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“Tout le malheur des hommes vient de ne savoir pas 
demeurer en repos, dans une chambre“- Blaise Pascal 

 

“All of humanity's problems stem from man's inability 
to sit quietly in a room alone” - Blaise Pascal 
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AAbstract 
Electrophysiological (e-phys) brain signals recorded in humans pose an arduous challenge 
both from an interpretability and analysis standpoint. Issues arise due to the very nature of 
the signal recorded. Known as "field potentials (FPs)," these signals arise from complex 
multiscale physiological properties ranging from a single neuron to a group of neurons 
extending all the way to the whole brain level. Hence, analysis-wise, differentiating the origin 
of e-phys signals is difficult. From an interpretability standpoint, ascribing neural functions to 
e-phys signals recovered under wildly different circumstances becomes even more 
convoluted. Additionally, the multiscale physiological properties endow the e-phys signals 
with varied statistical properties. In this thesis, we argue that various neurophysiological 
aspects of e-phys signals recorded in humans can be extracted by leveraging unsupervised 
machine learning (UML) designed to exploit the underlying statistical properties of the data. 

To test our hypothesis, we used different unsupervised algorithms on varying types of human 
e-phys datasets. We used independent component analysis to extract spontaneous resting 
state networks in healthy adults, achieving results comparable to those of imaging-based 
methods in humans. Furthermore, we were able to retrieve information regarding the 
spectral characteristics of the networks that are closely related to inter-region 
communication in the brain. Next, we delineated the different effects a complex 
neuromodulator like dopamine could have on cortico-subthalamic nucleus connectivity using 
a hidden Markov model (HMM). thus paving the way to retrieve the spatial, spectral, and 
temporal properties of brain networks. In addition, with our HMM pipeline, we addressed the 
issue of nonstationarity of brain signals, which is often ignored during analysis. Finally, we 
could retrieve the effects of inter-network dynamics on behavioral variability using a task 
dataset. Analytically, we used a combination of HMM and diffusion maps to gain novel 
insights into the relationship between spectral activity and whole brain networks responsible 
for different types of cognitive control. 

The complexity of e-phys FPs presents a unique opportunity to use modern machine learning 
(ML) algorithms, which have become increasingly sophisticated over the years, backed by 
computational hardware progress. However, we should emphasize that the current success 
of machine learning relies on years of human-labelled and carefully crafted datasets. This has 
led to high signal-to noise ratio datasets for problems that are the majority targets of ML as a 
field.  Thus, this thesis also provides a note of caution against blindly using ML algorithms on 
increasingly complex low signal-to-noise ratio biological datasets, especially neuroscientific 
ones, without comprehending biological theory. Appreciation and assimilation of ML and 
neuroscientific theory promise to reveal insights into brain structure and function. 
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11 Introduction to the thesis 
In humans, different brain regions are endowed with rich neurochemical and 
cytoarchitectural properties. But it is the interaction between these brain regions that is 
critical to giving rise to the speed, flexibility, and heterogeneity of the tasks that we as humans 
can achieve. We record extracellular FPs in humans using either invasive or non-invasive 
methods to study how different parts of the brain work together. But the brain is complicated 
on many different levels, from non-linear computations in a single neuron to long inter-
regional white matter connectivity. This, along with the need for computation, makes the FPs 
recorded noisy, non-linear, and not always the same. So, it's still hard to study how different 
parts of the brain interact across the whole brain and then connect those interactions to 
cognitive, sensory, and motor processes. 

In our research, we wanted to use the statistical properties of e-phys time series to figure out 
how different parts of the brain work together to form what neuroscientists call "brain 
networks." We also argue for the use of data-driven methods, which are often called 
unsupervised or self-supervised ML algorithms, to deal with the problems of nonlinear 
interactions and nonstationarity in the brain's e-phys time series. In addition, we also develop 
pipelines for pre-processing noisy datasets. We want to use UML to get back to well-known 
neuroscientific results, find new results, and figure out what the new results mean in terms 
of well-known principles of human behavior and neurophysiology. 

As such, we begin Chapter 1 section 1(1.1): Electrophysiological  neural signals by providing a 
background on electric signals that can be recorded at different scales in the brain. We discuss 
how properties like nonstationarity and non-linearity are built into the nervous system, 
starting from a single neuron to a group of neurons, and finally how these affect the FPs 
recorded in humans across the whole brain. In Chapter 1 section 2(1.2) : Human neural signals 
and Connectivity, we introduce the concept of "brain networks," as studied in the field of 
human neuroscience, and how they can be extracted from the FP recording previously 
introduced. We also back up our claim that the cytoarchitectural, physiological, 
computational, and communicational needs of the brain affect the recorded e-phys signals, 
giving them statistical properties. Chapter 1 section 3(1.3): Machine learning for human 
neural signals, we briefly revisit the concept of non-linearity and nonstationarity of e-phys 
signals. We talk about the idea behind how machine learning algorithms work and warn 
against blindly using unsupervised methods in neuroscience or medicine. Lastly, we talk about 
the goals of the thesis and go over three key publications, in chapters 2,3 and 4, that helped 
us reach those goals. In the discussion (Chapter 5), we give a critical analysis of our 
publications and explain what our research has added to neuroscience. 

  



9 | P a g e  
 

11.1 Electrophysiological neural signals 
The human brain is never at rest. Even when we sleep, the brain produces a constant stream 
of neural activity that controls our sleep cycles and regulates the sleep-wake mechanisms. 
During rest, the brain continues to generate spontaneous activity associated with cognition 
even when we are not actively performing an overt task. Ongoing brain activity is sculpted in 
a complex manner. From a single neuron to the whole brain, different neural entities 
(neurons, groups of neurons, large brain regions, or the entire brain) receive multiple inputs, 
process the inputs, and send out outputs. The outputs are either sent to the neural entity 
downstream or cause a perceptual or behavioral output that lets an organism interact with 
its environment. Input-output relationships are non-linear at every level in the brain (Cifre et 
al., 2021; Ecker et al., 2011; Shamir and Sompolinsky, 2004; Sheth et al., 2004; Yang et al., 
2021). The relationship is controlled by what goes into a neural entity and how that neural 
entity is structurally wired. This is evident in the brain at multiple scales. In the case of a single 
neuron, for example, inputs from other neurons are transmitted in the form of electrical 
impulses. The neuron receives many inputs via dendrites. However, single neuron dendrites 
have a diverse range of structural arborization patterns and a complex physiology that can 
influence how neuron inputs are processed at the dendritic level (Gidon et al., 2020; London 
and Hausser, 2005). The input-output processing then changes the action potential of the 
single neuron, which affects other neurons further downstream. A single neuron does not 
have sufficient computational power to give rise to the diverse behavior exhibited by, for 
example, the higher vertebrates. But the complexity of dendritic single-neuron computation 
is needed for a group of neurons that work together to create a more complex input-output 
relationship that influences the behavior of an organism (Poirazi and Papoutsi, 2020). 

Over the past decade, it has become increasingly apparent that a group of neurons, often 
referred to as a "neural population," produces neural activity responsible for computation 
and inputs to downstream brain regions (Panzeri et al., 2022). Coupled neural populations 
enable cognitive and motor tasks (Churchland et al., 2012, 2010; Raposo et al., 2014). 
Different structural connectivity motifs exist at the population level as well. Typically, we see 
feed-forward, feedback, and recurrent connectivity within and across neural populations 
(Kreiman and Serre, 2020; Layton et al., 2014; Miska et al., 2018; Roelfsema and Holtmaat, 
2018; Semedo et al., 2022; van Bergen and Kriegeskorte, 2020; Wyatte et al., 2012). These 
connections constrain the types of computations a neural population can perform. Also, 
connectivity patterns enable selective communication across different neural populations 
(Semedo et al., 2019). Furthermore, the dendritic patterns differ in a region-specific manner 
in the brain, adding to the functional specialization of different brain regions (Fleischhauer, 
1974; Helmstaedter et al., 2009; Kawaguchi et al., 2006; Leguey et al., 2018). To probe the 
relationship between different neural populations, modern neuroscience experiments, 
typically in non-human primates (NHPs) and rodents, record large neural populations from a 
single or multiple brain regions using microelectrode arrays (Urai et al., 2022). The data from 
such large-scale neural recordings is collected as neural spiking activity over time (Humphries, 
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2021). Given the multitude of functions the neural population(s) undertake, it becomes an 
analytical challenge to extract interpretable representations from the spiking activity 
recorded. But it has been shown that physiological and structural constraints on a neural 
population can produce specific activity patterns that have discernible statistical properties 
(Goris et al., 2014; Litwin-Kumar and Doiron, 2012; Pillow et al., 2008; Shadlen and Newsome, 
1998; Wilson and Cowan, 1972). As a result, recent breakthroughs in ML have been utilized 
to split large-scale spiking brain activity into physiologically understandable representations. 
(Glaser et al., 2020; Smith et al., 2021; Williams and Linderman, 2021). ML methods have basic 
and translational capabilities in understanding the brain (Kemere et al., 2008; Santhanam et 
al., 2006). ML methods have been successful at parsing neural population activity into 
behaviorally relevant and irrelevant clusters (Hennig et al., 2018; Kaufman et al., 2014). 
According to Semedo et al. (2019), ML techniques have demonstrated how neural population 
activity from a particular region can promote communication between various neural 
populations without affecting its computational resources. The methods have been applied 
to explain the variable timing and initiation of tasks in rodents (Ashwood et al., 2022; Bagi et 
al., 2022; Recanatesi et al., 2022; Wiltschko et al., 2015). To create an effective method to 
assess the collected data for each of these applications, the authors relied on a combination 
of physiological and biological insight and the statistical features of brain signals. 

Neural population activity provides data that resembles the fundamental electric signal via 
which neurons perform their functions. But current recording methods involve invasive 
procedures that are ethically challenging to perform on healthy humans or patient 
participants. Some patients have had successful brain-computer interface (BCI) systems 
implanted, but no country has approved a standard care procedure for BCI-based therapies 
(Moses et al., 2021; Santhanam et al., 2006; Willett et al., 2021). To understand neural activity 
in the human brain, a number of non-invasive methods have existed for a long time. They are 
namely functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and 
magnetoencephalography (MEG). Other techniques, such as functional near-infrared 
spectroscopy (fNIRS), also exist and are becoming increasingly popular. None of these 
techniques has the spatial resolution to record neural data at the level of a single neuron or 
neural population. But with the help of sophisticated physics-based modeling, we can obtain 
data from different cubic millimeter-sized locations on the brain commonly termed "voxels" 
(for fMRI and fNIRS) and/or sources (EEG and MEG) (Baillet, 2017; Henson et al., 2009; Munck 
et al., 2012). About a hundred thousand neurons and a million synapses are packed into a 
cubic millimeter of brain tissue. So, the neural data collected by the above methods is a signal 
from all of the thousands of neurons in a millimeter-sized cube of brain tissue. We don't have 
a complete understanding of how single neural action potentials transform into aggregate 
noninvasively recorded human brain signals (Baillet, 2017; Pesaran et al., 2018). In addition 
to non-invasive methods, we occasionally have the opportunity to collect invasive data from 
human participants. One such opportunity arises when Parkinson’s disease patients are 
undergoing surgery for the implantation of deep brain stimulation (DBS) devices to manage 
the neurological symptoms of the disease (Okun, 2012). A DBS electrode delivers electrical 
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stimulation to a specific brain region, but it can also be used to record electrical signals (Litvak 
et al., 2021; Oswal et al., 2016). As in the case of non-invasive human brain signals, invasive 
DBS electrodes do not have the spatial resolution of multi-electrode arrays. But given the 
surgical precision during the implantation of the DBS electrodes, the electrical signals can be 
better localized to specific brain regions as compared to EEG and MEG signals. Hence, using 
DBS electrodes, we are recording the aggregate signals of a few thousand neurons. For this 
thesis, we will only talk about brain signals from humans that were recorded with MEG, EEG, 
and DBS electrodes. Signals recorded using these methods are collectively called extracellular 
FPs (Buzsáki et al., 2012). Due to the better localization afforded by precisely implanted DBS 
electrodes, signals recorded using DBS electrodes are termed "local field potentials," or LFPs. 

11.2 Human neural signals and connectivity 
As mentioned previously, FPs capture the electrical activity of thousands of neurons (Pesaran 
et al., 2018). Hence, we cannot study the properties of a neural population. Instead, we focus 
on the properties of macro-level regions termed "sources" or "voxels" in the brain. There are 
multiple contributors to the FP signals recorded in the brain. Some of these contributions 
occur from single-neuron electrical characteristics, such as synaptic activity, calcium, and 
sodium spikes (Golding and Spruston, 1998; Kim et al., 2015; Tsubokawa et al., 2000), and 
neuron-glia interactions (Fields and Stevens-Graham, 2002). Two major factors seem to affect 
the extracellular FPs strongly: local neural architecture and the temporal synchrony of large 
neural populations (Finn et al., 2019; Helmstaedter et al., 2009; Huntenburg et al., 2017; 
Khambhati et al., 2018; Paquola et al., 2019; Seidlitz et al., 2018; van den Heuvel and Yeo, 
2017). The spatial architecture of neurons is most prominent in the cerebral cortex. Cortical 
neurons are arranged in layers and have distinct projections to downstream structures (Baker 
et al., 2018; Gerfen, Economo and Chandrashekar, 2018). In the visual cortex, for example, 
each layer can have different contributions to the FPs (Xing, Yeh and Shapley, 2009). Local 
architectural heterogeneity also exists in the connectivity patterns of single neurons, which 
can lead to functionally distinct cortical microcircuits (Gerfen, Economo and Chandrashekar, 
2018). For our research, we did not have access to cytoarchitectural details of the brain; 
hence, we focused on the contribution of temporal synchronicity to FPs. 

Temporal synchronicity arises in FPs when large and spatially separated neural populations 
coordinate their spiking patterns to accomplish a specific task (Uhlhaas et al., 2009). 
Synchronization between vast neuronal populations adds significantly to FPs (Buzsaki, 2006; 
Olejniczak, 2006; Uhlhaas et al., 2009). The contribution of synchrony to FPs is clearer in the 
cortex than in subcortical regions. The clarity could be because the cerebral cortex recruits 
spatially distributed regions to accomplish computations. In addition, communication 
between distinct cortical regions involves oscillatory activity, which is reflected in the power 
spectra of the FPs (Fries, 2015). Synchronicity, neural oscillations, and their relationship to 
neural spiking and computation bring us to the concept of functional networks in the brain. 
Even though stable canonical networks have been found in spontaneous "resting-state" brain 
activity (Biswal et al., 1995; Cordes et al., 2001; Greicius et al., 2009), the definition of brain 
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networks, especially for human brain data, is continually evolving because of new ways to 
study human brain datasets. The basic premise of functional networks involves the temporal 
coordination of spatially distinct brain regions that work together to accomplish a specific 
behavioral or cognitive task. Temporal coordination is assessed at the neural population level 
through sample covariance between neural signals from the set of recorded neurons. This 
means that the information in the multidimensional covariance matrix aids in determining 
which neurons in the recorded population collaborate and which function independently. 
Covariance at the population level of neurons has a physiological meaning because neurons 
connected by a single synaptic connection tend to fire together more when they are working 
on a task. Synchronous firing patterns in turn result in a larger shared covariance between 
such neurons (Diesmann et al., 1999; Gill et al., 2020; Montani et al., 2009; Reyes, 2003). 
Hence, the covariance between a set of neurons serves as a proxy for connectivity between 
neurons. 

Covariance has been used as a proxy for connectivity in FP recordings of human data. The 
covariance principle works because large brain regions are physically connected via white 
matter tracts (Basile et al., 2022; Warling et al., 2021). The white matter tracts are a collection 
of myelinated axons that give rise to a structural architecture of the brain along which signals 
can travel at high speeds between brain regions. This structural architecture is referred to as 
the "structural connectivity map of the brain." Different brain regions exhibit different 
structural connectivity architectures; hence, the structural connectivity map helps produce 
distinct co-activation patterns between spatially distant brain regions. The co-activation 
patterns lead to different synchronous dynamics that can be extracted from the FPs recorded 
in humans. Lastly, sample covariance can be used on the regional FP time series to figure out 
which parts of the brain are working in sync with each other. The covariance patterns 
obtained can be interpreted as functional connectivity (FC) maps of the human brain. 

11.3 Machine learning for human neural signals 
We have discussed how neuroanatomical and neurophysiological properties affect FPs 
recorded at different scales. When neuroscientists look at FPs, it is important to remember 
that they are the result of computations in the brain. Numerous brain networks work together 
to carry out the computations. A single neuron is a non-linear computing unit for several 
large-scale brain networks. This is because it has complex dendritic patterns and receives 
input from nearby neurons at different times. So, networks of these non-linear units that 
produce a wide range of cognitive activities are likely to act as non-linear computational 
entities. So, there will always be a non-linear relationship between the FPs collected from 
neurons, groups of neurons, major brain regions, or the entire brain when trying to figure out 
how different neural entities relate to each other at any scale. But in practice, first, due to a 
lack of concrete theory in human neuroscience and second, due to issues with the 
interpretability of current non-linear methods, regional relationships are usually studied using 
linear methods. Also, the current linear methods are good at explaining behavioral and neural 
differences in neuroscience (Kriegeskorte and Douglas, 2019). 
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Nonstationarity is a hallmark of most neuroscience time series data (Guan et al., 2020; Jones 
et al., 2012; Kaplan et al., 2005). Once again, a signal is simply an observation of an underlying 
process. Hence, it is not the signal but the generating process that is inherently nonstationary. 
Essentially, if the properties of the generative process change over time, then the process is 
said to be nonstationary. FP nonstationarity can be explained by anatomical connectivity, 
cellular architecture, temporal synchronicity, and, finally, the purpose of computation and 
communication in the brain. Given the speed and flexibility of the computations in the brain, 
even in the absence of external influences, the generative process of the observed FPs 
undergoes rapid transitions. Furthermore, in complex systems such as the brain, there is a 
large range of time scales at which numerous processes evolve to give rise to the final 
dynamics. Hence the parameters governing the dynamics of the FPs become sensitive to the 
various time scales (Indic et al., 1999), thus giving rise to nonstationarities in the FPs. When it 
comes to the analysis of neural data, nonstationarity becomes crucial since the linear or 
nonlinear methods measuring relationships between regional time series make implicit 
assumptions about the probability distributions of the data examined. Hence, if 
nonstationarity is left unaddressed, it could lead to misleading conclusions regarding brain 
functions. Therefore, a possible direction of analysis is to harness the nonstationary and non-
linear properties of the time series and link them to interpretable physiological motifs to gain 
insight into brain functioning. 

Since its inception, the objective of machine learning and pattern analysis (MLPA) has been 
to exploit the statistical properties of the underlying datasets. The natural world, on multiple 
scales, is endowed with rich statistical properties. Hence the signals recorded from the natural 
world are already endowed with those properties. A simple example is the identification of 
different trees based on the patterns of their leaves. We can call the leaf patterns features of 
the signal that are helpful in identification. Machine learning algorithms have long used 
handcrafted rules (Viola and Jones, 2001) or different layers of neural networks (Krizhevsky 
et al., 2012) to take advantage of these features. Audio signals (Hershey et al., 2017), human 
and computer languages, films, and images all contain such examples (Brown et al., 2020; 
Szegedy et al., 2015; Vaswani et al., 2017). As a result, the ability of any MLPA algorithm to 
extract these statistical regularities or features is critical to its effectiveness. It is crucial to 
remember that the final goal of MLPA algorithms might be whatever the user desires, such as 
categorization, auto-generation of code, or the creation of original graphics depending on 
user input. 

An MLPA algorithm finds features suitable to meet the end objective during what is known as 
the "training" or "learning" phase of the algorithm. Primarily, there are two types of learning 
strategies followed in machine learning: supervised and unsupervised/self-supervised 
learning. The main difference lies in the kind of dataset used in supervised vs. unsupervised 
learning. In supervised learning, the algorithm "learns" from the training data by iteratively 
making predictions on the data and adjusting for the correct answer. Humans supply the 
correct response as part of the dataset utilized by the algorithm. Unsupervised algorithms, on 
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the other hand, operate on their own to identify the intrinsic structure of unlabeled data. 
Supervised methods are time-consuming to train and require labels for input and output data, 
which relies on expertise. Meanwhile, unsupervised algorithms can produce inaccurate 
results unless we have human intervention to validate the outputs produced by the algorithm. 

An implicit and often ignored fact in the current state of the art of machine learning is that 
the datasets on which algorithms or "models" are trained belong to categories of problems 
for which some ground truth is universally agreed upon. We can call this the implicit ground 
truth dataset assumption. This assumption is present irrespective of the learning strategy 
used to train an algorithm. For example, we can take the problem of image classification. In 
the supervised scenario, we can have labeled datasets. Then we train an algorithm to classify 
images, and if it gets it wrong, the expert labels guide the algorithm. In the unsupervised case, 
an algorithm learns to group images with similar features together and label them. For 
example, modern state-of-the-art algorithms can easily distinguish dog images from cat 
images, among other things. But here is where the implicit ground truth dataset assumption 
we talked about plays an immense role. The unsupervised algorithm's clustering result is 
human-verifiable since humans agree on categories like dog and cat. This is true for learning 
a language, playing computer games, creating art, etc. 

The implicit ground-truth assumption cannot be made about neuroscientific data. We do not 
have a concrete theory in neuroscience that supports an exclusive hypothesis. Multiple e-
phys patterns that emerge in datasets are open to different interpretations. Therefore, e-phys 
data must be supported by either experimental results or current neurophysiological 
understanding. Even in medicine, there is ample noise in the classification of diseases and 
prognoses based on patient data. Hence, creating an incorruptible, labeled dataset is 
extremely challenging. Furthermore, unsupervised outcomes and/or features discovered are 
subject to highly variable interpretations. Furthermore, when machine learning algorithms 
are designed to deal with medical patient data, the assumption of an absolute ground truth 
cannot and should not be made. 

We have discussed that there are hidden statistical properties in e-phys data that can be 
linked to meaningful neurophysiological underpinnings of brain function. Furthermore, 
machine learning methods are intended to exploit the inherent statistical structure of data in 
order to achieve user-defined end goals. We also mentioned how, when it comes to 
neuroscientific data, relying on supervised labeled datasets may not be the best option. As a 
result, the goal of this thesis was to use UML methods to find intrinsic structure in human e-
phys datasets: 

 by developing principled pipelines for pre-processing noisy e-phys datasets. 
 by recovering neurophysiologically established results in the field while using 

unsupervised algorithms. 
 by discovering new neuroscientific findings by exploiting the statistical properties of 

human datasets. 
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 by interpreting the findings in the context of established principles of human behavior 
or neurophysiology. 

We were able to reach the above goals thanks to the three scientific studies that the doctoral 
candidate wrote as the first author during the doctoral research program. The first study dealt 
with the application of independent component analysis (ICA) on resting state (spontaneous) 
EEG datasets acquired from healthy young adults. ICA is a blind source separation (BSS) 
algorithm that decomposes a signal into statistically independent components. Hence, it 
qualifies as an unsupervised learning approach. The first BSS application in fMRI (Mckeown 
et al., 1998) was motivated by principles of localization and connectionism in the brain 
(Phillips et al., 1984). Localization meant that different parts of the brain were used for 
different tasks. For example, the precentral and postcentral gyri are used for somatosensory 
and motor tasks, respectively. On the other hand, connectionism states that different parts 
of the brain collaborate to produce brain functions. For example, the visual and auditory 
cortical regions might work in tandem to help localize the source of a sound. Given our 
previous discussion regarding neural architecture, white matter tracts, and functional 
connectivity, we can expect that there is a neurophysiological basis for the underlying e-phys 
signals to decompose into statistically independent components. This would be a reasonable 
assumption since the statistical properties of the e-phys signals would depend on how many 
local or distributed processes are present in the neural activity underneath. Hence, spatial ICA 
would be able to show independent spatiotemporal patterns of signal covariation, which 
could be caused by processes that are local or spread out in the brain and drive neural activity. 
Another data-driven approach rooted in neurophysiological principles of phase-amplitude 
coupling (PAC), called MEG-PAC (Florin and Baillet, 2015), was applied to the same healthy 
EEG dataset. 

In the second study, we looked at the statistical nonstationarity of brain data and the effects 
of neuromodulators from the point of view of neurophysiology. So far, we have discussed 
how nonstationarity is a feature of e-phys data due to the signal being affected by multiple 
factors. What was missing was the impact of neuromodulators on the statistical properties of 
the signal over time. Neuronal firing rate is altered by ascending projections from the 
brainstem and subcortical nuclei, making neurons more or less responsive to incoming signals 
(Bell and Shine, 2016; Shine, 2019). The resulting adjustments in neural gain or suppression 
will result in a nonstationary brain signal. Moreover, different neuromodulators can produce 
either targeted or diffuse modulation, which is exerted over large temporal scales (Gershman 
and Uchida, 2019). For the second publication, we relied on our ability to acquire 
simultaneous cortical MEG and subthalamic nucleus (STN) LFP recordings in Parkinson's 
disease (PD) patients undergoing surgery for deep brain stimulation (DBS) therapy. We 
recorded PD patients with and without the influence of dopaminergic medication (fast-acting 
L-DOPA). To get around the statistical problem, we used a hidden Markov model (HMM) that 
could split the time series data into separate time intervals. This made it easier to evaluate 
how dopaminergic modulation changed spatial (cortico-STN) and temporal properties. 
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For the third and final study, we aimed to examine the relationship between spontaneous 
whole-brain networks and behavioral variability in healthy humans. According to research, 
the neural activity recorded a few milliseconds before the task begins contains a variety of 
information that can predict variability and task performance (Iemi et al., 2019; Li et al., 2020; 
Linkenkaer-Hansen et al., 2004; Podvalny et al., 2019; Rajagovindan and Ding, 2011; Rassi et 
al., 2019). Usually, the inter-trial interval is kept short for task-based studies. But it prevents 
us from delineating the impact of long-duration spontaneous brain activity on task-related 
variability. Furthermore, we are unable to probe the flexibility with which the brain might 
work. To address these issues, we used an established tactile discrimination task and set the 
inter-trial interval randomly between ten and fifteen seconds, which was significantly longer 
than what has been used in previous perceptual studies. The perceptual task we employ does 
not warrant any explicit cue-based attention modulation or suppression of extrinsic 
distractors. It was not a reward-based paradigm where the subject had to spend cognitive or 
memory resources to reach a decision. As a result, to properly respond to an incoming tactile 
stimulus, the internal dynamics of spontaneous activity preceding the stimulus had to be 
configured flexibly to make the best use of the limited external information that arrived in 
the form of stimuli. To characterize the temporal flexibility, spatiality, and spectral 
characteristics of spontaneous neural activity, we expanded on our previous HMM 
framework. We also used diffusion maps to describe the relationship between the spectral 
signatures of different HMM states and whole-brain networks. Diffusion maps are a class of 
non-linear dimensionality reduction techniques (Coifman et al., 2005). Intuitively, they 
convert connectivity between two brain regions into a distance in Euclidean space. Using a 
mix of two UML algorithms, we revealed a unique association between various whole-brain 
networks, their spectral signatures, temporal features, and their relationship with tactile 
discriminating performance. Our findings show how effective UML can be at comprehending 
human e-phys data. 

Overall, we discussed how the electrical properties of neural entities, including individual 
neurons and neural populations, affect the functional behavior of large-scale human brain 
networks. Furthermore, we stressed how multiscale structural connectivity constraints might 
play a critical role in governing functional connectivity. The statistical properties of brain 
activity arise from functional synchronization and anatomical constraints, which may be 
exploited by UML techniques. In our publications, we elucidate how UML can be used to 
reveal the spatiotemporal properties and spectral signatures of e-phys time series recorded 
under different conditions. The different conditions included pure resting state activity, 
resting state under neuromodulatory conditions, and pre-stimulus resting state activity 
subjected to a tactile discrimination task. In the discussion of the thesis, we summarize our 
findings and point out the limitations of our results. 

In the following sections, we present the complete manuscripts for the three publications. 
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22 Study 1 Evaluating a data driven pipeline for 
extracting EEG resting state networks in humans  
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Abstract 
There exist multiple ways of extracting electroencephalography (EEG) based resting state 
networks (RSNs). Yet there is no consensus on an approach to derive these networks in a way 
that is comparable to the canonical RSNs observed in the fMRI literature. Ideally we would 
extract EEG-RSNs that are spatially comparable to their fMRI counterparts while leveraging 
on the EEG ability to reveal the frequency characteristics of the RSNs. In our opinion such an 
approach should include the following essential factors a) Independent component analysis 
(ICA)-fMRI networks, b) whole brain data driven EEG networks without any atlas constraints, 
c) networks extracted independently in different frequency bands, d) statistical tests between 
source level EEG and fMRI RSNs across all frequencies. Furthermore, we need a principled 
data driven way of extracting networks where cross frequency interaction could play a role. 
In this paper we test Hilbert envelope based ICA and phase-amplitude coupling based 
approaches to extract EEG-RSNs. We found that the envelope based approach provides the 
best spatial correspondence with fMRI-RSNs but none of the EEG networks were dominated 
by a specific frequency. 
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22.1 Introduction 
Resting state networks are defined as temporally correlated networks of brain activity which 
emerge without the presence of any explicit stimuli or tasks (Biswal, 2012).  Though these 
networks emerge spontaneously they are robustly determined from fMRI recordings across 
centres and studies (Buckner et al., 2011; Doucet et al., 2011; Yeo et al., 2011) and they have 
been associated with multiple cognitive processes (Fox and Raichle, 2007; Cole et al., 2010; 
Deco and Corbetta, 2011; Laird et al., 2011). The two most popular analysis approaches 
include the independent component analysis (ICA) (Biswal and Ulmer, 1999) and a seed based 
correlation approach (van den Heuvel and Hulshoff Pol, 2010; Chen and Glover, 2015). Both 
approaches yield canonical resting state networks (Calhoun et al., 2001). Despite these well-
established canonical fMRI RSNs a link between electrophysiology and RSNs has been difficult 
to underpin and is an area of intense research. 

On the electrophysiology front EEG studies have used diverse pipelines for analysis of resting 
state data. However, most of the studies did not aim at identifying the canonical RSN. Mantini 
et.al (2007) were the first to directly address the relationship between EEG based 
electrophysiological rhythms in different frequency bands and ICA derived fMRI networks. 
But no EEG networks were derived and hence a direct spatial relationship between EEG and 
fMRI networks could not be assessed on either the sensor or source level. Jann et al. (2010) 
produced topographic sensor level results that demonstrated the spatial and spectral 
properties of EEG data and fMRI-ICA results. Moving to source-reconstructed EEG data 
Congedo et al. (2010) used source level ICA to extract RSN but did not directly compare to 
fMRI RSNs. Two further studies used ICA on EEG data with the objective to examine EEG 
networks formed by frequency interaction. Specifically, Aoki et al. (2015) applied eLORETA-
ICA but they did not compare the EEG networks directly to fMRI results. Given the way ICA is 
applied in Aoki et al. (2015) each independent component comprises information from 
multiple spatial locations and frequency bands. For example, independent component 
number 5 is called the ventral visual pathway. The ventral visual pathway in Aoki et al. (2015) 
is comprised of right occipitotemporal cortex in the alpha band and the right ventral 
prefrontal cortex (vPFC) in the beta band. Hence Aoki et al. (2015) report cross frequency 
interaction based on a mixture of frequencies recovered from their ICs. On the other hand, 
Sockeel et al. (2016) perform spatial ICA on source level data concatenated across all 
frequency bands. The resultant ICs contain spatially distinct information with contributions 
from all frequency bands in each and every IC. Furthermore, Sockeel et al. (2016) also 
compared their results to the fMRI networks.  Overall these studies, due to the nature of their 
objectives, did not delineate the frequency specificity of the EEG networks. Deligianni et al. 
(2014) aimed at directly assessing the relationship between covariance matrices derived from 
source level EEG and fMRI data using partial correlation and canonical correlation analysis 
(CCA) in different frequency bands. However, for their analysis they used an atlas based 
approach which does not allow comparing their networks to the canonical fMRI networks. 
Finally, a recent study covering a variety of functional connectivity measures tried to assess 
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the relationship between EEG source space connectivity and resting state fMRI based 
connectivity (Rizkallah et al., 2020). In this study the process of deriving connectivity between 
brain regions was restricted by an atlas and connectivity was derived using correlation.  

Therefore, to advance our understanding of the relationship between RSNs derived from EEG 
and fMRI a direct comparison of ICA-fMRI networks with whole brain data driven EEG 
networks without any atlas constraints of the same subjects is necessary. Furthermore, 
statistical tests should be performed to compare source level EEG and fMRI RSNs in addition 
to visual inspection of derived RSNs. Additionally, extraction of networks formed by 
interaction of different frequencies should be based upon physiological processes rather than 
assuming a linear mixture across frequencies. To tackle some of the missing parts in the 
previous literature we derived resting state networks from EEG recordings using data driven 
approaches at the source level without constraining the analysis to an atlas. The EEG ICA 
networks were extracted individually for each frequency band and statistically tested to 
investigate their frequency specificity. To investigate potential cross frequency interaction in 
the RSN we also used the megPAC approach (Florin and Baillet 2015). As a yardstick for 
performance of the EEG pipeline we compared the results to ICA networks that we derived 
from fMRI recordings of the same subjects. By providing a validated pipeline to extract RSNs 
and their frequency content, we hope to provide a tool which can also be used in clinical 
settings. 

22.2 Methods 
Our study comprised 26 healthy right-handed male subjects [age: 26.7+/-3.9 SD; laterality 
index 88.6+/-20.7; mini mental state test: 29.8+/-0.5]. We excluded 3 subjects due to 
movement artefacts during data acquisition. All subjects gave their informed consent in line 
with the ethical guidelines of the declaration of Helsinki (Ethics committee Cologne: 14-264, 
Ethics committee Düsseldorf: 5608R) and were then included to participate in the study. All 
participants were measured once with EEG, and once with fMRI while resting for 30 minutes. 
In both modalities they were asked to not move and fixate on a paper cross. 

2.2.1 Structural MRI acquisition and pre-processing 
All magnetic resonance data was obtained on a Siemens 3T PRISMA scanner using a 64-
channel head coil. High-resolution T1-weighted images were acquired with a 3D MPRAGE 
sequence (TR = 2300ms, TE = 2.32ms, ES = 7.2 ms, FA= 8°, FOV = 230mm x 230mm, isotropic 
pixel resolution of 0.9 x 0.9 x 0.9 mm, slice thickness of 0.9 mm, 192 slices). Brain and cortex 
surface were extracted with FreeSurfer (5.3.0) from theT1-weighted images. 

2.2.2 EEG data acquisition and pre-processing 
EEG measurement was performed with a 128 EEG channel actiCAP with a sampling rate at 
2.5Khz. The impedance was controlled to be less than 25 kOhm for each electrode. Electrode 
positions were digitized with a Zebris ultrasound device. All participants sat in the EEG 
chamber and fixated on a paper-cross.  
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We collected a total of 30 minutes of resting state activity for each subject. Subjects were 
seated for the duration of data collection and fixated on a cross printed on paper which was 
placed in front of the subjects. EEG data was acquired in blocks of ten minutes. After each 
block subjects were permitted to take a break. The ten-minute block duration was in line with 
previous research (Liuzzi et al., 2017). In addition to the EEG we also recorded an 
electrocardiogram (ECG) and electrooculogram (EOG). Moreover, we ensured that 
participants stayed awake by monitoring them through a camera system. 

Post-acquisition data pre-processing was done using Brainstorm (Tadel et al., 2011). ECG and 
EOG signals were used to remove heartbeat and eye blink related artefacts respectively using 
signal space projections (SSPs). Line noise (50Hz) and its harmonics were removed by using 
notch filters. Power spectral density for all the channels was calculated using Welch’s method 
and sensors with high noise levels were excluded from further analysis. Data was then visually 
examined for further artefacts which were then removed. The cleaned data was down 
sampled to 1000Hz.  

The EEG forward model was created with the symmetric Boundary Element Method (BEM) in 
the open source software OpenMEEG. The inverse problem was solved on the individual 
cortical surface with a cortically constrained weighted minimum norm estimation (wMNE) 
using default settings in brainstorm where an identity matrix was used for the noise 
covariance. Individual cortical surfaces were obtained from the individual MRIs of each 
subjects using FreeSurfer software with a tessellation of 15002 vertices. Coregistration with 
the EEG data was based on the three landmarks (nasion, right and left pre-auricular point). 

22.2.3 Extracting EEG resting state networks using ICA 
EEG resting state networks were extracted using source level data. We used the Envelope ICA 
approach described in Brookes et al. (2011). For each subject the Hilbert envelope was 
extracted for the five most common electrophysiological bands for each source time series: 
delta (1-4 Hz), theta (4-8Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz). 
Following the approach by Brookes et al., (2011) we filtered the data across the whole 
frequency range of each frequency band.  In order to account for the 1/f characteristics of the 
EEG signal (wide band) we also tested a filter option in which the bin size was adjusted to 
extract the envelope (small band). From 1-4 Hz we band-pass filtered the data in 1 Hz bins, 
from 4-30 Hz in 2 Hz bins, and above 30 Hz in 5 Hz bins. Afterwards each of these frequencies 
was Hilbert transformed. The signal was then averaged across bins in every band individually. 
After filtering the envelope time series were down sampled to 1Hz. Moreover, we tested for 
the influence of infinite and finite impulse response filters. 

After determining the Hilbert envelopes at the individual subject level they were projected to 
the Colin 27 brain. The projected data was spatially smoothed with a 5mm Gaussian Kernel 
and then zscore-normalised in the time domain. For each frequency band, data from all 
subjects was concatenated along the temporal dimension as is commonly done in spatial 
group ICA approaches. Subsequently temporally independent components were calculated 



21 | P a g e  
 
using the FastICA (Hyvärinen, 1999) algorithm. Before ICA the data were pre-whitened with a 
principal component analysis of 30 components. As the results of an ICA are dependent on 
the starting seed they are variable with every new iteration of FastICA. In order to stabilise 
ICA output, we used the ICASSO algorithm (Himberg et al., 2004). FastICA was run 50 times in 
ICASSO. The resulting independent components from each ICASSO run were clustered based 
on the absolute value of the linear correlation coefficient between components from 
different repetitions. ICASSO then provides the centrotype which is the best representative 
estimate of a cluster of independent components from the different runs of FastICA.  

Finally, to obtain spatial resting state networks the top 20 representative ICs (centrotype from 
ICASSO) were correlated with the envelope data. For visualization, the correlation networks 
were plotted on the Colin27 brain. These correlation networks of each frequency band were 
then compared to the resting state fMRI networks. 

22.2.4 Extracting EEG resting state networks using megPAC  
megPAC approach was applied to the source reconstructed EEG data. For the megPAC 
approach we used the parameters as described in the paper Florin and Baillet (2015). Chirplet 
transform was used to calculate phase and amplitude of the source signals (Mann and Haykin, 
1995). The first step involved calculation of low-frequency phase that couples most strongly 
to the high gamma amplitude from 80-150 Hz based on phase-amplitude coupling (Özkurt 
and Schnitzler, 2011) for each source time series of each subject. Between the identified low 
frequency peaks and troughs, the gamma amplitude (80-150Hz) was interpolated. These new 
time series were down-sampled to 10 Hz and then projected to the Colin27 brain. On the 
Colin27 brain the cortical time-series from all subjects were spatially smoothed (5mm 
Gaussian Kernel) and then temporally concatenated. Subsequently the spatial correlation 
matrix between all time-series was calculated. Finally, the resting state networks were 
determined as the principal spatial modes based on a singular value decomposition. 

2.2.5 fMRI data acquisition and extraction of resting state networks  
Resting fMRI BOLD (blood oxygenation level-dependent) data were recorded with echo-
planar-imaging (EPI) acquisition, (TR= 776 ms, TE = 37,4 ms, flip angle = 55°, resolution 2.0 x 
2.0 x 2.0 mm, slice thickness of 2.0 mm, 72 slices). The resting fMRI scan lasted ~ 30 min. 
Subjects were also asked to fixate on a paper cross during the scan. MELODIC 3.0 (Multivariate 
Exploratory Linear Optimized Decomposition into Independent Component) was then used 
to extract independent components after affine registration to the structural space. FSL was 
used to process functional images. Affine registration to the MNI-152-2mm standard space 
was performed using FLIRT. To constrain fMRI results to the cortical surface we used a 
binarized cortical mask obtained from FreeSurfer. fMRI time series was variance normalised 
and then MELODIC was used to extract 20 independent components. After IC decomposition, 
we chose the standard threshold of 0.5 for the IC networks following the recommendations 
in FSL Melodic. This threshold enables rejecting noise from the estimated ICs using the 
MELODIC pipeline. In order to compare fMRI datasets with EEG resting state results we finally 



22 | P a g e  
 
registered individual IC components, located in the MNI-152-2mm standard space, to the 
Colin27 brain.  For complete description of the fMRI dataset please refer to Pelzer et al. 
(2021). 

22.2.6 Comparison of the EEG with fMRI resting state networks 
We used two different procedures to measure the spatial correspondence of fMRI and EEG 
RSNs. First we calculated spatial correlation between all fMRI ICs and all EEG RSNs. We then 
selected the maximum value of this correlation for each fMRI IC to find the best correlated 
EEG IC frequency in each frequency band. As second measure we used binary overlap 
measure “D”. For this the EEG networks were thresholded at 0.3 correlation value. fMRI ICs 
were thresholded using probability networks produced by FSL. A threshold value of 0.85 was 
used. This threshold is used to select voxels within the fMRI ICs that have a high probability 
of belonging to a particular IC. 

 

(Mesmoudi et al., 2013) 

The overlap is calculated for each cortical source.  If there is a perfect spatial overlap between 
an EEG map i and an fMRI map j, D will be 1. For each fMRI-map the EEG-map with the highest 
D is determined. 

2.2.7 Statistics for comparison of networks 
To compare the EEG derived networks we bootstrapped across all subjects 100 times and 
extracted networks via ICA. The bootstrap was performed for each frequency band 
separately. We calculated the spatial correlation and the D value for each iteration which gave 
us a distribution for these values. We then performed a one-way ANOVA to determine the 
effect of frequency on the spatial correlation and D metrics for each Envelope-ICA based map. 
Furthermore, we tested post-hoc if a specific frequency band significantly stood out from all 
others for a resting state map.    

2.3 Results 
Out of the 20 independent components extracted from fMRI data we used the default mode, 
sensorimotor, visual, fronto-parietal left, fronto-parietal right and frontal resting state 
networks for further comparison with EEG networks. We show the fMRI and EEG networks in 
figure 2.1 for four networks. As compared to the fMRI networks EEG networks show less 
spatial selectivity. 
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22.3.1 Bootstrapped EEG-fMRI comparison 
As explained in the methods we bootstrapped across frequency envelopes and extracted 
independent components for different filter settings. Bootstrapping helped us delineate both 
the effect of filter type and frequency specificity of RSNs extracted from EEG. For spatial 
correlation values the type of filter had a significant effect for all RSNs (Table 2.1) (p < 0.01). 
For the frontal and sensorimotor networks there was significant interaction between filter 
type and frequency of the envelope (p < 0.01). Post-hoc testing revealed that the small band 
iir filter led to significantly higher spatial correlation with fMRI RSNs for all networks except 
for the parietal network (p<0.01).  

fMRI
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Figure 2.1: Resting state networks extracted using fMRI and best matched EEG RSNs. The EEG RSNs 
were derived using Hilbert envelopes using the small band iir filter.   
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For D-value based comparison between EEG and fMRI RSNs there was a significant effect of 
filter type (p<0.01). We also observed a significant interaction between filter type and 
envelope frequency for all networks except the sensorimotor one (p<0.01). Post-hoc testing 
revealed that small band fir filter produced the best D-value correspondence between EEG 
and fMRI RSNs for the fronto-parietal left and right, visual and the default mode network. No 
specific filter type-frequency pairs were dominant post-hoc for the D-value based 
comparison.     

Overall the small band iir filter was the optimal filter to extract EEG networks based on spatial 
correlation comparison with fMRI networks whereas the small band fir filter was the best 
when using the D-value based comparison. Since spatial correlation is a widely reported 
metric of comparison and it captures spatial variability better than the binary D metric   our 
further analysis and results were calculated on the envelopes derived using the small band iir 
filter.  

Using the small band iir based envelopes there was an effect of envelope frequency for all 
networks except the left fronto-parietal map based on spatial correlation (p-val<0.05; left 
fronto-parietal p-val = 0.19). However, post-hoc testing revealed that for a given map no 
specific frequency stood out from the others for a given networks. For the D-value based 
comparison the frequency of the envelope had a significant impact for all networks 
(p<0.01).Post-hoc testing revealed that for the DMN, parietal, sensorimotor, fronto-parietal 
left and right networks no specific envelope frequency dominated. In case of the frontal and 
visual networks the alpha envelope derived EEG map had the highest D-values (frontal p<0.01, 
visual p<0.01). 

Table 2.1: F-values for bootstrapped EEG-fMRI comparison for the small-band iir-filter. We tested for the 
frequency specificity within each network. 

RSN(EEG-
fMRI) F(df1,df2) 

F-
value(spatial-
corr) 

p-
value(spatial-
corr) 

F-value(D-
value) 

p-value(D-
value) 

DMN 4,495 3.74 p < 0.05 5.03 p < 0.05 
sensorimotor 4,495 6.95 p < 0.05 14.84 p < 0.05 
visual 4,495 2.43 0.05 69.07 p < 0.05 
fp_left 4,495 1.53 0.19 6.51 p < 0.05 
fp_right 4,495 5.09 p < 0.05 20.94 p < 0.05 
pareital 4,495 3.82 p < 0.05 37.12 p < 0.05 
frontal 4,495 5.90 p < 0.05 14.70 p < 0.05 
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Figure 2.2: fMRI-EEG comparison based on the ICA-envelope approach with small band iir filter. A) 
shows the results for the spatial correlation based comparison. B) shows the results for D-value based 
comparison. The black square represents the mean calculated using the bootstrap method and the 
error bars represent the standard error. The asterisk over any specific error bar represents frequency 
that had significantly higher mean as compared to the other frequencies within a specific resting state 
network. 
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22.3.2 EEG megPAC results 
To investigate cross-frequency interaction in RSNs we used the megPAC approach (Florin and 
Bailet 2015).  The first step for the megPAC approach is to identify low frequency phase- high 
gamma amplitude coupling. Figure 2.3A shows the distribution of low frequencies on the 
cortex, which had the strongest phase-amplitude coupling. We found coupling with alpha as 
the low frequency within the ventral portions of the frontal, temporal and the visual cortex.  
Within previous MEG studies (Florin and Baillet, 2015; Pelzer et al., 2021) the average low 
frequencies were in the delta/theta range. The spatial distribution of those alpha frequencies 
as the low-frequency of phase-amplitude coupling points towards a contamination of the EEG 
from muscle activity – resulting in artificial phase-amplitude coupling. Therefore, we did not 
perform subsequent steps of the megPAC pipeline to calculate RSNs. Results in the following 
sections only focus on RSNs derived using the Hilbert envelope approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Discussion 
In our study we evaluated data driven methods for extracting resting state networks from 
EEG comparable to fMRI based ones. We compared the independent component analysis 
derived networks from different EEG frequency bands using multiple filter settings. Overall 
the small band iir filter performed the best for extracting EEG RSNs. In addition, the envelope 
frequency had a significant main effect on the EEG-fMRI spatial correlation and D-values 
based comparison for almost all resting state networks. However, post-hoc testing did not 
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Figure 2.3: A) shows low frequency distribution on the cortex and B) shows high frequency distribution 
on the cortex. 
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reveal one frequency with a significantly higher mean than the other frequencies for any EEG 
network.  

22.4.1 Optimal filter settings 
An important step in finding EEG RSNs is using the correct filter settings in order to account 
for the 1/f characteristics of the EEG signal. By bootstrapping across multiple frequency bands 
using different types of filters we could discern the effect of filters on the spatial correlation 
and D-value based comparison between EEG and fMRI RSNs. Overall we found that small band 
iir filter produced the best spatial correlation based comparison whereas the small band fir 
filter produced best results for D-value comparison. As described in our methods section, the 
D-value is a binary measure of comparison between two networks, whereas spatial 
correlation not only measures the spatial extent of RSN overlap but also accounts for the 
spatial variability of the RSNs. Hence, an appropriate comparison to select an optimal filter 
for a time series should be based on spatial correlation.  

2.4.2 Frequency specificity of results 
Previous studies using envelope based approaches have attributed specific frequencies to 
different resting state networks (Laufs et al., 2003b; Mantini et al., 2007; Brookes et al., 2011). 
Contrary to these studies we did not reach such a conclusion in our work. Our results were 
much more in line with studies which report that resting state connectivity networks are 
linked across multiple frequencies though some connections might scale in strength in specific 
frequency bands (Scheeringa et al., 2011; Deligianni et al., 2014; Hipp and Siegel, 2015; 
Wirsich et al., 2017). Multiplexing using different frequency bands (Akam and Kullmann, 2014) 
is one plausible mechanism of communication between different networks due to which 
resting state networks might operate across multiple frequency bands. Another feature seen 
in EEG recordings is that of nested oscillations and cross frequency coupling (Florin and Baillet 
2015, Penny et al., 2008). Another potential reason for resting state networks to operate 
across multiple frequency bands could be that frequency specific activity might emerge only 
under task conditions to engage specific cortical computations (Siegel et al., 2012).  
Methodologically the missing frequency specifity of the RSNs could be due to the fixed point 
iteration optimisation used in the Fast ICA algorithm.  But our bootstrap results address this 
issue to a certain degree. In our bootstrap approach the stochastic seeding point for the fixed 
point iteration scheme was re-initialised at each bootstrap iteration. This re-initialisation 
produces 100 different initialisation conditions for the ICA algorithm.  Furthermore, the 
resultant ICs were compared to the standard fMRI-RSNs at every bootstrap iteration using 
spatial correlation. In our results the resultant variability is visible for all EEG derived RSNs 
across all frequency bands. This entire bootstrap pipeline is similar to the ICASSO (Himberg et 
al. 2004) approach proposed to stabilise ICA outputs. In the ICASSO approach FastICA is run 
multiple times. The resulting independent components from each ICASSO run are then 
clustered based on the absolute value of the linear correlation coefficient between 
components from different repetitions. ICASSO then provides the centrotype which is the 
best representative estimate of a cluster of independent components from the different runs 
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of FastICA. But in our approach given that spatial (linear) correlation between the standard 
fMRI RSN and different bootstrap outputs was variable, ICASSO stabilisation would not be 
effective. In the future in order to enforce strict independence in the frequency domain, 
researchers could also investigate networks found using spectrospatial decomposition using 
Fourier-ICA methods (Hyvärinen et al., 2010).  

22.4.3 Alpha band D-value results for the visual RSN 
For the visual RSN the alpha-band had the best correspondence to the fMRI RSN based on D-
value (post hoc results). D-value is a binary measure of comparison which estimates the 
spatial overlap of RSNs. Hence it is possible that D-value is sensitive to detect EEG-fMRI RSN 
correspondence that is dictated by anatomical connectivity (Honey et al., 2009; Hermundstad 
et al., 2013). Furthermore, alpha based connectivity seems to be closely related to structural 
connectivity in the visual cortex (Toosy et al., 2004; Warbrick et al., 2017; Minami et al., 2020). 
Hence in line with the visual cortical findings we saw that EEG-fMRI comparison (based on D-
value) showed a significantly higher overlap in the alpha range.  

Interestingly for the same visual RSN no frequency had a better correspondence to the fMRI 
RSN based on spatial correlation. Spatial correlation takes into account spatial variability in 
RSNs in addition to spatial overlap (as measured by D-value). Previous studies have indicated 
a wide variety of relationships between alpha range electrophysiology signals and BOLD fMRI 
signals. EEG-fMRI research has indicated a negative correlation between alpha activity and 
fMRI signals in the visual, frontal and temporal regions whereas positive relationship with 
thalamic areas (Stern, 2002b, Laufs et al., 2003a, b; Moosmann et al., 2003; Feige et al., 2005; 
DiFrancesco et al., 2008). A study involving concurrent EEG-fMRI data suggested the presence 
of five different alpha sources under rest (Bridwell et al., 2013). Out of the five sources two 
had a negative relationship with fMRI activity. Given the complex relationship between alpha 
electrophysiological activity across the whole brain and fMRI BOLD signals it is possible that 
spatial correlation based EEG-fMRI comparison would not yield a significant result in the 
visual or as matter of fact in any RSNs, which is what we see in our results. 

2.4.4 High frequency contamination  
Muscle related activity manifests as oscillations within the gamma range (40-60 Hz) in EEG 
signals especially in the temporal, visual as well as frontal regions (Whitham et al., 2007; 
Muthukumaraswamy, 2013; Nottage and Horder, 2016). This was one of the reasons we 
decided not to extract EEG networks using the MEG-PAC approach (Florin and Baillet, 2015) 
because the PAC of the EEG data was shifted towards noisy high frequency coupling (see 
figure 2.3B).  

2.5 Conclusion 
We derived whole brain, non-atlas constrained and data driven EEG RSNs. Furthermore, we 
investigated the relationship between EEG RSNs and fMRI RSNs and found that the EEG RSNs 
had reasonable spatial profiles when compared to fMRI based RSNs, though they were less 
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spatially selective than their fMRI counterparts. We investigated the relationship between 
EEG-RSNs derived in different frequency bands and their fMRI counterparts and found no 
frequency specificity for EEG networks. One limitation of EEG based analysis is that of 
muscular artefacts contaminating high frequency data (gamma and higher) due to which one 
might be limited to the available methods to extract networks and thus we could not extract 
RSNs based on the megPAC approach. Given our results it seems plausible to extract resting 
state networks from EEG data using the small band iir filter coupled with Hilbert envelope 
based ICA. In essence it could bring down the cost of producing such networks and bring a 
more nuanced understanding of resting networks in clinical settings. 
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Abstract 
Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and 
between STN and cortical areas are a hallmark of neural activity in Parkinson’s disease (PD). 
Oscillations also play an important role in normal physiological processes and serve distinct 
functional roles at different points in time. We characterised the effect of dopaminergic 
medication on oscillatory whole-brain networks in PD in a time-resolved manner by 
employing a hidden Markov model on combined STN local FPs and magnetoencephalography 
(MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the 
medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known 
side effects of dopamine treatment such as deteriorated executive functions in PD. In 
addition, dopamine caused the beta band activity to switch from an STN-mediated motor 
network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN–
STN coherence in PD. STN–STN synchrony emerged both on and off medication. By providing 
electrophysiological evidence for the differential effects of dopaminergic medication on the 
discovered networks, our findings open further avenues for electrical and pharmacological 
interventions in PD. 
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33.1 Introduction 
Oscillatory activity serves crucial cognitive roles in the brain (Akam and Kullmann, 2010; Akam 
and Kullmann, 2014), and alterations of oscillatory activity have been linked to neurological 
and psychiatric diseases (Schnitzler and Gross, 2005). Different large-scale brain networks 
operate with their own oscillatory fingerprint and carry out specific functions (Keitel and 
Gross, 2016; Mellem et al., 2017; Vidaurre et al., 2018b). Given the dynamics of cognition, 
different brain networks need to be recruited and deployed flexibly. Hence, the duration for 
which a network is active, its overall temporal presence, and even the interval between the 
different activations of a specific network might provide a unique window to understanding 
brain functions. Crucially, alterations of these temporal properties or networks might be 
related to neurological disorders. 

In Parkinson’s disease (PD), beta oscillations within the subthalamic nucleus (STN) and motor 
cortex (13–30 Hz) correlate with the motor symptoms of PD (Marreiros et al., 2013; van Wijk 
et al., 2016; West et al., 2018). Beta oscillations also play a critical role in communication in a 
healthy brain (Engel and Fries, 2010). (For the purposes of our paper, we refer to oscillatory 
activity or oscillations as recurrent but transient frequency-specific patterns of network 
activity, even though the underlying patterns can be composed of either sustained rhythmic 
activity, neural bursting, or both [Quinn et al., 2019]. Disambiguating the exact nature of these 
patterns is, however, beyond the scope of this work.) At the cellular level, loss of nigral 
dopamine neurons in PD leads to widespread changes in brain networks, to varying degrees 
across different patients. Dopamine loss is managed in patients via dopaminergic medication. 
Dopamine is a widespread neuromodulator in the brain (Gershman and Uchida, 2019), raising 
the question of whether each medication-induced change restores physiological oscillatory 
networks. In particular, dopaminergic medication is known to produce cognitive side effects 
in PD patients (Voon et al., 2009). According to the dopamine overdose hypothesis, a reason 
for these effects is the presence of excess dopamine in brain regions not affected in PD 
(MacDonald et al., 2011; MacDonald and Monchi, 2011). Previous task-based and 
neuroimaging studies in PD demonstrated frontal cognitive impairment due to dopaminergic 
medication (Cools et al., 2002; Ray and Strafella, 2010; MacDonald et al., 2011). 

Using resting-state whole-brain MEG analysis, network changes related to both motor and 
non-motor symptoms of PD have been described (Olde Dubbelink et al., 2013a; Olde 
Dubbelink et al., 2013b). However, these studies could not account for simultaneous STN–
STN or cortico–STN activity affecting these networks, which would require combined 
MEG/electroencephalogram (EEG)–LFP recordings (Litvak et al., 2021). Such recordings are 
possible during the implantation of deep brain stimulation (DBS) electrodes, an accepted 
treatment in the later stages of PD (Volkmann et al., 2004; Deuschl et al., 2006; Kleiner-Fisman 
et al., 2006). Combined MEG–LFP studies in PD involving dopaminergic intervention report 
changes in beta and alpha band connectivity between specific cortical regions and the STN 
(Litvak et al., 2011; Hirschmann et al., 2013; Oswal et al., 2016). Decreased cortico–STN 
coherence under dopaminergic medication (ON) correlates with improved motor functions in 
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PD (George et al., 2013). STN–STN intra-hemispheric oscillations positively correlate to motor 
symptom severity in PD without dopaminergic medication (OFF), whereas dopamine-
dependent nonlinear phase relationships exist between inter-hemispheric STN–STN activity 
(West et al., 2016). Crucially, previous studies could not rule out the influence of cortico–STN 
connectivity on these inter-hemispheric STN–STN interactions. 

To further characterise the differential effects of dopaminergic medication and delineate 
pathological versus physiological-relevant spectral connectivity in PD, we study PD brain 
activity via a hidden Markov model (HMM), a data-driven learning algorithm (Vidaurre et al., 
2016; Vidaurre et al., 2018b). Due to the importance of cortico–subcortical interactions in PD, 
we investigated these interactions with combined spontaneous whole-brain 
magnetoencephalography (MEG) and STN local FPs (LFPs) recordings from PD patients. We 
study whole-brain connectivity including the STN using spectral coherence as a proxy for 
communication based on the communication through coherence hypothesis (Fries, 2005; 
Fries, 2015). This will allow us to delineate differences in communication OFF and ON 
medication. Furthermore, we extended previous work that was limited to investigating 
communication between specific pairs of brain areas (Litvak et al., 2011; George et al., 2013; 
Hirschmann et al., 2013). Moreover, we identified the temporal properties of the networks 
both ON and OFF medication. The temporal properties provide an encompassing view of 
network alterations in PD and the effect of dopamine on these networks. 

We found that cortico–cortical, cortico–STN, and STN–STN networks were differentially 
modulated by dopaminergic medication. For the cortico–cortical network, medication led to 
additional connections that can be linked to the side effects of dopamine. At the same time, 
dopamine changed the cortico–STN network towards a pattern more closely resembling 
physiological connectivity as reported in the PD literature. Within the third network, 
dopamine only had an influence on local STN–STN coherence. These results provide novel 
information on the oscillatory network connectivity occurring in PD and the differential 
changes caused by dopaminergic intervention. These whole-brain networks, along with their 
electrophysiological signatures, open up new potential targets for both electric and 
pharmacological interventions in PD. 

33.2 Methods 
3.2.1 Subjects 
In total, 17 (4 female) right-handed PD patients (age: 55.2 ± 9.3 years) undergoing surgery for 
therapeutic STN DBS were recruited for this study. Patients had been selected for DBS 
treatment according to the guidelines of the German Society for Neurology. The experimental 
procedure was explained to all participants and they gave written consent. The study was 
approved by the local ethics committee (study number 5608R) and conducted in accordance 
with the Declaration of Helsinki. Bilateral DBS electrodes were implanted in the dorsal part of 
the STN at the Department of Functional Neurosurgery and Stereotaxy in Düsseldorf. The 
implanted DBS electrodes used were the St. Jude Medical directional lead 6172 (Abbott 
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Laboratories, Lake Bluff, IL) and in one case the Boston Scientific Vercise segmented lead 
(Boston Scientific Corporation, Marlborough, MA). These electrodes have four contact 
heights and the two middle heights are segmented into three equally spaced contacts. 

The DBS leads were externalised and we measured the patients after 1–3 days. To 
simultaneously acquire MEG and LFP signals, we connected the externalised leads to an EEG 
amplifier integrated with the MEG system. We used a whole-head MEG system with 306 
channels (Elekta Vectorview, Elekta Neuromag, Finland) housed within a magnetically 
shielded chamber. All patients were requested to sit still and awake during data acquisition. 
To ensure that patients did not fall asleep, we tracked patients’ pupil diameter with an eye 
tracker. To remove eye blink and cardiac artefacts, electrooculography and 
electrocardiography were recorded along with the LFP and MEG signals. In order to co-
register the MEG recording with the individual MRI, four head position indicator coils were 
placed on the patient’s head. Their position as well as additional head points were digitised 
using the Polhemus Isotrack system (Polhemus, Colchester, CT). The data were recorded with 
a sampling rate of 2400 Hz and a low-pass filter of 800 Hz was applied. An electrode was 
placed at the mastoid and all LFP signals were referenced to it. 

For the clinical OFF medication state, oral PD medication was withdrawn overnight for at least 
12 hr. If a patient had an apomorphine pump, this pump was stopped at least 1 hr before the 
measurement. First, we recorded resting-state activity in the medication OFF condition. The 
patients were then given their morning dose of L-DOPA in the form of fast-acting levodopa. 
Data were acquired in three runs of 10 min, for a total of 30 min for each medication 
condition. We started the ON medication measurement at least half an hour after the 
administration of the dose and after clinical improvement was seen. The same procedure as 
for the OFF medication state was followed for the ON medication measurement. 

33.2.2 Pre-processing 
All data processing and analyses were performed using Matlab (version R 2016b; Math Works, 
Natick, MA). Custom-written Matlab scripts (https://github.com/saltwater-
tensor/HMM_pipeline and the Brainstorm toolbox 
(http://neuroimage.usc.edu/brainstorm/Introduction) were used (Tadel et al., 2011). To 
ensure artefact-free data, two people independently inspected the data visually, cleaned 
artefacts, and compared the cleaning output. The final cleaned data included changes agreed 
upon by both the people involved in cleaning. The Neuromag system provides signal-space 
projection (SSP) vectors for the cleaning of external artefacts from the MEG channels, which 
were applied. The line noise was removed from all channels with a notch filter at 50, 100, 150, 
…, 550, and 600 Hz with a 3 dB bandwidth of 1 Hz. The LFP recordings from the DBS electrode 
were re-referenced against the mean of all LFP channels. Very noisy and flat MEG/LFP 
channels were excluded from further analysis. Time segments containing artefacts were 
removed from the time series. However, if artefacts regularly occurred only in one single 
channel, this whole channel was removed instead. Frequently arising artefacts following the 
same basic pattern, such as eye blinks or cardiac artefacts, were removed via SSP. All data 
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were high-pass filtered with 1 Hz to remove movement-related low-frequency artefacts. 
Finally, the data were down-sampled to 1000 Hz. 

Source estimation was performed on these recordings at an individual level using each 
individual’s anatomy. Therefore, using Freesurfer (https://surfer.nmr.mgh.harvard.edu/, 
v.5.3.0), the individual cortical surfaces were extracted from the individual T1-weighted MRI 
scans (3T scanner and 1 mm³ voxel size). We used the overlapping spheres method with 306 
spheres for the forward model. As the inverse model, we used a linearly constrained minimum 
variance (LCMV) beamformer. The data covariance matrix for the LCMV beamformer was 
computed directly from each 10 min recording. The data covariance was regularised using the 
median eigenvalue of the data covariance matrix. The noise covariance was obtained from an 
empty room recording on the same day as the actual measurement. 

For each subject, the invasive entry point of the STN was identified based on intraoperative 
microelectrode recordings (Gross et al., 2006; Moran et al., 2006). Subsequently, the first 
recording height after the entry into the STN was selected to obtain the three directional LFP 
recordings from the respective hemisphere. In addition, we visualised the location of all 
electrodes using lead-DBS (Horn et al., 2019). All electrodes were properly placed within the 
STN – except for one (see figure 3.1 below). To exclude that our results were driven by outlier, 
we reanalysed our data without this patient. No qualitative change in the overall connectivity 
pattern was observed. 

 

 

 

 

 

 

 

 

 

 

The source-reconstructed MEG data were projected to the default cortical anatomy (MNI 152 
with 15,002 vertices) and then down-sampled temporally to 250 Hz for each medication  

condition for every subject. We used the Mindboggle atlas to spatially reduce the data 
dimensions. For each of the 42 cortical regions in the atlas, a multidimensional time series 
consisting of the vertices within that anatomical region was extracted. To reduce the 
multivariate times series for each region to a single one, we employed the first principal 

Figure 3.1: Deep brain stimulation (DBS) electrode location for all subjects. Lead-DBS 
reconstruction with all subjects. The red leads are the ones of a subject with one of the outside 
the STN. The red directional contacts are the ones from which the data was used for analysis. 



35 | P a g e  
 
component explaining the highest variance share in each region. The first principal 
component row vectors from all 42 anatomical regions were stacked into a MEG cortical time 
series matrix. To correct for volume conduction in the signal, symmetric orthogonalisation 
(Colclough et al., 2015) was applied to each subject’s resulting MEG cortical time series 
matrix. The row vectors of this orthogonalised matrix and the six LFPs (three each for left and 
right STN) were z-scored. Subsequently, they were stacked into one multidimensional time 
series (N by T) matrix. Here, N = 48 is the total number of nodes/regions (42 regions from the 
cortex and 6 LFP electrode contacts) and T denotes the length of the time dimension. This 48 
by T data matrix obtained from each subject was concatenated along the temporal dimension 
across all subjects for each specific medication condition. Finally, to resolve sign ambiguity 
inherent in source-reconstructed MEG data as well as resolve polarity of LFP channels across 
subjects, a sign-flip correction (Vidaurre et al., 2016) procedure was applied to this final 48 by 
(T by number of subjects) dataset within a medication condition. The pre-processing steps 
were performed for OFF and ON medication separately. 

33.2.3 HHMM analysis 
The HMM is a data-driven probabilistic algorithm which finds recurrent network patterns in 
multivariate time series (Vidaurre et al., 2016; Vidaurre et al., 2018a). Each network pattern 
is referred to as a ‘state’ in the HMM framework, such that these networks can activate or 
deactivate at various points in time. Here onwards, ‘state’ or ‘network’ is used 
interchangeably. We used a specific variety of the HMM, the TDE-HMM, where whole-brain 
networks are defined in terms of both spectral power and phase coupling (Vidaurre et al., 
2018b). Hence, for every time point, the HMM algorithm provided the probability that a 
network is active. Here onwards, a contiguous block of time for which the probability of a 
particular network being active remained higher than all the other networks is referred to as 
a ‘state visit’. Hence, the HMM produced temporally resolved spatial networks for the 
underlying time series. In our approach, we also performed spectral analyses of these state 
visits, leading to a complete spatio-spectral connectivity profile across the cortex and the STN. 
By applying the HMM analysis to the combined MEG–LFP dataset, we were able to 
temporally, spatially, and spectrally separate cortico–cortical, cortico–STN, and STN–STN 
networks. 

3.2.4 Estimation of the HMM 
Since we were interested in recovering phase-related networks, the TDE-HMM was fit directly 
on the time series obtained after pre-processing steps described previously, as opposed to its 
power envelope. This preserved the cross-covariance within and across the underlying raw 
time series of the cortical regions and the STN. The model estimation finds recurrent patterns 
of covariance between regions (42 cortical regions and 6 STN contacts) and segregates them 
into ‘states’ or ‘networks’. Based on these covariance patterns, for each state, the power 
spectra of each cortical region and the coherence amongst regions can be extracted. 
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We opted for six different states as a reasonable trade-off between the spectral quality of the 
results and their redundancy. The HMM-MAR toolbox (Vidaurre et al., 2016) was used for 
fitting the TDE-HMM. We employed the TDE version of the HMM where the embedding took 
place in a 60 ms window (i.e., a 15 time-point window for a sampling frequency of 250 Hz). 
Since time embedding would increase the number of rows of the data from 48 to 48 times 
the window length (also referred to as number of lags), an additional PCA (principal 
component analysis) (reduction across 48 by number of lags) step was performed after time 
embedding. The number of components retained was 96 (48 × 2). This approach follows 
Vidaurre et al., 2018b. To characterise each state, a full covariance matrix with an inverse 
Wishart prior was used. The diagonal of the prior for the transition probability matrix was set 
as 10. To ensure that the mean of the time series did not take part in driving the states, the 
‘zero mean’ option in HMM toolbox was set to 1. To speed up the process of fitting, we used 
the stochastic version of variational inference for the HMM. In order to start the optimisation 
process, the ‘HMM-MAR’-type initialisation was used (for details, see Vidaurre et al., 2016). 
The HMM was fit separately OFF and ON medication. 

33.2.5 Statistical analysis of the states 
After the six states were obtained for HMM OFF and HMM ON medication, these states were 
statistically compared within each medication condition as well as between medication 
conditions. In addition, the temporal properties of these states were compared. 

3.2.6 Intra-medication analysis 
We investigated the spectral connectivity patterns across the different states within a 
medication condition (intra-medication or IntraMed). The objective was to uncover significant 
coherent connectivity standing out from the background within each frequency band 
(delta/theta [1–8 Hz], alpha [8–12 Hz], and beta [13–30 Hz]) in the respective states. The 
HMM output included the state time courses (i.e., when the states activated) for the entire 
concatenated data time series. The state time courses allowed the extraction of state- and 
subject-specific data for further state- and subject-level analysis. For each HMM state, we 
filtered the state-specific data for all the subjects between 1 and 45 Hz. (For state-wise data 
extraction, please refer the HMM toolbox wiki [https://github.com/OHBA-analysis/HMM-
MAR/wiki/User-Guide].) Then we calculated the Fourier transform of the data using a 
multitaper approach to extract the frequency components from the short segments of each 
state visit. (See Vidaurre et al., 2018b for discussion on multitaper for short time data 
segments.) Seven Slepian tapers with a time–bandwidth product of 4 were used, resulting in 
a frequency resolution of 0.5 Hz and therefore binned frequency domain values. 
Subsequently, we calculated the coherence and power spectral density of this binned 
(frequency bins obtained during the multitaper step) data for every subject and every state. 
The coherence and the power spectral density obtained were three-dimensional matrices of 
size f (number of frequency bins) by N (42 cortical locations + 6 STN contacts) by N. 
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Based on the coherence matrices, we performed a frequency band-specific analysis. 
Canonical definitions of frequency bands assign equal weight to each frequency bin within a 
band for every subject. This might not be suitable when considering analyses of brain signals 
across a large dataset. For example, the beta peak varies between individual subjects. 
Assigning the same weight to each bin in the beta range might reduce the beta effect at the 
group level. To allow for inter-subject variability in each frequency bin’s contribution to a 
frequency band, we determined the frequency modes in a data-driven manner (Vidaurre et 
al., 2018b). Because we focused on interactions that are important to establish the STN–
cortex communication, the identification of the relevant frequency modes was restricted to 
the cross-coherence between the STN–LFPs and cortical signals; in other words, the block 
matrix consisting of rows 1–6 (STN) and columns 7–48 (cortex). For each subject, this 
extracted submatrix was then vectorised across columns. This gave us a (number of frequency 
bins by 252 [6 STN locations by 42 cortical locations]) matrix for each state. For every subject, 
this matrix was concatenated along the spatial dimension across all states producing a 
(number of frequency bins by [252 by 6 (number of states)]) matrix. We called this the subject-
level coherence matrix. We averaged these matrices across all subjects along the spectral 
dimension (number of frequency bins) to yield a (number of frequency bins by [252 by 6]) 
group-level coherence matrix. We factorised the group-level coherence matrix into four 
frequency modes using a non-negative matrix factorisation (NNMF) (Lee and Seung, 2001). 
Each of the resulting four frequency modes obtained was of size (one by number of frequency 
bins). The values of frequency modes are the actual NNMF weights obtained from the NNMF 
estimation (which, just like a regression coefficient, are unit-less, because coherence is unit-
less). Three of them resembled the canonical delta/theta (delta and theta frequencies were 
combined into one band), alpha, and beta bands whereas the last one represented noise. 
Since NNMF does not guarantee a unique solution, we performed multiple instances of the 
factorisation. In practice we could obtain frequency modes, which showed correspondence 
to the classical frequency bands, within four iterations of the algorithm. At each instance, we 
visualised the output to ensure frequency specificity of the frequency modes. The stability of 
the output was ensured by using ‘robust NNMF’, which is a variant of the NNMF algorithm 
(Vidaurre et al., 2018b). While these frequency modes were derived in fact from coherence 
measures (as detailed in Vidaurre et al., 2018a), they can be applied to power measures or 
any other frequency-specific measure. We then computed the inner product between the 
subject- and group-level coherence matrix and the frequency modes obtained above. We 
called these the subject-level and group-level projection results, respectively. 

To separate background noise from the strongest coherent connections, a Gaussian mixture 
model (GMM) approach was used (Vidaurre et al., 2018b). For the group-level projection 
results, we normalised the activity in each state for each spectral band by subtracting the 
mean coherence within each frequency mode across all states. As a prior for the mixture 
model, we used two single-dimensional Gaussian distributions with unit variance: one 
mixture component to capture noise and the other to capture the significant connections. 
This GMM with two mixtures was applied to the coherence values (absolute value) of each 
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state. Connections were considered significant if their p-value after correction for multiple 
comparisons was smaller than 0.05. 

33.2.7 Inter-medication analysis 
To test for differences in coherence across medication conditions (inter-medication or 
InterMed), the first step was to objectively establish a comparison between the states found 
in the two HMMs fit separately for each condition. There is no a priori reason for the states 
detected in each condition to resemble each other. To find OFF and ON medication states 
that may resemble each other, we calculated the Riemannian distance (Förstner and Moonen, 
2003) between the state covariance matrices of the OFF and ON HMM. This yielded an OFF 
states by ON states (6 × 6) distance matrix. Subsequently, finding the appropriately matched 
OFF and ON states reduced to a standard linear assignment problem. We found an ON state 
counterpart to each OFF state by minimising the total sum of distances using the Munkres 
linear assignment algorithm (Vidaurre et al., 2018a). This approach yielded a one-to-one 
pairing of OFF and ON medication states, and all further analysis was conducted on these 
pairs. For ease of reading, we gave each pair its own label. For example, when we refer to a 
‘Ctx–STN’ state in the following sections, then such a state was discovered OFF medication 
and its corresponding state ON medication is its distance-matched partner. In subsequent 
sections, all mentions of ON or OFF medication refer to these state pairs unless mentioned 
otherwise. 

We used the subject-level projection results obtained during IntraMed analysis to perform 
InterMed analyses. We performed two-sided independent sample t-tests between the 
matched states to compare the coherence, which was calculated between different regions 
of interest (see Dataset preparation). We grouped individual atlas regions into canonical 
cortical regions like frontal, sensorimotor, parietal, visual, medial PFC (prefrontal cortex), and 
STN contacts. For example, in the beta band, STN (contacts)–sensorimotor coherence in the 
OFF condition was compared to the STN (contacts)–sensorimotor coherence in the ON 
condition. The p-values obtained were corrected for multiple comparisons for a total number 
of possible combinations. 

3.2.8 Temporal properties of HMM states 
To test for changes in the temporal properties OFF versus ON medication, we compared the 
lifetimes, interval between visits, and FO for each state both within and across HMMs using 
two-way repeated measures ANOVA followed by post hoc tests. Lifetime/dwell time of a state 
refers to the time spent by the neural activity in that state. Interval of visit was defined as the 
time between successive visits of the same state. Finally, the FO of a state was defined as the 
fraction of time spent in each state. Extremely short state visits might not reflect neural 
processes, hence we only used values that were greater than 100 ms for lifetime comparisons. 
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33.3 Results 
Under resting-state conditions in PD patients, we simultaneously recorded whole-brain MEG 
activity with LFPs from the STN using directional electrodes implanted for DBS. Using an 
HMM, we identified recurrent patterns of transient network connectivity between the cortex 
and the STN, which we henceforth refer to as an ‘HMM state’. In comparison to classic sliding 
window analysis, an HMM solution can be thought of as a data-driven estimation of time 
windows of variable length (within which a particular HMM state was active): once we know 
the time windows when a particular state is active, we compute coherence between different 
pairs of regions for each of these recurrent states. Each HMM state itself is a 
multidimensional, time-delay embedded (TDE) covariance matrix across the whole brain, 
containing information about cross-regional coherence and power in the frequency domain. 
Additionally, the temporal evolution of the HMM states was determined. The PD data were 
acquired under medication (L-DOPA) OFF and ON conditions, which allowed us to delineate 
the physiological versus pathological spatio-spectral and temporal changes observed in PD. 
To allow the system to dynamically evolve, we use time delay embedding. Theoretically, delay 
embedding can reveal the state space of the underlying dynamical system (Packard et al., 
1980). Thus, by delay-embedding PD time series OFF and ON medication, we uncover the 
differential effects of a neurotransmitter such as dopamine on underlying whole-brain 
connectivity. OFF medication, patients had on average a Unified Parkinson’s Disease Rating 
Scale (UPDRS) part III of 29.24 ± 10.74. This was reduced by L-DOPA (176.5 ± 56.2 mg) to 19.47 
± 8.52, indicating an improvement in motor symptoms. 

3.3.1 Spontaneous brain activity in PD can be resolved into distinct 
states 

Using an HMM, we delineated cortico–subthalamic spectral changes from both global source-
level cortical interactions as well as local STN–STN interactions. Three of the six HMM states 
could be attributed to physiologically interpretable connectivity patterns. We could not 
interpret the other three states within the current physiological frameworks both OFF and 
ON medication and they are therefore not considered in the following (see Figure 3.3—
supplementary figure 3.1). The connectivity between different brain regions for each state 
was visualised for the frequency modes shown in Figure 3.2. Figures 3.3–3.5 show the 
connectivity patterns for the three physiologically meaningful states in both the OFF (top row) 
and ON medication condition (bottom row). We refer to the state obtained in Figure 3.3 as 
the cortico–cortical state (Ctx–Ctx). This state was characterised mostly by local coherence 
within segregated networks OFF medication in the alpha and beta band. In contrast, there 
was a widespread increase in coherence across the brain from OFF to ON medication. 
Therefore, ON medication, the connectivity strength in the alpha and beta band was not 
significantly different from the mean noise level. Figure 3.4 displays the second state. A large 
proportion of spectral connections in this state enable cortico–STN communication via 
spectral coherence (Lalo et al., 2008; Litvak et al., 2011; Hirschmann et al., 2013; Oswal et al., 
2013; van Wijk et al., 2016) and thus we labelled this as the cortico–STN state (Ctx–STN). This 
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state was characterised by connectivity between multiple cortical regions and the STN OFF 
medication, but increased specificity of cortical–STN connectivity ON medication. Finally, 
Figure 3.5 shows the third state. Within this state, highly synchronous STN–STN spectral 
connectivity emerged, both OFF and ON medication and therefore we named it the STN–STN 
state (STN–STN). The spectral characteristics of this state largely remain unaffected under the 
influence of dopaminergic medication. In the following sections, we describe these three 
states in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2: Data-driven frequency modes. Each plotted curve shows a different spectral band. The x-axis 
represents frequency in Hz and the y-axis represents the weights obtained from the non-negative matrix 
factorisation (NNMF) in arbitrary units. The NNMF weights are like regression coefficients. The frequency 
resolution of the modes is 0.5 Hz. Panels A and B show the OFF and ON medication frequency modes, 
respectively. 
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Figure 3.3: Cortico-Cortical State. The cortico–cortical state was characterised by a significant increase in 
coherence ON compared to OFF medication (see panel B). Due to this, no connections within the alpha and 
beta band ON medication were significantly higher than the mean (panel C). However, in the delta band, 
ON medication medial prefrontal–orbitofrontal connectivity emerged. (A and C) Each node in the circular 
graph represents a brain region based on the Mindboggle atlas. The regions from the atlas are listed 
in Table 1 along with their corresponding numbers that are used in the circular graph. The colour code in 
the circular graph represents a group of regions clustered according to the atlas (starting from node number 
1) STN contacts (contacts 1, 2, 3 = right STN and contacts 4, 5, 6 = left STN), frontal, medial frontal, temporal, 
sensorimotor, parietal, and visual cortices. In the circular graph, only the significant connections (p<0.05; 
corrected for multiple comparisons, IntraMed analysis) are displayed as black curves connecting the nodes. 
The circles from left to right represent the delta/theta, alpha, and beta bands. Panel A shows results for 
OFF medication data and panel C for the ON medication condition. For every circular graph, we also show 
a corresponding top view of the brain with the connectivity represented by yellow lines and the red dot 
represents the anatomical seed vertex of the brain region. Only the cortical connections are shown. 
Panel B shows the result for inter-medication analysis (InterMed) for the cortico–cortical state. In each 
symmetric matrix, every row and column corresponds to a specific atlas cluster denoted by the dot colour 
on the side of the matrix. Each matrix entry is the result of the InterMed analysis where OFF medication 
connectivity between ith row and jth column was compared to the ON medication connectivity between 
the same connections. A cell is white if the comparison mentioned on top of the matrix (either ON >OFF or 
OFF >ON) was significant at a threshold of p<0.05.  



43 | P a g e  

Figure 3.4: Cortico–STN state. For the general description, see the note to figure 3.2. The cortico–STN state 
was characterised by preservation of spectrally selective cortico–STN connectivity ON medication. Also, ON 
medication, a sensorimotor–frontoparietal network emerged. p<0.05.  
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Figure 3.5: STN–STN state. For the general description, see the note to figure 3.2. The STN–STN state was 
characterised by preservation of STN–STN coherence in the alpha and beta band OFF versus ON 
medication. STN–STN theta/delta coherence was no longer significant ON medication. 
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Table 3.1:Regions of the Mindboggle atlas used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.3.2 Ctx–Ctx state is characterised by increased frontal coherence due 
to elevated dopamine levels 

Supporting the dopamine overdose hypothesis in PD (Kelly et al., 2009; MacDonald and 
Monchi, 2011), we identified a delta/theta oscillatory network involving intra-hemispheric 
connections between the lateral and medial orbitofrontal cortex as well as the pars orbitalis. 
The delta/theta network emerged between the lateral and medial orbitofrontal as well as left 
and right pars orbitalis cortex ON medication (p<0.05, Figure 3.3C delta). On the contrary, OFF 
medication no significant connectivity was detected in the delta/theta band. In the alpha and 
beta band OFF medication there was significant connectivity within the frontal regions, STN, 
and to a limited extent in the posterior parietal regions (p<0.05, Figure 3.3A). 

Another effect of excess dopamine was significantly increased connectivity of frontal cortex 
and temporal cortex both with the STN and multiple cortical regions across all frequency 
modes (p<0.01, Figure 3.3 delta, alpha, and beta). The change in sensorimotor–STN 
connectivity primarily took place in the alpha band with an increased ON medication. 
Sensorimotor–cortical connectivity was increased ON medication across multiple cortical 
regions in both the alpha and beta band (p<0.01, Figure 3.3 alpha and beta). However, STN–
STN coherence remained unchanged OFF versus ON medication across all frequency modes. 
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Viewed together, the Ctx–Ctx state captured increased coherence across the cortex ON 
medication within the alpha and beta band. This, however, implies that ON medication, no 
connectivity strength was significantly higher than the mean noise level within the alpha or 
beta band. ON medication, significant coherence emerged in the delta/theta band primarily 
between different regions of the orbitofrontal cortex. 

33.3.3 Dopaminergic medication selectively reduced connectivity in the 
Ctx–STN state 

Our analysis revealed that the Ctx–STN state ON medication was characterised by selective 
cortico–STN spectral connectivity and an overall shift in cortex-wide activity towards 
physiologically relevant network connectivity. In particular, ON medication, connectivity 
between STN and cortex became more selective in the alpha and beta band. OFF medication, 
STN–pre-motor (sensory), STN–frontal, and STN–parietal connectivity was present (p<0.05, 
Figure 3.4A alpha and beta). Importantly, coherence OFF medication was significantly larger 
than ON medication between STN and sensorimotor, STN and temporal, and STN and frontal 
cortices (p<0.05 for all connections, Figure 3.4B alpha and beta). Furthermore, ON 
medication, in the alpha band only the connectivity between temporal, parietal, and medial 
orbitofrontal cortical regions and the STN was preserved (p<0.05, Figure 3.4C alpha). Finally, 
ON medication, a sensorimotor–frontoparietal network emerged (p<0.05, Figure 3.4C beta), 
where sensorimotor, medial prefrontal, frontal, and parietal regions were no longer 
connected to the STN, but instead directly communicated with each other in the beta band. 
Hence, there was a transition from STN-mediated sensorimotor connectivity to the cortex 
OFF medication to a more direct cortico–cortical connectivity ON medication. 

Simultaneously to STN–cortico and cortico–cortical, STN–STN connectivity changed. In the ON 
condition, STN–STN connectivity was significantly different from the mean noise level across 
all three frequency modes (p<0.05, Figure 3.4C). But on the other hand, there was no 
significant change in the STN–STN connectivity OFF versus ON medication (p=0.21 
delta/theta; p=0.25 alpha; p=0.10 beta; Figure 3.4B). 

To summarise, coherence decreased ON medication across a wide range of cortical regions 
both at the cortico–cortical and cortico–STN level. Still, significant connectivity was selectively 
preserved in a spectrally specific manner ON medication both at the cortico–cortical 
(sensorimotor–frontoparietal network) and the cortico–STN levels. The most surprising 
aspect of this state was the emergence of bilateral STN–STN coherence ON medication across 
all frequency modes. 

3.3.4 Dopamine selectively modifies delta/theta oscillations within the 
STN–STN state 

In this STN–STN state, dopaminergic intervention had only a limited effect on STN–STN 
connectivity. OFF medication, STN–STN coherence was present across all three frequency 
modes (p<0.05, Figure 3.5A), while ON medication, significant STN–STN coherence emerged 
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only in the alpha and beta band (p<0.05, Figure 3.5C alpha and beta). ON medication, STN–
STN delta/theta connectivity strength was not significantly different from the mean noise 
level (p<0.05, Figure 3.5C delta). 

OFF compared to ON medication, coherence was reduced across the entire cortex both at the 
inter-cortical and the STN–cortex level across all frequency modes. The most affected areas 
were similar to the ones in the Ctx–STN state, in other words, the sensorimotor, frontal, and 
temporal regions. Their coherence with the STN was also significantly reduced, ON compared 
to OFF medication (STN–sensorimotor, p<0.01 delta/theta, beta; p<0.05 alpha; STN–
temporal, p<0.01 delta/theta, alpha, beta; and STN–frontal, p<0.01 delta/theta, alpha and 
beta; Figure 3.5B). 

In summary, STN–STN connectivity was not significantly altered OFF to ON medication. At the 
same time, coherence decreased from OFF to ON medication at both the cortico–cortical and 
the cortico–STN level. Therefore, only significant STN–STN connectivity existed both OFF and 
ON medication, while cortico–STN or cortico–cortical connectivity changes remained at the 
mean noise level. 

33.3.5 States with a generic coherence decrease have longer lifetimes 
Using the temporal properties of the identified networks, we investigated whether states 
showing a shift towards physiological connectivity patterns lasted longer ON medication. A 
state that is physiological should exhibit increased lifetime and/or should occur more often 
ON medication. An example of the state time courses is shown in figure 3.6. 

Figure 3.7A-C shows the temporal properties for the three states for both the OFF and ON 
medication conditions. Two-way repeated measures ANOVA on the temporal properties of 
the HMM states revealed an effect of HMM states on the fractional occupancy (FO) 
(F(2,96)=10.49, p<0.01), interval of visits (F(2,221513)=9783.13, p<0.01), and lifetime 
(F(2,214818)=50.36, p<0.01). There was no effect of medication (L-DOPA) on FO 
(F(1,96)=2.00, p=0.16) and lifetime (F(1,214818)=0.15, p=0.7026). Medication had a 
significant effect on the interval of visits (F(1,221513)=4202.96, p<0.01). Finally, we found an 
interaction between the HMM states and medication on the interval of visits 
(F(2,221513)=1949.98, p<0.01) and lifetime (F(2,214818)=172.25, p<0.01). But there was no 
interaction between HMM states and medication on FO (F(2,96)=0.54, p=0.5855). 

We performed post hoc testing on the ANOVA results. OFF medication, the STN–STN state 
was the one with the longest lifetime (STN–STN >Ctx Ctx, p<0.01; STN–STN >Ctx-STN, p<0.01). 
The Ctx–STN state OFF medication had the shortest lifetime among all three states (Ctx–
STN <Ctx-Ctx, p<0.01; Ctx–STN <STN-STN, p<0.01) and the shortest interval between visits 
(interval of visit Ctx–STN <Ctx-Ctx, p<0.01; Ctx–STN <STN-STN, p<0.01). The largest interval 
between visits was for the Ctx–Ctx state OFF medication (Ctx–Ctx >STN-STN, p<0.01; Ctx–
Ctx >Ctx-STN, p<0.01). The FO for the STN–STN and Ctx–STN states was similar, but 
significantly higher than for the Ctx–Ctx state (STN–STN >Ctx-Ctx, p<0.01; STN–STN ≈ Ctx–STN, 
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p=0.82; Ctx–STN >Ctx-Ctx, p<0.01). ON medication, the comparison between temporal 
properties of all three states retained the same significance levels as OFF medication, except 
for the lifetime of the Ctx–STN state, which was no longer significantly different from that of 
the Ctx–Ctx state (p=0.98). Within each medication condition, the states retained their 
temporal characteristics relative to each other. 

Across medication conditions, significant changes were present in the temporal properties of 
the states. The lifetimes for both the STN–STN and Ctx–STN state were significantly increased 
by medication (ON >OFF: STN–STN, p<0.01; Ctx–STN, p≤0.01) but the lifetime for the Ctx–Ctx 
state was not significantly influenced by medication. The Ctx–Ctx state was visited even less 
often ON medication (interval: ON >OFF Ctx–Ctx, p<0.01). The interval between visits 
remained unchanged for the STN–STN and Ctx–STN states. The FO for all three states was not 
significantly changed from OFF to ON medication. In summary, the cortico–cortical state was 
visited least often compared to the other two states both OFF and ON medication. The 
cortico–STN and STN–STN states showing physiologically relevant spectral connectivity lasted 
significantly longer ON medication. 

 

  

Figure 3.6: Example of a probability time course for the six hidden Markov model (HMM) states OFF 
medication. Note that within the main text of the paper, we are only discussing the first three states.  



49 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Temporal properties of states. Panel A shows the fractional occupancy 
for the three states for the cortico–cortical (Ctx–Ctx), cortico–STN (Ctx–STN), and 
the STN–STN (STN–STN). Each point represents the mean for a state and the error 
bar represents standard error. Orange denotes ON medication data and blue OFF 
medication data. Panel B shows the mean interval of visits (in milliseconds) of the 
three states ON and OFF medication. Panel C shows the lifetime (in milliseconds) 
for the three states. Figure insets are used for clarity in case error bars are not 
clearly visible. The y-axis of each figure inset has the same units as the main figure. 
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33.4 Discussion 
In this study, we parsed simultaneously recorded MEG–STN LFP signals into discrete time-
resolved states to reveal distinct spectral communication patterns. We identified three states 
exhibiting distinct coherence patterns ON and OFF medication: a cortico–cortical, a cortico–
STN, and a STN–STN state. Our results indicate a tendency of neural activity to engage in 
connectivity patterns in which coherence decreases under the effect of dopaminergic 
medication and which maintain selective cortico–STN connectivity (Ctx–STN and STN–STN 
states). Only within the Ctx–Ctx state did coherence increase under dopaminergic medication. 
These results are in line with the multiple effects of dopaminergic medication reported in 
resting and task-based PD studies (Jubault et al., 2009; West et al., 2016; Tinkhauser et al., 
2017). 

The differential effect of dopamine allowed us to delineate pathological and physiological 
spectral connectivity. The Ctx–Ctx state provided electrophysiological evidence in the 
delta/theta band for the overdose effect of dopaminergic medication in PD. Prior to the 
electrophysiological evidence in our study, there was only evidence through task-based or 
functional magnetic resonance imaging (fMRI) studies (Cools et al., 2002; Ray and Strafella, 
2010; MacDonald et al., 2011). The Ctx–STN state revealed that simultaneous cortico–cortical 
and STN–STN interactions emerge ON medication, with spectrally and spatially specific 
cortico–STN interactions. In addition, ON medication, a frontoparietal motor network was 
present, indicating a shift from STN-mediated motor connectivity to a cortical one. These 
findings have not been reported in previous studies. The STN–STN state exhibited the limited 
ability of dopaminergic medication to modify local STN–STN delta oscillations. Our analysis 
also revealed significant changes in the temporal properties of the connectivity profiles, 
including lifetime and FO, under the effect of dopaminergic medication. This insight might in 
the future prove important for modifying medication as well as DBS-based strategies for 
therapeutic purposes. 

3.4.1 Increased tonic dopamine causes excessive frontal cortical 
activity 

The Ctx–Ctx state showed significant coherent connectivity between the orbitofrontal cortical 
regions in the delta/theta band ON medication. According to the dopamine overdose 
hypothesis in PD (Cools, 2001; Kelly et al., 2009; MacDonald and Monchi, 2011; Vaillancourt 
et al., 2013), the commonly used doses of dopaminergic medication to mitigate the motor 
symptoms cause the ventral frontostriatal cortical circuits to experience an excessive increase 
in tonic dopamine levels. This medication-induced increase is due to excessive compensation 
of dopamine in the ventral striatal circuitry, which experiences a lower loss of dopamine than 
its dorsal counterpart. The reason is that in PD dopaminergic neurons in the substantia nigra 
are primarily lost and therefore the dopamine depletion within the dorsal circuitry is higher 
than within the ventral one (Kelly et al., 2009; MacDonald and Monchi, 2011). Frontal regions 
involved with the ventral striatal circuitry include the orbitofrontal cortex, anterior cingulate, 
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and the inferior temporal cortex (Cools, 2006; MacDonald and Monchi, 2011). Increased 
frontal cortex connectivity potentially explains the cognitive deficits observed in PD (Shohamy 
et al., 2005; George et al., 2013). Our detected emergence of frontal cortico–cortical 
coherence (between orbitofrontal and medial orbitofrontal regions) specifically in the 
delta/theta band could explain the cognitive deficits observed in PD due to dopaminergic 
medication, given the role of frontal delta/theta oscillations in cognition (Harmony, 2013; 
Zavala et al., 2014). 

A comparison of temporal properties of the Ctx–Ctx state OFF versus ON medication revealed 
that the interval between visits was significantly increased ON medication, while the FO of 
this state was significantly reduced. In fact, the FO of the Ctx–Ctx state was the lowest among 
the three states. The temporal results indicate that the Ctx–Ctx state is least visited. Neural 
activity ON medication is not likely to visit this state, but whenever it does, its visits are of the 
same duration as OFF medication. Hence, the Ctx–Ctx state’s presence could explain the 
cognitive side effects observed ON medication in PD. 

33.4.2 Selective spectral connectivity remains preserved with increased 
dopamine levels 

An interesting feature of the Ctx–STN state was the emergence of local STN–STN coherence 
in all three frequency modes. Bilateral STN–STN coherence in the alpha and beta band did not 
change in the Ctx–STN state ON versus OFF medication (InterMed analysis). However, STN–
STN coherence was significantly higher than the mean level ON medication (IntraMed 
analysis). Since synchrony limits information transfer (Cruz et al., 2009; Cagnan et al., 2015; 
Holt et al., 2019), the high coherence within the STN ON medication could prevent 
communication with the cortex. A different explanation would be that a loss of cortical 
afferents leads to increased local STN coherence. The causal nature of the cortico–basal 
ganglia interaction is an endeavour for future research. 

Previous studies have reported STN–sensorimotor (Hirschmann et al., 2011; Litvak et al., 
2011), STN–parietal, and STN–frontal (Litvak et al., 2011) coherence in the beta band OFF 
medication. Consistent with previous studies STN–sensorimotor, STN–parietal (inferior 
parietal), STN–frontal (insular cortex, pars orbitalis, pars opercularis, and lateral 
orbitofrontal), and STN–medial prefrontal (medial orbitofrontal) coherence emerged in the 
Ctx–STN state. In contrast, ON medication sensorimotor regions were coherent with parietal 
(para central) and frontal (superior frontal)/medial prefrontal (caudal middle frontal) regions 
in the beta frequency range. Previous research has not reported the emergence of such a 
coherent frontoparietal motor network ON medication. But consistent with previous research 
(Hirschmann et al., 2013), sensorimotor–STN coherence was reduced ON compared to OFF 
medication. 

In addition, critical processing regarding sensorimotor decision-making involves 
frontoparietal regions (Gertz and Fiehler, 2015; Siegel et al., 2015; Gallivan et al., 2018; 
Martínez-Vázquez and Gail, 2018). Hence, the emergence of frontoparietal connectivity with 
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motor regions points towards the physiological relevance of the Ctx–STN state. Moreover, 
neural activity ON medication remained longer in the Ctx–STN state as the lifetime of this 
state significantly increased compared to OFF medication. The finding is in line with our 
hypothesis that a state showing physiologically relevant spectral connectivity lasts longer ON 
medication. 

33.4.3 Tonic dopamine has a limited effect on local STN–STN 
interactions 

In the Ctx–STN state, STN–STN coherence accompanied network changes affecting cortico–
STN communication ON medication, thereby likely having a functional role. In contrast, in the 
STN–STN state, STN–STN coherence emerged without the presence of any significant cortico–
STN coherence either OFF or ON medication. This may indicate that the observed STN–STN 
activity in the STN–STN state emerged due to local basal ganglia circuitry. No changes were 
observed in the alpha and beta band in the STN–STN state ON versus OFF medication, which 
may indicate the inability of tonic dopamine to modify basal ganglia circuit activity. These 
results provide more evidence that the changes in STN–STN coherence observed in previous 
studies (Little et al., 2013; Oswal et al., 2013; Shimamoto et al., 2013) reflect cortical 
interaction affecting STN activity. Future studies should analyse changes occurring within the 
STN. To the best of our knowledge, we are the first to uncover modulation of STN–STN 
delta/theta oscillations by dopaminergic medication. Studies have shown that local basal 
ganglia delta oscillations, which do not require input from the motor cortex, are robust 
biomarkers of dopamine depletion (Whalen et al., 2020). Hence, selective elimination of 
delta/theta oscillations under dopaminergic medication in the STN–STN state points towards 
restoration of physiologically relevant network activity. 

3.5 Limitations of the study 
In the present study, we employed a data-driven approach based on an HMM. In order to find 
the appropriate model, we had to specify the number of states a priori. We selected the 
number of HMM states based on a compromise between spectral quality of results and their 
redundancy. The number of states could also be determined by selecting the one with the 
highest negative free energy. However, model selection based on free energy often does not 
yield concrete results (Baker et al., 2014). Another limitation is the use of multivariate 
Gaussian distributions to characterise the state covariance matrices. Although it improves the 
tractability of the HMM estimation process, it is by construction unable to capture higher-
order statistics of the data beyond the first two moments. For example, burst activity might 
also be a relevant property of brain networks (Florin et al., 2015). Lastly, we would like to note 
that the HMM was used as a data-driven, descriptive approach without explicitly assuming 
any a priori relationship with pathological or physiological states. The relation between 
biology and the HMM states, thus, purely emerged from the data; that is, is empirical. What 
we claim in this work is simply that the features captured by the HMM hold some relation 



53 | P a g e  
 
with the physiology even though the estimation of the HMM was completely unsupervised 
(i.e., blind to the studied conditions). 

Besides these limitations inherent in the analysis approach, there are also some related to the 
experimental design. As this is a study containing invasive LFP recordings, we can never have 
a healthy control group. In addition, we only recorded four female patients because during 
the study period fewer female patients underwent a DBS surgery at our centre. To the best 
of our knowledge, there is no previous literature reporting a sex difference in MEG markers 
or the prescribed dopaminergic medication (Umeh et al., 2014). The medication led to a 
marked motor improvement in these patients based on the UPDRS, but the patients still have 
impairments. Both motor impairment and motor improvement can cause movement during 
the resting state in PD. While such movement is a deviation from a resting state in healthy 
subjects, such movements are part of the disease and occur unwillingly. Therefore, such 
movements can arguably be considered part of the resting state of PD. None of the patients 
in our cohort experienced hyperkinesia during the recording. All patients except for two were 
of the akinetic-rigid subtype. We verified that tremor movement is not driving our results. 
Recalculating the HMM states without these two subjects, even though it slightly changed 
some particular aspects of the HMM solution, did not materially affect the conclusions. A 
further potential influencing factor might be the disease duration and the amount of 
dopamine patients are receiving. Both factors were not significantly related to the temporal 
properties of the states. 

To differentiate pathological and physiological network activity, we had to rely on the 
temporal properties of the networks. A further limitation was that all our recordings were 
made under resting conditions, preventing us from discerning the functional role of 
oscillations within the discovered networks. We opted for the current design because resting-
state data allows the study of networks independent of a task and because using a specific 
task bears the risk that the patients are not able to properly perform it. Nevertheless, future 
studies should analyse the behaviour of specific networks using tasks to probe them. 

Lastly, we recorded LFPs from within the STN – an established recording procedure during the 
implantation of DBS electrodes in various neurological and psychiatric diseases. Although for 
Parkinson patients results on beta and tremor activity within the STN have been reproduced 
by different groups (Reck et al., 2010; Litvak et al., 2011; Florin et al., 2013; Hirschmann et al., 
2013; Neumann et al., 2016), it is still not fully clear whether these LFP signals are 
contaminated by volume-conducted cortical activity. However, while volume conduction 
seems to be a larger problem in rodents even after re-referencing the LFP signal (Lalla et al., 
2017), the same was not found in humans (Marmor et al., 2017). Moreover, we used 
directional contacts, which have a smaller surface area than the classical ring contacts. Based 
on the available literature, our sampling rate was high enough to resolve oscillatory activity 
in the STN (Telkes et al., 2020; Nguyen et al., 2020). 
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33.6 Conclusion 
Using a data-driven machine learning approach, we identified three distinct networks (states) 
that captured differential effects of dopaminergic medication on spectral connectivity in PD. 
Our findings uncovered a Ctx–Ctx state that captured the potentially adverse effects of 
increased dopamine levels due to dopaminergic medication. Furthermore, a Ctx–STN state 
was identified that maintained spatio-spectrally selective cortico–STN connectivity ON 
medication. We also found an STN–STN coherent state, pointing towards the limited effect of 
dopaminergic medication to modify local basal ganglia activity. Our findings bring forth a 
dynamical systems perspective for differentiating pathological versus physiologically relevant 
spectral connectivity in PD. Furthermore, we were able to uncover differential changes 
induced by altered levels of a neuromodulator such as dopamine in a completely data-driven 
manner without providing detailed information about large-scale dopaminergic networks to 
the HMM. This shows another advantage of our dynamical systems-level approach. 
Furthermore, our whole-brain STN approach provides novel electrophysiological evidence of 
distributed changes due to dopaminergic medication in brain connectivity, extending 
previous pairwise connectivity results reported in PD. 

3.7 Supplementary figures 
 

 

  

Supplementary figure 3.1: Coherence based connectivity figure for state 1. 
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Supplementary figure 3.2: Coherence based connectivity figure for state 2. 

Supplementary figure 3.3: Coherence based connectivity figure for state 3. 
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44 Study 3 Latent cognitive network transitions track 
somatosensory perceptual variability  
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Abstract 
Sensory perception is essential for transforming incoming information in the brain into a 
targeted behavior. Thus, perceptual variability is ubiquitously associated with human 
behavioral performance. Since our brains are active even while resting, the question arises 
whether spontaneous brain activity has any connection to perceptual variability observed 
during subsequent task performance. We intended to answer this question by analyzing 
whole-brain neural activity recorded in humans during a somatosensory discrimination task. 
By using a data-driven approach we were able to find time-resolved brain networks that were 
associated with different features of top-down cognition. We discovered that the transitions 
to and from these different cognitive networks before the stimulus occurred were correlated 
to the trial-by-trial perceptual variability. Furthermore, post-stimulus perception depended 
on the speed of network switching before the stimulus. Overall, these findings indicate that 
the interaction between whole-brain networks in the spontaneous pre-stimulus period 
contributes to perceptual variability during the task. 
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44.1 Introduction 
Humans are not constantly engaged in tasks, but our brains are still buzzing with activity not 
pertaining to any specific cognitive demand. Imagine your daily morning routine for two days. 
Even if everything remains the same you are bound to produce variability (good or bad) on 
one or multiple tasks on the two days. Neural activity milliseconds before a task can be 
predictive of such variability (Linkenkaer-Hansen et al., 2004; Rajagovindan and Ding, 2011; 
Iemi et al., 2019; Podvalny et al., 2019; Rassi et al., 2019; Li et al., 2020). However, these 
findings do not consider the whole-brain network interactions, which provide us with deeper 
insight into the relevance of spontaneous, resting brain activity and its connection to 
perception (Thiebaut de Schotten and Forkel, 2022). 

In our current work, we optimized an established tactile discrimination task (Baumgarten et 
al., 2015). During whole-brain MEG recordings, the participants receive two short consecutive 
electric pulses and indicate with a button press the percept of either one or two pulses. We 
determined the inter-pulse interval termed as stimulus onset asynchrony (SOA) for each 
individual with a staircase procedure so that the hit rate is 50% for the critical SOA. To enable 
an analysis of whole-brain networks the inter-trial interval was extended to 10 to 15 seconds. 
Importantly the critical SOA and stimulus remain the same during multiple trials yet the 
percept and therefore the response of the participant varies. We did not use cues to modulate 
attention and the tactile discrimination does not require cognitive or memory resources. 
Rather the percept and response purely depend on the internal dynamics of the whole-brain 
networks preceding the stimulus. To characterize the temporal dynamics and spectral 
properties of these spontaneously forming whole-brain networks we employ a hidden 
Markov model (HMM) (Vidaurre et al., 2018a, b) and relate the obtained networks to the 
behavioral outcome. Through this analysis, we aimed at identifying network properties and 
interactions, which would be predictive of the stimulus percept.  

Our findings indicate that the stimulus percept varies depending on the network transitions 
preceding stimulus presentation. Critically, a balance between functionally constrained 
spectrally specific and spectrally broadband brain networks led participants to perceive the 
stimulus as two, whereas excessive transitions to the constrained networks led to the 
perception of one electrical pulse. Moreover, slower inter-network transitions were 
detrimental to perceiving two stimuli.  Thus, for optimal tactile perception, transitions 
between whole-brain networks are necessary in the pre-stimulus epoch. As a result, the 
traditional view that increased or decreased spectral activity is responsible for perceptual 
discrimination should be extended to also include transitions between whole-brain networks. 
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44.2 Methods 
4.2.1 Behavior 
Thirty healthy participants (15 females and 15 males, right-handed, 26.4 (mean), 25 (median), 
13 (range) years in age) volunteered to perform the task. The experimental procedure was 
explained to all participants and they gave written consent. The study was approved by the 
local ethics committee (study number 2019-477) and conducted in accordance with the 
Declaration of Helsinki.  

We adopted the tactile discrimination task described in detail in Baumgarten et. al 2015. Each 
trial started with the presentation of a start cue (500 ms). Next, the cue decreased in 
brightness, indicating the pre-stimulus period (randomized between 10-15 seconds), after 
which the subjects received either 1 or 2 short (0.3 ms) electrical pulses, applied by 2 
electrodes placed between the 2 distal joints of the left index finger. The time between the 
two pulses (Stimulus Onset Asynchrony (SOA)) was determined with a staircase procedure for 
each participant so that they had a hit rate of 50%. This SOA was termed a critical SOA. 
Participants had to respond to whether they perceived one or two stimuli with their right 
hand by pressing a button with either their right index or right middle finger. The index and 
middle finger options were randomly swapped at each trial. SOA was varied as follows: 0ms, 
crit SOA, crit SOA + 10ms, crit SOA – 10ms, and 100ms. Participants were recorded on two 
days: Day 1 for each participant started with a pre-task eyes open resting state MEG recording 
for 10 minutes. This was followed by the staircase procedure to determine the critical SOA 
during which no MEG data was recorded. Then MEG data was recorded during the task. The 
task was divided into 4 blocks of about 45-50 trials and lasted about 10-15 minutes. 
Participants were allowed to take breaks between blocks. Finally, a post-task eyes-open 
resting state recording was performed for 10 minutes. On day 2 the staircase procedure was 
repeated. This was followed by 4 measurement blocks of task during which MEG data were 
recorded. In total 200 crit SOA, 50 crit SOA – 10ms, 50 crit SOA + 10ms, 50 0ms, and 50 100ms 
trials per participant were acquired. On the first day crit SOA across subjects was 71ms +- 
34.3ms and on the second day crit SOA across subjects was 79.8ms +- 34ms. The grand 
average crit SOA was 75ms +- 34ms. 

4.2.2 Electrophysiological recording  
MEG data were recorded on both days of task performance.  We used a whole-head MEG 
system with 306 channels (Elekta Vectorview, Elekta Neuromag, Finland) housed within a 
magnetically shielded chamber. To remove eye blink and cardiac artifacts, electrooculography 
and electrocardiography were recorded simultaneously with MEG data. Data were acquired 
at a sampling rate of 2500Hz with an 833Hz low pass filter.  

4.2.3 Pre-processing 
All data processing and analyses were performed using Matlab (version R 2021b; Mathworks, 
Natick, MA) and the Brainstorm toolbox (Tadel et al., 2011). To ensure artifact-free data, we 
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inspected the data visually. The Neuromag system provides signal-space projection (SSP) 
vectors for the cleaning of external artifacts from the MEG channels, which were applied. The 
line noise was removed from all channels with a notch filter at 50, 100, 150, ..., 550, and 600 
Hz with a 3 dB bandwidth of 1 Hz.  Very noisy and flat MEG channels were excluded from 
further analysis. Time segments containing artifacts were marked in the time series. However, 
if artifacts regularly occurred only in one single channel, this whole channel was removed 
instead. Frequently arising artifacts following the same basic pattern, such as eye blinks or 
cardiac artifacts, were removed via SSP. All data were high-pass filtered with 1 Hz to remove 
movement-related low-frequency artifacts. Finally, the data were down-sampled to 1000 Hz. 
All trials with artifacts were excluded from further analysis. For each trial, we extracted pre-
stimulus activity that ranged from -8.0 seconds to -0.1 seconds with 0 indicating the onset of 
the first electric stimuli. Each trial was mean corrected on a single MEG channel basis, where 
the mean channel vector was calculated using activity from -8.0 to -0.1 seconds. We refer to 
this pre-stimulus extracted time series as the pre-stimulus rest activity.  

Cortically constrained source estimation was performed on these recordings at the 
participant level using each participant’s anatomy. Therefore, using Freesurfer 
(https://surfer.nmr.mgh.harvard.edu/, v.5.3.0) the participant's cortical surfaces were 
extracted from the individual T1-weighted MRI scans (3T scanner and 1 mm3 voxel size). We 
used the overlapping spheres method (Huang et al., 1999) with 306 spheres for the forward 
model. As inverse model we used a linearly constrained minimum variance (LCMV) 
beamformer. The data covariance matrix for the LCMV beamformer was computed per 
measurement block of each participant. The data covariance was regularized by setting the 
values below the median to the median eigenvalue of the data covariance matrix. The noise 
covariance was obtained from a five-minute empty room recording on the same day as the 
actual measurement. A single shared source kernel was obtained for each measurement block 
of every participant.  

The source-reconstructed MEG data were projected to the default cortical anatomy (MNI 152 
with 15,002 vertices) using FreeSurfer registered spheres extracted using FreeSurfer and MRIs 
of individual participants (Reuter et al., 2012) and then down-sampled temporally to 250 Hz 
for every trial and each participant. We used the Mindboggle atlas to spatially reduce the data 
dimensions. For each of the 42 cortical regions in the atlas, we obtained the first principal 
component from the vertices’ time series within that region. To correct for volume 
conduction in the signal, symmetric orthogonalization (Colclough et al., 2015) was applied to 
these PCA (principal component analysis) time series. This resulted in a 42 by T multivariate 
time series for each trial and each participant. The row vectors of this orthogonalized matrix 
were z-scored.  The entire pre-processing pipeline was applied to all trials of every participant 
irrespective of the response type on a trial.  

To avoid that trials of the same response type, occur one after the other we shuffled trials 
across each participant. This ensures that the HMM algorithm does not get stuck in local 
optimization minima solely based on a single response type. Finally, to resolve sign ambiguity 
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inherent in source-reconstructed MEG data channels across participants, a sign-flip correction 
(Vidaurre et al., 2016) procedure was applied to entire dataset. Subsequently, this dataset 
was then fed to the TDE-HMM pipeline described below. 

44.2.4 TDE-HMM pipeline 
The HMM is a data-driven probabilistic algorithm that finds recurrent network patterns in a 
multivariate time series (Vidaurre et al.,2016; Vidaurre et al.,2018a). Each network pattern is 
referred to as a ‘state’ in the HMM framework, such that these networks can activate or 
deactivate at various points in time. Here onwards, ‘state’ or ‘network’ is used 
interchangeably. We used a specific variety of the HMM, the time delay embedded (TDE) -
HMM, where whole-brain networks are defined in terms of both spectral power and phase 
coupling (Vidaurre et al.,2018b). Hence, for every time point, the HMM algorithm provides 
the probability that a network is active. Here onwards, a contiguous block of time for which 
the probability of a particular network being active remained higher than all the other 
networks is referred to as a ‘state visit’. Thereby the HMM produced temporally resolved 
spatial networks for the underlying time series. In our approach, we also performed spectral 
analyses of these state visits, leading to a complete spatio-spectral connectivity profile across 
the cortex. 

4.2.5 HMM model fitting 
Since we were interested in recovering phase-related networks, the TDE-HMM was fit directly 
on the time series obtained after pre-processing steps described previously, as opposed to its 
power envelope. This preserved the cross-covariance within and across the underlying raw 
time series of the cortical regions.  

We opted for six different states as a reasonable trade-off between the spectral quality of the 
results and their redundancy. The HMM-MAR toolbox (Vidaurre et al., 2016) was used for 
fitting the TDE-HMM. The embedding took place in a 60 ms window (i.e., a 15-time point 
window for a sampling frequency of 250 Hz) for each trial separately. Since time embedding 
increases the number of rows of the data from 42 to 42 times the number of samples of the 
window, an additional PCA step was performed along the spatial dimension. The number of 
components retained were 84 (42 times 2) in accordance to our previous pipeline (Sharma et 
al., 2021) and as recommended in Vidaurre et al. 2018. To characterize each state, a full 
covariance matrix with an inverse Wishart prior was used. The diagonal of the prior for the 
transition probability matrix was set as 10. To ensure that the mean of the time series did not 
take part in driving the states, the ‘zero mean’ option in HMM toolbox was chosen. To speed 
up the process of fitting, we used the stochastic version of variational inference for the HMM. 
In order to start the optimization process, the ‘HMM-MAR’-type initialization was used (for 
details, see Vidaurre et al., 2016). A single HMM was fit across all participants and trials 
irrespective of the response type and SOA. 
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44.2.6 Data-driven frequency bands 
We investigated the spectral connectivity patterns across the different states. The objective 
was to uncover significant coherence within each frequency band (delta/theta [1–8 Hz], alpha 
[8-12 Hz], beta [13–30 Hz], and high-beta/gamma) in the respective states. The HMM output 
includes the state time courses (i.e., when the states activated) for each trial for every 
participant stored in the HMM model output variable called “gamma”. 0.85 was used as the 
probability threshold for gamma. The state time courses allowed the extraction of state-
specific data for each trial for further analysis. For each HMM state, we filtered the state-
specific data for all trials between 1 and 45 Hz. (For state-wise data extraction, please refer 
to the HMM toolbox wiki [https://github.com/ OHBA-analysis/HMM-MAR/wiki/User-Guide].) 
Then we calculated the Fourier transform of the data using a multi-taper approach to extract 
the frequency components from the short segments of each state visit (See Vidaurre et al., 
2018b). Seven Slepian tapers with a time-bandwidth product of 4 were used, resulting in a 
frequency resolution of 0.5 Hz. Subsequently, we calculated the coherence and power 
spectral density of these binned frequency domain data for every state within each trial 
separately. For each trial, the coherence and the power spectral density obtained were three-
dimensional matrices of size f (number of frequency bins) by N (42 cortical locations) by N. 
We call these trial-level coherence matrices. 

Based on the trial-level coherence matrices, we performed a frequency band-specific analysis. 
Canonical definitions of frequency bands assign equal weight to each frequency bin within a 
band for every participant. This might not be suitable when considering analyses of brain 
signals across a large dataset. Assigning for example the same weight to each bin in the alpha 
range might reduce the alpha effect at the group level. To allow for inter-participant variability 
in each frequency bin’s contribution to a frequency band, we determined the frequency 
modes in a data-driven manner (Vidaurre et al., 2018b). For each subject and all their trials, 
the lower triangular portion of the trial-level coherence matrix obtained above was vectorized 
across columns. This resulted in 903 (lower triangular entries of a 42 by 42 matrix including 
the diagonal) by f (number of frequency bins) matrices for each trial. Subsequently, we 
averaged all matrices across trials and participants along the spectral dimension (number of 
frequency bins) resulting in a single 903 by f matrix per state. This procedure was repeated 
for all six states. Finally, we concatenated matrices across all states resulting in a group-level 
coherence matrix (f by 903 by 6). We factorized the group-level coherence matrix into four 
frequency modes using a non-negative matrix factorization (NNMF) (Lee and Seung, 2001).  

The values of frequency modes are the actual NNMF weights obtained from the NNMF 
estimation (which, just like a regression coefficient, are unitless, because coherence is 
unitless). Three of them resembled the canonical alpha, beta, and high beta/gamma bands 
whereas the fourth one represented the 1/f noise in neural signals. Since NNMF does not 
guarantee a unique solution, we performed multiple instances of factorization. In practice, 
we could obtain frequency modes, which showed correspondence to the classical frequency 
bands, within four iterations of the algorithm. At each instance, we visualized the output to 
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ensure the frequency specificity of the frequency modes. The stability of the output was 
ensured by using ‘robust NNMF’, which is a variant of the NNMF algorithm (Vidaurre et al., 
2018). We then computed the inner product between the trial-and group level coherence 
matrix and the frequency modes obtained above. We called these the trial-level and group-
level coherence projections, respectively. While these frequency modes were derived from 
coherence, they can be applied to power measures or any other frequency-specific measure. 
We applied these factors to the power spectra calculated for each of the 42 regions as well to 
obtain trial-level and group-level power projections. 

44.2.7 Group-level coherence ring figures 
To separate background noise from the strongest coherent connections, a Gaussian mixture 
model (GMM) was used (Vidaurre et al., 2018b). For the group-level coherence projections, 
we normalized the activity in each state for each spectral band by subtracting the mean 
coherence within each frequency mode across all states. As a prior for the mixture model, we 
used two single-dimensional Gaussian distributions with unit variance: one mixture 
component to capture noise and the other to capture the significant connections. This GMM 
with two mixtures was applied to the coherence values of each state. Connections were 
considered significant if their p-value after correction for multiple comparisons was smaller 
than 0.001. 

4.2.8 Power spectral density test 
We used permutation testing to assess power increases within a brain region relative to 
others within a state. For this, we used the trial-level power projections. We subtracted the 
mean power across all states and all trials from each of the 42 regions within a state for each 
trial. We then permuted the labels for the 42 brain regions within a state across trials to obtain 
a null distribution. The p-value was calculated as the number of permutations for which the 
power of a specific brain region was higher or lower than the shuffled set divided by the total 
number of permutations. We used 5000 permutations to compute our results. 

4.2.9 Diffusion map analysis 
To recover a low- dimensional network embedding from high-dimensional cortical data we 
used diffusion maps (Coifman et al., 2005; Lian et al., 2015). In order to calculate state-specific 
embedding we masked the original dataset, i.e. the one without any delay embedding, using 
the state probability time (HMM model output gamma). The probability threshold for gamma 
was the same as used to perform the multitaper spectral analysis. State probability time 
course masking resulted in state-specific 42-dimensional vectors. For clarity, we will call them 
diffusion vectors. For each state individually we computed a covariance matrix using all of the 
state’s diffusion vectors across all trials and participants. For each state covariance matrix, an 
affinity matrix was computed using Spearman rank order correlation. This affinity matrix was 
then fed to the diffusion map algorithm to obtain a low-dimensional embedding. The 
dimensionality was reduced from 42 to 5. Only the top three dimensions were used for 
subsequent analysis. The diffusion parameter alpha was set to 0.5 for all states as 
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recommended for large-scale brain data (Margulies et al., 2016). The above procedure was 
implemented using custom-written scripts and the Brainspace toolbox (Vos de Wael et al., 
2020).  

44.2.10 Uniqueness of the state-specific embedding 
In order to test if the state-specific embedding was unique for each state we bootstrapped 
with 100 iterations. For each bootstrap iteration for each state, we randomly sampled with 
repetition the diffusion vectors. The sample covariance matrix is a biased estimator and the 
bias is dependent upon the number of samples that are used to estimate covariance using 
the estimator (Smith, 2005). Hence, we kept the total number of diffusion vectors used to 
calculate the state-specific covariance matrix the same as the original number used to 
calculate state-specific embedding. Then diffusion map analysis was applied to each of these 
100 bootstrapped covariance matrices. This step yielded six hundred low-dimensional 
embeddings i.e. 100 per state. Calculation of the diffusion map involves eigenvalue 
decomposition (Coifman et al., 2005). The resultant eigenvectors are unique up to a +/- sign. 
In order to align the bootstrapped low-dimensional embeddings we used the Procrustes 
analysis (Vos de Wael et al., 2020). Importantly, this does not affect the magnitude of the 
eigenvector basis but only rotates them. For each state, the bootstrapped embeddings were 
aligned to the original state-specific embedding. Pearson’s correlation was calculated to 
measure the similarity between a state’s original state-specific embedding and all other states 
(including its own) bootstrapped embeddings. Subsequently, the resulting correlation values 
were subjected to repeated measures ANOVA and posthoc testing. Since an embedding for 
the connectivity manifold comprises the first three eigenvectors of the diffusion map, the 
Pearson correlation and the subsequent ANOVA analysis were calculated separately for each 
eigenvector. See supplementary table 4.1 for the ANOVA results pertaining to the first three 
eigenvectors. 

4.2.11 Statistical testing on the connectivity manifold 
We refer to the state-specific embedding as a manifold. The key property of this manifold is 
the distance between the different brain regions on this manifold. Distance between different 
brain regions is directly related to the connectivity between regions (Margulies et al., 2016; 
Vos de Wael et al., 2020), i.e. the smaller the distance stronger the connectivity. To test if 
certain brain regions showed significant connectivity on the manifold we applied the same 
test as described previously in the section Methods: Group level coherence ring figures. 

4.2.12 Transition matrix test 
To obtain transition matrices for each trial we estimated the HMM on a single trial level using 
the group-level model. The critical SOA and the critical SOA +- 10ms trials were included in 
this analysis. Non-parametric permutation testing (5000 permutations) was performed to 
compare transitions between response one and response two trials. Results were considered 
significant if p<0.01 after correction for multiple comparisons using Benjamini Hochberg FDR 
correction.  
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44.2.13 Temporal properties 
To test for changes in the temporal properties for percept one versus percept two trials, we 
compared the lifetimes, interval between visits, FO, and switching rate for each state both 
within and across the response types using two-way repeated measures ANOVA followed by 
post-hoc tests. The lifetime/dwell time of a state refers to the time spent by the neural activity 
in that state. The interval of visit was defined as the time between successive visits of the 
same state. FO is defined as the average state probability across time for a trial. Finally, the 
switching rate is defined as the number of times one state switches to another per second 
within a trial. 

4.3 Results 
Using an HMM we delineated spontaneous source-level cortical activity during the 8 seconds 
preceding stimulus presentation into distinct states or networks. In comparison to classic 
sliding window analysis, an HMM solution can be thought of as a data-driven estimation of 
time windows of variable length within which a particular HMM state was active. A single 6-
state group level time-delay embedded (TDE)-HMM model was trained on spontaneous pre-
stimulus activity across critical SOA trials, which included the individual critical SOA as well as 
the critical SOA +- 10ms trials (see Methods: section Behavior) irrespective of the response 
type. As our stimuli were designed to achieve a 50% hit rate at the critical SOA we 
hypothesized that the same spontaneous networks would be relevant, but the interactions 
between these networks in the pre-stimulus period would be different depending on the 
percept. Furthermore, we used our group-level model to infer single-trial dynamics to explain 
the variability in the percept. 

4.3.1 Spontaneous pre-stimulus activity organizes into different 
spectral networks 

Out of the six states, four states had diverse spectral and spatial characteristics whereas the 
remaining two (states 5 and 6) had sparse spectral connections. Hence, we focus mainly on 
these four states. For each state, the coherence-based connectivity between different brain 
regions was visualized for the frequency modes presented in figure 4.1.  In contrast to the 
traditional definition of frequency bands in electrophysiological data, the frequency modes 
are obtained from non-negative matrix factorization of the Fourier-transformed data. 

As seen in Figure 4.2A state 1 consisted of an interacting anterior (frontal) and posterior 
(parietal) network in the alpha and beta bands. Due to the aforementioned characteristics, 
this state is termed the cross-brain state in the following. Posterior parietal connectivity in 
the alpha band dominated the state in Figure 4.2B. Parietal regions were coherent with 
different brain areas both within the parietal cortex and across the brain (p<0.001). 
Interestingly, there was no connectivity within the beta and the high-beta/gamma bands. 
Hence, we term this state the alpha-parietal state. The state in Figure 4.2C is dominated by 
high-beta/gamma band and alpha-band coherence in the frontal and medial-frontal regions 
(p<0.001) so it is termed the frontal state. The last state in Figure 4.2 had high-beta/gamma 
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band coherence between and within frontal and parietal areas (p<0.001). Thus, we referred 
to it as the high-beta/gamma state. 

Hence the HMM resolved the pre-stimulus spontaneous activity into distinct states with 
specific spatio-spectral fingerprints. Critically, the HMM states are the same irrespective of 
the response/percept of participants. 

 

 

 
 

 

 

 

  

Figure 4.1: Data driven frequency bands, referred to as frequency modes in 
the text. See Methods: Data driven frequency bands 
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44.3.2 Latent HMM states track multiple cognitive networks 
To perform multiple functions a brain region might operate simultaneously in different 
frequencies which enables flexibility in the brain region's inputs and outputs (Akam and 
Kullmann, 2010, 2014). In line with this, our previous result indicates that multiple pairs of 
brain regions are coherent across several spectral bands within the same state. But, the same 
pairs were coherent in the same spectral band across different states. Such pairwise spectral 
coherence results lead to difficulties in interpreting HMM-based time-resolved states. To 
untangle the relevance of these pairwise connections within each state we employed the 
diffusion map framework (Lian et al., 2015; Margulies et al., 2016). With a diffusion map, we 
can embed the extracted non-linear relationship between different brain regions in Euclidean 
space. We refer to the resultant Euclidean space as the connectivity manifold. In this 
framework, two brain regions either directly connected to each other or connected via 
multiple brain regions will be embedded close to each other on the manifold. Hence, the 
extent of connectivity on the manifold between two brain regions is inversely proportional to 
the distance on it. Of note for the diffusion framework, the data has not been separated into 
the frequency modes; as a result, the diffusion maps provide an additional separate 
description of the HMM states. 

Given the spectrally broadband and spatially non-specific characteristics of the cross-brain 
state, we expected its manifold to be densely connected. Surprisingly only a few brain regions 
were significantly connected with their neighbors. Thus, multiple pairwise spectral 
connections do not translate to dense connectivity on the manifold and this allows us to 
disentangle the spectral interactions between the frontal state and the cross-brain state.  
Most relevant for the cross-brain state the ipsi- and contralateral precentral gyri were 
connected to each other and embedded within a frontal network (Figure 4.3 A). But, the 
postcentral gyri of the two hemispheres were disconnected on the manifold.  Of note, the 
right inferior parietal gyrus (IP-r) was connected via two frontal regions to the ipsi- and 

Figure 4.2: A) Coherence ring figure for the Cross Brain State. Each node of the ring contains two colours. The 
outer color represents a brain region (see Supplementary figure 4.1 for a list of brain regions). The inner color 
represents the outcome of the power spectral density test (see Methods: Power spectral density test). Inner 
color red represents significantly higher than mean power for that state and within a specific frequency band. 
Inner color blue represents significantly lower than mean power. Inner color black represents no significant 
difference than mean power for that state within a specific frequency band. The black coloured curve 
connecting a pair of two brain regions represents significant coherence between the pair, p<0.001 (see 
Methods: Group level coherence ring figures). The coherence ring figures are shown for the alpha, beta and 
high-beta/gamma frequency bands shown in figure 4.1. B) Alpha-parietal state. This state was characterised 
posterior alpha band connectivity. Visuo-parietal regions showed significant increase in power in the alpha 
band along with significantly increase alpha band coherence. Beta and high-beta gamma band did not show 
any significant connectivity for this state. C) Frontal state. Frontal regions showed connectivity both within 
frontal cortex regions and to different brain regions. This connectivity pattern was observed across all three 
frequency bands. Hence this state can be characterised as a wideband frontal state. D) High-beta/gamma 
state. Fronto-parietal regions showed significant connectivity only within the high-beta/gamma band. 
Significant connections were present both within frontal and parietal regions as well between the regions. 
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contralateral precentral gyri (Figure 4.3 A, supplementary Figure 4.6A). Plausibly, the cross-
brain state represents top-down controlled motor cortical connectivity.  
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Figure 4.3: State specific manifolds for A) Cross-brain state B) Alpha-parietal state C) Frontal state D) High-beta/gamma state. 
In each figure the nodes represent brain regions from the Mindboggle atlas. The large dots are the ones for which a significant 
connection was found. The black lines are significant short distances that represent connectivity between brain regions (see 
Methods: Diffusion map analysis, statistical testing on the connectivity manifold). 
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In the alpha-parietal state, the ipsilateral postcentral gyrus and contralateral precentral gyrus 
were significantly connected on the manifold. Furthermore, fragmented connectivity 
occurred between parietal cortex regions and frontal cortical areas, ipsilateral motor cortex, 
superior temporal, and medial orbitofrontal regions (Figure 4.3 B). Taken together, the 
spectral characteristics and the connectivity manifold are consistent with the modulating role 
of parietal alpha activity for attention (Klimesch, 2012; Vollebregt et al., 2016; Helfrich et al., 
2017). Importantly, dense pair-wise alpha-band coherence between brain regions in the 
alpha-parietal state resulted in a sparse pair-wise connectivity manifold dominated by 
parietal regions. This finding relates to the more generic role of posterior alpha activity in 
gating cortical processing (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Zhou et al., 
2021). 

For the frontal state, as opposed to the spectrally constrained states, each and every brain 
region demonstrated statistically significant connectivity on the manifold (Figure 4.3 C). Still, 
it was not an all-to-all network but restricted to the significantly connected neighbors on the 
manifold. Frontal cortical regions perform their heterogeneous and complex functions via 
multiplexed oscillatory coding (Benchenane et al., 2011; Buschman et al., 2012; Akam and 
Kullmann, 2014; Voytek et al., 2015; Helfrich and Knight, 2016; Naud and Sprekeler, 2018). 
Hence, the frontal HMM state plausibly exerts top-down control via multiplexed oscillatory 
coding such that the frontal cortex selectively modulates coupling with other brain areas in 
specific frequency bands. This multiplexed information transmission in turn provides a 
substrate for information flow across the entire brain resulting in a densely connected 
manifold.  

The manifold for the high-beta/gamma state displayed significant connectivity between 
precentral gyrus and postcentral gyrus ipsilateral to tactile stimulation which were embedded 
between multiple significantly connected frontal regions (Figure 4.3 D). We also found the IP-
r connected via two frontal regions to the left pre and postcentral gyri (supplementary Figure 
4.6 B). The spectral properties and the connectivity based on the manifolds are in line with 
previous findings (Tallon-Baudry et al., 1998, Spitzer et al., 2014b, a; Marco-Pallarés et al., 
2015; Kornblith et al., 2016; Spitzer and Haegens, 2017). These studies highlight the relevance 
of high-beta and gamma activity within the fronto-parietal network for recruiting task-
relevant regions.  

44.3.3 Differential network transitions relate to varying percept 
We will refer to the combined spectral and connectivity manifold-based description of an 
HMM state as a brain network or state interchangeably. Each of the brain networks described 
in the previous section seems to have a distinct functional role:  The alpha-parietal state is 
relevant to gate cortical processing, the frontal state plausibly aids in whole-brain information 
transfer whereas the high-beta/gamma and the cross-brain state utilize top-down control to 
activate brain regions relevant for tactile perception. Hence, we hypothesized that 
interactions between these networks in the pre-stimulus period would relate to trial-by-trial 
perceptual variability. In order to test the relationship between trial-by-trial perceptual 
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variability and network transitions we inferred HMM dynamics on a single trial level and 
tested if transition probabilities both to and from a given network, including self-transitions, 
were significantly different between the two percepts at the critical SOA (see Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the percept of two stimuli compared to one the transition probability increased from the 
alpha-parietal state to the cross-brain state, the frontal state, and the high-beta gamma state 
as well as the transition probability from the high-beta/gamma state to the cross-brain state, 
the frontal state, and the alpha-parietal state.  At the same time transitions from the frontal 
state to both the alpha-parietal and the high-beta/gamma state increased for the percept as 
one stimulus. Interestingly, the state transition between the high-beta/gamma and alpha-
parietal state was the only pair where the transition probability between the two increased 
in both directions for the percept of two stimuli. Overall, for the percept of two stimuli states 
transited away from the high-beta/gamma state as well as the alpha-parietal state and more 
towards the frontal and cross-brain states.  

The transition results require a more refined interpretation of the HMM states. The spectrally 
specific states are plausibly functionally constrained whereas the broadband states either 
distribute information (frontal state) or assimilate information (cross-brain state) from 
different constrained networks. Hence, the cross-brain state would require broadband 
coherence to synchronize incoming information from different networks. Finally, information 

A  B  

Figure 4.4: A) Shows significantly increased probability to transition between states. Green arrows represent 
transitions that increased significantly when participants perceived one pulse. B)  Orange arrows represent 
transitions that increased significantly when participants perceived two pulses. P<0.05. The transitions that 
have not been shown exist in the model but are unchanged between the one or two pulse perception. 
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assimilation might reconfigure and constrain the connectivity manifold of the cross-brain 
state to perceptually relevant regions. Therefore, for the percept of two stimuli it is relevant 
that transitions are balanced between states with functionally constrained connectivity 
(alpha-parietal, high-beta gamma) and subsequently transition to broadband distributive or 
assimilative states (frontal, cross-brain). 

44.3.4 Faster transitions lead to correct tactile perception 
During the pre-stimulus period, some state transitions have a higher likelihood of perceiving 
one or two stimuli – which already indicates that whole-brain network interactions are 
relevant for the percept of these ambiguous stimuli. Besides the transition probability 
between networks, it is also important to analyze the temporal properties of the different 
networks which could be further factors influencing the percept. Network-specific temporal 
properties analyzed include the lifetime of a network (duration spent in a network during a 
visit), and fractional occupancy (the average network probability across time for a trial). For 
each trial we also calculated a switching rate, which refers to the number of times network 
transitions happen per second within a trial. 

In terms of lifetime, the alpha-parietal state had the highest lifetime for both percepts (alpha-
parietal > all other states; p<0.001) but its lifetime was unchanged between the two percepts 
(p=0.59). For the high-beta/gamma state the lifetime and fractional occupancy significantly 
decreased for the percept of two stimuli compared to one (p<0.001). For both the cross-brain 
and the frontal state FO increased for the percept of two stimuli (p<0.001).  In addition, the 
overall rate of switching between different networks was significantly increased for the 
percept of two stimuli (Fig 5 D). Therefore, during the pre-stimulus period for the percept of 
two stimuli the high-beta/gamma state should be occupied for shorter durations while the 
frontal and cross-brain states should have a higher temporal occupation. Finally, network-
specific temporal changes should be accompanied by faster overall inter-network transitions. 
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44.4 Discussion 
Perception of an incoming stimulus in an uncertain, non-cued environment requires pre-
stimulus spontaneous brain activity to set up dynamics such that the brain can optimally make 
use of the incoming stimuli to reach a decision. In our work, we demonstrate how these 
dynamics play out in terms of transitions between functionally distinct whole-brain networks: 
Pre-stimulus activity in a tactile perception task was characterized by spontaneous switching 
between four brain networks. The duration of those brain networks being active and the 
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Figure 4.5: A) Each plot represents lifetime in milliseconds (ms) for the 
corresponding HMM state. Each point represents the mean for a state and error bar 
represents standard error. Percept1 represents data for perception of one stimulus 
one trials and Percept2 represents data for perception of two stimuli. B) Each plot 
represents fractional occupancy (FO) for the corresponding HMM state C) Switching 
rate per second. The switching rate is not state specific and is calculated for a trial. 
Each point represents mean and the error bar represents standard error across 
trials grouped by percept type.  

The orange bar and star represents statistically significant result p-val<0.01  

See Methods: Temporal properties. 
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switching between networks was flexibly adapted and led to the percept of either one or two 
stimuli. More specifically for the percept of two stimuli as compared to one, the transitions 
from the alpha-parietal network and high-beta/gamma network increased to the frontal 
network as well as the cross-brain network and reciprocal transitions decreased. Finally, 
faster inter-network switching combined with shortened activation (lifetime) of the high-
beta/gamma network lead to the percept of two stimuli. Therefore, for optimal perception a 
balance between cortical gating networks and activation of task-relevant brain regions, as 
well as improved information dissemination by the frontal network and assimilation of 
network activity by the cross-brain state in the pre-stimulus period, are essential. 

44.4.1 Connectivity manifolds for network descriptions 
For functionally characterizing the HMM states we here used both coherence as well as 
distance metrics on the diffusion map, which yields a manifold of each network based on 
data-driven network extraction. This is a critical difference compared to previous studies:  
Commonly functional relevance is ascribed to spectral changes and coherence by correlating 
them with a behavioral outcome. The spectral approach is based on the notion that 
coherence serves as a mechanism of neural communication between different brain regions 
(Fries, 2015). However, Schneider and colleagues demonstrated that coherence is an 
outcome of neural communication and not its mechanism (Schneider et al., 2021). Thus, 
coherence between two brain regions can exist even when there is no relationship of 
information transfer between the sender and the receiver. Furthermore, the calculation of 
coherence is itself based on the concept of neural oscillations which recently have been 
questioned regarding their mechanistic role in the brain (Singer, 2018). It has been suggested 
that to resolve ambiguity regarding the functional role of neural oscillations they should be 
interpreted in the context of neural circuits producing them (Ibarra-Lecue I et al., 2022). 
Hence considering a collection of coherent brain regions as a network and correlating them 
to behavior is not sufficient to establish their functional roles. Also, when calculating 
coherence in a specific portion of the spectrum, such as 13-30Hz, one cannot claim that the 
two brain regions are exclusively using this spectrum for coherence-based communication. In 
view of these limitations concerning neural oscillations and spectral coherence, we here 
obtained for the HMM states the connectivity manifold based on diffusion maps, which 
provides a further complementary network description of the HMM states. This approach 
allowed us to disentangle for the alpha-parietal state pair-wise alpha band coherent 
interactions into a sparse connectivity manifold. Similarly, a densely connected manifold was 
not expected based on the broadband activity of the frontal state. The connectivity manifolds 
were also critical to distinguish the relevance of broadband spectral coherence in the cross-
brain and frontal states. Still, the connectivity manifolds do not provide a circuit-level 
description of spectral activity. However, because of its independence of spectral approaches, 
it provides a complementary framework within which we could connect whole-brain 
networks and spectral activity with perception. The connectivity manifolds might prove useful 
tools to understand the complex properties of connectivity in the brain.  
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44.4.2 Transitions between higher-order cognitive networks for 

perception 
Before perceiving two stimuli the brain networks switched to the frontal and cross-brain 
states and away from the high-beta/gamma state. On the other hand, when perceiving only 
one stimulus brain activity transited to the alpha-parietal state and/or was trapped in the 
high-beta/gamma state. For the percept of two stimuli, neither the high-beta/gamma state 
nor the alpha-parietal state alone were the relevant networks. Moreover, only when brain 
activity reciprocally switched between these two states and these states transited to the 
frontal and/or cross-brain states were the participants able to perceive two stimuli. This is in 
line with the spectral activity of the frontal state reflecting computation within the anterior 
higher-order cognitive regions and its ability to transmit information based on its connectivity 
manifold. Hence, HMM states responsible for tracking different aspects of the task should 
send their locally computed activity to the frontal state for communication.  However, if the 
frontal state transitions to the alpha-parietal state it would lead to excessive inhibitory 
pruning leading to a loss in information transfer causing the percept to be one pulse. Similarly, 
transitions from the frontal to the functionally constrained high-beta/gamma state would be 
detrimental to perception.  

The cross-brain state had broadband spectral activity. Moreover, unlike the frontal state, 
broadband activity was not restricted spatially in the brain. Yet the manifold for the cross-
brain state was sparsely connected. In addition, the transition from the alpha-parietal state 
to the cross-brain state was helpful for the perception of two stimuli. Given the spectral 
characteristics, transition patterns, and IP-r – motor cortex connectivity we consider the 
cross-brain state to represent a reconfigurable network, transitions to which are critical for 
assimilating information from different functionally constrained networks. For a 
reconfigurable network, the spatially non-specific broadband activity becomes important 
enabling it to incorporate modulations brought through various other network’s information. 
Plausibly, these reconfigurations are coordinated by parietal cortex activity, especially the IP-
r, which previous research has implicated to be involved in such actions in the human brain 
(Husain and Nachev, 2007; Royal et al., 2016; Singh-Curry and Husain, 2009). Therefore, we 
consider one spectrally broadband state (frontal) to distribute information whereas the other 
broadband state (cross-brain state) to incorporate information.  

For the high-beta/gamma state the left post- and precentral regions were embedded within 
a network of prefrontal areas. This reflects a conglomeration of previously reported results in 
literature:  In the sensorimotor system, beta activity is thought to provide inhibitory roles 
(Donner et al., 2009; Pogosyan et al., 2009) while in the prefrontal regions beta activity tends 
to indicate reactivation of neuronal ensembles for further processing (Haegens et al., 2011b; 
Miller et al., 2018; Spitzer and Haegens, 2017). Of note is the presence of the right IP-r in the 
cluster of prefrontal and left sensory-motor regions. It is known that IP-r in the human brain 
is involved in detecting salient stimuli within sequences as well as controlling attention over 
time (Royal et al., 2016; Singh-Curry and Husain, 2009). Hence, the high-beta/gamma state 
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includes an ensemble of fronto-parietal cortical regions that plausibly aid in activating 
perceptually relevant sensory-motor regions. Further functional insights about the high-
beta/gamma state can be obtained from the altered transition patterns of this state for the 
percept of two stimuli, which includes increased reciprocal transitions between itself and the 
alpha-parietal state as well as increased transitions to the distributive frontal state. The high-
beta/gamma state is also the only state that despite showing the largest FO across both 
responses reduces its lifetime for the percept of 2 stimuli. This highlights the critical role of 
duration when it comes to the action of high-beta/gamma activity in the brain. 

The temporal properties of the alpha-parietal state did not significantly change and the 
lifetime of the alpha-parietal state was the longest amongst all states irrespective of the 
response by the participants. This at first seems to be in contrast with sustained increases or 
decreases in alpha activity depending on task performance within pre-stimulus epochs 
(Haegens et al., 2011b, 2011a; Thut et al., 2006; van Kerkoerle et al., 2014). However, 
depending on the percept the transitions to and from the alpha-parietal state changed. These 
results indicate that alpha activity like high-beta/gamma activity exerts its effect on brain 
networks in short epochs. Furthermore, based on the connectivity manifold of the alpha-
parietal state the effect of alpha on the whole-brain network level is to restrict connectivity 
to task-specific brain regions. Thus, for optimal tactile perception, the brain does not suppress 
alpha activity but instead balances it by incorporating transitions to different whole-brain 
networks with specific spectral properties and network connectivity that help in perception. 
Therefore, the classical framework of alterations in alpha activity to accomplish perceptual 
tasks needs to be updated to a transition-based framework.  

To summarize we demonstrate a nuanced role of spectrally specific coherence in cognitive 
brain networks. We distinguished networks characterized by broadband spectral coherence 
in terms of distributive and assimilative roles as demonstrated by their connectivity 
manifolds. A balance between functionally constrained and spectrally specific states is 
important in the pre-stimulus period for perception. Furthermore, the transitions to the 
spectrally broadband networks should be considered equally, if not more, relevant for 
optimal perception of tactile stimuli.  

44.4.3 Limitations of the study  
HMM is an unsupervised method, completely blind to the underlying biology of the time 
series it is fit on. For any HMM model, the analysis of the states helps assess the 
characteristics of the HMM states. Hence, the connection between biology and the HMM 
states is post-hoc and the algorithm is not built to extract physiologically interpretable 
features. For the posthoc analysis, we chose spectral coherence and diffusion maps to 
produce connectivity manifolds. Manifolds provide an independent view of connectivity from 
spectral coherence, but they do not provide further information regarding circuit mechanisms 
of spectral coherence. Furthermore, we are unable to answer the question of whether the 
connectivity observed on the manifold is responsible for producing the spectral qualities or 
vice-versa. This remains a crucial question for future work.  
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Our main result concerns the transitions between different networks. Given the spectral and 
connectivity manifold characteristics we are able to make statements about the networks’ 
purported functionality. But due to a lack of measures, such as pupil diameter or amount of 
distractor suppression we are unable to provide concrete evidence regarding the functional 
roles of the time-resolved networks in the pre-stimulus epoch. Finally, neurophysiologically 
we do not know what governs the transitions between the networks. Better characterization 
of the transitions themselves in terms of interpretable neuroscientific properties remains a 
key challenge in future studies.  

44.5 Conclusion 
We here establish a link between spontaneous whole-brain dynamics between multiple 
networks and the percept of an ambiguous tactile stimulus in a non-informative environment. 
Faster transitions between cognitive states are necessary to properly perceive incoming 
stimuli. Hence, temporal patterning of spectrally specific and broadband cognitive states is 
critical for behavior. Furthermore, we show, to our knowledge for the first time, whole-brain 
evidence for how pair-wise spectral coherence between brain areas actually manifests on a 
connectivity manifold between multiple brain regions. This enhances our perspective on the 
role of oscillatory activity on the cortical level and its relationship to behavior. 
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44.6 Supplementary figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 4.1: Brain region labels for the ring figures displayed in 
figures 4.2-4.6. The brain regions are based on the Mindboggle atlas. 
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Supplementary figure 4.2 A and B: Coherence ring figures for HMM states 5 and 
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Supplementary figure 4.3: Temporal 
properties of HMM states 5 and 6. A) 
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Supplementary figure 4.4:  A) HMM state 5 B) HMM 

IO
V 

in
 m

s 

Percept1 Percept2 Percept1 Percept2 Percept1 Percept2 Percept1 Percept2 

Alpha-parietal state Cross brain state Frontal state High-beta/gamma 

Supplementary figure 4.5: Each plot represents intervals of visits (IOVs) in milliseconds (ms) for the corresponding HMM state. 
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Supplementary figure 4.6: Zoomed version of the connectivity manifold. A) Cross-brain state B) 
High-beta/gamma state. In both the figures the inferior parietal R is connected to sensory 
motor regions via two frontal areas. 
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Supplementary figure 4.7: Principal gradient representation of HMM states. A) Parietal alpha state B) Frontal state 
C) Cross brain state D) High-beta/gamma state. E) State 5. F) State 6. Each plot contains two parts. The first part is 
a plot where coloured nodes represent brain regions from the Mindboggle atlas and follow the same color scheme 
as previous figures. Here the brain regions have been reorganised on the basis of their value on the principal 
gradient (gradient 1, see Methods: Diffusion map analysis). Part two of the plot is the representation of the 
principal gradient (gradient 1) value for Mindboggle atlas regions projected on the standard MNI 152 brain. 
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Supplementary table 4.1 

The tables contain the summary of ANOVA results for tests described in the section Methods: 
Uniqueness of the state specific embedding. 
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SState  FF(df1,df2)  FF--vvalue  pp--vvalue  
Cross-brain 594,5 19492.4 1e-15 
Alpha-parietal 594,5 2049.5 1e-15 
Frontal 594,5 38733.8 1e-15 
High-beta/gamma 594,5 3154.2 1e-15 
State 5 594,5 27312.2 1e-15 
State 6 594,5 11568.8 1e-15 

SState  FF(df1,df2)  FF--vvalue  pp--vvalue  
Cross-brain 594,5 10889.8 1e-15 
Alpha-parietal 594,5 4006.7 1e-15 
Frontal 594,5 43415.6 1e-15 
High-beta/gamma 594,5 5235.0 1e-15 
State 5 594,5 15358.4 1e-15 
State 6 594,5 7667.7 1e-15 

SState  FF(df1,df2)  FF--vvalue  pp--vvalue  
Cross-brain 594,5 7147.3 1e-15 
Alpha-parietal 594,5 847.57 1e-15 
Frontal 594,5 18951.9 1e-15 
High-beta/gamma 594,5 1749.3 1e-15 
State 5 594,5 8740.5 1e-15 
State 6 594,5 5600.9 1e-15 
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55 Thesis discussion 
The aim of the thesis was to explore how UML can be used to unravel the properties of 
spontaneous large-scale e-phys human brain signals. We emphasized how the biophysical 
qualities of the neurons and the characteristics of inter-regional connections together affect 
the statistical aspects of extracellular brain potentials as a justification for the use of 
unsupervised learning. Through our publications, we showed how UML could be used to show 
how resting-state brain potentials in different situations have varied spatial, temporal, and 
spectral properties. 

5.1 Summary of publications 
5.1.1 Comparison of EEG and fMRI based resting brain networks in 

humans 
In our first publication, we extracted resting-state brain networks based on EEG datasets. 
Functional magnetic resonance imaging, or fMRI, has been used as the gold standard to 
characterize resting-state networks. An intensely researched question in the field of human 
electrophysiology for resting state networks has been regarding the frequency specificity of 
resting state functional networks. E-phys methods are suitable to address the question of 
frequency specificity due to their high temporal resolution. ICA and MEG-PAC were applied 
to the EEG dataset, and the extracted EEG networks were compared to fMRI networks from 
the same set of subjects. We found that EEG was able to recover resting-state networks 
comparable to fMRI. As part of our pipeline, we were able to find the optimal filter setting 
required to extract the Hilbert envelope from the EEG dataset. When coupled to ICA, we 
found narrow-band finite impulse response filters to be optimal for extracting canonical 
resting state networks. We were also able to show that ICA was less susceptible to artifact 
noise than MEG-PAC. In order to establish the frequency specificity of our results and 
calculate inferential statistics, we used a bootstrapping approach for our ICA results and 
found that resting state networks did not show frequency specificity. 

There were several challenges that we encountered in our study. We previously mentioned 
that the different patterns that emerge after unsupervised analysis of human e-phys datasets 
are open to varied interpretations. When we applied ICA to extract spatial components from 
EEG data, we had to rely on comparison to existing fMRI brain networks as well as visual 
inspection to confirm that the findings from the EEG dataset were not erroneous. Out of the 
20 independent components we extracted from the EEG data, we could utilize only 7 as "brain 
networks." Normally, in dimensionality reduction applications, the unused components are 
often discarded as external "noise." In our case, we could not discard the rest of the 
components as noise since ICA was applied post-artefact cleaning. Artefact cleaning removes 
any external noise, such as eye blinks, heartbeats, and signal distortion caused by participant 
head movement. We also could not interpret the remaining components as physiologically 
relevant due to a) the absence of task behavior and b) no interpretation under the given 
physiological framework. Furthermore, we cannot rank the components according to any 
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information criterion, unlike in principal component analysis. In principal component analysis, 
components can be ranked based on the amount of variance explained by each component. 
The amount of variance can be calculated based on the eigenvalues of the extracted 
eigenvectors that span the principal component space. However, in ICA, we cannot measure 
the amount of variance explained by a component because that is not the objective of the 
underlying optimization used to find the independent components. Furthermore, we cannot 
rank the independent components by the amount of "independence" that a component 
captures. ICA is also criticized for the randomness of its results. The randomness is not a 
shortcoming of the algorithm but a necessity for the optimization procedure and is a common 
strategy in many MLPA algorithms. Furthermore, while randomization for optimization does 
not necessarily translate into missing components, it does lead to a shuffle of component 
identities. Therefore, the first independent component on one iteration of ICA would not 
necessarily be the same as the first component on the next ICA iteration. Instead of ranking 
order, we can cluster the ICA outputs on different iterations to find the most stable 
components (Himberg et al., 2004). The clustering approaches are similar to the 
bootstrapping approach we applied to establish frequency specificity in our publication. 
However, even if we account for the inherent randomness of the optimization algorithm 
(Hyvarinen, 1999) used by ICA, interpreting the physiological significance of the independent 
components remains a challenge. Next, as with any MLPA, we adjust hyperparameters in ICA. 
For the FastICA algorithm used in our work, this includes the number of components, 
initialization scheme, and non-linearity. In our opinion, nonlinearity is the most critical 
parameter since it is directly related to the measure of non-Gaussianity that the FastICA 
algorithm tries to maximize in order to obtain independent components (Hyvärinen and Oja, 
2000). FastICA is an iterative algorithm. For example, when it tries to find a single independent 
component it performs the optimisation to determine the direction for a weight vector that 
maximizes the projection's  non-Gaussianity, where  is the time series matrix 
fed to the ICA algorithm. In FastICA negentropy is used as a measure of non-Gaussianity. The 
projection  is passed through a non-linearity to assess the negentropy of the projection.  
Based on the maximum entropy principle, two nonlinear functions have been suggested to 
approximate negentropy(Hyvärinen, 1997). The two nonlinear functions suggested are G1(u) 
= log(cosh(a1*u))/a1 and G2(u) = –exp(-u^2/2) (Hyvärinen and Oja, 2000). The functions are 
also often referred to as "contrast functions" in ICA algorithms. Here G1 and G2 are arbitrary 
function names and u is the projection input . For our implementation, we used G1(u), 
where a1 is a constant between 1 and 2. We used G1(u) as it is recommended to be a good 
general-purpose contrast function (Hyvarinen, 1999). Furthermore, while super or sub 
Gaussian independent components can be a criterion to choose different contrast functions, 
we did not explicitly test for them in our dataset (Hyvarinen, 1999). There is no existing study 
to suggest which nonlinearity should be used to obtain a more physiologically relevant ICA 
output. Finally, in our study, MEG-PAC, a neurophysiologically grounded method, could not 
be used due to elevated noise levels in the EEG dataset. We conclude that EEG can be used 
to reliably extract resting state networks from human recordings, but the spatial resolution 
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of the extracted EEG networks is lower than that of comparable fMRI networks from the same 
set of subjects. 

55.1.2 Neuromodulation of spontaneous cortico–subthalamic activity in 
Parkinson’s disease 

In the second publication (Sharma et al., 2021), we used a time delay embedded (TDE) hidden 
Markov model (Vidaurre et al., 2016) to parse the differential effects of dopamine on resting 
state cortico-STN connectivity. We characterized spatial, temporal, and spectral features of 
whole brain resting state networks on and off dopamine (on and off medication conditions, 
respectively). Each HMM state accounted for a unique effect dopamine could have on resting-
state networks. Out of the six HMM states, we could interpret three within the current 
pharmacological framework of dopamine action in Parkinson’s disease. Dopamine's 
differential effect allowed us to distinguish between pathological and physiological spectral 
connectivity. The cortico-cortical state provided e-phys evidence in the delta-theta band for 
dopaminergic medication overdose in Parkinson's disease. Prior to our study, evidence was 
obtained solely through task-based or functional magnetic resonance imaging (fMRI) studies 
(Cools et al., 2002; MacDonald et al., 2011; Ray and Strafella, 2010). On medication, the 
cortico-STN state revealed concurrent cortico-cortical and STN-STN interactions as well as 
spectrally and spatially specific cortico-STN interactions. Furthermore, on medication, a 
fronto-parietal motor network was present, indicating a shift from STN-mediated motor 
connectivity to cortical motor connectivity. These findings have not been reported in previous 
studies. The local STN-STN delta oscillations could only be slightly altered by dopaminergic 
treatment in the STN-STN condition. Additionally, under the influence of dopaminergic 
medication, our study demonstrated significant changes in the temporal characteristics of the 
connection profiles, including lifespan and fractional occupancy. Future modifications to drug 
and DBS-based therapy techniques may depend on this understanding. 

Consistent with our arguments about the difficulty of interpreting the outputs of UML 
methods, we could only interpret three of the six HMM states within a physiological 
framework. As with the ICA components, we could not rule out the remaining states as 
random noise. Also, we saw that adding or taking away PD patients, whose DBS electrodes 
were mistakenly implanted outside of the planned anatomical target, changed the model, 
even though the results of several optimization iterations of the HMM model fitting were 
consistent. 

 A critical element in our pipeline was delay-embedding the time series. Technically, delay 
embedding is done to recover the underlying phase space in which the dynamics of a system 
emerge (Packard et al., 1980). We embedded the time series for our HMM model to bring our 
approach closer to the realm of Gaussian processes (Rasmussen, 2004). Using delay 
embedding, we could define covariance simultaneously over spatial and temporal 
dimensions. The multivariate Gaussian covariance was then used to define the HMM emission 
distributions. Yet despite delay embedding, we were restricted to Gaussian emission 
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distributions that could have limited the complexity of the structure of our dataset model. 
Another limitation of our method was that we used separate HMM models to characterize 
medication-on and medication-off datasets. The two-model approach was primarily adopted 
due to the heterogeneity of the patient's response to medication. However, using two models 
warranted a post-hoc analysis to find correspondence between the states of the two HMM 
models. In future work, we would like to train a single HMM with an increased number of 
states to see if they can capture different features of the dataset. 

55.1.3 Transitions between latent cognitive networks track 
somatosensory perceptual variability 

For the third publication, our HMM pipeline was able to find a significant relationship 
between state transition probabilities and the behavioral responses of different subjects. In 
order to better interpret the output from an unsupervised HMM model, we applied diffusion 
maps and spectral analysis to state-specific data. We found that each HMM state captured 
spectrally-specific whole brain network activity. With the help of diffusion maps, we identified 
a functional manifold for states that were associated with endogenously driven cognitive 
demands. These states also exhibited spatio-spectral properties that have been previously 
associated with distinct forms of top-down cognition during perceptual tasks (Dijkstra et al., 
2017; Long and Kuhl, 2018; Makino, 2019; Witt and Stevens, 2013). 

We demonstrated that transitions between different types of cognitive states are essential 
for accurate perception of incoming inputs. Therefore, behavior depends on the temporal 
patterning of spectrally distinct cognitive states. Additionally, to our knowledge, we provide 
the first whole-brain evidence of how pair-wise spectral coherence between brain regions 
actually manifests on the functional connectivity manifold between various brain regions. This 
broadens our understanding of the function of oscillatory activity on the cortical level and its 
connection to behavior. Despite including analyses of transition probabilities, diffusion map 
analysis, and pairwise spectral coherence, we could only interpret a subset of transitions and 
HMM states. A shortcoming of our approach was that during the pre-stimulus resting period, 
we did not record physiological parameters or measures such as pupil diameter, head 
movement, or hand or leg muscle movement. This limited our ability to interpret the HMM 
states. We also attempted to have the trained HMM model classify out-of-sample behavioral 
responses, but we were unsuccessful in our classification approach. We could not use the 
Viterbi sequence (Viterbi, 1967) of a trial to decode behavioral responses. 

In this study, as with our previous HMM modeling attempt, we used multivariate Gaussian 
distributions to model the HMM states, which limited our ability to model more complex 
statistical properties of our dataset. Next, we used time delay embedding to fit our HMM 
model. The delay embedding scheme used in our analysis pipeline used data vectors from 
both the past and future of the current time point. This prevented us from using pre-stimulus 
spontaneous activity to predict stimulus responses or changes in neural activity for a future 
time point. Furthermore, we did not explicitly take into account the response type to control 
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state switching for the HMM. This may have limited our ability to find a predictive state 
sequence for a specific response type. 

55.1.4 A general note on Hidden Markov Model fitting 
An HMM is a probabilistic model that requires optimization of an objective function to find 
suitable model parameters for the dataset. A critical question regarding any probabilistic 
model is the selection of the function to optimize. According to Bayes' theorem, we have the 
likelihood and posterior functions for any probabilistic model that we can choose to optimize 
(Bilmes, 1998). Usually a maximization approach is used to optimize either the likelihood or 
the posterior functions. The approach used to optimize the likelihood function is called 
maximum likelihood estimation (MLE). Two different approaches can be used to optimize the 
posterior function: maximum a posteriori (MAP) estimation or a fully Bayesian approach. MLE 
and MAP assume that the model parameters are fixed-point estimates. In contrast, a fully 
Bayesian approach assumes model parameters to be random variables, and hence the 
Bayesian approach results in a full probability distribution describing the model parameters. 
From a machine learning perspective, MLE and MAP approaches lead to an overfit model. 
Intuitively, if any value fails to occur during the MLE/MAP training phase (parameter 
estimation phase) of the algorithm, then the corresponding probability will be zero. 
Furthermore, if this specific value shows up during model deployment, then the MLE/MAP-
trained model will not be able to handle it. Hence, we used a fully Bayesian approach to train 
our models. 

In addition to being a probabilistic model, the HMM is a latent variable model. Direct 
optimization of any probabilistic objective function, likelihood or posterior, is difficult. 
Therefore, in practice, an iterative alternating scheme for latent variable models is used to 
optimize parameters for an HMM. The standard algorithm for finding model parameters for 
many latent variable models is the expectation maximization (EM) algorithm (Dempster et al., 
1977). The EM algorithm is a coordinate ascent algorithm that contains two parts. The 
expectation (E) step calculates the expected value of the complete joint likelihood of both the 
data and the latent variables with respect to the posterior (latent variable) distribution. The 
E step uses the current estimate of the model parameters. The M (maximization) step 
maximizes the model parameters with respect to the complete joint data and likelihood 
distribution of the latent variables. These two steps are used alternately until the expected 
value in the E step converges. It is expected that the E step’s expectation will continue to 
increase with every iteration until convergence. An important point about the EM algorithm 
is that the E step requires explicit knowledge of the posterior distribution of the latent 
variable. For most probabilistic models, this posterior distribution is not computable 
analytically. Hence, an alternate approach for model estimation involves using an analytical 
approximation for the posterior distribution. This alternate approach is called the variational 
Bayes approximation. We can extend the EM to the variational Bayes method to approximate 
the model parameters. When applying EM to optimize the variational Bayes objective for 
parameter estimation, it can also be referred to as "variational EM" or "coordinate ascent 
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variational inference." Given the analytically intractable latent variable posterior distribution 
for the HMM, we used the variational Bayes approach. 

Finally, a problem with EM (with or without variational equations) is that in order to calculate 
the E step at every iteration, the full dataset is used for estimation. This means that each 
iteration of the EM algorithm scales in computational cost with the size of the dataset used. 
Recently, a method has been developed to perform variational Bayesian inference using a 
stochastic, gradient-based approach called stochastic variational inference (SVI). In this 
optimization approach, inference can be performed by computing function gradients to be 
optimized using fast, noisy approximations from subsampled data. Hence, we do not need to 
go through the entire dataset for each iteration of parameter updates. For technical details 
regarding SVI, see Hoffman et al., 2013. 

In the case of HMMs, there are two kinds of subsampling when applying SVI. First, each time 
series in its entirety is considered an individual sample (Johnson and Willsky, 2014). Second, 
a single time series is subsampled into shorter temporal epochs, and parameters are updated 
(Foti et al., 2014). Let us take the example of patient data with three 10-minute recording 
sessions per subject. If we have 10 patients, then our recording paradigm would lead to a 
dataset containing 30 different time series in total. In the first subsampling scheme, we would 
randomly select a few complete time series at every iteration of SVI and infer the model 
parameters. In the second scheme, the SVI algorithm would subsample short temporal 
segments from all 30 different time series and update model parameters until convergence. 
We used the first subsampling scheme to fit our models in study numbers two and three. This 
was done because we did not encounter extremely long or high sampling rate time series, 
which would have made the first subsampling scheme computationally expensive to apply. It 
is important to remember that we have to properly initialize the parameters for any stochastic 
optimization algorithm. We seeded the initialization phase with random parameters and then 
used a single variational inference pass through the full dataset to set the SVI scheme’s initial 
starting point. Overall, our inference schemes, the objective functions, and the initialization 
scheme were the ones that have been used in practice for a wide variety of time series or 
independent sample mixture model problems (Ashwood et al., 2022; Batty et al., 2019; Paun 
et al., 2022; Regazzoni et al., 2022; Vidaurre et al., 2016). 

55.1.5 Contributions of our research 
In this thesis, our main objective was to use UML to analyze e-phys signals recorded non-
invasively from the human brain. Starting with a static, non-time-resolved method was 
important for proving that methods like ICA, which are based on statistics but don't take 
biology into account, can be used to study spontaneous brain networks. We evaluated several 
filter settings that might be optimally combined with ICA and found that FIR narrow band 
filters were most successful in recovering canonical brain networks. We were able to 
reproduce earlier neuroimaging and e-phys findings, providing a suitable beginning point for 
our brain network research. This led to the next set of time-resolved analyses, which were 
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done to find out more about the role of spontaneous "resting state" epochs, which can be 
changed by a neurotransmitter in the brain or by behavior. 

The move from a static to a time-resolved method revealed UML’s potential for neural time 
series and neuroscience. We reasoned that different forms of brain-region interactions 
affecting the time series would result in nonstationarities. Sharma et al. (2021) used the HMM 
to partition the nonstationarities into distinct HMM states. Each HMM state represented a 
brain network. We reproduced multiple Parkinson's disease and dopamine-related cortical 
brain network findings that had been previously proven using time-averaged (static analysis) 
techniques. In these brain network results, we also showed how frequency-specific activity 
was a transient, rather than sustained, feature of brain networks. In this study, we presented 
a novel analysis pipeline for elucidating the complex effects of neuromodulators using 
statistically grounded approaches. 

In our third investigation, we expanded the HMM pipeline's neuroscientific utility in two 
different ways. First, we used behavioral data to demonstrate how distinct HMM states (brain 
networks) were related to one another. We were able to demonstrate a correlation between 
the somatosensory perception of the stimulus and the way transitions between HMM states 
take place. The link between perception and state transitions justifies a change in perspective 
from one that stresses sustained frequency-specific rhythms to one that prioritizes transitory 
dynamical brain networks. These transitory, dynamical brain networks may or may not have 
spectrally specific properties while carrying out perceptual tasks. Most theories about how 
important frequency-specific activity is for perception are based on time-averaged analyses 
that look at rhythmic activity over time and see it as a neural correlate of perception. Hence, 
our HMM-based time-resolved dynamical results are a significant contribution to the area of 
MEG studies exploring sensory perception. 

Next, we look at how spectral coherence and network connectivity are related by using the 
HMM's ability to describe states in terms of zero-mean multivariate Gaussian distributions. A 
large number of studies often characterize brain networks using spectral coherence. After 
that, conclusions are made about how different coherence-based brain networks work, 
especially in MEG studies that focus on tasks. However, spectral coherence calculation is 
based on Fourier analysis, which does not take into account the noise that affects high-
dimensional brain signals even after considerable quality control. Also, it has been shown that 
spectral coherence is not the mechanism itself but rather the result of communication 
between different parts of the brain (Schneider et al., 2021). So we used diffusion maps as a 
way to figure out how networks are formed in the brain. Diffusion maps use the diffusion 
operator to perform a random walk on a connected graph and use the local geometry of the 
dataset to show how two brain regions are connected (Coifman et al., 2005; Singer and 
Coifman, 2008), which is something that PCA and ICA don't do. The characteristics of the data 
that control the diffusion process on the graph are a critical concern when using diffusion 
maps. It has been demonstrated that if a dataset or time series is nonstationary, the 
probability distribution will most likely control the diffusion process rather than the data itself 
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(Carter et al., 2009; Carter et al., 2011; Lian et al., 2015). In our analysis pipeline, we factored 
the nonstationarity of the time series by first parsing the underlying time series with a 
probabilistic discrete state space model, like the HMM. Then, to get state-specific connectivity 
manifolds, we looked at state-specific covariance matrices that were calculated between 
different brain regions. This pipeline lets us make neuroscientific conclusions from the state 
manifolds without using spectral coherence analysis. Our novel pipeline, which is made up of 
diffusion maps and HMM, shows how useful it is to use a non-linear dimensionality reduction 
method by first addressing the fact that the time series is not stationary. Using only data-
driven methods, this HMM-diffusion map combination makes it possible to draw new 
neuroscientific conclusions from the time series. Lastly, the diffusion map technique brings 
information geometry into the field of brain connectivity, which has been dominated by 
Fourier analysis up until now. However, it is important to point out that, at the core of both 
techniques, we used the covariance between brain regions as the base measure of 
connectivity between different brain regions. Humans, non-human primates, and rodents can 
all be recorded using the recording techniques used in neuroscience today. This makes it 
possible to record large time-series datasets. Until better recording techniques that can 
capture dynamics at the neurotransmitter or synaptic level are used to study brain activity, 
covariance is the best estimation we have of neural communication. It will therefore be crucial 
to keep learning about the statistical characteristics of neural signals and creating techniques 
that can effectively use these statistics to understand how the brain works. 

In conclusion, we showed the potential of UML to shed light on dynamic fluctuations in brain 
activity and the potential links to neuromodulation and behavior. Future studies will focus on 
improving HMM models by incorporating better probability distributions to model e-phys 
datasets (Ashwood et al., 2022; Smith et al., 2021). Furthermore, we would include behavioral 
parameters as auxiliary variables to improve decodability in HMM models (Hälvä and 
Hyvarinen, 2020; Hyvarinen et al., 2019). Understanding and exploiting the statistical 
structure of electrophysiology datasets will lead to better insights into aberrant neural activity 
and into interventions that can modify activity for improved clinical results. By utilizing UML 
algorithms as well as electrical and pharmacological perturbations to study human brain 
function, the field of cognitive and computational neuroscience hopes to answer some of the 
most pressing questions about how we think, move, and feel. 
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