
Design and application of methods for
genome inference

Inaugural-Dissertation

zur Erlangung des Doktorgradesder Mathematisch-Naturwissenschaftlichen Fakultätder Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Jana Ebleraus Oberkirch

Düsseldorf, Dezember, 2022



ii
aus dem Institut für Medizinische Biometrie und Bioinformatikder Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung derMathematisch-Naturwissenschaftlichen Fakultät derHeinrich-Heine-Universität Düsseldorf
Berichterstatter:
1. Prof. Dr. Tobias Marschall
2. Prof. Dr. Gunnar W. Klau

Tag der mündlichen Prüfung: 21. Juni 2023



Statement

I declare under oath that I have produced my thesis independently and without any undueassistance by third parties under consideration of the “Principles for the Safeguarding ofGood Scientific Practice at Heinrich Heine University Düsseldorf”.

Düsseldorf, December 2022 Jana Ebler

iii



iv Statement



Abstract

Humans are diploid and carry two copies of their DNA, packaged into chromosomes. Otherspecies, including many plants, are polyploid and carry more than two copies of each chro-mosome. Phasing describes the process of inferring the exact sequences of these chromoso-mal copies, called haplotypes, based on sequencing data. While tools for accurately phasingdiploid genomes exist already, phasing polyploids is still challenging.In the first part of this thesis, a new algorithm for polyploid phasing is introduced andapplied to sequencing data of a tetraploid potato genome. Next, it is demonstrated how thenew PacBio Circular Consensus Sequencing (CCS) technology simplifies alignment-basedphasing by providing accurate long reads that enable variant calling and phasing based on asingle sequencing technology, removing the necessity of an additional short-read dataset. Inaddition, CCS reads enable reference-free de novo assembly of individual haplotypes on thescale of chromosomes that include structural variation typically missed by alignment-basedphasing methods. Such haplotype sequences enable the construction of pangenome graphsthat provide a representation of the genetic diversity of the contained samples.In the second part of this thesis, a new genotyping method, PanGenie, is presented, whichleverages a pangenome graph in order to infer genotypes of genetic variants from short-readsequencing data, without requiring time consuming read alignments. It improves genotyp-ing accuracy of structural variants over traditional alignment-based short-read genotypingmethods, which often perform worse due to poor reference alignments in these regions.The third part of this thesis describes several applications of PanGenie. It presents resultsof structural variant genotyping across a large cohort of human samples based on pangenomerepresentations generated by the HGSVC and HPRC consortia. Results show that PanGenieis able to genotype structural variants previously inaccessible by other short-read basedmethods, enabling the inclusion of such variants into Quantitative trait locus (QTL) analyses.Furthermore, it is demonstrated how SNP genotypes produced by PanGenie across the cohortsamples can be used to detect carriers of rare inversions.
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Kurzfassung

Der Mensch ist diploid und trägt daher zwei Kopien seiner DNA, die in Chromosomen ver-packt sind. Andere Arten, darunter viele Pflanzen, sind polyploid und tragen mehr als zweiKopien jedes Chromosoms. Haplotypisierung beschreibt die Rekonstruktion der Sequen-zen dieser Kopien, die sogenannten Haplotypen, auf der Grundlage von Sequenzierdaten.Während bereits einige Methoden zur Haplotypisierung diploider Genome existieren, ist dieHaplotypisierung von polyploiden Organismen immer noch eine Herausforderung.Im ersten Teil dieser Arbeit wird ein neuer Algorithmus zur Haplotypisierung von poly-ploiden Genomen vorgestellt und auf Sequenzierdaten eines tetraploiden Kartoffelgenomsangewendet. Anschließend wird gezeigt, dass die neue Circular Consensus Sequenziermeth-ode (CCS) von PacBio die Alignment-basierte Haplotypisierung vereinfacht, da sie langeReads mit geringen Fehlerraten liefert, die sowohl zur Detektion von Varianten als auchzur eigentlichen Haplotypisierung verwendet werden können. Dadurch ist kein zusätzlicherDatensatz mit kurzen Reads mehr notwendig. Darüber hinaus ermöglichen CCS-Reads diereferenzfreie de novo Assemblierung individueller Haplotypen ganzer Chromosomen. SolcheHaplotypsequenzen schließen neben kurzen Varianten auch strukturelle Varianten ein, dievon Alignment-basierten Methoden meist nicht miteinbezogen werden. Somit ermöglichensie die Konstruktion von Pangenom-Graphen, die eine detaillierte Beschreibung der genetis-chen Variabilität einer Art darstellen.Im zweiten Teil dieser Arbeit wird eine neue Genotypisierungsmethode namens Pan-Genie vorgestellt, die einen Pangenom-Graphen nutzt, um Genotypen genetischer Vari-anten aus kurzen Sequenzierreads abzuleiten, ohne dass zeitaufwändige Read-Alignmentsberechnet werden müssen. PanGenie liefert genauere Genotypen für strukturelle Variantenals bereits existierende Methoden für kurze Reads, die aufgrund von schlechten Referenz-Alignments in den entsprechenden Regionen oft schlecht abschneiden.Im dritten Teil dieser Arbeit werden verschiedene Anwendungen von PanGenie vorge-stellt. Es werden Ergebnisse der Genotypisierung struktureller Varianten in einer großenKohorte menschlicher Genomen diskutiert, für die die Pangenom-Graphen der HGSVC- undHPRC-Projekte verwendet wurden. Die Ergebnisse verdeutlichen, dass PanGenie in derLage ist, strukturelle Varianten zu genotypisieren, die zuvor mit anderen Methoden nichtzugänglich waren. Dies ermöglicht es, solche Varianten in “Quantitative Trait Locus”-Analysen einzubeziehen. Außerdem wird demonstriert, wie die von PanGenie über die Ko-horte hinweg erzeugten SNP-Genotypen zur Erkennung von Trägern seltener Inversionen
vii
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verwendet werden können.
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Introduction

The deoxyribonucleic acid (DNA) is the carrier of hereditary information enabling the trans-lation of genetic information that is necessary to maintain a living organism [8]. The dis-covery of its molecular structure marked a milestone in genetics, revealing the mechanismof DNA replication and gene expression [8, 197]. According to these findings, the DNA iscomposed of a sequence of four different nucleotide bases, organized in a double helix struc-ture. In eukaryotes, the DNA is packaged into chromosomes and individuals carry severalcopies of their DNA, referred to as haplotypes. Humans are diploid and carry two copiesof each chromosome. Other species, including many plants, are polyploid and carry morethan two. Although these copies are very similar, they are not identical due to genetic vari-ation present in the underlying DNA sequences. Various types of genetic variation exist andsuch mutations can have an impact on the expression of proteins that are encoded in theDNA. In this way, genetic variation can influence traits of an individual and in some casescause diseases, including cancer [2, 25, 31, 62, 118, 133, 163, 168, 181, 193, 198, 201].Therefore, studying the exact DNA sequence of an individual is important in biological andmedical research. DNA sequencing is the key to analyzing the genome of an individual.The basic idea is to fragment its DNA into many small pieces and determine the DNA se-quence of each of them, resulting in sets of so-called sequencing reads. Several sequencingtechnologies exist. They differ in terms of the length and accuracy of reads they produce.While short-read sequencing technologies produce very accurate reads of up to 300 basesin length, long-read sequencing technologies typically produce much longer (up to 100 kilobases), but less accurate reads. Long reads are especially useful for reconstructing the hap-lotype sequences of an individual. Haplotype reconstruction is an active field of research[59, 98, 100, 145, 154]. Knowing the haplotype sequences of an individual is beneficial inmany ways. It allows studying how combinations of variants impact phenotypes [100] andprovides insights into allele-specific DNA methylation and gene expression [186]. Further-more, haplotypes are very useful for the construction of pangenome graphs. Pangenomics isa relatively new field of research with the goal of developing data structures to capture DNAsequences and genetic variability of a species. A compact way of representing a pangenomeis through a graph structure, constructed from known haplotype sequences of individualsof a species. In the long term, by providing a more accurate representation of complex ge-nomic regions, such graphs offer the possibility of replacing the linear reference genomeand improving the various downstream analyses that are currently based upon it. This the-
1
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sis introduces several approaches for genome inference, including a long-read based methodfor haplotype reconstruction, a short-read based genotyping approach using a pangenomegraph structure, as well as applications of these methods to various sequencing data sets.
Outline

Chapter 1 gives a detailed introduction to the biological concepts relevant to this thesis, aswell as basic mathematical definitions that are underlying the proposed algorithms.In Chapter 2, a new alignment-based algorithm for polyploid phasing using error-prone,long sequencing reads is presented. It uses cluster editing to group reads by their similarityand reconstructs the haplotypes based on a novel haplotype threading model. The focus ison an application of this algorithm to sequencing data of the tetraploid potato. This workwas published in Genome Biology [166]. The second part of Chapter 2 presents the newPacBio Circular Consensus Sequencing technology. The focus of this section is on phasingof a diploid human sample based on these new reads. My contribution to this work waspublished as part of two Nature Biotechnology publications [145, 199].Chapter 3 presents a new approach to genotyping genetic variants based on a pangenomegraph and short-read sequencing data. The algorithm uses counts of allele specific k-merscomputed from the reads of the sample to be genotyped, in combination with known haplo-type paths represented in the pangenome to genotype the sample. The experiments demon-strate that leveraging the pangenome structure is especially helpful for accurately geno-typing structural variants. The material presented in this chapter was published in Nature
Genetics [49].Chapter 4 presents three applications of the genotyping algorithm introduced in Chapter3. The first application is genotyping variants detected from 64 haplotype-resolved assem-blies across 3,202 human samples based on data generated by the Human Genome StructuralVariation Consortium (HGSVC) [24, 46]. The results were published as part of a Sciencepublication [46]. The second application presents an approach to detect rare inversionsin human samples based on the HGSVC genotypes, described as part of a Cell publication[146]. The third application presents my contributions to the Human Pangenome ReferenceConsortium (HPRC) [90, 113]. Based on a new pangenome reference containing 88 haplo-types, 3,202 human samples were genotyped and genotypes of structural variants analyzed.The work is currently under revision and publicly available as part of a preprint [113].The publications underlying this thesis are listed below. First authorship is denoted by *.
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Chapter 1

Background

This chapter provides an overview of the biological concepts that are important in this thesis, as
well as the computational problems arising when analyzing biological data. It provides definitions
and explanations of the problems underlying Chapters 2, 3 and 4.

1.1 Genomes

Genetic information is encoded in deoxyribonucleic acid (DNA) sequences. A DNA moleculeconsists of two polynucleotide strands that are wound around the same axis so as to form adouble helix [8, 197]. Each strand is composed of a sequence of nucleotides, which consistof a sugar molecule (desoxyribose), a phosphate group and a base [8]. In order to forma DNA strand, a sugar molecule of one nucleotide is linked to the phosphate group of thenext, forming a backbone of alternating sugar phosphate molecules [8]. The two strands ofa DNA molecule are connected by hydrogen bonds formed between pairs of bases [8]. Fourbases can occur in a DNA sequence: adenine, thymine, guanine or cytosine. In order to formhydrogen bonds, adenine can be paired with thymine only and guanine with cytosine [8].As a consequence, the two strands forming a DNA molecule are complementary [8]. Figure1.1a provides an illustration of a DNA molecule.The order of nucleotides along the DNA strands encodes genetic information [8]. Certainsections within the DNA strands, so-called protein-coding genes, provide instructions on theconstruction of proteins. During gene expression, nucleotide sequences of genes are trans-lated into amino acid sequences of the encoded proteins [8]. The genome of an organismdescribes the complete set of information encoded in its DNA [8].In eukaryotes, the DNA is typically packaged into dense structures, called chromosomes,by means of specialized proteins. Human cells contain 22 autosomes and two sex chromo-somes. Since humans are diploid organisms, each cell carries two copies of each autosome,one inherited from the mother and the other inherited from the father [8]. These two ver-sions of a chromosome are homologous meaning their structure and shape are the same,however, their DNA sequences are not identical as each chromosome carries genetic vari-
5
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adenine
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Figure 1.1: DNA and recombination. a Double helix structure of the DNA. The two com-plementary strands are connected by hydrogen bonds between the nucleotides. Adenine canbe paired with thymine only and cytosine with guanine. b Meiosis. After chromosomes havereplicated in order to consist of two identical sister chromatids, recombination takes placeduring which segments are exchanged between homologous chromosomes. Subsequently,four haploid gametes are formed in two steps of cell division.
ation (see Section 1.3). While the two sex chromosomes in females are homologous (twoX chromosomes), this is not the case for males, as they carry one X chromosome, inheritedfrom the mother, and one Y chromosome which is inherited from the father [8].The number of chromosomes differs across different species. While the total number ofchromosomes is 46 for humans (counting all copies), it is 48 for gorilla (Gorilla gorilla) andchimpanzee (Pan troglodytes), 40 for mouse (Mus musculus) and 42 for rat (Mus norvegicus),which are all diploid [36, 140]. Other species are polyploid and carry more than two copiesof their homologous chromosomes. Examples are bread wheat (Triticum aestivum) which ishexaploid and thus carries six homologous copies, or potato (Solanum tuberosum) which istetraploid (4 copies) [45, 196].
1.2 Inheritance and recombination

During sexual reproduction, two gametes fuse in order to form a diploid organism. The pro-cess in which gametes are formed in the parental individuals is called meiosis. The gametsare haploid, which means that they contain only one copy of each chromosome. The firststep of meiosis is the replication of the genetic material. As a result, each chromosome con-sists of two sister chromatids [8]. In the prophase of meiosis, each chromosome pairs withits homologous copy resulting in a structure that is called bivalent [8]. In this phase, recom-bination takes place between the chromosomes, which means that fragments are exchangedbetween the two homologous copies, such that the resulting chromosomes are combinationsof paternal and maternal DNA [8]. Next, the cell divides to form two haploid daughter cells,each carrying one copy of each chromosome [8]. However, each of the chromosomes stillconsists of two sister chromatids. In a second cell division step, the sister chromatids areseparated and again distributed to two daughter cells [8]. In this way, four haploid gametesare formed [8]. Figure 1.1b provides an illustration of meiosis. Fusion of a maternal andpaternal gamete leads to a diploid organism, inheriting half of its chromosomes from the
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Figure 1.2: Genetic variants. Overview of different types of genetic variations. a SingleNucleotide Polymorphisms (SNPs) are mutations of a single base pair. b,c Segments deletedfrom the sequence or inserted into the sequence, are called deletions and insertions, respec-tively. d In case of an inversion, the sequence of a segment is inverted. e, f A segment isduplicated and occurs more than once in the sequence. In case of a tandem duplication, thecopies are located adjacent to the segment.
mother and the other half from its father.
1.3 Genetic variation

Due to genetic variants, the DNA sequences of different individuals are not completely iden-tical, even if they belong to the same species. Genetic variation defines genetic diversity inpopulations, but can also cause genetic diseases. Different types of genetic variants exist.Single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) are alter-ations of single bases in the nucleotide sequences of an individual (Figure 1.2a). While theterm “SNP” is sometimes defined to refer to germline events that are present in at least 1% ofa population, many authors do not apply this threshold [2, 88, 107]. Early uses of the term“SNV” often focused on somatic events [43, 66, 96, 107]. In this thesis, “SNP” will be usedto refer to any single nucleotide germline substitution, regardless of its allele frequency.SNPs are the most common type of variants. In a human sample, on average more thanevery 1000th genomic position carries a SNP. Some SNPs have been shown to be associatedwith diseases, including cancer. Specific SNPs located in microRNA binding sides can influ-ence the susceptibility of humans to get certain cancers [133]. Another example is migraine,which is associated with specific SNPs located in multiple genes, including the TRPM8 or theLRP1 gene [25]. Furthermore, SNPs can be related to specific traits. Certain SNPs in human5-HT-2A gene for example, were shown to be associated with anger- and aggression-relatedtraits, with some being protective against suicidal behaviour [62].Besides alternations of single bases, parts of the DNA sequence of an individual can bedeleted, or additional sequence can be inserted into the DNA, resulting in deletions and in-sertions, respectively (Figure 1.2b,c). Depending on their length, such variants are typicallyclassified as indels if the inserted or deleted sequence is less than 50 base pairs long. Longervariants (≥ 50 bp) are called structural variants (SVs), and, besides insertions and deletions,also include other variant types, such as inversions or duplications. In case of an inversion,a segment in the genome is inverted (Figure 1.2d). In case of a duplication, several copies
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of a segment are present in the genomic sequence of an individual. Repeated segments caneither be non-adjacent (interspersed duplication, Figure 1.2e) or they are inserted adjacentto the original segment (tandem duplication, Figure 1.2f).Besides SNPs, other types of genetic variants can have an influence on traits or diseasesof individuals. An indel in the human CFTR gene for example, has been shown to causecystic fibrosis [31]. More than 99.9% of the genetic variation in a human genome consistsof SNPs and indels [2]. Due to their larger sizes, structural variants, however, affect morebases and are thus a major contributor to phenotypic variation and diseases of individuals[2, 181, 198]. Interpreting the functional consequences of SVs is more difficult than for othertypes of genetic variants, since they often occur in more complex, repetitive genomic regions[198]. Structural variants have been linked to various traits and diseases, like attention-deficit hyperactivity [201], autism [163, 168] or schizophrenia [118, 193], and play a majorrole in many cancers [112].In diploid or polyploid individuals, either of the chromosomal copies can carry differentgenetic variants. The different versions of sequence segments that can be present at a variantlocus are referred to as alleles. The sequence of alleles located on the same chromosomalcopy is called haplotype [143].
1.4 DNA sequencing

Sequencing aims at determining the nucleotide sequence of an individual and is thus cru-cial for studying an individual’s genome and the genetic variation it carries. Typically, thegenome is fragmented into many small pieces prior to sequencing and sequences of eachof these pieces are determined, resulting in so-called sequencing reads. These reads thenprovide the basis for downstream analyses, such as alignment to a reference genome, geno-typing genetic variants, phasing or genome assembly.The most relevant early sequencing methods were Sanger dideoxy synthesis and theMaxam-Gilbert chemical cleavage method [121, 164, 165]. The Maxam-Gilbert methodis based on base-specific cleavages of radioactively labeled DNA segments [177]. Sangerdideoxy synthesis uses chain terminating nucleotides which, starting from a labeled primer,are incorporated into a newly formed strand by a polymerase and prevent sequence elon-gation [122, 177]. For each of the four bases, both methods produce labeled fragments ofdifferent length. Both methods then separate these fragments by size using electrophoresis[173]. By exposure to X-ray film, the sequence can be determined based on the orderingof fragments [173]. Although both sequencing methods have been improved further, themethod by Sanger became the sequencing standard [177]. Instead of radioactive labelingof segments, fluorescent dyes were introduced which enabled sequence detection based onlaser-induced fluorescent emission instead of using X-rays [122]. Sanger sequencing is stilla useful method today, especially in scenarios where high throughput is not required [173].However, sequencing larger genomes, like the human genome, requires a much more effi-



1.4 DNA sequencing 9
a b c

A
C
T

G
A
C T
G

ACG...
TGA...
CGA...
CAC...

Figure 1.3: Illumina sequencing. a The DNA is randomly fragmented into short, single-stranded segments and adapters are added to each end of the resulting fragments. b Frag-ments are loaded into a flow cell with surface-bound oligonucleotides. Fragments bind andare amplified by PCR resulting in distinct clusters. c Fluorescently labeled nucleotides areused by polymerases to synthesize complementary strands. After a new base was incorpo-rated into each strand, the flow cell is imaged. In this way, the sequence of each fragmentcan be determined step by step.
cient and scalable approach that offers high throughput.
1.4.1 Massively parallel short-read sequencing

Most short-read sequencing approaches are based on the concept of Sequencing by Synthesis(SBS). The underlying ideas are similar to Sanger sequencing, but steps are parallelized inorder to generate higher throughput [122]. Most methods no longer use dideoxy termina-tors so that chain elongation proceeds while imaging the nucleotides incorporated [177].Another difference to the original Sanger method is that most methods based on SBS onlyachieve shortened read fragments (300-500 bp) [177]. One of the most popular technologiesis Illumina sequencing. The first step is library preparation [81]. The DNA is randomly frag-mented into short, single stranded segments [81]. After adapter sequences ligated on the 5’and 3’ ends, each resulting fragment is amplified using PCR [81] (Figure 1.3 A). The secondstep is cluster generation. The library is loaded into a flow cell which contains surface-bound oligonucleotides that are complementary to the adapter sequences [81]. Fragmentsare captured on the surface and amplified using bridge amplification, resulting in distinct,clonal clusters consisting of around 1,000 copies of each fragment [81, 177] (Figure 1.3B).The next step is to sequence the fragments based on Sequencing by Synthesis. A polymerasesynthesizes complementary strands using fluorescently labeled nucleotides (dNTPs) [81].Incorporation of each dNTP into the newly synthesized strands produces a light signal. Eachof the four dNTPs emits a different wavelength which enables to identify which base wasadded to a cluster in each step. The flow cell is imaged after each newly added base. Inthis way, the sequences of each distinct cluster can be determined step by step [81] (Figure1.3C). The resulting read sequences can then be used in downstream analyses, such as readalignment or k-mer counting.
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Figure 1.4: Single molecule real time sequencing. a A SMRTbell molecule consisting ofa DNA fragment with hairpin adapters added to both ends. b The SMRTbell is loaded intoa ZMW, which has a DNA polymerase bound at the bottom. c The sequence of the DNAfragment is determined by Sequencing by Synthesis. Fluorescently labeled nucleotides areincorporated into the strand by the polymerase and emit a light signal. d For circular con-sensus sequencing, the fragment is sequenced multiple times, producing multiple reads forthe same segment. An accurate consensus sequence is formed which eliminates sequencingerrors contained in each individual read.
1.4.2 Single molecule fluorescent sequencing

Pacific Biosciences (PacBio) developed a sequencing technology based on single moleculereal time sequencing (SMRT). In contrast to Illumina sequencing, PacBio sequencing cangenerate reads of up to 50 kbp in length [177]. In order to sequence DNA, fragments are pre-pared by ligating hairpin adapters to both ends in order to create a circular, double-strandedmolecule which is called SMRTbell [157] (Figure 1.4a). SMRTbells are then loaded into aSMRTcell, a chip containing up to 1 million sequencing units called Zero Mode Waveguides(ZMW) [157, 177]. In each ZMW, a polymerase is bound at the bottom which binds thehairpin adapters and replicates the DNA fragment [177] (Figure 1.4b). Fluorescently labelednucleotides are provided for chain elongation and enable identifying the bases incorporatedinto the strand by the polymerase in each step [157] (Figure 1.4c). From the sequence oflight signals emitted, the sequence of the underlying fragments can be determined in thisway, resulting in continuous long reads (CLR). Compared to Illumina sequencing, PacBioCLR sequencing suffers from a much higher sequencing error rate (see Section 1.4.4). How-ever, PacBio recently presented a method to generate highly accurate long reads by usingCircular Consensus Sequencing (CCS) [199]. The circular nature of the SMRTbell moleculeenables the polymerase to read the same fragment more than once, producing several readsof the same template segment. Afterwards, a single consensus sequence can be formed fromthese reads (Figure 1.4d). This allows to eliminate the high rate of sequencing errors withineach individual read and thus results in a highly accurate, long-read sequence.
1.4.3 Nanopore sequencing

Nanopore-based sequencing of DNA, commercialized by Oxford Nanopore Technologies,produces sequencing reads reaching lengths over 100 kbp that are much longer than the
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Figure 1.5: Nanopore sequencing. A DNA fragment passes through a nanopore embeddedin an electrically resistant membrane. A detector measures the change of the current flowingthrough the pore. Based on characteristic changes of the current induced by each nucleotide,the sequence of the molecule can be determined.
ones produced by Illumina or PacBio [114]. Nanopore sequencing uses protein nanoporesthat are embedded in an electrically resistant membrane in order to determine the sequenceof long DNA fragments [177]. A detector is connected to each nanopore and measures theelectric current flowing through the pore [139]. DNA fragments pass the nanopores elec-trophoretically. Each base passing through the pore causes a change in current, generatinga characteristic pattern which is known as “squiggle” [139] (Figure 1.5). These fluctuationsare then processed into raw reads by a specific software and stored in FAST5 format [139].A basecalling algorithm based on neural networks is used subsequently in order to decodethe nucleotide sequences of the stored reads and converts them to FASTQ format [139].
1.4.4 Comparison of sequencing technologies

Depending on the sequencing machine used, Illumina sequencing produces paired-end readsof 150-300 bp in length [87]. These short reads are highly accurate, with error rates < 0.1%[83–86]. Due to their low error rates, short reads are well suited for detecting or genotypingSNPs and small indels. However, they are less useful for tasks that require longer sequencespans [192]. Especially repetitive genomic regions are difficult to access by these reads, astheir short read length makes it hard to determine from which location of the genome theyoriginated from. PacBio and Oxford Nanopore sequencing overcome these limitations sincethey produce much longer reads. However, they suffer from much higher error rates. PacBioCLR reads are typically between 5-60 kbp in length, with error rates between 8-15% [114,157]. Nanopore sequencing can produce even longer reads (10-100 kbp, Ultra-long ONTreads reach lengths > 100 kbp) [114]. Read accuracies are on average 87-98% [114]. Incontrast to short reads, long sequencing reads enable accessing more complex and repetitiveregions of the genome. Due to their length, they can often span such regions, which makesit easier to determine their precise location when aligning them to a reference genome[114, 157]. This property makes long reads valuable for many applications, including callingor genotyping of structural variants, haplotype phasing or genome assembly [199]. PacBioCCS reads combine characteristics of short and long reads. Their read length is typically
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between 10-30 kbp in length [114], while having an accuracy of > 99% (99.8% on average)[199]. Wenger et al. [199] compared read accuracy and mappability of PacBio CCS reads,Illumina reads and PacBio CLR data for human sample HG002 (NA24385). The longer readlength of CCS reads increased their mappability. While 97.5% of reference genome versionGRCh37 was mappable by CCS reads (excluding gap regions), Illumina reads could map toonly 94.8% of the reference [199]. This enables to access medically relevant genes and othercomplex regions like HLA by CCS reads, which previously were not fully accessible by shortreads [199]. In comparison to short reads, variant calling performance for small insertionsand deletions (< 50 bp) is worse for PacBio CLR and Oxford Nanopore reads [48, 144, 171].PacBio CCS reads, however, enable accurate small variant detection. While the accuracy forindel detection is comparable to Illumina reads (F-scores are 99.58% for CCS and 99.59%for Illumina data at coverage 35× for HG003) [171], the accuracy of detecting SNPs withCCS reads is even better than for Illumina with the recently developed PEPPER-Margin-DeepVariant pipeline (F-scores are 99.90% for CCS and 99.63% for Illumina at coverage35× for HG003) [171]. Long reads are also favorable for structural variant detection. Acomparison based on different datasets for human sample HG002 resulted in F-scores ofaround 96% for CCS reads, 94.6% for CLR data and only around 67.5% for Illumina [199].
1.5 Sequence alignment

A starting point for many downstream analyses are alignments of sequences to a referencegenome. A reference genome is a DNA sequence used as a representative of the genomeof a species, sometimes assembled from data of multiple individuals. Alignment aims atidentifying the precise location in the genome from which a sequence originated. Due togenetic variants that are present in different individuals of the same species, the sequenceof a query and the respective location in the reference genome are not always identical.Additionally, sequencing errors contained in reads or sequence segments resulting from DNAassembly (so-called contigs) lead to differences. Therefore, alignment requires approximatestring matching algorithms in order to determine the location of a sequence in the referencegenome. Many alignment methods are based on the Needleman-Wunsch algorithm [132]or the Smith-Waterman algorithm [178]. Sequence alignment is a powerful tool to compareDNA sequences. One example is aligning sequencing reads or assembly contigs to a referencegenome. Multiple sequence alignment aims at computing alignments of more than twosequences, allowing to identify similarities and differences among multiple queries, even ifreference genomes are not available.
1.6 Genotyping

Each chromosomal copy of an individual can carry genetic variants. Given a variant locusand possible allele sequences for this variant, genotyping describes the process of determin-
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Figure 1.6: Genotyping. a Alignnment-based genotyping methods use sequence alignmentsspanning or aligning close to a variant locus in order to infer the genotype. Reads marked bya red circle carry the alternative allele, while the other reads carry the reference allele. Thisexample illustrates a heterozygous (“0/1”) genotype. b K-mer-based genotyping methodscount allele-specific k-mers in the reads and infer genotypes based on the observed counts.The counts for the blue k-mer (specific to the reference allele) as well as the red k-mer(alternative allele) are the same, indicating a heterozygous genotype.
ing the most likely combination of alleles that a specific individual carries at the respectivelocation in its genome. A common use case of genotyping is to determine genotypes ofan individual for variants previously detected in other individuals. Genotyping is differentfrom variant calling. While detection algorithms aim at finding locations of (possibly novel)genetic variants in the genome of an individual, genotyping methods focus on determininggenotypes given a set of known alleles and typically cannot discover novel variation them-selves. In this thesis, the same notation as used in VCF format is adapted (see Section 1.11.1for details). Genotypes are represented as lists of alleles, separated by a “/”. Typically,one refers to the reference allele as “0” and uses higher numbers to enumerate possible al-ternative alleles (see Section 1.11.1). In case of a biallelic locus in a diploid organism forexample, the three possible genotypes are “0/0” (homozygous for reference allele), “0/1”(heterozygous) and “1/1” (homozygous for alternative allele).In Chapter 3 of this thesis, a new approach to genotyping is presented which is based onshort reads. This section here provides an overview of different computational approaches togenotyping from short and long sequencing data. The genotyping methods presented can beclassified as either alignment-based or k-mer-based methods. Alignment-based approachesuse alignments of sequencing reads to a linear reference genome or a graph structure repre-senting possible reference and alternative alleles in order to infer genotypes (Figure 1.6a).K-mer-based approaches work with the raw reads and count allele-specific k-mers in thereads [49]. K-mers are short sequences of a fixed length k, whose counts in the reads pro-vide evidence for the absence or presence of certain variant alleles (Figure 1.6b).
1.6.1 Short-read based genotyping

Various genotyping methods have been developed for short-read data. Many of them arebased on alignments of short reads to a linear reference genome. GATK is a widely used
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tool for detecting as well as genotyping SNPs and indels from short reads [39]. Its geno-typing method is based on a Bayesian algorithm which computes likelihoods for all possiblegenotypes and can consider multiple samples simultaneously [39]. FreeBayes is a variantdetection tool for SNPs and indels leveraging local haplotype information [60]. It uses aBayesian model to compute genotype likelihoods based on the aligned sequencing readsand a priori expectations about the allele distributions within a population [60]. Platypusis another local haplotype-based small variant caller [158]. It uses local de novo assemblyin order to increase the accuracy of variant detection and computes genotype likelihoodsbased on an expectation-maximization algorithm [158]. Besides methods that focus on smallvariants, several approaches to genotyping structural variants based on aligned short readshave been proposed. SVTyper is based on a maximum-likelihood Bayesian classificationalgorithm which infers SV genotypes from split-read and paired-end alignments [28]. DIG-TYPER is a genotyping tool I developed previously. It uses maximum-likelihood estimationin order to compute genotype likelihoods for inversions and tandem duplications [47]. Itconsiders the orientation of paired-end reads, the insert size and split-read alignments inorder to find support for reference and alternative alleles [47].Instead of using alignments to a linear reference genome, more recent genotyping ap-proaches are based on graph structures that include possible alternative alleles in order toimprove genotyping accuracy. This is especially useful for structural variants, since shortreads often fail to properly align in the respective genomic regions, resulting in biased geno-type estimates [26, 75, 175]. GraphTyper [52, 53] constructs a pangenome representationwhich includes alternative sequences and re-aligns sequencing reads to this graph. Geno-types for structural variants are computed by analyzing reads that align to SV breakpoints aswell as alignment coverages [53]. Similarly, the SV genotyper Paragraph constructs a graphencoding reference and alternative alleles of input variants and performs local re-alignmentof reads to this graph [26]. Genotype likelihoods are computed based on the resultingalignments [26]. Recently, genotyping of structural variants was demonstrated with the VGtoolkit [75, 176]. Unlike other graph-based methods that locally re-align short reads previ-ously mapped to a linear reference, short reads can be directly aligned to a pangenome graphin an efficient manner using the latest mapper Giraffe [176]. Genotypes are then computedbased on the resulting alignments. While Giraffe was demonstrated to be fast on rathersimple pangenome graphs excluding complex regions, we observed very high runtimes formore complex graphs (see Section 3.5.4).Aligning reads to reference genomes or graph structures is time consuming (Chapter 3).Therefore, alternative approaches are k-mer-based. They use the raw, unaligned sequencingdata in order to count allele-specific k-mers in the reads. Cortex, a very early graph-basedtool, constructs a colored de Bruijn graph that can represent genomes of multiple samples.Genotype likelihoods are computed based on the structure of bubbles in the graph [89].Dilthey et al. used a graph-based approach for genotyping the MHC region based on k-merinformation. LAVA uses approximate k-mer matching in order to genotype known SNP loci
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[172]. Dolle et al. introduced a data structure based on the Burrows-Wheeler transform(BWT) that can store sequencing data of a population. It can be used for fast genotypingof SNPs and indels by determining read support for allele-specific k-mer sequences [44].BayesTyper is a k-mer-based tool for genotyping a wide range of genetic variants, includingstructural variants. Given variants to be genotyped, it constructs a graph representing ref-erence and alternative alleles and computes genotype likelihoods based on counting allelespecific k-mers in the sequencing reads of a sample [175]. While k-mer-based approachesare much faster than alignment-based methods for genotyping, they can struggle in morecomplex and repetitive regions of the genome that lack unique k-mers [49] (Chapter 3).
1.6.2 Long-read based genotyping

Besides methods that rely on short sequencing reads for genotyping, several approachesbased on long reads exist. Genotyping SNPs and indels accurately from long reads is chal-lenging due to the higher error rates of PacBio CLR and Oxford Nanopore reads (Section1.4). However, due to their length, long reads provide access to more difficult regions thatare otherwise inaccessible by short reads, enabling small variant detection also in such re-gions [48]. WhatsHap’s genotyping algorithm is based on my previous work on genotyping.It formulates the model underlying the original WhatsHap phasing algorithm [143] (Section1.7) in terms of a Hidden Markov Model in order to genotype SNPs and indels from longreads [48]. The Forward-Backward algorithm is used to compute genotype-likelihoods in ahaplotype-aware manner by using the linkage information between heterozygous variantsprovided by the long reads in order to reduce the impact of sequencing errors [48]. Long-shot can call and genotype SNPs and indels from noisy, long reads [50]. It uses a similaridea as WhatsHap and computes haplotype-aware genotypes based on performing haplotypeassembly using HapCUT2 [50]. Furthermore, learning-based approaches were introducedin order to call and genotype SNPs and indels. Clair and DeepVariant can perform smallvariant detection and genotyping from noisy long reads using deep neural networks trainedon read pileup data [117, 144]. NanoCaller and PEPPER-Margin-DeepVariant extend deeplearning-based models by incorporating haplotype information for small variant detection[7, 171].For structural variants, several tools exist which focus on the detection of structural vari-ants from aligned long-read data, but also provide genotypes for their variant predictions[74, 91, 169]. SVs are typically identified based on signatures in the alignments, such assplit-reads or gaps, and genotypes are inferred from the fraction of reads supporting ref-erence or alternative alleles [74, 91, 169]. Several tools were developed specifically forgenotyping known structural variant alleles in a new sample based on long reads. VaPoRgenotypes known SVs by comparing read k-mers to the k-mer spectrum observed in ref-erence and alternative alleles of a variant [205]. LRCaller genotypes SVs from Nanoporereads based on genotyping models using reference alignments and realignment to alterna-tive alleles [13]. SV Jedi genotypes SVs from long reads based on alignments to reference
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and alternative sequences of the input alleles [103]. Alignments are analyzed in order todetermine the presence or absence of alleles in the data [103].
1.7 Phasing

Haplotype phasing aims at reconstructing the chromosomal copies of an individual basedon genotype information and/or sequencing data.Alignment-based phasing approaches use reads spanning at least two heterozygous vari-ant locations in order to determine which alleles reside on the same haplotypes (Figure1.7a). Such methods require reads aligned to a linear reference genome, as well as geno-typed SNPs and indels. WhatsHap solves the minimum error correction problem (MEC) inorder to partition aligned, long sequencing reads based on variant alleles they cover andreconstruct phased haplotype blocks from these read sets [143]. The HapCut algorithmconstructs graphs from sequencing reads and computes max-cuts in these graphs in order togroup reads by haplotype [10, 51]. HapCompass creates a graph based on sequencing readsand variants, and computes haplotypes based on spanning-trees [5]. Long reads are prefer-able for alignment-based phasing, since the distance between adjacent heterozygous variantpositions often exceeds the length of short reads [204]. One limitation of alignment-basedphasing is that most methods exclude structural variants, as high quality read alignmentsare often missing in regions where the genome of an individual is too different from thereference genome [204]. Also, even long reads might not cover adjacent variant positions.Therefore, alignment-based phasing usually leads to fragmented haplotype blocks and failsto provide haplotypes on the scale of a chromosome [204].Population-based phasing methods use genotype data of large cohorts in order to re-construct the haplotypes of an individual [19, 38, 58, 116]. The underlying idea is thatindividuals share haplotype segments due to common ancestry [58]. However, in contrastto read-based methods, population-based phasing is less powerful for rare variants and fails
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for variants missing from the used reference panels [58].The recent advances in long-read sequencing lead to improvements in methods for genomeassembly and enable haplotype-resolved de novo assembly of individuals. Assembly-basedphasing can provide haplotype sequences on the scale of a whole chromosome and over-comes many limitations of alignment-based and population-based phasing (see Section 1.8).
1.7.1 Evaluating phasing results

Several metrics are typically used to evaluate the quality of haplotype predictions producedby a tool, and in order to compare these phasing results to ground truth haplotypes. Thesemetrics are used in Chapter 2 and are thus introduced in detail here.
Phase block N50

Especially read-based phasing tools are usually not able to generate a single, chromosome-scale haplotype prediction, but rather split their haplotype predictions into several phasedblocks. Variants within the same block are phased relative to each other, but it remains un-clear whether variant alleles from different phased blocks reside on the same haplotype ornot. Cutting the phasing into several blocks is often necessary because there is not enoughevidence in the data to connect phasing information between consecutive variants, for ex-ample because no read alignment exists that connects two variants [166].The N50 metric is often used to evaluate the contiguity of phasing results [24, 166, 199],as well as the quality of genome assemblies [46, 59, 100, 145]. It is defined as the length ofthe shortest block such that 50% of the entire sequence length is contained in blocks withlengths longer or equal to this size [22]. More specifically, in order to compute the N50 of aset of phased blocks, one sorts them in descending order and, starting from the largest block,adds up block lengths until 50% of the total length of the underlying genomic sequence isreached. The length of the block at which the 50% threshold is reached is defined as theN50 value.
Switch errors and Hamming errors

The material presented in this section is re-used from my joint publication with Sven Schrinner and
Rebecca Serra Mari on polyploid phasing, published in Genome Biology [166].
The switch error rate is a commonly used metric for evaluating phasing results [58, 143].Given haplotype predictions and ground truth haplotypes, the switch error rate countshow many times the assignment between predicted and true haplotype blocks needs to beswitched so as to reconstruct the true haplotypes from the predicted sequences. This metrichas been mainly used in order to evaluate phasings for diploid individuals, but has also beenextended to the polyploid case [12].
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For ploidy k, let h = {h1, ..., hk} be the set of ground truth haplotype sequences and h∗ =

{h∗1, ..., h∗k} the predicted haplotype sequences. Let j be the number of variant positions and
Πj be defined as the set of one-to-one mappings between the true and predicted haplotypes
h and h∗, such that for each π ∈ Πj it holds that hi[j] = h∗π(i)[j] for all haplotypes hi. Theswitch error rate is defined as:

SER = min
(π1,...,πm)∈Π1×...×Πm

1

k(m− 1)

m−1∑︂
i=1

dS (πi, πi+1)

where m is the number of variants and dS (πi, πi+1) the number of different mappings be-tween πi and πi+1. See Figure 1.8 for an example on how to compute dS (πi, πi+1). If thegenotype of h∗ is not equal to the genotype of h for all variant positions, the set Π1×. . .×Πmis empty and the switch error rate cannot be computed. When computing SER, we thereforeonly take those positions into consideration for which the genotypes of true and predictedhaplotypes are the same.Another metric that can be used to evaluate phasing results is the Hamming error rate.It is defined as:
HE = min

σ∈Sk

1

k

k∑︂
i=1

dH(hi, h
∗
σ(i))

Here, Sk represents the permutation group on {1, ..., k}. dH() is the Hamming distancebetween two sequences.As we noted in our publication [166], the Hamming error rate is more sensitive thanthe switch error rate. A single switch error in the middle of a haplotype block can lead to amaximal hamming error rate of 50%.
1.8 Genome assembly

Genome sequencing (Section 1.4) produces a high number of unordered sequencing readseach containing sequence information of a fragment of the individuals genome. Genome
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assembly aims at assembling these sequence fragments in order to reconstruct the completenucleotide sequence of an individual.In 2001, the first drafts of a human genome sequence were published by the HumanGenome Project and Celera Genomics [88, 191] marking a milestone in the field of ge-nomics. However, the initial drafts were still incomplete. Since then, the sequence wascontinually improved, but only recently researchers were able to fill the remaining 8% ofthe human genome missing from previous versions [136]. The Telomere-to-Telomere (T2T)Consortium presented a first complete assembly of the human genome, providing gaplessconsensus sequences for all autosomes and chromosome X [136]. The advances in long-readsequencing made these recent breakthroughs possible, since the reads cover longer sequencespans which are necessary for large-scale genome assembly.The latest human genome sequence is based on the homozygous CHM13hTERT cell lineand is thus not yet haplotype-resolved [184]. Haplotype-resolved assembly attempts to as-semble haplotypes separately instead of generating a single consensus sequence representingthe genome of an individual (Figure 2.6b). Several approaches have been introduced thatattempt to globally separate long-read data by haplotype prior to assembly, for exampleby additionally using parental data [98]. However, parental data is not always available.Other approaches combine long-read data with Hi-C data in order to obtain phased assem-blies [59, 100], but phasing on scale of a chromosome remains problematic.The PGAS pipeline aims to overcome these limitations by making use of Strand-seq datain order to produce chromosome-scale, phased assemblies of human genomes without usinga reference genome [145]. It was used in order to generate assemblies for studies describedin detail in Chapters 3 and 4, and will thus be briefly described here. In order to producehaplotype-resolved assemblies, the first step of the PGAS pipeline is to generate haplotype-unaware assemblies from long-read data [145]. The resulting contigs are then clustered us-ing Strand-seq data, such that ideally, each resulting cluster corresponds to a chromosome[145]. Next, Strand-seq data and long reads are aligned to the clustered contigs in orderto call SNPs, and SNPs are then phased in order to produce chromosome-scale haplotypes[145]. This phasing information is used in order to separate the long reads by haplotype[145]. Finally, a de novo assembly is computed for each haplotype based on the separatedreads [145]. PGAS was demonstrated to produce high quality and highly contiguous assem-blies, which are valuable for many downstream analyses and enable accurate phased variantdetection, even for structural variants [46, 145].Very recently, another method for haplotype-resolved assembly, Verkko, was introduced[154]. It improves and automates the assembly pipeline that was used by the T2T consor-tium in order to generate the CHM13 genome assembly. Verkko combines PacBio CCS dataand Ultra-long Nanopore reads to compute complete assemblies of diploid genomes usingan iterative, graph-based approach [154]. Applied to human sample HG002, Verkko assem-bled 20 out of 46 diploid chromosomes without any gaps with an accuracy of 99.9997%[154].
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1.9 Pangenomics

With advances in sequencing technologies and the development of methods for genome as-sembly, the number of sequenced and assembled genomes is steadily increasing [54, 187].Typically, linear reference genomes are used in order to analyze sequencing data, e.g. byaligning the reads to it (Section 1.5). However, using linear reference genomes is prob-lematic, especially when analyzing structural variants, due to the absence of alternativesequences from the reference genome [187]. This can cause a reference bias when aligningreads, which can lead to errors in downstream analyses [187]. Also, in a linear referencebased setting, multiple genomes can only be compared indirectly via their relationship tothe reference genome [54, 187]. Pangenomics aims at solving these issues by replacing thelinear reference genome by structures that capture the full spectrum of sequence diversityinherent in the analyzed genomes [187]. The Computational Pan-Genomics Consortium de-fines the term pangenome to refer to “any collection of genomic sequences to be analyzedjointly or to be used as a reference” [187]. The aim is to provide a data structure that allowsdirect and unbiased comparisons of genomes [54].Ideally, a pangenome should have the following properties. It should be constructablefrom different data types, such as sequencing reads, variants or assemblies, and should beeasy to be updated as new datasets are available [187]. It should provide a coordinatesystem, positional access to genomic regions or variants and enable searching for specificsequences [187]. Also, the data structure should be fast and memory efficient [187].Several data structures were proposed for representing pangenomes. In the simplest case,a collection of individual, unaligned genomic sequences can be interpreted as a pangenome
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[54, 187] (Figure 1.9a). Furthermore, a pangenome can be constructed from a linear refer-ence genome and variant alleles by inserting alternative alleles into the reference at theirrespective coordinates, resulting in a directed and acyclic graph [54]. The variant posi-tions are represented in terms of bubble structures in these graphs [54]. Other approachesconstruct pangenomes based on de Bruijn graphs [77, 89, 120, 127]. In a de Bruijn graph,nodes correspond to k-mers and edges connect nodes if k-mers overlap by k − 1 bases [54](Figure 1.9b). Alternative approaches construct sequence graphs from multiple sequencealignments of assembled genomes or haplotypes [9, 61, 67, 104, 126]. In these graphs,nodes correspond to sequence fragments and edges connect nodes such that the resultingsequence reflects the genomic sequences from which the graph was constructed [54] (Figure1.9c). Walks in these graphs correspond to recombinations of the input genomes and bubblestructures represents variation between the genomes [54]. The linear reference sequencecan additionally be incorporated as a linear path through such a graph, enabling projectionsto the reference genome [54].Replacing the linear reference genome by a pangenome graph has been demonstrated toimprove many downstream analyses, such as read alignment, variant calling or genotyping(Sections 1.6, 3, 4). Pangenome-based methods are especially important for studying regionsdifficult to access by sequencing reads, including repetitive regions and such that are poorlyassembled in the linear reference genome [187]. Especially structural variants are oftenlocated in these regions and are therefore often missed by alignment-based methods [24,46, 49, 198, 206]. Thus, pangenome-based methods provide the potential to detect suchstructural variants, genotype them across cohorts and study associations with diseases [46,49, 187]. The field of pangenomics is still relatively young and actively researched. Largerconsortia working in this area include the Human Pangenome Reference Consortium (HPRC)[90, 113] or the Human Genome Structural Variant Consortium (HGSVC) [24, 46]. The workI have contributed to these projects is presented in Chapters 3 and 4 of this thesis. It willbe demonstrated how pangenomes improve genotyping performance of SNPs, indels andespecially SVs, and that they enable accessing regions and variants that previously wereinaccessible by purely short-read based approaches.
1.10 Mathematical background

The mathematical model behind PanGenie, the genotyping approach that is presented inChapter 3, is a Hidden Markov Model (HMM). Hidden Markov Models describe stochasticprocesses and due to their flexibility, are widely used in many areas of research, such asspeech recognition or bioinformatics [48, 57, 92, 111, 128, 150]. In this thesis, an HMM isused to compute genotype likelihoods for genetic variants based on sequencing data and apanel of known haplotype sequences. This section introduces the concept of Hidden MarkovModels, provides a formal definition and demonstrates how to compute posterior state prob-abilities.
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1.10.1 Hidden Markov Models

Hidden Markov Models consist of two discrete-time stochastic processes modeled over col-lections of random variables (Xt)t∈N+ and (Yt)t∈N+ which take values on discrete state spaces
Q = {q1, . . . , qN} (hidden states) and V = {v1, . . . vM} (observable states), respectively[11, 149]. Starting from any of the hidden states selected according to an initial state dis-tribution π at time t = 1, the model can switch to a different hidden state with a certainprobability defined by a transition probability matrix P . Hidden states produce outputs viaccording to an emission probability matrix B. While the sequence of emissions producedby an HMM, Y1 = vk1 , . . . , YT = vkT , can be observed, the underlying sequence of hiddenstates, X1 = qk1 , . . . , XT = qkT , that produced them remains unknown. However, the emis-sions allow to draw conclusions about the hidden states (see Section 1.10.2). An importantcharacteristic of Hidden Markov Models is the Markov property. It states that the probabil-ity of transitioning to the next state at time t + 1 only depends on the state in which themodel is at time t, and anything that happened at earlier steps < t, does not have any furtherinfluence. Mathematically, this property is defined in terms of the equation shown below[149]:

P (Xt+1 = qkt+1 |X1 = qk1 , X2 = qk2 , . . . , Xt = qkt) = P (Xt+1 = qkt+1 |Xt = qkt)

A Hidden Markov Model can be formally defined based on the following elements [149]:
• a finite number of N hidden states: Q = {q1, . . . qN}

• a finite number of M observable states (emissions): V = {v1, . . . vM}

• transition probabilities: P = {pij}, such that pij = P (Xt+1 = qj |Xt = qi)

• emission probabilities: B = {bj(k)}, such that bj(k) = P (Yt = vk|Xt = qj)

• initial state distribution: π = {πi}, such that πi = P (X1 = qi)

1.10.2 Forward-Backward algorithm

The Forward-Backward algorithm determines the probability that the model was in a certainstate qi at a certain time t, given the full sequence of emissions. More formally, given asequence of T observations Y1 = vk1 , . . . , YT = vkT , it computes the probability: P (Xt =

qi|Y1 = vk1 , . . . , YT = vkT ), for all t = 1, . . . , T and all qi, i = 1, . . . , N . The algorithm consistsof two steps, the computation of Forward probabilities, and the computation of Backwardprobabilities. Probabilities are later combined to obtain posterior state probabilities.
Forward Probabilities

The Forward probability is defined as: P (Y1 = vk1 , . . . , Yt = vkt , Xt = qi) [149]. It describesthe probability of observing the first t emissions and being in state qi at time t, and can be
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computed recursively as shown below [149]:

α1(i) = πi · bi(vk1) for i = 1, . . . , N

αt+1(i) = bi(vkt)
N∑︂
j=1

αt(j) · pji for t = 1, . . . , T and i = 1, . . . , N

Backward Probabilities

The Backward probability is defined as: P (Yt+1 = vkt+1 , . . . , YT = vkT |Xt = qi) [149]. Itdescribes the probability of observing the partial sequence of emissions starting from t+ 1,given that at time t, the model is in state qi, and can be computed using the followingrecursion [149]:
βT (i) = 1 for i = 1, . . . , N

βt(i) =
N∑︂
j=1

bj(vkt+1) · pij · βt(j + 1) for t = T − 1, T − 2, . . . , 1 and i = 1, . . . , N

Posterior Probabilities

Finally, the probability to be in a state qi given the full sequence of observations can becomputed from the Forward and Backward probabilities. Using the definition of conditionalprobabilities, the sought probability is defined as:
P (Xt = qi|Y1 = vk1 , . . . , YT = vkT ) =

P (Xt = qi, Y1 = vk1 , ..., YT = vkT )

P (Y1 = vk1 , ..., YT = vkT )

It holds that [11]:
P (Y1 = vk1 , ..., YT = vkT , Xt = qi) = P (Y1 = vk1 , ..., Yt = vkt , Xt = qi)

· P (Yt+1 = vkt+1 , ..., YT = vkT |Xt = qi)

= αt(i)βt(i)

Therefore, the posterior state probabilities for all i = 1, . . . , N and all t = 1, . . . , T can becomputed as [11]:
P (Xt = qi|Y1 = vk1, . . . , YT = vkT ) =

αt(i)βt(i)∑︁
j αt(j)βt(j)

1.11 File formats

This section provides an overview of the different file formats that are relevant in this thesis.It presents the VCF format which is used to represent genetic variation, the SAM/BAM format
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Figure 1.10: VCF format example (multiallelic). Example of a multiallelic VCF file. Metainformation lines start with “##” and provide general information on the VCF file [162].The header line starts with a single “#” and defines the columns of the data lines [162]. Here,the VCF contains a single data line which defines a multiallelic variant for which three al-ternative alleles exist. The VCF provides genotype information on three samples. Genotypesof the second and third sample are phased. The example shown here was extracted from aVCF generated by our variant calling pipeline presented in Chapter 3.
used to store sequence alignments, and the FASTA/FASTQ format which is used to storegenetic sequences, such as sequencing reads or reference genomes.
1.11.1 VCF format

The VCF format is a text format used to describe genetic variation relative to a linear ref-erence genome. Files contain meta-information lines, a header line and data lines [162].The meta information lines define “key=value” pairs that are later used in the data linesto describe variant information [162]. The header defines the columns for which infor-mation is provided in the data lines. The first one is the CHROM column, specifying thechromosome on which a variant is located, the second column, POS, specifies the exact co-ordinate. In the ID column, a string identifier can be provided for the variant record. TheREF and ALT columns contain reference and alternative sequences of the variant. If thevariant is multiallelic meaning more than one alternative allele exists at this position, therespective alternative allele sequences are provided as a comma-separated list in the ALTfield. The QUAL and FILTER columns can be used to give information on the quality of thevariant. Additional information on the locus can be provided in the INFO column in termsof “key=value” pairs previously defined in the meta information lines. If sample specificgenotype information is available, an additional column for each sample is provided as wellas a FORMAT column, which specifies the type of data and the order of the genotype infor-mation provided in the sample columns [162]. Genotype information typically includes agenotype of the sample, that describes which alleles the sample carries on its chromosomalcopies. Such a genotype consists of a list of numbers, separated by “/” or “|”, depending onwhether the genotype is unphased or phased, respectively. The numbers give the index ofthe respective alleles. “0” stands for the reference allele, and a number i > 0 refers to the
i-th alternative allele provided in the ALT column [162].Examples for VCF files are shown in Figures 1.10 and 1.11. Both VCF files describe thesame genetic variation but in different formats: the example shown in Figure 1.10 uses asingle, multiallelic variant record, while the example shown in Figure 1.11 uses a biallelic
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Figure 1.11: VCF format example (biallelic). Example of a VCF file in biallalic repre-sentation. Meta information lines start with “##” and provide general information on theVCF file [162]. The header line starts with a single “#” and defines the columns of the datalines [162]. The VCF file contains a separate data line for each of three possible alternativealleles at position chr1:594965. Genotypes indicates the presence (“1”) or absence (“0”) ofthe allele in the genome of a sample. The example shown here was extracted from a VCFgenerated by our variant calling pipeline presented in Chapter 3.
representation and contains a separate record for each alternative allele. In the biallelicversion, “1” is used to indicate the presence of the respective alternative allele in a genotype,while “0” indicates absence. While both representations are equivalent, the biallelic versionis often preferred because it simplifies downstream analyses.
1.11.2 SAM/BAM format

The SAM format is a text format that is used to describe sequence alignments [108]. Itconsists of a header section and an alignment section [108]. The header lines start withcharacter “@” and define “TAG:VALUE” fields which are used in the alignment section todescribe properties of the alignments [108]. In the alignment section, each line represents alinear alignment of a sequence segment [108]. Each line consists of at least 11 fields definingthe alignment of the segment against the query sequence. The fields contain informationsuch as the position of the alignment relative to the query sequence, the quality of thealignment or the CIGAR string, which describes the alignment itself by specifying matches,mismatches, insertions and deletions [108]. BAM files are SAM files compressed in BGZFformat [108].
1.11.3 FASTA/FASTQ format

The FASTA format is used to store sequence information. It contains blocks describing se-quence segments. Each such block starts with a description line (starting with “>”) andis followed by lines of sequence data [131]. The FASTA format can be used to store nu-cleic acid sequences and amino acid sequences, which must be represented in the standardIUB/IUPAC codes [131]. The FASTQ format is an extension of the FASTA format which ad-ditionally allows to store position-wise quality scores for the sequences. Similarly to FASTAfiles, FASTQ files consist of blocks describing sequences. Each block consists of a headerline (starting with “@”), lines of sequence data, a separator line containing a single “+”,and position-wise quality scores (Phred scaled) [82]. In this work, FASTA/FASTQ files are
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mainly used to store nucleic acid sequences, such as sequencing reads, assembly contigs orreference genomes. Nucleic acids are encoded using letter “A” for adenine, “C” for cytosine,“G” for guanine and “T” for thymine, as well as “N”, if sequence information is missing[131].



Chapter 2

Reference-based haplotype phasing

Phasing aims at reconstructing the haplotype sequences of diploid or polyploid individuals(Section 1.7). Assigning variant alleles to haplotypes is important in many applications,for example in order to identify selective pressures or subpopulations in population studies[1, 143, 188], in clinical genetics [179], or in order to link disease-causing SNPs to oneanother [69, 143].Many phasing approaches are based on alignments of long sequencing reads to a ref-erence genome (Section 1.7). The high sequencing error rates of these reads make accu-rate phasing of SNPs difficult, especially for highly variable genomes. The first part of thischapter introduces a new phasing algorithm designed for polyploid species and presentsan application of this algorithm to data of the tetraploid potato. The second part of thischapter presents an application of the diploid phasing tool WhatsHap to the new, highlyaccurate PacBio Circular Consensus reads and demonstrates that these reads enable highquality phasing without requiring additional short-read data for variant detection.
2.1 Accurate polyploid phasing from long reads

This section presents an approach to polyploid phasing based on long sequencing reads. In this
project, I shared first authorship with Rebecca Serra Mari and Sven Schrinner. The results of
this study were published in Genome Biology [166]. My main contribution to this project was
to analyze a tetraploid potato dataset using the new algorithm. Sections 2.1.1, 2.1.2, 2.1.3 and
2.1.4 re-use some material from this paper. Sections 2.1.2 and 2.1.3 summarize joint work with
Sven Schrinner and Rebecca Serra Mari for this publication. Author contributions and publication
details are provided in Section E.1.

2.1.1 Introduction

This section re-uses some material from [166].

Unlike diploid organisms, which carry two homologous copies of their autosomes, polyploid
27
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species have more than two such copies. Especially plants are often polyploid (Section 1.7).Being able to phase such organisms is crucial for breeding and/or genome engineering, sinceit helps to improve yield qualities of important crops by improving associations betweengenotypes and phenotypes [101]. The phasing problem is more complicated in the polyploidsetting than it is in the diploid case. When phasing biallelic, heterozygous variants in diploidorganisms, it is sufficient to know the configuration of one haplotype, as the other one willbe complementary. However, in polyploid organisms, this is not the case. Some of thehaplotypes of an individual can be locally identical, which makes it difficult to reconstructthem. Autopolyploid species are especially challenging to phase and assemble since theyoccur as a result of genome duplications [170].Many phasing approaches for the diploid setting solve the Minimum Error Correction(MEC) problem. The idea is to partition the reads into distinct sets that correspond to dif-ferent haplotypes by minimizing the number of corrections that need to be applied to theirsequences. However, this model is based on the assumption that haplotypes are different andthus cannot describe cases where haplotypes are locally identical. In such cases, sequencingerrors in the reads can lead to wrong haplotype assignments. An example is provided in Fig-ure 2.1. On the left, the four haplotypes of a polyploid individual are shown. The blue andpink haplotypes are identical. Given sequencing reads, the MEC approach aims at partition-ing the reads into sets that correspond to the same haplotype, ideally leading to balancedpartitions (middle). However, since two haplotypes are identical, the MEC model assignsmost of the reads originating from these two haplotypes to one partition, and collects noisyreads in a separate, sparse partition in order to minimize the overall MEC score (right), lead-ing to wrong haplotypes. This example demonstrates that approaches developed for diploidphasing are not always applicable in a polyploid setting. Also, many of these approachesbecome infeasible when generalized to polyploid genomes [17].Several methods for polyploid phasing based on long sequencing reads already exist.HapCompass is based on spanning trees and the Minimum Weighted Edge Removal (MWER)[5, 6]. HapTree uses a maximum-likelihood approach in order to construct the most likelyhaplotypes given the aligned sequencing reads [12]. SDHap uses a semi-definite program-ming approach based on an approximate MEC criterion [34]. All three methods have beenevaluated based on simulated data in a study by Motazedi et al.. Results show that noneof them was useful in practice, either because they scaled poorly when applied to largergenomes, or because they produced inaccurate phasing results [130]. More recently, H-PoPwas demonstrated to outperform these methods in terms of phasing accuracy and runtime[202]. It is based on Polyploid Balance Optimal Partition (PBOP) and aims to partition thesequencing reads by haplotype [202]. H-PoP’s underlying model can be interpreted as ageneralization of the MEC problem to the polyploid case. If genotyping information is avail-able for input variants, these constraints can be added to the model, the resulting extensionof H-PoP is referred to as H-PoPG.A few other approaches have been suggested that do not scale well to whole-genome
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Figure 2.1: MEC problem in polyploid setting. Four haplotype sequences of a polyploidindividual are shown on the left. The blue and pink haplotypes are identical. In the middle,the desired partitioning of sequencing data for the respective sample is shown. Ideally,reads originating from the four haplotypes can be clustered into sets of similar sizes. Onthe right, likely outcomes of clusters computed by the MEC model are shown. MEC fails toproperly handle identical haplotype sequences, and combines reads from the blue and pinkhaplotypes into one big cluster. Noisy reads might end up in a sparse cluster, likely leadingto wrongly reconstructed haplotype sequences. Figure taken from [166].
single-individual phasing, including PolyHarsh [73], which uses Gibbs Sampling, TriPoly[129], which requires family data, and SDA [23], which was designed to resolve multicopyduplications during genome assembly.In the following, a new algorithm, whatshap polyphase, for polyploid phasing is intro-duced that overcomes the limitations mentioned above. It is designed to properly handlelocally identical haplotypes by taking read coverage into account, and consists of two steps,a read clustering step and a newly established “threading” step. The focus of the followingsections is on the application of whatshap polyphase to a tetraploid potato dataset, whichdemonstrates that the algorithm is scalable in practice and delivers high quality haplotypepredictions that enable haplotype-resolved assembly of genes, providing biological insightsinto the genomes of polyploid species.
2.1.2 Phasing algorithm

The phasing algorithm presented here was mainly developed by Sven Schrinner and Rebecca Serra
Mari. This subsection provides a summary of their work which was presented in our joint publica-
tion [166]. Some material from this publication is re-used. Formal definitions and mathematical
details are skipped here and can be found in [166].

The input required by whatshap polyphase is a BAM file with aligned sequencing reads, aVCF file containing variants and unphased genotype information, and a reference genome.The first phase of whatshap polyphase groups input reads that likely belong to the samehaplotype. For each pair of reads, the clustering step computes a similarity score that ispositive if two reads originate from the same haplotype and negative if they stem from
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Figure 2.2: WhatsHap polyphase overview. Input. The inputs to the algorithm arealigned sequencing reads in a BAM file, genotyped variants in a VCF file and the corre-sponding reference genome. Phase I. Input reads are clustered based on their similarity us-ing a cluster editing approach. Phase II. Haplotypes are reconstructed based on “haplotypethreading” by assembling each haplotype through a sequence of read clusters. Haplotypesthat are locally identical can be threaded through the same clusters. Output. As an output,the algorithm generates the predicted haplotype blocks. Figure taken from [166].
different haplotypes. A complete graph is constructed in which each sequencing read isrepresented as a node and each edge is labeled with the similarity of the underlying readpair. In order to generate read clusters, the algorithm uses cluster editing [203] to transformthe graph into disjoint cliques. Since the cluster editing problem is NP-hard, a previouslyintroduced heuristic [15] is used to efficiently compute a solution.In the second phase of the algorithm, the actual phasing results are computed based onthe read clusters using haplotype threading. Given the ploidy p of the data, p haplotypesneed to be reconstructed. For each such haplotype, the idea is to assemble a sequence ofclusters by choosing one cluster at each variant position that the haplotype is “threaded”through. The number of haplotypes that can be threaded through the same cluster at aposition depends on the position-wise read coverage of the cluster. Since some haplotypescan be locally identical for polyploids, clusters might contain reads originating from differenthaplotype sequences that are identical or similar in the respective region. The coverage ofthe cluster helps to find out how many haplotypes are collapsed at a position and are thusallowed to use the same cluster. Haplotypes threaded through the same cluster at a variantposition must also carry the same allele which is derived from the consensus sequence ofthe reads contained in the cluster. Therefore, another constraint that needs to be consideredwhen choosing clusters is that the cluster selection needs to be compatible with the inputgenotypes. Additionally, the haplotype threading algorithm aims to minimize the numberof haplotype switches between clusters so that haplotypes are encouraged to remain in thesame cluster as long as possible. The cluster assignments are used in a final step in orderto construct p haplotypes which are then output in terms of a phased VCF file. Figure 2.2provides an overview of the phasing algorithm.
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2.1.3 Evaluation on artificial polyploid humans

This section provides a summary on joint work of Sven Schrinner, Rebecca Serra Mari and myself
published in [166]. Some material from this publication is re-used. I wrote the Snakemake pipeline
that constructs the tetraploid datasets from simulated and real data, runs the phasing tools and
computes phasing statistics. Sven Schrinner extended this pipeline for penta- and hexaploid cases.
Rebecca Serra Mari evaluated and compared results in collapsing and non-collapsing regions.

We combined real PacBio CLR sequencing data for three human samples (NA19240, HG00-514, HG0733) at different coverage levels in order to generate artificial tetraploid, penta-ploid and hexaploid datasets for human chromosome 1. For all three samples, high-qualityground truth haplotype information is available [24]. In addition, equivalent simulated readdatasets were produced for these samples using PBSIM [138] as a read simulator. whatshap
polyphase and H-PoPG were evaluated on these datasets and results were compared to theground truth haplotypes by computing the switch error rate and the hamming error rate (Sec-tion 1.7.1). Both tools use different strategies in order to define blocks of variants that theycan phase together. H-PoPG maximizes the block length by cutting haplotypes only betweenconsecutive variants that are not connected by any read alignment. whatshap polyphaseimplements different approaches to define phased blocks. Per default, block cuts are intro-duced between two adjacent positions whenever there are not enough reads to connect atleast three of the haplotypes. In addition, a block is cut whenever at least two haplotypesswitch clusters during the threading step, or whenever at least one of the haplotypes sharingthe same cluster in a collapsed region switches to another one afterwards. In order to prop-erly compare both tools, whatshap polyphase was run using the same phase block definitionas H-PoPG. Across all datasets tested, whatshap polyphase produced more accurate resultscompared to H-PoPG when considering the switch error rate (Table A.1). Switch error rateswere around 30-40% lower than for H-PoPG when using the same strategy to define phaseblocks as H-PoPG. Switch-error rates are even lower when using a more sensitive definitionof phased blocks, but more and shorter haplotype blocks are produced in turn (Table A.1).Compared to H-PoPG, whatshap polyphase works especially well in regions with locallyidentical haplotypes (“collapsing regions”). Here, the switch error rate was around 3.06and 2.76 times higher for H-PoPG at coverages 40× and 80× using real reads, comparedto the non-collapsing regions, where these factors were only 1.19 and 1.12, respectively,when using the same phase block definition as H-PoPG (Table A.2). In summary, the resultsdemonstrate that whatshap polyphase produces high quality phasing results across differ-ent ploidies and improves over current state-of-the-art tools. Results especially improve inregions with identical haplotypes. This demonstrates the ability of whatshap polyphase tohandle regions typically challenging for existing tools.
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2.1.4 Analysis of potato data

This section re-uses material presented in [166].

In order to demonstrate a use case of our phasing algorithm, we applied it to real sequencingdata of a tetraploid potato genome (Solanum tuberosum), for which paired-end short Illuminaand long Oxford Nanopore reads were available. In a first step, we aligned the reads pro-duced by the different technologies to the potato reference genome published by the PotatoGenome Sequencing Consortium (PGSC) [71]. We observed unbalanced coverage distri-butions for the alignments, especially for the short Illumina reads, hinting towards a highnumber of structural variations and rearrangements being present in the data (Figure 2.3a),which confirms that the potato genome is highly heterogeneous [71]. Thus, the Illuminareads are ill-suited for reliable variant calling as their short length makes it more difficultto unambiguously align them to the reference. We therefore relied on the much longerNanopore reads to identify SNPs that we could use for phasing. However, Oxford Nanoporereads typically come with high sequencing error rates, complicating the calling process. Inorder to obtain reliable variant positions and genotypes from these error-prone reads, weran an error correction pipeline [153] that uses the short Illumina reads in order to reducethe number of sequencing errors in the long reads. Figure 2.3c shows an exemplary IGV[160] screenshot of uncorrected (top) and corrected reads (bottom) for the FRIGIDA-likeprotein 5 isoform X2 gene. Next, we ran minimap2 [106] to align the corrected Nanoporereads to the potato reference genome and called SNPs inside of all gene regions using Free-Bayes [60] with additional parameters: -p 4 –-no-indels –-no-mnsp –-no-complex. Asbase qualities are not produced during error correction and FreeBayes needed them in orderto compute genotypes, we added a constant quality of 40 for all bases to the BAM file be-fore calling SNPs. Finally, we ran whatshap polyphase in order to phase the variants withoption –-verify-genotypes. This option invokes an additional step prior to phasing, whichre-genotypes all variants and only keeps those positions for which the computed genotypematches the one reported by FreeBayes. For determining the genotype of a position, weimplemented a simple algorithm that calculates the fraction of reference and alternativealleles that cover a variant and compares it to the fractions that we would expect for allpossible genotypes. We then assign the genotype whose expected fractions of reference andalternative alleles best match the ones observed in the data.We focused on the potato genes [71] as they are biologically interesting for phasing. Forthe total of 36,274 genes containing heterozygous variants after calling and retyping, 91%could be (at least partially) phased by whatshap polyphase. On average, about 2.13 phasedblocks were produced per gene. Furthermore, for each gene, we determined the numberof phased variants inside the longest phased block. We observed that a large fraction ofgenes, including many long genes, can be fully phased, see Figure 2.3b. We also evaluatedthe percentage of phased genes in relation to their level of heterozygosity, but could notobserve a strong dependency, see Figure 2.4.
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Figure 2.4: Fraction of phased variants in relation to heterozygosity in the potato
genes. We determined the heterozygosity level of a gene as the fraction of heterozygouspositions. The plot shows the fraction of phased variants (y-axis) in relation to heterozy-gosity level (x-axis). Axis histograms and hexagons illustrate the distribution of data points.Figure taken from [166].

We used the FRIGIDA-like protein 5 isoform X2 (accession: XP_015169713) gene as anexample to demonstrate how whatshap polyphase enables haplotype-resolved assembly.We extracted the phasing of the longest phased block reported for this gene and separatedthe reads by haplotype as follows. We extended the command whatshap haplotag, whichwas previously implemented for the diploid version of WhatsHap, to the polyploid case.Given a phased VCF with predicted haplotypes and a BAM file with sequencing reads, weassign each read to the haplotype it is most similar to in terms of the alleles observed atvariant positions in the read. This assignment is stored by tagging the respective sequencesin the BAM file, which enables visualizing the haplotype clusters by programs like IGV [160].Furthermore, we extended the subcommand whatshap split to higher ploidies, which canbe used to split tagged reads by haplotype and store them in separate files. The reads shownin Figure 2.3c are colored according to the resulting haplotype assignments. In the next step,we separately ran wtdbg2 [161] (with options –x ccs –g 1m) on each haplotype-specificread set to produce local assemblies of the four haplotypes. Figure 2.5 shows a visualizationof a multiple sequence alignment of these haplotypes. The red sequence corresponds to thereference genome. Figure 2.5a shows the whole graph, panel 2.5b the region correspondingto the FRIGIDA-like protein 5 isoform X2 gene.We ran the NCBI ORFfinder [200] on each of the assemblies and detected a long open
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a
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Figure 2.5: Haplotype assemblies for the FRIGIDA gene. We ran Reveal (https://gith
ub.com/jasperlinthorst/reveal) to produce a graph that represents an alignment of thelocal haplotype assemblies for the FRIGIDA gene and the corresponding reference sequence.We visualized this graph using GfaViz [64]. The red sequence corresponds to the referencegenome. a shows the whole graph, b shows the part of the graph that corresponds to theFRIGIDA-like protein 5 isoform X2 gene. Figure taken from [166].

https://github.com/jasperlinthorst/reveal
https://github.com/jasperlinthorst/reveal
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reading frame (ORF) in the first three haplotypes representing the FRIGIDA-like protein 5isoform X2 gene coding sequence. For the fourth haplotype we could not detect a corre-sponding ORF, as the putative FRIGIDA gene in the fourth phase showed an early STOPcodon highlighted in Figure 2.3c. Interestingly, the fourth phase carried an additionalframeshift mutation shown in the inset of Figure 2.3c where only the phasing providesthe information that this mutation is linked to the premature STOP codon, highlighting thenecessity of (local) phasing to understand gene architecture. Using COBALT [141], we gen-erated multiple sequence alignments of the amino acid sequences resulting from these threeORFs and the corresponding reference sequence (Figure 2.3d). The three sequences showan overall good alignment with the reference, with small differences that may serve as aninput for functional follow-up studies.
2.1.5 Discussion

We introduced a new algorithm for polyploid phasing, whatshap polyphase, and demon-strated that it produces more accurate phasing results than state-of-the-art polyploid phasingmethods. It is designed to handle (locally) identical haplotypes by taking coverage of readclusters into account. We applied whatshap polyphase to Oxford Nanopore reads producedfrom a tetraploid potato genome in order to show that the algorithm works well in practiceand to demonstrate how phasing information enables haplotype-resolved assembly of theFRIGIDA gene. Being able to assemble the haplotypes is crucial to study these genomes,especially in order to increase yields for important food crops by studying associations ofgenotypes and phenotypes [14, 101]. However, there are limitations of the approach. Sinceit relies on a reference genome, the quality of the phasing results highly depends on thequality of the reference genome. Inaccurate or fragmented reference genomes lead to poorread alignments and subsequently to erroneous haplotype predictions in the respective ge-nomic regions. A similar problem occurs if the genome is highly heterogeneous, like it is thecase for potato. The potato genome contains a high number of genetic variants, includingSVs and copy number variations [71]. Even if there was a complete, high quality refer-ence genome, differences between the reference sequence and the genome of the individualwould lead to a decreased mappability of reads in these regions. These limitations affectnot only our approach, but all other alignment-based phasing methods. Due to these issues,phasing the complete potato genome was challenging. Therefore we focused only on thegenes, as calling variants in the remaining regions took too long, due to the high numberof variation present there. Another limitation of whatshap polyphase is that its runtimescales exponentially with increasing ploidy. While we demonstrated that the algorithm wasfast up to ploidies of six, it will likely become slow as ploidies get higher. However, manyindustrially important plants have ploidies smaller or equal to six [14].An important aspect that this study showed is that especially for highly variable genomeslike the potato genome, an error correction step is crucial in order to enable accurate smallvariant detection from noisy long-read data, since short reads often cannot be unambigu-
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ously aligned to a reference genome and are thus ill-suited for variant detection. However,Illumina data is still necessary in order to do error correction. Therefore, phasing currentlyrequires short-read data and long-read data to be available for a sample, making studiesmore complex and costly. Highly accurate long-read sequencing technologies can providea solution to this issue, enabling haplotype reconstruction purely based on long reads (seeSection 2.2).Despite all these limitations, we demonstrated that our polyploid phasing approach isvery useful in practice. Even though we did not assemble chromosome-scale haplotypes,our method enables the construction of haplotype-resolved assemblies on a gene-level for ahighly heterogeneous potato genome, which provides a basis for studying gene expression.
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2.2 Phasing small variants with circular consensus long reads

In this section, the circular consensus long-read sequencing technology is presented. The focus is on
how this new sequencing technique improves phasing of a diploid genome. The material presented
here was published as part of a Nature Biotechnology publication [199]. Sections 2.2.1, 2.2.2
and 2.2.3 re-use material from this paper. Section 2.2.4 re-uses some material that I contributed
to the PGAS paper, published in Nature Biotechnology [145]. See Sections E.2 and E.3 for details
on author contributions and publication details.

2.2.1 Introduction

This section re-uses some material presented in [199].

Recent improvements in DNA sequencing have revolutionized biological sciences. Short-read sequencing technologies (Section 1.4) produce highly accurate reads but are limited inread length to less than 300 bp. This makes them well suited to detect and genotype smallvariants like SNPs and indels (< 50 bp), but less useful for structural variant detection,genome assembly or haplotype phasing as they lack long range connectivity information. Incontrast, long-read sequencing technologies like PacBio CLR sequencing or Oxford Nanoporesequencing are able to produce much longer reads (> 10 kbp), but are less accurate (Section1.4). Therefore, such reads are well suited for tasks like phasing or genome assembly, butless useful for small variant characterization.The complementing characteristics of short and long-read sequencing technologies (Sec-tion 1.4) make population-scale studies more costly and complex, as several sequencingtechnologies need to be combined in order to fully analyze a sample. Recently, PacBio pre-sented a new sequencing technology which can overcome these limitations. The idea is toderive an accurate consensus sequence for long PacBio reads from multiple passes of a singletemplate molecule (Section 1.4). In this way, erroneous single-pass sequences are mergedinto a highly accurate read combining characteristics of short and long sequencing reads.The PacBio CCS technology was first applied to the well-characterized human sampleHG002 (NA24385), one of the benchmark samples of the Genome in a Bottle Project (GIAB)[208], and demonstrated to enable accurate SNP, indel and structural variant detection, aswell as high quality genome assembly. As a part of this project, which was published inWenger et al. and of which I am a co-author, I demonstrated how PacBio CCS reads enableaccurate haplotype phasing of small variants. Previously, phasing pipelines consisted ofa variant calling step which detected SNPs and indels from accurate short-read data of asample, and a haplotyping step, in which variants were phased based on long sequencingreads (such as PacBio CLR or Oxford Nanopore reads). With the new technology, short readsare no longer required in order to call variants, as CCS reads are accurate enough to enablesmall variant detection. The following sections will present details of this analysis.
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2.2.2 Data generation and variant calling

This section provides a summary on the data generation and small variant detection steps prior to
phasing described in [199]. Some material from this publication is re-used. All analyses described
here were performed by co-authors of this publication.

CCS reads were generated for sample HG002 (NA24385) with a read length of 13.5±1.2 kbpand a median accuracy of 99.9%. Reads were mapped to reference genome GRCh37 withpbmm2 (v.0.10.0) resulting in an average coverage of 28×. In order to analyze whichfraction of the genome is accessible by CCS reads, all genomic positions were determinedthat were covered by at least 10 reads. In addition, coverage-matched Illumina short readswere aligned. At the highest mapping quality value of 60, 97.5% of GRCh37 is mappablewith CCS reads, while for short reads, this percentage is only 94.8%. The regions nowaccessible by CCS data include medically relevant genes previously difficult to be accessedby short reads, such as HLA class 1 and class 2 regions.In a next step, SNPs and indels were detected from the aligned CCS reads using Google’sDeepVariant [144] and variant calling performance was evaluated using the GIAB smallvariant benchmark set [208]. This resulted in a precision of 99.91% and a recall of 99.96%for SNPs, and 96.9% and 95.98% for indels, respectively. When using short Illumina readsinstead for variant detection, precision was 99.96% and recall 99.94% for SNPs, and 99.6%and 99.4% for indels, respectively.
2.2.3 Phasing small variants with CCS reads

This section re-uses material presented in [199].

To determine whether CCS reads could provide both highly accurate variant calls and long-range information needed to generate haplotypes, we used WhatsHap [143] (version v.0.17)to phase the DeepVariant calls. Nearly all (99.64%) autosomal heterozygous variants werephased into 19,215 blocks with an N50 of 206 kbp (Table 2.1). We computed the theoreticalphase block length distribution based on the GIAB benchmark phase set [208]. This wasdone by introducing cuts between heterozygous ground truth variants that are separated bymore than the average CCS read length of 13.5 kbp. The phase block length distribution thatwe observed for the DeepVariant callset closely matches the theoretical distribution (Figure2.6A). We furthermore computed the theoretical phase block length N50s for different readlengths for phasings produced in the same way (Figure 2.6B). Both experiments suggest thatthe phase block length is limited by the read length and the amount of variation in HG002,not by coverage or the quality of the variant calls.Evaluated against the trio-phased variant calls in the GIAB ground truth, the switch errorrate of our phased DeepVariant calls is 0.37% and the Hamming error rate is 1.91% (Table2.1). To evaluate the depth of CCS read coverage required for phasing, we randomly subsam-pled from the full dataset (28× coverage) in steps of 10%. We phased the full DeepVariant
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chromosome heterozygousvariants % phased phaseblocks hamming errorrate (%) switcherrors switch errorrate (%) phase blockN50 (bp)1 220,180 99.61% 1,585 1.53% 1,168 0.65% 225,5342 212,809 99.62% 1,879 1.53% 373 0.21% 179,1903 193,762 99.73% 1,312 1.63% 408 0.25% 259,7614 199,451 99.70% 1,338 1.65% 547 0.33% 238,0885 186,023 99.75% 1,115 1.06% 237 0.15% 277,6976 177,458 99.71% 1,160 0.96% 303 0.20% 265,6567 166,051 99.70% 1,048 2.23% 1,105 0.80% 246,7488 153,941 99.71% 1,002 1.22% 322 0.25% 250,7059 119,897 99.72% 778 1.30% 362 0.36% 207,95110 141,433 99.72% 840 2.13% 344 0.29% 255,02611 128,503 99.67% 948 1.24% 169 0.16% 203,07312 135,470 99.72% 832 3.51% 229 0.20% 292,30613 100,628 99.69% 638 2.19% 123 0.14% 244,28914 93,645 99.68% 548 2.70% 520 0.66% 292,61715 81,981 99.61% 609 0.71% 411 0.61% 188,16816 87,697 99.71% 596 4.69% 455 0.63% 198,05917 78,865 99.65% 569 3.06% 380 0.61% 209,36318 74,575 99.68% 568 2.44% 95 0.15% 215,57719 70,975 99.78% 345 2.17% 149 0.26% 283,26420 61,413 99.65% 425 3.53% 165 0.33% 207,55621 44,142 99.49% 257 4.29% 545 1.60% 178,35322 38,604 99.71% 249 1.29% 87 0.28% 221,143all 2,779,801 99.64% 19,215 1.91% 8,497 0.37% 206,063
Table 2.1: WhatsHap phasing performance on DeepVariant (CCS) callset. WhatsHapprovides a highly complete phasing (99.64%) of heterozygous variants in the DeepVariant(CCS) callset that is concordant with the GIAB Trio/10X Genomics phasing benchmark set.Statistics are reported by WhatsHap with Hamming and switch error rates evaluated againstthe benchmark. Table taken from [199].
callset based on each of the resulting BAM files. We observed that the phase block N50remains above 150 kbp down to 10-fold coverage (Figure 2.6C), demonstrating excellentphasing performances even on lower read coverages.
2.2.4 Improved genome assembly with CCS reads

This section describes work that I contributed to the PGAS paper [145] together with co-authors
and re-uses material from this publication.

Recently, the PGAS pipeline was demonstrated to produce high quality, haplotype-resolvedgenome assemblies based on long reads and Strand-seq data [145] (see Section 1.8 for de-tails on this pipeline). Using CCS data, assemblies reached N50s of 23.7 and 25.9 Mbp forthe two haplotypes, respectively. A comparison of haplotype-resolved genome assembliesgenerated from PacBio CCS, PacBio CLR and Oxford Nanopore data for sample HG00733
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Figure 2.6: Phasing with CCS reads. A Phasing of heterozygous DeepVariant variant callswith WhatsHap, compared to the theoretical phasing of HG002 with 13.5 kbp reads. BTheoretical phase block N50 in HG002 at different read lengths. To model the phase blocksachievable with a given read length, cuts were introduced between heterozygous variants inthe GIAB trio-phased HG002 variant callset that are separated by more than the read length,which effectively assumes that adjacent heterozygous variants separated by less than theread length can be phased. C Phase block N50 for phasing of the 28-fold DeepVariant (CCS)callset with WhatsHap, subsampling in steps of 10%. Figures taken from [199].
with PGAS showed that assemblies generated from CCS data are the most accurate. Inorder to analyze them, we aligned haplotype-resolved assemblies for HG00733 as well asCCS-based assemblies for the parents (HG00731 and HG00732) to reference genome ver-sion GRCh38 using minimap2 [106]. We generated variant calls for each haplotype fromthese alignments and created a merged callset across samples in order to produce a phasedVCF with five samples (HG00733-CCS, HG00733-CLR, HG00733-ONT, HG00731-CCS andHG00732-CCS). This callset contained 10,697,583 variants in total. Genotypes for HG00733across the three assemblies were consistent for 46% of all variants. Most differences camefrom variants for which genotypes of CLR and CCS assemblies agree but disagree with theONT-based genotypes, caused likely by errors in the ONT assemblies. In contrast, we foundonly 106,270 (0.99%) such variants for CLR and 25,586 (0.24%) for CCS. Furthermore, weanalyzed Mendelian consistencies by taking the two parent samples into account. For ONTwe found 5,601,071 (52.36%) Mendelian errors, for CLR 469,127 (4.39%) and for CCS weobserved 131,281 (1.23%) errors. These experiments demonstrate that CCS reads enablethe generation of highly contiguous haplotype-resolved genome assemblies on the scale of awhole chromosome. Compared to CLR or ONT-based assemblies, these assemblies are moreaccurate and enable the reconstruction of high quality haplotypes of a human sample.
2.2.5 Discussion

The recently developed PacBio CCS technology produces long sequencing reads with low se-quencing error rates. The experiments presented demonstrate that PacBio CCS reads enableaccurate small variant detection, while being able to access more regions of the genomethan short-read data. While variant calling accuracy for SNPs was very similar for both
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sequencing technologies, PacBio CCS reads performed slightly worse when calling indelsbecause of the different error profiles that variant callers could not handle as well as forshort reads. Recent experiments with the PEPPER-Margin-DeepVariant pipeline show thatnewer methods are able to overcome these limitations (Section 1.4.4). However, even withthe older version of DeepVariant used in the study described in this chapter, high qualityphasing results could be achieved with CCS data. The resulting phase block distributionclosely matches the theoretical limit, defined mainly by the amount of variation in the sam-ple and the read length, rather than read coverage or the quality of the variant calls [199].Evaluation based on ground truth haplotypes resulted in very low switch error rates, whichshows that read-based phasing based on CCS data enables accurate haplotype predictions.Results nicely demonstrate that CCS reads indeed combine many characteristics of short andlong reads. They enable excellent small variant detection providing high quality calls forphasing, such that short-read data is no longer needed for haplotype reconstruction. Fur-thermore, CCS reads enable high quality genome assembly of human samples that are moreaccurate than such based on CLR data or ONT reads, which provides the basis for recon-structing chromosomal-scale haplotypes in a reference-free manner. This allows to constructmore contiguous haplotypes that include structural variants or regions still inaccessible byread alignments that are currently missed by alignment-based phasing methods. The re-cently introduced PacBio Revio Platform1, allows CCS based sequencing on larger scales,providing higher throughput (360 Gb/day instead of 24 Gb/day) at lower costs.

1https://www.pacb.com/revio/

https://www.pacb.com/revio/
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2.3 Conclusion

This chapter presented different methods and applications of reference-based phasing. First,the polyphase algorithm was described which accurately phases polyploid genomes. It canhandle regions where haplotypes are locally identical and improves over current state-of-theart approaches, especially in such collapsed regions. We applied the algorithm to ONT dataof a tetraploid potato and used the results in order to generate haplotype-resolved assem-blies of the FRIGIDA gene. Second, we demonstrated that accurate, long PacBio CCS readsenable accurate phasing that no longer depends on additional short-read datasets for variantcalling. Both of these applications show how phasing is useful in practice, but also demon-strate the limitations of alignment-based phasing methods: they struggle in regions that aretoo different from the reference genome due to high variability in the sample or becausesome complex genomic regions are poorly assembled in the reference genome. Therefore,alignment-based phasing methods typically only phase SNPs and indels, but exclude struc-tural variants. As a result, haplotype predictions are fragmented, incomplete and excludecomplex, but biologically interesting genomic regions.PacBio CCS reads can help to overcome the limitation of mapping-based phasing ap-proaches: they provide the basis for highly accurate, chromosome-scale assemblies of hap-lotypes in a reference-free manner that are able to cover structural variants and complex ge-nomic regions inaccessible to alignment-based methods. Therefore, alternative approachesto polyploid haplotype reconstruction have recently been developed that are based on de
novo assembly using CCS reads [170, 183]. For diploid genomes, the PGAS pipeline cangenerate accurate haplotype assemblies reaching N50s of over 25 Mbp per haplotype whencombining PacBio CCS reads with Strand-seq data [145]. Besides allowing to study the hap-lotypes of the assembled sample itself, such chromosome-scale haplotype predictions enablethe construction of accurate and complete pangenomes that can replace the linear referencegenome. In this way, they provide the potential to improve many downstream analyses,such as genotyping new, yet unassembled samples.
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Chapter 3

PanGenie: Pangenome-based
genome inference

This chapter introduces an approach that leverages a pangenome in order to improve short-read
based genotyping of various types of genetic variation. The work was published in Nature Genetics
[49] and this chapter presents an extended version of this publication of which I am the first
author. All sections presented in this chapter re-use material that I contributed to this work. Parts
of Sections 3.3, 3.6 and 3.9 also summarize work contributed by co-authors of this publication.
See Section E.4 for author contributions and publication details.

3.1 Introduction

This section re-uses material presented in [49].

Recent single-molecule, long-read sequencing technologies have enabled breakthroughs inproducing de novo haplotype-resolved genome assemblies [46, 59, 98, 145] (Section 1.8and 2.2). Major efforts are under way [90, 113] to generate hundreds of human genomeassemblies, with the intention of deriving a variation-aware pangenome representation thatreplaces the current linear reference genome, GRCh38 (Section 1.9). Such pangenome ref-erences provide the potential to improve the analysis of complex genomic regions currentlydifficult to access with the linear reference. Although long-read technologies are rapidlyadvancing, generating haplotype-resolved assemblies is still relatively slow and costly, andthus, does not yet scale to large study cohorts consisting of tens of thousands of samples.Due to their low cost, short reads are a more practical approach for such settings in theforeseeable future.Diploid organisms have two copies of each autosomal chromosome, each of which car-ries genetic variation. The process of determining whether a known variant allele is locatedon none, one or both of these copies is referred to as genotyping (Section 1.6). Variantgenotyping is an essential step in genetic studies, enabling population analysis, quantita-
45
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tive trait locus studies or trait association analysis. Large studies have produced compre-hensive catalogs of human variation ranging from single-nucleotide polymorphisms (SNPs)and indels (insertions and deletions up to 49 bp in size) to larger structural variants (SVs)[2, 24, 32, 181], and many such variants have been linked to diseases and other traits[33, 118, 163, 168, 193, 201].Widely used genotyping methods for sequencing data [28, 39, 60, 152, 158] are basedon short-read alignments to a reference genome or pangenome graphs, which include possi-ble alternative alleles [26, 52, 53, 75, 95, 151, 176] (Section 1.6). Graph-based approacheshave been shown to improve genotyping accuracy over methods that rely on a linear refer-ence genome. However, aligning sequencing reads is time-consuming even for linear refer-ence genomes, where mapping 30× short-read sequencing data of a single human sampletakes around 100 CPU hours. This problem is amplified when transitioning to graph-basedpangenome references, where the read-mapping problem is even more computationally ex-pensive.A much faster alternative is to genotype known variants based on k-mers, short sequencesof a fixed length k, in the raw sequencing reads without alignment to a reference. Countsof reference- and allele-specific k-mers allow fast and accurate genotyping of various typesof genetic variation [40, 44, 89, 172, 175, 182] (Section 1.6). However, these methods canstruggle in repetitive and duplicated regions of the genome not covered by unique k-mers.This is especially problematic for SVs, which are often located in repeat-rich or duplicatedregions of the genome [24, 198] that are generally difficult to access by short-read sequenc-ing [206].This problem has been addressed previously by leveraging long-range connectivity in-formation from sequencing reads [189]. In a similar manner, haplotype-resolved assembliesof known samples could improve k-mer-based genotyping, especially in difficult-to-accessregions of large diploid genomes, but methods for this have so far been lacking. Knownhaplotypes have been used to construct population-based reference panels to phase smallvariants (Li–Stephens model) [111] as well as impute missing genotypes [18, 35, 78, 125],but accurate reference panels that include SVs are still lacking.In this chapter, PanGenie (for Pangenome-based Genome Inference) is introduced, analgorithm that makes use of haplotype information from an assembly-derived pangenomerepresentation in combination with read k-mer counts to efficiently genotype a wide spec-trum of variants. That is, our method can leverage short and longer linkage disequilibrium(LD) structures inherent in the assemblies to infer the genome of a new sample for whichonly short reads are available. PanGenie bypasses read mapping and is entirely based onk-mers, which allows it to rapidly proceed from the input short reads to a final callset includ-ing SNPs, indels and SVs, enabling analysis of variants typically not accessible in short-readworkflows – including many deletions < 1 kbp and most insertions ≥ 50 bp. We applied ourmethod to genotype variants called from haplotype-resolved assemblies of 11 individuals,revealing a substantial advance in terms of runtime, genotyping accuracy and number of
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accessible variants.
3.2 Algorithm overview

This section and all its subsections re-use material presented in [49].

We call variants from haplotype-resolved assemblies (see Section 3.3) of several samplesand construct a pangenome graph (see Section 3.4) in which these variants are representedas bubbles and each haplotype as a path (Figure 3.1, Step 1). This graph is given as input toPanGenie, together with short-read sequencing data of a new sample to be genotyped. The k-mers contained in the graph are counted in the reads and k-mers unique to bubble regions areidentified (Step 2 in Figure 3.1). PanGenie combines two sources of information to genotypebubbles: read k-mer counts and the already known haplotype sequences. The distribution ofk-mer counts along the allele paths of a bubble can provide evidence for the genotype of thesample. Figure 3.1 (right panel) provides an example: k-mers corresponding to the secondallele of the first bubble are absent from the reads, indicating that the individual carriesthe alleles of the green and blue haplotypes. However, bubbles may be poorly covered byk-mers or no unique k-mers may exist in repetitive regions of the genome. Such positionscannot be reliably genotyped based on the k-mer counts alone, but known haplotypes canhelp to infer genotypes based on neighboring bubbles. An example is shown in Figure 3.1
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(right panel): the second bubble is poorly covered by k-mers. However, k-mer informationof the two neighboring bubbles indicates that the sample carries the alleles covered by thegreen and blue haplotypes.For genotyping, we integrate information from k-mer counts and haplotypes by con-structing a Hidden Markov Model (HMM), which models the unknown genome as a mosaicof the provided haplotypes and reconstructs it based on the read k-mer counts observed inthe sample’s sequencing reads (see Section 3.2.1). Hidden states represent pairs of haplo-type paths that can be chosen at each bubble position and emit counts for the unique k-mersof the respective region. State transitions between adjacent bubbles correspond to recombi-nation events. Using the Forward–Backward algorithm, genotype likelihoods are computedfor each bubble, from which a genotype is derived.
3.2.1 Hidden Markov Model

The input to PanGenie consists of short-read sequencing reads of the sample to be genotypedas well as a fully phased, multi-sample VCF file encoding the pangenome graph (see Section1.11.1 for details on the VCF format). Each variant record in this VCF represents a bubblein the graph. Further details on how our input VCFs look like and how we construct themare provided later in Section 3.4.
Identifying unique k-mers

Sets of bubbles that are less than the k-mer size apart (we use k=31) are combined andtreated as a single bubble. The alleles corresponding to such a combined bubble are definedby the haplotype paths in the respective region.For each bubble position v, we determine a set of k-mers, kmersv, that uniquely char-acterize the region. This is done by counting all k-mers along haplotype paths in thepangenome graph using Jellyfish [119] (v.2.2.10), and then determining k-mers for eachbubble that occur at most once within a single allele sequence and are not found anywhereoutside the variant bubble. We additionally counted all k-mers of the graph in the sequenc-ing reads. This allows us to compute the mean k-mer coverage of the data, kcov, which weuse later to compute emission probabilities (Section 3.2.1).
Hidden states and transitions

We assume to be given N haplotype paths Hi, i = 1, ..., N , through the graph. Furthermore,for each bubble v, v = 1, ...,M , we are given a vector of k-mers, kmersv that uniquelycharacterize the alleles of a bubble. We assume some (arbitrary) order of the elements in
kmersv and refer to the i-th k-mer as kmersv[i]. In addition, we are given sequencing dataof the sample to be genotyped and corresponding k-mer counts for all k-mers in kmersv. Foreach bubble v, we define a set of hidden states ηv = {Hv,i,j | i, j ≤ N} which contains a statefor each possible pair of the N given haplotype paths in the graph. Each such state Hv,i,j
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induces an assignment of copy numbers to all k-mers in kmersv. We define a vector av,i,jsuch that the k-th position contains the copy number assigned to the k-th k-mer in kmersv:

av,i,j [k] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 kmersv[k] ̸∈ Hi ∪Hj

1 kmersv[k] ∈ Hi \Hj

1 kmersv[k] ∈ Hj \Hi

2 kmersv[k] ∈ Hi ∩Hj

∀k = 1, . . . , |kmersv|

The idea here is that we expect to see copy number 2 for all k-mers occurring on both selectedhaplotype paths. In case only one of the haplotypes contains a k-mer, its copy number mustbe 1 and k-mers that do not appear in any of the two paths must have copy number 0. Seethe leftmost bubble in the graph shown in Figure 3.1 for an example: for the green andblue haplotypes, the expected copy number of all orange k-mers is 1, since each of them iscovered by exactly one of these two haplotypes. The gray k-mers are covered by neither thegreen nor blue haplotype, therefore we expect to see copy number 0 for all of them. Thebrown k-mers are carried by both the green and blue haplotype. Therefore, the expectedcopy number of these k-mers is 2.From each state Hv,i,j ∈ ηv that corresponds to bubble position v, there is a transition toeach state corresponding to the next position, v + 1. In addition, there is a start state, fromwhich there is a transition to each state of the first bubble, and an end state, to which thereis a transition from each state that corresponds to the last bubble.
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Figure 3.2 presents a graphical illustration of the model. The hidden states are shownas circles below the variant bubbles and connections represent possible transitions betweenthe states.
Transition probabilities

Transition probabilities are computed following the Li-Stephens model [111]. Given a re-combination rate r, the effective population size Ne and the distance x (in basepairs) be-tween two ascending bubbles v − 1 and v, we define:
d = x · 1

1000000
· 4r ·Ne

We compute the Li-Stephens transition probabilities as:
pr = (1− exp(− d

N
)) · 1

N

qr = exp(− d

N
) + pr

Finally, the transition probability from state Hv−1,k,l to state Hv,i,j is computed as shownbelow:

P (Hv,i,j |Hv−1,k,l) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qr · qr i = k and j = l

qr · pr i = k and j ̸= l

qr · pr i ̸= k and j = l

pr · pr i ̸= k and j ̸= l

(3.1)

Observable states

Each hidden state Hv,i,j ∈ ηv outputs a count for each k-mer in kmersv. Let Ov be a vectorof length |kmersv| for bubble v such that Ov[k] contains the observed k-mer count of the
k-th k-mer in the sequencing reads. To define the emission probabilities, we first need tomodel the distribution of k-mer counts for each copy number, P (Ov[k]|av,i,j [k] = c), c =

0, 1, 2. For copy number 2, we use a Poisson distribution with mean λ which we set tothe mean k-mer coverage kcov that we compute from the k-mer counts of all graph k-mers.Similarly, we approximate the k-mer count distribution for copy number 1 in terms of aPoisson distribution with mean λ/2. For copy number 0, we need to model the erroneousk-mers that arise from sequencing errors. This is done using a Geometric distribution, theparameter p of which we choose based on the mean k-mer coverage as shown below:
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p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.99 kcov < 10

0.95 10 ≤ kcov < 20

0.9 20 ≤ kcov < 40

0.8 kcov ≥ 40

Finally, we compute the emission probability for a given state and given observed read k-mercounts as shown below, making the assumption that the k-mer counts are independent.

P (Ov|Hv,i,j) =

|kmersv |∏︂
l=1

P (Ov[l] | av,i,j [l])

Forward-Backward algorithm

In this model, the hidden states represent possible genotypes a sample could have at eachbubble position given the haplotype paths. Genotype likelihoods can be computed basedon the Forward-Backward algorithm. The initial distribution of our HMM is such that weassign probability 1 to the start state and 0 to all others. Forward probabilities αv() arecomputed in the following way:
α0(start) = 1

For states corresponding to bubbles v = 1, ...,M , the Forward probabilities are computed asshown below.
αv(Hv,i,j) =

∑︂
Hv−1,s,t∈ηv−1

αv−1(Hv−1,s,t) · P (Hv,i,j |Hv−1,s,t) · P (Ov|Hv,i,j) ∀i, j

The transition probabilities are computed as described above, except for transitions from the
start state to all states in the first column, which we assume to have uniform probabilities.Backward probabilities are computed in a similar manner. We set:

βM (end) = 1

For v = 1, ...,M − 1, we compute them as:
βv(Hv,i,j) =

∑︂
Hv+1,s,t∈ηv+1

βv+1(Hv+1,s,t) · P (Hv+1,s,t|Hv,i,j) · P (Ov+1|Hv+1,s,t) ∀i, j

Finally, posterior probabilities for the states can be computed:
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P (Hv,i,j |O1, O2, . . . , OM ) =
αv(Hv,i,j) · βv(Hv,i,j)∑︁

h∈ηv αv(h)βv(h)Since different paths can cover the same allele, several hidden states at a bubble position
v can correspond to the same genotype. Also, the alleles in a genotype are unordered,therefore states Hv,i,j and Hv,j,i always lead to the same genotype. In order to computegenotype likelihoods, we sum up the posterior probabilities for all states that correspondto the same genotype. In this way, we can compute genotype likelihoods for all genotypesat a bubble position, based on which a genotype prediction can be made by choosing thegenotype with highest probability.
3.3 Variant calling from haplotype-resolved assemblies

This section re-uses material presented in [49]. The generation of the assemblies with PGAS was
performed by Peter Ebert, a co-author of this publication.

We used a development version of the PGAS pipeline [46, 145] (parameter settings v.13)to generate haplotype-resolved assemblies of 14 individuals including 3 mother-father-childtrios (Figure 3.3a; samples include: Yoruban trio: NA19238, NA19239, NA19240; Puerto Ri-can trio: HG00731, HG00732, HG00733; southern Han Chinese trio: HG00512, HG00513,
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HG00514; and NA12878, HG02818, HG03125, NA24385 and HG03486) and called variantson each haplotype of all autosomes and chromosome X. The three child samples (HG00733,HG00514 and NA19240) were used only for quality control and filtering, and thus were notpart of our final callset/graph. For each sample, we separately mapped contigs of each haplo-type to the reference genome (GRCh38). This was done using minimap2 [106] (v.2.18) withparameters -cx asm20 -m 10000 -z 10000,50 -r 50000 –end-bonus=100 -O 5,56 -E 4,1

-B 5 –cs. In the next step, we called variants on each haplotype using paftools (https:
//github.com/lh3/minimap2/tree/master/misc, v.2.18) with default parameters. Wegenerated a biallelic VCF file containing variant calls made across all 11 unrelated samples(Figure 3.4a). If a region was not covered by any contig alignment in a sample, or the samplehad multiple overlapping contig alignments, we set all its genotypes in this region to missing(“./.”), because it is unclear what the true genotype alleles are in this case. Furthermore, weremoved variants from our callset for which > 20% of the samples had missing genotypeinformation. The remaining regions covered 91.8% (2.8 Gbp) of chromosomes 1–22 andchromosome X. Of the 8.2% of regions not covered, 48.3% were gaps in GRCh38 and 24.0%

https://github.com/lh3/minimap2/tree/master/misc
https://github.com/lh3/minimap2/tree/master/misc
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were centromeres.We computed the Mendelian consistency for the Puerto Rican (HG00731, HG00732,HG00-733), Chinese (HG00512, HG00513, HG00514) and Yoruban (NA19238, NA19239,NA19240) trios and observed that 97.9%, 96.8% and 97.6% of all variants were consistentwith Mendelian laws, respectively. We removed a variant from our callset if there was aMendelian conflict in at least one of the three trios. We show the number of variants in ourfinal callset and the intermediate stages of variant calling in the first three columns of TableB.1.We computed the transition:transversion (ti:tv) ratio for SNPs and the heterozygous:ho-mozygous (het:hom) ratio as quality control measures [68, 194]. Our SNP calls containedaround twice as many transitions as transversions (Figure 3.3b) resulting in ti:tv ratios be-tween 2.01 and 2.02 for all samples. We obtained het:hom ratios between 1.37 and 2.20for all our 11 callset samples. These numbers are in line with respective results for African(AFR), American (AMR), Asian (EAS) and European (EUR) individuals reported in previousstudies [194, 195]. Furthermore, our callset contains comparable numbers of insertions anddeletions (Figure 3.3c), except for the expected enrichment for insertion alleles for SVs [24].We show detailed counts of distinct variant alleles for all types in Figure 3.3d (first row) andfor the individual samples in Table B.2. We distinguish small variants (1–19 bp), midsizevariants (20–49 bp) and large variants (≥ 50 bp).
3.4 Constructing a pangenome reference

This section re-uses material presented in [49].

We created an acyclic and directed pangenome graph representing our variant callset (Figure3.4). Variants produce bubbles in the graph with branches that define the correspondingalleles. The input haplotypes can be represented as paths through the resulting pangenome.When constructing the graph, we represent sets of variants overlapping across haplotypesas a single bubble, with potentially multiple branches reflecting all the allele sequencesobserved in the haplotypes in the respective genomic region (Figure 3.4). The total numberof bubbles in the resulting graph is presented in the last row of Figure 3.3d. We representthe pangenome in terms of a fully phased, multisample VCF file that contains one entry foreach bubble in the graph (Figure 3.4b). At each site, the number of branches of the bubbleis limited by the number of input haplotype sequences and the genotypes of each sampledefine two paths through this graph, corresponding to the respective haplotypes. We keeptrack of which individual input variants contribute to each bubble in the graph, so thatwe can convert our pangenome graph representation back to the set of input variants. Inthis way, we can translate genotypes computed by a genotyper for all these bubbles to agenotype for each individual callset variant.
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Figure 3.5: Overview of leave one out experiment. We illustrate the leave-one-out exper-iment using three samples. Variants are called in all samples based on haplotype-resolvedassemblies. For evaluation, we construct a biallelic callset containing all variants detectedin samples 1 and 3, and a biallelic truth set containing all variants called in the left outsample (sample 2). The former set of variants is used for genotyping, the latter for evalua-tion. When running PanGenie, BayesTyper and Platypus, we first convert the variant callsinto a pangenome graph representation (stored as multiallelic VCF) and genotyped the cor-responding bubbles (A). We keep track of which bubbles consist of which variant alleles sothat genotypes can later be converted back to the original variant representation. For theother tools tested (GATK, Platypus, GraphTyper, Giraffe), we directly used the callset vari-ants as input, without creating the graph (B). The genotypes predicted by each tool are thencompared to the variants detected in the left out sample for evaluation. Variants unique tothe left out sample cannot be genotyped correctly by any re-genotyping approach (markedin red). We exclude such variants when computing weighted genotype concordances andadjusted precision/recall/F-score metrics. Figure taken from [49].
3.5 Comparison to existing genotyping methods

This section and all its subsections re-use material presented in [49].

We conducted a ‘leave-one-out experiment’ (Figure 3.5) to mimic a realistic scenario inwhich we genotyped variants detected from haplotype-resolved assemblies of a set of knownsamples in a new, unknown sample. We used Illumina reads from the Genome in a Bottle(GIAB) consortium [207] and 1000 Genomes Project high-coverage data [21]. We collectedvariants that we called from the assemblies across all but one sample (see Section 3.3)and used them as input for genotyping the left-out sample (we refer to this set as known
variants in the following). We used the set of variants called from the assemblies of theleft-out sample for evaluation (evaluation variants). We ran this experiment twice, leavingout samples NA12878 and NA24385, respectively. In addition to running PanGenie, we ran
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BayesTyper [175] (k-mer-based), Platypus [158], GATK HaplotypeCaller [39], GraphTyper[53], Paragraph [26] and Giraffe [176] (all mapping-based) to re-genotype the same setof variants (Figure 3.5). We ran our experiments on coverage levels 30×, 20×, 10× and5×. Not all tools are designed to handle all types of variants. Therefore, we ran GATKonly on SNPs, small and midsize variants and Paragraph only on midsize and large variants.GraphTyper and Giraffe were run on large variants only.As input for PanGenie (commit 1f3d2d2), BayesTyper (v.v1.5) and Paragraph (v.2a), weconstructed a pangenome graph representation based on the known variants in the sameway as described in Section 3.4. We kept track of which variant alleles each resulting bub-ble consists of, so that genotypes derived for all bubbles can later be converted back to theoriginal variant representation. For the other genotypers tested (GATK 4.1.3.0, Platypus0.8.1, GraphTyper 2.7.1 and Giraffe v.1.30.0), we directly used the set of known variantsas input, without generating the graph representation first, because we observed that thesetools could better handle variants represented in this way. As a result of running all geno-typers, we had one VCF file per tool containing genotypes for all our known variants. Weused the evaluation variants to evaluate the genotype predictions of all tools. Figure 3.5provides an illustration of the leave-one-out experiment.Note that re-genotyping a set of known variants in a new sample is different from variantdetection. Variants unique to the new sample that have not been seen in the callset samplescan not be genotyped because re-genotyping methods genotype only variants that they aregiven as input. We provide the number of unique variants present in each panel sample inTable B.2. To analyze genotyping performance, we introduce the weighted genotype concor-dance (wGC) which puts equal emphasis on the ability to detect all three possible genotypes(Figure 3.5.1). As an alternative view on the performance of the individual methods, weoffer precision, recall and F-score, all in an unadjusted version and an adjusted version thatdoes not penalize methods for ‘missing’ variants that are undetectable because they are notin the input set (see Section 3.5.1 for a detailed description on all evaluation metrics). Weconsider two configurations for PanGenie: ‘high-gq’ filtering, where we use only genotypesreported with high quality scores and treat all other variants as not genotyped, and ‘all’,where we consider all reported genotypes regardless of their quality.
3.5.1 Evaluation metrics

Weighted genotype concordance

In the biallelic representation, each genotyped variant is either absent from the truth set(0/0, in case it is not present in the left out sample), heterozygous (0/1) or homozygous(1/1). We construct a confusion matrix counting all cases (Figure 3.6). The counts onthe diagonal (labeled T_0/0, T_0/1, T_1/1) correspond to correctly genotyped variants. Allothers are errors. For all three genotypes, we compute the concordances by counting thenumber of correct predictions and divide it by the total number of variants in that category:
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Figure 3.6: PanGenie evaluation metrics. Metrics used to evaluate genotyping resultsand how they define errors. Figure taken from [49].

conc(0/0) = T_0/0T_0/0 + F_0/0 conc(0/1) = T_0/1T_0/1 + F_0/1 conc(1/1) = T_1/1T_1/1 + F_1/1
Since we genotype all variants detected across multiple samples (including many rare alleles)in our evaluation sample, the majority of variants will be absent in the evaluation sample.That is, the number of variants whose true genotype is 0/0, will be higher compared tothe ones with genotypes 0/1 or 1/1. To adjust for unqeual numbers of 0/0, 0/1 and 1/1genotypes in our ground truth, we compute the weighted genotype concordance as:

weighted genotype concordance =
conc(0/0) + conc(0/1) + conc(1/1)

3As mentioned previously, we exclude all variants unique to the evaluation sample whencomputing the weighted genotype concordance (see Table B.2), since these variants are notpart of the set of input variants given to all genotypers and thus will not be considered forgenotyping (as all tools re-genotype variants and do not detect them).
Fraction of genotyped variants

Many of the re-genotyping tools we consider can report genotypes “./.” for input variantsthat they are not able to genotype. For each tool, we compute the fraction of input variantsthat were reported with such an “untyped” genotype.
(Adjusted) Precision/Recall/F-score

We use RTG vcfeval [29] in order to compute precision and recall for our genotype predic-tions. We compute two versions of precision, recall and F-scores: taking all variants intoaccount (including those that are unique to the evaluation sample, hence missing from theinput set and undetectable by re-genotyping, see Table B.2), and an adjusted version, wherewe remove all variants unique to the evaluation sample from the truth set. Therefore, theunadjusted version combines the effects of variants missing from the input set to be geno-typed and the performance of the genotyping method, while the adjusted version aims toonly measure the performance of the method (and does not penalize variants absent in the
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input set). True positives, false positives and false negatives are defined as shown in Figure3.6 [29] and precision, recall and F-score are defined as:
precision =

TP

TP + FP
recall = TP

TP + FN
F-score = 2 · precision · recallprecision + recall

Note on Precision/Recall/F-score metrics

We offer precision/recall/F-score metrics to facilitate comparison to other studies, includingon methods for variant calling. However, these metrics come with the following caveatswhen evaluating re-genotyping experiments and should hence be interpreted accordingly:the more samples we use to generate the set of known variants to genotype in a new sample,the larger the amount of rare variants and thus the larger the fraction of variants whosetrue genotype of the new sample is 0/0. That is, we can make our set of input variants(almost) arbitrarily large by adding variants absent from the new sample. The possibility ofadding noise when including a large number of rare alleles when constructing pangenomerepresentations is a known effect and an important consideration [147]. As a consequence,the number of false positive calls increases with the increase in the number of tested variants,while the number of true positive calls is limited by the actual number of variants presentin the new sample, reducing the precision. An example is shown in Figure B.1a. This alsoexplains why the precision we see for all genotypers in our evaluation is sometimes smallcompared to the genotype concordance (Figure B.1b).
3.5.2 Evaluation regions

We stratified our analyses by considering variants outside and inside short-tandem repeats(STRs) and variable-number tandem repeats (VNTRs) [93]. We annotated variants accordingto their repeat status and observed that between 68% and 72% of midsize (20–49 bp) andlarge variants (≥ 50 bp) are repeat associated, respectively (Table B.3).In addition, we classified the genome into ‘complex’ and ‘biallelic’ regions based on thebubble structure of our pangenome graph: all variants located inside of complex bubbles,that is, bubbles with more than two branches, fell into the first category, and the remainingregions into the second. Consider Figure 3.4 for an example: the first and third bubbles arecomplex, thus all variants contained inside these bubbles fall into the category ‘complex’.The second bubble is biallelic and therefore the corresponding SNP variant is considered‘biallelic’. For our leave-one-out experiment for sample NA12878, we show the numberof variants falling into the different categories in Table B.3. It can be observed that mostcomplex bubbles are located inside STR/VNTR regions (Table B.3). In addition, more thanhalf of all midsize and large variants are located in these repetitive regions.
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Figure 3.7: Results of leave-one-out experiment (SNPs and small variants). The wGCat different coverages for sample NA12878 and F-scores for coverage 30× in nonrepetitive(top) and STR/VNTR regions (bottom). We ran PanGenie, BayesTyper, Paragraph, Platypus,GATK and GraphTyper to re-genotype all callset variants. Besides not applying any filteron the reported genotype qualities (‘all’), we additionally report genotyping statistics forPanGenie when using ‘high-gq’ filtering (genotype quality ≥ 200). Biallelic SNPs, insertionsand deletions include all respective variants in biallelic regions of the genome, whereas com-plex contains all variant alleles falling into regions with complex bubbles in the pangenomegraph representation. Figure taken from [49].
3.5.3 Results

Genotyping results for NA12878 (Figure 3.7, Figure 3.8, Figures B.2-B.3) and NA24385(Figures B.5–B.10) were similar, showcasing consistency of results across samples. In the
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Figure 3.8: Results of leave-one-out experiment (midsize and large variants). The wGCat different coverages for sample NA12878 and F-scores for coverage 30× in nonrepetitive(top) and STR/VNTR regions (bottom). We ran PanGenie, BayesTyper, Paragraph, Platy-pus, GATK, GraphTyper and Giraffe to re-genotype all callset variants. Besides not applyingany filter on the reported genotype qualities (‘all’), we additionally report genotyping statis-tics for PanGenie when using ‘high-gq’ filtering (genotype quality ≥ 200). Insertions anddeletions include all respective variants in biallelic regions of the genome, whereas complexcontains all variant alleles (insertions or deletions) falling into regions with complex bubblesin the pangenome graph representation. Figure taken from [49].
following, the results for sample NA12878 are discussed.For biallelic SNPs in nonrepetitive regions, all methods reached very good levels of geno-type concordance and F-scores (Figure 3.7), with all F-scores > 0.95 at coverage 30×. Forbiallelic SNPs in repetitive regions, PanGenie still achieved an F-score of 0.85, whereas thesecond-best tool GATK reached only 0.75 (Figure 3.7). In repetitive regions, BayesTyperhad the largest fraction of untyped SNPs of all tools, resulting in lowest recall of 0.6 forbiallelic SNPs and 0.17 for SNPs inside of complex bubbles (Figure B.3).For small insertions and deletions, PanGenie (‘all’) outperformed the mapping-based ap-proaches, in particular in STR/VNTR regions (wGC of 90.4% for insertions and 92.8% for
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coverage method NA12878 NA24385

time total timegenotyping memorytotal memorygenotyping time total timegenotyping memorytotal memorygenotyping5 PanGenie 21:06:10 19:42:05 84.8 36.4 31:44:24 29:30:54 84.6 36.2BayesTyper 27:23:15 26:22:21 39.3 39.3 36:31:30 35:20:37 39.2 39.2Platypus 18:12:42 1:20:10 18.2 0.2 20:39:51 1:31:42 8.7 0.1GATK1 34:41:06 17:24:26 18.2 0.4 35:24:17 15:53:15 8.7 0.4Paragraph2 39:49:37 22:57:04 18.2 10.1 40:51:58 21:43:48 11.1 11.1GraphTyper3 22:06:44 5:14:12 18.2 0.2 23:12:02 4:03:52 8.7 0.210 PanGenie 21:36:59 19:27:31 84.8 36.4 33:07:31 29:29:26 84.7 36.2BayesTyper 38:42:03 37:20:08 40.7 40.7 36:05:15 34:16:52 40.7 40.7Platypus 35:20:29 1:42:35 18.6 0.4 42:57:08 1:57:21 8.8 0.3GATK1 59:42:39 25:21:58 18.6 0.4 67:21:06 25:36:00 8.8 0.5Paragraph2 66:02:14 32:24:20 18.6 13.2 86:19:41 45:19:54 12.2 12.2GraphTyper3 42:52:25 9:14:31 18.6 0.3 49:30:28 8:30:41 8.8 0.220 PanGenie 23:46:08 19:39:33 84.8 36.4 24:24:09 19:41:24 84.7 36.3BayesTyper 32:03:53 29:59:40 41.0 41.0 44:49:37 41:59:38 41.1 41.1Platypus 68:38:45 2:11:46 28.4 0.7 81:28:44 2:42:48 8.8 0.5GATK1 107:04:36 39:18:12 28.4 0.5 120:51:45 40:43:18 8.8 0.8ParaGraph2 137:18:30 70:51:31 28.4 14.3 139:56:03 61:10:07 12.9 12.9GraphTyper3 84:34:29 18:07:30 28.4 0.5 92:58:00 14:12:04 8.8 0.330 PanGenie 24:58:54 19:31:51 84.8 36.4 26:48:22 19:41:23 84.7 36.3Bayestyper 32:24:13 29:34:54 41.1 41.1 48:30:38 44:34:30 44.4 44.4Platypus 99:12:01 1:59:29 39.1 1.0 123:09:20 3:02:53 8.8 0.9GATK1 143:57:46 44:54:12 39.1 0.5 176:26:20 54:21:41 8.8 0.9Paragraph2 210:28:50 113:16:17 39.1 14.7 256:00:10 135:53:43 13.3 13.3GraphTyper3 123:03:06 25:50:33 39.1 0.7 141:57:38 21:51:11 8.8 0.5Giraffe3 3043:47:18 11:10:38 188.7 45.2 - - - -
1 GATK was run on SNPs, small and midsize variants only.2 Paragraph was run on midsize and large variants only.3 GraphTyper and Giraffe were run on large variants only.

Table 3.1: Runtime and memory usage of different genotypers. Runtime (in CPUhhh:mm:ss) and peak memory usage (in GB) of the different genotyping methods at differentcoverages. For all methods, we show the total resources needed for producing genotypesfrom raw, unaligned sequencing reads (“total”), as well as the resources needed only for thegenotyping step (“genotyping”). Thus, for Platypus, GATK, Paragraph and GraphTyper, thelatter excludes the time needed to generate alignments against the reference genome. ForGiraffe, it excludes the time for graph construction with vg, indexing and alignment. Fork-mer-based approaches (PanGenie and BayesTyper), it excludes the k-mer counting step.All tools were run on an HPC-cluster predominantly consisting of Intel E5-2697v2 (2× 12cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2× 12 cores and 192 GB of RAM)nodes. Table taken from [49].
deletions; Figure 3.7), where the best mapping-based tools (GATK) achieved a wGC of 83%and 86.9% for biallelic insertions and deletions, respectively, at coverage 30×. BayesTyperand PanGenie using ‘high-gq’ filtering achieved the highest wGCs, both > 99% for non-repetitve and > 97% for repetitive regions (Figure 3.7). For both tools, these good wGCscame at the expense of relatively few genotyped variants, with PanGenie being able to geno-type slightly more. We also evaluated our results for SNPs, small and midsize variants usingthe GIAB high-confidence small variant callset [208] as a ground truth (Figure B.4).Performance differences were largest for midsize and large variants (Figure 3.8). PanGe-nie clearly outperformed the mapping-based approaches, especially in repeat regions. Here,PanGenie (‘all’) reached wGCs for large SVs of 85%, 92% and 76% for biallelic insertions,
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biallelic deletions and variants in complex multiallelic regions, respectively, at coverage30×. This is in contrast with the performance of the best mapping-based tool, achievingonly 64%, 79% and 51%, respectively. BayesTyper reached high wGCs, but left 42%, 39%and 77% of these variants untyped, respectively. Using ‘high-gq’ filtering, PanGenie couldreach concordances similar or superior to BayesTyper, while still being able to type muchlarger fractions of variants (Figure 3.8). PanGenie’s genotyping performance for large SVsin repetitive regions is underscored also by the F-score (Figure 3.8): for large biallelic inser-tions, for example, PanGenie (‘all’) showed an F-score of 0.7 whereas all other tools reachF-scores < 0.5. We additionally used the SVs contained in the syndip benchmark set [109]to evaluate genotyping performance. Although the absolute results tended to be slightlyworse for all tools, PanGenie again produced the most accurate genotype predictions andoutperformed the other tools (Figure B.11).
3.5.4 Resources

Comparison of runtimes and memory usages

The runtime and peak memory usage of all genotypers is presented in Table 3.1. For allmethods, we measured the resources needed to produce genotypes given the raw, unalignedsequencing reads (‘total’) as well as the resources needed specifically for genotyping (‘geno-typing’). For the mapping-based approaches (Platypus, GATK, Paragraph, GraphTyper andGiraffe) the latter excludes the resources needed for aligning the sequencing reads, for thek-mer-based approaches (PanGenie and BayesTyper) it excludes the resources needed forcounting k-mers. Note that not all tools are able to genotype all considered variant types.We ran GATK only on SNPs, small and midsize variants. Paragraph was only run on midsizeand large variants and GraphTyper only on large variants. We ran Giraffe only for sampleNA12878 at coverage 30× and only on large variants, as we observed a very high runtimefor its graph alignment step. All tools were run on an HPC-cluster predominantly consistingof Intel E5-2697v2 (2×12 cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2×12 coresand 192 GB of RAM) nodes.
Asymptotic runtime of PanGenie

PanGenie is based on a Hidden Markov Model which, for each variant position, defines onestate for each pair of haplotypes in the input panel. Given m variants to be genotyped and npanel haplotypes (which equals twice the number of samples), there will be O(n2 ·m) states.Applying the Forward-Backward algorithm to the HMM corresponds to a runtime quarticin the number of haplotypes, but linear in the number of variants since only states corre-sponding to the previous/next variant position need to be considered in order to computeForward/Backward probabilities, respectively. Therefore, the total runtime is O(n4 · m).If the number of panel haplotypes grows, the algorithm will get slow. We have thereforedeveloped a subsampling strategy to speed up the algorithm when applied to larger pan-
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Figure 3.9: HLA genotyping. Weighted genotype concordances for samples NA12878,NA24385 and HG00731 resulting from a “leave-one-out” experiment for HLA genes, as wellas the average weighted genotype concordance across all three samples (red). For eachgene, we separately computed concordances for the simpler, “biallelic” regions, as well asthe more difficult “complex” regions. Figure taken from [49].
els. It will be presented in Chapter 4. For all experiments in this chapter however, we ranPanGenie without subsampling using the full HMM.
3.6 Accuracy in the Major Histocompatibility Complex

This section re-uses material presented in [49]. The evaluation of the assemblies was performed
by co-authors of this publication.

To evaluate the accuracy of all 14 haplotype-resolved assemblies in the human leukocyteantigen (HLA) region, we used HLA*ASM [42] to determine assembly HLA types. HLA*ASMsuccessfully processed 27 of 28 input assemblies and identified perfect (edit distance 0) HLA-G group matches [159] for all classic HLA loci (HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1)in all processed input assemblies with one exception (HLA-DRB1 in NA19238), which wasresolved by manual curation with minimap2 [106]. To verify the accuracy of the assemblyHLA types, we integrated publicly available HLA genotype data for samples from the 1000Genomes Project [4, 41, 65] for HLA-A, -B, -C, -DQB1 and -DRB1, intersected these with theassembly-implied HLA types, and found perfect agreement in all evaluated cases (9 samplesand 85 individual genotype comparisons).We analyzed our genotyping performance inside of the MHC region. In order to gen-erate the callset described in Sections 3.3 and 3.4, we had used a reference genome thatcontained sequences of alternative HLA haplotypes in addition to the sequence of chromo-some 6 (on which MHC is located). Therefore, many assembly contigs aligned to these
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additional haplotypes instead of the respective region on chromosome 6 during variant call-ing. As a result, the MHC region was not covered well by our callset. We therefore used thesame pipeline to generate a second version of our variant calls and pangenome graph usinga reference genome that contains only chromosomes 1-22, chromosome X and chromosomeY. We evaluated PanGenie’s genotyping performance based on a ‘leave-one-out’ experimentfor samples HG00731, NA12878 and NA24385. Analogously to what we described in Sec-tion 3.5 and Figure 3.5, we repeatedly constructed callsets and pangenome graphs excludingthe respective samples and evaluated genotypes by comparing to the variants detected inthe left out sample. As mentioned previously, we restricted our evaluation to all variantsthat are genotypable and excluded such that are unique to the left out sample.We present weighted genotype concordances that we obtained for the HLA genes inFigure 3.9. We separately evaluated variants (all types) located in biallelic regions of thegenome and such located in regions with complex bubbles in the pangenome graph. Ourcallset did not fully cover the C4 genes (C4A and C4B) since the region was not com-pletely covered by contig alignments in most haplotypes (including one of the haplotypesof NA12878) possibly due to the presence of large structural variants in this region. Thus,the evaluation for these genes only corresponds to the parts that were accessible for variantcalling.
3.7 Genotyping larger cohorts

This section re-uses material presented in [49].

The low runtime of PanGenie makes it well suited to genotype larger cohorts. As an exampleuse case, we applied it to a set of 300 samples consisting of 100 randomly selected trios fromthe 1000 Genomes Project using high-coverage data [21]. We used our pangenome graphrepresentation containing all 11 assembly samples as an input for PanGenie, genotyped allbubbles and later converted the resulting genotypes back to obtain genotypes for the indi-vidual callset variants. Similar to the approaches that we use in Chapter 4 to analyze HGSVCand HPRC variants across the whole 1000 Genomes cohort, we employed Mendelian consis-tency of the genotyped trios and the genotype quality reported by PanGenie to compute anintegrated score for genotyping reliability of each variant. To this end, we defined differentfilters based on the predicted genotypes that we list below. One metric used for definingfilters is the Mendelian consistency. We computed the Mendelian consistency for each vari-ant by counting the number of trios for which the predicted genotypes are consistent withMendelian laws. We considered only trios with at least two different genotypes, that is, weexcluded a trio if all three genotypes were 0/0, 0/1 or 1/1. This resulted in a more strictdefinition of Mendelian consistency. In addition to genotyping all 300 trio samples, we alsogenotyped all 11 panel samples using the full input panel. Genotyping samples that are alsoin the panel helped us to find cases where panel haplotypes and reads disagreed and thus
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Figure 3.10: Cohort genotype filtering. a Shown are all combinations of filters that we ap-plied to our genotyped variant callset and the respective number of variants in each subset.The black dots indicate that the respective filter failed. b Distributions of SVR scores pre-dicted for the positive set (blue), negative set (red) and unassigned variants (grey). Figurestaken from [49].
was another useful filter criterion. We defined filters as follows:

• ac0-fail: a variant fails this filter if it was genotyped with an allele frequency of 0.0across all samples.
• mendel-fail: a variant fails this filter if the fraction of Mendelian consistent trios was< 90%.
• gq-fail: a variant fails this filter if it was genotyped with a genotype quality < 200 inmore than 5 samples.
• self-fail: a variant fails this filter if the genotype concordance across all panel sampleswas < 90%.
• non-ref-fail: a variant fails this filter if it was genotyped as 0/0 across all panel sam-ples.

For all combinations of filters, we show the number of large deletions and large insertionsin each category in Figure 3.10a. To define a strict, high-quality set of variants, we selectedall alleles that passed all five filters (Table 3.2). In addition to defining a strict set, we con-structed a ‘lenient’ set for our SV calls (≥ 50 bp) using a machine-learning approach based
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variant type unfiltered set strict set lenient setSNP 12,095,177 11,234,462small INS 1,922,163 1,198,663small DEL 1,811,123 1,202,791midsize INS 110,882 57,699midsize DEL 80,027 40,752large INS 108,929 56,290 84,836large DEL 41,499 20,490 34,290
Table 3.2: Number of variants before/after filtering. Number of variants in the unfil-tered, strict and lenient sets. The lenient set was only computed for SVs (≥ 50 bp), thereforestrict and lenient sets for all other variants are identical. Table taken from [49].
on support vector regression. We used the strict set as a positive set and defined a negativeset consisting of all variants that were typed with an allele frequency (AF) > 0.0 and failedat least three filters. For large insertions, the negative set contained 2,611 variants, andfor large deletions 1,125. The model then predicted scores between -1 (worst) and 1 (best)for all variants that were in neither the positive nor the negative set. The prediction used33 features collected from the predicted genotypes based on self-genotyping accuracies ofthe panel samples, allele frequencies computed across the panel samples and all genotypedsamples, genotype quality and Mendelian consistency. We show the distribution of scoresfor our variant calls in Figure 3.10b. The lenient set was then constructed by adding allvariants with a score > -0.5 to our strict SV set. The resulting set of variants contained 78%and 83% of all insertion SVs and deletion SVs, respectively (Table 3.2). To confirm that thelenient set still offers very good genotyping performance, we analyzed allele frequenciesand heterozygosities observed from the predicted genotypes for all variants in the lenientset and observed a relationship close to what is expected from the Hardy–Weinberg equilib-rium (HWE; Figure 3.11a). When testing for HWE, 90.7% of SV alleles inside of repeats, and90.9% outside of repeats, showed no significant deviation. Furthermore, observed allele fre-quencies across all 200 unrelated samples were in excellent agreement with coarse-grainedAF estimates obtained from the 22 haplotype assemblies of our 11 input samples (Figure3.11b). Note that neither of these two measures, HWE and agreement in estimated AFs, hasbeen used when defining the lenient set and therefore serves as independent evidence forPanGenie’s performance. PanGenie on average only took about 30 single-core CPU hoursper sample.Our callset contains 209 of 250 medically relevant SVs reported by GIAB [192]. Weobserved that 174 medically relevant SVs were contained in our lenient set, of which 119were part of our strictly filtered set. We show the score distribution for these variants aswell as AFs and heterozygosities observed across all 200 unrelated samples for the lenientset in Figure B.12.
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Figure 3.11: Genotyping large cohorts. a The hexbin plots show the relationship betweenAFs and heterozygosities of the PanGenie genotypes for all 200 unrelated samples from the1000 Genomes Project. The barplots show the one-dimensional distributions of both features(top: AF, right: heterozygosity). All large insertions (≥ 50 bp, n=84,836) and deletions(≥ 50 bp, n=34,290) contained in our lenient set were taken into account. b Comparisonof AFs computed from the PanGenie genotypes for 200 samples and the corresponding AFsobserved in the 11 assembly samples from which variants were called. As in a), we considerall large insertions (≥ 50 bp, n=84,836) and deletions (≥ 50 bp, n=34,290) contained inour lenient set. In the boxplots, lower and upper limits of the box represent the lower andupper quartiles (Q1 and Q3); the median is marked in yellow. Lower and upper whiskersare defined as Q1-1.5 (Q3-Q1) and Q3+1.5 (Q3-Q1), respectively, and outliers are markedby dots. c Length distribution of the number of common insertions and deletions (AF ≥ 5%)contained in the PanGenie lenient callset and gnomAD. Figure taken from [49].
3.8 Comparison to gnomAD

This section re-uses material presented in [49].

We compared the 119,126 SV alleles genotypable by PanGenie (lenient set) with the SVsthat are part of the Genome Aggregation Database (gnomAD) [32]; gnomAD contains SVscollected across 14,891 genomes from different populations [32]. Since gnomAD calls weregenerated relative to reference genome version GRCh37, we used UCSC liftOver (https://
genome.ucsc.edu/cgi-bin/hgLiftOver) to convert their coordinates to GRCh38. Requiringa reciprocal overlap of at least 50% or a start, end and variant length deviation of < 200 bp,we found that both callsets had 34,468 variants in common, whereas 84,658 (71%) of our SValleles were not contained in gnomAD. This finding is consistent with previous observations

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver


68 PanGenie: Pangenome-based genome inference

ABO gene

chr9 133,255,000 133,260,000 133,265,000 133,270,000 133,275,000

LTR10B2

133,278,800 133,278,850 133,278,900

ch
r9
-1
3
3
2
7
8
8
5
6
-I
N
S
-0
-1
2
9

rs
8
1
7
6
7
2
0

133,280,000

ch
r9
-1
3
3
2
5
4
8
3
3
-I
N
S
-0
-2
0
6

ch
r9
-1
3
3
2
5
4
9
5
3
-I
N
S
-2
-8
0

ch
r9
-1
3
3
2
5
5
3
1
2
-I
N
S
-0
-6
6 r2

6
8
7
6
2
1

r2
6
8
7
2
8
9

rs
6
5
7
1
5
2

rs
2
5
1
9
0
9
3

rs
4
9
2
4
8
8

rs
9
4
1
1
3
7
8

rs
5
5
0
0
5
7

rs
5
0
5
9
2
2

rs
5
0
7
6
6
6

rs
5
2
9
5
6
5

rs
6
5
1
0
0
7

rs
5
7
9
4
5
9

rs
6
4
9
1
2
9

rs
4
9
5
8
2
8

rs
6
3
5
6
3
4

rs
8
1
7
6
7
2
0

ch
r9
-1
3
3
2
5
4
8
3
3
-I
N
S
-0
-2
0
6

ch
r9
-1
3
3
2
5
4
9
5
3
-I
N
S
-2
-8
0

ch
r9
-1
3
3
2
5
5
3
1
2
-I
N
S
-0
-6
6

ch
r9
-1
3
3
2
7
8
8
5
6
-I
N
S
-0
-1
2
9

r2
6
8
7
6
2
1

r2
6
8
7
2
8
9

rs
6
5
7
1
5
2

rs
2
5
1
9
0
9
3

rs
4
9
2
4
8
8

rs
9
4
1
1
3
7
8

rs
5
5
0
0
5
7

rs
5
0
5
9
2
2

rs
5
0
7
6
6
6

rs
5
2
9
5
6
5

rs
6
5
1
0
0
7

rs
5
7
9
4
5
9

rs
6
4
9
1
2
9

rs
4
9
5
8
2
8

rs
6
3
5
6
3
4

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3.12: LD analysis. We calculated the LD for GWAS variants and SVs that werepart of our assembly-based callset. We detected an insertion (marked in blue) close to theABO gene which was in LD with six GWAS SNPs. The plots show all callset variants in thisregion; GWAS variants are annotated with their name. Variants colored in red correspondto blood-type markers. Figure taken from [49].
that short-read-based SV detection misses most SVs [206]. Of those 84,658 SVs, around80% were located in STR/VNTR regions. Furthermore, 43% of these 84,658 variants werecommon variants with AF ≥ 0.05 across all genotyped samples. The length distributionof common insertions and deletions (Figure 3.11c) demonstrates the ability of PanGenieto genotype variants in regions inaccessible by callers based on short-read data alone, andshows its particular impact when genotyping insertions and shorter deletions.
3.9 LD analysis

This section re-uses material presented in [49]. The analysis on nonhuman primates was performed
by co-authors of this publication.

Based on the genotypes obtained across all 200 unrelated samples (Section 3.7), we per-formed an LD analysis. We used gatk4 [39] (v.4.1.9.0) to annotate the calls with variant IDs
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from dbSNP (build 154) [174]. We selected all SNPs from our callset that were containedat least five times in the NHGRI-EBI GWAS (genome-wide association studies) catalog [20]and used plink [148] (v.190b618) to determine SVs that are in LD with the GWAS variants(r2 ≥ 0.8) within a window of 1 Mb.For 147 of 3,404 disease-associated SNPs from NHGRI-EBI, we found nearby structuralvariants that were in LD (r2 ≥ 0.8). An insertion of length 129 bp located at position133,278,856 on chromosome 9, close to the ABO gene, looked particularly interesting (Fig-ure 3.12). It is in LD with six GWAS variants (rs2519093, rs495828, rs507666, rs579459,rs635634 and rs651007) which are related to low-density lipoprotein-cholesterol levels[20]. Of note, neither the GWAS SNPs nor the insertions are in LD with blood-type mark-ers present in our callset (rs8176747 [156], rs8176746 [124], rs8176743 [156], rs8176742[185], rs8176741 [185], rs8176740 [185], rs7853989 [185], rs1053878 [185], rs8176720[185] and rs8176719 [124]). The insertion is located in a long tandem repeat (LTR10B2for ERV1 endogenous retrovirus). Analysis of the insertion sequence revealed that it con-tains three exact copies of a 43 bp sequence (“TAACGCAGTTTCTGTTTCTGTGTCCTTCC-CCTATTGGCTGGGG”; Figure B.13), which appears with copy number 1 in the referencegenome. We thus concluded that this insertion is a repeat expansion, leading to four copiesof this repeated subsequence. A comparison with nonhuman primate genomes [99, 115]showed that the 43-mer occurs as two copies in gorilla (Gorilla gorilla), but is a single copyin chimpanzee (Pan troglodytes), bonobo (Pan paniscus) and the Sumatran orangutan (Pongo
abelii). This suggests independent expansion events or incomplete lineage sorting in humansand gorillas.Another interesting association was an intronic insertion of length 322 bp located at po-sition 28,264,365 on chromosome 12, inside the CCDC91 gene close to a regulatory elementreported by ENCODE [55] (Figure B.14). It was in LD with two GWAS variants (rs10843151and rs11049566), which are both linked to body fat [20]. One of these SNPs, rs10843151,is in perfect LD with many other variants in this region, which suggests that it is probablyembedded in the same haplotype block. Such perfect LD provides further evidence thatPanGenie is accurately genotyping new insertions within short-read sequencing data.
3.10 Discussion and conclusions

This section re-uses material presented in [49].

We presented an algorithm, PanGenie, that can leverage the long-range haplotype informa-tion inherent to a panel of assembled haplotypes in combination with read k-mer countsfor genotyping an uncharacterized sample. Although we generated such pangenome ref-erence panels from haplotype-resolved assemblies for the present study, generating thesepangenomes was not the main focus of this thesis and PanGenie is not restricted to panelscreated in this way. In fact, it can be applied to any acyclic genome graph with fully phased
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path information.Traditionally, longer variants are especially difficult to genotype based on short readsonly, because such variants are often located in repetitive or duplicated regions of thegenome, leading to the difficulty of unambiguously aligning the reads. Approaches basedon k-mers additionally lack connectivity information contained in the reads because they donot use the order of k-mers stemming from the same read or read pair. PanGenie overcomesthese limitations of short reads because it incorporates long-range haplotype informationinherent to the pangenome reference panel that it uses. In comparison to BayesTyper, agraph-based genotyper relying on k-mers, PanGenie genotypes a large fraction of variantsnot typable by the former. For SVs and indels, PanGenie clearly outperforms mapping-based approaches, which require alignments of reads to a reference genome. Comparedwith Paragraph, a graph-based method relying on such read alignments, PanGenie producesbetter genotyping results while additionally providing the ability to jointly genotype SNPs,indels and SVs. Our approach was faster than the other methods, especially when compar-ing with the mapping-based approaches. The fast runtime makes PanGenie well suited forgenotyping larger cohorts, providing the basis for population genetic analysis. In the presentstudy, we have presented an application to a cohort of 300 samples that suggests that SVsin LD with disease-associated SNPs may functionally underlie these associations.We have hence presented a method that is both fast and leverages a haplotype-resolvedpangenome reference to enable genotyping of otherwise inaccessible variants. Although wehave tested it only on human data so far, PanGenie can be applied to any diploid genomeonce corresponding panels of high-quality phased assemblies become available for otherspecies. Our method offers a powerful approach for genotyping and association studies, onever-larger cohorts, for all variant types – including those currently understudied due totechnical limitations.
3.10.1 Limitations and future directions

Although PanGenie improves results over other methods in repetitive regions of the genome,genotyping within these remains challenging. While biallelic variants are less problematic,more complex cases such as segmental duplications, α-satellite repeats or acrocentric DNAare hard to access because of the lack of unique k-mers, but also because such regionsare still difficult to assemble. Once a panel of telomere-to-telomere assemblies becomesavailable, future experiments can clarify which additional loci are amenable to genotypingwith PanGenie.Our model assumes that the unknown haplotypes of the sample to be genotyped are mo-saics of the given panel haplotypes. Therefore, currently it cannot be used to genotype rarevariants that are present only in the sample, but in none of the other haplotypes. We believethat there are exciting opportunities to develop methods to discover variation that our ap-proach has not captured because it was not present in the reference panel. For example, onecould either filter the reads for as yet “unexplained” k-mers and use those for the discovery
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VCF-based representationgraph-based representation

Figure 3.13: Nested variants representation. A bubble structure with nested variantsis shown on the left, as well as four haplotype paths. On the right side, this bubble isrepresented in terms of the merged, multiallelic VCF file format used by PanGenie. Eachdistinct path through the bubble will be interpreted as an allele, even though paths arepartially identical. The latter representation does not allow recombination between the twonested variants.
of rare variants, or utilize PanGenie’s output as a personalized pangenome reference graphto map reads to.Currently, PanGenie computes recombination probabilities only based on the distancebetween two adjacent variant positions. In order to increase genotyping accuracy, recombi-nation probabilities could be adjusted to account for recombination hotspots in the genome,or to regions with low recombination rates.The runtime of our method depends on the number of input haplotypes, because wedefined a hidden state for each possible pair of haplotypes that can be selected for eachbubble. Therefore, additional engineering would be required to use much larger panels,which could be approached similarly to how statistical phasing packages prune the solu-tion space and/or proceed iteratively [19, 37, 79]. Such techniques could also pave theway toward a version of PanGenie for polyploid genomes, which would be prohibitivelyslow when implemented without such additional optimization. Another option could be tocompute founder sequences [134, 190] from the input haplotypes prior to genotyping inorder to reduce the runtime for large panels. This smaller set of representative haplotypesequences could then be used as input to PanGenie instead of the full set of haplotypes.Similar ideas have been used recently to successfully reduce the complexity of accurate,pangenome-based variant detection [135].PanGenie determines k-mers unique to a bubble region for genotyping (Section 3.2.1).These k-mers are allowed to occur in one or more alleles inside of the bubble, but nowhereelse in the pangenome. In the current implementation of PanGenie, the number of uniquek-mers selected for larger bubbles is restricted to 300 to reduce memory usage and runtime.Which k-mers are selected is completely arbitrary. Here, more sophisticated strategies tochoosing the most informative k-mers could be implemented. For example, one could try toselect k-mers such that each allele is equally covered by k-mers. Also, one could prefer thosek-mers that distinguish alleles by selecting the ones that are not only specific to a bubbleregion but also occur only in exactly one of the allele paths inside of the bubble.
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Currently, the pangenome graph provided as input to PanGenie is stored in VCF format.Each bubble in the graph is represented in terms of a variant record and the alternative alle-les specify all distinct paths covered by the input haplotypes in this genomic region (Figure3.13, right). For large bubbles, there might be a different path for each haplotype, althoughhaplotypes might be partly identical. However, this VCF-based representation does not ac-count for nested variation that might be present in a bubble and thus does not consider theactual graph structure underlying such a region (Figure 3.13, left). This might especiallybe problematic as the number of haplotypes increases. The more haplotypes there are, themore alleles might be overlapping across haplotypes leading to larger bubbles that tend tohave a distinct allele path for each single haplotype in the resulting VCF. Genotyping suchbubbles is challenging, as PanGenie needs to decide between a large number of possiblealternative alleles. Therefore, leveraging a more sophisticated pangenome graph structurethat encodes variation in terms of nested bubbles and is independent of a reference genomemight be more beneficial. It might be helpful to genotype nested variants separately insteadof considering the whole bubble at once, allowing recombination between nested variantsinside of a bubble. Recursive strategies for genotyping nested variation within larger bub-bles could be useful here, e.g. as used by gramtools [105], however, this might require adifferent problem formulation which is not based on a Hidden Markov Model. An existingformat that is able to encode nested variation is the GFA format. It encodes a graph bydefining its nodes (“segments”) and edges between them (“links”), along with sequence in-formation. However, such graphs are more difficult to handle since files are often large, andalso because bubble detection algorithms are required in order to localize bubbles in thesegraphs prior to genotyping.



Chapter 4

Application: Genotyping Large
Cohorts

The recent advances in accurate long read sequencing (Section 2.2) as well as the develop-ment of efficient methods for chromosome-scale assembly (Section 1.8) have enabled thegeneration of highly accurate, haplotype-resolved assemblies of human samples on largerscales [24, 59, 145]. Such assemblies enable the construction of highly accurate pangenomereferences, which provide insights into complex genomic regions that were previously diffi-cult to analyze. Alternative allele sequences are missing from the current reference genome.Furthermore, many SVs are located in repetitive sequence context. As a consequence, overtwo-thirds of SVs have been missed by short-read based callers [24, 199, 206]. Methodsbased on pangenome graphs enable fast, short-read based genotyping of variants previouslyinaccessible (Chapter 3). This allows to include such SVs in population-based downstreamanalyses, such as genome-wide association studies.Recently, two consortia have produced haplotype-resolved assemblies for multiple hu-man samples. The Human Genome Structural Variation Consortium (HGSVC) [24, 46] gen-erated phased assemblies for 35 human samples, focusing on variant calling and the analysisof structural variations across these genomes. More recently, the Human Pangenome Refer-ence Consortium (HPRC) [90, 113] produced such assemblies for 47 human samples, withthe goal of providing an alternative to the linear reference genome. Both consortia deliverpangenome representations that can serve as input for pangenome-based genotyping meth-ods like PanGenie, which was presented in Chapter 3. The fast runtime of PanGenie enablesaccurate genotyping of thousands of samples based on short sequencing reads using suchpangenome references. This chapter presents the results of applying PanGenie to the datasetsof the HGSVC and HPRC consortia. It demonstrates that PanGenie works well in practiceand that it can be used to produce high quality genotypes across large populations. The mainfocus is on structural variation, as many SVs have been challenging to detect and analyze inprevious studies. It is further demonstrated how SNP genotypes across large populations canbe used in order to detect potential carriers of rare inversions in human samples. The ex-
73
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periments presented here demonstrate the added value from pangenome-based genotypingbeing able to access variation previously inaccessible by short reads.
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4.1 HGSVC project

This section presents the work of the Human Genome Structural Variation Consortium (HGSVC)
and focuses on my contributions to this project. Results were published as part of a Science
publication [46]. Sections 4.1.3, 4.1.4 and 4.1.5 re-use material from this paper. Section 4.1.2
re-uses material from [49]. See Sections E.4 and E.5 for information on author contributions and
publication details.

4.1.1 Introduction

The Human Genome Structural Variation Consortium (HGSVC) [24, 46] constructed highlyaccurate, haplotype-resolved assemblies of human samples using the PGAS pipeline [145]based on long-read PacBio sequencing data (CLR and CCS) as well as Strand-seq data. Unlikeother methods [98], PGAS does not depend on parent-child trio data [46, 145] (see alsoSection 1.8). Haplotype-resolved assemblies for 35 human samples (70 haplotypes) wereproduced in this way, which included 32 unrelated individuals. These assemblies were usedin order to call genetic variants, including SNPs, indels and SVs across these samples. Thefocus here was especially on SVs, as these new assemblies enable the discovery of novel SVspreviously inaccessible by short-read or long-read based data. Variant calling was performedusing a new method PAV, developed by a co-author, which detects variants by comparing thehaplotype sequences of the assembly samples to the linear reference genome, producing acallset with phased genotypes for all assembly samples. As a part of this project, I genotypedthe variants detected by PAV across a diverse cohort consisting of 3,202 human samples[2, 21] using PanGenie, enabling estimation of allele frequencies as well as the discoveryof associations between genotypes and gene expression, splicing and candidate disease loci[46].
4.1.2 Speeding up PanGenie for larger panels

This section re-uses material presented in [49].

The asymptotic runtime of the Forward-Backward algorithm implemented in PanGenie is
O(n4 ·m), where n is the number of reference haplotypes and m the number of genotypedvariants (see Section 3.5.4 for details). Thus, the algorithm might get slow once the numberof haplotypes in the panel gets larger. Therefore, we have implemented a subsamplingapproach to efficiently genotype larger panels, such as the ones produced by the HGSVCand HPRC projects. Given n input haplotypes, the idea is to subsample l sets of haplotypeseach of size k from the full set. The Forward-Backward algorithm is then run separately oneach of these subsets in order to produce genotype predictions for the variants. In the end,genotype likelihoods produced based on each subset for a variant position are combined byiteratively adding up likelihoods and normalizing them. PanGenie automatically switchesto this subsampling approach if the number of input haplotypes in the panel exceeds 30. It
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was used for the HGSVC experiments presented in the following sections as well as for theHPRC experiments presented in Section 4.3.
Asympotic runtime

Let us assume we split the set of n input haplotypes in l subsets each of a fixed size k. Whengenotyping m variants, PanGenie’s genotyping step is now run separately on each of the lsets in time O(k4 ·m) (Section 3.5.4). This will result in a total runtime linear in the numberof subsets, i.e. O(l · k4 ·m).
4.1.3 Variant calling from haplotype-resolved assemblies

This section provides an overview of the variant calling pipeline that was developed and run by
Peter Audano, a co-author of [46] and re-uses some material from this publication.

Variants were identified from the haplotype-resolved assemblies with the Phased AssemblyVariant (PAV) caller. For each haplotype, the assembly contigs were aligned to the GRCh38reference genome using minimap2 [106]. Multi-mapping issues were resolved by trimmingalignments based on a dynamic programming approach. Variants contained within align-ments were detected from the CIGAR string of the mapped contigs. Structural variants cancause breaks in the alignments. In such cases, alignment breakpoints were analyzed in orderto identify insertion or deletion events. In order to combine variant calls generated for eachhaplotype by PAV, a three-step merging approach was applied to decide whether similar al-leles observed across different haplotypes represented the same variant or not. First, variantalleles matching exactly were intersected. Second, variant calls with intersecting referencecoordinates were combined if their reciprocal overlap (RO) was at least 50%, i.e. the intervalcovered by a variant overlapped at least 50% of the interval covered by another variant andvice versa. For insertions, the end position was computed as the sum of start position andlength. Finally, variants within 200 bp and 50% overlap by size were merged, since smallervariants are often missed by the RO criterion. SNP variants were only combined if theirposition and alternative base were exactly the same. The output of PAV is a fully-phased,multisample VCF file containing all variant alleles after merging. It was used in subsequentsteps in order to generate an acyclic and directed pangenome representation of these calls,which was used as input to PanGenie.
4.1.4 Genotyping SVs across a cohort of 3,202 individuals

This section re-uses material presented in [46].

The variants detected by PAV were genotyped across all 3,202 samples from the 1000Genomes Project [2, 21] in order to demonstrate the utility of PanGenie for large cohorts.For each sample, we provided PanGenie with short-read sequencing reads (in FASTQ for-
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PAV calls Minus ≥ 20% missing Minus chrY+chr_* Merged set(PanGenie input)SNPs 15.810.489 15.610.830 15.609.695 15.488.649Deletions (1-49 bp) 649.065 642.348 642.341 636.570Insertions (1-49 bp) 405.981 400.527 400.513 397.095Deletions (≥ 50 bp) 41.393 37.327 37.169 35.862Insertions (≥ 50 bp) 66.197 61.788 61.604 60.283

Table 4.1: Number of HGSVC variants. The first column provides the number of inputvariants (from PAV callsets). The second and third columns show the numbers of variantsobtained after removing positions with at least 20% missing alleles in the panel and thoselocated outside of chromosomes 1-22 or chromosome X. The last column provides the num-bers of variants contained in the final graph used as input for PanGenie. Table taken from[46].
mat) as well as a multisample VCF file containing phased variant calls from the 64 assem-blies of all unrelated samples (i.e. excluding six child haplotypes). This input VCF file wasderived from the merged PAV callsets produced for SNPs, indels and SVs. At first, we re-moved all positions for which more than 20% of the panel haplotypes carried a missingallele. Furthermore, we kept only variants located on chromosomes 1-22 and chromosomeX for genotyping. We then created a multiallelic VCF representation in which overlappingvariants were combined into multiallelic bubbles using the same approach as explained inSection 3.4. For each bubble, we kept track of the individual variants it was composed of,which allowed us to later translate genotypes computed for bubbles to genotypes for theunderlying PAV variants. Some variants in the input PAV callsets were overlapping on thesame haplotype (e.g. a SNP inside of a deletion). We removed such conflicts by settingthe corresponding alleles to missing (“.”). In this way, the VCF encodes an acyclic and di-rected pangenome graph representing the panel genomes. Table 4.1 provides an overviewof the number of PAV variants obtained after the different pangenome graph constructionsteps. We genotyped all bubbles contained in the pangenome graph across all samples fromthe 1000 Genomes Project using PanGenie. We converted the genotypes computed for thebubbles back to genotypes for the PAV variants from which the graph was constructed.We started with a pilot set consisting of 300 individuals selected from the 3,202 sam-ples of the 1000 Genomes cohort. This subset was constructed by randomly choosing 20trios from each of the five superpopulations (AFR, AMR, EAS, EUR, SAS). We then ran Pan-Genie in order to genotype all 15.5 million SNPs, 1.03 million indels, and 96.1 thousandSVs across these 300 samples. For comparison, we additionally ran state-of-the-art methodParagraph [26] to derive genotypes for all SVs. As a quality control measure, we computedallele frequencies across all 200 unrelated samples from the PanGenie and Paragraph geno-types and compared them to the allele frequencies derived from the PAV calls for all 64unrelated assembly haplotypes. For Paragraph, we observed allele frequency correlations(Pearson correlation) of 0.61 and 0.54 for SV deletions and insertions. For PanGenie, thesevalues were 0.85 and 0.86, respectively. Plots comparing the Paragraph and PanGenie allele
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Figure 4.1: Unfiltered HGSVC genotypes. A Shown are the number of SVs typed as het-erozygous by PanGenie for different populations. The plots are based on the unfilteredcallset containing all 96,145 SVs (35,862 deletions and 60,283 insertions) B Concordanceof AF estimates from the assembly-based PAV discovery callset and AF estimates from geno-typing unrelated Illumina genomes (n=2,504) with PanGenie (unfiltered genotype set of96,145 SVs). Marginal histograms are in linear scale. Figures taken from [46].
frequencies to the ones for PAV indicate that Paragraph tends to genotype variants as het-erozygous and especially struggles with genotyping insertions (Figure C.1). We concludedthat PanGenie seems to be more suitable for genotyping our SV calls and proceeded withgenotyping all SNPs, indels, and SVs across the 3,202 samples using PanGenie. We deter-mined the number of heterozygous SVs for each population from these genotypes (Figure4.1A) and observed higher numbers for the African populations, reflecting their increasedgenetic diversity. We also computed allele frequency correlations from the allele frequenciesderived from the PanGenie genotypes for all 2,504 unrelated samples and the PAV calls. Weobserved correlations of 0.98, 0.95, and 0.85 for SNPs, indels and SVs, respectively (FigureC.2B, Figure C.3B, Figure 4.1B). However, these numbers indicate that there were variantsfor which PanGenie and PAV allele frequencies differ significantly. In order to filter out suchpotentially wrongly genotyped calls, we defined a strict subset of variants based on statisticswe computed from the genotypes of the 3,202 samples. Similarly to what we described inour PanGenie publication [49] (Section 3.7), we defined the five filters listed below:

• ac0_fail: a variant fails this filter if it was genotyped as absent (genotype 0/0 or ./.)by PanGenie in all 3,202 samples (i.e. the allele frequency was zero).
• mendel_fail: there are 602 trios among the 3,202 genotyped samples. For each vari-ant, we counted the number of trios with Mendelian-consistent genotypes. As in [49](Section 3.7), we only took trios with at least two different genotypes into consider-ation, meaning we skipped trios in which all samples were typed as 0/0, 0/1 or 1/1,respectively. A variant fails this filter if the Mendelian consistency is below 90%.
• gq_fail: a variant fails this filter if there were at least 200 genotype predictions withgenotype quality < 200.



4.1 HGSVC project 79

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

1000

0 1000

100

101

102

103

Pa
n
G

e
n
ie

 a
lle

le
 f

re
q
u
e
n
cy

 (
n
=

2
5

0
4

)

PAV allele frequency (n=32)

Deletions ≥ 50 bp (n=8,181)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

5000

0 2500

100

101

102

103

PAV allele frequency (n=32)

Pa
n
G

e
n
ie

 a
lle

le
 f

re
q
u
e
n
cy

 (
n
=

2
5

0
4

)

Insertions ≥ 50 bp (n=15,926)

Insertions ≥ 50 bp (n=15,926) Deletions ≥ 50 bp (n=8,181)

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

Pa
n
G

e
n
ie

 a
lle

le
 f

re
q
u
e
n
cy

 (
n
=

2
5

0
4

)

102

102

100

101

102

103

Insertions ≥ 50 bp (n=15,926)

SV length [bp]

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

102

103

100

101

102

Pa
n
G

e
n
ie

 a
lle

le
 f

re
q
u
e
n
cy

 (
n
=

2
5

0
4

)

SV length [bp]

Deletions ≥ 50 bp (n=8,181)

1600 1800 2000 22002000 2400 2800

ESN
GWD
LWK
MSL
YRI

ACB
ASW
CLM
MXL
PEL
PUR
CDX
CHB
CHS
JPT

KHV
CEU
FIN

GBR
IBS
TSI

BEB
GIH
ITU
PJL

STU

ESN
GWD
LWK
MSL
YRI

ACB
ASW
CLM
MXL
PEL
PUR
CDX
CHB
CHS
JPT

KHV
CEU
FIN

GBR
IBS
TSI

BEB
GIH
ITU
PJL

STU

Po
p
u
la

ti
o
n

Po
p
u
la

ti
o
n

A

B

C

heterozygous SVs heterozygous SVs

Figure 4.2: Strictly filtered HGSVC genotypes. A Distribution of heterozygous SV countsper diploid genome broken down by population, based on PanGenie genotypes passing strictfilters. B Concordance of AF estimates from the assembly-based PAV discovery callset andAF estimates from genotyping unrelated Illumina genomes (n=2,504) with PanGenie (strictgenotype set of 24,107 SVs). Marginal histograms are in linear scale. C PanGenie allelefrequencies were computed based on the HGSVC genotypes of all 2,504 unrelated samples.Only SVs contained in the strict set (n=24,107) are considered. Figures taken from [46].
• nonref_fail: a variant fails this filter if all panel samples were genotyped as homozy-gous reference.
• loo_fail: in addition to genotyping the 3,202 samples, we conducted a leave-one-outexperiment, in which we repeatedly took out one of the panel samples from the inputand used PanGenie to genotype it based on the remaining samples in the panel. Wethen compared the predicted genotypes to the ground-truth genotypes of the left-outsample. This enabled us to compute the genotype concordance across all panel samplesat each variant position. This filter fails if the genotype concordance of the panelsamples is below 80%.

We applied these filters to all SNPs, indels and SVs genotyped by PanGenie. For SVs, 16,343out of 60,238 insertions (27%) failed the “ac0_fail” filter and were genotyped with an allele
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frequency of zero across all 3,202 samples (Figure C.4A, Figure C.5A). For deletions, 8,948out of 35,862 (25%) were genotyped as homozygous reference in all samples. About 57% ofthese variants are rare and were carried by only a single haplotype in the input panel. Suchvariants are, in particular, difficult to genotype by a panel-based approach like PanGenie,especially if the k-mer counts show no strong indication for the presence of an allele in asample. To obtain a filtered callset, we removed all variants for which at least one of the fivefilters failed. This led to a rather stringent, but high-quality set of genotypes that served as abasis for further analysis. Our filtered set contains 12,283,650 SNPs (79%), 705,893 indels(68%), and 24,107 SVs (25%). We provide callset statistics for this strict set in Figure 4.2.Figure 4.2A shows the number of heterozygous SVs for different populations, demonstrat-ing expected patterns of diversity [2]. Figure 4.2B shows the allele frequencies obtainedfor SVs across the PanGenie genotypes, as well as the corresponding allele frequencies inthe input panel haplotypes. The allele frequencies for PanGenie were computed based onall 2,504 unrelated individuals from the full panel of the 3,202 samples. For both varianttypes, insertions and deletions, the allele frequencies matched well with very few outliers,indicating that the genotypes are of good quality. Note that allele frequencies were notdirectly used for filtering. We obtained an allele frequency correlation of 0.99 (0.98 fordeletions, 0.99 for insertions). Likewise, allele frequency correlations for SNPs and indelsin this filtered set were both equal to 0.99 (Figure C.2, Figure C.3). We also investigatedthe relationship between variant length and allele frequencies across the PanGenie geno-types. The peaks (Figure 4.2C) show a clear tendency of Alu insertions towards lower allelefrequencies, while an opposite trend is observed for Alu deletions. We suspect that thisbehavior is caused by Alu insertions present in the reference genome. Figures C.6 and C.7show the relationship between FST values of the five superpopulations (AFR, AMR, EAS,EUR, SAS) and the length of the SVs. FST is a measure used to analyze population struc-ture [72]. It calculates the proportion of genetic variation among subpopulations relativeto the overall genetic variation [123]. Here, for each superpopulation, FST was computedbetween individuals belonging to the respective superpopulation and the union of the re-maining populations. We observed higher FST values for African and East Asian populationsindicating higher degrees of differentiation among these populations.For SVs, our filtered set contained only 25% of all input variants. Besides defining astrict set, we used support vector regression in order to generate a larger, more lenient setof SVs. This approach differs from the one introduced in Section 3.7 in the set of featuresthat are used for the regression. Here, we included additional features computed from aleave-one-out experiment performed for all panel samples and concordances with k-mer-based presence/absence genotyping contributed by Tobias Rausch, a co-author of [46]. Ourmodel is designed to assign scores close to -1 to poorly genotyped SVs and scores around 1 tothose passing all of our filters. For training, we used our strict SV set as “true positives”. The“true negatives” were defined as all variants genotyped with an allele frequency larger thanzero (“ac0_fail” did not fail) that failed at least three of the remaining filters. We predicted
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callset SV Insertions SV Deletions

number correlation genotypeconcordance [%] number correlation genotypeconcordance [%]unfiltered set 60.283 0,86 85,1 35.862 0,85 86lenient, cutoff -0.5 31.680 0,95 89,8 18.660 0,95 91,5lenient, cutoff 0.0 27.565 0,97 92,1 16.065 0,97 93,3lenient, cutoff 0.5 23.128 0,98 94,3 13.384 0,98 94,7strict set 15.926 0,99 96,9 8.181 0,98 96,1
Table 4.2: Callset statistics for the HGSVC lenient set. The table lists the number ofvariants (≥ 50 bp) contained in the unfiltered, strict and lenient SV callsets. The machine-learning-based process to define the lenient set can be tuned by setting different cutoffsseparating high- from low-quality SVs. Columns named “correlation” state Pearson corre-lation between PanGenie (2,504 unrelated samples) and PAV genotype allele frequencies.Columns named “genotype concordance” state average genotype concordance for all assem-bly haplotypes estimated via leave-one-out experiments. Table taken from [46].
regression scores for all yet unlabeled SVs (with an allele frequency > 0). We then createdmore lenient callsets by adding those variants to the strict set for which the scores were abovea certain threshold. We investigated three different cutoffs: -0.5, 0.0, and 0.5. Table 4.2contains corresponding callset statistics. As expected, numbers improved as we increased thecutoff used to define a lenient callset. While allele frequency correlations were 0.86 and 0.85for insertions and deletions in the unfiltered set, respectively, they reached levels between0.95 and 0.98 when applying the different cutoffs. Likewise, average genotype concordancesof the PanGenie genotypes with the PAV calls for the assembly samples increased, reachinglevels above 94% for cutoff 0.5.Based on these statistics we chose threshold -0.5 as our final value to define the lenientset. It contained 31,680 SV insertion alleles and 18,660 deletion alleles (Table 4.2) andstill reached allele frequency correlations of 0.95 for both SV types, indicating that thePanGenie allele frequencies were consistent with the PAV results (Figure 4.3a). Averagegenotype concordances were 89.8% for insertions and 91.5% for deletions. Furthermore,we compared allele frequencies and heterozygosities and found that variants largely behavedas expected by Hardy-Weinberg equilibrium (Figure C.2B, Figure C.3B, Figure C.4B, FigureC.5B).
4.1.5 Added value from graph-based genotyping into short-read WGS data

This section provides a summary on evaluation results produced by co-authors presented in [46]
and re-uses material from this publication.

A comparison of the PanGenie genotypes for the 1000 Genomes samples to state-of-the-art short-read SV discovery sets showed that 59.9% and 42.5% of SV alleles contained inthe lenient and strict sets, respectively, were not detectable from short reads. Figure 4.3bshows the length distribution of common SVs (allele frequency > 5 %) contained in the PAVcalls, the PanGenie lenient set, as well as three short-read based callsets [3, 32, 46]. Results
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Figure 4.3: Leniently filtered HGSVC genotypes. A For PanGenie, allele frequencieswere computed based on the genotypes of all 2,504 unrelated samples. The PAV allelefrequencies were computed based on all 64 assemblies. Only SVs (≥ 50 bp) contained in ourlenient callset (cutoff -0.5, n=50,340) were considered. B Length distribution of commonSV sites (AF > 5%) represented in assembly-based callsets, including variants genotyped byusing PanGenie and all common variants from population-scale studies from the GenomeAggregation Database (gnomAD-SV) and CCDG (insertions from CCDG omitted because oflack of data). Figures taken from [46].
demonstrate that short-read based callsets miss large fractions of common SVs, which is con-sistent with the results shown in Chapter 3 as well as with results of previous studies [206].The assembly-based callset PAV and the PanGenie genotypes contained increased numbersof deletions below 250 bp and insertions under 1 kbp, which were missed by short-readbased callers. The ability to genotype variants across a cohort that were previously inacces-sible to purely short-read based callers also enabled including such variants in genome-wideQuantitative trait locus (QTL) analyses. QTL analysis aims at identifying associations be-tween genotypes and phenotypes (molecular and clinical), with the goal to explain the rolesof genetic variation in diseases. A QTL analysis based on the PanGenie strict set showed that48% of the most likely causal expression QTL SVs (“lead eQTLs” ) were previously inacces-sible by purely short-read based callers. These results demonstrate the added value frompangenome-based genotyping with PanGenie: it is able to reliably genotype a large portionof (common) structural variants that purely short-read based callers are not able to access,enabling the inclusion of such variants in downstream analyses.
4.1.6 Discussion

The pangenome-based genotyping method PanGenie was applied to a pangenome repre-senting 32 human samples (64 haplotypes), created from high quality haplotype-resolvedgenome assemblies. In this way, variants were re-genotyped across a large and diverse co-hort of 3,202 samples from different superpopulations and filtered sets of genotypes wereconstructed. Evaluation based on different population-based statistics, like the Mendelianconsistency or comparison of allele frequencies, showed that our genotypes are of highquality. We showed that 50,340 structural variants can be reliably genotyped by PanGe-nie across the populations, and 59.9% of these variants were previously inaccessible by
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linear alignment based, short-read discovery callsets, demonstrating the added value of apangenome-based framework. Our genotyping method took only around 30 CPU hours persample for genotyping, unlike other approaches, that require time-consuming read align-ments to a reference genome and are thus much slower. Furthermore, results demonstratethat SV genotypes produced by PanGenie enable QTL analysis for the discovery of diseaseassociated variants. Our analyses revealed 31.9% of SV-eQTLs and 48% of lead SV-eQTLsthat were previously not accessible by short-read approaches.However, the study also reveals some limitations of PanGenie. Especially genotypingrare variants with low allele frequencies across the assembly samples was challenging, sincePanGenie tended to genotype them as absent, resulting in allele frequencies of zero acrossall 3,202 samples. As a consequence, 26.3% of all SV alleles needed to be excluded from anyfiltered set, since they could not be re-typed in any sample and therefore did not provide anyinformation for downstream analyses. Possible reasons why PanGenie tends to genotypesuch variants as absent could be the lack of unique k-mers for all or some of the variantalleles at a variant locus. The absence of unique k-mers in a region or unbalanced k-merdistributions across the alleles can lead to wrong conclusions about the genotypes, becausein such cases, genotypes are imputed from the panel haplotypes. Therefore, if a variant israre in the panel, there is a bias towards genotyping it as absent. Another factor that couldhave affected PanGenie’s genotyping performance for rare and common variants is thatduring variant calling with PAV, similar overlapping SV alleles were merged into a singleallele. In some cases, this might have led to “overmerging” alleles, i.e. merging sequencesnot actually representing the same variant allele. Since PanGenie is a k-mer based method,small differences in allele sequences between the panel and the sample to genotype mightlead to wrong genotypes because the observed k-mer spectrum is different from the expectedone.
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4.2 Identifying rare inversions

This section demonstrates how the HGSVC genotypes produced by PanGenie for the 1000 Genomes
cohort can be used in order to detect rare inversions. The material presented has been published
as part of a Cell publication [146]. Sections 4.2.1 and 4.2.2 re-use material presented in this
publication. See Section E.6 for information on author contributions and publication details.

4.2.1 Introduction

This section re-uses material presented in [146].

Compared to insertions and deletions, inversions are a relatively rare class of structural vari-ants in humans [3, 46, 181]. In case of an inversion, a chromosomal segment is inverted(Section 1.3). Unlike other classes of SVs, inversions remain challenging to discover and an-alyze [3, 32, 46, 70, 80, 94, 97, 155, 167, 181]. This is because inversions are often flankedby segmental duplications that are too long to be spanned by sequencing reads. Further-more, balanced inversions do not lead to any gains or losses of DNA, which makes theirdetection more difficult. Inversions can suppress recombination and have been shown to beassociated with diseases, such as Haemophilia A or the Hunter syndrome [16, 102, 180].In our study [146], we characterized the full spectrum of inversions across 41 human sam-ples based on Strand-seq data, the haplotype-resolved assemblies generated by the HGSVCproject [46] (Section 4.1), and Bionano optical mapping data. We detected 729 inversionswith lengths ranging from 50 bp to several mega base pairs. As a part of this study, I devel-oped an approach to find potential carriers of rare inversions detected across the 41 samplesin a large cohort of 3,202 samples from the 1000 Genomes project. This approach uses theSNP genotypes computed by PanGenie across the 3,202 samples in the HGSVC project de-scribed in detail in Section 4.1. The idea is to find samples that share a high fraction of rareSNPs with the samples carrying the inversion in the respective genomic region.
4.2.2 Identifying potential inversion carriers using PanGenie

This section re-uses material presented in [146].

The genotypes computed for the HGSVC SNPs across all 3,202 genomes (see Section 4.1) canbe used in order to detect potential carriers of rare inversions. Here, we used them in orderto identify potential carriers of two inversions of interest both of which were absent fromthe other Strand-seq discovery samples. The first one is a 23 Mbp pericentromeric inversionon chromosome 2 detected in NA19650 with its distal breakpoint lying near (∼ 2 Mbp)the ancestral chromosome 2 fusion point specific to humans. The second inversion is a5 Mbp inversion located on chromosome 15 detected in HG02492. It overlaps the well-known Prader-Willi/Angelman syndrome (PWAS) type II critical region [30] and has beenpostulated to predispose to disease [63].
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We considered SNP alleles present in the inversion haplotypes of these two samples asfollows. We used the HGSVC SNP genotypes [46] (Section 4.1.4) available for all 3,202samples from the 1000 Genomes Project [21] to determine which of these SNPs are rare(allele frequency ≤ 0.01 across unrelated samples). In HG02492 we identified 103, andfor NA19650 we detected 333 such rare SNPs within the respective inverted segments. Wethen counted these rare alleles in the genotypes of all 3,202 samples. Those samples thatshared a high number of rare SNPs with the respective inversion haplotype were consid-ered potential carriers of the inversion. For the inversion on chromosome 15, we identi-fied four samples sharing a high number of rare SNP alleles with HG02492 (Figure 4.4A):HG02491 (102/103 alleles in common; 99%; mother of HG02492), HG02784 (101/103;98%), HG02725 (74/103; 72%), and HG03639 (74/103; 72%). The shared alleles areevenly distributed along the inverted sequence (Figure 4.4B). All these samples are partof the Punjabi South Asian population. For the pericentromeric inversion on chromosome2, sample NA19648 (mother of NA19650) shared 330/333 (99%) rare alleles with the re-spective haplotype-resolved segment in NA19650 (Figure 4.5A,B).Fluorescence In Situ Hybridization (FISH) validation experiments were performed in or-der to verify the results of our approach. For the inversion on chromosome 15, all fivesamples predicted as carriers could be verified (Figure 4.4C) which suggests a founder in-version event in the Punjabi population in association with this haplotype. Likewise, bothcarriers of the inversion on chromosome 2 could be verified by FISH (Figure 4.5C).

4.2.3 Discussion

In this section, an approach was presented that can detect carriers of rare inversions in alarge cohort for which SNP genotypes are available. It was demonstrated to successfullydetect carriers of two rare inversions of interest, which could be experimentally verifiedusing FISH. However, there are some limitations. The method presented here is mainlysuited for detecting longer inversion events, since it requires rare alleles to be present inthe inverted region. Here, we applied the approach to inversions of 5 Mbp and 23 Mbpin length. Furthermore, it requires phased SNP genotypes to be available for the detectionsample, as well as SNP genotypes for a cohort.In conclusion, the experiments show that rare inversions from a set of discovery samplescan be accurately inferred in large whole-genome sequencing cohorts based on SNP geno-types. This enables to study associations between inversion polymorphisms and diseases,which were previously not accessible to investigation [146].
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Figure 4.4: Rare inversion on chromosome 15. A Barplot showing the number of rarealleles shared between an index individual (HG02492) and all 1000 Genomes samples(n=3,202) stratified by superpopulation (AFR, AMR, EAS, EUR and SAS) and population(same abbreviations used as in [2]). Individuals with the largest number of shared rarealleles are highlighted by a black dot and a sample specific identifier. B Distribution ofdetected shared rare alleles along the inverted region. The inverted region is highlightedby a transparent red rectangle. Note that rare alleles for the chromosome 15 specific in-version are evenly distributed along the whole inversion for all predicted inversion carri-ers. C FISH validation. Both chromosome 15 homologs have a direct orientation in thecontrol individual (NA12878) while HG02491, HG03639, HG02725 and HG02784 are allcarriers of the inversion in heterozygous state. White arrowheads indicate chromosomes indirect orientation while red arrowheads indicate chromosomes with the inversion (ABC8-41788900G7 in red mapping at chr15:23751929-23796236; RP11-640H21 in green map-ping at chr15:27894428-28091240). Figure taken from [146].



4.2 Identifying rare inversions 87

Figure 4.5: Rare inversion on chromosome 2. A The barplot shows the number of rarealleles shared between NA19650 and all 1000 Genomes samples (n=3,202) stratified bysuperpopulation (AFR, AMR, EAS, EUR, SAS) and population (same abbreviations used asin [2]). Individuals with the largest number of shared rare alleles are highlighted by a blackdot. B A distribution of detected shared rare alleles along the inverted region on chromo-some 2. The inverted region is highlighted by a transparent red rectangle. Rare allelesfor the chromosome 2 specific inversion are evenly distributed along the whole invertedregion only in a single sample (NA19648). C FISH results of a ∼ 23.2 Mb inversion on chro-mosome 2 (chr2:88064758-111283969) are shown. Both chromosome 2 homologs have adirect orientation in the control individual (NA12878) while NA19650 and NA19648 in-dividuals are inverted in heterozygous state. White arrowheads indicate chromosomes indirect orientation while red arrowheads indicate chromosomes with the inversion (ABC8-2121940H19 in red mapping at chr2:88223569-88269173; WI2-1849B17 in green mappingat chr2:110712025-110745244). Figure taken from [146].
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4.3 HPRC project

This section presents the work of the Human Pangenome Reference Consortium (HPRC). As a part
of this project, I used the pangenome graphs produced from haplotype-resolved assemblies of 44
samples to genotype variants across 3,202 samples using PanGenie. This work is currently under
revision and available as a preprint [113]. Sections 4.3.2, 4.3.3 and 4.3.4 re-use material from
this preprint. See Section E.7 for information on author contributions and publication details.

4.3.1 Introduction

The Human Pangenome Reference Consortium (HPRC) [90, 113] generated haplotype-re-solved assemblies for 47 human samples based on PacBio CCS data and parental Illuminashort reads using Trio-Hifiasm [27]. The goal was to construct a pangenome graph cap-turing the genetic diversity across all 44 unrelated samples (excluding three children) thatcan replace the linear reference genome. Using a graph instead of a linear reference helpsovercoming reference biases arising from missing alternative sequences [187].The main difference between the pangenome references generated by the HGSVC andHPRC is the way they were constructed and represented. In the HGSVC project, assem-blies were individually aligned to the linear reference genome in order to identify variants,and variant calls were later merged across samples to obtain a joint, reference-based callsetacross all samples that can be interpreted as a pangenome structure. In the HPRC project,a sequence graph is constructed based on a multiple sequence alignment of the assemblies.Unlike the reference-based representation used by the HGSVC, the HPRC graph allows repre-senting variation nested in sequences absent from the reference. The linear reference is onlyused in order to assign reference coordinates to the variants present in the assembly whichallows representing variants in VCF format. Variants are detected from the pangenome bystudying the bubble structures in the graph and by comparing traversals of haplotypes andthe reference genome through bubble regions.As a part of the HPRC project, I genotyped the variation obtained from the newly con-structed pangenome graph across all 3,202 samples from the 1000 Genomes project [2, 21]using PanGenie, demonstrating that this new reference structure allows genotyping struc-tural variants not typable based on the HGSVC data.
4.3.2 Pangenome construction and variant calling

This section presents a summary on the pangenome construction methods presented in [113] de-
veloped by co-authors and re-uses some material from this preprint.

Several versions of the pangenome were constructed based on different construction meth-ods. The version underlying the genotyping experiments described in this chapter is basedon Minigraph and the Cactus genome aligner [9, 76, 110]. First, Minigraph [110] was usedin order to iteratively construct a graph starting from the GRCh38 reference genome and
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progressively adding 88 haplotype-resolved assemblies constructed from 44 human samples.After this step, the graph contained only structural variants ≥ 50 bp. In order to includeSNPs and small variants, it was extended with a base-level alignment of homology relation-ships between assemblies by using Cactus [9]. Non-reference sequences of at least 100 kbpthat were either identified as being satellite, which could not be assigned to a reference chro-mosome or which appeared unaligned to the remaining assemblies, were removed from thegraph. The result is a sequence graph in which nodes correspond to DNA segments. Thegraph represents a multiple sequence alignment of the 88 haplotypes and each haplotype isrepresented as a path through this graph.Bubbles in the graph were detected using the tool vg deconstruct [142]. It decomposesthe pangenome graph into sets of nested subgraphs, so-called snarls, each of which corre-sponds to a collection of genetic variants. Briefly, this is done by converting the graph intoa biedged graph, in which nodes are represented as “black edges” and edges as “grey edges”[142]. Pairs of black edges are determined that need to be cut in order to disconnect thegraph such as to create separated components [142]. These snarls can be nested. Nesting re-lationships can be represented by arranging the snarls in a tree and annotating them basedon their level (LV) in this tree. Top-level snarls are annotated by LV=0, and snarls con-tained in others are annotated by LV>0. Snarls are output in VCF format. Figure 4.6a (left)provides an example of a bubble region in the tree. On the right, the corresponding biedgedgraph is shown. The top-level snarl represents the whole bubble and can be generated bycutting edges a and e. The two nested variants are represented in terms of two LV=1 snarls,resulting from cutting edges b and c, and c and d, respectively. The snarls are representedin terms of the three VCF records shown below, listing their respective allele sequences inthe graph.
4.3.3 Genotyping SVs across a cohort of 3,202 individuals

This section and all subsections re-use material presented in [113].

We used the VCF file created based on the snarl traversal of the Minigraph-Cactus (MC)graph as a basis for genotyping. We used vcfbub (https://github.com/pangenome/vcfbub,version 0.1.0) with parameters -l 0 and -r 100000 in order to filter the VCF. It removesall non-top-level bubbles from the VCF (LV>0) unless they are nested inside a top-levelbubble with a reference length exceeding 100 kbp, i.e. top-level bubbles longer than thatare replaced by their child nodes in the snarl tree. The VCF also contained the haplotypesfor all 44 assembly samples, representing paths in the pangenome graph. We additionallyremoved all records for which more than 20% of all 88 haplotypes carried a missing allele(“.”), which can happen in case of gaps in the assemblies. This resulted in a set of 22,133,782bubbles. In a next step, we used PanGenie (version 1.0.0) to genotype these bubbles acrossall 3,202 samples from the 1000 Genomes project based on high coverage Illumina reads[21]. We observed a per-sample runtime of 53 single-core CPU hours, as well as a memory

https://github.com/pangenome/vcfbub
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usage of 153 GB.
Decomposition of variants

Genotyping results in genotypes for all top-level bubbles across all 1000 Genomes samples.While biallelic bubbles can be easily classified representing SNPs, indels or SVs, this becomesmore difficult for multiallelic bubbles contained in the VCF. Especially larger multiallelicbubbles can contain a high number of nested variant alleles overlapping across haplotypes,represented as a single bubble in the graph. Since we considered only top-level bubbles forgenotyping, any information on nested variants is no longer present in the VCF representa-tion of our genotyped bubbles. This is especially problematic when comparing the genotypescomputed for the whole bubble to external callsets, as coordinates of the top-level bubble
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CHROM  POS  REF               ALT                       INFO
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Figure 4.7: Traversal-based decomposition. a The idea of the decomposition approachis to compare the sequence of visited node IDs (node traversal) of each alternative allele(that is covered by at least one of the haplotypes present in the graph) to the traversal of thereference allele. Each node in the reference traversal is matched to its leftmost occurrencein the alternative traversal (if existent), resulting in an alignment of the traversals. Thenested alleles can then be determined from the insertions, deletions and mismatches in thealignment. In this example, the alternative allele can be decomposed in two insertions andone deletion. b Two VCF files are produced. The multiallelic VCF contains the same recordsas the input VCF, just with annotations for all alternative alleles added to the INFO field.Each ALT allele is annotated by a sequence of IDs encoding the nested alleles, separated by“:”. The second VCF is a biallelic one, containing a separate record for each nested variantID, i.e. it contains all alleles after decomposition. Figure taken from [113].
do not necessarily represent the exact coordinates of individual variant alleles carried by asample in this region (Figure 4.6b).The information on nested variants initially provided by the snarl tree could help totackle this problem. However, the snarl-based decomposition of bubbles sometimes missesnested variants in cases where a nested bubble shares a black edge with a higher level snarl.See Figure 4.6c for an example: the leftmost nested bubble will not be detected since cuttingat the positions marked in red will not disconnect the corresponding subgraph from the restof the graph. We have therefore introduced an alternative decomposition approach whichaims at detecting all variant alleles nested inside of multiallelic top-level records. The ideais to detect variants from the sequences of visited node IDs (node traversals) of the refer-ence and alternative alleles of all top-level bubbles. Given the node traversals of a referenceand alternative path through a bubble, our approach is to match each reference node toits leftmost occurrence in the alternative traversal, resulting in an alignment of the nodetraversals (Figure 4.7a). Nested alleles can then be determined based on insertions, dele-tions and mismatches in this alignment. Since the node traversals of the alternative allelescan visit the same node more than once (which is not the case for the reference alleles of theMC graph), this approach is not guaranteed to reconstruct the optimal sequence alignmentunderlying the nodes in these repeated regions. As an output, the decomposition processgenerates two VCF files. The first one is a multiallelic VCF which contains exactly the samevariant records as the input VCF, just that annotations for all alternative alleles of a recordwere added to the ID tag in the INFO field. For each alternative allele, the ID tag containsIDs encoding all nested variants it is composed of, separated by a colon. The second VCF
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is biallelic and contains a separate record for each nested variant ID defining reference andalternative allele of the respective variant (Figure 4.7b). Both VCFs are different represen-tations of the same genomic variation, i.e. before and after decomposition. We applied thisdecomposition method to the MC-based VCF file, used the multiallelic output VCF as inputfor PanGenie to genotype bubbles, and used the biallelic VCF as well as the IDs in order totranslate PanGenie’s genotypes for top-level bubbles to genotypes for all individual nestedvariant alleles. All downstream analyses of the genotypes are based on this biallelic rep-resentation (i.e. after decomposition). While the majority of short bubbles (< 10 bp) arebiallelic, especially large bubbles (> 1000 bp) tend to be multiallelic. Sometimes each of the88 haplotypes contained in the graph covers a different path through such a bubble (Figure4.8a), leading to a VCF record with 88 alternative alleles listed. We determined the numberof variant alleles located inside of biallelic and multiallelic bubbles in the pangenome afterdecomposition. As expected, the majority of SV alleles is located inside of the more complex,multiallelic regions of the pangenome (Figure 4.8b).
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Genotyping evaluation based on assembly samples

Similarly to what we presented in [49] (Section 3.5), we performed a “leave-one-out” exper-iment in order to evaluate PanGenie’s genotyping performance for the callset samples. Forthis purpose, we repeatedly removed one of the panel samples from the MC VCF and geno-typed it using only the remaining samples as an input panel for PanGenie. We later used thegenotypes of the left-out sample as ground truth for evaluation. We repeated this experimentfor five of the callset samples (HG00438, HG00733, HG02717, NA20129 and HG03453) us-ing 1000 Genomes high coverage Illumina reads [21]. PanGenie is a re-genotyping method.Therefore, like any other re-typer, it can only genotype variants contained in the input panelVCF, that is, it is unable to detect variants unique to the genotyped sample. For this reason,we excluded truth set variants (after decomposition) that were only contained in the left-outsample for evaluation. We used the weighted genotype concordance [49] (Section 3.5.1) asa metric to evaluate the genotyping performance. Figure 4.9 shows the results stratified bydifferent regions. Figure 4.9A shows concordances in biallelic and multiallelic regions ofthe MC VCF. The biallelic regions include only bubbles with two branches. The multiallelicregions include all bubbles in which haplotypes cover more than two different paths. Figure4.9B shows the same results stratified by genomic regions defined by GIAB [137] (obtainedfrom locations specified in Section C.2):
• low-mappability: difficult to map regions as well as segmental duplications
• repeats: short tandem repeats and repeat annotations from UCSC Genome Browser[93]
• other-difficult: union of regions that are difficult to access, including MHC and KIRregions or regions poorly assembled in the reference genome
• easy: regions outside of other difficult regions such as tandem repeats, homopolymers,difficult to map regions, segmental duplications and high/low GC content

Here and in the following, we consider results for SNPs, indels (1-49 bp), SV deletions,SV insertions and “other” SV alleles, defined as follows: SV deletions include all allelesfor which length(REF) ≥ 50 bp and length(ALT)=1, SV insertions include all alleles forwhich length(REF)=1 and length(ALT) ≥ 50 bp. All other alleles with a length ≥ 50 bp areincluded in “others”.Overall, weighted genotype concordances were high for all variant types. Especiallyvariant alleles in biallelic regions of the graph were very well genotypable. Alleles insideof multiallelic bubbles were more difficult to genotype correctly since PanGenie needed todecide between several possible alternative paths, while there were only two such paths forbiallelic regions (Figure 4.9a). Furthermore, genotyping accuracy depended on the genomiccontext (Figure 4.9b). Regions with low mappability, repetitive regions and other difficultregions were harder to genotype than regions classified as “easy” by GIAB.
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Figure 4.9: HPRC leave-one-out experiment. A leave-one-out experiment was conductedby repeatedly removing one of the assembly-samples from the panel VCF and genotyping itbased on the remaining samples. Plots show the resulting weighted genotype concordancesfor different variant allele classes. a Weighted genotype concordances are stratified by graphcomplexity: biallelic regions of the MC graph include only bubbles with two branches, andmultiallelic regions include all bubbles with > 2 different alternative paths defined by the88 haplotypes. b Results of the same experiment stratified by different genomic regionsdefined by GIAB. Figure taken from [113].
Creating a high quality subset

We generated genotypes for all 3,202 samples from the 1000 Genomes Project with Pan-Genie and defined a high quality subset of SV alleles that we can reliably genotype. Forthis purpose, we applied a machine learning approach similar to what we have presentedpreviously [46, 49] (Sections 3.7 and 4.1.4). We used five filters in order to define positiveand negative subsets of variants:
• ac0_fail: this filter fails if a variant was genotyped as absent (0/0 or ./.) across thecohort samples (AF = 0.0).
• mendel_fail: this filter fails if the Mendelian consistency for a variant across trios was
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variant type # alleles in unfiltered set # alleles in positive set # alleles in final set
SNPs 20,194,117 15,069,514
indels 6,848,115 2,399,842
SV INS 254,612 32,431 84,755
SV DEL 57,201 13,356 28,433
SV Other 101,996 8,334 26,489

Table 4.3: Number of variant alleles in HPRC callsets. Shown are the numbers of variantalleles for SNPs, indels and SVs in the unfiltered set, the positive set and the final, filteredset. Indels include all variant alleles between 1-49 bp in length, SVs include all variantalleles ≥ 50 bp. SV insertions/deletions contain all clean insertions/deletions, all other SVsare defined as “others”. Table taken from [113].
less than 80%. As before [46, 49] (Sections 3.7 and 4.1.4), we used a strict definitionof Mendelian consistency which excluded all trios with only 0/0, only 0/1 and only1/1 genotypes.

• gq_fail: a variant fails this filter if the number of genotypes with quality > 200 wasless than 50.
• self_fail: a variant fails this filter if the genotyping accuracy of a variant allele acrossthe panel samples was less than 90%.
• nonref_fail: a variant fails this filter if not a single non-0/0 genotype was genotypedcorrectly across all panel samples.

The positive set included all variant alleles that passed all five filters. The negative setcontained all variant alleles that passed the ac0_fail filter but failed at least three of theother filters. We show the number of SV alleles failing the different filters in Figures C.8,C.9 and C.10 (top panels). We trained a support vector regression (SVR) approach [49](Section 3.7) based on 33 features including allele frequencies, Mendelian consistencies andthe number of alternative alleles transmitted from parents to children. We applied thismethod to all remaining variant alleles genotyped with an AF > 0, resulting in a scorebetween -1 (bad) and 1 (good) for each. We finally defined a filtered set of variants whichincluded the positive set, as well as all variant alleles with a score of ≥ -0.5.We show the number of variant alleles contained in the unfiltered set, the positive set aswell as the filtered set in Table 4.3. Since our focus was on SVs and since 65% of all SNPs andindels were already contained in the positive set, we applied our machine learning approachonly to SVs. We found that 50%, 33% and 26% of all deletion, insertion and “other” alleles,respectively, were contained in the final, filtered set of variants. Note that these numberstake all distinct SV alleles contained in the callsets into account. Especially for insertionsand “other” SVs, many of these alleles were very similar, with sometimes only a single basepair differing. Therefore, it is likely that many of these actually represent the same events.Our genotyping and filtering approach helps to remove such redundant alleles.
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Figure 4.10: HPRC unfiltered and positive sets. Comparison of allele frequencies ob-served from the PanGenie genotypes for all 2,504 unrelated 1000 Genomes samples and theallele frequencies observed across the 44 assembly samples in the MC graph. Results areshown for the unfiltered (57,201 deletions, 254,612 insertions, 101,996 “other” alleles) andpositive sets (13,356 deletions, 32,431 insertions, 8,334 “other” alleles). Figures taken from[113].
In order to evaluate the quality of the PanGenie genotypes, we compared the allele fre-quencies observed for the SV alleles across all 2,504 unrelated 1000 Genomes samples totheir allele frequencies observed across the 44 assembly samples in the MC callset. We ob-served that the allele frequencies between both sets matched well, resulting in correlations(Pearson) of 0.93, 0.87 and 0.81 for deletions, insertions and “other” alleles contained inthe unfiltered set (Figure 4.10, top). For the positive set, we observed allele frequency cor-relations of 0.97, 0.96 and 0.95, respectively (Figure 4.10, bottom). For our final, filteredset, these correlations were 0.96, 0.93 and 0.90, for deletions, insertions and “other” alle-les, respectively (Figure 4.11a), indicating high-quality genotypes. We also analyzed theheterozygosity of the PanGenie genotypes across all 2,504 unrelated 1000 Genomes sam-ples contained in the filtered set and found that the results are consistent with the Hardy-Weinberg equilibrium (Figures C.8, C.9 and C.10, lower panel).A direct comparison of HGSVC and HPRC genotyping results is difficult for several rea-
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sons. For HGSVC, variant calling included a merging step in which similar alleles werecombined into a single variant record, while in the HPRC set, similar alleles were alwayskept separate. Differences in variant representation are also reflected in the different SVcategories: while the HGSVC callset represents variants in terms of insertions and deletions,the HPRC set sometimes represents variants in terms of “other” variant alleles, that couldneither be classified as insertions nor deletions. While we used a similar machine learningapproach to filter our sets, our definition of filters and the set of features used was not ex-actly identical in order to account for these differences. We therefore compared both setsbased on the number of SVs per sample in the filtered sets.
Number of SVs per sample

To quantify our ability to detect additional SVs, we compared our filtered set of genotypesto the HGSVC PanGenie genotypes (v2.0 “lenient” set [46], Section 4.1.4) and Illumina-based 1kGP SV genotypes [21]. A direct comparison of the three callsets was difficult.The HGSVC and HPRC callsets are based on variant calls produced from haplotype-resolvedassemblies of 32 and 44 samples, respectively [46] (Section 4.1). For each callset, vari-ants were re-genotyped across all 3,202 samples from the 1000 Genomes Project. Notethat the callset samples for HPRC and HGSVC are disjoint. Since re-genotyping cannot dis-cover novel variants, both callsets will miss variants carried by 3,202 samples that werenot seen in the assembly samples. In contrast, the 1kGP callset contains short-read basedvariant calls produced for each of the 3,202 samples from the 1000 Genomes Project. Asmentioned before, another difference between the HGSVC and HPRC callsets is that in theHGSVC callset, highly similar alleles were merged into a single record to correct for rep-resentation differences across different samples or haplotypes. The HPRC callset however,kept all these alleles separately even if there was only a single basepair difference betweenthem. To make the callsets better comparable, we merged clusters of highly similar alle-les in the HPRC filtered set prior to comparisons with other callsets. This was done withtruvari ([56], version v3.1.0) using the command: truvari collapse -r 500 -p 0.95 -P

0.95 -s 50 -S 100000. In order to be able to properly compare the callsets despite theirdifferences, we counted the number of SV alleles present in each sample (heterozygous or ho-mozygous) in each callset and plotted the corresponding distributions stratified by genomeannotations from GIAB (same as above, Figure 4.11b) as well as using repeat annotationsdirectly derived from the graph (Figure C.11). We also generated the same plot includingonly common SV alleles with an AF > 5% across all 3,202 samples (Figure C.12). Theseplots show that the HPRC and HGSVC callsets were able to access more structural variants(HPRC: 18,483 SVs/sample, HGSVC: 12,997 SVs/sample) across the genome than the short-read-based 1kGP callset (9,596 SVs/sample), especially deletions < 300 bp and insertions(Figure 4.11c). This confirms that short-read based SV discovery relative to a linear ref-erence genome misses a large portion of SVs located in regions inaccessible by short-readalignments, which has been reported previously by several studies [24, 46, 206].
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Expectedly, the number of SVs per sample within “easy” genomic regions was consistent
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across all three callsets, while especially in low mappability and tandem repeat regions,the use of our pangenome reference led to pronounced gains (Figure 4.11b), including forcommon variants (Figure 4.11c, Figure C.11).In order to evaluate the novel SVs in our filtered HPRC callset, we re-visited the leave-one-out experiment we had performed previously on the unfiltered set of variants (seeabove). We restricted the evaluation to the subset of variants that are (a) in our filteredset but not in the 1kGP Illumina calls (“novel”), (b) in our filtered set as well as in the 1kGPIllumina callset (“known”), and to (c) all variants in our filtered set. In order to find matchesbetween our set and the Illumina calls, we used a criterion based on reciprocal overlap of atleast 50%. Results are shown in Figure 4.12. We generated two versions of this figure: thefirst one (top panel) ignores variants that were only contained in the left-out sample and thusnot typable by any re-genotyping method, and the second one includes these variants (bot-tom panel). In general, genotype concordances of all filtered variants (brown, dark purple)were slightly higher compared to the concordances we observed for the unfiltered set (Fig-ure 4.12). Furthermore, concordances of the known variants were highest. This is expected,since these variants tend to be in regions easier to access by short reads. Concordances fornovel variants were slightly worse. This is also expected, since these variants tend to be lo-cated in more complex genomic regions that are generally harder to access. However, evenfor these variants, concordances were still high, indicating that the PanGenie genotypes forthese variants are indeed of high quality.
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Figure 4.12: HPRC novel and known variants. A leave-one-out experiment was con-ducted by repeatedly removing one of the assembly samples from the panel VCF and geno-typing it based on the remaining samples. Plots show the resulting weighted genotype con-cordances for variants in our filtered PanGenie set. The novel variants include only SVs notcontained in the 1kGP Illumina set, the known variants include only variants contained inthese Illumina calls. Weighted genotype concordances are stratified by graph complexity:biallelic regions of the MC graph include only bubbles with two branches, and multiallelicregions include all bubbles with > 2 different alternative paths defined by the 88 haplo-types. The top panel excludes variants that are unique to the left-out sample and thus nottypable by any re-genotyping method while the bottom panel includes them. Figure takenfrom [113].
Evaluation based on medically relevant SVs

In addition to all 1000 Genomes samples we also genotyped sample HG002/NA24385 basedon Illumina reads from [207]. We used the GIAB CMRG benchmark containing medicallyrelevant SVs [192], downloaded from: https://ftp-trace.ncbi.nlm.nih.gov/Refer

enceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/G

RCh38/StructuralVariant/) for evaluation. Like for the 1000 Genomes samples, weused the MC-based VCF (see above) containing variant bubbles and haplotypes of 44 as-sembly samples as an input panel for PanGenie. We extracted all variant alleles with alength ≥ 50 bp from our genotyped VCF (biallelic version, after decomposition). We con-

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/StructuralVariant/
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unadjusted adjusted (without untypables)precision recall F-score precision recall F-score0.74 0.75 0.75 0.74 0.81 0.78

Table 4.4: Medically relevant SV benchmarking. Shown are results of comparing Pan-Genie genotypes computed for HG002 to the GIAB CMRG benchmark. The left part of thetable shows results for all SV alleles, the right part excludes SVs from the truth set that areunique to HG002 and thus untypable because they are absent from the input panel used forPanGenie. Table taken from [113].
verted the ground truth VCF into a biallelic representation using bcftools norm -m -anyand kept all alleles with length ≥ 50 bp. We used truvari ([56], version v3.1.0) with pa-rameters –-multimatch –-includebed <medically-relevant-sv-bed> -r 2000 –-no-ref

a -C 2000 –-passonly in order to compare our genotype predictions to the medically rel-evant SVs. Results are shown in Table 4.4 (left). Since PanGenie is a re-typing method, itcan only genotype variants provided in the input and thus cannot detect novel alleles. SinceHG002 is not among the panel samples, the input VCF misses variants unique to HG002.Thus, these unique variants cannot be genotyped by PanGenie and were counted as falsenegatives during evaluation. Therefore, we computed an “adjusted” version of the recallwhich excludes SV alleles unique to HG002 (i.e. alleles not in the graph) from the truthset for evaluation. In order to identify which SV alleles were unique, we compared eachof the 44 panel samples to the ground truth VCF using truvari in order to identify the falsenegatives for each sample. Then we computed the intersection of false negative calls acrossall samples. The resulting set then contains all variant alleles unique to the HG002 groundtruth set. We found 15 such unique SV alleles among the GIAB CMRG variants. We re-moved these alleles from the ground truth set and recomputed precision/recall statistics forour genotypes. Adjusted precision/recall values are shown in Table 4.4 (right).
4.3.4 Discussion

This section re-uses some material presented in [113].

The HPRC generated haplotype-resolved assemblies of 47 human genomes, the largest setof fully phased genome assemblies that is currently available. Compared to earlier efforts,including the HGSVC (Section 4.1), the assemblies are of better quality, reaching an averagemedian base-level accuracy that is an order of magnitude higher than for the HGSVC assem-blies and an N50 that is nearly twice as large. A subset of 44 samples (88 haplotypes) wasused in order to construct a pangenome graph, representing all genetic variation present inthe haplotypes, with the goal to provide a better alternative to the linear reference genome.We have demonstrated how such a pangenome graph can be used in order to accuratelygenotype genetic variants, especially structural variants, based on short-reads. The approachpresented here differs from the work presented in Section 4.1 in the way the panel usedfor genotyping was created. For HGSVC, variants were called based on alignments of the
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assemblies to the linear reference genome and variant calls generated in this way werelater combined into a pangenome graph by merging overlapping variant sites into bubbles.In contrast, the HPRC took a different approach by constructing a pangenome graph in areference-free manner, based on multiple sequence alignments of the assemblies. Variantswere later detected from the bubbles, requiring a decomposition step to identify variationnested inside of bubbles.PanGenie produced high quality, short-read based genotypes for the 3,202 samples fromthe 1000 Genomes project based on this pangenome reference, and, as illustrated also inprevious experiments (Sections 3, 4.1), enabled fast genotyping of SVs otherwise missed bylinear reference based, short-read callers. An evaluation based on medically relevant SVsshowed high genotyping accuracies even in difficult-to-access regions.A direct comparison to the HGSVC callset was difficult since the underlying callset sam-ples were disjoint and also because of the different representation of SVs. While similar SValleles were merged into a single variant allele in the HGSVC callset, the HPRC callset keptseparate records even for highly similar SVs. Therefore, we compared the number of SVscarried by each sample after genotyping in order to correct for these differences, revealinghigher numbers for the HPRC callset. These results suggest that the improvements are likelya combination of both increased numbers of individuals in the pangenome and improvedgenome assemblies that retain better sequence-level resolution of SV haplotypes and thus,the pangenome delivers substantially better SV calling than earlier approaches. This enablesthe inclusion of tens of thousands of additional SV alleles into further downstream analyses.However, the experiments also reveal some limitations. The pangenome graph containsmany very large, complex bubbles containing nested variants. Genotyping such multiallelicregions is generally more difficult due to the high number of possible alternative alleles.The “leave-one-out” experiment showed that the performance of PanGenie in such regionswas worse compared to the more easy, biallelic regions. In addition, there is a need formore sophisticated methods to evaluate genotyping performance in such regions, especiallybecause many of the allelic sequences are often very similar and current methods do nottake this factor into account.Similar to what was observed from the HGSVC experiments (Section 4.1), rare variantswere difficult to genotype as they tended to be genotyped as absent across the 1000 Genomescohort. Due to not merging similar SV alleles into a single record, and the higher numberof samples present in the graph (44 instead of 32), this problem is even more prominenthere, since the proportion of rare alleles is larger. About 48% of all SV alleles were geno-typed with an allele frequency of zero across the cohort and could thus not be included inany downstream analysis. However, this number includes variants with missing genotypepredictions (“./.”). In some cases, PanGenie failed to provide a genotype prediction for thecarrier samples and typed them as “./.”, while the other samples were correctly typed as0/0, leading to an allele frequency of zero for the respective variant. Only around 16% vari-ants were genotyped as “0/0” in each of the 1000 Genomes samples. Additionally, unlike
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for HGSVC, similar SV alleles were not combined into a single allele in the HPRC callset inorder to correct for small representation differences or variant calling errors in some of thesamples. This can lead to multiple, slightly different SV alleles present in the callset thatactually represent the same SV event. Therefore, a fraction of those alleles that were typedas absent across all samples might also be such redundant alleles correctly filtered out byPanGenie.In summary, our experiments demonstrate how PanGenie can be applied to a pangenomereference in order to efficiently genotype genetic variants, especially SVs, across large co-horts. The set of high quality genotypes produced gave access to more structual variantsthan previous approaches, including the HGSVC.
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4.4 Conclusions

In this chapter, PanGenie was applied to pangenome references recently constructed fromhaplotype-resolved assemblies by the HGSVC and HPRC consortia. It was demonstratedthat PanGenie enabled accurate and fast genotyping across a large cohort of 3,202 humansamples based on short reads when using the two pangenome graphs containing 32 and 44human samples. By leveraging the information provided by the known haplotypes, PanGeniewas able to genotype a large fraction of structural variants that were previously inaccessibleby short-read based callers. This demonstrates that short-read based genotyping of SVs ben-efits from the additional sequence information inherent in the pangenome that is missingfrom the linear reference. Being able to genotype previously inaccessible SVs across the co-hort samples enables the inclusion of such variants into downstream analyses studying theirassociation with disease. Here, we demonstrated that our SV genotypes could be used forQuantitative trait locus analysis, revealing SV-eQTLs that were previously not detectable byshort-read approaches. Furthermore, we showed how SNP genotypes produced by PanGenieacross the cohort samples enabled the detection of carriers of rare inversions. All predictedcarriers could be verified experimentally by FISH.There are still some limitations and possibilities to improve the current genotypingmodel. We presented a subsampling strategy implemented in PanGenie which speeds upthe runtime as the panel gets larger (Section 4.1.2). The idea was to randomly divide thepanel into multiple sets and then run genotyping separately on all of them. Probabilitiescomputed for each subset are then combined iteratively to obtain the final genotype likeli-hoods. This iterative approach might not be ideal, as it does not put equal weight on theresults of each subset when combining likelihoods. Here, alternative strategies could beconsidered that sum up probabilities first and then normalize the result. Another factor thatshould be taken into account is that for variants with many alternative alleles, not everysubset might cover all these alleles. Thus, not every subset can contribute likelihoods toeach possible genotype at the locus. This might lead to biases when computing the finallikelihoods. Which strategy works best when combining likelihoods from different subsetsis not clear and still needs to be determined in future experiments.In the near future, highly accurate haplotype-resolved assemblies will become availablefor larger sets of samples. Thus, instead of containing 64 or 88 haplotypes, future pangenomereferences will contain hundreds of haplotypes, resulting in larger, more complex graphs.This will impose challenges for pangenome-based genotyping methods like PanGenie: as thenumber of samples increases, the bubbles in the graph will get more complex, leading to agraph with fewer but larger bubble structures caused by overlapping variants across hap-lotypes. Genotyping such bubbles will become more difficult due to the higher number ofpossible alternative alleles the genotyper has to choose between, especially since PanGeniedoes not genotype nested variants separately (Section 3.10). Furthermore, higher numbersof haplotypes in the graphs lead to a higher runtime and memory usage of PanGenie. While
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PanGenie was still very fast on the currently largest graph containing 88 haplotypes (53single-core CPU hours per sample, 153 GB RAM memory per sample), runtime and memoryusage will increase linearly as the number of haplotypes gets larger, leading to problemsfor graphs containing several hundreds of samples. Currently, storing variant information,keeping track of which paths cover which alleles and which unique k-mers occur in whichallele sequence, are the components of the code that require the most memory (Figure C.13).The computation of genotype likelihoods based on the HMM is the most time-consuming step(Figure C.13). How to adapt the model to larger panels is still an open problem. As men-tioned earlier (Section 3.10), ideas used in statistical phasing could be explored, as well asreducing the panel sizes based on founder sequences (Section 3.10). Another idea is to sub-sample smaller sets of haplotypes from the input panel, use the Viterbi algorithm to computethe best two haplotype sequences of each subset and compute the final likelihoods basedon the resulting set of haplotypes using the Forward-Backward algorithm. Furthermore, amore efficient way of computing the Forward and Backward probabilities in the currentmodel could be implemented. Below, we present an idea developed very recently that helpsto reduce the asymptotic runtime of the Forward-Backward algorithm from O(n4 · m) to
O(n2 · m) and, combined with the ideas mentioned above, could be extremely helpful inmaking PanGenie applicable to larger panels.As more haplotypes are available, it would be interesting to analyze how the genotypingaccuracy changes as more haplotypes are added to the graph. On the one hand, adding moresamples gives access to more variation that can be re-genotyped in a sample but on the otherhand, the accuracy might also become worse once the graph gets too complex. Therefore,it would be helpful to investigate how the genotyping accuracy behaves once the panel getslarger and whether it drops once the graph gets too complex.
4.4.1 Computing PanGenie’s Forward-Backward algorithm more efficiently

The idea described in this subsection was suggested by Mikko Rautiainen (personal communication,
December 3, 2022).

The asymptotic runtime of PanGenie (Section 3.5.4) can be drastically reduced by introduc-ing helper variables to simplify the computation of Forward- and Backward probabilities(Section 3.2). The idea is based on the fact that the recombination probabilities are inde-pendent of the particular haplotypes recombining between columns and only depend on thenumber of recombination events (none, one or two).For a bubble position v, we can define the following variables which can be computedin time quadratic in the number of haplotypes, O(n2):
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αv(Hv,i,∗) =
∑︂
t

αv(Hv,i,t) ∀i

αv(Hv,∗,j) =
∑︂
s

αv(Hv,s,j) ∀j

αv(Hv,∗,∗) =
∑︂
s,t

αv(Hv,s,t)

βv(Hv,i,∗) =
∑︂
t

βv(Hv,i,t) · P (Ov|Hv,i,t) ∀i

βv(Hv,∗,j) =
∑︂
s

βv(Hv,s,j) · P (Ov|Hv,s,j) ∀j

βv(Hv,∗,∗) =
∑︂
s,t

βv(Hv,s,t) · P (Ov|Hv,s,t)

Then, the Forward probabilities can be computed in constant time in the following way:
αv(Hv,i,j) =

∑︂
s,t

αv−1(Hv−1,s,t) · P (Hv,i,j |Hv−1,s,t) · P (Ov|Hv,i,j)

αv(Hv,i,j) = P (Ov|Hv,i,j) ·
∑︂
s,t

αv−1(Hv−1,s,t) · P (Hv,i,j |Hv−1,s,t)

αv(Hv,i,j) = P (Ov|Hv,i,j) ·
[︂
q2r · αv−1(Hv−1,i,j)

+ prqr ·
(︂∑︂

t

αv−1(Hv−1,i,t)− αv−1(Hv−1,i,j)
)︂

+ qrpr ·
(︂∑︂

s

αv−1(Hv−1,s,j)− αv−1(Hv−1,i,j)
)︂

+ p2r ·
(︂∑︂

s,t

αv−1(Hv−1,s,t)−
∑︂
s

αv−1(Hv−1,s,j)−
∑︂
t

αv−1(Hv−1,i,t)

+ αv−1(Hv−1,i,j)
)︂]︂

αv(Hv,i,j) = P (Ov|Hv,i,j) ·
[︂
q2r · αv−1(Hv−1,i,j)

+ prqr ·
(︂
αv−1(Hv−1,i,∗)− αv−1(Hv−1,i,j)

)︂
+ qrpr ·

(︂
αv−1(Hv−1,∗,j)− αv−1(Hv−1,i,j)

)︂
+ p2r ·

(︂
αv−1(Hv−1,∗,∗)− αv−1(Hv−1,i,∗)− αv−1(Hv−1,∗,j) + αv−1(Hv−1,i,j)

)︂]︂
Using the same trick, the Backward probabilities can be computed in constant time as:
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βv(Hv,i,j) = q2r · βv+1(Hv+1,i,j) · P (Ov+1|Hv+1,i,j)

+ prqr ·
(︂
βv+1(Hv+1,i,∗)− βv+1(Hv+1,i,j) · P (Ov+1|Hv+1,i,j)

)︂
+ qrpr ·

(︂
βv+1(Hv+1,∗,j)− βv+1(Hv+1,i,j) · P (Ov+1|Hv+1,i,j)

)︂
+ p2r ·

(︂
βv+1(Hv+1,∗,∗)− βv+1(Hv+1,i,∗)− βv+1(Hv+1,∗,j)

+ βv+1(Hv+1,i,j) · P (Ov+1|Hv+1,i,j)
)︂

This reduces the runtime of the Forward-Backward algorithm from O(n4 ·m) to O(n2 ·m).
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Summary

In Chapter 2 of this thesis, alignment-based phasing methods were discussed and appliedto different datasets in order to reconstruct haplotypes of diploid and polyploid genomes.Our new algorithm for polyploid phasing, whatshap polyphase, was specifically designedto handle regions of locally identical haplotypes, for which competing tools show lowerperformances, as they aim to separate haplotypes based on their dissimilarities. We phaseda tetraploid potato genome and demonstrated how to generate haplotype-resolved assem-blies of genes. We further demonstrated how accurate, PacBio CCS reads improved phasingperformances over other long-read based methods and that they enable phasing withoutrelying on short reads for variant calling. While both of these methods provided high qual-ity phasing of SNPs, the experiments showed that problems arise in regions that are highlyvariable or contain structural variation, hindering them to provide haplotype predictions onthe scale of a whole chromosome. Accurate long sequencing reads also provide the basis forreference-free de novo reconstruction of haplotypes which are able to cover complex regions.Besides enabling to study the haplotype sequences of single individuals in detail, such hap-lotype assemblies can be used to construct pangenome graphs aiming to provide a completeoverview of the variation present in different samples of the same species. Such graphs canbe modeled as sequence graphs. Nodes describe sequences and edges connect sequencessuch that each haplotype is represented as a path through this graph. Besides many otherapplications, pangenome graphs are beneficial for genotyping of genetic variants, especiallyof structural variants. They provide information that enables fast genotyping of variantsbased on short sequencing data which does not depend on time-consuming alignments ofreads to a reference genome. In Chapter 3, we introduced PanGenie, a pangenome-basedgenotyping method that uses k-mer counts from short-read data of a new sample in combi-nation with a pangenome graph containing haplotypes of a set of known samples in orderto genotype the new sample. The k-mer information indicates which alleles are carried bya sample, while the haplotype paths are used to impute genotypes in regions for which nounique k-mers can be identified. We showed that PanGenie outperformed competing meth-ods in terms of speed and genotyping accuracy, especially for structural variants in complex,repetitive regions of the genome, providing insights into regions previously not accessibleby short-read based methods. Application of PanGenie to the 3,202 samples of the 1000Genomes project based on pangenome structures produced by the HGSVC and HPRC con-sortia (Chapter 4) demonstrated that it was fast, produced high quality genotypes in practice
109
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and allowed genotyping structural variants that other short-read based methods were notable to access. This allowed the inclusion of such variants into Quantitative trait locus anal-yses enabling the identification of SVs that are associated with diseases. Furthermore, SNPgenotypes produced by PanGenie across the cohort samples enabled the detection of carriersof rare inversions. However, as pointed out in Chapters 3 and 4, several challenges arise asfuture pangenome graphs will be constructed from hundreds of haplotype sequences. It isstill unclear how to adapt the genotyping model to efficiently work on such graphs. Foundersets or strategies used by statistical phasing tools might provide useful techniques. In gen-eral, it still needs to be determined what the “ideal” size of a pangenome is in terms ofthe number of haplotypes present in the graph. Adding more samples helps to include rarevariants thus increasing accuracy but also the complexity of the graph, which is challengingfor many downstream analyses, such as genotyping or read alignment.



Bibliography

[1] 1000 Genomes Project Consortium. A map of human genome variation from population scalesequencing. Nature, 467(7319):1061, 2010.
[2] 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature,526(7571):68, 2015.
[3] H. J. Abel, D. E. Larson, A. A. Regier, C. Chiang, I. Das, K. L. Kanchi, R. M. Layer, B. M. Neale,W. J. Salerno, C. Reeves, et al. Mapping and characterization of structural variation in 17,795human genomes. Nature, 583(7814):83–89, 2020.
[4] L. Abi-Rached, P. Gouret, J.-H. Yeh, J. Di Cristofaro, P. Pontarotti, C. Picard, and J. Paganini.Immune diversity sheds light on missing variation in worldwide genetic diversity panels. PLoS

One, 13(10):e0206512, 2018.
[5] D. Aguiar and S. Istrail. HapCompass: a fast cycle basis algorithm for accurate haplotypeassembly of sequence data. Journal of Computational Biology, 19(6):577–590, 2012.
[6] D. Aguiar and S. Istrail. Haplotype assembly in polyploid genomes and identical by descentshared tracts. Bioinformatics, 29(13):i352–i360, 2013.
[7] M. U. Ahsan, Q. Liu, L. Fang, and K. Wang. NanoCaller for accurate detection of SNPs andindels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neuralnetworks. Genome Biology, 22(1):1–33, 2021.
[8] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the

Cell. 4th edition. Garland Science, 2002.
[9] J. Armstrong, G. Hickey, M. Diekhans, I. T. Fiddes, A. M. Novak, A. Deran, Q. Fang, D. Xie,S. Feng, J. Stiller, et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature, 587(7833):246–251, 2020.

[10] V. Bansal and V. Bafna. HapCUT: an efficient and accurate algorithm for the haplotype as-sembly problem. Bioinformatics, 24(16):i153–i159, 2008.
[11] D. Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.
[12] E. Berger, D. Yorukoglu, J. Peng, and B. Berger. HapTree: a novel bayesian framework forsingle individual polyplotyping using NGS data. PLoS Computational Biology, 10(3):e1003502,2014.

111



112 Bibliography

[13] D. Beyter, H. Ingimundardottir, A. Oddsson, H. P. Eggertsson, E. Bjornsson, H. Jonsson, B. A.Atlason, S. Kristmundsdottir, S. Mehringer, M. T. Hardarson, et al. Long-read sequencing of3,622 icelanders provides insight into the role of structural variants in human diseases andother traits. Nature Genetics, 53(6):779–786, 2021.
[14] D. N. Bharadwaj. Polyploidy in crop improvement and evolution. In Plant Biology and Biotech-

nology, pages 619–638. Springer, 2015.
[15] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing: Evaluationand experiments. Algorithmica, 60(2):316–334, 2011.
[16] M.-L. Bondeson, N. Dahl, H. Malmgren, W. J. Kleijer, T. Tönnesen, B.-M. Carlberg, and U. Pet-tersson. Inversion of the IDS gene resulting from recombination with IDS-related sequencesin a common cause of the hunter syndrome. Human Molecular Genetics, 4(4):615–621, 1995.
[17] P. Bonizzoni, R. Dondi, G. W. Klau, Y. Pirola, N. Pisanti, and S. Zaccaria. On the minimumerror correction problem for haplotype assembly in diploid and polyploid genomes. Journal

of Computational Biology, 23(9):718–736, 2016.
[18] B. L. Browning and S. R. Browning. Genotype imputation with millions of reference samples.

The American Journal of Human Genetics, 98(1):116–126, 2016.
[19] B. L. Browning, Y. Zhou, and S. R. Browning. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 103(3):338–348, 2018.
[20] A. Buniello, J. A. L. MacArthur, M. Cerezo, L. W. Harris, J. Hayhurst, C. Malangone, A. McMa-hon, J. Morales, E. Mountjoy, E. Sollis, et al. The NHGRI-EBI GWAS catalog of publishedgenome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids

Research, 47(D1):D1005–D1012, 2019.
[21] M. Byrska-Bishop, U. S. Evani, X. Zhao, A. O. Basile, H. J. Abel, A. A. Regier, A. Corvelo, W. E.Clarke, R. Musunuri, K. Nagulapalli, et al. High-coverage whole-genome sequencing of theexpanded 1000 Genomes Project cohort including 602 trios. Cell, 185(18):3426–3440, 2022.
[22] C. J. Castro and T. F. F. Ng. U50: a new metric for measuring assembly output based onnon-overlapping, target-specific contigs. Journal of Computational Biology, 24(11):1071–1080,2017.
[23] M. J. Chaisson, S. Mukherjee, S. Kannan, and E. E. Eichler. Resolving multicopy duplicationsde novo using polyploid phasing. In International Conference on Research in Computational

Molecular Biology, pages 117–133. Springer, 2017.
[24] M. J. Chaisson, A. D. Sanders, X. Zhao, A. Malhotra, D. Porubsky, T. Rausch, E. J. Gardner,O. L. Rodriguez, L. Guo, R. L. Collins, et al. Multi-platform discovery of haplotype-resolvedstructural variation in human genomes. Nature Communications, 10(1):1–16, 2019.
[25] D. I. Chasman, M. Schürks, V. Anttila, B. de Vries, U. Schminke, L. J. Launer, G. M. Terwindt,A. M. van den Maagdenberg, K. Fendrich, H. Völzke, et al. Genome-wide association study re-veals three susceptibility loci for common migraine in the general population. Nature Genetics,43(7):695–698, 2011.



113
[26] S. Chen, P. Krusche, E. Dolzhenko, R. M. Sherman, R. Petrovski, F. Schlesinger, M. Kirsche,D. R. Bentley, M. C. Schatz, F. J. Sedlazeck, et al. Paragraph: a graph-based structural variantgenotyper for short-read sequence data. Genome Biology, 20(1):1–13, 2019.
[27] H. Cheng, G. T. Concepcion, X. Feng, H. Zhang, and H. Li. Haplotype-resolved de novoassembly using phased assembly graphs with hifiasm. Nature Methods, 18(2):170–175, 2021.
[28] C. Chiang, R. M. Layer, G. G. Faust, M. R. Lindberg, D. B. Rose, E. P. Garrison, G. T. Marth, A. R.Quinlan, and I. M. Hall. SpeedSeq: ultra-fast personal genome analysis and interpretation.

Nature Methods, 12(10):966, 2015.
[29] J. G. Cleary, R. Braithwaite, K. Gaastra, B. S. Hilbush, S. Inglis, S. A. Irvine, A. Jackson, R. Lit-tin, M. Rathod, D. Ware, et al. Comparing variant call files for performance benchmarking ofnext-generation sequencing variant calling pipelines. bioRxiv, page 023754, 2015.
[30] B. P. Coe, K. Witherspoon, J. A. Rosenfeld, B. W. Van Bon, A. T. Vulto-van Silfhout, P. Bosco,K. L. Friend, C. Baker, S. Buono, L. E. Vissers, et al. Refining analyses of copy number variationidentifies specific genes associated with developmental delay. Nature Genetics, 46(10):1063–1071, 2014.
[31] F. S. Collins, M. L. Drumm, J. L. Cole, W. K. Lockwood, G. F. Vande Woude, and M. C.Iannuzzi. Construction of a general human chromosome jumping library, with application tocystic fibrosis. Science, 235(4792):1046–1049, 1987.
[32] R. L. Collins, H. Brand, K. J. Karczewski, X. Zhao, J. Alföldi, L. C. Francioli, A. V. Khera,C. Lowther, L. D. Gauthier, H. Wang, et al. A structural variation reference for medical andpopulation genetics. Nature, 581(7809):444–451, 2020.
[33] N. Craddock, M. E. Hurles, N. Cardin, R. D. Pearson, V. Plagnol, S. Robson, D. Vukcevic,C. Barnes, D. F. Conrad, E. Giannoulatou, et al. Genome-wide association study of CNVs in16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464(7289):713,2010.
[34] S. Das and H. Vikalo. SDhaP: haplotype assembly for diploids and polyploids via semi-definiteprogramming. BMC Genomics, 16(1):1–16, 2015.
[35] S. Das, L. Forer, S. Schönherr, C. Sidore, A. E. Locke, A. Kwong, S. I. Vrieze, E. Y. Chew,S. Levy, M. McGue, et al. Next-generation genotype imputation service and methods. Nature

Genetics, 48(10):1284–1287, 2016.
[36] J. De Grouchy. Chromosome phylogenies of man, great apes, and old world monkeys. Genetica,73(1):37–52, 1987.
[37] O. Delaneau, J. Marchini, and J.-F. Zagury. A linear complexity phasing method for thousandsof genomes. Nature Methods, 9(2):179–181, 2012.
[38] O. Delaneau, J.-F. Zagury, M. R. Robinson, J. L. Marchini, and E. T. Dermitzakis. Accurate,scalable and integrative haplotype estimation. Nature Communications, 10(1):1–10, 2019.
[39] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A. Philip-pakis, G. Del Angel, M. A. Rivas, M. Hanna, et al. A framework for variation discovery andgenotyping using next-generation DNA sequencing data. Nature Genetics, 43(5):491, 2011.



114 Bibliography

[40] A. Dilthey, C. Cox, Z. Iqbal, M. R. Nelson, and G. McVean. Improved genome inference in theMHC using a population reference graph. Nature Genetics, 47(6):682, 2015.
[41] A. T. Dilthey, P.-A. Gourraud, A. J. Mentzer, N. Cereb, Z. Iqbal, and G. McVean. High-AccuracyHLA type inference from Whole-Genome sequencing data using population reference graphs.

PLoS Computational Biology, 12(10):e1005151, 2016.
[42] A. T. Dilthey, A. J. Mentzer, R. Carapito, C. Cutland, N. Cereb, S. A. Madhi, A. Rhie, S. Koren,S. Bahram, G. McVean, and A. M. Phillippy. HLA*LA-HLA typing from linearly projectedgraph alignments. Bioinformatics, 35(21):4394–4396, 2019.
[43] J. Ding, A. Bashashati, A. Roth, A. Oloumi, K. Tse, T. Zeng, G. Haffari, M. Hirst, M. A. Marra,A. Condon, et al. Feature-based classifiers for somatic mutation detection in tumour–normalpaired sequencing data. Bioinformatics, 28(2):167–175, 2012.
[44] D. D. Dolle, Z. Liu, M. Cotten, J. T. Simpson, Z. Iqbal, R. Durbin, S. A. McCarthy, and T. M.Keane. Using reference-free compressed data structures to analyze sequencing reads fromthousands of human genomes. Genome Research, 27(2):300–309, 2017.
[45] J. Dubcovsky, M.-C. Luo, G.-Y. Zhong, R. Bransteitter, A. Desai, A. Kilian, A. Kleinhofs, andJ. Dvořák. Genetic map of diploid wheat, Triticum monococcum L., and its comparison withmaps of Hordeum vulgare L. Genetics, 143(2):983–999, 1996.
[46] P. Ebert, P. A. Audano, Q. Zhu, B. Rodriguez-Martin, D. Porubsky, M. J. Bonder, A. Sulovari,J. Ebler, W. Zhou, R. Serra Mari, et al. Haplotype-resolved diverse human genomes andintegrated analysis of structural variation. Science, 372(6537), 2021.
[47] J. Ebler, A. Schönhuth, and T. Marschall. Genotyping inversions and tandem duplications.

Bioinformatics, 33(24):4015–4023, 2017.
[48] J. Ebler, M. Haukness, T. Pesout, T. Marschall, and B. Paten. Haplotype-aware diplotypingfrom noisy long reads. Genome Biology, 20(1):1–16, 2019.
[49] J. Ebler, P. Ebert, W. E. Clarke, T. Rausch, P. A. Audano, T. Houwaart, Y. Mao, J. O. Korbel,E. E. Eichler, M. C. Zody, et al. Pangenome-based genome inference allows efficient andaccurate genotyping across a wide spectrum of variant classes. Nature Genetics, 54(4):518–525, 2022.
[50] P. Edge and V. Bansal. Longshot enables accurate variant calling in diploid genomes fromsingle-molecule long read sequencing. Nature Communications, 10(1):1–10, 2019.
[51] P. Edge, V. Bafna, and V. Bansal. HapCUT2: robust and accurate haplotype assembly fordiverse sequencing technologies. Genome Research, 27(5):801–812, 2017.
[52] H. P. Eggertsson, H. Jonsson, S. Kristmundsdottir, E. Hjartarson, B. Kehr, G. Masson, F. Zink,K. E. Hjorleifsson, A. Jonasdottir, A. Jonasdottir, et al. Graphtyper enables population-scalegenotyping using pangenome graphs. Nature Genetics, 49(11):1654, 2017.
[53] H. P. Eggertsson, S. Kristmundsdottir, D. Beyter, H. Jonsson, A. Skuladottir, M. T. Hardarson,D. F. Gudbjartsson, K. Stefansson, B. V. Halldorsson, and P. Melsted. GraphTyper2 enablespopulation-scale genotyping of structural variation using pangenome graphs. Nature Commu-

nications, 10(1):1–8, 2019.



115
[54] J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Ghaffaari, G. Hickey, X. Chang,J. D. Seaman, R. Rounthwaite, J. Ebler, et al. Pangenome graphs. Annual Review of Genomics

and Human Genetics, 21:139–162, 2020.
[55] ENCODE Project Consortium et al. The ENCODE (ENCyclopedia of DNA elements) project.

Science, 306(5696):636–640, 2004.
[56] A. C. English, V. K. Menon, R. Gibbs, G. A. Metcalf, and F. J. Sedlazeck. Truvari: Refinedstructural variant comparison preserves allelic diversity. bioRxiv, 2022.
[57] J. Ernst and M. Kellis. ChromHMM: automating chromatin-state discovery and characteriza-tion. Nature Methods, 9(3):215–216, 2012.
[58] S. Garg, M. Martin, and T. Marschall. Read-based phasing of related individuals. Bioinformat-

ics, 32(12):i234–i242, 2016.
[59] S. Garg, A. Fungtammasan, A. Carroll, M. Chou, A. Schmitt, X. Zhou, S. Mac, P. Peluso,E. Hatas, J. Ghurye, et al. Chromosome-scale, haplotype-resolved assembly of humangenomes. Nature Biotechnology, 39(3):309–312, 2021.
[60] E. Garrison and G. Marth. Haplotype-based variant detection from short-read sequencing.

arXiv preprint arXiv:1207.3907, 2012.
[61] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Dawson, W. Jones, S. Garg,C. Markello, M. F. Lin, et al. Variation graph toolkit improves read mapping by representinggenetic variation in the reference. Nature Biotechnology, 36(9):875–879, 2018.
[62] I. Giegling, A. M. Hartmann, H.-J. Möller, and D. Rujescu. Anger-and aggression-related traitsare associated with polymorphisms in the 5-HT-2A gene. Journal of Affective Disorders, 96(1-2):75–81, 2006.
[63] G. Gimelli, M. A. Pujana, M. G. Patricelli, S. Russo, D. Giardino, L. Larizza, J. Cheung, L. Ar-mengol, A. Schinzel, X. Estivill, et al. Genomic inversions of human chromosome 15q11–q13in mothers of angelman syndrome patients with class II (BP2/3) deletions. Human Molecular

Genetics, 12(8):849–858, 2003.
[64] G. Gonnella, N. Niehus, and S. Kurtz. GfaViz: flexible and interactive visualization of gfasequence graphs. Bioinformatics, 35(16):2853–2855, 2019.
[65] P.-A. Gourraud, P. Khankhanian, N. Cereb, S. Y. Yang, M. Feolo, M. Maiers, J. D. Rioux,S. Hauser, and J. Oksenberg. HLA diversity in the 1000 genomes dataset. PLoS One, 9(7):e97282, 2014.
[66] R. Goya, M. G. Sun, R. D. Morin, G. Leung, G. Ha, K. C. Wiegand, J. Senz, A. Crisan, M. A.Marra, M. Hirst, et al. SNVMix: predicting single nucleotide variants from next-generationsequencing of tumors. Bioinformatics, 26(6):730–736, 2010.
[67] C. Grasso and C. Lee. Combining partial order alignment and progressive multiple sequencealignment increases alignment speed and scalability to very large alignment problems. Bioin-

formatics, 20(10):1546–1556, 2004.



116 Bibliography

[68] Y. Guo, F. Ye, Q. Sheng, T. Clark, and D. C. Samuels. Three-stage quality control strategiesfor DNA re-sequencing data. Briefings in Bioinformatics, 15(6):879–889, 2013.
[69] M. B. Hamilton. Population genetics. John Wiley & Sons, 2021.
[70] R. E. Handsaker, V. Van Doren, J. R. Berman, G. Genovese, S. Kashin, L. M. Boettger, andS. A. McCarroll. Large multiallelic copy number variations in humans. Nature Genetics, 47(3):296–303, 2015.
[71] M. A. Hardigan, E. Crisovan, J. P. Hamilton, J. Kim, P. Laimbeer, C. P. Leisner, N. C. Manrique-Carpintero, L. Newton, G. M. Pham, B. Vaillancourt, X. Yang, Z. Zeng, D. S. Douches, J. Jiang,R. E. Veilleux, and C. R. Buell. Genome reduction uncovers a large dispensable genome andadaptive role for copy number variation in asexually propagated Solanum tuberosum. The

Plant Cell, 28(2):388–405, 2016.
[72] D. L. Hartl and A. G. Clark. Principles of population genetics, fourth edition. Sinauer associatesSunderland, 2007.
[73] D. He, S. Saha, R. Finkers, and L. Parida. Efficient algorithms for polyploid haplotype phasing.

BMC Genomics, 19(2):171–180, 2018.
[74] D. Heller and M. Vingron. SVIM: structural variant identification using mapped long reads.

Bioinformatics, 35(17):2907–2915, 2019.
[75] G. Hickey, D. Heller, J. Monlong, J. A. Sibbesen, J. Sirén, J. Eizenga, E. T. Dawson, E. Garrison,A. M. Novak, and B. Paten. Genotyping structural variants in pangenome graphs using the vgtoolkit. Genome Biology, 21(1):1–17, 2020.
[76] G. Hickey, J. Monlong, A. Novak, J. M. Eizenga, H. Li, B. Paten, H. P. R. Consortium, et al.Pangenome graph construction from genome alignment with minigraph-cactus. bioRxiv, 2022.
[77] G. Holley and P. Melsted. Bifrost: highly parallel construction and indexing of colored andcompacted de Bruijn graphs. Genome Biology, 21(1):1–20, 2020.
[78] B. Howie, J. Marchini, and M. Stephens. Genotype imputation with thousands of genomes.

G3: Genes, Genomes, Genetics, 1(6):457–470, 2011.
[79] B. N. Howie, P. Donnelly, and J. Marchini. A flexible and accurate genotype imputationmethod for the next generation of genome-wide association studies. PLoS Genetics, 5(6):e1000529, 2009.
[80] A. J. Iafrate, L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe, Y. Qi, S. W. Scherer,and C. Lee. Detection of large-scale variation in the human genome. Nature Genetics, 36(9):949–951, 2004.
[81] Illumina Inc. An introduction to Next-Generation Sequencing Technology, 2017. URL https:

//www.illumina.com/content/dam/illumina-marketing/documents/products/illumin
a_sequencing_introduction.pdf. visited on 2022-04-27.

[82] Illumina Inc. FASTQ files explained, 2022. URL https://support.illumina.com/bulleti
ns/2016/04/fastq-files-explained.html. visited on 2022-04-26.

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html


117
[83] Illumina Inc. MiniSeq Specifications, 2022. URL https://www.illumina.com/systems/seq

uencing-platforms/miniseq/specifications.html. visited on 2022-04-29.
[84] Illumina Inc. MiSeq Specifications, 2022. URL https://www.illumina.com/systems/seque

ncing-platforms/miseq/specifications.html. visited on 2022-04-29.
[85] Illumina Inc. NextSeq Series Specifications, 2022. URL https://www.illumina.com/syste

ms/sequencing-platforms/nextseq/specifications.html. visited on 2022-04-29.
[86] Illumina Inc. NovaSeq 6000 System Specifications, 2022. URL https://www.illumina.com

/systems/sequencing-platforms/novaseq/specifications.html. visited on 2022-04-29.
[87] Illumina Inc. Illumina sequencing platforms, 2022. URL https://www.illumina.com/syste

ms/sequencing-platforms.html. visited on 2022-04-29.
[88] International Human Genome Sequencing Consortium. Initial sequencing and analysis of thehuman genome. Nature, 409(6822):860–921, 2001.
[89] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and genotypingof variants using colored de Bruijn graphs. Nature Genetics, 44(2):226, 2012.
[90] E. D. Jarvis, G. Formenti, A. Rhie, A. Guarracino, C. Yang, J. Wood, A. Tracey, F. Thibaud-Nissen, M. R. Vollger, D. Porubsky, et al. Semi-automated assembly of high-quality diploidhuman reference genomes. Nature, 611(7936):519–531, 2022.
[91] T. Jiang, Y. Liu, Y. Jiang, J. Li, Y. Gao, Z. Cui, Y. Liu, B. Liu, and Y. Wang. Long-read-basedhuman genomic structural variation detection with cuteSV. Genome Biology, 21(1):1–24, 2020.
[92] B. H. Juang and L. R. Rabiner. Hidden markov models for speech recognition. Technometrics,33(3):251–272, 1991.
[93] D. Karolchik, A. S. Hinrichs, T. S. Furey, K. M. Roskin, C. W. Sugnet, D. Haussler, and W. J.Kent. The UCSC Table Browser data retrieval tool. Nucleic Acids Research, 32(suppl_1):D493–D496, 2004.
[94] J. M. Kidd, G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas, T. Graves, N. Hansen,B. Teague, C. Alkan, F. Antonacci, et al. Mapping and sequencing of structural variation fromeight human genomes. Nature, 453(7191):56–64, 2008.
[95] D. Kim, J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg. Graph-based genome align-ment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8):907–915, 2019.
[96] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A. Miller, E. R.Mardis, L. Ding, and R. K. Wilson. VarScan 2: somatic mutation and copy number alterationdiscovery in cancer by exome sequencing. Genome Research, 22(3):568–576, 2012.
[97] J. O. Korbel, A. E. Urban, J. P. Affourtit, B. Godwin, F. Grubert, J. F. Simons, P. M. Kim,D. Palejev, N. J. Carriero, L. Du, et al. Paired-end mapping reveals extensive structural vari-ation in the human genome. Science, 318(5849):420–426, 2007.

https://www.illumina.com/systems/sequencing-platforms/miniseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/miniseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/nextseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/nextseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/novaseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/novaseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html


118 Bibliography

[98] S. Koren, A. Rhie, B. P. Walenz, A. T. Dilthey, D. M. Bickhart, S. B. Kingan, S. Hiendleder, J. L.Williams, T. P. Smith, and A. M. Phillippy. De novo assembly of haplotype-resolved genomeswith trio binning. Nature Biotechnology, 36(12):1174–1182, 2018.
[99] Z. N. Kronenberg, I. T. Fiddes, D. Gordon, S. Murali, S. Cantsilieris, O. S. Meyerson, J. G.Underwood, B. J. Nelson, M. J. Chaisson, M. L. Dougherty, et al. High-resolution comparativeanalysis of great ape genomes. Science, 360(6393), 2018.

[100] Z. N. Kronenberg, A. Rhie, S. Koren, G. T. Concepcion, P. Peluso, K. M. Munson, D. Porubsky,K. Kuhn, K. A. Mueller, W. Y. Low, et al. Extended haplotype-phasing of long-read de novogenome assemblies using Hi-C. Nature Communications, 12(1):1–10, 2021.
[101] M. Kyriakidou, S. R. Achakkagari, J. H. Gálvez López, X. Zhu, C. Y. Tang, H. H. Tai, N. L.Anglin, D. Ellis, and M. V. Strömvik. Structural genome analysis in cultivated potato taxa.

Theoretical and Applied Genetics, 133(3):951–966, 2020.
[102] D. Lakich, H. H. Kazazian, S. E. Antonarakis, and J. Gitschier. Inversions disrupting the factorVIII gene are a common cause of severe haemophilia A. Nature Genetics, 5(3):236–241, 1993.
[103] L. Lecompte, P. Peterlongo, D. Lavenier, and C. Lemaitre. SVJedi: genotyping structuralvariations with long reads. Bioinformatics, 36(17):4568–4575, 2020.
[104] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order graphs.

Bioinformatics, 18(3):452–464, 2002.
[105] B. Letcher, M. Hunt, and Z. Iqbal. Gramtools enables multiscale variation analysis withgenome graphs. Genome Biology, 22(1):1–27, 2021.
[106] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100, 2018.
[107] H. Li. SNP vs SNV, 2021. URL http://lh3.github.io/2021/03/15/snp-vs-snv. visited on2022-10-20.
[108] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, andR. Durbin. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.
[109] H. Li, J. M. Bloom, Y. Farjoun, M. Fleharty, L. Gauthier, B. Neale, and D. MacArthur. Asynthetic-diploid benchmark for accurate variant-calling evaluation. Nature Methods, 15(8):595–597, 2018.
[110] H. Li, X. Feng, and C. Chu. The design and construction of reference pangenome graphs withminigraph. Genome Biology, 21(1):1–19, 2020.
[111] N. Li and M. Stephens. Modeling linkage disequilibrium and identifying recombinationhotspots using single-nucleotide polymorphism data. Genetics, 165(4):2213–2233, 2003.
[112] Y. Li, N. D. Roberts, J. A. Wala, O. Shapira, S. E. Schumacher, K. Kumar, E. Khurana,S. Waszak, J. O. Korbel, J. E. Haber, et al. Patterns of somatic structural variation in hu-man cancer genomes. Nature, 578(7793):112–121, 2020.

http://lh3.github.io/2021/03/15/snp-vs-snv


119
[113] W.-W. Liao, M. Asri, J. Ebler, D. Doerr, M. Haukness, G. Hickey, S. Lu, J. K. Lucas, J. Monlong,H. J. Abel, et al. A draft human pangenome reference. bioRxiv, 2022.
[114] G. A. Logsdon, M. R. Vollger, and E. E. Eichler. Long-read human genome sequencing and itsapplications. Nature Reviews Genetics, 21(10):597–614, 2020.
[115] G. A. Logsdon, M. R. Vollger, P. Hsieh, Y. Mao, M. A. Liskovykh, S. Koren, S. Nurk, L. Mercuri,P. C. Dishuck, A. Rhie, et al. The structure, function and evolution of a complete humanchromosome 8. Nature, 593(7857):101–107, 2021.
[116] P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A. Reshef, H. K. Finucane, S. Schoen-herr, L. Forer, S. McCarthy, G. R. Abecasis, et al. Reference-based phasing using the HaplotypeReference Consortium panel. Nature Genetics, 48(11):1443–1448, 2016.
[117] R. Luo, C.-L. Wong, Y.-S. Wong, C.-I. Tang, C.-M. Liu, C.-M. Leung, and T.-W. Lam. Exploringthe limit of using a deep neural network on pileup data for germline variant calling. Nature

Machine Intelligence, 2(4):220–227, 2020.
[118] D. Malhotra, S. McCarthy, J. J. Michaelson, V. Vacic, K. E. Burdick, S. Yoon, S. Cichon,A. Corvin, S. Gary, E. S. Gershon, et al. High frequencies of de novo CNVs in bipolar dis-order and schizophrenia. Neuron, 72(6):951–963, 2011.
[119] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel counting ofoccurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.
[120] S. Marcus, H. Lee, and M. C. Schatz. SplitMEM: a graphical algorithm for pan-genome analysiswith suffix skips. Bioinformatics, 30(24):3476–3483, 2014.
[121] A. M. Maxam and W. Gilbert. Sequencing end-labeled DNA with base-specific chemical cleav-ages. Methods in Enzymology, 65(1):499–560, 1980.
[122] W. R. McCombie, J. D. McPherson, and E. R. Mardis. Next-generation sequencing technolo-gies. Cold Spring Harbor Perspectives in Medicine, 9(11):a036798, 2019.
[123] P. G. Meirmans and P. W. Hedrick. Assessing population structure: Fst and related measures.

Molecular Ecology Resources, 11(1):5–18, 2011.
[124] D. Melzer, J. R. Perry, D. Hernandez, A.-M. Corsi, K. Stevens, I. Rafferty, F. Lauretani, A. Mur-ray, J. R. Gibbs, G. Paolisso, et al. A genome-wide association study identifies protein quan-titative trait loci (pQTLs). PLoS Genetics, 4(5):e1000072, 2008.
[125] A. Menelaou and J. Marchini. Genotype calling and phasing using next-generation sequencingreads and a haplotype scaffold. Bioinformatics, 29(1):84–91, 2013.
[126] I. Minkin and P. Medvedev. Scalable multiple whole-genome alignment and locally collinearblock construction with SibeliaZ. Nature Communications, 11(1):1–11, 2020.
[127] I. Minkin, S. Pham, and P. Medvedev. TwoPaCo: an efficient algorithm to build the compactedde Bruijn graph from many complete genomes. Bioinformatics, 33(24):4024–4032, 2017.
[128] B. Mor, S. Garhwal, and A. Kumar. A systematic review of hidden markov models and theirapplications. Archives of Computational Methods in Engineering, 28(3):1429–1448, 2021.



120 Bibliography

[129] E. Motazedi, D. de Ridder, R. Finkers, S. Baldwin, S. Thomson, K. Monaghan, andC. Maliepaard. TriPoly: haplotype estimation for polyploids using sequencing data of relatedindividuals. Bioinformatics, 34(22):3864–3872, 2018.
[130] E. Motazedi, R. Finkers, C. Maliepaard, and D. de Ridder. Exploiting next-generation sequenc-ing to solve the haplotyping puzzle in polyploids: a simulation study. Briefings in Bioinformat-

ics, 19(3):387–403, 2018.
[131] National Center for Biotechnology Information, U.S. National Library of Medicine. BLASTtopics. URL www.ncbi.nlm.nih.gov/BLAST/fasta.shtml. visited on 2022-04-26.
[132] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similaritiesin the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453,1970.
[133] M. S. Nicoloso, H. Sun, R. Spizzo, H. Kim, P. Wickramasinghe, M. Shimizu, S. E. Wojcik,J. Ferdin, T. Kunej, L. Xiao, et al. Single-nucleotide polymorphisms inside microRNA targetsites influence tumor susceptibility. Cancer Research, 70(7):2789–2798, 2010.
[134] T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen. Linear time minimum segmentationenables scalable founder reconstruction. Algorithms for Molecular Biology, 14(1):1–15, 2019.
[135] T. Norri, B. Cazaux, S. Dönges, D. Valenzuela, and V. Mäkinen. Founder reconstruction enablesscalable and seamless pangenomic analysis. Bioinformatics, 37(24):4611–4619, 2021.
[136] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R. Vollger,N. Altemose, L. Uralsky, A. Gershman, et al. The complete sequence of a human genome.

Science, 376(6588):44–53, 2022.
[137] N. D. Olson, J. Wagner, J. McDaniel, S. H. Stephens, S. T. Westreich, A. G. Prasanna, E. Johan-son, E. Boja, E. J. Maier, O. Serang, et al. PrecisionFDA Truth Challenge V2: Calling variantsfrom short and long reads in difficult-to-map regions. Cell Genomics, 2(5):100129, 2022.
[138] Y. Ono, K. Asai, and M. Hamada. PBSIM: Pacbio reads simulator-toward accurate genomeassembly. Bioinformatics, 29(1):119–121, 2013.
[139] Oxford Nanopore Technologies. How does nanopore DNA/RNA sequencing work?, 2017. URL

https://nanoporetech.com/how-it-works. visited on 2022-04-28.
[140] T. S. Painter. A comparison of the chromosomes of the rat and mouse with reference to thequestion of chromosome homology in mammals. Genetics, 13(2):180, 1928.
[141] J. S. Papadopoulos and R. Agarwala. COBALT: constraint-based alignment tool for multipleprotein sequences. Bioinformatics, 23(9):1073–1079, 2007.
[142] B. Paten, J. M. Eizenga, Y. M. Rosen, A. M. Novak, E. Garrison, and G. Hickey. Superbubbles,ultrabubbles, and cacti. Journal of Computational Biology, 25(7):649–663, 2018.
[143] M. Patterson, T. Marschall, N. Pisanti, L. Van Iersel, L. Stougie, G. W. Klau, and A. Schönhuth.WhatsHap: weighted haplotype assembly for future-generation sequencing reads. Journal of

Computational Biology, 22(6):498–509, 2015.

www.ncbi.nlm.nih.gov/BLAST/fasta.shtml
https://nanoporetech.com/how-it-works


121
[144] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku, D. Newburger, J. Di-jamco, N. Nguyen, P. T. Afshar, et al. A universal SNP and small-indel variant caller usingdeep neural networks. Nature Biotechnology, 36(10):983–987, 2018.
[145] D. Porubsky, P. Ebert, P. A. Audano, M. R. Vollger, W. T. Harvey, P. Marijon, J. Ebler, K. M.Munson, M. Sorensen, A. Sulovari, et al. Fully phased human genome assembly withoutparental data using single-cell strand sequencing and long reads. Nature Biotechnology, 39(3):302–308, 2021.
[146] D. Porubsky, W. Höps, H. Ashraf, P. Hsieh, B. Rodriguez-Martin, F. Yilmaz, J. Ebler, P. Hallast,F. A. M. Maggiolini, W. T. Harvey, et al. Recurrent inversion polymorphisms in humansassociate with genetic instability and genomic disorders. Cell, 185(11):1986–2005, 2022.
[147] J. Pritt, N.-C. Chen, and B. Langmead. FORGe: prioritizing variants for graph genomes.

Genome Biology, 19(1):1–16, 2018.
[148] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar,P. I. De Bakker, M. J. Daly, et al. PLINK: a tool set for whole-genome association andpopulation-based linkage analyses. The American Journal of Human Genetics, 81(3):559–575,2007.
[149] L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE ASSP Magazine,pages 4–15, 1986.
[150] L. R. Rabiner, S. E. Levinson, and M. M. Sondhi. On the application of vector quantizationand hidden markov models to speaker-independent, isolated word recognition. Bell System

Technical Journal, 62(4):1075–1105, 1983.
[151] G. Rakocevic, V. Semenyuk, W.-P. Lee, J. Spencer, J. Browning, I. J. Johnson, V. Arsenijevic,J. Nadj, K. Ghose, M. C. Suciu, et al. Fast and accurate genomic analyses using genome graphs.

Nature Genetics, 51(2):354–362, 2019.
[152] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel. DELLY: structuralvariant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28(18):i333–i339, 2012.
[153] M. Rautiainen and T. Marschall. GraphAligner: rapid and versatile sequence-to-graph align-ment. Genome Biology, 21(1):1–28, 2020.
[154] M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky, A. Rhie, E. E. Eichler, A. M.Phillippy, and S. Koren. Verkko: telomere-to-telomere assembly of diploid chromosomes.

bioRxiv, 2022.
[155] R. Redon, S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry, T. D. Andrews, H. Fiegler, M. H.Shapero, A. R. Carson, W. Chen, et al. Global variation in copy number in the human genome.

Nature, 444(7118):444–454, 2006.
[156] M. E. Reid and G. A. Denomme. DNA-based methods in the immunohematology referencelaboratory. Transfusion and Apheresis Science, 44(1):65–72, 2011.



122 Bibliography

[157] A. Rhoads and K. F. Au. PacBio sequencing and its applications. Genomics, Proteomics &
Bioinformatics, 13(5):278–289, 2015.

[158] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O. Wilkie, G. McVean, G. Lunter,W. Consortium, et al. Integrating mapping-, assembly-and haplotype-based approaches forcalling variants in clinical sequencing applications. Nature Genetics, 46(8):912, 2014.
[159] J. Robinson, K. Mistry, H. McWilliam, R. Lopez, and S. G. E. Marsh. IPD–the immuno poly-morphism database. Nucleic Acids Research, 38(Database issue):D863–9, 2010.
[160] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P.Mesirov. Integrative genomics viewer. Nature Biotechnology, 29(1):24, 2011.
[161] J. Ruan and H. Li. Fast and accurate long-read assembly with wtdbg2. Nature Methods, 2019.
[162] Samtools. The Variant Call Format (VCF) Version 4.3 Specification, 2021. URL https:

//samtools.github.io/hts-specs/VCFv4.3.pdf. visited on 2022-04-25.
[163] S. J. Sanders, A. G. Ercan-Sencicek, V. Hus, R. Luo, M. T. Murtha, D. Moreno-De-Luca, S. H.Chu, M. P. Moreau, A. R. Gupta, S. A. Thomson, et al. Multiple recurrent de novo CNVs,including duplications of the 7q11.23 Williams syndrome region, are strongly associated withautism. Neuron, 70(5):863–885, 2011.
[164] F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA by primedsynthesis with dna polymerase. Journal of Molecular Biology, 94(3):441–448, 1975.
[165] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.

Proceedings of the National Academy of Sciences, 74(12):5463–5467, 1977.
[166] S. D. Schrinner, R. Serra Mari, J. Ebler, M. Rautiainen, L. Seillier, J. J. Reimer, B. Usadel,T. Marschall, and G. W. Klau. Haplotype threading: accurate polyploid phasing from longreads. Genome Biology, 21(1):1–22, 2020.
[167] J. Sebat, B. Lakshmi, J. Troge, J. Alexander, J. Young, P. Lundin, S. Manér, H. Massa,M. Walker, M. Chi, et al. Large-scale copy number polymorphism in the human genome.

Science, 305(5683):525–528, 2004.
[168] J. Sebat, B. Lakshmi, D. Malhotra, J. Troge, C. Lese-Martin, T. Walsh, B. Yamrom, S. Yoon,A. Krasnitz, J. Kendall, et al. Strong association of de novo copy number mutations withautism. Science, 316(5823):445–449, 2007.
[169] F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. Von Haeseler, and M. C.Schatz. Accurate detection of complex structural variations using single-molecule sequencing.

Nature Methods, 15(6):461–468, 2018.
[170] R. Serra Mari, S. Schrinner, R. Finkers, P. Arens, M. H.-W. Schmidt, B. Usadel, G. W. Klau, andT. Marschall. Haplotype-resolved assembly of a tetraploid potato genome using long readsand low-depth offspring data. bioRxiv, 2022.

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf


123
[171] K. Shafin, T. Pesout, P.-C. Chang, M. Nattestad, A. Kolesnikov, S. Goel, G. Baid, M. Kol-mogorov, J. M. Eizenga, K. H. Miga, et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nature Methods, 18(11):1322–1332, 2021.
[172] A. Shajii, D. Yorukoglu, Y. William Yu, and B. Berger. Fast genotyping of known SNPs throughapproximate k-mer matching. Bioinformatics, 32(17):i538–i544, 2016.
[173] J. Shendure, S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers, J. A. Schloss, and R. H.Waterston. DNA sequencing at 40: past, present and future. Nature, 550(7676):345–353,2017.
[174] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin.dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1):308–311, 2001.
[175] J. A. Sibbesen, L. Maretty, and A. Krogh. Accurate genotyping across variant classes andlengths using variant graphs. Nature Genetics, 50(7):1054, 2018.
[176] J. Sirén, J. Monlong, X. Chang, A. M. Novak, J. M. Eizenga, C. Markello, J. A. Sibbesen,G. Hickey, P.-C. Chang, A. Carroll, et al. Pangenomics enables genotyping of known structuralvariants in 5202 diverse genomes. Science, 374(6574):abg8871, 2021.
[177] B. E. Slatko, A. F. Gardner, and F. M. Ausubel. Overview of next-generation sequencingtechnologies. Current Protocols in Molecular Biology, 122(1):e59, 2018.
[178] T. F. Smith, M. S. Waterman, et al. Identification of common molecular subsequences. Journal

of Molecular Biology, 147(1):195–197, 1981.
[179] M. W. Snyder, A. Adey, J. O. Kitzman, and J. Shendure. Haplotype-resolved genome sequenc-ing: experimental methods and applications. Nature Reviews Genetics, 16(6):344–358, 2015.
[180] A. H. Sturtevant. Genetic factors affecting the strength of linkage in Drosophila. Proceedings

of the National Academy of Sciences of the United States of America, 3(9):555, 1917.
[181] P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J. Huddleston, Y. Zhang,K. Ye, G. Jun, M. Hsi-Yang Fritz, et al. An integrated map of structural variation in 2,504human genomes. Nature, 526(7571):75–81, 2015.
[182] C. Sun and P. Medvedev. Toward fast and accurate SNP genotyping from whole genomesequencing data for bedside diagnostics. Bioinformatics, 35(3):415–420, 2019.
[183] H. Sun, W.-B. Jiao, K. Krause, J. A. Campoy, M. Goel, K. Folz-Donahue, C. Kukat, B. Huet-tel, and K. Schneeberger. Chromosome-scale and haplotype-resolved genome assembly of atetraploid potato cultivar. Nature Genetics, 54(3):342–348, 2022.
[184] T2T Consortium. CHM13 Cell Line. URL https://sites.google.com/ucsc.edu/t2tworki

nggroup/chm13-cell-line?authuser=0. visited on 2022-10-20.
[185] J. L. Taylor-Cousar, M. A. Zariwala, L. H. Burch, R. G. Pace, M. L. Drumm, H. Calloway, H. Fan,B. W. Weston, F. A. Wright, M. R. Knowles, et al. Histo-blood group gene polymorphisms aspotential genetic modifiers of infection and cystic fibrosis lung disease severity. PloS One, 4(1):e4270, 2009.

https://sites.google.com/ucsc.edu/t2tworkinggroup/chm13-cell-line?authuser=0
https://sites.google.com/ucsc.edu/t2tworkinggroup/chm13-cell-line?authuser=0


124 Bibliography

[186] R. Tewhey, V. Bansal, A. Torkamani, E. J. Topol, and N. J. Schork. The importance of phaseinformation for human genomics. Nature Reviews Genetics, 12(3):215–223, 2011.
[187] The Computational Pan-Genomics Consortium. Computational pan-genomics: status,promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018.
[188] The Genome of the Netherlands Consortium. Whole-genome sequence variation, populationstructure and demographic history of the dutch population. Nature Genetics, 46(8):818–825,2014.
[189] I. Turner, K. V. Garimella, Z. Iqbal, and G. McVean. Integrating long-range connectivityinformation into de Bruijn graphs. Bioinformatics, 34(15):2556–2565, 2018.
[190] E. Ukkonen. Finding founder sequences from a set of recombinants. In International Workshop

on Algorithms in Bioinformatics, pages 277–286. Springer, 2002.
[191] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith,M. Yandell, C. A. Evans, R. A. Holt, et al. The sequence of the human genome. Science, 291(5507):1304–1351, 2001.
[192] J. Wagner, N. D. Olson, L. Harris, J. McDaniel, H. Cheng, A. Fungtammasan, Y.-C. Hwang,R. Gupta, A. M. Wenger, W. J. Rowell, et al. Curated variation benchmarks for challengingmedically relevant autosomal genes. Nature Biotechnology, pages 1–9, 2022.
[193] T. Walsh, J. M. McClellan, S. E. McCarthy, A. M. Addington, S. B. Pierce, G. M. Cooper, A. S.Nord, M. Kusenda, D. Malhotra, A. Bhandari, et al. Rare structural variants disrupt multiplegenes in neurodevelopmental pathways in schizophrenia. Science, 320(5875):539–543, 2008.
[194] J. Wang, L. Raskin, D. C. Samuels, Y. Shyr, and Y. Guo. Genome measures used for qualitycontrol are dependent on gene function and ancestry. Bioinformatics, 31(3):318–323, 2014.
[195] J. Wang, D. C. Samuels, Y. Shyr, and Y. Guo. Population structure analysis on 2504 individualsacross 26 ancestries using bioinformatics approaches. BMC Bioinformatics, 16(15):P19, 2015.
[196] K. Watanabe. Potato genetics, genomics, and applications. Breeding Science, 65(1):53–68,2015.
[197] J. D. Watson and F. H. Crick. Molecular structure of nucleic acids: a structure for deoxyribosenucleic acid. Nature, 171(4356):737–738, 1953.
[198] J. Weischenfeldt, O. Symmons, F. Spitz, and J. O. Korbel. Phenotypic impact of genomicstructural variation: insights from and for human disease. Nature Reviews Genetics, 14(2):125,2013.
[199] A. M. Wenger, P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall, G. T. Concepcion, J. Ebler,A. Fungtammasan, A. Kolesnikov, N. D. Olson, et al. Accurate circular consensus long-read se-quencing improves variant detection and assembly of a human genome. Nature Biotechnology,37(10):1155–1162, 2019.
[200] D. L. Wheeler, D. M. Church, S. Federhen, A. E. Lash, T. L. Madden, J. U. Pontius, G. D.Schuler, L. M. Schriml, E. Sequeira, T. A. Tatusova, et al. Database resources of the NationalCenter for Biotechnology. Nucleic Acids Research, 31(1):28–33, 2003.



125
[201] N. M. Williams, I. Zaharieva, A. Martin, K. Langley, K. Mantripragada, R. Fossdal, H. Stefans-son, K. Stefansson, P. Magnusson, O. O. Gudmundsson, et al. Rare chromosomal deletions andduplications in attention-deficit hyperactivity disorder: a genome-wide analysis. The Lancet,376(9750):1401–1408, 2010.
[202] M. Xie, Q. Wu, J. Wang, and T. Jiang. H-PoP and H-PoPG: heuristic partitioning algorithmsfor single individual haplotyping of polyploids. Bioinformatics, 32(24):3735–3744, 2016.
[203] C. Zahn. Approximating symmetric relations by equivalence relations. Journal of the Society

for Industrial & Applied Mathematics, 12, 1964. doi: 10.1137/0112071.
[204] X. Zhang, R. Wu, Y. Wang, J. Yu, and H. Tang. Unzipping haplotypes in diploid and polyploidgenomes. Computational and Structural Biotechnology Journal, 18:66–72, 2020.
[205] X. Zhao, A. M. Weber, and R. E. Mills. A recurrence-based approach for validating structuralvariation using long-read sequencing technology. Gigascience, 6(8):gix061, 2017.
[206] X. Zhao, R. L. Collins, W.-P. Lee, A. M. Weber, Y. Jun, Q. Zhu, B. Weisburd, Y. Huang, P. A.Audano, H. Wang, et al. Expectations and blind spots for structural variation detection fromlong-read assemblies and short-read genome sequencing technologies. The American Journal

of Human Genetics, 108(5):919–928, 2021.
[207] J. M. Zook, D. Catoe, J. McDaniel, L. Vang, N. Spies, A. Sidow, Z. Weng, Y. Liu, C. E. Mason,N. Alexander, et al. Extensive sequencing of seven human genomes to characterize benchmarkreference materials. Scientific Data, 3(1):1–26, 2016.
[208] J. M. Zook, J. McDaniel, N. D. Olson, J. Wagner, H. Parikh, H. Heaton, S. A. Irvine, L. Trigg,R. Truty, C. Y. McLean, et al. An open resource for accurately benchmarking small variantand reference calls. Nature Biotechnology, 37(5):561–566, 2019.



126 Bibliography



Appendix A

Appendices: Application and
advances in haplotype phasing
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coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)
40× WH-PP 0.58 1.48 29529 3333 1.41WH-PP* 1.39 28.72 1692352 3433 1.42H-PoPG 2.01 27.53 1785293 2230 9.97
80× WH-PP 0.31 1.43 54434 12694 2.52WH-PP* 0.74 28.27 2587104 13042 2.89H-PoPG 1.24 27.66 2587104 4368 9.99

(a) real tetraploid read data
coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)

40× WH-PP 0.42 1.74 48815 1960 1.10WH-PP* 1.00 26.57 1830943 2004 1.17H-PoPG 1.67 26.37 1917094 1414 9.96
80× WH-PP 0.29 2.51 86227 5738 1.78WH-PP* 0.68 25.23 2142893 5865 2.04H-PoPG 0.98 25.65 2142893 2843 9.97

(b) simulated tetraploid read data
coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)

40× WH-PP 0.86 1.57 22625 2331 1.05WH-PP* 2.01 25.34 1361459 2377 1.07H-PoPG 3.50 24.78 1453040 2357 9.97
80× WH-PP 0.47 1.18 33438 5031 1.69WH-PP* 1.33 23.64 1701753 5118 1.87H-PoPG 2.24 24.76 1748404 4849 9.96

(c) simulated pentaploid read data
coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)

40× WH-PP 1.12 1.82 16785 25841 1.30WH-PP* 2.35 27.03 3877456 25860 1.79H-PoPG 3.85 26.75 4490129 5450 9.96
80× WH-PP 0.48 0.97 26711 10331 1.98WH-PP* 1.34 25.63 4540968 10827 2.63H-PoPG 2.37 25.93 4721421 11563 10.89

(d) simulated hexaploid read data
Table A.1: Phasing evaluation on artificial polyploid human. Comparison of whatshap
polyphase and H-PoPG on tetraploid real (a) and simulated (b) datasets, pentaploid simu-lated dataset (c) and hexaploid simulated dataset (d). Performances are based on the switcherror rate (SER), block-wise Hamming rate (HR) and N50 for the block size. For better com-parability with H-PoPG, a second setting (WH-PP*) with less block-cuts was used in additionto the default block cut strategy (WH-PP). The total length of the chromosome is 249 Mb.Table taken from [166].
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coverage method collapsing regions non-collapsing regions total

40× WH-PP* 0.66 1.81 1.65H-PoPG 2.02 2.16 2.02
SER( H−PoPG

WH−PP∗) 3.06 1.19 1.22
80× WH-PP* 0.38 1.16 0.99H-PoPG 1.05 1.30 1.24

SER( H−PoPG
WH−PP∗) 2.76 1.12 1.25

(a) real read data
coverage method collapsing regions non-collapsing regions total

40× WH-PP* 0.45 1.29 1.19H-PoPG 2.01 1.63 1.68
SER( H−PoPG

WH−PP∗) 4.47 1.62 1.41
80× WH-PP* 0.25 0.88 0.82H-PoPG 0.94 0.98 0.99

SER( H−PoPG
WH−PP∗) 3.76 1.11 1.21

(b) simulated read data
Table A.2: Phasing evaluation in/outside collapsing regions. Comparison of resultingswitch error rates of H-PoPG and whatshap polyphase using block lengths that are compa-rable to H-PoPG (WH-PP*) on collapsing regions over at least 50 variants as compared tonon-collapsing regions and the average throughout the genome. Results (switch error ratesin %) are presented for chromsome 1 of the real (a) and the simulated (b) dataset, testing40× and 80× coverage. The third row marks the quotient between the switch error rate ofH-PoPG and that of whatshap polyphase to highlight by which magnitude the results differ.Table taken from [166].
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Appendix B

Appendices: PanGenie:
Pangenome-based genome inference

type variants(unfiltered) variants(callable regions) variants(mendelian consistent) bubbles in pan-genome graphSNP 13,628,117 12,560,841 12,095,177 11,556,580small insertion 2,229,474 2,163,433 1,922,163 810,298small deletion 2,026,998 1,961,042 1,811,123 819,445small complex 0 0 0 597,044midsize insertion 123,304 120,505 110,882 20,300midsize deletion 87,263 85,114 80,027 12,720midsize complex 0 0 0 87,392large insertion 135,150 123,990 108,929 18,325large deletion 48,724 45,419 41,499 4,397large complex 0 0 0 52,272
Table B.1: Variant calling statistics. Numbers of variants obtained at different stages ofvariant calling/pangenome graph construction. The first column corresponds to the numberof raw variant calls made across all individual haplotypes. The second column contains thenumber of variants within the callable regions, that is, after removing sites with more than20% of missing (“./.”) genotypes. The third column shows the number of variants left afterremoving sites with Mendelian inconsistencies and corresponds to our final variant callset.The last column presents the number of bubbles in the graph after constructing a pangenomefrom all variants in the previous column. Columns 1-3 contain only variant alleles that canbe classified as SNPs, insertions and deletions. In the graph however, overlapping variantalleles are combined into multiallelic bubbles. All such bubbles with more than two branchesare defined as “complex”. Table taken from [49].
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SNP small INS small DEL midsize INS midsize DEL large INS large DELHG00512 total 3,724,332 444,561 442,280 15,635 14,685 14,742 8,623unique 251,925 48,811 42,229 5,531 2,831 5,830 1,412HG00513 total 3,767,798 447,734 444,429 16,025 15,019 15,098 8,900unique 258,979 46,955 39,971 5,758 2,978 6,191 1,540HG00731 total 3,792,925 446,416 448,667 15,630 15,002 15,006 8,717unique 237,125 43,607 38,016 5,299 2,585 5,645 1,336HG00732 total 3,850,476 552,952 469,341 16,943 15,401 15,882 9,082unique 258,515 122,268 57,321 6,157 2,961 6,554 1,552HG02818 total 4,604,971 559,626 566,604 20,166 18,904 17,837 10,740unique 605,439 100,220 97,157 8,881 5,455 8,820 2,710HG03125 total 4,631,416 576,887 580,655 20,290 19,106 18,132 10,759unique 608,299 113,155 108,740 9,021 5,574 9,074 2,726HG03486 total 4,679,604 582,370 575,677 20,421 19,430 18,376 11,027unique 670,228 118,933 106,370 9,146 5,935 9,364 2,891NA12878 total 3,775,211 445,739 448,293 16,029 15,027 15,374 8,777unique 247,345 46,445 40,769 5,739 2,816 6,001 1,444NA19238 total 4,629,589 562,928 584,771 20,099 19,081 18,321 10,870unique 606,621 102,902 108,613 8,803 5,496 9,066 2,771NA19239 total 4,573,111 551,810 575,465 19,611 18,642 17,721 10,664unique 589,863 98,383 106,349 8,327 5,466 8,636 2,620NA24385 total 3,761,904 459,907 447,880 16,144 15,046 15,023 8,769unique 247,111 56,090 43,103 5,710 2,792 5,921 1,370total total 12,095,177 1,922,163 1,811,123 110,882 80,027 108,929 41,499
Table B.2: Variants in pangenome graph. Total number of variants detected across allassembly samples (“total”), as well as the number of variants unique to a sample, that is,variants seen only in the respective sample and in none of the other samples (“unique”).Table taken from [49].

non-repetitive regions repeat regions repeat regions [%]SNPs biallelic 10,736,632 527,498 4.7 %complex 179,476 368,385 67.2 %small biallelic INS 682,987 115,702 14.5%biallelic DEL 696,243 123,055 15.0 %complex INS+DEL 1,238,489 817,458 39.7 %midsize biallelic INS 9,313 10,997 54.2 %biallelic DEL 5,651 7,909 58.3 %complex INS + DEL 43,105 104,734 70.8 %large biallelic INS 7,537 10,757 58.8 %biallelic DEL 2,212 2,397 52.0 %complex INS + DEL 29,277 89,297 75.3 %
Table B.3: Number of variants in repetitive and non-repetitive regions. Shown are thenumbers of variants located inside and outside of STR/VNTR regions for sample NA12878.“biallelic” corresponds to all genomic regions outside of complex bubbles (= bubbles withmore than two branches) in our pangenome graph. “complex” corresponds to all callsetvariants that are located inside of complex bubbles. Table taken from [49].
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Figure B.1: Evaluation example. a Shown is a set of variants (represented by circles) usedas input for genotyping and a sample carrying only one of these variants (i.e. the true geno-type for all others is 0/0). Both variants colored in red were genotyped as non-0/0, resultingin a genotyping error for the second one which is counted as a false positive call. This ex-ample illustrates why precision/recall measures are not ideal for a re-genotyping scenario:when variants are called across a large set of samples and then genotyped in another, newsample, there will be a large fraction of variants absent in the new sample. Thus, even ifthe false positive rate is low, the number of false positives increases as the number of inputvariants increases, while the number of true positives is limited. In this example, only asingle genotyping error decreases the precision to 0.5. b Confusion matrix for PanGenie andthe resulting values for precision, recall and weighted genotype concordance (matrix forlarge insertions in repetitive regions). While the false positive rate is low (only 415 of 9713variants absent from the truth set are genotyped as non-0/0), it is relatively high comparedto the number of true positives which explains why the precision is so low compared tothe weighted genotype concordance. The same effect applies to all re-genotyping methods.Figure taken from [49].



134 Appendices: PanGenie: Pangenome-based genome inference

0.5 0.6 0.7 0.8 0.9 1.0
adjusted recall

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

a
d
ju

st
e
d
 p

re
ci

si
o
n

small-deletion

0.5 0.6 0.7 0.8 0.9 1.0
adjusted recall

0.88

0.90

0.92

0.94

0.96

0.98

a
d
ju

st
e
d
 p

re
ci

si
o
n

small-insertion

0.2 0.4 0.6 0.8
adjusted recall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a
d
ju

st
e
d
 p

re
ci

si
o
n

small-complex

0.6 0.7 0.8 0.9
adjusted recall

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

a
d
ju

st
e
d
 p

re
ci

si
o
n

midsize-deletion

0.5 0.6 0.7 0.8 0.9
adjusted recall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
a
d
ju

st
e
d
 p

re
ci

si
o
n

midsize-insertion

0.2 0.4 0.6
adjusted recall

0.4

0.5

0.6

0.7

0.8

0.9

a
d
ju

st
e
d
 p

re
ci

si
o
n

midsize-complex

0.2 0.4 0.6 0.8
adjusted recall

0.75

0.80

0.85

0.90

0.95

1.00

a
d
ju

st
e
d
 p

re
ci

si
o
n

large-deletion

0.4 0.6 0.8
adjusted recall

0.4

0.5

0.6

0.7

0.8

0.9

a
d
ju

st
e
d
 p

re
ci

si
o
n

large-insertion

0.2 0.4 0.6 0.8
adjusted recall

0.75

0.80

0.85

0.90

0.95

a
d
ju

st
e
d
 p

re
ci

si
o
n

large-complex

0.6 0.7 0.8 0.9 1.0
adjusted recall

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

a
d
ju

st
e
d
 p

re
ci

si
o
n

snp

0.4 0.6 0.8
adjusted recall

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

a
d
ju

st
e
d
 p

re
ci

si
o
n

snp-complex
PanGenie (lenient)

PanGenie (strict)

BayesTyper

Platypus

Paragraph

GATK

GraphTyper

5x

10x

20x

30x

Figure B.2: Adjusted precision/recall for NA12878 (non-repetitive regions). Adjustedprecision/recall at different coverages for sample NA12878. We ran PanGenie, BayesTyper,Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotypequality ≥ 200). SNPs, insertions and deletions include all respective variants in biallelicregions of the genome, while complex contains all variant alleles falling into regions withcomplex bubbles in the pangenome graph representation. Figure taken from [49].
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Figure B.3: Adjusted precision/recall for NA12878 (STR/VNTR regions). Adjusted pre-cision/recall at different coverages for sample NA12878. We ran PanGenie, BayesTyper,Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotypequality ≥ 200). SNPs, insertions and deletions include all respective variants in biallelicregions of the genome, while complex contains all variant alleles falling into regions withcomplex bubbles in the pangenome graph representation. Figure taken from [49].
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Figure B.4: Comparison to GIAB small variants for NA12878. The GIAB small variantsbenchmark set [208] was used as ground truth for evaluating the results of our "leave-one-out" experiment for SNPs and indels (< 50bp). We computed the adjusted precisionand recall (left), as well as the un-adjusted versions (right) including variants unique toNA12878 and thus not genotypable by a re-genotyping approach. GATK and Platypus wereadditionally run in detection mode. Figure taken from [49].
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Figure B.5: Weighted genotype concordance for NA24385 (non-repetitive regions).Weighted genotype concordance at different coverages for sample NA24385. We ran Pan-Genie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype qual-ities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq”filtering (genotype quality ≥ 200). SNPs, insertions and deletions include all respective vari-ants in biallelic regions of the genome, while complex contains all variant alleles falling intoregions with complex bubbles in the pangenome graph representation. Figure taken from[49].
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Figure B.6: Weighted genotype concordance for NA24385 (STR/VNTR regions).Weighted genotype concordance at different coverages for sample NA24385. We ran Pan-Genie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype qual-ities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq”filtering (genotype quality ≥ 200). SNPs, insertions and deletions include all respective vari-ants in biallelic regions of the genome, while complex contains all variant alleles falling intoregions with complex bubbles in the pangenome graph representation. Figure taken from[49].
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Figure B.7: Adjusted precision/recall for NA24385 (non-repetitive regions). Adjustedprecision/recall at different coverages for sample NA24385. We ran PanGenie, BayesTyper,Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotypequality ≥ 200). SNPs, insertions and deletions include all respective variants in biallelicregions of the genome, while complex contains all variant alleles falling into regions withcomplex bubbles in the pangenome graph representation. Figure taken from [49].
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Figure B.8: Adjusted precision/recall for NA24385 (STR/VNTR regions). Adjusted pre-cision/recall at different coverages for sample NA24385. We ran PanGenie, BayesTyper,Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotypequality ≥ 200). SNPs, insertions and deletions include all respective variants in biallelicregions of the genome, while complex contains all variant alleles falling into regions withcomplex bubbles in the pangenome graph representation. Figure taken from [49].
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Figure B.9: Adjusted F-score for NA24385 (non-repetitive regions). Adjusted F-scoreat coverage 30× for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platy-pus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides notapplying any filter on the reported genotype qualities (“all”), we additionally report geno-typing statistics for PanGenie when using “high-gq” filtering (genotype quality ≥ 200). SNPs,insertions and deletions include all respective variants in biallelic regions of the genome,while complex contains all variant alleles falling into regions with complex bubbles in thepangenome graph representation. Figure taken from [49].
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Figure B.10: Adjusted F-score for NA24385 (STR/VNTR regions). Adjusted F-score atcoverage 30× for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus,GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not ap-plying any filter on the reported genotype qualities (“all”), we additionally report genotyp-ing statistics for PanGenie when using “high-gq” filtering (genotype quality ≥ 200). SNPs,insertions and deletions include all respective variants in biallelic regions of the genome,while complex contains all variant alleles falling into regions with complex bubbles in thepangenome graph representation. Figure taken from [49].
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Figure B.11: Comparison to syndip benchmark SVs. SVs contained in the syndip bench-mark set were used as ground truth for evaluation. We computed the weighted genotypeconcordance and the adjusted precision and recall metrics to evaluate our results. Figuretaken from [49].
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Figure C.8: HPRC callset statistics SV deletions. Top: Shown are the number of dele-tion alleles failing different filters computed based on the genotypes of the 1000 genomesgenotypes for all 57,201 SV deletion alleles. Bottom: Shown are callset statistics for all SVdeletion alleles (≥ 50 bp) in the unfiltered set (left, n=57,201), the positive set (middle,n=13,356) and the final filtered set (right, n=28,433). The plots compare the heterozy-gousity across the PanGenie genotypes for all 2,504 unrelated samples to the PanGenie al-lele frequencies. The blue line indicates the expected relationship based on Hardy-Weinbergequilibrium. Bottom panel figures are taken from [113].
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Figure C.9: HPRC callset statistics SV insertions. Top: Shown are the number of inser-tion alleles failing different filters computed based on the genotypes of the 1000 genomesgenotypes for all 254,612 SV insertion alleles. Bottom: Shown are callset statistics for all SVinsertion alleles (≥ 50 bp) in the unfiltered set (left, n=254,612), the positive set (middle,n=32,431) and the final filtered set (right, n=84,755). The plots compare the heterozy-gousity across the PanGenie genotypes for all 2,504 unrelated samples to the PanGenie al-lele frequencies. The blue line indicates the expected relationship based on Hardy-Weinbergequilibrium Bottom panel figures are taken from [113].
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Figure C.10: HPRC callset statistics SV others. Top: Shown are the number of other SValleles failing different filters computed based on the genotypes of the 1000 genomes geno-types for all 101,996 SV alleles that are neither insertions nor deletions. Bottom: Shownare callset statistics for all SV alleles that are neither a clean insertion nor a clean deletion(≥ 50 bp) in the unfiltered set (left, n=101,996), the positive set (middle, n=8,334) andthe final filtered set (right, n=32,431). The plots compare the heterozygosity across thePanGenie genotypes for all 2,504 unrelated samples to the PanGenie allele frequencies. Theblue line indicates the expected relationship based on Hardy-Weinberg equilibrium. Bottompanel figures are taken from [113].
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Figure C.12: HPRC SVs in repeat regions. Shown are the number of SVs present (geno-type 0/1 or 1/1) in each of the 3,202 1000 Genomes Project samples in the filtered HPRCgenotypes (PanGenie) in different repeat categories. Repeat annotations are based on thecactus-minigraph graph. Figure taken from [113].
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Stratification files from GIAB

• easy: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/gen
ome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.be

d.gz

• low-mappability: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab
/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandseg

dupregions.bed.gz

• repeats: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release
/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeat

s_gt100bp_slop5.bed.gz

• other-difficult: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/r
elease/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherD

ifficultregions.bed.gz

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
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Figure C.13: Runtime and memory usage of PanGenie a Shown are the runtime (single-core CPU seconds) and maximum resident set size (RSS) of PanGenie when run on the HPRCgraph containing 88 haplotypes. On the left, the lifetime of relevant data objects createdduring execution of the code are shown. b Implementation details of the most relevantclasses of PanGenie.
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Appendix D

Code Availability

The implementation of whatshap polyphase is available as open source code under theMIT licence at: https://github.com/whatshap/whatshap. The scripts and pipelines forre-producing the results presented in Section 2.1 are available at: https://github.com/e
blerjana/whatshap-polyphase-experiments. The scripts and pipelines used to producethe results presented in Section 2.2 are available at: https://github.com/PacificBiosci
ences/hg002-ccs/tree/master/phasing.
The implementation of PanGenie is available as open source code under the MIT licenceat: https://github.com/eblerjana/pangenie. The pipelines for re-producing the resultspresented in Chapter 3 are available at: https://bitbucket.org/jana_ebler/genotypin
g-experiments/src/master/.
The pipelines for re-producing the results presented in Sections 4.1, 4.2 and 4.3 are availableat: https://bitbucket.org/jana_ebler/genotyping-experiments/src/hgsvc-paper/,
https://bitbucket.org/jana_ebler/rare-inversions/src/master/ and https://bi

tbucket.org/jana_ebler/hprc-experiments/src/master/genotyping-experiments/,respectively.
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Appendix E

Published articles underlying this
thesis

E.1 Haplotype threading: accurate polyploid phasing from long
reads

The manuscript “Haplotype threading: accurate polyploid phasing from long reads” [166]was published in Genome Biology. Author information, author contributions, license andcopyright information are listed in the subsections below.
E.1.1 Authors

Sven D. Schrinner*, Rebecca Serra Mari*, Jana Ebler*, Mikko Rautiainen, Lancelot Seillier,Julia J. Reimer, Björn Usadel, Tobias Marschall, Gunnar W. Klau.
* joint first authors
E.1.2 Contributions

Author contributions as stated in the manuscript [166]:
“SDS, RSM, JE, GWK, and TM developed the algorithmic concepts and designedthe study. RSM designed the haplotype threading algorithm and implementeda prototype. SDS designed and implemented the cluster editing algorithm, de-signed the block cut strategies, and optimized the threading implementation. JEperformed the evaluation and analyzed the potato dataset. MR ran the errorcorrection on the potato reads. LS, JJR, and BU performed potato sequencing,and BU helped with the interpretation of phasing results. SDS, RSM, and JE in-tegrated all software components into WhatsHap and tested the workflow. SDS,RSM, JE, GWK, and TM wrote the paper. All authors read and approved the finalmanuscript.”
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166 Published articles

E.1.3 Licence and copyright information

The manuscript was published under a Creative Commons Licence as stated in section“Rights and permissions” in the online version: https://doi.org/10.1186/s13059-0

20-02158-1:
“This article is licensed under a Creative Commons Attribution 4.0 InternationalLicense, which permits use, sharing, adaptation, distribution and reproductionin any medium or format, as long as you give appropriate credit to the origi-nal author(s) and the source, provide a link to the Creative Commons licence,and indicate if changes were made. The images or other third party material inthis article are included in the article’s Creative Commons licence, unless indi-cated otherwise in a credit line to the material. If material is not included inthe article’s Creative Commons licence and your intended use is not permittedby statutory regulation or exceeds the permitted use, you will need to obtainpermission directly from the copyright holder. To view a copy of this licence,visit http://creativecommons.org/licenses/by/4.0/. The Creative CommonsPublic Domain Dedication waiver (http://creativecommons.org/publicdoma
in/zero/1.0/) applies to the data made available in this article, unless otherwisestated in a credit line to the data.”

E.2 Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome

The manuscript “Accurate circular consensus long-read sequencing improves variant de-tection and assembly of a human genome” [199] was published in Nature Biotechnology.Author information, author contributions, licence and copyright information are listed inthe subsections below.
E.2.1 Authors

Aaron M. Wenger*, Paul Peluso*, William J. Rowell, Pi-Chuan Chang, Richard J. Hall, Gre-gory T. Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D.Olson, Armin Töpfer, Michael Alonge, Medhat Mahmoud, Yufeng Qian, Chen-Shan Chin,Adam M. Phillippy, Michael C. Schatz, Gene Myers, Mark A. DePristo, Jue Ruan, TobiasMarschall, Fritz J. Sedlazeck, Justin M. Zook, Heng Li, Sergey Koren, Andrew Carroll, DavidR. Rank, Michael W. Hunkapiller
* joint first authors

https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1186/s13059-020-02158-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
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E.2.2 Contributions

Author contributions as stated in the manuscript [199]:
“A.M.W., D.R.R., M.W.H. and P.P. designed the study. D.R.R. and P.P. developedthe sample preparation protocol and performed sample preparation. D.R.R., P.P.and Y.Q. performed sequencing. A.C., A.K., C-S.C., M.A.D. and P.C. adaptedthe algorithms and implementation of DeepVariant. A.C., A.F., A.K., A.M.P.,A.M.W., A.T., C-S.C., D.R.R., F.J.S., G.M., G.T.C., H.L., J.E., J.M.Z., J.R., M.A.,M.A.D., M.C.S., M.M., N.D.O., P.C., P.P., R.J.H., S.K., T.M. and W.J.R. performedanalysis. A.C., A.M.P., C-S.C., D.R.R., F.J.S., J.M.Z., M.A.D., M.C.S. and M.W.H.supervised analysis. A.C., A.M.W., D.R.R., G.M., J.M.Z., P.P., R.J.H., S.K. andW.J.R. wrote the manuscript. See Supplementary Note for more detailed authorcontributions. All authors reviewed and approved the final manuscript.”
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“CCS Library Preparation and Sequencing: D.R.R., P.P., Y.Q.Quality Evaluation of CCS Reads: A.M.W., G.M., R.J.H.Increased Mappability of CCS Reads: R.J.H.Small Variant Detection in CCS Reads: A.C., A.K., C-S.C., F.J.S., J.M.Z., M.A.D.,N.D.O., P.C., W.J.R.Phasing Small Variants: J.E., T.M., W.J.R.Improving Small Variant Detection with Haplotype Phasing: A.C., A.K., M.A.D.,P.C., W.J.R.Structural Variant Detection in CCS Reads: A.M.W., A.T., F.J.S., H.L., M.C.S.,M.A., M.M.De Novo Assembly of CCS Reads: A.F., A.M.P., A.M.W., D.R.R., J.R., G.T.C., S.K.Coverage Requirements for Variant Calling and De Novo Assembly: A.C., A.K.,A.M.W., G.T.C., J.E., T.M., W.J.R.Revising and Expanding Genome in a Bottle Benchmarks: A.M.W., J.M.Z., N.D.O.”
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using single-cell strand sequencing and long reads

The manuscript “Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads” [145] was published in Nature Biotechnology. Authorinformation, author contributions, licence and copyright information are listed in the sub-sections below.
E.3.1 Authors

David Porubsky*, Peter Ebert*, Peter A. Audano, Mitchell R. Vollger, William T. Harvey,Pierre Marijon, Jana Ebler, Katherine M. Munson, Melanie Sorensen, Arvis Sulovari, MarinaHaukness, Maryam Ghareghani, Human Genome Structural Variation Consortium, PeterM. Lansdorp, Benedict Paten, Scott E. Devine, Ashley D. Sanders, Charles Lee, Mark J. P.Chaisson, Jan O. Korbel, Evan E. Eichler, Tobias Marschall
* joint first authors
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Author contributions as stated in the manuscript [145]:
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I wrote the pipeline to generate a multi-sample callset from haplotype-resolved assembliesand applied it to call variants from the assemblies generated for five samples.
E.3.3 Licence and copyright information

The manuscript was published under a Creative Commons Licence as stated in section“Rights and permissions” in the online version: https://www.nature.com/articles/s4

1587-020-0719-5:
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