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D. SUMMARY 

Terpenoids represent the largest group of secondary metabolites comprising various 

properties and activities. Due to the enormous diversity as well as manifold applications of 

terpenoids, their microbial production is of growing importance for the biotechnological 

industry. As consequence of their complex biosyntheses, bioprocesses, and product 

properties, it is necessary to optimize the microbial production methods, even in already 

established hosts. Moreover, the evaluation and engineering of alternative new platform 

organisms with novel capabilities is crucial to expand the existing portfolio of producible 

terpenoids.  

The purple non-sulfur bacterium Rhodobacter capsulatus has already been validated as a 

suitable production chassis for plant sesquiterpenes utilizing classical metabolic engineering 

concepts. Based on these initial results, more complex terpenoids may now be produced and 

a gradual control of gene expression may be beneficial. Additionally, for complex biosynthetic 

pathways, a compartmentalization, or stabilization of key enzymes can be beneficial reducing 

the accumulation of toxic intermediates, which might normally limit the cell viability and product 

yields. The present work aims to broaden the applicability of R. capsulatus as a production 

host for different terpene classes and to improve their biosynthesis at different cellular levels. 

Hence, by [I] applying different metabolic engineering strategies for increased precursor 

availability, the sesquiterpene -caryophyllene, the diterpene casbene, the triterpene 

squalene, and the tetraterpene -carotene could successfully synthesized in R. capsulatus. 

Besides the availability of precursor molecules, [II] the selective control of cellular processes, 

e.g., via precise gradual control over target gene expression, was established in order to 

improve the efficiency of complex biosynthetic pathways. For this purpose, a broad host range 

Ptac-based vector system was implemented in R. capsulatus and applied in combination with 

photocaged IPTG derivatives with diverging water solubility to achieve light-controlled gene 

expression. As a proof of concept, the synthesis of the intrinsic carotenoid biosynthesis was 

successfully regulated by light. Subsequently, the general applicability of this light-controllable 

expression system was demonstrated by transfer to other industrially relevant bacterial hosts 

such as Escherichia coli, Bacillus subtilis, and Pseudomonas putida. 

Immobilization of enzymes on the surface of appropriate carrier materials can lead to protein 

stabilization and improved substrate channeling, thereby enhancing product yields and 

reducing the accumulation of potentially toxic intermediates. Therefore, [III] granules of the 

biopolymer polyhydroxybutyrate (PHB) were identified as promising bioplastic material 

particularly suited for the in vivo immobilization of recombinant enzymes in bacteria. 

R. capsulatus is naturally capable to form PHB granules, which were successfully 

functionalized for the first time in this phototrophic bacterium by attaching the fluorescent 
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protein eYFP to the PHB granule surface. Since validation and optimization of in vivo 

attachment of the target protein to the biopolymer matrix is a laborious process, it would be a 

tremendous benefit to online-monitor and quantify this event in living cells during the production 

and immobilization process. To this end, [IV] an alternative linker for in vivo protein 

immobilization was developed in the non-native PHB producer E. coli combining the split GFP 

system and PHB technology. This new linker system offers a biosensor function that allows 

the in vivo detection of the target protein attachment to the biopolymer surface. 

In this work, the heterologous terpene production in R. capsulatus was extended to different 

terpene classes and a Ptac-based vector system was implemented allowing light-induced gene 

expression and thus providing a method for the precise regulation of heterologous terpene 

biosynthesis. By successfully decorating PHB granules and developing a new linker/sensor 

system, the in vivo immobilization and simultaneous in vivo monitoring of the coupling process 

became possible. Hence, a cornerstone was laid for improving terpene biosynthesis in 

R. capsulatus using the PHB technology for enzyme scaffolding. 
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E. ZUSAMMENFASSUNG 

Terpenoide stellen die größte Gruppe der Sekundärmetabolite dar und weisen eine Vielzahl 

an Eigenschaften und Aktivitäten auf. Aufgrund der enormen Diversität und zahlreichen 

Anwendungsmöglichkeiten ist deren mikrobielle Produktion von immer größer werdender 

Bedeutung in der biotechnologischen Industrie. Infolge der Komplexität der 

zugrundeliegenden Biosynthesen, Produkteigenschaften und Bioprozesse ist es erforderlich, 

die Herstellungsverfahren in bereits etablierten Wirten weiter zu optimieren. Darüber hinaus 

sind die Bewertung und Entwicklung alternativer Mikroorganismen als neue 

Plattformorganismen mit neuartigen Fähigkeiten von entscheidender Bedeutung für die 

Erweiterung des bestehenden Portfolios an herstellbaren Terpenoiden. Das Nicht-Schwefel 

Purpurbakterium Rhodobacter capsulatus wurde bereits initial auf seine Eignung als 

Produktionschassis für die Biosynthese pflanzlicher Sesquiterpene mit Hilfe klassischer 

metabolic engineering Konzepte evaluiert. Auf Grundlage dieser ersten Ergebnisse können 

nun komplexere Terpenoide produziert werden, zudem könnte eine graduelle Kontrolle der 

Genexpression besonders in Bezug auf komplexe Biosynthesewege von Vorteil sein. So kann 

beispielsweise eine Kompartimentierung oder Stabilisierung von Schlüsselenzymen die 

Anhäufung toxischer Intermediate verringern, die normalerweise die Zellvitalität und 

Produktausbeute negativ beeinflussen könnten.  

Das Ziel der vorliegenden Arbeit ist es, R. capsulatus als Wirt für die Produktion verschiedener 

Terpenklassen zu etablieren und deren Biosynthese auf verschiedenen zellulären Ebenen zu 

verbessern. So konnten durch [I] die Anwendung unterschiedlicher metabolic engineering 

Strategien, mit dem Ziel einer erhöhten Verfügbarkeit von Vorstufenmolekülen, das 

Sesquiterpen -Caryophyllen, das Diterpen Casben, das Triterpen Squalen und das 

Tetraterpen -Caroten erfolgreich in R. capsulatus produziert werden. Daneben wurden [II] 

Methoden zur selektiven Steuerung zellulärer Prozesse, beispielsweise über eine präzise, 

schrittweise Kontrolle der Zielgenexpression etabliert, um so die Effizienz der komplexen 

Biosynthesewege zu verbessern. Hierfür wurde ein Ptac-basiertes Vektorsystem mit breitem 

Wirtsspektrum in R. capsulatus implementiert und schließlich mit photocaged IPTG-Varianten 

mit unterschiedlicher Wasserlöslichkeit eingesetzt, um eine lichtgesteuerte Genexpression zu 

ermöglichen. Hierdurch gelang es, die intrinsische Carotinoidbiosynthese erfolgreich durch 

Licht zu regulieren. Anschließend wurde durch den Transfer auf andere industriell relevante 

bakterielle Wirte wie Escherichia coli, Bacillus subtilis und Pseudomonas putida die 

allgemeine Anwendbarkeit dieses Licht-gesteuerten Expressionssystems nachgewiesen.  

Die Immobilisierung von Enzymen auf der Oberfläche geeigneter Trägermaterialien kann zu 

einer Stabilisierung des jeweiligen Proteins und zu erleichtertem Substratfluss führen, wodurch 
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sich die Produktausbeute erhöht und die Akkumulation von (toxischen) Intermediaten 

verringert werden kann.  

Daher wurden [III] Granula des Biopolymers Polyhydroxybutyrat (PHB) als 

vielversprechendes bioplastisches Material identifiziert, welches sich besonders für die in vivo 

Immobilisierung rekombinanter Enzyme in Bakterien eignet. R. capsulatus ist natürlicherweise 

in der Lage PHB-Granula zu bilden und in dieser Arbeit wurden diese Biopolymere zum ersten 

Mal erfolgreich in diesem phototrophen Bakterium funktionalisiert, indem das fluoreszierende 

Protein eYFP an die PHB-Oberfläche angelagert wurde. 

Da die Validierung und Optimierung der erfolgreichen Bindung des Zielproteins and die 

Immobilisierungsmatrix in vivo ein aufwendiger Prozess ist, wäre es wünschenswert, diesen 

Vorgang in lebenden Zellen während des Herstellungs- und Immobilisierungsprozesses online 

zu überwachen und zu quantifizieren. Zu diesem Zweck wurde [IV] ein alternativer Linker für 

die in vivo Proteinimmobilisierung in dem nicht nativen PHB-Produzenten E. coli entwickelt, 

der das split GFP-System und die PHB-Technologie kombiniert. Dieses neue Linkersystem 

bietet eine Biosensorfunktion, die den in vivo Nachweis der Bindung des Zielproteins an die 

Biopolymeroberfläche ermöglicht. 

 

In der vorliegenden Arbeit wurde die heterologe Terpenproduktion in R. capsulatus auf 

verschiedene Terpenklassen erweitert und ein Ptac-basiertes Vektorsystem implementiert, 

welches eine lichtinduzierte Genexpression ermöglicht und damit eine präzise Regulation der 

heterologen Terpenbiosynthese erlaubt. Durch die erfolgreiche Dekoration der PHB-Granula 

und die Entwicklung eines neuen Linker-/Sensorsystems wurde die in vivo Immobilisierung 

und gleichzeitige in vivo Überwachung des Kopplungsprozesses ermöglicht. Damit wurde der 

Grundstein für die Verbesserung der Terpenbiosynthese in R. capsulatus unter Verwendung 

der PHB-Technologie zur Immobilisierung von Enzymen gelegt. 
 



 1 INTRODUCTION 

I. INTRODUCTION 

Exploring and understanding life with all its forms, colors and facets has always been the main 

concern of biology, the science of life. However, it is human nature to bring acquired knowledge 

into practice. The continuous striving for improvement drives us, it defines us, it makes us 

unique on planet Earth. Thus, mankind has been trying to subdue nature since the beginning 

of time. Fields are cultivated, animals are domesticated, and the landscape is shaped 

according to one`s own ideas. This process was accelerated almost 200 years ago by the 

industrial revolution. However, the increasing technologization of society also allows to gain 

detailed insights into the secrets of life. The discovery of microorganisms, the deciphering of 

the genetic code, the first genetic modification of an organism in the laboratory, are all 

milestones in life sciences and the birth of a new sub-discipline, the modern biotechnology. 

Learning from nature, understanding biological processes, developing further, and applying to 

current problems: Biotechnology has the potential to provide answers to the fundamental 

challenges facing humankind, such as climate change, famines, or resource scarcity. Its 

origins are almost as old as mankind itself. Initially still coincidental, the properties of 

microorganisms such as yeasts or lactic acid bacteria were used to produce high-quality food. 

Today, biotechnological products have become essential for a modern society. Bioactive 

compounds in medicines, food supplements, detergents or alternative fuels are just a few of 

the numerous products of this branch of industry. Enzymes as natural catalysts for the 

conversion of substrates into metabolites are of central importance in this context (Heux et al., 

2015; Prasad & Roy, 2017). Therefore, it is of particular interest to increase the variability, 

activity, and stability of these proteins. Here, synthetic biology contributes to the development 

and redesign of biological systems improving enzymatic processes as well as harnessing new 

natural products (Böttcher & Bornscheuer, 2010; Clarke & Kitney, 2020). Moreover, controlling 

gene expression, e.g. by applying light as an external stimulus, allows orchestration of complex 

biosynthetic pathways and thus precise regulation of metabolic flux rates towards desired 

product formation (Binder, Frohwitter et al., 2016; Lalwani et al., 2021; Zhao et al., 2021). 

In summary, it is possible to harness the potential of microorganisms by generating optimized 

cell factories for the production of proteins as wells as high-valuable secondary metabolites 

(Brown et al., 2017; Kulagina et al., 2021; Thak et al., 2020). Aim of this work was to develop 

different strategies to improve secondary metabolite production in the anoxygenic phototrophic 

bacterium Rhodobacter capsulatus. In the introduction, different metabolic engineering 

concepts for the heterologous synthesis of terpenoids, a group of valuable natural products, 

as well as the (light) regulation of biosynthetic pathways will be discussed. Second, 

engineering techniques to improve enzymatic properties will be enlightened. 



 2 INTRODUCTION 

I.1 Terpenoids – Applications, biosynthesis and biotechnological engineering 

With up to 80,000 known compounds so far, terpenoids represent the largest group of 

secondary metabolites in nature (Moser & Pichler, 2019). These very heterogenous 

hydrocarbons are mainly produced in plants (Bergman et al., 2019; Pichersky & Raguso, 2018) 

and fulfill various functions such as defense against herbivores (Qi et al., 2018), as signal 

molecules for pollinators (Lipson Feder et al., 2021) or as antioxidants preventing 

photooxidative stress during photosynthesis (Kumar et al., 2020). Furthermore, terpenoids are 

also found in bacteria (Gozari et al., 2021), archaea (Matsumi et al., 2011), fungi (Chen & Liu, 

2017; Elissawy et al., 2015), insects (Karlson, 1969; Quintana et al., 2003) and mammals 

(Reddy & Couvreur, 2009). Due to their enormous structure and functional diversity, terpenoids 

are used in numerous biotechnological applications (Tetali, 2019). Thus, they serve as 

fragrances (Serra, 2015) or flavors (Vespermann et al., 2017) and are also important 

components in pharmaceuticals (Ho et al., 2021; Kim et al., 2020) as well as pesticides 

(Sparagano et al., 2013). Moreover, terpenoids are used in the production of biofuels (Mewalal 

et al., 2017). Since conventional extraction of terpenoids from plant-based material is very 

laborious and cost-intensive, recombinant production in more-easy to handle microorganisms 

plays an increasingly important role (Cravens et al., 2019; Marienhagen & Bott, 2013). 

All terpenoids are composed of different amounts of isoprene subunits (C5) which primary 

leads to a subdivision into mono- (C10), sesqui- (C15), di- (C20), tri- (C30) and tetraterpenes (C40) 

(Ruzicka, 1953). Moreover, a few examples of specialized terpenoid classes, such as hemi- 

(C5) (M. Li et al., 2018), sester- (C25) (Li & Gustafson, 2021), sesquarter- (C35) (Sato, 2013) 

and polyterpenoids (>C40) (Swiezewska & Danikiewicz, 2005) are also described in the 

literature. The precursor molecules of all terpenoids are the isoprene derivatives isopentenyl 

diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) [see Figure 1]. These required 

precursors can be produced via two independent biosynthetic pathways. While most 

organisms only encode one of the two metabolic routes, plants are able to deploy both (Zeng 

& Dehesh, 2021): (I) The 2-C-methylerythritol 4-phosphate (MEP) pathway, which occurs in 

plastids, algae as well as bacteria originates from pyruvate and glyceraldehyde-3-phosphate 

(GAP) (Rohdich et al., 2002), while (II) the mevalonate (MVA) pathway can be found in 

eukaryotes and archaea with acetyl-CoA as the starting substrate (Goldstein & Brown, 1990). 
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Figure 1. Schematic overview of terpenoid biosynthetic pathway and suitable metabolic 
engineering strategies. The MEP pathway (yellow module) originating from the substrates GAP and 
pyruvate consists of seven enzymatic reactions and is found in algae, bacteria, and plastids. On the 
opposite, the MVA pathway (blue module) is found in eukaryotes as well as archaea and comprises six 
steps. However, it is possible to integrate and overexpress the corresponding heterologous pathway in 
one organism and thus to increase the amount of precursor molecules. The end products of both 
metabolic pathways represent the isoprene derivatives IPP and DMAPP. These are further converted 
to the prenyl pyrophosphates GPP, FPP, and GGPP (purple module), the precursor of all terpenoid 
classes. Targeted overexpression of rate-limiting enzymes (symbolized by red ) can further shift the 
carbon flux towards the desired products. Numerous hosts naturally produce terpenes, for example 
carotenoids in phototrophic organisms or sterols in fungi (green module). Disruption of this intrinsic 
terpenoid production or downregulation of obligate metabolite biosyntheses (symbolized by red ) can 
lead to higher production of the desired prenyl pyrophosphates. The respective target terpene can finally 
be obtained by expression of heterologous terpenoid synthases (red module). Substrates (CDP-ME: 4-
diphosphocytidyl-2-methyl-D-erythritole, CDP-MEP: CDP-ME-2-phosphate, DMAPP: 
dimethylallylpyrophosphate, DXP: 1-desoxy-D-xylulose-5-phosphate, FPP: farnesyl pyrophosphate, 
GAP: glycerinaldehyde-3-phosphate, GGPP: geranylgeranyl pyrophosphate, GPP: geranyl 
pyrophosphate, HMBPP: (E)-4-hydroxy-3-methyl-but-2-enyl-diphosphate, HMG-CoA: -hydroxy--
methylglutaryl-CoA, IPP: isopentenyl pyrophosphate, Me-cPP: 2-c-methyl-D-erythritol-2,4-
cyclodiphosphate, MEP: 2-c-methyl-D-erythritol-4-phosphate, MVA: mevalonate, MVP: mevalonate-5-
phosphate, MVPP: mevalonate-5-pyrophosphate, PYR: pyruvate); Enzymes (ACAT: acetyl-CoA 
acyltransferase, CMK: cytidyl-methyl kinase, CMS: cytidyl-methylerythritol synthase, CrtBICDF: 
enzymes involved in carotenoid biosynthesis, CrtE: geranylgeranyl pyrophosphate synthase, DXR: 1-
desoxy-D-xylulose-5-phosphate reductase, DXS: 1-desoxy-D-xylulose-5-phosphate synthase, 
Erg 9,1,7,11: enzymes involved in ergosterol biosynthesis, HDR: hydroxy-methyl-butenyl-diphosphate 
reductase, HDS: hydroxy-methyl-butenyl-diphosphate synthase, HMGR: hydroxy-methyl-glutaryl 
reductase, HMGS: hydroxy-methyl-glutaryl synthase, IDI: isopentenyl diphosphate isomerase, IspA: 
farnesyl pyrophosphate synthase, MCS: methyl-erythritol-cyclo-diphosphate synthase, MK: mevalonate 
kinase, PMD: pyrophosphate-mevalonate decarboxylase, PMK: phosphate-mevalonate kinase).  
 

Starting from IPP and DMAPP, prenyl pyrophosphates are synthesized, which form the 

precursor molecules of the later terpene classes. For this purpose, IPP and DMAPP are linked 

by a prenyl transferase via a head-to-tail condensation resulting in geranyl pyrophosphate 

(GPP) production (K. Wang, 2000). For additional elongation to farnesyl pyrophosphate (FPP) 

or geranylgeranyl pyrophosphate (GGPP), further molecules of IPP are linked to the existing 

structure (Ohnuma et al., 1997). The prenyl pyrophosphates GPP, FPP, and GGPP are the 
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basis for the synthesis of all terpene classes. Numerous microorganisms naturally produce 

terpenes, such as carotenoids in phototrophs (Paniagua-Michel et al., 2012) or sterols in fungi 

(Jordá & Puig, 2020). Furthermore, the FPP synthase can be utilized as a phylogenetic marker 

due to its wide distribution in various groups of organisms (Cantera, 2002). 

As already mentioned, the extraction of terpenoids from plant material is not very effective, 

thus for biotechnological applications the focus is rather on recombinant production in 

microorganisms (Cravens et al., 2019). Thus, heterologous expression of terpene synthases, 

often originating from plants, is employed to increase the respective efficiency using the well-

established production hosts Escherichia coli and Saccharomyces cerevisiae (Liang et al., 

2021; Paramasivan & Mutturi, 2017; Rinaldi et al., 2022; Ward et al., 2018). To generate 

terpenoid yields of industrial relevance, it is necessary to further optimize these hosts by 

metabolic engineering techniques as well as bioprocess improvement to ensure optimal 

carbon flux rates towards the desired products (Carsanba et al., 2021; Dueber et al., 2009; 

Moser & Pichler, 2019; Schempp et al., 2018). Different regulatory mechanisms in the 

corresponding metabolic pathways, such as feedback inhibition of the 1-desoxy-D-xylulose-5-

phosphate synthase (DXS) by DMAPP and IPP in E. coli were already discovered (Banerjee 

et al., 2013). Moreover, accumulation of intermediates such as -hydroxy--methylglutaryl-

CoA (HMG-CoA), IPP, DMAPP and FPP are reported to cause toxic effects in bacteria (Dahl 

et al., 2013; Pitera et al., 2007; Sivy et al., 2011). Therefore, overexpression of rate-limiting 

enzymes of isoprenoid biosynthesis is a promising approach to enhance carbon flux and 

negate potential cellular inhibitory effects (Donald et al., 1997; Engels et al., 2008; H. Lim et 

al., 2020). Exemplary, in the Gram-positive bacterium Bacillus subtilis, plasmid-based 

overexpression of the entire MEP biosynthetic pathway resulted in a 20-fold increased 

production of the C30 carotenoid 4,4`-dianeurosporene (Abdallah et al., 2020). In addition to 

MEP mediated overexpression approaches, the heterologous MVA pathway has already been 

successfully integrated in bacteria in the pioneering work of Keasling and co-workers (Martin 

et al., 2003). Here, heterologous biosynthesis of amorpha-4,11-diene with concomitant 

insertion of the MVA gene cluster in E. coli was demonstrated. This laid the foundation for 

numerous further studies on heterologous terpene production in bacteria, in which the 

precursor supply was increased by introducing the recombinant MVA pathway (Jang et al., 

2011; C.-L. Liu et al., 2019; Yang & Guo, 2014; Yang & Nie, 2016). In contrast, insertion of a 

functional MEP pathway in yeasts seems to be a great burden (Kirby et al., 2016). Since the 

last two enzymes IspG and IspH containing iron-sulfur cluster and hence require additional 

redox partners, which are not found in the cytoplasm of yeasts (Lill & Mühlenhoff, 2008), the 

intermediate MEcPP appears to accumulate and interrupt carbon flux within the cell (Carlsen 

et al., 2013; Partow et al., 2012). Furthermore, as numerous microorganisms also show a 

distinct intrinsic terpenoid production, it might be necessary to knockout or downregulate such 
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competing pathways. By replacing the promoter for controlling FFP consuming squalene 

synthase level with a weaker, glucose-dependent variant, it was possible to 3.4-fold enhance 

the production of the sesquiterpene -santalene in S. cerevisiae (Scalcinati et al., 2012). 

However, indirect competition with metabolic pathways requiring carbon sources such as 

polyhydroxybutyrate (PHB) biosynthesis must be considered as well (Mougiakos et al., 2019). 

In the PHB deficient strain Cupriavidus necator H16 PHB-4 (Raberg et al., 2014), product titers 

of the sesquiterpene -farnesene up to 26.3 µM could be achieved by fed-batch processing 

using fructose as substrate (Milker & Holtmann, 2021). More complex terpenoids are usually 

highly hydrophobic, non-volatile and accumulate within a cell to partially cause membrane 

stress (Verwaal et al., 2010). Thus, this process may constrain production efficiency due to 

limited storage capabilities and toxic effects (C. Zhao et al., 2018). In S. cerevisiae, the 

triterpene squalene was observed to accumulate in peroxisomes (G.-S. Liu et al., 2020). For 

this, Wei and coworkers were able to increase squalene titers up to 11 g/L in a two-stage fed-

batch fermentation by introducing the whole squalene biosynthetic pathway into peroxisomes 

as well as enhancing ATP, NADPH, and acetyl-CoA supply. In contrast, a heterologous 

approach pursued the use of hydrophobic PHB granules for the storage of lycopene in E. coli. 

Here, the terpene synthase as well as the genes required for PHB biosynthesis were 

heterologously expressed and lycopene was observed to attach to the granule surface in vivo 

(Y. Liu et al., 2020). Besides the exploitation of recombinant compartments, it is also possible 

to utilize cellular membranes as storage media. For example, lycopene production in E. coli 

could be increased 1.32-fold by overexpressing a heterologous Almgs protein from 

Acholeplasma laidlawii in combination with host genes associated with membrane 

biosynthesis (T. Wu et al., 2018). 

Another possible target to improve isoprenoid biosynthesis is the terpene synthase itself, firstly 

through enzyme engineering, i.e., the targeted replacement of individual amino acids as well 

as truncation, or the addition of individual protein domains (Kschowak et al., 2020; Lauchli 

et al., 2013; Ronnebaum et al., 2021). For example, by the heterologous expression of a 

chimeric diterpene synthase from Emericella variecolor consisting of a terpene cyclase (TC) 

domain and a prenyl transferase (PT) domain, the tricyclic diterpene variedene could be 

produced in Aspergillus oryzae (Qin et al., 2016). Interestingly, a new macrocyclic ester 

terpene (2E)--cericerene could additionally be synthesized, suggesting that the TC domain 

could utilize different prenyl pyrophosphates as substrates. Finally, an exchange of the PT 

domain with that from another chimeric sesterterpene synthase also originated from 

E. variecolor allowed the in vivo production of (2E)--cericerene as the major product (Qin 

et al., 2016). Moreover, since the synthesis of a terpenoid is a multi-step enzymatic reaction, 

enzymes catalyzing adjacent steps in isoprenoid biosynthesis can be fused to enhance 

enzyme activity or reducing the accumulation of (toxic) intermediates (Albertsen et al., 2011; 
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Nogueira et al., 2019; Wang et al., 2021). Fusion of IDI and the downstream prenyl 

pyrophosphate synthase led to a 5.7-fold increase in carotenoid production in E. coli and up to 

58% higher lycopene yield in S. cerevisiae (Kang et al., 2019). Here, the peculiarity was the 

utilization of a protein tag system with relatively short peptide pairs, allowing the construction 

of scaffold-free modular enzyme assemblies. 

Besides the aforementioned techniques for direct optimization of cellular processes, the 

cultivation or production conditions may also be enhanced. This bioprocess optimization 

includes the selection of a suitable growth medium composition including carbon and nitrogen 

sources, sufficient gassing, for example with O2 or CO2, ideal pH value as well as temperature 

and precise timing of the appropriate cultivation period including an optimal start time for 

production (Carsanba et al., 2021). Gruchattka and co-workers compared the potential of 

metabolic networks of E. coli and S. cerevisiae to produce IPP in terms of carbon 

stoichiometry, energy and required redox equivalents in silico using elementary mode analysis. 

Here, they concluded that the MEP pathway can theoretically provide an almost 50% increased 

amount of IPP than the MVA pathway due to the different precursors and associated carbon 

stoichiometry. In addition, theoretical modeling revealed that supplementing glycerol in E. coli 

and ethanol in S. cerevisiae as carbon sources enable the highest potential product yields 

(Gruchattka et al., 2013). As an example for an in vivo bioprocess optimization, squalene 

production in the oleaginous yeast Yarrowia lipolytica was increased 28-fold to 502 mg/L 

compared to the parental strain by conventional overexpression of rate-limiting enzymes and 

improved cultivation processes (H. Liu et al., 2020). To this end, the influence of the cultivation 

vessel geometry was examined as well as the growth medium composition was improved by 

using glucose as carbon source (leading to a C/N ratio of 40:1), a regulated pH value, and PBS 

buffer supplemented with 1 mg/L cerulenin to inhibit competing fatty acid biosynthesis (H. Liu 

et al., 2020). 

In addition to the applications already described in detail, mostly in the established hosts E. coli 

and S. cerevisiae, the production of terpenoids in oxygenic and anoxygenic phototrophic 

bacteria offers numerous new possibilities [see Publication I, Chapter II.3.1]. These groups 

of microorganisms naturally generate carotenoids as photoprotective agents and therefore 

have a strong intrinsic terpenoid production (Heck & Drepper, 2017; Lin & Pakrasi, 2019). 

Moreover, phototrophic growth using sun light and carbon dioxide as an energy and carbon 

source, respectively, offers an even more economical and ecologically friendly alternative to 

competing manufacturing processes (George et al., 2020; Jodlbauer et al., 2021). In addition, 

some bacteria are able to utilize atmospheric N2 via nitrogen fixation (Bothe et al., 2010; Klipp 

et al., 1988; Masepohl et al., 2002). 

The purple non-sulfur -proteobacterium R. capsulatus is one of these organisms offering a 

highly versatile metabolism to grow either photo(hetero)trophically or chemotrophically in the 
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presence and absence of light, respectively (Strnad et al., 2010; Tabita, 1995; Weaver et al., 

1975). Furthermore, under phototrophic conditions R. capsulatus generates a large 

intracytoplasmic membrane (Niederman, 2013). This system is formed by protrusions of the 

cytoplasmic membrane resulting in the generation of numerous intracytoplasmic membrane 

vesicles and is associated for the storage of hydrophobic metabolites and photosynthesis-

associated protein complexes (Heck & Drepper, 2017). Besides these unique physiological 

properties, making R. capsulatus a promising new chassis organism for the production of 

plant-derived sesqui- and triterpenes (Hage-Hülsmann et al., 2019; Loeschcke et al., 2017; 

Troost et al., 2019), this bacterium is naturally capable to build up biopolymeric granules 

consisting of polyhydroxybutyrate (PHB) as an energy and carbon storage compound (Kranz 

et al., 1997; Mayet et al., 2013). These PHB granules are well-established immobilization 

matrices regarding enzyme scaffolding in other hosts (Dinjaski & Prieto, 2015; J. X. Wong, 

Ogura, et al., 2020), but such approaches are still missing in purple non-sulfur bacteria so far. 

In general, combination of heterologous terpene biosynthesis and PHB technology is 

conceivable in R. capsulatus and already established in the non-native PHB producer E. coli 

(Lee et al., 2014; Y. Liu et al., 2020). 

 

I.2 Gene regulation – Principles and (light-mediated) control 

In nature, the ability of an organism to precisely regulate cellular processes in dependence of 

changing environmental conditions or nutrient availability is of crucial importance. Therefore, 

it must be ensured that, according to the principle of economy, genetic information is only 

translated into physiological and morphological properties if they have an immediate benefit. 

Consequently, gene expression and hence the entire protein biosynthesis are subjected to 

precise control mechanisms. In bacteria, individual genes are assembled into gene clusters 

that are placed under the control of specific promoters (Jensen, 2016; Osbourn & Field, 2009). 

Their regulation, and thus the start of gene expression, is often determined by an external 

stimulus such as defined environmental conditions, e.g., temperature, pH value, oxygen 

availability, osmolarity or light as well as available nutrient sources represented by the 

presence or absence of a corresponding inducer molecule (Banerjee & Ray, 2017; Hurme & 

Rhen, 1998; Takano, 2016). In general, gene expression can be positively and negatively 

regulated (Klier et al., 1992; Raymondjean et al., 1991). Positive gene regulation is 

characterized by the stimulation of transcription by an activator protein that binds to its target 

promoter, resulting in an enhanced affinity of the RNA polymerase to the corresponding 

promoter region. In contrast, binding of a repressor protein to a promoter region prevents 

transcription during negative gene regulation.  

A classic model for both regulation approaches is the well-characterized lactose utilization 

network from E. coli referred to as the lac operon (Jacob & Monod, 1961). In addition to the 
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promoter Plac, the lac operon consists of the three genes lacY, lacZ and lacA: The lac permease 

(LacY) is a membrane-integrated lactose/H+-symporter responsible for the lactose uptake into 

the cell (Abramson et al., 2004). The ingested lactose is subsequently converted by a -

galactosidase (LacZ) into the intermediates glucose, galactose and 1,6-allolactose (Juers 

et al., 2012; Lederberg, 1950), respectively, whereas non-metabolizable thiogalactosides are 

inactivated by a thiogalactoside transacetylase (LacA) (Marbach & Bettenbrock, 2012; Zabin 

et al., 1962). The transcription of the lac operon is activated under glucose depletion and 

derepressed by the availability of lactose (Lewis, 2013). Here, this regulation proceeds via the 

global catabolite activation protein (CAP) and the lac repressor protein (LacI) (Busby & Ebright, 

1999; Lewis, 2005). The latter is encoded by the constitutively expressed lacI gene and forms 

a tetrameric structure (Lewis et al., 1996; Rutkauskas et al., 2009). In the absence of an 

inducer, LacI binds to two of three operator regions within the lac operon, resulting in a loop 

formation and consequently preventing the transcription of the lac genes. In the presence of 

an inducer molecule, its binding to LacI results in a conformational change that detaches the 

repressor from the operator region and allows expression of the lac genes (Wilson et al., 2007). 

Since metabolizing glucose instead of lactose is energetically favorable, a second control 

mechanism is necessary to ensure metabolization of the preferred nutrient when multiple 

carbon sources are available. 

In case of glucose depletion, the glucose importer remains phosphorylated as the P-group 

would otherwise be transferred onto glucose. This in turn leads to the interaction of the 

phosphorylated importer and an adenylate cyclase resulting in its activation (Nelson et al., 

1983). Thus, in the absence of intracellular glucose, cAMP molecules are produced that act as 

an allosteric effector for the CAP protein, which in turn enables transcriptional activation of the 

Plac promoter (Busby & Ebright, 1999). As a result, lac gene expression is regulated by both 

(allo)lactose-mediated inactivation of the LacI repressor and activation of CAP activator protein 

via cAMP during glucose starvation [see Figure 2]. 

 



 9 INTRODUCTION 

 
Figure 2. Schematic overview of the E. coli lac operon as an example of bacterial transcription 
regulation. In E. coli (the cytoplasmic membrane is depicted as yellow dashed line) the lac operon 
consists of three structural genes encoding a -galactosidase/H+-symporter (LacY) for the active uptake 
of lactose, a -galactosidase (LacZ) for its conversion, and a galactoside transacetylase (LacA) for the 
inactivation of thiogalactosides. In the absence of lactose, the transcription is inhibited by the repressor 
LacI. Passive diffusion across the membrane only occurs for synthetic inducers such as isopropyl -D-
1-thiogalactopyranoside (IPTG). After binding of an inducer molecule, a conformational change of LacI 
occurs, resulting in a detachment from the promoter region. This allows transcription of the lac genes 
by the Plac promoter. In addition, in the absence of glucose, cAMP molecules are produced that serve 
as an allosteric effector for the catabolite activation protein (CAP), which then enables activation of the 
Plac promoter. 
 
The availability of well-controlled expression systems is important for biotechnological 

processes, such as microbial heterologous production of proteins and metabolites. This allows 

production to be precisely adjusted to the host`s growth phase for achieving maximum product 

yields. For this purpose, gene expression is often initiated by adding a chemical inducer 

enabling the optimal control over induction of gene transcription (Cheng et al., 2011; Donovan 

et al., 1996). Further, the inducer should not cause any other undesired responses in the cell 

and be able to pass the cell membrane. The described lac operon is a well-established 

transcriptional regulation system for heterologous gene expression in different bacteria. Here, 

the non-metabolizable surrogate isopropyl -D-1-thiogalactopyranoside (IPTG) is often utilized 

instead of lactose to initiate LacI derepression (Gomes et al., 2020; Hu et al., 2015; Lu et al., 

2018). In contrast to lactose, uptake of IPTG into the host organism can occur either by 

diffusion or active transport via a LacY permease. Thus, these processes are decisive for 

controlling intracellular inducer concentrations and for the final expression levels of target 

genes. Since permease-dependent inducer uptake can result in a significant heterogeneity of 

target gene expression, lactose permease deficient expression strains (e.g. E. coli Tuner 
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(DE3)) have to be used for gradual induction and homogeneous expression response (Binder, 

Probst, et al., 2016; Hansen et al., 1998). Furthermore, optogenetic switches have been 

developed for precise, non-invasive control of cellular processes in bacteria as well as yeasts 

and mammalian cells (Ankenbruck et al., 2018; Hartmann et al., 2020). For light-regulated 

gene expression, a chemically modified inducer molecule forms the basis, to which a 

photolabile protection group was fused, resulting in a so-called photocaged compound. This 

compound can already be added at the beginning of a cultivation process and activated at a 

specific time point by illumination. An example of such a photocaged compound is 6-

nitropiperonal (NP)-IPTG [see Figure 3] (Binder et al., 2014; Young & Deiters, 2007). Here, 

the photolabile protection group is attached to two hydroxyl groups of the IPTG inhibiting its 

binding to LacI. Consequently, functionality can only be restored by a two-step reaction: After 

irradiation with UV-A light (max = 365 nm), one of the two bonds is cleaved, resulting in two 

different ester intermediates. These are subsequently resolved by intracellular hydrolases into 

the non-toxic NP protecting group and functional IPTG (Young & Deiters, 2007).  

 

 
Figure 3. Light-induced release of IPTG from photocaged NP-cIPTG. The release of IPTG proceeds 
in two steps. After irradiation with UV-A light, two ester intermediates are formed, which are 
subsequently cleaved into the NP protection group and IPTG by intracellular hydrolysis. 
 
In addition to IPTG, numerous other inducer molecules have already been combined with 

photolabile protection groups making them accessible for light-mediated applications in 

bacteria: including cAMP (Engels & Schlaeger, 1977), erythromycin (Gardner et al., 2011), 

arabinose (Binder, Bier, et al., 2016), salicylic acid as well as coumarin derivatives 

(Hogenkamp et al., 2022), and other carbohydrates such as glucose, galactose, rhamnose and 

lactose (Bier et al., 2016). Moreover, photolabile methionine was used in yeast to enable light-

mediated repression of a pMET17 promoter (Kusen et al., 2016). Conversely, to establish an 

inducible system in S. cerevisiae, a photosensitive DMNP-EDTA chelator was utilized to 

facilitate light-based Cu2+ release in combination with a pCUP1 promoter (Kusen et al., 2017). 

Besides applications in yeast, approaches in other eukaryotic systems have also been 

pursued, such as photocaged ecdysone in human embryonic kidney (HEK) cells (W. Lin et al., 

2002), photocaged doxycycline in tobacco leaves (Cambridge et al., 2006) and coumarin-

caged 4-hydroxytamoxifen (P. Wong et al., 2017) as well as light-activated cyclofen in mouse 

cells (Gorka et al., 2018). 
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Furthermore, the activity of T7-RNA polymerase was set under control of a photocaged 

tyrosine in the active site, allowing nucleotides to reach the catalytic center only after UV-A 

exposure (Chou et al., 2010). In addition, other applications are available comprising small 

molecules for direct DNA or RNA interaction, such as the binding of photocaged theophylline 

to mRNA riboswitches (Walsh et al., 2014) as well as down-regulation of genes by photocaged 

small interfering RNAs (Q. Wang et al., 2021) and photocleavable groups at the 5’ cap of 

eukaryotic mRNAs (Bollu et al., 2022). 

Alongside the described applications, basing on chemically modified small photocaged 

molecules, there is another group consisting of a variety of proteins harboring light-sensitive 

chromophores such as photosensitive polymerases (Baumschlager et al., 2017), 

recombinases (Sheets et al., 2020) or photoreceptors. These photoreceptors include red and 

near infrared light-responsive phytochromes (Pham et al., 2018), light oxygen voltage (LOV)-

domains responsive to blue light (Pudasaini et al., 2015) as well as cryptochromes (Lin & Todo, 

2005; Lopez et al., 2021). One way to apply photoreceptors is to directly modulate gene 

expression by using light-dependent transcription factors or repressors respectively (Camsund 

et al., 2011; Sumi et al., 2019). In addition, they can be combined with effectors, such as 

response regulators to obtain a two-component light-dependent signaling system such as 

Cph8/OmpR or CcaS/CcaR (Hirose et al., 2008; Olshefsky et al., 2016; Ong & Tabor, 2018). 

In contrast to photocaged compounds, those photoreceptors offer the advantage to reversibly 

control gene expression. However, the cofactors required for chromophore assembly must be 

provided by the cell.  

 

I.3 Enzymes – Natural biocatalysts, applications and enzyme engineering 

Enzymes are biochemical catalysts that accelerate the conversion of substrates into products 

while leaving these reactions unaltered. The substrate binds to the active site of the respective 

enzyme forming an enzyme-substrate complex, which is kept together either by covalent or 

non-covalent bonds including hydrogen and ionic bonds as well as van der Waals forces. The 

activation energy for conversion into the product is lowered, thereby accelerating the reaction. 

The majority of cellular processes are catalyzed by enzymes from protein biosynthesis to the 

supply of energy in metabolic pathways. A distinction is made between different types of 

enzymes: a large portion constitute proteins, another RNA-based ribozymes (Scott, 2007) or 

holoenzymes, a combination of proteins and cofactors such as inorganic ions or prosthetic 

groups like heme (Collins, 2006; Mowat et al., 2010; Nguyen, 2021). In addition to their 

physiological function, numerous enzymes can be used industrially as well. Due to their wide 

range of applications and promising characteristics, including enantio-, chemo- and 

regioselectivity (Jiang & Fang, 2020), enzymes are an important part of biotechnological 

approaches. They are either utilized directly as biotechnological compound like proteases, 
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lipases and amylases in laundry detergents, or their reaction products are commercialized 

such as amino acids and sugars (Dumorne et al., 2017; Gurung et al., 2013). In contrast to 

conventional production processes based solely on chemical reactions, enzymes are derived 

from renewable resources, so their use is considered particularly sustainable (Intasian et al., 

2021). In addition, biocatalysts are biocompatible and biodegradable, as well as in most cases 

non-hazardous and non-toxic (Siedentop & Rosenthal, 2022). Moreover, enzymatic reactions 

usually take place under mild conditions in an aqueous environment (Aschenbrenner et al., 

2009) and hence represents an advantage in view of environmental protection. Consequently, 

there is great interest in the identification of new enzymes and their biotechnological use to 

further broaden the product portfolio and to replace fossil-based manufacturing processes, as 

well as the improvement of existing biocatalysts by engineering processes (Cirino & Sun, 2008; 

Lancaster et al., 2018; Sheldon & Pereira, 2017). For example, enzymes are generally 

engineered in order to improve their activity (Son & Kim, 2022), stability (e.g., pH- and 

temperature stability or solvent compatibility) (Bommarius & Paye, 2013; Jia et al., 2012; 

Kohler et al., 2018; Priyanka et al., 2019; Tian et al., 2017) as well as to achieve enhanced 

substrate specificity (Xie et al., 2020) and selectivity (Kalkreuter et al., 2021). Several 

engineering techniques for the optimization of enzyme properties are shown below [see 

Figure 4].  

 

 
Figure 4. Strategies for enzyme engineering. The properties and functionality of an enzyme can be 
modified by a variety of techniques. At the molecular level, the enzyme structure can be altered either 
randomly by directed evolution or strategically through in silico assisted rational protein design. 
Furthermore, the target enzyme can be covalently fused to other enzymes involved in an enzymatic 
reaction cascade (reaction partner) to improve substrate channeling and thereby reducing the 
accumulation of toxic intermediates. Moreover, immobilization of enzymes to a matrix can enhance its 
stability as well as reusability.  
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Depending on available knowledge of the target enzyme in terms of sequence, structure and 

function, three types of strategies can be applied for enzyme engineering, namely rational 

protein design, directed evolution and a semi-rational approach (Ali et al., 2020). These 

principles are briefly explained below, and a current example is given in each case to illustrate 

the underlying methodology.  

In rational protein design, individual amino acids are specifically exchanged requiring in-deep 

knowledge about the structure-function relation of the target enzyme (Watanabe et al., 2018). 

For example, using site saturation mutagenesis only one or few base triplets of a target gene 

are altered, so that the natural amino acid can be replaced by other residues at the position(s) 

of interest (Qu & Sun, 2022; Zheng, 2004). This method was for example applied to modify 

nine amino acid residues in the access tunnels for the transport of substrates, products and 

water to control the water entry to the active site of the cytochrome P450 monooxygenase BM3 

from Bacillus megaterium. Here, the utilization efficiency of NAD(P)H could be improved, which 

is usually impaired in presence of water leading to a reduced coupling efficiency of non-natural 

substrates (Meng et al., 2022).  

In contrast, directed evolution approaches do not require deeper knowledge of neither the 

structure nor the catalytic mechanism (Markel et al., 2020). In this process, iterative 

mutagenesis is induced e.g., via the use of an error-prone polymerase chain reaction to 

randomly mutate the nucleotide sequence of the target gene (McCullum et al., 2010). 

Subsequently, the generated protein variants can be screened for enhanced properties 

(Nirantar, 2021). However, this approach is very laborious and requires a selection mechanism 

associated to the targeted enzymatic characteristics respectively. Thus, screenings with 

several thousand enzyme variants are not uncommon, as reported for directed evolution of an 

oxidoreductase towards higher activity with more than 7,000 clones (Jiang et al., 2015), of an 

-amylase to enhance acid stability with around 5,500 clones (Y. H. Liu et al., 2012) or up to 

15,000 mutants of a tryptophan synthase (Xu et al., 2020). 

In a semi-rational approach, information about the protein structure and function are available, 

so that promising amino acid motives can be computational preselected to significantly reduce 

the amount of possible protein variants (Ali et al., 2020). In case of three glycosyltransferases 

from Vitus vinifera the substrate binding site were mutated in silico and computationally 

analyzed regarding their interaction with different glycoside and aglycone substrates and 

enhanced enzymatic activity. Consequently, only six variants were generated by site-directed 

mutagenesis to test their predicted effects (Joshi et al., 2019). 

 

Since enzymatic reactions are usually part of multistep metabolic processes, the genetic fusion 

of adjacent enzymes may be appropriate to facilitate substrate channeling and cofactor 

recycling. Moreover, it can lead to stabilization of fusion partners and increased turnover rates 
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through substrate channeling, as well as a reduction in the accumulation of toxic intermediates 

within the cell (Aalbers & Fraaije, 2019; Iturrate et al., 2009; Jeon et al., 2015; Kang et al., 

2019). Here, the choice of a suitable linker between both enzymes plays an important role to 

ensure proper folding and protein stability as well as substrate channeling of charged 

intermediates (X. Chen et al., 2013; Y. Liu et al., 2017, 2019). As an example, a protein 

complex consisting of an alcohol dehydrogenase, an aldehyde dehydrogenase, and a short 

cation-rich, -helix forming polypeptide linker, was used for the enzymatic reduction of acetate 

to ethanol (Kummer et al., 2021). Here, the protein folding software Rosetta` (Das & Baker, 

2008) was used to determine the optimal placement of the linker to achieve ideal proximity to 

the active sites without simultaneously affecting the catalytic efficiency. This approach resulted 

in an increased amount of the desired product by 90% and a 500-fold enhanced activity 

compared to unfused enzyme variants (Kummer et al., 2021). 

Another possibility is the immobilization of enzymes on a matrix for in vitro or in vivo 

applications (Federsel et al., 2021; Hyeon et al., 2016; S. Liu et al., 2021; Oliveira et al., 2020). 

These methods are often accompanied by an increased stability or improved temperature and 

solvent tolerance (Guzik et al., 2014; Matsumoto et al., 2019; Su et al., 2018). In addition, 

purification as well as reusability of the catalysts can be facilitated (Atiroğlu et al., 2021; M. 

Zhao et al., 2019). In this context, the immobilization of proteins on granules consisting of the 

biopolymer PHB (Dinjaski & Prieto, 2015; Tarrahi et al., 2020; Wong, Ogura, et al., 2020) is of 

particular importance in this thesis and will be discussed in more detail as well as compared 

with other in vivo immobilization approaches including catalytically active inclusion bodies 

(CatIBs) [see Publication VI, Chapter II.3.1]. PHB granules are naturally produced by 

numerous bacteria, such as R. capsulatus, as a carbon storage compound under nutrient 

limitation (Hahn et al., 1995; Kavitha et al., 2018; Kranz et al., 1997; Madison & Huisman, 

1999). In addition, the biopolymer surrounded protein layer is suitable as an anchor matrix for 

the display of biotechnologically relevant enzymes (Peters & Rehm, 2006; Rodriguez-

Abetxuko et al., 2020; Wong, Ogura, et al., 2020). However, PHB-based in vivo immobilization 

of target enzymes has not been performed in purple non-sulfur bacteria so far.  
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I.4 Outline of the thesis 
The control of cellular processes in microorganisms and the improvement of their 

biotechnological applications addressing different targets within a cell is part of synthetic 

biology. Beginning with an optimized gene expression, obtained by adapted regulatory 

systems, a precise coordination of complete metabolic routes can be favorable. For instance, 

complex biosynthetic pathways can be adjusted by gradually inducible and non-invasive 

regulatory mechanisms to ensure optimal production efficiency of the bacterial host. Moreover, 

protein engineering techniques have the potential of tailoring various enzymatic properties.  

The anoxygenic phototrophic bacterium R. capsulatus exhibits a highly flexible metabolism 

including the ability to utilize various organic compounds as electron and carbon source. 

Moreover, this bacterium can grow using (sun)light as energy as well as CO2 and N2 as carbon 

and nitrogen source. Besides that, R. capsulatus possesses a strong intrinsic tetraterpene 

production and has already been successfully established for the heterologous biosynthesis 

of sesquiterpenes as well as complex membrane proteins. In addition, it is naturally capable 

of producing the biopolymer PHB, a promising matrix for protein immobilization. Thus, this 

thesis aimed to develop new tools for the implementation of synthetic (terpenoid) biosynthesis 

pathways in R. capsulatus as host for the production of various terpene classes.  

First, a general overview about the potential of phototrophic bacteria such as cyanobacteria 

and purple non-sulfur bacteria for terpenoid production was given in the context of the 

underlying metabolic engineering concepts [see Chapter II.1.1]. Since R. capsulatus was 

implemented in our group for the heterologous production of the sesquiterpenes valencene 

and patchoulol, already established metabolic engineering concepts were applied in the 

presented work to evaluate the general applicability of this phototrophic bacterium to produce 

further prominent classes of terpenoids including C15, C20, C30 and C40 terpenes [see 

Chapter II.1.2 & Chapter II.1.3]. 

In order to continue the optimization of complex bioprocesses such as terpene production, the 

selective control of gene expression can strongly affect the efficiency of biosynthetic pathways. 

For this, a broad host range Ptac-based vector system was developed for heterologous 

expression e.g., in R. capsulatus to achieve gradual expression control and light-mediated 

gene expression combined with conventional IPTG and photocaged IPTG derivates, 

respectively. This concept was evaluated under non-phototrophic and phototrophic conditions, 

followed by investigations of the adjustability of intrinsic carotenoid biosynthesis 

[see Chapter II.2.1]. Subsequently, the usage of caged inducer molecules was transferred to 

other industrial relevant bacterial hosts such as E. coli, B. subtilis, and P. putida 

[see Chapter II.2.2]. 

Displaying enzymes, e.g. of more complex biosynthetic pathways, onto an intracellular surface 

can lead to channeling substrate flux, thus enhancing conversion and hindering accumulation 

of (toxic) intermediates. Therefore, common methods for the in vivo immobilization of proteins 
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on different support materials were evaluated [see Chapter II.3.1] and PHB granules were 

identified as promising degradable biopolymers for enzyme immobilization and scaffolding. 

Thus, PHB granules were evaluated for functionalization in R. capsulatus for the first time, 

providing an alternative to already existing immobilization platforms [see Chapter II.3.2]. Since 

the detection of successfully immobilized target proteins to a matrix has been very laborious 

so far, the next step was the implementation of the split GFP reporter as an easily visualizable 

“click & play” linker module for the functionalization of those biopolymers in the non-native PHB 

producer E. coli [see Chapter II.3.3]. 

Consequently, new expression and in vivo immobilization techniques for Gram-negative 

bacteria including the alternative phototrophic production host R. capsulatus were developed 

and evaluated. The resulting production tools offer special properties for successful 

implementation of heterologous terpene biosynthesis. 
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II. RESULTS 

The following section is composed of eight manuscripts, which have either been published or 

are about to be published in peer-reviewed journals. The presented work is based on joint 

publications in the context of the “CKB – CLIB Kompetenzzentrum Biotechnologie”. In this 

surrounding, I would like to mention Dr. Fabienne Knapp (nèe Hilgers, Institute of Molecular 

Enzyme Technology, BioSC project CombiCom) for the fruitful collaboration. The own 

contribution to the respective manuscript is indicated on the first page of each document. 
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II.1 R. capsulatus as a platform organism for terpene production 

II.1.1 Oxygenic and anoxygenic phototrophic bacteria as chassis organisms 

 
PUBLICATION I 
 

Engineering phototrophic bacteria for the production of terpenoids 

 
Oliver Klaus1*, Fabienne Hilgers1*, Andreas Nakielski2, Dennis Hasenklever2,  

Karl-Erich Jaeger1,3, Ilka Maria Axmann2#, Thomas Drepper1# 

 
1Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 

Forschungszentrum Jülich, 52425 Jülich, Germany 
2Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, 

Germany 
3Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 

52425 Jülich, Germany 

 
* These authors contributed equally 
# Corresponding authors 

 

Status: published 

 

Current Opinion in Biotechnology, 

2022, 10, 77:102764 

https://doi.org/10.1016/j.copbio.2022.102764 

 
Copyrights © 2022 Klaus et al. Reprinted with permission. 

This article is distributed under the terms of the 

Creative Commons Attribution License (CC BY).  
 

 
 
 
 
 
 
Own contribution: 

Conceptualization, Writing parts of the manuscript – (Introduction, Terpenoid production in 

anoxygenic phototrophic bacteria, Effects of light on terpenoid production, Conclusion and 

outlook)  

https://doi.org/10.1016/j.copbio.2022.102764
http://creativecommons.org/licenses/by/4.0/
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II.1.2 R. capsulatus as a host for the production of various terpene classes 

in the context of metabolic engineering strategies 

 

PUBLICATION II 
 

Production of C20, C30 and C40 terpenes in the engineered phototrophic 

bacterium Rhodobacter capsulatus 

 
Jennifer Hage-Hülsmann1*, Oliver Klaus1*, Karl Linke1, Katrin Troost1, Lukas Gora1, 

Fabienne Hilgers1, Astrid Wirtz2, Beatrix Santiago-Schübel3, Anita Loeschcke1,  

Karl-Erich Jaeger1,2, Thomas Drepper1# 

 
1Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 

Forschungszentrum Jülich, 52425 Jülich, Germany 
2Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 

52425 Jülich, Germany 
3Central Division of Analytical Chemistry ZEA-3: Analytic/Biospec, Forschungszentrum Jülich, 

52425 Jülich, Germany 

 
* These authors contributed equally 
# Corresponding authors 

 

Status: published 

 

Journal of Biotechnology, 

2021, 09,10, 338:20-30 

https://doi.org/10.1021/j.jbiotec.2021.07.002 

 

 
Copyrights © 2021 Hage-Hülsmann et al. Elsevier B.V. Reprinted with permission. 

 
 
 
 
Own contribution: 

Designing and performing experiments, plasmid construction, analyzing data, editing 

manuscript  

https://doi.org/10.1021/j.jbiotec.2021.07.002
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II.1.3 Evaluation of the R. capsulatus terpenoid production chassis for the 

synthesis of -caryophyllene  

 

PUBLICATION III 
 
Heterologous production of -caryophyllene and its activity against plant 

pathogenic fungi 

 
Fabienne Hilgers1*, Samer S Habash2*, Anita Loeschcke1, Yannic S Ackermann1, 

Stefan Neumann2, Achim Heck1, Oliver Klaus1, Jennifer Hage-Hülsmann1, Florian M 

W Grundler2, Karl-Erich Jaeger1,3, A Sylvia S Schleker2#, Thomas Drepper1# 

 
1Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 

Forschungszentrum Jülich, 52425 Jülich, Germany 
2INRES-Molecular Phytomedicine, University of Bonn, 53115 Bonn, Germany 
3Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 

52425 Jülich, Germany 

 
* These authors contributed equally 
# Corresponding authors 

 

Status: published 

 

Microorganisms, 

2021, 01,14, 9(1):168 

https://doi.org/10.3390/microorganisms9010168 

 

 
Copyrights © 2021 Hilgers et al. Reprinted with permission. 

This article is distributed under the terms of the 

Creative Commons Attribution License (CC BY).  
 
 
 
Own contribution: 

Designing and performing in vivo experiments, analyzing data, editing manuscript 
  

https://doi.org/10.3390/microorganisms9010168
http://creativecommons.org/licenses/by/4.0/
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II.2 Light-mediated control of gene expression 

II.2.1 Light-controlled gene expression in R. capsulatus to regulate intrinsic 

terpene biosynthesis 
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Light-mediated control of gene expression in the anoxygenic 

phototrophic bacterium Rhodobacter capsulatus using photocaged 

inducers 
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52425 Jülich, Germany 

 
* These authors contributed equally 
# Corresponding authors 

 

Status: published 
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2022, 09, 30, 10:902959 

https://doi.org/10.3389/fbioe.2022.902059 

 
Copyright © 2022 Hilgers et al. Reprinted with permission.  

This is an open-access article distributed under the terms of the  
Creative Commons Attribution License (CC BY).  
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the manuscript 

https://doi.org/10.3389/fbioe.2022.902059
http://creativecommons.org/licenses/by/4.0/


 81 RESULTS 

 

 

 

 



 82 RESULTS 



 83 RESULTS 



 84 RESULTS 



 85 RESULTS 



 86 RESULTS 



 87 RESULTS 



 88 RESULTS 



 89 RESULTS 



 90 RESULTS 



 91 RESULTS 



 92 RESULTS 



 93 RESULTS 



 94 RESULTS 



 95 RESULTS 



 96 RESULTS 

 



 97 RESULTS 



 98 RESULTS 



 99 RESULTS 



 100 RESULTS 



 101 RESULTS 



 102 RESULTS 



 103 RESULTS 



 104 RESULTS 



 105 RESULTS 



 106 RESULTS 



 107 RESULTS 



 108 RESULTS 



 109 RESULTS 



 110 RESULTS 



 111 RESULTS 



 112 RESULTS 



 113 RESULTS 



 114 RESULTS 

 

  



 115 RESULTS 

II.2.2 New expression systems for light-controlled gene expression in 

bacteria 
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II.3 Development of in vivo protein immobilization concepts 

II.3.1 In vivo biocatalysts immobilization techniques   
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Emerging solutions for in vivo biocatalysts immobilization: tailor-made 

catalysts for industrial biocatalysis 
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II.3.2 PHB-based protein immobilization in R. capsulatus 
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II.3.3 The split GFP system as alternative linker system for protein 

immobilization 
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III. GENERAL DISCUSSION 

Within this thesis, the anoxygenic phototroph R. capsulatus was evaluated as bacterial host 

for the biosynthesis of different heterologous terpene classes. Furthermore, a new Ptac-based 

vector system in combination with photocaged inducer molecules were established in this 

organism, and the basis for immobilization of proteins and terpene biosynthesis enzymes on 

PHB granules was laid. 

First, existing metabolic engineering concepts such as overexpression of rate-limiting enzymes 

and further precursor supply were applied and their influence on the production of different 

terpene classes was investigated [see Chapter II.1]. Second, a Ptac-based vector system in 

combination with photocaged inducer molecules of different solubility was characterized in 

R. capsulatus and applied for regulation of intrinsic terpenoid biosynthesis. Afterwards, this 

concept was transferred to alternative biotechnologically relevant bacterial hosts 

[see Chapter II.2]. Subsequently, the immobilization of proteins on PHB granules in 

R. capsulatus was demonstrated as preliminary work. In addition, an alternative protein linker 

system was established enabling simple detection of successful enzyme coupling in E. coli 

[see Chapter II.3]. 

In the following section, the applied concepts of enhancing terpene production, controlling 

gene regulation as well as immobilization techniques will be summarized. Subsequently, the 

underlying metabolic engineering strategies and gene expression tools are evaluated 

regarding their applicability for heterologous biosynthesis in R. capsulatus [see 

Chapter III.1.1]. Furthermore, methods for enzyme immobilization are considered and 

discussed in more detail, especially in the context of possible application strategies in 

R. capsulatus [see Chapter III.1.2]. Finally, an outlook regarding open questions resulting from 

this work is given, taking into account the current state of research and guiding future studies 

[see Chapter III.3]. 
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III.1 Terpenoid production strategies – Metabolic engineering and orchestration 

of gene expression  

The actual state of the art in the present work is summarized below to underline the necessity 

of developing new fine-tunable metabolic engineering strategies for terpenoid production. 

Here, a special focus is set on the deployment of anoxygenic phototrophic bacteria and the 

transcriptional regulation of the biosynthetic genes, respectively. 

 

III.1.1 Application of anoxygenic phototrophic bacteria for the production of 

plant terpenoids 

The production of high-value compounds from natural material for the chemical and 

biotechnological industry requires the availability of stable and efficient manufacturing 

processes. For this purpose, engineered microbial hosts are often deployed. However, 

numerous potential challenges must be addressed to optimize these bioprocesses. For 

example, heterologous production of proteins and secondary metabolites is usually 

accompanied by reduced growth rates of the host and low product yields. Additionally, efforts 

must be made to minimize the accumulation of toxic intermediates during biosynthesis without 

reducing the availability of precursor molecules. This usually requires sophisticated metabolic 

engineering concepts as well as precise controllability of gene expression and enzyme activity. 

Since the natural potential of microbial hosts for efficient synthesis of bioactive compounds 

may differ greatly in this regard, the evaluation and establishment of new suitable alternative 

hosts is increasingly required. Especially in this context, phototrophic bacteria provide 

numerous physiological advantages for the heterologous biosynthesis of secondary 

metabolites, such as terpenes. For instance, these organisms can harness light as energy 

source, ensuring sustainable production processes. Moreover, under phototrophic conditions, 

these bacteria form large intracellular membrane systems that are particularly suitable for the 

storage of membrane-associated proteins as well as hydrophobic metabolites and they 

naturally offer a strong carotenoid production. Thus, the current state of research addressing 

terpenoid production in oxygenic as well as anoxygenic phototrophic bacteria was enlightened, 

especially in cyanobacteria and purple non-sulfur bacteria [see Publication I]. Here, an 

overview about established terpenoid pathway engineering strategies as well as the impact of 

illumination on photoproduction and bioprocess optimization was provided. Recent studies 

have already demonstrated the suitability of the metabolic versatile genus Rhodobacter as 

host for the heterologous biosynthesis of different terpenes (Hage-Hülsmann et al., 2019; 

Troost et al., 2019; X. Wu et al., 2021). Based on this, R. capsulatus was deployed to extend 

the possible range of heterologous products focusing on numerous biotechnologically relevant 

terpenes [see Publication II & III]. 
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To increase the precursor supply, different metabolic engineering strategies were applied, 

mainly basing on the overexpression of rate-limiting enzymes. For this, the 1-deoxy-D-xylulose 

5-phosphate synthase DXS, the isopentenyl diphosphate isomerase Idi and the FPP synthase 

IspA were overexpressed using a plasmid-based system [see Figure 1]. Moreover, the genes 

encoding the heterologous MVA pathway were genome integrated, enabling the efficient 

utilization of acetyl-CoA as precursor for isoprenoid biosynthesis. Interestingly, no common 

conclusion about metabolic engineering strategies that are generally suitable for increasing 

product yields could be derived for the tested terpenes. Instead, the metabolic engineering 

concept must be evaluated differently in context of each terpene and even, as shown for 

squalene, terpene synthase specific productivities play an important role for the engineering 

process as well. This suggests that differences regarding enzyme-specific turnover-rates and 

substrate inhibition may exist for each individual synthase. Therefore, a combination of certain 

engineering modules and co-expressed genes leading to highest product titer had to be 

identified in each case (Hilgers, 2021), as summarized in Table 1. 

 
Table 1: Experimental setups for highest terpene yield in R. capsulatus within this thesis. 

Product Terpene synthase 

Setup* 
(strain/co-
expressed 

genes) 

Product 
yield 

[mg L-1] 
Reference 

-caryophyllene 
(C15) 

QHS1 
(Artemisia annua) 

SB1003-MVA/ 
ispA 139 

(Hilgers et al., 
2021) 
[see 

Publication 
III] 

casbene 
(C20) 

RcCS 
(Ricinus communis) 

SB1003/ 
ispA-dxs-idi 

minor 
amounts 

(Hage-
Hülsmann 

et al., 2021) 
[see 

Publication 
II] 

squalene 
(C30) 

AtSQS 
(Arabidopsis thaliana) 

SB1003/ 
- 65 

BbSQS 
(Botryococcus braunii) 

SB1003/ 
- 20 

HsSQS 
(Homo sapiens) 

SB1003/ 
ispA 

61 

McSQS 
(Methylococcus capsulatus) 

SB1003/ 
ispA 90 

TeSQS 
(Thermosynechococcus  

elongatus) 

SB1003-MVA/ 
- 20 

-carotene 
(C40) 

CrtYI 
(Pantoea ananatis) 

SB1003/ 
ispA-dxs-idi 30 

* SB1003 = R. capsulatus SB1003; SB1003-MVA = R. capsulatus SB1003 with genome-integrated MVA pathway; 
co-expressed genes were placed on a pRhon5Hi-2 expression vector under the control of an ammonium repressed 
Pnif promotor (Troost et al., 2019) 
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In conclusion, the significance of phototrophic bacteria for the production of pharmaceutically 

relevant terpenoids and the current state of biotechnological research was outlined. Moreover, 

R. capsulatus was proven as a suitable host for the biosynthesis of various complex terpenoid 

classes by expressing terpene synthases from bacterial, mammalian and plant origin. 

Especially the studies focusing on the biosynthesis of various terpene synthases using a 

toolbox containing the underlying metabolic engineering concepts emphasize the importance 

of an all-encompassing evaluation of the individual experimental setups consisting of 

production strain and co-expressed genes. Due to the complexity of secondary metabolite 

pathways, a precise control over metabolic flux rates and tightly regulated gene expression of 

restricting enzymes might be a key feature for optimized bioproduction.  

 

III.1.1.1 Heterologous terpene biosynthesis in the context of intrinsic 

regulatory mechanisms 

Especially in isoprenoid biosynthesis, a variety of inhibitory effects based on intermediate 

accumulation are known in various organisms, representing possible intrinsic regulatory 

mechanisms in R. capsulatus [see Figure 5] and will be briefly discussed below. 

 

 
Figure 5. Schematic overview of terpenoid biosynthetic pathways and possible intrinsic 
regulatory mechanisms in R. capsulatus. The presented information is a model of putative regulatory 
mechanisms in R. capsulatus based on regulatory processes that have been described for enzymes of 
other microbial terpenoid production hosts. The isoprene derivatives IPP and DMAPP might inhibit DXS 
or the mevalonate kinase as well as a feedforward regulation of IspA, whereas FPP could negatively 
affect IspA, MCS and DXS as well as the mevalonate kinase and HMGR. Green symbols marked 
theoretical IPP and DMAPP associated inhibitory effects and red symbols marked possible FPP 
associated inhibitory effects. Substrates (CDP-ME: 4-diphosphocytidyl-2-methyl-D-erythritole, CDP-
MEP: CDP-ME-2-phosphate, DMAPP: dimethylallylpyrophosphate, DXP: 1-desoxy-D-xylulose-5-
phosphate, FPP: farnesyl pyrophosphate, GAP: glycerinaldehyde-3-phosphate, GGPP: geranylgeranyl 
pyrophosphate, GPP: geranyl pyrophosphate, HMBPP: (E)-4-hydroxy-3-methyl-but-2-enyl-
diphosphate, HMG-CoA: -hydroxy--methylglutaryl-CoA, IPP: isopentenyl pyrophosphate, Me-cPP: 2-
c-methyl-D-erythritol-2,4-cyclodiphosphate, MEP: 2-c-methyl-D-erythritol-4-phosphate, MVA: 
mevalonate, MVP: mevalonate-5-phosphate, MVPP: mevalonate-5-pyrophosphate, PYR: pyruvate); 
Enzymes (ACAT: acetyl-CoA acyltransferase, CMK: cytidyl-methyl kinase, CMS: cytidyl-methylerythritol 
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synthase, CrtBICDF: enzymes involved in carotenoid biosynthesis, CrtE: geranylgeranyl pyrophosphate 
synthase, DXR: 1-desoxy-D-xylulose-5-phosphate reductase, DXS: 1-desoxy-D-xylulose-5-phosphate 
synthase, HDR: hydroxy-methyl-butenyl-diphosphate reductase, HDS: hydroxy-methyl-butenyl-
diphosphate synthase, HMGR: hydroxy-methyl-glutaryl reductase, HMGS: hydroxy-methyl-glutaryl 
synthase, Idi: isopentenyl diphosphate isomerase, IspA: farnesyl pyrophosphate synthase, MCS: 
methyl-erythritol-cyclo-diphosphate synthase, MK: mevalonate kinase, PMD: pyrophosphate-
mevalonate decarboxylase, PMK: phosphate-mevalonate kinase). 
 

A special role in this context plays the FPP molecule, which can exert cell toxicity effects in 

high concentrations in E. coli (Dahl et al., 2013). Moreover, it has been shown for the human 

FPP synthase that FPP can bind in close proximity to the active site of the enzyme causing an 

allosteric conformational change, resulting in an inhibited enzyme activity (Park et al., 2017). 

Furthermore, FPP-mediated feedback inhibition is reported in vitro for the isolated human 

mevalonate kinase of the MVA pathway, which can also be blocked by GPP, GGPP as well as 

the isoprene derivatives IPP and DMAPP (Dorsey & Porter, 1968; Goldstein & Brown, 1990; 

Hinson et al., 1997). Similarly, the hydroxy-methyl-glutaryl reductase (HMGR) of the MVA 

pathway is inhibited by FPP in yeast (Donald et al., 1997; Paradise et al., 2008). Regulatory 

elements are also known for the MEP pathway, such as in vitro feedback inhibition of DXS by 

IPP and DMAPP (Banerjee et al., 2013) as well as of the methyl-erythritol-cyclo-diphosphate 

synthase (MCS) by FPP (Bitok & Meyers, 2012). Since feedforward inhibition by IPP and 

DMAPP was demonstrated for the human FPP synthase (Kavanagh et al., 2006), this may 

explain the often-observed beneficial effect of additional plasmid-based overexpression of IspA 

on product titers in the studies carried out here. 

A more synthetic approach pursues the feeding of the two alcohol-containing homologous to 

DMAPP and IPP, dimethylallyl alcohol (DMAOH) and isopentenol (IOH) (Couillaud et al., 

2021). Here, a two-step enzymatic synthesis consisting of a double phosphorylation enables 

the decoupling of microbial growth and terpenoid production, since an alternative pathway is 

used to provide the precursor molecules. 

To counteract the described possible regulatory mechanisms during heterologous terpene 

biosynthesis in R. capsulatus, an optimal ratio between the supply of precursor molecules and 

their utilization by heterologous terpene synthases should be ensured in order to avoid the 

inhibition of the above mentioned enzymatic reactions as well as an improper flux of 

intermediates within the complex biosynthetic pathway. This could be achieved by the 

development of new precise expression systems, which were also addressed in the presented 

work. 

 

III.1.2 Transcriptional control for regulating (intrinsic) terpenoid production in 

Rhodobacter 

Highly specific regulation of the protein biosynthesis and secondary metabolite production can 

be achieved by precisely controlling the expression of according genes or clusters. Therefore, 
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two fundamental strategies can be applied. Depending on the intended aim, either genomic or 

plasmid-based gene expression can be selected. Here, independent from the location of 

incorporated genes (plasmid or genome), a distinction can be made between the use of 

individual promoters for targeted expression of specific genes (Kaur et al., 2018; Terpe, 2006) 

and the deployment of tools to control partial (heterologous) biosynthetic pathways (Loeschcke 

et al., 2013; Mougiakos et al., 2019).  

In anoxygenic phototrophic bacteria, especially in R. capsulatus and its relatives, a wide variety 

of host-specific and heterologous promoter systems were evaluated and partially applied for 

the expression of genes encoding for terpene biosynthesis. Examples include host-specific 

oxygen-sensitive promoters, such as the Pnif system (Loeschcke et al., 2022), which has 

already been successfully applied for the heterologous biosynthesis of valencene as well as 

patchoulol in R. capsulatus (Troost et al., 2019) and was also used for terpenoid production in 

this work. Under native conditions, this promoter is engaged in the expression of nitrogenase 

enzyme complexes allowing this organism to metabolize atmospheric dinitrogen under 

nitrogen starvation (Masepohl et al., 2002). As a result, this system exhibits a strong 

expression response, which can be completely repressed by ammonium and molecular 

oxygen (Loeschcke et al., 2022). Furthermore, promoters associated with the synthesis of 

photosynthetic complexes show also high dependencies on the predominant oxygen 

availability. These include Ppuf and Ppuc, which were utilized for the heterologous bisabolene 

biosynthesis in R. capsulatus (Zhang et al., 2021) and PcrtE for the recombinant production of 

amorphadiene in Rhodobacter sphaeroides (Orsi et al., 2019). Moreover, Ppgk and Peno 

originating from the glycolytic pathway in R. capsulatus, were also applied for bisabolene 

production (Zhang et al., 2021) and showed high expression response when glucose is used 

as carbon source (Piper et al., 1988; Toda et al., 2001). 

In contrast, classical heterologous promoter systems, such as Plac and its derivative Ptrc, have 

already been widely applied as constitutive promoters (without the lac repressor) and as 

inducible variants, especially for the production of squalene and botryococcene in 

R. capsulatus (Khan et al., 2015) as well as pinene in R. sphaeroides (X. Wu et al., 2021). 

Despite this range of available expression systems [see Table 2], inducer uptake for 

controllable gene expression in R. capsulatus is still challenging due to its physiological 

properties such as an exopolysaccharide layer as well as an enlarged intracellular membrane 

system (Niederman, 2013). 
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Table 2: Overview of promoter systems utilized for heterologous terpene production in Rhodobacter. 

Promoter Origin* Application Comment Reference 

Pnif 
nitrogenase 

complexes in 
R. capsulatus 

valencene and 
patchoulol 

biosynthesis in 
R. capsulatus 

repressed by 
NH4+ and O2  

(Troost et al., 
2019) 

Ppuf 
light-harvesting 
complexes I & II 

from 
R. capsulatus 

bisabolene 
biosynthesis in 
R. capsulatus 

strong inhibition 
by O2 

(Zhang et al., 
2021) 

Ppuc 

Ppgk 

encoding a 
phosphoglycerate 

kinase from 
R. capsulatus 

high expression 
when glucose is 
used as carbon 

source 

Peno 

encoding a 
phosphoglycerate 

enolase from 
R. capsulatus 

high expression 
when glucose is 
used as carbon 

source 

PcrtE 
carotenoid 

biosynthesis in 
R. sphaeroides 

amorphadiene 
biosynthesis in 
R. sphaeroides 

strong inhibition 
by O2 

(Orsi et al., 2019) 

Plac 
lac operon from 

E. coli 

squalene and 
botryococcene 
biosynthesis in 
R. capsulatus 

applied as 
constitutive 

promoter without 
the lac repressor 

(Khan et al., 
2015) 

Ptrc 

hybrid promoter 
consisting of -35 
region of the trp 

promoter and the 
-10 region of the 

lacUV5 
promoter/operator 

from E. coli 

pinene 
biosynthesis in 
R. sphaeroides 

induction with 
IPTG 

(X. Wu et al., 
2021) 

Ptac 

hybrid promoter 
consisting of -35 
region of the trp 

promoter and the 
Plac promoter 
from E. coli 

carotenoid 
biosynthesis in 
R. capsulatus 

gradual control as 
well as light 
regulation 

(Hilgers et al., 
2021) 
[see 

Publication VI] 

* The listed promoters control genes encoding for the named proteins and enzymes. 

 

To overcome this limitation, a novel Ptac-based vector system was established in R. capsulatus 

using IPTG as an inducer molecule. Since light as an external stimulus represents a promising 

alternative to conventional methods, photocaged NP-cIPTG (Binder et al., 2014; Binder, 

Frohwitter et al., 2016) was additionally applied. To alter membrane permeability as well as 

water solubility, two further cIPTG derivatives with different hydrophobicity were chemically 

synthesized in a collaborative project by Dr. Fabian Hogenkamp, Institute of Bioorganic 

Chemistry (Heinrich Heine University Düsseldorf). In contrast to NP-cIPTG, BC-cIPTG 
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contains hydrophilic carboxylic side chains, whereas BEC-cIPTG bears additional lipophilic 

ester moieties.  

In addition, R. capsulatus phototrophic growth could represent a great burden for this type of 

light-driven application, caused by the used light source as well as the production of 

photopigments. For example, bulb lights are capable for excitation of photopigments, namely 

the carotenoids spheroidene (max = 454, 478, 509 nm) and spheroidenone (max = 500 nm) as 

well as bacteriochlorophyll  (max = 800, 860 nm), similar to natural daylight (Boran et al., 

2010; Elkahlout et al., 2019; Katzke et al., 2010; Obeid et al., 2009). Although the UV-A light 

exposure (for IPTG release) was performed at 365 nm, the possibility of increased cell 

densities and thus enhanced absorption impairing the uncaging process remained uncertain. 

Additionally, the applied light sources could include a UV-A portion that already leads to an 

undesirable photocleavage. 

 

So in a first step, the general inducibility of a Ptac-based expression system using photocaged 

IPTG molecules as well as an adjustability of the intrinsic carotenoid production were 

demonstrated in R. capsulatus [see Publication IV]. This work was realized in close 

cooperation with Dr. Fabienne Knapp (nèe Hilgers, Institute of Molecular Enzyme Technology, 

Heinrich Heine University Düsseldorf). Here, it was possible to restore the initial pigment level 

by plasmid-based expression of the corresponding carotenoid biosynthesis genes in an 

appropriate deletion strain. 

To ensure the best possible exploitation, all three photocaged inducer derivatives were applied 

for the light-mediated control of plasmid-based gene expression under phototrophic, 

microaerobic, and aerobic conditions. Especially NP-cIPTG offers a sufficient as well as 

gradual responsiveness for all three growth behaviors and even exceeds the induction level of 

IPTG under microaerobic and phototrophic conditions, proving its value. Moreover, it could be 

shown that an enhanced absorption of the R. capsulatus cells in the UV-A range does not 

affect the uncaging process under microaerobic and anaerobic conditions [see 

Publication IV, Supplementary Material]. Even though BC- and BEC-cIPTG reached an 

induction level comparable to that of IPTG, severe instability effects regarding the protection 

groups were observed in vivo. Thus, both seemed inappropriate for light-mediated control of 

transcription in this host.  

Based on these results, NP-cIPTG was identified to be the best tested inducer for intrinsic 

carotenoid production in R. capsulatus. The light impulse led to an elevated induction response 

in comparison to cultures induced with IPTG. Since it could be shown in this work, that the 

change of light source from broad-spectrum bulb light to infrared-light LED with a maximum 

emission wavelength of 850 nm led to 1.5-fold increased product titer of the sesquiterpene -
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caryophyllene in R. capsulatus [see Publication III], light regulation of heterologous terpene 

biosynthesis seems conceivable.  

Besides the focus on the illumination element, further improvements could be carried out on 

the expression vector itself. To overcome an observed high basal eyfp expression level in 

uninduced R. capsulatus cultures, several modifications were conducted at the DNA level. So, 

the lacI gene was replaced by a variant with enhanced repressor activity and a DNA duplicate 

region of around 519 bp were deleted to avoid homologous recombination (similar to a recent 

publication (Bakkes et al., 2020)). In combination with the insertion of an in silico developed 

Shine-Dalgarno (SD) and SD-spacer sequence these measures led to an induction factor of 

3.2 in comparison to 1.8 before optimization. Since ribosome binding site (RBS) adaptation in 

R. sphaeroides also resulted in a 3-fold increase in heterologous pinene biosynthesis (X. Wu 

et al., 2021), modulation of gene expression at the translational level seems to be promising 

in anoxygenic phototrophic bacteria in general. In this regard, a correlation between spacer 

length and translation initiation rate has been shown in B. subtilis, as this affects the mRNA 

secondary structure and consequently renders the RBS less accessible for ribosomes 

(Volkenborn et al., 2020). Accordingly, it cannot be excluded that such effects also have an 

impact in Rhodobacter species. 

Next to selective plasmid-based gene expression, another possibility represents the genomic 

integration of entire recombinant genes and clusters for heterologous production of secondary 

metabolites. In this context, contemporary genome editing techniques such as CRISPR/Cas 

are already established in R. sphaeroides and R. capsulatus (Luo et al., 2020; Mougiakos 

et al., 2019; Zhang & Yuan, 2021). This may provide the basis for future complex modifications 

of the R. capsulatus genome facilitating the knockdown of regulatory elements and 

overexpression of necessary genes in terpene biosynthesis. Moreover, first attempts were 

made to implement a method for the transfer and expression (TREX) of biosynthetic pathways 

such as zeaxanthin biosynthesis to R. capsulatus (Loeschcke et al., 2013). This system allows 

the randomized chromosomal insertion of the gene cluster in combination with T7 RNA 

polymerase-mediated gene expression (Katzke et al., 2010). 

 

Additionally to R. capsulatus, the caged inducer concept was transferred to other 

biotechnologically relevant bacterial hosts to verify the general applicability of the new inducer 

molecules in collaboration with Dr. Fabienne Knapp [see Publication V]. Here, NP-cIPTG 

remains the best suited variant in E. coli, whereas in P. putida as well as B. subtilis BC-cIPTG 

seems to be most promising. This suggests that the different solubility of tested photocaged 

IPTG variants seems to play only a minor role for optochemical in vivo applications. Thus, it 

could be shown that such photocaged inducer systems are very well transferable to various 

hosts. This distinguishes them from other light-mediated devices, such as photoreceptors, 
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where the cofactors needed for chromophore maturation have to be provided by the cell 

leading to host-specific differences regarding the applicability (Herrou & Crosson, 2011; 

Pudasaini et al., 2015). 

In conclusion, a Ptac-based vector system combined with IPTG and various photocaged IPTG 

derivatives including different hydrophobic protecting groups was evaluated for its feasibility in 

R. capsulatus. The respective data showed that non-native as well as native cellular processes 

can be gradually controlled in a phototrophic bacterium either by adding increasing amounts 

of IPTG or using light as external stimulus when photocaged inducer derivatives are applied. 

In addition, enhancements were carried out at the DNA level of the vector such as adjustment 

of the SD sequence and the lacI gene. After demonstrating the control of intrinsic carotenoid 

production providing the basis for (light) regulation of heterologous terpenoid biosynthesis, the 

photocaged inducers were subsequently applied to several biotechnologically relevant 

bacteria. Thus, an alternative promoter system is now available allowing the precise 

expression of genes implicated in terpenoid biosynthesis. 

 

III.2 PHB granules originating from R. capsulatus as a tool for protein 

immobilization 

Besides increasing the productivity of biosynthetic pathways through metabolic engineering or 

the precise control of gene expression, another target for optimization is the biocatalyst itself. 

Here, one possibility is the immobilization of enzymes on a surface potentially leading to 

several improvements like increased stability or the reusability of the biocatalyst for in vitro 

applications. Moreover, co-immobilization of multi-step enzymatic cascades on a surface can 

reduce the spatial proximity of the enzymes to each other, resulting in substrate channeling as 

well as minimization of toxic intermediate accumulation within the cell. Currently, a wide range 

of immobilization techniques and different support materials are known. Therefore, a detailed 

overview of common possibilities for the in vivo immobilization of (industrial) biocatalysts was 

obtained as a first step [see Publication VI]. Here, a distinction was made between protein-

based carrier materials like catalytically active inclusion bodies (CatIBs), synthetic organelles 

and natural, cellular compartments such as virus-like particles and polyhydroxybutyrate 

granules. In this context, biopolymeric PHB represent a promising opportunity to find 

application as a scaffold in heterologous terpenoid production. The hydrophobic PHB granules 

are surrounded by a protein layer containing the PHB synthase PhaC, a PHB depolymerase, 

different phasins and further regulatory and structural proteins (Gerngross et al., 1993; Pötter 

& Steinbüchel, 2005; Prieto et al., 1999). Especially PhaC, which catalyzes the final 

polymerization in PHB biosynthesis (Jendrossek & Pfeiffer, 2014), as well as phasins like PhaP 

are suitable as anchor proteins for the immobilization of enzymes to the granule surface [see 

Figure 6 A & B] (Du & Rehm, 2017; Tarazona et al., 2019).  
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Figure 6. Different strategies to immobilize proteins on a PHB surface. Respective protein linker 
systems for target protein immobilization and the resulting immobilizates are shown. A) The POI is 
covalently attached to the PHB granule via a fusion with the PHB synthase PhaC. B) The POI is linked 
to the PHB surface via a fusion with a phasin protein and its hydrophobic interactions with the biopolymer 
core. C) POI is covalently attached to PHB granule via POI-GFP1-10 and PhaC-GFP11 tag resulting in 
a detectable green fluorescence signal. D) POI is linked to the PHB surface via an isopeptide bond 
formed by POI-SpyTag and PhaC-SpyCatcher. POI: protein of interest 

 

PhaC remains covalently attached to the surface and represents a well-established method for 

in vivo enzyme scaffolding in biotechnological applications (Ran et al., 2019; Rasiah & Rehm, 

2009; T. H. Yang et al., 2015). Due to the stable coupling, PhaC is also suitable as a linker in 

robust isolation processes to obtain the target protein in its soluble form (Du & Rehm, 2017). 

On the other hand, the utilization of a phasin protein such as PhaP or PhaF enables the non-

covalent linkage of the target protein to the PHB surface via hydrophobic interactions (Dinjaski 

& Prieto, 2013; R. Li et al., 2019; Yao et al., 2008). In this context, the peptide tag BioF based 
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on PhaF from P. putida was developed, combining a shortened linker length with increased 

affinity and stability (Bello-Gil et al., 2018; Mato et al., 2020). 

Furthermore, PHB-based applications were already implemented for production of the 

terpenoid lycopene in E. coli and, due to the hydrophobic nature of the biopolymer, PHB served 

as an anchor matrix for hydrophobic substrates (Bello-Gil et al., 2018; Y. Liu et al., 2020). 

The bacterial host R. capsulatus used in this thesis is naturally capable to produce PHB under 

nutrient-limiting conditions [see also Chapter II.3.1]. Therefore, its versatile metabolism 

resulting in two different lifestyles and a broad range of naturally occurring cofactors in 

combination with high terpene production makes R. capsulatus a very promising platform 

organism for immobilization-based applications. Although PHB production in R. capsulatus has 

been previously characterized, studies about the targeted functionalization of the biopolymer 

granules in this host are still missing. Hence, the fluorescence protein eYFP was selected as 

an example for first attempts to in vivo immobilize a target protein on the PHB surface in 

R. capsulatus using the anchor protein PhaC [see Publication VII]. Herein, the attachment of 

eYFP to the granule surface was successfully demonstrated. Moreover, the host-specific 

enzymes involved in PHB biosynthesis were transferred to the non-natural PHB producer 

E. coli to characterize immobilization in an environment without the respective cellular 

regulatory mechanisms. Immobilization was demonstrated in this case as well, and 

additionally, eYFP was successfully separated in vitro after isolation of the PHB fraction. Thus, 

this work laid the foundation to study more complex in vivo immobilization approaches, in which 

enzymes could be co-immobilized on the PHB surface to produce high-value terpenoids. 

Interestingly, it was not possible to gradually control the decoration of PHB granules via the 

chosen methods. Likewise, immobilization process and efficiency could not be quickly and 

easily determined. Hence, the split GFP system was established as an alternative anchor 

technique for the immobilization of a target protein on the granule surface and to monitor the 

immobilization process readily by a green fluorescence signal [see Publication VIII]. In a split 

GFP application, GFP consisting of eleven -sheets is divided into two non-fluorescent 

fragments (Barondeau et al., 2003; Cabantous et al., 2005). The larger component contained 

the -sheets 1-10 (GFP1-10) and the other fragment comprised of the 11th -sheet (GFP11 

tag). After binding of the two protein partners, the chromophore maturation is initiated resulting 

in the formation of a holo-GFP with a detectable fluorescence signal [see Figure 6 C] 

(Cabantous et al., 2005; Cabantous & Waldo, 2006). 

 

In addition to split GFP, other split fluorescent variants are known, such as yellow fluorescent 

split YFPs as well as blue fluorescent split CFPs (Lockard & Waldo, 2012) and red fluorescent 

split mCherry (Fan et al., 2008). The GFP family (including GFP, YFP, CFP) in particular is 

expanded by numerous engineered variants differing in spectral properties, quantum yield, 
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brightness, fluorescence lifetime, photostability, folding and chromophore maturation kinetics 

as well as fluorescence complementation efficiency (Köker et al., 2018). By transferring the 

split GFP principle to selected variants with different absorption and fluorescence spectra, 

multichromatic detection and quantification of up to three different target proteins would 

theoretically be thinkable. Hence, it would be possible to microscopically determine the 

distribution of individual enzymes of complex biosynthetic pathways on the biopolymeric 

surface and thus to evaluate the spatial proximity of different enzymes and its influence on 

production yield. 

Moreover, the SpyTag/SpyCatcher system represents non-fluorescent protein-peptide 

interactions harnessing covalent isopeptide bond formation and enables better control over 

PHB decoration [see Figure 6 D] (Wong & Rehm, 2018). This mechanism, derived from 

Streptococcus pyogenes, is based on the binding domain CnaB2 of the fibronectin-binding 

adhesin FbaB, in which an isopeptide bond is formed between the amino acids Lys31 and 

Asp117 (Hagan et al., 2010; Terao et al., 2002). By subdividing this domain into two separate 

protein fragments, the SpyTag, a 13 amino acid peptide (including the reactive aspartate) and 

the SpyCatcher protein consisting of 139 amino acids containing the reactive lysine, a click 

chemistry-based system for rapid and covalent protein coupling was developed for in vivo as 

well as in vitro applications [see Publication VI] (Hatlem et al., 2019; Keeble & Howarth, 2019; 

Zakeri et al., 2012). In addition, other orthogonal protein ligation pairs, such as 

SnoopTag/SnoopCatcher derived from Streptococcus pneumoniae (Veggiani et al., 2016) and 

SdyTag/SdyCatcher derived from Streptococcus dysgalactiae (Tan et al., 2016), have already 

been combined with the PHB technology to create a multifunctional biopolymer platform for 

biotechnological applications (Wong, Gonzalez-Miro et al., 2020). However, the 

SpyTag/SpyCatcher system and its analogs have not been applied in terpene biosynthesis so 

far, nor tested in alternative hosts except E. coli. 

 

In this thesis, GFP1-10 was fused to the C-terminus of the target protein, while the GFP11 tag 

was coupled to the N-terminus of the PHB synthase PhaC. Thus, it was possible to immobilize 

the fluorescence protein mCherry as well as the biotechnologically relevant esterase LipD on 

PHB granules in E. coli and to detect this process directly via a fluorescence output. In contrast 

to a direct genetic fusion to PhaC, a gradual decoration of the PHB granules is also enabled 

as the synthesis of the target protein can be regulated independently. Therefore, such systems 

based on “click & play” mechanics are preferable to conventional covalent fusions. 

Furthermore, co-localization of mCherry and split GFP could be shown microscopically, and 

the activity of the target proteins were determined. 

All in all, it was able to anchor proteins to the PHB surface for the first time in R. capsulatus 

and to demonstrate the functionality of the PhaC-PHB system in a host-independent manner. 
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Finally, with split GFP, a completely new “click & play” principle for enzyme scaffolding was 

developed and tested in E. coli. Both systems are now available for application in terpene 

biosynthesis. 

 

III.2.1 Regulated PHB biosynthesis in R. capsulatus  

As mentioned above, the intrinsic PHB biosynthesis in R. capsulatus is triggered by nutrient 

limitation and by a change in the available nitrogen/carbon ratio (Kranz et al., 1997). In this 

context, altering the supplemented carbon source is a good way to produce PHB granules for 

protein immobilization in this host [see Publication VII]. However, this approach may impact 

cell growth as well as vitality, and the carbon source selection also affects the size and 

distribution of PHB granules within a cell (Kranz et al., 1997). To transform R. capsulatus into 

a platform organism for in vivo-based PHB immobilization applications, detachment from 

intrinsic regulatory mechanisms as well as environmental conditions would be desirable. In 

general, PHB biosynthesis proceeds in three enzymatic steps: First, an acetyl-CoA 

acetyltransferase (PhaA) condenses two molecules of acetyl-CoA to acetoacetyl-CoA. This in 

turn is first reduced by an NADPH-dependent acetoacetyl-CoA reductase (PhaB) to 

3-hydroxyacyl-CoA. Subsequently, the final polymerization is carried out by a PHB synthase 

(PhaC) (Jendrossek & Pfeiffer, 2014; Merrick & Doudoroff, 1961; Peoples & Sinskey, 1989).  

In R. capsulatus SB1003, four of the genes involved in PHB metabolism are organized in a 

gene cluster: These include pha2 encoding a granule-associated phasin protein, pha1 

encoding for a transcriptional regulator for granule formation, orfX encoding a PHB 

depolymerase, and phaC. In contrast, the genes for PhaA and PhaB are located separately on 

the genome (Ulbrich & Pačes, 2002). Kranz and co-workers demonstrated that genomic 

deletion of phaC interrupts granule formation in R. capsulatus, whereas deletion of phaA or 

phaB still permits PHB production, suggesting the presence of alternative routes for substrate 

synthesis (Kranz et al., 1997). These findings were then confirmed by the presence of four 

different genomic copies of phaA (Ulbrich & Pačes, 2002). Moreover, the phaABC genes 

appear to be constitutively expressed and post-translationally regulated in R. capsulatus 

(Kranz et al., 1997). So, a plasmid-based overexpression of these genes could allow a 

disengagement of PHB biosynthesis from environmental conditions, but it is questionable 

whether the post-transcriptional regulatory mechanisms in place might counteract such an 

effect. 

Here, another possibility to influence PHB formation would be the knockout or knockdown of 

the PHB depolymerase to avoid degradation of synthesized PHB granules. In a study of the 

closely related purple non-sulfur bacterium R. sphaeroides, PHB production was demonstrated 

under nitrogen-independent conditions, following the deletion of PHB depolymerase and 

concomitant overexpression of eight genes involved in PHB metabolism (Kobayashi & Kondo, 
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2019). As a result, PHB production could be increased by a factor of 2.9. However, even here 

the authors suspected the presence of unknown genes involved in PHB biosynthesis in purple 

non-sulfur bacteria in general. This complexity requires the application of advanced genomic 

modification tools for metabolic adaption as described previously [see Chapter III.1.2]. This 

may provide the basis to ensure PHB formation independent from nutrient availability. 

Therefore, an application in heterologous terpene biosynthesis would then also be 

conceivable, in which a part of the enzymatic cascade is immobilized on the PHB granules 

in vivo to increase enzyme stability and ensure substrate channeling [see Chapter III.3.2]. 

Additionally, Orsi et al. speculated, that under chemoheterotrophic conditions and nitrogen 

limitation in the stationary phase, PHB granules are degraded in R. sphaeroides, allowing 

sesquiterpene production under growth limitation (Orsi et al., 2019). In this study, an unfused 

variant of an amorphadiene synthase was expressed in R. sphaeroides, so future studies 

would need to consider which approach has the greatest impact on product titers: coupling the 

enzyme to the granule surface could be carried out (I) in a PhaZ-deficient strain, without the 

opportunity to degrade PHB, but with enlarged immobilization surfaces [see Chapter III.2.1] 

(Kobayashi & Kondo, 2019), or (II) in an environment with intrinsic regulatory mechanisms, 

enabling degradation of PHB granules as carbon source for terpene production under nutrient 

limiting conditions (Orsi et al., 2019). 

 

III.3 Future perspectives to modulate terpenoid production 

In this thesis, the heterologous production of different terpene classes was evaluated in the 

context of classical metabolic engineering strategies in the alternative host R. capsulatus. The 

applied concepts are mainly based on the supply of auxiliary precursor molecules by 

overexpressing rate-limiting enzymes. Moreover, a broad host range Ptac-based vector system 

in combination with light as external stimulus was established for the regulation of intrinsic 

terpene biosynthesis. In addition, PHB granules were utilized as a platform for protein 

immobilization for the first time in a purple non-sulfur bacterium. In the following, the knowledge 

acquired in this work will be combined to guide future studies for the optimization of terpene 

production in R. capsulatus. 

 

III.3.1 Precise regulation of biosynthetic pathways 

Secondary metabolites, including various terpenes play an important role in numerous 

biotechnological applications. For economic and ecological purposes, heterologous production 

in microorganisms is becoming increasingly attractive as compared to conventional extraction 

methods e.g. from plant-based material. Especially naturally occurring metabolic pathways are 

promising targets to channel metabolite flux rates towards the desired products and to 

minimize possible side effects of (toxic) intermediates (Dahl et al., 2013). Thus, in various 
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microorganisms, the knockout or knockdown of genes encoding for competing enzymes 

metabolizing the required precursors was performed to increase the respective product yields. 

Examples include the downregulation of intrinsic ergosterol biosynthesis in yeast by 

exchanging native promotors for weaker ones resulting in an enhanced -santalene production 

(Scalcinati et al., 2012), the knockout of the squalene-hopene cyclase gene in 

Synechocystis sp. PCC 6803 to increase squalene accumulation (Pattanaik et al., 2020), or 

the implementation of feedback loops (Dunlop et al., 2010). 

Especially in highly engineered microorganisms, several growth issues can be observed. Here, 

it can be favorable to decouple growth and production phases (Lo et al., 2016; Shabestary 

et al., 2021). Therefore, a versatile toolbox of regulation systems is required to enable finely 

tuned metabolic processes. Even though various expression systems are already present, 

many of them come along with side effects such as toxicity, distribution, or stability issues. In 

case of using salicylate as inducer, some bacteria are capable of exporting or degrading this 

compound resulting in an insufficient induction (Wood & Cluzel, 2012). The addition of 

commonly utilized inducers leading to laborious optimization for high temporal and spatial 

resolution to ensure the ideal induction time. As an example, induction with IPTG can show 

inhomogeneous distribution within the cell culture (Binder et al., 2014). 

 

To overcome these limitations, an external stimulus with reduced time expenditure is required. 

Here, light allows the precise control over numerous cellular processes at different levels in 

biotechnological applications (Baumschlager & Khammash, 2021; Drepper et al., 2011; Klewer 

& Wu, 2019). Based on the accessibility, the high spatial resolution and the wide applicability, 

it is highly beneficial to focus on light-mediated approaches [see Figure 7]. 
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Figure 7. Different strategies to implement optogenetic control over the enzyme level for 
improved secondary metabolite production. In the host cell, the precursor level must be regulated to 
ensure an optimal link between homologous and heterologous biosynthetic pathways for improved 
product titers. Moreover, in various bacterial hosts, intermediates are known to cause cell toxicity effects 
in high concentrations. Here, light with different wavelengths was applied to control cellular processes 
at various levels. A) Photocaged IPTG-mediated expression of plasmid-based genes either for a 
heterologous enzyme (HE) or an intrinsic competing enzyme (CE) activated by UV-A exposure allows 
the optimization of precursor conversion. B) For post-translational regulation of homogenous 
biosynthesis, CE could be fused to a photosensitizer (PS). Here, illumination with blue light would lead 
to the production of ROS and consequently to inactivation of the CE-PS fusion protein. Another 
approach would be the combination of CE with a protein complex consisting of a light-sensitive protein 
domain and a recognition sequence for a cellular protease (LD). After light illumination and a 
conformational change of the photoreceptor, the recognition sequence is exposed. Thus, a cellular 
protease would be theoretically capable of degrading the entire fusion protein. HE: heterologous 
enzyme; CE: competing enzyme; UV-A: ultraviolet; PS: photosensitizer; ROS: reactive oxygen species; 
LD: light degron consisting of a photoreceptor and a degradation signal.  

 

For instance, applying a light switch to precisely control gene expression could determine at 

which growth phase the expression of all (or parts of the) pathway genes should be initiated to 

obtain an optimal product yield. This may be advantageous, especially if the final product 

causes stress mediated cell response. This procedure is well-established in various non-

optogenetic approaches and in a variety of hosts such as E. coli (Aguilar et al., 2019; Schlegel 

et al., 2013), R. capsulatus (Katzke et al., 2012) and other bacteria (Immethun & Moon, 2018; 

H. Yang et al., 2021; Zhou et al., 2020) enabling straightforward evaluation of multiple 

parameters in bioprocess development (such as induction time point or expression levels of 

different genes). In addition, the regulation of competing metabolic pathways may offer further 

advantages. Thus, in a native host, the homologous biosynthetic pathway can be interrupted 

at a defined step by a genomic knockout, allowing accumulation of the desired precursor 



 244 GENERAL DISCUSSION 

molecules. By plasmid-based expression of the deleted genes, a gradual efflux of metabolites 

into the native pathway can be provided, for example, to reduce toxic side effects or to enable 

the biosynthesis of compounds important for cell growth and viability. 

However, it can be favorable as well to actively degrade produced enzymes depending on the 

phase of cultivation. This exceeds the regulatory possibilities deploying regular inducers, as 

they are designed to target the gene expression. Besides that, using UV-A light activated 

photocaged inducers as a non-reversible “on-switch”, the development of an “off-switch” to 

downregulate the substrate level is a next step to enable orchestration of metabolic pathways. 

One attempt would be a fusion protein composed of the consuming enzyme and a 

photosensitizer. Here, in a technique known as chromophore-assisted light inactivation (CALI), 

reactive oxygen species (ROS) are generated after excitation of a photosensitizer protein at a 

certain wavelength (Bulina et al., 2006; Riani et al., 2021; Wojtovich & Foster, 2014). Due to 

the close spatial proximity to the target protein, the enzyme will be irreversibly destroyed 

leading to a loss of activity. One example for an already established biotechnological 

application is the blue light-regulated inactivation of a pyruvate decarboxylase in a genetic 

fusion with the photosensitizer SOPP3 (Gerlach et al., 2022). Furthermore, photosensitizer 

susceptible for other excitation spectra such as red light (e.g. KillerRed and SuperNova) 

(Bulina et al., 2006; Gorbachev et al., 2020) or green light (e.g. SuperNova Green) (Riani et al., 

2018) would enable the multi-chromatic inactivation of two or more enzymes in a shared 

biosynthetic pathway. 

Besides inactivation via light-induced ROS formation, the target protein could also be degraded 

by an intrinsic cellular protease. Such systems for light-controlled protein degradation are 

already established in eukaryotic cells (Bonger et al., 2014; Pearce & Tucker, 2021; Ryan 

et al., 2021). Here, the protein complex is designed to consist of the target protein, a light-

sensitive protein domain and a degradation signal. Therefore, various groups of flavoproteins 

can be considered as fusion proteins, such as blue light-sensitive flavin proteins or light oxygen 

voltage (LOV) domains (Gautier et al., 2014; Hallett et al., 2016; Iwata & Masuda, 2021). 

Thereby, the degradation signal is fused to the light-sensitive domain and obscured from 

intrinsic proteases. After exposure to a certain wavelength, the protein domain undergoes a 

conformational change resulting in the exposure of the degradation signal. This in turn is then 

recognized by the protease, leading to the breakdown of the entire fusion protein (Bonger 

et al., 2014). In this context it is worth mentioning that selective degradation of a competing 

enzyme can raise the amount of available precursor molecules and thus the desired product. 

This effect could already be shown, for example, in S. cerevisiae in a light-independent 

approach (Peng et al., 2018). Here, the fusion of a FPP synthase with an endoplasmic-

reticulum-associated protein degradation signal enhanced the GPP amount within the cell, 

thereby increasing production of the monoterpene linalool.  
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In addition to the above described optochemical and optogenetic switches, light-responsive 

photoreceptors can be applied to reversibly control cellular processes by light. For example, a 

light sensor histidine kinase and its response regulator originated from cyanobacteria were 

used in E. coli for red and green light-controlled growth and methionine production (Milias-

Argeitis et al., 2016). Furthermore, optogenetic transcription systems in yeast could be utilized 

to decouple the light-induced growth phase from dark-induced production phase to enhance 

isobutanol biosynthesis (E. M. Zhao et al., 2018). Additionally, light sensors can be combined 

with CRISPR-mediated interference (CRISPRi). Thus, in E. coli, transcription of guide RNA 

(gRNA) was placed under the control of a promoter controlled by a response regulator, which 

can be phosphorylated by a blue light-sensitive histidine kinase. Consequently, under strong 

blue-light exposure, the sensor becomes less active, resulting in decreased gRNA amount and 

therefore reduced repression of target gene expression by CRISPRi (H. Wu et al., 2014). 

Moreover, a related principle of this optogenetic CRISPRi technique was applied to turn off 

competitive pathways and to redirect the metabolic flux toward the heterologous muconic acid 

synthesis in E. coli (P. Wu et al., 2021). 

 

III.3.1.1 Application of “on-” and “off-switches” for terpenoid biosynthesis 

in R. capsulatus 

In advance of this work, the non-sulfur purple bacterium R. capsulatus was established as an 

alternative host for terpene production along with a developed metabolic engineering concept 

(Troost et al., 2019). In this thesis, the respective concept has been extended for the 

production of different terpene classes, together with the evaluation of tolerance of various 

terpene synthases to these strategies [see Publications II & III]. Moreover, preliminary work 

was performed to develop a novel vector system to gradually control gene expression in 

R. capsulatus and additionally regulate homogenous carotenoid biosynthesis by light-

mediated crtE expression [see Publication IV]. The substrate of CrtE is the terpene precursor 

molecule FPP, which can be cell toxic at high concentrations (Dahl et al., 2013) and can cause 

several inhibitory effects within isoprenoid biosynthesis [see Chapter III.1.1]. Therefore, 

precise FPP regulation represents a promising target to improve both cell viability and terpene 

titer in heterologous production. By switching from conventional incandescent light to infrared 

illumination [see Publication III], phototrophic cultivation of R. capsulatus could be adapted 

to provide the entire remaining wavelength spectrum for optogenetic applications. 

A first “on-switch” was accomplished via UV-A light-regulated plasmid-based expression of the 

crt genes [see Publication IV]. This system could be transferred to the expression of the 

heterologous terpene synthase in order to direct the FPP flux towards the desired product. A 

similar principle has already been demonstrated in S. cerevisiae for the production of 

-carotene (Pouzet et al., 2022). Here, terpene synthase expression was placed under the 
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control of an optogenetic promoter regulated by a light-activated transcription factor leading to 

a -carotene yield of 880 µg/gCDW.  

Most of the “off-switches” described so far are not readily transferable to R. capsulatus. One 

reason is that photosensitizers require molecular oxygen, and the highest terpene yields in this 

thesis were achieved under anaerobic conditions. Therefore, it is questionable whether such 

an approach can be profitably realized in R. capsulatus. On the other hand, the described 

applications for light-driven protein degradation using a LOV domain are not subjected to such 

limitations. However, this systems are not established in bacterial hosts so far. In contrast, a 

general functionality of CRISPRi was demonstrated in R. capsulatus (Zhang & Yuan, 2021). 

Thus, a transfer of this technology in combination with a two-component system would be quite 

possible. 

All in all, important milestones such as adaptation of cultivation and an “on-switch“ for precise 

control of gene expression have already been achieved to enable (light) control of terpene 

biosynthesis in R. capsulatus. However, especially the transfer of mainly blue light-associated 

“off-switches” still represents a major burden in future studies. 

 

III.3.2 Co-immobilization of terpene biosynthetic enzymes 

In this work, the cornerstone was laid to utilize PHB granules in R. capsulatus for 

immobilization of enzymes in biotechnological applications [see Publication VII]. Moreover, 

a novel system for direct in vivo detection of successful protein-biopolymer coupling was 

developed [see Publication VIII]. In both studies, the activity of the target enzymes was 

retained after coupling to the PHB surface. Especially for in vitro applications, enzyme 

immobilization is a well-established technique to enhance protein stability with regard to 

temperature and solvent tolerance. Moreover, the affinity of PHB granules for hydrophobic 

compounds has already been demonstrated in E. coli for the purification of dye-containing 

wastewater using an immobilized laccase-like multicopper oxidase (Bello-Gil et al., 2018). 

Besides that, in a recent study a lycopene synthase was fused to PhaC in E. coli (Y. Liu et al., 

2020). Here, it could be shown, that the affinity for the hydrophobic FPP molecules is resulting 

in their increased accumulation in spatial proximity to the terpene synthase and thus in 

enhanced substrate supply. Hence, substrate accessibility for other terpene synthases could 

be enhanced as well. Therefore, it would be reasonable to combine the heterologous terpene 

biosynthesis with PHB immobilization techniques in R. capsulatus.  

As shown for various terpene synthases, post-translational fusion with IspA (Baadhe et al., 

2013; C. Wang et al., 2011), a cytochrome P450 enzyme (X. Wang et al., 2021) or genetic 

combination of several carotenoid biosynthesis-associated enzymes (Nogueira et al., 2019; 

Rabeharindranto et al., 2019) can significantly increase terpene titers in different 

microorganisms. The often-mentioned reason in this context is substrate channeling, i.e., the 
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transfer of an intermediate between two or more reaction partners without a temporary release 

(Spivey & Ovádi, 1999). This can improve the flow of intermediates through the reaction 

cascade and reduce the accumulation of toxic intermediates at certain areas within a cell, 

reducing possible negative effects (Kondrat & von Lieres, 2022). 

Besides the coupling of single enzymes, it would be conceivable to anchor additional enzymes 

of an adjacent reaction step, such as IspA, to the PHB surface. Here, an alternative split 

fluorescence protein system could be adopted as an immobilization anchor to 

spectroscopically control the immobilization efficiency of both proteins [see Figure 8]. 

 

 
Figure 8. Display of terpene biosynthetic enzymes on a PHB surface using split fluorescence 
proteins. The co-immobilization of enzymes catalyzing adjacent reaction steps in terpene biosynthesis 
on PHB granules could lead to an improved protein stability, enhanced substrate accessibility through 
the hydrophobic biopolymer surface as well as substrate channeling and consequently reduced (toxic) 
intermediates within the cell. Here, IspA could be fused to a split GFP domain and a FPP converting 
terpene synthase to a split CFP domain (which is not established for PHB-based applications for enzyme 
immobilization so far). Successful binding of the target enzymes on the PHB surface can be then 
confirmed by a green or blue fluorescence signal, respectively. GPP: geranyl pyrophosphate; IspA: FPP 
synthase; FPP: farnesyl pyrophosphate; TS: (heterologous) terpene synthase; PhaC: PHB synthase; 
PHB: polyhydroxybutyrate granule. 
 

By using two different anchor proteins emitting different fluorescence signals after successful 

binding to their protein partner, it would be possible to immobilize a part of an enzymatic 

cascade to a PHB surface and monitor the success spectroscopically. Thereby, the precise 

order of the individual enzymes appears to play a minor role, as demonstrated on the basis of 

in vitro violacein biosynthesis (S. Lim et al., 2020). Here, there was no influence on product 
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titers identifiable whether the fusions consisting of the target enzymes and a catalytically 

inactive dCas9 nuclease were arranged on a synthetic RNA in a “scrambled” or “optimal” order 

relative to each other.  

In the present example, the GPP-converting enzyme IspA could be fused to the already 

established split GFP domain, whereas a heterologous terpene synthase would be genetically 

combined with a split CFP domain emitting blue light after restored chromophore maturation. 

Other split fluorescent protein variants, such as split CFP, have already been characterized 

regarding their photophysical properties, but a transfer to use this system for enzyme 

immobilization is still missing.  

Since the FPP intermediate is known for its numerous inhibitory effects as well as its toxicity 

at high levels [see Chapter III.1.1.1], substrate channeling could minimize these impacts in 

this case. Thus, this approach is a promising extension to the already available metabolic 

engineering concepts for terpene production in R. capsulatus. 

Besides the described application for in vivo terpene biosynthesis, in vitro attempts are also 

possible. In this case, the individual target enzymes could be immobilized on separate 

biopolymers via different split fluorescence proteins to allow monitoring of the exact position of 

a PHB granule bearing the respective enzyme. However, the properties of PHB granules, 

specifically their non-porous structure and ability to aggregate, make them difficult to use in 

most industrial flow chemistry applications (Wong, Ogura et al., 2020). Thus, embedding the 

functionalized PHB granules in hydrogels would be conceivable (Nguyen & Lee, 2010). One 

approach describes the encapsulation of functionalized biopolymers with the anionic 

polysaccharide alginate using calcium ions as cross linkers (Ogura & Rehm, 2019). Here, the 

hydrogel porosity could be controlled by pH during the preparation. In this process, the 

bioengineered beads were produced in E. coli and encapsulated in vitro after isolation showing 

a theoretically suitability for industrial applications (Ogura & Rehm, 2019). Since this procedure 

should work host-independently, in the future, this technique could be applied to PHB granules 

produced in R. capsulatus in this work. 

 

In summary, the evidence gathered in this thesis offer the possibility to establish PHB granules 

functionalized in R. capsulatus as a promising scaffold in terpene biosynthesis and the 

production of other high-value secondary metabolites. This may be achieved by a whole cell 

biocatalyst, as well as providing immobilized biocatalysts for in vitro flow chemistry. 
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