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Abstract

Humans are diploid and carry two copies of their DNA, packaged into chromosomes. Other
species, including many plants, are polyploid and carry more than two copies of each chro-
mosome. Phasing describes the process of inferring the exact sequences of these chromoso-
mal copies, called haplotypes, based on sequencing data. While tools for accurately phasing
diploid genomes exist already, phasing polyploids is still challenging.

In the first part of this thesis, a new algorithm for polyploid phasing is introduced and
applied to sequencing data of a tetraploid potato genome. Next, it is demonstrated how the
new PacBio Circular Consensus Sequencing (CCS) technology simplifies alignment-based
phasing by providing accurate long reads that enable variant calling and phasing based on a
single sequencing technology, removing the necessity of an additional short-read dataset. In
addition, CCS reads enable reference-free de novo assembly of individual haplotypes on the
scale of chromosomes that include structural variation typically missed by alignment-based
phasing methods. Such haplotype sequences enable the construction of pangenome graphs
that provide a representation of the genetic diversity of the contained samples.

In the second part of this thesis, a new genotyping method, PanGenie, is presented, which
leverages a pangenome graph in order to infer genotypes of genetic variants from short-read
sequencing data, without requiring time consuming read alignments. It improves genotyp-
ing accuracy of structural variants over traditional alignment-based short-read genotyping
methods, which often perform worse due to poor reference alignments in these regions.

The third part of this thesis describes several applications of PanGenie. It presents results
of structural variant genotyping across a large cohort of human samples based on pangenome
representations generated by the HGSVC and HPRC consortia. Results show that PanGenie
is able to genotype structural variants previously inaccessible by other short-read based
methods, enabling the inclusion of such variants into Quantitative trait locus (QTL) analyses.
Furthermore, it is demonstrated how SNP genotypes produced by PanGenie across the cohort
samples can be used to detect carriers of rare inversions.
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Kurzfassung

Der Mensch ist diploid und tragt daher zwei Kopien seiner DNA, die in Chromosomen ver-
packt sind. Andere Arten, darunter viele Pflanzen, sind polyploid und tragen mehr als zwei
Kopien jedes Chromosoms. Haplotypisierung beschreibt die Rekonstruktion der Sequen-
zen dieser Kopien, die sogenannten Haplotypen, auf der Grundlage von Sequenzierdaten.
Waihrend bereits einige Methoden zur Haplotypisierung diploider Genome existieren, ist die
Haplotypisierung von polyploiden Organismen immer noch eine Herausforderung.

Im ersten Teil dieser Arbeit wird ein neuer Algorithmus zur Haplotypisierung von poly-
ploiden Genomen vorgestellt und auf Sequenzierdaten eines tetraploiden Kartoffelgenoms
angewendet. Anschlief3end wird gezeigt, dass die neue Circular Consensus Sequenziermeth-
ode (CCS) von PacBio die Alignment-basierte Haplotypisierung vereinfacht, da sie lange
Reads mit geringen Fehlerraten liefert, die sowohl zur Detektion von Varianten als auch
zur eigentlichen Haplotypisierung verwendet werden konnen. Dadurch ist kein zusatzlicher
Datensatz mit kurzen Reads mehr notwendig. Dariiber hinaus ermoéglichen CCS-Reads die
referenzfreie de novo Assemblierung individueller Haplotypen ganzer Chromosomen. Solche
Haplotypsequenzen schliel3en neben kurzen Varianten auch strukturelle Varianten ein, die
von Alignment-basierten Methoden meist nicht miteinbezogen werden. Somit ermoéglichen
sie die Konstruktion von Pangenom-Graphen, die eine detaillierte Beschreibung der genetis-
chen Variabilitdt einer Art darstellen.

Im zweiten Teil dieser Arbeit wird eine neue Genotypisierungsmethode namens Pan-
Genie vorgestellt, die einen Pangenom-Graphen nutzt, um Genotypen genetischer Vari-
anten aus kurzen Sequenzierreads abzuleiten, ohne dass zeitaufwandige Read-Alignments
berechnet werden miissen. PanGenie liefert genauere Genotypen fiir strukturelle Varianten
als bereits existierende Methoden fiir kurze Reads, die aufgrund von schlechten Referenz-
Alignments in den entsprechenden Regionen oft schlecht abschneiden.

Im dritten Teil dieser Arbeit werden verschiedene Anwendungen von PanGenie vorge-
stellt. Es werden Ergebnisse der Genotypisierung struktureller Varianten in einer gro3en
Kohorte menschlicher Genomen diskutiert, fiir die die Pangenom-Graphen der HGSVC- und
HPRC-Projekte verwendet wurden. Die Ergebnisse verdeutlichen, dass PanGenie in der
Lage ist, strukturelle Varianten zu genotypisieren, die zuvor mit anderen Methoden nicht
zuginglich waren. Dies ermoglicht es, solche Varianten in “Quantitative Trait Locus”-
Analysen einzubeziehen. Auferdem wird demonstriert, wie die von PanGenie iiber die Ko-
horte hinweg erzeugten SNP-Genotypen zur Erkennung von Trédgern seltener Inversionen
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verwendet werden konnen.
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Introduction

The deoxyribonucleic acid (DNA) is the carrier of hereditary information enabling the trans-
lation of genetic information that is necessary to maintain a living organism [8]. The dis-
covery of its molecular structure marked a milestone in genetics, revealing the mechanism
of DNA replication and gene expression [8, [197]. According to these findings, the DNA is
composed of a sequence of four different nucleotide bases, organized in a double helix struc-
ture. In eukaryotes, the DNA is packaged into chromosomes and individuals carry several
copies of their DNA, referred to as haplotypes. Humans are diploid and carry two copies
of each chromosome. Other species, including many plants, are polyploid and carry more
than two. Although these copies are very similar, they are not identical due to genetic vari-
ation present in the underlying DNA sequences. Various types of genetic variation exist and
such mutations can have an impact on the expression of proteins that are encoded in the
DNA. In this way, genetic variation can influence traits of an individual and in some cases
cause diseases, including cancer [2, [25} 31} 162, 118|133, 163} 168} (181}, 193} 198, [201].
Therefore, studying the exact DNA sequence of an individual is important in biological and
medical research. DNA sequencing is the key to analyzing the genome of an individual.
The basic idea is to fragment its DNA into many small pieces and determine the DNA se-
quence of each of them, resulting in sets of so-called sequencing reads. Several sequencing
technologies exist. They differ in terms of the length and accuracy of reads they produce.
While short-read sequencing technologies produce very accurate reads of up to 300 bases
in length, long-read sequencing technologies typically produce much longer (up to 100 kilo
bases), but less accurate reads. Long reads are especially useful for reconstructing the hap-
lotype sequences of an individual. Haplotype reconstruction is an active field of research
[59, 98, 100, 145} 154]. Knowing the haplotype sequences of an individual is beneficial in
many ways. It allows studying how combinations of variants impact phenotypes [100] and
provides insights into allele-specific DNA methylation and gene expression [186]]. Further-
more, haplotypes are very useful for the construction of pangenome graphs. Pangenomics is
a relatively new field of research with the goal of developing data structures to capture DNA
sequences and genetic variability of a species. A compact way of representing a pangenome
is through a graph structure, constructed from known haplotype sequences of individuals
of a species. In the long term, by providing a more accurate representation of complex ge-
nomic regions, such graphs offer the possibility of replacing the linear reference genome
and improving the various downstream analyses that are currently based upon it. This the-
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2 Introduction

sis introduces several approaches for genome inference, including a long-read based method
for haplotype reconstruction, a short-read based genotyping approach using a pangenome
graph structure, as well as applications of these methods to various sequencing data sets.

Outline

Chapter 1| gives a detailed introduction to the biological concepts relevant to this thesis, as
well as basic mathematical definitions that are underlying the proposed algorithms.

In Chapter |2, a new alignment-based algorithm for polyploid phasing using error-prone,
long sequencing reads is presented. It uses cluster editing to group reads by their similarity
and reconstructs the haplotypes based on a novel haplotype threading model. The focus is
on an application of this algorithm to sequencing data of the tetraploid potato. This work
was published in Genome Biology [166]. The second part of Chapter |2| presents the new
PacBio Circular Consensus Sequencing technology. The focus of this section is on phasing
of a diploid human sample based on these new reads. My contribution to this work was
published as part of two Nature Biotechnology publications [145, [199].

Chapter[3|presents a new approach to genotyping genetic variants based on a pangenome
graph and short-read sequencing data. The algorithm uses counts of allele specific k-mers
computed from the reads of the sample to be genotyped, in combination with known haplo-
type paths represented in the pangenome to genotype the sample. The experiments demon-
strate that leveraging the pangenome structure is especially helpful for accurately geno-
typing structural variants. The material presented in this chapter was published in Nature
Genetics [49].

Chapter [4 presents three applications of the genotyping algorithm introduced in Chapter
The first application is genotyping variants detected from 64 haplotype-resolved assem-
blies across 3,202 human samples based on data generated by the Human Genome Structural
Variation Consortium (HGSVC) [24] [46]. The results were published as part of a Science
publication [46]]. The second application presents an approach to detect rare inversions
in human samples based on the HGSVC genotypes, described as part of a Cell publication
[146]. The third application presents my contributions to the Human Pangenome Reference
Consortium (HPRC) [90} [113]. Based on a new pangenome reference containing 88 haplo-
types, 3,202 human samples were genotyped and genotypes of structural variants analyzed.
The work is currently under revision and publicly available as part of a preprint [113].
The publications underlying this thesis are listed below. First authorship is denoted by *.

« S. D. Schrinner*, R. Serra Mari*, J. Ebler*, M. Rautiainen, L. Seillier, J. J. Reimer,
B. Usadel, T. Marschall, and G. W. Klau. Haplotype threading: accurate polyploid
phasing from long reads. Genome Biology, 21(1):1-22, 2020

« A. M. Wenger*, P. Peluso*, W. J. Rowell, P.-C. Chang, R. J. Hall, G. T. Concepcion, J.
Ebler, A. Fungtammasan, A. Kolesnikov, N. D. Olson, et al. Accurate circular consensus



long-read sequencing improves variant detection and assembly of a human genome.
Nature Biotechnology, 37(10): 1155-1162, 2019

D. Porubsky*, P. Ebert*, P. A. Audano, M. R. Vollger, W. T. Harvey, P. Marijon, J.
Ebler, K. M. Munson, M. Sorensen, A. Sulovari, et al. Fully phased human genome
assembly without parental data using single-cell strand sequencing and long reads.
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Introduction




Chapter 1

Background

This chapter provides an overview of the biological concepts that are important in this thesis, as
well as the computational problems arising when analyzing biological data. It provides definitions
and explanations of the problems underlying Chapters 2| [3] and

1.1 Genomes

Genetic information is encoded in deoxyribonucleic acid (DNA) sequences. A DNA molecule
consists of two polynucleotide strands that are wound around the same axis so as to form a
double helix [8, [197]]. Each strand is composed of a sequence of nucleotides, which consist
of a sugar molecule (desoxyribose), a phosphate group and a base [8]. In order to form
a DNA strand, a sugar molecule of one nucleotide is linked to the phosphate group of the
next, forming a backbone of alternating sugar phosphate molecules [8]. The two strands of
a DNA molecule are connected by hydrogen bonds formed between pairs of bases [[8]. Four
bases can occur in a DNA sequence: adenine, thymine, guanine or cytosine. In order to form
hydrogen bonds, adenine can be paired with thymine only and guanine with cytosine [8].
As a consequence, the two strands forming a DNA molecule are complementary [8]. Figure
provides an illustration of a DNA molecule.

The order of nucleotides along the DNA strands encodes genetic information [8]. Certain
sections within the DNA strands, so-called protein-coding genes, provide instructions on the
construction of proteins. During gene expression, nucleotide sequences of genes are trans-
lated into amino acid sequences of the encoded proteins [8]. The genome of an organism
describes the complete set of information encoded in its DNA [8].

In eukaryotes, the DNA is typically packaged into dense structures, called chromosomes,
by means of specialized proteins. Human cells contain 22 autosomes and two sex chromo-
somes. Since humans are diploid organisms, each cell carries two copies of each autosome,
one inherited from the mother and the other inherited from the father [8]]. These two ver-
sions of a chromosome are homologous meaning their structure and shape are the same,
however, their DNA sequences are not identical as each chromosome carries genetic vari-



6 Background

I adenine
I thymine

[ guanine
== cytosine . . B) %
// // \‘ /
—— recombination —

Figure 1.1: DNA and recombination. a Double helix structure of the DNA. The two com-
plementary strands are connected by hydrogen bonds between the nucleotides. Adenine can
be paired with thymine only and cytosine with guanine. b Meiosis. After chromosomes have
replicated in order to consist of two identical sister chromatids, recombination takes place
during which segments are exchanged between homologous chromosomes. Subsequently,
four haploid gametes are formed in two steps of cell division.

ation (see Section [1.3). While the two sex chromosomes in females are homologous (two
X chromosomes), this is not the case for males, as they carry one X chromosome, inherited
from the mother, and one Y chromosome which is inherited from the father [8]].

The number of chromosomes differs across different species. While the total number of
chromosomes is 46 for humans (counting all copies), it is 48 for gorilla (Gorilla gorilla) and
chimpanzee (Pan troglodytes), 40 for mouse (Mus musculus) and 42 for rat (Mus norvegicus),
which are all diploid [36}140]. Other species are polyploid and carry more than two copies
of their homologous chromosomes. Examples are bread wheat (Triticum aestivum) which is
hexaploid and thus carries six homologous copies, or potato (Solanum tuberosum) which is
tetraploid (4 copies) [45, [196]].

1.2 Inheritance and recombination

During sexual reproduction, two gametes fuse in order to form a diploid organism. The pro-
cess in which gametes are formed in the parental individuals is called meiosis. The gamets
are haploid, which means that they contain only one copy of each chromosome. The first
step of meiosis is the replication of the genetic material. As a result, each chromosome con-
sists of two sister chromatids [|8]]. In the prophase of meiosis, each chromosome pairs with
its homologous copy resulting in a structure that is called bivalent [8]. In this phase, recom-
bination takes place between the chromosomes, which means that fragments are exchanged
between the two homologous copies, such that the resulting chromosomes are combinations
of paternal and maternal DNA [8]. Next, the cell divides to form two haploid daughter cells,
each carrying one copy of each chromosome [8]. However, each of the chromosomes still
consists of two sister chromatids. In a second cell division step, the sister chromatids are
separated and again distributed to two daughter cells [8]. In this way, four haploid gametes
are formed [8]]. Figure provides an illustration of meiosis. Fusion of a maternal and
paternal gamete leads to a diploid organism, inheriting half of its chromosomes from the
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Figure 1.2: Genetic variants. Overview of different types of genetic variations. a Single
Nucleotide Polymorphisms (SNPs) are mutations of a single base pair. b,c Segments deleted
from the sequence or inserted into the sequence, are called deletions and insertions, respec-
tively. d In case of an inversion, the sequence of a segment is inverted. e, f A segment is
duplicated and occurs more than once in the sequence. In case of a tandem duplication, the
copies are located adjacent to the segment.

mother and the other half from its father.

1.3 Genetic variation

Due to genetic variants, the DNA sequences of different individuals are not completely iden-
tical, even if they belong to the same species. Genetic variation defines genetic diversity in
populations, but can also cause genetic diseases. Different types of genetic variants exist.
Single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) are alter-
ations of single bases in the nucleotide sequences of an individual (Figure [I.2p). While the
term “SNP” is sometimes defined to refer to germline events that are present in at least 1% of
a population, many authors do not apply this threshold [2, 88}, [107]. Early uses of the term
“SNV” often focused on somatic events [43] |66, [96, [107]. In this thesis, “SNP” will be used
to refer to any single nucleotide germline substitution, regardless of its allele frequency.

SNPs are the most common type of variants. In a human sample, on average more than
every 1000th genomic position carries a SNP. Some SNPs have been shown to be associated
with diseases, including cancer. Specific SNPs located in microRNA binding sides can influ-
ence the susceptibility of humans to get certain cancers [133]]. Another example is migraine,
which is associated with specific SNPs located in multiple genes, including the TRPMS8 or the
LRP1 gene [25]. Furthermore, SNPs can be related to specific traits. Certain SNPs in human
5-HT-2A gene for example, were shown to be associated with anger- and aggression-related
traits, with some being protective against suicidal behaviour [62].

Besides alternations of single bases, parts of the DNA sequence of an individual can be
deleted, or additional sequence can be inserted into the DNA, resulting in deletions and in-
sertions, respectively (Figure[1.2p,c). Depending on their length, such variants are typically
classified as indels if the inserted or deleted sequence is less than 50 base pairs long. Longer
variants (> 50 bp) are called structural variants (SVs), and, besides insertions and deletions,
also include other variant types, such as inversions or duplications. In case of an inversion,
a segment in the genome is inverted (Figure [1.2[d). In case of a duplication, several copies
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of a segment are present in the genomic sequence of an individual. Repeated segments can
either be non-adjacent (interspersed duplication, Figure[1.2) or they are inserted adjacent
to the original segment (tandem duplication, Figure [1.2).

Besides SNPs, other types of genetic variants can have an influence on traits or diseases
of individuals. An indel in the human CFTR gene for example, has been shown to cause
cystic fibrosis [31]]. More than 99.9% of the genetic variation in a human genome consists
of SNPs and indels [2]. Due to their larger sizes, structural variants, however, affect more
bases and are thus a major contributor to phenotypic variation and diseases of individuals
[2,[181,198]. Interpreting the functional consequences of SVs is more difficult than for other
types of genetic variants, since they often occur in more complex, repetitive genomic regions
[198]. Structural variants have been linked to various traits and diseases, like attention-
deficit hyperactivity [201], autism [163,168] or schizophrenia [118}/193]], and play a major
role in many cancers [112].

In diploid or polyploid individuals, either of the chromosomal copies can carry different
genetic variants. The different versions of sequence segments that can be present at a variant
locus are referred to as alleles. The sequence of alleles located on the same chromosomal
copy is called haplotype [143].

1.4 DNA sequencing

Sequencing aims at determining the nucleotide sequence of an individual and is thus cru-
cial for studying an individual’s genome and the genetic variation it carries. Typically, the
genome is fragmented into many small pieces prior to sequencing and sequences of each
of these pieces are determined, resulting in so-called sequencing reads. These reads then
provide the basis for downstream analyses, such as alignment to a reference genome, geno-
typing genetic variants, phasing or genome assembly.

The most relevant early sequencing methods were Sanger dideoxy synthesis and the
Maxam-Gilbert chemical cleavage method [121, 164, [165]. The Maxam-Gilbert method
is based on base-specific cleavages of radioactively labeled DNA segments [177]]. Sanger
dideoxy synthesis uses chain terminating nucleotides which, starting from a labeled primer,
are incorporated into a newly formed strand by a polymerase and prevent sequence elon-
gation [122] [177]. For each of the four bases, both methods produce labeled fragments of
different length. Both methods then separate these fragments by size using electrophoresis
[173]. By exposure to X-ray film, the sequence can be determined based on the ordering
of fragments [173]]. Although both sequencing methods have been improved further, the
method by Sanger became the sequencing standard [177]]. Instead of radioactive labeling
of segments, fluorescent dyes were introduced which enabled sequence detection based on
laser-induced fluorescent emission instead of using X-rays [122]]. Sanger sequencing is still
a useful method today, especially in scenarios where high throughput is not required [173].
However, sequencing larger genomes, like the human genome, requires a much more effi-
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Figure 1.3: Illumina sequencing. a The DNA is randomly fragmented into short, single-
stranded segments and adapters are added to each end of the resulting fragments. b Frag-
ments are loaded into a flow cell with surface-bound oligonucleotides. Fragments bind and
are amplified by PCR resulting in distinct clusters. ¢ Fluorescently labeled nucleotides are
used by polymerases to synthesize complementary strands. After a new base was incorpo-
rated into each strand, the flow cell is imaged. In this way, the sequence of each fragment
can be determined step by step.

cient and scalable approach that offers high throughput.

1.4.1 Massively parallel short-read sequencing

Most short-read sequencing approaches are based on the concept of Sequencing by Synthesis
(SBS). The underlying ideas are similar to Sanger sequencing, but steps are parallelized in
order to generate higher throughput [122]. Most methods no longer use dideoxy termina-
tors so that chain elongation proceeds while imaging the nucleotides incorporated [177].
Another difference to the original Sanger method is that most methods based on SBS only
achieve shortened read fragments (300-500 bp) [177]]. One of the most popular technologies
is Illumina sequencing. The first step is library preparation [81]. The DNA is randomly frag-
mented into short, single stranded segments [81]]. After adapter sequences ligated on the 5’
and 3’ ends, each resulting fragment is amplified using PCR [81]] (Figure[I.3|A). The second
step is cluster generation. The library is loaded into a flow cell which contains surface-
bound oligonucleotides that are complementary to the adapter sequences [81]]. Fragments
are captured on the surface and amplified using bridge amplification, resulting in distinct,
clonal clusters consisting of around 1,000 copies of each fragment [81}, [177] (Figure ).
The next step is to sequence the fragments based on Sequencing by Synthesis. A polymerase
synthesizes complementary strands using fluorescently labeled nucleotides (dNTPs) [81].
Incorporation of each dNTP into the newly synthesized strands produces a light signal. Each
of the four dNTPs emits a different wavelength which enables to identify which base was
added to a cluster in each step. The flow cell is imaged after each newly added base. In
this way, the sequences of each distinct cluster can be determined step by step [81]] (Figure
[1.3[C). The resulting read sequences can then be used in downstream analyses, such as read
alignment or k-mer counting.
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Figure 1.4: Single molecule real time sequencing. a A SMRTbell molecule consisting of
a DNA fragment with hairpin adapters added to both ends. b The SMRTbell is loaded into
a ZMW, which has a DNA polymerase bound at the bottom. ¢ The sequence of the DNA
fragment is determined by Sequencing by Synthesis. Fluorescently labeled nucleotides are
incorporated into the strand by the polymerase and emit a light signal. d For circular con-
sensus sequencing, the fragment is sequenced multiple times, producing multiple reads for
the same segment. An accurate consensus sequence is formed which eliminates sequencing
errors contained in each individual read.

I

1.4.2 Single molecule fluorescent sequencing

Pacific Biosciences (PacBio) developed a sequencing technology based on single molecule
real time sequencing (SMRT). In contrast to Illumina sequencing, PacBio sequencing can
generate reads of up to 50 kbp in length [177]]. In order to sequence DNA, fragments are pre-
pared by ligating hairpin adapters to both ends in order to create a circular, double-stranded
molecule which is called SMRTbell [157] (Figure [1.4p). SMRTbells are then loaded into a
SMRTcell, a chip containing up to 1 million sequencing units called Zero Mode Waveguides
(ZMW) [157, 177]. In each ZMW, a polymerase is bound at the bottom which binds the
hairpin adapters and replicates the DNA fragment [177]] (Figure ). Fluorescently labeled
nucleotides are provided for chain elongation and enable identifying the bases incorporated
into the strand by the polymerase in each step [157] (Figure [1.4c). From the sequence of
light signals emitted, the sequence of the underlying fragments can be determined in this
way, resulting in continuous long reads (CLR). Compared to Illumina sequencing, PacBio
CLR sequencing suffers from a much higher sequencing error rate (see Section [1.4.4). How-
ever, PacBio recently presented a method to generate highly accurate long reads by using
Circular Consensus Sequencing (CCS) [199]. The circular nature of the SMRTbell molecule
enables the polymerase to read the same fragment more than once, producing several reads
of the same template segment. Afterwards, a single consensus sequence can be formed from
these reads (Figure ). This allows to eliminate the high rate of sequencing errors within
each individual read and thus results in a highly accurate, long-read sequence.

1.4.3 Nanopore sequencing

Nanopore-based sequencing of DNA, commercialized by Oxford Nanopore Technologies,
produces sequencing reads reaching lengths over 100 kbp that are much longer than the
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Figure 1.5: Nanopore sequencing. A DNA fragment passes through a nanopore embedded
in an electrically resistant membrane. A detector measures the change of the current flowing
through the pore. Based on characteristic changes of the current induced by each nucleotide,
the sequence of the molecule can be determined.

ones produced by Illumina or PacBio [114]. Nanopore sequencing uses protein nanopores
that are embedded in an electrically resistant membrane in order to determine the sequence
of long DNA fragments [177]. A detector is connected to each nanopore and measures the
electric current flowing through the pore [139]. DNA fragments pass the nanopores elec-
trophoretically. Each base passing through the pore causes a change in current, generating
a characteristic pattern which is known as “squiggle” [139] (Figure[1.5). These fluctuations
are then processed into raw reads by a specific software and stored in FAST5 format [139].
A basecalling algorithm based on neural networks is used subsequently in order to decode
the nucleotide sequences of the stored reads and converts them to FASTQ format [[139].

1.4.4 Comparison of sequencing technologies

Depending on the sequencing machine used, Illumina sequencing produces paired-end reads
of 150-300 bp in length [87]]. These short reads are highly accurate, with error rates < 0.1%
[83-86]. Due to their low error rates, short reads are well suited for detecting or genotyping
SNPs and small indels. However, they are less useful for tasks that require longer sequence
spans [192]. Especially repetitive genomic regions are difficult to access by these reads, as
their short read length makes it hard to determine from which location of the genome they
originated from. PacBio and Oxford Nanopore sequencing overcome these limitations since
they produce much longer reads. However, they suffer from much higher error rates. PacBio
CLR reads are typically between 5-60 kbp in length, with error rates between 8-15% [114),
157]]. Nanopore sequencing can produce even longer reads (10-100 kbp, Ultra-long ONT
reads reach lengths > 100 kbp) [114]. Read accuracies are on average 87-98% [114]. In
contrast to short reads, long sequencing reads enable accessing more complex and repetitive
regions of the genome. Due to their length, they can often span such regions, which makes
it easier to determine their precise location when aligning them to a reference genome
[114,157]. This property makes long reads valuable for many applications, including calling
or genotyping of structural variants, haplotype phasing or genome assembly [199]. PacBio
CCS reads combine characteristics of short and long reads. Their read length is typically



12 Background

between 10-30 kbp in length [114], while having an accuracy of > 99% (99.8% on average)
[199]. Wenger et al. [199] compared read accuracy and mappability of PacBio CCS reads,
[Nlumina reads and PacBio CLR data for human sample HG002 (NA24385). The longer read
length of CCS reads increased their mappability. While 97.5% of reference genome version
GRCh37 was mappable by CCS reads (excluding gap regions), Illumina reads could map to
only 94.8% of the reference [199]]. This enables to access medically relevant genes and other
complex regions like HLA by CCS reads, which previously were not fully accessible by short
reads [199]. In comparison to short reads, variant calling performance for small insertions
and deletions (< 50 bp) is worse for PacBio CLR and Oxford Nanopore reads [48| 144}, [171].
PacBio CCS reads, however, enable accurate small variant detection. While the accuracy for
indel detection is comparable to Illumina reads (F-scores are 99.58% for CCS and 99.59%
for Illumina data at coverage 35x for HG003) [171]], the accuracy of detecting SNPs with
CCS reads is even better than for Illumina with the recently developed PEPPER-Margin-
DeepVariant pipeline (F-scores are 99.90% for CCS and 99.63% for Illumina at coverage
35x for HG003) [171]. Long reads are also favorable for structural variant detection. A
comparison based on different datasets for human sample HG0OO2 resulted in F-scores of
around 96% for CCS reads, 94.6% for CLR data and only around 67.5% for Illumina [199].

1.5 Sequence alignment

A starting point for many downstream analyses are alignments of sequences to a reference
genome. A reference genome is a DNA sequence used as a representative of the genome
of a species, sometimes assembled from data of multiple individuals. Alignment aims at
identifying the precise location in the genome from which a sequence originated. Due to
genetic variants that are present in different individuals of the same species, the sequence
of a query and the respective location in the reference genome are not always identical.
Additionally, sequencing errors contained in reads or sequence segments resulting from DNA
assembly (so-called contigs) lead to differences. Therefore, alignment requires approximate
string matching algorithms in order to determine the location of a sequence in the reference
genome. Many alignment methods are based on the Needleman-Wunsch algorithm [132]
or the Smith-Waterman algorithm [178]]. Sequence alignment is a powerful tool to compare
DNA sequences. One example is aligning sequencing reads or assembly contigs to a reference
genome. Multiple sequence alignment aims at computing alignments of more than two
sequences, allowing to identify similarities and differences among multiple queries, even if
reference genomes are not available.

1.6 Genotyping

Each chromosomal copy of an individual can carry genetic variants. Given a variant locus
and possible allele sequences for this variant, genotyping describes the process of determin-
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Figure 1.6: Genotyping. a Alignnment-based genotyping methods use sequence alignments
spanning or aligning close to a variant locus in order to infer the genotype. Reads marked by
a red circle carry the alternative allele, while the other reads carry the reference allele. This
example illustrates a heterozygous (“0/1”) genotype. b K-mer-based genotyping methods
count allele-specific k-mers in the reads and infer genotypes based on the observed counts.
The counts for the blue k-mer (specific to the reference allele) as well as the red k-mer
(alternative allele) are the same, indicating a heterozygous genotype.

ing the most likely combination of alleles that a specific individual carries at the respective
location in its genome. A common use case of genotyping is to determine genotypes of
an individual for variants previously detected in other individuals. Genotyping is different
from variant calling. While detection algorithms aim at finding locations of (possibly novel)
genetic variants in the genome of an individual, genotyping methods focus on determining
genotypes given a set of known alleles and typically cannot discover novel variation them-
selves. In this thesis, the same notation as used in VCF format is adapted (see Section
for details). Genotypes are represented as lists of alleles, separated by a “/”. Typically,
one refers to the reference allele as “0” and uses higher numbers to enumerate possible al-
ternative alleles (see Section [1.11.1). In case of a biallelic locus in a diploid organism for
example, the three possible genotypes are “0/0” (homozygous for reference allele), “0/1”
(heterozygous) and “1/1” (homozygous for alternative allele).

In Chapter 3| of this thesis, a new approach to genotyping is presented which is based on
short reads. This section here provides an overview of different computational approaches to
genotyping from short and long sequencing data. The genotyping methods presented can be
classified as either alignment-based or k-mer-based methods. Alignment-based approaches
use alignments of sequencing reads to a linear reference genome or a graph structure repre-
senting possible reference and alternative alleles in order to infer genotypes (Figure [I.6p).
K-mer-based approaches work with the raw reads and count allele-specific k-mers in the
reads [49]]. K-mers are short sequences of a fixed length &, whose counts in the reads pro-
vide evidence for the absence or presence of certain variant alleles (Figure [1.6p).

1.6.1 Short-read based genotyping

Various genotyping methods have been developed for short-read data. Many of them are
based on alignments of short reads to a linear reference genome. GATK is a widely used
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tool for detecting as well as genotyping SNPs and indels from short reads [39]. Its geno-
typing method is based on a Bayesian algorithm which computes likelihoods for all possible
genotypes and can consider multiple samples simultaneously [39]. FreeBayes is a variant
detection tool for SNPs and indels leveraging local haplotype information [60]. It uses a
Bayesian model to compute genotype likelihoods based on the aligned sequencing reads
and a priori expectations about the allele distributions within a population [60]. Platypus
is another local haplotype-based small variant caller [158]. It uses local de novo assembly
in order to increase the accuracy of variant detection and computes genotype likelihoods
based on an expectation-maximization algorithm [158]]. Besides methods that focus on small
variants, several approaches to genotyping structural variants based on aligned short reads
have been proposed. SVTyper is based on a maximum-likelihood Bayesian classification
algorithm which infers SV genotypes from split-read and paired-end alignments [28]. DIG-
TYPER is a genotyping tool I developed previously. It uses maximume-likelihood estimation
in order to compute genotype likelihoods for inversions and tandem duplications [47]. It
considers the orientation of paired-end reads, the insert size and split-read alignments in
order to find support for reference and alternative alleles [47].

Instead of using alignments to a linear reference genome, more recent genotyping ap-
proaches are based on graph structures that include possible alternative alleles in order to
improve genotyping accuracy. This is especially useful for structural variants, since short
reads often fail to properly align in the respective genomic regions, resulting in biased geno-
type estimates [26} [75, [175]]. GraphTyper [52} 53] constructs a pangenome representation
which includes alternative sequences and re-aligns sequencing reads to this graph. Geno-
types for structural variants are computed by analyzing reads that align to SV breakpoints as
well as alignment coverages [53]. Similarly, the SV genotyper Paragraph constructs a graph
encoding reference and alternative alleles of input variants and performs local re-alignment
of reads to this graph [26]. Genotype likelihoods are computed based on the resulting
alignments [26]. Recently, genotyping of structural variants was demonstrated with the VG
toolkit [75}, 176]. Unlike other graph-based methods that locally re-align short reads previ-
ously mapped to a linear reference, short reads can be directly aligned to a pangenome graph
in an efficient manner using the latest mapper Giraffe [176]. Genotypes are then computed
based on the resulting alignments. While Giraffe was demonstrated to be fast on rather
simple pangenome graphs excluding complex regions, we observed very high runtimes for
more complex graphs (see Section [3.5.4).

Aligning reads to reference genomes or graph structures is time consuming (Chapter (3).
Therefore, alternative approaches are k-mer-based. They use the raw, unaligned sequencing
data in order to count allele-specific k-mers in the reads. Cortex, a very early graph-based
tool, constructs a colored de Bruijn graph that can represent genomes of multiple samples.
Genotype likelihoods are computed based on the structure of bubbles in the graph [89].
Dilthey et al. used a graph-based approach for genotyping the MHC region based on k-mer
information. LAVA uses approximate k-mer matching in order to genotype known SNP loci
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[172]. Dolle et al. introduced a data structure based on the Burrows-Wheeler transform
(BWT) that can store sequencing data of a population. It can be used for fast genotyping
of SNPs and indels by determining read support for allele-specific k-mer sequences [44].
BayesTyper is a k-mer-based tool for genotyping a wide range of genetic variants, including
structural variants. Given variants to be genotyped, it constructs a graph representing ref-
erence and alternative alleles and computes genotype likelihoods based on counting allele
specific k-mers in the sequencing reads of a sample [175]]. While k-mer-based approaches
are much faster than alignment-based methods for genotyping, they can struggle in more
complex and repetitive regions of the genome that lack unique k-mers [49] (Chapter [3)).

1.6.2 Long-read based genotyping

Besides methods that rely on short sequencing reads for genotyping, several approaches
based on long reads exist. Genotyping SNPs and indels accurately from long reads is chal-
lenging due to the higher error rates of PacBio CLR and Oxford Nanopore reads (Section
[1.4). However, due to their length, long reads provide access to more difficult regions that
are otherwise inaccessible by short reads, enabling small variant detection also in such re-
gions [48]]. WhatsHap’s genotyping algorithm is based on my previous work on genotyping.
It formulates the model underlying the original WhatsHap phasing algorithm [143]] (Section
in terms of a Hidden Markov Model in order to genotype SNPs and indels from long
reads [48]. The Forward-Backward algorithm is used to compute genotype-likelihoods in a
haplotype-aware manner by using the linkage information between heterozygous variants
provided by the long reads in order to reduce the impact of sequencing errors [48]. Long-
shot can call and genotype SNPs and indels from noisy, long reads [50]. It uses a similar
idea as WhatsHap and computes haplotype-aware genotypes based on performing haplotype
assembly using HapCUT2 [50]. Furthermore, learning-based approaches were introduced
in order to call and genotype SNPs and indels. Clair and DeepVariant can perform small
variant detection and genotyping from noisy long reads using deep neural networks trained
on read pileup data [117, [144]. NanoCaller and PEPPER-Margin-DeepVariant extend deep
learning-based models by incorporating haplotype information for small variant detection
[7,171].

For structural variants, several tools exist which focus on the detection of structural vari-
ants from aligned long-read data, but also provide genotypes for their variant predictions
[74, 191, [169]. SVs are typically identified based on signatures in the alignments, such as
split-reads or gaps, and genotypes are inferred from the fraction of reads supporting ref-
erence or alternative alleles [74, [91, [169]. Several tools were developed specifically for
genotyping known structural variant alleles in a new sample based on long reads. VaPoR
genotypes known SVs by comparing read k-mers to the k-mer spectrum observed in ref-
erence and alternative alleles of a variant [205]. LRCaller genotypes SVs from Nanopore
reads based on genotyping models using reference alignments and realignment to alterna-
tive alleles [13]]. SV Jedi genotypes SVs from long reads based on alignments to reference
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Figure 1.7: Haplotype reconstruction. a Read-based phasing. Reads are aligned to a
reference genome, variants are genotyped and heterozygous variants are phased in order to
determine which haplotype carries which allele (“0” = reference allele, “1” = alternative
allele). b Haplotype-resolved assembly. Sequencing reads are clustered by haplotype and
an assembly sequence for each haplotype is computed.

and alternative sequences of the input alleles [103]. Alignments are analyzed in order to
determine the presence or absence of alleles in the data [103].

1.7 Phasing

Haplotype phasing aims at reconstructing the chromosomal copies of an individual based
on genotype information and/or sequencing data.

Alignment-based phasing approaches use reads spanning at least two heterozygous vari-
ant locations in order to determine which alleles reside on the same haplotypes (Figure
[1.7R). Such methods require reads aligned to a linear reference genome, as well as geno-
typed SNPs and indels. WhatsHap solves the minimum error correction problem (MEC) in
order to partition aligned, long sequencing reads based on variant alleles they cover and
reconstruct phased haplotype blocks from these read sets [143]. The HapCut algorithm
constructs graphs from sequencing reads and computes max-cuts in these graphs in order to
group reads by haplotype [10}/51]]. HapCompass creates a graph based on sequencing reads
and variants, and computes haplotypes based on spanning-trees [5]. Long reads are prefer-
able for alignment-based phasing, since the distance between adjacent heterozygous variant
positions often exceeds the length of short reads [204]. One limitation of alignment-based
phasing is that most methods exclude structural variants, as high quality read alignments
are often missing in regions where the genome of an individual is too different from the
reference genome [204]. Also, even long reads might not cover adjacent variant positions.
Therefore, alignment-based phasing usually leads to fragmented haplotype blocks and fails
to provide haplotypes on the scale of a chromosome [204].

Population-based phasing methods use genotype data of large cohorts in order to re-
construct the haplotypes of an individual [19} [38, 58, [116]. The underlying idea is that
individuals share haplotype segments due to common ancestry [58]. However, in contrast
to read-based methods, population-based phasing is less powerful for rare variants and fails
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for variants missing from the used reference panels [58].

The recent advances in long-read sequencing lead to improvements in methods for genome
assembly and enable haplotype-resolved de novo assembly of individuals. Assembly-based
phasing can provide haplotype sequences on the scale of a whole chromosome and over-
comes many limitations of alignment-based and population-based phasing (see Section[1.8).

1.7.1 Evaluating phasing results

Several metrics are typically used to evaluate the quality of haplotype predictions produced
by a tool, and in order to compare these phasing results to ground truth haplotypes. These
metrics are used in Chapter [2|and are thus introduced in detail here.

Phase block N50

Especially read-based phasing tools are usually not able to generate a single, chromosome-
scale haplotype prediction, but rather split their haplotype predictions into several phased
blocks. Variants within the same block are phased relative to each other, but it remains un-
clear whether variant alleles from different phased blocks reside on the same haplotype or
not. Cutting the phasing into several blocks is often necessary because there is not enough
evidence in the data to connect phasing information between consecutive variants, for ex-
ample because no read alignment exists that connects two variants [166].

The N50 metric is often used to evaluate the contiguity of phasing results [24}, 166} 199],
as well as the quality of genome assemblies [46, (59} 100, [145]. It is defined as the length of
the shortest block such that 50% of the entire sequence length is contained in blocks with
lengths longer or equal to this size [22]. More specifically, in order to compute the N50 of a
set of phased blocks, one sorts them in descending order and, starting from the largest block,
adds up block lengths until 50% of the total length of the underlying genomic sequence is
reached. The length of the block at which the 50% threshold is reached is defined as the
N50 value.

Switch errors and Hamming errors

The material presented in this section is re-used from my joint publication with Sven Schrinner and
Rebecca Serra Mari on polyploid phasing, published in Genome Biology [166].

The switch error rate is a commonly used metric for evaluating phasing results [58, [143].
Given haplotype predictions and ground truth haplotypes, the switch error rate counts
how many times the assignment between predicted and true haplotype blocks needs to be
switched so as to reconstruct the true haplotypes from the predicted sequences. This metric
has been mainly used in order to evaluate phasings for diploid individuals, but has also been
extended to the polyploid case [12].
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true / predicted haplotypes mappings

o m
h, 00 h* 01 h,[0] — h*[0]  hy[1] — hy*[1]
h, 10 h,* 10 h,[01 — h,*[0]  h,[1] — h*[1] ds (M, my) =2
h; 11 hs" 10 h[0] — h¥[0]  hy[1] — h;*[1]

Figure 1.8: Computation of switch errors in polyploid setting. Shown are three ground
truth haplotypes h; and corresponding haplotype predictions &} for two variant positions.
On the right, the corresponding mappings 7y and m; are shown. The mapping changes for
hi and h3 between positions 0 and 1 as a result of a haplotype switch between the two
haplotypes. Therefore, dg(my, 1) = 2.

For ploidy k, let h = {h, ..., hi} be the set of ground truth haplotype sequences and h* =
{h7,..., h}} the predicted haplotype sequences. Let j be the number of variant positions and
I1; be defined as the set of one-to-one mappings between the true and predicted haplotypes
h and h*, such that for each 7 € II; it holds that h;[j] = hr) [7] for all haplotypes h;. The
switch error rate is defined as:

m—1
) 1
SER = min m Zz; ds (71'1‘7 7Ti+l)

(71 yeeesTm ) ETL X oo X Ty

where m is the number of variants and dg (7;, m;+1) the number of different mappings be-
tween 7; and 7; ;. See Figure for an example on how to compute dg (m;, m;11). If the
genotype of h* is not equal to the genotype of h for all variant positions, the set IT; x ... xII,,
is empty and the switch error rate cannot be computed. When computing SER, we therefore
only take those positions into consideration for which the genotypes of true and predicted
haplotypes are the same.

Another metric that can be used to evaluate phasing results is the Hamming error rate.
It is defined as:

oESk

k
1 Z «
HE = min % £ dH(hZ, U(Z))

Here, Sy represents the permutation group on {1,...,k}. dy() is the Hamming distance
between two sequences.

As we noted in our publication [166]], the Hamming error rate is more sensitive than
the switch error rate. A single switch error in the middle of a haplotype block can lead to a
maximal hamming error rate of 50%.

1.8 Genome assembly

Genome sequencing (Section [1.4) produces a high number of unordered sequencing reads
each containing sequence information of a fragment of the individuals genome. Genome
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assembly aims at assembling these sequence fragments in order to reconstruct the complete
nucleotide sequence of an individual.

In 2001, the first drafts of a human genome sequence were published by the Human
Genome Project and Celera Genomics [88, [191]] marking a milestone in the field of ge-
nomics. However, the initial drafts were still incomplete. Since then, the sequence was
continually improved, but only recently researchers were able to fill the remaining 8% of
the human genome missing from previous versions [136]. The Telomere-to-Telomere (T2T)
Consortium presented a first complete assembly of the human genome, providing gapless
consensus sequences for all autosomes and chromosome X [136]]. The advances in long-read
sequencing made these recent breakthroughs possible, since the reads cover longer sequence
spans which are necessary for large-scale genome assembly.

The latest human genome sequence is based on the homozygous CHM13hTERT cell line
and is thus not yet haplotype-resolved [184]]. Haplotype-resolved assembly attempts to as-
semble haplotypes separately instead of generating a single consensus sequence representing
the genome of an individual (Figure [2.6p). Several approaches have been introduced that
attempt to globally separate long-read data by haplotype prior to assembly, for example
by additionally using parental data [98]. However, parental data is not always available.
Other approaches combine long-read data with Hi-C data in order to obtain phased assem-
blies [59, [100], but phasing on scale of a chromosome remains problematic.

The PGAS pipeline aims to overcome these limitations by making use of Strand-seq data
in order to produce chromosome-scale, phased assemblies of human genomes without using
a reference genome [145]. It was used in order to generate assemblies for studies described
in detail in Chapters (3| and |4, and will thus be briefly described here. In order to produce
haplotype-resolved assemblies, the first step of the PGAS pipeline is to generate haplotype-
unaware assemblies from long-read data [145]. The resulting contigs are then clustered us-
ing Strand-seq data, such that ideally, each resulting cluster corresponds to a chromosome
[145]. Next, Strand-seq data and long reads are aligned to the clustered contigs in order
to call SNPs, and SNPs are then phased in order to produce chromosome-scale haplotypes
[145]. This phasing information is used in order to separate the long reads by haplotype
[145]. Finally, a de novo assembly is computed for each haplotype based on the separated
reads [145]]. PGAS was demonstrated to produce high quality and highly contiguous assem-
blies, which are valuable for many downstream analyses and enable accurate phased variant
detection, even for structural variants [46] [145].

Very recently, another method for haplotype-resolved assembly, Verkko, was introduced
[154]. It improves and automates the assembly pipeline that was used by the T2T consor-
tium in order to generate the CHM13 genome assembly. Verkko combines PacBio CCS data
and Ultra-long Nanopore reads to compute complete assemblies of diploid genomes using
an iterative, graph-based approach [154]. Applied to human sample HG002, Verkko assem-
bled 20 out of 46 diploid chromosomes without any gaps with an accuracy of 99.9997%
[154].
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a c
[AAATGCCAGTTGGAC|  [AAATGCCAGTTGGAC
'AAATGAGTTGGAC| [AAATG)- -AGTTGGAC| — [AAATG
IAAATGAGCTGGAC| [AAATG- -AGCTGGAC]
unaligned sequences multiple sequence alignment sequence graph

b AATGC|{ATGCCI{TGCCA[{GCCAGI{CCAGT -{CAGTTIIAGTTG
AAATG
AATGA[{ATGAG{TGAGT [~{GAGTT]|

TGAGC 1 GAGCT{AGCTG|{GCTGG|—~{CTGGA|
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Figure 1.9: Pangenome representations. Overview of possible data structures used to rep-
resent a pangenome. a Unaligned collection of genomes. b De Bruijn graph representation.
Each node corresponds to a k-mer sequence observed in the input genomes (k = 5). Two
nodes are connected if they overlap by £ — 1 bases. ¢ Sequence graphs can be constructed
from multiple sequence alignments of known genomes/haplotypes. Nodes corresponds to
sequence segments, and edges connect nodes in a way that the resulting sequence reflects
the input sequences.

1.9 Pangenomics

With advances in sequencing technologies and the development of methods for genome as-
sembly, the number of sequenced and assembled genomes is steadily increasing [54, [187].
Typically, linear reference genomes are used in order to analyze sequencing data, e.g. by
aligning the reads to it (Section [1.5). However, using linear reference genomes is prob-
lematic, especially when analyzing structural variants, due to the absence of alternative
sequences from the reference genome [187]]. This can cause a reference bias when aligning
reads, which can lead to errors in downstream analyses [187]. Also, in a linear reference
based setting, multiple genomes can only be compared indirectly via their relationship to
the reference genome [54, [187]]. Pangenomics aims at solving these issues by replacing the
linear reference genome by structures that capture the full spectrum of sequence diversity
inherent in the analyzed genomes [187]. The Computational Pan-Genomics Consortium de-
fines the term pangenome to refer to “any collection of genomic sequences to be analyzed
jointly or to be used as a reference” [187]]. The aim is to provide a data structure that allows
direct and unbiased comparisons of genomes [54].

Ideally, a pangenome should have the following properties. It should be constructable
from different data types, such as sequencing reads, variants or assemblies, and should be
easy to be updated as new datasets are available [187]. It should provide a coordinate
system, positional access to genomic regions or variants and enable searching for specific
sequences [187]]. Also, the data structure should be fast and memory efficient [187].

Several data structures were proposed for representing pangenomes. In the simplest case,
a collection of individual, unaligned genomic sequences can be interpreted as a pangenome
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[54, 187] (Figure[1.9n). Furthermore, a pangenome can be constructed from a linear refer-
ence genome and variant alleles by inserting alternative alleles into the reference at their
respective coordinates, resulting in a directed and acyclic graph [54]. The variant posi-
tions are represented in terms of bubble structures in these graphs [54]. Other approaches
construct pangenomes based on de Bruijn graphs [77, 189, (120, [127]. In a de Bruijn graph,
nodes correspond to k-mers and edges connect nodes if k-mers overlap by & — 1 bases [54]
(Figure [1.9b). Alternative approaches construct sequence graphs from multiple sequence
alignments of assembled genomes or haplotypes [9, |61, |67, 104, [126]. In these graphs,
nodes correspond to sequence fragments and edges connect nodes such that the resulting
sequence reflects the genomic sequences from which the graph was constructed [54] (Figure
[1.9c). Walks in these graphs correspond to recombinations of the input genomes and bubble
structures represents variation between the genomes [54]]. The linear reference sequence
can additionally be incorporated as a linear path through such a graph, enabling projections
to the reference genome [54].

Replacing the linear reference genome by a pangenome graph has been demonstrated to
improve many downstream analyses, such as read alignment, variant calling or genotyping
(Sections[1.6} [3] [4). Pangenome-based methods are especially important for studying regions
difficult to access by sequencing reads, including repetitive regions and such that are poorly
assembled in the linear reference genome [187]]. Especially structural variants are often
located in these regions and are therefore often missed by alignment-based methods [24),
46/ 149, 198, 206]. Thus, pangenome-based methods provide the potential to detect such
structural variants, genotype them across cohorts and study associations with diseases [46),
49, [187]]. The field of pangenomics is still relatively young and actively researched. Larger
consortia working in this area include the Human Pangenome Reference Consortium (HPRC)
[90,113]] or the Human Genome Structural Variant Consortium (HGSVC) [24],46]]. The work
I have contributed to these projects is presented in Chapters |3| and [4| of this thesis. It will
be demonstrated how pangenomes improve genotyping performance of SNPs, indels and
especially SVs, and that they enable accessing regions and variants that previously were
inaccessible by purely short-read based approaches.

1.10 Mathematical background

The mathematical model behind PanGenie, the genotyping approach that is presented in
Chapter |3} is a Hidden Markov Model (HMM). Hidden Markov Models describe stochastic
processes and due to their flexibility, are widely used in many areas of research, such as
speech recognition or bioinformatics [48| 57,92, 111} [128| [150]. In this thesis, an HMM is
used to compute genotype likelihoods for genetic variants based on sequencing data and a
panel of known haplotype sequences. This section introduces the concept of Hidden Markov
Models, provides a formal definition and demonstrates how to compute posterior state prob-
abilities.
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1.10.1 Hidden Markov Models

Hidden Markov Models consist of two discrete-time stochastic processes modeled over col-
lections of random variables (X;);cn+ and (Y:),cn+ Which take values on discrete state spaces
Q = {q1,-..,qn} (hidden states) and V = {v1,...v5} (observable states), respectively
[11,149]. Starting from any of the hidden states selected according to an initial state dis-
tribution 7 at time ¢ = 1, the model can switch to a different hidden state with a certain
probability defined by a transition probability matrix P. Hidden states produce outputs v;
according to an emission probability matrix B. While the sequence of emissions produced
by an HMM, Y7 = wvy,,...,Yr = vk, can be observed, the underlying sequence of hidden
states, X1 = qx,,..., X1 = qi,, that produced them remains unknown. However, the emis-
sions allow to draw conclusions about the hidden states (see Section [1.10.2). An important
characteristic of Hidden Markov Models is the Markov property. It states that the probabil-
ity of transitioning to the next state at time ¢ + 1 only depends on the state in which the
model is at time ¢, and anything that happened at earlier steps < ¢, does not have any further
influence. Mathematically, this property is defined in terms of the equation shown below
[149]:

P(Xt11 = qrp | X1 = @y Xo = Qrgs -, Xt = Qi) = P( X1 = @y | Xt = i)
A Hidden Markov Model can be formally defined based on the following elements [149]:
« a finite number of N hidden states: @ = {q1,...qn}
« a finite number of M observable states (emissions): V' = {vy,...vp}
+ transition probabilities: P = {p;;}, such that p;; = P(X;11 = ¢;| X = @)
+ emission probabilities: B = {b;(k)}, such that b;(k) = P(Y; = vi|X: = q;)

- initial state distribution: = = {m;}, such that =; = P(X; = ¢;)

1.10.2 Forward-Backward algorithm

The Forward-Backward algorithm determines the probability that the model was in a certain
state ¢; at a certain time ¢, given the full sequence of emissions. More formally, given a
sequence of T observations Y7 = wy,,...,Yr = vy, it computes the probability: P(X; =
¢GlY1 =vky,...,Yr =w,), forallt =1,...,Tand all ¢;,i =1, ..., N. The algorithm consists
of two steps, the computation of Forward probabilities, and the computation of Backward
probabilities. Probabilities are later combined to obtain posterior state probabilities.

Forward Probabilities

The Forward probability is defined as: P(Y; = vk, ,...,Y: = vg,, Xt = ¢i) [149]. It describes
the probability of observing the first ¢ emissions and being in state ¢; at time ¢, and can be
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computed recursively as shown below [149]:
al(i):ﬂ'i'bi(vkl) forizl,...,N

N
ara(i) = bi(ve,) Y _oulj) -pji  fort=1,...,Tandi=1,...,N
j=1

Backward Probabilities

The Backward probability is defined as: P(Yiy1 = vg,yy,.-., Y7 = | Xy = ¢;) [149]. It
describes the probability of observing the partial sequence of emissions starting from ¢ + 1,
given that at time ¢, the model is in state ¢;, and can be computed using the following
recursion [149]:

Br(i) =1 fori=1,...,N
N

Bi()) = bj(vkyy) pij - Be(i+1)  fort=T—-1,T-2,...,landi=1,...,N
j=1

Posterior Probabilities

Finally, the probability to be in a state ¢; given the full sequence of observations can be
computed from the Forward and Backward probabilities. Using the definition of conditional
probabilities, the sought probability is defined as:

P(Xt = qi,Yl = Uk ...,YT = UkT)
P(Y1 = vk, ... YP = Vky)

P(Xt = qi\Yl = Ukl,.. . ,YT = va) =
It holds that [[11]:
P<Y1 = /Ukly-”yYT = vaaXt = Qz) = P(}/l = vkla"w}/t = UktaXt = q’L)

“P(Yi1 = Ok gy o Y = U | Xy = i)
= (1) Bt (1)

Therefore, the posterior state probabilities for all i = 1,..., N and all ¢t = 1,...,T can be
computed as [11]:

P(X: = q¢|Y1 =vg1,...,.Yr =wr) =

1.11 File formats

This section provides an overview of the different file formats that are relevant in this thesis.
It presents the VCF format which is used to represent genetic variation, the SAM/BAM format
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##fileformat=VCFv4.2

##FILTER=<ID=PASS,Description="The variant passed all filters">

##FORMAT=<ID=GT , Number=1,Type=String,Description="Genotype">
##INF0=<ID=AC,Number=A,Type=Integer,Description="Number of alternate alleles in genotypes">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HGO0438 HG00621 HGO0673

chrl 594965 . CCACC CT,CGGCC,CTGCC 60 . AC=2,1,1 GT 0/1 1]0 2|3

Figure 1.10: VCF format example (multiallelic). Example of a multiallelic VCF file. Meta
information lines start with “##” and provide general information on the VCF file [162].
The header line starts with a single “#” and defines the columns of the data lines [162]. Here,
the VCF contains a single data line which defines a multiallelic variant for which three al-
ternative alleles exist. The VCF provides genotype information on three samples. Genotypes
of the second and third sample are phased. The example shown here was extracted from a
VCF generated by our variant calling pipeline presented in Chapter

used to store sequence alignments, and the FASTA/FASTQ format which is used to store
genetic sequences, such as sequencing reads or reference genomes.

1.11.1 VCF format

The VCF format is a text format used to describe genetic variation relative to a linear ref-
erence genome. Files contain meta-information lines, a header line and data lines [162].
The meta information lines define “key =value” pairs that are later used in the data lines
to describe variant information [162]. The header defines the columns for which infor-
mation is provided in the data lines. The first one is the CHROM column, specifying the
chromosome on which a variant is located, the second column, POS, specifies the exact co-
ordinate. In the ID column, a string identifier can be provided for the variant record. The
REF and ALT columns contain reference and alternative sequences of the variant. If the
variant is multiallelic meaning more than one alternative allele exists at this position, the
respective alternative allele sequences are provided as a comma-separated list in the ALT
field. The QUAL and FILTER columns can be used to give information on the quality of the
variant. Additional information on the locus can be provided in the INFO column in terms
of “key =value” pairs previously defined in the meta information lines. If sample specific
genotype information is available, an additional column for each sample is provided as well
as a FORMAT column, which specifies the type of data and the order of the genotype infor-
mation provided in the sample columns [[162]. Genotype information typically includes a
genotype of the sample, that describes which alleles the sample carries on its chromosomal
copies. Such a genotype consists of a list of numbers, separated by “/” or “|”, depending on
whether the genotype is unphased or phased, respectively. The numbers give the index of
the respective alleles. “0” stands for the reference allele, and a number i > 0 refers to the
i-th alternative allele provided in the ALT column [162].

Examples for VCF files are shown in Figures and Both VCF files describe the
same genetic variation but in different formats: the example shown in Figure [1.10] uses a
single, multiallelic variant record, while the example shown in Figure [1.11] uses a biallelic
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##fileformat=VCFv4.2

##FILTER=<ID=PASS,Description="The variant passed all filters">

##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Number of alternate alleles in genotypes">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HGO0438 HG00621 HG00673

chrl 594965 . CCACC CT 60 . AC=2 GT 0/1 1]0 0|0

chrl 594965 . CCACC CGGCC 60 . AC=1 GT 0/0 0]0 1|0

chrl 594965 . CCACC CTGCC 60 . AC=1 GT 0/0 010 Ol1

Figure 1.11: VCF format example (biallelic). Example of a VCF file in biallalic repre-
sentation. Meta information lines start with “##” and provide general information on the
VCF file [162]. The header line starts with a single “#” and defines the columns of the data
lines [[162]. The VCF file contains a separate data line for each of three possible alternative
alleles at position chr1:594965. Genotypes indicates the presence (“1”) or absence (“0”) of
the allele in the genome of a sample. The example shown here was extracted from a VCF
generated by our variant calling pipeline presented in Chapter

representation and contains a separate record for each alternative allele. In the biallelic
version, “1” is used to indicate the presence of the respective alternative allele in a genotype,
while “0” indicates absence. While both representations are equivalent, the biallelic version
is often preferred because it simplifies downstream analyses.

1.11.2 SAM/BAM format

The SAM format is a text format that is used to describe sequence alignments [108]. It
consists of a header section and an alignment section [108]. The header lines start with
character “@” and define “TAG:VALUE” fields which are used in the alignment section to
describe properties of the alignments [108]. In the alignment section, each line represents a
linear alignment of a sequence segment [108]]. Each line consists of at least 11 fields defining
the alignment of the segment against the query sequence. The fields contain information
such as the position of the alignment relative to the query sequence, the quality of the
alignment or the CIGAR string, which describes the alignment itself by specifying matches,
mismatches, insertions and deletions [108]]. BAM files are SAM files compressed in BGZF
format [108].

1.11.3 FASTA/FASTQ format

The FASTA format is used to store sequence information. It contains blocks describing se-
quence segments. Each such block starts with a description line (starting with “>”) and
is followed by lines of sequence data [131]. The FASTA format can be used to store nu-
cleic acid sequences and amino acid sequences, which must be represented in the standard
IUB/IUPAC codes [131]]. The FASTQ format is an extension of the FASTA format which ad-
ditionally allows to store position-wise quality scores for the sequences. Similarly to FASTA
files, FASTQ files consist of blocks describing sequences. Each block consists of a header
line (starting with “@”), lines of sequence data, a separator line containing a single “+”,
and position-wise quality scores (Phred scaled) [82]. In this work, FASTA/FASTQ files are
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mainly used to store nucleic acid sequences, such as sequencing reads, assembly contigs or
reference genomes. Nucleic acids are encoded using letter “A” for adenine, “C” for cytosine,
“G” for guanine and “T” for thymine, as well as “N”, if sequence information is missing
[131].



Chapter 2

Reference-based haplotype phasing

Phasing aims at reconstructing the haplotype sequences of diploid or polyploid individuals
(Section [1.7)). Assigning variant alleles to haplotypes is important in many applications,
for example in order to identify selective pressures or subpopulations in population studies
[1, 143, [188], in clinical genetics [179], or in order to link disease-causing SNPs to one
another [69, 143]].

Many phasing approaches are based on alignments of long sequencing reads to a ref-
erence genome (Section [1.7). The high sequencing error rates of these reads make accu-
rate phasing of SNPs difficult, especially for highly variable genomes. The first part of this
chapter introduces a new phasing algorithm designed for polyploid species and presents
an application of this algorithm to data of the tetraploid potato. The second part of this
chapter presents an application of the diploid phasing tool WhatsHap to the new, highly
accurate PacBio Circular Consensus reads and demonstrates that these reads enable high
quality phasing without requiring additional short-read data for variant detection.

2.1 Accurate polyploid phasing from long reads

This section presents an approach to polyploid phasing based on long sequencing reads. In this
project, I shared first authorship with Rebecca Serra Mari and Sven Schrinner. The results of
this study were published in Genome Biology [166]]. My main contribution to this project was

to analyze a tetraploid potato dataset using the new algorithm. Sections 2.1.1} [2.1.2} [2.1.3| and
re-use some material from this paper. Sections|2.1.2|and [2.1.3| summarize joint work with
Sven Schrinner and Rebecca Serra Mari for this publication. Author contributions and publication
details are provided in Section

2.1.1 Introduction

This section re-uses some material from [166]].

Unlike diploid organisms, which carry two homologous copies of their autosomes, polyploid

27
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species have more than two such copies. Especially plants are often polyploid (Section [1.7]).
Being able to phase such organisms is crucial for breeding and/or genome engineering, since
it helps to improve yield qualities of important crops by improving associations between
genotypes and phenotypes [101]. The phasing problem is more complicated in the polyploid
setting than it is in the diploid case. When phasing biallelic, heterozygous variants in diploid
organisms, it is sufficient to know the configuration of one haplotype, as the other one will
be complementary. However, in polyploid organisms, this is not the case. Some of the
haplotypes of an individual can be locally identical, which makes it difficult to reconstruct
them. Autopolyploid species are especially challenging to phase and assemble since they
occur as a result of genome duplications [170].

Many phasing approaches for the diploid setting solve the Minimum Error Correction
(MEC) problem. The idea is to partition the reads into distinct sets that correspond to dif-
ferent haplotypes by minimizing the number of corrections that need to be applied to their
sequences. However, this model is based on the assumption that haplotypes are different and
thus cannot describe cases where haplotypes are locally identical. In such cases, sequencing
errors in the reads can lead to wrong haplotype assignments. An example is provided in Fig-
ure On the left, the four haplotypes of a polyploid individual are shown. The blue and
pink haplotypes are identical. Given sequencing reads, the MEC approach aims at partition-
ing the reads into sets that correspond to the same haplotype, ideally leading to balanced
partitions (middle). However, since two haplotypes are identical, the MEC model assigns
most of the reads originating from these two haplotypes to one partition, and collects noisy
reads in a separate, sparse partition in order to minimize the overall MEC score (right), lead-
ing to wrong haplotypes. This example demonstrates that approaches developed for diploid
phasing are not always applicable in a polyploid setting. Also, many of these approaches
become infeasible when generalized to polyploid genomes [17]].

Several methods for polyploid phasing based on long sequencing reads already exist.
HapCompass is based on spanning trees and the Minimum Weighted Edge Removal (MWER)
[5l6]l. HapTree uses a maximum-likelihood approach in order to construct the most likely
haplotypes given the aligned sequencing reads [12]. SDHap uses a semi-definite program-
ming approach based on an approximate MEC criterion [34]. All three methods have been
evaluated based on simulated data in a study by [Motazedi et al.. Results show that none
of them was useful in practice, either because they scaled poorly when applied to larger
genomes, or because they produced inaccurate phasing results [130]. More recently, H-PoP
was demonstrated to outperform these methods in terms of phasing accuracy and runtime
[202]. It is based on Polyploid Balance Optimal Partition (PBOP) and aims to partition the
sequencing reads by haplotype [202]. H-PoP’s underlying model can be interpreted as a
generalization of the MEC problem to the polyploid case. If genotyping information is avail-
able for input variants, these constraints can be added to the model, the resulting extension
of H-PoP is referred to as H-PoPG.

A few other approaches have been suggested that do not scale well to whole-genome
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Haplotype sequences True partitions Optimal MEC partitions

Figure 2.1: MEC problem in polyploid setting. Four haplotype sequences of a polyploid
individual are shown on the left. The blue and pink haplotypes are identical. In the middle,
the desired partitioning of sequencing data for the respective sample is shown. Ideally,
reads originating from the four haplotypes can be clustered into sets of similar sizes. On
the right, likely outcomes of clusters computed by the MEC model are shown. MEC fails to
properly handle identical haplotype sequences, and combines reads from the blue and pink
haplotypes into one big cluster. Noisy reads might end up in a sparse cluster, likely leading
to wrongly reconstructed haplotype sequences. Figure taken from [166].
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single-individual phasing, including PolyHarsh [73]], which uses Gibbs Sampling, TriPoly
[129], which requires family data, and SDA [23]], which was designed to resolve multicopy
duplications during genome assembly.

In the following, a new algorithm, whatshap polyphase, for polyploid phasing is intro-
duced that overcomes the limitations mentioned above. It is designed to properly handle
locally identical haplotypes by taking read coverage into account, and consists of two steps,
a read clustering step and a newly established “threading” step. The focus of the following
sections is on the application of whatshap polyphase to a tetraploid potato dataset, which
demonstrates that the algorithm is scalable in practice and delivers high quality haplotype
predictions that enable haplotype-resolved assembly of genes, providing biological insights
into the genomes of polyploid species.

2.1.2 Phasing algorithm

The phasing algorithm presented here was mainly developed by Sven Schrinner and Rebecca Serra
Mari. This subsection provides a summary of their work which was presented in our joint publica-
tion [166]]. Some material from this publication is re-used. Formal definitions and mathematical
details are skipped here and can be found in [166].

The input required by whatshap polyphase is a BAM file with aligned sequencing reads, a
VCF file containing variants and unphased genotype information, and a reference genome.
The first phase of whatshap polyphase groups input reads that likely belong to the same
haplotype. For each pair of reads, the clustering step computes a similarity score that is
positive if two reads originate from the same haplotype and negative if they stem from
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Figure 2.2: WhatsHap polyphase overview. Input. The inputs to the algorithm are
aligned sequencing reads in a BAM file, genotyped variants in a VCF file and the corre-
sponding reference genome. Phase I. Input reads are clustered based on their similarity us-
ing a cluster editing approach. Phase II. Haplotypes are reconstructed based on “haplotype
threading” by assembling each haplotype through a sequence of read clusters. Haplotypes
that are locally identical can be threaded through the same clusters. Output. As an output,
the algorithm generates the predicted haplotype blocks. Figure taken from [166].

different haplotypes. A complete graph is constructed in which each sequencing read is
represented as a node and each edge is labeled with the similarity of the underlying read
pair. In order to generate read clusters, the algorithm uses cluster editing [203] to transform
the graph into disjoint cliques. Since the cluster editing problem is NP-hard, a previously
introduced heuristic [15] is used to efficiently compute a solution.

In the second phase of the algorithm, the actual phasing results are computed based on
the read clusters using haplotype threading. Given the ploidy p of the data, p haplotypes
need to be reconstructed. For each such haplotype, the idea is to assemble a sequence of
clusters by choosing one cluster at each variant position that the haplotype is “threaded”
through. The number of haplotypes that can be threaded through the same cluster at a
position depends on the position-wise read coverage of the cluster. Since some haplotypes
can be locally identical for polyploids, clusters might contain reads originating from different
haplotype sequences that are identical or similar in the respective region. The coverage of
the cluster helps to find out how many haplotypes are collapsed at a position and are thus
allowed to use the same cluster. Haplotypes threaded through the same cluster at a variant
position must also carry the same allele which is derived from the consensus sequence of
the reads contained in the cluster. Therefore, another constraint that needs to be considered
when choosing clusters is that the cluster selection needs to be compatible with the input
genotypes. Additionally, the haplotype threading algorithm aims to minimize the number
of haplotype switches between clusters so that haplotypes are encouraged to remain in the
same cluster as long as possible. The cluster assignments are used in a final step in order
to construct p haplotypes which are then output in terms of a phased VCF file. Figure
provides an overview of the phasing algorithm.
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2.1.3 Evaluation on artificial polyploid humans

This section provides a summary on joint work of Sven Schrinner, Rebecca Serra Mari and myself
published in [166]]. Some material from this publication is re-used. I wrote the Snakemake pipeline
that constructs the tetraploid datasets from simulated and real data, runs the phasing tools and
computes phasing statistics. Sven Schrinner extended this pipeline for penta- and hexaploid cases.
Rebecca Serra Mari evaluated and compared results in collapsing and non-collapsing regions.

We combined real PacBio CLR sequencing data for three human samples (NA19240, HGOO-
514, HG0733) at different coverage levels in order to generate artificial tetraploid, penta-
ploid and hexaploid datasets for human chromosome 1. For all three samples, high-quality
ground truth haplotype information is available [24]. In addition, equivalent simulated read
datasets were produced for these samples using PBSIM [138]] as a read simulator. whatshap
polyphase and H-PoPG were evaluated on these datasets and results were compared to the
ground truth haplotypes by computing the switch error rate and the hamming error rate (Sec-
tion[1.7.1). Both tools use different strategies in order to define blocks of variants that they
can phase together. H-PoPG maximizes the block length by cutting haplotypes only between
consecutive variants that are not connected by any read alignment. whatshap polyphase
implements different approaches to define phased blocks. Per default, block cuts are intro-
duced between two adjacent positions whenever there are not enough reads to connect at
least three of the haplotypes. In addition, a block is cut whenever at least two haplotypes
switch clusters during the threading step, or whenever at least one of the haplotypes sharing
the same cluster in a collapsed region switches to another one afterwards. In order to prop-
erly compare both tools, whatshap polyphase was run using the same phase block definition
as H-PoPG. Across all datasets tested, whatshap polyphase produced more accurate results
compared to H-PoPG when considering the switch error rate (Table . Switch error rates
were around 30-40% lower than for H-PoPG when using the same strategy to define phase
blocks as H-PoPG. Switch-error rates are even lower when using a more sensitive definition
of phased blocks, but more and shorter haplotype blocks are produced in turn (Table [A.T).
Compared to H-PoPG, whatshap polyphase works especially well in regions with locally
identical haplotypes (“collapsing regions”). Here, the switch error rate was around 3.06
and 2.76 times higher for H-PoPG at coverages 40x and 80x using real reads, compared
to the non-collapsing regions, where these factors were only 1.19 and 1.12, respectively,
when using the same phase block definition as H-PoPG (Table[A.2)). In summary, the results
demonstrate that whatshap polyphase produces high quality phasing results across differ-
ent ploidies and improves over current state-of-the-art tools. Results especially improve in
regions with identical haplotypes. This demonstrates the ability of whatshap polyphase to
handle regions typically challenging for existing tools.



32 Reference-based haplotype phasing

2.1.4 Analysis of potato data

This section re-uses material presented in [166]].

In order to demonstrate a use case of our phasing algorithm, we applied it to real sequencing
data of a tetraploid potato genome (Solanum tuberosum), for which paired-end short Illumina
and long Oxford Nanopore reads were available. In a first step, we aligned the reads pro-
duced by the different technologies to the potato reference genome published by the Potato
Genome Sequencing Consortium (PGSC) [71]]. We observed unbalanced coverage distri-
butions for the alignments, especially for the short Illumina reads, hinting towards a high
number of structural variations and rearrangements being present in the data (Figure [2.3p),
which confirms that the potato genome is highly heterogeneous [71]]. Thus, the Illumina
reads are ill-suited for reliable variant calling as their short length makes it more difficult
to unambiguously align them to the reference. We therefore relied on the much longer
Nanopore reads to identify SNPs that we could use for phasing. However, Oxford Nanopore
reads typically come with high sequencing error rates, complicating the calling process. In
order to obtain reliable variant positions and genotypes from these error-prone reads, we
ran an error correction pipeline [153]] that uses the short Illumina reads in order to reduce
the number of sequencing errors in the long reads. Figure shows an exemplary IGV
[160] screenshot of uncorrected (top) and corrected reads (bottom) for the FRIGIDA-like
protein 5 isoform X2 gene. Next, we ran minimap2 [106] to align the corrected Nanopore
reads to the potato reference genome and called SNPs inside of all gene regions using Free-
Bayes [60] with additional parameters: -p 4 --no-indels --no-mnsp --no-complex. AS
base qualities are not produced during error correction and FreeBayes needed them in order
to compute genotypes, we added a constant quality of 40 for all bases to the BAM file be-
fore calling SNPs. Finally, we ran whatshap polyphase in order to phase the variants with
option --verify-genotypes. This option invokes an additional step prior to phasing, which
re-genotypes all variants and only keeps those positions for which the computed genotype
matches the one reported by FreeBayes. For determining the genotype of a position, we
implemented a simple algorithm that calculates the fraction of reference and alternative
alleles that cover a variant and compares it to the fractions that we would expect for all
possible genotypes. We then assign the genotype whose expected fractions of reference and
alternative alleles best match the ones observed in the data.

We focused on the potato genes [71]] as they are biologically interesting for phasing. For
the total of 36,274 genes containing heterozygous variants after calling and retyping, 91%
could be (at least partially) phased by whatshap polyphase. On average, about 2.13 phased
blocks were produced per gene. Furthermore, for each gene, we determined the number
of phased variants inside the longest phased block. We observed that a large fraction of
genes, including many long genes, can be fully phased, see Figure [2.3p. We also evaluated
the percentage of phased genes in relation to their level of heterozygosity, but could not
observe a strong dependency, see Figure
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Figure 2.3: Phasing of a potato genome. a Per-base coverage distribution of Illumina and
ONT MinION alignments on ChrO1. b Fraction of phased variants in relation to gene length.
The x-axis shows the gene length and the y-axis the percentage of phased variants in the
longest block. Axis histograms and hexagons illustrate the distribution of data points. ¢ IGV
screenshot showing alignments of uncorrected (top) and corrected MinION reads (bot-
tom) of FRIGIDA-like protein 5 isoform X2 gene on Chr0O4. The corrected reads are colored
(red, green, blue, purple) according to the haplotypes whatshap polyphase assigned them
to. d Multiple sequence alignment of the ORFs detected in the four haplotype sequences.
The uppermost gray sequence represents the reference, the others correspond to the four
haplotypes (same order as in panel c). Figure taken from [166].
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Figure 2.4: Fraction of phased variants in relation to heterozygosity in the potato
genes. We determined the heterozygosity level of a gene as the fraction of heterozygous
positions. The plot shows the fraction of phased variants (y-axis) in relation to heterozy-
gosity level (x-axis). Axis histograms and hexagons illustrate the distribution of data points.
Figure taken from [166].

We used the FRIGIDA-like protein 5 isoform X2 (accession: XP_015169713) gene as an
example to demonstrate how whatshap polyphase enables haplotype-resolved assembly.
We extracted the phasing of the longest phased block reported for this gene and separated
the reads by haplotype as follows. We extended the command whatshap haplotag, which
was previously implemented for the diploid version of WhatsHap, to the polyploid case.
Given a phased VCF with predicted haplotypes and a BAM file with sequencing reads, we
assign each read to the haplotype it is most similar to in terms of the alleles observed at
variant positions in the read. This assignment is stored by tagging the respective sequences
in the BAM file, which enables visualizing the haplotype clusters by programs like IGV [160].
Furthermore, we extended the subcommand whatshap split to higher ploidies, which can
be used to split tagged reads by haplotype and store them in separate files. The reads shown
in Figure are colored according to the resulting haplotype assignments. In the next step,
we separately ran wtdbg2 (with options -x ccs -g 1m) on each haplotype-specific
read set to produce local assemblies of the four haplotypes. Figure shows a visualization
of a multiple sequence alignment of these haplotypes. The red sequence corresponds to the
reference genome. Figure shows the whole graph, panel the region corresponding
to the FRIGIDA-like protein 5 isoform X2 gene.

We ran the NCBI ORFfinder on each of the assemblies and detected a long open
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Figure 2.5: Haplotype assemblies for the FRIGIDA gene. We ran Reveal (https://gith
ub.com/jasperlinthorst/reveal) to produce a graph that represents an alignment of the
local haplotype assemblies for the FRIGIDA gene and the corresponding reference sequence.
We visualized this graph using GfaViz [64]. The red sequence corresponds to the reference
genome. a shows the whole graph, b shows the part of the graph that corresponds to the
FRIGIDA-like protein 5 isoform X2 gene. Figure taken from [166].
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reading frame (ORF) in the first three haplotypes representing the FRIGIDA-like protein 5
isoform X2 gene coding sequence. For the fourth haplotype we could not detect a corre-
sponding ORF, as the putative FRIGIDA gene in the fourth phase showed an early STOP
codon highlighted in Figure [2.3c. Interestingly, the fourth phase carried an additional
frameshift mutation shown in the inset of Figure where only the phasing provides
the information that this mutation is linked to the premature STOP codon, highlighting the
necessity of (local) phasing to understand gene architecture. Using COBALT [141]], we gen-
erated multiple sequence alignments of the amino acid sequences resulting from these three
ORFs and the corresponding reference sequence (Figure [2.3d). The three sequences show
an overall good alignment with the reference, with small differences that may serve as an
input for functional follow-up studies.

2.1.5 Discussion

We introduced a new algorithm for polyploid phasing, whatshap polyphase, and demon-
strated that it produces more accurate phasing results than state-of-the-art polyploid phasing
methods. It is designed to handle (locally) identical haplotypes by taking coverage of read
clusters into account. We applied whatshap polyphase to Oxford Nanopore reads produced
from a tetraploid potato genome in order to show that the algorithm works well in practice
and to demonstrate how phasing information enables haplotype-resolved assembly of the
FRIGIDA gene. Being able to assemble the haplotypes is crucial to study these genomes,
especially in order to increase yields for important food crops by studying associations of
genotypes and phenotypes [[14, 101]. However, there are limitations of the approach. Since
it relies on a reference genome, the quality of the phasing results highly depends on the
quality of the reference genome. Inaccurate or fragmented reference genomes lead to poor
read alignments and subsequently to erroneous haplotype predictions in the respective ge-
nomic regions. A similar problem occurs if the genome is highly heterogeneous, like it is the
case for potato. The potato genome contains a high number of genetic variants, including
SVs and copy number variations [71]]. Even if there was a complete, high quality refer-
ence genome, differences between the reference sequence and the genome of the individual
would lead to a decreased mappability of reads in these regions. These limitations affect
not only our approach, but all other alignment-based phasing methods. Due to these issues,
phasing the complete potato genome was challenging. Therefore we focused only on the
genes, as calling variants in the remaining regions took too long, due to the high number
of variation present there. Another limitation of whatshap polyphase is that its runtime
scales exponentially with increasing ploidy. While we demonstrated that the algorithm was
fast up to ploidies of six, it will likely become slow as ploidies get higher. However, many
industrially important plants have ploidies smaller or equal to six [[14].

An important aspect that this study showed is that especially for highly variable genomes
like the potato genome, an error correction step is crucial in order to enable accurate small
variant detection from noisy long-read data, since short reads often cannot be unambigu-
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ously aligned to a reference genome and are thus ill-suited for variant detection. However,
[llumina data is still necessary in order to do error correction. Therefore, phasing currently
requires short-read data and long-read data to be available for a sample, making studies
more complex and costly. Highly accurate long-read sequencing technologies can provide
a solution to this issue, enabling haplotype reconstruction purely based on long reads (see
Section [2.2)).

Despite all these limitations, we demonstrated that our polyploid phasing approach is
very useful in practice. Even though we did not assemble chromosome-scale haplotypes,
our method enables the construction of haplotype-resolved assemblies on a gene-level for a
highly heterogeneous potato genome, which provides a basis for studying gene expression.
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2.2 Phasing small variants with circular consensus long reads

In this section, the circular consensus long-read sequencing technology is presented. The focus is on
how this new sequencing technique improves phasing of a diploid genome. The material presented
here was published as part of a Nature Biotechnology publication [199]. Sections
and re-use material from this paper. Section re-uses some material that I contributed
to the PGAS paper, published in Nature Biotechnology [145]. See Sections and [E. 3| for details
on author contributions and publication details.

2.2.1 Introduction

This section re-uses some material presented in [199].

Recent improvements in DNA sequencing have revolutionized biological sciences. Short-
read sequencing technologies (Section produce highly accurate reads but are limited in
read length to less than 300 bp. This makes them well suited to detect and genotype small
variants like SNPs and indels (< 50 bp), but less useful for structural variant detection,
genome assembly or haplotype phasing as they lack long range connectivity information. In
contrast, long-read sequencing technologies like PacBio CLR sequencing or Oxford Nanopore
sequencing are able to produce much longer reads (> 10 kbp), but are less accurate (Section
[1.4). Therefore, such reads are well suited for tasks like phasing or genome assembly, but
less useful for small variant characterization.

The complementing characteristics of short and long-read sequencing technologies (Sec-
tion make population-scale studies more costly and complex, as several sequencing
technologies need to be combined in order to fully analyze a sample. Recently, PacBio pre-
sented a new sequencing technology which can overcome these limitations. The idea is to
derive an accurate consensus sequence for long PacBio reads from multiple passes of a single
template molecule (Section [1.4)). In this way, erroneous single-pass sequences are merged
into a highly accurate read combining characteristics of short and long sequencing reads.

The PacBio CCS technology was first applied to the well-characterized human sample
HGO002 (NA24385), one of the benchmark samples of the Genome in a Bottle Project (GIAB)
[208], and demonstrated to enable accurate SNP, indel and structural variant detection, as
well as high quality genome assembly. As a part of this project, which was published in
Wenger et al. and of which I am a co-author, I demonstrated how PacBio CCS reads enable
accurate haplotype phasing of small variants. Previously, phasing pipelines consisted of
a variant calling step which detected SNPs and indels from accurate short-read data of a
sample, and a haplotyping step, in which variants were phased based on long sequencing
reads (such as PacBio CLR or Oxford Nanopore reads). With the new technology, short reads
are no longer required in order to call variants, as CCS reads are accurate enough to enable
small variant detection. The following sections will present details of this analysis.
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2.2.2 Data generation and variant calling

This section provides a summary on the data generation and small variant detection steps prior to
phasing described in [199]. Some material from this publication is re-used. All analyses described
here were performed by co-authors of this publication.

CCS reads were generated for sample HG0O02 (NA24385) with a read length of 13.5+1.2 kbp
and a median accuracy of 99.9%. Reads were mapped to reference genome GRCh37 with
pbmm?2 (v.0.10.0) resulting in an average coverage of 28x. In order to analyze which
fraction of the genome is accessible by CCS reads, all genomic positions were determined
that were covered by at least 10 reads. In addition, coverage-matched Illumina short reads
were aligned. At the highest mapping quality value of 60, 97.5% of GRCh37 is mappable
with CCS reads, while for short reads, this percentage is only 94.8%. The regions now
accessible by CCS data include medically relevant genes previously difficult to be accessed
by short reads, such as HLA class 1 and class 2 regions.

In a next step, SNPs and indels were detected from the aligned CCS reads using Google’s
DeepVariant [144] and variant calling performance was evaluated using the GIAB small
variant benchmark set [[208]]. This resulted in a precision of 99.91% and a recall of 99.96%
for SNPs, and 96.9% and 95.98% for indels, respectively. When using short Illumina reads
instead for variant detection, precision was 99.96% and recall 99.94% for SNPs, and 99.6%
and 99.4% for indels, respectively.

2.2.3 Phasing small variants with CCS reads

This section re-uses material presented in [199].

To determine whether CCS reads could provide both highly accurate variant calls and long-
range information needed to generate haplotypes, we used WhatsHap [143] (version v.0.17)
to phase the DeepVariant calls. Nearly all (99.64%) autosomal heterozygous variants were
phased into 19,215 blocks with an N50 of 206 kbp (Table[2.1). We computed the theoretical
phase block length distribution based on the GIAB benchmark phase set [208]. This was
done by introducing cuts between heterozygous ground truth variants that are separated by
more than the average CCS read length of 13.5 kbp. The phase block length distribution that
we observed for the DeepVariant callset closely matches the theoretical distribution (Figure
[2.6)A). We furthermore computed the theoretical phase block length N50s for different read
lengths for phasings produced in the same way (Figure[2.6B). Both experiments suggest that
the phase block length is limited by the read length and the amount of variation in HG002,
not by coverage or the quality of the variant calls.

Evaluated against the trio-phased variant calls in the GIAB ground truth, the switch error
rate of our phased DeepVariant calls is 0.37% and the Hamming error rate is 1.91% (Table
[2.1). To evaluate the depth of CCS read coverage required for phasing, we randomly subsam-
pled from the full dataset (28 x coverage) in steps of 10%. We phased the full DeepVariant
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cvomosome | "I | s | i | emming o | svich | svichor | e
1 220,180 | 99.61% 1,585 1.53% | 1,168 0.65% 225,534
2 212,809 | 99.62% 1,879 1.53% 373 0.21% 179,190
3 193,762 | 99.73% 1,312 1.63% 408 0.25% 259,761
4 199,451 | 99.70% 1,338 1.65% 547 0.33% 238,088
5 186,023 | 99.75% 1,115 1.06% 237 0.15% 277,697
6 177,458 | 99.71% 1,160 0.96% 303 0.20% 265,656
7 166,051 | 99.70% 1,048 2.23% | 1,105 0.80% 246,748
8 153,941 | 99.71% 1,002 1.22% 322 0.25% 250,705
9 119,897 | 99.72% 778 1.30% 362 0.36% 207,951
10 141,433 | 99.72% 840 2.13% 344 0.29% 255,026
11 128,503 | 99.67% 948 1.24% 169 0.16% 203,073
12 135,470 | 99.72% 832 3.51% 229 0.20% 292,306
13 100,628 | 99.69% 638 2.19% 123 0.14% 244,289
14 93,645 | 99.68% 548 2.70% 520 0.66% 292,617
15 81,981 | 99.61% 609 0.71% 411 0.61% 188,168
16 87,697 | 99.71% 596 4.69% 455 0.63% 198,059
17 78,865 | 99.65% 569 3.06% 380 0.61% 209,363
18 74,575 | 99.68% 568 2.44% 95 0.15% 215,577
19 70,975 | 99.78% 345 2.17% 149 0.26% 283,264
20 61,413 | 99.65% 425 3.53% 165 0.33% 207,556
21 44,142 | 99.49% 257 4.29% 545 1.60% 178,353
22 38,604 | 99.71% 249 1.29% 87 0.28% 221,143
all 2,779,801 | 99.64% | 19,215 1.91% | 8,497 0.37% 206,063

Table 2.1: WhatsHap phasing performance on DeepVariant (CCS) callset. WhatsHap
provides a highly complete phasing (99.64%) of heterozygous variants in the DeepVariant
(CCS) callset that is concordant with the GIAB Trio/10X Genomics phasing benchmark set.
Statistics are reported by WhatsHap with Hamming and switch error rates evaluated against
the benchmark. Table taken from [199].

callset based on each of the resulting BAM files. We observed that the phase block N50
remains above 150 kbp down to 10-fold coverage (Figure [2.6/C), demonstrating excellent
phasing performances even on lower read coverages.

2.2.4 Improved genome assembly with CCS reads

This section describes work that I contributed to the PGAS paper [145]] together with co-authors
and re-uses material from this publication.

Recently, the PGAS pipeline was demonstrated to produce high quality, haplotype-resolved
genome assemblies based on long reads and Strand-seq data [145] (see Section for de-
tails on this pipeline). Using CCS data, assemblies reached N50s of 23.7 and 25.9 Mbp for
the two haplotypes, respectively. A comparison of haplotype-resolved genome assemblies
generated from PacBio CCS, PacBio CLR and Oxford Nanopore data for sample HG00733
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Figure 2.6: Phasing with CCS reads. A Phasing of heterozygous DeepVariant variant calls
with WhatsHap, compared to the theoretical phasing of HG002 with 13.5 kbp reads. B
Theoretical phase block N50 in HG002 at different read lengths. To model the phase blocks
achievable with a given read length, cuts were introduced between heterozygous variants in
the GIAB trio-phased HG002 variant callset that are separated by more than the read length,
which effectively assumes that adjacent heterozygous variants separated by less than the
read length can be phased. C Phase block N50 for phasing of the 28-fold DeepVariant (CCS)
callset with WhatsHap, subsampling in steps of 10%. Figures taken from [199].

with PGAS showed that assemblies generated from CCS data are the most accurate. In
order to analyze them, we aligned haplotype-resolved assemblies for HG00733 as well as
CCS-based assemblies for the parents (HG0O0731 and HG00732) to reference genome ver-
sion GRCh38 using minimap2 [106]]. We generated variant calls for each haplotype from
these alignments and created a merged callset across samples in order to produce a phased
VCF with five samples (HG00733-CCS, HG00733-CLR, HG00733-ONT, HG00731-CCS and
HG00732-CCS). This callset contained 10,697,583 variants in total. Genotypes for HG00733
across the three assemblies were consistent for 46% of all variants. Most differences came
from variants for which genotypes of CLR and CCS assemblies agree but disagree with the
ONT-based genotypes, caused likely by errors in the ONT assemblies. In contrast, we found
only 106,270 (0.99%) such variants for CLR and 25,586 (0.24%) for CCS. Furthermore, we
analyzed Mendelian consistencies by taking the two parent samples into account. For ONT
we found 5,601,071 (52.36%) Mendelian errors, for CLR 469,127 (4.39%) and for CCS we
observed 131,281 (1.23%) errors. These experiments demonstrate that CCS reads enable
the generation of highly contiguous haplotype-resolved genome assemblies on the scale of a
whole chromosome. Compared to CLR or ONT-based assemblies, these assemblies are more
accurate and enable the reconstruction of high quality haplotypes of a human sample.

2.2.5 Discussion

The recently developed PacBio CCS technology produces long sequencing reads with low se-
quencing error rates. The experiments presented demonstrate that PacBio CCS reads enable
accurate small variant detection, while being able to access more regions of the genome
than short-read data. While variant calling accuracy for SNPs was very similar for both
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sequencing technologies, PacBio CCS reads performed slightly worse when calling indels
because of the different error profiles that variant callers could not handle as well as for
short reads. Recent experiments with the PEPPER-Margin-DeepVariant pipeline show that
newer methods are able to overcome these limitations (Section [I.4.4). However, even with
the older version of DeepVariant used in the study described in this chapter, high quality
phasing results could be achieved with CCS data. The resulting phase block distribution
closely matches the theoretical limit, defined mainly by the amount of variation in the sam-
ple and the read length, rather than read coverage or the quality of the variant calls [199].
Evaluation based on ground truth haplotypes resulted in very low switch error rates, which
shows that read-based phasing based on CCS data enables accurate haplotype predictions.
Results nicely demonstrate that CCS reads indeed combine many characteristics of short and
long reads. They enable excellent small variant detection providing high quality calls for
phasing, such that short-read data is no longer needed for haplotype reconstruction. Fur-
thermore, CCS reads enable high quality genome assembly of human samples that are more
accurate than such based on CLR data or ONT reads, which provides the basis for recon-
structing chromosomal-scale haplotypes in a reference-free manner. This allows to construct
more contiguous haplotypes that include structural variants or regions still inaccessible by
read alignments that are currently missed by alignment-based phasing methods. The re-
cently introduced PacBio Revio Platfornﬂ allows CCS based sequencing on larger scales,
providing higher throughput (360 Gb/day instead of 24 Gb/day) at lower costs.

"https://www.pacb.com/revio/
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2.3 Conclusion

This chapter presented different methods and applications of reference-based phasing. First,
the polyphase algorithm was described which accurately phases polyploid genomes. It can
handle regions where haplotypes are locally identical and improves over current state-of-the
art approaches, especially in such collapsed regions. We applied the algorithm to ONT data
of a tetraploid potato and used the results in order to generate haplotype-resolved assem-
blies of the FRIGIDA gene. Second, we demonstrated that accurate, long PacBio CCS reads
enable accurate phasing that no longer depends on additional short-read datasets for variant
calling. Both of these applications show how phasing is useful in practice, but also demon-
strate the limitations of alignment-based phasing methods: they struggle in regions that are
too different from the reference genome due to high variability in the sample or because
some complex genomic regions are poorly assembled in the reference genome. Therefore,
alignment-based phasing methods typically only phase SNPs and indels, but exclude struc-
tural variants. As a result, haplotype predictions are fragmented, incomplete and exclude
complex, but biologically interesting genomic regions.

PacBio CCS reads can help to overcome the limitation of mapping-based phasing ap-
proaches: they provide the basis for highly accurate, chromosome-scale assemblies of hap-
lotypes in a reference-free manner that are able to cover structural variants and complex ge-
nomic regions inaccessible to alignment-based methods. Therefore, alternative approaches
to polyploid haplotype reconstruction have recently been developed that are based on de
novo assembly using CCS reads [170, 183]]. For diploid genomes, the PGAS pipeline can
generate accurate haplotype assemblies reaching N50s of over 25 Mbp per haplotype when
combining PacBio CCS reads with Strand-seq data [145]]. Besides allowing to study the hap-
lotypes of the assembled sample itself, such chromosome-scale haplotype predictions enable
the construction of accurate and complete pangenomes that can replace the linear reference
genome. In this way, they provide the potential to improve many downstream analyses,
such as genotyping new, yet unassembled samples.
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Chapter 3

PanGenie: Pangenome-based
genome inference

This chapter introduces an approach that leverages a pangenome in order to improve short-read
based genotyping of various types of genetic variation. The work was published in Nature Genetics
[49] and this chapter presents an extended version of this publication of which I am the first
author. All sections presented in this chapter re-use material that I contributed to this work. Parts
of Sections and [3.9] also summarize work contributed by co-authors of this publication.
See Section [E.4| for author contributions and publication details.

3.1 Introduction

This section re-uses material presented in [49].

Recent single-molecule, long-read sequencing technologies have enabled breakthroughs in
producing de novo haplotype-resolved genome assemblies [46, 59, (98| [145] (Section
and [2.2). Major efforts are under way [90, 113]] to generate hundreds of human genome
assemblies, with the intention of deriving a variation-aware pangenome representation that
replaces the current linear reference genome, GRCh38 (Section [1.9). Such pangenome ref-
erences provide the potential to improve the analysis of complex genomic regions currently
difficult to access with the linear reference. Although long-read technologies are rapidly
advancing, generating haplotype-resolved assemblies is still relatively slow and costly, and
thus, does not yet scale to large study cohorts consisting of tens of thousands of samples.
Due to their low cost, short reads are a more practical approach for such settings in the
foreseeable future.

Diploid organisms have two copies of each autosomal chromosome, each of which car-
ries genetic variation. The process of determining whether a known variant allele is located
on none, one or both of these copies is referred to as genotyping (Section [1.6)). Variant
genotyping is an essential step in genetic studies, enabling population analysis, quantita-

45



46 PanGenie: Pangenome-based genome inference

tive trait locus studies or trait association analysis. Large studies have produced compre-
hensive catalogs of human variation ranging from single-nucleotide polymorphisms (SNPs)
and indels (insertions and deletions up to 49 bp in size) to larger structural variants (SVs)
[2, 24] 132, 181]], and many such variants have been linked to diseases and other traits
(33,118,163, 168,193, 201].

Widely used genotyping methods for sequencing data [28, (39, 160, 152} [158] are based
on short-read alignments to a reference genome or pangenome graphs, which include possi-
ble alternative alleles [26} 52} 53| 75} 95, 151, 176] (Section[I.6)). Graph-based approaches
have been shown to improve genotyping accuracy over methods that rely on a linear refer-
ence genome. However, aligning sequencing reads is time-consuming even for linear refer-
ence genomes, where mapping 30x short-read sequencing data of a single human sample
takes around 100 CPU hours. This problem is amplified when transitioning to graph-based
pangenome references, where the read-mapping problem is even more computationally ex-
pensive.

A much faster alternative is to genotype known variants based on k-mers, short sequences
of a fixed length £, in the raw sequencing reads without alignment to a reference. Counts
of reference- and allele-specific k-mers allow fast and accurate genotyping of various types
of genetic variation [40) 44, 189} 172|175, 182] (Section[1.6). However, these methods can
struggle in repetitive and duplicated regions of the genome not covered by unique k-mers.
This is especially problematic for SVs, which are often located in repeat-rich or duplicated
regions of the genome [24,[198] that are generally difficult to access by short-read sequenc-
ing [206].

This problem has been addressed previously by leveraging long-range connectivity in-
formation from sequencing reads [189]]. In a similar manner, haplotype-resolved assemblies
of known samples could improve k-mer-based genotyping, especially in difficult-to-access
regions of large diploid genomes, but methods for this have so far been lacking. Known
haplotypes have been used to construct population-based reference panels to phase small
variants (Li-Stephens model) [111]] as well as impute missing genotypes [18, 35} 78| [125],
but accurate reference panels that include SVs are still lacking.

In this chapter, PanGenie (for Pangenome-based Genome Inference) is introduced, an
algorithm that makes use of haplotype information from an assembly-derived pangenome
representation in combination with read k-mer counts to efficiently genotype a wide spec-
trum of variants. That is, our method can leverage short and longer linkage disequilibrium
(LD) structures inherent in the assemblies to infer the genome of a new sample for which
only short reads are available. PanGenie bypasses read mapping and is entirely based on
k-mers, which allows it to rapidly proceed from the input short reads to a final callset includ-
ing SNPs, indels and SVs, enabling analysis of variants typically not accessible in short-read
workflows — including many deletions < 1 kbp and most insertions > 50 bp. We applied our
method to genotype variants called from haplotype-resolved assemblies of 11 individuals,
revealing a substantial advance in terms of runtime, genotyping accuracy and number of
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Figure 3.1: Overview of PanGenie. a Step 1: variants are called from haplotype-resolved
assemblies of a set of known samples and a pangenome graph is constructed, which rep-
resents variants as bubbles and contains one path per haplotype. b Step 2: the k-mers
(represented by circles) contained in the graph are counted in the short-read sequencing
data of the target sample to be genotyped. The color of the nodes indicates copy number
estimates for the k-mers. ¢ Step 3: PanGenie uses k-mer counts and haplotype paths to infer
the unknown genome. For the first bubble, k-mer counts suggest that the sample carries the
alleles of the green and blue haplotypes. The second bubble is poorly covered by k-mers;
however, linkage to adjacent bubbles can be used to infer the two local haplotype paths.
Figure taken from [49].

accessible variants.

3.2 Algorithm overview

This section and all its subsections re-use material presented in [49].

We call variants from haplotype-resolved assemblies (see Section of several samples
and construct a pangenome graph (see Section in which these variants are represented
as bubbles and each haplotype as a path (Figure 3.1} Step 1). This graph is given as input to
PanGenie, together with short-read sequencing data of a new sample to be genotyped. The k-
mers contained in the graph are counted in the reads and k-mers unique to bubble regions are
identified (Step 2 in Figure[3.1). PanGenie combines two sources of information to genotype
bubbles: read k-mer counts and the already known haplotype sequences. The distribution of
k-mer counts along the allele paths of a bubble can provide evidence for the genotype of the
sample. Figure (right panel) provides an example: k-mers corresponding to the second
allele of the first bubble are absent from the reads, indicating that the individual carries
the alleles of the green and blue haplotypes. However, bubbles may be poorly covered by
k-mers or no unique k-mers may exist in repetitive regions of the genome. Such positions
cannot be reliably genotyped based on the k-mer counts alone, but known haplotypes can
help to infer genotypes based on neighboring bubbles. An example is shown in Figure
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(right panel): the second bubble is poorly covered by k-mers. However, k-mer information
of the two neighboring bubbles indicates that the sample carries the alleles covered by the
green and blue haplotypes.

For genotyping, we integrate information from k-mer counts and haplotypes by con-
structing a Hidden Markov Model (HMM), which models the unknown genome as a mosaic
of the provided haplotypes and reconstructs it based on the read k-mer counts observed in
the sample’s sequencing reads (see Section [3.2.1). Hidden states represent pairs of haplo-
type paths that can be chosen at each bubble position and emit counts for the unique k-mers
of the respective region. State transitions between adjacent bubbles correspond to recombi-
nation events. Using the Forward-Backward algorithm, genotype likelihoods are computed
for each bubble, from which a genotype is derived.

3.2.1 Hidden Markov Model

The input to PanGenie consists of short-read sequencing reads of the sample to be genotyped
as well as a fully phased, multi-sample VCF file encoding the pangenome graph (see Section
for details on the VCF format). Each variant record in this VCF represents a bubble
in the graph. Further details on how our input VCFs look like and how we construct them
are provided later in Section

Identifying unique k-mers

Sets of bubbles that are less than the k-mer size apart (we use k=31) are combined and
treated as a single bubble. The alleles corresponding to such a combined bubble are defined
by the haplotype paths in the respective region.

For each bubble position v, we determine a set of k-mers, kmers,, that uniquely char-
acterize the region. This is done by counting all k-mers along haplotype paths in the
pangenome graph using Jellyfish [119] (v.2.2.10), and then determining k-mers for each
bubble that occur at most once within a single allele sequence and are not found anywhere
outside the variant bubble. We additionally counted all k-mers of the graph in the sequenc-
ing reads. This allows us to compute the mean k-mer coverage of the data, k.,,, which we
use later to compute emission probabilities (Section [3.2.1]).

Hidden states and transitions

We assume to be given NV haplotype paths H;,i = 1, ..., N, through the graph. Furthermore,
for each bubble v,v = 1,..., M, we are given a vector of k-mers, kmers, that uniquely
characterize the alleles of a bubble. We assume some (arbitrary) order of the elements in
kmers, and refer to the i-th k-mer as kmers,[i]. In addition, we are given sequencing data
of the sample to be genotyped and corresponding k-mer counts for all k-mers in kmers,,. For
each bubble v, we define a set of hidden states ), = {H,; ; | ¢,7 < N} which contains a state
for each possible pair of the N given haplotype paths in the graph. Each such state H, ; ;
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Figure 3.2: PanGenie HMM. Graphical illustration of the HMM underlying PanGenie. For
each variant bubble in the pangenome graph, a set of hidden states is defined which rep-
resents all possible pairs of haplotype paths. Connections between states represent possible
transitions. Hidden states emit counts for the unique k-mers of a bubble.

induces an assignment of copy numbers to all k-mers in kmers,. We define a vector a, ; ;
such that the k-th position contains the copy number assigned to the k-th k-mer in kmers,:

kmers,|k| ¢ H; U H;

i j[k] = VE =1,...,|kmers,|

( O [
1 [
1 kmers,[k

2 kmers,[k

The idea here is that we expect to see copy number 2 for all k-mers occurring on both selected

haplotype paths. In case only one of the haplotypes contains a k-mer, its copy number must

be 1 and k-mers that do not appear in any of the two paths must have copy number 0. See
the leftmost bubble in the graph shown in Figure for an example: for the green and
blue haplotypes, the expected copy number of all orange k-mers is 1, since each of them is
covered by exactly one of these two haplotypes. The gray k-mers are covered by neither the
green nor blue haplotype, therefore we expect to see copy number O for all of them. The
brown k-mers are carried by both the green and blue haplotype. Therefore, the expected

copy number of these k-mers is 2.

From each state H,; ; € 7, that corresponds to bubble position v, there is a transition to
each state corresponding to the next position, v + 1. In addition, there is a start state, from
which there is a transition to each state of the first bubble, and an end state, to which there
is a transition from each state that corresponds to the last bubble.
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Figure presents a graphical illustration of the model. The hidden states are shown
as circles below the variant bubbles and connections represent possible transitions between
the states.

Transition probabilities

Transition probabilities are computed following the Li-Stephens model [111]. Given a re-
combination rate r, the effective population size N, and the distance z (in basepairs) be-
tween two ascending bubbles v — 1 and v, we define:
d=2x- 1 4r - N,
1000000
We compute the Li-Stephens transition probabilities as:

d 1
pr=(1- exp(—ﬁ)) N
= cop(—4) +
qr = €Tp N Dr
Finally, the transition probability from state H,_; j ; to state H,;; is computed as shown
below:
qr - Qy i=kandj=1
qr - P t=kand j#1
P(Hy;|Hy-111) = o 3.1
4dr - Pr i#kandj:l
Dr - Dr Z;ék:and];él

Observable states

Each hidden state H, ; ; € 1, outputs a count for each k-mer in kmers,. Let O, be a vector
of length |kmers,| for bubble v such that O,[k] contains the observed k-mer count of the
k-th k-mer in the sequencing reads. To define the emission probabilities, we first need to
model the distribution of k-mer counts for each copy number, P(O,[k]|a. k] = ¢),c =
0,1,2. For copy number 2, we use a Poisson distribution with mean A\ which we set to
the mean k-mer coverage k.., that we compute from the k-mer counts of all graph k-mers.
Similarly, we approximate the k-mer count distribution for copy number 1 in terms of a
Poisson distribution with mean /2. For copy number 0, we need to model the erroneous
k-mers that arise from sequencing errors. This is done using a Geometric distribution, the
parameter p of which we choose based on the mean k-mer coverage as shown below:
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0.99 keon <10
0.95 10 < ke < 20
0.9 20 < ke <40
\0.8 keov > 40

Finally, we compute the emission probability for a given state and given observed read k-mer
counts as shown below, making the assumption that the k-mer counts are independent.

|kmersy |
P(Oy|Hy,ij) = P(Oul] | av,i[l])
=1

Forward-Backward algorithm

In this model, the hidden states represent possible genotypes a sample could have at each
bubble position given the haplotype paths. Genotype likelihoods can be computed based
on the Forward-Backward algorithm. The initial distribution of our HMM is such that we
assign probability 1 to the start state and O to all others. Forward probabilities () are
computed in the following way:

ap(start) =1

For states corresponding to bubbles v = 1, ..., M, the Forward probabilities are computed as

shown below.

ay(Hyig) = > o 1(Hy1,60) - P(Hyu
val,s,tenvfl

H’U—].,S,t) : P(OU’H’U727J) VZ,j

The transition probabilities are computed as described above, except for transitions from the
start state to all states in the first column, which we assume to have uniform probabilities.
Backward probabilities are computed in a similar manner. We set:

Bu(end) =1

Forv=1,...,M — 1, we compute them as:

ﬂU(Hv,i,j) - Z ﬁv+1(Hv+1,s,t> . P<Hv+l,s,t‘Hv,i,j) . P(OU+1‘HU+1,S,t) VZ,]

Hyq1,6,6€M04+1

Finally, posterior probabilities for the states can be computed:
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Figure 3.3: Callset statistics. a Overview of the samples for which variants were called
from haplotype-resolved assemblies as well as their het:hom ratios. Color corresponds to
the population from which the samples originate. b The number of different substitutions
reported for all samples. ¢ Length distribution of insertions and deletions across all samples
(in basepairs). d Total number of distinct variant alleles detected across all 11 samples (first
row), as well as the number of bubbles in the corresponding pangenome graph (second
row). We distinguished small (1-19 bp), midsize (20-49 bp) and large (> 50 bp) variants.
Biallelic bubbles were classified as SNPs, insertions or deletions; complex corresponds to
all remaining bubbles with more than two branches resulting from inserting overlapping
variant calls into the graph. Figure taken from [49].

av(Hv,i,j) : /BU(HU,i,j)
ZhEnv O‘v(h)ﬂv(h)

Since different paths can cover the same allele, several hidden states at a bubble position

P(Hvﬂ‘,j‘()h 02, ey OM) =

v can correspond to the same genotype. Also, the alleles in a genotype are unordered,
therefore states H,;; and H, ;; always lead to the same genotype. In order to compute
genotype likelihoods, we sum up the posterior probabilities for all states that correspond
to the same genotype. In this way, we can compute genotype likelihoods for all genotypes
at a bubble position, based on which a genotype prediction can be made by choosing the
genotype with highest probability.

3.3 Variant calling from haplotype-resolved assemblies

This section re-uses material presented in [49]. The generation of the assemblies with PGAS was
performed by Peter Ebert, a co-author of this publication.

We used a development version of the PGAS pipeline [46) [145] (parameter settings v.13)
to generate haplotype-resolved assemblies of 14 individuals including 3 mother-father-child
trios (Figure[3.3p; samples include: Yoruban trio: NA19238, NA19239, NA19240; Puerto Ri-
can trio: HG00731, HG00732, HG00733; southern Han Chinese trio: HG00512, HG00513,
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Figure 3.4: Variant calling and graph construction. a Shown are haplotype-resolved
assemblies for three samples and corresponding variant calls made relative to a reference
genome. On the right, we show how these variants are represented in a VCF file (simplified).
The VCF file is biallelic and contains one record per (distinct) variant allele detected across
the assemblies. b Shown is the pangenome representation of the variants detected in panel
a). Variants are represented as bubble structures. Sets of overlapping variants are merged
into a single multiallelic bubble (see first and last bubble for examples). Each haplotype
can be represented as a path through the graph. We represent the pangenome in terms of
a multiallelic VCF file containing a record for each bubble and alleles corresponding to the
branches of the bubble (right). We keep track of which callset variants each branch of the
bubble was constructed from as illustrated in the VCF representation. In this way, we can
later convert genotypes derived for a bubble back to genotypes for each individual variant
inside of a bubble. Note that our VCFs contain the actual allele sequences in their “ALT”
column, we replaced them by their IDs in this figure for simplicity. Figure taken from [49].

HGO00514; and NA12878, HG02818, HG03125, NA24385 and HG03486) and called variants
on each haplotype of all autosomes and chromosome X. The three child samples (HG00733,
HG00514 and NA19240) were used only for quality control and filtering, and thus were not
part of our final callset/graph. For each sample, we separately mapped contigs of each haplo-
type to the reference genome (GRCh38). This was done using minimap2 [[106] (v.2.18) with
parameters -cx asm20 -m 10000 -z 10000,50 -r 50000 -end-bonus=100 -0 5,56 -E 4,1
-B 5 -cs. In the next step, we called variants on each haplotype using paftools (https:
//github.com/1h3/minimap2/tree/master/misc, v.2.18) with default parameters. We
generated a biallelic VCF file containing variant calls made across all 11 unrelated samples
(Figure[3.4p). If a region was not covered by any contig alignment in a sample, or the sample
had multiple overlapping contig alignments, we set all its genotypes in this region to missing
(“./.”), because it is unclear what the true genotype alleles are in this case. Furthermore, we
removed variants from our callset for which > 20% of the samples had missing genotype
information. The remaining regions covered 91.8% (2.8 Gbp) of chromosomes 1-22 and
chromosome X. Of the 8.2% of regions not covered, 48.3% were gaps in GRCh38 and 24.0%
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were centromeres.

We computed the Mendelian consistency for the Puerto Rican (HG00731, HG00732,
HGO00-733), Chinese (HG00512, HG00513, HG00514) and Yoruban (NA19238, NA19239,
NA19240) trios and observed that 97.9%, 96.8% and 97.6% of all variants were consistent
with Mendelian laws, respectively. We removed a variant from our callset if there was a
Mendelian conflict in at least one of the three trios. We show the number of variants in our
final callset and the intermediate stages of variant calling in the first three columns of Table

We computed the transition:transversion (ti:tv) ratio for SNPs and the heterozygous:ho-
mozygous (het:hom) ratio as quality control measures [[68, [194]. Our SNP calls contained
around twice as many transitions as transversions (Figure [3.3p) resulting in ti:tv ratios be-
tween 2.01 and 2.02 for all samples. We obtained het:hom ratios between 1.37 and 2.20
for all our 11 callset samples. These numbers are in line with respective results for African
(AFR), American (AMR), Asian (EAS) and European (EUR) individuals reported in previous
studies [194,[195]. Furthermore, our callset contains comparable numbers of insertions and
deletions (Figure ), except for the expected enrichment for insertion alleles for SVs [24]].
We show detailed counts of distinct variant alleles for all types in Figure (first row) and
for the individual samples in Table We distinguish small variants (1-19 bp), midsize
variants (20-49 bp) and large variants (> 50 bp).

3.4 Constructing a pangenome reference

This section re-uses material presented in [49].

We created an acyclic and directed pangenome graph representing our variant callset (Figure
[3.4). Variants produce bubbles in the graph with branches that define the corresponding
alleles. The input haplotypes can be represented as paths through the resulting pangenome.
When constructing the graph, we represent sets of variants overlapping across haplotypes
as a single bubble, with potentially multiple branches reflecting all the allele sequences
observed in the haplotypes in the respective genomic region (Figure [3.4). The total number
of bubbles in the resulting graph is presented in the last row of Figure [3.3d. We represent
the pangenome in terms of a fully phased, multisample VCF file that contains one entry for
each bubble in the graph (Figure ). At each site, the number of branches of the bubble
is limited by the number of input haplotype sequences and the genotypes of each sample
define two paths through this graph, corresponding to the respective haplotypes. We keep
track of which individual input variants contribute to each bubble in the graph, so that
we can convert our pangenome graph representation back to the set of input variants. In
this way, we can translate genotypes computed by a genotyper for all these bubbles to a
genotype for each individual callset variant.
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Figure 3.5: Overview of leave one out experiment. We illustrate the leave-one-out exper-
iment using three samples. Variants are called in all samples based on haplotype-resolved
assemblies. For evaluation, we construct a biallelic callset containing all variants detected
in samples 1 and 3, and a biallelic truth set containing all variants called in the left out
sample (sample 2). The former set of variants is used for genotyping, the latter for evalua-
tion. When running PanGenie, BayesTyper and Platypus, we first convert the variant calls
into a pangenome graph representation (stored as multiallelic VCF) and genotyped the cor-
responding bubbles (A). We keep track of which bubbles consist of which variant alleles so
that genotypes can later be converted back to the original variant representation. For the
other tools tested (GATK, Platypus, GraphTyper, Giraffe), we directly used the callset vari-
ants as input, without creating the graph (B). The genotypes predicted by each tool are then
compared to the variants detected in the left out sample for evaluation. Variants unique to
the left out sample cannot be genotyped correctly by any re-genotyping approach (marked
in red). We exclude such variants when computing weighted genotype concordances and
adjusted precision/recall/F-score metrics. Figure taken from [49].

3.5 Comparison to existing genotyping methods

This section and all its subsections re-use material presented in [49].

We conducted a ‘leave-one-out experiment’ (Figure to mimic a realistic scenario in
which we genotyped variants detected from haplotype-resolved assemblies of a set of known
samples in a new, unknown sample. We used Illumina reads from the Genome in a Bottle
(GIAB) consortium [207]] and 1000 Genomes Project high-coverage data [21]]. We collected
variants that we called from the assemblies across all but one sample (see Section (3.3)
and used them as input for genotyping the left-out sample (we refer to this set as known
variants in the following). We used the set of variants called from the assemblies of the
left-out sample for evaluation (evaluation variants). We ran this experiment twice, leaving
out samples NA12878 and NA24385, respectively. In addition to running PanGenie, we ran
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BayesTyper [175]] (k-mer-based), Platypus [158]], GATK HaplotypeCaller [39]], GraphTyper
[53], Paragraph [26] and Giraffe [176] (all mapping-based) to re-genotype the same set
of variants (Figure [3.5). We ran our experiments on coverage levels 30x, 20x, 10x and
5x. Not all tools are designed to handle all types of variants. Therefore, we ran GATK
only on SNPs, small and midsize variants and Paragraph only on midsize and large variants.
GraphTyper and Giraffe were run on large variants only.

As input for PanGenie (commit 1f3d2d2), BayesTyper (v.v1.5) and Paragraph (v.2a), we
constructed a pangenome graph representation based on the known variants in the same
way as described in Section We kept track of which variant alleles each resulting bub-
ble consists of, so that genotypes derived for all bubbles can later be converted back to the
original variant representation. For the other genotypers tested (GATK 4.1.3.0, Platypus
0.8.1, GraphTyper 2.7.1 and Giraffe v.1.30.0), we directly used the set of known variants
as input, without generating the graph representation first, because we observed that these
tools could better handle variants represented in this way. As a result of running all geno-
typers, we had one VCF file per tool containing genotypes for all our known variants. We
used the evaluation variants to evaluate the genotype predictions of all tools. Figure |3.5
provides an illustration of the leave-one-out experiment.

Note that re-genotyping a set of known variants in a new sample is different from variant
detection. Variants unique to the new sample that have not been seen in the callset samples
can not be genotyped because re-genotyping methods genotype only variants that they are
given as input. We provide the number of unique variants present in each panel sample in
Table[B.2] To analyze genotyping performance, we introduce the weighted genotype concor-
dance (wGC) which puts equal emphasis on the ability to detect all three possible genotypes
(Figure [3.5.I). As an alternative view on the performance of the individual methods, we
offer precision, recall and F-score, all in an unadjusted version and an adjusted version that
does not penalize methods for ‘missing’ variants that are undetectable because they are not
in the input set (see Section for a detailed description on all evaluation metrics). We
consider two configurations for PanGenie: ‘high-gq’ filtering, where we use only genotypes
reported with high quality scores and treat all other variants as not genotyped, and ‘all’,
where we consider all reported genotypes regardless of their quality.

3.5.1 Evaluation metrics
Weighted genotype concordance

In the biallelic representation, each genotyped variant is either absent from the truth set
(0/0, in case it is not present in the left out sample), heterozygous (0/1) or homozygous
(1/1). We construct a confusion matrix counting all cases (Figure . The counts on
the diagonal (labeled T_0/0, T_0/1, T_1/1) correspond to correctly genotyped variants. All
others are errors. For all three genotypes, we compute the concordances by counting the
number of correct predictions and divide it by the total number of variants in that category:
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genotype concordance precision recall
callset callset callset

truth 0/0 0/1 1/1 /. truth 0/0 0/1 171 /. truth 0/0 0/1 171 .
0/0 |T_0/0 [ F.0/0| F_0/0 0/0 FP FP 0/0
0/1 |FL0/1|T.0/1|FO0/1 0/1 T | FP o1 | FN | TP [ FN | FN
1/1 |F_1/1 | F_1/1| T_1/1 11 FP TP 11 FN FN | TP FN
. . FP FP .

Figure 3.6: PanGenie evaluation metrics. Metrics used to evaluate genotyping results
and how they define errors. Figure taken from [49].

T_0/0 B T 0/1 B T1/1
conc0/0) = 150+ F700 V=151 701 VD=1 w A
Since we genotype all variants detected across multiple samples (including many rare alleles)
in our evaluation sample, the majority of variants will be absent in the evaluation sample.
That is, the number of variants whose true genotype is 0/0, will be higher compared to
the ones with genotypes 0/1 or 1/1. To adjust for unqeual numbers of 0/0, 0/1 and 1/1

genotypes in our ground truth, we compute the weighted genotype concordance as:

conc(0/0) + conc(0/1) + conc(1/1)
3

As mentioned previously, we exclude all variants unique to the evaluation sample when

weighted genotype concordance =

computing the weighted genotype concordance (see Table B.2)), since these variants are not
part of the set of input variants given to all genotypers and thus will not be considered for
genotyping (as all tools re-genotype variants and do not detect them).

Fraction of genotyped variants

Many of the re-genotyping tools we consider can report genotypes “./.” for input variants
that they are not able to genotype. For each tool, we compute the fraction of input variants
that were reported with such an “untyped” genotype.

(Adjusted) Precision/Recall/F-score

We use RTG vcfeval [29] in order to compute precision and recall for our genotype predic-
tions. We compute two versions of precision, recall and F-scores: taking all variants into
account (including those that are unique to the evaluation sample, hence missing from the
input set and undetectable by re-genotyping, see Table[B.2)), and an adjusted version, where
we remove all variants unique to the evaluation sample from the truth set. Therefore, the
unadjusted version combines the effects of variants missing from the input set to be geno-
typed and the performance of the genotyping method, while the adjusted version aims to
only measure the performance of the method (and does not penalize variants absent in the
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input set). True positives, false positives and false negatives are defined as shown in Figure
[29] and precision, recall and F-score are defined as:

recision = L recall = L F-score — 2 precision -recall
P TP+ FP TP+ FN ~ 7 precision + recall

Note on Precision/Recall/F-score metrics

We offer precision/recall/F-score metrics to facilitate comparison to other studies, including
on methods for variant calling. However, these metrics come with the following caveats
when evaluating re-genotyping experiments and should hence be interpreted accordingly:
the more samples we use to generate the set of known variants to genotype in a new sample,
the larger the amount of rare variants and thus the larger the fraction of variants whose
true genotype of the new sample is 0/0. That is, we can make our set of input variants
(almost) arbitrarily large by adding variants absent from the new sample. The possibility of
adding noise when including a large number of rare alleles when constructing pangenome
representations is a known effect and an important consideration [147]. As a consequence,
the number of false positive calls increases with the increase in the number of tested variants,
while the number of true positive calls is limited by the actual number of variants present
in the new sample, reducing the precision. An example is shown in Figure B.Ia. This also
explains why the precision we see for all genotypers in our evaluation is sometimes small
compared to the genotype concordance (Figure B.Ip).

3.5.2 Evaluation regions

We stratified our analyses by considering variants outside and inside short-tandem repeats
(STRs) and variable-number tandem repeats (VNTRs) [93]. We annotated variants according
to their repeat status and observed that between 68% and 72% of midsize (20-49 bp) and
large variants (> 50 bp) are repeat associated, respectively (Table B.3).

In addition, we classified the genome into ‘complex’ and ‘biallelic’ regions based on the
bubble structure of our pangenome graph: all variants located inside of complex bubbles,
that is, bubbles with more than two branches, fell into the first category, and the remaining
regions into the second. Consider Figure for an example: the first and third bubbles are
complex, thus all variants contained inside these bubbles fall into the category ‘complex’.
The second bubble is biallelic and therefore the corresponding SNP variant is considered
‘biallelic’. For our leave-one-out experiment for sample NA12878, we show the number
of variants falling into the different categories in Table It can be observed that most
complex bubbles are located inside STR/VNTR regions (Table B.3). In addition, more than
half of all midsize and large variants are located in these repetitive regions.
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Figure 3.7: Results of leave-one-out experiment (SNPs and small variants). The wGC
at different coverages for sample NA12878 and F-scores for coverage 30x in nonrepetitive
(top) and STR/VNTR regions (bottom). We ran PanGenie, BayesTyper, Paragraph, Platypus,
GATK and GraphTyper to re-genotype all callset variants. Besides not applying any filter
on the reported genotype qualities (‘all’), we additionally report genotyping statistics for
PanGenie when using ‘high-gq’ filtering (genotype quality > 200). Biallelic SNPs, insertions
and deletions include all respective variants in biallelic regions of the genome, whereas com-
plex contains all variant alleles falling into regions with complex bubbles in the pangenome
graph representation. Figure taken from [49].

3.5.3 Results

Genotyping results for NA12878 (Figure Figure Figures [B.2}B.3) and NA24385
(Figures [B.5HB.10) were similar, showcasing consistency of results across samples. In the
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Figure 3.8: Results of leave-one-out experiment (midsize and large variants). The wGC
at different coverages for sample NA12878 and F-scores for coverage 30x in nonrepetitive
(top) and STR/VNTR regions (bottom). We ran PanGenie, BayesTyper, Paragraph, Platy-
pus, GATK, GraphTyper and Giraffe to re-genotype all callset variants. Besides not applying
any filter on the reported genotype qualities (‘all’), we additionally report genotyping statis-
tics for PanGenie when using ‘high-gq’ filtering (genotype quality > 200). Insertions and
deletions include all respective variants in biallelic regions of the genome, whereas complex
contains all variant alleles (insertions or deletions) falling into regions with complex bubbles
in the pangenome graph representation. Figure taken from [49].

following, the results for sample NA12878 are discussed.

For biallelic SNPs in nonrepetitive regions, all methods reached very good levels of geno-
type concordance and F-scores (Figure [3.7), with all F-scores > 0.95 at coverage 30x. For
biallelic SNPs in repetitive regions, PanGenie still achieved an F-score of 0.85, whereas the
second-best tool GATK reached only 0.75 (Figure [3.7). In repetitive regions, BayesTyper
had the largest fraction of untyped SNPs of all tools, resulting in lowest recall of 0.6 for
biallelic SNPs and 0.17 for SNPs inside of complex bubbles (Figure [B.3).

For small insertions and deletions, PanGenie (‘all’) outperformed the mapping-based ap-
proaches, in particular in STR/VNTR regions (WGC of 90.4% for insertions and 92.8% for
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NA12878 NA24385
coverage method time memo memor time memor memo

time total genotyping totalry genotypi}rllg time total genotyping total Y genotyp?r]lg

5 PanGenie 21:06:10 | 19:42:05 84.8 36.4 | 31:44:24 | 29:30:54 84.6 36.2
BayesTyper 27:23:15 | 26:22:21 39.3 39.3 | 36:31:30 | 35:20:37 39.2 39.2
Platypus 18:12:42 1:20:10 18.2 0.2 | 20:39:51 1:31:42 8.7 0.1

GATK! 34:41:06 | 17:24:26 18.2 0.4 | 35:24:17 | 15:53:15 8.7 0.4
Paragraph? 39:49:37 | 22:57:04 18.2 10.1 | 40:51:58 | 21:43:48 11.1 11.1
GraphTyper® 22:06:44 5:14:12 18.2 0.2 | 23:12:02 4:03:52 8.7 0.2

10 PanGenie 21:36:59 | 19:27:31 84.8 36.4 | 33:07:31 | 29:29:26 84.7 36.2
BayesTyper 38:42:03 | 37:20:08 40.7 40.7 | 36:05:15 | 34:16:52 40.7 40.7
Platypus 35:20:29 1:42:35 18.6 0.4 | 42:57:08 1:57:21 8.8 0.3

GATK! 59:42:39 | 25:21:58 18.6 0.4 | 67:21:06 | 25:36:00 8.8 0.5
Paragraph? 66:02:14 | 32:24:20 18.6 13.2 | 86:19:41 | 45:19:54 12.2 12.2
GraphTyper® 42:52:25 9:14:31 18.6 0.3 | 49:30:28 8:30:41 8.8 0.2

20 PanGenie 23:46:08 | 19:39:33 84.8 36.4 | 24:24:09 | 19:41:24 84.7 36.3
BayesTyper 32:03:53 | 29:59:40 41.0 41.0 | 44:49:37 | 41:59:38 41.1 41.1
Platypus 68:38:45 2:11:46 28.4 0.7 | 81:28:44 2:42:48 8.8 0.5

GATK! 107:04:36 | 39:18:12 28.4 0.5 | 120:51:45 | 40:43:18 8.8 0.8
ParaGraph? 137:18:30 | 70:51:31 28.4 14.3 | 139:56:03 | 61:10:07 12.9 12.9
GraphTyper® 84:34:29 | 18:07:30 28.4 0.5 | 92:58:00 | 14:12:04 8.8 0.3

30 PanGenie 24:58:54 | 19:31:51 84.8 36.4 | 26:48:22 | 19:41:23 84.7 36.3
Bayestyper 32:24:13 | 29:34:54 41.1 41.1 | 48:30:38 | 44:34:30 44.4 44.4
Platypus 99:12:01 1:59:29 39.1 1.0 | 123:09:20 3:02:53 8.8 0.9

GATK! 143:57:46 | 44:54:12 39.1 0.5 | 176:26:20 | 54:21:41 8.8 0.9
Paragraph? 210:28:50 | 113:16:17 39.1 14.7 | 256:00:10 | 135:53:43 13.3 13.3
GraphTyper®| 123:03:06 | 25:50:33 39.1 0.7 | 141:57:38 | 21:51:11 8.8 0.5
Giraffe® 3043:47:18 | 11:10:38 | 188.7 45.2 - - - -

1 GATK was run on SNPs, small and midsize variants only.

2 paragraph was run on midsize and large variants only.

3 GraphTyper and Giraffe were run on large variants only.
Table 3.1: Runtime and memory usage of different genotypers. Runtime (in CPU
hhh:mm:ss) and peak memory usage (in GB) of the different genotyping methods at different
coverages. For all methods, we show the total resources needed for producing genotypes
from raw, unaligned sequencing reads (“total”), as well as the resources needed only for the
genotyping step (“genotyping”). Thus, for Platypus, GATK, Paragraph and GraphTyper, the
latter excludes the time needed to generate alignments against the reference genome. For
Giraffe, it excludes the time for graph construction with vg, indexing and alignment. For
k-mer-based approaches (PanGenie and BayesTyper), it excludes the k-mer counting step.
All tools were run on an HPC-cluster predominantly consisting of Intel E5-2697v2 (2x 12
cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2x 12 cores and 192 GB of RAM)
nodes. Table taken from [49].

deletions; Figure [3.7)), where the best mapping-based tools (GATK) achieved a wGC of 83%
and 86.9% for biallelic insertions and deletions, respectively, at coverage 30x. BayesTyper
and PanGenie using ‘high-gq’ filtering achieved the highest wGCs, both > 99% for non-
repetitve and > 97% for repetitive regions (Figure [3.7). For both tools, these good wGCs
came at the expense of relatively few genotyped variants, with PanGenie being able to geno-
type slightly more. We also evaluated our results for SNPs, small and midsize variants using
the GIAB high-confidence small variant callset [208] as a ground truth (Figure [B.4).
Performance differences were largest for midsize and large variants (Figure[3.8)). PanGe-
nie clearly outperformed the mapping-based approaches, especially in repeat regions. Here,
PanGenie (‘all’) reached wGCs for large SVs of 85%, 92% and 76% for biallelic insertions,
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biallelic deletions and variants in complex multiallelic regions, respectively, at coverage
30x. This is in contrast with the performance of the best mapping-based tool, achieving
only 64%, 79% and 51%, respectively. BayesTyper reached high wGCs, but left 42%, 39%
and 77% of these variants untyped, respectively. Using ‘high-gq’ filtering, PanGenie could
reach concordances similar or superior to BayesTyper, while still being able to type much
larger fractions of variants (Figure [3.8). PanGenie’s genotyping performance for large SVs
in repetitive regions is underscored also by the F-score (Figure[3.8)): for large biallelic inser-
tions, for example, PanGenie (‘all’) showed an F-score of 0.7 whereas all other tools reach
F-scores < 0.5. We additionally used the SVs contained in the syndip benchmark set [109]
to evaluate genotyping performance. Although the absolute results tended to be slightly
worse for all tools, PanGenie again produced the most accurate genotype predictions and
outperformed the other tools (Figure B.1T).

3.5.4 Resources
Comparison of runtimes and memory usages

The runtime and peak memory usage of all genotypers is presented in Table For all
methods, we measured the resources needed to produce genotypes given the raw, unaligned
sequencing reads (‘total’) as well as the resources needed specifically for genotyping (‘geno-
typing’). For the mapping-based approaches (Platypus, GATK, Paragraph, GraphTyper and
Giraffe) the latter excludes the resources needed for aligning the sequencing reads, for the
k-mer-based approaches (PanGenie and BayesTyper) it excludes the resources needed for
counting k-mers. Note that not all tools are able to genotype all considered variant types.
We ran GATK only on SNPs, small and midsize variants. Paragraph was only run on midsize
and large variants and GraphTyper only on large variants. We ran Giraffe only for sample
NA12878 at coverage 30x and only on large variants, as we observed a very high runtime
for its graph alignment step. All tools were run on an HPC-cluster predominantly consisting
of Intel E5-2697v2 (2x12 cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2x12 cores
and 192 GB of RAM) nodes.

Asymptotic runtime of PanGenie

PanGenie is based on a Hidden Markov Model which, for each variant position, defines one
state for each pair of haplotypes in the input panel. Given m variants to be genotyped and n
panel haplotypes (which equals twice the number of samples), there will be O(n?-m) states.
Applying the Forward-Backward algorithm to the HMM corresponds to a runtime quartic
in the number of haplotypes, but linear in the number of variants since only states corre-
sponding to the previous/next variant position need to be considered in order to compute
Forward/Backward probabilities, respectively. Therefore, the total runtime is O(n* - m).
If the number of panel haplotypes grows, the algorithm will get slow. We have therefore
developed a subsampling strategy to speed up the algorithm when applied to larger pan-
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Figure 3.9: HLA genotyping. Weighted genotype concordances for samples NA12878,
NA24385 and HG00731 resulting from a “leave-one-out” experiment for HLA genes, as well
as the average weighted genotype concordance across all three samples (red). For each
gene, we separately computed concordances for the simpler, “biallelic” regions, as well as
the more difficult “complex” regions. Figure taken from [49].

els. It will be presented in Chapter (4, For all experiments in this chapter however, we ran
PanGenie without subsampling using the full HMM.

3.6 Accuracy in the Major Histocompatibility Complex

This section re-uses material presented in [49]. The evaluation of the assemblies was performed
by co-authors of this publication.

To evaluate the accuracy of all 14 haplotype-resolved assemblies in the human leukocyte
antigen (HLA) region, we used HLA*ASM [42]] to determine assembly HLA types. HLA*ASM
successfully processed 27 of 28 input assemblies and identified perfect (edit distance 0) HLA-
G group matches [159] for all classic HLA loci (HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1)
in all processed input assemblies with one exception (HLA-DRB1 in NA19238), which was
resolved by manual curation with minimap2 [106]. To verify the accuracy of the assembly
HLA types, we integrated publicly available HLA genotype data for samples from the 1000
Genomes Project [4} 41}, 165] for HLA-A, -B, -C, -DQB1 and -DRB1, intersected these with the
assembly-implied HLA types, and found perfect agreement in all evaluated cases (9 samples
and 85 individual genotype comparisons).

We analyzed our genotyping performance inside of the MHC region. In order to gen-
erate the callset described in Sections and we had used a reference genome that
contained sequences of alternative HLA haplotypes in addition to the sequence of chromo-
some 6 (on which MHC is located). Therefore, many assembly contigs aligned to these
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additional haplotypes instead of the respective region on chromosome 6 during variant call-
ing. As a result, the MHC region was not covered well by our callset. We therefore used the
same pipeline to generate a second version of our variant calls and pangenome graph using
a reference genome that contains only chromosomes 1-22, chromosome X and chromosome
Y. We evaluated PanGenie’s genotyping performance based on a ‘leave-one-out’ experiment
for samples HG00731, NA12878 and NA24385. Analogously to what we described in Sec-
tion[3.5/and Figure[3.5] we repeatedly constructed callsets and pangenome graphs excluding
the respective samples and evaluated genotypes by comparing to the variants detected in
the left out sample. As mentioned previously, we restricted our evaluation to all variants
that are genotypable and excluded such that are unique to the left out sample.

We present weighted genotype concordances that we obtained for the HLA genes in
Figure We separately evaluated variants (all types) located in biallelic regions of the
genome and such located in regions with complex bubbles in the pangenome graph. Our
callset did not fully cover the C4 genes (C4A and C4B) since the region was not com-
pletely covered by contig alignments in most haplotypes (including one of the haplotypes
of NA12878) possibly due to the presence of large structural variants in this region. Thus,
the evaluation for these genes only corresponds to the parts that were accessible for variant
calling.

3.7 Genotyping larger cohorts

This section re-uses material presented in [49].

The low runtime of PanGenie makes it well suited to genotype larger cohorts. As an example
use case, we applied it to a set of 300 samples consisting of 100 randomly selected trios from
the 1000 Genomes Project using high-coverage data [21]. We used our pangenome graph
representation containing all 11 assembly samples as an input for PanGenie, genotyped all
bubbles and later converted the resulting genotypes back to obtain genotypes for the indi-
vidual callset variants. Similar to the approaches that we use in Chapter [4|to analyze HGSVC
and HPRC variants across the whole 1000 Genomes cohort, we employed Mendelian consis-
tency of the genotyped trios and the genotype quality reported by PanGenie to compute an
integrated score for genotyping reliability of each variant. To this end, we defined different
filters based on the predicted genotypes that we list below. One metric used for defining
filters is the Mendelian consistency. We computed the Mendelian consistency for each vari-
ant by counting the number of trios for which the predicted genotypes are consistent with
Mendelian laws. We considered only trios with at least two different genotypes, that is, we
excluded a trio if all three genotypes were 0/0, 0/1 or 1/1. This resulted in a more strict
definition of Mendelian consistency. In addition to genotyping all 300 trio samples, we also
genotyped all 11 panel samples using the full input panel. Genotyping samples that are also
in the panel helped us to find cases where panel haplotypes and reads disagreed and thus
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Figure 3.10: Cohort genotype filtering. a Shown are all combinations of filters that we ap-
plied to our genotyped variant callset and the respective number of variants in each subset.
The black dots indicate that the respective filter failed. b Distributions of SVR scores pre-
dicted for the positive set (blue), negative set (red) and unassigned variants (grey). Figures
taken from [49].

was another useful filter criterion. We defined filters as follows:

+ acO-fail: a variant fails this filter if it was genotyped with an allele frequency of 0.0
across all samples.

- mendel-fail: a variant fails this filter if the fraction of Mendelian consistent trios was
< 90%.

+ gq-fail: a variant fails this filter if it was genotyped with a genotype quality < 200 in
more than 5 samples.

« self-fail: a variant fails this filter if the genotype concordance across all panel samples
was < 90%.

« non-ref-fail: a variant fails this filter if it was genotyped as 0/0 across all panel sam-
ples.

For all combinations of filters, we show the number of large deletions and large insertions
in each category in Figure[3.10p. To define a strict, high-quality set of variants, we selected
all alleles that passed all five filters (Table [3.2)). In addition to defining a strict set, we con-
structed a ‘lenient’ set for our SV calls (> 50 bp) using a machine-learning approach based
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variant type | unfiltered set | strict set \ lenient set
SNP | 12,095,177 11,234,462
small INS 1,922,163 1,198,663
small DEL 1,811,123 1,202,791
midsize INS 110,882 57,699
midsize DEL 80,027 40,752
large INS 108,929 56,290 84,836
large DEL 41,499 20,490 34,290

Table 3.2: Number of variants before/after filtering. Number of variants in the unfil-
tered, strict and lenient sets. The lenient set was only computed for SVs (> 50 bp), therefore
strict and lenient sets for all other variants are identical. Table taken from [49]].

on support vector regression. We used the strict set as a positive set and defined a negative
set consisting of all variants that were typed with an allele frequency (AF) > 0.0 and failed
at least three filters. For large insertions, the negative set contained 2,611 variants, and
for large deletions 1,125. The model then predicted scores between -1 (worst) and 1 (best)
for all variants that were in neither the positive nor the negative set. The prediction used
33 features collected from the predicted genotypes based on self-genotyping accuracies of
the panel samples, allele frequencies computed across the panel samples and all genotyped
samples, genotype quality and Mendelian consistency. We show the distribution of scores
for our variant calls in Figure [3.10b. The lenient set was then constructed by adding all
variants with a score > -0.5 to our strict SV set. The resulting set of variants contained 78%
and 83% of all insertion SVs and deletion SVs, respectively (Table . To confirm that the
lenient set still offers very good genotyping performance, we analyzed allele frequencies
and heterozygosities observed from the predicted genotypes for all variants in the lenient
set and observed a relationship close to what is expected from the Hardy—-Weinberg equilib-
rium (HWE; Figure[3.1Th). When testing for HWE, 90.7% of SV alleles inside of repeats, and
90.9% outside of repeats, showed no significant deviation. Furthermore, observed allele fre-
quencies across all 200 unrelated samples were in excellent agreement with coarse-grained
AF estimates obtained from the 22 haplotype assemblies of our 11 input samples (Figure
[3.11pb). Note that neither of these two measures, HWE and agreement in estimated AFs, has
been used when defining the lenient set and therefore serves as independent evidence for
PanGenie’s performance. PanGenie on average only took about 30 single-core CPU hours
per sample.

Our callset contains 209 of 250 medically relevant SVs reported by GIAB [[192]. We
observed that 174 medically relevant SVs were contained in our lenient set, of which 119
were part of our strictly filtered set. We show the score distribution for these variants as
well as AFs and heterozygosities observed across all 200 unrelated samples for the lenient

set in Figure
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Figure 3.11: Genotyping large cohorts. a The hexbin plots show the relationship between
AFs and heterozygosities of the PanGenie genotypes for all 200 unrelated samples from the
1000 Genomes Project. The barplots show the one-dimensional distributions of both features
(top: AF, right: heterozygosity). All large insertions (> 50 bp, n=84,836) and deletions
(> 50 bp, n=34,290) contained in our lenient set were taken into account. b Comparison
of AFs computed from the PanGenie genotypes for 200 samples and the corresponding AFs
observed in the 11 assembly samples from which variants were called. As in a), we consider
all large insertions (> 50 bp, n=84,836) and deletions (> 50 bp, n=34,290) contained in
our lenient set. In the boxplots, lower and upper limits of the box represent the lower and
upper quartiles (Q1 and Q3); the median is marked in yellow. Lower and upper whiskers
are defined as Q1-1.5 (Q3-Q1) and Q3+ 1.5 (Q3-Q1), respectively, and outliers are marked
by dots. ¢ Length distribution of the number of common insertions and deletions (AF > 5%)
contained in the PanGenie lenient callset and gnomAD. Figure taken from [49].

3.8 Comparison to gnomAD

This section re-uses material presented in [49].

We compared the 119,126 SV alleles genotypable by PanGenie (lenient set) with the SVs
that are part of the Genome Aggregation Database (gnomAD) [32]; gnomAD contains SVs
collected across 14,891 genomes from different populations [32]. Since gnomAD calls were
generated relative to reference genome version GRCh37, we used UCSC liftOver (https://
genome .ucsc.edu/cgi-bin/hglLift0ver) to convert their coordinates to GRCh38. Requiring
a reciprocal overlap of at least 50% or a start, end and variant length deviation of < 200 bp,
we found that both callsets had 34,468 variants in common, whereas 84,658 (71%) of our SV
alleles were not contained in gnomAD. This finding is consistent with previous observations
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Figure 3.12: LD analysis. We calculated the LD for GWAS variants and SVs that were
part of our assembly-based callset. We detected an insertion (marked in blue) close to the
ABO gene which was in LD with six GWAS SNPs. The plots show all callset variants in this
region; GWAS variants are annotated with their name. Variants colored in red correspond
to blood-type markers. Figure taken from [49].

that short-read-based SV detection misses most SVs [206]]. Of those 84,658 SVs, around
80% were located in STR/VNTR regions. Furthermore, 43% of these 84,658 variants were
common variants with AF > 0.05 across all genotyped samples. The length distribution
of common insertions and deletions (Figure [3.11fc) demonstrates the ability of PanGenie
to genotype variants in regions inaccessible by callers based on short-read data alone, and
shows its particular impact when genotyping insertions and shorter deletions.

3.9 LD analysis

This section re-uses material presented in [49]. The analysis on nonhuman primates was performed
by co-authors of this publication.

Based on the genotypes obtained across all 200 unrelated samples (Section |3.7)), we per-
formed an LD analysis. We used gatk4 (v.4.1.9.0) to annotate the calls with variant IDs
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from dbSNP (build 154) [[174]. We selected all SNPs from our callset that were contained
at least five times in the NHGRI-EBI GWAS (genome-wide association studies) catalog [20]
and used plink [[148]] (v.190b618) to determine SVs that are in LD with the GWAS variants
(r2 > 0.8) within a window of 1 Mb.

For 147 of 3,404 disease-associated SNPs from NHGRI-EBI, we found nearby structural
variants that were in LD (2 > 0.8). An insertion of length 129 bp located at position
133,278,856 on chromosome 9, close to the ABO gene, looked particularly interesting (Fig-
ure [3.12)). It is in LD with six GWAS variants (rs2519093, rs495828, rs507666, rs579459,
rs635634 and rs651007) which are related to low-density lipoprotein-cholesterol levels
[20]. Of note, neither the GWAS SNPs nor the insertions are in LD with blood-type mark-
ers present in our callset (rs8176747 [[156]], rs8176746 [124]], rs8176743 [156], rs8176742
[185], rs8176741 [185], rs8176740 [185], rs7853989 [185], rs1053878 [[185], rs8176720
[185] and rs8176719 [[124]). The insertion is located in a long tandem repeat (LTR10B2
for ERV1 endogenous retrovirus). Analysis of the insertion sequence revealed that it con-
tains three exact copies of a 43 bp sequence (“TAACGCAGTTTCTGTTTCTGTGTCCTTCC-
CCTATTGGCTGGGG”; Figure B.13)), which appears with copy number 1 in the reference
genome. We thus concluded that this insertion is a repeat expansion, leading to four copies
of this repeated subsequence. A comparison with nonhuman primate genomes [99, [115]
showed that the 43-mer occurs as two copies in gorilla (Gorilla gorilla), but is a single copy
in chimpanzee (Pan troglodytes), bonobo (Pan paniscus) and the Sumatran orangutan (Pongo
abelii). This suggests independent expansion events or incomplete lineage sorting in humans
and gorillas.

Another interesting association was an intronic insertion of length 322 bp located at po-
sition 28,264,365 on chromosome 12, inside the CCDC91 gene close to a regulatory element
reported by ENCODE [55] (Figure[B.14). It was in LD with two GWAS variants (rs10843151
and rs11049566), which are both linked to body fat [20]. One of these SNPs, rs10843151,
is in perfect LD with many other variants in this region, which suggests that it is probably
embedded in the same haplotype block. Such perfect LD provides further evidence that
PanGenie is accurately genotyping new insertions within short-read sequencing data.

3.10 Discussion and conclusions

This section re-uses material presented in [49].

We presented an algorithm, PanGenie, that can leverage the long-range haplotype informa-
tion inherent to a panel of assembled haplotypes in combination with read k-mer counts
for genotyping an uncharacterized sample. Although we generated such pangenome ref-
erence panels from haplotype-resolved assemblies for the present study, generating these
pangenomes was not the main focus of this thesis and PanGenie is not restricted to panels
created in this way. In fact, it can be applied to any acyclic genome graph with fully phased
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path information.

Traditionally, longer variants are especially difficult to genotype based on short reads
only, because such variants are often located in repetitive or duplicated regions of the
genome, leading to the difficulty of unambiguously aligning the reads. Approaches based
on k-mers additionally lack connectivity information contained in the reads because they do
not use the order of k-mers stemming from the same read or read pair. PanGenie overcomes
these limitations of short reads because it incorporates long-range haplotype information
inherent to the pangenome reference panel that it uses. In comparison to BayesTyper, a
graph-based genotyper relying on k-mers, PanGenie genotypes a large fraction of variants
not typable by the former. For SVs and indels, PanGenie clearly outperforms mapping-
based approaches, which require alignments of reads to a reference genome. Compared
with Paragraph, a graph-based method relying on such read alignments, PanGenie produces
better genotyping results while additionally providing the ability to jointly genotype SNPs,
indels and SVs. Our approach was faster than the other methods, especially when compar-
ing with the mapping-based approaches. The fast runtime makes PanGenie well suited for
genotyping larger cohorts, providing the basis for population genetic analysis. In the present
study, we have presented an application to a cohort of 300 samples that suggests that SVs
in LD with disease-associated SNPs may functionally underlie these associations.

We have hence presented a method that is both fast and leverages a haplotype-resolved
pangenome reference to enable genotyping of otherwise inaccessible variants. Although we
have tested it only on human data so far, PanGenie can be applied to any diploid genome
once corresponding panels of high-quality phased assemblies become available for other
species. Our method offers a powerful approach for genotyping and association studies, on
ever-larger cohorts, for all variant types — including those currently understudied due to
technical limitations.

3.10.1 Limitations and future directions

Although PanGenie improves results over other methods in repetitive regions of the genome,
genotyping within these remains challenging. While biallelic variants are less problematic,
more complex cases such as segmental duplications, «-satellite repeats or acrocentric DNA
are hard to access because of the lack of unique k-mers, but also because such regions
are still difficult to assemble. Once a panel of telomere-to-telomere assemblies becomes
available, future experiments can clarify which additional loci are amenable to genotyping
with PanGenie.

Our model assumes that the unknown haplotypes of the sample to be genotyped are mo-
saics of the given panel haplotypes. Therefore, currently it cannot be used to genotype rare
variants that are present only in the sample, but in none of the other haplotypes. We believe
that there are exciting opportunities to develop methods to discover variation that our ap-
proach has not captured because it was not present in the reference panel. For example, one
could either filter the reads for as yet “unexplained” k-mers and use those for the discovery
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graph-based representation VCF-based representation

Figure 3.13: Nested variants representation. A bubble structure with nested variants
is shown on the left, as well as four haplotype paths. On the right side, this bubble is
represented in terms of the merged, multiallelic VCF file format used by PanGenie. Each
distinct path through the bubble will be interpreted as an allele, even though paths are
partially identical. The latter representation does not allow recombination between the two
nested variants.

of rare variants, or utilize PanGenie’s output as a personalized pangenome reference graph
to map reads to.

Currently, PanGenie computes recombination probabilities only based on the distance
between two adjacent variant positions. In order to increase genotyping accuracy, recombi-
nation probabilities could be adjusted to account for recombination hotspots in the genome,
or to regions with low recombination rates.

The runtime of our method depends on the number of input haplotypes, because we
defined a hidden state for each possible pair of haplotypes that can be selected for each
bubble. Therefore, additional engineering would be required to use much larger panels,
which could be approached similarly to how statistical phasing packages prune the solu-
tion space and/or proceed iteratively [19, [37, [79]. Such techniques could also pave the
way toward a version of PanGenie for polyploid genomes, which would be prohibitively
slow when implemented without such additional optimization. Another option could be to
compute founder sequences [134} [190] from the input haplotypes prior to genotyping in
order to reduce the runtime for large panels. This smaller set of representative haplotype
sequences could then be used as input to PanGenie instead of the full set of haplotypes.
Similar ideas have been used recently to successfully reduce the complexity of accurate,
pangenome-based variant detection [135].

PanGenie determines k-mers unique to a bubble region for genotyping (Section [3.2.1).
These k-mers are allowed to occur in one or more alleles inside of the bubble, but nowhere
else in the pangenome. In the current implementation of PanGenie, the number of unique
k-mers selected for larger bubbles is restricted to 300 to reduce memory usage and runtime.
Which k-mers are selected is completely arbitrary. Here, more sophisticated strategies to
choosing the most informative k-mers could be implemented. For example, one could try to
select k-mers such that each allele is equally covered by k-mers. Also, one could prefer those
k-mers that distinguish alleles by selecting the ones that are not only specific to a bubble
region but also occur only in exactly one of the allele paths inside of the bubble.
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Currently, the pangenome graph provided as input to PanGenie is stored in VCF format.
Each bubble in the graph is represented in terms of a variant record and the alternative alle-
les specify all distinct paths covered by the input haplotypes in this genomic region (Figure
right). For large bubbles, there might be a different path for each haplotype, although
haplotypes might be partly identical. However, this VCF-based representation does not ac-
count for nested variation that might be present in a bubble and thus does not consider the
actual graph structure underlying such a region (Figure left). This might especially
be problematic as the number of haplotypes increases. The more haplotypes there are, the
more alleles might be overlapping across haplotypes leading to larger bubbles that tend to
have a distinct allele path for each single haplotype in the resulting VCF. Genotyping such
bubbles is challenging, as PanGenie needs to decide between a large number of possible
alternative alleles. Therefore, leveraging a more sophisticated pangenome graph structure
that encodes variation in terms of nested bubbles and is independent of a reference genome
might be more beneficial. It might be helpful to genotype nested variants separately instead
of considering the whole bubble at once, allowing recombination between nested variants
inside of a bubble. Recursive strategies for genotyping nested variation within larger bub-
bles could be useful here, e.g. as used by gramtools [105]], however, this might require a
different problem formulation which is not based on a Hidden Markov Model. An existing
format that is able to encode nested variation is the GFA format. It encodes a graph by
defining its nodes (“segments”) and edges between them (“links”), along with sequence in-
formation. However, such graphs are more difficult to handle since files are often large, and
also because bubble detection algorithms are required in order to localize bubbles in these
graphs prior to genotyping.



Chapter 4

Application: Genotyping Large
Cohorts

The recent advances in accurate long read sequencing (Section as well as the develop-
ment of efficient methods for chromosome-scale assembly (Section have enabled the
generation of highly accurate, haplotype-resolved assemblies of human samples on larger
scales [24}/59][145]]. Such assemblies enable the construction of highly accurate pangenome
references, which provide insights into complex genomic regions that were previously diffi-
cult to analyze. Alternative allele sequences are missing from the current reference genome.
Furthermore, many SVs are located in repetitive sequence context. As a consequence, over
two-thirds of SVs have been missed by short-read based callers [24] 199} 206]. Methods
based on pangenome graphs enable fast, short-read based genotyping of variants previously
inaccessible (Chapter [3). This allows to include such SVs in population-based downstream
analyses, such as genome-wide association studies.

Recently, two consortia have produced haplotype-resolved assemblies for multiple hu-
man samples. The Human Genome Structural Variation Consortium (HGSVC) [24, |46] gen-
erated phased assemblies for 35 human samples, focusing on variant calling and the analysis
of structural variations across these genomes. More recently, the Human Pangenome Refer-
ence Consortium (HPRC) [90, [113] produced such assemblies for 47 human samples, with
the goal of providing an alternative to the linear reference genome. Both consortia deliver
pangenome representations that can serve as input for pangenome-based genotyping meth-
ods like PanGenie, which was presented in Chapter|3| The fast runtime of PanGenie enables
accurate genotyping of thousands of samples based on short sequencing reads using such
pangenome references. This chapter presents the results of applying PanGenie to the datasets
of the HGSVC and HPRC consortia. It demonstrates that PanGenie works well in practice
and that it can be used to produce high quality genotypes across large populations. The main
focus is on structural variation, as many SVs have been challenging to detect and analyze in
previous studies. It is further demonstrated how SNP genotypes across large populations can
be used in order to detect potential carriers of rare inversions in human samples. The ex-
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periments presented here demonstrate the added value from pangenome-based genotyping
being able to access variation previously inaccessible by short reads.
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4.1 HGSVC project

This section presents the work of the Human Genome Structural Variation Consortium (HGSVC)
and focuses on my contributions to this project. Results were published as part of a Science
publication [46]]. Sections(4.1.3} |4.1.4| and |4.1.5| re-use material from this paper. Section
re-uses material from [49]. See Sections and |E. 5| for information on author contributions and
publication details.

4.1.1 Introduction

The Human Genome Structural Variation Consortium (HGSVC) [24,46]] constructed highly
accurate, haplotype-resolved assemblies of human samples using the PGAS pipeline [145]
based on long-read PacBio sequencing data (CLR and CCS) as well as Strand-seq data. Unlike
other methods [98], PGAS does not depend on parent-child trio data [46] [145] (see also
Section [1.8). Haplotype-resolved assemblies for 35 human samples (70 haplotypes) were
produced in this way, which included 32 unrelated individuals. These assemblies were used
in order to call genetic variants, including SNPs, indels and SVs across these samples. The
focus here was especially on SVs, as these new assemblies enable the discovery of novel SVs
previously inaccessible by short-read or long-read based data. Variant calling was performed
using a new method PAV, developed by a co-author, which detects variants by comparing the
haplotype sequences of the assembly samples to the linear reference genome, producing a
callset with phased genotypes for all assembly samples. As a part of this project, I genotyped
the variants detected by PAV across a diverse cohort consisting of 3,202 human samples
[2, 21]] using PanGenie, enabling estimation of allele frequencies as well as the discovery
of associations between genotypes and gene expression, splicing and candidate disease loci
[46l.

4.1.2 Speeding up PanGenie for larger panels

This section re-uses material presented in [49].

The asymptotic runtime of the Forward-Backward algorithm implemented in PanGenie is
O(n* - m), where n is the number of reference haplotypes and m the number of genotyped
variants (see Section for details). Thus, the algorithm might get slow once the number
of haplotypes in the panel gets larger. Therefore, we have implemented a subsampling
approach to efficiently genotype larger panels, such as the ones produced by the HGSVC
and HPRC projects. Given n input haplotypes, the idea is to subsample [ sets of haplotypes
each of size k from the full set. The Forward-Backward algorithm is then run separately on
each of these subsets in order to produce genotype predictions for the variants. In the end,
genotype likelihoods produced based on each subset for a variant position are combined by
iteratively adding up likelihoods and normalizing them. PanGenie automatically switches
to this subsampling approach if the number of input haplotypes in the panel exceeds 30. It
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was used for the HGSVC experiments presented in the following sections as well as for the
HPRC experiments presented in Section 4.3

Asympotic runtime

Let us assume we split the set of n input haplotypes in [ subsets each of a fixed size k. When
genotyping m variants, PanGenie’s genotyping step is now run separately on each of the [
sets in time O(k*-m) (Section . This will result in a total runtime linear in the number
of subsets, i.e. O(l - k* - m).

4.1.3 Variant calling from haplotype-resolved assemblies

This section provides an overview of the variant calling pipeline that was developed and run by
Peter Audano, a co-author of [46] and re-uses some material from this publication.

Variants were identified from the haplotype-resolved assemblies with the Phased Assembly
Variant (PAV) caller. For each haplotype, the assembly contigs were aligned to the GRCh38
reference genome using minimap2 [106]]. Multi-mapping issues were resolved by trimming
alignments based on a dynamic programming approach. Variants contained within align-
ments were detected from the CIGAR string of the mapped contigs. Structural variants can
cause breaks in the alignments. In such cases, alignment breakpoints were analyzed in order
to identify insertion or deletion events. In order to combine variant calls generated for each
haplotype by PAV, a three-step merging approach was applied to decide whether similar al-
leles observed across different haplotypes represented the same variant or not. First, variant
alleles matching exactly were intersected. Second, variant calls with intersecting reference
coordinates were combined if their reciprocal overlap (RO) was at least 50%, i.e. the interval
covered by a variant overlapped at least 50% of the interval covered by another variant and
vice versa. For insertions, the end position was computed as the sum of start position and
length. Finally, variants within 200 bp and 50% overlap by size were merged, since smaller
variants are often missed by the RO criterion. SNP variants were only combined if their
position and alternative base were exactly the same. The output of PAV is a fully-phased,
multisample VCF file containing all variant alleles after merging. It was used in subsequent
steps in order to generate an acyclic and directed pangenome representation of these calls,
which was used as input to PanGenie.

4.1.4 Genotyping SVs across a cohort of 3,202 individuals
This section re-uses material presented in [46]].
The variants detected by PAV were genotyped across all 3,202 samples from the 1000

Genomes Project [2, [21] in order to demonstrate the utility of PanGenie for large cohorts.
For each sample, we provided PanGenie with short-read sequencing reads (in FASTQ for-
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PAV calls | Minus > 20% missing | Minus chrY + chr_* Merge?d S et
(PanGenie input)
SNPs 15.810.489 15.610.830 15.609.695 15.488.649
Deletions (1-49 bp) 649.065 642.348 642.341 636.570
Insertions (1-49 bp) 405.981 400.527 400.513 397.095
Deletions (> 50 bp) 41.393 37.327 37.169 35.862
Insertions (> 50 bp) 66.197 61.788 61.604 60.283

Table 4.1: Number of HGSVC variants. The first column provides the number of input
variants (from PAV callsets). The second and third columns show the numbers of variants
obtained after removing positions with at least 20% missing alleles in the panel and those
located outside of chromosomes 1-22 or chromosome X. The last column provides the num-
bers of variants contained in the final graph used as input for PanGenie. Table taken from
[46l.

mat) as well as a multisample VCF file containing phased variant calls from the 64 assem-
blies of all unrelated samples (i.e. excluding six child haplotypes). This input VCF file was
derived from the merged PAV callsets produced for SNPs, indels and SVs. At first, we re-
moved all positions for which more than 20% of the panel haplotypes carried a missing
allele. Furthermore, we kept only variants located on chromosomes 1-22 and chromosome
X for genotyping. We then created a multiallelic VCF representation in which overlapping
variants were combined into multiallelic bubbles using the same approach as explained in
Section For each bubble, we kept track of the individual variants it was composed of,
which allowed us to later translate genotypes computed for bubbles to genotypes for the
underlying PAV variants. Some variants in the input PAV callsets were overlapping on the
same haplotype (e.g. a SNP inside of a deletion). We removed such conflicts by setting
the corresponding alleles to missing (“.”). In this way, the VCF encodes an acyclic and di-
rected pangenome graph representing the panel genomes. Table provides an overview
of the number of PAV variants obtained after the different pangenome graph construction
steps. We genotyped all bubbles contained in the pangenome graph across all samples from
the 1000 Genomes Project using PanGenie. We converted the genotypes computed for the
bubbles back to genotypes for the PAV variants from which the graph was constructed.

We started with a pilot set consisting of 300 individuals selected from the 3,202 sam-
ples of the 1000 Genomes cohort. This subset was constructed by randomly choosing 20
trios from each of the five superpopulations (AFR, AMR, EAS, EUR, SAS). We then ran Pan-
Genie in order to genotype all 15.5 million SNPs, 1.03 million indels, and 96.1 thousand
SVs across these 300 samples. For comparison, we additionally ran state-of-the-art method
Paragraph [26] to derive genotypes for all SVs. As a quality control measure, we computed
allele frequencies across all 200 unrelated samples from the PanGenie and Paragraph geno-
types and compared them to the allele frequencies derived from the PAV calls for all 64
unrelated assembly haplotypes. For Paragraph, we observed allele frequency correlations
(Pearson correlation) of 0.61 and 0.54 for SV deletions and insertions. For PanGenie, these
values were 0.85 and 0.86, respectively. Plots comparing the Paragraph and PanGenie allele
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Figure 4.1: Unfiltered HGSVC genotypes. A Shown are the number of SVs typed as het-
erozygous by PanGenie for different populations. The plots are based on the unfiltered
callset containing all 96,145 SVs (35,862 deletions and 60,283 insertions) B Concordance
of AF estimates from the assembly-based PAV discovery callset and AF estimates from geno-
typing unrelated Illumina genomes (n=2,504) with PanGenie (unfiltered genotype set of
96,145 SVs). Marginal histograms are in linear scale. Figures taken from [46].

frequencies to the ones for PAV indicate that Paragraph tends to genotype variants as het-
erozygous and especially struggles with genotyping insertions (Figure [C.I). We concluded
that PanGenie seems to be more suitable for genotyping our SV calls and proceeded with
genotyping all SNPs, indels, and SVs across the 3,202 samples using PanGenie. We deter-
mined the number of heterozygous SVs for each population from these genotypes (Figure
[4.1]A) and observed higher numbers for the African populations, reflecting their increased
genetic diversity. We also computed allele frequency correlations from the allele frequencies
derived from the PanGenie genotypes for all 2,504 unrelated samples and the PAV calls. We
observed correlations of 0.98, 0.95, and 0.85 for SNPs, indels and SVs, respectively (Figure
[C.2B, Figure [C.3B, Figure [4.1B). However, these numbers indicate that there were variants
for which PanGenie and PAV allele frequencies differ significantly. In order to filter out such
potentially wrongly genotyped calls, we defined a strict subset of variants based on statistics
we computed from the genotypes of the 3,202 samples. Similarly to what we described in
our PanGenie publication [49] (Section , we defined the five filters listed below:

+ ac0_fail: a variant fails this filter if it was genotyped as absent (genotype 0/0 or ./.)
by PanGenie in all 3,202 samples (i.e. the allele frequency was zero).

« mendel_fail: there are 602 trios among the 3,202 genotyped samples. For each vari-
ant, we counted the number of trios with Mendelian-consistent genotypes. As in [49]
(Section [3.7), we only took trios with at least two different genotypes into consider-
ation, meaning we skipped trios in which all samples were typed as 0/0, 0/1 or 1/1,
respectively. A variant fails this filter if the Mendelian consistency is below 90%.

+ gq_fail: a variant fails this filter if there were at least 200 genotype predictions with
genotype quality < 200.
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Figure 4.2: Strictly filtered HGSVC genotypes. A Distribution of heterozygous SV counts
per diploid genome broken down by population, based on PanGenie genotypes passing strict
filters. B Concordance of AF estimates from the assembly-based PAV discovery callset and
AF estimates from genotyping unrelated Illumina genomes (n = 2,504) with PanGenie (strict
genotype set of 24,107 SVs). Marginal histograms are in linear scale. C PanGenie allele
frequencies were computed based on the HGSVC genotypes of all 2,504 unrelated samples.
Only SVs contained in the strict set (n=24,107) are considered. Figures taken from [46].

» nonref fail: a variant fails this filter if all panel samples were genotyped as homozy-

gous reference.

* loo_fail: in addition to genotyping the 3,202 samples, we conducted a leave-one-out

experiment, in which we repeatedly took out one of the panel samples from the input

and used PanGenie to genotype it based on the remaining samples in the panel. We

then compared the predicted genotypes to the ground-truth genotypes of the left-out

sample. This enabled us to compute the genotype concordance across all panel samples

at each variant position. This filter fails if the genotype concordance of the panel

samples is below 80%.

We applied these filters to all SNPs, indels and SVs genotyped by PanGenie. For SVs, 16,343
out of 60,238 insertions (27%) failed the “ac0_fail” filter and were genotyped with an allele
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frequency of zero across all 3,202 samples (Figure [C.4A, Figure[C.57). For deletions, 8,948
out of 35,862 (25%) were genotyped as homozygous reference in all samples. About 57% of
these variants are rare and were carried by only a single haplotype in the input panel. Such
variants are, in particular, difficult to genotype by a panel-based approach like PanGenie,
especially if the k-mer counts show no strong indication for the presence of an allele in a
sample. To obtain a filtered callset, we removed all variants for which at least one of the five
filters failed. This led to a rather stringent, but high-quality set of genotypes that served as a
basis for further analysis. Our filtered set contains 12,283,650 SNPs (79%), 705,893 indels
(68%), and 24,107 SVs (25%). We provide callset statistics for this strict set in Figure |4.2

Figure shows the number of heterozygous SVs for different populations, demonstrat-
ing expected patterns of diversity [2]. Figure shows the allele frequencies obtained
for SVs across the PanGenie genotypes, as well as the corresponding allele frequencies in
the input panel haplotypes. The allele frequencies for PanGenie were computed based on
all 2,504 unrelated individuals from the full panel of the 3,202 samples. For both variant
types, insertions and deletions, the allele frequencies matched well with very few outliers,
indicating that the genotypes are of good quality. Note that allele frequencies were not
directly used for filtering. We obtained an allele frequency correlation of 0.99 (0.98 for
deletions, 0.99 for insertions). Likewise, allele frequency correlations for SNPs and indels
in this filtered set were both equal to 0.99 (Figure Figure [C.3). We also investigated
the relationship between variant length and allele frequencies across the PanGenie geno-
types. The peaks (Figure [4.2IC) show a clear tendency of Alu insertions towards lower allele
frequencies, while an opposite trend is observed for Alu deletions. We suspect that this
behavior is caused by Alu insertions present in the reference genome. Figures and
show the relationship between Fsr values of the five superpopulations (AFR, AMR, EAS,
EUR, SAS) and the length of the SVs. Fgp is a measure used to analyze population struc-
ture [72]. It calculates the proportion of genetic variation among subpopulations relative
to the overall genetic variation [123]. Here, for each superpopulation, Fs7 was computed
between individuals belonging to the respective superpopulation and the union of the re-
maining populations. We observed higher Fsp values for African and East Asian populations
indicating higher degrees of differentiation among these populations.

For SVs, our filtered set contained only 25% of all input variants. Besides defining a
strict set, we used support vector regression in order to generate a larger, more lenient set
of SVs. This approach differs from the one introduced in Section in the set of features
that are used for the regression. Here, we included additional features computed from a
leave-one-out experiment performed for all panel samples and concordances with k-mer-
based presence/absence genotyping contributed by Tobias Rausch, a co-author of [[46]. Our
model is designed to assign scores close to -1 to poorly genotyped SVs and scores around 1 to
those passing all of our filters. For training, we used our strict SV set as “true positives”. The
“true negatives” were defined as all variants genotyped with an allele frequency larger than
zero (“ac0_fail” did not fail) that failed at least three of the remaining filters. We predicted
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SV Insertions SV Deletions

callset ) genotype . genotype
number | correlation concordance [%] number | correlation concordance [%]

unfiltered set 60.283 | 0,86 85,1 35.862 | 0,85 86

lenient, cutoff -0.5 | 31.680 | 0,95 89,8 18.660 | 0,95 91,5

lenient, cutoff 0.0 | 27.565 | 0,97 92,1 16.065 | 0,97 93,3

lenient, cutoff 0.5 | 23.128 | 0,98 94,3 13.384 | 0,98 94,7

strict set 15.926 | 0,99 96,9 8.181 0,98 96,1

Table 4.2: Callset statistics for the HGSVC lenient set. The table lists the number of
variants (> 50 bp) contained in the unfiltered, strict and lenient SV callsets. The machine-
learning-based process to define the lenient set can be tuned by setting different cutoffs
separating high- from low-quality SVs. Columns named “correlation” state Pearson corre-
lation between PanGenie (2,504 unrelated samples) and PAV genotype allele frequencies.
Columns named “genotype concordance” state average genotype concordance for all assem-
bly haplotypes estimated via leave-one-out experiments. Table taken from [46].

regression scores for all yet unlabeled SVs (with an allele frequency > 0). We then created
more lenient callsets by adding those variants to the strict set for which the scores were above
a certain threshold. We investigated three different cutoffs: -0.5, 0.0, and 0.5. Table
contains corresponding callset statistics. As expected, numbers improved as we increased the
cutoff used to define a lenient callset. While allele frequency correlations were 0.86 and 0.85
for insertions and deletions in the unfiltered set, respectively, they reached levels between
0.95 and 0.98 when applying the different cutoffs. Likewise, average genotype concordances
of the PanGenie genotypes with the PAV calls for the assembly samples increased, reaching
levels above 94% for cutoff 0.5.

Based on these statistics we chose threshold -0.5 as our final value to define the lenient
set. It contained 31,680 SV insertion alleles and 18,660 deletion alleles (Table and
still reached allele frequency correlations of 0.95 for both SV types, indicating that the
PanGenie allele frequencies were consistent with the PAV results (Figure [4.3p). Average
genotype concordances were 89.8% for insertions and 91.5% for deletions. Furthermore,
we compared allele frequencies and heterozygosities and found that variants largely behaved
as expected by Hardy-Weinberg equilibrium (Figure [C.2B, Figure [C.3B, Figure [C.4B, Figure
[C.5B).

4.1.5 Added value from graph-based genotyping into short-read WGS data

This section provides a summary on evaluation results produced by co-authors presented in [46]
and re-uses material from this publication.

A comparison of the PanGenie genotypes for the 1000 Genomes samples to state-of-the-
art short-read SV discovery sets showed that 59.9% and 42.5% of SV alleles contained in
the lenient and strict sets, respectively, were not detectable from short reads. Figure |4.3pb
shows the length distribution of common SVs (allele frequency > 5 %) contained in the PAV
calls, the PanGenie lenient set, as well as three short-read based callsets [3], (32}, [46]]. Results
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Figure 4.3: Leniently filtered HGSVC genotypes. A For PanGenie, allele frequencies
were computed based on the genotypes of all 2,504 unrelated samples. The PAV allele
frequencies were computed based on all 64 assemblies. Only SVs (> 50 bp) contained in our
lenient callset (cutoff -0.5, n=50,340) were considered. B Length distribution of common
SV sites (AF > 5%) represented in assembly-based callsets, including variants genotyped by
using PanGenie and all common variants from population-scale studies from the Genome
Aggregation Database (gnomAD-SV) and CCDG (insertions from CCDG omitted because of
lack of data). Figures taken from [46].

demonstrate that short-read based callsets miss large fractions of common SVs, which is con-
sistent with the results shown in Chapter|3|as well as with results of previous studies [206].
The assembly-based callset PAV and the PanGenie genotypes contained increased numbers
of deletions below 250 bp and insertions under 1 kbp, which were missed by short-read
based callers. The ability to genotype variants across a cohort that were previously inacces-
sible to purely short-read based callers also enabled including such variants in genome-wide
Quantitative trait locus (QTL) analyses. QTL analysis aims at identifying associations be-
tween genotypes and phenotypes (molecular and clinical), with the goal to explain the roles
of genetic variation in diseases. A QTL analysis based on the PanGenie strict set showed that
48% of the most likely causal expression QTL SVs (“lead eQTLs” ) were previously inacces-
sible by purely short-read based callers. These results demonstrate the added value from
pangenome-based genotyping with PanGenie: it is able to reliably genotype a large portion
of (common) structural variants that purely short-read based callers are not able to access,
enabling the inclusion of such variants in downstream analyses.

4.1.6 Discussion

The pangenome-based genotyping method PanGenie was applied to a pangenome repre-
senting 32 human samples (64 haplotypes), created from high quality haplotype-resolved
genome assemblies. In this way, variants were re-genotyped across a large and diverse co-
hort of 3,202 samples from different superpopulations and filtered sets of genotypes were
constructed. Evaluation based on different population-based statistics, like the Mendelian
consistency or comparison of allele frequencies, showed that our genotypes are of high
quality. We showed that 50,340 structural variants can be reliably genotyped by PanGe-
nie across the populations, and 59.9% of these variants were previously inaccessible by
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linear alignment based, short-read discovery callsets, demonstrating the added value of a
pangenome-based framework. Our genotyping method took only around 30 CPU hours per
sample for genotyping, unlike other approaches, that require time-consuming read align-
ments to a reference genome and are thus much slower. Furthermore, results demonstrate
that SV genotypes produced by PanGenie enable QTL analysis for the discovery of disease
associated variants. Our analyses revealed 31.9% of SV-eQTLs and 48% of lead SV-eQTLs
that were previously not accessible by short-read approaches.

However, the study also reveals some limitations of PanGenie. Especially genotyping
rare variants with low allele frequencies across the assembly samples was challenging, since
PanGenie tended to genotype them as absent, resulting in allele frequencies of zero across
all 3,202 samples. As a consequence, 26.3% of all SV alleles needed to be excluded from any
filtered set, since they could not be re-typed in any sample and therefore did not provide any
information for downstream analyses. Possible reasons why PanGenie tends to genotype
such variants as absent could be the lack of unique k-mers for all or some of the variant
alleles at a variant locus. The absence of unique k-mers in a region or unbalanced k-mer
distributions across the alleles can lead to wrong conclusions about the genotypes, because
in such cases, genotypes are imputed from the panel haplotypes. Therefore, if a variant is
rare in the panel, there is a bias towards genotyping it as absent. Another factor that could
have affected PanGenie’s genotyping performance for rare and common variants is that
during variant calling with PAV, similar overlapping SV alleles were merged into a single
allele. In some cases, this might have led to “overmerging” alleles, i.e. merging sequences
not actually representing the same variant allele. Since PanGenie is a k-mer based method,
small differences in allele sequences between the panel and the sample to genotype might
lead to wrong genotypes because the observed k-mer spectrum is different from the expected
one.
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4.2 Identifying rare inversions

This section demonstrates how the HGSVC genotypes produced by PanGenie for the 1000 Genomes
cohort can be used in order to detect rare inversions. The material presented has been published

as part of a Cell publication [146]. Sections |4.2.1| and |4.2.2| re-use material presented in this

publication. See Section |E.6| for information on author contributions and publication details.

4.2.1 Introduction

This section re-uses material presented in [146]].

Compared to insertions and deletions, inversions are a relatively rare class of structural vari-
ants in humans [3} |46} [181]]. In case of an inversion, a chromosomal segment is inverted
(Section|[1.3). Unlike other classes of SVs, inversions remain challenging to discover and an-
alyze [3, 32,46, 70, 80,94} 97,155, 167, [181]]. This is because inversions are often flanked
by segmental duplications that are too long to be spanned by sequencing reads. Further-
more, balanced inversions do not lead to any gains or losses of DNA, which makes their
detection more difficult. Inversions can suppress recombination and have been shown to be
associated with diseases, such as Haemophilia A or the Hunter syndrome [16, (102} [180].
In our study [146]], we characterized the full spectrum of inversions across 41 human sam-
ples based on Strand-seq data, the haplotype-resolved assemblies generated by the HGSVC
project [46] (Section [4.1)), and Bionano optical mapping data. We detected 729 inversions
with lengths ranging from 50 bp to several mega base pairs. As a part of this study, I devel-
oped an approach to find potential carriers of rare inversions detected across the 41 samples
in a large cohort of 3,202 samples from the 1000 Genomes project. This approach uses the
SNP genotypes computed by PanGenie across the 3,202 samples in the HGSVC project de-
scribed in detail in Section[4.1] The idea is to find samples that share a high fraction of rare
SNPs with the samples carrying the inversion in the respective genomic region.

4.2.2 Identifying potential inversion carriers using PanGenie

This section re-uses material presented in [146]].

The genotypes computed for the HGSVC SNPs across all 3,202 genomes (see Section [4.1]) can
be used in order to detect potential carriers of rare inversions. Here, we used them in order
to identify potential carriers of two inversions of interest both of which were absent from
the other Strand-seq discovery samples. The first one is a 23 Mbp pericentromeric inversion
on chromosome 2 detected in NA19650 with its distal breakpoint lying near (~ 2 Mbp)
the ancestral chromosome 2 fusion point specific to humans. The second inversion is a
5 Mbp inversion located on chromosome 15 detected in HG02492. It overlaps the well-
known Prader-Willi/Angelman syndrome (PWAS) type II critical region [30] and has been
postulated to predispose to disease [63]].
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We considered SNP alleles present in the inversion haplotypes of these two samples as
follows. We used the HGSVC SNP genotypes [46] (Section [4.1.4]) available for all 3,202
samples from the 1000 Genomes Project [21] to determine which of these SNPs are rare
(allele frequency < 0.01 across unrelated samples). In HG02492 we identified 103, and
for NA19650 we detected 333 such rare SNPs within the respective inverted segments. We
then counted these rare alleles in the genotypes of all 3,202 samples. Those samples that
shared a high number of rare SNPs with the respective inversion haplotype were consid-
ered potential carriers of the inversion. For the inversion on chromosome 15, we identi-
fied four samples sharing a high number of rare SNP alleles with HG02492 (Figure ):
HG02491 (102/103 alleles in common; 99%; mother of HG02492), HG02784 (101/103;
98%), HG02725 (74/103; 72%), and HG03639 (74/103; 72%). The shared alleles are
evenly distributed along the inverted sequence (Figure [4.4B). All these samples are part
of the Punjabi South Asian population. For the pericentromeric inversion on chromosome
2, sample NA19648 (mother of NA19650) shared 330/333 (99%) rare alleles with the re-
spective haplotype-resolved segment in NA19650 (Figure 4.5,B).

Fluorescence In Situ Hybridization (FISH) validation experiments were performed in or-
der to verify the results of our approach. For the inversion on chromosome 15, all five
samples predicted as carriers could be verified (Figure [4.4C) which suggests a founder in-
version event in the Punjabi population in association with this haplotype. Likewise, both
carriers of the inversion on chromosome 2 could be verified by FISH (Figure ).

4.2.3 Discussion

In this section, an approach was presented that can detect carriers of rare inversions in a
large cohort for which SNP genotypes are available. It was demonstrated to successfully
detect carriers of two rare inversions of interest, which could be experimentally verified
using FISH. However, there are some limitations. The method presented here is mainly
suited for detecting longer inversion events, since it requires rare alleles to be present in
the inverted region. Here, we applied the approach to inversions of 5 Mbp and 23 Mbp
in length. Furthermore, it requires phased SNP genotypes to be available for the detection
sample, as well as SNP genotypes for a cohort.

In conclusion, the experiments show that rare inversions from a set of discovery samples
can be accurately inferred in large whole-genome sequencing cohorts based on SNP geno-
types. This enables to study associations between inversion polymorphisms and diseases,
which were previously not accessible to investigation [146].
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Figure 4.4: Rare inversion on chromosome 15. A Barplot showing the number of rare
alleles shared between an index individual (HG02492) and all 1000 Genomes samples
(n=3,202) stratified by superpopulation (AFR, AMR, EAS, EUR and SAS) and population
(same abbreviations used as in [2[]). Individuals with the largest number of shared rare
alleles are highlighted by a black dot and a sample specific identifier. B Distribution of
detected shared rare alleles along the inverted region. The inverted region is highlighted
by a transparent red rectangle. Note that rare alleles for the chromosome 15 specific in-
version are evenly distributed along the whole inversion for all predicted inversion carri-
ers. C FISH validation. Both chromosome 15 homologs have a direct orientation in the
control individual (NA12878) while HG02491, HG03639, HG02725 and HG02784 are all
carriers of the inversion in heterozygous state. White arrowheads indicate chromosomes in
direct orientation while red arrowheads indicate chromosomes with the inversion (ABCS8-
41788900G7 in red mapping at chr15:23751929-23796236; RP11-640H21 in green map-
ping at chr15:27894428-28091240). Figure taken from [146].
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Figure 4.5: Rare inversion on chromosome 2. A The barplot shows the number of rare
alleles shared between NA19650 and all 1000 Genomes samples (n=3,202) stratified by
superpopulation (AFR, AMR, EAS, EUR, SAS) and population (same abbreviations used as
in [2]). Individuals with the largest number of shared rare alleles are highlighted by a black
dot. B A distribution of detected shared rare alleles along the inverted region on chromo-
some 2. The inverted region is highlighted by a transparent red rectangle. Rare alleles
for the chromosome 2 specific inversion are evenly distributed along the whole inverted
region only in a single sample (NA19648). C FISH results of a ~ 23.2 Mb inversion on chro-
mosome 2 (chr2:88064758-111283969) are shown. Both chromosome 2 homologs have a
direct orientation in the control individual (NA12878) while NA19650 and NA19648 in-
dividuals are inverted in heterozygous state. White arrowheads indicate chromosomes in
direct orientation while red arrowheads indicate chromosomes with the inversion (ABC8-
2121940H19 in red mapping at chr2:88223569-88269173; WI2-1849B17 in green mapping
at chr2:110712025-110745244). Figure taken from [146].
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4.3 HPRC project

This section presents the work of the Human Pangenome Reference Consortium (HPRC). As a part
of this project, I used the pangenome graphs produced from haplotype-resolved assemblies of 44
samples to genotype variants across 3,202 samples using PanGenie. This work is currently under

revision and available as a preprint [113]. Sections |4.3.2} |4.3.3| and [4.3.4| re-use material from

this preprint. See Section [E. 7| for information on author contributions and publication details.

4.3.1 Introduction

The Human Pangenome Reference Consortium (HPRC) [90} [113] generated haplotype-re-
solved assemblies for 47 human samples based on PacBio CCS data and parental Illumina
short reads using Trio-Hifiasm [27]. The goal was to construct a pangenome graph cap-
turing the genetic diversity across all 44 unrelated samples (excluding three children) that
can replace the linear reference genome. Using a graph instead of a linear reference helps
overcoming reference biases arising from missing alternative sequences [187].

The main difference between the pangenome references generated by the HGSVC and
HPRC is the way they were constructed and represented. In the HGSVC project, assem-
blies were individually aligned to the linear reference genome in order to identify variants,
and variant calls were later merged across samples to obtain a joint, reference-based callset
across all samples that can be interpreted as a pangenome structure. In the HPRC project,
a sequence graph is constructed based on a multiple sequence alignment of the assemblies.
Unlike the reference-based representation used by the HGSVC, the HPRC graph allows repre-
senting variation nested in sequences absent from the reference. The linear reference is only
used in order to assign reference coordinates to the variants present in the assembly which
allows representing variants in VCF format. Variants are detected from the pangenome by
studying the bubble structures in the graph and by comparing traversals of haplotypes and
the reference genome through bubble regions.

As a part of the HPRC project, I genotyped the variation obtained from the newly con-
structed pangenome graph across all 3,202 samples from the 1000 Genomes project [2} [21]]
using PanGenie, demonstrating that this new reference structure allows genotyping struc-
tural variants not typable based on the HGSVC data.

4.3.2 Pangenome construction and variant calling

This section presents a summary on the pangenome construction methods presented in [113] de-
veloped by co-authors and re-uses some material from this preprint.

Several versions of the pangenome were constructed based on different construction meth-
ods. The version underlying the genotyping experiments described in this chapter is based
on Minigraph and the Cactus genome aligner [9, 76} [110]. First, Minigraph [110] was used
in order to iteratively construct a graph starting from the GRCh38 reference genome and
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progressively adding 88 haplotype-resolved assemblies constructed from 44 human samples.
After this step, the graph contained only structural variants > 50 bp. In order to include
SNPs and small variants, it was extended with a base-level alignment of homology relation-
ships between assemblies by using Cactus [9]. Non-reference sequences of at least 100 kbp
that were either identified as being satellite, which could not be assigned to a reference chro-
mosome or which appeared unaligned to the remaining assemblies, were removed from the
graph. The result is a sequence graph in which nodes correspond to DNA segments. The
graph represents a multiple sequence alignment of the 88 haplotypes and each haplotype is
represented as a path through this graph.

Bubbles in the graph were detected using the tool vg deconstruct [142]. It decomposes
the pangenome graph into sets of nested subgraphs, so-called snarls, each of which corre-
sponds to a collection of genetic variants. Briefly, this is done by converting the graph into
a biedged graph, in which nodes are represented as “black edges” and edges as “grey edges”
[142]. Pairs of black edges are determined that need to be cut in order to disconnect the
graph such as to create separated components [142]]. These snarls can be nested. Nesting re-
lationships can be represented by arranging the snarls in a tree and annotating them based
on their level (LV) in this tree. Top-level snarls are annotated by LV=0, and snarls con-
tained in others are annotated by LV > 0. Snarls are output in VCF format. Figure (left)
provides an example of a bubble region in the tree. On the right, the corresponding biedged
graph is shown. The top-level snarl represents the whole bubble and can be generated by
cutting edges a and e. The two nested variants are represented in terms of two LV =1 snarls,
resulting from cutting edges b and ¢, and ¢ and d, respectively. The snarls are represented
in terms of the three VCF records shown below, listing their respective allele sequences in
the graph.

4.3.3 Genotyping SVs across a cohort of 3,202 individuals

This section and all subsections re-use material presented in [113].

We used the VCF file created based on the snarl traversal of the Minigraph-Cactus (MC)
graph as a basis for genotyping. We used vefbub (https://github. com/pangenome/vcfbub,
version 0.1.0) with parameters -1 0 and -r 100000 in order to filter the VCF. It removes
all non-top-level bubbles from the VCF (LV>0) unless they are nested inside a top-level
bubble with a reference length exceeding 100 kbp, i.e. top-level bubbles longer than that
are replaced by their child nodes in the snarl tree. The VCF also contained the haplotypes
for all 44 assembly samples, representing paths in the pangenome graph. We additionally
removed all records for which more than 20% of all 88 haplotypes carried a missing allele
(“.”), which can happen in case of gaps in the assemblies. This resulted in a set of 22,133,782
bubbles. In a next step, we used PanGenie (version 1.0.0) to genotype these bubbles across
all 3,202 samples from the 1000 Genomes project based on high coverage Illumina reads
[21]]. We observed a per-sample runtime of 53 single-core CPU hours, as well as a memory
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Figure 4.6: Decomposition of graph bubbles. a On the left, a bubble in the pangenome
graph is shown which contains nested variation. Dotted lines represent haplotype paths in
the graph. On the right, the corresponding biedged representation of the graph is shown.
Snarls are represented in VCF format as shown below. b Shown is a multiallelic bubble
contained in the snarl-based VCF (LV =0 record). Using the coordinates of the whole bub-
ble when comparing to external callsets leads to errors, since the insertions carried by the
second and third haplotypes are not detected. The decomposition aims at identifying which
individual variant alleles each haplotype carries inside of the bubble and enables proper
comparison to external callsets. ¢ Example for which the snarl decomposition fails to detect
nested variation. The leftmost nested SNP is not represented as a separate snarl, since it
shares its leftmost black edge with the top-level snarl. Panel b) taken from [113].

usage of 153 GB.

Decomposition of variants

Genotyping results in genotypes for all top-level bubbles across all 1000 Genomes samples.
While biallelic bubbles can be easily classified representing SNPs, indels or SVs, this becomes
more difficult for multiallelic bubbles contained in the VCF. Especially larger multiallelic
bubbles can contain a high number of nested variant alleles overlapping across haplotypes,
represented as a single bubble in the graph. Since we considered only top-level bubbles for
genotyping, any information on nested variants is no longer present in the VCF representa-
tion of our genotyped bubbles. This is especially problematic when comparing the genotypes
computed for the whole bubble to external callsets, as coordinates of the top-level bubble
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Figure 4.7: Traversal-based decomposition. a The idea of the decomposition approach
is to compare the sequence of visited node IDs (node traversal) of each alternative allele
(that is covered by at least one of the haplotypes present in the graph) to the traversal of the
reference allele. Each node in the reference traversal is matched to its leftmost occurrence
in the alternative traversal (if existent), resulting in an alignment of the traversals. The
nested alleles can then be determined from the insertions, deletions and mismatches in the
alignment. In this example, the alternative allele can be decomposed in two insertions and
one deletion. b Two VCF files are produced. The multiallelic VCF contains the same records
as the input VCF, just with annotations for all alternative alleles added to the INFO field.
Each ALT allele is annotated by a sequence of IDs encoding the nested alleles, separated by
“:”. The second VCF is a biallelic one, containing a separate record for each nested variant
ID, i.e. it contains all alleles after decomposition. Figure taken from [113].

do not necessarily represent the exact coordinates of individual variant alleles carried by a
sample in this region (Figure 4.6p).

The information on nested variants initially provided by the snarl tree could help to
tackle this problem. However, the snarl-based decomposition of bubbles sometimes misses
nested variants in cases where a nested bubble shares a black edge with a higher level snarl.
See Figure for an example: the leftmost nested bubble will not be detected since cutting
at the positions marked in red will not disconnect the corresponding subgraph from the rest
of the graph. We have therefore introduced an alternative decomposition approach which
aims at detecting all variant alleles nested inside of multiallelic top-level records. The idea
is to detect variants from the sequences of visited node IDs (node traversals) of the refer-
ence and alternative alleles of all top-level bubbles. Given the node traversals of a reference
and alternative path through a bubble, our approach is to match each reference node to
its leftmost occurrence in the alternative traversal, resulting in an alignment of the node
traversals (Figure ). Nested alleles can then be determined based on insertions, dele-
tions and mismatches in this alignment. Since the node traversals of the alternative alleles
can visit the same node more than once (which is not the case for the reference alleles of the
MC graph), this approach is not guaranteed to reconstruct the optimal sequence alignment
underlying the nodes in these repeated regions. As an output, the decomposition process
generates two VCF files. The first one is a multiallelic VCF which contains exactly the same
variant records as the input VCF, just that annotations for all alternative alleles of a record
were added to the ID tag in the INFO field. For each alternative allele, the ID tag contains
IDs encoding all nested variants it is composed of, separated by a colon. The second VCF
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Figure 4.8: HPRC allele statistics. a Each of the 88 haplotypes contained in the graph
defines a path through each bubble. The plot shows the number of different paths covered
by the haplotypes in a bubble as a function of the length of the bubble. Here, the length of
a bubble is defined by the sequence of the longest such path. b Number of variant alleles
located inside of biallelic and multiallelic regions of the graph. Biallelic regions include all
bubbles with only two alternative paths, multiallelic regions include all bubbles in which
haplotypes cover more than two alternative paths through the bubble. Figure taken from
[113].

is biallelic and contains a separate record for each nested variant ID defining reference and
alternative allele of the respective variant (Figure [4.7b). Both VCFs are different represen-
tations of the same genomic variation, i.e. before and after decomposition. We applied this
decomposition method to the MC-based VCF file, used the multiallelic output VCF as input
for PanGenie to genotype bubbles, and used the biallelic VCF as well as the IDs in order to
translate PanGenie’s genotypes for top-level bubbles to genotypes for all individual nested
variant alleles. All downstream analyses of the genotypes are based on this biallelic rep-
resentation (i.e. after decomposition). While the majority of short bubbles (< 10 bp) are
biallelic, especially large bubbles (> 1000 bp) tend to be multiallelic. Sometimes each of the
88 haplotypes contained in the graph covers a different path through such a bubble (Figure
[4.8p), leading to a VCF record with 88 alternative alleles listed. We determined the number
of variant alleles located inside of biallelic and multiallelic bubbles in the pangenome after
decomposition. As expected, the majority of SV alleles is located inside of the more complex,
multiallelic regions of the pangenome (Figure [4.8b).
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Genotyping evaluation based on assembly samples

Similarly to what we presented in [49] (Section[3.5]), we performed a “leave-one-out” exper-
iment in order to evaluate PanGenie’s genotyping performance for the callset samples. For
this purpose, we repeatedly removed one of the panel samples from the MC VCF and geno-
typed it using only the remaining samples as an input panel for PanGenie. We later used the
genotypes of the left-out sample as ground truth for evaluation. We repeated this experiment
for five of the callset samples (HG00438, HG00733, HG02717, NA20129 and HG03453) us-
ing 1000 Genomes high coverage Illumina reads [21]. PanGenie is a re-genotyping method.
Therefore, like any other re-typer, it can only genotype variants contained in the input panel
VCF, that is, it is unable to detect variants unique to the genotyped sample. For this reason,
we excluded truth set variants (after decomposition) that were only contained in the left-out
sample for evaluation. We used the weighted genotype concordance [49] (Section as
a metric to evaluate the genotyping performance. Figure shows the results stratified by
different regions. Figure shows concordances in biallelic and multiallelic regions of
the MC VCF. The biallelic regions include only bubbles with two branches. The multiallelic
regions include all bubbles in which haplotypes cover more than two different paths. Figure
shows the same results stratified by genomic regions defined by GIAB [137] (obtained
from locations specified in Section [C.2):

« low-mappability: difficult to map regions as well as segmental duplications

 repeats: short tandem repeats and repeat annotations from UCSC Genome Browser
931

+ other-difficult: union of regions that are difficult to access, including MHC and KIR
regions or regions poorly assembled in the reference genome

+ easy: regions outside of other difficult regions such as tandem repeats, homopolymers,
difficult to map regions, segmental duplications and high/low GC content

Here and in the following, we consider results for SNPs, indels (1-49 bp), SV deletions,
SV insertions and “other” SV alleles, defined as follows: SV deletions include all alleles
for which length(REF) > 50 bp and length(ALT)=1, SV insertions include all alleles for
which length(REF) =1 and length(ALT) > 50 bp. All other alleles with a length > 50 bp are
included in “others”.

Overall, weighted genotype concordances were high for all variant types. Especially
variant alleles in biallelic regions of the graph were very well genotypable. Alleles inside
of multiallelic bubbles were more difficult to genotype correctly since PanGenie needed to
decide between several possible alternative paths, while there were only two such paths for
biallelic regions (Figure[4.9g). Furthermore, genotyping accuracy depended on the genomic
context (Figure [4.9p). Regions with low mappability, repetitive regions and other difficult
regions were harder to genotype than regions classified as “easy” by GIAB.
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Figure 4.9: HPRC leave-one-out experiment. A leave-one-out experiment was conducted
by repeatedly removing one of the assembly-samples from the panel VCF and genotyping it
based on the remaining samples. Plots show the resulting weighted genotype concordances
for different variant allele classes. a Weighted genotype concordances are stratified by graph
complexity: biallelic regions of the MC graph include only bubbles with two branches, and
multiallelic regions include all bubbles with > 2 different alternative paths defined by the
88 haplotypes. b Results of the same experiment stratified by different genomic regions
defined by GIAB. Figure taken from [113].

Creating a high quality subset

We generated genotypes for all 3,202 samples from the 1000 Genomes Project with Pan-
Genie and defined a high quality subset of SV alleles that we can reliably genotype. For
this purpose, we applied a machine learning approach similar to what we have presented
previously [46), [49] (Sections and [4.1.4). We used five filters in order to define positive
and negative subsets of variants:

+ ac0_fail: this filter fails if a variant was genotyped as absent (0/0 or ./.) across the
cohort samples (AF = 0.0).

« mendel_fail: this filter fails if the Mendelian consistency for a variant across trios was
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variant type # alleles in unfiltered set | # alleles in positive set | # alleles in final set
SNPs 20,194,117 15,069,514
indels 6,848,115 2,399,842
SV INS 254,612 32,431 84,755
SV DEL 57,201 13,356 28,433
SV Other 101,996 8,334 26,489

Table 4.3: Number of variant alleles in HPRC callsets. Shown are the numbers of variant
alleles for SNPs, indels and SVs in the unfiltered set, the positive set and the final, filtered
set. Indels include all variant alleles between 1-49 bp in length, SVs include all variant
alleles > 50 bp. SV insertions/deletions contain all clean insertions/deletions, all other SVs
are defined as “others”. Table taken from [[113].

less than 80%. As before [46, [49] (Sections and [4.1.4)), we used a strict definition
of Mendelian consistency which excluded all trios with only 0/0, only 0/1 and only
1/1 genotypes.

+ gq_fail: a variant fails this filter if the number of genotypes with quality > 200 was
less than 50.

« self fail: a variant fails this filter if the genotyping accuracy of a variant allele across
the panel samples was less than 90%.

» nonref fail: a variant fails this filter if not a single non-0/0 genotype was genotyped
correctly across all panel samples.

The positive set included all variant alleles that passed all five filters. The negative set
contained all variant alleles that passed the acO_fail filter but failed at least three of the
other filters. We show the number of SV alleles failing the different filters in Figures |C.8]
and (top panels). We trained a support vector regression (SVR) approach [49]
(Section based on 33 features including allele frequencies, Mendelian consistencies and
the number of alternative alleles transmitted from parents to children. We applied this
method to all remaining variant alleles genotyped with an AF > 0, resulting in a score
between -1 (bad) and 1 (good) for each. We finally defined a filtered set of variants which
included the positive set, as well as all variant alleles with a score of > -0.5.

We show the number of variant alleles contained in the unfiltered set, the positive set as
well as the filtered set in Table[4.3] Since our focus was on SVs and since 65% of all SNPs and
indels were already contained in the positive set, we applied our machine learning approach
only to SVs. We found that 50%, 33% and 26% of all deletion, insertion and “other” alleles,
respectively, were contained in the final, filtered set of variants. Note that these numbers
take all distinct SV alleles contained in the callsets into account. Especially for insertions
and “other” SVs, many of these alleles were very similar, with sometimes only a single base
pair differing. Therefore, it is likely that many of these actually represent the same events.
Our genotyping and filtering approach helps to remove such redundant alleles.
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Figure 4.10: HPRC unfiltered and positive sets. Comparison of allele frequencies ob-
served from the PanGenie genotypes for all 2,504 unrelated 1000 Genomes samples and the
allele frequencies observed across the 44 assembly samples in the MC graph. Results are
shown for the unfiltered (57,201 deletions, 254,612 insertions, 101,996 “other” alleles) and
positive sets (13,356 deletions, 32,431 insertions, 8,334 “other” alleles). Figures taken from
[113].

In order to evaluate the quality of the PanGenie genotypes, we compared the allele fre-
quencies observed for the SV alleles across all 2,504 unrelated 1000 Genomes samples to
their allele frequencies observed across the 44 assembly samples in the MC callset. We ob-
served that the allele frequencies between both sets matched well, resulting in correlations
(Pearson) of 0.93, 0.87 and 0.81 for deletions, insertions and “other” alleles contained in
the unfiltered set (Figure top). For the positive set, we observed allele frequency cor-
relations of 0.97, 0.96 and 0.95, respectively (Figure bottom). For our final, filtered
set, these correlations were 0.96, 0.93 and 0.90, for deletions, insertions and “other” alle-
les, respectively (Figure [4.11j), indicating high-quality genotypes. We also analyzed the
heterozygosity of the PanGenie genotypes across all 2,504 unrelated 1000 Genomes sam-
ples contained in the filtered set and found that the results are consistent with the Hardy-

Weinberg equilibrium (Figures and [C.10] lower panel).
A direct comparison of HGSVC and HPRC genotyping results is difficult for several rea-
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sons. For HGSVC, variant calling included a merging step in which similar alleles were
combined into a single variant record, while in the HPRC set, similar alleles were always
kept separate. Differences in variant representation are also reflected in the different SV
categories: while the HGSVC callset represents variants in terms of insertions and deletions,
the HPRC set sometimes represents variants in terms of “other” variant alleles, that could
neither be classified as insertions nor deletions. While we used a similar machine learning
approach to filter our sets, our definition of filters and the set of features used was not ex-
actly identical in order to account for these differences. We therefore compared both sets
based on the number of SVs per sample in the filtered sets.

Number of SVs per sample

To quantify our ability to detect additional SVs, we compared our filtered set of genotypes
to the HGSVC PanGenie genotypes (v2.0 “lenient” set [46], Section [4.1.4) and Illumina-
based 1kGP SV genotypes [21]]. A direct comparison of the three callsets was difficult.
The HGSVC and HPRC callsets are based on variant calls produced from haplotype-resolved
assemblies of 32 and 44 samples, respectively [46] (Section [4.1). For each callset, vari-
ants were re-genotyped across all 3,202 samples from the 1000 Genomes Project. Note
that the callset samples for HPRC and HGSVC are disjoint. Since re-genotyping cannot dis-
cover novel variants, both callsets will miss variants carried by 3,202 samples that were
not seen in the assembly samples. In contrast, the 1kGP callset contains short-read based
variant calls produced for each of the 3,202 samples from the 1000 Genomes Project. As
mentioned before, another difference between the HGSVC and HPRC callsets is that in the
HGSVC callset, highly similar alleles were merged into a single record to correct for rep-
resentation differences across different samples or haplotypes. The HPRC callset however,
kept all these alleles separately even if there was only a single basepair difference between
them. To make the callsets better comparable, we merged clusters of highly similar alle-
les in the HPRC filtered set prior to comparisons with other callsets. This was done with
truvari ([56], version v3.1.0) using the command: truvari collapse -r 500 -p 0.95 -P
0.95 -s 50 -S 100000. In order to be able to properly compare the callsets despite their
differences, we counted the number of SV alleles present in each sample (heterozygous or ho-
mozygous) in each callset and plotted the corresponding distributions stratified by genome
annotations from GIAB (same as above, Figure [4.11pb) as well as using repeat annotations
directly derived from the graph (Figure [C.11). We also generated the same plot including
only common SV alleles with an AF > 5% across all 3,202 samples (Figure [C.12). These
plots show that the HPRC and HGSVC callsets were able to access more structural variants
(HPRC: 18,483 SVs/sample, HGSVC: 12,997 SVs/sample) across the genome than the short-
read-based 1kGP callset (9,596 SVs/sample), especially deletions < 300 bp and insertions
(Figure ). This confirms that short-read based SV discovery relative to a linear ref-
erence genome misses a large portion of SVs located in regions inaccessible by short-read
alignments, which has been reported previously by several studies [24), 146, [206].
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Figure 4.11: HPRC filtered set. a Comparison of allele frequencies observed from the Pan-
Genie genotypes for all 2,504 unrelated 1000 Genomes samples and the allele frequencies
observed across the 44 assembly samples in the MC graph. The PanGenie genotypes in-
clude all variants contained in the filtered set (28,433 deletions, 84,755 insertions, 32,431
“other” alleles). b Shown are the number of SVs present (genotype 0/1 or 1/1) in each of
the 3,202 samples from the 1000 Genomes Project in the filtered HPRC genotypes (PanGe-
nie), the HGSVC lenient set and the 1kGP Illumina calls in GIAB regions. ¢ Shown is the
length distribution of SV insertions and SV deletions contained in the filtered HPRC geno-
types (PanGenie), the HGSVC lenient set and the 1kGP Illumina calls. Only variants with an
allele frequency > 5% across the 3,202 samples are considered. Figure taken from [113].

Expectedly, the number of SVs per sample within “easy” genomic regions was consistent
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across all three callsets, while especially in low mappability and tandem repeat regions,
the use of our pangenome reference led to pronounced gains (Figure [4.11p), including for
common variants (Figure [4.11fc, Figure [C.T1).

In order to evaluate the novel SVs in our filtered HPRC callset, we re-visited the leave-
one-out experiment we had performed previously on the unfiltered set of variants (see
above). We restricted the evaluation to the subset of variants that are (a) in our filtered
set but not in the 1kGP Illumina calls (“novel”), (b) in our filtered set as well as in the 1kGP
Ilumina callset (“known”), and to (c) all variants in our filtered set. In order to find matches
between our set and the Illumina calls, we used a criterion based on reciprocal overlap of at
least 50%. Results are shown in Figure We generated two versions of this figure: the
first one (top panel) ignores variants that were only contained in the left-out sample and thus
not typable by any re-genotyping method, and the second one includes these variants (bot-
tom panel). In general, genotype concordances of all filtered variants (brown, dark purple)
were slightly higher compared to the concordances we observed for the unfiltered set (Fig-
ure[4.12). Furthermore, concordances of the known variants were highest. This is expected,
since these variants tend to be in regions easier to access by short reads. Concordances for
novel variants were slightly worse. This is also expected, since these variants tend to be lo-
cated in more complex genomic regions that are generally harder to access. However, even
for these variants, concordances were still high, indicating that the PanGenie genotypes for
these variants are indeed of high quality.
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Figure 4.12: HPRC novel and known variants. A leave-one-out experiment was con-
ducted by repeatedly removing one of the assembly samples from the panel VCF and geno-
typing it based on the remaining samples. Plots show the resulting weighted genotype con-
cordances for variants in our filtered PanGenie set. The novel variants include only SVs not
contained in the 1kGP Illumina set, the known variants include only variants contained in
these Illumina calls. Weighted genotype concordances are stratified by graph complexity:
biallelic regions of the MC graph include only bubbles with two branches, and multiallelic
regions include all bubbles with > 2 different alternative paths defined by the 88 haplo-
types. The top panel excludes variants that are unique to the left-out sample and thus not
typable by any re-genotyping method while the bottom panel includes them. Figure taken
from [113].

Evaluation based on medically relevant SVs

In addition to all 1000 Genomes samples we also genotyped sample HG002/NA24385 based
on Illumina reads from [207]. We used the GIAB CMRG benchmark containing medically
relevant SVs [192]], downloaded from: https://ftp-trace.ncbi.nlm.nih.gov/Refer
enceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/G
RCh38/StructuralVariant/) for evaluation. Like for the 1000 Genomes samples, we
used the MC-based VCF (see above) containing variant bubbles and haplotypes of 44 as-
sembly samples as an input panel for PanGenie. We extracted all variant alleles with a
length > 50 bp from our genotyped VCF (biallelic version, after decomposition). We con-
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unadjusted adjusted (without untypables)
precision recall F-score precision recall F-score
0.74 0.75 0.75 0.74 0.81 0.78

Table 4.4: Medically relevant SV benchmarking. Shown are results of comparing Pan-
Genie genotypes computed for HG002 to the GIAB CMRG benchmark. The left part of the
table shows results for all SV alleles, the right part excludes SVs from the truth set that are
unique to HG002 and thus untypable because they are absent from the input panel used for
PanGenie. Table taken from [113]].

verted the ground truth VCF into a biallelic representation using bcftools norm -m -any
and kept all alleles with length > 50 bp. We used truvari ([56]], version v3.1.0) with pa-
rameters --multimatch --includebed <medically-relevant-sv-bed> -r 2000 --no-ref
a -C 2000 --passonly in order to compare our genotype predictions to the medically rel-
evant SVs. Results are shown in Table (left). Since PanGenie is a re-typing method, it
can only genotype variants provided in the input and thus cannot detect novel alleles. Since
HGO002 is not among the panel samples, the input VCF misses variants unique to HG002.
Thus, these unique variants cannot be genotyped by PanGenie and were counted as false
negatives during evaluation. Therefore, we computed an “adjusted” version of the recall
which excludes SV alleles unique to HG002 (i.e. alleles not in the graph) from the truth
set for evaluation. In order to identify which SV alleles were unique, we compared each
of the 44 panel samples to the ground truth VCF using truvari in order to identify the false
negatives for each sample. Then we computed the intersection of false negative calls across
all samples. The resulting set then contains all variant alleles unique to the HG002 ground
truth set. We found 15 such unique SV alleles among the GIAB CMRG variants. We re-
moved these alleles from the ground truth set and recomputed precision/recall statistics for
our genotypes. Adjusted precision/recall values are shown in Table (right).

4.3.4 Discussion

This section re-uses some material presented in [[113].

The HPRC generated haplotype-resolved assemblies of 47 human genomes, the largest set
of fully phased genome assemblies that is currently available. Compared to earlier efforts,
including the HGSVC (Section [4.1)), the assemblies are of better quality, reaching an average
median base-level accuracy that is an order of magnitude higher than for the HGSVC assem-
blies and an N50 that is nearly twice as large. A subset of 44 samples (88 haplotypes) was
used in order to construct a pangenome graph, representing all genetic variation present in
the haplotypes, with the goal to provide a better alternative to the linear reference genome.

We have demonstrated how such a pangenome graph can be used in order to accurately
genotype genetic variants, especially structural variants, based on short-reads. The approach
presented here differs from the work presented in Section in the way the panel used
for genotyping was created. For HGSVC, variants were called based on alignments of the
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assemblies to the linear reference genome and variant calls generated in this way were
later combined into a pangenome graph by merging overlapping variant sites into bubbles.
In contrast, the HPRC took a different approach by constructing a pangenome graph in a
reference-free manner, based on multiple sequence alignments of the assemblies. Variants
were later detected from the bubbles, requiring a decomposition step to identify variation
nested inside of bubbles.

PanGenie produced high quality, short-read based genotypes for the 3,202 samples from
the 1000 Genomes project based on this pangenome reference, and, as illustrated also in
previous experiments (Sections 3} [4.1]), enabled fast genotyping of SVs otherwise missed by
linear reference based, short-read callers. An evaluation based on medically relevant SVs
showed high genotyping accuracies even in difficult-to-access regions.

A direct comparison to the HGSVC callset was difficult since the underlying callset sam-
ples were disjoint and also because of the different representation of SVs. While similar SV
alleles were merged into a single variant allele in the HGSVC callset, the HPRC callset kept
separate records even for highly similar SVs. Therefore, we compared the number of SVs
carried by each sample after genotyping in order to correct for these differences, revealing
higher numbers for the HPRC callset. These results suggest that the improvements are likely
a combination of both increased numbers of individuals in the pangenome and improved
genome assemblies that retain better sequence-level resolution of SV haplotypes and thus,
the pangenome delivers substantially better SV calling than earlier approaches. This enables
the inclusion of tens of thousands of additional SV alleles into further downstream analyses.

However, the experiments also reveal some limitations. The pangenome graph contains
many very large, complex bubbles containing nested variants. Genotyping such multiallelic
regions is generally more difficult due to the high number of possible alternative alleles.
The “leave-one-out” experiment showed that the performance of PanGenie in such regions
was worse compared to the more easy, biallelic regions. In addition, there is a need for
more sophisticated methods to evaluate genotyping performance in such regions, especially
because many of the allelic sequences are often very similar and current methods do not
take this factor into account.

Similar to what was observed from the HGSVC experiments (Section , rare variants
were difficult to genotype as they tended to be genotyped as absent across the 1000 Genomes
cohort. Due to not merging similar SV alleles into a single record, and the higher number
of samples present in the graph (44 instead of 32), this problem is even more prominent
here, since the proportion of rare alleles is larger. About 48% of all SV alleles were geno-
typed with an allele frequency of zero across the cohort and could thus not be included in
any downstream analysis. However, this number includes variants with missing genotype
predictions (“./.”). In some cases, PanGenie failed to provide a genotype prediction for the
carrier samples and typed them as “./.”, while the other samples were correctly typed as
0/0, leading to an allele frequency of zero for the respective variant. Only around 16% vari-
ants were genotyped as “0/0” in each of the 1000 Genomes samples. Additionally, unlike
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for HGSVC, similar SV alleles were not combined into a single allele in the HPRC callset in
order to correct for small representation differences or variant calling errors in some of the
samples. This can lead to multiple, slightly different SV alleles present in the callset that
actually represent the same SV event. Therefore, a fraction of those alleles that were typed
as absent across all samples might also be such redundant alleles correctly filtered out by
PanGenie.

In summary, our experiments demonstrate how PanGenie can be applied to a pangenome
reference in order to efficiently genotype genetic variants, especially SVs, across large co-
horts. The set of high quality genotypes produced gave access to more structual variants
than previous approaches, including the HGSVC.
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4.4 Conclusions

In this chapter, PanGenie was applied to pangenome references recently constructed from
haplotype-resolved assemblies by the HGSVC and HPRC consortia. It was demonstrated
that PanGenie enabled accurate and fast genotyping across a large cohort of 3,202 human
samples based on short reads when using the two pangenome graphs containing 32 and 44
human samples. By leveraging the information provided by the known haplotypes, PanGenie
was able to genotype a large fraction of structural variants that were previously inaccessible
by short-read based callers. This demonstrates that short-read based genotyping of SVs ben-
efits from the additional sequence information inherent in the pangenome that is missing
from the linear reference. Being able to genotype previously inaccessible SVs across the co-
hort samples enables the inclusion of such variants into downstream analyses studying their
association with disease. Here, we demonstrated that our SV genotypes could be used for
Quantitative trait locus analysis, revealing SV-eQTLs that were previously not detectable by
short-read approaches. Furthermore, we showed how SNP genotypes produced by PanGenie
across the cohort samples enabled the detection of carriers of rare inversions. All predicted
carriers could be verified experimentally by FISH.

There are still some limitations and possibilities to improve the current genotyping
model. We presented a subsampling strategy implemented in PanGenie which speeds up
the runtime as the panel gets larger (Section [4.1.2). The idea was to randomly divide the
panel into multiple sets and then run genotyping separately on all of them. Probabilities
computed for each subset are then combined iteratively to obtain the final genotype likeli-
hoods. This iterative approach might not be ideal, as it does not put equal weight on the
results of each subset when combining likelihoods. Here, alternative strategies could be
considered that sum up probabilities first and then normalize the result. Another factor that
should be taken into account is that for variants with many alternative alleles, not every
subset might cover all these alleles. Thus, not every subset can contribute likelihoods to
each possible genotype at the locus. This might lead to biases when computing the final
likelihoods. Which strategy works best when combining likelihoods from different subsets
is not clear and still needs to be determined in future experiments.

In the near future, highly accurate haplotype-resolved assemblies will become available
for larger sets of samples. Thus, instead of containing 64 or 88 haplotypes, future pangenome
references will contain hundreds of haplotypes, resulting in larger, more complex graphs.
This will impose challenges for pangenome-based genotyping methods like PanGenie: as the
number of samples increases, the bubbles in the graph will get more complex, leading to a
graph with fewer but larger bubble structures caused by overlapping variants across hap-
lotypes. Genotyping such bubbles will become more difficult due to the higher number of
possible alternative alleles the genotyper has to choose between, especially since PanGenie
does not genotype nested variants separately (Section [3.10). Furthermore, higher numbers
of haplotypes in the graphs lead to a higher runtime and memory usage of PanGenie. While
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PanGenie was still very fast on the currently largest graph containing 88 haplotypes (53
single-core CPU hours per sample, 153 GB RAM memory per sample), runtime and memory
usage will increase linearly as the number of haplotypes gets larger, leading to problems
for graphs containing several hundreds of samples. Currently, storing variant information,
keeping track of which paths cover which alleles and which unique k-mers occur in which
allele sequence, are the components of the code that require the most memory (Figure[C.13).
The computation of genotype likelihoods based on the HMM is the most time-consuming step
(Figure [C.13). How to adapt the model to larger panels is still an open problem. As men-
tioned earlier (Section [3.10), ideas used in statistical phasing could be explored, as well as
reducing the panel sizes based on founder sequences (Section[3.10). Another idea is to sub-
sample smaller sets of haplotypes from the input panel, use the Viterbi algorithm to compute
the best two haplotype sequences of each subset and compute the final likelihoods based
on the resulting set of haplotypes using the Forward-Backward algorithm. Furthermore, a
more efficient way of computing the Forward and Backward probabilities in the current
model could be implemented. Below, we present an idea developed very recently that helps
to reduce the asymptotic runtime of the Forward-Backward algorithm from O(n* - m) to
O(n? - m) and, combined with the ideas mentioned above, could be extremely helpful in
making PanGenie applicable to larger panels.

As more haplotypes are available, it would be interesting to analyze how the genotyping
accuracy changes as more haplotypes are added to the graph. On the one hand, adding more
samples gives access to more variation that can be re-genotyped in a sample but on the other
hand, the accuracy might also become worse once the graph gets too complex. Therefore,
it would be helpful to investigate how the genotyping accuracy behaves once the panel gets
larger and whether it drops once the graph gets too complex.

4.4.1 Computing PanGenie’s Forward-Backward algorithm more efficiently

The idea described in this subsection was suggested by Mikko Rautiainen (personal communication,
December 3, 2022).

The asymptotic runtime of PanGenie (Section can be drastically reduced by introduc-
ing helper variables to simplify the computation of Forward- and Backward probabilities
(Section . The idea is based on the fact that the recombination probabilities are inde-
pendent of the particular haplotypes recombining between columns and only depend on the
number of recombination events (none, one or two).

For a bubble position v, we can define the following variables which can be computed
in time quadratic in the number of haplotypes, O(n?):
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Using the same trick, the Backward probabilities can be computed in constant time as:
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This reduces the runtime of the Forward-Backward algorithm from O(n* - m) to O(n? - m).
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Summary

In Chapter 2| of this thesis, alignment-based phasing methods were discussed and applied
to different datasets in order to reconstruct haplotypes of diploid and polyploid genomes.
Our new algorithm for polyploid phasing, whatshap polyphase, was specifically designed
to handle regions of locally identical haplotypes, for which competing tools show lower
performances, as they aim to separate haplotypes based on their dissimilarities. We phased
a tetraploid potato genome and demonstrated how to generate haplotype-resolved assem-
blies of genes. We further demonstrated how accurate, PacBio CCS reads improved phasing
performances over other long-read based methods and that they enable phasing without
relying on short reads for variant calling. While both of these methods provided high qual-
ity phasing of SNPs, the experiments showed that problems arise in regions that are highly
variable or contain structural variation, hindering them to provide haplotype predictions on
the scale of a whole chromosome. Accurate long sequencing reads also provide the basis for
reference-free de novo reconstruction of haplotypes which are able to cover complex regions.
Besides enabling to study the haplotype sequences of single individuals in detail, such hap-
lotype assemblies can be used to construct pangenome graphs aiming to provide a complete
overview of the variation present in different samples of the same species. Such graphs can
be modeled as sequence graphs. Nodes describe sequences and edges connect sequences
such that each haplotype is represented as a path through this graph. Besides many other
applications, pangenome graphs are beneficial for genotyping of genetic variants, especially
of structural variants. They provide information that enables fast genotyping of variants
based on short sequencing data which does not depend on time-consuming alignments of
reads to a reference genome. In Chapter |3] we introduced PanGenie, a pangenome-based
genotyping method that uses k-mer counts from short-read data of a new sample in combi-
nation with a pangenome graph containing haplotypes of a set of known samples in order
to genotype the new sample. The k-mer information indicates which alleles are carried by
a sample, while the haplotype paths are used to impute genotypes in regions for which no
unique k-mers can be identified. We showed that PanGenie outperformed competing meth-
ods in terms of speed and genotyping accuracy, especially for structural variants in complex,
repetitive regions of the genome, providing insights into regions previously not accessible
by short-read based methods. Application of PanGenie to the 3,202 samples of the 1000
Genomes project based on pangenome structures produced by the HGSVC and HPRC con-
sortia (Chapter[4) demonstrated that it was fast, produced high quality genotypes in practice
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and allowed genotyping structural variants that other short-read based methods were not
able to access. This allowed the inclusion of such variants into Quantitative trait locus anal-
yses enabling the identification of SVs that are associated with diseases. Furthermore, SNP
genotypes produced by PanGenie across the cohort samples enabled the detection of carriers
of rare inversions. However, as pointed out in Chapters|3|and |4, several challenges arise as
future pangenome graphs will be constructed from hundreds of haplotype sequences. It is
still unclear how to adapt the genotyping model to efficiently work on such graphs. Founder
sets or strategies used by statistical phasing tools might provide useful techniques. In gen-
eral, it still needs to be determined what the “ideal” size of a pangenome is in terms of
the number of haplotypes present in the graph. Adding more samples helps to include rare
variants thus increasing accuracy but also the complexity of the graph, which is challenging
for many downstream analyses, such as genotyping or read alignment.
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coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)
WH-PP 0.58 1.48 29529 3333 1.41
40x WH-PP* 1.39 28.72 1692352 3433 1.42
H-PoPG 2.01 27.53 1785293 2230 9.97
WH-PP 0.31 1.43 54434 12694 2.52
80x WH-PP* 0.74 28.27 2587104 13042 2.89
H-PoPG 1.24 27.66 2587104 4368 9.99

(a) real tetraploid read data

coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)
WH-PP 0.42 1.74 48815 1960 1.10
40x WH-PP* 1.00 26.57 1830943 2004 1.17
H-PoPG 1.67 26.37 1917094 1414 9.96
WH-PP 0.29 2.51 86227 5738 1.78
80x WH-PP* 0.68 25.23 2142893 5865 2.04
H-PoPG 0.98 25.65 2142893 2843 9.97

(b) simulated tetraploid read data

coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)
WH-PP 0.86 1.57 22625 2331 1.05
40 x WH-PP* 2.01 25.34 1361459 2377 1.07
H-PoPG 3.50 24.78 1453040 2357 9.97
WH-PP 0.47 1.18 33438 5031 1.69
80x WH-PP* 1.33 23.64 1701753 5118 1.87
H-PoPG 2.24 24.76 1748404 4849 9.96

(c) simulated pentaploid read data

coverage method SER (%) HR (%) N50 (bp) runtime (s) memory (GB)
WH-PP 1.12 1.82 16785 25841 1.30
40 WH-PP* 2.35 27.03 3877456 25860 1.79
H-PoPG 3.85 26.75 4490129 5450 9.96
80 WH-PP 0.48 0.97 26711 10331 1.98
WH-PP* 1.34 25.63 4540968 10827 2.63
H-PoPG 2.37 25.93 4721421 11563 10.89

(d) simulated hexaploid read data

Table A.1: Phasing evaluation on artificial polyploid human. Comparison of whatshap
polyphase and H-PoPG on tetraploid real (a) and simulated (b) datasets, pentaploid simu-
lated dataset (c) and hexaploid simulated dataset (d). Performances are based on the switch
error rate (SER), block-wise Hamming rate (HR) and N50 for the block size. For better com-
parability with H-PoPG, a second setting (WH-PP*) with less block-cuts was used in addition
to the default block cut strategy (WH-PP). The total length of the chromosome is 249 Mb.
Table taken from [166].
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coverage method collapsing regions non-collapsing regions total
WH-PP* 0.66 1.81 1.65

40 x H-PoPG 2.02 2.16 2.02
SER(&HEeLS) 3.06 1.19 1.22

WH-PP* 0.38 1.16 0.99

80x H-PoPG 1.05 1.30 1.24
SER(&72955) 2.76 1.12 1.25

(a) real read data

coverage method collapsing regions non-collapsing regions total
WH-PP* 0.45 1.29 1.19

40 x H-PoPG 2.01 1.63 1.68
SER (#7454 4.47 1.62 1.41

WH-PP* 0.25 0.88 0.82

80 x H-PoPG 0.94 0.98 0.99
SER(#7£L4 ) 3.76 1.11 1.21

(b) simulated read data

Table A.2: Phasing evaluation in/outside collapsing regions. Comparison of resulting
switch error rates of H-PoPG and whatshap polyphase using block lengths that are compa-
rable to H-PoPG (WH-PP*) on collapsing regions over at least 50 variants as compared to
non-collapsing regions and the average throughout the genome. Results (switch error rates
in %) are presented for chromsome 1 of the real (a) and the simulated (b) dataset, testing
40x and 80x coverage. The third row marks the quotient between the switch error rate of
H-PoPG and that of whatshap polyphase to highlight by which magnitude the results differ.
Table taken from [166].
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Appendix B

Appendices: PanGenie:
Pangenome-based genome inference

type variants variants variants bubbles in pan-
(unfiltered) | (callable regions) | (mendelian consistent) | genome graph
SNP 13,628,117 12,560,841 12,095,177 11,556,580
small insertion 2,229,474 2,163,433 1,922,163 810,298
small deletion 2,026,998 1,961,042 1,811,123 819,445
small complex 0 0 0 597,044
midsize insertion 123,304 120,505 110,882 20,300
midsize deletion 87,263 85,114 80,027 12,720
midsize complex 0 0 0 87,392
large insertion 135,150 123,990 108,929 18,325
large deletion 48,724 45,419 41,499 4,397
large complex 0 0 0 52,272

Table B.1: Variant calling statistics. Numbers of variants obtained at different stages of
variant calling/pangenome graph construction. The first column corresponds to the number
of raw variant calls made across all individual haplotypes. The second column contains the
number of variants within the callable regions, that is, after removing sites with more than
20% of missing (“./.”) genotypes. The third column shows the number of variants left after
removing sites with Mendelian inconsistencies and corresponds to our final variant callset.
The last column presents the number of bubbles in the graph after constructing a pangenome
from all variants in the previous column. Columns 1-3 contain only variant alleles that can
be classified as SNPs, insertions and deletions. In the graph however, overlapping variant
alleles are combined into multiallelic bubbles. All such bubbles with more than two branches
are defined as “complex”. Table taken from [49].
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SNP small INS small DEL midsize INS midsize DEL large INS large DEL
HGO00512 | total | 3,724,332 444,561 442,280 15,635 14,685 14,742 8,623
unique | 251,925 48,811 42,229 5,531 2,831 5,830 1,412
HGO00513 | total | 3,767,798 447,734 444,429 16,025 15,019 15,098 8,900
unique | 258,979 46,955 39,971 5,758 2,978 6,191 1,540
HGO00731 | total | 3,792,925 446,416 448,667 15,630 15,002 15,006 8,717
unique | 237,125 43,607 38,016 5,299 2,585 5,645 1,336
HG00732 | total | 3,850,476 552,952 469,341 16,943 15,401 15,882 9,082
unique | 258,515 122,268 57,321 6,157 2,961 6,554 1,552
HG02818 | total | 4,604,971 559,626 566,604 20,166 18,904 17,837 10,740
unique | 605,439 100,220 97,157 8,881 5,455 8,820 2,710
HGO03125 | total | 4,631,416 576,887 580,655 20,290 19,106 18,132 10,759
unique | 608,299 113,155 108,740 9,021 5,574 9,074 2,726
HG03486 | total | 4,679,604 582,370 575,677 20,421 19,430 18,376 11,027
unique | 670,228 118,933 106,370 9,146 5,935 9,364 2,891
NA12878 | total | 3,775,211 445,739 448,293 16,029 15,027 15,374 8,777
unique | 247,345 46,445 40,769 5,739 2,816 6,001 1,444
NA19238 | total | 4,629,589 562,928 584,771 20,099 19,081 18,321 10,870
unique | 606,621 102,902 108,613 8,803 5,496 9,066 2,771
NA19239 | total | 4,573,111 551,810 575,465 19,611 18,642 17,721 10,664
unique | 589,863 98,383 106,349 8,327 5,466 8,636 2,620
NA24385 | total | 3,761,904 459,907 447,880 16,144 15,046 15,023 8,769
unique | 247,111 56,090 43,103 5,710 2,792 5,921 1,370
total total | 12,095,177 1,922,163 1,811,123 110,882 80,027 108,929 41,499

Table B.2: Variants in pangenome graph. Total number of variants detected across all
assembly samples (“total”), as well as the number of variants unique to a sample, that is,
variants seen only in the respective sample and in none of the other samples (“unique”).
Table taken from [49].

non-repetitive regions repeat regions repeat regions [%]
SNPs biallelic 10,736,632 527,498 4.7 %
complex 179,476 368,385 67.2 %
small biallelic INS 682,987 115,702 14.5%
biallelic DEL 696,243 123,055 15.0 %
complex INS +DEL 1,238,489 817,458 39.7 %
midsize biallelic INS 9,313 10,997 54.2 %
biallelic DEL 5,651 7,909 58.3 %
complex INS + DEL 43,105 104,734 70.8 %
large biallelic INS 7,537 10,757 58.8 %
biallelic DEL 2,212 2,397 52.0 %
complex INS + DEL 29,277 89,297 75.3 %

Table B.3: Number of variants in repetitive and non-repetitive regions. Shown are the
numbers of variants located inside and outside of STR/VNTR regions for sample NA12878.
“biallelic” corresponds to all genomic regions outside of complex bubbles (= bubbles with
more than two branches) in our pangenome graph. “complex” corresponds to all callset
variants that are located inside of complex bubbles. Table taken from [49].
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Figure B.1: Evaluation example. a Shown is a set of variants (represented by circles) used
as input for genotyping and a sample carrying only one of these variants (i.e. the true geno-
type for all others is 0/0). Both variants colored in red were genotyped as non-0/0, resulting
in a genotyping error for the second one which is counted as a false positive call. This ex-
ample illustrates why precision/recall measures are not ideal for a re-genotyping scenario:
when variants are called across a large set of samples and then genotyped in another, new
sample, there will be a large fraction of variants absent in the new sample. Thus, even if
the false positive rate is low, the number of false positives increases as the number of input
variants increases, while the number of true positives is limited. In this example, only a
single genotyping error decreases the precision to 0.5. b Confusion matrix for PanGenie and
the resulting values for precision, recall and weighted genotype concordance (matrix for
large insertions in repetitive regions). While the false positive rate is low (only 415 of 9713
variants absent from the truth set are genotyped as non-0/0), it is relatively high compared
to the number of true positives which explains why the precision is so low compared to
the weighted genotype concordance. The same effect applies to all re-genotyping methods.
Figure taken from [49].



134

Appendices: PanGenie: Pangenome-based genome inference

small-deletion

small-insertion

small-complex

0.99 4
™ L2 g 0.954 o
0.98 . »
0.98 » S/
? 0.90 4
0.97 0.96 / ’ «
é |
& 0.961 5 / 50854 ﬁ’
@ a v / / a
] o 0.94 / / S /
5 095 g /] g [ 4
5 0.95 5 It 5 /
2 5 /4 2080 ).
2 2 / / o »
2 0,944 092 /) E /
2 ) El / / 2 0,754 #
3 p H / | ® 0.75 {
0931 0.90
0.70 4
0.92 /
"' ¢ 0.88
0.91 0.65 4
05 06 07 08 09 1.0 05 06 07 08 09 10 0.2 0.4 0.6 0.8
adjusted recall adjusted recall adjusted recall
midsize-deletion midsize-insertion midsize-complex
1.00
) . *p =
. e 0.94 »
0.98
. 0951 « ;.
0.96 / ° / 0.8
7 / 0.90
c / [ c <
§094q, / /o/ § 807
3 J / © 085 4
S 0.92 / a s
3 / B o6
g / 3 0.80 30
2 0.90 / 2 2
® / B B N +—oo
0.88 4 0.75 0.5 -
d//
0.86 4 0.70 044 /.’
0.84 4 0.65
0.6 0.7 0.8 0.9 05 06 07 08 09 0.2 0.4 0.6
adjusted recall adjusted recall adjusted recall
100 large-deletion large-insertion large-complex
.: '0 - ®
v /
" 0.9 y 095 v
0.95 1 . !
: 081" ¢ /
[ . .
c / c ° 090
§0.90 i ] N ®
7} ] @
G S ] []
13 £ 0.7 o [
5 a a |
0.85 4 [
§ 085+ B B ? ¢
3 3 3 .
H go° L3 Va
. - 0.80 .
0.80 N
05 . .
0.75 4 el
0.75 0.4
0.2 0.4 0.6 0.8 0.4 0.6 0.8 0.2 0.4 0.6 0.8
adjusted recall adjusted recall adjusted recall
snp snp-complex
1.004 ® 8 0 —— PanGenie (lenient)
/ 0.950 e PanGenie (strict)
0.89 . f —— BayesTyper
) Platypus
/ : 0.925 —— Paragraph
0.98 4 /| —— GATK
s 4 £0.9007 /’ GraphTyper
S / f 2 L4 ® 5x
5 0.97 / / G 14
2 / 8 0875 / / o 10x
a / / a” ’ ® 20x
g 0.96 - /i % / / ® 30x
3 3 0.850 py
® 0.95 / ® /
: / 0.825 ‘
0.94 4 0.800
0.93 ¢ 0.775
0.6 0.7 0.8 0.9 1.0 0.4 0.6 0.8

adjusted recall adjusted recall

Figure B.2: Adjusted precision/recall for NA12878 (non-repetitive regions). Adjusted
precision/recall at different coverages for sample NA12878. We ran PanGenie, BayesTyper,
Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-
ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-
tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype
quality > 200). SNPs, insertions and deletions include all respective variants in biallelic
regions of the genome, while complex contains all variant alleles falling into regions with
complex bubbles in the pangenome graph representation. Figure taken from [49]].
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Figure B.3: Adjusted precision/recall for NA12878 (STR/VNTR regions). Adjusted pre-
cision/recall at different coverages for sample NA12878. We ran PanGenie, BayesTyper,
Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-
ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-
tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype
quality > 200). SNPs, insertions and deletions include all respective variants in biallelic
regions of the genome, while complex contains all variant alleles falling into regions with
complex bubbles in the pangenome graph representation. Figure taken from [49]].
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Figure B.4: Comparison to GIAB small variants for NA12878. The GIAB small variants
benchmark set [208] was used as ground truth for evaluating the results of our "leave-
one-out" experiment for SNPs and indels (< 50bp). We computed the adjusted precision
and recall (left), as well as the un-adjusted versions (right) including variants unique to
NA12878 and thus not genotypable by a re-genotyping approach. GATK and Platypus were

additionally run in detection mode. Figure taken from [49].
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Figure B.5: Weighted genotype concordance for NA24385 (non-repetitive regions).
Weighted genotype concordance at different coverages for sample NA24385. We ran Pan-
Genie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-
genotype all callset variants. Besides not applying any filter on the reported genotype qual-
ities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq”
filtering (genotype quality > 200). SNPs, insertions and deletions include all respective vari-
ants in biallelic regions of the genome, while complex contains all variant alleles falling into
regions with complex bubbles in the pangenome graph representation. Figure taken from

[49].
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Figure B.6: Weighted genotype concordance for NA24385 (STR/VNTR regions).
Weighted genotype concordance at different coverages for sample NA24385. We ran Pan-
Genie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-
genotype all callset variants. Besides not applying any filter on the reported genotype qual-
ities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq”
filtering (genotype quality > 200). SNPs, insertions and deletions include all respective vari-
ants in biallelic regions of the genome, while complex contains all variant alleles falling into
regions with complex bubbles in the pangenome graph representation. Figure taken from

[49].
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Figure B.7: Adjusted precision/recall for NA24385 (non-repetitive regions). Adjusted
precision/recall at different coverages for sample NA24385. We ran PanGenie, BayesTyper,
Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-
ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-
tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype
quality > 200). SNPs, insertions and deletions include all respective variants in biallelic
regions of the genome, while complex contains all variant alleles falling into regions with
complex bubbles in the pangenome graph representation. Figure taken from [49]].
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Figure B.8: Adjusted precision/recall for NA24385 (STR/VNTR regions). Adjusted pre-
cision/recall at different coverages for sample NA24385. We ran PanGenie, BayesTyper,
Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype all callset vari-
ants. Besides not applying any filter on the reported genotype qualities (“all”), we addi-
tionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype
quality > 200). SNPs, insertions and deletions include all respective variants in biallelic
regions of the genome, while complex contains all variant alleles falling into regions with
complex bubbles in the pangenome graph representation. Figure taken from [49]].
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Figure B.9: Adjusted F-score for NA24385 (non-repetitive regions). Adjusted F-score
at coverage 30x for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platy-
pus, GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not
applying any filter on the reported genotype qualities (“all”), we additionally report geno-
typing statistics for PanGenie when using “high-gq” filtering (genotype quality > 200). SNPs,
insertions and deletions include all respective variants in biallelic regions of the genome,
while complex contains all variant alleles falling into regions with complex bubbles in the
pangenome graph representation. Figure taken from [49].
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Figure B.10: Adjusted F-score for NA24385 (STR/VNTR regions). Adjusted F-score at
coverage 30x for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus,
GATK, GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not ap-
plying any filter on the reported genotype qualities (“all”), we additionally report genotyp-
ing statistics for PanGenie when using “high-gq” filtering (genotype quality > 200). SNPs,
insertions and deletions include all respective variants in biallelic regions of the genome,
while complex contains all variant alleles falling into regions with complex bubbles in the
pangenome graph representation. Figure taken from [49].
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Figure B.11: Comparison to syndip benchmark SVs. SVs contained in the syndip bench-
mark set were used as ground truth for evaluation. We computed the weighted genotype

concordance and the adjusted precision and recall metrics to evaluate our results. Figure
taken from [49].
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Figure B.12: GIAB medically relevant SVs in our lenient set. Distribution of SVR scores
for all 209 GIAB medically relevant genes that are part of our variant callset (left), as well
as heterozygosities and allele frequencies observed across all 200 unrelated trio samples in
our lenient set (right). Figure taken from [49].

9G88/2EET-SNI

LTR10B2

8€UDYO

8E€YDYO
N
\
N
N

INS-133278856

LTR10B2

B Forward MReverse
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consensus sequence and the reference sequence of this region (GRCh38). Figure taken from
[49].
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Figure C.1: Comparison PanGenie and Paragraph on HGSVC calls. Paragraph and Pan-
Genie were run on a subset of 100 trios (300 samples) in order to derive genotypes for all
SVs (n=96,145). Allele frequencies were computed based on the genotypes of both meth-
ods for all 200 unrelated samples. PAV allele frequencies were computed based on all 64
assembly haplotypes. Figure taken from [46].
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Figure C.2: HGSVC genotyping results for SNVs. A Shown are number of SNVs failing dif-
ferent filters for the set of all genotyped SNVs (n=15,488,649). B The two plots on top show
the allele frequencies observed for the PanGenie genotypes across all unrelated samples for
all SNVs (left, n=15,488,649) and those contained in the strict set (right, n=12,283,650).
The two plots below compare the heterozygosity of the PanGenie genotypes to the allele
frequencies for all SNVs in the unfiltered (left) and strict sets (right).
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Figure C.3: HGSVC genotyping results for indels. A Shown are number of indels failing
different filters for the set of all genotyped indels (1-49bp, n=1,033,665). B The two plots
on top show the allele frequencies observed for the PanGenie genotypes across all unre-
lated samples for all indels (left, n=1,033,665) and those contained in the strict set (right,
n=705,893). The two plots below compare the heterozygosity of the PanGenie genotypes
to the allele frequencies for all indels in the unfiltered (left) and strict sets (right).
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Figure C.4: Filtering HGSVC SV insertions. A The upset plot shows the number of variants
failing the different filters for the set of all genotyped SV insertions (n = 60,283). B The plots
show the heterozygosity of the PanGenie genotypes for all unrelated samples on the y-axis
and the PanGenie allele frequencies on the x-axis. The leftmost plot corresponds to the
unfiltered set containing 60,283 SV insertions, the middle one corresponds to the lenient
set containing n= 31,680 insertions and the plot on the right corresponds to the strict set
containing n=15,826 SV insertions. Figures taken from [46].
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Figure C.5: Filtering HGSVC SV deletions. A The upset plot shows the number of variants
failing the different filters for the set of all genotyped SV deletions (n=235,862). B The
plots show the heterozygosity of the PanGenie genotypes for all unrelated samples on the
y-axis and the PanGenie allele frequencies on the x-axis. The leftmost plot corresponds to
the unfiltered set containing 35,862 SV deletions, the middle one corresponds to the lenient
set containing n=18,660 deletions and the plot on the right corresponds to the strict set
containing n=_8,181 SV deletions. Figures taken from [46].
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Figure C.6: Fs7 versus SV length for all superpopulations (deletions). For each super-
population, Fsp values were computed by comparing to the union of the remaining popula-
tions. The plots are based on the strictly filtered PanGenie calls containing 8,181 deletions.

Figure taken from [46].
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Figure C.7: Fgsp versus SV length for all superpopulations (insertions). For each su-
perpopulation, Fsp values were computed by comparing to the union of the remaining
populations. The plots are based on the strictly filtered PanGenie calls containing 15,926
insertions. Figure taken from [46].
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Figure C.8: HPRC callset statistics SV deletions. Top: Shown are the number of dele-
tion alleles failing different filters computed based on the genotypes of the 1000 genomes
genotypes for all 57,201 SV deletion alleles. Bottom: Shown are callset statistics for all SV
deletion alleles (> 50 bp) in the unfiltered set (left, n=57,201), the positive set (middle,
n=13,356) and the final filtered set (right, n=28,433). The plots compare the heterozy-
gousity across the PanGenie genotypes for all 2,504 unrelated samples to the PanGenie al-
lele frequencies. The blue line indicates the expected relationship based on Hardy-Weinberg
equilibrium. Bottom panel figures are taken from [113].
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Figure C.9: HPRC callset statistics SV insertions. Top: Shown are the number of inser-
tion alleles failing different filters computed based on the genotypes of the 1000 genomes
genotypes for all 254,612 SV insertion alleles. Bottom: Shown are callset statistics for all SV
insertion alleles (> 50 bp) in the unfiltered set (left, n=254,612), the positive set (middle,
n=232,431) and the final filtered set (right, n=84,755). The plots compare the heterozy-
gousity across the PanGenie genotypes for all 2,504 unrelated samples to the PanGenie al-
lele frequencies. The blue line indicates the expected relationship based on Hardy-Weinberg

equilibrium Bottom panel figures are taken from [[113].



158 Appendices: Application: genotyping large cohorts

Intersection siz

20000
15000
10000
5000 I
o Illlll-------_ _____
0 self_fail )

-mi::zf - T :I.If

[ | aco_fail
| [ ] nonref fail
—
50000 O
unfiltered set positive set filtered set
1.0 1.0 1.0
10°
3 0t 3
0.8 008 n 08 108
o~ N IN
Il i )
£ £ £
> 108 > 2 >
£ 06 2 06 1072 o6
o [=} o
> > > )
9 N R 10
° 4 °
£ 04 102 £ 04 g o4
< < <
o [ v
§ £ w g
1
2 02 L2 02 2 0.2 0
< 10 © ©
& & &
d
0.0 0.0 0.0
10° 10° 10°
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PanGenie allele frequency (n=2,504) PanGenie allele frequency (n=2,504) PanGenie allele frequency (n=2,504)

Figure C.10: HPRC callset statistics SV others. Top: Shown are the number of other SV
alleles failing different filters computed based on the genotypes of the 1000 genomes geno-
types for all 101,996 SV alleles that are neither insertions nor deletions. Bottom: Shown
are callset statistics for all SV alleles that are neither a clean insertion nor a clean deletion
(> 50 bp) in the unfiltered set (left, n=101,996), the positive set (middle, n=8,334) and
the final filtered set (right, n=32,431). The plots compare the heterozygosity across the
PanGenie genotypes for all 2,504 unrelated samples to the PanGenie allele frequencies. The
blue line indicates the expected relationship based on Hardy-Weinberg equilibrium. Bottom
panel figures are taken from [113].
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Figure C.11: HPRC common SVs. Shown are the number of SVs present (genotype 0/1
or 1/1) in each of the 3,202 1000 Genomes Project samples in the filtered HPRC genotypes
(PanGenie), the HGSVC lenient set and the 1kGP Illumina calls in GIAB regions. Only com-
mon alleles with an allele frequency above 5% across all samples are taken into account.
Figure taken from [113].
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type 0/1 or 1/1) in each of the 3,202 1000 Genomes Project samples in the filtered HPRC
genotypes (PanGenie) in different repeat categories. Repeat annotations are based on the
cactus-minigraph graph. Figure taken from [113].



160 Appendices: Application: genotyping large cohorts

Stratification files from GIAB

* easy: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/gen
ome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.be
d.gz

+ low-mappability: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab
/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandseg
dupregions.bed.gz

» repeats: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release
/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeat
s_gt100bp_slop5.bed.gz

« other-difficult: https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/r
elease/genome-stratifications/v3.0/GRCh38/0therDifficult/GRCh38_allOtherD

ifficultregions.bed.gz


https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_notinalldifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeats_gt100bp_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/OtherDifficult/GRCh38_allOtherDifficultregions.bed.gz
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Figure C.13

core CPU seconds) and maximum resident set size (RSS) of PanGenie when run on the HPRC
graph containing 88 haplotypes. On the left, the lifetime of relevant data objects created

during execution of the code are shown. b Implementation details of the most relevant

classes of PanGenie.
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Appendix D

Code Availability

The implementation of whatshap polyphase is available as open source code under the
MIT licence at: https://github.com/whatshap/whatshap. The scripts and pipelines for
re-producing the results presented in Section are available at: https://github.com/e
blerjana/whatshap-polyphase-experiments. The scripts and pipelines used to produce
the results presented in Section are available at: https://github.com/PacificBiosci
ences/hg002-ccs/tree/master/phasing.

The implementation of PanGenie is available as open source code under the MIT licence
at: https://github.com/eblerjana/pangenie. The pipelines for re-producing the results
presented in Chapter [3| are available at: https://bitbucket.org/jana_ebler/genotypin

g-experiments/src/master/.

The pipelines for re-producing the results presented in Sections[4.1] [4.2|and [4.3]are available
at: https://bitbucket.org/jana_ebler/genotyping-experiments/src/hgsvc-paper/,
https://bitbucket.org/jana_ebler/rare-inversions/src/master/ and https://bi
tbucket.org/jana_ebler/hprc-experiments/src/master/genotyping-experiments/,

respectively.
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Appendix E

Published articles underlying this
thesis

E.1 Haplotype threading: accurate polyploid phasing from long
reads

The manuscript “Haplotype threading: accurate polyploid phasing from long reads” [166]
was published in Genome Biology. Author information, author contributions, license and
copyright information are listed in the subsections below.

E.1.1 Authors

Sven D. Schrinner*, Rebecca Serra Mari*, Jana Ebler*, Mikko Rautiainen, Lancelot Seillier,
Julia J. Reimer, Bjorn Usadel, Tobias Marschall, Gunnar W. Klau.

* joint first authors

E.1.2 Contributions
Author contributions as stated in the manuscript [166]:

“SDS, RSM, JE, GWK, and TM developed the algorithmic concepts and designed
the study. RSM designed the haplotype threading algorithm and implemented
a prototype. SDS designed and implemented the cluster editing algorithm, de-
signed the block cut strategies, and optimized the threading implementation. JE
performed the evaluation and analyzed the potato dataset. MR ran the error
correction on the potato reads. LS, JJR, and BU performed potato sequencing,
and BU helped with the interpretation of phasing results. SDS, RSM, and JE in-
tegrated all software components into WhatsHap and tested the workflow. SDS,
RSM, JE, GWK, and TM wrote the paper. All authors read and approved the final
manuscript.”
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E.1.3 Licence and copyright information

The manuscript was published under a Creative Commons Licence as stated in section
“Rights and permissions” in the online version: https://doi.org/10.1186/s13059-0
20-02158-1:

“This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the origi-
nal author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdoma
in/zero/1.0/) applies to the data made available in this article, unless otherwise
stated in a credit line to the data.”

E.2 Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome

The manuscript “Accurate circular consensus long-read sequencing improves variant de-
tection and assembly of a human genome” [199] was published in Nature Biotechnology.
Author information, author contributions, licence and copyright information are listed in
the subsections below.

E.2.1 Authors

Aaron M. Wenger*, Paul Peluso*, William J. Rowell, Pi-Chuan Chang, Richard J. Hall, Gre-
gory T. Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D.
Olson, Armin Topfer, Michael Alonge, Medhat Mahmoud, Yufeng Qian, Chen-Shan Chin,
Adam M. Phillippy, Michael C. Schatz, Gene Myers, Mark A. DePristo, Jue Ruan, Tobias
Marschall, Fritz J. Sedlazeck, Justin M. Zook, Heng Li, Sergey Koren, Andrew Carroll, David
R. Rank, Michael W. Hunkapiller

* joint first authors


https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1186/s13059-020-02158-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
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E.2.2 Contributions

Author contributions as stated in the manuscript [199]:

“A.M.W., D.R.R., M.W.H. and P.P. designed the study. D.R.R. and P.P. developed
the sample preparation protocol and performed sample preparation. D.R.R., P.P.
and Y.Q. performed sequencing. A.C., A.K., C-S.C., M.A.D. and P.C. adapted
the algorithms and implementation of DeepVariant. A.C., A.F., A.K., AM.P.,
AMW,, AT, CS.C, D.R.R, FJ.S., G.M, G.T.C, H.L,, J.E, JM.Z, J.R., MA,,
M.A.D., M.C.S., M.M., N.D.O., P.C., P.P., R.J.H., S.K., T.M. and W.J.R. performed
analysis. A.C., AM.P., C-S.C.,, D.R.R,, F.J.S., JM.Z., M.A.D., M.C.S. and M.W.H.
supervised analysis. A.C., AM.W., D.R.R., G.M,, JM.Z, P.P, RJ.H., S.K. and
W.J.R. wrote the manuscript. See Supplementary Note for more detailed author
contributions. All authors reviewed and approved the final manuscript.”

and:

“CCS Library Preparation and Sequencing: D.R.R., P.P., Y.Q.

Quality Evaluation of CCS Reads: A.M.W., G.M., R.J.H.

Increased Mappability of CCS Reads: R.J.H.

Small Variant Detection in CCS Reads: A.C., A.K,, C-S.C., F.J.S., JM.Z., M.A.D.,
N.D.O,, P.C., W.J.R.

Phasing Small Variants: J.E., T.M., W.J.R.

Improving Small Variant Detection with Haplotype Phasing: A.C., AK., M.A.D.,
P.C., W.J.R.

Structural Variant Detection in CCS Reads: A.M.W., A.T., F.J.S., H.L., M.C.S.,
M.A., M.M.

De Novo Assembly of CCS Reads: A.F., AM.P., AM.W., D.R.R,, J.R., G.T.C., S.K.
Coverage Requirements for Variant Calling and De Novo Assembly: A.C., AK,,
AMW,, G.T.C, J.E,, T.M., WJ.R.

Revising and Expanding Genome in a Bottle Benchmarks: A.M.W., J.M.Z.,N.D.O.”

E.2.3 Licence and copyright information

According to the link provided in the “Rights and permissions” section of the online version
of the manuscript at https://doi.org/10.1038/s41587-019-0217-9, the following holds:

“Ownership of copyright in original research articles remains with the Author,
and provided that, when reproducing the contribution or extracts from it or from
the Supplementary Information, the Author acknowledges first and reference
publication in the Journal, the Author retains the following non-exclusive rights:
To reproduce the contribution in whole or in part in any printed volume (book or
thesis) of which they are the author(s). The author and any academic institution,


https://doi.org/10.1038/s41587-019-0217-9
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where they work, at the time may reproduce the contribution for the purpose of
course teaching. To reuse figures or tables created by the Author and contained in
the Contribution in oral presentations and other works created by them. To post
a copy of the contribution as accepted for publication after peer review (in locked
Word processing file, of a PDF version thereof) on the Author’s own web site, or
the Author’s institutional repository, or the Author’s funding body’s archive, six
months after publication of the printed or online edition of the Journal, provided
that they also link to the contribution on the publisher’s website. Authors wishing
to use the published version of their article for promotional use or on a web site
must request in the normal way.”

E.3 Fully phased human genome assembly without parental data
using single-cell strand sequencing and long reads

The manuscript “Fully phased human genome assembly without parental data using single-
cell strand sequencing and long reads” [[145]] was published in Nature Biotechnology. Author
information, author contributions, licence and copyright information are listed in the sub-
sections below.

E.3.1 Authors

David Porubsky*, Peter Ebert*, Peter A. Audano, Mitchell R. Vollger, William T. Harvey,
Pierre Marijon, Jana Ebler, Katherine M. Munson, Melanie Sorensen, Arvis Sulovari, Marina
Haukness, Maryam Ghareghani, Human Genome Structural Variation Consortium, Peter
M. Lansdorp, Benedict Paten, Scott E. Devine, Ashley D. Sanders, Charles Lee, Mark J. P.
Chaisson, Jan O. Korbel, Evan E. Eichler, Tobias Marschall

* joint first authors

E.3.2 Contributions

Author contributions as stated in the manuscript [[145]:

“D.P., P.E., E.E.E. and T.M. designed the study. P.E. and D.P. implemented the
assembly workflow. P.A.A., M.J.P.C. and A.S. performed structural variant anal-
ysis. M.R.V. and D.P. analyzed assemblies for universal breaks, segmental dupli-
cations and collapses. An earlier HiFi dataset was provided by S.E.D. and used
during method development. M.H. and B.P. compared assemblies to trio-binned
Shasta assemblies. HGSVC members engaged in fruitful discussions, led by C.L.,
at the biannual consortium meetings. P.M. performed assembly graph analyses.
J.E. produced multi-sample callsets for comparative assembly analysis. W.T.H.
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performed variant calling for phasing and processed Hi-C data. K.M.M. gener-
ated HiFi PacBio data. M.S. sequenced BAC clones for validation. D.P., P.A.A.,
M.R.V. and T.M. prepared the main display items. D.P., P.E., P.AA.,, M.R.V,,
E.E.E. and T.M. wrote the manuscript, with input from A.D.S., M.G., P.M.L. and
J.O.K.”

I wrote the pipeline to generate a multi-sample callset from haplotype-resolved assemblies
and applied it to call variants from the assemblies generated for five samples.

E.3.3 Licence and copyright information

The manuscript was published under a Creative Commons Licence as stated in section
“Rights and permissions” in the online version: https://www.nature.com/articles/s4
1587-020-0719-5:

“This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the origi-
nal author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indi-
cated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.”

E.4 Pangenome-based genome inference allows efficient and ac-
curate genotyping across a wide spectrum of variant classes

The manuscript “Pangenome-based genome inference allows efficient and accurate geno-
typing across a wide spectrum of variant classes” [49] was published in Nature Genetics.
Author information, author contributions, licence and copyright information are listed in
the subsections below.

E.4.1 Authors

Jana Ebler, Peter Ebert, Wayne E. Clarke, Tobias Rausch, Peter A. Audano, Torsten Houwaart,
Yafei Mao, Jan Korbel, Evan E. Eichler, Michael C. Zody, Alexander T. Dilthey, Tobias
Marschall


https://www.nature.com/articles/s41587-020-0719-5
https://www.nature.com/articles/s41587-020-0719-5
http://creativecommons.org/licenses/by/4.0/
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E.4.2 Contributions

Author contributions as stated in the manuscript:

“J.E. and T.M. developed the algorithms and designed the study. J.E. imple-
mented PanGenie and the pangenome graph construction. P.E. generated the as-
semblies. T.H. and A.T.D provided ideas for graph construction and preliminary
versions of the graph. J.E., T.M. designed the experiments and J.O.K., P.AA.,
E.E.E., M.C.Z., T.R., A.T.D., W.E.C. and T.H. contributed ideas and suggestions.
J.E. performed all experiments. W.E.C. helped with the Paragraph evaluation.
Y.M., P.A.A. and E.E.E. provided the results for non-human primates discussed
in the L.D. analysis. T.H and A.T.D. evaluated the assemblies in the HLA region.
J.E. and T.M. wrote a draft of the paper and all authors contributed edits and
comments. All authors approved the final manuscript.”

E.4.3 Licence and copyright information

The manuscript was published under a Creative Commons Licence as stated in section
“Rights and permissions” in the online version: https://doi.org/10.1038/s41588-0
22-01043-w:

“This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the origi-
nal author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indi-
cated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.”

E.5 Haplotype-resolved diverse human genomes and integrated
analysis of structural variation
The manuscript “Haplotype-resolved diverse human genomes and integrated analysis of

structural variation” [[46] was published in Science. Author information, author contribu-
tions, licence and copyright information are listed in the subsections below.
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E.5.1 Authors

Peter Ebert*, Peter A. Audano*, Qihui Zhu*, Bernardo Rodriguez-Martin*, David Porubsky,
Marc Jan Bonder, Arvis Sulovari, Jana Ebler, Weichen Zhou, Rebecca Serra Mari, Feyza
Yilmaz, Xuefang Zhao, PingHsun Hsieh, Joyce Lee, Sushant Kumar, Jiadong Lin, Tobias
Rausch, Yu Chen, Jingwen Ren, Martin Santamarina, Wolfram Hops, Hufsah Ashraf, Nelson
T. Chuang, Xiaofei Yang, Katherine M. Munson, Alexandra P. Lewis, Susan Fairley, Luke
J. Tallon, Wayne E. Clarke, Anna O. Basile, Marta Byrska-Bishop, André Corvelo, Uday S.
Evani, Tsung-Yu Lu, Mark J. P. Chaisson, Junjie Chen, Chong Li, Harrison Brand, Aaron
M. Wenger, Maryam Ghareghani, William T. Harvey, Benjamin Raeder, Patrick Hasenfeld,
Allison A. Regier, Haley J. Abel, Ira M. Hall, Paul Flicek, Oliver Stegle, Mark B. Gerstein,
Jose M. C. Tubio, Zepeng Mu, Yang I. Li, Xinghua Shi, Alex R. Hastie, Kai Ye, Zechen Chong,
Ashley D. Sanders, Michael C. Zody, Michael E. Talkowski, Ryan E. Mills, Scott E. Devine,
Charles Lee, Jan O. Korbel, Tobias Marschall, Evan E. Eichler

* joint first authors

E.5.2 Contributions

Author contributions as stated in the manuscript [46]:

“PacBio production sequencing: K.M.M., A.P.L., Q.Z., L.J.T., and S.E.D. Strand-
seq production: A.D.S., B.R., P.H., and J.O.K. Phased genome assembly: P.E.,
P.AA, D.P, Q.Z., F.Y., W.T.H., and T.M. Assembly analysis: P.E. Assembly-
based variant calling: P.A.A. Variant QC, merging, and annotation: P.A.A., T.R.,
M.J.P.C,, J.R, T.L., Z.C., Y.C, K.Y, J.L., X.Y., and J.O.K. Assembly scaffolding:
F.Y., D.P,, and P.E. Additional long-read callsets: P.A.A., Y.C., Z.C., W.T.H., J.R.,
and A.M.W. Short-read SV calling and merging: X.Z., Q.Z., H.J.A., H.B., N.T.C,,
W.E.C, A.C,, US.E,, S.E.D.,, LM.H.,, W.T.H., A.A.R., M.C.Z., and M.E.T. Bionano
Genomics SV discovery and analysis: F.Y., J.L., and A.R.H. Strand-seq inversion
detection and genotyping: D.P., W.T.H., H.A., M.G., T.M., A.D.S., and J.O.K. MEI
discovery and integration: B.R.-M., W.Z., M.S., N.T.C., J.M.C.T., J.O.K., R.E.M,,
and S.E.D. Variant hotspot analysis: D.P. and E.E.E. Breakpoint analysis: S.K.,
J.L., X.Y., M.G., K.Y., and J.O.K. PanGenie genotyping: J.E. and T.M. Illumina
genotype analysis: J.E., X.Z., W.E.C., P.E., T.R,, P.A.A,, H.B,, J.O.K.,, M.E.T.,
M.C.Z., and T.M. RNA-seq and QTL analysis: M.J.B., A.S., Z.M., J.C., C.L., M.B.-
B., A.O.B., 0.S., Y.LL., X.S., M.C.Z., and J.O.K. Ancestry and population genetic
analyses: PH.H., R.S.M., P.A.A,, T.M., and E.E.E. Data archiving: S.F., P.A.A,,
K.M.M., and P.F. Organization of supplementary materials: Q.Z. and C.L. Dis-
play items: P.A.A,, P.E,, J.E., AR.H., PH.H., R.S.M., T.M., D.P,, T.R., B.R.-M.,
M.S., F.Y., X.Z., and W.Z. Manuscript writing: P.A.A., P.E., B.R.-M., A.S., D.P.,
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