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Abstract

Modelling climate extremes can be challenging due to short observation periods, which leads

to unfavourably large estimation uncertainties. In the widely used block maxima method,

it has been found in several scenarios that estimation variance may be reduced if sliding

blocks are used instead of disjoint blocks. This line of research is extended by examining the

probability-weighted moment estimator for the parameter vector of the generalised extreme

value distribution, based on both disjoint and sliding block maxima of univariate observations.

In contrast to other results on the probability-weighted moment estimator from the literature,

which usually consider independent and identically distributed observations, the assumptions

on the underlying random variables are adapted to the setting of environmental applications,

by assuming either stationarity or some kind of piecewise stationarity. For the latter setting,

a proof of concept is provided that encourages the use of sliding block maxima despite their

non-stationarity. The estimators are analysed both theoretically in an asymptotic framework

and sub-asymptotically in a simulation study, showing increased efficiency of the sliding

version in both analyses.

For spatial data, the pooling approach is common for reducing estimation variance. It

consists of combining spatial observations that are assumed to have some sort of homogeneous

probabilistic behaviour. To avoid biased estimators, it is important to validate this homo-

geneity assumption in advance. New statistical significance tests for testing corresponding

hypotheses are provided, which are based on multivariate generalised extreme value models.

The underlying random variables are assumed to be serially, but not necessarily spatially,

independent. Unlike many competing tests in the literature, the proposed tests take into

account possible cross-correlations of the data. Tests are provided for the case of stationary

models as well as models that exhibit a certain type of trend in their extremes. They are

based on limiting distributions that are derived for estimators of the parameter vectors, and

reliable p-values are obtained by means of parametric bootstrap procedures. Finite-sample

properties are investigated in a simulation study. Further, a method for selecting a region

that can be assumed homogeneous is provided, which is based on multiple testing.
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1 Introduction

Modelling climate extremes constitutes one of the main applications of extreme value theory,

which deals with the description of the probabilistic behaviour of extreme events. In mete-

orology, hydrology and climatology, the extremes of a wide variety of variables are studied,

for example temperature, precipitation, river run-offs and wind speeds, see Coles (2001) for

numerous examples. Since extreme values of any of these variables can have tremendous

impacts on health, infrastructure, agriculture and hence on human life, it is of interest to

assess the probability of their occurrence and to predict their magnitude. Based on such

predictions, precautions can be taken in order to anticipate or mitigate these impacts. For

risk assessment in this context, the concept of return levels (RLs) and return periods (RPs)

is regularly applied. In a stationary climate, the T -year return level corresponds to the level

that can be expected to be exceeded once in T years, and the m-return period corresponds to

the length of the time interval within which one exceedance of m can be expected, and these

quantities are often the estimation target within an extreme value analysis. For example, one

might be interested in estimating the magnitude of a 1000-year flood event at a particular

location in order to take appropriate flood protection measures. Now assume that the water

discharge at the site in question is stationary and has been observed over a period of 100

years. The challenge is to make a statement about extreme values that might occur within

the next 1000 years, based on the much shorter observation period. Therefore, extrapolation

into the tail of the distribution is necessary, for which extreme value theory provides the

appropriate framework. A gentle introduction to the theory can be found in Coles (2001) or

Beirlant et al. (2004).

In extreme value theory, there are two main approaches to modelling extremes. The first

one, dating back to Gumbel (1958) and known as the block maxima method, consists of

fitting the Generalised Extreme Value (GEV) distribution to a sample of block maxima (e.g.,

seasonal or annual maxima). For observations X1, . . . , Xn, n ∈ N, and a block size r ∈ N
with r < n, the block maxima sample traditionally consists of disjoint block maxima

M
(db)
r,j = max

{︁
X(j−1)r+1, . . . , Xjr

}︁
, j = 1, . . . ,

⌊︂n
r

⌋︂
. (1)

The GEV distribution is a continuous three-parameter distribution, with a location parameter

µ ∈ R, a scale parameter σ > 0 and a shape parameter γ ∈ R, with cumulative distribution
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function (c.d.f.) G(µ,σ,γ) given by

G(µ,σ,γ)(x) = exp

{︄
−
(︃
1 + γ

x− µ

σ

)︃− 1
γ

}︄
, 1 + γ

x− µ

σ
> 0. (2)

The induced family of GEV distributions combines the Weibull, the Gumbel and the Fréchet

distribution families, where the distribution type is determined by the shape parameter: a

negative shape parameter refers to Weibull distributions and thus implies a finite right end

point of the distribution, while a positive value refers to Fréchet distributions and thus im-

plies a heavy tail. A shape parameter that equals zero implies the light-tailed Gumbel case.

The choice of the GEV distribution is motivated by the Fisher-Tippett-Gnedenko Theorem,

which states that the only possible non-degenerate limit distribution of the properly rescaled

maximum of a sequence of independent and identically distributed (i.i.d.) random variables

is a GEV distribution, see e.g. Theorem 3.1 in Coles (2001). The assumption of indepen-

dence can even be relaxed, as shown by Leadbetter (1983). It may thus be argued that if

the block size r is large, the distribution of a block maximum can be approximated by a

GEV distribution. Corresponding parameters can be estimated based on the block maxima

sample; classical estimation methods include the maximum likelihood (ML) method and the

probability weighted moment (PWM) method. Respective theory, based on the assumption

of independent maxima that are exactly GEV-distributed, dates back to Smith (1985) in

case of ML estimation, with some major corrections in Bücher and Segers (2017), and to

Hosking et al. (1985) for PWM estimation. More recently, theoretical results have been ob-

tained for the case of limiting rather than exact GEV distributions: Dombry (2015) treated

the existence and consistency of ML estimators involving block maxima of underlying i.i.d.

observations, followed by Dombry and Ferreira (2019) showing asymptotic normality in this

context. Theory for the PWM estimator based on block maxima can be found in Ferreira

and de Haan (2015).

The second main approach to modelling extremes is the so-called peaks-over-threshold

(POT) approach, where excesses of random variables above a previously chosen high threshold

are modelled by the Generalised Pareto distribution. It goes back to Balkema and de Haan

(1974) and Pickands (1975), and theory on classical estimators within this framework can for

example be found in de Haan and Ferreira (2006) and Embrechts et al. (1997).

It is often argued in the literature that the latter approach allows for a more efficient use

of the available data (see e.g. Naveau et al. (2005)), since all ‘large’ observations contribute,

whereas with the BM method, some of the rather large observations might be disregarded.

For example, in the case where the largest and the second largest observation fall into the

same block, only the largest observation will appear in the BM sample, while both obser-

vations will appear in the POT sample (provided the POT sample consists of at least two
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observations). However, Bücher and Zhou (2021) recently carried out a thorough comparison

of the two approaches and found that both methods may outperform the other in certain

scenarios, depending on the process that generated the underlying observations.

As indicated before, a difficulty that arises from the rarity of extreme events and from

the classical block maxima method itself is that the data situation is often poor. Suppose a

hydrologist wants to model the distribution of annual maximum discharge. When daily obser-

vations of maximum discharges are available for n years, applying the BM method results in

a sample size of n. Often, one is confronted with record lengths of n < 100, and even n < 50

is not unusual. This inevitably leads to large uncertainties in parameter, return level and

return period estimates, which is undesirable. For example, if the estimated 95%-confidence

interval of a 100-year flood event spans from 70m3s−1 to 500m3s−1 with a point estimate of

285m3s−1, it is ambiguous against which level to take flood protection measures.

This thesis presents three articles that provide theoretical results and methods on two

approaches that address this shortcoming and hence allow for more accurate estimation.

Thereby, we will concentrate on the BM method, which is regularly preferred by applied

scientists in environmental studies (e.g. Section 4.2.2 in Philip et al. (2020)). This preference

has several reasons: first of all, for many climate-related questions, the choice of the block size

parameter used within the BM method seems more natural than the choice of a threshold pa-

rameter needed within the POT method, since the seasonality of the data naturally suggests

the use of annual or seasonal maxima. Secondly, if threshold exceedances are modelled and

they tend to occur in clusters, a further step is required to estimate this very tendency. It

can be captured by the extremal index; an introduction to this parameter and corresponding

estimators is e.g. given in Beirlant et al. (2004). A discussion about its relevance for the

estimation of return levels can be found in Bücher and Zhou (2021). Last but not least, data

is not always available at timescales that would be required for the application of the POT

method: e.g., climate models often output several sample characteristics such as monthly

means, minima and maxima rather than daily observations.

The first approach to reducing estimation variance is to make better use of the available

data by modifying the traditional block maxima method. Instead of dividing the underlying

observations into equally sized disjoint blocks and extracting the maximum within each block

as done in Equation (1), a block is slid through the observations in steps of one, and the

maximum is calculated for each of these sliding blocks. The idea of using sliding blocks can

be attributed to Robert et al. (2009), who first applied it for the estimation of the extremal

index. To be precise, recall the sample X1, . . . , Xn, n ∈ N, of random variables and the block

size parameter r ∈ N with r < n. Then, the sample of sliding block maxima is denoted by
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M(sb) = (M
(sb)
r,j )j and defined through

M
(sb)
r,j = max{Xj , . . . , Xj+r−1} (3)

for j = 1, . . . , n − r + 1. Analogously, the sample of disjoint block maxima is denoted by

M(db). In case the sequence X1, . . . , Xn is a segment of a stationary time series (Xt)t, this

stationarity transfers to the sample of block maxima for both sampling methods. Therefore,

the marginal distributions of the block maxima can be approximated by one common GEV

distribution.

The heuristic rationale for using the sliding block rather than the disjoint block sample is

as follows. First of all, each disjoint block maximum does also appear in the sample of sliding

block maxima, so information provided by disjoint block maxima is guaranteed to be present.

Further, those observations which are large but do not represent the maximum of any disjoint

block now have a chance to appear in the sample as well. Many of the sliding block maxima

will appear repeatedly in the sliding blocks sample because they are maxima of several of the

sliding blocks. This repetition of observations within the sample may act like a weighting

procedure, so that overall, the sliding blocks sample contains more diverse and (naturally)

weighted observations and hence more information about the distribution of block maxima.

An illustration of the two block maxima samples can be found in Figure 1, where daily

maximum temperatures (in ◦C) observed at station Essen-Bredeney1 during summer months

(June, July, August) of 1988 – 2002 are presented. For a block size of r = 92, corresponding

to the season’s length, the sample of disjoint BM, represented by blue points, is shown in

the top row, and an illustration of the sample of sliding BM is given in the bottom row. For

the latter, each point corresponds to a sliding block maximum, with the point’s size chosen

proportional to its frequency of occurrence within the sample.

For any estimation method that is performed based on a sample M, the idea is thus to

employM = M(sb) instead ofM = M(db). When applying this principle, increased efficiency

of estimators based on sliding blocks has been shown for several scenarios, e.g. for the ML

estimator of Fréchet parameters in the case of heavy tails in Bücher and Segers (2018a), for

estimators of the extremal index in Berghaus and Bücher (2018) and Bücher and Jennessen

(2020) and for estimation of extreme value copulas of multivariate data in Zou et al. (2021).

The article presented first in Chapter 2 extends the theory by studying the PWM esti-

mator for GEV parameters based on disjoint as well as sliding blocks. Probability-weighted

moments were first introduced by Greenwood et al. (1979), and for a random variable X with

c.d.f. F they are defined as

βp,q,s = E [XpF q(X)(1− F (X))s] , p, q, s ∈ R, (4)

1Data basis: Deutscher Wetterdienst, Climate Data Center. https://opendata.dwd.de/climate_

environment/CDC/observations_germany/climate/daily/kl/historical/
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Figure 1: Daily maximum temperatures (in ◦C) observed at station Essen-Bredeney during
summer months (June, July, August) of 1988 – 2002, along with the sample of disjoint BM
(top) and an illustration of the sample of sliding BM (bottom).

but often, only p, q, s ∈ N0 are considered. For a GEV-distributed random variable, Hosking

et al. (1985) show the unique relation between the three PWMs β1,0,0, β1,1,0 and β1,2,0 and the

parameters of the respective GEV distribution. The PWM estimator puts this relation to use

and determines parameter estimates based on empirical versions of the PWMs. The asymp-

totic normality results provided in the article again yield an efficiency gain of the estimator

based on sliding blocks, in the sense that the sliding blocks version has a smaller asymptotic

covariance matrix than the disjoint blocks version with respect to the Loewner-ordering,

while the bias does not change. In addition to elaborating the asymptotics for stationary

sequences that satisfy some specific mixing conditions, some emphasis is placed on working

with assumptions on the underlying sample X1, . . . , Xn that correspond to practically rel-

evant situations encountered when analysing climate extremes, where typically attention is

restricted to a certain season’s maximum, e.g. the maximum temperature observed during

winter months. In such applications, the underlying sample X1, . . . , Xn consists of concate-

nated observations from the season of interest, observed over several years. In the article, a

suitable framework for this kind of sampling scheme is formulated, which assumes that the

observations from different seasons are i.i.d. copies of a segment of a time series that may

exhibit some sort of weak serial dependence. As a result, neither the underlying sample nor
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the resulting sample of sliding block maxima can be assumed to be stationary. However,

it is shown that the marginal distributions of sliding block maxima can be approximated

by one common GEV distribution, which justifies the application of sliding blocks even in

this scenario. To complement the asymptotic results, a large-scale Monte Carlo simulation

study is conducted to assess the finite-sample properties of the proposed estimators, with

the result that the theoretically derived asymptotic gain of efficiency can already be found

sub-asymptotically in many situations.

A second approach that addresses the inconvenience of large estimation uncertainty is the

pooling approach, which involves pooling samples from multiple sources to one large sample

that can then be used in subsequent analyses. The idea behind this is that combining data

from different sources leads to a higher information content in the pooled sample. For exam-

ple, when one has access to several samples from one common population, the distribution

of that population can be estimated more accurately by using the pooled sample instead of a

single sample. In environmental applications, such a pooling approach is most often applied

in a spatial context, i.e., samples from several measuring stations that are located close to

each other or in a certain region are pooled, as for example suggested in Philip et al. (2020)

and carried out in van Oldenborgh et al. (2017).

The pooling approach is, however, not restricted to the case of one common parent popu-

lation, but also allows for less stringent assumptions. A famous example from hydrology, first

proposed by Dalrymple (1960) and used for flood frequency analysis, is the so-called index

flood model. The model is based on the assumption that within a certain region, the quantiles

of annual maximum discharge at several sites within that region can be decomposed into a

regional quantile, which coincides for all sites within the region, and a site-specific factor.

Mathematically, for a set of D ∈ N, D ≥ 2, sites, random variables M1, . . . ,MD, where Md

has c.d.f. Fd and describes the annual maximum discharge at site d for d = 1, . . . , D, this

assumption can be expressed as the hypothesis

H0,IF :

⎧
⎨
⎩
∃ c.d.f. G and constants sd = s(Fd) > 0 such that

F−1d = sd ·G−1 for all d = 1, . . . , D.
(5)

The site-specific factors sd are often referred to as index floods, and a set of sites for which

Equation (5) holds is called homogeneous. When such a model holds, the regional quantile

can be estimated based on all D sites, and thus it is plausible that any estimation procedure

based on this pooled sample will be more accurate and encounter less variance. On the other

hand, in case the model assumptions do not hold, imposing the model wrongly may lead to

a large estimation bias, as pointed out in Lettenmaier et al. (1987).

It is thus important to test whether Equation (5) is satisfied for a set of locations prior to

fitting the model. Procedures that aim at testing whether a region is homogeneous are referred
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to as homogeneity tests. An overview of the most common tests applied in this context is

given in Viglione et al. (2007). The most widely used approach is the heterogeneity measure

of Hosking and Wallis (Hosking and Wallis (1993)). It is based on a comparison of observed

and expected variability of L-moment (LM) ratios. LMs, introduced in Hosking (1990), are

certain linear combinations of expectations of order statistics, and they can also be expressed

as linear combinations of PWMs as defined in Equation (4) with p = 1 and s = 0. They

can be used to summarise characteristics of probability distributions which are comparable

to e.g. location or skewness, and for a range of distributions, many of which are regularly

considered in hydrological applications, there is an explicit relation between the distribution

parameters and L-moments (a list can be found in Hosking (1990)). However, as pointed out

in Viglione et al. (2007), the Hosking-Wallis (HW) heterogeneity measure, as well as the other

standard approaches, have the major drawback that inter-site dependence is not accounted

for, even though spatial proximity suggests that observations are not independent in space.

Mentionable exceptions are Castellarin et al. (2008), who propose to add a correction term to

the test statistic of the HW heterogeneity measure, or Lilienthal et al. (2018), who elaborated

a generalisation of the HW heterogeneity measure that accounts for inter-site dependence

through copula modelling.

Common homogeneity tests such as the HW measure do not assume that margins are

GEV-distributed, but are rather rank-based or assume that the margins follow kappa distri-

butions, which are four-parametric distributions that include the GEV distributions as special

cases. However, when working with block maxima, approximating the marginal distributions

with GEV distributions is often reasonable. When directly assuming GEV margins, i.e.

Fd = Gϑd
, ϑd ∈ Θ = R × (0,∞) × R for each d = 1, . . . , D, the homogeneity hypothesis of

Equation (5) can be expressed as

H0 : h(ϑ) = 0 vs. H1 : h(ϑ) ̸= 0, (6)

where ϑ = (ϑ′1, . . . ,ϑ
′
D)
′ and where h : R3D → R2(D−1) is a known continuously differentiable

function.

The second article presented in Chapter 2 exploits this representation to construct new

homogeneity tests, or, more general, arbitrary tests that can be expressed through Equa-

tion (6) for a continuously differentiable function h : R3D → Rq, q ∈ N, based on limiting

distributions of estimators for ϑ. Thereby, three different estimators are considered: the LM

estimator, the trimmed L-moment (TLM) estimator and a (pseudo) maximum likelihood esti-

mator. TLMs, which were introduced by Elamir and Seheult (2003) and which can also exist

for heavy-tailed distributions with non-existing mean, provided that trimming parameters

are chosen appropriately, are generalisations of LMs, making LMs a special case of TLMs.

As with the PWM method, the TLM method establishes a relationship between the GEV

parameters and the TLMs, and empirical versions of the TLMs can be used to obtain cor-
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responding parameter estimates. For univariate i.i.d. observations, asymptotic normality for

empirical TLMs has been worked out in Elamir and Seheult (2003) and Hosking (2007), from

which asymptotic normality of GEV parameter estimation can be obtained with the delta

method. For ML estimation, asymptotic normality has been elaborated in Bücher and Segers

(2017). These results are now expanded to the multivariate case, taking possible inter-site

dependencies into account. Based on these limiting distributions, asymptotic level-α-tests

for hypotheses as in Equation (6) are developed. Since the index flood hypothesis H0,IF can

be expressed in this way, a simulation study is conducted for the derived tests as well as

the heterogeneity measure of Hosking and Wallis. Their finite-sample performances in terms

of empirical type I error under the null hypothesis and empirical power under the alterna-

tive are compared. Due to poor performance for short to medium sample sizes, a bootstrap

scheme based on max-stable process models is proposed. Max-stable processes constitute the

class of possible limit processes that can arise as the pointwise limit of normalised maxima

of independent and identically distributed random fields {Yi(x) : x ∈ Rp} (de Haan (1984)),

and are thus the natural choice when modelling spatial extremes (see e.g. Smith (1990) and

Davison et al. (2012)). In a further simulation study, this bootstrap procedure is found to be

more powerful than the asymptotic tests.

So far, all models and methods presented have assumed some kind of temporal stationarity

for the observations. However, there is consensus in the climate research community that our

climate is changing, see for example Alexander et al. (2006) or Seneviratne et al. (2012), and

the latest report of the intergovernmental panel on climate change (IPCC) even states that

human life has unequivocally influenced global warming (IPCC (2021)). A new field of study,

the extreme event attribution (EEA) science, has recently emerged, dedicated to the task of at-

tributing observed weather extremes to climate change. As climate change is suspected to al-

ter the frequency and severity of extreme weather events in particular (Stocker et al. (2013)),

there has been some interest in and activity on modelling non-stationary extremes lately, e.g.

with the block maxima method and GEV models in El Adlouni et al. (2007) (for ML esti-

mation), Ribereau et al. (2008) (for PWM estimation), Cheng et al. (2014) (using Bayesian

inference), or with the POT method in Eastoe and Tawn (2009). Also, spatio-temporal

models have been considered, e.g. in Westra and Sisson (2011) for detecting trends. Several

suggestions about possible interpretations of return levels in a non-stationary climate have

been made, e.g. in Cooley (2012) and Rootzén and Katz (2013).

One building block within EEA studies is trend detection, which is usually carried out

on observational data (rather than simulated data from climate models, which constitutes a

second building block of EEA). To account for non-stationarities in extremes, the approach

which has become standard is to model block maxima with a GEV distribution whose pa-

rameters µ(t), σ(t) and γ(t) are allowed to depend on a temporal covariate in a predefined

manner (Section 4 in Philip et al. (2020)). This covariate, being an indicator for climate

8



change, is often chosen as smoothed global mean surface temperature (GMST) anomaly or

atmospheric CO2 concentration. Depending on the variable of interest, the GEV distribution

is assumed to either shift or scale with respect to the covariate. When denoting the covari-

ate’s value for time index t with c(t), the shift model postulates that the block maximum

M (t) of block t (e.g., year or season t) follows a GEV distribution with a linear trend in the

location parameter, i.e.

µ(t) = µ0 + αc(t), σ(t) ≡ σ0, γ(t) ≡ γ0, (7)

for some parameters µ0, γ0, α ∈ R and σ0 > 0. The shift model is most commonly used

for modelling temperature extremes, as done e.g. in van Oldenborgh et al. (2018). For

precipitation and wind extremes, a scale model, as e.g. used in van der Wiel et al. (2017) and

van Oldenborgh et al. (2017), is the standard choice. It assumes that, for µ0 and σ0 > 0,

γ and α ∈ R, the t-th block maximum M (t) can be modelled with a GEV distribution with

parameters

µ(t) = µ0 exp

(︃
α

µ0
c(t)
)︃
, σ(t) = σ0 exp

(︃
α

µ0
c(t)
)︃
, γ(t) ≡ γ0, (8)

which is inspired by the Clausius-Clapeyron relation from thermodynamics (see van der Wiel

et al. (2017) for more details on this). Once a suitable model has been fitted, one attempts

to answer the attribution question, for example based on whether the trend parameter α is

found to be significantly different from zero. Further, one can compare the return periods

for a specific event m for several reference climates ti, e.g., pre-industrial and current, by

estimating values of

RPti(m) =
{︁
1−G(µ(ti),σ(ti),γ(ti))(m)

}︁−1
(9)

to illustrate how risk has changed. Similar calculations can be made for return levels.

As in the stationary case, estimation uncertainty poses a problem, and it might even

be exacerbated due to the additional parameter that is estimated. Therefore, in case there

are several measuring stations near the location of interest, the pooling approach has be-

come popular to improve the data situation, as e.g. applied in Vautard et al. (2015) and

Eden et al. (2016). Further, pooling has been used on gridded data sets, for example in

Kreienkamp et al. (2021). The pooled data is usually treated as one sample from a GEV

distribution with unknown parameters. Therefore, the inherent assumption of coinciding pa-

rameters should be checked carefully before fitting and relying on such a model. The state

of the art method for validating the model assumptions consists of several makeshift diag-

nostic methods, such as a simple comparison of location-wise estimated GEV parameters

(Kreienkamp et al. (2021)).
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The article presented in Chapter 2.3 offers a statistically more sound approach to this

problem, again based on homogeneity tests. In this context, a set of locations {1, . . . , D}
is called homogeneous when their location-wise GEV parameters coincide, i.e., when the

hypothesis of ‘equal distribution’

H0,ED : ∃ (µ, σ, γ, α)′ ∈ Θ ∀ d ∈ {1, . . . , D} : (µd, σd, γd, αd)
′ = (µ, σ, γ, α)′ (10)

with Θ the respective parameter space, is satisfied.

Besides only testing whether a given set of locations is homogeneous, a new multiple testing

approach can be applied for detecting a region that can be considered homogeneous. The

proposed procedures are based on a pseudo ML estimator for the 4D-dimensional parameter

vector (µ1, σ1, γ1, α1, . . . , µD, σD, γD, αD)
′, for which approximate normality is motivated, so

that a Wald-type test statistic can be derived. In order to obtain reliable p-values, a boot-

strap method is proposed that involves either max-stable process models or, in case D = 2,

bivariate extreme value distributions, and can thus capture the (spatial) dependence of the

observations. Modelling the dependence structure of the observations has yet another ad-

vantage: based on the model fit, one can estimate the regional m-return period for a fixed

reference climate, which corresponds to the period within which one exceedance of m for at

least one of the locations that make up the region can be expected, assuming a stationary

climate with conditions of the reference climate. The proposed methods are tested in a Monte

Carlo simulation study and then applied in a case study about heavy precipitation.

The remainder of this thesis is structured as follows. The previously mentioned articles to

which the author of this thesis contributed are listed in section 2: Section 2.1 starts with the

research paper on the sliding block maxima method for piecewise stationary time series with

application to the PWM estimator; Sections 2.2 and 2.3 provide the articles on homogeneity

tests. Here, the article on procedures for stationary model assumptions is presented first,

followed by the article for the non-stationary framework.

Section 3 gives a brief outlook on possible extensions of the presented research. The author’s

contribution statement is given in the appendix.
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ON THE DISJOINT AND SLIDING BLOCK MAXIMA METHOD FOR
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Modeling univariate block maxima by the generalized extreme value dis-
tribution constitutes one of the most widely applied approaches in extreme
value statistics. It has recently been found that, for an underlying station-
ary time series, respective estimators may be improved by calculating block
maxima in an overlapping way. A proof of concept is provided that the lat-
ter finding also holds in situations that involve certain piecewise stationari-
ties. A weak convergence result for an empirical process of central interest
is provided, and further details are examplarily worked out for the proba-
bility weighted moment estimator. Irrespective of the serial dependence, the
asymptotic estimation variance is shown to be smaller for the new estimator.
In extensive simulation experiments, the finite-sample variance was typically
found to be smaller as well, while the bias stays approximately the same. The
results are illustrated by Monte Carlo simulation experiments and are applied
to a common situation involving temperature extremes in a changing climate.

1. Introduction. The annual or seasonal maximum of a certain variable of interest is
a common target distribution, in particular in environmental statistics [25, 1]. For instance,
hydrologists are interested in maximal river discharges to facilitate flood protection, while
meteorologists and climatologists study maximal temperatures, precipitation or wind speeds,
collected over certain spatial or temporal regions. The latter comprises the emerging field of
extreme event attribution studies [35], which aim at exploring how the probability of certain
extreme events evolve in the context of a changing climate due to anthropogenic activities.

The underlying statistical principle is known as the block maxima method and dates back
to [22], see also the monographs [11, 1]. In its simplest form, it is postulated that a sample
of successive (annual) block maxima constitutes an independent and identically distributed
(i.i.d.) sample from the generalized extreme value (GEV) distribution, as suggested by the
asymptotics formulated in the Fisher-Tippet-Gnedenko Theorem [21]. The model may then
be fitted by any method of choice, the most popular approaches being maximum likelihood
[32, 6] and the probability weighted moment (PWM) method [24].

Considering the validation of statistical methodology (like proving consistency and
asymptotic normality of estimators), it has long been assumed that the block maxima sample
is a genuine independent sample from the GEV-distribution. From a mathematical viewpoint,
this assumption seems overly simplified: neither does it allow to quantify a possible bias due
to the fact that block maxima are only asymptotically GEV-distributed, nor does it quantify to
what extent possible temporal dependencies in the underlying sample are negligible. Notable
exceptions are [16, 20, 17], who investigate respective methods under the assumption that
block maxima of size r = rn → ∞, rn = o(n) are calculated based on an underlying i.i.d.
series of length n (corresponding to, say, daily observations). The latter is however still not
really fitting to typical applications of the block maxima method, where serial independence

AMS 2000 subject classifications: Primary 62G32, 62F12; secondary 62P12, 60G70.
Keywords and phrases: Asymptotic normality, extreme value statistics, Marshall–Olkin distribution, return

level, temperature extremes.
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of a daily time series is rarely the case (another nuisance are potential seasonalities, which
will be discussed below). Extensions to the case of a strictly stationary time series have been
worked out in [5, 7], for the estimation of extreme value copulas in a multivariate context
and estimation of Fréchet parameters in a univariate heavy tailed situation, respectively. The
new viewpoint has also lead to methodological improvements, as it allows to study estimators
which are based on block maxima calculated from sliding (overlapping) blocks of observa-
tions. Perhaps surprisingly, respective estimators have been shown to be more efficient than
their disjoint blocks counterparts in certain general situations [8, 36]. In the i.i.d case, [30]
recently provided a further methodological improvement based on what has been called the
all-block maxima method; a method that is, however, not easily transferable to the time se-
ries case except the extremal index [29] is one. Furthermore, [18, 10] study the use of sliding
blocks with POT-type estimators.

This paper’s main contribution is a surprising proof of concept that the sliding block max-
ima method may even yield more efficient estimators when applied to datasets that result in
a non-stationary behavior of the sample of sliding block maxima. More precisely, suitable
asymptotic theory is developed for a sampling scheme that involves an underlying triangular
array consisting of independent and identically distributed stretches of observations extracted
from a stationary time series. The framework is designed to asymptotically mimic the prac-
tically relevant situation encountered in environmental statistics where, due to seasonalities,
stationarity can only be (approximately) guaranteed for, say, daily observations collected
throughout the summer months.

Under the predescribed sampling scheme, as well as under a classical sampling scheme
involving a plain stationary time series, asymptotic theory is developed for (1) an empirical
process of pure theoretical interest as well as for (2) the PWM estimator of practical interest.
It is worthwhile to mention that the restriction to PWM estimators is partly arbitrary, and
that similar findings can be expected to hold for other estimators of practical interest. One of
the reasons we opted for PWM is that we extend, as a by-product, results from [20] on the
disjoint blocks maxima PWM estimator in an i.i.d. context.

The asymptotic results are similar but not the same as in [8, 36]: it is found that, despite
non-stationarity, the sliding blocks method works and yields smaller asymptotic variances
than the disjoint blocks method. However, the asymptotic bias is only guaranteed to be the
same for stationary data. Within extensive simulation experiments on the PWM estimators,
it is found that the overall improvement of the sliding blocks version over its disjoint blocks
counterpart is remarkably large for negative shape parameters, while only small improve-
ments are visible for positive shapes. For situations involving strong serial dependencies and
comparably small block sizes, one may even have a worse performance; however, such un-
favorable combinations appear to be untypical for practical applications. The improvement
for negative shape parameters is illustrated in Figure 1, where we depict the mean squared
estimation error for the estimation of the shape parameter γ for a fixed block size r = 90
(roughly corresponding to the length of a season) and increasing number of seasons.

Negative shape parameters are often found when analyzing temperature extremes, for
which shapes are typically within the range −0.4 to −0.2. A respective case study is worked
out, where we also deal with non-stationarities in the location parameter of the GEV-model.
The considered model is commonly employed in extreme event attribution studies, see [31].
A parametric bootstrap device is proposed to assess estimation uncertainties.

The (sliding) blocks method exhibits an important methodological advantage over the
competing peaks-over-threshold (POT) approach [14] when the ultimate goal consists of as-
sessing return levels or return periods. Indeed, for the latter purpose, methods based on the
POT approach typically require an application of a declustering approach (or an estimator of
the extremal index) to take care of the time series’ serial dependence. This is not necessary
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FIG 1. Mean squared error for the estimation of γ for the disjoint and sliding blocks estimator (left), and the ra-
tio MSE(disjoint)/MSE(sliding) (right). The data generating process is an AR(0.5)-GPD(γ)-model, sampling
scheme (S2) with fixed block size r = 90, as described in Section 4.

for the (sliding) blocks method, where the serial dependence only shows up in the scaling
sequences associated with the max-domain of attraction condition (see Condition 2.1 below
for details), both of which are automatically estimated by the method. Respective details are
worked out in Section 3.2.

This paper is organized as follows. Section 2 contains details on the basic model assump-
tions and a weak convergence result on an empirical process of central interest. Details on
the PWM estimator are worked out in Section 3. A large scale Monte Carlo simulation study
is presented in Section 4. The case study on temperature extremes can be found in Section 5,
followed by a conclusion in Section 6. The most important proofs are worked out in Sec-
tions 7, with some lengthy parts and some less central parts postponed to a supplementary
material [9]. Theoretical results from the supplement are numbered by capital letters; e.g.,
Lemma B.3. All convergences are for n→∞, if not mentioned otherwise. The generalized
(left-continuous) inverse of a cumulative distribution function (c.d.f.) F is denoted by F←.

2. A new sampling scheme and some general theoretical results. Recall the General-
ized Extreme Value (GEV) distribution with parameters µ (location), σ (scale) and γ (shape),
defined by its cumulative distribution function

G(µ,σ,γ)(x) := exp
[
−
{
1 + γ

(x− µ

σ

)}− 1

γ
]
, 1 + γ

x− µ

σ
> 0.

If θ = (µ,σ, γ)′ = (0,1, γ)′, we will use the abbreviation G(0,1,γ) =Gγ . The support of Gγ

is denoted by Sγ = {x ∈R : 1 + γx > 0}.
An extension of the classical extremal types theorem to strictly stationary time series [29]

implies that, under suitable conditions, affinely standardized maxima extracted from a sta-
tionary time series converge to the GEV-distribution. We make this an assumption, and ad-
ditionally require the scaling sequences to exhibit some common regularity inspired by the
max-domain of attraction condition in the i.i.d. case [14].

CONDITION 2.1 (Max-domain of attraction). Let (Xt)t∈Z denote a stationary time se-
ries. There exist sequences (ar)r ⊂R+, (br)r ⊂R and γ ∈R, such that, for any s > 0,

lim
r→∞

a⌊rs⌋
ar

= sγ , lim
r→∞

b⌊rs⌋ − br

ar
=
sγ − 1

γ
,(1)

where the second limit is interpreted as log(s) if γ = 0. Moreover, for r→∞,

Zr =
max(X1, . . . ,Xr)− br

ar

d−→ Z ∼Gγ .(2)
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Note that (1) and (2) may for instance be deduced from Leadbetter’s D(un) condition, a
domain-of-attraction condition on the associated i.i.d. sequence and a weak requirement on
the convergence of the c.d.f. of Zr , see Theorem 10.4 in [1].

The max-domain of attraction condition allows to formulate two sampling mechanisms
used throughout this paper.

CONDITION 2.2 (Observation scheme). For sample size n ∈ N, we have observations
X1,n, . . . ,Xn,n that do not contain ties with probability one, such that either (S1) or (S2)
holds, where:
(S1) (X1,n, . . . ,Xn,n) = (X1, . . . ,Xn) is an excerpt from a strictly stationary time series

satisfying Condition 2.1 with continuous marginal c.d.f F .
(S2) For some block length sequence (rn)n ⊂ N diverging to infinity such that rn = o(n),

we have

(X1,n, . . . ,Xn,n) = (Y
(1)
1 , . . . , Y (1)

rn , Y
(2)
1 , . . . , Y (2)

rn , . . .

. . . , Y
(m)
1 , . . . , Y (m)

rn , Y
(m+1)
1 , . . . , Y

(m+1)
n−mrn),

where m =mn = ⌊n/rn⌋ and where (Y
(1)
t )t, (Y

(2)
t )t, . . . denote i.i.d. copies from a sta-

tionary time series satisfying Condition 2.1 with continuous marginal c.d.f F . Note that
Y (j)

t should be regarded as the tth observation in the jth season.

Sampling scheme (S2) shall represent typical environmental applications which are subject
to seasonalities. The parameter rn may correspond to, say, the number of daily observations
within the summer months. For such a situation, it appears reasonable to assume strict sta-
tionarity within a particular summer, and stochastic independence and distributional equality
between multiple summers. In order to obtain meaningful asymptotic results, which in par-
ticular cover a sliding blocks version, rn must be assumed to go to infinity.

REMARK 2.3 (Possible relaxations of Condition 2.2). It is worthwhile to mention that
sampling scheme (S2) has been chosen as a starting point for this paper because it is, on the
one hand, reasonably general to capture typical real data situations and, on the other hand,
simple enough to allow for accessible proofs. It may be extended in various ways: first of
all, different ‘seasons’ may be assumed to be serially dependent and to satisfy certain mixing
conditions; the necessary changes in the proofs would mostly require bringing together argu-
ments from the (S1) and (S2) case. Next, sampling schemes (S1) and (S2) may be subsumed
under a more general condition: denoting by S(sn) the sampling scheme that consists of con-
catenating independent ‘seasonal blocks’ of size sn, we observe that (S1) is the same as S(n),
while (S2) is the same as S(rn). At the cost of more sophisticated conditions and proofs (in
particular, a more complex version of Condition 3.2 below would be needed), one may ex-
tend the results in this paper to the case where rn/sn → c ∈ (0,1] (which, in practice, may
represent monthly maxima, rn = 30, after concatenating seasons, sn = 90). The higher level
of complexity needed for handling this situation results from the fact that even the disjoint
blocks maxima sample may not be stationary anymore (for instance, if sn = 1.5rn). Finally,
the no-tie assumption in Condition 2.2 is merely made for convenience. At the cost of more
sophisticated proofs and conditions on the serial dependence, it can possibly be dispensed
with. Similar arguments apply to the continuity assumption on F .
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2.1. Two approximate block maxima samples from the GEV distribution. Subsequently,
we write Xi = Xi,n for simplicity. The block maxima method with block size parameter
r = rn ∈ {1, . . . , n} is traditionally based on the sample of disjoint block maxima M(db)

r =
M(db)

r,n = {M (db)

r,1 , . . . ,M
(db)

r,m}, where the block maxima are defined by

M
(db)
r,j := max(X(j−1)r+1, . . . ,Xjr), j ∈ {1, . . . ,m},

and where m=mn = ⌊n/rn⌋ denotes the number of disjoint blocks that fit into {1, . . . , n}.
For data arising from one of the sampling schemes in Condition 2.2, it follows that the sample
M(db)

r,n is stationary with marginal c.d.f. denoted by

Fr(x) = P(max(X1, . . . ,Xr)≤ x), x ∈R.(3)

As a consequence of Condition 2.1, we have Fr(x) ≈ G(br,ar,γ), whence the parameters
(br, ar, γ) may be estimated by any method of choice for fitting the GEV-distribution.

As mentioned in the introduction, the sample of sliding block maxima M(sb)

r =M(sb)

r,n =

{M (sb)

r,1 , . . . ,M
(sb)

r,n−r+1} defined by

M
(sb)
r,j := max(Xj , . . . ,Xj+r−1), j ∈ {1, . . . , n− r+ 1}

provides an attractive alternative to the sample M(db)

r,n . In fact, under sampling scheme (S1),
we have M (sb)

r,j ∼ Fr for all j ∈ {1, . . . , n − r + 1} as well, whence respective estimators
can be expected to work, in particular when based on the method of moments. Note that the
asymptotic analysis becomes substantially more difficult due to the strong serial dependence
between the sliding block maxima.

In this paper, we also advocate the use of sliding block maxima under the possibly more
realistic sampling scheme (S2). Compared to (S1), an obstacle occurs: the c.d.f. of M (sb)

r,j ,

Fr,j(x) = P(max(Xj , . . . ,Xj+r−1)≤ x), x ∈R,(4)

is in general no longer independent of j. Perhaps surprisingly, it can be shown that Fr,j ≈
G(br,ar,γ) for all j and sufficiently large r:

LEMMA 2.4 (Asymptotic stationarity of sliding block maxima). Suppose one of the sam-
pling schemes from Condition 2.2 is met. Then, for every ξ ∈ [0,1] and z ∈R,

lim
r→∞

Fr,1+⌊rξ⌋ (arz + br) =Gγ(z).

As a consequence of this lemma, estimators based on M(sb)

r,n can still be expected to work
under (S2), provided the block size r is reasonably large. Further extensions to joint conver-
gence of two block maxima are provided in Lemmas B.3 and B.4. A sub-asymptotic discus-
sion for a model involving ARMAX-dynamics is provided in Section D.

2.2. An empirical process associated with rescaled block maxima. A central theoretical
ingredient for all subsequent results (and, presumably, for possible future results on other
estimators involving the sliding block maxima method) is weak convergence of the centered
empirical process associated with the empirical distribution function of the (unobservable)
rescaled block maxima samples Z(db)

r,1 , . . . ,Z
(db)

r,m and Z(sb)

r,1 , . . . ,Z
(sb)

r,n−r+1, where

Z
(db)
r,j =

M
(db)
r,j − br

ar
, Z

(sb)
r,j =

M
(sb)
r,j − br

ar
.(5)

Throughout its proof, we are going to apply common blocking techniques, whence the block
length r must be well-adapted to the serial dependence of the time series. Suitable control
may be provided by mixing conditions that were also imposed in related situations in [5, 7, 8].
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CONDITION 2.5. For the block size sequence (rn)n it holds that

(i) rn →∞ and rn = o(n).

(ii)
(

n
rn

)1/2
β(rn) = o(1) and

(
n
rn

)1+ω
α(rn) = o(1) for some ω > 0.

(iii) There exists a sequence (ℓn)n ⊂ N such that ℓn →∞, ℓn = o(rn),
n
rn
α(ℓn) = o(1) and

rn
ℓn
α(ℓn) = o(1).

Here, α and β denote the α- and β-mixing coefficients of the time series (Xt)t that was
introduced in Condition 2.1 (see [3] for a precise definition). Note that Conditions (ii) and
(iii) imply that the block length sequence rn must not be too small.

Subsequently, for z ∈R, let

Ĥ(db)
r (z) =

1

m

m∑

j=1

1(Z
(db)
r,j ≤ z), Ĥ(sb)

r (z) =
1

n− r+ 1

n−r+1∑

j=1

1(Z
(sb)
r,j ≤ z)

and

H̄r(z) =
1

r

r∑

j=1

Hr,j(z), Hr,j(z) = P(Z(sb)
r,j ≤ z).(6)

Note that E[Ĥ (mb)

r (z)] = H̄r(z), unless mb= sb and sampling scheme (S2) is met, in which
case we have E[Ĥ (sb)

r (z)] = H̄r(z)+O(m−1). The following central result is similar to The-
orem 2.10 in [36], despite under different assumptions (in particular sampling scheme (S2)).

THEOREM 2.6. Consider one of the sampling schemes from Condition 2.2. Under Con-
dition 2.5, we have for mb ∈ {db, sb}

H(mb)
r =

√
n

r

(
Ĥ(mb)

r − H̄r

)
d−→H(mb) =C(mb) ◦Gγ

in ℓ∞(R) equipped with the supremum metric, where C(db) is a standard Brownian bridge
on [0,1] and where C(sb) is a centered Gaussian process with covariance function

Cov(C(sb)(u),C(sb)(v)) = 2

(
uv− u∧ v
ln(u∨ v) − uv

)
, u, v ∈ (0,1).(7)

Moreover, the limit processes H(mb) are almost surely contained in Cb(R) (the space of
continuous and bounded real-valued functions on R) and satisfy

Cov
(
C(sb)(u1), . . . ,C(sb)(ud)

)
≤L Cov

(
C(db)(u1), . . . ,C(db)(ud)

)
(8)

for all u1, . . . , ud ∈ (0,1) and d ∈N, where ≤L denotes the Loewner-ordering between sym-
metric matrices.

Convergence of the finite-dimensional distributions in Theorem 2.6 is a consequence of a
more general multivariate central limit theorem of independent interest, see Theorem B.1 in
the supplement [9].

3. PWM estimators based on the block maxima method. Throughout this section, let
M denote a GEV-distributed random variable with parameter θ = (µ,σ, γ)′. For γ < 1, the
first three probability weighted moments of M are given by

βθ,k := E[MGk
(µ,σ,γ)(M)] =

1

k+ 1

[
µ− σ

γ
{1− (k+ 1)γΓ(1− γ)}

]
,(9)
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BLOCK MAXIMA FOR PIECEWISE STATIONARY TIME SERIES 7

where k ∈ {0,1,2}. As shown by [24], we obtain the following equation system between θ
and (βθ,0, βθ,1, βθ,2):





γ = g−11

(
3βθ,2−βθ,0

2βθ,1−βθ,0

)

σ = g2(γ) (2βθ,1 − βθ,0)

µ= βθ,0 + σg3(γ)

(10)

where

g1(γ) =
3γ − 1

2γ − 1
, g2(γ) =

γ

Γ(1− γ)(2γ − 1)
, g3(γ) =

1− Γ(1− γ)

γ

with g1(0) = log 3/log 2, g2(0) = 1/log 2 and g3(0) =−γEM defined by continuity. Here, Γ
denotes the Gamma function and γEM is the Euler-Mascheroni constant. The PWM estima-
tor is then defined by replacing the respective moments on the right-hand side of (10) by
empirical versions and successively solving for γ,σ and µ. Several (asymptotic equivalent)
empirical versions suggest itself, and throughout this paper we opt for the version proposed
in [28], that is,

β̂0(M) =
1

n

n∑

i=1

Mi, β̂1(M) =
1

n

n∑

i=1

i− 1

n− 1
M(i), β̂2(M) =

1

n

n∑

i=1

(i− 1)(i− 2)

(n− 1)(n− 2)
M(i),

where M(1) ≤ · · · ≤ M(n) is the order statistic of a sample M = {M1, . . . ,Mn} which
is to be fitted to the GEV-distribution. It is worthwhile to mention that these estimators
are unbiased in case M is an i.i.d. sample. Indeed, we may rewrite β̂1(M) = {n(n −
1)}−1∑i ̸=jMi 1(Mj ≤Mi), whence E[β̂1(M)] = E[Mi 1(Mj ≤Mi)] = βθ,1, and a sim-
ilar calculation can be made for β̂2(M). The resulting estimator for θ based on solving (10)
will be denoted by θ̂(M). The estimators of ultimate interest in this paper are

θ̂(db)r = θ̂(M(db)
r,n ), θ̂(sb)r = θ̂(M(sb)

r,n ),(11)

which are derived from the empirical weighted moments β̂(mb)

r,k = β̂k(M(mb)

r,n ) for mb ∈
{db, sb} and are to be considered as estimators for θr = (br, ar, γ)

′.

REMARK 3.1 (Bias-reduced sliding blocks estimator). Well-known heuristics sug-
gest that block maxima are asymptotically independent when calculated based on non-
overlapping time periods, and that they are asymptotically dependent otherwise (see Lem-
ma B.3 for a rigorous result). As a consequence, the sliding blocks empirical PWMs from
(11) may exhibit a certain ‘dependency’ bias. To remove this bias, one may alternatively
consider the estimators β̃(sb)r,0 = β̂

(sb)
r,0 ,

β̃
(sb)
r,1 =

1

|Dn(2)|
∑

(i,j)∈Dn(2)

M
(sb)
r,i 1(M

(sb)
r,j ≤M

(sb)
r,i )

β̃
(db)
r,2 =

1

|Dn(3)|
∑

(i,j,j′)∈Dn(3)

M
(sb)
r,i 1(M

(sb)
r,j ≤M

(sb)
r,i )1(M

(sb)
r,j′ ≤M

(sb)
r,i )

where Dn(2) denotes the set of all pairs (i, j) ∈ {1, . . . , n− r+ 1}2 such that Ii ∩ Ij = ∅
and where Dn(3) is the set of all triples (i, j, j′) ∈ {1, . . . , n− r+ 1}3 such that Ii ∩ Ij =
Ii∩ Ij′ = Ij ∩ Ij′ =∅, with Ii = {i, . . . , i+ r−1}. Obviously, the larger the block size r, the
more β̃(sb)

r,k
deviates from β̂(sb)

r,k
. The difference between the two estimators is asymptotically

negligible though, while the computational cost is substantially higher for the tilde version.
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3.1. Asymptotic normality of PWM estimators. Before formulating explicit results, it is
worthwhile to mention that asymptotic theory involving PWM estimators has hitherto been
mostly worked out under the simplifying assumption that the (disjoint) block maxima pro-
vide a genuine i.i.d. sample from the GEV distribution (as noted in the introduction, [20]
is a notable exception). The alternative viewpoint based on Condition 2.2 has at least three
important advantages: it allows to explicitly describe potential bias terms, it does not neglect
serial dependence between successive blocks (sampling scheme (S1)), and, perhaps most
importantly, it makes possible the treatment of the more efficient sliding blocks version.

A number of regularity conditions is needed to derive consistency and asymptotic normal-
ity of the estimators in (11).

CONDITION 3.2 (Bias). For the normalizing sequences (ar)r∈N and (br)r∈N from Con-
dition 2.1 and for k ∈ {0,1,2},mb ∈ {sb,db} and S ∈ {S1,S2}, the limit

B
(mb,S)
k = lim

n→∞
B

(mb,S)
n,k ,

exists, where

B
(mb,S)
n,k =





√
n

r

{
E[ZrH

k
r (Zr)]−E[ZGk

γ(Z)]
}
, (mb,S) ̸= (sb,S2),

√
n

r

1

r

r∑

j=1

{
E
[
Z

(sb)
r,j H̄k

r (Z
(sb)
r,j )

)]
−E

[
ZGk

γ(Z)
]}
, (mb,S) = (sb,S2),

where Zr from (2) has c.d.f. Hr , where Z ∼Gγ and where Z(sb)
r,j and H̄r are defined in (5)

and (6), respectively.

It is worthwhile to mention that B(sb,S1)
n,k = B

(sb,S2)
n,k provided the underlying time series

is serially independent; in fact, the entire sampling schemes coincide in this case. In typi-
cal cases of serial dependence, the simulation experiments in Section 4 and the supplement
suggest that the difference between the two limits is small.

CONDITION 3.3 (Uniform integrability). There exists ν > 2
ω with ω from Condition

2.5(ii) such that, for the normalizing sequences (ar)r∈N and (br)r∈N from Condition 2.1,

limsup
r→∞

E
[
|Zr|2+ν

]
<∞.

The condition is used to deduce convergence of moments from convergence in distribution,
which, for certain moments, is needed in view of the fact that the PWM estimators are based
on the method of moments.

REMARK 3.4. In case γ > 0, Condition 3.3 together with Condition 2.2 and 2.5 implies
additional constraints on γ and ω. Indeed, observing that E[|Z|2+ν ] <∞ iff ν < 1/γ − 2,
Condition 3.3 can only be satisfied if γ < 1/2. Further, since ν > 2/ω, we must have 2/ω <
1/γ − 2, which is equivalent to ω > (2γ)/(1− 2γ).

Our main result will be a corollary of the following theorem on the joint asymptotic prop-
erties of the empirical probability weighted moments. The following notations are needed for
its formulation: let f0(x) = x and

f1(x) = xGγ(x) +E[Z 1(Z > x)], f2(x) = xG2
γ(x) + 2E[ZGγ(Z)1(Z > x)],(12)
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FIG 2. Left: Graph of γ 7→Ω
(db)

k,k /Ω
(sb)

k,k for k ∈ {0,1,2} and with Ω(mb) as in Theorem 3.5. Right: Graph of

γ 7→Σ
(db)

ℓ,ℓ /Σ
(sb)

ℓ,ℓ for ℓ = 1 (shape), ℓ = 2 (scale) and ℓ = 3 (location) with Σ(mb) = (Σ
(mb)

ℓ,ℓ′ )ℓ,ℓ′=1,2,3 from
Corollary 3.6.

where Z ∼Gγ (note that the dependence on γ is suppressed in the notation fk). Moreover,
let Gγ,ξ(x, y) =Gγ(x)Gγ(y) for ξ > 1 and

Gγ,ξ(x, y) = exp
[
−
{
ξ(1 + γx)−

1

γ + ξ(1 + γy)−
1

γ + (1− ξ)(1 + γ(x∧ y))−
1

γ

}]
,(13)

for ξ ∈ [0,1], where (x, y) is such that 1 + γx > 0 and 1 + γy > 0. Note that Gγ,ξ defines
a bivariate extreme value distribution with marginal c.d.f.s Gγ , irrespective of ξ, and with
Pickands dependence function Aξ(w) = (1∧ ξ) + {1− (1∧ ξ)}{w ∨ (1−w)}.

THEOREM 3.5. Suppose one of the sampling schemes from Condition 2.2 is met with
γ < 1/2. Further, assume that Conditions 2.5, 3.2 and 3.3 are met, and write θr = (br, ar, γ)

′

with respective PWMs βθr,k. Then, for mb ∈ {db, sb} and S ∈ (S1,S2),

(√
n

r

(
β̂
(mb)
r,k − βθr,k

ar

))

k=0,1,2

d−→N3(B
(mb,S),Ω(mb)),(14)

where B(mb,S) = (B
(mb,S)
k )k=0,1,2,Ω

(mb) = (Ω
(mb)
k,k′ )k,k′=0,1,2 and where, with Z ∼Gγ and

(Z1ξ,Z2ξ)∼Gγ,ξ ,

Ω
(db)
k,k′ =Cov(fk(Z), fk′(Z)), Ω

(sb)
k,k′ = 2

∫ 1

0
Cov (fk(Z1ξ), fk′(Z2ξ)) dξ

Moreover, with ≤L denoting the Loewner-ordering between symmetric matrices, we have

Ω(sb) ≤L Ω(db).(15)

Recall that the asymptotic bias is always the same, except under sampling scheme (S2)
and for sliding blocks. It is worthwhile to mention that the theorem may be extended to
arbitrary k ≥ 3; in that case, fk is given by fk = fk,1 + fk,2 with fk,1, fk,2 from (B.10) in
the supplement [9]. Further, note that the integral in Ω(sb)

k,k′ corresponds to the contribution
introduced by the strong serial dependence between the sliding block maxima. More explicit
expressions for the asymptotic covariances can be found in Appendix C in the supplementary
material, see Lemma C.1. The graphs of the ratio of the variance curves γ 7→ Ω(db)

k,k /Ω
(sb)

k,k

are depicted in Figure 2, for γ ∈ (−1,1/2). As can be seen, the sliding blocks variances are
universally smaller than the disjoint blocks counterparts, with a substantial improvement for
k = 0 and negative γ.
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Asymptotic normality of the PWM estimator for (br, ar, γ) essentially follows from the
above theorem and the delta method. Let

ϕ :Dϕ →R3, β := (β0, β1, β2)
′ 7→



ϕ1(β)

ϕ2(β)

ϕ3(β)


=



g−11

(
3β2−β0

2β1−β0

)

g2(ϕ1(β))(2β1 − β0)

β0 + ϕ2(β)g3(ϕ1(β))


 ,(16)

where Dϕ = {β ∈ R3 : 2β1 − β0 > 0,3β2 − 2β1 > 0,−β0 + 4β1 − 3β2 > 0}. Recall that
θr = (br, ar, γ)

′ = ϕ(βθr,0, βθr,1, βθr,2) for γ < 1 by (10), and that θ̂(mb)

r = ϕ(β̂(mb)

r ), where
β̂(mb)

r = (β̂(mb)

r,0 , β̂
(mb)

r,1 , β̂
(mb)

r,2 )′ and mb ∈ {db, sb}. Further, as shown in Proposition 2.1 in
[26], we necessarily have (βθr,0, βθr,1, βθr,2)

′ ∈ Dϕ for γ < 1. Theorem 3.5 then implies
limn→∞ P(β̂(mb)

r ∈Dϕ) = 1 after a simple calculation.

COROLLARY 3.6. Write θ̂(mb)

r = (b̂(mb)

r , â(mb)

r , γ̂(mb)

r )′. Under the conditions of Theo-
rem 3.5, we have

(17)
√
n

r




γ̂(mb)

r − γ

(â(mb)

r − ar)/ar

(b̂(mb)

r − br)/ar


 d−→N3(CB(mb,S),Σ(mb)),

where Σ(mb) = CΩ(mb)C ′ with C = (Dϕ)(βγ) the Jacobian of ϕ evaluated at the true
PWMs βγ = (βγ,0, βγ,1, βγ,2)

′ of Gγ . Moreover, we have

Σ(sb) ≤L Σ(db).(18)

Precise formulas for the matrix C can be found in Lemma C.2. Together with respective
formulas for Ω(mb) (Lemma C.1) one may confirm that the disjoint blocks variance Σ(db)

coincides with the one obtained in [20] for the i.i.d. case.

3.2. Application: return level estimation. A typical quantity of interest in environmental
statistics is the return level (RL) of an extreme event. Formally, for a block size r (often a
year or a season) and a target number of (disjoint) blocks T , the (T, r)-return level of the
distribution Fr defined in (3) is defined as

RL(T, r) = F←r (1− 1/T ) = inf{x ∈R : Fr(x)≥ 1− 1/T}.
Note that it will take on average T independent disjoint blocks of size r until the first such
block whose maximum exceeds RL(T, r). Now, by Condition 2.1, we have Fr ≈G(br,ar,γ),
whence RL(T, r)≈RL◦(T, r), where

RL◦(T, r) =G←(br,ar,γ)
(1− 1/T ) = ar

c−γT − 1

γ
+ br,

and where cT =− log(1− 1/T ). We therefore obtain the estimators

R̂L(mb)(T, r) = â(mb)
r

c−γ̂
(mb)

T − 1

γ̂(mb)
+ b̂(mb)

r , mb ∈ {db, sb}.

COROLLARY 3.7. Under the conditions of Theorem 3.5, we have

√
n/r

(
R̂L(mb)(T, r)−RL◦(T, r)

ar

)
d−→N

(
q′TCB(mb,S), q′TΣ

(mb)qT

)
,
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where qT = qT (γ) is defined as qT (0) = (log2(cT )/2,− log(cT ),1)
′ and

qT (γ) =
(
1−c−γ

T (γ ln(cT )+1)
γ2 , c

−γ
T −1
γ ,1

)′
, γ ̸= 0.

The asymptotic variance in Corollary 3.7 being an explicit function of γ, it may easily
be estimated by the plug-in principle; we denote the respective estimator by σ̂2,(mb)

T . Corol-
lary 3.7 then allows to construct asymptotic confidence intervals for RL(T, r). Indeed, as-
suming that the block size r is chosen sufficiently large to guarantee that B(mb,S) = 0 and
that RL◦(T, r) = RL(T, r) + o(

√
r/nar), we obtain that

RL(T, r) ∈
[
R̂L(mb)(T, r)∓ â(mb)

r

√
r

n
σ̂
2,(mb)
T u1−α/2

]

with asymptotic probability α, where u1−α/2 is the (1−α/2)-quantile of the standard normal
distribution. It follows from the bounds on the asymptotic variances in Corollary 3.6 that
the confidence intervals are asymptotically more narrow for the sliding blocks method; an
observation that will be confirmed by the case study in Section 5.

4. Simulation study. The finite-sample properties of the proposed estimators have been
evaluated in a large scale Monte Carlo simulation study. Three target variables have been
selected: the shape parameter γ, and two return levels, RL(50, r) and RL(100, r). The fol-
lowing central aspects have been investigated:

(i) Performance of the PWM estimator when sub-asymptotic versions of sampling schemes
(S1) and (S2) from Condition 2.2 with varying degree of extremal temporal dependence
are met for fixed block size r (Section 4.1) and for fixed sample size n (Section E.2 of the
supplementary material [9], summarized in Section 4.2).

(ii) Performance of the PWM estimator when the seasonal stationarity from Condition 2.2 is
violated (Section 4.3).

(iii) Comparison of the PWM estimator to Maximum Likelihood estimators based on sliding
blocks (Section E.6 of the supplementary material [9], summarized in Section 4.4).

(iv) Performance under strong temporal dependence, in particular for sampling scheme (S2)
(Section 4.5).

The data-generating processes that were used for (i), (iii) and (iv) are as follows:
(a) Stationary distribution of Xt. We opted for a model that allows for both posi-

tive and negative shape parameters in a continuous way, and hence chose five distribu-
tions from the generalized Pareto family, namely GPD(0,1, γ) with shape parameter γ in
{−0.4,−0.2,0,0.2,0.4} with corresponding c.d.f.

Fγ(x) =





(
1− (1 + γx)−

1

γ

)
1(x≥ 0), γ > 0,(

1− (1 + γx)−
1

γ

)
1(0≤ x≤ |γ|−1), γ < 0,

(1− exp(−x))1(x≥ 0), γ = 0.

(19)

Note that an i.i.d. series from Fγ satisfies Condition 2.1 with shape parameter γ and scaling
sequences ar = rγ and br = (rγ − 1)/γ, to be interpreted as log r for γ = 0.

Experiments involving a different family of distributions (where weak convergence of
block maxima to the GEV is slower than for the GPD) have also been performed; the quali-
tatively similar results can be found in Section E.5 in the supplementary material [9].

(b) Time series model. Next to the i.i.d. case, we considered quantile transformed ver-
sions of the Gaussian AR(1) model (with extremal index 1), of an AR(1) process with heavy
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tailed Cauchy(1) innovations and of the Fréchet ARMAX(1) model (the latter two having ex-
tremal index smaller than 1). Recall that the extremal index is a measure for the tendency of
extreme observations to occur in clusters (the smaller θ, the larger that tendency), see Section
10.2.3 in [1] for a gentle introduction.

The transformed Gaussian AR-model is defined as follows: for given AR-parameter
|ϕ|< 1 (we chose ϕ ∈ {0,0.25,0.5,0.75,0.9}; note that ϕ= 0 corresponds to the i.i.d. case),
consider the stationary solution (Yt)t of the classical AR(1) recursion

Yt = ϕYt−1 + ϵt, t ∈ Z, (ϵt)t
i.i.d∼ N (0,1).(20)

The marginal distribution, say FY , is known to be centred normal with variance 1/(1− ϕ2)
[4] and the extremal index of (Yt)t is known to be 1 [19]. As a consequence, Xt = F←γ (Ut)
with Ut = FY (Yt) satisfies Condition 2.1 with shape parameter γ and extremal index 1.

For the Cauchy AR (CAR) model, the Gaussian innovations in (20) are replaced
by i.i.d. Cauchy(1)-innovations. Proposition 13.3.2 in [4] yields the representation Yt =∑∞

j=1 ϕ
jϵt−j . For ϕ ∈ (0,1) (we chose ϕ ∈ {0.25,0.5,0.75,0.9}), Example 8.1.1(d) in [19]

then implies that the extremal index exists and is given by θ = 1 − ϕ. Moreover, a simple
calculation based on characteristic functions shows that the marginal distribution FY of Yt is
Cauchy as well, with scale parameter 1/(1− ϕ). We may thus transform to uniform margins
by letting Ut = FY (Yt) and may generate Xt = F←γ (Ut), which satisfies Condition 2.1 with
shape parameter γ and extremal index θ = 1− ϕ.

The transformed ARMAX-model is defined as follows: for given b ∈ [0,1) (we chose
b ∈ {0.25,0.5,0.75,0.9}), consider the stationary solution (Yt)t of the ARMAX(1) recursion

Yt := max(bYt−1, (1− b)ϵt), t ∈ Z, (ϵt)t
i.i.d∼ Fréchet(1).

The marginal distribution FY is known to be Fréchet(1) as well, and the extremal index is
equal to θ = 1− b (Section 10 in [1]). As a consequence, Xt = F←γ (Ut) with Ut = FY (Yt)
satisfies Condition 2.1 with shape parameter γ and extremal index θ = 1− b.

4.1. Fixed block length r. In a first experiment, we considered each combination of the
described time series model and the marginal distribution function in a situation where the
block size is fixed and the overall sample size is increasing. We fixed r = 90, which could
be interpreted as the number of daily observations within a three-month season; a common
situation encountered in environmental applications. The number of seasons was chosen to
vary between 10 and 100, yielding overall sample sizes of the underlying time series be-
tween 900 and 9000. We computed the PWM estimators based on disjoint and sliding block
maxima, and the respective estimators for RL(50, r) and RL(100, r) from Section 3.2. The
estimators have been evaluated in terms of their relative MSE based on N = 5000 simula-
tion repetitions, i.e., we divided the MSE of the disjoint blocks estimator by the MSE of the
sliding blocks counterparts. For the sake of brevity, we only report the results for a selection
of time series models with at most moderate temporal dependence (which is typical for, e.g.,
daily temperature or precipitation data): the i.i.d. case as well as AR, CAR and ARMAX
dependence structures with a time series parameter of 0.5. All other results can be found in
the supplementary material [9], see in particular Section E.1.

Results for the estimation of γ are presented in Figure 3 (see also Figure 1 from the in-
troduction), with remarkably similar results for the two sampling schemes (S1) and (S2).
Note that sampling schemes (S1) and (S2) coincide for i.i.d. observations. The results re-
veal that the sliding blocks method is universally better than the disjoint blocks method for
non-positive shape parameters, with large improvements for small sample sizes (note that
situations of less than 50 seasons are not uncommon in environmental applications; in par-
ticular when restricting attention to stationary time periods). On the other hand, for positive
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FIG 3. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) for the
estimation of γ in a selection of time series models with GPD-margins for sampling schemes (S1) (solid line) and
(S2) (dashed line) and fixed block size r = 90.

shape parameters, the disjoint blocks method may outperform the sliding blocks method for
small sample sizes. This effect can mostly be resolved by considering the bias-reduced sliding
blocks estimator from Remark 3.1, which, however, is computationally costly for situations
involving overall sample sizes of up to n= 9000. A discussion of the latter estimator is post-
poned to Section E.3 of the supplementary material [9]. Finally, it is worthwhile to mention
that the time series model does not have a huge impact on the qualitative results.

We next consider the estimation of return levels. For the evaluation of the respective esti-
mators, (‘true’) population values for the return levels are needed. Since these are not known
explicitly, they have been obtained by a preliminary simulation: after simulating 106 inde-
pendent blocks of length r, we calculated the empirical (1− 1/T )-quantile of the obtained
sample to obtain an accurate approximation for RL(T, r). The respective values for block
size r = 90 can be found in Table E.1 in Section E of the supplementary material. The results
from the simulation experiment are presented in a similar way as for the shape estimation
and can be found in Figure 4. For the sake of a clear presentation, we only consider sam-
pling scheme (S2); the results for sampling scheme (S1) are similar and can be found in the
supplementary material. Overall, the findings are quite similar to those for the estimation
of γ. Compared to the latter target variable, slight advantages for the sliding blocks method
are also visible for γ = 0.2, while we still observe a disadvantage for γ = 0.4. Finally, it is
worthwhile to mention that the relative MSE is increasing in T for all considered situations.

4.2. Fixed sample size n. In a second experiment, we considered varying values of the
block length parameter r for a fixed overall sample size of n= 1000. Under sampling scheme
(S1), the block length can be considered a hyperparameter to be chosen by the statistician,
which induces the common bias-variance tradeoff in extremes (note that r is given when
considering sampling scheme (S2)). For the sake of brevity, detailed results and discussions
are postponed to Sections E.2 (comparison of disjoint and plain sliding blocks estimation),
E.3 (comparison of plain and bias-reduced sliding blocks estimation) and E.4 (comparison
of estimation within (S1) and (S2)) in the supplement [9]. They can briefly be summarised
as follows: Most MSE curves exhibit the common u-shape, with universally smaller values
for the sliding blocks method compared to the disjoint blocks method for negative shape
parameters, and hardly any difference for positive shape parameters.

4.3. Deviation of the piecewise stationary setting. In a third experiment, we investigate
the performance within a situation that deviates from the piecewise stationary setting postu-
lated in Condition 2.2. Since the previous simulation results suggest that the efficiency gain of
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FIG 4. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) for the
estimation of RL(T,90) with T = 50 (top row) and T = 100 (bottom row) in a selection of time series models
with GPD-margins under sampling scheme (S2) for fixed block size r = 90.

using sliding blocks is largest for non-positive shape parameters, we aim for a model describ-
ing temperature extremes, since shape parameters of seasonal maxima are well-known to be
negative for this kind of data. We may then rely on [34], where the asymptotic distribution of
block maxima was investigated in a framework where the finite upper bound of the ‘daily ob-
servations’ was allowed to depend smoothly on (rescaled) inner-seasonal time. In the case of
serially independent observations, the limiting distribution was found to be GEV again, de-
spite with an unexpected shape parameter; see Theorem 1. Extensions to serial dependence
were not worked out explicitly, but it was conjectured that similar phenomena arise.

We employ the marginal model described in the third paragraph on page 5 in [34]: for the
ith day of the year (restricting attention to the first 90 days of the summer season corresponds
to i ∈ {152, . . . ,241}), we denote by Fi the c.d.f. of the

GPD(ui − (7 · 107) 1

5 , ((7 · 107) 1

5 )/5,−0.2)

distribution, where ui = 111− (i− 200)2/400.
We then apply the quantile transformation technique again: starting from one of the serial

dependence structures of interest, we transform the marginals to the time dependent GPD Fi.
We restrict attention to sampling scheme (S2), since this seems to be the natural choice here.
Last but not least, note that the above model is in Fahrenheit, so we transform the simulated
data to ◦C by multiplying by 5/9 after subtracting 32.

We restrict attention to return level estimation (note that the true limiting shape parameter
is only known for the i.i.d. case: it is −2/11 by Theorem 1 in [34]). Since ‘true’ return levels
are not known explicitly either, they are approximated based on a preliminary Monte Carlo
simulation involving N = 106 block maxima of size r = 90, from which the empirical 99%-
quantile (i.e., the 100-season return level) is determined.

The results are compared to a situation without innerseasonal non-stationarities. To ob-
tain observations of the same magnitude, we generate data with margins corresponding to
GPD(72.21, ((7 · 107) 1

5 )/5,−0.2), since 1
90

∑90
i=1(ui − (7 · 107)1/5) = 72.21 is the mean

of the location parameters of the non-stationary counterparts. MSEs and relative MSEs ob-
served in a selection of models with different dependence structures are shown in Figure 5.
We observe that the innerseasonal non-stationarity does not have a significant influence on
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FIG 5. MSE (top) and relative MSE (bottom; MSE of disjoint block estimation divided by MSE of sliding block
estimation) of RL(100,90) estimation without (solid line) and with (dashed line) innerseasonal non-stationarity
as a function of the observed number of seasons for fixed block size r = 90.

the estimation performance, and that the advantage of sliding blocks over disjoint blocks re-
mains. The sliding blocks method may hence be regarded as robust to certain deviations from
the piecewise stationary setup.

4.4. Comparison with Maximum Likelihood Estimation. The sliding blocks PWM esti-
mator has been compared to its counterpart based on (pseudo) maximum likelihood estima-
tion, which is defined by maximizing the GEV likelihood function that arises from treating
all sliding blocks as independent. For the sake of brevity, the results are illustrated in the sup-
plementary material [9] only. They can be summarized as follows: the PWM estimator has
a tendency to be superior for small sample sizes while the maximum likelihood estimator is
superior for large sample sizes; to the best of our knowledge this is a usual view of the two es-
timators among applied statisticians. For shape estimation, smaller shapes yield better results
for the PWM estimator, while for return level estimation, the picture is almost reversed.

4.5. Performance under strong temporal dependence. In practical applications, the ex-
tremal temporal dependence is typically at most moderate; for instance, the extremal index is
around 45-50% for daily temperatures and above 80-90% for cumulative daily precipitation.
In such situations, the sliding blocks method was found to outperform the disjoint blocks
method in the previous sections, both under (S1) and (S2). In this section, we will analyse
situations where the extremal temporal dependence is large in comparison to the block size.
In such scenarios, one may heuristically expect a deterioration of the sliding blocks methods
under sampling scheme (S2), perhaps due to a potentially substantial bias resulting from the
non-stationarity of the sliding block maxima sample.

The deterioration of the sliding blocks method under (S2) can indeed be confirmed by
simulation experiments: in the upper half of Figure 6, which is akin to Figure 4 but for the
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FIG 6. Relative MSE (top row) and relative Variance (bottom row) (MSE (Variance) of disjoint blocks estimator
divided by MSE (Variance) of sliding blocks estimator) for the estimation of RL(100,90) in a selection of time
series models with GPD-margins for fixed block size r = 90.

ARMAX model only and with larger values of b= 1−θ, it can be seen that the sliding blocks
method does not provide an improvement over the disjoint blocks method for a broader range
of shapes when increasing the temporal dependence to θ = 0.1 under (S2). However, as illus-
trated in the lower half of Figure 6 and contrary to the above heuristics, this behavior is not
due to a larger bias of the sliding blocks method, but rather due to the fact that the variance
of the sliding blocks method is larger than that of its disjoint blocks counterpart.

The negligibility of potential bias terms is discussed in detail in the supplementary ma-
terial, Section D. The observed variance behavior may be explained as follows: the disjoint
block maxima are independent under (S2), but they are (subasymptotically) positively corre-
lated under (S1), the more so the smaller the block size in comparison to the serial dependence
of the underlying data. The positive correlation will eventually show up in the variance of re-
spective estimators, making the finite-sample (S2) variance smaller than the (S1) variance
when keeping all other parameters fixed. On the other hand, for the sliding blocks method,
the majority of the pairs of sliding blocks that are based on non-overlapping, but neighboring
blocks will exhibit some left-over dependence that will only vanish asymptotically (r→∞)
even under (S2) and of course under (S1). Hence, the finite-sample (S2) variance will be
close to the finite-sample (S1) variance when keeping all other parameters fixed. Overall, un-
der (S2), we may have unfavorable combinations of the block size and the serial dependence
for which the improvement “disjoint (S1) → disjoint (S2)” will be larger than the improve-
ment “disjoint (S1) → sliding (S1) ≈ sliding (S2)”, which will ultimately make the disjoint
method more efficient than the sliding blocks method under (S2). Such unfavorable situa-
tions will always be reached when fixing the block size and increasing the serial dependence,
which is exactly the phenomenon illustrated in Figure 6. In additional simulation experiments
it was found that the potential superiority of disjoint over sliding blocks may be eliminated
by increasing the block size. It was further found that the effect depends on the estimator and
target quantity, with PWM return level estimation providing the most unfavorable case for
the sliding blocks method; see also the results in the supplementary material.

5. Case study. Estimating return levels of the distribution of annual or seasonal max-
ima (of some meteorologic variable of interest) based on GEV-models constitutes one of

28



BLOCK MAXIMA FOR PIECEWISE STATIONARY TIME SERIES 17

−0.5

0.0

0.5

1.0

1960 1980 2000 2020
Year

°C
FIG 7. 4-year smoothed global mean surface temperature (sGMST) anomaly, with reference value being the
average of GMST from 1951-1980.

the cornerstones of extreme weather event attribution studies [35]. Since the sliding blocks
PWM estimator has been seen to provide the largest improvement over its disjoint counter-
part for negative shape parameters, our case study concentrates on maximal air temperature
data, for which shapes are usually within the range −0.4 to −0.2. The data set to be analyzed
consists of daily observations throughout the summer months (June, July, August) at four
selected weather stations in Germany (Aachen, Essen-Bredeney, Frankfurt/Main, Kahler As-
ten), provided by the DWD (Deutsche Wetterdienst), and covers the sampling periods 1945–
2010, 1948–2019, 1949–2019 and 1955–2019, respectively, resulting in sample lengths of
66,72,71,65, with a block size equal to r = 92.

Maximal temperature data are non-stationary due to climate change (the average global
surface temperature has roughly increased by about 1 degree celsius compared to pre-
industrial times), whence a realistic model for maximal temperature must involve non-
stationarities as well. Subsequently, let T1, . . . , T92, T93, . . . , T184, . . . denote the concate-
nated sequence of daily temperatures throughout the summer months at a specific station,
where the first observation corresponds to June 1 in a certain year. A standard GEV-model
that is commonly applied within the context of extreme event attribution studies for maximal
temperature data Mt =max(T92(t−1)+1, . . . , T92t) in season t consists of imposing a simple
linear model for the location parameter in terms of the 4-year smoothed global mean surface
temperature (sGMST) anomaly, see, e.g., [31] and the references therein. More precisely,

Mt = cxt +Zt ∼GEV(b+ cxt, a, γ)(21)

where (xt)t denotes the yearly sequence of sGMST (see Figure 7), where b, c, γ ∈ R and
a > 0 are the free parameters of the model and where Zt ∼GEV(b, a, γ) is stationary. After
subtracting the global trend, it appears heuristically reasonable to assume that the (unobserv-
able) detrended time series defined by concatenating the blocks

(Y
(t)
1 , . . . , Y

(t)
92 ) = (T92(t−1)+1 − cxt, . . . , T92t − cxt)(22)

consists of independent and identically distributed blocks that are close to being stationary,
with possibly some small deterministic seasonal component as investigated in Section 4.3.
Recall that the latter inner-seasonal non-stationarity was found to have no big impact on
estimation performance. An observable counterpart of (22) may be obtained by estimating
the slope parameter c in model (21), for which we employ the widely used and robust method
from Sen [33]. The respective parameter estimates ĉ= ĉ(M1, . . . ,Mm) for the four stations
of interest are stated in the third column of Table 2. The resulting sample

(T̂1, . . . , T̂92, T̂93, . . . ) = (T1 − ĉx1, . . . , T92 − ĉx1, T93 − ĉx2, . . .)(23)

will be referred to as the sample of detrended daily observations.
For illustrative purposes, we proceed the analysis by ignoring any potential estimation

error within ĉ (a more rigorous treatment can be found below), and implicitly assume that
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TABLE 1
Theoretical 95% confidence intervals for the 100-year RL of the series of detrended summer maxima.

Bootstrapped confidence interval bounds (10 000 repetitions) are shown in round brackets.

Station Method RL CI lower Bound CI upper Bound CI Width
Aachen Disjoint 36.66 35.10 (35.08) 38.22 (38.24) 3.12 (3.16)

Sliding 36.67 35.22 (35.24) 38.11 (38.09) 2.88 (2.84)
Essen Disjoint 35.43 34.02 (34.00) 36.84 (36.85) 2.82 (2.85)

Sliding 35.24 34.05 (34.07) 36.43 (36.41) 2.38 (2.34)
Frankfurt Disjoint 38.18 36.51 (36.47) 39.85 (39.88) 3.34 (3.41)

Sliding 37.80 36.52 (36.54) 39.09 (39.07) 2.56 (2.52)
Kahler Asten Disjoint 30.84 29.43 (29.42) 32.24 (32.25) 2.81 (2.83)

Sliding 30.75 29.46 (29.48) 32.04 (32.03) 2.58 (2.55)

the sample defined in (23) meets the assumption of sampling scheme (S2). Note that the
respective block maxima

Z
(db)
t =max(T̂92(t−1)+1, . . . , T̂92t), Z

(sb)
92(t−1)+j =max(T̂92(t−1)+j , . . . , T̂92t+j)(24)

satisfy Z
(sb)
92(t−1)+1 = Z

(db)
t =M

(db)
t − ĉxt. In view of the fact that the (detrended daily)

observations from the first and last disjoint block have a reduced chance of appearing multiple
times within the sliding blocks sample (for instance, if the sample maximum is the very last
observation, it only appears once in the sliding blocks sample, while it would appear r times
if it was observed in the second to last season), we chose to tweak the underlying daily sample
by attaching the first block to the last one (which is akin to the circular block bootstrap in
time series analysis). The resulting sliding blocks sample has then a sample size of exactly
92 times the number of seasons. The disjoint and sliding block maxima can then be fitted
to the GEV distribution based on the PWM methods. Estimated parameters are collected in
Table 2, and a graphical check of the fit of the resulting distributions can be found in the
supplementary material [9], Section F.

Respective estimates for the 100-season return level can be obtained as described in Sec-
tion 3.2, including (asymptotic) confidence bounds. The results are summarized in Table 1
(the results in brackets will be explained below and can be skipped for the moment). As was
to be expected from both the theoretical results and the simulation study, the confidence in-
tervals based on sliding blocks method are always smaller than their disjoint counterparts,
with a substantial margin between 0.23 and 0.78.

Note that point estimates for the return level in the climate of season t, say RLt(100,92),
may be obtained by simply adding ĉxt to the values in the third column of Table 1 (here,
the T -season return level of season t is the level which is expected to be exceeded only once
in T years if the climate hypothetically remained constant/stationary equal to that of season
t; see also the discussion in [12]). However, simply adding ĉxt to the confidence bounds in
Table 1 does not provide valid confidence sets for RLt(100,92), as the estimation error of ĉ
has not been captured. The latter may be captured by suitable bootstrap devices, for which
we propose the following parametric bootstrap scheme.

Given estimates (ĉ, b̂, â, γ̂) (where the last three components may either be based on dis-
joint or sliding block maxima samples), we may generate, for each season t, an i.i.d. sample
T ∗92(t−1)+1, . . . , T

∗
92t of size r = 92 from the GEV distribution with parameter

b̃t = b̂+ ĉxt −
â(92γ̂ − 1)

92γ̂ γ̂
, ã=

â

92γ̂
, γ̃ = γ̂.

A simple calculation shows that the tth disjoint block maximum from the bootstrap sample
is GEV-distributed with parameter (b̂+ ĉxt, â, γ̂). The fact that T ∗92(t−1)+1, . . . , T

∗
92t may be
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simulated serially independent can be explained by the fact that the asymptotic distribution
of the PWM estimator does not depend on the serial dependence of the underlying time series
(except through the parameter sequences br and ar , see Corollary 3.6; and under the assump-
tion that the block length is sufficiently large to guarantee that the bias is negligible). Now we
apply the same procedure as for the original observations T1, T2, . . . : first, we build disjoint
block maxima and estimate the trend ĉ∗, then we use this estimate to detrend T ∗1 , T

∗
2 , . . . as

in (23), and we finally caluculate the respective disjoint and sliding block maxima as in (24),
based on which we ultimately obtain bootstrap estimates (b̂∗, â∗, γ̂∗) and R̂L

∗
t (100,92). Re-

peating the bootstrap procedure B = 10000 times, we may obtain estimates of the standard
error of (ĉ, b̂, â, γ̂) by calculating the empirical standard deviation of the sample of bootstrap
estimates. Likewise, we may obtain bootstrap confidence intervals for any parameter of inter-
est based on the percentile method [13]. To obtain symmetric 95% confidence intervals with
respect to the estimated return level, we rather solve F̂ ∗(R̂L + ϵ)− F̂ ∗(R̂L− ϵ) = 0.95 for
ϵ, where F̂ ∗ is the empirical distribution function of the bootstrap estimates of return levels,
and use (R̂L− ϵ, R̂L + ϵ) as a confidence interval.

The bootstrap scheme has been applied to each station, both for the disjoint and the slid-
ing blocks method. The results are summarized in Table 2 (standard deviation of the esti-
mation of c, b, a and γ) and in Figure 8 (pointwise confidence intervals for the estimation
of RLt(100,92)). Remarkably, at each station, the sliding blocks estimator yields slightly
smaller estimates for the shape parameter and slightly larger estimates for the scale parame-
ter. The resulting estimates for the 100-year return level are slightly smaller as well, except
for station ‘Aachen’. By definition, the slope estimates at each station are the same, which
explains why the difference between the sliding and disjoint blocks curves in Figure 8 is con-
stant. In all cases, the confidence bands are smaller for the sliding blocks version, as expected
from large-sample theory and the simulation experiments. Coincidentally, the lower bounds
of the confidence intervals are almost the same for the stations for which the sliding block
point estimates are smaller.

As promised above, we finally explain the values in brackets in Table 1, and return to
the data sets from (24) which were considered to be arising from an underlying stationary
time series. The values in brackets correspond to bootstrap confidence bounds based on a
parametric bootstrap adapted to this simple stationary situation. More precisely, the boot-
strap scheme is carried out as before, but with setting ĉ = 0 when generating the bootstrap
samples, and therefore also omitting the detrending step. As can be seen from the results in
Table 1, the bootstrap confidence bounds are very similar to the bounds obtained by the nor-
mal approximation and estimation of the theoretical asymptotic variance (see Section 3.2).
These findings indicate that the bootstrap scheme is working well, and support its application
to the non-stationary situation described above, where the normal approximation cannot be
applied without major additional calculations regarding the propagation of uncertainty due
to the initial estimation of the slope parameter. We would like to stress, however, that one
should take this assessment with some care, as we did not conduct an extensive study on the
coverage probabilities of either of the two methods to construct confidence intervals.

6. Conclusion and discussion. Large sample theory for univariate extreme value statis-
tics based on the block maxima method has long been developed under the assumption that
the block maxima constitute a genuine i.i.d. sample from the GEV distribution. Two more
realistic sampling schemes were considered in this paper: either an underlying stationary
time series, or a triangular array consisting of independent blocks extracted from a stationary
time series model. The latter shall represent a typical situation encountered in environmental
statistics, where stationarity can only be (approximately) guaranteed within seasons rather
than years. Under certain additional regularity conditions, it was found that more efficient
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FIG 8. Estimated 100-year RL of summer months’ maximal air temperate along with 95% confidence regions
obtained from parametric bootstrap (10 000 bootstrap repetitions) at four stations in the western part of Germany.

TABLE 2
Estimated Parameters along with the standard deviation based on the bootstrap.

Station Method Slope Location Scale Shape
Aachen Disjoint 3.48 (1.07) 31.04 (0.32) 1.85 (0.18) -0.19 (0.092)

Sliding 3.48 (1.12) 31.05 (0.32) 1.96 (0.16) -0.22 (0.081)
Essen Disjoint 4.40 (0.71) 30.26 (0.29) 1.65 (0.16) -0.18 (0.088)

Sliding 4.40 (0.77) 30.19 (0.31) 1.84 (0.14) -0.25 (0.076)
Frankfurt Disjoint 3.69 (0.76) 32.42 (0.31) 1.71 (0.17) -0.14 (0.089)

Sliding 3.69 (0.82) 32.43 (0.33) 1.95 (0.15) -0.25 (0.078)
Kahler Asten Disjoint 3.33 (0.79) 25.68 (0.34) 1.75 (0.17) -0.21 (0.093)

Sliding 3.33 (0.83) 25.59 (0.34) 1.87 (0.15) -0.25 (0.082)

estimators can be obtained by taking into account all successive, overlapping block maxima.
The results are remarkable in view of the fact that the time series of sliding block maxima
is non-stationary under the second sampling scheme. When restricted to the PWM estimator,
the improvement was found to be substantial for negative shape parameters, both in large-
sample theory and in finite-sample simulations. On the other hand, a deterioration may occur
in finite-sample situations where the block size is small in comparison to the serial depen-
dence (e.g., extremal index θ ≤ 0.25 with r = 90 and γ ≥ 0), which, however, is untypical
at least for certain environmental applications. As a consequence, subject to computational
feasibility, the sliding blocks estimator should usually be preferred over its disjoint blocks
version. A possible approach to deal with non-stationarities between seasons was worked
out in a case study involving temperature extremes, including a bootstrap approach to assess
estimation uncertainty. The paper suggests several important topics for future research:
(a) The new sampling scheme may be a worthwhile starting point for developing large-

sample theory for other estimators commonly applied in extreme value statistics. Further-
more, in view of the simulation results in Section 4.3 and the theoretical results in [34], the
sampling scheme may be generalized to certain forms of inner-seasonal non-stationarity.

(b) The developed theory shows that the sliding blocks method can be applied in situations
where the respective sample is non-stationary (with constant GEV parameters). This sug-
gests that the general method may also be applicable in situations involving non-stationary
models for the GEV parameters, possibly to be estimated by maximum likelihood then.

(c) The proof of Lemma 2.4 suggests that the sliding blocks method may be generalized to
some method involving an even larger subset of the set of all block maxima à la [30].

(d) The parameteric bootstrap approach has not been studied theoretically. Likewise, possi-
ble alternative (nonparametric, block) bootstrap schemes could be investigated.
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(e) The asymptotic results may be used to derive more powerful formal tests for homo-
geneities within multivariate models, for instance involving a scaling model as imposed
with the index flood assumption [23].

(f) It was found that the sliding blocks method may be worse than its disjoint blocks coun-
terpart under sampling scheme (S2) for certain unfavorable combinations of the block size
and the serial dependence. A data-adaptive rule that provides a warning in such situations
would be a useful statistical device.

7. Proofs. Within this section, we provide proofs for Lemma 2.4 on weak convergence
of sliding block maxima and for Theorem 2.6 on the empirical process of rescaled block max-
ima. All further proofs and some intermediate results are postponed to the supplement [9].

PROOF OF LEMMA 2.4. Recalling the definition of Z(sb)

r,j in (5), the assertion to be shown
in equivalent to convergence in distribution of Z(sb)

r,1+⌊rξ⌋ to Z ∼Gγ . We omit the upper index
sb. Under sampling scheme (S1) the assertion holds by stationarity of the sliding block max-
ima. Consider sampling scheme (S2). For ξ ∈ {0,1}, the assertion holds by assumption. Let
ξ ∈ (0,1). By independence between and stationarity within blocks we get, for any x ∈ Sγ ,

P(Zr,1+⌊rξ⌋ ≤ x)

= P(max(X1+⌊rξ⌋, . . . ,Xr+⌊rξ⌋)≤ arx+ br)

= P(max(X1+⌊rξ⌋, . . . ,Xr)≤ arx+ br)P(max(Xr+1, . . . ,Xr+⌊rξ⌋)≤ arx+ br)

= P
(
Zr−⌊rξ⌋,1 ≤

ar
ar−⌊rξ⌋

x+
br − br−⌊rξ⌋
ar−⌊rξ⌋

)
P
(
Z⌊rξ⌋,1 ≤

ar
a⌊rξ⌋

x+
br − b⌊rξ⌋
a⌊rξ⌋

)
.

Condition 2.1 implies that the expression in the previous display converges to

Gγ

( x

(1− ξ)γ
+

(1− ξ)−γ − 1

γ

)
Gγ

( x
ξγ

+
ξ−γ − 1

γ

)
=Gγ(x),(25)

where the last equation follows from a straightforward calculation.

PROOF OF THEOREM 2.6. First, consider the case where mb = db. Then we can write
H(db)

r =Cn,r ◦Hr almost surely, where

Cn,r(u) =

√
n

r

1

m

m∑

j=1

{
1(Hr(Z

(db)
r,j )≤ u)− u

}
, u ∈ [0,1].

Under sampling scheme (S1), we have Cn,r
d−→ C(db) in ℓ∞([0,1]) by Theorem 3.1 in [5],

and similar (but simpler) arguments as in that proof show that the same convergence is met
under sampling scheme (S2). Hence, by asymptotic equicontinuity, we obtain, Cn,r ◦Hr =

Cn,r ◦Gγ + oP(1)
d−→ C(db) ◦Gγ as asserted. Since the Brownian bridge C(db) has contin-

uous trajectories almost surely, so does the limit process H(db).
Now, let mb= sb, omit the upper index sb, and note that we may redefine

H(sb)
r (x) =

1√
nr

n−r∑

j=1

{1(Zr,j ≤ x)− H̄r(x)}.

First, we are going to show asymptotic tightness. For simplicity, assume r/n ∈ 3N. We may
then write Hr(x) =Hr1(x) +Hr2(x) +Hr3(x), where

Hrℓ(x) =
1√
nr

∑

j∈Jr(ℓ)

∑

i∈Ij
{1(Zr,i ≤ x)− H̄r(x)}
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with Jr(ℓ) = {j ∈ {1, . . . ,m − 1} : j ∈ 3N0 + ℓ} for ℓ = 1,2,3 and Ij = {(j − 1)r +
1, . . . , jr} denoting the indices making up the j-th disjoint block of observations. It is suffi-
cient to show asymptotic tightness of each Hrℓ, and since they all have the same distribution
we only consider the case ℓ= 1.

After successively applying Berbee’s coupling lemma ([2], see also Lemma 4.1 in [15]),
we can construct a triangular array {Z̃r,i}i∈I1∪I4∪... for which the following hold:

(i) For any j ∈ Jr(1), we have (Z̃r,i)i∈Ij
D
= (Zr,i)i∈Ij .

(ii) For any j ∈ Jr(1), we have P((Z̃r,i)i∈Ij ̸= (Zr,i)i∈Ij )≤ β(r).
(iii) (Z̃r,i)i∈I1 , (Z̃r,i)i∈I4 , (Z̃r,i)i∈I7 . . . is independent and identically distributed.
Let H̃r1 be defined in the same way as Hr1, but in terms of {Z̃r,i}i∈I1∪I4∪... instead of
{Zr,i}i∈I1∪I4∪.... Asymptotic tightness of Hr1 follows once we show that

∥Hr1 − H̃r1∥∞ = oP(1)(26)

(where ∥H∥∞ = supx∈R |H(x)|) and that H̃r1 is asymptotically tight.
Regarding the latter assertion, note that

H̃r1(x) =
∑

j∈Jr(1)

{fr,j(x)−E[fr,j(x)]},

where

fr,j(x) =
1√
nr

r∑

l=1

1(Z̃r,(j−1)r+l ≤ x)

Since the summands fr,j(x) making up H̃r1 are independent, we may apply classical results
from empirical process theory for independent sequences. More precisely, asymptotic tight-
ness follows from Theorem 11.16 in [27], once we show that {fr,j : j ∈ Jr(1)} is almost
measurable Suslin (AMS) and that Conditions (A)-(E) from that Theorem are met. The AMS
property follows from Lemma 11.15 in [27]; use Tn =Q as the a countable subset to deduce
separability. The remaining items can be seen as follows:

(a) Since x 7→ fr,j(x) is monotone increasing, the discussion on p. 213 of [27] yields the
manageability. The envelope functions can be chosen as

Er,j(x) :=
√
r/n, j ∈ Jr(1),

which are trivially independent.
(b) The limit limn→∞E[H̃r(x)H̃r(y)] exists for all x, y ∈ R. Indeed, since fr,j is indepen-

dent of fr,j′ when j ̸= j′, we have

E[H̃r1(x)H̃r1(y)] =
n

3r
Cov(fr,1(x), fr,1(y))

=
1

3r

r∑

l=1

1

r

r∑

m=1

Cov(1(Z̃r,l ≤ x),1(Z̃r,m ≤ y))

=
1

3

∫ 1

0

∫ 1

0
gr,x,y(ξ, ξ

′)dξ dξ′,

where gr,x,y(ξ, ξ′) = Cov(gx(Z̃r,1+⌊rξ⌋), gy(Z̃r,1+⌊rξ′⌋)) for gx(z) = 1(z ≤ x). Lemma B.3
(sampling scheme (S1)) and Lemma B.4 (sampling scheme (S2)) from the supplement
yields limr→∞ gr,x,y(ξ, ξ′) = Gγ,|ξ−ξ′|(x, y) − Gγ(x)Gγ(y) and by dominated conver-
gence, we get

lim
n→∞

E[H̃r1(x)H̃r2(y)] =
1

3

∫ 1

0

∫ 1

0
Gγ,|ξ−ξ′|(x, y)dξ dξ

′ −Gγ(x)Gγ(y).
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(c) Since
∑

j∈Jr(1)
E[E2

r,j ] =
1
3 , the sum of second moments of the envelopes is finite.

(d) We have limsupn→∞
∑

j∈Jr(1)
E[E2

r,j 1(Er,j > ε)] = limsupn→∞
1
3 1(

√
r/n > ε) = 0.

for every ε > 0.
(e) For x, y ∈R, let

ρn(x, y) =
{∑

j∈Jr(1)
E
[
|fr,j(x)− fr,j(y)|2

]}1/2
.

We have to show that the pointwise limit of ρn(x, y), say ρ(x, y), exists and that, if
limn→∞ ρ(xn, yn) = 0, then limn→∞ ρn(xn, yn) = 0. Without loss of generality assume
x≤ y. Then

ρn(x, y)
2 =

1

3r2
E
[( r∑

l=1

1(x < Z̃r,l ≤ y)
)2]

=
1

2r2

r∑

l=1

P(x < Z̃r,l ≤ y) +
1

r2

r∑

l=1

r∑

h=l+1

P(x < Z̃r,l ≤ y,x < Z̃r,h ≤ y).

The first term is of order 1/r and thus converges to 0. The second one equals
∫ 1
0

∫ 1
ξ P(x <

Z̃1+⌊rξ⌋ ≤ y,x < Z̃1+⌊rξ′⌋ ≤ y)dξ′ dξ. Due to Lemma B.4 and dominated convergence,
this converges to

ρ(x, y)2 =

∫ 1

0

∫ 1

ξ
Gγ,|ξ−ξ′|(x,x) +Gγ,|ξ−ξ′|(y, y)− 2Gγ,|ξ−ξ′|(x, y)dξ

′ dξ.

This double integral can be calculated explicitly, where some care has to be taken on
whether both, one, or none of the arguments x, y fall into the support of Gγ,|ξ−ξ′|. Since
the first case is the most involved, we restrict to that case. For x ≤ y in such a way that
1 + γx > 0 and 1 + γy > 0, a straightforward calculation implies that

ρ(x, y)2 =
e−x̃

x̃

{
1 +

e−x̃ − 1

x̃

}
+
e−ỹ

ỹ

{
1 +

e−ỹ − 1

ỹ

}
− 2

e−x̃

ỹ

{
1 +

e−ỹ − 1

ỹ

}
,

where x̃ := (1 + γx)−1/γ ≥ ỹ := (1 + γy)−1/γ . Obviously, ρ(x, y) = 0 for x= y. Write
g(s) := {1+ (e−s− 1)/s}/s. Observing that g(x̃)≤ g(ỹ), a careful calculation of deriva-
tives shows that the function [ỹ,∞) → R, x̃ 7→ g(x̃)e−x̃ − 2g(ỹ)e−x̃ is strictly increas-
ing. As a consequence, ρ(x, y) is strictly decreasing in x (for x ≤ y) and can therefore
have only one root which must be at x = y. Altogether, ρ(x, y) = 0 iff x = y. But then,
limn→∞ ρ(xn, yn) = 0 iff either x = limn→∞ xn = limn→∞ yn, the limit possibly being
±∞, or if xn = yn, eventually. In the latter case, ρn(xn, yn) = 0 eventually, while in the
former case, we have

ρn(xn, yn)≤
1

r

r∑

l=1

∥∥∥1(xn < Z̃r,l ≤ yn)1(xn < yn) + 1(yn < Z̃r,l ≤ xn)1(yn < xn)
∥∥∥
2

=
1

r

r∑

l=1

|Hr,l(xn)−Hr,l(yn)|

≤ |Gγ(xn)−Gγ(yn)|+
2

r

r∑

l=1

∥Hr,l −Gγ∥∞ ,

which converges to 0 by continuity of Gγ and Lemma B.5 (sampling scheme (S2)) or
Condition 2.1 (sampling scheme (S1), which implies Hr,ℓ =Hr).
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Finally, (26) follows from

|Hr1(x)− H̃r1(x)| ≤
1√
nr

∑

j∈Jr(1)

∑

i∈Ij
|{1(Zr,i ≤ x)− 1(Z̃r,i ≤ x)|

≤ 1√
nr

∑

j∈Jr(1)

∑

i∈Ij
{1(Zr,i ̸= Z̃r,i)

for any x ∈ R, which implies P(∥Hr1 − H̃r1∥∞ > ε) ≲
√

n
r β(r) = o(1) for any ε > 0 by

Markov’s inequality and Condition 2.5(ii). The proof of asymptotic tightness of Hr1 and
hence of Hr is finished.

For the convergence of the finite dimensional distributions, note that indicator functions
gx(z) = 1(z ≤ x) are elements of the set G′ defined in Theorem B.1 and that we may write
H(sb)

r (x) =G(sb)

n gx. Therefore, Theorem B.1 yields convergence to a centered normal distri-
bution. Further, a simple calculation shows that

lim
n→∞

Cov(G(sb)
n gx,G(sb)

n gy) = Cov(C(sb)(Gγ(x)),C(sb)(Gγ(y)))

with covariance function of C(sb) as defined in (7).
The inequality in (8) is a special case of the result in Theorem 2.12 in [36], and may also

be deduced from Lemma B.10 in the supplement.
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Missing proofs for the results of the main paper are presented in Ap-
pendix A, with a couple of further theoretical results postponed to Ap-
pendix B. Appendix C contains explicit formulas for asymptotic covariance
matrices appearing in the main paper. A finite sample comparison of sliding
vs. disjoint block maxima samples is carried out in Appendix D. Appendix E
contains additional simulation results. Finally, Appendix F contains a figure
supporting the case study. References like Lemma 1.9, Figure 0, or Equation
(4) always refer to the main paper.

The theoretical results are organized as follows: in Appendix A, we provide the missing
proofs of Theorem 3.5 and Corollaries 3.6 and 3.7 from the main paper. Appendix B contains
further theoretical results used throughout the proofs, and is decomposed into four sections:

• Section B.1 provides some central arguments used throughout the proofs of Theorem 2.6
and Theorem 3.5: Theorem B.1 is a general asymptotic normality result for a quite general
class of functions (which might therefore be of interest on its own), while Proposition B.2
proves a key decomposition used within the proof of Theorem 3.5.

• Section B.2 is about weak convergence and moment convergence of sliding block maxima.
Joint weak convergence of sliding block maxima is considered in Lemma B.3 (sampling
scheme (S1)) and Lemma B.4 (sampling scheme (S2)); the results may be considered as
bivariate extensions of Lemma 2.4 from the main paper and are later used for calculat-
ing asymptotic covariances. Lemma B.5 is about (uniform) convergence of the average
cdf H̄r from Equation (6) under (S2); it is needed in the proofs of Theorem 2.6 and
Proposition B.2. Moment convergence of block maxima is the content of Lemma B.6,
which is deduced from weak convergence and uniform integrability, the latter being part
of Lemma B.7.

• Section B.3 is about asymptotic covariances for empirical moments of block maxima, as
required in the proof of the general asymptotic normality result in Theorem B.1. Sam-
pling scheme (S1) is treated in Lemma B.8, while sampling scheme (S2) is treated in
Lemma B.9. Finally, Lemma B.10 states that the sliding blocks limiting covariance in
Theorem B.1 is never larger than its disjoint blocks counterpart.

• Section B.4 contains further auxiliary results. First, Lemma B.11 provides consistency of
some abstract functionals which were employed in the proof of Proposition B.2. Next,
Lemma B.12 provides Wasserstein consistency of Ĥ (mb)

r for Gγ , a technical result needed
in the proof of Proposition B.2 that eventually allows to dispense with arguments involving
weighted weak convergence as used for deriving PWM asymptotics in [8]. Its proof may
partly be generalized to a more abstract setting, which has been formulated in a separate
Lemma B.13. Finally, Lemma B.14 and Lemma B.15 are simple adaptations of Lemma A.7
and A.8 in [3] which are needed for the blocking technique.

Section C contains two lemmas: Lemma C.1 provides formulas for the asymptotic covariance
in Theorem 3.5, while Lemma C.2 provides formulas for the Jacobi matrix in Corollary 3.6.
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Last but not least, Section E contains additional simulation results, collected in a sequence
of subsections, i.e., additional simulation results for fixed block size (Section E.1), simulation
results for fixed sample size (Section E.2), results for comparing the plain and the bias-
reduced sliding blocks estimator (Section E.3), results for comparing sampling schemes (S1)
and (S2) (Section E.4), additional simulation results for a different marginal distributions
(Section E.5) and results for comparing ML and PWM estimation (Section E.6).

APPENDIX A: MISSING PROOFS FOR RESULTS FROM THE MAIN PAPER

PROOF OF THEOREM 3.5. Recall the definition of Z(db)
r,j and Z

(sb)
r,j from (5) and note

that, under sampling scheme (S1), both are approximatelyGγ-distributed with PWMs βγ,k =
β(0,1,γ),k for large r (in particular, unlike M (·)

r,j , the variables Z(·)
r,j are stochastically bounded

for r→∞). The same in fact holds under sampling scheme (S2), see Lemma 2.4. For mb ∈
{db, sb}, k ∈ {0,1,2}, let

β̃
(db)
r,k = β̂k(Z

(db)
r,1 , . . . ,Z(db)

r,m ), β̃
(sb)
r,k = β̂k(Z

(sb)
r,1 , . . . ,Z

(sb)
r,n−r+1).(A.1)

Further, for f :R→R integrable with respect to Gγ , let

G(db)
n f :=

√
n

r

(
1

m

m∑

j=1

f(Z
(db)
r,j )−E

[
f(Z

(db)
r,j )

])
,(A.2)

G(sb)
n f :=

√
n

r

(
1

n− r+ 1

n−r+1∑

j=1

f(Z
(sb)
r,j )−E

[
f(Z

(sb)
r,j )

])
,(A.3)

where Z ∼Gγ . In view of Condition 3.2, the proof of (14) is finished once we show that
√
n

r

(
β̂
(mb)
r,k − βθr,k

ar

)
=

√
n

r

(
β̃
(mb)
r,k − βγ,k

)
,(A.4)

√
n

r

(
β̃
(mb)
r,k − βγ,k

)
=G(mb)

n fk +B
(mb,S)
n,k + oP(1),(A.5)

(
G(mb)

n fk

)
k=0,1,2

d−→N3(0,Ω
(mb)).(A.6)

Subsequently, we write Mr,j and Zr,j instead of M (mb)

r,j and Z(mb)

r,j , respectively, whenever
an equation is correct both for the disjoint and the sliding blocks version.

We begin by proving (A.4), which holds irrespective of the sampling scheme. Note that
Mr,(j) = arZr,(j) + br . Hence, since

∑n
i=1(i− 1) = n(n− 1)/2 and

∑n
i=1(i− 1)(i− 2) =

n(n− 1)(n− 2)/3,

β̂
(mb)
r,k = arβ̃

(mb)
r,k +

br
k+ 1

, k ∈ {0,1,2}.(A.7)

Likewise, recalling the notation βγ,k = β(0,1,γ),k, a simple calculation shows that

βθr,k = arβγ,k +
br

k+ 1
,(A.8)

This implies (A.4). The assertion in (A.5) is a consequence of Proposition B.2, and the weak
convergence result in (A.6) follows from Theorem B.1. Finally, the assertion in (15) is a
consequence of Lemma B.10.
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PROOF OF COROLLARY 3.6. For the ease of reading, we omit the upper index mb. Recall
ϕ defined in (16). Clearly, for β = (β0, β1, β2)

′ ∈Dϕ,



ϕ1(β)
1
ar
ϕ2(β)

1
ar
ϕ3(β)− br

ar


= ϕ




β0−br
ar

β1−br/2
ar

β2−br/3
ar


 .

As a consequence, by (A.7) and (A.8),

√
n

r




γ̂r − γ

(âr − ar)/ar

(b̂r − br)/ar


=

√
n

r








ϕ1(β̂r)
1
ar
ϕ2(β̂r)

1
ar
ϕ3(β̂r)− br

ar


−




ϕ1(βθr)
1
ar
ϕ2(βθr)

1
ar
ϕ3(βθr)− br

ar








=

√
n

r

{
ϕ(β̃r)− ϕ(βγ)

}
,

where βγ = (βγ,0, βγ,1, βγ,2)
′. The assertion in (17) is now a consequence of (A.5), (A.6),

Condition 3.2 and the delta method. Finally, the assertion in (18) is an immediate conse-
quence of (15).

PROOF OF COROLLARY 3.7. We omit the upper index mb. For a > 0 and γ ∈ R let
f(γ,a) = a c−γ

T −1
γ . Note that a−1r f(γ,a) = f(γ,a/ar) and that ∇f(γ,1) is equal to the first

two coordinates of qT . As a consequence, by the delta method,

√
n/r

(
R̂L(T, r)−RL(T, r)

ar

)
=
√
n/r

(
f
(
γ̂r,

âr

a

)
− f(γ,1) +

b̂r − br
ar

)
,

= q′T
√
n/r




γ̂r − γ
(âr − ar)/ar
(b̂r − br)/ar


+ oP(1).

The assertion then follows from Corollary 3.6.

APPENDIX B: ADDITIONAL THEORETICAL RESULTS USED THROUGHOUT THE
PROOFS

B.1. Central arguments used for proving asymptotic normality of empirical PWMs.
The following result is a central ingredient in the proofs of Theorem 2.6 and Theorem 3.5,
and may be of independent interest. Its proof is similar to the proof of Theorem 3.6 in [3]
(disjoint blocks) and Theorem 2.6 in [4] (sliding blocks).

THEOREM B.1. Assume that one of the sampling schemes from Condition 2.2 holds with
γ < 1/2. Let

G = {g :R→R continuous | ∃ c, d such that |g(x)| ≤ c|x|+ d for all x ∈R}.(B.1)

If Conditions 2.5 and 3.3 hold, then, for arbitrary g1, . . . , gp ∈ G, p ∈N, we have
(
G(mb)

n gk

)
k=1,...,p

d−→Np

(
0,
(
Λ

(mb)
k,k′

)
k,k′=1,...,p

)
,

where G(mb)
n is defined in (A.2) and (A.3) and where, with Z ∼Gγ and (Z1ξ,Z2ξ)∼Gγ,ξ ,

Λ
(db)
k,k′ =Cov(gk(Z), gk′(Z)), Λ

(sb)
k,k′ = 2

∫ 1

0
Cov(gk(Z1ξ), gk′(Z2ξ))dξ.
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The same result holds with G replaced by G′ = {1(−∞,t] : t ∈ R}; in that case, one may
dispense with Condition 3.3.

PROOF OF THEOREM B.1. We start by considering the function class G. The disjoint
blocks case is a straightforward adaptation of the proof of Theorem 3.6 in [3] and is therefore
omitted. For the sliding blocks case, we may follow the proof of Theorem 2.6 in [4], with
substantial modifications for sampling scheme (S2). The basic idea consists of successively
merging blocks of size r into a ‘big block of blocks’ followed by a ‘small block of blocks’
followed by a ‘big block of blocks’ and so on in such a way that the ‘small blocks of blocks’
are small enough to be asymptotically negligible for the asymptotics and at the same are large
enough to make the ‘big blocks of blocks’ asymptotically independent, whence standard cen-
tral limit theorems become available. We omit the upper index sb. Since G is a vector space
and by the Cramér-Wold-device, it suffices to show that, for any fixed g ∈ G,

Gng
d−→N (0, σ2), σ2 =

∫ 1

0
Cov(g(Z1ξ, g(Z2ξ)))dξ.(B.2)

For that purpose, let Ij := {(j−1)r+1, . . . , jr}, j ∈ {1, . . . ,m−1}, denote the set of indices
making up the j-th disjoint block of observations. Let m⋆ = m⋆

n be an integer sequence
with 3≤m⋆ ≤m− 1 that converges to infinity and satisfies m⋆ = o(mδ/{2(1+δ)}) for some
δ ∈ ( 2ω ,2 + ν). For simplicity, assume that q = (m− 1)/m⋆ ∈N. For j ∈ {1, . . . , q}, let

J+
j := I(j−1)m⋆+1 ∪ . . .∪ Ijm⋆−2, J−j := Ijm⋆−1 ∪ Ijm⋆ ,

such that |J+
j |= (m⋆ − 2)r and |J−j |= 2r. Then, by (A.3),

Gng =

√
n

r


 1

n− r+ 1

n−r+1∑

j=1

(g(Zr,j)−E [g(Zr,j)])




= (1+ o(1))
1√
nr

q∑

j=1

{ ∑

s∈J+
j

(g(Zr,s)−E [g(Zr,s)]) +
∑

s∈J−
j

(g(Zr,s)−E [g(Zr,s)])
}

+ (1+ o(1))
1√
nr

(
g(Zr,n−r+1)−E [g(Zr,n−r+1)]

)

= (1+ o(1))
{ 1√

q

q∑

j=1

S+
n,j +

1√
q

q∑

j=1

S−n,j
}
+ oL2

(1),

(B.3)

where S±n,j :=
√
q/(nr)

∑
s∈J±

j
{g(Zr,s) − E [g(Zr,s)]}. Note that (S±n,j)j is stationary for

both of the sampling schemes (S1) and (S2).
We will next argue that the contribution of the ‘small blocks’ is negligible. Since E[S−n,j ] =

0, this follows if the variance is shown to converge to 0. We have

Var
( 1√

q

q∑

j=1

S−n,j
)
=Var(S−n,1) +

2

q

q−1∑

h=1

(q− h)Cov(S−n,1, S
−
n,1+h)

≤ 3Var(S−n,1) + 2

q−1∑

h=2

(
1− h

q

)
|Cov(S−n,1, S−n,1+h)|(B.4)
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by Cauchy-Schwarz. By stationarity across blocks, we may write

Var(S−n,1) =
∥∥∥
√

q

nr

∑

s∈J−
1

(g(Zr,s)−E [g(Zr,s)])
∥∥∥
2

2

≤ q

nr

( ∑

s∈J−
1

∥g(Zr,s)−E [g(Zr,s)]∥2
)2

≤ 4
qr

n

(
1

r

r∑

s=1

Var(g(Zr,s))

)2

.(B.5)

Since qr/n = q/m = O(1/m⋆) = o(1), we obtain that Var(S−n,1) = o(1) by Condition 3.3
(sampling scheme (S1)) or Condition 3.3 and Lemma B.7 (sampling scheme (S2)). It remains
to consider the sum on the right-hand side of (B.4), which is equal to zero under sampling
scheme (S2). For sampling scheme (S1), we may apply Lemma 3.11 in [6] with 1/p= 1/q =
1/(2 + ν) to obtain

∣∣Cov(S−n,1, S−n,h)
∣∣≤ 10∥S−n,1∥22+να(σ(S

−
n,1), σ(S

−
n,h))

ν

2+ν ≤ 10∥S−n,1∥22+να(r)
ν

2+ν

for h≥ 3. Therefore
q−1∑

h=2

|Cov(S−n,1, S−n,1+h)|≲ q∥S−n,1∥22+να(r)
ν

2+ν ≲ q
qr

n
α(r)

ν

2+ν =
m

(m⋆)2
α(r)

ν

2+ν ,

which converges to zero since mα(r)
ν

2+ν = o(1) by Condition 2.5(ii) and the choice of ν in
Condition 3.3.

The sum over the small blocks being negligible, it remains to show that q−1/2
∑q

j=1 S
+
n,j

converges in distribution to a centered normal distribution with variance σ2 as in (B.2). For
sampling scheme (S2), (S+

n,j)j is a rowwise independent triangular array, and a standard
argument based on characteristic functions shows that we may assume the same for sampling
scheme (S1). As a consequence, we may apply Ljapunov’s central limit theorem, for which
we need to check Lyapunov’s Condition:

∃ δ > 0 : lim
n→∞

∑q
j=1E[|S+

n,j |2+δ]
{∑q

j=1E[|S+
n,j |2]

}1+ δ

2

= 0.(B.6)

Now, by Condition 3.3 (sampling scheme (S1)) or Condition 3.3 and Lemma B.7 (sampling
scheme (S2)),

∥S+
n,j∥2+δ ≤

√
q

nr
(m⋆ − 2)

∑

s∈I1
∥g(Zr,s)−E [g(Zr,s)]∥2+δ

≲
√
m⋆

1

r

r∑

s=1

∥g(Zr,s)−E [g(Zr,s)]∥2+δ =O(
√
m⋆).

As a consequence, provided that E[|S+
n,j |2] is converging to a non-zero constant, the fraction

in (B.6) is of the order O(q−δ/2(m⋆)1+δ/2) =O(m−δ/2(m⋆)1+δ) = o(1) by the choice of δ
and m⋆ in the paragraph below (B.2).

Finally, E[|S+
n,j |2] = Var(S+

n,j) = Var(q−1/2
∑q

j=1 S
+
n,j) converges to σ2 since

lim
n→∞

Var
(
q−1/2

q∑

j=1

S+
n,j

)
= lim

n→∞
Var(G(sb)

n g)
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by (B.3) and since we have shown that ∥q−1/2∑q
j=1 S

−
n,j∥2 = o(1). The right-hand side of

the previous display is equal to σ2 by Lemma B.8 (sampling scheme (S1)) and Lemma B.9
(sampling scheme (S2)).

Finally, for the function class G′ of indicator functions, the previous proof remains valid
with only minor modifications: the right hand-side of (B.5) converges to zero since finite
linear combinations of indicators are bounded. For the arguments that follow, one may apply
(the simpler) Lemma 3.9 rather than Lemma 3.11 in [6].

The next result serves the purpose of proving Equation (A.5) in the proof of Theorem 3.5.

PROPOSITION B.2. Suppose one of the sampling schemes from Condition 2.2 holds with
γ < 1/2. If Conditions 2.5 and 3.3 are met, then, for k ∈ {0,1,2},

√
n

r

(
β̃
(mb)
r,k − βγ,k

)
=G(mb)

n fk +B
(mb,S)
n,k + oP(1),(B.7)

with β̃(mb)
r,k , G(mb)

n , fk and B(mb,S)
n,k as defined in (A.1), (A.2) and (A.3), (12) and Condi-

tion 3.2, respectively.

PROOF OF PROPOSITION B.2. We start by getting rid of the order statistics and claim
that, for k ∈ {0,1,2},

β̃
(mb)
r,k = β̄

(mb)
r,k +OP(r/n),(B.8)

where

β̄
(db)
r,k =

1

m

m∑

j=1

Z
(db)
r,j Ĥk

r (Z
(db)
r,j ), β̄

(sb)
r,k =

1

n− r+ 1

n−r+1∑

j=1

Z
(sb)
r,j Ĥk

r (Z
(sb)
r,j ),

Ĥ(db)
r (z) =

1

m

m∑

j=1

1(Z
(db)
r,j ≤ z), Ĥ(sb)

r (z) =
1

n− r+ 1

n−r+1∑

j=1

1(Z
(sb)
r,j ≤ z)

The assertion is obvious for k = 0. For k ∈ {1,2}, consider the disjoint and sliding case
separately.

(i) First, let mb= db, and omit the upper index db for the ease of notation. Due to the no-tie
assumption in Condition 2.2, we have (Ĥr(Zr,(1)), . . . , Ĥr(Zr,(m))) = (1/m, . . . ,m/m),
and therefore

β̃r,1 =
1

m

m∑

j=1

Zr,(j)

mĤr(Zr,(j))− 1

m− 1
,

β̃r,2 =
1

m

m∑

j=1

Zr,(j)

mĤr(Zr,(j))− 1

m− 1

mĤr(Zr,(j))− 2

m− 2
.

As a consequence,

β̃r,1 − β̄r,1 =
1

m(m− 1)

m∑

j=1

Zr,j{Ĥr(Zr,j)− 1}= 1

m− 1
(β̄r,1 − β̄r,0).

The arguments to follow imply that the expression on the right-hand side is of the order
OP(m−1) =OP(r/n). The case k = 2 can be treated similarly, and (B.8) is shown.
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(ii) Now let mb= sb and again, suppress the upper index sb. Write

β̃r,1 − β̄r,1 =
1

(n− r+ 1)(n− r)

n−r+1∑

j=1

Zr,(j)

{
Ĥr(Zr,(j))− 1

}
+Rn,1

=
1

n− r

(
β̄r,1 − β̄r,0

)
+Rn,1,

where

Rn,1 =
1

n− r+ 1

n−r+1∑

j=1

Zr,(j)

j − (n− r+ 1)Ĥr

(
Zr,(j)

)

n− r
.(B.9)

Again, the arguments to follow imply that (β̄r,1 − β̄r,0)/(n − r) is of order OP(1/n).
For the treatment of Rn,1, denote the T different and ordered values of the scaled sliding
block maxima by Z̃r,(1) < Z̃r,(2) < . . . < Z̃r,(T ). Because of the no-tie assumption, we
have T ≥ n/r, which can easily been seen from the fact that the n/r pairwise different
disjoint block maxima appear in the sequence of sliding block maxima as well. Now set

Vt :=
{
j ∈ {1, . . . , n− r+ 1} : Zr,j = Z̃r,(t)

}
, t ∈ {1, . . . , T},

which defines a partition of {1, . . . , n − r + 1}. We have αt = |Vt| ≤ r, because
otherwise the no-tie assumption would be violated. The empirical c.d.f. Ĥr is a
step function that jumps up by αt/(n − r + 1) in the points Z̃r,(t), so we have
Ĥr(Z̃r,(t)) =

∑t
s=1αs/(n− r+ 1). Further, for each elementZr,(j) of the ordered sample

Zr,(1), . . . ,Zr,(n−r+1), we can find an index tj such thatZr,(j) = Z̃r,(tj). As a consequence,∑tj−1
s=1 αs < j ≤∑tj

s=1αs, which in turn implies

(n− r+ 1)Ĥr

(
Zr,(j)

)
− αtj < j ≤ (n− r+ 1)Ĥr

(
Zr,(j)

)
.

Hence, by the definition of Rn,1 in (B.9), we have

|Rn,1|<
1

n− r+ 1

n−r+1∑

j=1

∣∣Zr,(j)

∣∣ αtj

n− r
≤ r

n− r
OP(1) =OP(r/n),

where the OP(1)-term follows from E[|Zr,j |] = E[|Z|] + o(1) by Lemma B.6 and
Var{(n − r + 1)−1

∑n−r+1
j=1 |Zr,j |} = o(1) by Lemma B.8 and B.9. This proves (B.8)

for k = 1, and the case k = 2 can be treated similarly with slightly more effort.

As a consequence, (B.8) is shown, and hence, for proving the proposition, it suffices to show
(B.7) with β̃r,k replaced by β̄r,k. The assertion is immediate for k = 0. For k ∈ {1,2}, de-
compose

√
n/r
(
β̄
(mb)
r,k − βγ,k

)
=X(mb)

n,k +Y(mb)
n,k +B

(mb,S)
n,k

where

X(db)
n,k =

√
n

r

1

m

m∑

j=1

Z
(db)
r,j

{
(Ĥ(db)

r (Z
(db)
r,j ))k −Hk

r (Z
(db)
r,j )

}
,

Y(db)
n,k =

√
n

r

{ 1

m

m∑

j=1

Z
(db)
r,j Hk

r (Z
(db)
r,j )−E

[
Z

(db)
r,j Hk

r (Z
(db)
r,j )

]}
,
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X(sb)
n,k =

√
n

r

1

n− r+ 1

n−r+1∑

j=1

Z
(sb)
r,j

{
(Ĥ(sb)

r (Z
(sb)
r,j ))k − H̄k

r (Z
(sb)
r,j )

}
,

Y(sb)
n,k =

√
n

r

{ 1

n− r+ 1

n−r+1∑

j=1

Z
(sb)
r,j H̄k

r (Z
(sb)
r,j )−E

[
Z

(sb)
r,j H̄k

r (Z
(sb)
r,j )

]}
,

Recall that H̄r =Hr for (mb,S) ̸= (sb,S2), which we will occasionally use to rewrite the
above expressions. Observing that, for k ∈ {1,2}, fk from (12) may be written as fk =
fk,1 + fk,2 with

fk,1(x) = xGk
γ(x), fk,2(x) =

∞∫

x

y ν ′k(Gγ(y))dGγ(y)(B.10)

and νk(x) = xk, the proposition is shown once we show that, for mb ∈ {db, sb},

X(mb)
n,k =G(mb)

n fk,2 + oP(1), Y(mb)
n,k =G(mb)

n fk,1 + oP(1).(B.11)

For the second assertion, it is sufficient to show that Var(Y(mb)
n,k −G(mb)

n fk,1) = o(1), by
centeredness. For that purpose, write

Y
(mb)
n,j = Z

(mb)
r,j {H̄k

r (Z
(mb)
r,j )−Gk

γ(Z
(mb)
r,j )},

and consider mb ∈ {db, sb} separately.
First, let mb = db, and omit the upper index db for notational convenience. Then, by

stationarity and assuming m = n/r ∈ N for simplicity (otherwise, a negligible remainder
shows up),

Var(Yn,k −Gnfk,1) = Var(Yn,1) + 2

m−1∑

h=1

m− h

m
Cov(Yn,1, Yn,1+h)

≤ 3Var(Yn,1) + 20∥Yn,1∥22+δ

m−1∑

h=2

α(σ(Yn,1), σ(Yn,1+h))
δ

2+δ ,(B.12)

where ∥Y ∥p = E[|Y |p]1/p and where the last inequality follows from the Cauchy-Schwarz
inequality and Lemma 3.11 in [6], with 1

p = 1
q = 1

2+δ and δ ∈ [2/ω, ν) and ν from Condi-
tion 3.3. Since the sum starts at h = 2, the variables generating the sigma fields depend on
observations which are separated by a time lag of at least r, so each summand is smaller than
or equal to α(r)δ/(2+δ). Further, noting that H̄r =Hr ,

Var(Yn,1)≤ ∥Yn,1∥22+δ ≤ ∥Hk
r −Gk

γ∥2∞E[|Zr,1|2+δ]2/(2+δ) = o(1)

by Conditions 2.1 and 3.3, where ∥F∥∞ = supx∈R |F (x)|. As a consequence,

Var(Yn,k −Gnfk,1)≤ o(1){3 + 20 ·mα(r) δ

2+δ }
which converges to zero by Condition 2.5(ii), observing that δ(1 + ω)≥ 2 + δ by the choice
of δ. Hence, the second assertion in (B.11) is shown.

Next, consider mb= sb and, again assuming n/r ∈N, let

Ih := {(h− 1)r+ 1, . . . , hr}, h ∈ {1, . . . , n/r},
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denote the set of indices making up the h-th disjoint block of observations. Then
√
n/r

n− r+ 1

n−r+1∑

j=1

Yn,j = (1+ o(1))
1√
nr

{n/r−1∑

h=1

Ah + Yn,n−r+1

}
,(B.13)

where Ah :=
∑

s∈Ih Yn,s. It is sufficient to show that Var((nr)−1/2
∑n/r−1

h=1 Ah) = o(1),
since the last summand in (B.13) is asymptotically negligible. By stationarity of (Ah)h, we
get

(B.14) vn =Var
( 1√

nr

n/r−1∑

h=1

Ah

)
=

1

nr

{(n
r
− 1
)
Var(A1) + 2

(n
r
− 2
)
Cov(A1,A2)

+2
(n
r
− 3
)
Cov(A1,A3) + 2

n/r−2∑

h=3

(n
r
− 1− h

)
Cov(A1,A1+h)

}
.

Now, by the Cauchy-Schwarz and Minkowski inequality,

|Cov(A1,A1+h)| ≤ ∥A1∥22 =
∥∥∥

r∑

s=1

Yn,s

∥∥∥
2

2
≤ r2

(
∥H̄k

r −Gk
γ∥∞

1

r

r∑

s=1

∥Zr,s∥2
)2
,(B.15)

where the right-hand side is equal to r2∥Hk
r −Gk

γ∥2∞ ∥Zr,1∥22 under sampling scheme (S1).
Likewise, for δ ∈ [2/ω, ν) with ω and ν as in Conditions 2.5 and 3.3, we have

|Cov(A1,A1+h)| ≤ 10∥A1∥22+δ α(σ(A1), σ(A1+h))
δ

2+δ ≤ 10∥A1∥22+δ α((h− 2)r)
δ

2+δ

(B.16)

by Lemma 3.11 in [6]. Combining (B.15), (B.16) and the fact that the sum on the right-hand
side of (B.14) starts at h= 3, we get

vn ≲ 1

nr
r2∥H̄k

r −Gk
γ∥2∞

{
5
n

r

(1
r

r∑

s=1

∥Zr,s∥2
)2

+ 20
(n
r

)2 (1
r

r∑

s=1

∥Zr,s∥2+δ

)2
α(r)

δ

2+δ

}

= ∥H̄k
r −Gk

γ∥2∞
{
5
(1
r

r∑

s=1

∥Zr,s∥2
)2

+ 20
(1
r

r∑

s=1

∥Zr,s∥2+δ

)2n
r
α(r)

δ

2+δ

}

= o(1){O(1) +O(1)o(1)}= o(1)

where the orders of the terms in brackets follow from Lemma B.5 (sampling scheme (S2)) or
H̄r =Hr and Condition 2.1 (sampling scheme (S1)), and from Conditions 2.5(ii) and 3.3 in
combination with Lemma B.6.

Having treated the cases mb ∈ {db, sb}, the second assertion in (B.11) is shown, and it
remains to treat the first one. Its proof will be split into two parts:

X(mb)
n,k =X′(mb)

n,k + oP(1), X′(mb)
n,k =G(mb)

n fk,2 + oP(1),(B.17)

where

X′(mb)
n,k :=

√
n

r

∫

R
yν ′k(H̄r(y))

{
Ĥ(mb)

r (y)− H̄r(y)
}
dĤ(mb)

r (y).

The first assertion in (B.17) is immediate for k = 1; in that case, even X(mb)
n,1 =X′(mb)

n,1 .
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Treating the case k = 2 is more difficult, and for that purpose, let P(R) denote the set of
all probability measures on R and let

A= {f :R→R : ∥f∥∞ <∞ and f is Borel-measurable} ⊂ ℓ∞(R),(B.18)

equipped with the uniform metric. Further, let

W1 =W1(R) = {µ ∈ P(R) :
∫

|x| dµ(x)<∞}(B.19)

denote the Wasserstein space of order 1, equipped with the Wasserstein metric

dW1
(µ,ν) = sup

h∈Lip1

∣∣∣∣
∫

R
h(x)dµ(x)−

∫

R
h(x)dν(x)

∣∣∣∣ ,

where Lip1 is the set of all Lipschitz-continuous functions with Lipschitz-constant 1. Recall
that a sequence (µn)n of probability measures in W1 is said to converge weakly in W1 to
another probability measure µ ∈W1, if

µn → µ weakly and
∫

R
|x| dµn(x)→

∫

R
|x| dµ(x),(B.20)

for n→∞. The Wasserstein metric metrizes weak convergence inW1 (Theorem 6.8 in [10]):

µn → µ weakly in W1 ⇔ dW1
(µn, µ)→ 0,(B.21)

Another equivalent property for weak convergence in W1 is as follows (Definition 6.7 in
[10]): for all continuous functions φ such that |φ(x)| ≤C(1+ |x|) for all x and someC =Cφ,
it holds that ∫

R
φ(x)dµn(x)

n→∞−−−→
∫

R
φ(x)dµ(x).(B.22)

Now, consider the first assertion in (B.17) with k = 2. Observing that Hr = H̄r for mb= db,
we have

X(mb)
n,2 =

√
n

r

∫

R
y
(
(Ĥ(mb)

r (y))2 − H̄2
r (y)

)
dĤ(mb)

r (y)

=

√
n

r

∫

R
y
(
Ĥ(mb)

r (y)− H̄r(y)
)(

Ĥ(mb)
r (y) + H̄r(y)

)
dĤ(mb)

r (y) =X′(mb)
n,2 +R

(mb)
n,2 ,

(B.23)

where

R
(mb)
n,2 =

√
n

r

∫

R
y
(
Ĥ(mb)

r (y)− H̄r(y)
)2

dĤ(mb)
r (y).

Now, |R(mb)
n,2 | ≤ ∥Ĥ(mb)

r −H̄r∥∞ψ(H(mb)
r ,1, Ĥ

(mb)
r ),where ψ(a, g,µ) =

∫
R |y|g(y)a(y)dµ(y)

and where

H(mb)
r (y) =

√
n

r

(
Ĥ(mb)

r (y)− H̄r(y)
)
, y ∈R.

It then follows from continuity of ψ (Lemma B.11), dW1
(Ĥ

(mb)
r ,Gγ) = oP(1) (Lemma B.12)

and weak convergence of H(mb)

r in ℓ∞(R) to a process with continuous and bounded sample
paths almost surely (Theorem 2.6) that R(mb)

n,2 = OP((r/n)−1/2) = oP(1), which implies the
assertion by (B.23).
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It remains to show the second assertion in (B.17), for k ∈ {1,2}. For that purpose, write

X′(mb)
n,k = ϕ(H(mb)

r , ν ′k ◦ H̄r, Ĥ
(mb)
r ),

where ϕ :A×Cb(R)×W1 →R, (a, g,µ) 7→
∫
R yg(y)a(y)dµ(y). Likewise, a simple calcu-

lation shows that we may write

G(mb)
n fk,2 =

√
n

r

∫ ∞

−∞
yν ′k(Gγ(y))

{
Ĥ(mb)

r (y)− H̄r(y)
}
dGγ(y) = ϕ(H(mb)

r , ν ′k ◦Gγ ,Gγ).

The second assertion in (B.17) is then again an immediate consequence of continuity of ϕ
(Lemma B.11), since dW1

(Ĥ
(mb)
r ,Gγ) = oP(1) (Lemma B.12), ∥H̄r −Gγ∥∞ = o(1) (Con-

dition 2.1 or, for sampling scheme (S2), Lemma B.5) and since H(mb)
r converges weakly in

ℓ∞(R) to a continuous limit (Theorem 2.6). The proof of Proposition B.2 is finished.

B.2. Weak convergence and moment convergence of sliding block maxima.

LEMMA B.3 (Joint weak convergence of sliding block maxima under (S1)). Consider
sampling scheme (S1) from Condition 2.2, let rn → ∞ with rn = o(n) and suppose there
exists a sequence of integers (ℓn)n such that ℓn = o(rn), α(ℓn) = o(ℓn/rn) for n→∞. Then,
for any ξ ≥ 0 and x, y ∈R,

lim
n→∞

P(Z(sb)
r,1 ≤ x,Z

(sb)
r,1+⌊rξ⌋ ≤ y) =Gγ,ξ(x, y),

with Gγ,ξ as in (13) for ξ ∈ [0,1] and Gγ,ξ(x, y) =Gγ(x)Gγ(y) for ξ > 1.

PROOF. We omit the upper index sb. The case ξ = 0 is trivial. For j, k ∈N with j ≤ k, let
Mj:k := max(Xj , . . . ,Xk). By similar arguments as in the proof of Lemma 5.1 in [3] (see
below for details), we have, for ξ ∈ (0,1),

P(Zr,1 ≤ x,Zr,1+⌊rξ⌋ ≤ y)

= P(M1:⌊rξ⌋ ≤ arx+ br,M⌊rξ⌋+1:r ≤ ar(x∧ y) + br,Mr+1:r+⌊rξ⌋ ≤ ary+ br)

= P(M1:⌊rξ⌋−ℓ ≤ arx+ br,M⌊rξ⌋+1:r−ℓ ≤ ar(x∧ y) + br,Mr+1:r+⌊rξ⌋ ≤ ary+ br) + o(1)

= P(M1:⌊rξ⌋−ℓ ≤ arx+ br)P(M⌊rξ⌋+1:r−ℓ ≤ ar(x∧ y) + br)

P(Mr+1:r+⌊rξ⌋ ≤ ary+ br) + o(1)

= P(M1:⌊rξ⌋ ≤ arx+ br)P(M⌊rξ⌋+1:r ≤ ar(x∧ y) + br)

P(Mr+1:r+⌊rξ⌋ ≤ ary+ br) + o(1).
(B.24)

From the last expression we can then follow the claimed limit, since Condition 2.1 implies

lim
n→∞

P(M1:⌊rξ⌋ ≤ arx+ br) = P
(
Z⌊rξ⌋,1 ≤

ar
a⌊rξ⌋

x+
br − b⌊rξ⌋
a⌊rξ⌋

)

=Gγ

(
ξ−γx+

ξ−γ − 1

γ

)
,

and analogously

lim
n→∞

P(Mr+1:r+⌊rξ⌋ ≤ ary+ br) =Gγ

(
ξ−γy+

ξ−γ − 1

γ

)
,

lim
n→∞

P(M⌊rξ⌋+1:r ≤ ar(x∧ y) + br) =Gγ

(
(1− ξ)−γ(x∧ y) + (1− ξ)−γ − 1

γ

)
.
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Multiply the latter three limits to arrive at Gγ,ξ .
Explanation of (B.24): the first equality is obvious. For the second equality, note that

P(An ∩Bn) = P(An) + o(1) provided that limn→∞ P(An ∩Bc
n) = 0. Therefore,

P({M1:⌊rξ⌋ ≤ arx+ br}) = P({M1:⌊rξ⌋−ℓ ≤ arx+ br} ∩ {M⌊rξ⌋−ℓ+1:⌊rξ⌋ ≤ arx+ br})
= P({M1:⌊rξ⌋−ℓ ≤ arx+ br}+ o(1),

in view of

P
(
{M1:⌊rξ⌋−ℓ ≤ arx+ br} ∩ {M⌊rξ⌋−ℓ+1:⌊rξ⌋ ≤ arx+ br}c

)

≤ P
(
M1:⌊rξ⌋−ℓ <M⌊rξ⌋−ℓ+1:⌊rξ⌋

)

= P
(
M1:⌊rξ⌋−ℓ <M1:⌊rξ⌋

)
,

and the last expression is of order o(1) by Lemma B.15. With the same argument we can cut
off the last ℓ observations in M⌊rξ⌋+1:r to treat P(M⌊rξ⌋+1:r ≤ ar(x ∧ y) + br). Combining
this we get the second equality. The third equality follows because α(ℓ) = o(1), and the
observations from one considered set to another consist of observations which are at least ℓ
apart. The last equality can be proven in the manner of the second one, just reversely.

Finally, the case ξ > 1 can be proven in a similar way and is even easier, since in this case
the blocks under consideration do not overlap.

LEMMA B.4 (Joint weak convergence of sliding block maxima under (S2)). Consider
sampling scheme (S2) from Condition 2.2, let rn → ∞ with rn = o(n) and suppose there
exists a sequence of integers (ℓn)n such that ℓn = o(rn), α(ℓn) = o(ℓn/rn) for n→∞. Then,
for any ξ, ξ′ ≥ 0 and any x, y ∈ Sγ

lim
n→∞

P(Z(sb)
r,1+⌊rξ⌋ ≤ x,Z

(sb)
r,1+⌊rξ′⌋ ≤ y) =Gγ,|ξ−ξ′|(x, y),

with Gγ,ξ as in (13) for ξ ∈ [0,1] and Gγ,ξ(x, y) =Gγ(x)Gγ(y) for ξ > 1.

PROOF. If |ξ − ξ′| ≥ 1, the respective block maxima are independent, whence their joint
c.d.f is the product of their marginal c.d.f.s and the result follows from Lemma 2.4. For
|ξ − ξ′|< 1 the proof is a slight adaptation of the proof of Lemma B.3.

LEMMA B.5 (Convergence of average cdfs under (S2)). Consider sampling scheme (S2)
from Condition 2.2. Then, with H̄r as defined in Condition 3.2,

lim
n→∞

sup
x∈R

∣∣H̄r(x)−Gγ(x)
∣∣= 0.

PROOF. Recalling Fr,j from (4), we may write

Hr,j+1(x) = Fr,j+1(arx+ br)

= P(max(Xj+1, . . . ,Xr)≤ arx+ br,max(Xr+1, . . . ,Xr+j)≤ arx+ br)

= Fr−j(arx+ br)Fj(arx+ br),(B.25)

with F0 ≡ 1. We may thus write
∥∥∥1
r

r∑

j=1

Hr,j −Gγ

∥∥∥
∞

≤ 1

r

r∑

j=1

∥∥Hr,j −Gγ

∥∥
∞

=

∫ 1

0
∥Hr,⌊rξ⌋+1 −Gγ∥∞ dξ

=

∫ 1

0

∥∥Fr−⌊rξ⌋(ar ·+br)F⌊rξ⌋(ar ·+br)−Gγ(·)
∥∥
∞ dξ.(B.26)
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Recalling identity (25) and invoking the triangular inequality after adding and subtracting
Fr−⌊rξ⌋(ar ·+br)Gγ(ξ

−γ ·+ ξ−γ−1
γ ), we obtain the bound

∥∥Fr−⌊rξ⌋(ar ·+br)F⌊rξ⌋(ar ·+br)−Gγ(·)
∥∥
∞ ≤Ar1(ξ) +Ar2(ξ),

where

Ar1(ξ) =
∥∥Fr−⌊rξ⌋(ar ·+br)−Gγ((1− ξ)−γ ·+((1− ξ)−γ − 1)/γ)

∥∥
∞

Ar2(ξ) =
∥∥F⌊rξ⌋(ar ·+br)−Gγ(ξ

−γ ·+(ξ−γ − 1)/γ)
∥∥
∞ .

Using the fact that F⌊rξ⌋(x) =H⌊rξ⌋((x− b⌊rξ⌋)/a⌊rξ⌋), we have the bound

Ar2(ξ)≤
∥∥H⌊rξ⌋ −Gγ

∥∥
∞ +Rr(ξ),

where

Rr(ξ) :=

∥∥∥∥Gγ

(
ar
a⌊rξ⌋

·+
br − b⌊rξ⌋
a⌊rξ⌋

)
−Gγ

(
ξ−γ ·+ξ

−γ − 1

γ

)∥∥∥∥
∞
.

Likewise,

Ar1(ξ)≤
∥∥Hr−⌊rξ⌋ −Gγ

∥∥
∞ +Rr(1− ξ),

We can thus conclude that the right-hand side of (B.26) may be bounded by

∫ 1

0

∥∥H⌊rξ⌋ −Gγ

∥∥
∞ +

∥∥Hr−⌊rξ⌋ −Gγ

∥∥
∞ +Rr(ξ) +Rr(1− ξ)dξ

= 2

∫ 1

0

∥∥H⌊rξ⌋ −Gγ

∥∥
∞ dξ + 2

∫ 1

0
Rr(ξ)dξ.

The two integrals on the right-hand side converge to zero by dominated convergence and
Equations (2) and (1) from Condition 2.1, respectively.

LEMMA B.6 (Moment convergence of block maxima). Consider one of the sampling
schemes from Condition 2.2 with γ < 1/2. Suppose there exists some ν > 0 such that

limsup
r→∞

E[|Zr|2+ν ]<∞,

and let f be a real-valued function for which there exist constants c, d ∈ [0,∞) and 0≤ µ <
2 + ν with |f(x)| ≤ c|x|µ + d for all x ∈R. Then, with Z ∼Gγ ,

lim
r→∞

E[f(Zr)] = E[f(Z)], lim
r→∞

E
[1
r

r∑

j=1

f(Z
(sb)
r,j )

]
= E[f(Z)].

PROOF. The first assertion is an immediate consequence of weak convergence (Condi-
tion 2.1) and uniform integrability. This readily implies the second assertion under sampling
scheme (S1). For sampling scheme (S2), we may write

E
[1
r

r∑

j=1

f(Z
(sb)
r,j )

]
=

∫ 1

0
E[f(Z(sb)

r,1+⌊rξ⌋)] dξ.

The expression inside the integral converges to E[f(Z)] by weak convergence (Lemma 2.4)
and uniform integrability (Lemma B.7). Since the upper bound in the latter lemma holds
uniformly in ξ, the assertion follows from dominated convergence.
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LEMMA B.7 (Uniform integrability under (S2)). Consider sampling scheme (S2) from
Condition 2.2 with γ < 1/2 and suppose that

limsup
r→∞

E[|Zr|2+ν ]<∞,(B.27)

for some ν > 0. Then

limsup
r→∞

sup
ξ∈[0,1]

E
[∣∣Z(sb)

r,1+⌊rξ⌋
∣∣2+ν

]
<∞.

PROOF. Throughout, we omit the upper index sb and assume r/2 ∈ N for simplicity. By
(B.25), the random variables Zr,1+⌊rξ⌋ and Zr,r−⌊rξ⌋+1 have the same distribution, whence it
is sufficient to restrict the supremum to ξ ∈ [0,1/2]. Next, note that

max(X1+r/2, . . . ,Xr)≤max(X1+⌊rξ⌋, . . . ,Xr+⌊rξ⌋)≤max(X1, . . . ,X2r),

which may be written as Mr/2,1+r/2 ≤Mr,1+⌊rξ⌋ ≤M2r,1 =Mr,1 ∨Mr,r+1. As a conse-
quence,

|Zr,1+⌊rξ⌋|=
∣∣∣
Mr,1+⌊rξ⌋ − br

ar

∣∣∣≤
∣∣∣Mr,1 − br

ar
∨ Mr,r+1 − br

ar

∣∣∣+
∣∣∣
Mr/2,1+r/2 − br

ar

∣∣∣

≤ |Zr,1|+ |Zr,1+r|+
∣∣∣Zr/2,1+r/2

ar/2

ar
+
br/2 − br

ar

∣∣∣,

which implies

∥Zr,1+⌊rξ⌋∥2+ν ≤ 2∥Zr,1∥2+ν + ∥Zr/2,1∥2+ν

∣∣∣
ar/2

ar

∣∣∣+
∣∣∣
br/2 − br

ar

∣∣∣.

This implies the assertion by (B.27) and (1).

B.3. Asymptotic covariances for empirical moments of block maxima.

LEMMA B.8. Consider sampling scheme (S1) from Condition 2.2 with γ < 1/2 and sup-
pose further that Conditions 2.5 and 3.3 hold. Then, for g, g′ ∈ G with G as defined in (B.1),

lim
n→∞

Cov(G(sb)
n g,G(sb)

n g′) = 2

1∫

0

Cov
(
g(Z1ξ), g

′(Z2ξ)
)
dξ.

where G(sb)
n is defined in (A.3) and where (Z1ξ,Z2ξ)∼Gγ,ξ with Gγ,ξ from (13). The same

result holds with G replaced by G′ = {1(−∞,t] : t ∈ R}; in that case, one may dispense with
Condition 3.3.

PROOF. We only give a proof for g, g′ ∈ G, as the case g, g′ ∈ G′ is similar but sim-
pler. Without making further assumptions, the sequence ℓn that satisfies the condition
from Lemma B.3 can be chosen as ℓn = max{sn, ⌊rn

√
α(sn)⌋}, where sn = ⌊√rn⌋ (see

[4]), so we can apply that Lemma. We proceed similar as in [4]: for h ∈ {1, . . . ,m}, let
Ih = {(h − 1)rn + 1, . . . , hrn} denote the set of indices which make up the h-th disjoint
block of observations. For simplicity, assume n/r ∈N. Then,

n−r+1∑

j=1

g(Zr,j) = g(Zr,n−r+1) +

m−1∑

h=1

Ah,

n−r+1∑

j=1

g′(Zr,j) = g′(Zr,n−r+1) +

m−1∑

h=1

Bh
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where

Ah =
∑

s∈Ih
g(Zr,s), Bh =

∑

s∈Ih
g′(Zr,s).

Note that, by stationarity, the sequences (Ah)h, (Bh)h are stationary as well. By uniform inte-
grability (Condition 3.3), the contribution of g(Zr,n−r+1) and g′(Zr,n−r+1) to the asymptotic
covariance is negligible. Further, since

√
n

r

1

n− r+ 1
=

1√
nr

{1 + o(1)},

it is sufficient to show that

vn =
1

nr
Cov

(m−1∑

h=1

Ah,

m−1∑

j=1

Bj

)
→ 2

1∫

0

Cov
(
g(Z1ξ), g

′(Z2ξ)
)
dξ = v.

For that purpose, write

vn =
1

nr

{
(m− 1)Cov(A1,B1) +

m−2∑

h=1

(m− 1− h) (Cov(A1,B1+h) +Cov(A1+h,B1))
}

=
1

nr

{
(m− 1)Cov(A1,B1) + (m− 2)Cov(A2,B1 +B3)

}

+
1

nr

m−2∑

h=2

(m− 1− h){Cov(A1,B1+h) +Cov(A1+h,B1)}

= vn1 + vn2 + vn3,
(B.28)

where

vn1 =
1

r2
Cov(A2,B1 +B2 +B3), vn2 =− 1

nr
Cov(A2,2B1 +B2 + 2B3)

vn3 =
1

nr

{
m−2∑

h=2

(m− 1− h){Cov(A1,B1+h) +Cov(A1+h,B1)}
}
.

Next, for ξ ≥ 0, define

gn1(ξ) := Cov
(
g(Zr,1), g

′(Zr,1+⌊rξ⌋)
)
, gn2(ξ) := Cov

(
g(Zr,1+⌊rξ⌋), g

′(Zr,1)
)
,

such that, by stationarity,

1

r2
Cov(A2,B2) =

1

r2

rn∑

s=1

rn∑

t=1

Cov(g(Zr,s), g
′(Zr,t))

=
1

r
gn1(0) +

1

r

r−1∑

h=1

(
1− h

r

){
gn1
(
h
r

)
+ gn2

(
h
r

)}
.

Similarly, we obtain

1

r2
Cov(A2,B3) =

1

r

r−1∑

h=1

h

r
gn1
(
h
r

)
+ 1

r

2r−1∑

h=r

(
2− h

r

)
gn1
(
h
r

)
,

1

r2
Cov(A2,B1) =

1

r

r−1∑

h=1

h

r
gn2
(
h
r

)
+

1

r

2r−1∑

h=r

(
2− h

r

)
gn2
(
h
r

)
.
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Combining the previous three equations, we get

vn1 =
1

r

rn−1∑

h=0

{
gn1
(
h
r

)
+ gn2

(
h
r

)}
− 1

r
gn2(0) +

1

r

2r−1∑

h=r

(
2− h

r

){
gn1
(
h
r

)
+ gn2

(
h
r

)}

=

∫ 1

0
gn1(ξ) + gn2(ξ)dξ +Rn,

where

|Rn| ≤
1

rn
|gn2(0)|+

∫ 2

1

∣∣∣∣2−
⌊rξ⌋
r

∣∣∣∣ |gn1(ξ) + gn2(ξ)| dξ

≤ 1

rn
|gn2(0)|+ 2

∫ 2

1
|gn1(ξ) + gn2(ξ)| dξ.

Now, weak convergence (Lemma B.3) and uniform integrability (Condition 3.3) implies
that limn→∞ gnj(ξ) = Cov(g(Z1ξ), g

′(Z2ξ)) for j ∈ {1,2} and ξ ≥ 0; in particular, the
limit is zero for ξ > 1. As a consequence, by dominated convergence, Rn = o(1) and then
limn→∞ vn1 = v.

It remains to prove that vn2 and vn3 in Equation (B.28) converge to zero. It can be shown
by similar arguments as for vn1 that vn2 = O(r/n) = o(1). Considering vn3, we start by
treating the sum over those summands for which h≥ 3. Lemma 3.11 in [6] yields

|Cov(A1,B1+h)| ≤ 10∥A1∥2+ν ∥B1∥2+ν α(σ(A1), σ(B1+h))
ν

2+ν

≤ 10r2 ∥g(Zr,1)∥2+ν

∥∥g′(Zr,1)
∥∥
2+ν

α((h− 2)r)
ν

2+ν ,

where ν is taken from Condition 3.3, so that the norms are uniformly bounded by some
constant C . Cov(A1+h,B1) can be bounded in the same way, whence the sum over the
summands with h≥ 3 in vn3 may be bounded by

1

r2

m−2∑

h=3

|Cov(A1,B1+h)|+ |Cov(A1+h,B1)| ≤ 20C2
m−4∑

h=1

α(hr)
ν

2+ν ,

which converges to zero by Condition 2.5(ii) and the choice of ν in Condition 3.3. The
summand for h= 2 can be written as

∫ 3

2

(
3− ⌊rξ⌋

r

)
(gn1(ξ) + gn2(ξ))dξ

and this converges to 0 by the same arguments as used in the treatment of Rn.

LEMMA B.9. Consider sampling scheme (S2) from Condition 2.2 with γ < 1/2 and sup-
pose further that Conditions 2.5 and 3.3 hold. Then, for g, g′ ∈ G with G as defined in (B.1),

lim
n→∞

Cov(G(sb)
n g,G(sb)

n g′) = 2

1∫

0

Cov
(
g(Z1ξ), g

′(Z2ξ)
)
dξ.

where G(sb)
n is defined in (A.3) and where (Z1ξ,Z2ξ)∼Gγ,ξ with Gγ,ξ from (13). The same

result holds with G replaced by G′ = {1(−∞,t] : t ∈ R}; in that case, one may dispense with
Condition 3.3.
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PROOF. As in the previous proof, we only consider the case g, g′ ∈ G. Let gn(ξ, ξ′) =
Cov(g(Zr,1+⌊rξ⌋, g′(Zr,1+⌊rξ′⌋))). With the same arguments and notations as in the proof of
Lemma B.8 for sampling scheme (S1) we obtain that the leading term in the covariance under
consideration is

(B.29)
1

r2
{Cov(A1,B1) +Cov(A1,B2) +Cov(A2,B1)}

=

∫ 1

0

∫ 1

0
gn(ξ, ξ

′)dξ dξ′ +
∫ 1

0

∫ 2

1
gn(ξ, ξ

′)dξ dξ′ +
∫ 2

1

∫ 1

0
gn(ξ, ξ

′)dξ dξ′.

Weak convergence (Lemma B.4) and uniform integrability (Lemma B.7) implies that
gn(ξ, ξ

′) converges to Cov(g(Z1,|ξ−ξ′|), g′(Z2,|ξ−ξ′|)), where (Z1,|ξ−ξ′|,Z2,|ξ−ξ′|)∼Gγ,|ξ−ξ′|.
By dominated convergence, the integrals in (B.29) converge as well, the limit being

∫ 1

0

∫ 1

0
Cov(g(Z1,|ξ−ξ′|), g

′(Z2,|ξ−ξ′|))dξ dξ
′(B.30)

+ 2

∫ 1

0

∫ 1+ξ′

1
Cov(g(Z1,|ξ−ξ′|), g

′(Z2,|ξ−ξ′|))dξ dξ
′,

where we have used symmetry and the fact that Z1,|ξ−ξ′| and Z2,|ξ−ξ′| are independent if
|ξ − ξ′|> 1.

It remains to show that the last expression is equal to 2
∫ 1
0 Cov (g(Z1ξ), g

′(Z2ξ)) dξ. For
that purpose, note that the function ξ 7→ u(ξ) = Cov (g(Z1ξ), g

′(Z2ξ)) is bounded by some
constant independent of ξ, as can be seen by applying the Cauchy-Schwarz inequality. There-
fore, u(·) is integrable on every closed interval [a, b] ⊂ R with

∫ b
a u(ξ)dξ = U(b) − U(a),

where U denotes an antiderivative of u. We need to show that (B.30) may be written as
2{U(1)−U(0)}. By changing variables we obtain

(B.30) =
∫ 1

0

{∫ 1

0
u(
∣∣ξ − ξ′

∣∣)dξ + 2

∫ 1+ξ′

1
u(
∣∣ξ − ξ′

∣∣)dξ
}

dξ′

=

∫ 1

0

{∫ ξ′

0
u(ξ′ − ξ)dξ +

∫ 1

ξ′
u(ξ − ξ′)dξ + 2

∫ 1+ξ′

1
u(ξ − ξ′)dξ

}
dξ′

=

∫ 1

0

{∫ ξ′

0
u(v)dv+

∫ 1−ξ′

0
u(v)dv+ 2

∫ 1

1−ξ′
u(v)dv

}
dξ′

=

∫ 1

0

{∫ ξ′

0
u(v)dv+

∫ 1

1−ξ′
u(v)dv+

∫ 1

0
u(v)dv

}
dξ′

=

∫ 1

0

{
U(ξ′)−U(0) +U(1)−U(1− ξ′)

}
dξ′ +U(1)−U(0)

= 2{U(1)−U(0)} ,

since
∫ 1
0 U(ξ′)dξ′ =

∫ 1
0 U(1− ξ′)dξ′.

LEMMA B.10. Let Λ(mb) be defined as in Theorem B.1. Then Λ(sb) ≤L Λ(db).

PROOF. By the definition of the Loewner-order, we have to show that Var(c′Y (db)) ≥
Var(c′Y (sb)) for any c ∈Rp, where Y (mb) denotes the limit variable of Theorem B.1. Choos-
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ing an iid sequence satisfying the conditions from that theorem, we have

Var(c′Y (mb)) = lim
n→∞

Var
(
G(mb)

n g
)
, mb ∈ {db, sb},

for some function g ∈ G (note that G is closed under taking linear combinations), see
Lemma B.8 for the case mb = sb. In view of the fact that

(
g(Z

(sb)
r,i )

)
i

is rn-dependent, the
assertion follows from Lemma A.10 in [11].

B.4. Further auxiliary results.

LEMMA B.11. Recall the definition of A and W1 in (B.18) and (B.19), respectively, and
let

ψ :A×Cb(R)×W1 →R, (a, g,µ) 7→
∫

R
|y|g(y)a(y)dµ(y),

ϕ :A×Cb(R)×W1 →R, (a, g,µ) 7→
∫

R
yg(y)a(y)dµ(y).

The maps ψ and ϕ are continuous in every (a, g,µ) ∈Cb(R)×Cb(R)×W1.

PROOF. We only consider ϕ. For (a, g,µ) ∈ Cb(R) × Cb(R) ×W1, let (an, gn, µn)n ⊂
A × Cb(R) ×W1 such that limn→∞(an, gn, µn) = (a, g,µ), i.e., limn→∞ ∥an − a∥∞ = 0,
limn→∞ ∥gn − g∥∞ = 0 and limn→∞ dW1

(µn, µ) = 0. Then,

|ϕ(an, gn, µn)− ϕ(a, g,µ)|
≤ |ϕ(an, gn, µn)− ϕ(a, gn, µn)|+ |ϕ(a, gn, µn)− ϕ(a, g,µn)|

+ |ϕ(a, g,µn)− ϕ(a, g,µ)|

=

∣∣∣∣
∫

R
ygn(y){an(y)− a(y)}dµn(y)

∣∣∣∣+
∣∣∣∣
∫

R
y{gn(y)− g(y))}a(y)dµn(y)

∣∣∣∣

+

∣∣∣∣
∫

R
yg(y)a(y)d{µn(y)− µ(y)}

∣∣∣∣

≤ {∥an − a∥∞ ∥gn∥∞ + ∥gn − g∥∞ ∥a∥∞}
∫

R
|y| dµn(y) +

∣∣∣∣
∫

R
φa,g(y)d{µn(y)− µ(y)}

∣∣∣∣ ,

where φa,g(y) = yg(y)a(y). The first term on the right-hand side of the previous dis-
play converges to 0, since dW1

(µn, µ) → 0 implies
∫
R |y| dµn(y) →

∫
R |y| dµ(y) <∞ by

(B.20). Since a and g are continuous, φa,g is continuous as well and satisfies |φa,g(y)| ≤
∥g∥∞ ∥a∥∞ |y| ≤ ∥g∥∞ ∥a∥∞ (1 + |y|). Hence, the second term converges to 0 by (B.22).

LEMMA B.12 (Wasserstein consistency). Consider one of the sampling schemes from
Condition 2.2 with γ < 1/2. If Conditions 2.5 and 3.3 are met, then dW1

(Ĥ (mb)

r ,Gγ) = oP(1).

PROOF. The result follows from application of Lemma B.13. First of all, for every n,
Ĥ

(mb)
r is a discrete probability measure and hence an element of W1. Next, note that

∥Ĥ(mb)
r −Gγ∥∞ ≤ ∥Ĥ(mb)

r − H̄r∥∞ + ∥H̄r −Gγ∥∞ =OP((r/n)
1/2) + o(1) = oP(1)

as a consequence of Theorem 2.6. It remains to be shown that Mn =
∫
|z|dĤ(mb)

r (z) =
E[|Z|] + oP(1), where Z ∼ Gγ . First, E[Mn] → E[|Z|] by Lemma B.6. It thus suffices to
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show that Var(Mn) = o(1). This follows by the same arguments as for the treatment of
Var(Y(mb)

n,k −G(mb)

n fk,1) in the proof of Proposition B.2, see in particular (B.12) for disjoint
blocks and (B.14) for sliding blocks.

LEMMA B.13. If, for a sequence of random probability measures (µ̂n)n, µ̂n : Ω→W1

with distribution functions F̂n and some µ ∈W1 with continuous distribution function F , the
conditions

∥F̂n − F∥∞ P−→ 0 and
∫

R
|x| dµ̂n(x) P−→

∫

R
|x| dµ(x)

hold, then

dW1
(µ̂n, µ)

P−→ 0.

PROOF. Weak convergence of probability measures µn on the real line to a limit µ0 with
continuous distribution function Fµ0

is well-known to be equivalent to uniform convergence
of the respective distribution functions Fµn

. As a consequence, by (B.21),

dW1
(µn, µ0)→ 0 ⇔ ∥Fµn

− Fµ0
∥∞ +

∣∣∣∣
∫

|x| dµn(x)−
∫

|x| dµ0(x)
∣∣∣∣→ 0.

The imposed assumptions imply

∥F̂n − F∥∞ +

∣∣∣∣
∫

|x| dµ̂n(x)−
∫

|x| dµ(x)
∣∣∣∣

P−→ 0.

The assertion then follows from standard arguments based on passing to almost surely con-
vergent subsequences.

The following two lemmas are simple adaptations of Lemma A.7 and A.8 in [3].

LEMMA B.14. Assume Condition 2.1 and let Mk = max(X1, . . . ,Xk). If r→ ∞, r =
o(n), ℓ→∞, ℓ= o(r) and α(ℓ) = o(ℓ/r) for n→∞, then, for all y ∈ Sγ ,

P(Mℓ ≥ ary+ br) =O(ℓ/r), n→∞.

PROOF. From [2], Lemma 7.1 we know that, for all u > 0,

P(Fr(Mℓ)> u) =O(ℓ/r), n→∞.

Since for all y ∈ Sγ we have limn→∞Fr(ary + br) = Gγ(y), we have Fr(ary + br) >
Gγ(y)/2> 0 for sufficiently large n. Hence, the previous display implies

P (Mℓ ≥ ary+ br)≤ P(Fr(Mℓ)≥ Fr(ary+ br))

≤ P(Fr(Mℓ)>Gγ(y)/2) =O(ℓ/r).

LEMMA B.15. Under the same conditions as in Lemma B.14, we have

lim
n→∞

P(Mr >Mr−ℓ) = 0.

PROOF. For any y ∈ Sγ , we have

P(Mr >Mr−ℓ)

= P(Mr >Mr−ℓ,Mr−ℓ ≤ ary+ br) + P(Mr >Mr−ℓ,Mr−ℓ > ary+ br)

≤ P(Mr−ℓ ≤ ary+ br) + P(max{Xr−ℓ+1, . . . ,Xr}> ary+ br).
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The first summand converges toGγ(y) because of Condition 2.1, invoking local uniform con-
vergence in (1). The second summand is equal to P(Mℓ > ary + br) by stationarity, which
converges to 0 by Lemma B.14. Now let y ↓ xL, the left endpoint of Gγ , to obtain the asser-
tion.

APPENDIX C: EXACT FORMULAS FOR THE ASYMPTOTIC COVARIANCE
MATRIX

LEMMA C.1. Let k, k′ ∈ {0,1,2} and γ < 1/2. The asymptotic covariance from Theo-
rem 3.5 can be written as

Ω
(sb)
k,k′ = 2Cγ

∫ 1/2

0

hγ,k,k′(w) + hγ,k′,k(w)

{w(1−w)}1+γ
dw,

where

Cγ =





Γ(2 |γ|), γ < 0,

1, γ = 0,

−Γ(1− 2γ)/2γ, γ > 0

and, writing ck,k′(w) = kw+ k′(1−w),

hγ,k,k′(w) =
{ck,k′(w) + 1}2γ+1 − {ck,k′(w) + 1−w}2γ+1

w(2γ + 1)
− {ck,k′(w) + 1}2γ

for γ /∈ {0,−1/2},

h− 1

2
,k,k′(w) =

log(ck,k′(w) + 1)− log(ck,k′(w) + 1−w)

w
− {ck,k′(w) + 1}−1

and

h0,k,k′(w) = 1− ck,k′(w) + 1−w

w
log

(
ck,k′(w) + 1

ck,k′(w) + 1−w

)
.

Moroever,

Ω
(db)
k,k′ =Hk,k′,γ +Hk′,k,γ ,

where

Hk,k′,γ =

∫ 1

0
uk−1(1− u)(− logu)−1−γ

∫ u

0
sk

′
(− log s)−1−γ dsdu.

The above integrals cannot be solved explicitly, but can be approximated to an arbitrary
precision based on numerical integration.

PROOF. We only treat the sliding blocks case, the disjoint block case follows from a sim-
ple calculation and has, for instance, been worked out in [7], see their formula (12).

Recall that, for fixed k ∈N, we may write fk = fk,1 + fk,2 with

fk,1(x) = xGk
γ(x), fk,2(x) =

∞∫

x

y ν ′k(Gγ(y))dGγ(y)
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and νk(x) = xk. Therefore, supposing for the moment that γ ̸= 0 and choosing x ∈ Sγ and
k ∈N≥1, we may invoke

xGk
γ(x) = xe−k(1+γx)

− 1
γ

=

x∫

−∞

d

dy
ye−k(1+γy)

− 1
γ

1Sγ
(y)dy

=

x∫

−∞

{1 + ky(1 + γy)−
1

γ
−1}e−k(1+γy)

− 1
γ

1Sγ
(y)dy,

to obtain

fk(x) = xGk
γ(x) +

∞∫

x

kye−(k−1)(1+γy)
− 1

γ

(1 + γy)−
1

γ
−1e−(1+γy)

− 1
γ

1Sγ
(y)dy

=

x∫

−∞

e−k(1+γy)
− 1

γ

1Sγ
(y)dy+

∞∫

−∞

ky(1 + γy)−
1

γ
−1e−k(1+γy)

− 1
γ

1Sγ
(y)dy

=

∞∫

(1+γx)
− 1

γ

e−ktt−γ−1 dt+ kβγ,k−1,

where we made use of the substitution t= (1 + γy)−
1

γ , −t−γ−1dt= dy, and where βγ,k is
defined in (9). Some thoughts reveal that the same equation is true for γ = 0, i.e.,

fk(x) =

∫ ∞

e−x

e−ktt−1 dt+ kβ0,k−1, k ∈N≥1.

Now, if Z ∼ Gγ , the transformation S = (1 + γZ)−
1

γ (with S = exp(−Z) for γ = 0) is
exponentially distributed with rate λ= 1. Indeed, for any x > 0, we have:

1. Case γ > 0:

P(S ≥ x) = P
(
(1 + γZ)−

1

γ ≥ x
)
= P

(
Z ≤ x−γ − 1

γ

)
= exp(−x).

2. Case γ < 0:

P(S ≥ x) = P
(
(1− |γ|Z)

1

|γ| ≥ x
)
= P

(
Z ≤ 1− x|γ|

|γ|

)
= exp(−x).

3. Case γ = 0:

P(S ≥ x) = P (exp(−Z)≥ x) = P(Z ≤− log(x)) = exp(−x).
Therefore we may write

fk(Z) =

∞∫

S

e−ktt−γ−1 dt+ kβγ,k−1,(C.1)

so that, when taking the expectation, Fubini’s Theorem yields

E[fk(Z)] = E



∞∫

0

1(S ≤ t)e−ktt−γ−1 dt


+ kβγ,k−1
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=

∞∫

0

P(S ≤ t)e−ktt−γ−1 dt+ kβγ,k−1

=

∞∫

0

(
e−kt − e−(k+1)t

)
t−γ−1 dt+ kβγ,k−1.(C.2)

To calculate integrals of that type, we distinguish cases according to the sign of γ:

1. Case γ < 0. For every z > 0, we have
∫ ∞

0
e−ztt−γ−1 dt= zγ

∫ ∞

0
e−ss−γ−1 ds= zγΓ(|γ|).(C.3)

2. Case: 0< γ < 1. First notice that, by partial integration and since γ < 1,
∞∫

0

(
1− e−s

)
s−γ−1 ds=

−s−γ
γ

(1− e−s)
∣∣∣
∞

s=0
+

1

γ

∞∫

0

e−ss−γ ds=
Γ(1− γ)

γ

and with the same substitution as in the first case we get for every z > 0

∞∫

0

(
1− e−zs

)
s−γ−1 ds= zγ

Γ(1− γ)

γ
.(C.4)

3. Case: γ = 0. Recall the Exponential Integral

E1(x) =

∞∫

x

e−tt−1 dt=−γ − log(x) +

∫ x

0

1− e−t

t
dt.

Then we may write, for 0< z1 < z2,
∞∫

0

(
e−z1t − e−z2t

)
t−1 dt= lim

a↓0





∞∫

az1

e−tt−1 dt−
∞∫

az2

e−tt−1 dt





= lim
a↓0



 log(az2)− log(az1)−

az2∫

az1

1− e−t

t
dt





= log

(
z2
z1

)
.(C.5)

Next, for (Z1ξ,Z2ξ)∼Gγ,ξ from Theorem 3.5, let

(S1ξ, S2ξ) = ((1 + γZ1ξ)
− 1

γ , (1 + γZ1ξ)
− 1

γ )

be the random vector arising from the transformation of the marginal distributions to standard
exponentially distributed random variables (with (S1ξ, S2ξ) = (exp(−Z1ξ), exp(−Z2ξ)) in
case γ = 0). Note that, recalling Aξ(w) = ξ + (1− ξ){w ∨ (1−w)}, we have

P(S1ξ ≤ s,S2ξ ≤ t) = 1− e−s − e−t + e−(s+t)Aξ(
t

t+s
), s, t > 0,
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by a simple calculation. Invoking (C.1) and (C.2), we get, for k, k′ ∈N≥1,

Cov(fk(Z1ξ), fk′(Z2ξ))

= E

[∫ ∞

S1ξ

∫ ∞

S2ξ

e−kt−k
′s(ts)−γ−1 dsdt

]

−
(∫ ∞

0

(
e−kt − e−(k+1)t

)
t−γ−1 dt

)(∫ ∞

0

(
e−k

′s − e−(k
′+1)s

)
s−γ−1 ds

)

=

∫

(0,∞)2

P(S1ξ ≤ s,S2ξ ≤ t)e−kt−k
′s(ts)−γ−1 d(s, t)

−
∫

(0,∞)2

(1− e−t)(1− e−s)e−kt−k
′s(ts)−γ−1 d(s, t)

=

∫

(0,∞)2

(
e−(t+s)Aξ(

t

t+s
) − e−(t+s)

)
e−kt−k

′s(ts)−γ−1 d(s, t)

=

1∫

0

∞∫

0

e−u{Aξ(w)+kw+k′(1−w)} − e−u{kw+k′(1−w)+1}

{w(1−w)}γ+1
u−2γ−1 dudw,

(C.6)

where we used the change of variables u= t+ s, w = t/(t+ s), i.e., uw = t, u(1−w) = s
with Jacobian determinant u. As the function fk is the identity for k = 0, applying Hoeffd-
ing’s formula for k = k′ = 0 yields

Cov(f0(Z1,ξ), f0(Z2,ξ)) = Cov(Z1,ξ,Z2,ξ)

=

∫

R

(P(Z1ξ ≥ x,Z2ξ ≥ y)− P(Z1ξ ≥ x)P(Z2ξ ≥ y))1S2
γ
(x, y)dx(x, y)

=

∞∫

0

∞∫

0

(
e−(t+s)Aξ(

t

t+s
) − e−(t+s)

)
(ts)−γ−1 dsdt,

which implies (C.6) with k = k′ = 0. Finally, for the case k ∈ N≥11 and k′ = 0, we may
apply a generalized Hoeffding formula ([9], Theorem 3.1), which yields, with

f ′k(x) =
d

dx





∞∫

(1+γx)
− 1

γ

e−ktt−γ−1 dt+ kβγ,k−1





= e−k(1+γx)
− 1

γ

,

(defined as e−e
−x

for γ = 0) that (C.6) is also valid if only one of k, k′ equals 0. As a sum-
mary, the equation holds for all k, k′ ∈N≥0.

We proceed by first restricting attention to the case γ < 0. By (C.3), for every z > 0,
∞∫

0

e−uzu−2γ−1 du=Γ(2|γ|)z2γ ,

61



24

so that (C.6) equals

Γ(2|γ|)
1∫

0

{kw+ k′(1−w) +Aξ(w)}2γ − {kw+ k′(1−w) + 1}2γ
{w(1−w)}γ+1

dw.

By symmetry and the definition of Aξ , this expression may be written as

Γ(2|γ|){Jγ,k,k′(ξ) + Jγ,k′,k(ξ)}
where

Jγ,k,k′(ξ) =

1/2∫

0

{(k+ ξ)w+ (k′ + 1)(1−w)}2γ − {kw+ k′(1−w) + 1}2γ
{w(1−w)}γ+1

dw,

As a summary,

Ω
(sb)
k,k′ = 2

∫ 1

0
Cov (fk(Z1ξ), fk′(Z2ξ)) dξ = 2Γ(2|γ|)

∫ 1

0
Jγ,k,k′(ξ) + Jγ,k′,k(ξ)dξ.

Finally, note that, for β ̸=−1 and a ̸= 0,
∫ 1

0
(aξ + b)β dξ =

(a+ b)β+1 − bβ+1

(β + 1)a
,

while for β =−1 and a ̸= 0,
∫ 1

0
(aξ + b)−1 dξ =

log(a+ b)− log(b)

a
,

which readily implies
∫ 1

0
Jγ,k,k′(ξ)dξ =

∫ 1/2

0

hγ,k,k′(w)

{w(1−w)}1+γ
dw

after changing the order of integration, and hence yields the asserted formula after assembling
terms.

For the case γ > 0, we add ±1 in the numerator in (C.6) and with (C.4) we see that,

Cov(fk(Z1ξ), fk′(Z2ξ)) =−Γ(1− 2γ)

2γ
{Jγ,k,k′(ξ) + Jγ,k′,k(ξ)}.

The calculations for the case γ < 0 imply the asserted formula.
Finally, for the case γ = 0, (C.5) yields that the expression in (C.6) may be rewritten as

1∫

0

log

(
ck,k′(w) + 1

Aξ(w) + ck,k′(w)

)
{w(1−w)}−1 dw = J0,k,k′(ξ) + J0,k′,k(ξ),

where

J0,k,k′(ξ) =

1/2∫

0

log

(
ck,k′(w) + 1

ξw+ ck,k′(w) + 1−w

)
{w(1−w)}−1 dw.

Since
1∫

0

log

(
c

ξa+ b

)
dξ = 1+

1

a

(
(a+ b) log

(
c

a+ b

)
− b log

(c
b

))
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for a, b, c > 0, we get

1∫

0

J0,k′,k(ξ)dξ =

1/2∫

0

h0,k,k′(w)

w(1−w)
dw,

which implies the final formula.

LEMMA C.2. The entries (cj,k)j,k of the Jacobian matrix C of ϕ from Corollary 3.6 are
given by

c11 =

(
3γ − 1

2γ − 1
− 1

)
c̃γ,1, c12 =−2

3γ − 1

2γ − 1
c̃γ,1, c13 = 3c̃γ,1,

c21 =−c̃γ,2 + c11c̃γ,3, c22 = 2c̃γ,2 + c12c̃γ,3, c23 = c1,3c̃γ,3,

c31 = 1+ c̃γ,4c11 + c̃γ,5c21, c32 = c̃γ,4c12 + c̃γ,5c22, c33 = c̃γ,4c13 + c̃γ,5c23,

where

c̃γ,1 =
γ

Γ(1− γ)(2γ − 1)

{
3γ log(3)

2γ − 1
− 2γ(3γ − 1) log(2)

(2γ − 1)2

}−1
,

c̃γ,2 =
γ

Γ(1− γ)(2γ − 1)
,

c̃γ,3 =
1

γ
− 2γ log(2)

2γ − 1
+

Γ′(1− γ)

Γ(1− γ)
,

c̃γ,4 =
1

γ2
{
γΓ′(1− γ)− 1 + Γ(1− γ)

}
,

c̃γ,5 =
1

γ
(1− Γ(1− γ)) .

For γ = 0, the expressions are interpreted as the limit for γ→ 0, yielding

c11 =

(
1

log(2)
− 1

log(3)

)
c̃0,1, c12 =− 2

log(2)
c̃0,1, c13 =

3

log(3)
c̃0,1,

c21 =− 1

log(2)
+ c11c̃0,3, c22 =

2

log(2)
+ c12c̃0,3, c33 = c1,3c̃0,3,

c31 = 1+Γ′′(1)c11 +Γ′(1)c21, c32 =Γ′′(1)c12 +Γ′(1)c22, c33 =Γ′′(1)c13 +Γ′(1)c23,

where

c̃0,1 =

{
log(3)

2
− log(2)

2

}−1
, c̃0,3 =

log(2)

2
+ Γ′(1).

PROOF. This follows from straightforward calculations.

APPENDIX D: A FINITE SAMPLE COMPARISON OF SLIDING VS. DISJOINT
BLOCK MAXIMA SAMPLES

Lemma 2.4 shows that, under suitable natural assumptions, each sliding block maximum
is asymptotically GEV-distributed with the ‘correct’ asymptotic parameters. While this is
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natural under sampling scheme (S1), it is rather surprising under (S2). Throughout this sec-
tion, we discuss the distributional approximation in finite-sample situations for the ARMAX-
GPD-model, for which explicit calculations are possible. The results will provide theoretical
justification for some statements from the main paper where it was argued (based on simula-
tion evidence) that the bias induced by sampling scheme (S2) does not play a significant role
in practical applications, where the temporal dependence is typically at most moderate and
the block size is rather large (r ≥ 90).

We start by calculating the c.d.f. of disjoint and sliding block maxima in the ARMAX-
GPD model. Based on Formula (10.5) in [1], a straightforward calculation implies that a
(disjoint) block maximum of size r has cdf Fr given by

Fr(x) = P
(

r
max
i=1

Yi ≤
1

− logFγ(x)

)

= exp
{
− (1 + (1− b)(r− 1))(− logFγ(x))

}

= Fγ(x)
b+(1−b)r,

with Fγ the c.d.f. of the GPD(0,1,γ)-distribution (recall that the extremal index is given by
θ = 1− b). Under sampling scheme (S2), the distribution of a sliding block maximum made
up from j observations in one season and r− j observations in another (j ∈ {1, . . . , r− 1})
has cdf

Fr,j(x) = Fj(x)Fr−j(x) = Fγ(x)
2b+(1−b)r.

Remarkably, the distribution does not depend on j (which is not the case in general, but a
specific feature of the ARMAX-dynamics). Moreover, since Fr,j(x) = Fγ(x)

b × Fr(x), the
difference between Fr,j and Fr is clearly (and unsurprisingly) increasing in b.

Now, a sliding block maxima sample based on m seasons of size r consists of exactly m
observations drawn from Fr , and n− r−m+ 1 observations from Fr,j . Hence, a randomly
chosen sliding block maxima has cdf

F ∗r,m =
m

n− r+ 1
Fr +

n− r−m+ 1

n− r+ 1
Fr,j =

{
1

r
Fr +

(
1− 1

r

)
Fr,j

}
+O(m−1)

for n→∞, provided that r = o(n). Subsequently, the c.d.f. in curly brackets on the right-
hand side will be denoted as F ∗r . In view of the fact that the return level RL(T, r) (as a
central target quantity) is a function of Fr (and not of F ∗r ), one may indeed expect less
biased estimates when applying the disjoint block maxima method (note that all disjoint
block maxima are drawn form Fr).

In the following, we carry out a graphical comparison between the sliding block maxima
distribution F ∗r and the disjoint block maxima distribution Fr , for various values of γ, b and
r. Note that the quantiles of F ∗r must be calculated numerically, which, however, is straight-
forward. Respective qq-plots for quantile levels {0.01,0.02, . . . ,0.98,0.99} are depicted in
Figure D.1. In Figure D.2, we depict, as a function of b, the relative difference

Dr =
(F ∗r )

−1(0.99)

F−1r (0.99)
− 1 =

(F ∗r )
−1(0.99)− F−1r (0.99)

F−1r (0.99)

for block sizes r ∈ {90,180,360}. Note that F−1r (0.99) = RL(100, r) in the paper’s notation
for the return level.

It can be seen that, for each fixed value of γ and b = 1− θ, the difference is decreasing
in r, which illustrates the asymptotic validity of the sliding block maxima method under (S2),
see in particular Lemma 2.4. At the same time, for fixed block size r (note that the block

64



BLOCK MAXIMA FOR PIECEWISE STATIONARY TIME SERIES: SUPPLEMENT 27
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FIG D.1. QQ-plots of the theoretical disjoint and sliding BM distributions in the ARMAX(b) model, with b ∈
{0.1,0.5.0.9,0.95,0.99}, blocksize r ∈ {30,90,180} and marginal GPD(0,1,0) distribution.
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FIG D.2. The relative difference Dr as a function of b, for blocksizes r ∈ {90,180,360} and shape parameters
γ ∈ {0.4,−0.2,0,0.2,0.4}.

size is typically given in applications), it can be seen that larger values of b (i.e., smaller
extremal indices) yield a larger discrepancy between the two quantiles, which will eventually
show up as a bias when applying the sliding block maxima method for estimation. However,
a significant deviation requires quite small extremal indices, in particular for non-positive
shape parameters (for which we advocate the use of the PWM estimator). Further note that
the extremal index is typically around 45-50% for daily temperatures and above 80-90% for
cumulative daily precipitation, so we hardly get into the critical range in practice when using
r = 90.

Furthermore, it is worthwhile to mention that the relative difference Dr is not invari-
ant with respect to affine linear transformations of the underlying distributions. Indeed, if
the initial GPD(0,1, γ) distribution (with associated c.d.f.s Fr and F ∗r ) is replaced with a
GPD(µ,σ, γ) distribution, which corresponds to the linear transformation y 7→ σy + µ, this
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FIG D.3. The relative difference Dr as a function of b, for blocksize r = 90 and initial marginal distribution
F(µ,σ,γ) ∈ {GPD(0,1,−0.2),GPD(72.21,7.41,−0.2)}.

transformation propagates to the quantile function, with the relative difference becoming

Dr =
σ(F ∗r )

−1(0.99) + µ

σF−1r (0.99) + µ
− 1 =

(F ∗r )
−1(0.99)− F−1r (0.99)

F−1r (0.99) + µ/σ
.

A large ratio µ/σ of location and scale parameter therefore contributes to a small rela-
tive difference Dr . An example is illustrated in Figure D.3, where relative differences for
GPD(0,1,−0.2) and GPD(72.21,7.41,−0.2) distributions are depicted, both for blocksize
r = 90 and again as a function of b. The explicit values were chosen following the simulations
for temperature data as described in Section 4.3 (without innerseasonal non-stationarities) of
the main paper; they correspond to realistic values for temperature extremes measured in
Fahrenheit. It can be seen that the relative difference is negligible even for high level of serial
dependence; for instance, the difference is smaller than 0.2% for θ = 0.9.

APPENDIX E: ADDITIONAL SIMULATION RESULTS

E.1. Additional results for fixed block size. This section contains additional results
comparable to those in Figures 3 and 4 in a situation where r = 90 is fixed. For each time
series model, we show results for both shape estimation and RL(T,90) estimation under
sampling schemes (S1) and (S2). Results for the AR-GPD-model are shown in Figure E.1
and Figure E.2, those for the CAR-GPD-model are shown in Figure E.3 and Figure E.4, and
those for the ARMAX-GPD-model can be found in Figure E.5 and Figure E.6.

Remarkably, under sampling scheme (S1) and for almost all dependence structures, it is
only the γ = 0.4 case for which the sliding blocks version does not provide an improvement
over the disjoint blocks counterpart. Under sampling scheme (S2), this observation does not
hold universally anymore, but depends on the combination of shape parameter and magnitude
of serial dependence. For strong serial dependence (here: extremal index smaller than or equal
to 0.25) and non-negatives shapes, there is no improvement of the sliding over the disjoint
version (in particular for return level estimation), while it can be observed in all scenarios
with either moderate serial dependence or negative shapes. This issue is discussed further in
Section 4.5 from the main paper.
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TABLE E.1
Population return levels RL(T,90) for T = 50 (T = 100)

Model γ =−0.4 γ =−0.2 γ = 0 γ = 0.2 γ = 0.4

IID 2.41 (2.43) 4.07 (4.19) 8.40 (9.09) 21.85 (25.84) 69.18 (92.18)
AR 0.5 2.41 (2.43) 4.06 (4.18) 8.37 (9.06) 21.74 (25.77) 68.62 (92.01)
ARMAX 0.5 2.39 (2.41) 3.93 (4.07) 7.72 (8.43) 18.41 (21.94) 52.27 (69.99)
CAR 0.5 2.39 (2.41) 3.93 (4.07) 7.73 (8.43) 18.36 (21.86) 52.36 (70.27)
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FIG E.1. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) of shape
estimation in a transformed AR(1) model with GPD-margins under sampling scheme (S1) (straight line) and (S2)
(dashed line) for fixed block size r = 90.

E.2. Results for fixed sample size. In this experiment, instead of fixing the block length
parameter r, we fixed the overall sample length and investigated the estimators’ performance
for varying values of r. We considered each combination of the time series models and the
marginal distribution functions described in Section 4 for fixed sample length n= 1000 and
sampling scheme (S1). The setting aims at evaluating the common bias-variance tradeoff in
extreme value statistics, which becomes visible when treating the block length as a hyperpa-
rameter to be chosen by the statistician with the ultimate goal of maximizing the estimation
accuracy (which is comparable to the choice of the number of upper order statistics in the
peaks-over-threshold approach). Note that treating the blocksize as a hyperparameter is only
valid for sampling scheme (S1) (it is given when considering sampling scheme (S2)) and for
estimating the shape parameter (as return levels depend on the blocksize). For the experiment,
the block length has been chosen as r ∈ {4,5,6,7,8,9,10,12,14,16,18,20,25,30,40},
yielding between 25 and 250 disjoint blocks. All estimators (disjoint, sliding, and sliding
bias reduced) have been evaluated in terms of their empirical MSE, variance and squared
bias based on N = 1000 simulation repetitions.

Results for fixed sample size n= 1000 for shape estimation under sampling scheme (S1)
can be found in Figure E.7 for the AR-GPD-model, in Figure E.8 for the CAR-GPD-model,
and in Figure E.9 for the ARMAX-GPD-model. In these figures, the x-axis corresponds to
the effective sample size ⌊n/r⌋, i.e., the number of disjoint blocks . The general shape of the
curves is mostly (with the exception of γ = 0.4) as follows: we observe a decreasing variance
curve that is universally smaller for the sliding blocks method (as expected from the theo-
retic results) and an (eventually) increasing bias curve that is mostly comparable between the
two methods. As a result, the MSE curve is mostly u-shaped, representing the typical bias-
variance tradeoff. The improvement of the sliding blocks method over the disjoint blocks
method is largest for negative shape parameters, while no significant improvement is visi-
ble for positive shape parameters. The time series model does not have a significant effect
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FIG E.2. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) of
RL(T, r)-estimation where T = 50 (rows 1 and 3) or T = 100 (rows 2 and 4) in a transformed AR(1) model
with GPD-margins under sampling schemes (S1) (top two rows) and (S2) (bottom two rows) for fixed block size
r = 90.
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FIG E.3. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) of shape
estimation in CAR-GPD-models under sampling scheme (S1) (straight line) and (S2) (dashed line) for fixed block
size r = 90.

on the qualitative performance, despite that a remarkably strong bias is visible for strong
temporal dependence, small block sizes and negative shape parameters, for both disjoint and
sliding blocks estimators. Overall, for small effective sample sizes (i.e., large block sizes), we
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FIG E.5. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) of shape
estimation in ARMAX-GPD-models under sampling scheme (S1) (straight line) and (S2) (dashed line) for fixed
block size r = 90.

sometimes observe a significantly higher bias for the sliding blocks method, which may be
explained by the dependency bias discussed in Remark 3.1; see also the results in Section E.3
for further discussions.
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FIG E.6. Relative MSE (MSE of disjoint blocks estimator divided by MSE of sliding blocks estimator) of
RL(T, r)-estimation where T = 50 (rows 1 and 3) or T = 100 (rows 2 and 4) in ARMAX-GPD-models un-
der sampling schemes (S1) (top two rows) and (S2) (bottom two rows) for fixed block size r = 90.

As discussed before, the blocksize r should not be considered a hyperparameter when
dealing with sampling scheme (S2). Nevertheless, we show the Bias, MSE and variance of
shape parameter estimation for fixed sample size n= 1000 under sampling scheme (S2) for
a selection of time series models in Figure E.10. The results are overall very similar to the
respective scenarios in sampling scheme (S1). Hower, note that the the curves cannot be
interpreted as bias-variance-tradeoff induced by the choice of r in this case.

E.3. Results for comparing the plain and bias-reduced sliding blocks estimator. As
mentioned in the main paper, the bias-reduced sliding blocks estimator from Remark 3.1 is
computationally costly for situations involving overall sample sizes of n = 9000 or larger.
Therefore, when comparing results for fixed blocksize r = 90, we restrict attention to sam-
pling scheme (S2) and a selection of 20 models that are made up of 4 different time series
models (i.i.d., AR 0.5, CAR 0.5 and ARMAX 0.5) and the 5 different GPD-margins (GPD(γ)
with γ ∈ {−0.4,−0.2,0,0.2,0.4}) . The bias and MSE of shape estimation as obtained for
the disjoint, sliding and bias-reduced sliding blocks methods are shown in Figures E.11 and
E.12, respectively. The bias of the bias-reduced sliding blocks estimator matches the bias of
the disjoint blocks estimator almost perfectly. For positive shape parameters that results in
equal performance in terms of MSE (with a tiny advantage for the sliding version and small
sample sizes) for those two estimators. For negative shapes, the plain sliding version still has
the smallest MSE, which can be explained by its smaller variance.

For fixed samplesize, the sliding blocks estimator is compared with its bias-reduced ver-
sion in Figure E.13 (shape estimation, AR-GPD-model, sampling scheme (S1), n = 1000),
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FIG E.8. MSE, squared bias and variance as a function of the effective sample size for the estimation of the
shape parameter γ in a transformed Cauchy AR(1) model with GPD-margins under sampling scheme (S1) for
fixed sample size n= 1000.

Figure E.14 (the same for the CAR-GPD-model) and Figure E.15 (the same for the ARMAX-
GPD-model). Considering only the squared bias, it can be seen that the bias-reduced version
may outperform its counterpart for small block sizes, in particular in scenarios involving non-
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FIG E.9. MSE, squared bias and variance as a function of the effective sample size for the estimation of the shape
parameter γ in a transformed ARMAX(1) model with GPD-margins under sampling scheme (S1) for fixed sample
size n= 1000.
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FIG E.10. MSE, squared bias and varianceas a function of the effective sample size for the estimation of the
shape parameter γ in a selection of time series models with GPD-margins under sampling scheme (S2) for fixed
sample size n= 1000.

negative shapes and positive AR parameters. However, under strong temporal dependence,
the bias-reduced estimator may also exhibit a uniformly larger squared bias. In terms of vari-
ance, the plain estimator mostly has a slight edge. Summarizing the findings is rather difficult,
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FIG E.12. MSE of shape estimation in a selection of transformed time series models with GPD margins for fixed
r = 90 and growing number of seasons under sampling scheme (S2).

whence we tend to recommend the use of the plain version merely for computational reasons
(in particular for non-negative shapes).

E.4. Results for comparing sampling schemes (S1) and (S2) for fixed sample size n.
Results for the comparison of sampling schemes (S1) and (S2) in situations of fixed sample
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FIG E.13. Comparison of MSE, squared Bias and Variance of shape estimation as a function of the effective
sample size for the plain and bias reduced sliding blocks estimators in the AR-GPD-models under sampling
scheme (S1), for fixed sample size n= 1000.
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FIG E.14. Comparison of MSE, squared Bias and Varianceof shape estimation as a function of the effective
sample size for the plain and bias reduced sliding blocks estimators in the CAR-GPD-models under sampling
scheme (S1), for fixed sample size n= 1000.

size n = 1000 can be found in Figure E.16 (shape estimation within the AR-GPD-model),
Figure E.17 (shape estimation within the CAR-GPD-model) and Figure E.18 (shape estima-
tion within the ARMAX-GPD-model). In most cases the behavior between the two sampling
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FIG E.15. Comparison of MSE, squared Bias and Variance of shape estimation as a function of the effective
sample size for the plain and bias reduced sliding blocks estimators in the ARMAX-GPD-models under sampling
scheme (S1), for fixed sample size n= 1000.

schemes is similar, as was to be expected from the theoretic results. A notable exception con-
cerns high level of serial dependence, non-positive shape parameters and small block sizes,
where the MSE for the sliding blocks estimator is smaller in scenario (S2) than in (S1). This
difference may be explained by the fact that, heuristically, the non-constancy of j 7→ Hr,j

(see Condition 3.2) is increasing in the strength of serial dependence and decreasing in the
block size. As a consequence, the bias B(mb,S)

n,k in Condition 3.2 shows a similar behavior,
eventually impacting the MSE in the observed way.

E.5. Additional results for different marginal distributions. Block maxima obtained
from an i.i.d. GPD sample are known to converge comparably fast to their limiting GEV
distribution. The speed of convergence may be measured with the second order parameter,
say ρ = ρBM, which takes its values in [−∞,0]. The smaller ρ is, the higher is the speed
of convergence. For the GPD distribution, we have ρ = −1, see Section 2 in [5]. Slower
convergence is thus obtained if the second order parameter is larger than −1, whence we
chose to (partially) repeat our simulation study for distributions such that ρ=−1/2.

More precisely, for positive γ, we chose to consider a member from the Hall-and-
Welsh (HW) distribution family, defined by its cumulative distribution function Fγ(x) =

1−x−1/γ(1+x−1/(2γ))/2, x≥ 1. It can be shown that this distribution is in the maximum do-
main of attraction ofGγ with second order parameter ρ=−1/2 (see Table 1 in [5]). For nega-
tive γ, we chose the distribution of the random variable −1/Z where Z ∼ F|γ|, whose second
order parameter is again −1/2 (model RHW in Table 3 in [5]). Finally, for γ = 0, we chose to
consider the distribution defined by its inverse F−1(p) = log{1/(1− p)}×{1+(1− p)1/2}.
Further, in order to avoid division by values close to zero when evaluating the (relative) per-
formance of return level estimators, all distributions were shifted by adding 1 to the simulated
values.

Simulations were carried out for all dependence structures of Section 4 in the main paper
and marginal distributions as described above, with γ ∈ {−0.4,−0.2,0,0.2,0.4}. Again, the
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FIG E.16. MSE of shape estimation for observations from sampling scheme (S1) and (S2) based on a transformed
AR(1) model with GPD-margins for fixed sample size n= 1000.

quantile transformation method was applied for sampling from the respective models. For the
ease of presentation and because findings were similar, we restrict attention to models with
medium (AR 0.5, CAR 0.5, ARMAX 0.5) or no (i.i.d.) dependence under sampling scheme
(S2).

The resulting MSE curves are shown in Figure E.19 (shape estimation) and Figure E.20
(RL(100,90) estimation). Regarding the latter, the MSE is computed from {R̂L(T, r) −
RL(T, r)}/RL(T, r), with T = 100, r = 90 and RL(T, r) computed from a preliminary
simulation imvolving N = 106 blockmaxima of independent blocks of size r.

For estimation of the shape, the MSE curves for the two second order parameters are
nearly identical, while some differences are visible for return level estimation. For the lat-
ter however, a direct comparison is not quite sensible, as the true values deviate from each
other. Overall, the qualitative behaviour is not significantly influenced by the second order
parameter, in particular when comparing disjoint and sliding blocks.

E.6. Results for comparing Maximum Likelihood and PWM Estimation. A (re-
duced) simulation study was performed to compare the PWM estimator to its most pop-
ular competitor, the (pseudo) Maximum Likelihood estimator. Attention was restricted
to 20 selected models that are made up from 4 different time series models (i.i.d., AR
0.5, CAR 0.5 and ARMAX 0.5) and the 5 different GPD-margins (GPD(γ) with γ ∈
{−0.4,−0.2,0,0.2,0.4}). The sliding blocks maximum likelihood estimator was obtained
by maximizing the likelihood function that results from treating the sliding blocks as inde-
pendent, see [4] for respective theoretical results in the heavy tailed case.

The respective results for the estimation of γ and RL(100,90) are summarized in Fig-
ure E.21 and Figure E.22. Both figures are slightly manipulated in favor of the maximum
likelihood estimator as all presented results are conditional on the event that |γ̂ML − γ| ≤ 1.
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FIG E.17. MSE of shape estimation for observations from sampling scheme (S1) and (S2) based on a transformed
Cauchy AR(1) model with GPD-margins for fixed sample size n= 1000.
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FIG E.18. MSE of shape estimation for observations from sampling scheme (S1) and (S2) based on a transformed
ARMAX(1) model with GPD-margins for fixed sample size n= 1000.

The latter happens to be the case in approx. 95% of the simulation runs for m = 10 and in
up to 99.5% for m≥ 20; not omitting the remaining (unrealistic) cases yields quite unstable
curves for the ML estimator when |γ|= 0.4.

The results reveal that the PWM estimator has a tendency to be superior for small sample
sizes while the maximum likelihood estimator is superior for large sample sizes; to the best
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FIG E.20. Rescaled MSE of RL(100,90) estimation under the same specifications as in Figure E.19.

of our knowledge this is a usual view of the two estimators among applied statisticians. For
shape estimation, smaller shapes yield better results for the PWM estimator, while for return
level estimation, the picture is almost reversed. This seems to be an interesting aspect that
could be confirmed in an extensive simulation study in future research.
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FIG E.21. Top: MSE obtained from PWM (solid line) and ML (dashed line) shape estimation based on disjoint
and sliding blocks under sampling scheme (S2) for fixed r = 90. Bottom: Relative MSE of sliding blocks shape
estimation (MSE of ML estimation divided by MSE of PWM estimation) under sampling scheme (S2), also for
r = 90 fixed.

APPENDIX F: GEV-FIT EXAMINATION FOR THE CASE STUDY

To assess wether the fitted GEV distributions in the case study are plausible, we generated
QQ-plots, which can be found in Figure F.1 and reveal a remarkably good fit.
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Abstract
Mathematical theory suggests to model annual or seasonal maxima by the gener-
alized extreme value distribution. In environmental applications like hydrology,
record lengths are typically small, whence respective parameter estimators
typically exhibit a large variance. The variance may be decreased by pooling
observations from different sites or variables, but this requires to check the valid-
ity of the inherent homogeneity assumption. The present paper provides an
overview of (partly new) respective asymptotic significance tests. It is found that
the tests’ levels are often violated in typical finite-sample situations, whence a
parametric bootstrap approach based on max-stable process models is proposed
to obtain more accurate critical values. As a side product, we present an overview
of asymptotic results on a variety of common estimators for GEV parameters in
a multisample situation of varying record lengths.

K E Y W O R D S
flood extremes, index-flood assumption, max-stable process, parametric bootstrap, probability
weighted moment estimator, pseudo-maximum likelihood

1 INTRODUCTION

Environmental extreme value analysis is concerned with assessing the risk of rare extreme events like flooding or heat
waves, see Beirlant et al. (2004) or the recent special issue in Extremes Journal (Cooley & Naveau, 2021). One of the most
common statistical approaches in the field is the celebrated block maxima method popularized by Gumbel (1958): based
on, say, daily observations of one or more variables of interest collected at one or more locations, calculate the coordinate
wise annual or seasonal maximum for further investigation. Mathematical theory then suggests to model such data by
max-stable processes, as the latter are the only processes that can arise, after proper affine transformation, as the limit of
maxima of independent and identically distributed random fields (Davison et al., 2012). We also refer the reader to the
latter paper for a description of a variety of respective parametric models.

Fitting a multivariate max-stable (process) model is typically done in two steps: first, estimate each marginal distribu-
tion, which is known to necessarily be a three parametric generalized extreme value (GEV) distribution (see Section 2);
for instance by maximum likelihood or some moment method. Second, for estimating the dependence, one typically
transforms the margins to some common scale (often the Fréchet(1)-distribution) and then fits a max-stable model with
predescribed margins to the transformed data, for instance by pairwise maximum likelihood (Padoan et al., 2010). In view
of the fact that the data transformation often involves the estimates obtained from the first step, there is quite some risk
of error propagation, showing the need for estimates as accurate as possible on the marginal models.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Environmetrics published by John Wiley & Sons Ltd.
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The latter however may be a delicate task, as environmental sample sizes are often quite small (say, n ≤ 100 or even
n ≤ 50 for hydrological data or meteorological station or reanalysis data) and GEV parameter estimates are known to
be volatile in such situations. It has therefore been advertised to incorporate suitable homogeneity constraints on the
marginal model parameters, thereby eventually reducing estimation uncertainty. For instance, the popular Index Flood
model (Dalrymple, 1960, see also the monograph Hosking and Wallis, 1997, and Section 4.1 below) builds upon the
assumption that the distribution at each station is the same except for some local scale parameter. If such an assumption
is met, one may ultimately estimate the marginal model at each specific site using observations from other homogeneous
sites. A second example concerns model assumptions that link intensity and duration of extreme precipitation events to
their frequency, see (Boukhelifa et al., 2018; Jurado et al., 2020; Koutsoyiannis et al., 1998), and Section 4.2 below.

Before relying on a homogeneity assumption on marginal GEV parameters, it is advisable to check the assumption’s
validity. Respective methods have been proposed particularly for the afore-mentioned index-flood assumption, see Fill &
Stedinger (1995), Hosking & Wallis (1993), Lu & Stedinger (1992), Viglione et al. (2007), among others. Among those tests,
the Hosking–Wallis (HW) procedure (Hosking & Wallis, 1993) based on L-moments has become a common standard.
The method has been modified and extended in several directions: Chebana & Ouarda (2007), Chebana & Ouarda (2009),
Šimková (2018) consider extensions to the multivariate case, while certain nonparametric versions can be found in Mas-
selot et al. (2017; Šimková, 2017). The validity of the afore-mentioned procedures has typically been checked by simulation
experiments.

The present paper expands this line of research, and is concerned with formal statistical homogeneity tests derived
from limit theory for suitable parameter estimates. Quite surprisingly, the respective asymptotic theory has never been
collected and worked out in full detail. It is the first major contribution of this paper to work out asymptotic results on
multiple sample versions of (1) the probability weighted moment estimator (Hosking et al., 1985), (2) truncated L-moment
estimators (Hosking, 2007), and (3) (pseudo) maximum likelihood estimators (Bücher & Segers, 2017), alongside with
consistency results on estimators for their asymptotic covariance matrices. As a second major contribution, the results
are used to design and investigate asymptotic tests for the aforementioned homogeneity constraints. Within extensive
simulation experiments concerning the index flood assumption in situations of moderate dimension, the tests were found
to require unpleasantly high sample sizes to keep their nominal level. It is further illustrated that this nuisance may be
avoided by relying on a suitable parametric bootstrap device which was found to yield accurate level approximations
and decent power properties in typical small-sample situations. The results are illustrated in a case study involving flood
extremes.

We would like to point out that Bayesian (MCMC) methods provide yet another method to obtain parameter estimates.
The approach has been widely applied in environmental extremes, see Boukhelifa et al. (2018), Gaume et al. (2010),
Nguyen et al. (2014), Renard et al. (2006, Viglione et al. (2013), among others, and yields the advantage of providing
credibility intervals for the parameters when following the Bayesian paradigm. However, throughout this paper we follow
the frequentist paradigm, and deriving respective limit results would require a frequentist evaluation of Bayesian methods
(see, e.g., Section 10 in van der Vaart, 1998), which is beyond the scope of this paper.

The remainder of this article is organized as follows. After introducing the underlying asymptotic sampling scheme
at the beginning of Section 2, we present general limit results on empirical probability weighted moments and truncated
L-moments (Section 2.1; the results built upon a pervious discussion paper co-authored by a subset of the authors, see
Lilienthal et al., 2016). The results are then transferred to limit results for respective moment estimators for GEV param-
eters, which are accompanied by results on a pseudo maximum likelihood estimator (Section 2.2). Section 3 is devoted
to estimation of the estimators’ asymptotic covariance matrices. Formal asymptotic homogeneity tests are discussed in
Section 4, and the particular case of testing the index flood assumption is examined in a finite-sample Monte Carlo sim-
ulation study in Section 5. A case study on flood extremes is worked out in Section 6. The main findings are summarized
in the concluding Section 7. Proofs and technical details are deferred to the Supplementary Material.

2 PARAMETRIC ESTIMATORS FOR MULTIVARIATE GEV-MODELS

Recall the generalized extreme value distribution defined by its cumulative distribution function (c.d.f.)

G𝜇,𝜎,𝜉(x) = exp
(
−
[
1 + 𝜉 x − 𝜇

𝜎

]−1∕𝜉
)
, 1 + 𝜉 x − 𝜇

𝜎
> 0,
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with parameter 𝝑 = (𝜇, 𝜎, 𝜉)′ ∈ R × (0,∞) ×R called location, scale, and shape, respectively. A multivariate GEV-model
is defined by the underlying assumption that some given d-dimensional random vector X = (X1, … ,Xd)′ of inter-
est (the coordinates may for instance correspond to annual maximal water discharges at d river gauges) with
marginal c.d.f.s Fj (j = 1, … , d) satisfies Fj = G𝝑j for some 𝝑j = (𝜇j, 𝜎j, 𝜉j)′ ∈ R × (0,∞) ×R. Throughout this section,
we collect multivariate asymptotic results on various common estimators for the stacked parameter vector 𝝑 =
(𝝑′1, … ,𝝑′d)′ ∈ {R × (0,∞) ×R}d. It is important to note that we do not need to specify the dependence between the
coordinates of X.

The observational scheme is as follows: suppose that Xi = (Xi,1, … ,Xi,d)′, i = 1, … ,n, are independent copies of X,
where i will typically be interpreted as a time index and with {1, … ,n} covering the full observation period. In many
environmental applications, it is rather uncommon that the observation period is the same for all d coordinates. Instead,
the measurements often start at different points in time and end at the same time. This circumstance may be accounted
for by letting n = n1 ≥ n2 ≥ · · · ≥ nd denote local sample lengths, which are rearranged by length for ease of presentation.
We then assume observing the scheme

X1,1, X2,1, X3,1, X4,1, X5,1, … , Xn,1,

Xa2+1,2, Xa2+2,2, Xa2+3,2, … , Xn,2,

⋱ ⋮

Xad+1,d, Xad+2,d, … , Xn,d,

(1)

with aj = n − nj. For the asymptotic results we let n → ∞ and assume that nj∕n → cj ∈ (0, 1]. For simplicity, we set
nj = ⌊ncj⌋. Note that the above model involves an implicit stationarity assumption, which in practice might require pre-
liminary marginal detrending, in particular for certain meteorological applications that are subject to climate change. In
this regard, we further want to highlight that a large-scale climate change signal has not yet been found in observed flood
magnitudes, see Blöschl et al. (2017).

2.1 General limit results for empirical PW- and TL-moments

Parts of the main results in Section 2.2 below are consequences of higher level results on empirical probability weighted
moments (PWM) and truncated L-moments (TLM), respectively, which hold irrespective of the GEV-assumption imposed
at the beginning of Section 2. Hence, throughout this subsection, we assume that observations from sampling scheme (1)
are available, but with arbitrary continuous marginal c.d.f. Fj(x) = P(Xi,j ≤ x) for j ∈ {1, … , d}.

We start by considering probability weighted moments. For r ∈ N0, the rth PWM of Fj is denoted by

𝛽r,j = E(XjFj(Xj)r) = ∫R
xFr

j (x)dFj(x),

provided that the moment exists. It is worthwhile to mention that, if Fj = G𝝑j , then the rth PWM exists for one (and then
for all) r ∈ N0 iff 𝜉 < 1, in which case we have

𝛽r,j =
1

r + 1

[
𝜇j −

𝜎j

𝜉j

{
1 − (r + 1)𝜉jΓ(1 − 𝜉j)

}]
, (2)

where Γ denotes the Gamma function.
The (unbiased) sample version of 𝛽r,j computed from Xaj+1,j, … ,Xn,j is given by

𝛽r,j =
1
nj

nj∑
i=1

( r∏
𝓁=1

i − 𝓁
nj − 𝓁

)
X(i),j

where X(i),j is the ith largest observation among Xaj+1,j, … ,Xn,j and where the empty product is defined as one (Landwehr
et al., 1979). For fixed R ∈ N, write𝜷(R)j = (𝛽0,j, … , 𝛽R−1,j)′ ∈ RR and𝜷 (R) = ((𝜷(R)1 )′, … , (𝜷(R)d )′)′ ∈ RdR. Denote the sample
counterparts by
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�̂�(R)j =
(
𝛽0,j, … , 𝛽R−1,j

)′ and �̂�(R) =
(
(�̂� (R)1 )′, … , (�̂�(R)d )′

)′
,

Theorem 1 (Multivariate asymptotic normality of empirical PWMs). Consider observations from sampling scheme (1)
with continuous marginal c.d.f . Fj for j ∈ {1, … , d} such that the second moment of Fj exists. Suppose further that
supx∈R

||x{Fj(x)(1 − Fj(x))}w|| < ∞ for all j = 1, … , d and some w ∈ [0, 1∕2). Then, for any fixed R ∈ N and as n → ∞,

√
n
(
�̂� (R) − 𝜷 (R)

) D
−−→dR

(
0,𝚵(R)

)
,

where the limiting covariance matrix 𝚵(R) ∈ RdR×dR is given by 𝚵(R) = (𝚵(R)j,𝓁 )
d
j,𝓁=1 with

𝚵(R)j,𝓁 =
1

max(cj, c𝓁)
Cov(Zj,Z𝓁) ∈ RR×R

and where Zj = Z(R)j = (Z0,j,Z1,j, … ,ZR−1,j)′ has coordinates, for r ∈ {0, … ,R − 1},

Zr,j = Xj ⋅ Fr
j (Xj) + r ⋅ ∫R

x ⋅ Fr−1
j (x) ⋅ 1(Xj ≤ x) dFj(x). (3)

Next, consider TL-moments and assume that Fj has a finite mean. For m ∈ N and s, t ∈ N0, the mth TL-moment of Fj
with left- and right-trimming parameters s and t, respectively, is defined as

𝜆(s,t)m,j =
1
m

m−1∑
i=0
(−1)i

(m − 1
i

)
E
(

Xm+s−i∶m+s+t,j
)
,

where X1∶n,j ≤ · · · ≤ Xn∶n,j denote order statistics of a random sample of size n drawn from Fj (Elamir & Seheult, 2003).
Recall that TL-moments generalize L-moments which are obtained for s = t = 0. By definition, both are built on lin-
ear combinations of expected values of order statistics. TL-moments with s, t > 0 avoid using the most extreme order
statistics which may suffer from high variability and other effects. In extreme value analysis of heavy tailed maxima this
particularly applies to the upper tail so that choosing t > 0 is often worthwhile. The TL-moment is known to satisfy (see
Hosking, 2007)

𝜆(s,t)m+1,j =
m+s+t∑

i=s
z(s,t)m,i 𝛽i,j = (z(s,t)m )′𝜷(m+s+t+1)

j , m ∈ N0, (4)

with z(s,t)m = (z(s,t)m,0 , … , z(s,t)m,m+s+t)
′ ∈ Rm+s+t+1 being a coefficient vector with components z(s,t)m,i = 0 for i ∈ {0, … , s − 1} and

z(s,t)m,i =
m!(m + s + t + 1)!

(m + 1)(m + s)!(m + t)! (−1)s+m+i
(m + t

i + s

)(m + i
m

)
,

for i ∈ {s, … ,m + s + t}. It is easy to see that, for fixed M ∈ N, Equation (4) allows to write 𝝀(M,s,t)
j = (𝜆(s,t)1,j , … , 𝜆(s,t)M,j )

′

as 𝝀(M,s,t)
j = Δ(M,s,t)𝜷 (M+s+t)

j for some matrix Δ(M,s,t) ∈ RM×(M+s+t). The first M sample TL(s, t)-moments �̂�(M,s,t)
j =

(�̂�(s,t)1,j , … , �̂�
(s,t)
M,j )

′ of the jth coordinate are therefore defined as �̂�(M,s,t)
j = Δ(M,s,t)�̂�(M+s+t)

j . Finally, write

�̂�(M,s,t) =
(
(�̂�(M,s,t)

1 )′, … , (�̂�(M,s,t)
d )′

)′
, 𝝀(M,s,t) =

(
(𝝀(s,t)1 )′, … , (𝝀(s,t)d )′

)′
.

Corollary 1 (Multivariate asymptotic normality of empirical TLMs). Under the conditions of Theorem 1 we have, for any
M ∈ N, s, t ∈ N0 and as n →∞,

√
n
(
�̂�(M,s,t) − 𝝀(M,s,t)

) D
−−→dM

(
0,𝚵(M,s,t)) ,
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where 𝚵(M,s,t) = Δ̃(M,s,t)𝚵(M+s+t)(Δ̃(M,s,t))′ with 𝚵(M+s+t) from Theorem 1 and with block-diagonal matrix Δ̃(M,s,t) =
diag(Δ(M,s,t), … ,Δ(M,s,t)) ∈ RdM×d(M+s+t), where the matrix Δ(M,s,t) is repeated d times.

2.2 Three parametric estimators in multivariate GEV-models

The PWM-estimator: Recall the relationship between the GEV-parameters and the PWMs in Equation (2). As
shown in Hosking et al. (1985), the first three PWMs 𝜷(3)j = (𝛽0,j, 𝛽1,j, 𝛽2,j) uniquely determine the GEV-parameters
(𝜇j, 𝜎j, 𝜉j):

𝜉j = g−1
1

(3𝛽2,j − 𝛽0,j

2𝛽1,j − 𝛽0,j

)
, 𝜎j = g2(𝜉j)

(
2𝛽1,j − 𝛽0,j

)
, 𝜇j = 𝛽0,j + 𝜎jg3(𝜉j), (5)

where

g1(𝜉) =
3𝜉 − 1
2𝜉 − 1

, g2(𝜉) =
𝜉

Γ(1 − 𝜉)(2𝜉 − 1)
, g3(𝜉) =

1 − Γ(1 − 𝜉)
𝜉

,

with g1(0) = log 3
log 2 , g2(0) = 1

log 2 and g3(0) = −𝛾 defined by continuity and with the Euler–Mascheroni constant 𝛾 . Writing
the equation system from (5) as 𝝑j = 𝜑(𝜷(3)j ), we arrive at the PWM-estimator for the GEV-parameters,

�̂�j = �̂�
(pwm)
j = 𝜑(�̂� (3)j ) �̂� = �̂�

(pwm)
= ((�̂�

(pwm)
1 )′, … , (�̂�

(pwm)
d )′)′.

Corollary 2. Consider sampling scheme (1) with Fj = G𝝑j and 𝜉j < 1∕2 for all j ∈ {1, … , d}. Then,

√
n
(
�̂�
(pwm)

− 𝝑
) D
−−→3d

(
0,𝚺(pwm))

as n →∞, where 𝚺(pwm) = 𝚫𝚵(3)𝚫′ with 𝚵(3) from Theorem 1 and where

𝚫 = 𝚫(pwm) = diag
(
𝜕𝜑(𝜷1)
𝜕𝜷

, … ,
𝜕𝜑(𝜷d)
𝜕𝜷

)
.

The TLM-estimator: Just as for PW-moments, GEV parameters may be uniquely expressed through the first three
TL-moments for 𝜉j < 1, that is, 𝝑j = 𝜑(s,t)(𝝀(3,s,t)j ) for some known function 𝜑(s,t) (Lilienthal, 2019a).

Details for the case of TL(0,0)-moments (also known as L-moments) and TL(0,1)-moments are summarized in
Appendix A. Let

�̂�
(tl),(s,t)

=
((
�̂�
(tl),(s,t)
1

)′
, … ,

(
�̂�
(tl),(s,t)
d

)′)′
, �̂�

(tl),(s,t)
j = 𝜑(s,t)

(
�̂�(3,s,t)j

)
.

Corollary 3. Consider sampling scheme (1) with Fj = G𝝑j and 𝜉j < 1∕2 for all j ∈ {1, … , d}. Then,

√
n
(
�̂�
(tl),(s,t)

− 𝝑
) D
−−→3d

(
0,𝚺(tl),(s,t)

)
,

as n →∞, where 𝚺(tl),(s,t) = 𝚫(s,t)𝚵(3,s,t)(𝚫(s,t))′ with 𝚵(3,s,t) ∈ R3d×3d from Theorem 1 and where

𝚫(s,t) = diag
(
𝜕𝜑(s,t)(𝝀1)

𝜕𝝀
, … ,

𝜕𝜑(s,t)(𝝀d)
𝜕𝝀

)
.

Remark 1. Note that the first m TL(0, 0)-moments are linear combinations of the first m PWMs (let s = t = 0 in (4)
to see this). In particular, the first three TL(0, 0)- and PW-moments are in one-to-one correspondence, whence the
GEV-estimators based on these methods coincide.

The PML-estimator: The PML-estimator is defined as any coordinate-wise maximum of the independence
log-likelihood function, which may be rewritten as
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�̂�
(pml)

∈ argmax(𝝑1,… ,𝝑d)∈Θd

d∑
j=1

n∑
i=aj+1

𝓁𝝑j(Xi,j),

where 𝓁𝝑 ∶ R → [−∞,∞), x → log p𝝑(x) with the density p𝝑 of the GEV-distribution. Here, Θ denotes a subset of R ×
(0,∞) ×R that is to be considered the coordinate-wise parameter space. As is well-known, consistency can only be guaran-
teed if Θ ⊂ R × (0,∞) × (−1,∞) (Dombry, 2015) and asymptotic normality requires Θ ⊂ R × (0,∞) × (−1∕2,∞) (Bücher
& Segers, 2017).

Theorem 2. Consider sampling scheme (1) with Fj = G𝝑j and 𝜉j > −1∕2 for all j ∈ {1, … , d}. Then, for any compact
parameter set Θ ⊂ R × (0,∞) × (− 1

2 ,∞) containing 𝝑j in its interior for all j ∈ {1, … , d}, any sequence �̂�(pml)
= �̂�

(pml)
n of

coordinate-wise maximum likelihood estimators over Θd, such maximizers always existing, is strongly consistent and satisfies

√
n
(
�̂�
(pml)

− 𝝑
) D
−−→3d

(
0,𝚺(pml)) ,

where 𝚺(pml) = (𝚺(pml)
j,𝓁 )dj,𝓁=1 with

𝚺(pml)
j,𝓁 = 1

max(cj, c𝓁)
I−1
𝝑j

E
[
�̇�𝝑j(X1,j)

(
�̇�𝝑𝓁 (X1,𝓁)

)′] I−1
𝝑𝓁

(6)

and where I𝝑 denotes the Fisher information matrix of the three parametric GEV-family and where �̇�𝝑(x) = 𝜕
𝜕𝝑
𝓁𝝑(x) is the

corresponding score vector.

3 ESTIMATION OF LIMITING COVARIANCE MATRICES

In this section, details regarding the estimation of the limiting covariance matrices in the previous section are given. We
start with an empirical estimator for 𝚵(R) from Section 2.1, which may readily be turned into an estimator for 𝚵(M,s,t),
𝚺(pwm) and 𝚺(tl),(s,t). Likewise, an empirical version for 𝚺(pml) suggests itself.

3.1 Covariance estimation for empirical PW- and TL-moments

Suppose that we have collected observations based on the sampling scheme in (1), with continuous marginal c.d.f.s.
Recall that the asymptotic covariance matrix of the first R PWMs, 𝚵(R)j,𝓁 from Theorem 1, may be expressed in terms of
the covariance Cov(Zj,Z𝓁)with Zj as defined in (3). The latter covariance may be consistently estimated by the following
sample analogues: for j ∈ {1, … , d}, i ∈ {aj + 1, … ,n} and r ∈ N0, let

Ẑi,r,j = Xi,j ⋅ Fr
aj+1∶n,j(Xi,j) +

1
nj

n∑
i′=aj+1

Xi′,j ⋅ r ⋅ Fr−1
aj+1∶n,j(Xi′,j) ⋅ 1(Xi,j ≤ Xi′,j)

and Ẑi,j = (Zi,0,j,Zi,1,j, … ,Zi,R−1,j)′ be observable counterparts of Zj. Then, let

�̂�(R) = (�̂�(R)j,𝓁 )dj,𝓁=1, �̂�(R)j,𝓁 =
n

max(nj,n𝓁)
Ĉov(Ẑj, Ẑ𝓁),

where Ĉov(Ẑj, Ẑ𝓁) is the empirical covariance matrix of the observable sample

̂j,𝓁 = (Ẑmax(aj,a𝓁 )+1,j, Ẑmax(aj,a𝓁 )+1,𝓁), … , (Ẑn,j, Ẑn,𝓁)

of sample size min(nj,n𝓁).

88



LILIENTHAL et al. 7 of 21

Based on the fact that 𝚵(M,s,t) from Corollary 1 is a known functional of 𝚵(R), we readily obtain an estimator for the
latter matrix, say �̂�(M,s,t), as well.

Both estimators are consistent.

Corollary 4. Under the assumptions of Theorem 1 and for n →∞, we have

�̂�(R) = 𝚵(R) + oP(1), �̂�(M,s,t) = 𝚵(M,s,t) + oP(1).

3.2 Covariance estimation in GEV-models

The asymptotic covariance matrices 𝚺(pwm) and 𝚺(tl),(s,t) from Corollary 2 and 3 are known functionals of (𝚵(R),𝝑) and
(𝚵(M,s,t),𝝑), respectively. Replacing both objects by their respective estimators (where the PWM estimator �̂�(pwm) is used
for estimation of 𝚺(pwm) and likewise for the TLM estimator), we obtain what we call empirical estimators and denote
them by �̂�(pwm) and �̂�(tl),(s,t), respectively. Consistency is a direct consequence of consistency of �̂�(⋅) and �̂�(⋅). In view of the
fact that the jth element of the block diagonal, say 𝚺(⋅)j,j , is a known, smooth functional of 𝝑j, a second set of consistent
estimators may be obtained by replacing 𝝑j by the respective estimator in that functional. However, throughout extensive
simulation experiments, these modified estimators were found to frequently produce invalid covariance matrices (unless
d = 1), whence they are unsuitable for testing issues.

Finally, regarding the PML-estimator, the covariance matrix 𝚺(pml) from Theorem 2 may be estimated by �̂�(pml) =
(�̂�(pml)

j,𝓁 )dj,𝓁=1 where

�̂�(pml)
j,𝓁 = n

max(nj,n𝓁)
Î−1
𝝑j

⎡⎢⎢⎣
1

min(nj,n𝓁)

n∑
i=max(aj,a𝓁 )+1

(
Yi,j − Y j,nj

)(
Yi,𝓁 − Y𝓁,n𝓁

)′⎤⎥⎥⎦
Î−1
𝝑𝓁 ,

with Yi,j = �̇��̂�j
(Xi,j),Y j,nj =

1
nj

∑n
i=aj+1Yi,j and

Î𝝑j =
1
nj

n∑
i=aj+1

(
Yi,j − Y j,nj

)(
Yi,j − Y j,nj

)′
.

4 ASYMPTOTIC TESTING PROCEDURES

From Corollaries 2 and 3 and Theorem 2 we conclude the asymptotic normality of PWM-, TLM-, and PML-estimators of
the GEV-parameters, respectively; subsequently generically denoted by

√
n(�̂� − 𝝑0)

D
−−→ (0,𝚺). To construct asymptot-

ically valid tests, that is, tests that hold the respective significance level for n →∞, the principle of the Wald test can be
used. More precisely, for hypotheses of the form

H0 ∶ h(𝝑) = 0 versus H1 ∶ h(𝝑) ≠ 0 (7)

with some known continuously differentiable function h ∶ R3d → Rq, the test statistic

Tn = n (h(�̂�))′
(

ḣ(�̂�) �̂� (ḣ(�̂�))′
)−1

h(�̂�), (8)

converges in distribution to the 𝜒2
q -distribution with q degrees of freedom, under H0. Here, �̂� denotes a consistent

estimator of 𝚺 and ḣ is the Jacobi matrix of h. The convergence result is an immediate consequence of the delta
method, Slutsky’s theorem and the continuous mapping theorem. As a consequence, rejecting H0 if the observed
value of Tn exceeds the (1 − 𝛼)-quantile of the 𝜒2

q -distribution defines an asymptotic test of significance level 𝛼. The
(1 − 𝛼)-quantile may also be replaced by the empirical (1 − 𝛼)-quantile of a suitable bootstrap sample of Tn, see Section 5
for details.
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Within the next two subsections, we discuss two practical examples of primal importance for which hypotheses of the
general form in (7) play a major role.

4.1 Testing the index flood assumption

A common application in hydrology is regional flood frequency analysis (RFFA), where one observes flood flows at d
sites of a region with site-specific distributions Fj for j ∈ {1, … , d} and in which it is of interest to combine regional
information in order to decrease the variability of estimation at specific sites. Such an approach, referred to as a pooling
method, is typically based on certain assumptions that ensure “regional homogeneity”. As an important example, the
so-called index flood (IF) approach (Dalrymple, 1960) considers the homogeneity hypothesis

0,IF ∶

{
∃ c.d.f. G and constants sj = s(Fj) > 0 such that
F−1

j = sj ⋅ G−1 for all j = 1, … , d.

Here, sj = s(Fj) denotes a site specific scaling factor (often a population mean or some other location parameter) and G is
typically assumed to follow some parametric family, that is, G = G𝝑 with 𝝑 unknown (e.g., the GEV distribution).

While a moderate amount of heterogeneity in the group of sites may still lead to an overall improvement compared
to individual local estimation (because of a reduction of variance, see Lettenmaier et al., 1987), strong heterogeneity
typically leads to a severe bias that may render the potential improvement in terms of estimation variance useless. It is
thus important to identify serious sources of heterogeneity. The given framework allows to construct an asymptotic testing
procedure under a GEV assumption.

More precisely, suppose that we have observations meeting sampling scheme (1) with site-specific distribution func-
tions Fj = G𝝑j , j = 1, … , d, the c.d.f. of the GEV(𝜇j, 𝜎j, 𝜉j)-distribution with parameter vector 𝝑j = (𝜇j, 𝜎j, 𝜉j)′. In this case,
a simple calculation shows that the Index Flood assumption0,IF is equivalent to

′
0,IF ∶

𝜇1
𝜎1
= · · · = 𝜇d

𝜎d
and 𝜉1 = · · · = 𝜉d. (9)

Let �̂� = (�̂�1, �̂�1, 𝜉1, … , �̂�d, �̂�d, 𝜉d)′ denote a generic estimator of the parameter vector 𝝑 = (𝝑1, … ,𝝑d)′ and let �̂� denote a
corresponding estimator (see Section 3) for the covariance matrix of the limiting distribution. Defining h ∶ R3d → R2(d−1)

as

h(𝝑) =
(
𝜇1
𝜎1
− 𝜇2
𝜎2
, … ,

𝜇d−1
𝜎d−1

− 𝜇d
𝜎d
, 𝜉1 − 𝜉2, … , 𝜉d−1 − 𝜉d

)′
,

the hypothesis in (9) can be expressed as h(𝝑) = 0, which is of the required form in (7). Further note that h(𝝑) = h̃(g(𝝑))
with g(𝝑) = (𝜇1∕𝜎1, … , 𝜇d∕𝜎d, 𝜉1, … , 𝜉d) and h̃(𝛿1, … , 𝛿d, 𝜉1, … , 𝜉d) = (𝛿1 − 𝛿2, … , 𝛿d−1 − 𝛿d, 𝜉1 − 𝜉2, … , 𝜉d−1 − 𝜉d),
showing that we are dealing with a linear hypothesis in g(𝝑), whence the Wald test statistic is invariant with respect to
permutations of the coordinates.

Section 5.2 contains a thorough study concerning this testing procedure. Power and size are analyzed in finite sample
cases and subsequently a bootstrap procedure for size correction is given.

4.2 Testing assumptions for intensity-duration-frequency curves

Another potential application for the general testing procedure arises from intensity-duration-frequency (IDF) curves, a
commonly used tool for linking intensity and duration of extreme precipitation events to their frequency, that is, their
return period. More precisely, suppose that yearly maxima of the time series of average precipitation amounts (e.g.,
measured in mm∕h) collected over successive time periods of duration d1, … , dk (for instance, d1 = 1, d2 = 24, d3 = 48,
measured in hours) at a fixed location is modeled by a c.d.f. F = Fj.

According to Koutsoyiannis et al. (1998), the intensity ij = i(dj, p) = F−1
j (p) related to non-exceedance probability p ∈

(0, 1) (i.e., frequency) and duration dj is typically assumed to satisfy
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ij =
𝜔

(d𝜈j + 𝜃)𝜂
, (10)

where𝜔, 𝜈, 𝜃, 𝜂 are certain non-negative parameters satisfying 𝜈𝜂 ≥ 1. If dj ≥ 1 hour for all j, one often applies a simplified
or reduced model with 𝜈 = 1 and 𝜃 = 0, which may be motivated by simple and multifractal scaling properties (Boukhelifa
et al., 2018; Jurado et al., 2020). In that case, if Fj = G𝝑j is the c.d.f. of the GEV-distribution with parameter vector 𝝑j =
(𝜇j, 𝜎j, 𝜉j)′, relationship (10) is typically guaranteed by assuming that

𝜇j = �̃� 𝜎j, 𝜎j = �̃� d−𝜂0
j , 𝜉j = 𝜉0,

for some parameters �̃�, �̃�, 𝜉0, 𝜂0 that do not depend on the duration. A simple calculation shows that the parametric
constraints of this simplified model are equivalent to

𝜇1
𝜎1
= · · · = 𝜇k

𝜎k
,

𝜉1 = · · · = 𝜉k,
ln(𝜎2∕𝜎1)
ln(d2∕d1)

= · · · =
ln(𝜎k∕𝜎1)
ln(dk∕d1)

. (11)

Similar to the application in Section 4.1, a function h can be constructed such that the constraints in (11) are equivalent
to h(𝝑) = 0, where 𝝑 = (𝝑1, … ,𝝑k)′. This, again, is of the required form in (7).

5 FINITE-SAMPLE PROPERTIES

The finite-sample properties of the homogeneity tests for the Index Flood Assumption (Section 4) are evaluated in a large
scale simulation study. The underlying data generating processes are explained in Section 5.1 and the homogeneity test
is illustrated in Sections 5.2–5.4. Throughout, results on the PWM estimator are omitted in view of Remark 1, as they can
be directly inferred from the L-moment results.

5.1 Data generating process

Many environmental applications involve block maxima collected at various spatial stations. Mathematical theory sug-
gests to model such data by max-stable processes, as the latter are the only processes that can arise, after proper affine
transformation, as the limit of maxima of independent and identically distributed random fields {Yi(x) ∶ x ∈ Rp} (Davi-
son et al., 2012). In particular, the marginal distribution at each specific location is necessarily GEV(𝝑), possibly with
location-specific parameter vector 𝝑 = 𝝑(x).

The data generating process used throughout this simulation study builds upon the max-stable Schlather model
(Schlather, 2002). The latter is a stationary process {Z(x) ∶ x ∈ R2}with unit Fréchet margins whose bivariate distribution
function is given by

P(Z(0) ≤ z1,Z(x) ≤ z2) = exp
[
−1

2
(

z−1
1 + z−1

2
){

1 +
(

1 − 2 (𝜌(||x||) + 1)z1z2
(z1 + z2)2

) 1
2
}]

,

where 𝜌 is a correlation function and ||x|| denotes the Euclidean norm of x. Throughout, we employ the Whittle-Matérn
correlation function

𝜌𝜂,𝜇(h) =
21−𝜈

Γ(𝜈)

(
h
𝜂

)𝜈
K𝜈

(
h
𝜂

)
, h ≥ 0,

where K𝜈 denotes the modified Bessel function of order 𝜈 and where 𝜈 > 0 and 𝜂 > 0 are called smoothness and range
parameter, respectively; see Figure 1.

91



10 of 21 LILIENTHAL et al.

F I G U R E 1 Left: Whittle-Matérn correlation function for fixed smoothing parameter 𝜈 = 0.5 and range parameter 𝜂 ∈ {1, 2, 3, 4, 5}.
Right: Stations on a grid with respective location and scale parameters

The max-stable Schlather model can be transformed into a max-stable process with GEV(𝜇(⋅), 𝜎(⋅), 𝜉(⋅)) margins by
letting

X(x) = 𝜇(x) + 𝜎(x)Z(x)
𝜉(x) − 1
𝜉(x) . (12)

A simulated sample from this model at a given finite set of locations  = {x1, … , xd} can be obtained by the func-
tion ‘rmaxstab’ from the R-package SpatialExtremes (Ribatet, 2020). Throughout,  is chosen as a

√
d ×
√

d-grid
{0, 1, … ,

√
d}2, where d ∈ {4, 9}. Moreover, we fix 𝜈 = 0.5, as suggested by a data analysis of annual maxima of daily

maximum rainfall in Davison et al. (2012). We further allow for different 𝜂 ∈ {1, 3, 5} to control the strength of spatial
dependence. Finally, 𝜇(x), 𝜎(x) and 𝜉(x) are specified in the next subsections.

5.2 Testing the index flood assumption

In this section, we empirically examine the homogeneity test from Section 4.1. The data generating process is as in
Section 5.1, with results only reported for d = 9 locations x ∈  = {0, 1, 2}2. Under the null hypothesis, we set 𝜉(x) = 𝜉 ∈
{−0.4,−0.2, 0, 0.2, 0.4} constant, 𝜇(x) = 2𝜎(x) and

𝜎(x) = 7 + 3x1 + 4x2 − 3x1x2 ⋅ 1(x1 + x2 ≥ 3),

see the right panel in Figure 1 for an illustration. Moreover, we consider as an alternative a scenario with two nearly
homogeneous groups of stations containing 6 and 3 stations, respectively. The larger group is generated as under the null
hypothesis, while the smaller group deviates from the other group as follows: the shape parameter in the deviating group
is 𝜉dev = 𝜉 + c𝜉 , with c𝜉 ∈ {−0.15,−0.10,−0.05, 0, 0.05, 0.10, 0.15}. The scale parameters are uniformly manipulated by
adding c𝜎 ∈ {−2.25,−1.125, 0, 1.125, 2.25} to the local scale parameter of the other group, while the location parameters
stay fixed. More precisely, we have scale parameters 𝜎dev(x) = 𝜎(x) + c𝜎 and location parameters 𝜇dev = 𝜇(x) as before.
The dispersion parameters in the deviating group are thus 𝜇(x)∕𝜎dev(x) ≠ 2. The constants c𝜉 and c𝜎 will be referred to as
the ‘manipulation’ of shape and scale, respectively. Members of the deviating group are the stations located at (2, 0), (2, 1)
and (2, 2). The null hypothesis is investigated for n1 = n ∈ {50, 75,100, 150,200, 250,300, 500, 1000, 1750, 2500}, and with
n1 = n2 = n8 = n9 = n, n3 = n7 = ⌊0.8 n⌋, n4 = n6 = ⌊0.85n⌋ and n5 = ⌊0.9 n⌋. These values, many of which seem unre-
alistically large for real world record lengths, are chosen mainly for illustrative purposes and shall emphasize that the
derived tests are only asymptotic level 𝛼 tests, that is, the significance level can only be guaranteed to hold in the limit.
The same setting is evaluated under the alternative, but for n1 = n ∈ {100,300, 500} only. The level of the test is fixed to
𝛼 = 0.05. During simulation, the strength of spatial correlation, that is, the value of the range parameter 𝜂, was found to
have very little influence on the rejection rates of the tests, so we only present results for 𝜂 = 3.
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F I G U R E 2 Error rates of the proposed test for increasing sample length

The test statistic (8) is calculated with �̂� being either the LM, TLM(0,1), TLM(0,2) or PML estimator, and with �̂�
the respective covariance estimator. Stationwise GEV-parameter estimation based on the first three estimators is carried
out with functions provided in the R-package TLMoments (Lilienthal, 2019b), while for ML estimation the function
fgev() from the evd-package (Stephenson, 2018) is used. For the latter, when true shape parameters were very small
(𝜉dev ≤ −0.4) and starting values were computed with the standard routine implemented in fgev(), we noticed some
instabilities regarding convergence toward the global maximum, resulting in unrealistic estimates. Therefore, we choose
L-Moment based GEV-parameter estimates as starting values whenever the covariance matrix of the resulting estimate
can be computed and is not singular, otherwise we stick to the default method.

Next to our formal tests, we also compute the heterogeneity measure HW of Hosking and Wallis (1993) as implemented
in the R-Package homtest (Viglione, 2012), which compares the observed variability of L-moment ratios to that expected
under homogeneity. Following Hosking and Wallis (1993), the sample is called “acceptably homogeneous”, “possibly
heterogeneous” or “definitely heterogeneous”, whenever HW < 1, 1 ≤ HW < 2 or HW ≥ 2, respectively. To make the
results comparable, the test that is obtained when rejecting the null hypothesis when HW ≥ 1 is called HW 1, while the
one obtained when rejecting if HW ≥ 2 is called HW 2. However, it is important to keep in mind that these tests are not
classical level-𝛼-tests.

The proportion of test rejections is interpreted as empirical error in the homogeneous case and as empirical power in
the heterogeneous case. The results under the null hypothesis are illustrated in Figure 2. It can be seen that most tests
(except for HW) approach the nominal level of 5% for increasing maximal sample size n. However, all tests (except for HW)
are very liberal (i.e., the null hypothesis is rejected more frequently than suggested by the significance level) for small or
even medium sample lengths (n ≤ 200), with decent level approximations often requiring n ≥ 1000. This is an important
message for applications: the asymptotic tests are not reliable for realistic real world record lengths, and modifications
such as those worked out in Section 5.3 below are necessary.

Comparing across (non HW-)methods, the PML method overall provides the most accurate test, except for 𝜉 = −0.4.
Finally, the tests derived from the Hosking Wallis criterion are quite conservative at the 5% level, in particular for larger
shapes.

The empirical power of the tests is illustrated in Figure 3, where we restrict attention to n = 300 (n = 100 and n = 500
lead to qualitatively similar results, with slightly higher error rates and lower power for n = 100, and vice versa for n =
500). The plot is to be read as follows: the columns indicate the shape parameter of the GEV distribution of the reference
group, while the rows indicate the estimator that the test was based on. The central square of each grid represents the
rejection rate under the null hypothesis (only one group, no station was manipulated), which is to be compared to the
theoretical significance level 𝛼 = 5%. As explained at the beginning of this section, deviations from the null hypothesis are
generated by uniformly manipulating the scale and shape parameters of three stations, which is done by adding constants
c𝜉 and c𝜎 to the scale and shape parameters of the reference stations. Moving along the x-axis therefore corresponds to
the amount c𝜎 that was added to the initial scale parameters 𝜎(x) of the reference group, while moving along the y-axis
corresponds to the amount c𝜉 that the shape parameters between the groups differ. Hence, the alternative is met for all but
the central square, and the corresponding rejection rates provide an approximation of the power of the test. In accordance
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F I G U R E 3 Rejection rates (%) of the proposed test with n = 300 and 𝜂 = 3

with the results under H0, the error rate (centre point) exceeds the level of 5% for all of the non-HW versions, with barely
acceptable rates for all but the PML test (for which error rates are between 5% and 11%).

The HW-tests’ level is well below 5%, and accordingly the tests exhibit quite little power.

5.3 Bootstrap procedure

In view of the disappointing test behavior for small to moderate sample sizes, we next investigate a modification of the
above tests that is based on a parametric bootstrap technique. More precisely, given an observed sample as in (1), we start
by computing the value of the test statistic Tn from (8). Next, we calculate estimators of the GEV parameters under the
homogeneity constraints from (9). For that purpose, we apply different methods depending on the method of parameter
estimation.

First, for the TL-moment versions, we rely on the following relationship between GEV parameters and TL-moment
ratios: let 𝜏 (s,t)2 = 𝜆(s,t)2 ∕𝜆(s,t)1 , 𝜏 (s,t)3 = 𝜆(s,t)3 ∕𝜆(s,t)2 denote the first two TL(s, t)-moment ratios. Then
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𝜉 = g𝜉
(
𝜏 (s,t)3

)
,

𝛿 = g𝛿
(
𝜏 (s,t)2 , 𝜏 (s,t)3

)
,

𝜇 = g𝜇
(
𝜆(s,t)1 , 𝜏 (s,t)2 , 𝜏 (s,t)3

)
,

where the explicit forms of g𝜉 , g𝛿, g𝜇 can be derived from the relation between 𝜏2, 𝜏3 and 𝜆1, 𝜆2, 𝜆3 and Equations (A.1),
(A.1) from the Appendix, see also Lilienthal (2019a). The shape and dispersion parameter satisfying the homogeneity
assumption are then estimated by plugging the weighted sample means 𝜏 (s,t)3 and 𝜏 (s,t)2 of 𝜏 (s,t)3 and 𝜏 (s,t)2 , respectively, into
g𝜉 and g𝛿 , where 𝜏 (s,t)i =

(∑d
j=1nj𝜏(s,t)i,j

)
∕
(∑d

j=1nj

)
. Finally, for estimation of the location parameters, the local estimates

of 𝜆(s,t)1 are plugged into g𝜇 along with 𝜏 (s,t)3 and 𝜏 (s,t)2 . Altogether, the GEV parameters at site j are estimated by

�̂�
(tl),(s,t)
j = (�̂�j, �̂�j, 𝜉j)′ =

⎛
⎜⎜⎝

g𝜇(𝜆(s,t)1,j , 𝜏
(s,t)
2 , 𝜏 (s,t)3 ),

g𝜇(𝜆(s,t)1,j , 𝜏
(s,t)
2 , 𝜏 (s,t)3 )

g𝛿(𝜏 (s,t)2 , 𝜏 (s,t)3 )
, g𝜉(𝜏 (s,t)3 )

⎞
⎟⎟⎠

′

.

For PML-estimation under the homogeneity constraints, we choose to minimize

(𝛿, 𝜎1, … , 𝜎d, 𝜉) → 𝓁𝛿,𝜎1,… ,𝜎d,𝜉(x) =
d∑

j=1

n∑
i=aj+1

{
log(𝜎j) +

(
1
𝜉
+ 1
)

log(yij) + y
− 1
𝜉

ij

}
,

where yij = max{1 + 𝜉( xij

𝜎j
− 𝛿), 0} and where the summands are defined by continuous extension for 𝜉 = 0. From the

obtained estimates (𝛿, �̂�1, … , �̂�d, 𝜉), local location parameter estimates are derived by �̂�j = 𝛿�̂�j.
In order to obtain bootstrap samples that exhibit the (approximately) correct dependence structure, we proceed as

follows: once the local GEV parameters are estimated, we transform the observations stationwise to approximately unit
Fréchet distributed data (under H0) by inverting (12):

Zi,j =
{

1 + 𝜉j
Xi,j − �̂�j

�̂�j

} 1
𝜉j

+
, i = aj + 1, … ,n.

The transformed sample may then be fitted to a max-stable process model. Since the true model of the max-stable pro-
cess is unknown, we fit several ones and select the one with minimal value of the composite likelihood information
criterion (CLIC), which corresponds to the Takeuchi model selection criterion adapted to the pairwise likelihood setting
(Davison and Gholamrezaee, 2012). Models fitted are the Schlather model with Whittle Matérn and Powered Exponential
correlation function as well as a Smith model. For more details on the models, see for example, Davison et al. (2012).

Now that both the margins and the dependence structure are specified, we repeat the following bootstrap step for b =
1, … ,B. First, we generate new data by sampling from the selected max-stable process model with respective estimated
spatial dependence parameters. Then we transform the unit Fréchet to GEV margins by applying transformation (12)
stationwise with local GEV parameters �̂�j, �̂�j, 𝜉j, j = 1, … , d. Note that the obtained sample fulfills the null hypothesis
of homogeneity. Then the value of the test statistic T∗n,b is computed and from the series of test statistics we calculate the
bootstrapped p-value by

pcorr =
1

B + 1

B∑
b=1
1(Tn ≤ T∗n,b).

The bootstrap test was carried out for the heterogeneous data setting described in the previous section. Attention was
restricted to the LM-, TLM(0, 1)- and PML-based estimation, as TLM(0, 2) was found to perform similarly, but slightly
worse than TLM(0, 1) (see Figures 2 and 3).

We chose B = 300 and again every scenario is replicated 2000 times. Results are shown in Figure 4 for nmax = 100. For
all bootstrap tests (top three rows), the empirical error is between 3% and 6%, most often even between 4% and 5%, there-
fore accurately achieving the intended asymptotic level of the test. The LM and PML versions outperform the TLM(0, 1)
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F I G U R E 4 Empirical power (in %) of the proposed test for nmax = 100, d = 9 and 𝜂 = 3, based on the bootstrap procedure (top three
rows) and the heterogeneity measure of Hosking and Wallis (bottom two rows)

version in terms of power, with a slightly better overall behavior of the LM version, except for scenarios with very high
shape parameter (𝜉 = 0.4, right column of Figure 4). Rejections rates based on the Hosking-Wallis criteria are shown in
the bottom two rows. Quite remarkably, the PML and LM bootstrap tests outperform or can at least compete with the
Hosking-Wallis criteria, since for the former tests the power is higher or at least comparable. Especially in scenarios where
both the shape and dispersion parameters of the deviating group deviate toward the same direction (i.e., when c𝜉 and c𝜎
have opposite signs; note that decreasing c𝜎 increases the dispersion).

5.4 Dimension versus record length

In practice, homogeneity tests will typically be applied in situations where one is a priori expecting some form of
homogeneity. However, when the number of potentially homogenous stations d increases, it is more likely that the
signal-to-noise ratio for detecting possible heterogeneities decreases, such that it is harder for any test to detect those het-
erogeneities. The tests will hence be less likely to be significant, resulting in nonrejection of the null-hypothesis and thus
in treating the data as homogeneous.

To illustrate this issue, we performed some simulations specifically addressing the detection of heterogeneity when
the number of stations d grows. To make the magnitudes of heterogeneity and thus, the rejections rates for different d,
comparable, we proceed in the following way. For each value of d, we generate data that consists of either

(a) two equally sized heterogeneous groups that are homogeneous within the groups;
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F I G U R E 5 Rejection rates as a function of the dimension d, that is, the number of stations considered for the test, for scenarios (a) and
(b) as described in the text

(b) one large homogeneous group with d − 1 stations and one single station whose distribution deviates from the large
group.

More precisely, we started by simulating d-dimensional data of length n = 75 from a max-stable process with
max-stable process parameters 𝜂 = 3 and 𝜈 = 0.5 and with unit Fréchet margins. For simplicity, we restrict attention
to full record lengths, that is, no values are missing. Margins are then transformed to GEV margins, with constant
location, scale and shape parameters within the groups. In the interest of mimicking a real-data scenario, the GEV
parameters that were chosen for the latter step are based on clustering the stationwise dispersion and shape param-
eters of the winter maxima used in the case study of Section 6 into two clusters, and then computing the mean
location and mean scale parameters within the found clusters. The two parameter vectors are (50.28, 23.69, 0.27) and
(14.15, 8.29, 0.14) (i.e., the ratio of location and scale is approximately 1.7 in the first and 2.12 in the second group).
Then the PML, LM, and TLM(0, 1) bootstrap tests are applied, as well as the test based on HW’s heterogeneity
measure.

The resulting rejection rates as a function of dimension d are shown in Figure 5, with the left-hand side giving the
results for scenario (a) and the right-hand side the results for scenario (b). It can be seen that the curves of the rejection
rates are falling quite monotonically in scenario (b). Compared to scenario (a), the rejection rates are smaller overall,
which also seems natural. However, we also find an approximately decreasing rejection rate in scenario (a) for the boot-
strap based tests. This could be explained by the circumstance that the number of parameters that need to be estimated
grows as O(d2). To sum up, the results indicate that the proposed tests should only be applied when the ratio of dimension
and record length and hence the potential signal-to-noise ratio is moderate.

6 CASE STUDY

The derived index flood tests were applied to flood peak data (maximal water discharge in m3∕s) observed at several
gauging stations located in the Elbe river basin in Saxony, Germany. In total there are 26 gauging stations at 15 distinct
waters, with record lengths varying from 64 to 103 years and catchment areas between 36 and 5433 km2. Since the basin
is located at the north side of the Ore Mountains, the sites differ a lot in mean elevation, from a minimum of 168 m to a
maximum of 1244 m above sea level. We perform a group-building process prior to applying the homogeneity tests. This
has been done for two reasons: first, the index flood assumption is not expected to hold over the entire region, as we have
quite heterogeneous site characteristics. Second, as argued in Section 5.4, the tests do not have high power in scenarios
where the record length is small compared to the dimension. In fact, we will see below that even group-wise homogeneity
is rejected in some of the groups, which naturally implies that the entire set of stations is heterogeneous as well.

For the group building, we chose the k-means clustering algorithm based on five standardized site characteristics:
mean elevation, proportion of forest area, stream density, length of main watercourse and length of stream network. Note
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T A B L E 1 Cluster means of the different clustering variables (standardized)

Group size Mean elevation Forest area prop. Length main watercourse Length stream network Stream density

Group 1 9 −0.66 −0.63 −0.62 −0.50 0.22

Group 2 8 −0.32 −0.52 1.18 1.04 0.42

Group 3 9 0.94 1.09 −0.43 −0.43 −0.59

Note: Length of main watercourse, length of stream network and stream density are given as logarithmic values.

F I G U R E 6 Locations of the 26 gauging stations colored by groups found by k-means clustering. Numbers within the circles indicate
the numbering within groups, as treated in the parameter estimates in Tables 4 and 3

that both longitude and latitude were found to be highly correlated to mean elevation (𝜌 = −0.66 and 𝜌 = −0.85, respec-
tively), and were hence excluded from the group building process in order to guarantee (approximate) independence of
the chosen explanatory variables. Based on visual inspection of the “elbow plot”, k = 3 clusters were chosen, with result-
ing cluster sizes and cluster means (of the standardized values) presented in Table 1. Figure 6 shows the locations of the
stations and the belonging to groups.

Next, tests on homogeneity were performed within each of the three groups, and with candidate dependence models
as in Section 5.3. Since monthly flood peaks are available, we split the analysis into the maxima of summer months
(May–October) and winter months (November–April) of the (german) hydrological year. Since record lengths are small
and the asymptotic tests did not achieve their theoretical level in the simulation studies of Section 5, we decided to only
apply the bootstrap procedures. Since there was no scenario where the TLM(0, 1)-bootstrap test had more power than one
of the LM- or PML-bootstrap test, we only compute p-values of the latter two. In every scenario, the bootstrap tests were
carried out with B = 500 bootstrap repetitions.

The results are shown in Table 2. The PML-based test does not reject the hypothesis of homogeneity for any of the
groups regarding winter maxima, while the LM-based test rejects the homogeneity assumption at the 5% level in groups
2 and 3. The Hosking Wallis heterogeneity measure comes to the same conclusion as the LM-based test (version HW 1
from Section 5.2). For summer maxima, both bootstrap tests agree that, at the 5% level, the index flood assumption does
not hold in group 1, while it cannot be rejected in group 2. In group 3 the PML-based test rejects homogeneity at the 5%
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T A B L E 2 Row 2 and 3: p-values of the bootstrap-based homogeneity test for winter (summer) maximal flood peaks based on 500
bootstrap replications, for the PML- and the LM-based method, with significant values at the 5% level in boldface. Row 4: values of the
Hosking Wallis homogeneity statistic; values above 1 in boldface

test Group 1 Group 2 Group 3

boot-PML 0.685 (0.018) 0.134 (0.327) 0.271 (0.034)

boot-LM 0.186 (0.045) 0.010 (0.110) 0.024 (0.073)

HW −2.92 (−0.03) 1.18 (0.42) 2.94 (0.27)

T A B L E 3 Obtained local parameter estimates for winter maxima of flood peaks in the Elbe basin data, along with parameter
estimation under the constraint of homogeneity (column H0 est.)

Group Parameter est. Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 H0 est. wss

1 Dispersion PML 2.05 1.99 1.82 2.11 2.23 1.98 1.96 2.10 2.13 2.03 0.10

LM 1.96 1.97 1.71 1.97 2.11 1.91 1.83 2.15 2.18 2.00 0.16

Loc PML 7.73 19.65 15.55 293.08 111.54 40.44 3.96 46.83 7.93

LM 7.81 19.59 15.80 298.68 113.14 40.61 4.04 46.24 7.85

Scale PML 3.76 9.87 8.55 138.76 50.10 20.39 2.02 22.33 3.72

LM 3.98 9.93 9.22 151.45 53.54 21.23 2.20 21.47 3.61

Shape PML 0.23 0.11 0.04 0.20 0.29 0.11 0.20 0.18 0.20 0.18 0.04

LM 0.17 0.11 −0.03 0.11 0.22 0.08 0.10 0.22 0.23 0.14 0.05

2 Dispersion PML 1.61 1.77 2.29 2.34 2.34 2.03 2.23 1.68 1.95 0.66

LM 1.48 1.66 2.41 2.39 2.23 1.97 2.08 1.59 2.07 0.91

Loc PML 13.10 6.23 52.92 31.90 18.03 16.49 47.66 13.30

LM 13.76 6.29 52.09 31.58 18.13 16.50 48.62 13.45

Scale PML 8.14 3.52 23.15 13.65 7.70 8.12 21.42 7.92

LM 9.29 3.78 21.65 13.23 8.15 8.37 23.34 8.46

Shape PML 0.26 0.02 0.29 0.33 0.07 0.09 0.36 0.05 0.19 0.12

LM 0.09 -0.03 0.36 0.36 0.03 0.07 0.25 −0.01 0.24 0.23

3 Dispersion PML 1.64 2.09 1.98 2.09 2.33 2.19 1.80 1.59 1.84 1.90 0.42

LM 1.56 1.97 1.93 1.98 2.29 2.10 1.71 1.50 1.70 1.88 0.43

Loc PML 5.12 37.68 115.86 35.21 7.74 10.41 20.00 25.92 13.99

LM 5.24 38.22 116.66 35.84 7.73 10.51 20.17 26.06 14.44

Scale PML 3.13 18.04 58.46 16.81 3.33 4.76 11.13 16.30 7.62

LM 3.36 19.42 60.57 18.10 3.37 5.01 11.78 17.38 8.49

Shape PML 0.42 0.12 0.28 0.32 0.23 0.28 0.11 -0.01 0.24 0.23 0.10

LM 0.32 0.05 0.23 0.23 0.21 0.22 0.06 −0.05 0.11 0.18 0.09

Note: The last column shows the sum of weighted squared deviations of local parameter estimates from the estimated value under the homogeneity
assumption, where the weights are the ratios of local sample lengths and maximal sample length of the group.

99



18 of 21 LILIENTHAL et al.

T A B L E 4 Obtained local parameter estimates for summer maxima of flood peaks in the Elbe basin data, along with parameter
estimation under the constraint of homogeneity (column H0 est.)

Group Estimated.par Estimator Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 H0 est. wss

1 Dispersion PML 1.59 1.54 1.30 1.48 1.74 1.79 1.76 1.55 1.57 1.56 0.18

LM 1.62 1.54 1.22 1.41 1.67 1.87 1.79 1.58 1.54 1.53 0.31

loc PML 5.30 12.65 9.44 185.96 95.29 36.97 2.61 31.48 6.87

LM 5.24 12.61 9.87 190.31 96.76 36.34 2.57 30.97 6.86

scale PML 3.32 8.22 7.27 125.47 54.84 20.71 1.48 20.36 4.39

LM 3.24 8.20 8.08 134.89 57.78 19.41 1.44 19.55 4.44

shape PML 0.47 0.29 0.48 0.47 0.44 0.22 0.27 0.31 0.35 0.36 0.08

LM 0.48 0.29 0.34 0.37 0.37 0.28 0.32 0.36 0.34 0.36 0.03

2 Dispersion PML 1.37 1.38 1.56 1.52 1.42 1.64 1.52 1.15 1.42 0.15

LM 1.27 1.28 1.48 1.43 1.37 1.58 1.43 1.09 1.41 0.16

Loc PML 7.26 4.40 43.89 26.19 10.78 12.71 35.64 8.20

LM 7.67 4.65 45.43 27.04 11.01 12.96 36.98 8.67

Scale PML 5.30 3.18 28.11 17.26 7.60 7.76 23.47 7.13

LM 6.03 3.64 30.78 18.87 8.01 8.22 25.92 7.98

Shape PML 0.54 0.30 0.51 0.49 0.35 0.40 0.45 0.55 0.43 0.06

LM 0.37 0.14 0.38 0.37 0.27 0.32 0.33 0.39 0.35 0.05

3 Dispersion PML 1.72 1.42 1.44 1.64 1.98 1.74 1.29 1.26 1.50 1.52 0.36

LM 1.76 1.40 1.36 1.52 1.96 1.71 1.20 1.16 1.50 1.40 0.55

Loc PML 2.77 21.55 73.00 25.76 6.88 12.85 12.76 18.00 11.09

LM 2.75 21.75 75.80 26.85 6.89 12.91 13.76 19.57 11.03

Scale PML 1.61 15.15 50.53 15.73 3.48 7.40 9.85 14.31 7.41

LM 1.56 15.52 55.55 17.63 3.51 7.54 11.45 16.95 7.37

Shape PML 0.41 0.57 0.49 0.48 0.41 0.40 0.59 0.40 0.37 0.44 0.04

LM 0.44 0.52 0.37 0.33 0.38 0.36 0.37 0.18 0.36 0.38 0.05

Note: The last column shows the sum of weighted squared deviations of local parameter estimates from the estimated value under the homogeneity
assumption, where the weights are the ratios of local sample lengths and maximal sample length of the group.

level, while the LM-based test’s p-value slightly exceeds 0.05. The Hosking Wallis heterogeneity measure, on the other
hand, does not find any evidence against homogeneity.

The obtained results may be interpreted in light of the findings of the simulation experiments. First of all, the Hosk-
ing Wallis procedure was overall found to be most conservative, and, indeed, any of its rejections is also detected by the
LM-based test. The different findings between the LM- and PML-based tests may partly be explained by the different
power properties uncovered in Section 5.3; namely, that the LM-based bootstrap test outperforms the PML-based one
when shapes are moderately high. Taking a closer look at the local parameter estimates for winter maxima (Table 3)
reveals that the data might fall into this scenario. On the other hand, for summer maxima and group 3, the PML-based
bootstrap is the only test that detects heterogeneity. Again, the parameter estimates in Table 4 provide a possible
explanation: the estimated local shape parameters are rather high, exceeding 0.4 almost everywhere. This is exactly
the scenario in which the PML-bootstrap detected heterogeneity more often during the simulation study than the
LM-bootstrap did. Last but not least, the fact that HW 1 detects heterogeneity in group 2 for winter maxima while
PML does not can be explained by the simulations as well, as this behavior was found particularly in cases where
the reference shape parameter is 0 or 0.2 (compare the bottom left and top right corners of the 5 × 7 grids in the first
and fourth rows in Figure 4 for the columns were 𝜉 = 0 and 𝜉 = 0.2). Only the PML-based bootstrap not detecting

100



LILIENTHAL et al. 19 of 21

heterogeneity in group 3 for winter maxima lacks justification, since here also HW 2 would reject the homogeneity
assumption.

7 CONCLUSION

Many applications of GEV models in environmental statistics are based on small data sets where parameter estimates
suffer from large variance. Under appropriate homogeneity assumptions, the variance can be reduced by pooling obser-
vations from different variables. Such assumptions should be checked beforehand, and in this article, we have addressed
respective statistical tests that are based on large sample theory for a variety of classical parametric estimators. The large
sample theory was summarized in several mathematical theorems, which were augmented by consistency results on esti-
mators for the estimation variance. The main findings regarding practical applications can be summarized as follows:

• The tests based on critical values derived from large sample theory were found to be unreasonably liberal in simulation
experiments involving small to moderate sample sizes. Their practical use cannot be recommended for such sample
sizes.

• Fortunately, applying the tests with modified critical values based on a parametric bootstrap device was found to
provide accurate approximations of the nominal level, even for small sample sizes.

• Quite naturally, the tests’ power was found to be decreasing in the number of variables, and for typical sample lengths
of n ≤ 100 it is not advisable to apply the modified tests to more than 10 variables.

• Within a case study on flood peak data, the number of variables was first reduced by a clustering algorithm applied
to site characteristics such that the requirement from the previous bullet point was met. After that reduction, the tests
were able to detect heterogeneity within some of the groups.

Additional information and supporting material for this article is available online at the journal’s website.
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A Re-parametrization of the GEV distribution by

TL-moments

This section recaps the equation systems used to calculate GEV parameters from TL(0,0)-

and TL(0,1)-moments, respectively. We also present the corresponding Jacobi matrices

involved in the limiting covariance matrix of Corollary 2.4.

TL(0,0)

Let ϑ = (µ, σ, ξ)′ with ξ < 1 and λ = (λ1, λ2, λ3)′ denote parameters and untrimmed

L-moments of a GEV distribution, respectively. Hosking, Wallis, and Wood (1985) proved
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that ϑ = ϕ(0,0)(λ), where ϕ(0,0) is implicitly defined by equation system





2·3ξ−3·2ξ+1
2ξ−1 = λ3

λ2

σ = λ2ξ
Γ(1−ξ)(2ξ−1)

µ = λ1 + σ
ξ
(1− Γ(1− ξ))

, (A.1)

with Γ denoting the gamma function. However, there is no explicit expression for ϕ(0,0) as

a function of λ. Practitioners thus commonly replace the first line by

ξ = −7.859z − 2.9554z2, z = 2
3 + λ3/λ2

− log 2
log 3

based on a second order polynomial approximation in order to obtain an explicit solution.

Slightly abusing notation, we denote the resulting function by ϕ(0,0) as well. Accordingly the

Jacobi matrix ∂
∂λ
ϕ(0,0)(λ) involved in the asymptotic distribution of L-moment estimators

is approximated by that of the explicit solution. For the latter we obtain

A =




1 a12 a13

0 a22 a23

0 a32 a33




(A.2)

with

a12 =log (2) λ2 (Γ (1− π)− 1) 2π ρ θ
Γ (1− π) (1− 2π)2 + λ2 ψ0 (1− π) (Γ (1− π)− 1) ρ θ

Γ (1− π) (1− 2π) −

λ2 ψ0 (1− π) ρ θ
1− 2π + Γ (1− π)− 1

Γ (1− π) (1− 2π)

a13 =− log (2) λ2
2 (Γ (1− π)− 1) 2π+1 ρ ζ2

Γ (1− π) (1− 2π)2 −

2λ2
2 ψ0 (1− π) (Γ (1− π)− 1) ρ ζ2

Γ (1− π) (1− 2π) + 2λ2
2 ψ0 (1− π) ρ ζ2

1− 2π

a22 =− log (2) λ2 π 2π ρ θ
Γ (1− π) (1− 2π)2 −

λ2 ρ θ (ψ0 (1− π) π + 1)
Γ (1− π) (1− 2π) − π

Γ (1− π) (1− 2π)

a23 =log (2) λ2
2 π 2π+1 ρ ζ2

Γ (1− π) (1− 2π)2 + 2λ2
2 ρ ζ2 (ψ0 (1− π) π + 1)
Γ (1− π) (1− 2π)

a32 =− 2λ3 (2 b κ λ3 − a λ3 + 6 b κ λ2 − 4 b λ2 − 3 a λ2) ζ3
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a33 =2λ2 (2 b κ λ3 − a λ3 + 6 b κ λ2 − 4 b λ2 − 3 a λ2) ζ3,

where

a = −7.859, b = −2.9554, κ = log 2/log 3,

η = (2λ2ζ − κ), π = bη2 + aη, ζ = 1/(λ3 + 3λ2),

θ = (2ζ − 6λ2ζ
2), ρ = 2bη + a, ψ0(x) = Γ′(x)/Γ(x).

TL(0,1)

Considering trimmed L-moments λ(0,1) of a GEV distribution with parameters ϑ we have

ϑ = ϕ(0,1)(λ(0,1)), where ϕ(0,1) is implicitly defined by





5·4ξ−12·3ξ+9·2ξ−2
3ξ−2ξ+1+1 = 9λ(0,1)

3
4λ(0,1)

2

σ = 2·λ(0,1)
2

3Γ(−ξ)·(3ξ−2ξ+1+1)

µ = λ
(0,1)
1 + σ

ξ
− σ·Γ(−ξ)

(2ξ−2)−1

. (A.1)

In order to obtain an explicit solution, the first line can be replaced by a second order

polynomial approximation

ξ = −8.5674z + 0.6760z2, z = 10
9

λ
(0,1)
2

2λ(0,1)
2 + λ

(0,1)
3
− 2 log 2− log 3

3 log 3− 2 log 4 .

Slighlty abusing notation and denoting the resulting function by ϕ(0,1) as well, the Jacobi

matrix ∂
∂λ(0,1)ϕ

(0,1)(λ(0,1)) is approximated by

A =




1 a12 a13

0 a22 a23

0 a32 a33



, (A.2)
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where

a12 =−
2λ(0,1)

2 ψ0 (−π)
(
−2 b (ζ − η)

(
λ

(0,1)
2 ζ − κ

)
− a (ζ − η)

)
+ 2

3 π (−2π+1 + 3π + 1) γ (−π)

− 2λ(0,1)
2 (log (3) ι 3π − log (2) ι 2π+1) (1− (2π − 2)π γ(−π))

3π (−2π+1 + 3π + 1)2 γ (−π)

− 2 ι λ(0,1)
2

3π2 (−2π+1 + 3π + 1) γ (−π) −
log (2) ι λ(0,1)

2 2π+1 + 2 (2π − 2)
3 (−2π+1 + 3π + 1)

a13 =− 2λ(0,1)
2 (log (2) 2π+1 ρ− log (3) 3π ρ) (1− (2π − 2) π γ(−π))

3π (−2π+1 + 3π + 1)2 γ (−π)

− 2λ(0,1)
2 ρ (ψ0(−π) π − 2π log(2)− 1)
3 π2 (−2π+1 + 3π + 1) γ (−π)

a22 =−
2λ(0,1)

2 ψ0 (−π)
(
−2 b (ζ − η)

(
λ

(0,1)
2 ζ − κ

)
− a (ζ − η)

)
+ 2

3 (−2π+1 + 3π + 1) γ (−π)

− 2λ(0,1)
2 (log (3) ι 3π − log (2) ι 2π+1)

3 (−2π+1 + 3π + 1)2 γ (−π)

a23 =− 2λ(0,1)
2 (log (2) 2π+1 ρ− log (3) 3π ρ)

3 (−2π+1 + 3π + 1)2 γ (−π)
− 2λ(0,1)

2 ψ0 (−π) ρ
3 (−2π+1 + 3π + 1) γ (−π)

a32 =ι

a33 =− ρ

with

a = −8.5674, b = 0.6760,

κ = 2 log 2− log 3
3 log 3− 2 log 4 , θ = 3(λ(0,1)

3 + 2λ(0,1)
2 ),

ζ = 10/(3θ), η = 20λ(0,1)
2 /θ2,

π = b(λ(0,1)
2 ζ − κ)2 + a(λ(0,1)

2 ζ − κ), ρ = −bη(λ(0,1)
2 ζ − κ),

ι = 2b(ζ − η)(λ(0,1)
2 ζ − κ) + a(ζ − η), ψ0(x) = Γ′(x)/Γ(x).
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B Proofs

For sake of readability the proofs are given for d = 2 only. The derivation for arbitrary

dimensions d ≥ 2 can be established at the cost of a more complex notation but without

additional technical difficulties.

Furthermore, we may and will assume the same beginnings and different end points, that

is, we compute the statistics of interest from the variables X1, . . . , Xbnc1c and Y1, . . . , Ybnc2c,

where (Xi, Yi), i ≥ 1, is a sequence of independent and identically distributed bivariate

vectors with margins F (x) = P(Xi ≤ x) and G(y) = P(Yi ≤ y), respectively.

Proof of Theorem 2.1

The firstR probability weighted moments of F andG are denoted byα = (α0, α1, . . . , αR−1)′

and β = (β0, β1, . . . , βR−1)′, respectively, and we let γ = (α′,β′)′ ∈ R2R. We set

ᾱr,c1,n = 1
bnc1c

bnc1c∑

i=1
Xi · F r

bnc1c(Xi), β̄r,c2,n = 1
bnc2c

bnc2c∑

i=1
Yi ·Gr

bnc2c(Yi) (B.1)

with Fn1 (resp. Gn2) denoting the empirical distribution function of the sampleX1, . . . , Xn1

(resp. Y1, . . . , Yn2). All these components are collected in ᾱc1,n, β̄c2,n ∈ RR and γ̄c,n =

(ᾱ′c1,n, β̄
′
c2,n)′ ∈ R2R. The estimators of interest are denoted by

α̂r,c1,n = 1
bnc1c

bnc1c∑

i=1

( r∏

`=1

i− `
bnc1c − `

)
X(i), β̂r,c2,n = 1

bnc2c
bnc2c∑

i=1

( r∏

`=1

i− `
bnc2c − `

)
Y(i)

and are collected in a vector γ̂c,n = (α̂′c1,n, β̂
′
c2,n)′.

As a first step, we prove that

γ̂c,n = γ̄c,n +OP (n−1), (B.2)
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which readily implies

√
n (γ̂c,n − γ) =

√
n (γ̄c,n − γ) + oP (1).

For that purpose, it is sufficient to show that α̂r,c1,n = ᾱr,c1,n + OP (n−1) for fixed r ∈

{0, . . . , R − 1}. Writing n1 = bnc1c and observing that Fn1(X(i)) = i/n1, we have the

representation

α̂r,c1,n − ᾱr,c1,n = 1
n1

n1∑

i=1
X(i)

{( r∏

`=1

i− `
n1 − `

)
− F r

n1(X(i))
}

(B.3)

=
(

r∏

`=1
(n1 − `)

)−1 1
n1

n1∑

i=1
X(i)

{
r∏

`=1
(i− `)−

(
i

n1

)r r∏

`=1
(n1 − `)

}
,

We now show that the last formula can be expressed as a linear combination of the

components in ᾱc1,n, multiplied by a deterministic term of order O(n−1). Since we

show ᾱc1,n = OP(1) later in the proof, this yields the assertion. Note that the two

summands within the curly brackets on the right-hand side of (B.3) are polynomials of

order r in i, both with leading term ir. More precisely, we have, for certain coefficients

b` ∈ N, ` ∈ {1, . . . , r − 1}, the representation

r∏

`=1
(i− `)−

(
i

n1

)r r∏

`=1
(n1 − `) = ir +

r−1∑

`=1
b`i

` − ir

nr1

(
nr1 +

r−1∑

`=1
b`n

`
1

)

=
r−1∑

`=1
b`i

` − ir
r−1∑

`=1
b`n

`−r
1 .

As a consequence, recalling that ᾱ`,c1,n = 1
n1

∑n1
i=1X(i)(i/n1)`,

α̂r,c1,n − ᾱr,c1,n = nr1∏r
`=1(n1 − `)

{
r−1∑

`=1
b`n

`−r
1 ᾱ`,c1,n −

( r−1∑

`=1
b`n

`−r
1

)
ᾱr,c1,n

}
,

which is of the desired form, and the proof of (B.2) is finished.

Next, let α̃c1,n, β̃c2,n and γ̃c,n = (α̃′c1,n, β̃
′
c2,n)′ be defined analogously to the bar-versions in

(B.1) but with Fbnc1c and Gbnc2c replaced by their true counterparts F and G, respectively.
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We write

√
n (γ̄c,n − γ) = Qc,n + ∆c,n, (B.4)

where Qc,n =
√
n (γ̃c,n − γ) and ∆c,n =

√
n (γ̄c,n − γ̃c,n). The remainder of the proof is

organized in the following three steps:

a) Verify that Qc,n
D−→ Qc, where the limit is a zero mean normally distributed

random vector and show that the convergence holds jointly with that of the weighted

empirical processes Uc1,n and Vc2,n defined below.

b) Show that ∆c,n = Rc,n + oP(1) for n → ∞, where all components of Rc,n can

be represented as continuous functionals of either Uc1,n or Vc2,n. Verify that Rc,n

converges weakly towards a zero mean normally distributed random vector Rc.

c) Conclude that (B.4) is asymptotically normal with mean zero and compute the

limiting variance matrix Ξc = Var(Qc +Rc).

Step a) Let Uc1,n and Vc2,n be `∞([0, 1])-valued processes defined by

Uc1,n(u) =
1√
n

∑bnc1c
i=1 {1(F (Xi) ≤ u)− u}
{u(1− u)}w ,

Vc2,n(v) =
1√
n

∑bnc2c
i=1 {1(G(Yi) ≤ v)− v}
{v(1− v)}w

for u, v ∈ [0, 1]. These are called weighted empirical processes and their weak convergence

is studied, e.g., in Genest and Segers (2009, Appendix G) and Kojadinovic and Naveau

(2017, Appendix B) in a more general context. The weighting is needed for step b) of the

proof in order to be able to express the components of Rc,n as continuous functionals of

the empirical processes. Without loss of generality let c1 ≤ c2 and note that

Wr,n = (Uc1,n,Vc2,n) = (Uc1,n,Vc1,n) + (0,Vc2,n − Vc1,n)
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is a sum of two independent processes with Vc2,n − Vc1,n
D= Vc2−c1,n + oP(1), where the

remainder is due to the fact that bnc2c−bnc1c 6= bn(c2−c1)c in general. By the continuous

mapping theorem and by Genest and Segers (2009, Th. G.1), both summands on the

right-hand side of the previous equation converge weakly in (`∞([0, 1]))2 towards centered

Gaussian processes and, by independence of the summands, so does Wc,n. Let Wc denote

the limiting process.

In almost the same manner we can write
√
n (γ̃c,n − γ) as a sum of two independent

random vectors, where weak convergence of both summands towards centered normal

distributions easily follows from the central limit theorem for sums of i.i.d. random vectors.

The limit is denoted by
√
n (γ̃c,n − γ) D→ Qc. In fact, weak convergence of Wc,n and that

of
√
n (γ̃c,n − γ) holds jointly as a random element in (`∞([0, 1]))2 ×R2R. The only thing

left to verify is that the finite dimensional convergence holds, which again follows from

the central limit theorem for sums of i.i.d. random vectors.

Step b) Let Rc,n = (S′c1,n,T
′
c2,n)′ with Sc1,n = (S0,c1,n, . . . , SR−1,c1,n)′,

Sr,c1,n = 1
c1

∫

R
x · r · F r−1(x) · Uc1,n(F (x)) · {F (x)(1− F (x))}w dF (x)

and analogously define Tc2,n but with (c1, F,U) replaced by (c2, G,V). In order to show

that ∆c,n = Rc,n + oP(1) for n→∞, it suffices to consider each component separately by

proving

√
n (ᾱr,c1,n − α̃r,c1,n) = Sr,c1,n + oP(1)

for each r = 0, . . . , R − 1 and analogously for the β-components. But this follows from

(C.9) in the proof of Proposition C.2 in Kojadinovic and Naveau (2017).

Let ϕr : `∞([0, 1])→ R, r = 0, . . . , R− 1, be defined by

ϕr(g) =
∫

R
x · r · F r−1(x){F (x)(1− F (x))}w · g(F (x)) dF (x)
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and note that Sr,c1,n = ϕr(Uc1,n). Since supx∈R |x · r · F r−1(x){F (x)(1− F (x))}w| < ∞

by assumption, it follows that ϕr is a continuous map. Similarly we can define continuous

maps ψr, r = 0, . . . , R − 1, such that Tr,c2,n = ψr(Vc2,n). Bringing things together we

conclude that Rc,n = Ψ(Wc,n) D→ Ψ(Wc,n) = Rc, where Ψ : (`∞[0, 1])2 → R2R with

Ψ(f, g) = (ϕ0(f), . . . , ϕR−1(f), ψ0(g), . . . , ψR−1(g))′

is continuous. Since each component of Rc,n is a sum of i.i.d. zero-mean random vari-

ables with existing second moments, we conclude that the limit is a zero-mean normal

distribution.

Step c) From steps a) and b) we obviously obtain the joint asymptotic normality of Qc,n

and Rc,n. By the continuous mapping theorem we conclude that

√
n (γ̄c,n − γ) D−→ N (0, Ξc) for n→∞,

where Ξc = Var(Qc +Rc). The calculation of the variance matrix is a simple exercise

since each component of the random vector Qc,n +Rc,n is a sum of i.i.d. random variables

and Ξc = limn→∞Var(Qc,n +Rc,n). �

Proof of Theorem 2.6.

Throughout the proof, the true parameter vector will be denoted by ϑ = (ϑ′1,ϑ′2)′. For

simpler notation we further write n1 = bnc1c and n2 = bnc2c for c1, c2 ∈ (0, 1], and

without loss of generality we assume c1 < c2.

First note that our assumptions allow for an application of Proposition 3.3 in Bücher and

Segers (2017) for each component of ϑ̂(pml). Therefore, consistency follows immediately

from the fact that each ϑ̂(pml)
j is strongly consistent. Furthermore, the same proposition
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yields the representation

√
n



ϑ̂

(pml)
1 − ϑ1

ϑ̂
(pml)
2 − ϑ2


 =




√
n
n1

√
n1(ϑ̂(pml)

1 − ϑ1)
√

n
n2

√
n2(ϑ̂(pml)

2 − ϑ2)


 = An1 + An2 + oP(1),

where

An1 = 1√
n1

n1∑

i=1




√
n
n1
gϑ1(Xi)

√
nn1
n2

2
gϑ2(Yi)


 , An2 = 1√

n2 − n1

n2∑

i=n1+1




0
√

n(n2−n1)
n2

2
gϑ2(Yi)




with gϑj (·) := I−1
ϑj

˙̀
ϑj (·). Since ˙̀

ϑj is a score vector, we have E
[ ˙̀
ϑ1(X1)

]
= E

[ ˙̀
ϑ2(Y1)

]
= 03,

whence An1 is a sum of independent and identically distributed, centered random vectors.

The multivariate central limit theorem yields

An1
D−→




√
1
c1
Z1

√
c1
c2

2
Z2


 ,

where (Z1, Z2) ∼ N6(0,Σ) with Σ = (Σj,l)2
j,l=1 defined as

Σj,j = I−1
ϑj
, j = 1, 2, (B.5)

Σ1,2 = Σ2,1 = I−1
ϑ1 E

[
˙̀
ϑ1(X1)

( ˙̀
ϑ2(Y1)

)′]
I−1
ϑ2 .

By the same arguments,

An2
D−→




0
√

c2−c1
c2

2
Z̃2


 ,

where Z̃2 ∼ N3 (0,Σ2,2) with Σ2,2 from (B.5). Since An1 and An2 are stochastically

independent, so are the limits. Putting everything together yields the claimed limit

distribution after a straightforward calculation. �
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Proof of Corollary 3.1.

Let

Zi,r,1 = Xi · F r(Xi) +
∫

R
xrF r−1(x)1(Xi ≤ x) dF (x),

Zi,`,2 = Yi ·G`(Yi) +
∫

R
y`G`−1(y)1(Yi ≤ y) dG(y)

for r, ` ∈ N0, i = 1, . . . ,m and m = min{bnc1c, bnc2c}. Slightly abusing notation, we

further let Ẑi,r,1 (resp. Ẑi,`,2) be defined analogously with F (resp. G) replaced by

its empirical counterpart Fbnc1c (resp. Gbnc2c). We denote by σ̃r,`,m (resp. σ̂r,`,m) the

empirical covariance of the bivariate sample (Zi,r,1, Zi,`,2), i = 1, . . . ,m (resp. (Ẑi,r,1, Ẑi,`,2),

i = 1, . . . ,m). From the strong law of large numbers we immediately obtain that

σ̃r,`,m
a.s.→ Cov(Z1,r,1, Z1,`,2) for n→∞. It thus remains to show that

|σ̂r,`,m − σ̃r,`,m| P−→ 0 for n→∞. (B.6)

To make a long story short, (B.6) follows from the consistency of probability weighted

moments proven in Theorem 2.1, (C.12) in Kojadinovic and Naveau (2017) and from the

consistency of the empirical process Wc,n defined in the proof of Theorem 2.1. A detailed

presentation is omitted for the sake of brevity. �

References

Bücher, A., & Segers, J. (2017). On the maximum likelihood estimator for the Generalized

Extreme-Value distribution. Extremes, 20 (4), 1–34. https://doi.org/10.1007/s10687-

017-0292-6

Genest, C., & Segers, J. (2009). Rank-based inference for bivariate extreme-value copulas.

The Annals of Statistics, 37 (5B), 2990–3022. https://doi.org/10.1214/08-AOS672

11 115



Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized

Extreme-Value Distribution by the Method of Probability-Weighted Moments.

Technometrics, 27 (3), 251–261. https://doi.org/10.1080/00401706.1985.10488049

Kojadinovic, I., & Naveau, P. (2017). Detecting distributional changes in samples of

independent block maxima using probability weighted moments. Extremes, 20,

417–450. https://doi.org/10.1007/s10687-016-0273-1

12116



Regional Pooling in Extreme Event Attribution Studies:

an Approach Based on Multiple Statistical Testing
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Abstract

Statistical methods are proposed to select homogeneous locations when an-

alyzing spatial block maxima data, such as in extreme event attribution stud-

ies. The methods are based on classical hypothesis testing using Wald-type

test statistics, with critical values obtained from suitable parametric bootstrap

procedures and corrected for multiplicity. A large-scale Monte Carlo simula-

tion study finds that the methods are able to accurately identify homogeneous

locations, and that pooling the selected locations improves the accuracy of sub-

sequent statistical analyses. The approach is illustrated with a case study on

precipitation extremes in Western Europe. The methods are implemented in

an R package that allows easy application in future extreme event attribution

studies.

Key words: Extreme event attribution; Extreme Value Statistics; Homogene-

ity Tests; Multiple Comparison Problem; Parametric Bootstrap; Max-Stable

Processes.

1 Introduction

Extreme event attribution studies on precipitation extremes are typically motivated

by the occurrence of an extreme event which causes major impacts such as damages

to infrastructure and agriculture, or even fatalities, see, for instance, van der Wiel

et al. (2017); van Oldenborgh et al. (2017); Otto et al. (2018); Kreienkamp et al.

(2021). A key task for attributing the event to anthropogenic climate change con-

sists of a statistical analysis of available observational data products at the location

∗Corresponding author: axel.buecher@hhu.de
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or region of interest (Philip et al., 2020). Typically, the observed time period is

short, often less than 100 years, which ultimately leads to large statistical uncer-

tainties. One possibility to reduce those uncertainties is to incorporate observations

from nearby locations/regions, given that their meteorological characteristics are

sufficiently similar and governed by the same underlying processes to those from

the region affected by an extreme event. The selection of surrounding areas for

which these criteria are met can be based on expert knowledge of the meteorological

characteristics and dynamics, for instance provided by experts from the national

meteorological and hydrological service of the affected country, like the Deutsche

Wetterdienst in Germany. The expert knowledge-based suggestion may next be as-

sessed statistically, which, to the best of our knowledge, has been done based on

ad hoc methods in the past. In this paper, we propose profound statistical meth-

ods that can complement the expert’s knowledge and which is based on statistically

evaluating observational data from the past. Once regions with sufficiently similar

characteristics of the analysed variable, e.g., the yearly maximum of daily rainfall,

have been identified, the time series of all identified regions can be combined, thereby

extending the available time series for the benefit of a more efficient statistical anal-

ysis.

The building blocks for the new approach are classical Wald-type tests statistics

(Lehmann and Romano, 2021) for testing the null hypothesis that the temporal

dynamics at multiple locations of interest are the same. Unlike in the classical text-

book case, and motivated by the fact that standard likelihood-based inference for

extreme value distributions requires unreasonably large sample sizes for sufficient

finite-sample accuracy, we employ a parametric bootstrap device to approximate

the distribution of the test statistics under the null hypothesis. This approach

is motivated by results in Lilienthal et al., 2022 for respective stationary extreme

value models. Based on suitable decompositions of a global null hypothesis, we then

propose to test for carefully selected sub-hypotheses, possibly after correcting the

individual tests’ level for multiple comparisons.

The new methods are illustrated by a large-scale Monte Carlo simulation study

and by an application to the severe flooding event in Western Europe during July

2021 for which spatial pooling was applied in an attribution study following the event

(Kreienkamp et al., 2021; Tradowsky et al., 2022). For the benefit of researchers who

would like to use this spatial pooling approach, an implementation of the method in

the statistical programming environment R (R Core Team, 2022) is publicly available

as an R package called findpoolreg on GitHub (Zanger, 2022).

Attribution analysis of precipitation extremes is especially challenging due to

short observational time series as well as their often limited spatial extend, which

further complicates the detection of a trend and estimation of return periods based

on the limited time series (see Tradowsky et al., 2022, for a discussion on this).

Therefore, we will in the following present the suggested approach for a heavy rainfall

event, however, the method could equally be applied to other parameters.

The remaining parts of this paper are organized as follows. Section 2 explains
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the mathematical concept of the proposed methods, starting with a detailed de-

scription of the underlying model assumptions and a strategy for the detection of a

possible pooling region in Section 2.1. It is recommended to all readers. In Sections

2.2 and 2.3, mathematical details on the applied estimators and test statistics are

given, and they may be skipped by non-expert readers. Next, the ideas of the boot-

strap procedures that allow to draw samples from the distribution under the null

hypothesis are explained. Again, this may be skipped by non-statisticians. Section

2.5 goes into detail about the detection strategy of possible pooling regions and the

treatment of the related multiple testing problem. This section is of interest to all

readers who want to apply the methods, since it provides details on how to process

a set of p-values obtained from testing multiple hypotheses. Next, Section 3 gives

the results of the simulation study that was performed in order to evaluate the per-

formance of the proposed methods. These results are of interest to all readers, and

they serve as a basis for the case study conducted in Section 4. Section 5 then dis-

cusses several extensions of the proposed methods. In 5.1, we provide a method for

estimating region-wise return periods once a pooling region has been chosen. Here,

a region-wise return period of a given event is defined as the number of years that

one has to wait on average until an event of the same or even greater magnitude is

observed anywhere in the pooling region. Extensions to different model assumptions

that suit e.g. other variables such as temperature are discussed in Section 5. Last

but not least, we come to a conclusion in Section 6. Some mathematical details and

further illustrations on the simulation study and the case study are postponed to a

supplement.

2 Assessing spatial homogeneities for precipitation ex-

tremes

2.1 A homogeneous model for precipitation extremes

The observational data of interest consists of annual or seasonal maximal precipi-

tation amounts (over some fixed time duration, e.g., a day) collected over various

years and at various locations (in practice, each location may correspond to a spa-

tial region; we separate these two terms from the outset to avoid misunderstandings:

subsequently, a region shall be a set of locations). More precisely, we denote by m
(t)
d

the observed maximal precipitation amount in season t and at location d, with

t = 1, . . . , n and d = 1, . . . , D. The location of primary interest shall be the one

with index d = 1. Note that the choice of d = 1 is made for illustrative purposes

only and can be replaced by any index d ∈ {1, . . . , D}.
In view of the stochastic nature, we assume that m

(t)
d is an observed value of

some random variable M
(t)
d . Since M

(t)
d is generated by a maxima operation, stan-

dard extreme value theory (Coles, 2001) suggests to assume that M
(t)
d follows the

generalized extreme value (GEV) distribution, i.e.,

M
(t)
d ∼ GEV(µd(t), σd(t), γd(t))
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for some µd(t), σd(t) > 0, γd(t) ∈ R, where the GEV(µ, σ, γ) distribution with loca-

tion parameter µ > 0, scale parameter σ > 0 and shape parameter γ ∈ R is defined

by its cumulative distribution function

G(µ,σ,γ)(x) = exp
{
−
(
1 + γ

x− µ

σ

)−1/γ}
(1)

for x such that 1 + γ x−µ
σ > 0. Due to climate change, the temporal dynamics

at location d, which are primarily driven by the function t 7→ (µd(t), σd(t), γd(t)),

are typically non-constant. Any proxy for climate change qualifies as a suitable

temporal covariate, and a standard assumption in extreme event attribution studies,

motivated by the Clausius–Clapeyron relation, postulates that

µd(t) = µd exp

(
αdGMST′(t)

µd

)
, σd(t) = σd exp

(
αdGMST′(t)

µd

)
, γd(t) = γd

(2)

for certain parameters αd, γd ∈ R, µd, σd > 0. Here, GMST′(t) denotes the smoothed

global mean surface temperature anomaly, see Philip et al. (2020). Note that (2)

implies

GEV(µd(t), σd(t), γd(t)) = exp

(
αdGMST′(t)

µd

)
GEV(µd, σd, γd),

hence the model may be identified as a temporal scaling model. It is further assumed

that any temporal dependence at location d is completely due to GMST′(t), which
we treat as deterministic and which implies that M

(1)
d , . . . ,M

(n)
d are stochastically

independent, for each d = 1, . . . , D. For the moment, the spatial dependence will be

left unspecified.

Recall that the location of interest is the one with d = 1, which is characterised by

the four parameters µ1, σ1, γ1, α1. As described before, estimating those parameters

based on the observations from location d = 1 only may be unpleasantly inaccu-

rate, which is why one commonly assumes that the D locations have been carefully

selected by experts to meet the following space-time homogeneity assumption:

HED
0 : ∃ϑ ∈ Θ ∀ d ∈ {1, . . . , D} : ϑd = ϑ, (3)

where Θ := (0,∞)2×R2 and ϑ = (µ, σ, γ, α)⊤,ϑd = (µd, σd, γd, αd)
⊤, and where the

upper index ED stands for ‘equal distribution’, since, in short, Equation (3) states

that the location-wise GEV parameters coincide for the D locations.

In the subsequent sections, we aim at testing the validity of the expert’s hypoth-

esis HED
0 . Here, it is not only of interest to test the hypothesis for the whole set

{1, . . . , D}, but also to find a (maximal) subset A ⊂ {1, . . . , D} with 1 ∈ A and

|A| = k ≥ 2 on which the space-time homogeneity assumption holds. Here, for an

arbitrary index set A, the latter assumption may be expressed through

HED
0 (A) : ∃ϑA ∈ Θ ∀ d ∈ A : ϑd = ϑA, (4)
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with Θ as in Equation (3) and ϑA = (µA, σA, γA, αA)
⊤, meaning that the location-

wise GEV parameters coincide for all locations with index in the set A, making the

respective locations a possible pooling region.

Now, a maximal subset A for which Equation (4) holds may be determined

with the following strategy: Since we are interested in finding all locations that

‘match’ the location of primary interest with index d = 1, we test for each pair

Ad = {1, d}, d = 2, . . . , D, whether the null hypothesis HED
0 (Ad) holds. This will

provide us with a set of p-values based on which we can decide which locations to

reject and which not to reject. Those locations that are not rejected can then be

assumed to be sufficiently homogeneous and are thus included in the suggestion of

a pooling region of maximal extent. For further details on this strategy and the

impact of the induced multiple testing problem, see Section 2.5.

2.2 Coordinate-wise maximum likelihood estimation

The starting point for the subsequent test statistics are the coordinate-wise maxi-

mum likelihood estimators for the model specified in (2). Writing c(t) = GMST′(t)
for brevity, the log-likelihood contribution of observation (M

(t)
d , c(t)) is given by

ℓϑd
(M

(t)
d , c(t)), where

ℓϑd
(x, c) = log g(µd exp(αdc/µd),σd exp(αdc/µd),γd)(x) (5)

with g(γ,µ,σ)(x) =
∂
∂xG(µ,σ,γ)(x) the probability density function of the GEV(µ, σ, γ)-

distribution. The maximum likelihood estimator for ϑd at location d is then defined

as

ϑ̂d ∈ argmaxϑd∈Θ

n∑

t=1

ℓϑd
(M

(t)
d , c(t)). (6)

The arg-maximum cannot be calculated explicitly, but may be found by suitable

numerical optimization routines. We denote the gradient and the Hessian matrix

of ϑ 7→ ℓϑ(x, c) by ℓ̇ϑ(x, c) ∈ R4 and ℓ̈ϑ(x, c) ∈ R4×4, respectively. Under ap-

propriate regularity assumptions, standard asymptotic expansions (van der Vaart,

1998, see also Bücher and Segers, 2017 for the stationary GEV family) imply that

θ̂ = (ϑ̂⊤1 , . . . , ϑ̂
⊤
D)
⊤ ∈ ΘD is approximately Gaussian with mean θ = (ϑ⊤1 , . . . ,ϑ

⊤
D)
⊤

and covariance n−1Σn, where Σn = (Σn;j,k)
D
j,k=1 ∈ R4D×4D is defined as

Σn;j,k = J−1n,j,ϑj

( 1
n

n∑

t=1

Cov
[
ℓ̇ϑj

(M
(t)
j , c(t)), ℓ̇ϑk

(M
(t)
k , c(t))

])
J−1n,k,ϑk

∈ R4×4 (7)

with Jn,j,ϑ = 1
n

∑n
t=1 E[ℓ̈ϑ(M

(t)
j , c(t))] ∈ R4×4. See Appendix A.1 for details and

Appendix A.2 for a suitable estimator Σ̂n for Σn.

2.3 Wald-type test statistics

We define test statistics which allow to test for the sub-hypotheses HED
0 (A) of HED

0

from Equation (4), where A ⊂ {1, . . . , D}. For that purpose, we propose to use clas-

sical Wald-type test statistics; see Section 14.4.2 in Lehmann and Romano (2021) for
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a general discussion and Lilienthal et al. (2022) for a similar approach in temporally

stationary GEV models, i.e., with αd fixed to αd = 0.

Write A = {d1, . . . , dk} with 1 ≤ d1 < · · · < dk ≤ D and let hA : R4D → R4(k−1)

be defined by

hA(θ) = hA(ϑ1, . . . ,ϑD) = (ϑ⊤d1 − ϑ⊤d2 ,ϑ
⊤
d2 − ϑ⊤d3 , . . . ,ϑ

⊤
dk−1

− ϑ⊤dk)
⊤

= (µd1 − µd2 , σd1 − σd2 , γd1 − γd2 , αd1 − αd2 ,

. . . , γdk−1
− γdk , αdk−1

− αdk)
⊤.

We may then write HED
0 (A) equivalently as

HED
0 (A) : hA(θ) = 0.

Hence, significant deviations of hA(θ̂) from 0 with θ̂ from Section 2.2 provide ev-

idence against HED
0 (A). Such deviations may be measured by the Wald-type test

statistic

Tn(A) = n (hA(θ̂))
⊤
(
HA Σ̂n H⊤A

)−1
hA(θ̂), (8)

where HA = ḣA(θ) ∈ R4(k−1)×4D denotes the Jacobian matrix of θ 7→ hA(θ),

which is a matrix with entries in {−1, 0, 1} that does not depend on θ. In view of

the asymptotic normality of θ̂, see Section 2.2, the asymptotic distribution of Tn(A)

under the null hypothesis HED
0 (A) is the chi-square distribution χ2

4(k−1) with 4(k−1)

degrees of freedom; see also Section 4 in Lilienthal et al. (2022). Hence, rejecting

HED
0 (A) if Tn(A) exceeds the (1−α)-quantile of the χ2

4(k−1)-distribution provides a

statistical test of asymptotic level α ∈ (0, 1). The finite-sample performance of the

related test in the stationary setting was found to be quite inaccurate (see Lilienthal

et al., 2022). To overcome this issue, we propose a suitable bootstrap scheme in the

next section.

2.4 Parametric bootstrap devices for deriving p-values

Throughout this section, we propose two bootstrap devices that allow to simulate

approximate samples from the HED
0 (A)-distribution of the test statistic Tn(A) from

Equation (8). Based on a suitably large set of such samples, one can compute a

reliable p-value for testing HED
0 (A), even for short sample sizes.

The first method is based on a global fit of a max-stable process model to the

entire region under consideration, while the second one is based on fitting multiple

pairwise models. The main difference of the two approaches is that the first one can

test the hypothesis HED
0 (A) for arbitrary subsets A ⊂ {1, . . . , D}, while the second

approach is restricted to testing the null hypothesis on subsets of cardinality two,

i.e., it can only test whether a pair of locations is homogeneous. Depending on the

question that is asked, applying the one or the other method may be advantageous.
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2.4.1 Global bootstrap based on max-stable process models

The subsequent bootstrap device is a modification of the parametric bootstrap pro-

cedure described in Section 5.3 of Lilienthal et al. (2022). Fix some large number

B, say B = 200, noting that larger numbers are typically better, but going beyond

B = 1000 is usually not worth the extra computational effort.

The basic idea is as follows: for each b = 1, . . . , B, simulate artificial bootstrap

samples

D∗b =
{
M

(t),∗
d,b : t ∈ {1, . . . , n}, d ∈ {1, . . . , D}

}

that have a sufficiently similar spatial dependence structure as the observed data

D = {M (t)
d : t ∈ {1, . . . , T}, d ∈ {1, . . . , D}} and that satisfy the null hypothesis

HED
0 . For each fixed A ⊂ {1, . . . , D} with k = |A| ≥ 2, the test statistics computed

on all bootstrap samples, say (T ∗n,b(A))b=1,...,B, are then compared to the observed

test statistic Tn(A). Since the bootstrap samples do satisfy HED
0 (A), the observed

test statistic Tn(A) should differ significantly from the bootstrapped test statistics

in case HED
0 (A) is not satisfied on the observed data.

Here, for simulating the bootstrap samples, we assume that the spatial depen-

dence structure of the observed data can be sufficiently captured by a max-stable

process model. Max-stable processes provide a natural choice here, since they are

the only processes that can arise, after proper affine transformation, as the limit of

maxima of independent and identically distributed random fields {Yi(x) : x ∈ Rp}
(Coles, 2001, Section 9.3). Parametric models for max-stable processes are usually

stated for unit Fréchet (i.e., GEV(1, 1, 1)) margins. Therefore, the first steps in

our algorithm below aim at transforming the margins of our observed data to be

approximately unit Fréchet.

More precisely, the parametric bootstrap algorithm is defined as follows:

Algorithm 1 (Bootstrap based on max-stable processes).

(1) For each d ∈ {1, . . . , D}, calculate ϑ̂d from Section 2.2.

(2) For each d ∈ {1, . . . , D}, transform the observations to approximately i.i.d.

Fréchet-distributed data, by letting

Y
(t)
d =



1 + γ̂d

M
(t)
d − µ̂d exp

(
α̂dGMST′(t)

µ̂d

)

σ̂d exp
(
α̂dGMST′(t)

µ̂d

)





1/γd

+

(t ∈ {1, . . . , n}). (9)

(3) Fit a set of candidate max-stable process models with standard Fréchet margins

to the observations (Y
(t)
1 , . . . , Y

(t)
D )t=1,...,n and choose the best fit according to

the composite likelihood information criterion (CLIC), which is a model selec-

tion criterion that is commonly applied when fitting max-stable process models.

Throughout, we chose the following three models:

(a) Smith’s model (3 parameters);

(b) Schlather’s model with a powered exponential correlation function (3 pa-

rameters);
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(c) the Brown-Resnick process (2 parameters).

For further details on max-stable processes, the mentioned models and the CLIC,

see Davison et al. (2012) and Davison and Gholamrezaee (2012). Respective

functions are implemented in the R package SpatialExtremes (Ribatet, 2022).

(4) For b ∈ {1, . . . , B} and t ∈ {1, . . . , n}, simulate spatial data with unit Fréchet

margins from the chosen max-stable process model, denoted by

(Y
(t),∗
1,b , Y

(t),∗
2,b , . . . , Y

(t),∗
D,b ).

Note that until now we haven’t used the particular hypothesis HED
0 (A). Subse-

quently, fix A = {d1, . . . , dk} with 1 ≤ d1 < · · · < dk ≤ D.

(5) Assume that HED
0 (A) from Equation (4) is true, and estimate the four dimen-

sional model parameters ϑA = (µA, σA, γA, αA)
⊤ ∈ Θ by (pseudo) maximum

likelihood based on the pooled sample

(M
(1)
d1
, c(1)), . . . , (M

(n)
d1
, c(n)), (M

(1)
d2
, c(1)), . . . , (M

(n)
d2
, c(n)), . . .

. . . , (M
(1)
dk
, c(1)), . . . , (M

(n)
dk
, c(n)).

Denote the resulting parameter vector as ϑ̂A = (µ̂A, σ̂A, γ̂A, α̂A)
⊤, and note that

ϑ̂A should be close to ϑ̂d for each d ∈ A, if HED
0 (A) is met.

(6) Transform the margins of the bootstrap samples to the ones of a GEV-model

satisfying HED
0 (A), by letting

M
(t),∗
d,b = µ̂A exp

(
α̂AGMST′(t)

µ̂A

)
+ σ̂A exp

(
α̂AGMST′(t)

µ̂A

)
(Y

(t),∗
d,b )γ̂A − 1

γ̂A
(10)

for t ∈ {1, . . . , n}, d ∈ A and b ∈ {1, . . . , B}. For each resulting bootstrap

sample D∗b (A) = {M (t),∗
d,b : t ∈ {1, . . . , n}, d ∈ A}, compute the value t∗n,b(A) of

the test statistic Tn(A) from Equation (8). Note that Tn(A) only depends on

the coordinates with d ∈ A.

(7) Compute the value tn(A) of the test statistic Tn(A) from Equation (8) on the

observed sample.

(8) Compute the bootstrapped p-value by

p(A) =
1

B + 1

B∑

b=1

1(tn(A) ≤ t∗n,b(A)).

In a classical test situation, one may now reject HED
0 (A) for a fixed set A at

significance level α ∈ (0, 1) if p(A) ≤ α. In the current pooling situation, we would

need to apply the test to multiple pooling regions A, which hence constitutes a

multiple testing problem where standard approaches yield inflated levels. We discuss

possible remedies in Section 2.5.

8124



2.4.2 Pairwise bootstrap based on bivariate extreme value distributions

Recall that the location of primary interest is the one with index d = 1.

As stated in Section 2.1, it is of interest to test for all bivariate hypotheses

HED
0 ({1, d}) with d = 2, . . . , D. For that purpose, we may apply a modification

of the bootstrap procedure from the previous section that makes use of bivariate

extreme value models only. By doing so, we decrease the model risk implied by

imposing a possibly restrictive global max stable process model.

The modification only affects step (3) and (4) from Algorithm 1. More precisely,

for testing the hypothesis HED
0 (Ad) with Ad = {1, d} for some fixed value d =

2, . . . , D, we make the following modifications:

Algorithm 2 (Pairwise bootstrap based on bivariate extreme value distributions).

Perform step (1) and (2) from Algorithm 1 with the set {1, . . . , D} replaced by Ad.

(3a) Fit a set of bivariate extreme value distributions to the bivariate sample

(Y
(t)
1 , Y

(t)
d )t=1,...,n, assuming the marginal distributions to be unit Fréchet.

Choose the best fit according to the Akaike information criterion (AIC), a

model selection criterion that rewards a good fit of a model and penalises the

model’s complexity at the same time (Akaike, 1973). Possible models are:

(a) the Hüsler-Reiss model (1 parameter);

(b) the logistic model (1 parameter);

(c) the asymmetric logistic model (2 parameters).

Note that all models are implemented in Stephenson (2002).

(4a) For b ∈ {1, . . . , B} and t ∈ {1, . . . , n}, simulate bivariate data with unit

Fréchet margins from the chosen bivariate extreme value model, denoted by

(Y
(t),∗
1,b , Y

(t),∗
d,b ).

Perform Steps (5)-(8) from Algorithm 1 with A = Ad.

Note that Algorithm 2 is computationally more expensive than Algorithm 1 since

model selection and fitting of dependence models and its subsequent simulation must

be performed separately for each hypothesis HED
0 (Ad) of interest.

2.5 Combining test statistics

As already addressed at the end of Section 2.1, it is not only of interest to test the

global hypothesis HED
0 , since a possible rejection of HED

0 gives no indication about

which locations deviate from the one of primary interest. Instead, one might want to

test hypotheses on several subsets and then pool those subsets for which no signal of

heterogeneity was found. In this subsection, we provide the mathematical framework

of testing sub-hypotheses and discuss how to deal with the induced multiple testing

problem.

Mathematically, we propose to regard HED
0 as a global hypothesis that is built

up from elementary hypotheses of smaller dimension. A particularly useful decom-

position is based on pairwise elementary hypotheses: recalling the notation HED
0 (A)
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from Equation (4), we clearly have

HED
0 =

D⋂

d=2

HED
0 ({1, d}), (11)

i.e., HED
0 holds globally when it holds locally for all pairs {1, d} with d ∈ {2, . . . , D}.

We may now either apply Algorithm 1 or Algorithm 2 to obtain a p-value, say

prawd = p({1, d}), for testing HED
0 ({1, d}), for any d ∈ {2, . . . , D}. Each p-value may

be interpreted as a signal for heterogeneity between locations 1 and d, with smaller

values indicating stronger heterogeneity. The obtained raw list of p-values may

hence be regarded as an exploratory tool for identifying possible heterogeneities.

Since we are now dealing with a multiple testing problem, it might be advisable

to adjust for multiple comparison in order to control error rates. This can be done

by interpreting the raw list based on classical statistical testing routines, in which p-

values are compared with suitable critical values to declare a hypothesis significant.

Several methods appear to be meaningful, and we discuss three of them in the

following. For this, let α ∈ (0, 1) denote a significance level, e.g., α = 0.1.

IM (Ignore multiplicity): reject homogeneity for all pairs {1, d} for which prawd ≤
α. In doing so, we do not have any control over false rejections. In particular, in

case D is large, false rejections of some null hypotheses will be very likely. On the

other hand, the procedure will have decent power properties, and will likely detect

most alternatives. Hence, in a subsequent analysis based on the pooled sample of

homogeneous locations, we can expect estimators to exhibit comparably little bias

and large variance.

Holm (Control the family-wise error rate): apply Holm’s stepdown procedure

(Holm, 1979). For that purpose, sort the p-values pj = praw1+j = p({1, 1 + j}) with

j = 1, . . . , D−1; denote them by p(1) ≤ · · · ≤ p(D−1). Starting from j = 1, determine

the smallest index j such that

p(j) > αj := α/(D − j).

If j = 1, then reject no hypotheses. If no such index exists, then reject all hypotheses.

Otherwise, if j ∈ {2, . . . , D − 1}, reject the hypotheses that belong to the p-values

p(1), . . . , p(j−1).
The procedure can be equivalently expressed by adjusted p-values. Recursively

defining p̃(1) = min{1, (D − 1)p(1)} and

p̃(j) = min
{
1,max{p̃(j−1), (D − j)p(j)}

}

for j = 2, . . . , D − 1, we simply reject those hypotheses that belong to the adjusted

p-values with p̃(j) ≤ α.

Holm’s stepdown procedure is known to asymptotically control the family-wise

error rate (FWER) at level α, i.e.,

FWER := Pr
(
reject any true null hypothesis HED

0 ({1, d})
)
≤ α,

10126



see Theorem 9.1.2 in Lehmann and Romano (2021).

In general, controlling the family-wise error rate will result in comparably little

power, i.e., we might falsely identify some pairs of locations as homogeneous. Hence,

in a subsequent analysis based on the pooled sample of homogeneous locations, we

can expect estimators to exhibit comparably large bias and little variance.

BH (Control the false discovery rate): apply the Benjamini Hochberg stepup

procedure (Benjamini and Hochberg, 1995). For that purpose, sort the p-values

pj = praw1+j = p({1, 1+ j}) with j = 1, . . . , D− 1; denote them by p(1) ≤ · · · ≤ p(D−1).
Starting from j = D − 1, determine the largest index j such that

p(j) ≤ αj :=
jα

(D − 1)
.

If no such index exists, then reject no hypotheses. Otherwise, if j ∈ {1, . . . , D − 1},
reject the hypotheses that belong to the p-values p(1), . . . , p(j).

Again, one can compute adjusted p-values p̃(j) such that the procedure is equiv-

alent to rejecting those hypotheses for which p̃(j) ≤ α. For that purpose, let

p̃(D−1) = min{1, (D − 1)p(D−1)} and recursively define, for j = D − 2, . . . , 1,

p̃(j) = min

{
1,min

{
(D − 1)

p(j)

j
, p̃(j+1)

}}
.

Under an additional assumption on the p-values that belong to the true null hy-

potheses (they must exhibit some positive dependence), the BH procedure is known

to asymptotically control the false discovery rate (FDR) at level α, i.e.,

FDR := E
[Number of false rejections

Number of all rejections
1(at least one rejections)

]
≤ α,

see Theorem 9.3.3 in Lehmann and Romano (2021). Control of the FDR will be

confirmed by the simulation experiments in Section 3.

If one were interested in guaranteed theoretical control of the FDR rate, one

might alternatively apply the Benjamini Yekutieli (BY) stepup procedure, see (Ben-

jamini and Yekutieli, 2001) and Theorem 9.3.3 in Lehmann and Romano (2021). In

view of the fact that the procedure is much more conservative than BH, we do not

recommend its application in the current setting.

Concerning a subsequent analysis, estimators based on a pooled sample obtained

from the BH procedure can be expected to exhibit bias and variance to be somewhere

between the IM and Holm procedure.

Remark 1. The decomposition of HED
0 into hypotheses of smaller dimensionality

is not unique. For instance, we may alternatively write

HED
0 =

K⋂

k=1

HED
0 (Bk), (12)

where {1} ⊂ B1 ⊂ B2 · · · ⊂ BK = {1, . . . , d} denotes an increasing sequence of

regions with 2 ≤ |B1| < |B2| < · · · < |BK | = d (for instance, Bk = {1, 2, . . . , 1 + k}
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with k = 1, . . . , D−1). In practice, the sequence is supposed to be derived from some

expert knowledge of the region of interest; it shall represent a sequence of possible

pooling regions where Bk is constructed from Bk−1 by adding the locations which

are a priori ‘most likely’ homogeneous to the locations in Bk. Note that, necessarily,

K ≤ D − 1, which provides an upper bound on the number of hypotheses to be

tested.

The derivation of respective testing methods is straightforward. In view of the

facts that the choice of the sequence is fairly subjective and that the eventual results

crucially depend on that choice, we do not pursue the method any further.

3 Simulation Study

A large-scale Monte Carlo simulation study was conducted to assess the perfor-

mance of the proposed bootstrap procedures in finite sample situations. We aim at

answering the following questions:

(a) Regarding the test’s power : What percentage of locations that are heterogeneous

w.r.t. the location of primary interest can be expected to be identified correctly?

(b) Regarding the test’s error rates: What percentage of locations that are homo-

geneous w.r.t. the location of primary interest can be expected to be wrongly

identified as heterogeneous (FDR)? What is the probability of wrongly identi-

fying at least one location that is homogeneous w.r.t. the location of interest as

heterogeneous (FWER)?

(c) Regarding the chosen pooling regions: How does return level (RL) estimation

based on the pooling regions proposed by the bootstrap procedures compare to

RL estimation based on the location of interest only or the whole (heterogeneous)

region?

The data was generated in such a way that the temporal spatial dynamics from

the case study in Section 4 are mimicked. To achieve this, we started by fitting the

scale-GEV model from Equation (2) to annual block-maxima of observations from

1950–2021 at 16 spatial locations in Western Europe (i.e., n = 72 and D = 16)

that are arranged in a 4 × 4 grid; see Figure 1 and the additional explanations in

Section 4. The locations correspond to the center points of the grid cells; the distance

between the center points of two neighbouring grid cells is approximately 140 km.

The location-wise GEV parameter estimates ϑ̂d exhibit the following approximate

ranges over d ∈ {1, . . . , 16}: µ̂d ∈ (18.1, 30.8) with a mean of 20.85, σ̂d ∈ (4.185, 7.92)

with a mean of 5.3, γ̂d ∈ (−0.13, 0.36) with a mean of 0.08 and α̂d ∈ (−2.3, 5.08)

with a mean of 1.5. Fitting the scale-GEV model to the full pooled sample of size

n · D = 1152, we obtained parameter estimates that were close to the means over

the location-wise parameter estimates, with 20.37, 5.8, 0.1, 1.5 for location, scale,

shape and trend parameter, respectively. Next, we transformed the margins to

(approximate) unit Fréchet by applying the transformation from Equation (9), such

that we can fit several max-stable process models to the transformed data. The best

fit was Smith’s model with approximate dependence parameters σ11 = 0.4, σ12 =
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Figure 1: Illustration of the grid used for the simulation. The regions contained in

Adev are shaded in blue, with |Adev| = 2 shown in the left plot and |Adev| = 7 shown

on the right. The region of interest is the one labelled 10.

0.2, σ22 = 0.9; see Davison et al. (2012) for details on the model.

Based on these model fits, we chose to generate data with the following specifi-

cations: first, the sample size was fixed to n = 75 and the regional 4 × 4 grid was

chosen as described before, i.e., d = 16. The grid cell/location labelled ‘10’ is chosen

as the one of primary interest. Further, the dependence structure is fixed to that

of Smith’s model with (approximately) those parameters that gave the best fit on

the observed data, i.e. σ11 = 0.4, σ12 = 0.2, σ22 = 0.9. For simulating data, we first

simulate from this max-stable process model (Ribatet, 2022) and then transform the

margins to scale-GEV distributions, either in a homogeneous or in a heterogeneous

manner. Here, the globally homogeneous model is defined by fixing the marginal

scale-GEV parameters to approximately the mean values of the location-wise GEV

parameters obtained for the real observations, i.e.,

µd = 20, σd = 5.5, γd = 0.1, αd = 1.5 (13)

for each d ∈ {1, . . . , 16}.
Starting from this homogeneous model, we consider two different heterogeneous

scenarios. In the first scenario, we fix ϑd = (µd, σd, γd, αd)
⊤ as in Equation (13) for

all d ∈ Ahom = {1, . . . , 16} \ {4, 8}, while

µd = 20 + cµ, cµ ∈ {−3,−1.5, 0, 1.5, 3},
σd = 5.5 · cσ, cσ ∈ {0.7, 0.85, 1, 1.15, 1.3},
γd = 0.1 + cγ , cγ ∈ {−0.1, 0, 0.1},
αd = 1.5 + cα, cα ∈ {−1, 0, 1},

(14)

for d ∈ Adev = {4, 8} with (cµ, cσ, cγ , cα) ̸= (0, 0, 0, 0). Note that this defines

5 · 5 · 3 · 3 − 1 = 224 different heterogeneous models. In the second scenario,

we consider the same construction with Ahom = {5, 6, 7, 9, 10, 11, 13, 14, 15} and
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Adev = {1, 2, 3, 4, 8, 12, 16}. An illustration of the grid cells and their partition into

homogeneous and non-homogeneous areas can be found in Figure 1. Overall, we

obtain 448 different heterogeneous models and one homogeneous model.

For each of the 449 models, we now apply the following three bootstrap proce-

dures, each carried out with B = 300 bootstrap replications (recall that the grid cell

of interest is the one labelled with 10):

(B1) The bootstrap procedure from Algorithm 1 with A = {1, . . . , 16}.
(B2) The bootstrap procedure from Algorithm 1 for all sets Ad = {10, d} with

d ∈ {1, . . . , 16} \ {10}.
(B3) The bootstrap procedure from Algorithm 2 for all sets Ad = {10, d} with

d ∈ {1, . . . , 16} \ {10}.
Note that the second and third method both yield 15 raw p-values. Each procedure

was applied to 500 simulated samples from all models under consideration.

Regarding (B1), we compute the percentage of rejections among the 500 replica-

tions, which represents the empirical type I error of the test under the homogeneous

model and the empirical power under the heterogeneous models. The results can be

found in Figure 2. The null hypothesis is met in the central square only, and we ob-

serve that the nominal level of α = 0.1 is perfectly matched. All non-central squares

correspond to different alternatives, and we observe decent power properties in both

scenarios. Note that a rejection only implies that the entire region {1, . . . , 16} is

not homogeneous; there is no information on possible smaller subgroups that are

homogeneous to the location of interest.

Regarding (B2) and (B3), rejection decisions were obtained for each hypothesis

HED
0 ({10, d}) by one of the three methods from Section 2.5. The empirical family-

wise error rate is then the percentage of cases (over 500 replications) for which at

least one null hypothesis was rejected. Likewise, for the false discovery rate, we

calculate, for each replication, the number of false rejections and divide that by the

total number of rejections (when the number of total rejections is 0, this ratio is set

to 0). The empirical false discovery rate is obtained by taking the mean over all 500

replications. Similarly, for assessing the power properties, we calculate the empirical

proportion of correct rejections (i.e., among the 2 or 7 locations that deviate, the

proportion of detected heterogeneous locations) over all 500 replications.

Results for the false discovery and family-wise error rate are given in Table 1. We

find that the p-value combination methods from Section 2.5 are sufficiently accurate:

the BH method controls the false discovery rate, while Holm’s method controls the

family-wise error rate. This holds exactly for procedures (B3), where the maximal

FDR (FWER) of the BH (Holm) method is at 9.4% (8.7%), and approximately for

(B2), where the maximal FDR (FWER) is at 12.2% (12.6%). Further, we see that

the IM procedure neither controls the FWER nor the FDR.

The power properties for procedure (B2) combined with the BH method are

shown in Figure 3. We see that the procedure is able to detect some of the deviations

of the null hypothesis, with more correct rejections the stronger the deviation is. The

method is particularly powerful when the location and scale parameters deviate into
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Figure 2: Rejection rates in % obtained for (B1), in the setting where either 2 (left

plot) or 7 (right plot) regions deviate from the others. Each coloured square contains

the rejection rate for one of the 225 different models, with the central square with

cµ = cσ = 0 corresponding to the null hypothesis. The x- and y-axis and the facets

determine the values of the scale-GEV parameter vector of the deviating locations

through Equation (14).

opposite directions, i.e. when cµ > 0 and cσ < 1 or cµ < 0 and cσ > 1. There is no

obvious pattern regarding the deviations of the shape and trend parameter. Further,

we analogously show the power properties of the IM method with bootstrap (B2) in

Figure 3. As expected, this method has more power against all alternatives under

consideration. However, this comes at the cost of more false discoveries, as can be

seen in Table 1.

The results for bootstrap scheme (B3) were very similar and are therefore not

shown here, but can be found in Section B of the supplementary material. Likewise,

we omit the results for the more conservative Holm procedure, which exhibits, as

expected, less power against all alternatives. Further, we repeated the simulation

study with an increased location-wise sample size of n = 100. As one would expect,

the tests have more power in this case.

The results presented so far show that the proposed pooling methods work ‘as

intended’, since the theoretical test characteristics are well approximated in finite

sample situations, and since we observe decent power properties. In practical ap-

plications however, spatial pooling of locations is usually the starting point for sub-

sequent analyses. For instance, one may be interested in estimating return levels
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Method min FDR max FDR mean FDR min FWER max FWER mean FWER

(B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3)

Scenario 1: |Adev| = 2

BH 7.3 5.6 12.2 9.4 9.4 7.5 9.1 6.9 21.2 19.0 14.4 11.8

Holm 3.0 2.3 11.7 8.3 7.1 5.1 6.9 5.0 12.6 8.7 9.5 6.6

IM 25.8 25.3 61.7 60.1 37.7 37.2 53.4 53.4 64.5 62.8 59.1 58.3

Scenario 2: |Adev| = 7

BH 3.6 2.4 12.1 8.9 5.6 4.9 6.2 4.2 32.0 29.8 18.6 16.8

Holm 1.0 0.9 11.3 7.9 3.4 2.6 3.8 2.4 11.3 7.9 7.1 5.1

IM 7.9 7.8 61.5 60.1 16.0 15.8 40.9 40.9 61.5 60.1 47.3 46.4

Table 1: False Discovery Rate (FDR) and family-wise Error Rate (FWER) for the

three p-value combination methods from Section 2.5 and the two bootstrap methods

(B2) and (B3). The stated values are the minimum, maximum and mean across the

224 alternative models from each scenario.

at the location of interest based on the data from all locations that were identified

as homogeneous. Moreover, the analysis of alternative data sets like climate model

data may be based on the homogeneous locations identified within the analysis of

observations.

This suggests that the methods should be examined with regard to their quality

in subsequent analyses. For that purpose, we consider, as an example, the problem

of return level estimation at the location of interest. The state-of-the-art method

would consist of GEV fitting at the location of interest only, which results in (asymp-

totically) unbiased estimators that suffer from large variance. Basing the estimator

on pooled regions will decrease the variance, but at the same time increase its bias

if some heterogeneous locations have been wrongly identified as homogeneous.

In particular, pooling based on a conservative testing approach like the BH

procedure leads to the acceptance of many locations and thus to a large pooling

area and low estimation variance. Most likely, some of the chosen locations will be

violating the null hypothesis though, which yields a rather large estimation bias.

For pooling based on a more liberal rejection approach like the IM procedure, the

estimation bias and variance behave exactly opposite: since the null hypotheses

are more likely to be rejected, the resulting pooling sample is smaller (i.e., larger

estimation variance) but ‘more accurate’ (i.e., smaller estimation bias).

For our comparison, we consider fitting the scale-GEV model based on pooled

locations that have been obtained from one of the following eight methods

m ∈ {LOI, full,MS IM,MS Holm,MS BH,biv. IM, biv. Holm,biv. BH}.

Here, LOI refers to considering the location of interest only (no pooling), full refers

to pooling all available locations, and the last six methods encode pooling based

on any combination of the proposed p-value combination methods and bootstrap

approaches.

For each method, we compute the maximum likelihood estimate ϑ̂ = (µ̂, σ̂, γ̂, α̂)⊤

of the scale-GEV model parameters and transform this to an estimate of the T -year
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Figure 3: Proportion of correct rejections in % obtained with the BH procedure

(upper row) and the IM procedure (lower row) at a level of 0.1, in the setting where

two stations deviate from the rest (left column) or 7 locations deviate from the rest

(right column), with the bootstrap procedure based on max-stable processes. The

axis and facets are as described in Figure 2.

return level (RL) in the reference climate of year t by

R̂Lt(T ) = G−1(µ̂(t),σ̂(t),γ̂)(1− 1/T ),

where µ̂(t) = µ̂ exp(α̂GMST′(t)/µ̂) and σ̂(t) = σ̂ exp(α̂GMST′(t)/µ̂) and where G
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is the cumulative distribution function of the GEV-distribution, see Equation (1).

Now, in our simulation study, we know that the true value of the target RL is given

by RLt(T ) = G−1(µ0(t),σ0(t),γ0)
(1− 1/T ) with

µ0(t) = 20 exp

(
1.5GMST′(t)

20

)
, σ0(t) = 5.5 exp

(
1.5GMST′(t)

20

)
, γ0 = 0.1.

From the 500 replications we can therefore compute the empirical Mean Squared

Error (MSE) of method m as

MSE(m) =
1

500

500∑

j=1

(
R̂L

(m,j)

t (T )− RLt(T )

)2

,

where R̂L
(m,j)

t (T ) denotes the estimated RL obtained in the j-th replication with

method m. Note that we have suppressed the MSE’s dependence on T and t from

the notation.

In Figure 4 we compare MSEs of the 100-year RL with reference climate as

in year 2021, which is given by RL2021(100) = 55.87, by plotting the difference

MSE(m1)−MSE(m2) withm1 ∈ {MSBH,MS IM} andm2 ∈ {full,ROI} as obtained

for the setting where |Adev| = 7. The plots reveal that both the MS BH and the

MS IM method are superior to the the LOI fit for almost all scenarios. Comparing

the two methods to the full fit reveals that there are certain scenarios for which the

full fit performs substantially worse, mostly when the shape and scale parameter

deviate towards the same direction for the alternatives. For those scenarios where

the full fit outperforms the two methods, the discrepancy is not very large, with the

BH method performing slightly better than the IM method.

A comparison between MS BH and MS IM is shown in Figure 5 for |Adev| ∈
{2, 7}. The results reveal that the BH method slightly outperforms the IM method

in the case |Adev| = 2 for almost all alternative scenarios. In case |Adev| = 7, the

results are quite mixed, with the IM method becoming clearly superior when the

shape, scale and location parameters deviate jointly to the top. In all other scenarios,

the differences are only moderate, sometimes favoring one method and sometimes the

other. Corresponding results for the bootstrap methods based on bivariate extreme

value distributions are very similar and therefore not shown. Further, the results

were found to be robust against the choices of t = 2021 and T = 100 that were made

here for the return level estimation.

Overall, the results suggest the following practical recommendation: if the full

sample is expected to be quite homogeneous a priori (for instance, because it was

built based on expert knowledge), then estimation based on BH-based pooling is

preferable over the other options (LOI, the full and the IM-based fit). If one expects

to have a larger number of heterogeneous locations, it is advisable to apply the

IM procedure (or any other liberal procedure), which likely rejects most of the

heterogeneous locations and hence reduces the bias. In general, the liberal behavior

of IM-based pooling suggests its use when it is of highest practical interest to obtain
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Figure 4: Comparison of MSEs of RL2021(100) obtained for different choices of the

method m, in the setting where |Adev| = 7. Shown are the differences MSE(m1) −
MSE(m2) with m1 and m2 as indicated in the plot title. Negative values (red)

therefore indicate a lower MSE for the method mentioned first, and vice versa for

positive values. The axis and facets are as described in Figure 2.

a pooled region that is as homogeneous as possible (as a trade-off, one has to accept

that the region is probably much smaller than the initial full region).
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Figure 5: Comparison of MSEs of RL2021(100) in the setting where |Adev| = 2 (left)

and |Adev| = 7 (right). Shown are the differences MSE(MS BH) − MSE(MS IM).

Negative values (red) therefore indicate a lower MSE for the BH method, while

positive values (blue) indicate a lower MSE for the IM method. The axis and facets

are as described in Figure 2.

4 Severe flooding in Western Europe during July 2021

revisited

We illustrate the new pooling methods in a case study by revisiting the extreme

event attribution study for the heavy precipitation event that led to severe flooding

in Western Europe during July 2021, see Kreienkamp et al. (2021); Tradowsky et al.

(2022). In that study, observational data were pooled together based on expert

knowledge and on ad hoc tests, with the ultimate goal of assessing the influence

of human-made climate change on the likelihood and severity of similar events in

Western and Central Europe.

The full region under investigation in Kreienkamp et al. (2021); Tradowsky et al.

(2022) consists of sixteen (2.0◦ × 1.25◦) (i.e. about (140 km × 140 km)) grid cells

reaching from the northern Alps to the Netherlands, see Figure 5 in Kreienkamp

et al. (2021) or the right-hand side of Figure 6. Two of the 16 locations were

rejected in that study due to expert knowledge and too large deviations in fitted

GEV-parameters (regions 17 and 11 of Figure ). Among other things, our illustrative

application of the methods explained above will reveal that grid cell 11 has been

rightfully dismissed, while grid cell 17 might have been considered homogeneous.

Further, there is no clear evidence that any other grid cell that has been declared

20136



Figure 6: Regions analysed within this case study and the respective numbering

used here. The data consists of April-September block maxima of tile-wise averaged

daily precipitation sums (RX1day) from 1950-2021.

homogeneous should rather be considered non-homogeneous.

For illustrative purposes, we apply our methods to two different initial areas:

(A) An area consisting of 6×6 grid cells covering a large part of Western/ Central

Europe, as shown in Figure 6 on the left.

(B) The original 4× 4 grid cells from Kreienkamp et al. (2021) as shown in Figure

6 on the right.

Note that homogeneity for the 20 grid cells at the boundary of the larger area in

(A) has been dismissed based on expert knowledge in Kreienkamp et al. (2021); the

larger area is included here for illustrative purposes only.

The data used throughout the study consists of April-September block-maxima

of tile-wise averaged 1-day accumulated precipitation amounts of the E-OBS data

set (Cornes et al. (2018), Version 23.1e). In both cases, the grid cell with label

21 is the one of primary interest, since it is the one containing the target location

of the study, i.e., the region that accumulated the highest precipitation sum and

experienced the largest impacts during the flooding of July 2021. The time series

are shown in Figure C.1 in the supplementary material. There, we also plot values

of µ̂(t) = µ̂ exp (α̂GMST′(t)/µ̂) obtained from different data sets: once from data of

location 21 only, once from data of the respective location only, and once from the

pooled data of the respective pair (21, d) for d ∈ {1, . . . , 36} \ {21}.
We apply the two proposed bootstrap procedures to areas (A) and (B). Note

that the raw p-values obtained with the bootstrap based on bivariate extreme value

distributions should be very similar (or even identical when using the same seed for

random number generation) for those grid cells that appear in both areas, while they

may differ to a greater extent for the MS bootstrap. This is because the p-value for

a given pair obtained with the bivariate bootstrap procedure only depends on the
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observations of the pair, while the respective p-value obtained with the MS bootstrap

also depends on the spatial model that was fitted to the whole area. However, even

if the raw p-value of a given pair obtained for setting (B) coincides with the raw

p-value obtained for setting (A), the adjustment for multiple testing can lead to

slightly different rejection decisions of the pair at a given level α. The bootstrap

procedures are applied with B = 2000 bootstrap replications.

We start by discussing the results of the application to the larger grid in (A).

Recall that, for a given significance level α, one rejects the null hypothesis for all

grid cells whose p-value is smaller than α. To visualise the results, we therefore

shade the grid cells according to the magnitude of their (adjusted) p-value. Here,

we divide the colour scale into three groups: [0, 0.05], (0.05, 0.1] and (0.1, 1], with

a dark red tone assigned to the first group, a brighter red tone for Group 2 and

an almost transparent shade for Group 3. This allows us to see the test decisions

for significance levels of α ∈ {0.05, 0.1}: when the significance level is chosen as

α = 0.1, all tiles with a reddish shade are rejected, while when working with a level

of α = 0.05 only tiles shaded in the dark shade are rejected.

Results for both the conservative BH procedure and the liberal IM procedure are

shown in Figure 7. For completeness, results on Holm’s method, which is even more

conservative than BH, as well as the BH and IM p-values themselves can be found

in the supplementary material, Tables C.2 and C.3. One can see that, for a given

rejection method (i.e. BH or IM), the MS and bivariate procedures mostly agree on

the rejection decisions that would be made at a level of 10% (compare the rows of

Figure 7 to see this). The same holds when working with a significance level of 5%.

Further, as expected, the IM method rejects more hypotheses than the BH

method. However, according to the results of the simulation study, it is quite likely

that at least one of these rejections is a false discovery.

Analogous results for the 4× 4 grid in (B) are shown in Figure 8. As discussed

above, except for the MS BH method, the results are consistent with the results

obtained for the 6× 6 grid in the sense that for those locations which are contained

in both grids, the locations with p-values of critical magnitude (< 10%) coincide

(compare the plot in the upper right corner of Figure 8 to the plot in the upper

right corner of Figure 7 to see this for the MS IM method, and similar for the other

methods). For the MS BH method, grid cells 10, 14, 15, and 16 are not significant

anymore at a level of 10 %, but we recorded an adjusted p-value of 0.106 for those

four grid cells, so this is a rather tight decision. The p-values obtained for the 4× 4

grid can be found in Table C.1 in the supplementary material.

Let us now move on to the interpretation: considering the larger grid first, some

grid cells for which the characteristics of extreme precipitation are different (ac-

cording to expert opinion) from the grid cell of the target location are detected as

heterogeneous. These rejected grid cells are located along the coast and in the moun-

tainous terrain. Comparing the results with Kreienkamp et al. (2021); Tradowsky

et al. (2022), we observe that grid cell 11 has been rejected in their study based on

expert knowledge. For grid cell 17, however, we do not detect any statistical evi-
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Figure 7: (Adjusted) p-values obtained with the BH (left) and the IM (right)

method on the 6 × 6 grid, with the bootstrap based on max-stable processes (top

row) and the bootstrap based on bivariate extreme value distributions (bottom row).

dence that the probabilistic behavior of extreme precipitation is different from the

grid cell of the target location, even when applying the liberal IM procedure. We

would like to stress though that non-rejection of a null hypothesis does not provide

any evidence of the null hypothesis, even when ignoring the multiple testing issue.

Hence, expert knowledge that leads to rejection should, in general, outweigh any

statistical non-rejection. This particularly applies to the eastern (continental) grid

cells in the larger 6×6-grid, which can be influenced by heavy precipitation caused

by different synoptic situations compared to the target region.

Moreover, as the results for locations 10, 14, 15, and 16 showed some discrep-

ancy across the different testing procedures, we suggest that the final decision on

the exclusion or inclusion of these locations in a spatial pooling approach should be

based on expert knowledge of the meteorological characteristics, and the willingness

to trade possible bias for variance (with a possibly larger bias when including the lo-
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Figure 8: Adjusted p-values obtained with the BH (left) and the IM (right) method

on the 4 × 4 grid, obtained with the bootstrap based on max-stable processes (top

row) and the bootstrap based on bivariate extreme value distributions (bottom row).

cations – note that statistical evidence against homogeneity in the bivariate extreme

value distribution-based bootstrap is only weak, and wrongly declaring the regions

as homogeneous is possibly not too harmful). The same holds for locations 9, 20, 23

and 27 for which only the IM method yielded p-values between 5% and 10%. Again,

these rather small p-values could be subject to false discoveries though, and since

the heterogeneity signal is also not too strong, there is no clear evidence that these

need to be excluded from pooling.

For a last evaluation of results from pairwise tests, we estimated the 100-year RLs

in the reference climate of the year 2021, i.e. with reference value GMST′(2021) =
0.925◦C, on five different data sets obtained from the 4 × 4 grid. Here, we use the

data sets consisting of data from

• the location of interest only

• pooling those grid cells suggested by the results of the case study (i.e., all cells
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but 11, or all cells but 10, 11, 14, 15, 16) or expert opinion (i.e., all cells but

11, 17)

• pooling all grid cells of the 4× 4 grid.

The results can be found in Table 2 and reveal that excluding cell 11 has a clear

effect on the estimated RL. Ex- or including grid cell 17 once 11 is excluded does

not have a large effect, while excluding cells 10, 14, 15 and 16 additionally to cell 11

has a moderate effect.

cells excluded µ̂ σ̂ γ̂ α̂ R̂L2021(100)

none 20.37 5.80 0.1039 1.50 58.43

11 20.01 5.44 0.0676 1.45 52.74

11, 17 20.01 5.40 0.0760 1.29 52.82

10, 11, 14, 15, 16 19.90 5.41 0.0484 1.79 51.93

all but 21 21.92 6.08 0.0634 −0.00 54.37

Table 2: Estimated parameters and estimate of RL2021(100) obtained when pooling

all grid cells but the ones given in the first column.

Finally, we would like to mention that similar results were obtained when ap-

plying the BH test procedures to all triples containing the pair of grid cells (20, 21),

i.e., the extended target region considered in the study of Kreienkamp et al. (2021);

Tradowsky et al. (2022), consisting of those regions in Germany and Belgium affected

worst by the July 2021 flooding.

5 Extensions

In this section, we discuss how to estimate region-wise return levels under homo-

geneity assumptions (Section 5.1). We also propose two possible extensions of the

pooling approach from the previous sections to other hypotheses (Section 5.2) or

other underlying model assumptions (Section 5.3).

5.1 Estimation of regional return levels and return periods

As pointed out in Kreienkamp et al. (2021); Tradowsky et al. (2022) among others,

an estimated return period (RP) of T years for a given event and in a fixed refer-

ence climate (e.g., the preindustrial climate), obtained based on a fit of the GEV

distribution to a pooled homogeneous sample, has the following interpretation: for

each fixed location/tile within the region, one can expect one event of the same or

larger magnitude within T (imaginary) years of observing the reference climate. We

refer to this quantity as the local return period. Obviously, one would expect more

than one event of similar magnitude happening at at least one of the locations of

the pooling region. Likewise, for a given T , one would expect a higher T -year return

level for the whole region. The latter corresponds to the value that is expected to

be exceeded only once in T years at at least one of the locations.
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Mathematically, using the notation from Section 2.1, the exceedance probability

of value r at at least one among D ≥ 2 locations in the reference climate correspond-

ing to year t is given by

pt(r) = P
(
∃ j ∈ {1, . . . , D} :M

(t)
j ≥ r

)
= P

(
max

d=1,...,D
M

(t)
d ≥ r

)
,

such that the return period for event r of the region is RPreg
t (r) = 1

pt(r)
. Further,

the T -year return level of the region in the climate corresponding to year t is the

minimal value RLreg
t (T ) for which

P
(

max
d=1,...,D

M
(t)
d ≥ RLreg

t (T )
)
≤ 1

T

holds. Both quantities could be computed (exactly) if one had access to the distri-

bution of maxd=1,...,DM
(t)
d . For example, if the random variablesM

(t)
d , d = 1, . . . , D

were independent, pt(r) could be further simplified to

pt(r) = 1− P
(

max
d=1,...,D

M
(t)
d ≤ r

)
= 1− (G(µ(t),σ(t),γ)(r))

D,

where G is the distribution function of the GEV distribution and where µ(t), σ(t)

and γ denote the parameters at reference climate of year t from Equation (2) under

the homogeneity assumption from Equation (3).

The locations are, however, usually not independent in applications. In the fol-

lowing, we propose a simulation-based estimation method that involves max-stable

process models to account for the spatial dependence. As before, the R package

SpatialExtremes (Ribatet, 2022) allows for fitting and simulating max-stable pro-

cess models.

Algorithm 3. (Simulation-based estimation of the regionwise RL and RP)

(1) Fit the scale-GEV parameters to the pooled homogeneous sample, resulting in

the parameter vector ϑ̂ = (µ̂, σ̂, γ̂, α̂)⊤.
(2) Transform the margins of the pooled data to approximately unit Fréchet by

applying transformation from Equation (9) with the parameter estimate from

Step 1. Then fit several max-stable process models to the obtained data and

choose the best fit according to the information criterion CLIC.

(3) Replicate for b = 1, . . . , B the following steps:

(i) Generate one random observation (y
(t),∗
1,b , . . . , y

(t),∗
D,b ) from the chosen max-

stable process model.

(ii) Transform the margins to GEV margins, by applying the transformation

in (10) with parameters as estimated in Step 1, resulting in the observation

(m
(t),∗
1,b , . . . ,m

(t),∗
D,b ).

(iii) Compute the maximum m
(t),∗
max,b = maxd=1,...,Dm

(t),∗
d,b .

(4) The regionwise T -year return level RLt,reg(T ) and the return period RPt,reg(r)

of an event with value r can now be estimated from the empirical cumulative

distribution function F̂ ∗t of the sample (m
(t),∗
max,b)b=1,...,B through

R̂L
reg

t (T ) = (F̂ ∗t )
−1(1− 1/T ), R̂P

reg

t (r) =
1

1− F̂ ∗t (r)
.
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Especially, when we have estimated the local 100-year RL, we can get an estimate

of the return time this event has for the whole region. Likewise, when we have an

estimate of the local return period of an event with value r, we can estimate what

the event value for that return period would be for the whole region.

We illustrate the estimators for the pooled data sets from Section 4. The esti-

mates are based on B = 100 000 simulation replications and are shown in Table 3.

We see that the local 100-year return levels have substantially shorter region-wise

return periods. In the region with 15 tiles (only cell 11 excluded), the estimated

local 100-year RL at reference climate of 2021 can be expected to be exceeded once

in approximately 19 years in at least one of the 15 tiles. We find a similar region-

wise return period for the pooling region consisting of 14 tiles. In the pooling region

consisting of 11 tiles, the local 100-year return level becomes a region-wise 33-year

event. This comparably larger value arises from the smaller region that is consid-

ered: the smaller the region, the less likely it is that one of the locations exceeds a

high threshold. Further, as expected, we find that the region-wise 100-year return

levels at reference climate of 2021 are larger than their local counterparts. For the

regions consisting of 15 and 14 tiles, this increase is approximately 26%, while it is

approximately 17.3% for the region consisting of 11 tiles.

cells excluded RL2021(100) RPreg
2021(RL2021(100)) RLreg

2021(100)

11 52.74 18.90 66.40

11, 17 52.82 18.32 67.08

10, 11, 14, 15, 16 51.93 32.76 60.93

Table 3: Estimated local (second column) and regional (fourth column) 100-year

RLs for reference climate 2021, for three possible choices of pooling regions as indi-

cated by the first column. Column 3 shows the regional return periods of the local

100-year events.

5.2 A homogeneous scaling model with location-wise scaling factor

In this section, we maintain the temporal dynamics from the scale-GEV model from

Equation (2). However, instead of testing for the homogeneity assumption from

Equation (3), we additionally allow for a location-wise scaling factor under the null

hypothesis. Such an approach can be useful when it is known that observations

from different locations occur on different scales, but, apart from that, show a com-

mon probabilistic behaviour. In fact, a stationary version of the following model

is commonly used in hydrology, where it is known as the Index Flood approach

(Dalrymple, 1960).

More precisely, suppose that

Mt,d ∼ cd exp

(
αGMST′(t)

µ

)
GEV(µ, σ, γ) ∀t, d, (15)
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where cd > 0 is a location-specific scaling factor that we may fix to 1 at the location

of primary interest (say d = 1, i.e., c1 = 1). Writing µd = cdµ, σd = cdσ, αd = cdα,

the model in Equation (15) can be rewritten as

Mt,d ∼ GEV(µd(t), σd(t), γ) ∀t, d,

where

µd(t) = µd exp

(
αdGMST′(t)

µd

)
, σd(t) = σd exp

(
αdGMST′(t)

µd

)
. (16)

Note that the parameters µ1, . . . , µD, σ1, . . . , σD, α1, . . . , αD satisfy the relationships

µd
σd

≡ δ,
αd

µd
≡ η,

αd

σd
≡ κ

for certain parameters δ, η, κ; in particular, µ1, . . . , µD, σ1, . . . , σD, α1, . . . , αD can

be retrieved from µ1, . . . , µD, δ, η (note that the constraint on αd/σd is not needed,

but comes as a consequence of the first two relations). Fitting this model instead

of fitting the scale-GEV distribution to each location separately has the advantage

of reducing the number of parameters that need to be estimated substantially (4 +

(D − 1) = D + 3 instead of 4D parameters). Once the local scaling factors are

identified, we can bring all observations to the same scale by dividing each location

by its location-specific scaling factor.

Now one can test whether such a local scaling model holds on a subset A =

{d1, . . . , dk} ⊂ {1, . . . , D} with cardinality k = |A| ≥ 2, by testing the hypothesis

HLS
0 (A) : ∃ δA, ηA, γA ∀d ∈ A :

µd
σd

= δA,
αd

µd
= ηA, γd = γA, (17)

with a Wald-type test statistic. In this case, the latter is defined as

TLS
n (A) = n(gA(θ̂))

⊤
(
GA(θ̂)Σ̂nGA(θ̂)

⊤
)−1

gA(θ̂), (18)

where gA : R4D → R3(k−1) is given by

gA(θ) =

(
µd1
σd1

− µd2
σd2

, γd1 − γd2 ,
αd1

µd1
− αd2

µd2
, . . . , γdk−1

− γdk ,
αdk−1

µdk−1

− αdk

µdk

)⊤
,

with Jacobian matrix GA(θ) ∈ R3(k−1)×4D, since the hypothesis in Equation (17)

may be rewritten as HLS
0 (A) : gA(θ) = 0.

When considering this kind of modification, the bootstrap algorithms from Sec-

tion 2.4, steps (5)-(7), must be adapted accordingly. In step (5), one has to estimate

the parameter under the constraint of the considered null hypothesis by adapting

the log-likelihood accordingly. The estimated parameters are then used during the

transformation step (6). Further, the test statistic in steps (6) and (7) is replaced

by TLS
n (A) from (18). Further details are omitted for the sake of brevity.
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5.3 General homogeneous models with smooth parametrization

In this section, we consider general GEV models in which the location, scale and

shape parameters are allowed to depend in a (fixed) differentiable way on some

parameter vector ϑ ∈ Rq and some temporal covariate c(t) ∈ Rp with p, q ∈ N.
More precisely, suppose that fµ, fσ and fγ are (known) real-valued functions of ϑ

and c that are differentiable with respect to their first argument ϑ. We assume

that, for each d = 1, . . . , d, there exists an unknown parameter ϑd such that M
(t)
d ∼

GEV(µd(t), σd(t), γd(t)) with

µd(t) = fµ(ϑd; c
(t)), σd(t) = fσ(ϑd; c

(t)), γd(t) = fγ(ϑd; c
(t)).

The global null hypothesis of interest within this model is assumed to be expressible

as h(ϑ1, . . . ,ϑD) = 0 for a differentiable function h : RqD → Rs with s ∈ N.
An example is given by the linear shift model that is frequently considered when

modelling temperature extremes in Extreme Event Attribution studies (see Philip

et al., 2020), where

µd(t) = µd + αdGMST′(t), σd(t) ≡ σd, γd(t) ≡ γd.

A possible global null hypothesis of interest could be

H0 : ∃ϑ ∈ R× (0,∞)× R2 ∀d ∈ {1, . . . , D} : ϑd = ϑ,

where ϑ = (µ, σ, γ, α)⊤ and ϑd = (µd, σd, γd, αd)
⊤.

When considering this kind of extension, one has to adapt the maximum likeli-

hood estimator as well as the estimator of its covariance matrix, hence steps (1)-(2)

and (5)-(7) in the bootstrap algorithms are affected. Further details are omitted for

the sake of brevity.

6 Conclusion

Extreme event attribution studies can build upon a GEV scaling model. Depending

on the analysed variable, it may be useful to apply spatial pooling and fit the GEV

distribution to a pooled sample of observations collected at sufficiently homogeneous

spatial locations as it has been done in Kreienkamp et al. (2021); Tradowsky et al.

(2022); Vautard et al. (2015), among others. Here, we propose several statistical

methods that enable the selection of a homogeneous pooling region from a larger

initial region. The BH approach was found to be quite conservative, hence some

heterogeneous locations are likely to be declared homogeneous. The IM approach is

a more liberal alternative with a higher proportion of rejected locations that may

contain some homogeneous ones. In subsequent analyses, the selected pooling re-

gion typically results in a classical bias-variance trade-off: the larger the pooling

region, the smaller the variance. At the same time, the bias may be larger, given

that some heterogeneous regions may have been declared homogeneous. In prac-

tice, the tests should always be complemented by expert knowledge on the driving

meteorological/climatological background processes.

29 145



To make the statistical approach to select homogeneous pooling regions for attri-

bution studies as described here usable for the extreme event attribution community,

we have developed a software package that can be freely downloaded and used by

applied researchers (Zanger, 2022). The selection of spatial pooling regions for at-

tribution studies may hence be based on a combination of expert knowledge and

thorough statistical tests. The experts applying the methods can thereby decide

between a conservative approach, which tends to reject more locations and a liberal

approach which tends to accept more locations as being homogeneous. This decision

depends on the a priori knowledge about the meteorology of the analysed area and

the specific requirements of the study.

If the ultimate interest is estimation of, for example, return levels, one may, as an

alternative to the classical approach based on pooling selected locations, consider

penalized maximum likelihood estimators with a penalty on large heterogeneities

(Bücher et al., 2021). A detailed investigation of the resulting bias-variance trade-

off would be a worthwhile topic for future research.
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Abstract

This supplement contains mathematical details on the maximum likelihood

estimator and the estimation of its covariance matrix, as well as additional

simulation results and further details on the case study. References like (1)

refer to equations from the main paper, while references like (A.1) or Figure

B.2 refer to equations or Figures within this appendix.

A Mathematical Details

A.1 Maximum Likelihood estimation

Throughout this section, we provide mathematical details on the coordinate-wise

maximum likelihood estimator from Equation (6). In particular, we motivate the

approximate normality of θ̂ = (ϑ̂⊤1 , . . . , ϑ̂
⊤
D)
⊤ ∈ ΘD with mean θ = (ϑ⊤1 , . . . ,ϑ

⊤
D)
⊤

and covariance n−1Σn with Σn = (Σn;j,k)
D
j,k=1 ∈ R4D×4D as defined in Equation

(7). As in the stationary GEV-model, the derivations require γ > −1/2, see Bücher

and Segers (2017).

We start by some explicit formulas for the functions appearing in Equations

(6) and (7). For that purpose, let l(µ,σ,γ)(x) denote the log density of the plain

GEV(µ, σ, γ) distribution (see Appendix B in Bücher and Segers, 2017), i.e.,

l(µ,σ,γ)(x) = − log(σ)− uγ

(x− µ

σ

)
+ (γ + 1) log

(
uγ

(x− µ

σ

))
(A.1)

∗Corresponding author: axel.buecher@hhu.de
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for x such that 1 + γ x−µ
σ > 0; here

uγ(z) =

{
(1 + γz)

− 1
γ , γ ̸= 0,

exp(−z), γ = 0.

Then, writing ϑ = (µ, σ, γ, α)⊤, the log-density ℓϑ(x, c) from Equation (5) may be

written as

ℓϑ(x, c) = l(µ(c),σ(c),γ)(x), (A.2)

where

µ(c) = µ(c | µ, α) = µ exp(αc/µ), σ(c) = σ(c | µ, σ, α) = σ exp(αc/µ).

We next derive formulas for the gradient and the Hessian of ϑ 7→ ℓϑ(x, c). For

that purpose, let l̇(µ,σ,γ)(x) and l̈(µ,σ,γ)(x) denote the respective gradient and Hessian

of the standard GEV log density (see Appendix B in Bücher and Segers, 2017) for

precise formulas). Note that, in view of the fact that the GEV distribution is a

location scale family,

l̇(µ,σ,γ)(x) = T−1σ l̇(0,1,γ)

(x− µ

σ

)
, Tσ = diag(σ, σ, 1) ∈ R3×3, (A.3)

l̈(µ,σ,γ)(x) = T−1σ l̇(0,1,γ)

(x− µ

σ

)
T−1σ . (A.4)

Next, consider the function pc : Θ → (0,∞)2 × R defined by pc(µ, σ, γ, α) =

(µ exp(αc/µ), σ exp(αc/µ), γ)⊤, whose Jacobian is given by Bc(µ, σ, α)
⊤, where

Bc(µ, σ, α) =




(
1− αc

µ

)
exp

(
α
µc
)

−σαc
µ2 exp

(
α
µc
)

0

0 exp
(
α
µc
)

0

0 0 1

c exp
(
α
µc
)

σc
µ exp

(
α
µc
)

0



.

Then, in view of Equations (A.2) and (A.3), the multivariate chain rule yields

ℓ̇ϑ(x, c) = Bc(µ, σ, α) · l̇(µ(c),σ(c),γ)(x)

= Bc(µ, σ, α) · T−1σ(c) · l̇(0,1,γ)
(
x− µ(c)

σ(c)

)
. (A.5)
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In view of the multivariate product rule, this equation further implies

ℓ̈ϑ(x, c) =




l̇(µ(c),σ(c),γ)(x)
⊤Ḃc,1(µ, σ, α)

l̇(µ(c),σ(c),γ)(x)
⊤Ḃc,2(µ, σ, α)

l̇(µ(c),σ(c),γ)(x)
⊤Ḃc,3(µ, σ, α)

l̇(µ(c),σ(c),γ)(x)
⊤Ḃc,4(µ, σ, α)


+Bc(µ, σ, α)l̈(µ(c),σ(c),γ)(x)Bc(µ, σ, α)

⊤

=




l̇(0,1,γ)(
x−µ(c)
σ(c) )⊤T−1σ(c)Ḃc,1(µ, σ, α)

l̇(0,1,γ)(
x−µ(c)
σ(c) )⊤T−1σ(c)Ḃc,2(µ, σ, α)

l̇(0,1,γ)(
x−µ(c)
σ(c) )⊤T−1σ(c)Ḃc,3(µ, σ, α)

l̇(0,1,γ)(
x−µ(c)
σ(c) )⊤T−1σ(c)Ḃc,4(µ, σ, α)




+Bc(µ, σ, α)T
−1
σ(c) l̈(0,1,γ)

(
x− µ(c)

σ(c)

)
T−1σ(c)(Bc(µ, σ, α))

⊤, (A.6)

where we used Equations (A.3) and (A.4) for the second equality and where Ḃc,j(µ, σ, α)

denotes the Jacobian in R3×4 of the jth row of Bc(µ, σ, α) (derivative with respect

to (µ, σ, γ, α)). The latter can be derived explicitly by a tedious but straightforward

calculation; we omit precise formulas for the sake of brevity.

We next motivate the claimed normal approximation. First of all, in view of

the differentiability of ϑ 7→ ℓϑ, the vector of maximum likelihood estimators is

necessarily a zero of the gradient of the log-likelihood function, i.e., we have

0 =
1

n

n∑

t=1




ℓ̇ϑ̂1
(M

(t)
1 , c(t))
...

ℓ̇ϑ̂D
(M

(t)
D , c(t))


 .

Denoting the true parameter vector by θ, a Taylor expansion implies that

0 =
1

n

n∑

t=1




ℓ̇ϑ1(M
(t)
1 , c(t))
...

ℓ̇ϑD
(M

(t)
D , c(t))




+





1

n

n∑

t=1




ℓ̈ϑ1
(M

(t)
1 , c(t)) 0 . . . 0

0 ℓ̈ϑ2(M
(t)
2 , c(t)) . . . 0

...
...

...

0 0 . . . ℓ̈ϑD
(M

(t)
D , c(t))







(θ̂ − θ) +Rn

≡ Ln,θ + In,θ · (θ̂ − θ) +Rn,

where Rn denotes higher order terms which are negligible. Solving for
√
n(θ̂ − θ),

we obtain that √
n(θ̂ − θ) ≈ −I−1n,θ · √nLn,θ.

By Equation (A.6), each (4×4) block matrix In,d,ϑd
= 1

n

∑n
t=1 ℓ̈ϑd

(M
(t)
d , c(t)) on the

block-diagonal of In,θ is of the form

1

n

n∑

t=1

f(c(t))g(Z
(t)
d ) (A.7)
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for suitable functions f and g, where

Z
(t)
d = {M (t)

d − µd(c
(t))}/σd(c(t)) (A.8)

with µd(c
(t)) = µd exp(αdc

(t)/µd) and σ(c(t)) = σd exp(αdc
(t)/µd) is GEV(0, 1, γd)-

distributed and independent over t. Under suitable assumptions on t 7→ f(c(t))

(and hence on c(t)), we obtain that the variance of In,d,ϑd
is of the order 1/n. As a

consequence, In,d,ϑd
is close to its expectation, that is, In,d,ϑd

= Jn,d,ϑd
+ o(1) with

Jn,d,ϑd
defined just after Equation (7). More precisely, in an asymptotic framework

where one assumes that c(t) = h(t/n) for some continuous function h : [0, 1] → R,
expressions as in Equation (A.7) converge to

∫ 1
0 f(h(t)) dt × E[g(Zd)] with Zd ∼

GEV(0, 1, γd) (note that both the integral and the expectation exist).

Next, consider
√
nLn,θ. It suffices to argue that we may apply a suitable version

of the Central Limit Theorem, under suitable assumptions on t 7→ c(t). Similar as

for In,θ, by Equation (A.5), each entry of
√
nLn,θ is of the form

1√
n

n∑

t=1

f(c(t))g(Z
(t)
d )

for certain functions f and g and for some d ∈ {1, . . . , D}. In view of the indepen-

dence over t and the fact that Z
(t)
d ∼ GEV(0, 1, γd), we may for instance apply the

Ljyapunov CLT for independent triangular arrays, see Theorem 27.3 in Billingsley

(1995). Since E[g(Z(t)
d )p] <∞ for sufficiently small p > 2 and for the functions g of

interest, a sufficient condition for its applicability is

lim
n→∞

∑n
t=1{f(c(t))}p

[
∑n

t=1{f(c(t))}2]p/2
= 0,

which readily follows for instance if one assumes that c(t) = h(t/n) for some contin-

uous function h : [0, 1] → R.

A.2 Covariance Estimation

Throughout this section, we provide an estimator for Σn = (Σn;j,k)
D
j,k=1 defined in

Equation (7). First of all, we denote by Ĵn,d,ϑd
an (approximate) Hessian of the

function

ϑd 7→ 1

n

n∑

t=1

ℓϑd
(M

(t)
d , c(t))

evaluated at its maximizer ϑ̂d, possibly obtained by numerical differentiation. Note

that this matrix is routinely returned by standard implementations for maximiza-

tion; for instance, the optim-function in R returns an output value hessian.

It remains to estimate the matrix

Cn,j,k :=
1

n

n∑

t=1

Cov
[
ℓ̇ϑj

(M
(t)
j , c(t)), ℓ̇ϑk

(M
(t)
k , c(t))

]
∈ R4×4
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for all 1 ≤ j < k ≤ D. By Equation (A.5), we may write

Cn,j,k =
1

n

n∑

t=1

Bc(t)(µj , σj , αj)T
−1
σj(c(t))

× Cov
(
l̇(0,1,γj)(Z

(t)
j ), l̇(0,1,γk)(Z

(t)
k )
)
T−1
σk(c(t))

(Bc(t)(µk, σk, αk))
⊤.

with l̇(0,1,γ) the gradient of l(0,1,γ) from Equation (A.1) and with Z
(t)
j as defined in

Equation (A.8), which is GEV(0, 1, γj)-distributed for any j = 1, . . . D. Note that

the cross covariance Γj,k = Cov(l̇(0,1,γj)(Z
(t)
j ), l̇(0,1,γk)(Z

(t)
k )) does not depend on t,

and may hence be estimated empirically after replacing the true parameters by their

estimators. More precisely, we obtain the estimator

Ĉn,j,k =
1

n

n∑

t=1

Bc(t)(µ̂j , σ̂j , α̂j)T
−1
σ̂j(c(t))

Γ̂n,j,kT
−1
σ̂k(c(t))

Bc(t)(µ̂k, σ̂k, α̂k)

where σ̂j(c) = σ̂j exp(α̂jc/µ̂j) and where Γ̂n,j,k denotes the empirical cross covariance

matrix of the two samples (l̇(0,1,γ̂j)(Ẑ
(t)
j ))nt=1 and (l̇(0,1,γ̂k)(Ẑ

(t)
k ))nt=1 with

Ẑ
(t)
j =

M
(t)
j − µ̂j(c

(t))

σ̂j(c(t))

and µ̂j(c) = µ̂j exp(α̂jc/µ̂j). The final estimator for Σn is Σ̂n = (Σ̂n;j,k)
D
j,k=1 with

Σ̂n;j,k = Ĵ−1n,j,ϑd
Ĉn,j,kĴ

−1
n,k,ϑk

.

B Additional results of the simulation study

B.1 Additional results for record length n = 75

We report the power properties obtained with the BH and IM method for procedure

(B3) in Figures B.1 and B.2, respectively. Power properties obtained with the Holm

method are shown in Figures B.3 (for (B2)) and B.4 (for (B3)).

B.2 Additional results for record length n = 100

Since the bootstrap procedures implicitly depend on the asymptotic distribution of

the test statistic, we repeated the simulation study with a larger sample size, in

order to investigate the sample size’s impact on the performance of the bootstrap

procedure. The location-wise sample size is increased to n = 100. Again, the FDR

and FWER are reported (Table B.1), as well as the power plots for BH and (B2)

in Figure B.5, and for IM and (B2) in Figure B.6. As expected, the error rates are

again sufficiently controlled by those methods that claim to do so, while the power

has substantially increased (on average by 50% for the BH method and by 18% for

the IM method). The results for the other methods and (B3) were again similar.
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Figure B.1: Proportion of correct rejections in % obtained with the Benjamini

Hochberg procedure at a level of 0.1, in the setting where two stations deviate

from the rest (left column) or 7 stations deviate from the rest (right column), with

the bootstrap procedure based on bivariate extreme value distributions. The axis

and facets are as described in Figure 2.

C Additional results for the case study

The complete results of the bootstrap procedures applied to the 4× 4 can be found

in Table C.1. For the 6 × 6 grid, the complete results of the bootstrap based on

bivariate extreme value distributions can be found in Table C.2, and the results for

the bootstrap procedure based on max-stable processes in Table C.3.

The time series used throughout the case study are shown in Figure C.1. Along

with the Apr-Sep maxima of 1950-2021, we plot values of

µ̂(t) = µ̂ exp

(
α̂GMST(t)

µ̂

)
,

where µ̂ and α̂ are estimated on the data of location 21 only (blue line), the respective

location d (red line) or the pooled data of the pair (21, d) (green line), for d ∈
{1, . . . , 36} \ {21}. Note that these three lines should not differ much when the

homogeneity assumption holds. On the other hand, perfectly matching lines do

not imply that the homogeneity assumption is true, since they do not give any

information about the scale and shape parameter of the distributions.
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Figure B.2: Proportion of correct rejections in % obtained with the Benjamini

Hochberg procedure at a level of 0.1, in the setting where two stations deviate

from the rest (left column) or 7 stations deviate from the rest (right column), with

the bootstrap procedure based on bivariate extreme value distributions. The axis

and facets are as described in Figure 2.

Method min FDR max FDR mean FDR min FWER max FWER mean FWER

(B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3)

Scenario 1: |Adev| = 2

BH 6.9 5.2 12.4 11.4 9.4 7.8 8.7 6.8 23.9 20.4 15.8 13.4

Holm 2.7 1.4 10.3 8.0 6.4 4.6 6.8 3.9 12.9 9.4 9.5 6.7

IM 26.4 25.7 60.3 59.9 35.2 34.6 53.4 52.7 64.4 63.8 59.2 58.3

Scenario 2: |Adev| = 7

BH 4.0 2.7 10.7 8.3 5.6 5.0 6.3 5.1 32.4 32.6 21.6 19.9

Holm 0.8 0.5 10.3 6.5 2.9 2.1 4.2 3.0 11.2 8.0 7.1 5.2

IM 8.2 7.8 60.1 59.7 14.2 13.8 41.8 40.9 60.1 59.7 47.9 46.6

Table B.1: False Discovery Rate (FDR) and Familiywise Error Rate (FWER) for

the three p-value combination methods from Section 2.5 and the two bootstrap

methods (B2) and (B3), obtained in the simulations with record length n = 100.

The stated values are the minimum, maximum and mean across the 224 models

from each scenario.
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Figure B.3: Proportion of correct rejections in % obtained with the Holm procedure

at a level of 0.1, in the setting where two stations deviate from the rest (left column)

or 7 stations deviate from the rest (right column), with the bootstrap procedure

based on max-stable processes. The axis and facets are as described in Figure 2.

MS bootstrap (B2) bivariate bootstrap (B3)

Pair tn praw pBH pHolm praw pBH pHolm

(21, 11) 78.8 0.00 0.00 0.00 0.05 0.75 0.75

(21, 16) 15.6 1.60 10.64 22.39 1.45 9.90 20.29

(21, 15) 15.2 2.50 10.64 32.48 2.50 9.90 32.48

(21, 10) 13.6 3.40 10.64 40.78 3.30 9.90 36.58

(21, 14) 13.7 3.55 10.64 40.78 3.05 9.90 36.58

(21, 23) 12.1 5.30 13.24 52.97 6.30 15.74 62.97

(21, 20) 10.4 7.15 15.09 64.32 9.85 16.36 78.76

(21, 27) 10.6 8.05 15.09 64.37 8.10 16.36 72.86

(21, 9) 9.8 10.00 15.59 69.97 10.44 16.36 78.76

(21, 22) 9.4 10.39 15.59 69.97 11.69 16.36 78.76

(21, 8) 9.0 13.04 17.79 69.97 11.99 16.36 78.76

(21, 26) 7.2 20.34 25.42 81.36 22.04 27.55 88.16

(21, 17) 4.4 46.08 53.17 100.00 45.73 52.76 100.00

(21, 28) 3.9 52.17 55.90 100.00 50.92 54.56 100.00

(21, 29) 2.8 66.92 66.92 100.00 65.77 65.77 100.00

Table C.1: (Adjusted) p-values for all three methods from Section 2.5 obtained with

both bootstrap methods applied to the 4× 4 grid. Values that are significant at the

10%-level are in boldface. Results are based on B = 2000 bootstrap replications.
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Figure B.4: Proportion of correct rejections in % obtained with the Holm procedure

at a level of 0.1, in the setting where two stations deviate from the rest (left column)

or 7 stations deviate from the rest (right column), with the bootstrap procedure

based on bivariate extreme value distributions. The axis and facets are as described

in Figure 2.
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Figure B.5: Proportion of correct rejections in % obtained with the Benjamini

Hochberg procedure at a level of 0.1, in the setting where two stations deviate

from the rest (left column) or 7 stations deviate from the rest (right column), with

the bootstrap procedure based on max-stable processes and record length n = 100.

The axis and facets are as described in Figure 2.
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Figure B.6: Proportion of correct rejections in % obtained when ignoring the multi-

ple testing problem,at a level of 0.1, in the setting where two stations deviate from

the rest (left column) or 7 stations deviate from the rest (right column), with the

bootstrap procedure based on max-stable processes and record length n = 100. The

axis and facets are as described in Figure 2.
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Figure C.1: Observations and fitted trend as estimated for each location d, d =

1, . . . , 36, (red line) as well as the trend obtained from the GEV fit for location 21

(blue line) and the GEV-fit obtained from the pooled sample consisting of the pair

(21, d), d = 1, . . . , 36 (green line). Location labels are given in the top right corner.
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Pair tn praw pBH pHolm

(21, 3) 41.5 0.10 0.50 3.50

(21, 4) 87.3 0.10 0.50 3.50

(21, 6) 46.0 0.10 0.50 3.50

(21, 11) 78.8 0.10 0.50 3.50

(21, 12) 75.2 0.10 0.50 3.50

(21, 13) 33.7 0.10 0.50 3.50

(21, 25) 38.5 0.10 0.50 3.50

(21, 19) 28.6 0.20 0.87 5.59

(21, 31) 33.3 0.30 1.17 8.09

(21, 7) 16.1 1.50 5.24 38.96

(21, 5) 15.7 1.70 5.40 42.46

(21, 16) 15.6 2.00 5.83 47.95

(21, 10) 13.6 2.70 6.99 62.04

(21, 15) 15.2 2.80 6.99 62.04

(21, 14) 13.8 4.10 9.56 86.01

(21, 33) 12.5 4.70 10.27 93.91

(21, 23) 12.1 6.89 14.19 100.00

(21, 20) 10.4 8.39 16.19 100.00

(21, 27) 10.6 8.79 16.19 100.00

(21, 36) 10.5 9.89 16.98 100.00

(21, 34) 9.9 10.19 16.98 100.00

(21, 2) 9.6 11.19 17.03 100.00

(21, 9) 9.8 11.19 17.03 100.00

(21, 22) 9.4 13.69 19.44 100.00

(21, 8) 9.0 13.89 19.44 100.00

(21, 35) 8.2 15.88 21.38 100.00

(21, 26) 7.2 19.78 25.64 100.00

(21, 30) 6.1 29.17 36.46 100.00

(21, 32) 5.8 33.07 39.91 100.00

(21, 17) 4.4 46.75 54.55 100.00

(21, 28) 3.9 52.75 59.55 100.00

(21, 29) 2.8 66.13 72.33 100.00

(21, 24) 2.7 70.23 74.49 100.00

(21, 1) 2.4 73.13 75.28 100.00

(21, 18) 1.8 83.82 83.82 100.00

Table C.2: (Adjusted) p-values for all three methods from Section 2.5 obtained

with the bootstrap based on bivariate extreme value distributions. Values that are

significant at the 10%-level are in boldface. Results are based on B = 2000 bootstrap

replications.
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Pair tn praw pBH pHolm

(21, 3) 41.5 0.00 0.00 0.00

(21, 4) 87.2 0.00 0.00 0.00

(21, 11) 78.8 0.00 0.00 0.00

(21, 12) 75.2 0.00 0.00 0.00

(21, 25) 38.5 0.00 0.00 0.00

(21, 6) 46.0 0.10 0.50 3.00

(21, 13) 33.4 0.10 0.50 3.00

(21, 31) 33.3 0.20 0.87 5.59

(21, 19) 28.7 0.30 1.17 8.09

(21, 7) 16.0 1.80 6.29 46.75

(21, 5) 15.7 2.60 7.53 64.94

(21, 15) 15.2 2.70 7.53 64.94

(21, 16) 15.6 2.80 7.53 64.94

(21, 14) 13.7 3.70 9.24 81.32

(21, 10) 13.6 4.40 10.26 92.31

(21, 23) 12.1 5.09 11.15 100.00

(21, 33) 12.5 5.89 12.13 100.00

(21, 27) 10.6 8.59 15.96 100.00

(21, 20) 10.4 8.89 15.96 100.00

(21, 36) 10.5 9.19 15.96 100.00

(21, 9) 9.8 9.59 15.96 100.00

(21, 2) 9.6 10.49 15.96 100.00

(21, 34) 9.9 10.49 15.96 100.00

(21, 22) 9.4 10.99 16.03 100.00

(21, 8) 9.0 12.39 17.34 100.00

(21, 35) 8.2 16.38 22.05 100.00

(21, 26) 7.2 21.88 28.36 100.00

(21, 30) 6.1 28.77 35.96 100.00

(21, 32) 5.8 31.87 38.46 100.00

(21, 17) 4.4 46.25 53.96 100.00

(21, 28) 3.9 50.95 57.52 100.00

(21, 29) 2.8 66.33 70.99 100.00

(21, 24) 2.7 66.93 70.99 100.00

(21, 1) 2.4 71.03 73.12 100.00

(21, 18) 1.8 81.92 81.92 100.00

Table C.3: (Adjusted) p-values for all three methods from Section 2.5 obtained with

the bootstrap based on max-stable processes. Values that are significant at the 10%-

level are in boldface. Results are based on B = 2000 bootstrap replications.
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3 Outlook

The findings presented throughout Chapter 2 of this thesis offer several starting points for

further research activities, some of which are briefly presented below.

A first appealing research topic would be the investigation of a maximum likelihood esti-

mator ϑ̂ML for the GEV parameter vector ϑ based on sliding blocks of univariate (piecewise)

stationary time series. So far, ML estimation based on sliding blocks has only been consid-

ered in the case of heavy tails, i.e., when the limiting distributions are of the Fréchet-type.

Compared to estimation based on disjoint blocks, a substantial reduction of asymptotic es-

timation variance has been found, with about 19% for the shape and 14% for the scale

parameter (Bücher and Segers (2018a)). It seems reasonable to assume that a similar result

applies when not restricting to heavy tails, but considering the more general GEV distribution

as the limit distribution instead. For deriving asymptotic results for ϑ̂ML in this scenario,

the fact that the support of a GEV distribution depends on its parameters poses a difficulty,

since standard theory does not apply. However, it is possible to identify the candidate of

the asymptotic distribution of ϑ̂ML by applying a Taylor expansion to the gradient of the

(pseudo) log-likelihood, as it has been done in some unpublished work of the author of this

thesis. Further, based on this candidate, an estimator for the asymptotic covariance matrix

can be proposed. It would thus be interesting to elaborate the details of the asymptotics and

to investigate the properties of the proposed estimator.

The next research question that arises concerns the combination of sliding block maxima

with non-stationary time series, which has not yet been considered in the literature. For this

purpose, it seems convenient to write the underlying observations of the t-th block of length

r as X
(t)
1 , X

(t)
2 , . . . , X

(t)
r , for t = 1, . . . , T , where T is the number of disjoint blocks that are

observed. Further, when letting It = {1, . . . , r} for t ≤ T − 1 and It = {1} for t = T , the

sliding block maximum that is computed over a block that starts in year t is given by

M
(t,sb)
r,i = max

{︂
X

(t)
i , . . . , X(t)

r , X
(t+1)
1 , . . . , X

(t+1)
i−1

}︂

for i ∈ It. Again, the assumption is thatM
(t,sb)
r,i is GEV-distributed with parameters µ(t), σ(t)

and γ(t) depending on some covariate c(t). Since the most common indicator for climate
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change, the GMST anomaly, is only available at a minimal resolution of monthly values (see,

e.g., Lenssen et al. (2019)), it might be ambiguous what covariate value c(t) to choose for

M
(t,sb)
r,i in data applications, as one could e.g. choose the value that corresponds to the month

in which the block started, or a weighted mean of the two months whose observations con-

tribute to the sliding block maximum. However, when working out the theory and assuming

a continuous covariate function, this should not pose a problem. Candidates for the limiting

distributions of (pseudo) ML estimators based on sliding blocks in the shift and scale models

from Equations (7) and (8) have been identified by the author of this thesis, and corresponding

estimators for the covariance matrix have been proposed. An elaboration of the theoretical

details and an examination of the suggested covariance matrix estimator would be of interest.

In both the stationary and the non-stationary setting, an assessment of uncertainties for

parameter estimates based on their asymptotic distributions might be inadequate, in partic-

ular when block sizes or record lengths are short. Therefore, it would be useful to develop

a bootstrap procedure to estimate (co-)variances for parameter estimators, or quantities de-

rived from them, when working with sliding blocks. Here, the bootstrap samples should

reflect the dependence structure of the original sliding block maxima sample, which could

e.g. be achieved by an appropriate block bootstrap procedure.

Last but not least, the results on the multivariate models considered in Chapters 2.2 and

2.3 could be extended in several possible ways. First of all, one could consider to relax the

assumption of exactly GEV-distributed margins, and instead assume a domain of attraction

condition. Further, an attempt could be made to use sliding blocks in this framework and

prove respective results. Finally, the case of more general non-stationary GEV models as

introduced in Section 5.3 of the article presented in Chapter 2.3 could be amplified, e.g., it

would be of interest to obtain a general formula for the covariance matrix estimator.
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tion based on block maxima extracted from a time series. Bernoulli, 24(2):1427–1462.
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