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Introduction

In this cumulative dissertation, my coauthors and I study different aspects of the digi-

tal economy. The digitalization of markets alters various economic interactions, which

may change market outcomes compared to classical analog markets. I use methods from

experimental economics, as well as theoretical modeling and simulations studies, to un-

cover different aspects of this digitalization and its implications. The first two chapters

of this dissertation focus on the influence of pricing algorithms on markets. In Chapter 1,

I investigate the ability of self-learning pricing algorithms to collude on non-competitive

prices. I compare them to human behavior in a market experiment and highlight in which

situations algorithms are more collusive than humans. Chapter 2 discusses the possibility

that online platforms can use price recommendation algorithms to make the seller market

more collusive. The third and fourth chapters shift their focus away from algorithms

and examine other aspects of the digital economy. Chapter 3 focuses on the cooperation

among remote online workers, whereas Chapter 4 discusses methods that video game de-

velopers use to monetize their games via so-called “loot boxes”. In the following, I provide

a summary of each chapter.

Chapter 1 discusses the effect of self-learning pricing algorithms on market outcomes.

When firms use those tools, the pricing decision for a specific good in a market is not made

by a human pricing manager anymore, but it is outsourced to an algorithm that takes all

pricing decisions. Often those algorithms do not follow any predefined strategy but learn

by themselves how to price the product (Ezrachi and Stucke, 2017). With the rise in pop-

ularity, there have been increasing concerns from competition authorities and academics

that those algorithms could also learn to tacitly collude on non-competitive prices (see, for

instance, Bundeskartellamt and Autorité de la concurrence, 2019). Building on previous

work from Calvano et al. (2020a), I show that popular self-learning algorithms are collu-

sive in market simulations. Then, I conduct market experiments with humans in the same

1



2 INTRODUCTION

environment to derive a counterfactual that resembles traditional tacit collusion. Across

different treatments, I vary the market size and the number of firms that use a pricing al-

gorithm. I demonstrate that oligopoly markets become more collusive if algorithms make

pricing decisions instead of humans. In two-firm markets, prices are weakly increasing

in the number of algorithms in the market. In three-firm markets, algorithms weaken

competition if most firms use an algorithm and human sellers are inexperienced. The

results highlight the anti-competitive effect of pricing algorithms, and increased scrutiny

by competition authorities is warranted.

Also, Chapter 2 discusses the influence of algorithms on market outcomes. Many

online platforms like Airbnb.com or Ebay.com provide sellers competing on their plat-

form with a price recommendation for the product they are selling. We analyze if those

non-binding pricing recommendations can be used to make the seller markets more col-

lusive. As platforms often extract a share of the revenue from the sellers through sales

commission rates, collusion among the sellers can be in the interest of the platform. We

develop a stylized theoretical model and derive two rule-based algorithms that aim to

make the seller market more collusive. Utilizing a laboratory experiment, we find that

sellers condition their prices on the recommendation of the algorithms. The algorithm

with a soft punishment strategy lowers market prices and has a pro-competitive effect.

The algorithm that recommends a subgame perfect equilibrium strategy does not lead to

higher average market prices compared to a benchmark without any price recommenda-

tions. However, it increases the range of market outcomes. As a result, specific markets

are more collusive while others become more competitive. Variations in economic prefer-

ences lead to heterogeneous treatment effects and explain the results. The results suggest

that algorithm-based non-binding price recommendations influence sellers’ pricing behav-

ior but that the effects are heterogeneous, and price recommendations would have to be

well-targeted to make markets more collusive.

Chapter 3 presents a field experiment on volunteering in an online labor market. Vol-

unteering is a widespread allocation mechanism in many workplaces. It emerges naturally

in many work environments within the digital economy, like in software development or

the generation of online knowledge platforms. In contrast to our theoretical predictions

and previous research, we find no effect of team size on volunteering behavior. Using

control treatments, we can show that workers generally react to free-riding incentives
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provided by the volunteering setting but do not react strategically to the team size. We

replicate our results and elicit workers’ beliefs about their co-worker’s volunteering. It

reveals a form of conditional volunteering as the primary driver of volunteering, which

can explain our results. Furthermore, we discuss the implications of those findings for

organizations that rely on volunteering as a task allocation mechanism and highlight in

which situations it may create inefficiencies.

Lastly, Chapter 4 focuses on the design features of “loot boxes”. Loot boxes are digital

goods that video game developers use to monetize their games. They are often designed

as lotteries that gamers can buy and offer random rewards to be used in-game. Regulators

are increasingly concerned that they might induce consumers to overspend on video games.

We consider popular design features like opaque disclosure of the odds of winning and

positively selected feedback in a stylized experimental framework. We find that those

design features lead participants to overspend on the lotteries. In combination, these

features double the average willingness-to-pay for lotteries. Furthermore, we highlight

that the beliefs about the winning probability are an important channel that leads to this

overspending. The findings emphasize the need to regulate the design of loot boxes to

protect consumers from overspending.
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6 1.1. INTRODUCTION

1.1 Introduction

The use of autonomous pricing algorithms is on the rise in various industries.1 When firms

use those tools, the pricing decision for a given product is outsourced from the human

decision-maker to a computer algorithm. While in the past most pricing algorithms have

been rule-based with rules defined by the seller, there is a recent evolution towards self-

learning algorithms (Ezrachi and Stucke, 2017). These self-learning algorithms develop

the strategies to achieve a specific goal, for instance, maximizing the firms’ profits, without

explicit instructions.

There are concerns among competition authorities (e.g., Bundeskartellamt and Au-

torité de la concurrence, 2019; Competition & Markets Authority, 2021) and academic

scholars (e.g., Ezrachi and Stucke, 2016, 2017; Mehra, 2016) that pricing algorithms could

not necessarily learn to price products more efficiently but also that there exists a pos-

sibility that they learn to collude tacitly.2 In other words, algorithms could learn by

themselves that tacit collusion benefits the firm.

While recent papers by Calvano et al. (2020a) and Klein (2021) show that algorithms

can learn to be collusive, it is unclear whether pricing algorithms are more collusive

than humans and, therefore, harm competition. Tacit collusion in traditional markets

amongst human decision-makers is a well-documented phenomenon in both empirical and

experimental economics.3 To assess the (anti-)competitive effects of algorithms, it is,

therefore, necessary to establish a suitable baseline.

This chapter provides a counterfactual for algorithmic collusion for a wide range of

possible market compositions and highlights the impact of algorithms on competition. To

examine whether commonly used self-learning algorithms make markets more collusive

relative to the status quo of human collusion, I apply a two-step approach. In the first

step, I consider self-learning pricing algorithms in an extensive simulation study to test

whether algorithms learn to set supracompetitive prices and suitable strategies to support
1The European Commission (2017) finds that two-thirds of sellers in digital markets use pricing tools.

Prominent examples are Amazon (Chen et al., 2016b; Musolff, 2022) or the gasoline market (Assad et
al., 2022).

2For recent discussions about the possible policy and legal implications of algorithmic pricing see Kühn
and Tadelis (2017), Schwalbe (2018), Harrington (2018), Calvano et al. (2019), Calvano et al. (2020b)
and Assad et al. (2021).

3Empirical evidence is provided by, for instance, Borenstein and Shepard (1996), Davies et al. (2011),
Miller and Weinberg (2017) and Byrne and De Roos (2019). See Engel (2015) and Horstmann et al.
(2018) for experimental evidence.
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those prices as a collusive outcome. Here, I closely follow the approach from Calvano et

al. (2020a) but consider a different market environment that is more tractable. In the

second step, I conduct market experiments in which humans compete either against each

other or with self-learned pricing algorithms.4 In the experiments, I closely mimic the

market environment from the simulations. Across different treatments, I vary the market

composition between algorithms and humans and the number of firms in the market. The

experimental approach allows me to consider tacit collusion and study the underlying

mechanics in a controlled setup. My design enables me to observe humans and algorithms

in the same environment and, thus, to analyze whether algorithms promote collusion.

I find evidence that algorithms foster tacit collusion in duopolies. Two-firm mar-

kets with algorithms are always more collusive than markets with humans. In “mixed”

markets, in which humans and algorithms compete with each other, self-learned pricing

algorithms are as good as humans when colluding with the other market participant.

Hence, pricing algorithms never promote competition but foster collusion if all firms use

one. In triopolies, there exists a non-linear relationship between the number of firms

with a pricing algorithm and the level of tacit collusion. Markets in which a single firm

uses a pricing algorithm are more competitive than markets with only humans. Yet,

as more firms use pricing algorithms, market prices can increase and may even exceed

prices in human markets, especially if humans are inexperienced. Similar to Calvano et

al. (2020a) and Klein (2021), algorithms learn to punish price deviations. As I consider a

stylized market environment, I can interpret the strategies of the algorithms. The most

successful algorithms learn a win-stay lose-shift strategy that is common for the iterated

prisoner’s dilemma. The outcomes in mixed markets have a large variance as humans

choose heterogeneous strategies when playing against the algorithms.

While there exists reoccurring support for the hypothesis that algorithms can learn

to set non-competitive prices and develop reward-punishment strategies (Klein, 2021;

Calvano et al., 2020a, 2021; Abada and Lambin, 2022; Johnson et al., 2022; Asker et
4Many modern markets do not consist of just algorithms or only humans, but both can interact with

each other in the same market environment. For example, according to Chen et al. (2016b), only one-third
of the vendors selling the most popular products on amazon.com use some form of pricing algorithm,
which gives rise to a mixture in market composition. Also, in the German gasoline industry Assad et
al. (2022) identify local markets in which algorithms compete against firms in which arguably human
managers make pricing decisions.



8 1.1. INTRODUCTION

al., 2022), it is unclear how algorithmic collusion compares to human collusion.5 Market

environments in previous studies on algorithmic collusion deviate substantially from the

setting used in experimental market games. My design allows me to compare the outcomes

of pricing algorithms to human pricing directly, as I can observe both in the identical

market environment. A recent paper by Assad et al. (2022) identifies the adoption of

algorithms in the German gasoline market. Within duopoly markets, price margins rise

as both firms begin to utilize an algorithm. The effect is comparable to my findings for

two-firm markets. For the market studied by Assad et al. (2022), the exact algorithms

are unobservable as they are usually proprietary. The combination of simulations and

laboratory experiments enables me to examine human and algorithmic strategies to study

the underlying mechanics that may drive those effects.

This research also allows studying cooperation between humans and algorithms, which

is a topic in computer science and experimental economics. In computer science, the design

of cooperative algorithms in repeated games is an active research area (e.g., Crandall et al.,

2018; Lerer and Peysakhovich, 2017). Here, cooperative algorithms are often the explicit

objective. Similar to Calvano et al. (2020a), I consider a popular self-learning algorithm,

which can be attractive as a pricing tool. While cooperation might be an outcome, it is

not the initial design objective.

In experimental economics, on the other hand, the focus is often on deterministic al-

gorithms, which do not learn themselves (see March (2021) for a recent literature review).

Moreover, collusion in mixed markets with humans and algorithms is rarely studied. A

notable exception is a recent paper by Normann and Sternberg (2023). They consider a

tit-for-tat algorithm and find that three-firm markets with an algorithm are more collu-

sive than classical human markets. The authors vary whether participants know if they

play against a computer or a person and find no differences in this domain. My approach

differs as I study self-learning algorithms and the limit strategies which they develop by

themselves. Furthermore, my design allows analyzing the entire array of market composi-

tion as I can observe algorithmic and human markets as well as mixed markets. Hence, I
5Besides self-learned collusion, algorithms could also influence competition by offering better demand

predictions (Miklós-Thal and Tucker, 2019; O’Connor and Wilson, 2021) or by serving as commitment
devices (Brown and MacKay, 2022; Leisten, 2022). Furthermore, Harrington (2022) argues that outsourc-
ing the development of algorithms to a third-party developer can affect market outcomes. For a general
discussion of the possible effects algorithms can have on the economy, see Agrawal et al. (2019).
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can directly compare algorithmic and human collusion and investigate the effect of pricing

algorithms on a wide range of scenarios.

The remainder of the chapter is structured as follows. In Section 1.2, I discuss the

main concepts of the algorithm, which I consider in this study. Then, in Section 1.3,

I explain the market environment that I use in all simulations and experiments. After

discussing the experimental design in Section 1.4 and the hypotheses in Section 1.5, I

present my results in Section 1.6. Section 1.7 discusses the implications of my findings

and concludes.

1.2 Pricing algorithms

Following the approach by Calvano et al. (2020a) and Klein (2021), I utilize Q-learning

algorithms to study the collusive effects of self-learning pricing algorithms.6 Q-learning is

a reinforcement learning algorithm designed to solve Markov decision processes with an

ex-ante unknown environment (Watkins, 1989). In other words, Q-learning algorithms

must learn everything about the environment alone and are not instructed to follow a

particular strategy.

Many of the most successful state-of-the-art reinforcement learning algorithms build

on the main ideas of Q-learning (e.g., Mnih et al., 2015; Silver et al., 2016; Arulkumaran

et al., 2017). Therefore, it appears reasonable to assume that self-learning pricing tools

also use some form of Q-learning. As Q-learning is still interpretable in contrast to more

modern approaches, it makes it a natural choice when studying algorithmic collusion.7 In

the following, I discuss some of the general concepts in Q-learning.8

6Earlier work by Waltman and Kaymak (2008) shows that Q-learning algorithms can converge to
non-competitive quantities in a Cournot framework. However, they do not obtain collusion as algorithms
also learn this behavior if they are memoryless. Hence, punishment strategies, which are essential for
collusion to be sustainable in the long run, could never arise.

7While most of the literature on algorithmic collusion focuses on Q-learning algorithms, there are some
exceptions. For instance, Hansen et al. (2021) study algorithmic pricing as a multiarmed bandit problem,
in which each firm uses an Upper Confidence Bound Algorithm. Supracompetitive prices can arise in this
setup as firms tend to run correlated experiments. Recent studies by Hettich (2021) and Jeschonneck
(2021) consider reinforcement learning algorithms that use function approximation methods.

8For a more detailed discussion of Q-learning, see Sutton and Barto (2018).
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1.2.1 Basic Q-learning

Optimization problem In each period t, a Q-learning algorithm, often referred to as

an agent, observes the current state st ∈ S of its environment and chooses some action

at ∈ A. Here, A is the set of feasible actions and S the set of possible states. Picking

the action results in a reward signal πt ∈ R and the next state st+1 ∈ S. The objective of

the agent is to maximize the sum of discounted future expected rewards given the current

state st over A. The Bellman equation commonly expresses this maximization problem

V (st) = max
at

{E[πt|st, at] + δE[V (st+1)|st, at]} (1.1)

with δ ∈ [0, 1) being the discount rate. The Bellman equation described by Equation 1.1

is recursive. The value of being in state st is given by the current reward signal πt plus

the discounted value of the continuation state st+1.

Conditional on having perfect knowledge over a stationary environment the agent is

interacting in, Equation 1.1 could be solved using dynamic programming techniques. Yet,

in Q-learning, the environment is typically unknown to the agent. Before learning, the

agent does not know which actions result in which states or which state-action combi-

nations lead to which rewards. Furthermore, the environment might be non-stationary

because the same state-action combinations in period t may lead to a different reward and

another continuation state in a different period t′. Thus, classical dynamic programming

techniques, like recursively solving the Bellman equation, do not work given the unknown

and possibly non-stationary environment.

In Q-learning, the Bellman equation is rewritten as the Q-function

Q(st, at) = E[πt|st, at] + δE[max
a

Q(st+1, a)|st, at] (1.2)

In this chapter, A and S are finite, and hence the Q-function is given by a |S| × |A|

matrix, where Q(st, at) represents the expected net present value of picking action at in

state st.9 The goal of the Q-learning agent is to repeatedly interact with the environment

to iteratively update the cells of its Q-matrix to obtain an approximation for the state-

action value Q(st, at) for each state-action combination.
9Note that the V (st) ≡ maxat Q(st, at).
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In all simulations, the Q-matrix is initialized with random numbers drawn from a

uniform distribution with support on the unit interval.10 For each subsequent iteration

t, the agent picks some action at conditional on the current state st, which yields πt and

st+1. Then, the Q-matrix gets updated as the weighted average of the past estimate of

Q(st, at) and the newly learned value

Qt+1(st, at) = (1 − α)Qt(st, at) + α(πt + δ max
a

Qt(st+1, a)) (1.3)

where α ∈ (0, 1) is referred to as the learning rate. For the subsequent states, the same

procedure is applied in each iteration until some convergence rule is met.

Exploration versus exploitation When selecting the action in st, the agent faces a

trade-off. On the one hand, picking the action a∗
t = arg maxa Q(st, a) yields the highest

expected payoff given the current approximation of the Q-matrix. On the other hand, the

agent can explore the environment only by picking new actions. By exploring the action

space for each state of the Q-matrix the agent gradually learns the value of each state-

action combination. As a result, the agent may find actions, which were underestimated

beforehand. To balance exploration and exploitation, I use the ε-greedy algorithm. When

using the ε-greedy algorithm, the current optimal action a∗
t is picked with probability

(1 − εt) with εt ∈ [0, 1]. With the probability εt the algorithm selects a random action

from A. I follow the approach by Calvano et al. (2020a) and Johnson et al. (2022) and

define εt = e−βt for some small β > 0. Note that εt decays over time. At the beginning of

the learning process, when the Q-matrix is rather uninformative about the value of picking

an action in a specific state, the agent picks actions at random with a high probability

and explores the action space. Overtime εt decreases and the agent chooses the action,

which offers the highest expected long-run reward, more often. Eventually, the agent does

not explore anymore but always picks the action with the highest expected value given

that limt→∞ εt = 0.
10Klein (2021) and Abada and Lambin (2022) initialize the Q-matrix with zeros. Calvano et al. (2020a)

and Johnson et al. (2022) use an initialization that corresponds to the discounted profit if all firms
randomize their prices. Calvano et al. (2020a) show that outcomes are similar for different initialization
of the Q-matrix.
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1.2.2 Simulation setup

Learning and convergence In each simulation, the agents play against independent

copies of itself and learn by interacting simultaneously with each other. For a stationary

environment, Q-learning agents converge to the optimal solution under mild conditions.11

For my design, this is, however, not the case, as multiple agents learn in the same envi-

ronment at the same time. The environment of each agent is influenced by the decisions

of other agents taking actions and learning at the same time by picking action simul-

taneously. Furthermore, the learning procedure when using the ε-greedy algorithm is

stochastic for finite t. Given this constant change in strategies for the competitors, the

environment is non-stationary, and thus convergence is not guaranteed. Therefore, I rely

on simulations to derive results on algorithmic collusion in this non-stationary setup.

To determine the state of convergence in each training iteration, I follow the approach

by Calvano et al. (2020a) and look at the cells of the Q-matrix. If the best action for

each state does not change for 100,000 subsequent periods, I assume that the agents in

the market have converged and found a stable strategy.

Uniqueness For a given environment, three hyperparameters define the learning pro-

cess of the agent: α, β and δ. The learning rate α controls how much the agent values

new information relative to the current approximation of the Q-matrix. For large values

of α, the agent does not put much weight on past interactions with the environment. If

α is small, the agent does not learn much from the newly arriving information in each

period. The value of β captures the extent of exploration of the agent. The larger β,

the faster εt converges to zero. Lastly, the discount rate δ captures the importance of

future rewards. All three hyperparameters are not learned by the agents but are set ex-

ogenously. While there are some rules of thumb, their choice remains essentially unclear

from a theoretical perspective. Given that an agent’s outcome usually depends on those

hyperparameters, the state of convergence is not unique for a given environment. This

problem gets amplified further as the learning process of all agents is stochastic, which

hinders uniqueness.
11For a stationary Markov decision process, Q-learning converges to the optimal policy when using the

ε-algorithm if the rewards signals are bounded. Furthermore, the learning rate must decrease over time,
the sum of learning rates must diverge, while the squared sum of learning rates must converge. For a
proof see Watkins and Dyan (1992).
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In the entire study, I keep the discount rate fixed at δ = 0.95. It corresponds to the

continuation probability in the market experiments with human participants described

in Section 1.4.2. For α and β, I consider a parameter grid with α ∈ [0.025, 0.25] and

β ∈ [1 × 10−8, 2 × 10−5] with 100 points in each dimension evenly spaced from one an-

other. For each grid-point, I simulate 1,000 distinct markets which differ in the underly-

ing stochastic process. Hence, I run in total 10,000,000 simulations for each market size.

The grid and the simulation setup, again, follows Calvano et al. (2020a) and Johnson et

al. (2022). I evaluate the results from this grid simulation using different performance

measures, which I describe below. Furthermore, I use the grid to find a specific algorithm

that competes with humans in the experiments.

1.2.3 Performance evaluation

Profitability and prices Given the definition of the Bellman equation, V (s) provides

an unbiased estimate of the expected sum of future discounted rewards for a given state s.12

Thus, V (s) is a natural measure for the profitability for agent i in a given state s. I utilize

this direct interpretability and use V (s) as a profitability measure. Additionally, I consider

the (average) market price upon convergence as a way to measure tacit collusion. Market

prices are of particular interest when comparing outcomes in algorithmic to experimental

markets with humans as the value function is unobserved here.

Optimality High profitability alone does not necessarily imply that the agent has

learned an optimal strategy against its competitors. To derive a measure of how well

the agent does in comparison to how well it could do, I derive the optimality of the agent

for state s as

Γi(s) = 1{arg max
a

Qi(s, a) = arg max
a

Q∗
i (s, a)} (1.4)

where Q∗
i (s, a) is the optimal Q-matrix assuming that the opponents play their limit

strategy. Here, 1 denotes the indicator function.

I can obtain this optimal Q-matrix in the following way: After convergence, the

strategies of the other agents, which learned in the same environment, are held con-
12I evaluate the performance of the agent only upon convergence. Therefore, for ease of notation, I

omit the period subscript t.
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stant. Thereby, the environment becomes stationary as the state-transition probabilities

do not change anymore. Next, I initialize a new agent, which competes against the limit

strategy of the opponents. I utilize dynamic programming to repeatedly iterate over each

state-action combination of its Q-matrix until convergence. Within this stationary en-

vironment, convergence is guaranteed. The Q-matrix of the new agent corresponds to

the optimal Q-matrix Q∗
i (s, a) that the actual agent could have learned against the limit

strategy of the other agents.

Note that Γi(s) = 1 implies that the agent has learned to play a Nash equilibrium

for state s. The agent has learned a subgame perfect Nash equilibrium if and only if

Γ = 1
|S|

∑︁
s Γi(s) = 1. For Γ < 1, there are states for which the agent did not learn to play

a Nash equilibrium.

Selecting a specific algorithm I study experimental treatments in which humans

compete against algorithms in the same market. To conduct laboratory experiments in

those “mixed” markets, I have to decide on a specific parameterization of the agent with a

specific stochastic process. To select an algorithm for this purpose, I take the perspective

of a firm that would want to deploy a pricing algorithm to a market. It is reasonable to

assume that this firm would want the pricing algorithm to be (i) profitable and (ii) opti-

mal in the sense that it is not easily exploitable by other market participants. Considering

both objectives in isolation is not sufficient when selecting an agent for the deployment to

the market. Importantly, high profitability does not necessarily imply high optimality or

vice versa. It is vital to rule out that a lack of sophistication of the algorithms drives the

high profitability.13 For instance, the agents in the environment could jointly converge

to a seemingly collusive outcome in which they price at the monopoly price but fail to

learn a strategy that accounts for certain deviations. Such a myopic strategy is unlikely

to perform well against new competitors, which would result in a lower profitability than

in the simulation. When both performance measures are maximized jointly, the agent has

learned a profitable strategy that also accounts for the strategic element of the environ-

ment. Accordingly, it increases the likelihood that the algorithms perform well against

new (possibly human) competitors. Therefore, I propose the following criterion for agent
13The situation can arise, for example, if the exploration of the agent is limited.
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i that combines both performance measures

Ψi = Γi

|S|
∑︂

s

Vi(s). (1.5)

Since Γi ∈ [0, 1], the selection criterion is the average profitability over the entire state

space shrunk towards zero by the degree of suboptimality. Hence, Γi can be interpreted as

a shrinkage penalty in this context. The intuition is that high profitability is only valuable

if other players cannot exploit the agent easily with a possibly more sophisticated strategy.

In the simulation, algorithms usually converge to a specific state. Within the experiments

with humans, different states are potentially relevant as human and algorithmic strategies

can differ. For that reason, I consider the entire state space and not only the state of

convergence when defining Ψi. For treatments in which algorithms interact with humans,

I select the algorithm from the simulation in which Ψ = 1
N

∑︁N
i Ψi is maximized over the

parameter grid for α and β. I will refer to it as the selected algorithm.

In mixed markets, the algorithms learn “offline” in advance. Put differently, they de-

velop their strategies in a simulated market environment against other algorithms. Once

they interact with humans in the actual experimental market, they do not learn any more

from new market information but use the strategy obtained during the training in the

simulation.14 While this approach might appear restrictive, it is arguably realistic. Q-

learning is a slow learning algorithm as it updates only one cell of the Q-matrix in each

training step. Furthermore, each cell has to be visited by the agent multiple times to

obtain an accurate estimate of the value of this state-action combination. As a result,

Q-learning algorithms usually learn too slow to be trained “online”, meaning in the actual

market environment. Furthermore, this learning strategy has been used in other ground-

breaking Q-learning applications and is a common standard for successful reinforcement

learning applications.15

Also, from an industry perspective, offline training makes intuitive sense. A firm using

a pricing algorithm would likely want to evaluate its performance before deploying it to

the market to avoid any possible loss, given a potential suboptimal pricing strategy. The
14Thus, I do not consider how humans and algorithms may interact during the learning process. Yet,

it can be an interesting avenue for future research.
15For instance, AlphaGo, which is a reinforcement learning algorithm that outperforms humans in the

board game Go, uses offline learning (Silver et al., 2016). For a discussion of offline learning, also see
Calvano et al. (2020a).
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risk that the agent learns a suboptimal strategy can be partially mitigated by offline

training as an ex-ante evaluation is feasible.16

1.3 Market environment

I consider a stylized Bertrand market environment, which is commonly used in the exper-

imental economics literature on collusion (see, for instance, Fonseca and Normann, 2012;

Horstmann et al., 2018).

There are N ∈ {2, 3} firms in the market, which face a perfectly inelastic demand

function and have zero marginal costs. Each firm produces the same homogeneous good.

The market consists of m = 60 computerized consumers, which are all willing to purchase

exactly one unit of this good in each round and have a maximum willingness to pay of

p = 4. The price of firm i in period t is denoted by pi
t ∈ P := {0, 1, 2, ..., 5}. Consumers

buy the good at the lowest offered price. If multiple firms offer the lowest price in a given

round, the market is shared equally. Firms are always either represented by a human

or by a Q-learning algorithm. This market environment is the same for the simulation

study and all experimental treatments. It allows me to directly compare the simulation

and outcomes and derive a counterfactual for algorithmic collusion. In the simulation

treatments, firms compete in an infinitely repeated game with a discount rate of δ = 0.95.

To mimic the features of an infinitely repeated game in the experimental treatments, I use

a repeated game with random stopping, where the continuation probability for playing

another round is given by 95% (Roth and Murnighan, 1978). While this environment is

less complex than many actual markets, it yields a suitable setting for my design as it

distills the main components of price competition when studying collusion.

There exists a stage game Nash equilibrium at pNE = 1. The monopoly price of

pM = p = 4 maximizes joint profits.17 When all firms charge the same price, πi
t = p m/N

gives the profit. The profit for a single deviating firm is πi
t = pm. Collusion is sustainable

at the monopoly price for the given discount factor, for instance, by grim-trigger strategies.
16When using offline training for pricing tools that build on reinforcement learning algorithms, the

market environment has to be known to the developing firm. However, with modern tools in demand
estimation and supervised machine learning, it is reasonable to assume that firms can derive this envi-
ronment.

17There are two prices (p = 5 and p = 0) which are (weakly) dominated. I include both in the set of
possible prices P to rule out that convergence to the boundaries of the price set is equivalent to collusion
or competition at the stage game Nash equilibrium.
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Crucially, the environment is stylized and tractable, which allows for an analysis of the

strategies algorithms learn in the game. Furthermore, it is arguably easy to understand

for experimental subjects due to its simple mechanics. Also, the environment offers a

different extension to algorithmic price competition to markets with a perfectly inelastic

demand function, which has not been studied before.

Q-learning and the market environment If a firm uses a Q-learning algorithm, the

algorithm takes over the pricing decision in each period. Hence, the action at of the agent

corresponds to a price and the set of possible actions corresponds to the price set. The

economic profit obtained in each respective period is the reward signal for the Q-learning

algorithms.

Similar to Calvano et al. (2020a) and Johnson et al. (2022), I define the state of

the environment for each agent as the set of past prices from the previous period st =

{pt−1
1 , ..., pt−1

N }. Notably, this state representation corresponds to memory-one strategies,

which humans predominantly use in the prisoner’s dilemma and market games (Dal Bó and

Fréchette, 2019; Romero and Rosokha, 2018; Wright, 2013). Calvano et al. (2020a) also

consider state representations that allow for a two-period memory. This larger memory

does not improve the collusive abilities of the algorithms. Importantly, it is straightfor-

ward to construct memory-one strategies that make collusion incentive-compatible in two

and three-firm markets.18

1.4 Experimental design

1.4.1 Treatments

I consider five experimental treatments and two treatments based on simulations. Across

treatments, I vary the market composition between algorithms (A) and humans (H) and

the number of firms in the market (see Table 1.1). I label the treatments with the number

of human firms followed by the number of firms that use an algorithm. For example,

treatment 2H1A stands for two human players and one algorithmic player operating in
18For instance, consider a memory-one strategy that mimics a grim-trigger strategy in the sense that

the agent always plays the monopoly price in the state s = (pM , pM , pM ) but chooses the stage game
Nash equilibrium in any other state. This strategy is a possible outcome for the simulations from an
ex-ante perspective and makes collusion sustainable for the given discount factor of δ = 0.95.
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one market. Thus, I consider treatments without any algorithms (2H0A and 3H0A) and

Table 1.1: Treatment composition

Number of Human Players Number of Algorithms
0 1 2 3

3 3H0A - - -
2 2H0A 2H1A - -
1 - 1H1A 1H2A -
0 - - 0H2A 0H3A

without any humans (0H2A and 0H3A).19 Comparisons between those treatments reveal

whether algorithms are more collusive than humans. Additionally, I consider treatments

in which humans compete against algorithms (1H1A, 1H2A and 2H1A). I utilize those

treatments to examine the way humans and pricing algorithms interact with each other.

Furthermore, they show if an increase in the share of algorithms in the market fosters

tacit collusion for different market sizes.

1.4.2 Procedure

Each experimental treatment is repeated for three supergames to observe learning effects.

Within each supergame, there is a fixed group composition. Across supergames, I use a

perfect stranger matching scheme. This matching scheme is common knowledge. Hence,

participants know they interact with each person only within one supergame throughout

the entire experiment. It rules out any reputation effects that could be present elsewise.

In my experiment, each round has a continuation probability of 95% in each su-

pergame. Hence, with a 5% chance, a given supergame ends after each respective round.

The instructions mention the continuation probability to the subjects at the beginning of

each supergame. It corresponds to the discount rate of δ = 0.95 that is used for the algo-

rithms in the simulation treatments.20 To allow for different experimental sessions with

the same supergame lengths, the round numbers are pre-drawn with a random number

generator.21 At the end of each round, participants receive information about all prices

in the market. Furthermore, they see their own profit in the given round.
19Note that the latter are simulation studies.
20For a risk-neutral player the continuation probability is theoretically equivalent to the discount rate

(see for instance Roth and Murnighan, 1978; Dal Bó, 2005).
21The exact round numbers are 25 (supergame 1), 17 (supergame 2) and 11 (supergame 3).
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Each participant has complete information on which firms use a pricing algorithm.

While this is arguably not the case in actual markets, Normann and Sternberg (2023)

show that participants are insensitive to the knowledge of playing against an algorithm

or a human player.

Following Normann and Sternberg (2023), all profits obtained by a firm that uses

a pricing algorithm are given to a passive human player, who does not take any active

decision. It rules out any differences in social or distributional preferences that might

arise elsewise across treatments.

The framing regarding the algorithmic decisions in the experiment is neutral. In all

treatments, participants do not know the objective of the algorithm, they do not know

that it is self-learned or how it learned its strategy.22 Subjects receive the instructions at

the start of the session, but they are also available during the experiment at any point.

After the participants read the instructions, I ask them a set of control questions.23 If a

participant gives three times a wrong answer, I show an additional explanation for the

respective question. One person dropped out of the experiment due to technical problems.

I exclude the entire matching group of this subject from the analysis.

As described in Section 1.3, the algorithms always condition their current pricing

decision on a state which is the set of prices from the previous period. In the first

round of each supergame, the algorithm has no state to condition upon as the state st=0

is undefined. To circumvent this initial condition problem, I define st=0 as the state of

convergence from the learning process. Thus, the algorithm always begins each supergame

with the same action it played last in the simulated environment.

The experiments were conducted online in May and June 2021. I recruited the partici-

pants using ORSEE (Greiner, 2015) from the subject pool of the DICE Lab, University of

Düsseldorf. A web-conference call accompanied each session in which participants could

ask clarifying questions and receive technical assistance if required.24 In total, 313 partic-

ipants were recruited, with between 60 to 64 subjects in each experimental treatment (see
22It mimics the information structure in actual markets, in which firms do not know much about the

algorithms of other market participants. Yet, varying the information participant get about the objective
and the learning process of the algorithm can be an interesting path for future research.

23See Appendix 1.A for the full set of instructions, the control questions, and screenshots of the relevant
decision screens.

24The procedure is similar to Zhao et al. (2020) and Danz et al. (2021). Li et al. (2021) find that this
procedure offers comparable results to lab experiments in different economic games.
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Table 1.2). For each treatment without any humans, I use 1,000 independent simulation

runs for each parameterization of the algorithms as the respective comparison unit.

Table 1.2: Number of observations by treatment

Treatment Number of
participants

Number of
independent observations

3H0A 63 7
2H0A 60 10
1H1A 64 32
1H2A 63 21
2H1A 63 7
0H2A - 1,000
0H3A - 1,000

* The number of independent observations for the experimental treatments refers to the last supergame.
It is determined by the size of the matching group. A matching group consists of six (nine) firms for
markets with two (three) firms. Since the algorithms do not learn anymore during the experiment and
the respective participants do not take any active decisions, there are no reputation effects across super
games. Hence, I exclude the algorithmic firms from the matching scheme.

Each session lasted for approximately 30 minutes, and subjects earned on average 11.3

Euro, including a show-up fee of 4 Euro. Within the experiment, I used an experimental

currency unit (ECU) where one Euro corresponded to 130 ECU. The experiment employed

a between-subject design and thus, each subject participated only in one treatment. I

programmed the experiment in oTree (Chen et al., 2016a).

1.5 Hypotheses

The experimental design allows for the comparison of human and algorithmic collusion

for different market compositions. Furthermore, I can investigate the interaction between

humans and pricing algorithms if both populate the same market. I use the respective

market price to measure the degree of tacit collusion. Within the experimental treatments,

an independent observation is the average market price for a given matching group. For

the simulations, I average the market prices for each independent simulation over 1,000
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rounds after convergence. All hypotheses and the corresponding statistical tests have

been pre-registered.25

From a theoretical perspective, punishment strategies are vital for collusion to be sus-

tainable in the long run (Friedman, 1971; Abreu, 1988). While humans often fail to employ

punishment strategies that appear desirable from the theoretical perspective26, Calvano et

al. (2020a) and Klein (2021) find that self-learned pricing algorithms learn harsh punish-

ment strategies that make collusion incentive compatible. I expect the pricing algorithms

in my design to learn comparable punishment strategies, which would theoretically foster

collusion compared to lenient strategies often used by humans.

Algorithms may also reduce the strategic uncertainty within the game. After conver-

gence, algorithms follow the same strategy for all of the subsequent rounds. In the mixed

market treatments, the algorithm plays according to their limit strategy against humans.

Hence, they play the strategy that they learned in the simulations. Crucially, after the

learning process of the algorithms, their strategy is deterministic and does not change

anymore. Normann and Sternberg (2023) argue that playing against a deterministic al-

gorithm reduces strategic uncertainty compared to playing against a human, who might

change the strategy during the game and are less committed to a particular behavior.

They demonstrate theoretically that the postulated reduction in strategic uncertainty

fosters collusion. In line with this prediction, they show that in experimental market

games where humans compete against a tit-for-tat algorithm, markets become more col-

lusive compared to markets with only humans. As the algorithms in my design are also

deterministic after convergence, I expect higher degrees of tacit collusion in mixed mar-

kets relative to human markets. Since humans first have to learn about the algorithm’s

strategy, it appears natural that this effect especially materializes in later supergames.

Harsher punishment strategies and reduced strategic uncertainty by algorithms should

foster collusion. Thus, I hypothesize that market prices increase as more firms use a

pricing algorithm for a given market size.

Hypothesis 1. The level of tacit collusion increases in the share of firms using self-

learned pricing algorithms for a given market size.
25The pre-registration uses the template from AsPredicted.org and can be found here

https://osf.io/yd32b and here https://osf.io/uxdcp. Ethical approval was granted by the German Asso-
ciation for Experimental Economic Research e.V. (No. vzRbKXHq).

26For a discussion of the strategies that humans use in experimental market games see for instance
Wright (2013).

https://osf.io/yd32b
https://osf.io/uxdcp
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It is a well-documented finding in the literature on experimental market games that

tacit collusion becomes less likely as the number of firms in the market increases (Engel,

2007; Huck et al., 2004; Harrington et al., 2016). Within my design, a larger market

size implies higher deviation profits. That, in turn, increases the incentive to deviate

from a collusive price level. Furthermore, the strategic complexity of the game grows

as the number of firms increases. With more firms in the market, market participants

have to condition their behavior on additional factors such as the previously chosen prices

from the extra competitor. This increase in strategic complexity may further hinder

collusion.27 Similar to the findings in experimental market games, Calvano et al. (2020a)

and Johnson et al. (2022) find decreasing prices in algorithmic markets in their simulations

as the number of firms increases. I expect comparable results in my experimental design,

which leads to the following hypothesis.

Hypothesis 2. The level of tacit collusion decreases in the number of firms in the market

for human and algorithmic markets alike.

It needs to be clarified how those number effects differ between algorithmic and hu-

man markets. While the decline in market prices in the previous studies on algorithmic

collusion appears smaller than in human markets, the market setup deviates substan-

tially from the environments usually used in experimental market games. Hence, it is an

open question whether algorithms are better at colluding as the market size increases. I

investigate this question in the following sections.

1.6 Results

This section discusses the results and examines whether algorithms foster tacit collusion

for different market compositions. I begin by considering the performance measures for

the algorithms in Section 1.6.1. Then, I discuss the exact strategies that the selected

algorithms learn upon convergence in Section 1.6.2. In Section 1.6.3, I investigate how

algorithmic collusion compares to human collusion. Lastly, I discuss the results on mixed

market compositions in Section 1.6.4 to shed light on the interaction between pricing

algorithms and human decision-makers if both populate the same market at the same

time.
27For a discussion on the influence of strategic complexity on cooperation see Jones (2014) and Gale

and Sabourian (2005).
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1.6.1 Performance of the algorithms

In the following, I discuss the performance of algorithm in the simulation treatments

without any humans for duopolies (0H2A) and triopolies (0H3A).

Profitability Figure 1.1 shows the profitability of the algorithms in the state of con-

vergence28 for a parameter grid over the learning rate α and the exploration decay β for

the simulations 0H3A and 0H2A.29 As a benchmark, I provide the value function under

collusion V C at the monopoly price and under competitive pricing V NE. Those can be

derived by considering the individual fixed profit π in those states and then rewriting the

Bellman equation as the arithmetic series V = 1
1−δ

π. Lighter colors in Figure 1.1 show

a profitability close to collusion at the monopoly price, while darker colors indicate that

the algorithms are not profitable.
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Figure 1.1: Profitability of the Q-learning agents in the state of convergence averaged
over 1,000 simulation runs for different grid points.

In both treatments, the algorithms have a high profitability after convergence. For

most grid points, the algorithms learn a strategy that is more profitable than with com-

petitive pricing. This becomes evident by comparing the value function for the grid points

in Figure 1.1 to V NE. Notably, the profitability is usually greater for 0H2A compared to

0H3A. This pattern is also confirmed when considering the average prices the algorithms

play upon convergence shown in Figure 1.2.
28While it is not guaranteed, the algorithms always converge using the respective convergence criterion

defined in Section 1.2.2.
29Computational support and infrastructure was provided by the “Centre for Information and Media

Technology” (ZIM) at the University of Düsseldorf (Germany).
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Figure 1.2: Average market price of the Q-learning agents after convergence averaged over
1,000 simulation runs for different grid points. This market price average is obtained by
considering 1,000 periods after convergence.

On average, the algorithms learn to set non-competitive prices for a wide range of

parameterizations. For each grid point, the average market price is above the stage game

Nash equilibrium in 0H2A. It is also the case for 99.2% of all grid points in 0H3A. Hence,

in both treatments, market prices are above the competitive benchmark. Notably, the

market prices in 0H2A are, on average, higher than 0H3A. While in 0H2A, the average

market price is above p = 3 for more than 93.4% of all grid points, it never exceeds

p = 2.4 in 0H3A. Indeed, for each grid point, the average price in 0H2A is statistically

significantly higher than in 0H3A (Two-sided Mann–Whitney U test, p<0.01 for each grid

point separately). Accordingly, the level of tacit collusion is higher in two-firm algorithmic

markets. This result is in line with Hypothesis 2 and previous findings on algorithmic

collusion.

Result 1. Algorithms learn to set non-competitive prices in two and three-firm markets.

In these markets, tacit collusion is significantly higher with two than with three firms.

Optimality Figure 1.3 shows the share of all simulation runs in which both algorithms

converge mutually to a Nash equilibrium.
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Figure 1.3: Share of simulations that converge to a Nash equilibrium.

On average, learning to play a Nash equilibrium appears difficult for the algorithms

in 0H2A and 0H3A. While the algorithms manage to play a mutual best response for

specific parameterizations, the optimality measure is below one for most grid points.

Also, compared to previous findings by Klein (2021) and Calvano et al. (2020a), the share

of outcomes converging to a Nash equilibrium seems smaller. The market environment

with a perfectly inelastic demand function proves to be challenging for the algorithms. A

possible reason for this is that small price changes lead to drastic shifts in profits, which

may hinder a smooth convergence to an equilibrium strategy.

1.6.2 Strategies of the algorithms

Next, I examine the limit strategies that the algorithms learn once they converge. I focus

on the parameterizations of the algorithm that perform best, given the selection criterion

discussed in Section 1.2.3.30 Thus, I concentrate on the algorithm that is likely to have

high profitability while being harder to exploit by other market participants. It appears

reasonable to assume that a firm would select such an algorithm when deploying a pricing

tool to an actual market environment.

Punishment behaviour Next, I examine the limit strategies that the algorithms learn

once they converge. I focus on the parameterization of the algorithm that performs best,

given the selection criterion discussed in Section 1.2.3.31 Thus, I concentrate on the
30For 0H2A those parameters are α ≈ 0.027 and β ≈ 1 × 10−8. The values for 0H3A are α ≈ 0.029 and

β ≈ 6.16 × 10−7.
31For 0H2A those parameters are α ≈ 0.027 and β ≈ 1 × 10−8. The values for 0H3A are α ≈ 0.029 and

β ≈ 6.16 × 10−7.
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algorithm that is likely to have high profitability while being harder to exploit by other

market participants. It appears reasonable to assume that a firm would select such an

algorithm when deploying a pricing tool to an actual market environment.
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Figure 1.4: Punishment behavior of the algorithms after convergence. Starting from the
state of convergence, the algorithms play according to their limit strategy. I induce an
exogenous deviation from Firm 1 in t = 3 to observe the reaction of the other firms. I use
1,000 independent simulation runs. The error bars represent the standard deviation.

The left-hand side of Figure 1.4 shows the behavior of the algorithms in 0H2A after

a deviation by one of them. The algorithms play according to their limit strategy in

the first two periods. Then, in period t = 3, I force Firm 1 to deviate by undercutting

the competitor’s price. The deviation price is always just below the price it would have

played according to its limit strategy. Thus, Firm 1 always chooses the most profitable

one-period deviation.32 Afterwards, I allow both algorithms again to play according to

their limit strategy to observe their response to the deviation.

In the initial two periods, algorithms choose prices close to the monopoly level. After

the exogenously induced deviation of Firm 1 in the third period, Firm 2 lowers its price

below the price of Firm 1. Then, after this phase of lower prices, both firms revert to

the initial price level within the next couple of periods. The behavior of the algorithms

is consistent with a punishment scheme. By undercutting the price of Firm 1 after the

deviation, Firm 2 makes the deviation from the initial price level unprofitable. Indeed, for

81.4% of all simulation runs, algorithms learn a limit strategy that makes deviations, as

shown in Figure 1.4 unprofitable. Thus, algorithms do not only learn to play high prices

but also strategies that make collusion incentive compatible.
32In more than 99% of simulation runs, the algorithms learn to play a price above the stage game Nash

equilibrium.
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The right-hand side of Figure 1.4 shows the results for the same exercise for 0H3A. As

discussed in Section 1.6.1, prices are significantly lower in three-firm markets compared to

two-firm markets. Similarly to 0H2A, the other firms in the market decrease their price

after the deviation by Firm 1. After a punishment phase of multiple periods, the algo-

rithms return to the initial price level they played before the deviation.33 The punishment

behavior of the algorithms is incentive compatible in 62.7% of all simulation runs.

Result 2. Algorithms in 0H2A and 0H3A learn punishment strategies that can make

collusion incentive compatible.

Limit strategy of the selected algorithm In the previous sections, I considered the

average behavior of the algorithms with a fixed parameterization over multiple simulation

runs with different underlying stochastic processes. Next, I present the exact limit strategy

of the algorithm which maximizes the selection criterion Ψ as discussed in Section 1.2.3

in 0H2A and 0H3A. It is also the strategy the algorithm will use within the experimental

treatments with humans.

Equation 1.6 describes the core idea of the strategy. It is nearly identical for the

algorithm in two and three-firm markets.34

pt
i(st) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pM if st = {pt−1
i = pM |∀i}

pM if st = {pt−1
i = pNE|∀i}

pNE otherwise

(1.6)

Upon cooperation at the monopoly price pM in the previous period, the algorithm always

chooses the monopoly price again. Any deviation from the cooperative outcome is pun-

ished by playing the stage-game Nash equilibrium pNE. If and only if all firms played pNE

in the previous period, the algorithm reverts to playing pM . In every other relevant state,
33While the average punishment strategy appears like a smooth transition between periods of pun-

ishment and cooperation, it is usually not the case for each simulation in isolation. Large and sudden
price jumps after deviations are common. The transition only appears smooth when averaged over all
simulation runs.

34There are minor differences between the strategies in 0H2A and 0H3A. Namely, in 0H3A, a small
number of states trigger a different response by the algorithm after deviations from the monopoly price.
For instance the state st = (4, 3, 0) leads to at = 4 or st = (4, 4, 2) yields at = 3. However, those states are
never reached after the algorithms converge. Furthermore, those states only account for approximately
1% of all rounds in mixed market experiments. Additional details are provided in Appendix 1.B.2.
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the algorithm plays pNE.35 While algorithms in 0H2A learn this strategy frequently, it

only arises occasionally in 0H3A, which is also indicated by the overall lower price level

in this treatment.

Interestingly, this strategy is similar to the win-stay, lose-shift strategy (WSLS) dis-

cussed by Nowak and Sigmund (1993) in the context of the iterated prisoner’s dilemma.

Whenever an agent uses WSLS in the iterated prisoner’s dilemma, she conditionally coop-

erates. Upon any deviation, the agent defects and reverts back to cooperation if and only

if both players defected in the previous period. WSLS has several desirable properties

from an (evolutionary) game-theoretical perspective.36 If actions are noisy, WSLS can

correct for unintended deviations when playing with another agent that uses WSLS. That

is not the case for other popular strategies like tit-for-tat. Furthermore, WSLS can detect

and exploit unconditional cooperators after unintended deviations, which may arise if the

action implementation is noisy. However, depending on the exact payoff structure, agents

that always defect can exploit WSLS. Nowak and Sigmund (1993) show that WSLS arises

naturally as the most widespread strategy in an evolutionary simulation in a noisy iterated

prisoner’s dilemma.37

The algorithm’s strategy is an application of WSLS to the market environment. Simi-

lar to WSLS in the iterated prisoner’s dilemma, the selected Q-learning algorithm restricts

its attention to two actions: Cooperation at pM and defection at pNE. Just as the classical

WSLS, the algorithm only cooperates if all firms in the market jointly played pM or pNE

in the previous round and defects elsewise.38

Importantly, the WSLS strategy does not arise by construction but as a result of the

learning procedure of the algorithms. Even with a state representation that is restricted to

the prices of the previous period, it would be straightforward to construct strategies that
35This refers to all possible states that are reachable given the limit strategy of the algorithm. Thus, I

do not consider states requiring the algorithm to play prices that it never plays itself when following its
limit strategy.

36For a discussion of win-stay, lose-shift also see Posch (1999) and Imhof et al. (2007).
37For Q-learning algorithms, actions are also implemented with noise during the learning process as

the exploration of the environment is stochastic. Hence, there might exist a possible relation between the
evolutionary processes that lead to WSLS in simulation studies and the learning of Q-learning agents.

38Calvano et al. (2019) find that Q-learning algorithms often learn similar one-period-punishment
strategies in the iterated prisoners dilemma.
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punish deviations for more than one period.39 However, the algorithms do not coordinate

on strategies that outperform WSLS.

Result 3. The algorithm that maximizes the selection criterion learns a win-stay lose-shift

strategy.

While this strategy can correct unintended deviations and punish intended deviations

by other firms, it is also possible to construct strategies that exploit the algorithm. As an

example, consider a three-firm market where two firms use the strategy of the algorithm

described by Equation 1.6 and firm k uses the following strategy

pt
k(st) =

⎧⎪⎪⎨⎪⎪⎩
pD = 3 if st = {pt−1

i = pNE|∀i}

pNE otherwise
(1.7)

Given that the algorithm always plays pM after all firms played pNE in the previous

round, the strategy by firm k triggers the algorithms to cooperate every other round only

to exploit their cooperative phase by choosing the most profitable deviation pD. It is

straightforward to show that in an infinitely repeated game with δ = 0.95, the strategy

of firm k strictly dominates cooperation at the monopoly price in three-firm markets.

However, this strategy is dominated by always cooperate for two-firm markets.40 While

Q-learning algorithms never learn the strategy described by equation 1.7 during their

simultaneous and dynamic learning process, I will analyze if humans manage to exploit

the limit strategy of the algorithm in mixed markets in Section 1.6.4.

1.6.3 Comparing algorithmic and human collusion

While algorithms converge to non-competitive prices and learn punishment strategies, it

is unclear whether algorithms are more collusive than humans. Therefore, in this section,

I compare the market outcomes from the experiments with humans to the algorithmic

markets. Figure 1.5 shows the average market prices by supergames (SG) for the treat-
39A simple example is a strategy that mimics the behavior of a grim-trigger strategy. Yet, also other

strategies are feasible. For instance, consider strategies that do not revert to the monopoly price imme-
diately after playing the stage game Nash equilibrium but to intermediate values of the price set.

40For details see Appendix 1.B.
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ments with only humans (2H0A and 3H0A) and outcomes for the selected algorithmic

markets (0H2A and 0H3A).
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Figure 1.5: Market prices for the algorithmic and human markets for each supergame
(SG). I derive the prices for the algorithmic markets upon convergence as an average over
1,000 subsequent periods for 1,000 independent simulations. The error bars represent the
standard deviation.

Similar to previous findings in the literature (e.g., Huck et al., 2004), collusion becomes

more difficult for humans as the market size increases. Average market prices are higher for

each supergame in 2H0A compared to 3H0A. Those differences are (weakly) statistically

significant for the first and second supergame but insignificant for the last supergame (SG1

p = 0.045; SG2 p = 0.055, SG3 p = 0.283; two-sided Mann–Whitney U tests). Thus, while

the disparity in prices becomes smaller after learning, prices are always higher in two-firm

markets compared to three-firm markets, which is in line with Hypothesis 2. While both

algorithms and humans see a drop in price due to the expanded market size, the decline

is greater for algorithmic markets. It suggests that the market size within the discussed

environment might be more harmful to algorithmic than to human collusion.41

Result 4. Similar to algorithmic markets, the level of tacit collusion declines for humans

as the market size increases. Price drops due to the increase in market size are higher for

algorithmic compared to human markets.
41For future research, it can be interesting to see the development of those number effects for even

larger markets.
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In two-firm markets, algorithms outperform humans at colluding. Average market

prices in 0H2A are statistically significantly higher than in 2H0A for each supergame

when using the selected algorithm as a comparison unit (p < 0.01 for all supergames;

two-sided Mann–Whitney U tests). Also, when considering the average market price of

the entire parameter grid discussed in Section 1.6.1, prices in 2H0A are smaller (p < 0.05

for all supergames; one-sample two-sided t-tests against the average grid price of 3.51).

Furthermore, the selected algorithms in three-firm markets are more collusive than hu-

mans in the first two supergames. However, this advantage entirely fades after the first two

supergames as there are no differences between algorithms and humans in the third and

last supergame (SG1 p < 0.01; SG2 p < 0.01, SG3 p = 0.980; two-sided Mann–Whitney

U tests). Hence, after humans had the chance to learn about the game, they are as good

as self-learned algorithms at colluding in three-firm markets. If I compare prices in hu-

man markets to the average algorithmic outcome in the parameter grid, no statistically

significant price differences exist for the first and second supergame. Moreover, in the

last supergame, the average grid price within three-firm human markets even exceeds the

average price of the parameter grid (SG1 p = 0.991; SG2 p = 0.340, SG3 p = 0.044;

one-sample two-sided t-tests against the average grid price of 1.57). Hence, trained al-

gorithms can outperform inexperienced humans at colluding in markets with three firms.

Yet, humans are as good as algorithms at colluding after they gain experience. If a firm

fails to pick an optimal algorithm, humans can even surpass algorithmic performance in

this environment.

Result 5. Algorithms are more collusive than humans in two-firm markets. In three-firm

markets, algorithms outperform inexperienced humans at colluding but there are no price

differences if humans are experienced.

Result 5 is in line with Hypothesis 1 for two-firm markets. It is also the case for

three-firm markets, if humans are inexperienced. There is no evidence that algorithms

hurt competition in three-firm markets after humans adapt and learn themselves.

1.6.4 Collusion between humans and algorithm

In this section, I consider the outcomes for mixed markets in which humans compete

against algorithms. The algorithms always play according to the limit strategy of the
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selected algorithm. Hence, similarly to Normann and Sternberg (2023) who consider a

tit-for-tat algorithm, the humans compete against a fixed strategy in the experiments.

In contrast to Normann and Sternberg (2023), the strategy is a result of the learning

procedure of the algorithms instead of being chosen by a researcher. Furthermore, the

WSLS algorithm maximizes the selection criterion Ψi. Thus, it would arguably be used

by firms.

Figure 1.6 shows the average market price pooled across all supergames for each treat-

ment with human involvement.
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Figure 1.6: Average market prices for all treatments. For treatment with humans, I pool
market prices across all super games. For algorithmic markets, I use the parameterization
of the selected algorithm as a comparison unit. The error bars represent the standard
deviation.

Within two-firm markets, there are no statistically significant differences in market

prices between two humans (2H0A) and one human competing with one algorithm (1H1A)

(p = 0.84, two-sided Mann–Whitney U test). Thus, contrary to Hypothesis 1, the pricing

algorithm does not foster collusion. Nevertheless, on average, a single algorithm is as

good at colluding with a human as another human player. Furthermore, prices in 1H1A

are significantly lower than in the fully algorithmic market 0H2A (p < 0.01, two-sided

Mann–Whitney U test). Hence, while algorithms never foster competition in a duopoly,

they can make markets more collusive if all firms utilize them.

In three-firm mixed markets, I observe a non-linear relationship between the level of

tacit collusion and the number of algorithms in the market. Market prices in 2H1A are
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lower than in 3H0A (p = 0.07, two-sided Mann–Whitney U test).42 Adding another

algorithm to the market (1H2A) increases prices again compared to 2H1A (p < 0.01,

two-sided Mann–Whitney U test). There are no statically significant differences between

1H2A and 0H3A using algorithms with the parameterization of the selected algorithms

as a comparison unit (p = 0.76, two-sided Mann–Whitney U test). However, average

prices in 0H3A are higher than market prices in 3H0A if the outcomes are pooled across

supergames (p < 0.01, two-sided Mann–Whitney U test).

Result 6. Humans manage to cooperate with pricing algorithms. In duopolies, algorithms

(weakly) foster tacit collusion. In triopolies, there exists a non-linear relationship between

the level of tacit collusion and the number of algorithms in the market. If most firms use

pricing algorithms, markets can become less competitive.

Within my framework, firms have a clear incentive to use pricing algorithms in a

duopoly. If only a single firm adopts it, prices do not change. Yet, if both firms outsource

their pricing decisions to an algorithm, markets become more collusive, which in turn

increases firms’ profits.43 This effect resembles recent findings on algorithm pricing in

the German gasoline market. Assad et al. (2022) show that market-level margins do not

increase if only one gas station in a local market adopts a pricing algorithm. However,

if both gas stations in the duopoly adopt it, the price algorithm margins increase by

28%. For triopolies, I find vastly different outcomes depending on the exact market

composition in mixed markets, but also, with three firms in the market, algorithms can

hurt competition. It is especially the case if most firms decide to use pricing algorithms

and humans lack experience. However, adoption incentives are less pronounced compared

to a duopoly, as firms’ profits can decrease if only a single firm utilizes them.

Heterogeneous strategies in mixed market In Figure 1.7, I plot the average market

price by round and supergame for each experimental treatment. While 1H2A and 1H1A

have a similar trend as 2H0A in the first supergame, 3H0A and 2H1A have noticeably
42Note that the results differ from Normann and Sternberg (2023) who find that a single tit-for-tat

algorithm fosters collusion with three firms in a simpler market environment. The strategies of the human
sellers drive the results, and I analyze them in the subsequent paragraph.

43Köbis et al. (2021) argue that the decision to delegate the pricing to an algorithm can be particu-
larly relevant as it allows the firms’ manager to morally distance herself from the unethical behavior of
collusion. In my experiment, firms cannot decide whether to adopt a pricing algorithm as it is deter-
mined exogenously. However, it can be a path for future research to examine the adoption decision of
participants.
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lower market prices. In fact, after some initial rounds, average prices in 2H1A are at the

stage game Nash equilibrium. Some interesting patterns emerge in the later supergames

after the participants learn about the game. Prices in 2H1A are still close to the stage

game Nash equilibrium. While average market prices in 1H1A and 1H2A are similar to

2H0A, there are sharp spikes every other round.
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Figure 1.7: Average market prices by supergame and round for all experimental treat-
ments.

To understand those price patterns, it is essential to remember that participants during

the experiment play against the limit strategy of the selected algorithm, which is described

by Equation 1.6. In other words, participants play against a variation of a win-stay lose-

shift (WSLS) strategy. Normann and Sternberg (2023) demonstrate that the algorithm’s

strategy is a significant determinant of outcomes in human-machine interactions. The

expectations that participants have about the algorithm’s behavior are mostly irrelevant.

Hence, it is essential to understand how participants respond to the algorithm’s strategy

in the presented setup.
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While participants do not know the algorithm’s strategy initially, they can learn about

it during the first supergame. Once a participant understands how the algorithm works,

there are different ways to adapt her strategies as a response. First, she can always

cooperate with the algorithm at the monopoly price. Second, she can try to exploit

the algorithm by playing the price cycle strategy described in Equation 1.7. This strategy

dominates always cooperate in 1H2A and is dominated by always cooperate in

1H1A.44 Other strategies are possible. Namely, participants can always defect at

the stage game Nash equilibrium. Furthermore, they can play an imperfect exploitation

strategy by playing a price of p = 2 in the cooperative phase of the algorithm and

p = 1 elsewise. I denote this strategy by exploit2. The strategies always defect and

exploit2 are dominated by always cooperate and the exploit, respectively.

To investigate which strategies the participants use in 1H1A and 1H2A against the

algorithm, I estimate a mixture model using the Strategy Frequency Estimation Method

(SFEM) proposed by Dal Bó and Fréchette (2011). The method is highly influential for

estimating strategy choices in infinitely repeated games, especially the Prisoner’s Dilemma

(e.g., Fudenberg et al., 2012; Romero and Rosokha, 2018; Dal Bó and Fréchette, 2019).

Starting from a predefined set of strategies, SFEM assumes that subject i chooses strategy

sk with probability ϕk and follows this strategy for all rounds of the game. In each period,

participant i selects her price according to strategy sk with probability σ ∈ (1/2, 1) but

makes an error with probability 1 − σ. The individual likelihood that participant i plays

according to strategy k is given by Pi(sk) = ∏︁
t σIt,i(1 − σ)1−It,i . The identifier variable

It,i is equal to 1 if the price of participant i in period t corresponds to the price she would

have played if she followed strategy sk. Otherwise, It,i equals zero. The log-likelihood

function is given by L = ∑︁
i ln(∑︁

k ϕkPi(sk)). The estimate of ϕk represents the share of

participants in the population that uses strategy k. The value of σ can be interpreted as

a goodness of fit parameter. The model is noisy if σ is close to its lower bound of 0.5.

The model describes the data well for values of σ that are close to 1.

For the estimation procedure, I focus on the strategies that are reasonable when com-

peting against the algorithm (always cooperate, always defect, exploit, and

exploit2). Moreover, I restrict the analysis to the last supergame. Table 1.3 shows the

results of the estimation procedure.
44For details see Appendix 1.B.
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Table 1.3: Estimated proportion for each strategy

Strategy Treatment
1H1A 1H2A

Always cooperate 0.61 0.48
(0.09) (0.11)

Always defect 0.10 0.22
(0.05) (0.10)

Exploit 0.29 0.29
(0.08) (0.10)

Exploit2 0.00 0.02
(0.00) (0.05)

σ 0.92 0.84
* The mixture model is estimated by maximum likelihood estimation. I restrict the data to the last
supergame. The bootstrapped standard errors are in parentheses.

The most frequent strategy that participants play against the algorithm is always

cooperate in both treatments. The estimated proportion is, however, smaller in 1H2A

compared to 1H1A. Also, exploit is prevalent in the population, but the estimates do

not differ between 1H1A and 1H2A. Notably, the share of always defect is higher in

1H2A compared to 1H1A. The imperfect exploitative strategy exploit2 is never played

in 1H1A, and it only accounts for a share of 0.02 of the data in 1H2A.

In line with the shift in incentives when increasing the market size, fewer participants

play a cooperative strategy against the algorithm in 1H2A. Nevertheless, participants

often fail to learn the best response as exploit, and always cooperate dominate

always defect in 1H2A. A possible reason is that learning about the environment is

more difficult in 1H2A due to higher strategic complexity. While both algorithms in 1H2A

use a WSLS strategy, participants still have to consider additional information compared

to 1H1A. That can impede learning for a subset of participants. Individual prices reveal

that some participants circle between prices of 1, 2, and 3 without a clear pattern. It

appears that those participants did not learn to follow a fixed strategy (see Appendix

1.B.2 for the price patterns on an individual level). This argument is also supported by

the smaller value of σ and higher standard errors in 1H2A, as it indicates a more noisy

behavior of the participants. While average market prices in 1H1A (1H2A) and 2H0A

(3H0A) are similar, it is usually not the case for individual markets. Depending on the
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particular strategies that humans learn, mixed markets can be more or less collusive than

their entirely human counterparts.45

In 2H1A, it is also crucial to consider the possible strategies humans can use against

the algorithm. While Always cooperate and Exploit are both still viable options to

play against the algorithm, they now require joint coordination by two humans. Indeed,

low prices in 2H1A can be explained by a frequent failure to coordinate simultaneously

against the algorithm. While some markets manage to collude at the monopoly price with

the algorithm, most participants fail to coordinate on any other strategy than Always

defect against the algorithm.46

Result 7. Most humans always cooperate with the algorithm or try to exploit it in 1H1A

and 1H2A. In 2H1A, most humans always defect as they fail to coordinate on a joint

strategy against the algorithm. Market outcomes differ substantially conditionally on the

exact strategies that humans learn.

1.7 Concluding remarks

In this chapter, I study the collusive potential of self-learning pricing algorithms and show

that pricing algorithms can weaken competition. Similar to previous results by Calvano

et al. (2020a) and Klein (2021), I observe that algorithms learn to set prices above the

competitive benchmark and develop reward-punishment strategies in simulations. As

the market environment is stylized and, therefore, highly tractable, I can analyze the

strategies of the algorithms. The most successful algorithms learn a win-stay lose-shift

strategy. To derive a counterfactual for algorithmic collusion and observe the interaction

of humans and pricing algorithms, I conduct laboratory experiments with the same market

environment as in the simulations. Across different treatments, I vary the market size and

the number of firms that use a self-learned pricing algorithm. This approach allows me to

pin down the anti-competitive effects algorithms can have across a wide range of market

compositions.

In duopolies, algorithmic markets are always more collusive than human markets.

Markets with one human and one algorithm have similar average market prices compared
45Also Wieting and Sapi (2021) find heterogeneous market outcomes depending on the exact number

of algorithms in the market using data from the Dutch online retailer bol.com.
46Figure 1.12 in Appendix 1.B.2 highlights those price patterns.
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to entirely human markets. In three-firm markets, market prices decrease if a single firm

uses a pricing algorithm. It is driven by the specific strategy the algorithms learn and

the failure of humans to coordinate with the algorithm. As more firms utilize pricing

algorithms, prices increase again in three-firm markets. If all firms in the market use an

algorithm, market prices can be higher than in human markets. However, the effect fades

after humans have the chance to learn about the market environment. Most participants

cooperate with the algorithm, but the strategies are heterogeneous, and some participants

try to exploit the algorithm.

My results highlight the potential anti-competitive effects of self-learning algorithms.

While market outcomes vary depending on the exact parameterization and market compo-

sition, algorithms rarely foster but often weaken competition if they populate the market.

The considered pricing algorithms are simple, and the experimental environment is styl-

ized. Yet, it appears probable that more complex algorithms can achieve similar results

and scale to more complex real-world markets.47 Within the presented framework, the

fear from competition authorities that algorithms can harm the competitive landscape is

justified.

Current research in computer science focuses on explainable artificial intelligence (see

Barredo et al., 2020). The development objective for those algorithms is that humans can

understand their results and the decision process. Also, for pricing algorithms, explainable

artificial intelligence is desirable. Understanding why algorithms learn to be collusive and

how they must be designed to prevent collusive market outcomes is critical. Asker et al.

(2022) underlines the significance of the algorithmic design on its collusive behavior, but

more research is needed to determine a suitable procedure to regulate pricing algorithms.

Furthermore, recent work by Calvano et al. (2020b) proposes to audit algorithms before

firms can use them as a pricing tool. Competition authorities could examine the algorithm

in a simulated market environment to evaluate its potential for tacit collusion and ban

specific algorithms if necessary. Auditing is not feasible for tacit collusion among humans.

My findings indicate that it is not only possible for algorithms but also necessary to prevent

harm to competition.

47Hettich (2021) shows that deep reinforcement learning algorithms can be collusive in a different
market environment with up to ten firms.
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Appendix 1.A Implementation details

The instructions were translated from German. Section 1.A.1 provides a translation for

the 2H1A treatment.48

1.A.1 Instructions

Particularly important: If you have any questions, contact the administrator using the

chat function in the Webex conference.

Once you took a decision on the respective page and read all the information, please

click on the "Next" button so that the experiment can continue. If you do not

make an input for an extended time or temporarily leave this website, we will remove

you from the experiment.

In this case, you will not receive any payment and will be banned from future

online experiments.

Instructions

In this experiment, you will repeatedly make price decisions. These allow you to earn real

money. How much you earn depends on your decisions and those of the other participants.

Regardless, you will receive 4.00 euros for participating. In the experiment, we

use a fictional monetary unit called ECU. After the experiment, the ECUs are converted

into euros and you will be paid accordingly. Here, 130 ECUs correspond to one

euro.

In this experiment, you represent a firm in a virtual product market. In each market, two
48The complete oTree application to conduct the experiment is available here: https://github.com/

ToFeWe/AlgoCollusionApp
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other firms sell the same product as you do. These firms are represented by two other

experiment participants. All firms offer 60 units of the same product. There occur no

costs of production to the firms. The game has multiple rounds, with the exact number

being decided by a random mechanism. You play the game for three sessions. In each

round of a session, you meet the same firms (i.e., experiment participants). However, the

firms in your market change after each session.

The market has 60 identical customers. Each customer in each round of a session intends

to buy one unit of the product as cheaply as possible. Each customer is willing to spend

a maximum of 4 ECUs for this unit of the product. All firms decide in each round again

at the same time for how many ECUs they want to sell their product. You can sell

your product for 0 ECU, 1 ECU, ... or 5 ECUs (only whole ECUs). Your profit is the

price multiplied by the number of units sold. Formally expressed:

Profit = Price x Units sold

The firm with the lowest price in the given round sells its products as long as the

price is not greater than 4 ECUs. Firms with a higher price do not sell their product.

The lowest price is the market price in the given round. Firms with a price

higher than the market price do not sell their products in that round. If two

or all three firms want to sell their products for the same market price, the demand is

divided equally between the two or three firms.

Examples:

Example 1: Firm A sets a price of 3 ECUs, firm B sets a price of 3 ECUs, firm C

sets a price of 4 ECUs. Thus, firms A and B together set the lowest price. Firm A and B

both sell the same number of products. Both firms have 30 customers each and thus get

the same profit of 90 ECUs. Firm C sells nothing and has a profit of 0 ECUs.

Firm A Firm B Firm C
Price 3 3 4
Profit 90 90 0
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Example 2: Firm A sets a price of 2 ECUs, firm B sets a price of 2 ECUs, firm C

sets a price of 2 ECUs. Thus, firms A, B, and C together set the lowest price. They all

sell the same number of products (20 each) and thus get the same profit of 40 ECUs.

Firm A Firm B Firm C
Price 2 2 2
Profit 40 40 40

Example 3: Firm A sets a price of 1 ECUs, firm B sets a price of 2 ECUs, firm C

sets a price of 3 ECUs. Thus, firm A set the lowest price. Firm A is the only one that

sells the product for 1 ECU to all 60 customers and thus gets a profit of 60 ECUs. Firms

B and C both sell nothing and have a profit of 0 ECUs.

Firm A Firm B Firm C
Price 1 2 3
Profit 60 0 0

Example 4: Firm A sets a price of 5 ECUs, firm B sets a price of 5 ECUs, firm C

sets a price of 5 ECUs. Thus, firms A, B, and C together set the lowest price. However,

customers are only willing to buy the product for 4 ECUs. Therefore, no firm sells its

products and all firms get a profit of 0 ECUs.

Firm A Firm B Firm C
Price 5 5 5
Profit 0 0 0

Market decisions by algorithms:

In your markets, two participants decide at which price they want to sell their firm’s

product and are paid the profit their firms earn at the end of the experiment.

Firm C will be equipped with an algorithm in all rounds, which will make the

necessary price decisions for the participant. In this case, the participant does not

take any decisions, but still receives the profit that his or her firm earns.

The procedure of the experiment:

After each round, all firms are informed about the prices chosen by each firm and about
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their profit. In the next round, each firm again has the chance to re-select its price. You

interact with the same participants in each round within one session.

After each round, a random mechanism decides whether another round is played or the

session ends. The probability that another round will be played is 95%. Thus, the session

ends after each round with a probability of 5%. The session continues until the end is

determined randomly.

Figuratively, the computer throws a virtual dice with 20 sides before each possible further

round. The result decides whether another round is played or not. If the number is 20,

the session is over; for all other numbers, another round is played.

Note:

You will play the game described for a total of three sessions. After each session,

you will be paired with other participants to form a new market. This means that you

interact with other participants in each of the three sessions. After all, sessions are

completed, it will be randomly decided which of the three sessions will be paid

for. You will receive this profit after the experiment. You will also receive additional 4.00

euros for participating in this experiment.

1.A.2 Screenshots of the experiment

Figure 1.8: Decision screen
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Figure 1.9: Profit information screen

1.A.3 Survey & control questions

Control Questions

Question 1: How many consumers are in the market who want to buy the product?

• 35

• 30

• 40

• 60

Question 2: What is the probability of playing another period after completing one?

• 95%

• 20%

• 50%

Question 3: What is the maximum price consumers are willing to pay for the product?

Question 4: You are firm A and choose a price of 2, firm B chooses a price of 3, firm C

chooses a price of 5. What is your profit in ECU in this round?

Question 5: You are firm A and choose a price of 3, firm B chooses a price of 3, firm C

chooses a price of 3. What is your profit in ECU in this round?
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Appendix 1.B Strategy analysis

1.B.1 Incentive compatibility of the algorithm’s strategy

I want to show that the algorithms’ strategy can be exploited by the strategy described

by Equation 1.7. I focus on the case in which a player k uses this strategy, and all other

players use the limit strategy of the algorithm (Equation 1.6). When using the Exploit

strategy, the firms enter a price cycle. After a deviation to pk = 3, all firms play the stage

game Nash equilibrium. In the following period, firms −k play the monopoly price while

firm k plays again pk = 3 to restart the cycle. Hence, in every other period firm k receives

the deviation profit of πD = 3m = 180. In the other periods, all firms share the market

and firm k receives πNE/N = m/N = 60/N . Cooperation at the monopoly price yields

πM/N = 4m/N = 240/N . Thus, the exploitative strategy dominates cooperation in an

infinitely repeated game with discount factor δ if

V Cooperate(N) ≥ V Exploit(N)

⇔
∞∑︂

t=0
δt πM

N
≥ πD + δ

πNE

N
+ δ2πD + δ3 πNE

N
+ ...

⇔ 1
1 − δ

πM

N
≥ 1

1 − δ2 πD + δ

1 − δ2
πNE

N

⇔ 1
1 − δ

240
N

≥ 1
1 − δ2 180 + δ

1 − δ2
60
N

(1.8)

Within the experiment and the simulations, the discount rate is δ = 0.95. Hence, for

a two-player game we have V Cooperate(N = 2) = 2400 and V Exploit(N = 2) ≈ 2138.46.

It implies that cooperation with the algorithm at the monopoly price dominates the

exploitative strategy.

For a three-player game it is V Cooperate(N = 3) = 1600 and V Exploit(N = 3) ≈ 2041.03.

Thus, exploiting the algorithm dominates cooperation.
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1.B.2 Individual prices in the last supergame

Figure 1.10 and 1.11 show the individual prices for the treatments 1H1A and 1H2A

respectively. Furthermore, I plot the price of the algorithm for each round. Note that

this prices is the same for both algorithms in 1H2A.

Both figures reveal the price patterns associated with the strategies described in Sec-

tion 1.6.4. In very few rounds in 1H2A, the strategy of the algorithm diverges from the

win-stay lose-shift strategy described by Equation 1.6. While this may delay efficient

learning in the game, participants never play a strategy that exploits those negligible

deviations.

Figure 1.12 shows all prices for each market in the last supergame in 2H1A. In few

markets, both humans manage to collude with the algorithm. The other markets usually

have a market price that is equal to the stage game Nash equilibrium.
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Figure 1.10: Prices for each human participant in the last supergame in 1H1A.
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Figure 1.11: Prices for each human participant in the last supergame in 1H2A. Note that
both algorithm always play the same price.
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2.1 Introduction

Price recommendations are prevalent on many digital marketplaces. Platforms like Airbnb,

Expedia, and eBay provide the sellers on their marketplaces with a recommendation on

how to set the price for the product they sell. Those recommendations are typically cre-

ated by algorithms based on historical market data.1 Importantly, recommendations are

typically non-binding in the sense that sellers can nevertheless freely choose their prices.

Various explanations for the use of price recommendations exist in practice. For in-

stance, price recommendations might reduce information asymmetries between the plat-

form and sellers (see Pavlov and Berman, 2019). This makes them potentially attractive

from a business perspective as, for instance, platforms may have better demand informa-

tion than individual sellers. However, competition authorities are concerned that price

recommendation algorithms by a common intermediate can also dampen competition as

it might make coordination between sellers easier (Competition & Markets Authority,

2021; Bundeskartellamt and Autorité de la concurrence, 2019). For example, according

to reporters of ProRebublica, price recommendation software allegedly led to coordina-

tion effects in the U.S. rental market, especially in regions where few property managers

control a large share of the apartments.2

This article examines whether platforms can use algorithms that provide sellers with

non-binding price recommendations to make markets more collusive. As digital sales

platforms often receive a share of the seller’s revenues through commission rates, they

can benefit from higher prices if there is seller competition.3 Even if the platform’s

income does not directly depend on the sellers’ prices, using algorithmic pricing software

may increase sellers’ profits and thus their willingness to pay for joining the platform and

using the software. This, in turn, can increase the platform’s profits. These arguments
1For instance, Airbnb uses price recommendation algorithms that utilize historical and geographical

data and combine machine learning methods with human intuition. Furthermore, the algorithmic price
recommendation changes daily for the upcoming dates for which the accommodation is available. See
Hill (2015) for details.

2See Vogell, Coryne & Little, "Technology Rent Going Up? One Company’s Algorithm Could Be
Why.", https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent (accessed
on November 25, 2022).

3A natural question is why a platform cannot simply increase the commission rate to induce higher
sales prices. We theoretically demonstrate that steering the sales prices with commission rates can be
impossible or insufficient for sales platforms for various reasons, so collusive price recommendations may
be desirable. See Appendix 2.A for details.

https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent
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motivate the question of whether recommendation algorithms can indeed raise prices and,

if so, merit closer examination by competition authorities and regulators.

We derive two rule-based algorithms from economic theory and behavioral insights to

investigate the effects of a platform’s recommendation algorithm on the prices of compet-

ing sellers.4 These algorithms recommend collusive strategies with different punishment

mechanics. The recommendations are non-binding and do not change the game’s strat-

egy space and payoff functions as they do not provide fundamentally new information. In

practice, however, collusive outcomes can be challenging to achieve without communica-

tion among competitors or another form of coordination (see, for instance, Fonseca and

Normann, 2012). We argue that the recommendation algorithms have the potential to

facilitate coordination and, thus, collusion.

The theory-based algorithm recommends actions that are consistent with a collusive

trigger-strategy and Nash reversion. If a seller undercuts the collusive price level, it recom-

mends competitive prices for several periods until it returns to recommending collusive

prices. All players following the recommendations constitutes a subgame perfect Nash

equilibrium. Additionally, we consider an algorithm that is motivated by behavioral find-

ings whereby firms often do not use harsh punishment strategies (see, for instance, Wright,

2013). This algorithm recommends brief punishment phases with prices at the level of the

deviating price and returns to recommending high prices when the sellers comply. The

recommendations in our experiment provide no fundamentally valuable information, such

as the state of demand, to sellers. Instead, their only purpose is to coordinate sellers. We

abstract from other factors that could make following the recommendations desirable in

order to isolate the pure coordination effect of recommendations.

We derive several testable hypotheses based on our theoretical model and test those

in laboratory experiments. Subjects resemble competing sellers who repeatedly set prices

and receive price recommendations from an algorithm in each round. Across treatments,

we vary whether participants receive a recommendation or not as well as the type of

recommendation algorithm. We inform the subjects in the experiment that the recom-

mendation algorithm’s objective is to maximize industry profits symmetrically without
4Recent studies by Musolff (2022) and Wieting and Sapi (2021) highlight that price algorithms on sales

platforms often follow simple rule-based logic. Similarly, even complex reinforcement learning algorithms
often converge to strategies that simple rules can describe (see, for instance, Werner, 2021).
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favoring a particular seller. Recommending high sales prices is consistent with the incen-

tives of a platform that receives part of the sellers’ revenues through commission rates.5

The algorithmic price recommendations positively influence individual pricing deci-

sions in the sense that higher recommended sales prices induce sellers to set higher indi-

vidual prices. The estimated "pass-on rate" from recommended prices to sales prices is

between 0.22 and 0.57, depending on the recommendation algorithm. The pass-on rate is

higher for the theory-based algorithm that recommends collusive trigger strategies with

temporary Nash reversal.

The effects on the realized market prices and profits differ sharply between the dis-

tinct recommendation algorithms. We find insightful price patterns for the theory-based

algorithm even though the average market prices do not differ from the control treatment

without any price recommendation. The substantial heterogeneities can explain the ab-

sence of an average treatment effect in the market outcomes. The collusive effect of the

algorithm depends on the seller’s characteristics. In markets where sellers have low levels

of negative reciprocity, the recommendation algorithm decreases market prices. Thus, if

participants are usually not willing to punish unfair behavior, the recommendation leads

to lower market prices. Furthermore, if sellers are relatively impatient, the recommenda-

tions make markets more collusive. In other words, the recommendations increase market

prices in groups of sellers which are usually too impatient for collusive strategies to be

sustainable.

The behaviourally motivated algorithm also recommends the monopoly price but dif-

fers in the reaction to the deviation of a seller. For this algorithm, we find lower market

prices and profits than without any recommendation. Participants repeatedly deviate

downwards from the recommendation, which triggers a downward spiral that leads to

lower prices. We find no evidence that this algorithm fosters collusion for any subgroup.

Hence, the algorithm makes markets more competitive. It is particularly interesting

against the backdrop of observations where humans prefer soft punishments for devia-

tions from collusion in experiments (see, for instance, Wright, 2013).

Related literature Our article relates to the literature on the collusive effects of al-

gorithmic pricing. There exists evidence that algorithms can foster collusion and lead to

anti-competitive prices (Klein, 2021; Calvano et al., 2020a; Hansen et al., 2021; Brown
5See Appendix 2.A for details.
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and MacKay, 2022; Harrington, 2022). Johnson et al. (2022) focus on tacit collusion

among self-learning algorithms on sales platforms and discuss how the platform’s design

choices influence it. Normann and Sternberg (2023) and Werner (2021) show experimen-

tally that algorithms may raise market prices even above the price level usually observed

in human markets. We differ from this approach as we consider algorithms that only give

recommendations but do not compete with the other firms in the market.

We also relate to the literature on recommended retail prices. These are pricing rec-

ommendations that a manufacturer provides to its retailers. In theory, they can act as a

coordination device (Faber and Janssen, 2019; Buehler and Gärtner, 2013) and can make

markets more collusive (Foros and Steen, 2013). Furthermore, they can also influence

demand by setting a reference point for the consumers (Bruttel, 2018). The price rec-

ommendations in our setup resemble those employed by websites like Airbnb or Expedia.

On the other hand, manufacturers use recommended retail prices in a supplier-retailer

relationship. Also, recommended retail prices in conventional markets mostly stay the

same and are traditionally distributed in a printed format, whereas the digital price rec-

ommendations in online platforms may change rapidly. Lastly, the recommendations on

platforms are unobservable to consumers. Hence, they cannot influence demand directly

but only through the pricing decision of the sellers.

Various papers study experimentally the effect of price announcements on collusion

(e.g., Holt and Davis, 1990; Harstad et al., 1998; Harrington et al., 2016). Here, par-

ticipants can announce prices and observe the announcement of the competitors before

making the actual pricing decision. While price announcements can temporarily foster

collusion, the effect usually fades, and prices decline to the level without any announce-

ments. This reduced form of communication can be considered a recommendation by a

firm in the market to its direct competitors. Our approach is distinct, as recommendations

come from an algorithm that does not compete with the firms in the market.

Furthermore, recommendations and requests influence the decision of participants in

various experimental games. They can increase contributions to public goods (Silverman

et al., 2014; Croson and Marks, 2001), reduce tax evasion (Cadsby et al., 2006), and facili-

tate coordination in games with correlated equilibria (Duffy and Feltovich, 2010). Schotter

and Sopher (2003) show that intergenerational advice provided by previous populations

of experimental subjects can help to coordinate behavior. The result is robust to different
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games and experimental setups (see Schotter, 2003, for a literature review). Our approach

is different as an algorithm instead of previous subjects provides the recommendations.

Sonntag and Zizzo (2015) consider static quantity requests in a Cournot market game.

They vary the degree of authority with which the requests are communicated to the

participants across treatments. They find that this type of authoritarian recommendation

can lower quantities and, thus, make markets more collusive. We consider a setup similar

to theirs. However, we concentrate on neutral recommendations by an algorithm without

explicitly framing the recommendation as a request. Furthermore, we go beyond static

quantity recommendations and focus on dynamic recommendation algorithms that depend

on the history of the game.6

There are few articles that directly consider price recommendations in platform mar-

kets. Pavlov and Berman (2019) consider their effects in a cheap-talk model where the

platforms possess superior information about demand. They find that recommendations

can be desirable compared to centralized pricing, especially if the variance of the aggre-

gate demand is large. Lefez (2021) focuses on how platforms use price recommendations

to disclose information to sellers. The potential collusive effect of price recommendations

by offering a coordination device is not explicitly discussed in either paper.

The remainder of the article is structured as follows. Section 2.2 discusses the the-

oretical framework and the rule-based algorithms we consider. Furthermore, we derive

our hypothesis. Then, we introduce the experimental design in Section 2.3 and present

the results in Section 2.4. We discuss the implications of our results in Section 2.5. In

Appendix 2.A, we demonstrate why a monopoly platform can benefit more from mak-

ing collusive price recommendations for sellers than from only adjusting its commission

rates. Appendix B contains the instructions and survey questions. We document various

robustness checks and further algorithm variations in Appendix C.

2.2 Theoretical framework and predictions

We first set up a stylized pricing game with n sellers and solve for equilibria of the one-

shot game and the infinitely repeated game. The game describes the experimental setup

that we introduce in Section 2.3. We then argue that a recommendation algorithm can
6We also conducted a static recommendation treatment which we document in Appendix 2.C.3.
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induce different Nash equilibria by acting as a coordination device. Finally, we motivate

and explain an alternative algorithm that recommends a softer punishment scheme.

2.2.1 Setting and Nash equilibria

We consider an infinitely repeated Bertrand game with n ≥ 2 symmetric sellers denoted

by A, B, and so on. Each seller aims to maximize its profit and discounts future profit

flows with a discount factor of δ.

In each period, each seller chooses its price from the integers in the set P = {pN , pN +

1, ..., pM} ⊂ Z+. There are k consumers who are willing to buy one unit of the good each

and are willing to pay pM per unit. The seller with the lowest price in a given period

supplies the entire market. If multiple sellers have the lowest price, they share the market

equally.

The sellers have no costs and no capacity constraints. Note that abstracting from

costs does not change the insights from this analysis. We would get qualitatively the

same results if we explicitly modeled costs which, in reality, may include commission

payments. What matters for the analysis is that there is a range of prices between the

relatively low competitive price level and a collusive price at which all firms make strictly

higher profits.7

Nash equilibrium of the stage game Suppose that, except for seller A, all sellers set

prices larger than pN and at least at a level of p. Notice that seller A makes zero profits

for any price higher than p, whereas setting a price of p yields a profit of p · k/n. On the

other hand, a deviation to p − 1 yields a profit of (p − 1) · k. Undercutting the lowest

price of a competitor, p, by one unit is the best response if

(p − 1) · k > p · k/n

=⇒ (p − 1) > p · 1/n

=⇒ p · (1 − 1/n) > 1

=⇒ p > n/(n − 1).

7See also Appendix 2.A for our analysis of commission payments and, in particular, equation (2.2)
which shows how commission payments affect competitive prices.
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We define pN as the integer weakly below n/(n − 1). At this price, no firm has an

incentive to undercut, such that each firm setting a price of pN and making a profit of

pN · k/n is a Nash equilibrium. For n = 3, there is a strict incentive to undercut any price

larger than 1.5, such that pN = 1. As n/(n − 1) is decreasing in n, it follows that pN = 1

for any market with n > 3. For n = 2, both a symmetric price of 1 and a symmetric price

of 2 constitute a Nash quilibrium.8

Collusive equilibrium of the repeated game We now construct a collusive subgame

perfect Nash equilibrium of the infinitely repeated game with trigger strategies. In line

with the Folk Theorem, multiple collusive equilibria potentially exist. Variations are

possible in the collusive price level and the punishment scheme. For instance, any price

above the competitive price can potentially be supported as a collusive outcome. We

focus on the highest and most profitable collusive price of pM , which appears natural

here. Among the equilibria with Nash-reversion, we focus on the equilibrium with the

shortest possible punishment length. As we explain below, behavioral evidence indicates

that punishments are often relatively soft.

Suppose the collusive strategy is as follows:

• If the regime is collusive in the current period, set a price of pM .

• If the regime is punitive in the current period, set a price of pN .

• In period one, start in the collusive regime.

• If the regime was collusive in the previous period and everyone set a price of pM ,

continue with the collusive regime in the current period.

• If, in the previous period, the regime was collusive, but someone set a price below

pM , switch to the punishment regime for T periods and switch back to the collusive

regime afterward.

This yields the stability condition

πM · (1 + δ + δ2 + ...) ≥ πD +
T∑︂

t=1
δtπN + πM · (δT +1 + δT +2...),

8For n = 2, there is a strict incentive to undercut any (integer) price larger than 2, such that pN = 2.
A symmetric price of 1 is also a Nash equilibrium, but there is no strict incentive to undercut a symmetric
price of 2 either as 1 · k = 2 · k/2.
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where πM is the collusive period profit, πD the deviation profit and πN the static Nash

profit as the punishment profit.

Rearranging yields

πM · (1 + δ + δ2 + ... + δT ) ≥ πD + πN ·
T∑︂

t=1
δt

⇔
T∑︂

t=1
δt ≥ πD − πM

πM − πN
.

Parameter values in the experiment In the experiment, we have pM = 10, k=30,

n=3, and consequently pN = 1. We use a value of 0.95 for the discount factor δ as

this equals the continuation probability in our experiment, which we introduce in Section

2.3. To determine the shortest punishment length T that makes collusion stable for these

parameters, we plug in the values for the profits:

πM = 10 · 30/3 = 100;

πD = 9 · 30 = 270;

πN = 1 · 30/3 = 10.

This yields

T∑︂
t=1

δt ≥ 270 − 100
100 − 10 ≈ 1.89.

As δ = .95; δ + δ2 = 1.85; δ + δ2 + δ3 = 2.59, three punishment periods are necessary

and sufficient for the stability condition to hold, which constitutes a subgame perfect

Nash equilibrium in trigger strategies of the infinitely repeated stage game.

2.2.2 Algorithm that recommends Nash equilibrium actions

An algorithm that gives non-binding recommendations to all market participants does

not change the game’s action space and payoff functions. The recommendations do not

provide fundamentally new information either and are non-binding.

However, collusion can be challenging to attain without a coordination device (Engel,

2007; Fonseca and Normann, 2012). Players must agree on a common collusive strategy.

Within our setup, the collusive price is not necessarily a price of pM but could be any
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price above pN . Moreover, collusion also depends on a shared understanding of how to

punish deviations from the collusive price. It includes a punishment price but also an

understanding of how many periods this price is set before, possibly, the players return

to a collusive price. Recommendations can act as a coordination device that addresses

all these issues. The idea behind a recommendation algorithm is that sellers may expect

other sellers to behave according to the recommendation. It makes it incentive-compatible

to do the same.

The following algorithm, labeled RecTheory, recommends prices according to the

trigger strategy derived above.

Algorithm 1 (RecTheory).

• If the regime is collusive in the current period, recommend a price of pM .

• If the regime is punitive in the current period, recommend a price of pN .

• In period one, start in the collusive regime.

• Afterwards, if the regime was collusive in the previous period and everyone set a

price of pM , continue with the collusive regime in the current period.

• If in the previous period the regime was collusive but someone set a lower price than

pM , switch to the punishment regime for T periods and switch back to the collusive

regime afterward.

It is sensible for the competing sellers to follow the recommendations, provided it is

individually rational. We inform the subjects in the experiment that the recommenda-

tion algorithm’s objective is to maximize industry profits symmetrically, that is, without

favoring a particular seller. Inducing high sales prices is consistent with the incentives of

a platform that receives part of the sellers’ revenues through commission payments. If

a seller expects the other two sellers to follow the algorithm’s recommendations, then it

is best off in doing the same, as this constitutes a subgame perfect Nash equilibrium. A

deviation from RecTheory is not profitable provided that the other sellers follow the

recommendation and play the static Nash price of pN in the punishment periods, which

is again a mutually best response.

We test the following hypotheses in the experiment based on those considerations.



2.2. THEORETICAL FRAMEWORK AND PREDICTIONS 59

Hypothesis 1. Recommendations positively influence individual prices. A higher recom-

mended price leads to higher individual prices.

Hypothesis 1 states that firms’ prices are increasing in the recommendation. As the

recommendation may act as a coordination device, we expect that firms factor it into

their pricing decision, and we hypothesize that higher recommendations lead to higher

individual prices. It is a minimal requirement for any sensible algorithm to have a collusive

effect.

Hypothesis 2. The RecTheory recommendation algorithm leads to higher market

prices than the absence of a recommendation algorithm.

Hypothesis 2 builds on the rationale that RecTheory acts as a coordination device

among the firms and thereby indeed facilitates collusion.

2.2.3 Behaviourally motivated soft punishment algorithms

Empirical and experimental evidence indicates that punishment is often less harsh than

in theory models with trigger or even grim-trigger strategies. For instance, Wright (2013)

finds that only a small fraction of subjects in market experiments use optimal or grim pun-

ishment strategies. Most punishment strategies are softer and more gradual. It concerns

both the punishment length, as well as by how much prices are reduced in a punishment

phase. Similarly, Dal Bó and Fréchette (2019) show that humans often use tit-for-tat

strategies in the iterated prisoners’ dilemma, which is strategically similar to our stylized

market environment.

To reflect these practices, we set up a behaviourally motivated recommendation algo-

rithm. It works as follows:

Algorithm 2 (RecSoft).

• Start with a recommendation of the monopoly price of pM and continue with this

recommendation in future periods as long as all sellers adhere to the recommenda-

tion.

• In case of a deviation, recommend a punitive price equal to the lowest price from

the previous period (e.g. min(10,10,9)=9).
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• If all sellers play the same price in a given period, recommend the monopoly price

of pM in the next period.

In line with the behavioral insights cited above, such a recommendation mechanism

may be superior to the algorithm implementing a subgame perfect Nash equilibrium with

trigger strategies. The recommendation is similar to a tit-for-tat algorithm as it mimics

the firms’ decisions in the previous period. However, it also proactively tries to increase

prices after firms agree on a joint price level.

Following the recommendation might be behaviourally attractive as no harsh pun-

ishment needs to be implemented. With k-level reasoning, for instance, a seller might

rationalize that other sellers prefer to punish if it bears little costs and it yields an ex-

pected price soon after. Suppose sellers anticipate punishment under the current soft

punishment algorithm. In that case, it may deter them from departing from the collusive

price.9 Furthermore, if sellers deviated in the past, the algorithm promotes cooperation

as it again recommends the monopoly price once sellers agree on a joint price level. Since

collusion at the monopoly price is the long-run objective of the algorithm, we argue that

Hypothesis 3. The RecSoft recommendation algorithm leads to higher market prices

than the absence of a recommendation algorithm.

It is noteworthy that following these recommendations does not constitute a subgame

perfect Nash equilibrium. To see this, suppose that all sellers follow the recommendations

throughout the game. If seller A follows the recommendations, the per-period profit is

pM · k/n in each period, yielding a profit stream of

pM · k/n · (1 + δ + δ2 + δ3 + ...).

Consider a one-shot deviation of setting a price of pA < pM while the algorithm recom-

mends a price of pM . The profit in the deviation period equals pA · k. The algorithm

recommends a price of pA in the next period. All sellers that follow the recommendation

receive a profit of pA · k/n. Afterward, the algorithm reverts to the monopoly price of

pM . Thus, the deviating seller obtains a deviation profit of pA · k for one period and a
9We also consider a recommendation algorithm without any punishment in the Appendix 2.C.3.
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punishment profit of pA · k/n for another period. Hence, the profit stream is

pA · k + pA · k/n · δ + pM · k/n · (δ2 + δ3 + ...),

which is highest for the highest feasible deviation price of pA = pM − 1. The difference

between the deviation profit stream and the collusion profit stream is

k · (pM · (1 − 1/n) − 1 − 1/n · δ).

Thus, deviating from the recommendation is profitable if

pM >
n + δ

n − 1 .

For n ≥ 2 and δ < 1 the condition holds for any pM > 2. Thus, following the rec-

ommendation does not constitute a subgame perfect Nash equilibrium for the parameters

used in the experiment as pM = 10.

Following the soft recommendation algorithm may nevertheless be more attractive

than the recommendation involving Nash reversion in punishment phases. It depends on

the willingness of the sellers to implement drastic and longer-lasting punishments and

their belief about the behavior of the other market participants. Nevertheless, sellers

might find the soft punishment not harsh enough. Which recommendation algorithm

performs better thus remains an ex-ante open question. We, therefore, do not postulate

a hypothesis in this regard.

2.3 Experimental design

To experimentally investigate the collusive effect of price recommendations, we consider

a market setup that mimics the theoretical framework in Section 2.2. Each of the n = 3

sellers in a market is represented by a participant. The market size is chosen such that

tacit collusion is unlikely without any recommendation (Huck et al., 2004). The demand

side consists of k = 30 computerized consumers. The participants play a repeated game.

In each round of the game, all participants choose their prices independently. There is

no direct communication between the participants. Across treatments, we vary whether
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participants receive a price recommendation and which type of algorithm provides this

recommendation. Each participant in a market receives the same price recommendation.

After each participant selects a price, the participants receive information about the

pricing decision of the other participants and their payoff in the given round. Furthermore,

the recommended price is again shown to the respective treatment participants.

2.3.1 Treatments

There exists a Baseline treatment in which we do not provide any price recommenda-

tion to the participants. Furthermore, we consider two treatments with rule-based price

recommendation algorithms that are motivated by our theoretical considerations (Section

2.2). In the RecTheory treatment, the initial price recommendation is the monopoly

price of pM = 10. Any deviation from the recommendation by any participants trig-

gers a punishment phase in which the stage game Nash equilibrium pN is recommended.

The punishment phase lasts for three periods. Afterward, the algorithm recommends the

monopoly price again. Following the analysis in Section 2.2, RecTheory recommends

actions that constitute a subgame perfect Nash equilibrium. In the RecSoft treatment,

the algorithm also recommends a price of pM = 10 in the initial round. However, after a

deviation, the recommended price is the lowest price from the previous period. If all par-

ticipants choose the same price in a given round, the algorithm recommends the monopoly

price again. In addition to the main recommendation algorithms (RecTheory and Rec-

Soft), we consider two additional mechanisms as a robustness check. In RecStatic,

the algorithm provides a static price recommendation at the monopoly price similar to

Sonntag and Zizzo (2015). Additionally, we analyze an algorithm similar to RecTheory

but with a shorter punishment phase. Both additional algorithms do not foster collusion

compared to Baseline, and we only discuss them in the Appendix.

We focus on rule-based algorithms as they are highly tractable and allow us to de-

rive clear, theoretical guided hypotheses that we developed Section 2.2. Furthermore, in

digital platform markets, many algorithms are simple as well. Wieting and Sapi (2021)

and Musolff (2022) show that real-world pricing algorithms are often rule-based and fol-

low straightforward conditional processes. Moreover, although alternative methods like

reinforcement learning algorithms have more complex routines to learn a pricing strategy,

they eventually often converge to strategies that simple rules can describe (Werner, 2021;
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Klein, 2021).10 Hence, our focus on those algorithms is attractive from a methodological

perspective but also realistic regarding the tools used in actual markets.

2.3.2 Procedure

The experiments were conducted between February 2020 and August 2021 in the DICE

Lab of the University of Duesseldorf. We used ORSEE (Greiner, 2015) to recruit the

subject for the experiments. The experiment was programmed in oTree (Chen et al.,

2016a). We utilized a between-subject design, and each subject only participated once.

At the beginning of each experiment session, participants were randomly assigned to a

computer in the lab and could read the instructions on the computer screen. Additionally,

the participants received a printed version of the instructions. The instructions were the

same for each subject. A translated version of it is in Appendix 2.B.1. After the subjects

read the instructions, they answered several control questions to ensure they understood

the setup.11 In case a participant failed to answer all control questions correctly, the

software asked the participant to reread the instructions and allowed the participant to

ask the experimenter clarifying questions in private.

In RecTheory and RecSoft, the instructions describe the objective of the algo-

rithms to the participants. To be precise, we explain that the recommendation algorithm

aims to increase long-term industry profits. One control question specifically assesses

whether participants comprehend the design purpose of the algorithm. Thus, we expect

that all participants have the same belief about the algorithm’s objective.

Furthermore, the instructions emphasize that the price recommendation is non-binding

so that each subject can choose a different price. This approach is motivated by the price

suggestions that sellers receive in popular online marketplaces like Airbnb.

To mimic an infinitely repeated game as outlined in Section 2.2, each round of the

game has a continuation probability of 95%. Thus, with a probability of 5% each game

terminates after a given round. Within this setup, the continuation probability is equiva-

lent to the discount rate of δ = 0.95 (Roth and Murnighan, 1978). The game is repeated
10The Q-learning algorithms in Klein (2021) punish for a certain number of periods before reverting to

the monopoly price. In Werner (2021), they learn one-period punishment strategies similar to a win-stay
lose-shift strategy.

11All control questions are in Appendix 2.B.2.
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for three supergames to observe possible learning effects.12 Within each supergame, the

group composition is fixed. We use a perfect stranger matching scheme across supergames.

Hence, the participants know they will meet each participant only once during the entire

experiment. It rules out possible reputation effects that might arise otherwise. At the end

of the experiment, the participants answered different survey questions that are listed in

Appendix 2.B.2.

Table 2.1: Number of observations by treatment

Treatment Number of participants Number of independent observations
Supergame 1 Supergame 2 Supergame 3

Baseline 54 18 6 6
RecSoft 54 18 6 6
RecTheory 54 18 6 6

Note: The number of independent observations in later supergames is determined by the matching group
size which always consist of nine participants.

In total, we distributed 162 participants evenly distributed across the three main

treatments.13 This corresponds to 18 independent observations in the first supergame,

as a market always has three sellers. In the later supergames, there are six independent

observations by treatment.14 Table 2.1 contains an overview. We used an experimental

currency unit (ECU) with an exchange rate of 100 ECU = EUR 1. On average, the

participants received a payoff of EUR 10.73 plus a show-up fee of EUR 4.15 The average

session length was 45 minutes.

2.4 Results

In this section, we discuss the experiment’s results and test the hypotheses we derived in

Section 2.2.
12The exact number of rounds was pre-drawn with a random number generator to allow for the same

supergame length across different experimental sessions. The round numbers are 27 (Supergame 1), 8
(Supergame 2), and 18 (Supergame 3).

13For details on the additional control treatments see Appendix 2.C.3.
14The number of independent observations in later supergames is determined by the matching group

size. A matching group consists of nine participants.
15During the COVID-19 pandemic, we paid each participant an additional EUR 4. This bonus was

announced after the end of the session. Thus, it does not influence the behavior in the experiment itself.



2.4. RESULTS 65

2.4.1 The influence of price recommendations on individual prices

Hypothesis 1 states that price recommendations influence individual prices as participants

base their pricing decision on the recommendations. To test this hypothesis, we regress

the individual prices (pi
t) on the recommended prices (pR

t ). The results of the linear

regressions are in Table 2.2.

Table 2.2: Individual prices explained by the recommendation in a linear regression

Dependent Variable: Individual price (pi
t)

Model: (1) (2) (3) (4)
Variables
(Intercept) 2.77∗∗∗ -0.201

(0.406) (0.153)
pR

t 0.376∗∗∗ 0.203∗∗∗ 0.385∗∗∗ 0.224∗∗∗

(0.075) (0.026) (0.083) (0.038)
pi

t−1 0.554∗∗∗

(0.029)
pi

t−2 0.223∗∗∗

(0.013)
RecTheory 0.348

(0.713)
pR

t × RecTheory 0.346∗∗∗

(0.078)
Further controls: Yes Yes
Fixed-effects
Round Yes Yes
Supergame Yes Yes
Observations 5,724 5,076 5,724 5,724

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

In all four columns, price recommendations positively and significantly affect individ-

ual prices. The effect is maintained when we control for lagged prices (column 2) and

time-fixed effects (column 3). Furthermore, the effect size is more extensive for RecThe-

ory than for RecSoft (column 4). In specifications 3 and 4, we furthermore control for

a set of individual-specific control variables.16 We conclude that the recommendations

positively influence the prices. This is in support of Hypothesis 1.
16These include economic preferences and measures the socioeconomic status. We provide a list in the

Appendix 2.B.2.
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Result 1. Sellers condition their prices on the recommendation of the algorithms. Price

recommendations positively influence the individual sales prices of the participants.

In all regression specifications, the coefficient of the price recommendation is below one.

It indicates that the price recommendation only translates partially into the individual

price. Increasing the price recommendation by one only increases the individual price by

0.20 to 0.57, depending on the model specification and treatment. Thus, albeit prices

change with the recommendations, it appears that, on average, participants do not fully

follow the recommendation.

2.4.2 Collusive effects of price recommendations

Building on the finding that subjects use the algorithms’ recommendations for their pric-

ing decisions, we now investigate whether the recommendations effectively foster collusion.

Therefore, we compare the mean market prices in the treatments featuring recommenda-

tions with outcomes in the baseline treatment of no price recommendations. Note that

the market price has a 1:1 relation with industry profits, so an analysis of the market

price is equivalent to an analysis of the profits.

According to Hypotheses 2 and 3, price recommendations foster collusion as they

provide a common reference point and simplify coordination on common punishment

strategies after the deviation of a firm.
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Figure 2.1: Market price for the main treatments. The error bars represent 95% confidence
intervals.
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Figure 2.1 shows the mean market prices by treatment pooled across supergames.17

The average market prices in Baseline and RecTheory are similar. There are no

statistically significant differences (p-value= 0.818, two-sided Mann–Whitney U test).

Thus, we find no evidence that, on average, the RecTheory recommendation algorithm

fosters tacit collusion.

One of our initial conjectures was that the RecTheory recommendation algorithm,

while constituting a subgame perfect Nash equilibrium, might feature too harsh punish-

ments from the perspective of human players. We, therefore, designed the softer recom-

mendation algorithm RecSoft. On balance, this algorithm, however, does not foster

tacit collusion either. In fact, the market prices are on average smaller than in Baseline

(p-value< 0.05, two-sided Mann–Whitney U test). In other words, the algorithm makes

competitive market outcomes more likely even though the initial design objective was to

make markets more collusive. It is in contrast to the consideration provided in Section

2.2 and to Hypotheses 2 and 3. Furthermore, average market prices in RecSoft are also

smaller than in RecTheory (p-value< 0.1, two-sided Mann–Whitney U test). Thus,

the game theory based algorithm is preferred if an upstream firm wants to use a price

recommendation algorithm to foster collusion in the downstream market.

Table 2.3 displays the results from a linear regression of the market price on the

different treatment indicators. The average market prices in RecTheory are higher

than in Baseline, but the standard errors are relatively large, so the differences are not

statistically significant. In line with the results from the non-parametric test, the market

prices are lower in RecSoft than in Baseline. The effect is robust to the inclusion of

time-fixed effects and to the use of different aggregated survey measures.18

Result 2. RecSoft leads to statistically significantly lower prices than Baseline. Price

recommendations in RecTheory do not foster tacit collusion.

Result 2 summarizes the findings about the average treatment effects. While we

find support for the hypothesis that recommendations influence individual prices (Result

1), we find no evidence that, on average, price recommendations foster tacit collusion.

On the contrary, price recommendations can make markets more competitive and lower
17The results by supergame do not differ substantially and are provided in Table 2.12 in the appendix.

Furthermore, we provide an overview of the development of market prices across time in Figure 2.2.
18The survey measures were elicited on an individual level and listed in Appendix 2.B.2. We aggregate

them on the group level by calculating the mean across all group members.
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Table 2.3: Linear regression for the treatment effects

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 4.20∗∗∗

(0.308)
RecSoft -1.53∗∗∗ -1.53∗∗∗ -1.45∗∗

(0.382) (0.384) (0.530)
RecTheory 0.442 0.442 0.823

(0.899) (0.904) (1.00)
Further controls Yes
Fixed-effects
Round Yes Yes
Supergame Yes Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

market prices relative to a baseline without any recommendations. Note that lowering the

sales prices might be a desirable strategy for a sales platform if double marginalization

is an issue (see Appendix 2.A for a theoretical illustration). There is empirical evidence

whereby the sales platform Amazon appears to make offers with low prices more prominent

in certain circumstances (Chen et al., 2016b; Hunold et al., 2022). It could also be part

of a dynamic business strategy that attempts to invest in a large consumer base first to

possibly charge higher prices on many locked-in consumers later. In the following section,

we explore the mechanism for the price-decreasing effects of the soft recommendation

algorithm. Furthermore, we discuss heterogeneous treatment effects for the RecTheory

treatment.

2.4.3 Heterogeneity and mechanisms

The average treatment effects are in sharp contrast to our theoretical predictions. Price

recommendations do not raise market prices in the mean and can even have pro-competitive

effects. In the following, we discuss potential mechanisms that can explain those find-

ings. We first consider heterogeneity in market outcomes across treatments and highlight
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specific stylized facts that drive the heterogeneity. Then, we examine price patterns that

arise in the different treatments.

Heterogeneous response to recommendations

There are substantial differences in market outcomes in RecTheory across matching

groups. While the variance in average market prices in Baseline (σ2 = 0.65) and Rec-

Soft (σ2 = 0.34) is small, there exists a large variation in RecTheory (σ2 = 4.85).

Those differences in variances are statistically significant (p<0.05, two separate Bartlett-

tests).19 This indicates that the recommendation algorithm RecTheory, which rec-

ommends strategies that constitute a subgame perfect Nash equilibrium, fosters more

heterogeneous market outcomes.

To study the origin of the differences in variances, we show the maximal, minimal, and

median average market price across matching groups for each treatment in Table 2.4. In

line with the previous analysis, the median market price in RecSoft is small, and the

maximal price is even below the median of the other treatments. Interestingly, although

the median prices in baseline and RecTheory are similar, market prices are more

spread out in RecTheory than in Baseline. The recommendations in RecTheory

make specific markets more collusive, whereas they make others more competitive.

Table 2.4: Market price statistics by treatment

Baseline RecTheory RecSoft
pmax 4.94 7.96 3.5
pmedian 4.42 4.71 2.77
pmin 2.62 1.45 1.71

We confirm this by dividing the observations for each treatment into subgroups that

are above (HIGH) and below (LOW) the treatment-specific median market price. We ob-

serve that the average market prices for the RecTheory-High subgroup are statistically

significantly higher than in Baseline-High, although only at the 10% level (two-sided

MWU test). Also, the market prices in Baseline-Low are higher than in RecTheory-
19As in the previous analysis, we aggregate the market prices at the matching group level. Thereby, we

account for dependencies that arise by rematching participants at the end of each supergame. It allows
for correct statistical inference. We provide an overview of the number of independent observations in
Table 2.1.
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Low. Nevertheless, those differences are not statistically significant, likely due to a lack

of statistical power because of the sample split (p=0.4, two-sided MWU test).

Result 3. The variance in market outcomes is larger in RecTheory compared to Rec-

Soft and Baseline.

Relationship between seller preferences and the effect of recommendations

To understand the origins of the heterogeneity in market outcomes, we regress the market

prices on the different economic preference measures and interact them with the treatment

variables. We focus on two variables that are critical for collusion to be sustainable

from a theoretical perspective. First, we consider negative reciprocity. In the context

of collusion in a market game, it is a natural measure to understand the willingness to

punish deviations from a certain price level. Secondly, we analyze how time preferences

interact with our treatments. Firms must be sufficiently patient for collusive strategies to

be sustainable, as they have to value the long-run profits more than the short-term gain

from deviating. Importantly, any heterogeneity is not driven by a lack of randomization

but rather by differences in response to the treatment, conditional on distinct levels of

those social preferences. We provide randomization checks in Table 2.7 in the Appendix.

We elicited the economic preferences on an individual subject level at the end of the

experiment using the validated survey questions by Falk et al. (2022).20 We apply a min-

max normalization to all economic preferences on the individual level. Thus, all measures

are between zero and one. Furthermore, we average them on the market level for the

subsequent analysis.

Differences in negative reciprocity lead to vastly different market outcomes across

treatments (see Table 2.5). In the Baseline treatment without any price recommenda-

tions, higher degrees of negative reciprocity lead to lower market prices, as indicated by

the negative coefficient of Neg. Rec. in model specification 2. In other words, markets

tend to exhibit lower market prices if the participants are more inclined to punish each

other when they feel maltreated. For the treatments with price recommendations, this

pattern is different. While the price level is lower for small levels of negative reciprocity in

RecTheory and RecSoft, as indicated by the negative coefficients of RecTheory and
20Next to negative reciprocity and time preferences, the survey also includes positive reciprocity, time

preferences, risk aversion, and measures of altruism and trust. We report the results regarding those
variables in Appendix 2.C.2.
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Table 2.5: Market price explained by negative reciprocity and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 2.63∗∗∗ 6.38∗∗∗

(0.810) (0.829)
Neg. Rec. 2.03 -3.40∗∗ -3.40∗∗

(1.40) (1.54) (1.55)
RecTheory -2.44∗∗ -2.44∗∗

(0.936) (0.941)
RecSoft -5.51∗∗∗ -5.51∗∗∗

(1.22) (1.22)
Neg. Rec. × RecTheory 4.54∗∗ 4.54∗∗

(2.12) (2.13)
Neg. Rec. × RecSoft 6.85∗∗∗ 6.85∗∗∗

(2.04) (2.05)
Fixed-effects
Round Yes
Supergame Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

RecSoft, the coefficients of the interaction terms with negative reciprocity are positive

and statistically significant. Thus, as the degree of negative reciprocity increases, market

prices in Baseline become similar to the outcomes in RecTheory and RecSoft.21

We interpret negative reciprocity as a willingness to punish deviations in this context.

Thus, the recommendations harm collusion in markets with sellers that are usually un-

willing to punish. Possibly, the recommendations lead to harsh punishments that would

not have happened without them. If participants are unable to recover from the punish-

ment, the recommendations reduce the market prices below the level that is observed in

markets without recommendations but with similarly low levels of negative reciprocity.

Those heterogeneous treatment effects can explain lower prices than in Baseline for the

treatments with a price recommendation.
21The average marginal effect of the treatment dummies is not statistically significant at the 10%-level

if Neg. Rec. is equal to one (Model specification 2 in Table 2.5). Note that one is the maximal value
that Neg. Rec. can take due to the normalization we apply.
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Table 2.6: Market price explained by time preferences and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 0.595 -1.99

(1.61) (2.52)
Time 4.57∗ 9.06∗∗ 9.06∗∗

(2.22) (3.56) (3.57)
RecTheory 8.25∗ 8.25∗

(4.18) (4.20)
RecSoft 0.154 0.154

(3.47) (3.48)
Time × RecTheory -11.2∗∗ -11.2∗∗

(5.21) (5.24)
Time × RecSoft -2.65 -2.65

(5.01) (5.03)
Fixed-effects
Round Yes
Supergame Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Furthermore, the differences in time preferences amongst sellers lead to distinct market

outcomes (see Table 2.6 where a higher level of TIME corresponds to more patience). In

Baseline and RecSoft, the prices are more collusive for markets with more patient

participants. This makes intuitive sense. For collusion to be sustainable, participants

must value the long-run profits more than any short-term gains from possible deviations.

This is arguably the case for groups of sellers who are more patient. For RecTheory,

on the other hand, market prices are higher than in Baseline if market participants

are impatient. In other words, the recommendations foster collusion in situations where

participants tend to deviate more due to their lack of patience. As the effect of Time is

negative in this treatment, the effect wears off for more patient participants, and market

prices become similar to Baseline for values of Time close to one. For large values

of Time, the recommendation even has a negative effect on market prices compared to
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Baseline.22 Evidently, the recommendations lead to lower prices if sellers are particularly

patient. It is possible that participants who are particularly patient would not have

punished in the first place without the recommendation. Small deviations may lead to

harsher punishment than usual. Result 4 summarizes our findings regarding negative

reciprocity and time preferences.

Result 4. Variations in economic preferences of negative reciprocity and patience can

explain the heterogeneous market outcomes. Low negative reciprocity among market par-

ticipants who receive price recommendations reduces collusion. The recommendation al-

gorithm RecTheory makes markets more collusive if the sellers are impatient.

Especially the markets with the RecTheory algorithm, which is motivated by our

game theoretical considerations, outcomes depend on the sellers’ degrees of negative reci-

procity and patience. Those differences make intuitive sense and explain the considerable

heterogeneity in market outcomes discussed in Result 3.

The result emphasizes that algorithms can be pro-collusive for particular subgroups,

even though we do not find statistically significant pro-collusive effects on average. Hence,

if platforms understand their users and target the recommendation to the specific pop-

ulation of sellers, the algorithm could increase the price level. As online sales platforms

gather more and more data about their users, recommendations are more likely to be

tailored to specific markets. Our results suggest that this could lead to an increased risk

of collusion.

Price patterns across treatments

In Figure 2.2, we plot the market prices for each treatment by supergame and round.

In the initial round, market prices in RecSoft and RecTheory are higher than in

Baseline following the recommendation of pR
t=1 = 10 (p-value=0.052 & p<0.05, two-

sided Mann–Whitney U tests).23 Yet, there are deviations from the recommendation in

86.1% of all markets in the first round. As a result, the treatment-specific punishment

mechanisms take effect in the subsequent round.
22The average marginal effect of RecTheory is negative and significant at the 5% level for Time

being equal to one.
23Market prices in RecTheory and RecSoft are similar in the first round following the same initial

recommendation (p=0.25, two-sided Mann–Whitney U test), which confirms that randomization into
treatments worked.
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Figure 2.2: Market price for each treatment by supergame and round.

Let us focus first on the pattern of RecTheory in Figure 2.2. In response to devi-

ations in the first round, the market prices drop for the following three rounds. At the

end of this punishment phase, the prices increase sharply as the algorithm reverts to rec-

ommending the monopoly price. However, the prices do not stabilize completely at this

level. In the following rounds, there are reoccurring deviations after a recommendation

at the monopoly price. This results in clearly visible spikes in the price pattern. In the

second and third super games, the spikes become less frequent, and the price patterns are

more similar to Baseline.

The recurring deviations in RecTheory are almost entirely driven by matching

groups with below median market prices (RecTheory-Low) as discussed in Section

2.4.3. It becomes clear when assessing the market price patterns for RecTheory for

both subgroups separately in Figure 2.3.24 Whereas there are deviations in both sub-

groups in the first round, the market prices stabilize in RecTheory-High after the
24For the respective analysis for RecSoft see Figure 2.5.
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Figure 2.3: Market price in RecTheory for matching groups above (High) and below
(Low) the median market price by supergame and round.

initial punishment phase. In RecTheory-Low, the share of markets with deviations

from the collusive recommendations is significantly higher after the first round, which

results in price spikes (p-value<0.05, two-sided Mann–Whitney U test).25

Matching groups with below-median market prices show repeated deviation patterns

in the first supergame. They do not recover from this experience as average market prices

remain lower throughout the rest of the experiment.26 Hence, we find suggestive evidence

that the recommendation in RecTheory works as expected for specific subgroups. How-

ever, other participants repeatedly deviate from the recommendation, which leads to lower

market prices than in Baseline for this subgroup.
25We test this by restricting the data to the first supergame and to rounds in which the monopoly price

was recommended. Then, we calculate for each market in RecTheory-High and RecTheory-Low
the share of rounds in which at least one participant deviated from the recommendation. We test for
differences in this variable across the two subgroups. Rematching only occurs after the first supergame,
so each market constitutes an independent observation, allowing correct inference.

26Similarly, Dal Bó and Fréchette (2018) show that participants’ initial experience in the infinitely
repeated Prisoners Dilemma is essential for their cooperation behavior in subsequent supergames.
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For RecSoft, the price patterns in Figure 2.2 are also interesting. We designed this

recommendation algorithm to be forgiving to slight deviations as it does not immediately

punish at the stage game Nash equilibrium price of pN = 1 (see Section 2.2). We ex-

pected the punishment to be softer and, possibly, short compared to RecTheory. Yet,

the data does not support this claim. After an initial deviation from the recommended

price, the following recommendation is usually above the stage game Nash equilibrium

(pR
t=2 = 5.33). Hence, in contrast to RecTheory, there are again profitable deviations

from the recommendation in the following round. Participants repeatedly deviate from

the recommendation. This triggers a downward spiral as the recommendation for the

next period is again the deviation price. There are, on average, 5.44 rounds with a rec-

ommendation below the monopoly price after the first deviation in the first supergame.

This initial punishment period is significantly longer than in RecTheory, which always

punishes for three periods (p-value< 0.05, one-sided one-sample t-test). Due to those fre-

quent deviations from the recommendation, market prices deteriorate in the first rounds

and only recover insufficiently in the subsequent rounds. As a result, the average prices

in the treatment RecSoft are low, and markets are even more competitive than in

Baseline.

Result 5. Repeated deviations from the recommendation in RecTheory lead to lower

market prices for specific markets. The recommendation in RecSoft offers repeated

deviation opportunities that drive the market prices down.

Result 5 again emphasizes the adverse effects that recommendations can have for

a platform if they are not designed appropriately. Furthermore, it suggests that plat-

forms can use recommendations to decrease sellers’ prices. In specific scenarios, this can

be attractive, for instance, to avoid excessive double marginalization. Platforms could

specifically design a recommendation algorithm to foster competition among the sellers.

Our results suggest those price recommendations are feasible by using recommendation

patterns as in RecSoft.

2.5 Concluding remarks

Price recommendations are a vital feature of many digital. Companies like Airbnb and

Expedia give non-binding price recommendations to the sellers operating on their plat-
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forms. Furthermore, also in traditional markets, firms use recommendation algorithms to

optimize their pricing decisions. While those pricing algorithms may be beneficial for the

firms using them, competition authorities are concerned that those recommendations can

dampen competition by helping firms to coordinate on non-competitive prices (Competi-

tion & Markets Authority, 2021; Bundeskartellamt and Autorité de la concurrence, 2019).

For instance, a recent report on the U.S. rental market suggests that such algorithms may

lead to higher rental prices by enabling coordination between landlords.27

We derive two rule-based recommendation algorithms and study their effects on seller

collusion in a stylized Bertrand market environment. Both algorithms have the objective

foster collusion compared to a baseline without any recommendation. The recommenda-

tion of the RecTheory algorithm uses harsh punishment phases after deviations from the

recommended price and aims at implementing a subgame perfect Nash equilibrium. Moti-

vated by experimental evidence, we also design a recommendation algorithm (RecSoft)

that recommends softer punishments after a seller deviates from the collusive price. We

test both algorithms in a laboratory experiment in which each participant represents a

seller.

We find clear evidence that the recommendations influence the sales prices in the

sense that higher recommended sales prices induce sellers to set higher individual prices.

The estimated "pass-on rate" from recommended prices to sales prices is between 0.22

and 0.57, depending on the recommendation algorithm. This pass-on rate is higher for

RecTheory. However, the effects on the realized market prices differ sharply between

the different recommendation algorithms.

The algorithm RecTheory, which recommends collusive trigger strategies with tem-

porary Nash reversal, does not lead to higher prices on average. However, we find extensive

and interesting heterogeneities in market outcomes. The collusive effects depend on the

seller’s characteristics. RecTheory lowers market prices in markets with low levels of

negative reciprocity among sellers. Moreover, we find evidence that the recommendation

can make markets more collusive if sellers are too impatient to commit to a collusive

pricing strategy.
27See Vogell, Coryne & Little, "Technology Rent Going Up? One Company’s Algorithm Could

Be Why.", https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent, (ac-
cessed on November 25, 2022).

https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent
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For the behaviourally motivated algorithm RecSoft, which can recommend brief

punishment phases with moderate price levels, we find lower market prices and profits

compared to the case without any recommendation. Participants frequently deviate from

the recommendation, which starts a downward spiral that lowers prices. Similarly to

RecTheory, market prices are lower than in Baseline for markets with sellers that

have low negative reciprocity. There is no evidence that RecSoft facilitates collusion

for any subgroup. Yet, it can be used to foster competitive outcomes and lower market

prices for consumers.

We view our research as one of the first steps in understanding the effects of price

recommendation algorithms on seller competition in digital sales platforms and other

marketplaces. We demonstrate theoretically and experimentally that recommendations

can benefit a platform by influencing sellers’ pricing in the platform’s favor. Our experi-

mental evidence indicates that recommendation algorithms can facilitate seller collusion

if designed appropriately and if the sellers are rather impatient. Thus, recommendations

may in particular foster collusion and harm consumers if sales platforms understand the

sellers’ characteristics and target the recommendation based on these characteristics.28

In other cases, we find that recommendation algorithms may have no price effects

or even decrease prices, despite being designed and intended to facilitate collusion. The

finding is consistent with the theoretical insight that all players following this behaviorally

motivated algorithm does not constitute a subgame perfect Nash equilibrium. One in-

terpretation of the price-reducing effects of the algorithm with soft punishments is that

platforms may be able to use recommendation algorithms to make the sellers’ offers more

competitive. Under certain circumstances, such as excessive double marginalization or a

dynamic pricing strategy, this could be in the interest of a sales platform. A caveat applies

as we told our experiment participants that the algorithm would aim at increasing prices

and profits, in line with our expectations. On average, the opposite, however, turned out

to be the case for this algorithm. Over time, sellers may thus lose trust in following the

algorithm’s recommendations. More research in this regard would be desirable.

While the results are, on balance, not alarming regarding the collusive risks of rec-

ommendation algorithms, we do provide reasons for potential concern. It is important to
28For example, accommodation platforms may gather more and more data about their hosts and guests

over time and thus could condition their recommendations on seller characteristics in specific local markets
to make them more effective.
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note that, in our experiment, the only purpose of the recommendations was to coordinate

sellers. In practice, recommendations can provide additional information on demand or

help with pricing more generally, which could make sellers more likely to follow them. We

chose to abstract from these factors in order to isolate the pure coordination effect, but

we suspect that the collusive potential of recommendations may be higher when there

are other reasons for sellers to follow them. Therefore, we believe our experiment is rela-

tively conservative in terms of demonstrating collusive effects. We consider it fruitful for

future research to study the collusive effects of recommendations that incorporate these

additional factors.





Appendix

Appendix 2.A Additional theoretical results

High commission rates versus collusive recommendations Let us demonstrate

why a monopoly platform can achieve higher profits through collusive price recommen-

dations for sellers than when just charging a high commission rate to the sellers. This

comparison is relevant as many online sales platforms use commission rates and a natural

question is whether a sales platform needs recommendations to achieve the desired seller

price level. This analysis adds to the developing literature on seller collusion on online

platforms, which focuses on settings where commission rates are sufficient for achieving

high prices (Schlütter, 2022; Teh, 2022).29 Teh (2022) has a related finding whereby it

can be optimal for a platform to increase the seller margins through platform design, such

as entry regulations, if that is value-generating. He does, however, not consider seller

collusion and uses a different modeling approach.

In Section 2.2, we use a stylized model that abstracts from the platform and costs on

the sellers’ side to focus on the collusive algorithm. In this extension, we instead focus on

contracting between the platform and sellers and how the optimal price level depends on

the commission rates. There are n ≥ 2 symmetric sellers who sell differentiated products

with marginal costs c. Each seller i makes a profit of

πi = (pi − r · pi − c)qi(pi, p−i)

when selling on the platform which charges a commission rate of r. Demand qi has the

usual properties and, in particular, decreases in the own price pi and increases in the

price(s) p−i of the competitors. A seller’s (opportunity) costs of being active on the
29Schlütter (2022) primarily studies price parity clauses in a market where sellers can alternatively sell

only via their direct sales channel.
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platform are I ≥ 0, such that the seller participates if and only if

πi ≥ I. (2.1)

We focus on situations where the platform wants to ensure that all sellers participate, so

that condition (2.1) holds for all i.

A seller’s first order condition with respect to its sales price is

(pi − r · pi − c)∂qi(pi, p−i)
∂pi

+ (1 − r)qi(pi, p−i) = 0

and can be written as

(pi − c

(1 − r))∂qi(pi, p−i)
∂pi

+ qi(pi, p−i) = 0. (2.2)

Let p∗(r, c) denote the symmetric Nash equilibrium price that solves the above equation

when all n sellers compete.

At the competitive sales price, the platform makes a profit of

Π(r) = r · p∗(r, c) · n · qi(p∗, p∗).

Platform profit maximization when sellers compete For c = 0 the platform can-

not influence the price level with r as it disappears in the first order condition (2.2).

For c > 0 the implicit function theorem on the first order condition (2.2) for the case of

symmetric sales prices pi = p−i = p∗ yields ∂p∗/∂r > 0 under the standard assumptions

of a strictly concave seller profit πi in pi and decreasing demand (∂qi/∂pi < 0). The

platform can thus raise the price level as long as selling remains profitable for the sellers.

Suppose that the sellers make lower profits if their common input costs increase. This

is consistent with economic intuition and holds under standard demand assumptions. A

sufficient condition for this is that the sellers’ profit margin decreases as the costs increase:

∂p∗/∂k < 1 with k = c/(1 − r). This is, for instance, the case with linear demand.

For illustration, suppose that r = 0 and that the resulting seller profits equal zero:

(p∗ − c)qi(p∗, p∗) − I = 0.
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It is thus not feasible for the platform to charge a positive commission rate as the sellers

would not break even. This argument generalizes to the case where break-even occurs

at a positive commission rate that yields a price level p̂, which is below the level which

maximizes the industry profit. The platform is then restricted in the setting of the

commission rate and thus cannot maximize the industry profit.30

Conversely, it might be that the platform achieves the profit-maximizing industry price

at a commission rate where the sellers make positive profits (πi > I). This occurs if I

is small enough. The platform then leaves more profits than necessary for participation

to the sellers. It would thus be optimal for the platform to charge a higher commis-

sion rate while keeping the sales prices constant. This relates to the problem of double

marginalization.

Platform profit maximization when sellers collude For simplicity, assume that

the platform can implement any price level p through recommendations. The platform

can thus implement a price p and set r such that

(p · (1 − r) − c) · qi(p, p) = I.

The platform can thus implement the industry-maximizing price

pM = arg max
p

(p − c) ·
n∑︂

i=1
qi(p, p) − n · I

and extract through r all seller revenues up to I + c · qi(pM , qM) per seller.

In summary, this analysis shows that a platform can benefit from prices recommenda-

tions even if it can change its commission rates for one of the following reasons:

• The sellers have (opportunity) costs of selling on the platform, such that a high

commission rate is not acceptable but would be necessary for achieving high sales

prices of competing sellers.

• The platform charges a commission rate and the sellers do not have marginal costs

other than the commission payment, so that the commission rate does not affect

the sellers’ pricing.
30Fixed fees might solve the problem. However, in particular, transfers to sellers might not work in

practice. For instance, they might incentivize people to register as sellers just to obtain the transfers.
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• A high commission rate is optimal to extract the seller’s profits but yields too high

sales prices (excessive double marginalization). In this case recommendations below

the competitive level can be optimal.

• In addition to the above formal analysis, a platform might desire to charge the same

commission rate across different markets to maintain a simple transparent policy

albeit different seller price levels are optimal.

Appendix 2.B Instructions and survey questions

2.B.1 Instructions

Hello and welcome to our experiment. In the next hour, you will make decisions on a

computer. Please read the instructions carefully. All participants will receive the same

instructions. You will also find a printed copy of these instructions at your seat. You will

remain completely anonymous to us and to the other experiment participants. We will

not save any data associated with your name.

Particularly important: Do not talk to your neighbors, do not use your cell phone,

and keep quiet throughout the experiment. If you have any questions, please let us know.

We will then come to your site and help.

In this experiment, you will repeatedly make pricing decisions. These allow you to earn

real money. How much you earn depends on your decisions and on those of your fellow

players. Regardless, you will receive 4.00 euros for participating.

In the experiment, we use a fictional monetary unit called ECU. After the experiment,

the ECU will be converted to euros and paid to you. Here, 100 ECU equal one euro.

The euro amounts are rounded to the first decimal place.

Example:

Participant A earned 465 ECU in the experiment. Converted, this is equal to 4.65 euros.

Rounded to the first decimal place, Participant A is paid 4.70 euros.
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Explanations:

In this game, you represent a company in a virtual product market. In the market, two

other companies sell the same product as you do. These companies are represented by

two other experiment participants. The game has several rounds. You will meet the same

companies (i.e. experiment participants) in each round of the game.

All companies decide again independently and simultaneously in each round,for how

many ECU you want to sell your product. You can sell your product for a price of 1, 2, ...

or 10 ECU to sell(whole units only). There are no costs of production. Your profit

is the product of price and the number of units sold. In formal terms:

Profit = price x units sold.

The market has 30 identical customers. Each customer wants to buy one unit of the

product as cheaply as possible in each round of a game. Each customer is willing to spend

up to 10 ECU for that unit of the product.

The company with the lowest price in the respective round sells its products. So

the lowest price is the market price in that round. Firms with a price greater

than the market price do not sell any products in that round and therefore

receive a profit of zero. If two or all three firms want to sell their product for the same

market price, the demand is split evenly between the two or three firms.

Examples Exampe 1 Firm A sets a price of 4, Firm B sets a price of 4, Firm C sets a

price of 6. Thus, Firms A and B together have set the lowest price. Firms A and B both

sell the same amount of products, both firms have 15 customers each and thus get the

same profit of 60 ECU. Firm C sells nothing and has a profit of 0.

Firm A Firm B Firm C
Prices 4 4 6
Profits 60 60 0

Example 2: Firm A sets a price of 7, Firm B sets a price of 7, Firm C sets a price of

7. Thus, Firms A, B and C together have set the lowest price. They all sell the same

amount of products (10 each) and thus get the same profit of 70 ECU.
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Firm A Firm B Firm C
Prices 7 7 7
Profits 70 70 70

Example 3: Firm A sets a price of 1, firm B sets a price of 4, firm C sets a price of 10.

Thus, firm A has set the lowest price. Firm A is the only one that sells the product at a

price of 1 to all 30 customers and thus gets a profit of 30 ECU. Firms B and C both sell

nothing and have a profit of 0.

Firm A Firm B Firm C
Prices 1 4 10
Profits 30 0 0

Price recommendations

Before you choose your price in each round, you receive a specific price recommenda-

tion from a computer algorithm. All three firms in the market receive the same

price recommendation.

The algorithm aims to maximize the total profits of all firms across all rounds.

Therefore, you will be given a recommendation that will allow all firms to make the high-

est possible profit in the long run. This means that the algorithm does not necessarily

recommend a price that achieves the highest possible profit in a single round. It recom-

mends prices that achieve a high total profit over the entire game.

The algorithm itself is not a market participant and cannot generate profits, it only

serves as information for all participants.

Note: The recommended price is only a proposal. You are free to set any other price

than the recommended one.

Duration of the experiment

After each round, all firms are informed about the chosen prices of all three firms and

their own profits. In the next round, each firm has again the opportunity to choose their

price. You interact with the same participants in each round within a game.

After each round, a random mechanism decides whether another round is played or the

game ends. The probability that another round will be played is 95%. The game therefore
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ends after each round with a probability of 5%.

In other words, the computer throws a virtual dice with 20 sides before each possible fur-

ther round. The result decides whether another round is played or not. With the number

20, the game is over, with all other numbers, another round is played.

Note:

You play the described game a total of three times. After each game, you will be

put together with new participants to form a new market. This means that in each of the

three games you interact with other participants.

After all games are finished, it will be randomly decided which of the three games will

be paid out. You will receive your payoff after the experiment. You will also receive an

additional 4.00 euros for participating in this experiment.

As a help we display a virtual calculator, with which you can calculate your profits in

each round. Comprehension Questions

Question 1: How many consumers are in the market who want to buy the product?

• 25

• 35

• 30

• 40

Question 2: What is the probability of playing another round after completing one?

• 95%

• 5%

• 50%

Question 3: You are firm A and choose a price of 2, firm B chooses a price of 10, firm

C chooses a price of 9. What is your profit in ECU in this round?

Question 4: You are firm A and choose a price of 8, firm B chooses a price of 8,



88 2.B. INSTRUCTIONS AND SURVEY QUESTIONS

firm C chooses a price of 8. What is your profit in ECU in this round?

Question 5: You have a profit of 650 ECU, what is your profit in euros?

Questioni 6: What is the objective of the algorithm?

• Maximizing profits for all firms in a single round

• Maximizing total profits for all firms across all rounds

• Maximizing total profits for a single firm across all rounds

• Maximizing profits of a single firm in a single round

2.B.2 Survey questions

Gender: What is your gender?

• Male

• Female

• Diverse

• No specification

Experiments: In how many economic experiments have you (approximately) already

participated?

GPA (School): What was the final grade of your last school diploma (1.0 - 4.0)?

Math Grade: What was your last math grade (1.0 - 6.0)?

Budget: How much money do you have available each month (after deducting fixed

costs such as rent, insurance, etc.)?

Spending: How much money do you spend each month (after deducting fixed costs

such as rent, insurance, etc.)?
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Risk: Are you generally a person who is willing to take risks or do you try to avoid

risks? Please indicate your answer on a scale of 0 to 10, where 0 means not willing to

take risks at all and 10 means very willing to take risks.

Time: Compared to others, are you generally willing to give up something today in

order to benefit from it in the future, or are you unwilling to do so compared to others?

Please indicate your answer on a scale of 0 to 10, where 0 means not willing to give up at

all and 10 means very willing to give up something.

Trust: As long as I am not convinced of the opposite, I always assume that other people

only have the best in mind. How strongly do you agree with this statement? Please

indicate your answer on a scale of 0 to 10, where 0 means not true at all and 10 means

very true.

Neg. Rec.: Are you someone who is generally willing to punish unfair behavior, even if

it comes at a cost for you, or are you unwilling to do so? Please indicate your answer on

a scale of 0 to 10, where 0 means not willing to punish at all and 10 means very willing

to punish.

Pos. Rec.: If someone does me a favor, I’m willing to return it. How strongly do

you agree with this statement? Please indicate your answer on a scale of 0 to 10, where

0 means not true at all and 10 means very true.

Altruism: Imagine the following situation: You won 1,000 € in a prize competition.

How much would you donate to charity in your current situation?
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Appendix 2.C Further results

2.C.1 Randomization checks

Table 2.7 provides the average outcome for different survey measures for the main treat-

ments. Furthermore, we test for differences in those measures across treatments using

Kruskal-Wallis tests. A complete list of the different survey questions we ask the partic-

ipants is provided in Appendix 2.B.2. There are few negligible differences in the control

variables across treatments. Only the budget participants have each month differs be-

tween treatment at the 5%-level. Importantly, controlling for those survey measures does

not influence the main outcomes (see Table 2.2 and 2.3). Thus, we conclude that ran-

domization into treatments worked as expected.

Table 2.7: Survey measures by treatment

Risk Time Trust Neg. Rec. Pos. Rec Altruism Woman

Baseline 0.53 0.68 0.39 0.64 0.92 0.12 0.48
RecSoft 0.49 0.70 0.41 0.52 0.88 0.14 0.50
RecTheory 0.54 0.74 0.49 0.62 0.84 0.10 0.54

P-values 0.73 0.35 0.18 0.09 0.19 0.84 0.84

Experiments Math Grade GPA (School) Budget Spending

Baseline 7.24 1.99 1.99 414.98 300.15
RecSoft 11.52 2.47 2.31 378.61 275.63
RecTheory 10.69 2.12 2.05 523.89 339.87

P-values 0.38 0.07 0.05 0.04 0.39

Note: The preferences measures are based on the survey questions by Falk et al. (2022) and scaled
between zero and one. The p-values are based on Kruskal-Wallis-tests.

2.C.2 Economic preferences and recommendations

In Section 2.4, we discuss the influence of negative reciprocity on market prices when

participants receive a price recommendation (see Table 2.5). Here, we provide the same

analysis for the other economic preferences measures. All measures have been normalized

to be between zero and one. Furthermore, as the measures have been elicited on the

individual level, we aggregated them by calculating the group specific mean.

Altruism and trust do not influence market prices. Interestingly, there is also no signif-

icant effect of positive reciprocity on market outcomes. In other words, while differences
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in negative reciprocity lead to vastly different prices within and between treatment, it is

not the case for positive reciprocity.

Table 2.8: Market price explained by altruism and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 4.00∗∗∗ 4.18∗∗∗

(0.575) (1.11)
Altruism -1.34 0.191 0.191

(3.34) (8.56) (8.61)
RecTheory -0.209 -0.209

(1.65) (1.65)
RecSoft -1.10 -1.10

(1.14) (1.14)
Altruism × RecTheory 6.43 6.43

(10.9) (10.9)
Altruism × RecSoft -3.14 -3.14

(8.65) (8.70)
Fixed-effects
Round Yes
Supergame Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.9: Market price explained by positive reciprocity and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 0.833 -1.57

(3.33) (4.97)
Pos. Rec. 3.41 6.26 6.26

(3.62) (5.53) (5.56)
RecTheory 3.82 3.82

(5.54) (5.57)
RecSoft -3.13 -3.13

(7.41) (7.44)
Pos. Rec. × RecTheory -3.43 -3.43

(6.12) (6.15)
Pos. Rec. × RecSoft 2.07 2.07

(8.31) (8.36)
Fixed-effects
Round Yes
Supergame Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.10: Market price explained by risk preferences and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 2.46∗∗ 1.84

(0.964) (1.07)
Risk 2.65 4.45∗ 4.45∗

(1.55) (2.16) (2.17)
RecTheory 4.21 4.21

(3.03) (3.05)
RecSoft -0.654 -0.654

(1.56) (1.57)
Risk × RecTheory -7.07 -7.07

(4.81) (4.83)
Risk × RecSoft -1.45 -1.45

(3.13) (3.15)
Fixed-effects
Round Yes
Supergame Yes
Observations 2,862 2,862 2,862

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 2.11: Market price explained by trust preferences and treatments

Dependent Variable: Market price
Model: (1) (2) (3)
Variables
(Intercept) 3.32∗∗∗ 4.60∗∗

(0.863) (1.71)
Trust 1.20 -1.01 -1.01

(1.73) (4.13) (4.15)
RecTheory -0.835 -0.835

(3.06) (3.07)
RecSoft -2.16 -2.16

(1.77) (1.78)
Trust × RecTheory 2.79 2.79

(5.58) (5.61)
Trust × RecSoft 1.58 1.58

(4.38) (4.40)
Fixed-effects
Round Yes
Supergame Yes
Fit statistics
Observations 2,862 2,862 2,862
R2 0.00319 0.05525 0.09202
Within R2 0.05736

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

2.C.3 Additional control treatments

We consider two additional control treatments. In RecStatic, participants receive a

static price recommendation at the monopoly in each period. Also, after deviations from

the recommended price, the algorithm recommends the monopoly price, and there is no

punishment mechanism. Furthermore, we consider the RecNash algorithms. Similar

to RecTheory, after any deviation from the monopoly price, the stage game Nash

equilibrium is recommended in the subsequent period. Yet, the algorithm reverts back

to the monopoly after one punishment round and is thus, in contrast to RecTheory,

not incentive compatible. We consider for both algorithms only 36 subjects, which yields

considerably less power than in the main treatments. The results are provided in Figure

2.4. Both treatments yield similar market prices as in Baseline and RecTheory.
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Figure 2.4: Market price for all additional algorithms. The error bars represent 95%
confidence intervals.

2.C.4 Further figures and tables

Table 2.12: Linear regression with the treatment effects by supergame

Dependent Variable: Market price
(Supergame 1) (Supergame 2) (Supegame 3)

Variables
RecSoft -1.63∗∗ -1.56∗ -1.36∗

(0.572) (0.881) (0.740)
RecTheory 0.539 -0.007 0.497

(0.990) (1.27) (1.26)
Fixed-effects
Round Yes Yes Yes
Fit statistics
Observations 1,458 432 972
R2 0.08748 0.04145 0.05861
Within R2 0.07274 0.03805 0.04175

Clustered (Matching group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure 2.5: Market price in RecSoft for matching groups above (High) and below (Low)
the median market price by supergame and round.
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Chapter 3

Willingness to Volunteer Among

Remote Workers is Insensitive to the

Team Size

Co-authored with Adrian Hillenbrand and Fabian Winter1
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3.1 Introduction

Volunteering is an important feature of the fundamental organization of firms. In various

situations, tasks and resources are not allocated among employees by some supervisor,

but rather employees have to solve the allocation process by themselves. In fact, espe-

cially with the rise of remote work, many tasks are organized more informally without a

clear hierarchy and require the own initiative of team members. While about 4% of the

workforce in Europe’s biggest economy Germany worked from home in the years prior to

2020, up to 27% worked remotely in 2021 (Hans Böckler Stiftung, 2021). The US gives a

similar picture, with 7.6% of exclusively remote working before the pandemic and peaking

at 31.4% in mid-2020 (Bick et al., 2022). In these situations, volunteering is a natural

allocation mechanism, which we want to examine in this chapter. Naturally, completing

the task requires time and effort, so each team member would prefer another person to

finish it. If the task is completed, the product advances, which yields a higher reputation

to the team in the organization and may improve the firm’s overall performance in the

market. This, in turn, benefits the whole product team as it may improve wages or the

job prospects of all team members.

While the described allocation process might seem inefficient due to the challenges

of coordination and free-riding incentives, situations like this still frequently occur – and

apparently for good reasons – in organizational contexts. For example, many duties in

academia are allocated based on voluntary decisions (Babcock et al., 2017), just as the

development of open-source software projects (Johnson, 2004), the contribution to network

technology (Lee et al., 2007), the creation of online knowledge platforms like Wikipedia

(Zhang and Zhu, 2011), or modern work allocation mechanisms like the so-called agile

project methods, which are commonly used in software development (Hoda et al., 2018).

Arguably, the substantial increase in remote work in the last years might have led to an

increase in these allocation mechanisms in the work environment.

The volunteering mechanism does have attractive qualities. Not least, it may reduce

the organizational overhead required to organize task allocations. Yet, volunteering in an

organizational context is usually not an altruistic act towards others but often the individ-

ually profit-maximizing response to an organizational problem (Murnighan et al., 1993;

Kim and Murnighan, 1997). Economic (game) theory thus suggests that the volunteering

mechanism also introduces two significant obstacles. For one, it creates a coordination
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problem that has to be resolved by the workers. More importantly, however, the individ-

ual incentive structure of the firm may give rise to a social dilemma: while working is

costly, but the exact costs are usually unknown, all team members may enjoy the fruits

of labor. This, in turn, leads to the famous Volunteer’s Dilemma (Diekmann, 1985).

The strategic analysis of the Volunteer’s Dilemma closely resembles several relevant

factors for the success of volunteering choices in organizations. First, companies and the

teams within the company may be of various sizes, which in turn influences the degree

of volunteering. This has been robustly shown in various lab and field experiments on

the topic with a mostly negative effect of group size on individual volunteering (Diek-

mann, 1986; Franzen, 1995; Goeree et al., 2017; Kopányi-Peuker, 2019; Latané and Nida,

1981; Przepiorka and Berger, 2016; Barron and Yechiam, 2002; Campos-Mercade, 2021).

Second, the individual costs of volunteering might differ for different workers, which also

affects individual volunteering choices (Diekmann, 1993; Przepiorka and Berger, 2016).

While lab evidence suggests that both factors negatively affect the provision of voluntary

work, the prevalence of volunteering in real-world organizations is striking. This begs the

question of whether economic theory and experimental results from the lab translate into

real-world work environments or whether other factors like peer effects or image concerns

might counteract these problems.

In this chapter, we scrutinize these economic arguments against volunteering at the

workplace and the existing empirical evidence on volunteering by putting them to the test

in real-life workplaces. In a large-scale field experiment with more than 2000 workers, we

analyze the prevalence of volunteering at the workplace and the effect of group size on

volunteering behavior. Our main treatment manipulation is thus varying the group size

of work teams: we compare the willingness to volunteer for a specific task when working

alone to working in small (3 workers), medium (30 workers), and large groups of 300

workers.

In our field experiment, we act as an employer in an online labor market and offer a

simple rating task to the online workers. Workers are assigned to a team of a certain group

size, and after finishing the individual task, we offer each participant the opportunity

to continue working on the task. If at least one person in a group volunteers for the

additional team task, each team member receives an additional bonus payment, which

resembles the Volunteer’s Dilemma. Before the beginning of the team task, participants
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receive information about their costs and the costs of others as we inform our workers

about the time it has taken them to perform the individual task and how long it has taken

others. Finally, we elicit workers’ beliefs about whether they think another co-worker will

volunteer.

Our experimental setting allows us to study the causal effect of differences in team

size. By creating a natural yet anonymous work environment, we can exclude reputational

concerns as well as personal relationships between workers, which would impede the anal-

ysis of volunteering at more traditional workplaces. The online labor market provides a

unique ecosystem with tight control over the environment while allowing us to precisely

measure individual opportunity costs, beliefs, and other essential variables. We also con-

tribute to the literature on the Volunteer’s Dilemma by providing an application in a real

work environment. Compared to existing experiments where effort is purely monetary, we

can capture more subtle differences using actual work tasks. Importantly, workers in our

study do not learn whether others have done the task before. While this differs from many

classical work environments where the task would be announced as being completed, this

crucial design allows us to measure workers’ individual willingness to volunteer, which

would not be possible in a work environment where one can only observe whether there

was a volunteer or not.

The results of our study stand in stark contrast to the game-theoretical predictions

and results from earlier laboratory studies and field settings outside the work context. We

find no support for the hypothesis that the group size influences the volunteering decision

of our workers. More precisely, in groups of 3, 30, or 300 workers, the volunteering rates

range between 51% and 55% and are not statistically different from each other. Also, the

costs of volunteering play a negligible role, given our proposed cost measure. We replicate

our results and show they are robust to multiple potential factors. Additional control

treatments in which workers work on the same task but without strategic interaction, i.e.,

where each worker decides to volunteer on his own and is paid accordingly, help us to

rule out several possible explanations: workers are less likely to volunteer if volunteering

is not compensated, suggesting that the effort is indeed costly. Also, they are more likely

to volunteer if their payment only depends on their own actions, suggesting that they

make a difference between strategic and non-strategic situations. Thus, workers react to
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the strategic interaction in the Volunteer’s Dilemma setting but do not react to the team

size.

We explain these surprising results based on workers’ beliefs about their co-workers’

volunteering choices. We asked workers how likely it is that at least one other worker in

their team also volunteers. We find that those who believe that it is more likely that there

is at least one other volunteer are more likely to volunteer themselves. Image concerns

can explain this seemingly irrational behavior. Subjects that believe that many others

probably will volunteer do not want to be perceived (by themselves or us as an employer)

as selfish. We show that this form of conditional volunteering behavior is the critical

driver of volunteering in our work setting.

Overall, our results thus suggest that if a company only cares about the task being

completed, volunteering might be justified as an allocation mechanism also in large groups,

even though theoretical reasoning would predict otherwise. A key difference in our setting

compared to the literature on the Volunteer’s Dilemma is that an employer is present,

potentially increasing the importance of image concerns. According to our results, this is

true even without actual reputation concerns or other punishment mechanisms for non-

volunteering. This also suggests that in more anonymous environments, e.g., due to a shift

to more remote work, volunteering rates do not necessarily decline as long as workers have

a certain regard for how their work (or not working) is perceived.

The remainder of the chapter is structured as follows. In Section 3.2, we explain the

experimental design of the field experiment. Following this, we present our pre-registered

hypotheses in Section 3.3.2 Our hypotheses are empirically tested in Section 3.4. Section

3.5 discusses our findings and concludes the chapter.

3.2 Experimental design

We study volunteering in a workplace environment through the lens of the Volunteer’s

Dilemma (Diekmann, 1985; Darley and Latané, 1968). In the Volunteer’s Dilemma, a

certain number of participants can volunteer to supply a public good to all group mem-
2The hypotheses are derived using a formal model of volunteering under cost and population uncer-

tainty by extending the work by Weesie (1994) and Hillenbrand and Winter (2018). Details are provided
in Appendix 3.A. The pre-registration of the field experiment and the main hypothesis can be found
under http://dx.doi.org/10.17605/OSF.IO/7RQVH and https://doi.org/10.17605/OSF.IO/8TZ57.
Ethical approval was obtained from the German Association for Experimental Economic Research e.V.
and can be accessed under https://gfew.de/ethik/Ft9eR5SK.

http://dx.doi.org/10.17605/OSF.IO/7RQVH
https://doi.org/10.17605/OSF.IO/8TZ57
https://gfew.de/ethik/Ft9eR5SK
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bers. Volunteering is assumed to be costly. A single volunteer in the group is sufficient to

produce a benefit for all its members, which no one receives in case no volunteer can be

found. Furthermore, the individual benefit from the public good is greater than the costs

of volunteering. This gives rise to the dilemma situation of the game: If there were an-

other volunteer in the game with certainty, workers would never volunteer. However, given

that the benefit is greater than the costs, workers would prefer to volunteer if all of their

colleagues defected. It captures three essential characteristics of volunteering decisions in

the workplace. First, volunteering is chosen simultaneously and without communication,

which sets a lower bound for our purposes. Second, there is heterogeneity in, and incom-

plete information about, the costs of volunteering; and third, there might be variations

in the group size. Its numerous variations have been examined in several experimental

studies, and the main predictions, particularly the diffusion of responsibility effect, are

reasonably robust (Diekmann, 1986; Franzen, 1995; Goeree et al., 2017; Kopányi-Peuker,

2019). Also, in different field environments, the predictions from the Volunteer’s Dilemma

turn out to be robust (Latané and Nida, 1981; Przepiorka and Berger, 2016; Barron and

Yechiam, 2002). Given the vast empirical support for the model (see, e.g., Latané and

Nida, 1981; Przepiorka and Berger, 2016; Barron and Yechiam, 2002), one might expect

it to be useful in providing predictions in our setting of an online workplace as well.

We use the volunteer dilemma framework to guide our experimental design of the

field experiment. In order to establish causal claims, we must maintain a high degree of

experimental control. Online labor markets are, therefore, a convenient and particularly

useful environment for our experiment. Importantly, it is a regular and natural workplace

for our experimental workers, and workers differ in their effort costs. At the same time, it

allows us to set group sizes exogenously. This further differentiates online labor markets

from classical work environments, where workers are usually connected through personal

relationships and a common history across and within teams. These factors would impede

the identification of the causal effects of group sizes, making the use of an online labor

market crucial for this study.

In a nutshell, the field experiment consists of two stages (see Figure 3.1). In the

first part of the job, workers were invited to work individually on a coding task for a

fixed payment. Upon joining the job, the workers were randomly matched to one of five

treatments in which we varied the group size and the incentive structure. After completing
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the first individual task, workers were informed about the second stage. We asked them

whether they would like to volunteer for a second coding round, just like the one they

had done before, but with a different payment scheme. This second stage implements the

Volunteer’s Dilemma: Only if at least one worker in the group task volunteered were all

group members paid an additional bonus. Finally, we elicited the workers’ beliefs about

their team members’ volunteering decision, and they had to answer a short questionnaire.

All workers received the payoffs some days after the experiment.

First Stage

Second Stage

Coding Task

Volunteering Choice/Belief elicitation

Coding Task

Questionnaire/Payoff

Volunteer

No
Volunteer

Figure 3.1: Structure of the experiment.

3.2.1 Workers and the online labor market

The field experiment was conducted on clickworker.de, an online crowdsourcing market-

place. Crowdsourcing marketplaces allow people to work on tasks that are usually easy

for humans but difficult to automate. Most tasks on such platforms require a couple of

minutes to complete and include assignments like the processing of images or the cleaning

of data (see Difallah et al. (2015) and Jain et al. (2017) for an overview of everyday tasks).

Online labor markets have become increasingly popular in recent years (Difallah et al.,

2015), with 0.5% of the US adult population working in the “sharing economy” in 2016

(Farrell and Greig, 2017). For many workers, these jobs are a substitute for traditional

offline work in times of economic downturn (Borchert et al., 2022). For them, online
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labor markets are a regular work environment, which makes it a perfect testbed to study

volunteering at the workplace.

Each worker was only allowed to participate once and required to speak German, but

we did not impose any further restrictions on the pool of workers. Every active worker

on the platform fulfilling those requirements was free to join. In total, 3,344 workers

joined the assignment and read the explanation of the task. The assignment was made

unavailable once each main treatment had reached 300 workers who had finished the first

stage.3 Overall, 2,203 workers finished the first stage of the field experiment and decided

whether they would like to continue working on the task, thus volunteering within their

group.4 Altogether, 2,142 workers reached the end of the experiment. For the analysis,

we consider only those workers who reached the end of the study. We remain with the

treatment composition shown in Table 3.1. This subset of observations will be used for all

subsequent analysis in Section 3.4, unless stated differently. We obtain a diverse sample

with a wide range in age, gender, educational status, and employment (also see Table

3.8). Of all participants, 26% report an age between 18 and 25 years, but a sizeable

share (14%) is also above 45 years of age. Further, the sample comprises self-employed,

employed, and unemployed people with various educational backgrounds.

Table 3.1: Number of observations for each treatment.

Group Size Number of Observations
Unincentivized (N = 1) 192
Incentivized (N = 1) 196
Small Group (N = 3) 588
Medium Group (N = 30) 582
Big Group (N = 300) 584

Note: The number of workers for each treatment, with N being
the group size.

3.2.2 The advertised job

We offered a standard job to all workers active at that time, via an advertisement on the

platform. Importantly, there was no mention of an experiment or similar. The workers
3For the baseline treatments, the task was made unavailable after 200 workers had made a volunteering

decision.
4Some treatments were filled with slightly more than 300 workers since workers could join the task

simultaneously.
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were invited to rate user comments from another study, a job that can be frequently found

in online labor markets. We provided a short description of the task and informed the

workers that they could earn 0.90 €, the standard wage set by the platform, and how

long it would approximately take them to complete the task.

Once they had clicked on our link on the platform, they were redirected to our oTree

server (Chen et al., 2016a). The workers then received detailed instructions about the task.

Crucially, they were made aware that they would be working in a team for this assignment.

We clarified that they would first be working alone on the described assignment, and

would then be offered a voluntary group project afterwards (see the Appendix for the full

instructions).

The Task Workers were asked to evaluate user comments from an online forum. Each

comment was made with reference to a picture and possibly comments from other users in

this online forum. The picture’s theme was always related to migration, refugees, or cul-

tural differences. The workers rated the comments regarding the expressed sentiment and

evaluated whether the comments contained hate speech. The coding scheme and a screen-

shot of the task can be found in Appendix 3.D.2. In both possible experiment stages, 30

distinct comments had to be rated, randomly drawn from a set of 13.356 comments.5 All

comments had been collected as auxiliary data in a different study and are not part of

our research question. Companies and corporations frequently use online labor markets

for similar tasks to better understand customer comments or reviews. According to Di-

fallah et al. (2015), those verification and validation tasks belonged to the most common

assignments between 2009 and 2014 on Mturk, a US-based competitor of clickworker.de.

According to clickworker.de’s own information, verification tasks and sentiment analyses

are the most common tasks in their industry. Thus, we argue that most workers were

familiar with this type of task and perceived it as a regular assignment rather than as

part of a research project. Furthermore, the ratings of the comments will be used in the

study for which they had been collected in the first place. Thus, the work was indeed

meaningful and important.
5The rating of the comments was used as a dependent variable in Álvarez-Benjumea and Winter

(2018), Álvarez-Benjumea and Winter (2020), and Álvarez-Benjumea (2020).
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3.2.3 The volunteering decision

After finishing the first stage of the experiment, we explained to the workers that we

needed precisely one volunteer in their group to ensure data quality and better evaluate

the quality of the ratings within their group. We clearly stated that one volunteer within

the group was sufficient for the task. Each worker received the offer to volunteer in their

team and to continue to work on the task in the second stage. If at least one group

member volunteered, all members received a bonus payment of 0.90 €. If no person in the

group volunteered, no group member received any bonus. The bonus payment did not

increase if more than one person volunteered. Furthermore, we explained to the workers

that, even if they had not volunteered themselves, they might still receive the bonus

payment if one of their teammates volunteered. Importantly, workers were not made

aware if others already did the task before making their own choice. This allows us to

measure the actual willingness to volunteer. To avoid reputation effects, we clarified that

their decision would not have an influence on the payoff of the first stage or their user

rating in the online labor market. The volunteering decision will be our key dependent

variable in the analysis in Section 3.4. A screenshot and a translation of the decision

screen can be found in Appendix 3.D.3.

We used the time spent in the first part of the job as a cost measure for volunteering.

Time spent on a job is a fair measure of opportunity costs because those who spend more

time on the task miss out on more opportunities to work, e.g., on another job on the

platform or on more leisure. As we show later, workers differ substantially in the time it

takes them to complete the task. Since both parts of the job consist of the same task,

the time spent on the first part is also a good predictor for time spent on the second part

(ρ = 0.73, p<.001, Spearman’s rank correlation coefficient). Workers were made aware of

the time it had taken them to complete the first stage.

Following our theoretical model, we induced commonly known beliefs about the distri-

bution of costs of other workers before making the volunteering decision. To this end, we

informed them that other workers usually required between 7.5 to 15 minutes to complete
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the rating of the comments.6 This gave workers a rough estimate of whether they had

high or low costs of volunteering relative to the other workers.

3.2.4 Treatments

Volunteer’s Dilemma Treatments Workers in our main treatments faced team incen-

tives in the form of a Volunteer’s Dilemma. Within the field experiment, we varied three

group sizes, the Small group with 3 workers, the Medium group with 30 workers,

and the Big group with 300 workers.7

Instructions were adapted accordingly for each group size. Since the information about

the group size is the key point in our study, we made sure that the information was clear

to workers. The group size was mentioned several times, particularly right before workers

made a choice.

Baseline Treatments (N=1) In order to provide a benchmark for volunteering rates

in our setting, we designed two control treatments: Incentivized and Unincentivized.

The basic setup in this study was identical to our main experiment, the difference being

that the workers did not face a Volunteer’s Dilemma. That is, the instructions were the

same as in the Volunteer’s Dilemma Treatments, including the fact that workers operated

in a team. We pointed out, however, that their actions did not influence the payoffs of

their team members, and vice versa.

Workers were notified at the end of the first stage that we needed a volunteer to

continue to work on the task.8 We varied two conditions. In the Incentivized condition,

subjects were paid the same bonus as in the Volunteer’s Dilemma treatments (90 cents) for

completing the second part. Yet, if they did not volunteer, they did not receive the bonus

even if another team member volunteered. This condition would provide an upper bound
6These numbers were collected in a pilot study with 100 workers. We showed the workers the 20th

and 80th percentile of the time values, but referred to these values as the time it took “most workers”.
This is obviously a deviation from our theoretical model, which assumes common knowledge of the entire
distribution. We made this simplification not to overburden our workers and maintain the atmosphere
of a typical job.

7To implement a truly random and independent draw of the group size, there was an individual
random draw for each worker. Then, for each worker, a random team of a specific size was generated,
and the worker’s payments were based on the actions of these workers. This method is similar to the
method used by Boosey et al. (2017).

8Note that in the main treatments, we explicitly told the workers that we only required a single person
to volunteer. In this baseline case, we did not specify how many volunteers are required, but rather that
we needed volunteers. In fact, the Incentivized condition can be understood as a Volunteer’s dilemma
with a single worker.
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of volunteering without any team incentives. In the Unincentivized condition, there was

no bonus, which allows us to control for intrinsic or non-monetary motivations to finish

the task. The volunteering rates of our main treatment, where strategic considerations

play a role, should lie between these two conditions.

3.2.5 Belief elicitation

We elicited the participants’ beliefs about the volunteering decision of other group mem-

bers. We asked each participant how likely it is for at least one of their team members

to volunteer for the task. Participants reported the probability on a scale from 0 % ("For

sure no other person") to 100% ("Surely at least one other person") using a slider. The

slider did not have an initial value to avoid any anchoring effect.9. The belief elicitation

was incentivized using the binarized scoring rule, and the possible bonus is 0.90 € (Hos-

sain and Okui, 2013).10 The instructions were simple and natural to increase truth-telling

(Danz et al., 2022). We randomized the order in which we asked participants for their vol-

unteering decision and their belief. Half of the participants were asked about their beliefs

just before their volunteering decision. The other half answered the belief question after

their volunteering decision but before the potential second round of coding comments. It

allows us to investigate possible order effects. As the order in which we ask participants

for their volunteering decision and their belief plays a minor role in the results, we pool

all observations along this treatment variation for the analysis in Section 3.4.4.11

After the participants reported their beliefs, we also elicited how certain they were

about this probability. To measure cognitive noise, we followed the approach by Enke

and Graeber (2019, 2021).

3.2.6 Questionnaire

At the end of the field experiment, workers completed a questionnaire regarding their

economic preferences (Falk et al., 2022) and sociodemographic/economic background.

Furthermore, we asked the participants different questions about the task they had to

perform. We use the responses as an additional cost measure. We kept initial questions
9A screenshot is provided in Appendix 3.D.

10The winning probability was calculated as p = 1 − (V − Belief
100 )2 where V is a dummy variable that

is equal to one if there was another volunteer in the team.
11See Appendix 3.C.1 for an analysis of the order effects.
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to a minimum to avoid disturbing the impression that the experiment was anything other

than a typical job.

3.2.7 Replication

We replicate the main treatments of an earlier study with 2,733 participants.12 The results

of volunteering in this earlier study are virtually identical to the results here, giving us

even more confidence in the robustness of our findings. The replication allowed us to

investigate different channels like beliefs, and we also improved the instructions to avoid

any misunderstandings of the rules by the participants.

3.3 Hypotheses

The incentive structure in our field experiment resembles a Volunteer’s Dilemma (Diek-

mann, 1985) with incomplete information and heterogeneous costs. For our model, we

thus focus on the setup by Weesie (1994). We introduce the model’s key features in the

following to derive our hypothesis. The key insights from the model are that volunteering

decreases in the group size and in the costs for volunteering. Further details are provided

in Appendix 3.A. 13

To be more formal, there are N players in the game.14 Each player i ∈ {2, ..., N}

decides simultaneously to volunteer (ai = V ) or to defect (ai = D). If at least one player

in the game volunteers, all players receive a benefit of bi. Volunteering is costly, and the

costs are denoted by ci. In line with Weesie (1994), we assume that γi := ci

bi
follows some

arbitrary probability distribution γ ∼ F with a continuous probability density function
12The earlier experiment is reported in a previous version of the paper which this chapter builds on

and can be accessed here https://osf.io/4k5y6. The main results of the original study can also be
found in Figure 3.6. In the original study, we also ran treatments where the group size was uncertain
(compare Hillenbrand and Winter, 2018), which we do not further explore in this chapter.

13While this might seem intuitive for most readers, it is worth mentioning that this prediction reverses
the predictions under common knowledge of costs, where those with higher costs volunteer more in
equilibrium.

14The game can be easily extended to allow for stochastic group sizes. The details are also provided
in the respective section of the appendix.

https://osf.io/4k5y6
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f and that bi > ci > 0 ∀i. The payoff πi of worker i when X−i others volunteer is

πi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ai = D and X−i = 0

bi if ai = D and X−i > 0

bi − ci if ai = V.

The payoff structure gives rise to the dilemma situation of the game: If there were

another volunteer in the game for sure, workers would never volunteer. However, given

that the benefit is greater than the costs, workers would prefer to volunteer if all of their

colleagues defected. Formally, player i volunteers if and only if its expected benefit is

weakly greater than the benefit from defecting.

EU(V ) ≥ EU(D)

⇔ bi − ci ≥ biP (X−i > 0)

⇔ γi ≤ 1 − P (X−i > 0)

(3.1)

Thus, she volunteers if the cost-benefit ratio γi = ci

bi
of player i is weakly below the

probability, that there is no other volunteer. Otherwise, she defects. Weesie (1994) shows

that there exists a pure strategy equilibrium where players with low cost-benefit ratios

volunteer, while those with a γi above some threshold do not volunteer.

In our field experiment, we can elicit the main parameters of the model. The additional

bonus of 90 cents is the benefit bi. Volunteering for the task costs time and effort. We argue

that those costs to volunteer (ci) can be approximated by the time it takes participants to

complete the first part of the experiment and additional survey measures that we elicit in

a questionnaire. Also, we directly ask participants for their belief about P (X−i > 0), i.e.,

the probability that there is at least one other team member volunteer. As a result, our

experimental design allows us to test a wide range of hypotheses, which are derived from

the equilibrium analysis by Weesie (1994). We provide further details on the theoretical

foundations in Appendix 3.A.

In our baseline treatments, volunteering is an individual choice. It allows us to identify

if volunteering is indeed costly and participants react to the dilemma component of the

game. If participants perceive the task as costly, they should volunteer less if there

is no additional benefit. Thus, we expect volunteering rates in Incentivized to be
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higher than in the Unincentivized treatment. The group size treatments mimic a

volunteer’s dilemma, which introduces freeriding opportunities. Only a single person from

the team has to volunteer such that everyone receives an additional bonus. Accordingly,

we expect that the volunteering rate is lower in the main group size treatments compared

to the Incentivized treatment, in which participants only influence their own benefit

if they volunteer. Yet, as we expect that volunteering is perceived as work and costly,

we hypothesize that more participants volunteer in the main treatments compared to the

Unincentivized treatment. This argument is summarized by Hypothesis 1.15

Hypothesis 1. The volunteering rate in the Volunteer’s Dilemma treatments is higher

than in the Unincentivized treatment but lower than in the Incentivized treatment.

Participants with lower costs should volunteer more for the additional task in the

main treatments. That follows intuitively from Equation 3.1 as the expected utility from

volunteering is decreasing in the costs. A formal proof is provided in Appendix 3.A.

Hypothesis 2. Workers with lower costs volunteer more.

From a theoretical perspective, the share of volunteers decreases in the group size.

Large groups give rise to a higher “diffusion of responsibility”, and players volunteer less on

an individual level. We expect that the effect carries over to our workplace environment.

Hypothesis 3. The volunteering rate decreases in the group size.

We elicit the participants’ beliefs that another person in the team volunteers. We

can verify whether participants have correct beliefs using the average volunteering rate in

each treatment. Furthermore, the expected value from defecting is increasing in this belief

(see Equation 3.1). For higher beliefs, there exists a higher probability that a participant

receives the benefit without volunteering herself. Participants with higher beliefs should

volunteer less, as they can avoid incurring the costs of volunteering while receiving the

same benefit.

Hypothesis 4. Participants who believe that there is another volunteer with a higher

likelihood volunteer less themselves.
15The pre-registered hypotheses can be found under http://dx.doi.org/10.17605/OSF.IO/7RQVH

and http://dx.doi.org/10.17605/OSF.IO/8TZ57. The wording of the hypotheses was adapted, and
we added hypotheses about beliefs based on theoretical results to fit the structure of the chapter.

http://dx.doi.org/10.17605/OSF.IO/7RQVH
http://dx.doi.org/10.17605/OSF.IO/8TZ57
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Clearly, all these hypotheses build on a purely monetary-driven argument. In a work

environment, multiple additional factors such as peer effects or image concerns might play

a role. These factors might influence the link between beliefs and actions in different ways.

3.4 Results

In this section, we present the field experiment results, following the hypotheses outlined

in Section 3.3. We next consider the stated beliefs of subjects about their pivotality to

provide the good and the interplay between beliefs and actions. Furthermore, we provide

further robustness tests for our results in Appendix 3.C. The data on the main treatments

that we present in this section is based on the replication of our earlier experiments as

described in Section 3.2.7.

3.4.1 Workers are sensitive to incentives and strategic situations

To satisfy our first identifying assumption, we must establish whether the volunteering

choice was costly. Therefore, we compared two baseline treatments in which we asked

participants whether they wanted to volunteer in a second coding round. In these baseline

treatments, the payment only depends on the worker’s decision and not on other workers.16

In the incentivized condition, participants were paid an additional 0.90 € in case they

volunteered for a second round of coding; in the unincentivized condition, they were

only paid for the first round.17 The volunteering rate in the incentivized version was

68.4%, but only 27.1% in the unincentivized treatment (See Figure 3.2, p<0.01, χ2-

test). This allows us to conclude that the task was perceived as a costly effort and

establishes the base for the coming results.

Our second identifying assumption was that our participants react to the strategic

situation of the Volunteer’s Dilemma and show different volunteering rates than in the

individual choice situation. We expected that volunteering rates in the main treatments

fall between those in the incentivized and the unincentivized individual choice condition.

This is also the case. Pooling the data for all main treatments, the volunteering rate is
16Note that we kept the framing of them being part of the team to keep the decision environment

stable.
17As explained in Section 3.2 for the main treatments, we only consider those participants who had

reached the end of the experiment. Out of 400 participants who started the experiment, we ended up
with 388 observations: 196 in the incentivized condition and 192 in the unincentivized condition.
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Figure 3.2: Volunteering rates in the incentivized and the unincentivized baseline treat-
ments in comparison to the main Volunteer’s Dilemma (VOD) treatments. The error
bars represent the 95% cofidence intervals.

significantly lower, at 53.1%, than in the Incentivized condition (p < 0.01, χ2-test) and

significantly higher than in the Unincentivized individual choice condition (p < 0.01,

χ2-test, see Figure 3.2). Hence, we find clear support for Hypothesis 1.

3.4.2 Heterogeneity in costs to volunteer

Hypothesis 2 predicts that participants with higher costs are less likely to volunteer. As

explained in Section 3.2, we argue that individual costs of volunteering can be approxi-

mated by the time it takes a participant to finish the first stage of the field experiment.

Most participants required between 8.23 (20th percentile) and 16.52 minutes (80th per-

centile) to complete the first stage. 18

Our Hypothesis 2 is not supported by the data since the effect of costs operationalized

as time is not significant. Model 1 in Table 3.2 shows the results of a logistic regression
18Note that those values are similar to the ones attained in the pilot study, which were shown to

the participants as an approximation of the cost distribution, e.g., 7.5 (20th percentile) and 15 (80th
percentile). The data includes extreme outliers, with some participants having a completion time of
more than 30 hours or as little as 1.50 minutes. The participants who took more than 16 hours did not
constantly work on the assignment but took long breaks. Figure 3.7(a) presents the estimated distribution
of completion times.
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model and estimates the probability of volunteering as a function of the z-standardized

time. Importantly, the coefficient of time is insignificant.19

We constructed a z-standardized additive index from several control questions in our

post-experimental questionnaire as an additional measure of subjective costs. We asked

participants on a 7-point Likert scale whether they perceived the task as exhausting

(µ=3.01), interesting (µ=2.91, reverse-coded), or emotionally challenging (µ=2.30), and

whether it was important to them to contribute to “better data quality” (µ=2.44, reverse-

coded).20.

The subjective costs have a substantially meaningful and highly statistically significant

negative effect on the probability of volunteering (see Model 2 and 3 in Table 3.2 and Table

3.7). We, therefore, conclude the following:

Result 1. The probability of volunteering decreases in the subjective costs of volunteering.

Table 3.2: Logistic regression to estimate the volunteering choice as a function of different
cost measures

Dependent variable:
Volunteering Choice

(1) (2) (3)
Time −0.007 −0.005

(0.048) (0.050)

Cost Index −0.375∗∗∗ −0.375∗∗∗

(0.050) (0.050)

Constant 0.123∗∗∗ 0.126∗∗∗ 0.126∗∗∗

(0.048) (0.049) (0.049)

Observations 1,754 1,754 1,754
Log Likelihood −1,212.443 −1,183.000 −1,182.994
Akaike Inf. Crit. 2,428.886 2,370.001 2,371.989

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses

19This is also the case for the estimated average marginal effect, which can be found in Table 3.7 in
the Appendix.

20All questions have been answered on a Likert scale between 1 ("Strongly disagree") and 7 ("Strongly
agree").
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3.4.3 Insensitivity to team size in the volunteers dilemma

Hypothesis 3 predicts that the volunteering rate decreases in the group size. This is clearly

not the case (see Figure 3.3). Volunteering rates are relatively high and statistically in-

distinguishable with regard to group size (all p > 0.1, χ2-tests).21 We, therefore, conclude

that

Result 2. The volunteering rate does not vary in the group size.

This result is surprising and interesting concerning our hypothesis and in light of

the vast literature on the volunteer’s dilemma. It constitutes our main result. In the

remainder of the chapter, we will provide a potential explanation based on conditional

volunteering and show that the finding is exceptionally robust.
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Figure 3.3: The average volunteering rate across the different group sizes. The error bars
represent 95% confidence intervals.

3.4.4 Beliefs

In this section, we report the beliefs of the participants about the volunteering decision

of their team members. We compare the beliefs with the actual probability that at least

one other person volunteers for the given group size.22

21We also test for difference in volunteering across group sizes using a logistic regression in Table 3.5.
The average marginal effect estimates in Table 3.6 show that the effect of group size is small and not
statistically significant at any conventional level.

22The probability that one other person volunteers is given by P (X−i > 0) = 1 − (1 − s)N−1 where s
denotes the share of volunteers in a given treatment.
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Table 3.3 reports the results. In each treatment, participants report beliefs that are,

on average smaller than the correct belief, i.e., they overestimate their pivotality. The

differences are statistically significant (p<0.01 for all treatments).23 Hence, participants

do not form correct beliefs about the volunteering decisions of other team members.

Table 3.3: Belief overview by treatment

Group size Correct belief Average belief Share with correct∗ belief
Small group (N=3) 76.34 60.66 0.11
medium group (N=30) 100.00 70.24 0.30
big group (N=300) 100.00 70.89 0.30

* The correct belief is calculated based on the average volunteering rate in the respective treatment.
Here, we define the belief of a participant as correct if it is in the interval of +/- 5 pp around the correct
belief.

Figure 3.4 shows the discrete distribution of the beliefs by group size. There exists a

considerable variation across beliefs. While about a third of participants in N = 30 and

N = 300 reports beliefs close to the correct belief, beliefs are, on average, too low. In

N = 3, even fewer participants report a belief close to the actual probability that one

other team member volunteers. This is also driven by a large share of participants who

believe that no one else volunteers.

Result 3. Beliefs about volunteering are, on average, incorrect.

Next, we consider differences in beliefs across treatments. Participants in the N = 3

treatment report statistically significantly smaller beliefs than in the other two treatments

(p<0.01 for both comparisons, two-sided Mann–Whitney U test). There are no differences

in beliefs between N = 30 and N = 300 (p=0.64, two-sided Mann–Whitney U test).

Result 4. Beliefs are lower in small teams compared to larger team sizes.

The differences in beliefs make intuitive sense, given the observed volunteering rates

in the field experiment. As volunteering rates are similar, the probability that another

person in the team is a volunteer increases in the group size.24

23We regress the difference between the correct belief and the reported belief in a Tobit regression on
a constant.

24Furthermore, we observe a higher degree of cognitive uncertainty about the belief in the small group
compared to the other two group sizes (p < 0.01, two-sided MWU tests). There is no difference between
the medium group and the big group (p > 0.1, two-sided MWU test). Following the argument by
Enke and Graeber (2019), it indicates that subjects shrink their beliefs more towards an ignorant prior.
While this ignorant prior is unobserved in our experimental design, it is reasonable to assume that it is
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From a participant’s perspective, one would expect that lower beliefs lead to higher

volunteering and, thus, to see more volunteers in small groups. However, participants

volunteer at similar rates across treatments. A possible explanation is that a non-trivial

link exists between actions and beliefs in the workplace environment, which is not captured

by the classical Volunteer’s Dilemma framework. We investigate the relationship between

beliefs and actions in the following section.
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Figure 3.4: The belief that another person in the group volunteers by group size. To
calculate the correct belief we use the average volunteering rate in the treatment.

3.4.5 Conditional volunteering

We now focus on how beliefs translate into actions. As discussed in Hypothesis 4, dif-

ferences in beliefs should translate into differences in the action domain. The higher the

probability that someone else in the team volunteers, the larger the likelihood that the

player still receives the benefit without volunteering herself. From a purely monetary

perspective, subjects who are sure that another participant volunteers (i.e., report a be-

lief of 100%) should never volunteer themselves as volunteering is costly, and the benefit

does not increase if there are multiple volunteers. On the other hand, participants with

pessimistic beliefs about the volunteering of others should be more likely to volunteer.

We regress the volunteering decision on beliefs in a linear probability model to investigate
50% given the binary outcome. As a result, cognitive uncertainty can also explain the belief differences
between the small group and the other group sizes. In line with Enke and Graeber (2019) we find
a hump shape relationship between reported probabilities and cognitive uncertainty. In other words,
participants who report beliefs close to 50% tend to encounter a higher degree of cognitive noise. The
effect is especially strong in smaller groups. See Figure 3.8 for further details.
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this relation in the data. Furthermore, Figure 3.5 visualizes those effects in a local linear

regression.

Table 3.4: The volunteering choice explained by Beliefs and all treatment dummies in a
linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3)

Belief 0.005∗∗∗ 0.005∗∗∗ 0.007∗∗∗

(0.0004) (0.0004) (0.001)

Medium Group −0.009 0.090
(0.027) (0.062)

Big Group −0.037 0.205∗∗∗

(0.028) (0.064)

Medium Group × Belief −0.002∗∗

(0.001)

Big Group × Belief −0.004∗∗∗

(0.001)

Constant 0.203∗∗∗ 0.214∗∗∗ 0.108∗∗∗

(0.026) (0.029) (0.040)

Observations 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

Table 3.4 shows the results, which are in sharp contrast to Hypothesis 4 and the theo-

retical predictions from the volunteer’s dilemma. There exists a strong positive correlation

between beliefs and the volunteering decision. In other words, subjects volunteer more

if they believe that it is more likely that there is another volunteer in their team. An

increase in the belief by one percentage point increases the probability of volunteering by

0.5 percentage points (Model 1 in Table 3.4).

Clearly, this connection between beliefs and actions is not individually rational from

a monetary perspective. However, it is well in line with results from the literature on

(social or self-) image concerns (e.g., Bénabou and Tirole, 2006) or the vast literature on

descriptive norms as well as on peer effects (see, e.g., Cornelissen et al., 2017, for a recent

study on peer effects at the workplace). We interpret this effect as a normative driver
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for the outcomes of our field experiments. Compared to a standard volunteers dilemma

in the laboratory, it is reasonable to assume that subjects in the workplace environment

want to comply with the decision of their co-workers, i.e., they do not want to be seen

(or see themselves) as unsocial or lazy by acting differently than what they believe is the

“correct” thing to do.

However, the degree of the conditional volunteering rate, i.e., the marginal increase

of volunteering on beliefs, differs across treatments. In particular, in the small group,

the average marginal reaction to an increase in beliefs by 1% is larger compared to the

medium and the big group (0.7 vs. 0.5 vs. 0.4 percentage points, see Model 3 in Table

3.4).

Together with the finding that beliefs are, on average, lower in the small group com-

pared to the two larger group sizes (Result 4), this can explain why we find no overall

effect on volunteering. That is, while participants, on average, have lower beliefs about

the volunteering of their group members, those with higher beliefs react more strongly

to the beliefs compared to those with similar beliefs in the larger groups. A possible

explanation is that participants fear sticking out more in smaller groups. This effect can

also be observed when considering only subjects who believe that there will be another

volunteer with certainty (a belief of 100). Among those participants, 82% volunteer in

the Small Group, 73% in the Medium Group and 62% in the Big Group.25

Result 5. Workers are conditional volunteers and volunteer more if they believe others

volunteer as well.

3.4.6 Robustness of our results

Our results on volunteering behavior, as well as beliefs, are surprising. Thus, our first

step was to replicate our results in Volunteer’s Dilemma treatments, and the results

are presented above. The finding on volunteering rates is nearly identical to the first

experiment.26

25The differences between the three groups are statistically significant when tested jointly (p<0.01
χ2-test).

26The results from the first experiments are provided in Figure 3.6 and the earlier version of the paper,
which this chapter builds on https://osf.io/4k5y6/.

https://osf.io/4k5y6/
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Figure 3.5: Fitted values from a local linear regression describing the probability to
volunteer by the belief. We use the Wang Ryzin Kernel and leave-one-out cross-validated
bandwidth.

Additionally, to ensure that our results are robust, we thoroughly analyze additional

measures we obtained in the questionnaire. We find many factors influencing individ-

ual volunteering, which provides interesting insights into the drivers of volunteering. See

Appendix 3.C for the complete analysis. Importantly, however, beliefs are by far the

strongest predictor of volunteering compared to any other measure we elicit in the ex-

periment (see Section 3.C.6 in the Appendix for a discussion). Also, other factors are

balanced across treatments, while our treatment manipulation influences beliefs. This

speaks to the robustness of our main result and the explanation of beliefs as a normative

driver of behavior.

3.5 Discussion and concluding remarks

In this chapter, we study volunteering at the workplace. While volunteering as an allo-

cation mechanism in work environments is now widespread, and the adaptation is cham-

pioned by the industry, economic analysis and empirical results suggest that two factors
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impede volunteering. First, the incentives create a coordination problem; second, work-

ers prefer others to do the work, often leading to a situation similar to the Volunteer’s

Dilemma. In particular, our game-theoretical model and past research predict a higher

diffusion of responsibility, i.e., lower volunteering rates, in larger groups.

We report the results of an online field experiment with more than 2,000 workers in

an online labor market. In our experiment, our workers first individually worked on a

standard classification task and were then asked to volunteer for a similar task to secure

a bonus for all workers of their team. We exogenously vary the team size and thus study

the causal effect of the team size on volunteering behavior. Additionally, we elicit workers’

beliefs about the probability of volunteering of their co-workers.

We find that workers react to the strategic situation of the Volunteer’s Dilemma and

shifts in the incentive structure. Workers volunteer much more if they are alone instead of

embedded in a group, and thus a Volunteer’s Dilemma. They also volunteer much less if

they are not paid for the bonus task. Furthermore, in line with our theoretical predictions,

workers with lower subjective costs are more likely to volunteer. Nevertheless, in stark

contrast to previous results that study volunteering outside of the remote work context,

we find no effect of the group size on volunteering behavior. On average, about 53% of

workers choose to volunteer across all our main treatments. We identify workers’ beliefs

about the volunteering decision of their team members as the main driver of this result.

Workers who believe that it is more likely that at least one other worker volunteers are

more likely to volunteer themselves. While, on average, members of small teams consider

it less likely that someone else volunteers, the workers in those teams react to them more

strongly compared to participants with similar beliefs in larger teams.

This conditional volunteering behavior is puzzling from a purely material perspective.

However, it is in line with findings on descriptive norms. If workers perceive volunteering

as a stronger descriptive norm, indicated by higher beliefs, they might be more inclined to

follow these norms. A similar explanation can stem from image concerns. Workers do not

want to be perceived as selfish by others (in this case, by the employer) or themselves for

not volunteering if they believe that most other workers are volunteering. Note that while

workers in the small group have lower beliefs than in the two other groups, the conditional

volunteering effect is also higher here, making those workers with a high belief much more
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likely to volunteer than the larger groups. Image concerns can again explain this more

substantial volunteering effect: Workers do not want to ‘stick out’ in smaller groups.

Our results suggest that volunteering at the workplace is distinctively different from

other volunteering situations. Workers like to conform to the prevalent behavior in their

team. It appears that this effect overshadows the classical strategic considerations one

would expect and which we discuss in Section 3.3.

Those findings have several implications for firms’ organizational structure or, more

generally, social groups that rely on volunteering. We deliberately set up the work en-

vironment so that workers are not informed whether others worked before them, which

allows us to measure their individual willingness to volunteer. However, depending on the

exact organizational structure, our results might be good or bad news for volunteering

at the workplace. Interpreted strictly within the context of the volunteer’s dilemma, the

high level of volunteering is wasteful and inefficient. Especially in work settings where it

is not possible for a manager to prevent this over-provision, the allocation mechanism has

adverse welfare effects. Indeed, these inefficiencies are discussed in open source software

development (McConnell, 1999; Kenwood, 2001). It is especially relevant in workplaces

with limited communication between workers or with little oversight by a manager, like

in remote work contexts that have become more popular in recent years. Here, man-

agers should focus on smaller team sizes to prevent too much volunteering and reduce

inefficiencies.

For organizations that cannot prevent over-provision and only care about finding at

least one volunteer, i.e., who only care about producing the good, our results are good

news. Contrary to what theory or intuition would suggest, giving workers the freedom

to self-organize does not hurt commitment. Using larger team sizes might be desirable

from the perspective of a manager. It is true even without oversight and without any

disciplinary measures. Our findings might thus relate to high volunteering rates in other

contexts, such as writing open-source code or Wikipedia articles, even though the numbers

of potential volunteers are sometimes vast.



Appendix

Appendix 3.A A formal model of volunteering at the

workplace

Here we lay out a general model of volunteering under cost uncertainty and apply it

to our context of volunteering at the workplace. The model captures three essential

characteristics of volunteering decisions in the workplace. First, volunteering is chosen

simultaneously and without communication, which sets a lower bound for our purposes.

Second, there is heterogeneity in, and incomplete information about, the costs of volun-

teering; and third, the group size might differ. Following Hillenbrand and Winter (2018),

our model also allows for population uncertainty, e.g., the case when the exact group size

is unknown, but this is not the scope of this contribution. 27

Arguably, the costs of volunteering are usually not homogeneous for all workers, and

only in rare cases are the costs known precisely. We, therefore, include ideas from the

volunteering models with heterogeneous effort costs (Diekmann, 1986), as well as incom-

plete information about the distribution of costs (see Weesie (1994) for a formal model

and Healy and Pate (2018) for recent experiment evidence).

Player i can volunteer (ai = V ) or defect (ai = D) with individual-specific benefit

bi and costs ci. A single volunteer in the group is sufficient to produce a benefit for all

its members, which no one receives in case no volunteer can be found. Furthermore, the

individual benefit from the public good is greater than the costs of volunteering. The
27We considered population uncertainty as an experimental variation in an earlier version of the paper

and kept the theoretical considerations here for completeness. See Figure 3.6 for the experimental results
on population uncertainty. Further details are provided in an earlier version of the paper that can be
accessed here https://osf.io/4k5y6/.
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https://osf.io/4k5y6/
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payoff πi of worker i is given by

πi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ai = D and X−i = 0

b if ai = D and X−i > 0

b − c if ai = V.

Here, X−i denotes the number of volunteers in the game that are not player i. In line

with Weesie (1994), we assume that γi := ci

bi
follows some arbitrary probability distribution

γ ∼ F with a continuous probability density function f . The following assumption is

made on the support of the distribution

supp(F ) = [ω, ω] ⊆ [0, 1] (3.2)

with ω < ω and [0, 1] being the unit interval.28 We will commonly refer to γi as the type

of player i.

Following the approach of Hillenbrand and Winter (2018), we let the number of workers

n be drawn from a discrete probability distribution h. The probability mass function is

denoted by h(·). Furthermore, let n ∈ Ñ = {2, ..., N̄}, with N̄ ∈ N being the largest

possible number of workers in the game. Since we are interested in the effect of the mean

group size on volunteering, we define E[n] = N . Importantly, a fixed group size n̂, i.e.,

a situation without population uncertainty, is then just a special case in this setup with

a degenerate distribution h(n̂) = 1. This captures our main treatment variation in the

group size.

For the theoretical discussion instead of discussing the full set of potential equilibria,

we focus on a pure-strategy equilibrium as in Weesie (1994). Importantly, as he points

out, there is no equilibrium in mixed strategies, i.e., where a player of a given type plays

V or D with a positive probability. For a more general discussion on possible equilibria

in the Volunteer’s Dilemma, see Diekmann (1985, 1986) and Weesie (1994). The pure-

strategy equilibrium that we discuss has some nice properties and makes intuitive sense

for an applied setting such as ours.

We show that in a Volunteer’s Dilemma with incomplete information about costs and

population uncertainty there exists an equilibrium where players with cost-benefit ratios
28We further assume that the cumulative distribution function (cdf) denoted by F (·) is atomless.
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below some threshold γ̃ volunteer, while those above defect. We further show that this

threshold, and thus the individual probability to volunteer, is smaller in situations with

a large probability of being in bigger groups.

Proposition 1 (Pure Strategy Nash Equilibrium). Let F be an arbitrary probability dis-

tribution over γ with a continuous pdf and an atomless cdf. Let h be a discrete probability

distribution over n. Then

1.1 There exists a type-specific pure strategy Nash Equilibrium with some threshold γ̃h,

which depends on F and h.

1.2 The equilibrium strategy of worker i can be described as

a∗
i =

⎧⎪⎨⎪⎩ V if γi ≤ γ̃h

D if γi > γ̃h

1.3 Let j and k be two discrete probability distributions describing the stochastic popula-

tion size of the game. Assume that j first-order stochastically dominates k. Define

γ̃j as the equilibrium threshold for distribution j and γ̃k as the threshold for the

distribution k. Then, we have γ̃k > γ̃j.

1.4 Let g and z be two discrete probability distributions describing the stochastic pop-

ulation size of the game. Assume that z is a mean-preserving spread of g. Define

γ̃z as the equilibrium threshold for distribution z and γ̃g as the threshold for the

distribution g. Then, we have γ̃z > γ̃g.

The proof for Proposition 1 can be found in Appendix 3.A.1. The three take-aways

from the proposition are that, first, players volunteer less given a larger probability of

being in bigger groups. In other words, an increase in the (mean) group size decreases

volunteering given that the increase is due to a shift in the distribution according to

first-order stochastic dominance. Note that this also takes into account an increase in the

group size when the size is certain. Second, those players with lower costs should be more

likely to volunteer, as P (γi ≤ γ̃h) = F (γ̃h) describes the probability of an arbitrary player

volunteering given a∗
i . Lastly, higher uncertainty about the group size leads to higher

volunteering rates.
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3.A.1 Proofs

Proof of Proposition 1: Existence of the Equilibrium: Assume players play V (Volunteer)

and D (Defect) in pure strategies. Thus, for player i it must be the case that EUi(V ) ≥

EUi(D) or vice versa.

Hence, we have
EUi(V ) ≥ EUi(D)

bi − ci ≥ biP (X−i > 0)

bi − ci ≥ bi(1 − P (X−i = 0)
ci

bi

≤ P (X−i = 0)

γi ≤ P (X−i = 0)

(3.3)

Note that for player i the strategy πi is then:

ai =

⎧⎪⎨⎪⎩ V if γi ≤ P (X−i = 0)

D if γi > P (X−i = 0)
(3.4)

Note that there exists a type γ̃h, which is indifferent between volunteering and defec-

tion.

Note that for this indifferent type γ̃h we have γ̃h = P (X−i = 0) and that players with

γi > γ̃h will not volunteer. The probability for some player i to be above the threshold

P (γi > γ̃h) is equal to 1 − F (γ̃h). Thus, we have

P (X−i = 0) =
∑︂
n∈Ñ

h(n)(1 − F (γ̃h))n−1 (3.5)

Consider now the indifferent type and note that for him

γ̃h = P (X−i = 0)

⇔ γ̃h =
∑︂
n∈Ñ

h(n)(1 − F (γ̃h))n−1 (3.6)

holds with γ̃h being the solution to the fixed point condition. This solution will depend

on F (·) and h. Given the strategy in (3.4)

a∗
i =

⎧⎪⎨⎪⎩ V if γi ≤ γ̃h

D if γi > γ̃h

(3.7)
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describes the strategy of player i in equilibrium. Note that P (γi = γ̃h) = 0 as F (·) is

atomless. There will never be a player i with a cost-benefit ratio, which is exactly equal

to the threshold. Thus, we can neglect the case of γi = γ̃h.29 This proves that there exists

a type-specific pure strategy Nash Equilibrium, which is described by the equilibrium

threshold γ̃h.

Uniqueness of the solution γ̃h:

The right-hand side (RHS) of Equation 3.6, P (X−i = 0) = ∑︁
n∈Ñ h(n)(1 − F (γ̃h))n−1

is decreasing in γ̃h and strictly decreasing for γ̃h ∈ [ω, ω]. The left-hand side (LHS) of

Equation 3.6 is strictly increasing in γ̃h. For γ̃h = ω < 1, the RHS becomes one, as

F (ω) = 0. Similarly, for γ̃h = ω > 0, the RHS equals to zero as F (ω) = 1. Naturally

P (X−i = 0) will be bounded by zero and one, as it is a common probability. Thus, there

can only be one solution to the fixed point condition 3.6. This proves that γ̃h is unique.

Proof of Proposition 1.3: Consider two discrete probability distributions, j and k,

which describe the group size in the game, and assume that j first-order stochastically

dominates k. Note that this implies that the mean group size N is greater given distribu-

tion j compared to k. By the definition of first-order stochastic dominance, we have for

every strictly increasing function u(n) that ∑︁
n∈Ñ j(n)u(n) >

∑︁
n∈Ñ k(n)u(n). Conversely,

we get ∑︁
n∈Ñ k(n)c(n) >

∑︁
n∈Ñ j(n)c(n) for c(n) = −u(n).

Note that (1 − F (γ̃h))n−1 is strictly decreasing in n given γ̃h ∈ (ω, ω). The latter

follows directly from the assumption that Ñ is finite, {1} ∩ Ñ = ∅ and ω < ω. Thus,

setting c(n) := (1 − F (γ̃h))n−1, we therefore get

∑︂
n∈Ñ

k(n)(1 − F (γ̃h))n−1 >
∑︂
n∈Ñ

j(n)(1 − F (γ̃h))n−1 (3.8)

Importantly, Equation 3.8 holds for any equilibrium threshold γ̃h with any arbitrary

discrete probability distribution h. This is because F (·) stays unchanged and we only

alter the distribution h, which then has an influence on the solution γ̃h. Given Equality

3.6 and Inequality 3.8, we then have
29The existence of a player with a threshold is not required for the threshold to exist.
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γ̃k =
∑︂
n∈Ñ

k(n)(1 − F (γ̃k))n−1 >
∑︂
n∈Ñ

j(n)(1 − F (γ̃k))n−1 (3.9)

and

∑︂
n∈Ñ

k(n)(1 − F (γ̃j))n−1 >
∑︂
n∈Ñ

j(n)(1 − F (γ̃j))n−1 = γ̃j, (3.10)

where γ̃k and γ̃j denote the equilibrium thresholds for the respective probability distri-

butions of n. Lastly, assume by contradiction that γ̃k ≤ γ̃j. Then we have

γ̃k ≤ γ̃j

⇔ γ̃k ≤
∑︂
n∈Ñ

j(n)(1 − F (γ̃j))n−1

⇔
∑︂
n∈Ñ

j(n)(1 − F (γ̃k))n−1 <
∑︂
n∈Ñ

j(n)(1 − F (γ̃j))n−1

(3.11)

using Equation 3.6 in the second and Equation 3.9 in the last step.

However, (1 − F (γ̃h))n−1 is (weakly) decreasing in γ̃h for ∀n ∈ Ñ . Hence, γ̃k ≤ γ̃j implies

that
(1 − F (γ̃k))n−1 ≥ (1 − F (γ̃j))n−1 ∀n ∈ Ñ

⇔ j(n)(1 − F (γ̃k))n−1 ≥ j(n)(1 − F (γ̃j))n−1 ∀n ∈ Ñ

⇔
∑︂
n∈Ñ

j(n)(1 − F (γ̃k))n−1 ≥
∑︂
n∈Ñ

j(n)(1 − F (γ̃j))n−1,

(3.12)

as j(n) ≥ 0 ∀n and (1 − F (γ̃j,k))n−1 > 0 ∀n by the observation that γ̃j,k ∈ (ω, ω). This

yields the desired contradiction if we compare Equation 3.11 and Equation 3.12 and proves

that γ̃k > γ̃j.

Proof of Proposition 1.4:

Let h be some arbitrary discrete probability distribution describing the population size.

Denote γ̃h as the equilibrium threshold, as in Proposition 1. Note that given γ̃h ∈

(ω, ω) we have (1 − F (γ̃h)) ∈ (0, 1) for any equilibrium threshold. Hence, for any given

distribution h the function (1 − F (γ̃h))n−1 will be strictly decreasing and strictly convex

in n ≥ 2 for a fixed equilibrium threshold γ̃h.

Assume that z and g are two arbitrary discrete probability distributions of n and

that z is a mean-preserving spread of g (zmpsg). Note that this implies that g second-
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order stochastically dominates z. Thus, for every strictly increasing and strictly concave

function u(n), it must hold that ∑︁
n∈Ñ z(n)u(n) <

∑︁
n∈Ñ g(n)u(n). Conversely, we get∑︁

n∈Ñ z(n)c(n) >
∑︁

n∈Ñ g(n)c(n) for any strictly convex function c(n) = −u(n). Setting

c(n) := (1 − F (γ̃h))n−1, we therefore get

∑︂
n∈Ñ

z(n)(1 − F (γ̃h))n−1 >
∑︂
n∈Ñ

g(n)(1 − F (γ̃h))n−1 (3.13)

By following an analogous approach as in the proof of Proposition 1.3, it then follows

that γ̃z > γ̃g.
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Appendix 3.B Additional figures and tables
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Figure 3.6: The average volunteering rate across the different mean group size for Popu-
lation Uncertainty (PU) and no population uncertainty (NPU). The error bars represent
95%-confidence intervals. The data was gathered for an earlier version of this paper. For
main results of this paper, we only use the data from the replication study that does not
consider population uncertainty. The earlier version of the paper can be accessed here
https://osf.io/4k5y6/.

0 10 20 30 40 50
Minutes

0.00

0.02

0.04

0.06

D
en

si
ty

(a) Time

4.0 10.0 24.0
Index

0.00

0.05

0.10

D
en

si
ty

(b) Cost Index

Figure 3.7: Kernel density estimation of the distributions of the costs of volunteering as
measured by the time it took participants to complete the first stage of the field experiment
(left) and the subjective effort costs (right). The bandwidth (bw) for Time is chosen with
k-fold cross validation for k = 7 at bw = 0.562 for the Gaussian kernel. For the bandwidth
of the Cost Index, Silverman’s Rule of Thumb was used. We restrict the data in the
left plot to values between the 2nd and 98th percentile for this visualization.

https://osf.io/4k5y6/
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Figure 3.8: The local regression shows the hump shaped relationship between cognitive
uncertainty and beliefs. The kernel density plot for cognitive uncertainty uses a Gaussian
kernel and Silverman’s Rule of Thumb to derive the bandwidth. The values are restricted
to be between zero and one.

Table 3.5: Logistic Regression estimating the probability to volunteer

Dependent variable:
Volunteering Choice

Medium Group 0.152
(0.117)

Big Group 0.055
(0.117)

Constant 0.054
(0.083)

Observations 1,754
Akaike Inf. Crit. 2,429.174

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses

Table 3.6: Estimated average marginal effects for the main treatment variable

AME SE z p lower upper
Big group 0.06 0.12 0.47 0.64 -0.17 0.28
Medium group 0.15 0.12 1.30 0.19 -0.08 0.38
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Table 3.7: Estimated average marginal effects for model specification (3) in Table 3.2

AME SE z p lower upper
Cost Index -0.09 0.01 -8.02 0.00 -0.11 -0.07
Time -0.00 0.01 -0.11 0.91 -0.02 0.02

Table 3.8: The mean of different socioeconomic and demographic variables for all treat-
ments

Region & City Size

Statistic Mean
City size: 200k-500k 0.12
City size: 50k-200k 0.19
City size: 500k-1500k 0.14
City size: Less 50k 0.41
City size: More 1500k 0.14

Employment Status

Variable Mean
Employed 0.57
Searching 0.04
Retired 0.02
Not employed 0.02
Self employed 0.11
Other 0.03
Student 0.21

Educational Level

Statistic Mean
High school 0.32
Bachelor 0.19
Apprenticeship 0.27
Master 0.19
School not finished 0.02

Age & Gender

Statistic Mean
Female 0.48
Age: 18-25 0.26
Age: 26-35 0.40
Age: 36-45 0.19
Age: 46-55 0.09
Age: 55+ 0.05

Appendix 3.C Confirming the robustness of the re-

sults

Conditional cooperation is a strong driver of volunteering and can explain the lack of

average group size effects. This result is robust to various factors. In this section, we

rule out several other possible explanations. First, we show that randomization into

treatments worked. This can be seen in Figure 3.9, where we plot the average values for

different control variables by treatment. Second, we show that the way how we elicited

the beliefs does not influence outcomes. Then, we argue that the group size was salient

and that participants were aware of it. We rule out that workplace-related reputational

concerns, economic preferences, or gender differences drive results. Lastly, we highlight
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that beliefs are the most important explanatory variable relative to other measures of

interest.

Small group

Medium group

Big group

Alturism Risk Neg. Reciprocity

0.2 0.1 0.0 0.1 0.2

Small group

Medium group

Big group

Time Preferences

0.2 0.1 0.0 0.1 0.2

Trust

0.2 0.1 0.0 0.1 0.2

Gender

Figure 3.9: Average values and 95% confidence intervals of several observables across
treatments.

3.C.1 Belief order effects

In the experiment, we randomized the order of the belief elicitation and the volunteering

decision. In Action-Belief, we asked first for the volunteering decision and then for

the belief about the decision of the other team members. In Belief-Action, the order

was reversed. We find no evidence that this order influenced the outcomes systematically.

The average reported belief in Belief-Action is 1.17 percentage points higher than in

Action-Belief. Yet, the difference is either only weakly significant or not statistically

significant depending on the exact test specification (two-sided MWU test p = 0.09, two-

sided t-test p = 0.43). Importantly, there are no significant differences in volunteering

rates between Action-Belief and Belief-Action (χ2-test p = 0.34). In Table 3.9, we

replicate the results on conditional cooperation (see Table 3.4) but include the dummy

variable AB that is equal to one for the Action-Belief variation. The respective coef-
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ficient and the interaction terms are insignificant in all model specifications, which shows

that conditional cooperation is also robust to order effects.

3.C.2 Prominence of group size

One possible explanation for why subjects did not react to the group size in our main

treatments might be that they, in general, did not pay attention to the description of the

game and the group size in particular. For example, it might be the case that they simply

overlooked the number of players in the team. To minimize this concern, the instructions

were simple and easy to understand. Second, the size of the team was mentioned two times

on the decision screen and prominently directly before making the choice (see Instructions

in Appendix 3.D.3).

It is still possible that workers who read the instructions did not fully contemplate

their decision, the payoff consequences of their actions, and the meaning of the team size

for their potential payoffs. We note that workers spent more time on the decision screen in

the main treatments than in the baseline treatments (Mean VOD = 57.83 seconds, Mean

Baseline (N=1) = 42.46 seconds, p-value < 0.001, two-sided Mann-Whitney test).30

This suggests that workers indeed took the strategic situation into account.

Additionally, we asked participants in the survey at the end of the experiment if they

could recall their group size. Table 3.10 shows the share of participants that reported

the correct group size. The large majority of participants in all treatments correctly

remembered the group size with a correct recall among 93% of all participants. Hence,

participants noticed the group size when they took their volunteering decision and that

the lack of average treatment effects is not driven by a lack of salience of the group size.

3.C.3 Workplace-related reputational concerns

One might further argue that many participants volunteered because of reputational con-

cerns. Even though we explicitly pointed out that the volunteering choice has no effect

on their reputation, they could have been concerned that they might receive a negative

rating on the platform. These concerns should be most pronounced for those workers who
30For the analysis of the attention time, we restrict the sample to observations with values between

the 98th and the 2nd percentile. Including those outliers does not alter the results substantially. For the
main treatments, we restrict the data to participants in the Action-Belief treatment variation as it has
the same decision screen as in the baseline.
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Table 3.9: The Volunteering choice explained by the order of the belief elicitation (AB),
beliefs and all treatment dummies in a linear probability model with robust standard
errors

Dependent variable:
Volunteering Choice

(1) (2) (3)

AB −0.017 0.0001 −0.007
(0.023) (0.058) (0.081)

Belief 0.005∗∗∗ 0.005∗∗∗ 0.007∗∗∗

(0.0004) (0.0005) (0.001)

Medium Group −0.009 −0.010 0.133
(0.027) (0.039) (0.087)

Big Group −0.037 −0.050 0.156∗

(0.028) (0.039) (0.087)

Belief × AB −0.0004 −0.0004
(0.001) (0.001)

Medium Group × AB 0.001 −0.083
(0.055) (0.125)

Big Group × AB 0.027 0.105
(0.056) (0.129)

Belief × Medium Group −0.002∗∗

(0.001)

Belief × Big Group −0.003∗∗∗

(0.001)

Belief × Medium Group × AB 0.001
(0.002)

Belief × Big Group × AB −0.001
(0.002)

Constant 0.223∗∗∗ 0.215∗∗∗ 0.111∗∗

(0.031) (0.039) (0.053)

Observations 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.10: Belief overview by treatment

Group size Share of participants
with correct group recall

N=3 0.91
N=30 0.95
N=300 0.94
Pooled 0.93

have frequently worked on the site in the past, and by implication, also expect so in the

future. Therefore, we asked participants how often they had worked on the platform be-

fore to construct our Reputation score and observe no statistically significant differences

between treatments (p = 0.48, F-test). We find a small statistically significant effect of

Reputation on volunteering in a linear probability model with robust standard errors

(see Table 3.12 in the Appendix). Yet, we do not find systematic interaction effects of

Reputation with our treatment variables, which could explain our absence of treatment

effects. It means that the null effects are robust to reputational concerns.

3.C.4 Economic preferences

One might also expect differences in risk preferences, altruism, or “economic preferences”

to explain our results more generally. As explained above, we collected several measures

of economic preferences based on the survey measure by Falk et al. (2022), including

trust, time preferences, negative reciprocity, and altruism, plus an additional measure of

efficiency concerns closely linked to the Volunteer’s Dilemma (see Section 3.D.5 for the

exact wording of the questions). Also here, all variables are balanced across treatments

(see Figure 3.9). The differences between the indicators are never statistically significant

(F-test p-values between 0.31 and 0.82). We find positive main effects for time prefer-

ences, negative reciprocity, and efficiency concerns. (see Tables 3.12-3.19). Importantly,

there is again almost no systematic significant interaction effect between treatments on

any of the preference measures, confirming the robustness of our finding. A notable ex-

ception is efficiency consideration. In line with expectations, participants volunteer more

likely if they report that they are more willing to make an effort if many profit from it.

Furthermore, this effect is increasing in the group size (see Table 3.14). Yet, the effect

size is small relative to the influence of beliefs on volunteering. Thus, while efficiency con-
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siderations influence the behavior of participants, they play a subordinate role compared

to conditional cooperation (see Table 3.11 for a comparison).

3.C.5 Gender differences in volunteering

Finally, we find the same pattern as above for gender differences in volunteering. Men

and women are fairly balanced across treatments (p=0.31, F-test). Women in general

volunteer more often, but also here the insignificant interaction effect with our treatments

confirms the robustness of our result (see Table 3.13 in the Appendix).

3.C.6 Beliefs relative to other explanatory variables

In Table 3.11, we display linear probability models, in which we regress the volunteering

choice on the set of control variables that we elicited at the end of the experiment. All

variables are z-transformed to allow for comparisons. While different factors are correlated

with the volunteering decision, the belief participants have about the volunteering deci-

sion of the other team members (Belief) is the strongest predictor (Model specification

1). Furthermore, Belief and Efficiency31 are the only two variables we elicit in the

experiment that shows a systematic interaction with the treatment variables (Model spec-

ification 2 and 3).32 Also, when accounting for the significant interactions in the model

specification (4), the beliefs are the strongest predictor. Hence, we find clear evidence

that beliefs are a strong driver of volunteering compared to other possible channels.

31For a description of the control question see here 3.D.5
32For the other variables the interactions are either insignificant or only a single group size shows a

(weakly) significant interactions.
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Table 3.11: The volunteering choice explained by different control variables in a linear
probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Medium Group −0.017 −0.028 −0.017 −0.029
Big Group −0.034 −0.037 −0.033 −0.037
Belief 0.139∗∗∗ 0.200∗∗∗ 0.139∗∗∗ 0.204∗∗∗

Efficiency 0.110∗∗∗ 0.111∗∗∗ 0.060∗∗∗ 0.055∗∗∗

Time Pref. 0.027∗∗ 0.028∗∗ 0.028∗∗ 0.029∗∗

Trust −0.016 −0.016 −0.016 −0.016
Risk −0.041∗∗∗ −0.041∗∗∗ −0.042∗∗∗ −0.042∗∗∗

N. Reciprocity 0.012 0.012 0.012 0.012
Altruism 0.004 0.004 0.003 0.003
Reputation 0.027∗∗ 0.027∗∗ 0.027∗∗ 0.027∗∗

Cost index −0.051∗∗∗ −0.048∗∗∗ −0.050∗∗∗ −0.047∗∗∗

Freq. Task −0.005 −0.005 −0.003 −0.003
Medium Group × Belief −0.061∗∗ −0.067∗∗∗

Big Group × Belief −0.121∗∗∗ −0.128∗∗∗

Medium Group × Efficiency 0.077∗∗∗ 0.082∗∗∗

Big Group × Efficiency 0.076∗∗∗ 0.086∗∗∗

Constant 0.553∗∗∗ 0.564∗∗∗ 0.553∗∗∗ 0.564∗∗∗

Observations 1,694 1,694 1,694 1,694
Adjusted R2 0.167 0.175 0.171 0.181

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors are used to derive the p-values.
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3.C.7 Robustness checks with regard to control variables

Table 3.12: The volunteering choice explained by Reputation and all treatment dummies
in a linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Reputation 0.026∗∗ 0.025∗∗ 0.050∗∗ 0.050∗

(0.012) (0.012) (0.022) (0.026)

Medium Group 0.024 0.044 0.044
(0.030) (0.042) (0.041)

Big Group 0.013 0.016 0.016
(0.030) (0.042) (0.042)

AB −0.019 −0.004 −0.004
(0.024) (0.042) (0.042)

Medium Group × AB −0.041 −0.041
(0.059) (0.059)

Big Group × AB −0.008 −0.008
(0.059) (0.059)

Medium Group × Reputation −0.037 −0.026
(0.028) (0.040)

Big Group × Reputation −0.050∗ −0.061
(0.029) (0.039)

AB × Reputation 0.006 0.005
(0.024) (0.036)

Medium Group × AB × Reputation −0.020
(0.055)

Big Group × AB × Reputation 0.028
(0.059)

Constant 0.539∗∗∗ 0.536∗∗∗ 0.529∗∗∗ 0.529∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,703 1,703 1,703 1,703

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.13: The Volunteering choice explained by gender and all treatment dummies in a
linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Woman 0.064∗∗∗ 0.065∗∗∗ 0.042∗ 0.055∗

(0.012) (0.012) (0.024) (0.029)

Medium Group 0.037 0.052 0.051
(0.029) (0.041) (0.041)

Big Group 0.009 0.016 0.015
(0.029) (0.041) (0.041)

AB −0.028 −0.014 −0.014
(0.024) (0.041) (0.041)

Medium Group × AB −0.029 −0.029
(0.058) (0.058)

Big Group × AB −0.018 −0.019
(0.058) (0.058)

Medium Group × Woman 0.023 0.015
(0.029) (0.041)

Big Group × Woman 0.082∗∗∗ 0.048
(0.029) (0.041)

AB × Woman −0.023 −0.050
(0.024) (0.041)

Medium Group × AB × Woman 0.016
(0.058)

Big Group × AB × Woman 0.067
(0.058)

Constant 0.531∗∗∗ 0.530∗∗∗ 0.522∗∗∗ 0.523∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.14: The Volunteering choice explained by Efficiency and all treatment dummies
in a linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Efficiency 0.132∗∗∗ 0.132∗∗∗ 0.078∗∗∗ 0.082∗∗∗

(0.011) (0.011) (0.022) (0.026)

Medium Group 0.034 0.058 0.059
(0.028) (0.040) (0.040)

Big Group 0.015 0.018 0.019
(0.028) (0.040) (0.040)

AB −0.020 −0.003 −0.003
(0.023) (0.041) (0.041)

Medium Group × AB −0.051 −0.050
(0.057) (0.057)

Big Group × AB −0.006 −0.005
(0.057) (0.057)

Medium Group × Efficiency 0.080∗∗∗ 0.088∗∗

(0.028) (0.038)

Big Group × Efficiency 0.074∗∗∗ 0.055
(0.027) (0.037)

AB × Efficiency 0.008 0.0001
(0.022) (0.040)

Medium Group × AB × Efficiency −0.018
(0.056)

Big Group × AB × Efficiency 0.040
(0.054)

Constant 0.531∗∗∗ 0.525∗∗∗ 0.516∗∗∗ 0.516∗∗∗

(0.011) (0.023) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.15: The Volunteering choice explained by Altruism and all treatment dummies
in a linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Altruism 0.017 0.016 0.002 −0.004
(0.012) (0.012) (0.024) (0.028)

Medium Group 0.037 0.053 0.052
(0.029) (0.041) (0.041)

Big Group 0.013 0.017 0.017
(0.029) (0.041) (0.041)

AB −0.023 −0.012 −0.011
(0.024) (0.041) (0.041)

Medium Group × AB −0.029 −0.028
(0.058) (0.058)

Big Group × AB −0.006 −0.007
(0.059) (0.059)

Medium Group × Altruism 0.030 0.074∗

(0.029) (0.038)

Big Group × Altruism 0.048 0.026
(0.029) (0.040)

AB × Altruism −0.027 −0.011
(0.024) (0.044)

Medium Group × AB × Altruism −0.088
(0.058)

Big Group × AB × Altruism 0.039
(0.059)

Constant 0.531∗∗∗ 0.525∗∗∗ 0.519∗∗∗ 0.519∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.16: The volunteering choice explained by N. Reciprocity and all treatment
dummies in a linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

N. Reciprocity 0.037∗∗∗ 0.037∗∗∗ 0.032 0.013
(0.012) (0.012) (0.024) (0.028)

Medium Group 0.037 0.055 0.055
(0.029) (0.041) (0.041)

Big Group 0.012 0.014 0.013
(0.029) (0.041) (0.041)

AB −0.023 −0.009 −0.008
(0.024) (0.041) (0.041)

Medium Group × AB −0.035 −0.036
(0.058) (0.058)

Big Group × AB −0.005 −0.005
(0.058) (0.058)

Medium Group × N. Reciprocity 0.010 0.027
(0.029) (0.041)

Big Group × N. Reciprocity 0.024 0.062
(0.029) (0.040)

AB × N. Reciprocity −0.012 0.026
(0.024) (0.041)

Medium Group × AB × N. Reciprocity −0.036
(0.058)

Big Group × AB × N. Reciprocity −0.081
(0.059)

Constant 0.531∗∗∗ 0.526∗∗∗ 0.519∗∗∗ 0.519∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.17: The volunteering choice explained by Risk and all treatment dummies in a
linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Risk −0.007 −0.007 0.001 0.005
(0.012) (0.012) (0.024) (0.029)

Medium Group 0.038 0.053 0.053
(0.029) (0.041) (0.041)

Big Group 0.014 0.016 0.015
(0.029) (0.041) (0.041)

AB −0.023 −0.010 −0.010
(0.024) (0.041) (0.041)

Medium Group × AB −0.030 −0.031
(0.058) (0.058)

Big Group × AB −0.007 −0.007
(0.058) (0.059)

Medium Group × Risk 0.004 −0.025
(0.029) (0.041)

Big Group × Risk 0.026 0.040
(0.029) (0.041)

AB × Risk −0.036 −0.045
(0.024) (0.041)

Medium Group × AB × Risk 0.059
(0.059)

Big Group × AB × Risk −0.031
(0.059)

Constant 0.531∗∗∗ 0.525∗∗∗ 0.519∗∗∗ 0.519∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.18: The volunteering choice explained by Trust and all treatment dummies in
a linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Trust 0.019 0.018 0.043∗ 0.027
(0.012) (0.012) (0.024) (0.030)

Medium Group 0.038 0.057 0.056
(0.029) (0.041) (0.041)

Big Group 0.014 0.015 0.014
(0.029) (0.041) (0.041)

AB −0.021 −0.008 −0.009
(0.024) (0.041) (0.041)

Medium Group × AB −0.034 −0.034
(0.058) (0.058)

Big Group × AB −0.004 −0.003
(0.059) (0.059)

Medium Group × Trust −0.004 0.024
(0.029) (0.040)

Big Group × Trust 0.018 0.035
(0.029) (0.042)

AB × Trust −0.059∗∗ −0.028
(0.024) (0.042)

Medium Group × AB × Trust −0.058
(0.058)

Big Group × AB × Trust −0.033
(0.059)

Constant 0.531∗∗∗ 0.524∗∗∗ 0.516∗∗∗ 0.517∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Table 3.19: The volunteering choice explained by Time and all treatment dummies in a
linear probability model with robust standard errors

Dependent variable:
Volunteering Choice

(1) (2) (3) (4)

Time 0.075∗∗∗ 0.075∗∗∗ 0.076∗∗∗ 0.063∗∗

(0.012) (0.012) (0.022) (0.027)

Medium Group 0.035 0.057 0.056
(0.029) (0.041) (0.041)

Big Group 0.011 0.014 0.013
(0.029) (0.041) (0.041)

AB −0.018 −0.0002 0.001
(0.024) (0.041) (0.041)

Medium Group × AB −0.043 −0.044
(0.058) (0.058)

Big Group × AB −0.007 −0.007
(0.058) (0.058)

Medium Group × Time −0.021 −0.009
(0.029) (0.040)

Big Group × Time 0.008 0.036
(0.028) (0.038)

AB × Time 0.007 0.034
(0.023) (0.039)

Medium Group × AB × Time −0.026
(0.057)

Big Group × AB × Time −0.058
(0.056)

Constant 0.531∗∗∗ 0.524∗∗∗ 0.516∗∗∗ 0.516∗∗∗

(0.012) (0.024) (0.029) (0.029)

Observations 1,754 1,754 1,754 1,754

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.
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Appendix 3.D Experiment instructions

Below are the translated instructions the participants received during the experiment.

The experiment was conducted in German. The screenshots show the German version.

3.D.1 The introduction

Welcome and thank you for your support of our project. In this task, you will rate com-

ments from users of an internet forum. With your help, we will better able to understand

and assess the behavior of our users. A more detailed explanation of the task can be

found in the section "Your task".

Please note:

The quality of the data resulting from rating the comments is very important to us. Fur-

thermore, there are a lot of comments from the Internet forum, all of which should be

evaluated.

To ensure data quality and efficient handling of the tasks, you will be working

in a team. Your team consists of [PU: µ − s to µ + s members; NPU: exactly

µ members]. You will initially work individually on the task described below.

Your task:

Below we will show you a series of pictures, each with a comment. These comments

come from different users of an internet forum. For each of these comments, we have the

following four questions for you:

1. "Is the comment friendly or hostile towards the group which is displayed

in the photo?"

We would like to know from you how hostile you find the comment with regard to the

topic shown in the picture. You should rate the comments on a scale of 1 to 9. 1 means

very friendly, 9 means very hostile.
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[Possible answers: Value in a Likert scale between 1 ("very friendly) to 9 ("very hos-

tile") or "Not possible to rate"]

In some cases, the comments are difficult to evaluate. Please click on the checkbox

"Not to rate" in these cases.

2. "Is the comment addressed to another user?"

In part, the comments you see are directed towards other users on the internet forum. We

are interested in whether the comment is directed towards another user and, if so, whether

she agrees or disapproves of the other user. Therefore, we ask you please to answer the

following question for each comment: "Is the comment addressed to another user?"

[Possible Answers: "No", "Yes, agreeing", "Yes, rejecting", "Not possible to rate"]

In some cases, the comments are difficult to evaluate. Please click on the checkbox

"Not possible to rate" in these cases.

3. "Should the comment be allowed in an online forum?"

Do you personally think that the comment should be allowed in an internet forum?

[Possible Answers: "No", "Yes", "Not possible to rate"]

4. "Which features apply to the comment?"

You will also find a list of features below the scale. Please click on any features that you

think apply to the comment. If none of the features apply, just do not click on any.

[Possible Answers: "Contains negative prejudices", "Uses racist insults", "Contains of-

fensive, degrading or derogatory words", "Calls for violence, threats or discrimination",

"Uses sexist insults" or/and "Sexual orientation or gender is degraded or stigmatized"]
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You will only see each comment once. When you have finished a page, please click on

"Next". You will rate a total of 30 comments.

Please press "Next" to start the task. Thanks for your support.
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3.D.2 The task

Kommentar 1 von ingesamt 30 Kommentaren
Das Bild: 

Der Kommentar: 

Wir sollten das gemeinsame Wohlergehen der Menschen über ein unreflektiertes temporäres "unwohlsein" stellen.

 

Ist der Kommentar freundlich oder feindselig gegenüber der im Foto dargestellten Gruppe?

         
 

Richtet sich der Kommentar an einen anderen Nutzer?

   
 

Sollte dieser Kommentar in einem Internetforum erlaubt sein?

  

 
Welche Merkmale treffen auf den Kommentar zu?

Weiter

sehr freundlich   1 2 3 4 5 6 7 8 9 sehr feindselig

Nicht zu bewerten

Nein Ja, er ist zustimmend Ja, er ist ablehnend

Nicht zu bewerten

Nein Ja Ich weiß nicht

Beinhaltet negative Vorurteile
Nutzt rassistische Beleidigungen
Beinhaltet beleidigende, erniedrigende oder abwertende Worte
Ruft zu Gewalt, Drohungen oder Diskriminierung auf
Nutzt sexistische Beleidigungen
Die sexuelle Orientierung oder das Geschlecht/Gender wird herabgesetzt oder stigmatisiert

Figure 3.10: Screenshot of the task.
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3.D.3 The volunteering decision

Additional task for securing the data quality in the team

Thank you for rating the 30 comments. You completed now the main task and will receive

0.90 € for it. In total, it took you Time minutes to complete the task. Participants in

this task normally need between 7.5 Minutes and 15.0 minutes to rate 30 comments.

We now need exactly one volunteer from your team of exactly N person.

Instructions for the additional task in the team:

To assess the comment ratings in your team better, and to improve data quality, 30 more

comments need to be rated by your team.

• All team members receive a bonus of 0.90 € each, if one person completes this

additional task.

• All persons in your team are offered this additional task.

• It is enough for one person in your team of exactly N person to volunteer. All

team members will then receive the bonus payment. It is possible for more than

one person to perform the task. The bonus then does not increase.

• You will also receive the bonus if you do not volunteer, but another person is found.

• If nobody volunteers in your team, nobody will receive a bonus of 0.90 €.

• Your decision to volunteer in your team or not will not affect your reputation on

the Clickworker platform or the money you earned so far.

• All participants in your group will make this decision for themselves and, if necessary,

also work on the task. It is therefore possible that all participants, a smaller number,

or no participants actually work on the task. We only calculate the payment of the

bonus once all participants in the group have made their decision.

Do you want to volunteer in your team, which consists of exactly N person,

and rate the additional 30 comments? [Possible Answers: "Yes" or "No"]
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Figure 3.11: Screenshot of the volunteering decision described in Section 3.2.3.
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Figure 3.12: Screenshot of the volunteering decision if we asked for the belief before the
participant took the decision.

3.D.4 Belief elicitation

Your assessment of your team

We are now first interested in your assessment of your team members’ deci-

sions. How willing do you think your team members are to volunteer? Please give us

your assessment in percent (0-100). The higher the number, the more likely you think it

is that at least one other person on your team will volunteer. You can also receive a

further bonus of €0.90 for your estimate. For this purpose, enter the value

that actually corresponds to your estimation. The chance to get the bonus
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will depend on how good your estimation is.

How likely is it that at least one of your team members from your team, which

consists of 3 people, will volunteer for this task?

[Possible Answers: Slider without initial value between 0 and 100]

Figure 3.13: Screenshot of the belief elicitation.
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Figure 3.14: Screenshot of the belief elicitation if we asked for the belief before the
participant took the decision.



158 3.D. EXPERIMENT INSTRUCTIONS

3.D.5 Questionnaire items

• Risk: “Are you a person who is generally willing to take risks, or do you try to

avoid taking risks?”; Scale: 0 = “completely unwilling to take risks”; 10 = “very

willing to take risks”.

• Time Pref.: “In comparison to others, are you a person who is generally willing to

give up something today in order to benefit from that in the future, or are you not

willing to do so?”; Scale: 0 = “completely unwilling to give up something today”;

10 = “very willing to give up something today”.

• Trust: “As long as I am not convinced otherwise, I assume that people have only

the best intentions.”; Scale: 0 = “does not describe me at all”; 10 = “describes me

perfectly”.

• Negative Reciprocity: “Are you a person who is generally willing to punish

unfair behavior even if this is costly?”; Scale: 0 = “not willing at all to incur

costs to punish unfair behavior”; 10 = “very willing to incur costs to punish unfair

behavior”.

• Altruism: “Imagine the following situation: you won 1,000 € in a lottery. Con-

sidering your current situation, how much would you donate to charity?”; Values

between 0 and 1000 are allowed.

• Efficiency: “I am more willing to make an effort if many profit from it.”; Scale:

0 = “does not describe me at all”; 10 = “describes me perfectly”.
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4.1 Introduction

The market for (online) video games is booming in recent years, with in-game purchases

accounting for a substantial share of developers’ revenues. In 2020 alone, so-called “loot

boxes” generated $15 billion of worldwide revenue, and projections suggest that 230 million

people will spend money on loot boxes by 2025.1 Loot boxes are digital lotteries in video

games that — similar to gambling — offer random rewards to be used in-game. While loot

boxes share a lot of similarities with gambling (Drummond and Sauer, 2018), surprisingly

little regulation is in place that would restrict their design and the way they are priced.2

At the same time, policymakers and the general public alike are concerned that loot boxes

induce consumers — in particular, those susceptible to gambling — to overspend on video

games.3

Figure 4.1: Typical design features, censored odds (left) and selected feedback (right), of
loot boxes.

This concern is amplified by the fact that loot boxes are designed, and marketed, in

ways that obfuscate the chances of winning different rewards. First, the odds are often

censored. As a specific example, consider the football simulation FIFA Ultimate Team,

where gamers build a team of players that vary in strength. Gamers can buy packs that

offer lotteries over players. The odds, however, are provided, if at all, only for a coarse

set of intervals, bunching together players of very different strength (see the left panel

of Figure 1). At the extreme, the worst player in an interval is around 1000 times less
1See, for instance, https://www.juniperresearch.com/press/video-game-loot-boxes-to-

generate-over-$20-billion (accessed on September 16th, 2022).
2Recently, 20 consumer organizations from 18 European countries suggest that loot boxes should be

classified as gambling and therefore regulated (The Norwegian Consumer Counsel, 2022). Additionally,
the Federal Trade Commission (FTC) is investigating loot boxes following concerns from U.S. legislators
that they may be similar to gambling (Federal Trade Commission, 2020).

3See, for instance, https://www.theguardian.com/society/2021/apr/02/video-game-loot-
boxes-problem-gambling-betting-children (accessed on September 16th, 2022).

https://www.juniperresearch.com/press/video-game-loot-boxes-to-generate-over-$20-billion
https://www.juniperresearch.com/press/video-game-loot-boxes-to-generate-over-$20-billion
https://www.theguardian.com/society/2021/apr/02/video-game-loot-boxes-problem-gambling-betting-children
https://www.theguardian.com/society/2021/apr/02/video-game-loot-boxes-problem-gambling-betting-children
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valuable than the best player. The Norwegian Consumer Counsel (2022) argues that

gamers, therefore, overestimate the value of these lotteries. Second, gamers often receive

highly selected feedback on the rewards other gamers have obtained. In the mobile game

Raid: Shadow Legends,4 for example, gamers receive a notification whenever another

player wins a rare reward (see the right panel of Figure 1). As only rare rewards are

reported, this provides them with a biased sample of the reward distribution. Going

further, game developers not only pay content providers (on Youtube or Twitch) to open

loot boxes on their shows, but they allegedly also offer them better odds.5 According

to The Norwegian Consumer Counsel (2022, p.44), observing such a biased sample of

the reward distribution “reinforces the player’s belief that they might be similarly lucky.”

While one could easily imagine that both features contribute to overspending on loot

boxes, there is a lack of systematic evidence supporting this claim.

In this chapter, we experimentally investigate what drives the willingness-to-pay for

loot boxes. We focus on the effects of censoring the odds and providing gamers with a

selected sample of the reward distribution. We do so because these design features hardly

provide any utility to gamers. Their sole purpose seems to be making consumers overspend

on loot boxes. Indeed, we find evidence that both features increase the willingness-to-pay

for lotteries. They do so through different channels, however. Censoring the odds of a

lottery increases a subject’s willingness-to-pay via inflating her belief of winning a high

reward. Simply providing subjects with a selected sample of the reward distribution, on

the other hand, has no statistically significant effect on beliefs. Still, showing subjects

such a selected sample significantly increases the average willingness-to-pay for lotteries.

Going beyond existing work (e.g., Barron et al., 2019), this suggests that selected feedback

affects economic behavior not solely via a beliefs channel. When combined with censored

odds, however, a selected sample does significantly increase beliefs and willingness-to-pay.

Overall, our results suggest that the design of loot boxes — combining censored odds with

selected feedback — contributes to overspending in the market for video games, and thus

support a case for regulating loot boxes.
4In 2022, three years after its release, the game surpassed $1bn in lifetime revenue. For details,

see https://gamingonphone.com/news/raid-shadow-legends-surpasses-1-billion-in-lifetime-
revenue/ (accessed on Januare 2nd, 2023).

5See, for instance, https://gamerant.com/ftc-loot-boxes-better-odds-sponsored-streamers/
(accessed on December 22nd, 2022).

https://gamingonphone.com/news/raid-shadow-legends-surpasses-1-billion-in-lifetime-revenue/
https://gamingonphone.com/news/raid-shadow-legends-surpasses-1-billion-in-lifetime-revenue/
https://gamerant.com/ftc-loot-boxes-better-odds-sponsored-streamers/
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We introduce our experimental design in Section 4.2. Subjects repeatedly state their

willingness-to-pay (WTP) for different monetary lotteries with three potential prizes,

one of which is zero. In a Control condition, we transparently describe the odds of the

lotteries and do not provide any additional information to the subjects. We assume that

this control condition identifies a subject’s true WTP, and define overspending relative

to this benchmark. We implement three treatments that capture the features of loot

boxes discussed above. In Censored, subjects only learn the total probability of winning

a non-zero prize, but not the exact probability of winning the highest prize. In Sample,

we provide subjects with the full prize distribution as well as a selected sample thereof;

that is, they observe the five highest outcomes in a sample of 400 draws. Finally, Joint

combines both: subjects observe the censored prize distribution and a selected sample

thereof. This last treatment resembles the current design of loot boxes most closely.

At the same time, our experimental design eliminates all features of loot boxes that

may provide utility beyond winning a reward, such as a nice design or visual effects. In-

stead, we isolate the features of loot boxes that almost certainly do not affect a gamer’s

material utility, and can thus be interpreted as inducing mistakes. Under the weak as-

sumption that mistakes become weakly stronger as material utility goes up, we then

identify a lower bound on overspending (relative to the control condition).

Section 4.3 presents our main results. Compared to the Control condition, the av-

erage WTP increases by roughly 45% in Censored and Sample, respectively. The effect

in Censored is driven by the large and statistically significant increase in the perceived

likelihood of winning the highest prize. Once we control for stated beliefs (i.e., the me-

diator), the average WTP in Censored does not differ significantly from that in Control

anymore. Selected feedback, in contrast, has no statistically significant effect on stated

beliefs. In fact, the average beliefs are significantly lower in Sample than in Censored.

Because the average WTPs in Sample and Censored are almost identical, however, this

suggests that selected feedback at least partly operates through a channel different from

beliefs. When combined with censored odds, selected feedback does significantly increase

both the average WTP and beliefs. Compared to the control condition, the average WTP

doubles in Joint.

In Section 4.4, we provide additional evidence on the underlying mechanism as well as

for the relevance of our results. First, we restrict the sample to decisions for which stated
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beliefs are “realistic” in that they are consistent with the provided information. Here, we

find a precisely estimated zero difference in average beliefs between Censored and Joint.

In either case, subjects tend to assign equal probabilities to the non-zero prizes. This

is consistent with evidence on people naively applying a “50-50 heuristic” when being

uncertain about the problem they face (e.g., Sonnemann et al., 2013; Enke and Graeber,

2019).

Second, we ran a robustness experiment to address the concern that the lotteries are

offered by the experimenter, not a firm, trying to maximize profits. The treatment Info

replicates Joint but adds unbiased information on the reward distribution and explicitly

tells the subject that the odds are not 50-50. While the additional information makes

subjects less optimistic about winning the highest prize, it does not affect the average

WTP. Our findings highlight the robustness of our main treatments and show that even

in the presence of further unbiased information, the design features of loot boxes promote

overspending.

Third, we study correlates of a survey measure on loot-box overspending. Consistent

with the prior literature (e.g., Zendle and Cairns, 2018), survey measures of gambling

behavior correlate with overspending on loot boxes. Controlling for these measures of

gambling behavior, we still find a positive association between the average WTP for the

lotteries in our experiment and survey measures of overspending on loot boxes. Hence,

our experimental measure of gambling behavior picks up part of the unexplained variation

in loot-box overspending.

We conclude in Section 4.5 by discussing tentative policy implications and challenges

in their implementation. Current plans for regulation in Germany include labels for games

with loot boxes.6 Because it seems to be common design features of loot boxes — not the

fact that they offer random rewards — that induce overspending, this regulation is unlikely

to be sufficient. Consistent with this observation, firms would probably not invest much

effort into obfuscating the odds of loot boxes if it had no effect. Our experimental results

thus suggest a case for stronger regulation that restricts the design of loot boxes.7 Still, the

effects of such regulation are far from obvious. For example, gamers might be overwhelmed

by learning the full distribution over the players’ levels in FIFA Ultimate Team, and might
6See, for instance, https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-

auf-aenderungen-vor/ (accessed on September 19th, 2022).
7Alternatively, regulators could ban loot boxes altogether. As the case of Belgium shows, however,

such a ban can only work if regulators also introduce proper enforcement mechanisms (Xiao, 2022).

https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-auf-aenderungen-vor/
https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-auf-aenderungen-vor/
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simply ignore it. Moreover, preventing game developers from providing selected feedback

does not imply that gamers receive representative feedback on the reward distribution.

They might get similarly selected feedback on the reward distribution from talking to

others or from watching live streams of professional gamers.

Related Literature First, we contribute to the literature on gaming, specifically loot

boxes. A series of papers has established a positive correlation between survey measures of

gambling and overspending on loot boxes (Drummond and Sauer, 2018; Zendle and Cairns,

2018; Drummond et al., 2020). We strengthen this link by providing causal evidence on

how key design features of loot boxes affect the WTP for lotteries, identifying a lower

bound on how these features affect demand for actual loot boxes. Chen et al. (2021)

develop a model of optimal loot box pricing, assuming that gamers maximize expected

utility (EU). We find, however, that common features of loot boxes result in WTPs that

are non-linear in stated beliefs, clearly rejecting the EU hypothesis.

We also connect to the behavioral literature on choice under risk and ambiguity. Specif-

ically, the fact that game developers introduce “ambiguity” by censoring the odds of

loot boxes is consistent with recent evidence on ambiguity-seeking behavior (see Chan-

drasekher et al., 2022, and the literature therein). Such behavior is also consistent with

the finding that the censoring of odds increases the average WTP for lotteries in our

experiment.

Finally, we add to the literature on biased inferences from (non-)disclosed data. Empir-

ical evidence from the lab and field suggests that individuals often draw wrong inferences

from selectively disclosed data in strategic settings (Bolton et al., 2007; Koehler and Mer-

cer, 2009; Brown et al., 2012; Benndorf et al., 2015; Deversi et al., 2021; Jin et al., 2021,

2022) and non-strategic ones (Esponda and Vespa, 2018; Barron et al., 2019; Enke, 2020;

López-Pérez et al., 2022). We find that subjects naively bias censored probabilities to-

wards a uniform distribution. By closely resembling common features of loot boxes, our

design allows us to provide more nuanced insights to the question of how to regulate their

design.
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4.2 Experimental design

4.2.1 Experimental setup

We develop an experimental design that allows us to test for the effects of two key features

of loot boxes on the willingness-to-pay (WTP) for lotteries. First, the odds of loot boxes

are often censored. Second, gamers typically receive (positively) selected feedback on

the reward distribution. We implement three treatments and one control condition to

identify the effect of each feature in isolation — i.e., the effect of censored odds and

selected feedback — as well as how both features interact with each other. Our design

abstracts from other features of loot boxes (such as visual effects) that might provide

utility to subjects. As we argue in Section 4.2.2, under a weak assumption, we thereby

identify a lower bound on the actual effects on the demand for loot boxes.

All subjects sequentially state their WTP for five lotteries. Each lottery pays a non-

zero prize with probability q% and zero otherwise. The non-zero prize is either 10 Coins

or x Coins. Both probabilities and prizes vary across decisions: in each decision, we

independently draw (without replacement) a probability q ∈ {10, 20, 30, 40, 50} and a

prize x ∈ {100, 120, 140, 160, 180}. Probability and prize pairs are drawn at the subject

level, so that different subjects may observe different lotteries in a different order. The

high prize of x Coins is always realized with probability 1%.8 Before stating their WTP

for a lottery, we ask subjects to state their belief on how often they would win this high

prize in 100 draws (see Figure 4.2 for a screenshot and Section 4.2.2 for an interpretation).

Across four conditions, we vary the amount of information that subjects receive on

the lotteries. We next describe these four conditions in more detail. Screenshots of the

instructions and decision screens can be found in Appendix 4.C.

Control In the control condition, subjects learn the full probability distribution of the

different lotteries. More specifically, as illustrated in Figure 4.2, they learn the exact

probability of winning 10 Coins and x Coins, respectively. Subjects do not get any

additional information on the lotteries.
8For example, if q = 10% and x = 100, the lottery pays 0 Coins with probability 90%, 10 Coins with

probability 9%, or 100 Coins with probability 1%.
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Figure 4.2: Decision screen in the Control condition after stating the belief.

Censored In the treatment Censored, subjects observe censored versions of the lotteries.

As illustrated in Figure 4.3, they only learn the probability of receiving a non-zero prize,

but not the exact probabilities of receiving 10 Coins or x = 100 Coins, respectively. This

mimics the censoring strategies of video game designers such as EA Sports who do not

provide gamers with the full probability distribution (see the left panel of Figure 4.1).

Other than in Control, to assess the value of a lottery, subjects have to form a belief

about the probability of receiving x = 100 Coins. Based on existing research (Fischhoff

and Bruine De Bruin, 1999; Sonnemann et al., 2013; Enke and Graeber, 2019), we expect

subjects to overestimate this probability, likely biasing it towards 50%.

Figure 4.3: Information provided in the treatment Censored.

Sample In the treatment Sample, subjects again learn the full probability distribution of

each lottery, but on top, observe a sample from this distribution. As illustrated in Figure

4.4, we present subjects the 5 highest outcomes in a sample of 400 actual draws from

the lottery. Notably, subjects receive transparent information on how the outcomes are

chosen. This treatment is motivated by the common practice of announcing rare prizes

other players have obtained (see the right panel of Figure 4.1). Importantly, because

subjects observe the full probability distribution, the sample does not contain any new

information regarding the value of the lottery. Still, existing research (e.g., Barron et al.,
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2019) suggests that observing a series of high draws from a distribution may increase a

subject’s WTP.

Figure 4.4: Information provided in the treatment Sample.

Joint The treatment Joint combines both of the above: subjects observe a censored

version of the lotteries together with the 5 highest outcomes in a sample of 400 draws.

Unlike in Sample, the sample does contain information about the underlying probability

distribution in this case. With censored odds, subjects arguably overestimate the low

probability of winning x Coins initially. Then, if all subjects were Bayesian, the average

belief upon observing the sample should decrease, moving closer to the truth. If, in

contrast, subjects naively infer from a series of good draws that the lottery has to be even

better than they initially thought, the average belief upon observing the sample should

go up. Hence, compared to Censored, also the average WTP should increase.

4.2.2 Conceptual framework

We sketch a simple model to clarify how we think about our experimental design, and

how it links to loot boxes typically offered. Consider a lottery Z with a distribution G∗

over prizes (such as player cards in FIFA Ultimate Team). The lottery is presented in a

“frame” f (such as our different treatments), which captures the description of the odds or

the feedback provided to gamers. We assume that gamers form a subjective belief Gf over

the prize distribution that depends on the frame. Going beyond our experimental design,

we allow for features of loot boxes like a nice design or fancy visual effects that directly
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provide utility to gamers. We summarize such additional features in the “context” c, and

refer to the “neutral context” of our experiment as c0.

Willingness-to-Pay We assume that gamers aim to maximize their subjective expected

utility. Denote as u(z, c) the utility derived from prize z in context c. A gamer’s WTP

for the loot box Z under frame f is then given by

EGf
[u(Z, c)] = EG∗ [u(Z, c)] + EGf

[u(Z, c)] − EG∗ [u(Z, c)]⏞ ⏟⏟ ⏞
=:ϕ(c,f)

,

where ϕ(c, f) captures a bias that operates through the gamer’s subjective belief.

We make two assumptions to link the above to our experimental design.

Assumption 1. For any context c and any frame f , ϕ(c, f) ≥ ϕ(c0, f).

Our first assumption says that adding contextual features that provide utility induces a

weakly larger bias. For example, if gamers get distracted by fancy visual effects, they

might become more prone to make statistical errors. A nice design of loot boxes might

also result in a more favorable view of the game developer and the odds it offers. Un-

der Assumption 1, our design, which abstracts from features of loot boxes that directly

generate utility, allows us to estimate a lower bound on the bias in loot-box demand.

Assumption 2. The control condition eliminates any bias in the WTP.

Under Assumption 2, our control condition identifies the average consumption value of

a lottery. Moreover, a simple linear regression of the stated WTPs on treatment indicators

identifies the average overspending on these lotteries due to censored odds and selected

feeback. Under Assumption 1, the same regression provides a lower bound on the average

overspending on loot boxes induced by these common design features.

Beliefs To test whether the any bias in WTPs operates via beliefs, we ask subjects how

often they believe to win the high prize of x Coins in 100 draws. Denote as bi the belief

of subject i for a lottery Z (under frame f). We think of this belief as follows:

bi = PGf
[Z = x] + ϵi,

where the “noise” term includes implementation errors or general optimism.
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Under the assumption that this noise is independent of the frame, a simple linear

regression of stated beliefs on treatment indicators identifies the bias in beliefs induced

by censored odds and selected feedback on the reward distribution. To make beliefs

comparable across lotteries, we normalize stated beliefs by the probability of winning a

non-zero prize.9 Overly “optimistic” subjects might, however, state beliefs that contradict

the objective information they have, meaning that their normalized belief exceeds 100%.

We will also provide analyses separately for those subjects who state realistic beliefs.

4.2.3 Implementation and logistics

As is common practice for WTP elicitations, we use the BDM mechanism to incentivize

subjects (Becker et al., 1964). We do not incentivize the belief elicitation, however. Recent

work by Danz et al. (2022) suggests that standard incentivization techniques (such as the

binarized scoring rule) systematically distort reported beliefs. Moreover, we view the

belief question as an input to (or mediator of) a subject’s stated WTP, which is our

primary outcome of interest. To minimize anchoring effects, we use a slider without an

initial value to elicit beliefs (see Figure 4.14). To ensure that subjects engage with the

lotteries, they could state beliefs (and afterwards WTPs) only after a 5 second delay.

The design was pre-registered in the AEA RCT registry as trial AEARCTR-0009501.10

We collected data from 617 subjects located in the United Kingdom (UK) via Prolific in

July 2022. The experiment consisted of 3 modules. First, we screened out inattentive

participants via an attention check at the beginning of the experiment and after the

instructions via comprehension questions. Second, all subjects who passed both tests

stated their WTPs and beliefs for five lotteries. Third, we collected demographics and

potential correlates of interest. Screenshots of all parts of the experiment (including

additional survey questions) can be found in Appendix B. Subjects earned a base fee

of 1.50 GBP for participation. In addition, 1 out of 6 participants received a bonus

payment depending on the WTP stated for one randomly selected lottery. Conditional

on receiving a bonus, the average bonus paid was 5.35 GBP. The experiment took, on

average, 11 minutes to complete.
9Consider the lottery that pays 0 Coins with 90% probability, 10 Coins with 9% probability, and 100

Coins with 1% probability. If a subject believes to win the high prize of 100 Coins 5% of the time, the
corresponding normalized belief is 5%

9%+1% = 50%.
10The pre-registration can be found at https://doi.org/10.1257/rct.9501-3.0.
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4.3 Main results

Our main results are summarized in Table 4.1 and Figure 4.5. Relative to Control,

the average WTP for the lotteries significantly increases by 43% in Sample, by 45% in

Censored, and by 100% in Joint. Common design features of loot boxes, therefore, induce

substantial overspending in the context of our experiment.
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Figure 4.5: Average willingness-to-pay and beliefs by treatment. We include all subjects
that finished the experiment. WTP is the willingness to pay for a lottery. Belief is the
belief that the high outcome occurs conditionally on the medium or high outcome being
drawn. Whiskers are the standard error of the mean.

Consistent with our conceptual framework, the effect of censoring operates through the

belief of winning the high prize. To make this point precisely, we transform stated beliefs

into subjective probabilities of winning the high prize conditional on winning a non-zero

prize (see Section 4.2.2). Compared to Control, this average conditional belief of winning

the high prize significantly increases by 37 p.p. in Censored. Along these lines, when

controlling for beliefs (see Column (3) of Table 4.1), the effect of censoring on the average

WTP is no longer significant. This cleanly demonstrates that censoring operates via a

belief channel.11 Providing subjects with a biased sample of the reward distribution has

a weaker effect on beliefs, and the effect is only significant at the 10% level. The fact that

the increase in average WTP (relative to Control) is similar in Sample and Censored thus

suggests that selected feedback affects overspending (at least partly) through a non-belief

channel. When controlling for beliefs, the effect of selected feedback on WTPs remains
11Under the null of our conceptual framework, beliefs fully mediate the treatment effects on WTP.

Including the potential mediator into our regression allows us to test this hypothesis of full mediation.
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weakly significant (see Column (3) of Table 4.1). When combining it with censored

odds, however, selected feedback does increase average beliefs by an additional 28 p.p.

compared to Censored. In line with our conceptual framework, this may explain part,

but not all of the increase in the average WTP when moving from Censored to Joint.

Furthermore, when controlling for stated beliefs, the average WTP significantly increases

in Joint compared to Control. It suggests again that selected feedback works at least

partly through a non-belief channel. While our experimental design does not allow us to

identify this channel, it is an interesting path for future research to investigate it further.

Table 4.1: Regression results — main specification

WTP Belief
No controls Controls Controls + Belief No controls Controls

(1) (2) (3) (4) (5)
Censored 4.84∗∗∗ 4.83∗∗∗ 2.53 0.373∗∗∗ 0.373∗∗∗

(1.55) (1.53) (1.56) (0.055) (0.055)
Sample 4.31∗∗ 4.17∗∗ 3.32∗ 0.143∗ 0.138∗

(2.00) (1.99) (1.83) (0.074) (0.074)
Joint 10.0∗∗∗ 10.0∗∗∗ 6.04∗∗∗ 0.647∗∗∗ 0.650∗∗∗

(1.99) (2.02) (2.05) (0.079) (0.080)
Belief 6.17∗∗∗

(1.10)
Observations 3,085 3,085 3,085 3,085 3,085

Notes: Results from ordinary least squares (OLS) regressions on treatment dummies. The outcome
variable in columns (1) and (2) is the willingness to pay and in (3) and (4) the transformed belief, i.e. the
belief that the high outcome occurs conditional on the medium or high outcome being drawn. Columns
(1) and (3) do not include control variables. Columns (2) and (4) control for age, gender and monthly
available budget. Standard errors clustered at the subject level in parentheses. ∗ p < 0.1, ∗∗p < 0.05, ∗∗∗

p < 0.01

4.4 Additional results

4.4.1 Treatment effects under realistic beliefs

Next, we restrict our sample to decisions in which subjects stated “realistic” beliefs that

could be interpreted as conditional probabilities consistent with the information they

observed. Consider, for example, a lottery that pays 10 Coins with 39% probability

and 100 Coins with 1% probability. If subjects observe this distribution (in Control and
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Sample), the only realistic belief is exactly 1%. In Control, subjects stated the realistic

belief in 85% of the decisions, while in Sample they stated it 62% of the time. In treatments

Censored and Joint subjects only learn the probability with which the lottery pays a non-

zero prize; here, 40%. Hence, any belief between 0% and 40% is realistic in this case.

This leaves us with 97% of the decisions in Censored and 86% of the decisions in Joint.
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Figure 4.6: Average willingness-to-pay and beliefs by treatment in the main experiment.
We include all subjects that finished the experiment. We exclude all decisions in which a
subject stated a Belief of larger than 1. WTP is the willingness to pay for a lottery. Belief
is the belief that the high outcome occurs conditionally on the medium or high outcome
being drawn. Whiskers are the standard error of the mean.

Figure 4.6 and Table 4.3 show the results. By construction of the sample, stated

beliefs are identical in Control and Sample. More interestingly, conditional on stating a

realistic belief, there is also no significant difference in stated beliefs across Censored and

Joint. At the same time, even realistic beliefs are massively inflated (compared to the

truth) in these treatments. On average, subjects assign almost equal probabilities to the

events of receiving 10 Coins and x Coins. This is consistent with existing evidence on

people — when being uncertain — biasing probabilities towards a uniform distribution

(e.g., Fischhoff and Bruine De Bruin, 1999; Sonnemann et al., 2013; Enke and Graeber,

2019). Across the four conditions, the average WTPs follow the same qualitative patterns

as before. However, neither the difference in WTP between Control and Sample nor

the difference in WTP between Censored and Joint is statistically significant in this

subsample.
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4.4.2 Robustness experiment

One caveat of our design is that the lotteries are offered by the experimenter, not a firm

trying to maximize profits. This might affect the inferences that subjects draw from

observing censored probabilities or a selected sample, and it might result in higher WTPs

compared to a market setting. We address this concern in a second experiment.12

In the treatment Info, we make it clear to subjects that the outcomes with censored

probabilities are not equally likely, and we further provide them unbiased information on

the probability distribution (on top of a selected sample). A total number of 414 subjects

completed the experiment on Prolific in November 2022. The instructions, screenshots of

the decision screens, and details on the implementation can be found in Appendix 4.B.

Figure 4.7 summarizes our findings. The additional information significantly decreases

the average (conditional) belief of winning the high prize by 37 p.p. compared to Joint

(p < 0.01). While the WTP in Info is also slightly below the one in Joint, the effect is

not significant at the 10% level (p = 0.69). Hence, the shift in beliefs is insufficient to

influence subjects’ WTP to the same degree. Importantly, both the belief and the WTP

are significantly higher in Info compared to Control (see Table 4.4 in Appendix 4.A).

Overall, it highlights the robustness of our results and points to the significance of the

design features of loot boxes on WTPs.
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Figure 4.7: Average willingness-to-pay and beliefs by treatment in the Robustness Ex-
periment. We include all subjects that finished the Robustness Experiment. WTP is the
willingness to pay for a lottery. Belief is the belief that the high outcome occurs condi-
tionally on the medium or high outcome being drawn. Whiskers are the standard error
of the mean.

12The pre-registration is available at https://doi.org/10.1257/rct.10506-1.0.

https://doi.org/10.1257/rct.10506-1.0
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4.4.3 Correlates of overspending on loot boxes

Using survey measures of loot-box demand, we study correlates of loot-box overspending.

At the end of the experiment, we asked subjects a series of questions on their usage of video

games and knowledge of loot boxes. Our subjects spend, on average, 1.2 hours playing

video games daily. Moreover, 69% of our subjects know what loot boxes are, 17% state

that they spend a positive amount of money on loot boxes every month, and 11% state that

they have ever spent more on loot boxes than they initially planned to. Consistent with

the prior literature (Zendle and Cairns, 2018), we find a positive correlation (ρ = 0.26,

p < 0.01) between loot-box usage and survey measures of gambling behavior.13 Overall,

our sample thus seems well-suited to study the demand for loot boxes.

Table 4.2: Regression results — predictors for real world overspending

=1 if subject overspent on loot boxes
(1) (2) (3) (4)

WTP 0.004∗∗∗ 0.003∗∗

(0.001) (0.001)
Belief 0.044 -0.002

(0.033) (0.034)
Gambling Score 0.869∗∗∗ 0.825∗∗∗

(0.271) (0.260)
Observations 425 425 425 425

Notes: Results from ordinary least squares (OLS) regressions of a dummy that is one if the subject state
to have spent more than planned on loot boxes in the real world. WTP is the willingness to pay. Belief
is the belief that the high outcome occurs conditional on the medium or high outcome being drawn.
Gambling score is the score from a self reported gambling questionnaire, scaled from 0 to 1. All variables
are subject averages. We include subjects who have stated that to know what loot boxes are. Robust
standard errors in parentheses. ∗ p < 0.1, ∗∗p < 0.05, ∗∗∗ p < 0.01

We are mainly interested in whether subjects who have overspent on loot boxes in

the past differ in systematic ways from those who did not and whether our experimental

measures pick up part of this variation. We asked subjects: “Have you ever spent more

than you planned to on loot boxes?” We then regress a dummy variable that takes a

value of one if the answer was yes and a value of zero otherwise on a subject’s average

WTP and stated beliefs (see Table 4.2). We find a positive association between a subject’s

WTP and overspending on loot boxes. An increase in the average WTP from the 5th

13We define subjects as loot-box users if they have either (a) ever spent more than they planned to on
loot boxes or (b) have a positive monthly spending on loot boxes.
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percentile to the median is associated with an increase in the probability to overspend

of 3.28 percentage points. While admittedly small, the effect remains significant even

when controlling for survey measures of gambling behavior. Hence, the average WTP

for monetary lotteries picks up part of the variation in loot-box overspending that these

survey measures cannot explain. On the other hand, stated beliefs are not correlated with

the tendency to overspend on loot boxes.

4.5 Conclusion

We document experimentally that censored odds and selected feedback increase the de-

mand for lotteries, which gives lower bounds on the effects on actual loot-box demand.

Both features hardly provide utility to gamers, so our results support a case for regulating

loot-box design. At the same time, it is not obvious what regulation would be effective.

There are currently plans to label games with loot boxes in Germany.14 However, our

results show that the design of loot boxes, rather than the random rewards they provide,

encourages players to overspend. Hence, this regulation may not be effective in reducing

overspending. While it should be easy to enforce a transparent display of odds, it is not

clear that gamers will use this information when making their purchase decisions. Our

robustness experiment, for instance, suggests that additional information may not affect

WTPs. Moreover, even when learning the full probability distribution over many prizes,

gamers might not act on it because it is simply too much information to be considered.

Instead, regulators must find ways of communicating the odds of loot boxes in an easily

understandable way. Preventing gamers from being confronted with selected feedback

on the reward distribution comes with the additional challenge that it is not only game

developers who provide it to gamers. Even if game developers are not allowed to announce

prizes others have won selectively, gamers may get similar (biased) feedback from talking

to their peers or watching their videos on Youtube or Twitch.

14See, for instance, https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-
auf-aenderungen-vor/ (accessed on September 19th, 2022).

https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-auf-aenderungen-vor/
https://usk.de/jugendschutzgesetz-aktualisiert-usk-bereitet-sich-auf-aenderungen-vor/
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Appendix 4.A Additional tables

Table 4.3: Regression results — main specification — realistic beliefs

WTP Belief
No controls Controls No controls Controls

(1) (2) (3) (4)
Censored 5.35∗∗∗ 5.36∗∗∗ 0.435∗∗∗ 0.435∗∗∗

(1.43) (1.40) (0.016) (0.016)
Sample 2.46 2.33 0.042∗∗∗ 0.041∗∗∗

(1.72) (1.72) (0.013) (0.013)
Joint 8.34∗∗∗ 8.42∗∗∗ 0.440∗∗∗ 0.441∗∗∗

(1.84) (1.86) (0.019) (0.019)
Observations 2,872 2,872 2,872 2,872

Notes: Results from ordinary least squares (OLS) regressions on treatment dummies. The outcome
variable in columns (1) and (2) is the willingness to pay and in (3) and (4) the transformed belief, i.e. the
belief that the high outcome occurs conditional on the medium or high outcome being drawn. Columns
(1) and (3) do not include control variables. Columns (2) and (4) control for age, gender and monthly
available budget. Standard errors clustered at the subject level in parentheses. ∗ p < 0.1, ∗∗p < 0.05, ∗∗∗

p < 0.01
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Table 4.4: Regression results — robustness experiment

WTP Belief
No controls Controls No controls Controls

(1) (2) (3) (4)

Info 6.19∗∗ 5.82∗∗ 0.416∗∗∗ 0.419∗∗∗

(2.49) (2.51) (0.060) (0.060)
Joint 6.78∗∗∗ 6.39∗∗ 0.783∗∗∗ 0.786∗∗∗

(2.60) (2.68) (0.078) (0.081)

Observations 2,070 2,070 2,070 2,070

Notes: Results from ordinary least squares (OLS) regressions on treatment dummies. The outcome
variable in columns (1) and (2) is the willingness to pay and in (3) and (4) the normalized belief. The
independent variables are indicators that equal 1 if the participant is in the respective condition and 0
else. Columns (1) and (3) do not include control variables. Columns (2) and (4) control for age, gender
and monthly available budget. Standard errors clustered at the subject level in parentheses. ∗ p < 0.1,
∗∗p < 0.05, ∗∗∗ p < 0.01

Table 4.5: Summary statistics

Treatments

Control Sample Censored Joint
(1) (2) (3) (4)

Female 0.56 0.57 0.55 0.49
Age (years) 40.11 38.81 39.05 40.34
College 0.74 0.68 0.75 0.69
Monthly budget 696.67 734.75 642.66 686.66

Observations 151 159 157 150

Notes: Summary statistics. We include all subjects who completed the
study.



4.A. ADDITIONAL TABLES 181

Table 4.6: Loot box statistics

Treatments

Control Sample Censored Joint
(1) (2) (3) (4)

Video Games played (hours) 1.46 1.59 1.72 1.76
Loot Box Spending (month) 25.15 13.18 7.37 15.83
Ever Overspent on Loot Boxes 0.11 0.20 0.15 0.16

Observations 105 100 116 104

Notes: Summary statistics on loot boxes. We include all subjects who state to know what
loot boxes are (69% of the total sample).
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Appendix 4.B Experimental setup: Robustness ex-

periment

In this section, we present the design of Robustness Experiment, which is conducted in a

between-subjects design. The experiment consists of three conditions: the Control and

Joint conditions from the Main Experiment, as well as a new Info condition. The Info

condition is an extension of the Joint condition and includes supplementary information

concerning the prevalence of medium and high outcomes in a sample of 50 draws, as well

as the information that the probabilities of these outcomes occurring are not equal. All

other characteristics of the experiment are equivalent to those of the main Experiment,

as described in Section 4.2.1.

We collected data from 617 subjects located in the UK via Prolific in November 2022.

Screenshots of all parts of the experiment can be found in Appendix 4.C. Subjects earned a

base fee of 1.50 GBP for participation. In addition, 1 out of 6 participants received a bonus

payment depending on the WTP stated for one randomly selected lottery. Conditional

on receiving a bonus, the average bonus paid was 5.08 GBP. The experiment took, on

average, 11 minutes to complete.
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Appendix 4.C Experimental details

Below we provide screenshots for all pages of the experiment. It includes the initial atten-

tion check, instructions, comprehension checks, and all survey questions. The screenshots

are presented in the order in which participants progress through the experiment.

Figure 4.8: Attention check at the beginning of the experiment.

Figure 4.9: Welcome page.
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Figure 4.10: Instructions on the experiment.

Figure 4.11: Additional info box with details on the payment mechanism.
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Figure 4.12: Comprehension questions.

Figure 4.13: Start of the experiment.
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Figure 4.14: Belief & WTP elicitation in the “Control” treatment.
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Figure 4.15: Belief & WTP elicitation in the “Sample” treatment.
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Figure 4.16: Belief & WTP elicitation in “Censored” treatment.
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Figure 4.17: Belief & WTP elicitation in “Joint” treatment.
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Figure 4.18: Additional info in “Info” treatment.
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Figure 4.19: Belief & WTP elicitation in “Info” treatment.
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Figure 4.20: General control questions.

Figure 4.21: Questions about loot box experience.
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Figure 4.22: Questions for loot box users.

Figure 4.23: Self-control survey questions (Part 1).
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Figure 4.24: Self-control survey questions (Part 2).
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Figure 4.25: Gambling survey questions (Part 1).

Figure 4.26: Gambling survey questions (Part 2).
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Figure 4.27: Last page in the experiment.
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