
membrane insertion. In solution, both peptides feature a very
similar secondary structure pattern along their primary struc-
ture. They display a particularly high propensity for a β-sheet in
the regions Q15 to F20 of the central hydrophobic core (CHC)
and A30 to V40 from the C-terminal hydrophobic region. This
excludes the residue pair G37/G38, which has a tendency to
form a turn as previously shown in simulations (36) and NMR
spectroscopy (37).

The analysis of the intrapeptide contacts, derived from inter-
residue distances (Fig. 6), indicates that in solution long β-
hairpins between two antiparallel strands involving residues Y10
to V24 and Q27 to V40 formed in both peptides. These β-
hairpins are particularly stable since the β-sheet propensity of
the strongly hydrophobic regions 18VFF20and 32IGL34 even
reaches values above 90%. In previous simulation studies, β-
sheet formation upon Aβ dimerization has also been the pre-
vailing finding (see table 2 of ref. 36 and references therein
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Fig. 4. The TN for Aβ42 dimerization in the aqueous phase (Top) and in the presence of the neuronal membrane (Bottom). Each node is defined by three
descriptors: oligomer size, number of interpeptide hydrophobic contacts, and number of residues in β-strand conformation. The last two descriptors are
grouped in blocks of five and are named h1 to h12 for hydrophobic contacts and b1 to b6 for the number of residues in β-strand conformation. The nodes are
connected by edges that represent transitions between the connected peptide states. The size of the nodes and the thickness of the edges are proportional
to the respective state or transition probability. They are colored based on the descriptor reflecting the number of residues in β-strand conformation (from
light pink for no β-sheets to dark purple for the maximum amount of β-sheets in b6). For the nodes circled in green representative peptide conformations
are shown (see color code in Fig. 2).

as well as refs. 38–41). As found here, the β-sheets are pref-
erentially formed between the C-terminal hydrophobic regions,
followed by the involvement of the CHC. However, in most of
these previous studies, the β-sheets are shorter and the overall
dimer appearance is more compact. This likely resulted from
the usage of older force fields, which were not optimized for
IDPs and are known to provide too compact IDP conforma-
tions (42). Exceptions are a coarse-grained discrete MD study

(38) and a structure-prediction study for transmembrane Aβ
oligomers (35) that yielded similarly extended β-sheets. This
is confirmed by comparing the intrapeptide contacts that are
present in the different Aβ42 dimers, as shown in SI Appendix,
Fig. S9. SI Appendix, Fig. S9 further shows that the β-hairpin
centered at G25/S26 coincides with the peptide regions that are
involved in the cross–β-sheet structure found in U-shaped Aβ
fibrils (43, 44).
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Fig. 5. Structural characteristics of the dimer in the aqueous phase (Top) and in the presence of the neuronal membrane (Bottom). (A) Probability of
secondary structures to form in each residue of the peptides. The bars represent the cumulative secondary structure probabilities consisting of helix (green),
β-strand/bridge (magenta), and turn or bend (gray). The difference from 1.0 presents the probability of the random coil state. (B) The average order
parameter S2 of each residue and peptide.

The intrapeptide contacts present in the membrane-adsorbed
dimer are more diverse and different in the two peptides. For
peptide 2 they reveal the prevalence of two shorter hairpins,
one centered at H14 and the other one at G25, and sev-
eral contacts between N- and C-terminal residues. The more
membrane-adsorbed peptide 1, on the other hand, is devoid of
noteworthy contacts involving its N-terminal residues. These are
the amino acids that preferentially interact with the membrane
and are therefore not available for interresidue interactions.
In the C-terminal region of peptide 2 the formation of a very
short β-hairpin is visible. Overall, the intrapeptide contacts cor-
roborate the conclusion that at the membrane Aβ42 adopts
more compact conformations with less β-sheet than the dimer
in solution.

Dimerization in Solution Is Mainly Driven via the Hydrophobic C-
Terminal Region. To obtain an overview of how the two peptides
are arranged with respect to each other as dimers, we calculated
the interpeptide distances on a per-residue basis. The resulting
distance matrices for the two dimer systems (Fig. 6) are almost
symmetric with respect to their diagonal and are characterized
by areas of high contact density along the diagonal as well as in
the upper left and lower right quadrants. Only the D23 to K28
region in both peptides and in both environments does not show
a noteworthy contact propensity. This is the same region of the
peptide that we assigned a turn or bend conformation (Fig. 5). It
can thus be concluded that this bend/turn region does not form
the interpeptide interface.

For the dimer in solution, the highest contact density is
observed between the two C-terminal regions, A30 to A42, which
are the same regions where a high β-propensity was identified.
Therefore, these two C-terminal regions not only are involved in
intrapeptide β-sheets, but also form an interpeptide β-sheet in
solution. This is confirmed when analyzing the residue–residue
interaction energies between the two peptides, which involve

Coulomb interactions deriving from backbone H bonds and
Lennard-Jones energies originating from interactions between
hydrophobic residues (SI Appendix, Fig. S10). While the distance
matrix does not show a clear preference for either an antiparal-
lel or a parallel β-sheet between the two C-terminal regions, and
both arrangements are indeed possible (see the representative
conformations for nodes [2, h7, b4] [parallel] and [2, H12, b6]
[antiparallel] of the corresponding TN in Fig. 4), the interaction
energies indicate that the antiparallel arrangement is favored.
This is different from Aβ fibrils where only parallel β-sheets are
found. Other preferred contacts in the dimers form between the
CHC of one peptide and the C-terminal region of the other pep-
tide. The fourth area with a certain, yet smaller probability of
interpeptide contact is between the CHC regions of both pep-
tides. However, these contacts are weaker than those between
the two C-terminal regions, as the corresponding interaction
energies are smaller in magnitude (SI Appendix, Fig. S10). The
dissection of the interaction energies further reveals that attrac-
tion between the oppositely charged residues E22/D23 and K28
is involved in the association process, which is in agreement with
previous findings (45).

The distance matrix of the membrane-adsorbed dimer looks
similar to the one of the dimer in solution. However, the contact
areas are more pronounced, indicating less structural diversity in
the internal arrangement of the dimers. Second, the area without
interpeptide contacts around residues D23 to K28 is larger. This
applies to peptide 1 in particular and can be explained by the con-
tacts that this peptide forms with the membrane instead. Third,
the order of areas with the highest contact probability is differ-
ent from those of the solution system. The shortest distances in
the membrane-adsorbed dimer are observed between the CHC
of peptide 1 and the C-terminal region of peptide 2, followed
by the contacts between both CHC regions. However, based on
the secondary structure analysis, β-sheet formation between the
two peptides is less likely and is largely limited to within peptide
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Fig. 6. The distance matrices illustrating intra- and interpeptide contacts between residues for the dimer in the aqueous phase (Top) and in the presence of
the neuronal membrane (Bottom). The intrapeptide contacts within peptide 1 are shown below the main diagonal and those within peptide 2 above it. The
interpeptide contacts are shown for peptide 1 and peptide 2 composing the dimer. The color bar on the right indicates the average intra- and interresidue
distances (in nanometers).

2. Contacts between the C-terminal region of peptide 1 and the
N-terminal region of peptide 2 are also observed. As a result,
the latter region exhibits an increased β-sheet propensity, which
extends up to residue Y10 (Fig. 5A). It initially was assumed
that the N-terminal region of Aβ is always disordered. However,
this was later refuted, first by simulations (SI Appendix, Fig. S9)
and then by cryo-electron microscopy (35, 46). Contacts between
the C-terminal regions are of less relevance for the membrane-
adsorbed dimer due to the competition between peptide–peptide
and peptide–membrane interactions. The ranking of the inter-
peptide contact preferences is confirmed by the analysis of the
interaction energies (SI Appendix, Fig. S10). Unlike in solution,
attraction between E22/D23 and K28 does not play a role during
the dimerization of Aβ, which can be explained by the preference
of K28 to associate with the membrane.

Reduced Global Motions but Increased Local Disorder in the
Membrane-Adsorbed Dimer. To quantify the peptide dynamics, we
calculated the S2 order parameters to monitor the mobility of
the N–H bond vectors of the peptide backbone along with the
average global rotational correlation times, 〈τ〉 (Fig. 5B). These
quantities would be directly comparable to those determined by
NMR spectroscopy, which, however, are not available yet. The
global rotational dynamics of the Aβ42 dimer in solution occur
on the low nanosecond time scale with 〈τ〉=20± 10 ns. The
S2 values reflect the different secondary structure propensities
of the various residues. They are above ≈0.7 for the residues
in a β-conformation, while the more mobile turn region and
neighboring residues ranging from E22 to A30 have S2 values
between 0.5 and 0.7, and the disordered N-terminal region has
order parameters below 0.5. The comparison to the S2 values of

the Aβ40 monomer confirm that the dimer in solution is con-
siderably more folded, since for the monomer all S2 values are
below 0.4 (47). The global rotational dynamics of the Aβ42 dimer
in the presence of the neuronal membrane are by a factor of
5 slower than in solution: 〈τ〉=108± 30 ns. Interestingly, the
slower motion is accompanied by decreased order parameters
compared to that seen in solution; the S2 values range from
0.25 to 0.55 (and below 0.25 for the N-terminal residues, simi-
lar to the situation in the solution dimer). The overall reduction
in S2 for the membrane-adsorbed dimer implies that the pep-
tides are generally less folded than they are in solution, which
agrees with the observed reduction in β-sheet and increase in
random coil. Thus, a picture emerges where on the one hand the
overall peptide dynamics are reduced due to the adsorption on
the membrane, while at the same time the interactions with the
membrane reduce the local peptide order as reflected by the S2

values.

Discussion
In the present study, all-atom MD simulations on the microsec-
ond time scale have been performed to elucidate the mechanism
of Aβ42 dimerization in pure water and in the presence of a
neuronal membrane. The consideration of a neuronal mem-
brane consisting of six components (PC, PE, PS, CHOL, SM,
and GM1) is a major step forward compared to previous sim-
ulation studies on Aβ–membrane interactions, which included
three lipid types or fewer. Dimerization was observed in the
aqueous phase as well as at the neuronal membrane. How-
ever, the resulting dimer structures showed significant differ-
ences. Our simulations of Aβ42 dimerization in solution revealed
a coil-to-β transition that is the first step along the amyloid
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aggregation pathway. The dimer conformations sampled in solu-
tion bear certain similarities to the β-sheets found in the U-
shaped Aβ42 amyloid fibrils. To our knowledge, a dimer struc-
ture with such a high β-sheet content and overall order has never
been reported from all-atom MD simulations where the aggrega-
tion of Aβ progresses from disordered monomers into oligomers.
We conclude that only the MD sampling of several microsec-
onds and the use of a force field well suited to Aβ allow the
random coil to β-sheet transition to be observed in a simulation
(22). Thus, with these simulations we finally shed light on the
structural transitions that might lead to nuclei enabling amyloid
formation. Our future simulations will test whether the dimers
that formed in solution here are indeed on pathway toward
amyloid fibrils.

On the neuronal membrane, the dimer conformations are gen-
erally less ordered than in solution. The dimerization took place
on the membrane, with one of the two peptides being preferen-
tially adsorbed to the membrane and the other one associating
with the already membrane-attached peptide without notewor-
thy interacting with the membrane itself. The directly adsorbed
peptide in particular has a higher amount of random coil and less
β-sheet. The membrane adsorption is mainly driven by electro-
static interactions between the charged N-terminal residues of
Aβ and the headgroups of PC, PE, and PS, in addition to hydro-
gen bonding between the sugar moieties of the GM1 lipids and
Aβ42 residues across its whole primary structure. GM1 is found
to form clusters within the neuronal membrane, which are the
preferable site for Aβ to bind to the membrane surface. This
is in line with experimental results that revealed GM1 as part
of a neuronal membrane to be the main interaction partner of
Aβ, whereas less binding was seen for SM and also PC (48).
No insertion of the peptides into the hydrophobic region of the
membrane was observed in our simulations. Instead, the interac-
tions with the membrane stiffened both peptides, restricting their
conformational diversity compared to the Aβ42 dimer simulated
in the aqueous phase. Not only did the transition networks reveal
a reduction in the number of conformational states, but also the
correlation times of the N–H bond vector motions indicated an
impaired peptide motion. However, while adsorption was found
to have profound effects on the Aβ42 dimer, the membrane was
only marginally affected.

Our observations are in agreement with a large and diverse set
of experimental results. Of special note is a study that analyzed
the effects of glucose on Aβ42 aggregation (49). In this study,
Kedia et al. (49) found that Aβ42 forms low-molecular-weight
oligomers in the presence of sugars and that these oligomers
do not adopt a β-sheet structure. This agrees with our obser-
vation that Aβ42 dimers that preferentially interact with the
glycans of GM1 form fewer β-sheets than Aβ42 dimers that
form in solution do. Moreover, another study revealed that
Aβ oligomers that are present in the brain interstitial fluid
are sequestered from that fluid by strongly binding to GM1,
which also prevented the further aggregation of Aβ (48). We
are aware of studies by Ikeda et al. (50) and Matsuzaki (51)
that concluded that GM1 exhibits a strong Abeta fibril seed-
ing potential following the formation of β-sheet–rich oligomers
on GM1 clusters. However, these clusters are much larger than
those formed in our simulations, as Ikeda et al. (50) and Mat-
suzaki (51) employed ganglioside-rich (>20 mol% vs. the 4
mol% used in our study) membranes, where GM1 forms an inter-
connected network of micrometer size yielding glycan platforms
in liquid-ordered membranes. As elaborated by Hof and cowork-
ers (52), the scenarios for membranes with high and low GM1
contents are not necessarily contradicting each other but rather
complementary.

Another finding by the study of Kedia et al. (49) was that
the unstructured Aβ42 oligomers that formed in the presence
of glucose are able to interact with membrane bilayers. Their

diffusion decreased by a factor of about 4 upon membrane
adsorption, which agrees nicely with our observation that mem-
brane interactions reduce the dynamics of the dimer. Moreover,
no incorporation of the unstructured Aβ42 oligomers into the
membrane was recorded (49), which also concurs with our find-
ings. We conclude that, if a β-sheet structure should be required
for membrane insertion of Aβ aggregates to occur, GM1 in
the neuronal membrane has a neuroprotective effect as it could
break the β-sheet structure in the Aβ dimer. This finding would
be in agreement with the neuroprotective and neurogenerative
effects reported for GM1 (53–55) and the conclusion that the
neurotoxic activity of amyloid oligomers increases with their β-
sheet content (8). On the other hand, Selkoe and coworkers (48)
found that even though GM1 sequesters Aβ from the brain inter-
stitial fluid, thereby inhibiting the aggregation of Aβ, the binding
of the peptide to GM1 alone mediates neurotoxic effects. This
once more highlights that the interplay between Aβ, its aggrega-
tion, and the neuronal membrane is far from trivial and despite
the wealth of already published studies on that matter, further
studies are needed to fully solve this puzzle.

Materials and Methods
Setup of the Simulated Systems. The systems modeled are composed of two
Aβ42 peptides, which were simulated in the aqueous phase and in the pres-
ence of the neuronal lipid membrane. The initial Aβ42 structures were taken
from the most populated clusters from a preceding 3-µs MD simulation of
monomeric Aβ42 in solution. The neuronal membrane model composed of
152 PC, 96 PE, 20 PS, 80 CHOL, 36 SM, and 16 GM1 molecules was generated
as symmetric lipid bilayer using the CHARMM-GUI interface (56).

The simulated membrane system also contained water layers above the
upper and beneath the lower membrane leaflet, using the three-site trans-
ferable intermolecular potential (TIP3P) for modeling the water molecules,
with sodium and chloride ions added at the physiological concentration of
150 mM. The two Aβ42 peptides were placed in the upper water layer at
a distance of ≈2 nm from the equilibrated lipid bilayer surface and at a
distance of>1 nm between the closest atoms from the two peptides. All dis-
tances from the peptides to any of the simulation box edges were at least 1.2
nm to avoid interactions between the peptides and their periodic images.
The total number of atoms in the modeled membrane system was≈160,000
atoms and the box size was about 9.6× 9.6× 13.6 nm3. The setup of the
system in the aqueous phase was similar, but without a lipid bilayer, result-
ing in a system size of about 9.2× 9.2× 6.5 nm3, and contained ≈54,760
atoms. This amounts to peptide concentrations of 4 and 6 mM, respectively.
This is two to three orders of magnitude higher than the concentrations
used in corresponding in vitro experiments. However, it is beyond our com-
putational capabilities to model µM peptide concentrations at the atomistic
level. Moreover, simulations at such low concentrations would most of the
time simulate only the diffusion of monomeric peptides (57). We there-
fore aim to model the oligomerization of Aβ in a stepwise fashion (57, 58),
starting here with simulations of dimers.

MD Simulation Conditions. The all-atom MD simulations were performed
using GROMACS/2018.2 (59) along with the CHARMM36m force field for
Aβ42 (60) and Charmm36 for the lipids (61). Each system was first energy
minimized using the steepest-descent algorithm to remove atomic clashes.
This was followed by equilibration in the canonical ensemble where a tem-
perature of 310 K was regulated with the velocity-rescale thermostat (62).
Next, the system was equilibrated under isobaric–isothermic conditions to
obtain a pressure of 1.0 bar, where the pressure was regulated using a
semi-isotropic Parrinello–Rahman pressure coupling scheme (63). Periodic
boundary conditions were set in all directions. Both the van der Waals
and Coulomb force cutoffs were set to 1.2 nm in real space. The parti-
cle mesh Ewald (PME) method was applied for calculating the electrostatic
interactions. Before we studied the interaction of Aβ42 with the neuronal
membrane, we equilibrated the membrane without peptides being present
for 1 µs. For Aβ42 dimer systems, an initial simulation was run for 2 µs,
from which different snapshots were randomly selected and used as start-
ing structures for the next 5× 2-µs simulations. For the subsequent analysis,
we combined the data from the six independent simulations and derived the
results presented in this study.

Analysis of the Lipid Bilayer Properties. For the determination of the order
parameter of the lipid acyl chains, SCH, one uses the C–H bond vectors
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present in the lipid tails and calculates the orientation of these vectors with
respect to the bilayer normal (the z axis) using

SCH =
〈3cos2 θ− 1〉

2
, [1]

where θ is the angle between the C–H bond vector and the bilayer
normal. The angular brackets indicate the ensemble average. This calcu-
lation was accomplished with a Python script available at https://github.
com/NMRLipids/MATCH (64).

The mass density profiles along the bilayer normal were calculated using
the “gmx density” tool. The distance between the peaks of the total density
gives an estimate of the bilayer thickness. Furthermore, the bilayer thickness
was calculated as the z-position difference between the P atoms of the lipid
headgroups in the upper and lower leaflets using the “gmx distance” tool.
The RDF provides information about the probability of finding a particle
at a certain distance from another particle. We calculated the radial distri-
bution functions of different lipid pairs in two dimensions (the xy plane)
using the “gmx rdf” tool. The hydrogen bonds between different lipid
pairs were determined using “gmx hbond.” A hydrogen bond was recorded
when the angle between the donor and acceptor bonded hydrogen was
between 150 and 180◦ and the distance between the two atoms was
within 0.35 nm.

Analysis of Aβ42 Properties. The secondary structure of each Aβ42 residue
was determined using the “define secondary structure program” (DSSP) (65)
invoked via the GROMACS tool “do dssp.” To facilitate a clear representa-
tion, the data of similar secondary structures are grouped together: β-strand
and β-bridge are combined as β-sheet and β-turn and bend as turn/bend;
and the helix includes α, π, and 310-helices.

For the calculation of the S2 order parameter we used the MOPS2 (Molec-
ular Order Parameter S2) software developed in ref. 66 to calculate S2 from
the N–H bond vector autocorrelation function. To facilitate the calculation,
each trajectory was divided into subtrajectories of tsub = 100 ns length. For
each of the subtrajectories the S2 values and the rotational correlation
times, τ , were calculated and subsequently averaged over all subtrajecto-
ries. The rotational correlation times were further averaged over all residues
and both peptides, denoted as 〈τ〉, whereas S2 is provided per residue and
peptide. Since 〈τ〉 for the membrane system is in the same range as tsub, we
checked on the convergence for the S2 calculation in this case (SI Appendix,
Fig. S11).

Transition Networks. For the generation of the TNs to characterize the
assembly of peptides into dimers we used the ATRANET (Automated Transi-
tion Network) software (https://github.com/strodel-group/ATRANET) (27). It
defines the oligomerization state by a number of descriptors, depending on
the properties of interest. In our case, three descriptors are used: The first
one is the oligomer size, which can be 1 in the case of monomer or 2 in

the case of a dimer. To define a dimer, the minimum distance between any
atom of peptide 1 and any atom of peptide 2 along with the requirement
of this distance to be within 0.45 nm was used. The second descriptor, the
number of hydrophobic contacts between both peptides, counts the possi-
ble interpeptide atom pairs formed between the hydrophobic amino acids
of Aβ42 that are within a certain cutoff (also 0.45 nm). The third descrip-
tor is the number of residues in β-strand conformation, which is evaluated
using DSSP and averaged over both peptides. Feeding these descriptors to
ATRANET leads to a transition matrix that can be visualized using Gephi (67).
Snapshots of the representative structures from the transition network were
rendered using the visual molecular dynamics (VMD) program (68).

Calculation of Aβ42–Bilayer Interactions. The peptide–lipid interactions
were analyzed by calculating the interaction energy between each Aβ42
residue and the headgroup of each lipid component using “gmx energy.”
The “gmx mindist” program was employed to determine the number of
contacts between each Aβ42 residue and each lipid component in the neu-
ronal membrane. A contact was recorded when the distance between any
two nonhydrogen atoms from a residue and a lipid was within 0.5 nm.
The H-bond propensity was determined by the number of times an H bond
was formed between hydrogen bond donating and accepting atoms in lipid
pairs.

Data Availability. The MD trajectories and the analysis scripts are avail-
able at Mendeley Data, https://data.mendeley.com/datasets/92mkp4pk86.
All data resulting from the analysis of this raw data is shown in the main
text or SI Appendix.
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Fig. S10. Average interpeptide interaction energies between residues, decomposed into Coulomb (top) and Lennard-Jones (bottom) interactions, for Aβ42 dimers in solution
(left) and at the membrane (right). The peptide association in solution is dominated by interactions between the C-terminal regions of both peptides, while the peptides of the
membrane-bound dimers mainly interact with each other via the central hydrophobic core of peptide 1 and the C-terminal residues of peptide 2. Please note that results are
only shown for residue numbers > 15, as for the N-terminal residues no noteworthy interaction energies were recorded. Moreover, the energy scales in the four plots are slightly
different from each other (see color bars) in order to provide a good resolution of the energies.
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Comparative molecular dynamics
simulations of pathogenic and
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protein monomers and dimers
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Polyglutamine expansion at the N-terminus of the huntingtin protein exon 1 (Htt-
ex1) is closely associated with a number of neurodegenerative diseases, which
result from the aggregation of the increased polyQ repeat. However, the
underlying structures and aggregation mechanism are still poorly understood.
We performed microsecond-long all-atom molecular dynamics simulations to
study the folding and dimerization of Htt-ex1 (about 100 residues) with non-
pathogenic and pathogenic polyQ lengths, and uncovered substantial differences.
The non-pathogenic monomer adopts a long α-helix that includes most of the
polyQ residues, which forms the interaction interface for dimerization, and a PPII-
turn-PPII motif in the proline-rich region. In the pathogenic monomer, the polyQ
region is disordered, leading to compact structures with many intra-protein
interactions and the formation of short β-sheets. Dimerization can proceed via
different modes, where those involving the N-terminal headpiece bury more
hydrophobic residues and are thus more stable. Moreover, in the pathogenic Htt-
ex1 dimers the proline-rich region interacts with the polyQ region, which slows
the formation of β-sheets.

KEYWORDS

polyglutamine, huntingtin, molecular dynamics, oligomer, aggregation

1 Introduction

Huntington’s disease (HD) is an inherited neurodegenerative disease caused by an
abnormal expansion in the polyglutamine (polyQ) tract of the N-terminal Huntingtin (Htt-
ex1) protein. The elongated polyQ tract mutation is caused by the expansions of nucleotide
CAG repeats in exon-1 of the HD gene that encodes the elongated polyQ tract within the
Htt-ex1 protein. Furthermore, the expansion of polyQ tracts and their toxicity are correlated
to the age of the onset of HD (MacDonald et al., 1993). In HD, Htt-ex1 becomes pathogenic
beyond a threshold of 36 glutamine repeats (Takeuchi and Nagai, 2017). The full-length Htt-
ex1 is over 3,100 amino acids expressed in all mammalian cells including nerve cells in the
brain where it has higher concentrations. Htt-ex1 interacts with a wide range of proteins
involved in many cellular processes (Gusella and MacDonald, 2000; Li and Li, 2004; Saudou
and Humbert, 2016), but the exact structure and function of Htt-ex1 are still poorly
understood (Mangiarini et al., 1996). Nevertheless, HD onset and progression are
associated with the misfolding of Htt-ex1 which eventually forms amyloid aggregates
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that are connected to neuronal cell death (Perutz et al., 1994). Toxic
aggregation of Htt-ex1 into amyloid cannot only be observed in vivo,
but can also be reproduced in vitro (Nagai et al., 2007). Several
hypotheses have been suggested to explain the aggregation behavior
and thereby the toxicity of Htt-ex1. One of these hypotheses
proposes that pathogenic Htt-ex1 accumulates into insoluble
aggregates in neurons as amyloid fibrillar structures (Miller et al.,
2011). Other hypotheses suggest that Htt-ex1 monomers or
oligomers with extended polyQ tracts interact with other cellular
proteins and alter their functions, which leads to neuronal cell death
(Williams and Paulson, 2008; Gkekas et al., 2021).

Importantly, the expansion of the polyQ tract is also associated
with many other inherited neurodegenerative diseases (Williams
and Paulson, 2008). Thus, several studies have been conducted to
investigate the structures and aggregation mechanisms of isolated
polyQ peptides. Experiments under different solutions conditions
found that isolated polyQ tracts could sample various conformations
as collapsed structures (Crick et al., 2006) with random coils (Chen
et al., 2001; Klein et al., 2007), α-helix (Bhattacharyya et al., 2006), β-
sheets (Nagai et al., 2007; Darnell et al., 2009) and PPII helix
(Chellgren et al., 2006; Darnell et al., 2007; Darnell et al., 2009).
The conformational flexibility of polyQ tracts has also been
confirmed by computational modeling using molecular dynamics
(MD) simulations, as was comprehensively reviewed by Moldovean
and Chis (Moldovean and Chiş, 2019). Of particular note are the
studies (Długosz and Trylska, 2011; Vöpel et al., 2017; Priya and
Gromiha, 2019) as they did not only simulate isolated polyQ
stretches as done in the majority of the other simulation studies,
but included the first 17 N-terminal residues directly preceding the
polyQ sequence and some of the following C-terminal residues.
Despite the various experimental and simulation efforts, there is no
consensus yet on the preferred polyQ structure in solution. Almost
all secondary structures have been suggested, ranging from α-helical
structures (Elena-Real et al., 2022) to coil and β-sheets (Moldovean
and Chiş, 2019). Nonetheless, there is ample evidence that indicates
that longer polyQ increases the β-sheet propensity and aggregation
rates (Thakur andWetzel, 2002; Klein et al., 2007; Sivanandam et al.,
2011).

The Htt-ex1 consists of three regions (Figure 1): the N-terminal
17 amino acid region (Nt17), the polyQ tract region, followed by a

proline-rich region (PRD). The N-terminal and proline-rich regions
surrounding the polyQ region have critical roles in modulating the
aggregation mechanism as has been illustrated in computational and
experimental studies (Chow et al., 2012; Qin et al., 2004; Duennwald
et al., 2006a; Duennwald et al., 2006b). The Nt17 region is known to
accelerate the aggregation by forming prefibrillar spherical
oligomers with Nt17 at their core (Tam et al., 2009; Thakur et al.,
2009). Experimentally determined structures of Nt17 suggested that
it folds into an amphipathic α-helix (Kim et al., 2009; Kim, 2013;
Michalek et al., 2013). In addition, it has been suggested that the α-
helix Nt17 may initialize the Htt-ex1 aggregation by forming α-helix
rich oligomers (Hoop et al., 2014; Sahoo et al., 2014; Pandey et al.,
2018). In general, it appears that Nt17 is mostly helical in Htt-ex1
aggregates (Sivanandam et al., 2011; Jayaraman et al., 2012; Hoop
et al., 2014). However, nuclear magnetic resonance (NMR)
spectroscopy showed that structures of Nt17 are intrinsically
disordered and adopt different conformations (Thakur et al.,
2009). The PRD, on the other hand, is found to decrease the
stability and rate of amyloid-like aggregation without changing
the fundamental mechanism of aggregation (Bhattacharyya et al.,
2006). NMR and electron paramagnetic resonance (EPR)
spectroscopy showed that the PRD tends to adopt similar
structures with rich PPII helical structures in both monomers
and fibril structures (Bugg et al., 2012; Isas et al., 2015).

Proteins with glutamine repeats are structurally unstable. This
makes it difficult to resolve the structure of regions surrounding the
polyQ tracts (Takeuchi and Nagai, 2017). As of today, only
structures of the Htt-ex1 containing 17 glutamine repeats were
resolved by X-ray crystallography (Kim et al., 2009). Thus,
various computational studies of model Htt-ex1 have been
conducted to illustrate the effect of polyQ tract length on protein
structure (Moldovean and Chiş, 2019). Other studies provided
insights into the effects of Htt-ex1 flanking domains on its
structure (Długosz and Trylska, 2011; Vöpel et al., 2017; Priya
and Gromiha, 2019). By adding or removing these domains, the
PRD was found to destabilize the protein and inhibited β-sheet
formation (Lakhani et al., 2010; Williamson et al., 2010). Kang and
coworkers carried out MD simulations of full-length Htt-ex1
monomers with different polyQ lengths. Their results suggest a
positive correlation between polyQ tract length and the β-sheet

FIGURE 1
Sequence of Htt-Q23 and Htt-Q48 studied in this work. The Nt17 region is highlighted in red, polyQ in blue, and the PRD is shown in yellow for polyP11

and polyP10 and rose for the other PRD parts.
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content (Kang et al., 2017). Finally, the polyQ region was found to be
the main driver for Htt-ex1 aggregation (Williamson et al., 2010).

In this work, we performed all-atom MD simulations to
investigate the structural properties of Htt-Qn monomers and
dimers with n = 23 for non-pathogenic Htt-ex1 and n = 48 for
disease-causing Htt-ex1. In addition to including the Nt17 region, we
also added 50 amino acids to model the impact of the PRD on the
polyQ region (Figure 1). With this, our simulated systems are longer
than those usually simulated. In addition, we used the Charmm36m
force field, which has been adapted to proteins with low-complexity
sequences (Huang et al., 2017) and has been shown to be useful in
predicting the conformational ensemble of intrinsically disordered
proteins (Robustelli et al., 2018; Paul et al., 2021) and amyloid
aggregates (Samantray et al., 2020), but has not yet been applied to
Htt-ex1 proteins. Furthermore, we performed simulations on the
microsecond time scale, which is longer than in most preceding
simulations. Our study therefore provides updated insights into the
combined effects of Nt17, PRD, and polyQ tract length on the Htt-
ex1 structure and aggregation.

2 Materials and methods

2.1 Initial structures and system preparations

The two simulated sequences are MATLEKLMKAFESLKSF-
Qn-P11-QLPQPPPQAQPLLPQPQ-P10-GPAVAEEPLHRP with n =
23 and n = 48 glutamine residues (Figure 1). The X-ray crystal
structure of Htt-ex1 (PDB ID: 3IOT) (Kim et al., 2009) consists of an
α-helix for Nt17 and the α-helix extends up to 15 glutamines into the
polyQ17 tract. For the polyP11 region, extended loops, random coil
conformations and also PPII-helix formation were observed.
However, since the structure of the full-length Htt-ex1 protein is
not completely resolved, the initial structures were built using the
Avogadro software (Hanwell et al., 2012) and PyMOL (Schrödinger,
2022) by adding the peptide fragment Q11-PRD and Q36-PRD to the
N-terminal part Nt17-Q12 taken from the PDB structure 3IOT for
modeling the Htt-Q23 and Htt-Q48, respectively. This resulted in
extended structures for both proteins, which were solvated with
water and then collapsed through initial 20 ns MD simulations to
reduce the system size in the production MD simulations.

2.2 MD simulations

All MD simulations were carried out using GROMACS 2020
(Van Der Spoel et al., 2005; Abraham et al., 2015) as MD program,
employing the atomistic force field Charmm36m along with the
Charmm-modified TIP3P water model (Huang et al., 2017). The
initial (already collapsed) monomer structures were solvated in a
~2,000 nm3 cubic box, including 150 mM Na+ and Cl− ions and
overall system neutralization, leading to about 200,000 atoms. The
energy of each system was initially minimized using the steepest
descent algorithm (Müller and Brown, 1979; Zhang, 2015), followed
by 1.0 ns equilibration and then the production runs under NPT
ensemble conditions. The pressure and temperature were
maintained at 1.0 bar and 298 K using the Parrinello-Rahman
pressure coupling method (Parrinello and Rahman, 1981;

Parrinello and Rahman, 1982) and a velocity-rescale thermostat
method (Bussi et al., 2007), respectively. All simulations implied
periodic boundary conditions applied in all directions and using a
cutoff distance of 1.2 nm for the calculation of the non-bonded
interactions in real space. The electrostatic interactions were
computed using the particle mesh Ewald (PME) method
(Essmann et al., 1995). The LINCS algorithm was applied (Hess
et al., 1997) to constrain bond lengths, and a leapfrog integrator
(Van Gunsteren and Berendsen, 1988) was used to integrate the
equations of motions with a 2 fs time step. For all simulations it was
checked that there were no self-interactions of the proteins with
their periodic images during the course of the simulations as a result
of conformational reorientations.

For each monomer system, 5 × 1.0 μs simulations were carried
out. Simulation 2 was initiated from the final snapshot of the first
simulation, while simulations 3 through 5 were started from the
central structure of the most populated conformational cluster of
the respective preceding simulation. For the analysis, the first
simulation per sequence was discarded due to the bias of the
extended initial structures, despite the initial 20 ns MD simulation
to collapse these structures. This bias is visible in the time traces of
various observables (Supplementary Figures S1–S3). To assesses
the convergence of the monomer simulations, the autocorrelation
functions of various structural properties were calculated for the
individual 1.0 μs runs (Supplementary Figure S4). They all tend to
zero within 500 ns, indicating loss of memory from initial
structures. Nonetheless, while general convergence of the
individual trajectories is found, certain fluctuations of the
various structural properties persist, which is an expected
behavior for intrinsically disordered proteins (Paul et al.,
2021). We further conducted the Augmented Dickey Fuller
(ADF) test as a unit-root test to assess the stationarity of the
monomer data. The ADF test was applied to the concatenated
time series of various observables (Supplementary Table S1). The
obtained p-values for all the tested observables are below 0.05, and
the test statistics are also smaller than the critical values, thereby
rejecting the null hypothesis and indicating that the data are
stationary.

For both proteins, 3 × 2.0 μs dimer simulations were carried out
in a cubic simulation box with a volume of about 1,925 nm3 and a
total number of 190,000 atoms. The six most dominant
conformational clusters determined from the previous monomer
simulations were used as starting structures for the monomers in the
dimer simulations. The simulations were initiated by randomly
orienting two monomers in the simulation box, ensuring a
minimum distance of 5 nm between them.

2.3 Analysis

TheMD simulations were analyzed using different tools, which
were invoked from GROMACS or from the MDAnalysis Python
package (Michaud-Agrawal et al., 2011; Gowers et al., 2016). For
the analysis of the monomers, the 4 × 1.0 μs simulations per
protein (ignoring the initial simulation) were concatenated. In the
case of the dimers, the 3 × 2.0 μs simulations per protein were
joined for analysis. The determination of the secondary structure
was done with the DSSP (Define Secondary Structure of Proteins)

Frontiers in Molecular Biosciences frontiersin.org03

Khaled et al. 10.3389/fmolb.2023.1143353



program (Kabsch and Sander, 1983) as available via GROMACS.
The PPII-helix structures were determined based on the dihedral
angles of the protein backbone, ϕ and ψ, which fall into the range of
−104 ≤ ϕ ≤ −46 and 116 ≤ ψ ≤ 174 for a PPII helix (Mansiaux et al.,
2011; Yu et al., 2021). Previous studies have demonstrated that the
assignment of the PPII helix using either DSSP-PPII or the
backbone dihedral-angles approach provide highly similar
results (Jephthah et al., 2021; McIvor et al., 2022).
Conformational clustering of the trajectories was accomplished
using the algorithm by Daura et al. (Daura et al., 1999), which is a
nearest neighbor algorithm, using the root mean square deviation
(RMSD) between all trajectory snapshots together with an RMSD
cutoff of 0.5 nm to assign the neighbors. For the RMSD
calculations, only the Cα atoms were used for both the
alignment and actual calculation. To determine the contacts
between residues, we calculated minimum distances for all
residue pairs, within the proteins and also between the proteins
in the case of the dimers. The time-averaged distances between the
residues are presented as distance matrices. The contacts were
further analyzed based on their interaction type, i.e., hydrophobic,
H-bond, or salt-bridge interactions, using the CONAN software
(Mercadante et al., 2018). This tool was also employed to identify
correlations in the motions of the proteins in their monomeric
form. Further analysis involved the calculation of the radius of
gyration (Rg) of the proteins, the distance between the Cα atoms of
the protein termini (denoted as end-to-end distance or dee), and
the root mean square fluctuations (RMSFs) of the Cα atoms after
alignment to the time-averaged structure. The free energy as a
function of Rg and dee was calculated as ΔG(Rg, dee) = −kBT[ln P(Rg,
dee) − ln Pmax(Rg, dee)], where kB is the Boltzmann constant, T is
room temperature, P(Rg, dee) is the probability of the protein to
have given values (Rg, dee), and Pmax(Rg, dee) is the maximum of
that probability distribution. The free energy was also determined
as a function of the first two principal components, PC1 and PC2,
that were determined from a principal component analysis (PCA)
using the Cartesian coordinates of the Cα atoms.

The solvent-accessible surface area (SASA) was calculated for
both the whole proteins and selected residues. The SASA of the
proteins was further distinguished into the hydrophobic and polar
solvent-accessible surface areas using the residue sets (Met, Ala, Phe,
Leu, Pro, Gly, Val) and (Asp, Glu, His, Lys, Arg, Ser, Thr, Gln),
respectively. The standard errors of the SASA values were
determined via block averaging with 4 blocks, each containing
1,000 data points.

3 Results and discussion

3.1 The pathogenic Htt-ex1 monomer is
more compact and has a higher β-sheet
propensity than its non-pathogenic
counterpart

In this section, we illustrate the structural differences between
Htt-Q23 and Htt-Q48 monomers by the analysis of various structural
properties, including the RMSD, Rg, dee, secondary structure, and the
SASA. The evolution of these structural properties are presented in
Supplementary Figures S1–S3.

3.1.1 Secondary structure and structural flexibility
Figures 2A, B indicate significant differences in the secondary

structure profiles of the two proteins. Htt-Q48 has a greater tendency
to adopt β-sheet, bend and turn conformations, while Htt-Q23 seems
to favor α-helix and random coil conformations. The first ten
residues of the Nt17 region of Htt-Q48 form a stable α-helix,
which is contrary to Htt-Q23 where these N-terminal residues
prefer disordered structures with some bends and turns.
However, the following residues of Htt-Q23 form an α-helix that
extends up to 16 glutamines into the polyQ region. The last five
residues of polyQ23 are mostly disordered with a negligible β-sheet
content between residues 36–39. The polyP regions of Htt-Q23 adopt
straight PPII helical structures, which is revealed by an analysis of
the Ramachandran angles (Supplementary Figure S5). To further
evaluate the propensities of the individual residues to adopt a PPII
helix, we calculated the backbone dihedral angles ϕ and ψ and used
them to calulate the PPII-helix probabilities (Supplementary Figure
S6). These probabilities confirm a high propensity of PPII-helix
formation in polyP11 and polyP10 of both proteins. In particular, the
average ϕ and ψ angles are very similar for the residues of these
regions. A rather high probability of PPII-helix formation is also
found for most of the other residues of the PRD of both Htt-Q23 and
Htt-Q48, yet with a higher number of kinks and turns present in the
PRD of Htt-Q48. The α-helical regions encompassing the second half
of Nt17 and most of the polyQ region of Htt-Q23 and most of the
Nt17 region of Htt-Q48 have zero propensity to adopt PPII-helix
structures. This suggests a more disordered polyQ region in Htt-Q48

than in Htt-Q23, which in the former can also adopt ϕ and ψ angles
that fall within the PPII-helix region with an average probability of
44% (Supplementary Figure S6).

These observations are consistent with previous NMR solution
results which showed that the wild-type Huntingtin protein Nt17 has
a propensity to adopt helical structures that extended to the polyQ
domains (Baias et al., 2017; Newcombe et al., 2018). The N-terminal
helix in Htt-Q48 is mainly limited to the Nt17 region, while the
majority of its polyQ region forms a random coil or a bend/turn
conformation. However, the terminal residues of the extended
polyQ region shows a high propensity to adopt β-sheet
structures. This higher β-sheet content compared to Htt-Q23 is
consistent with previous experimental and MD simulation results
(Nagai et al., 2007; Heck et al., 2014; Kang et al., 2017). These studies
suggested that the β-sheet content within the polyQ region is
associated with longer polyQ lengths and may play a role in
amyloid fibril formation (Nagai et al., 2007; Kang et al., 2017).
Experiments with synthesized β-sheet in the polyQ domains showed
an increased rate of aggregation (Kar et al., 2013). This suggests that
the β-sheet conformations within the polyQ region represent the
aggregation-prone structures giving rise to amyloid fibrils (Kar et al.,
2013).

We continued with a structural cluster analysis to see how the
different secondary structures are arranged in the proteins. The six
most populated clusters per protein are shown in Figures 2C, D. Five
of the shown cluster structures of Htt-Q48 have β-sheet
conformations that involve polyQ regions (residues 22–25 and
62–64) and parts of the PRD (residues 86–87), with two or three
β-strands per sheet. However, in the fourth cluster structure coil
conformations outside the helical Nt17 region dominate, indicating
that the β-sheet formation in Htt-Q48 is transient. Htt-Q23 samples a

Frontiers in Molecular Biosciences frontiersin.org04

Khaled et al. 10.3389/fmolb.2023.1143353



long helix in the Nt17 and most of the polyQ region. The whole
protein is less collapsed than Htt-Q48, but rather extended, which
results from the long N-terminal α-helix plus the two polyP stretches
in PPII conformation that prefer to align in an antiparallel
arrangement in Htt-Q23. This PPII-turn-PPII arrangement is also
made possible because residues Pro58/Glu59 between polyP11 and
polyP10 allow for a turn to be formed with 100% probability. Apart
from that bend, only some further bends and turns are formed in the
last ten residues of the PRD of Htt-Q23, while in Htt-Q48 several
residues along the PRD sequence have a high bend/turn propensity.
Together with the disordered polyQ region, this gives the longer
protein a more collapsed and also more disordered shape. The Htt-
Q23 results suggest that the region reaching from P11 to P10 strongly
affects the folding of this protein by forming PPII helices that also
have an ordering effect on the polyQ region, leading to helix
formation in most of the 23 glutamine residues.

The different structural flexibilities of Htt-Q23 and Htt-Q48 are
also visible in the RMSFs of their Cα atoms (Figure 3A). The RMSFs
reveal for Htt-Q23 a higher flexibility in the Nt17, where the first ten
residues did not form a helix as in Htt-Q48, while the C-terminal of
the PRD region is flexible in both proteins. However, the rest of the
Htt-Q23 is more stable than Htt-Q48. In the latter, the polyQ region

is particularly flexible, especially in its middle. These results suggest
that longer polyQ tracts stabilize the N-terminal half of Nt17, while
inducing disorder and flexibility in the rest of the protein.

3.1.2 Intra-protein contacts and solvent
accessibility

To further define the structural differences, we calculated the
average distances between the protein residues to characterize the
coupling between different domains (Figure 3B). The distance maps
confirm the tendency of Htt-Q48 to adopt more compact structures
as indicated by the significant contacts among Htt-Q48 residues.
These contacts enable β-sheet formation in Htt-Q48 to take place.
The contact map of Htt-Q23 is defined by the long α-helix in the
N-terminal protein part and the alignment between polyP11 and
polyP10 in the C-terminal half. The alignment of the polyP regions in
Htt-Q23 is stabilized by hydrophobic interactions (Supplementary
Figure S7). In addition, the polyQ region sporadically interacts with
polyP10 and the C-terminal residues (79–90). Conversely, the Nt17 of
Htt-Q48 tends to interact with polyP11, the middle of PRD (77–87)—
both mediated by hydrophobic interactions –, and the C-terminal
(98–110). Moreover, the polyQ region of Htt-Q48 can also interact
with PRD domains excluding the PRD C-terminal, which involves

FIGURE 2
Secondary structure preferences per residue of Htt-Q23 (A) and Htt-Q48 (B) monomers. The bars represent the additive secondary structure
probabilities consisting of α-helix (gray), β-strand/bridge (cyan), and β-turn/bend (magenta). The difference to 1.0 presents the other structures, in
particular PPII and random coil. Representative structures were determined from conformational clustering using an RMSD cutoff of 0.5 nm for Htt-Q23

(C) and Htt-Q48 (D). The population of each cluster is given. The Nt17 region is shown in red, polyQ in blue, polyP11 and polyP10 in yellow, and the rest
of the PRD in rose.
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H-bond formation. Strikingly, the polyP regions interact with
different domains of Htt-Q48. A remarkable difference between
the two proteins is that the Nt17 region of Htt-Q48 shows strong
contacts with PRD regions, which is hardly the case in Htt-Q23. The
stability of the intra-protein interaction was further assessed by
calculating their probability expressed as percent lifetime
(Supplementary Figure S8). This analysis reveals that the
hydrophobic interactions between the polyP regions in Htt-Q23

and those involving Nt17 in Htt-Q48 are the most stable interactions.
The other very stable interactions are the H-bonds in α-helices that
are present in either protein. The terminal interactions in Htt-Q48

seem to stabilize the helix in the first ten Nt17 residues, and also
induce bends/turns with some helical propensity in the last ten
C-terminal residues. It has been shown that the helical structure of
Nt17 is characterized by amphipathic properties (Kelley et al., 2009;
Długosz and Trylska, 2011). Thus, the hydrophobic residues of the
Nt17 minimize their contact with water by interacting with the
hydrophobic polyP11 and the following PRD mixed region. The
different intra-protein interactions in the two proteins also manifest
themselves in different coupling between their domains, as revealed
by dynamic cross-correlation maps that uncover correlations in the
motions (Supplementary Figure S9). In Htt-Q23, all residues
spanning from the start of polyP11 to the end of polyP10 move in
a correlated fashion, as they are coupled via their strong intra-
protein interactions, while this region moves anticorrelated to
residues 1–40 containing Nt17 and polyQ23. In Htt-Q48 the
correlated and anticorrelated motions are more fragmented along

the sequence as a result of the more distributed intra-protein
contacts. Most notably, the motions of the polyQ48 are mainly
anticorrelated to the motions of all other residues on either side
of that region.

An analysis of the SASA per residue of Nt17 confirms that in Htt-
Q48 these residues are better shielded from water; this difference is
particularly noticeable for the hydrophobic residues Leu4, Leu7,
Ala10, Phe11, Leu14, and Phe17 (Figure 3C). This is consistent with
previous observations that the Nt17, polyP11 and mixed region of
Htt-ex1 form a hydrophobic core (Williamson et al., 2010; Długosz
and Trylska, 2011) and is confirmed by the hydrophobic and polar
SASA of the whole proteins. Htt-Q48 exposes more polar residues
and prefers to bury the hydrophobic ones compared to Htt-Q23

(Supplementary Figure S10A). However, the polar SASA results are
not directly comparable, as Htt-Q48 has 25 more polar residues than
Htt-Q23. Supplementary Figure S10B shows that the polyQ stretch of
Htt-Q48 is solvent-exposed, shielding the hydrophobic core from the
solvent from one side, while on the other side the shielding is done
by the hydrophilic face of the N-terminal helix. In Htt-Q23, on the
other hand, the hydrophobic residues cluster around the polyP PPII
helices and interact with the hydrophobic residues of the Nt17 helix
(Supplementary Figure S10B), leaving them more solvent-exposed
as the 23 glutamine residues are not enough to cover them in that
geometry. Nonetheless, this protein structure is stable as the
pronounced intra-protein contacts attest. Previous studies
suggested that the increase of the interaction surface of the
polyQ tract could enhance the protein-protein interactions in the

FIGURE 3
Structural properties of Htt-Q23 and Htt-Q48 monomers. (A) The RMSFs of the Cα atoms of Htt-Q23 (left) and Htt-Q48 (right). The polyQ regions are
highlighted by a blue shade. (B) Intra-protein distancematrices of Htt-Q23 (left) and Htt-Q48 (right). The color bar on the right shows the average residue-
residue distance (in nm). (C) The average SASA of the Nt17 residues (with standard errors) for Htt-Q23 (red) and Htt-Q48 (blue). (D) The free energy surface
of Htt-Q23 (left) and Htt-Q48 (right) was calculated using the radius of gyration and the end-to-end distance. The color bar shows the value of the
free energy (ΔG) in kcal/mol.
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cell by enhancing the binding (Warner et al., 2017; Newcombe et al.,
2018), which according to the solvent exposure of the polyQ tract
seen here for Htt-Q48 seems plausible. Overall, the intra-protein
interactions of Htt-ex1 are highly associated with the increase of
polyQ length, and are mainly governed by the increased protein
flexibility in that region, allowing the formation of a hydrophobic
core in Htt-Q48.

3.1.3 Conformational variability
To highlight the conformational differences between the two

proteins and get better insights into how the elongated polyQ tract
affects the conformational energy landscape, we calculated the free
energy surface (FES) using the radius of gyration and the end-to-end
distance as order parameters. Figure 3D illustrates the structural
differences between the two proteins. The FES of Htt-Q23 shows that
it covers a wider range of the conformational (Rg, dee) space than
Htt-Q48, which populates regions with more compact structures,
confirming our observations made thus far. Htt-Q23 prefers
conformations with larger Rg values and end-to-end distances
due to its elongated shape. Its greater flexibility results mainly
from the larger conformational freedom of the first ten residues,
that together with the C-terminal motions lead to a large
distribution of the Rg and dee values in Htt-Q23. As a result, there
are structures where the two termini are very close to each other
(e.g., clusters 1 and 5 in Figure 2C), structures where they are
directed away from each other (cluster 2), and the intermediate cases

(clusters 3, 4 and 6). Nonetheless, it should be reiterated that the
overall fold of Htt-Q23 defined by the N-terminal helix and the PPII-
turn-PPII motif reaching from polyP11 to polyP10 is rather stable
despite the FES suggesting otherwise. Since dee and Rg are partially
correlated, although in Htt-Q23 small dee values are possible for large
Rg and the converse is also true, i.e., small Rg with large dee values, we
also created FESs as a function of the twomain pincipal (orthogonal)
components, PC1 and PC2 (Supplementary Figure S11A). These
suggest that the two proteins cover an equally large conformational
space. However, the two FESs cannot be directly compared because
the principal components of Htt-Q23 and Htt-Q48 are not identical,
as the two proteins have different sizes. Projection of the individual
trajectories onto PC1-PC2 space (Supplementary Figure S11B)
shows that Htt-Q48 tends toward more compact structures with
increasing simulation time, whereas the shorter protein continues to
explore the entire conformational space. In summary, the main
conclusion from the FES analysis is that Htt-Q48 prefers to form
more collapsed structures, which is in agreement with its numerous
intra-protein contacts. Several experiments and simulations studies
suggested that the polyQ tracts prefer to adopt collapsed
conformations due to their poor water solubility (Kang et al.,
2017). However, this only partly agrees to our findings as we find
the long polyQ tract of Htt-Q48 to shield the more hydrophobic
residues from the water, giving rise to more collapsed conformations
than on average seen for Htt-Q23 where the polyQ tract is not long
enough to provide sufficient shielding and forms a helix instead.

FIGURE 4
Residue-residue contacts and secondary structures in Htt-Q23 and Htt-Q48 dimers. (A) The intra- and inter-protein contacts between residues for
Htt-Q23 (top) andHtt-Q48 (bottom) dimers. The intra-protein contacts within protein 1 are shown below themain diagonal andwithin protein 2 above the
main diagonal. The color bar on the right shows the average distances (in nm). (B) The time- and protein-averaged probability of secondary structure per
residue for Htt-Q23 (top) and Htt-Q48 (bottom) dimers. The bars represent the additive secondary structure probabilities consisting of α-helix (gray),
β-strand/bridge (cyan), and β-turn/bend (magenta). The difference to 1.0 presents the other structures, in particular PPII and random coil.
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3.2 Non-pathogenic and pathogenic Htt-ex1
dimerize in distinct patterns

We investigated the dimerization between the Htt-ex1
monomers to obtain information on the first oligomerization
step. For either protein, we observed an association between the
monomers within ~100 ns of the simulation time (Supplementary
Figure S12). The dimerization modes are analyzed in more detail in
the following.

3.2.1 Interaction interfaces and dimer structures
To understand how the proteins interact with each other, we

calculated intra- and inter-protein residue-residue distance matrices
(Figure 4A). They reveal different interaction patterns within the
Htt-Q23 and Htt-Q48 dimers. In Htt-Q23, there are four pronounced
interaction regions between the two proteins: i) polyQ/polyP11 with
polyQ/polyP11, ii) polyQ/polyP11 with polyP10/PRD (79–90), iii)
polyP10/PRD(79–90) with polyQ/plolyP11, iv)polyP10/PRD(79–90)
with ployP10/PRD(79–90). Nt17 and PRD(52–68) are not involved at
all in the dimerization of Htt-Q23. Htt-Q48, on the other hand,
features intermolecular interactions across the whole sequence,
which are, however, less clear-cut. This indicates that different
dimer configurations are possible for Htt-Q48. The most

prominent interactions involve the polyP regions, polyP with
mixed regions in PRD, and polyP with polyQ. Furthermore, the
polyQ is seen to interact with the whole protein, while the Nt17
shows interactions with polyP11, polyQ, and the C-terminal of
the PRD.

The intra-protein interactions in the two proteins of the Htt-Q48

dimers are very similar to the ones found for the corresponding
monomer (Figure 3B). This implies that the aggregation did not
cause major structural transitions, which is confirmed by the
secondary structure analysis (Figure 4B vs. Figure 2A). A small
difference in Htt-Q23 is that dimerization stabilized the Nt17/polyQ
helix, while in Htt-Q48 a small increase in the tendency for β-sheet
formation is observed across the polyQ region. For more β-sheet
formation as a result of Htt-Q48 dimerization to occur, we expect
that more simulation time than the 6 × 2 μs sampled here is required.
In Htt-Q23, in addition to the intra-protein contacts that were
already present in the monomer, two more contact areas within
the proteins emerged: the Nt17 and first half of the polyQ region
interacts with both polyP11 and polyP10. This speaks for small
reorientations of the secondary-structure elements with respect to
each other. In order to further understand the interaction interfaces
between the proteins, we performed structural clustering and
analyzed the hydrophobic and the polar SASAs of the dominant

FIGURE 5
Structures and SASAs of dimers. The four most populated cluster structures for the Htt-Q23 (A) and Htt-Q48 (B) dimer. The proteins are shown as
cartoons and colored red for the negatively charged residues, blue for the positively charged ones, and white otherwise. The side chains at the protein
interfaces are shown as sticks. (C) The distribution of the hydrophobic (right) and polar (left) SASAs of the four most populated clusters for Htt-Q23 (top)
and Htt-Q48 (bottom) dimers are shown. The results for the four clusters are shown in different colors according to the color mapping on the right.
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dimer clusters. Figures 5A, B show the representative structures of
the four most populated clusters. In general, the interaction
interfaces between the Htt-Q23 proteins are mainly governed by
the interactions of the partly amphipathic Nt17/polyQ helices. The
two helices tend to be in a parallel orientation to each other, and
their interactions add helical stability. The polyP regions, on the
other hand, are hardly involved in the interaction interface and
instead point away from it. On the other hand, the Htt-Q48 dimer
clusters reveal a more diverse aggregation behavior with different
interaction interfaces where the polyP and the PRD take part
in them.

3.2.2 Comparison with experimental observations
Our observations are in agreement with atomic force

microscopy (AFM) results that identified oligomeric aggregates of
Htt-Q20 to be structurally different from those of Htt-ex1 with
disease-causing polyQ lengths (Legleiter et al., 2010). The Htt-Q20

oligomers did also not transit to form fibril structures. In another
study it was shown that the addition of isolated polyP to Htt-ex1
could block the initial aggregation by interacting with Nt17 and
reduce the ability of headpiece dimerization (Arndt et al., 2019).
This speaks for the general involvement of Nt17 in the aggregation of
Htt-ex1, which is also seen here for both Htt-Q23 and Htt-Q48.
Another possible aggregation-modifying effect of added polyP is
that it can also interact with the polyQ region and stabilize it by
promoting it to form PPII helix (Darnell et al., 2007; Darnell et al.,
2009), which could prevent the nucleation in the oligomers or
promote aggregation pathways that are not mediated by the Nt17
headpieces (Arndt et al., 2019). Pandey et al. proposed that the Htt-
ex1 aggregation is initiated via the Nt17 headpiece, suggesting that
the aggregation pathway of synthetic Htt-ex1 protein into oligomers
starts with the self-assembly into an α-helix rich oligomer with
helical Nt17 in the core, followed by β-sheet formation within the
polyQ tracts. The final and slowest step is the structural maturation
of the PRD (Pandey et al., 2018). Through the simulations
performed here, we were able to capture the event of Nt17
headpiece interactions for Htt-Q48 (Figure 5B, cluster 2).
Dimerization via the Nt17 helices results in a reduction of the
hydrophobic surface area, while it increases the polar surface
area, compared to the other dimerization modes (Figure 5C).
This difference is expected to make the helix-mediated dimer
more stable. Mutational studies have shown that altering the
hydrophobic residues of Nt17 to negatively charged residues or
by serine phosphorylation, strongly affects the aggregation
kinetics by slowing down the aggregation (Gu et al., 2009;
Thakur et al., 2009; Mishra et al., 2012). However, Htt-ex1
aggregation was not prevented by these amino-acid changes. In
addition to that, according to the aggregation mechanism
investigated by Williamson et al., metastable aggregates start to
form via Nt17 packed cores and the polyQ regions being excluded
from these cores. These initial aggregates develop then to amyloid
nuclei composed of Nt17 headpieces and polyQ tracts (Williamson
et al., 2010). Based on our dimer simulation results, this aggregation
mechanism appears fully plausible. We further find that longer
polyQ tracts are needed for amyloid formation as for shorter polyQ
sequences, the Nt17 helix extends far into the polyQ region and is
resistant against β-sheet formation. This observation is in agreement
with recent NMR spectroscopy results (Elena-Real et al., 2022).

4 Conclusion

In this work, we carried out multiple MD simulations to
investigate the monomer and dimer structures of a pathogenic
Htt-ex1 protein (Htt-Q48) and a non-pathogenic (Htt-Q23)
counterpart. We found rather different monomer structures for
the two proteins. One of the most relevant distinctions is that in
Htt-Q23 the N-terminal helix involves not only Nt17 but also the
majority of the polyQ23 residues. This can be explained by the
rather high helix propensity of glutamine, which comes seventh on
the helix propensity scale of the twenty proteinogenic amino acids
(Pace and Scholtz, 1998). However, for longer polyQ sequences as
in Htt-Q48, this propensity is not sufficient and the polyQ tract
becomes disordered. Here, it should also be considered that the
length of an α-helix always results from a competition between α-
helix folding, unfolding into a random coil and the formation of
higher-order tertiary structures, and that this competition leads to
naturally favored α-helix lengths of 9–17 amino acids (Qin et al.,
2013). It is thus fully understandable that with increasing polyQ
length, this region becomes disordered. As a result, more intra-
protein interactions develop, which in turn can lead to β-sheet
formation, even though glutamine has only a medium propensity
to be in a β-sheet (Shingate and Sowdhamini, 2012). Here, we
observed an increase in bend/turn conformations across the polyQ
and PRD regions of Htt-Q48, which yielded compact protein
structures involving small intra-protein β-sheets. In both
proteins, the polyP regions mainly adopted PPII structures.
However, in Htt-Q48 they were disrupted by kinks, which is in
line with the compact Htt-Q48 conformations, whereas in Htt-Q23

the polyP11 and polyP10 are straight segments that are aligned
antiparallel to each other. As a result, Htt-Q23 has an elongated
shape resulting from the 25 residue-long N-terminal helix and the
PPII-turn-PPII motif. This overall fold appeared rather stable and
structural fluctuations mainly derived from the first and last ten
residues of Htt-Q23.

With regard to dimerization, we found that for both Htt-Q23

and Htt-Q48 this process involves the N-terminal helix, yet to a
larger degree in Htt-Q23. Here, the helix-helix interaction
further stabilized the helix, especially in its second part that
involves residues from the polyQ23 region, which explains why
this region is resistant against β-sheet formation. Moreover,
interaction through the amphipathic α-helix Nt17 headpieces
minimizes the hydrophobic surface, making this dimer
conformation particularly stable. In Htt-Q48, on the other
hand, different dimerization modes were observed, of which
the one involving the two N-terminal helices is one possibility.
However, we expect the Nt17 helix mediated dimer to be more
stable than the others due to the larger burial of hydrophobic
residues. An important aspect of Htt-Q48 dimerization is that
the disordered polyQ regions are considerably involved in the
process, allowing β-sheets to form on the long time scale (not
simulated here). However, this structural transition is slowed
down by visible interactions with the PRD. For both Htt-Q23

and Htt-Q48 the polyP regions are not involved in the
dimerization, though their avoidance of the dimer interaction
interface is more pronounced in Htt-Q23 due to its particular
elongated protein shape, allowing the polyP regions to keep
away from it.
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Overall, we observed that polyQ extension affects the
conformational ensemble of Htt-ex1 already at the monomer
level and has a direct impact on dimerization. Our results
provide insights into the roles of the flanking domains of polyQ
in modulating the conformations and the aggregation pathways,
thereby providing explanations for several experimental findings at
the atomistic level.
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ADF test Htt-Q23

Rg dee RMSD helix SASA

Test Statistic -4.41 -6.51 -3.7 -3.29 -4.26

p-Value 2.81×10−4 1.14×10−8 4.17×10−3 5.16×10−4 5.16×10−4

Critical Value 1% -3.43 -3.43 -3.43 3.43 -3.43

Critical Value 5% -2.86 -2.86 -2.86 -2.86 -2.86

Critical Value 10% -2.57 -2.57 -2.57 -2.57 -2.57

Htt-Q48

Rg dee RMSD helix SASA

Test Statistic -6.04 -4.47 -8.61 -6.17 -5.02

p-Value 1.34×10−7 2.22×10−4 6.51×10−14 6.95×10−8 2.04×10−5

Critical Value 1% -3.43 -3.43 -3.43 -3.43 -3.43

Critical Value 5% -2.86 -2.86 -2.86 -2.86 -2.86

Critical Value 10% -2.57 -2.57 -2.57 -2.57 -2.57

Table S1. The Augmented Dickey-Fuller (ADF) test for the Htt-ex1 monomer simulation data. The
ADF test was conducted as a unit-root test to assess the stationary of the Htt-ex1 monomer simulations.
The test was applied to the concatenated time series of various observables: the radius of gyration (Rg),
end-to-end distance (dee), root mean square deviation (RMSD), α-helix content, and solvent accessible
surface area (SASA).
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Figure S1: Results for the 5 × 1 µs MD simulations of the Htt-ex1 monomers. The evolution of Rg,
RMSD, and dee for Htt-Q23 (left) and Htt-Q48 (right) are shown. The thick lines represent 50 ns running
averages.
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Figure S2: Secondary structures during the 5× 1 µs MD simulations of the Htt-ex1 monomers. The
evolution of the β-strand/bridge, bend/turn, and α-helix for Htt-Q23 (left) and Htt-Q48 (right) are shown.
The thick lines represent 50 ns running averages.

Figure S3: Solvent accessible surface areas of the Htt-ex1 monomers during the 5 × 1 µs MD
simulations. The evolution of the total SASA (tSASA), the hydrophobic SASA (hSASA), and the polar
SASA (pSASA) for Htt-Q23 (left) and Htt-Q48 (right) are shown. The thick lines represent 50 ns running
averages.
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Figure S4: The autocorrelation functions for a set of structural properties of Htt-ex1 monomers. The
top panels show the autocorrelation functions (C(t)) of Rg, dee, and RMSD; the middle panels include
the C(t) of the content of secondary structures, i.e., bend/turn, β-strand/bridge, and helix; and the bottom
panels display the C(t) of the total, hydrophobic, and polar SASA. The results for Htt-Q23 are shown on
the left and those for Htt-Q48 on the right. All autocorrelations vanish within 100-500 ns, indicating loss of
memory from initial structures.
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Figure S5: Ramachandran maps for the polyP regions of Htt-Q23 (left) and Htt-Q48 (right) monomers.
The color bar shows the value of the free energy (∆G) in kcal/mol. The blue dots indicate the ideal location
of the corresponding secondary structure conformations.

Figure S6: PPII-helix formation within the Htt-ex1 monomers. (A) The residue-resolved average ϕ (red)
and ψ (blue) dihedral angles of the PRD region of Htt-Q23 (left) and Htt-Q48 (right) monomers. The shaded
areas indicate the region that defines the PPII helix as in the DSSP-PPII algorithm. (B) The PPII-helix
propensity of the residues of Htt-Q23 (left) and Htt-Q48 (right) monomers calculated from the ϕ and ψ
dihedral angle distributions during the simulations.
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Figure S7: Types of intra-protein interactions in the Htt-ex1 monomers. The intra-protein contact maps
are colored based on the type of interaction for Htt-Q23 (left) and Htt-Q48 (right), using red for hydrophobic
interactions, blue for H-bonds, and orange for salt bridges.

Figure S8: The lifetime probability of the intra-protein interactions in the Htt-ex1 monomers. The
percent lifetimes for Htt-Q23 (left) and Htt-Q48 (right) are colored based on the scale on the right.
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Figure S9: Dynamic cross-correlation maps of the Htt-ex1 monomers. Positively and negatively
correlated motions are represented in red and blue, respectively, for Htt-Q23 (left) and Htt-Q48 (right).
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Figure S10: Solvent accessible surface areas and hydrophobicity of the Htt-ex1 monomers. (A) The
hydrophobic (left) and polar (right) SASA distribution for Htt-Q23 (red) and Htt-Q48 (blue). (B) The most
populated cluster structures for Htt-Q23 (left) and Htt-Q48 (right) colored according their hydrophobicity.
The proteins are shown as cartoon plus their van der Waals surface (in transparent). The color represents
the hydrophobicity with colors changing from white (not hydrophobic) to red for the amino acids of highest
hydrophobicity.
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Figure S11: Principal component analysis for the monomers of Htt-Q23 (left) and Htt-Q48 (right). (A)
The free energy surface as a function of the first two PCs. (B) Projection of individual trajectories onto their
joint PC1-PC2 space. The color scale represents the space coverage of the individual trajectories (run 2,
green; run 3, red; run 4, orange; run 5, blue), showing i) the conformational overlap between the individual
trajectories and ii) that also trajectory-specific conformations were sampled.

Figure S12: The minimum distance between the two proteins in the dimer simulations. The evolution
of the inter-protein minimum distance during the three dimer simulations of Htt-Q23 (left) and Htt-Q48
(right).
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