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Summary

In this thesis we consider (in)stability and long-term behavior of a living fluids model,
stability of a model for the heterogenous catalysis process and as a last topic the use of
duality scales on complemented subspaces with regard to partial differential equations.
The first model to be considered, a living fluids model, is given as generalized Navier-
Stokes equations and describes dense bacterial suspensions at low Reynolds number.
In real world experiments as well as in numerical simulations turbulence was observed,
which should be respected by the mathematical model. We establish a complete anal-
ysis of linear and nonlinear stability and instability in the periodic L2-setting about
the two relevant types of equilibria and find parameter sets corresponding to stability
and instability. It has to be noted that one type of equlibria, the ordered polar states,
yields a manifold of equilibria. Therefore, the theory of normal stability and normal hy-
perbolicity is applied to the system. Afterwards, we show that the living fluids model
possesses a global attractor of finite dimension and arbitrary high regularity, which
characterizes the long-term behavior of the model. To this end, we first show that
the equations admit a unique solution with initial values of L2-regularity and obtain
a semigroup from these solutions. Then, theory from infinite dimensional dynamical
systems is applied to show the existence of compact absorbing sets and hence the ex-
istence of a global attractor. In a last step, the properties of this global attractor are
analyzed in more detail to obtain results about regularity and dimensionality.
The second model considered in this thesis stems from chemical engineering and de-
scribes the process of heterogeneous catalysis in a cylinder-shaped domain. Since the
catalysis considered is heterogeneous, we assume the catalyzer to be on the lateral
boundary of the cylinder, which results in a coupled system of equations in the bulk
and on the lateral boundary. We show stability and instability for the heterogeneous
catalysis model in the Lp-setting dependent on the chemical reaction which is chosen
on the lateral boundary. To this end, we apply the principle of linearized stability to
isolated equilibria. One example for such equilibria is given as the state of chemical
balance.
In the last part of this thesis we consider the concept of duality scales of Banach spaces,
which gives a more precise meaning to the powerful concept of duality. Roughly speak-
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ing, the existence of a duality scale with two scales of Banach spaces (Eq)q∈I0 and
(Fq)q∈I0 and a scale of bilinear continuous duality pairings aq(·, ·) (which can e.g. stem
from the weak formulation of elliptic problems) yields solubility of a corresponding
(elliptic) partial differential equation. We show that under certain assumptions re-
garding a consistent projection P on these scales, the property of being a duality scale
is preserved if we consider the complemented subspaces (P (Eq))q∈I0 and (P (Fq))q∈I0 .
This is especially useful in order to obtain solutions for the well known Stokes equa-
tions. As an example, we consider the Stokes operator with mixed-type boundary
conditions on C3-domains with compact boundary and apply the theory of projected
duality scales in order to obtain solutions of regularity W 1+ε,q, where q ∈ (1,∞) and
0 < ε < min{1/q, 1/q′}. Finally, we give some abstract results regarding duality scales
on complemented subspaces which exploit the property of compactness (which can,
e.g. stem from the compact boundary of the underlying domain).

iv



Acknowledgements

First I would like to thank Prof. Dr. Jürgen Saal for his continuous support and guid-
ance during the last years. He always encouraged me to take different views on the
unsolved problems of my thesis and to give another try in order to solve them. His
confidence in me was important and motivating during my work on this thesis.
I would like to thank Prof. Dr. Robert Denk for acting as a referee of my thesis and
for some fruitful discussions we had during my stay in Konstanz.
Furthermore, I would like to thank Prof. Dr. Rüdiger Braun for his readiness to act as
my mentor during the last years.

Moreover, I am very thankful to my colleagues Priv.-Doz. Dr. Matthias Köhne and
Christiane Bui for our joint work on some topics of this thesis and many produc-
tive working sessions. Furthermore, I would like to thank my colleagues and former
colleagues of my research group, Alexander Brück, Dr. Pascal Hobus, Dr. Laura West-
ermann, Dr. Elisabeth Reichwein and Dr. Marcel Braukhoff, for valuable discussions
in our group meetings. We had a pleasant atmosphere and a good time at our re-
search group, which meant much to me. Thanks to Alexander, Christiane, Djurre and
Matthias for proofreading parts of this thesis.
I am very thankful to Petra Simons and Ulrike Alba, who were always open to answer
questions and offer help. I would like to thank Fabian Ruhland for joint work on op-
erating systems and distributed systems and good conversations on these topics.

I am very thankful to my parents Claudia and Erwin and to my sister Melanie for their
support and their confidence in me during all of my studies. They were always there
for me.
I am grateful that life has brought me together with my friends Sören, Sina, Raphael,
Martin and Pascal, with whom I spent many enjoyable and valuable hours together.
I am also grateful for a nice time together with Jan, Bastian, Tobias and Burak during
my undergraduate studies at the Heinrich Heine University.

Düsseldorf, February 2023 Christian Gesse

v



vi



Contents

Contents vii

1 Introduction 1
1.1 Living Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Heterogeneous Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Duality Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 13
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Sobolev Spaces in the Periodic Setting . . . . . . . . . . . . . . . . . . 18
2.3 Stability Theory for Quasilinear Parabolic Problems . . . . . . . . . . . 22
2.4 Infinite-dimensional Dynamical Systems and Global Attractors . . . . . 25
2.5 Duality of Banach Spaces and Projections . . . . . . . . . . . . . . . . 32

2.5.1 Duality Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Dual Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Projections and Duality . . . . . . . . . . . . . . . . . . . . . . 37
2.5.4 Scales of Compact Operators . . . . . . . . . . . . . . . . . . . 40
2.5.5 Consistency of Operator Scales . . . . . . . . . . . . . . . . . . 41

3 Stable and Unstable Flow Regimes for Living Fluids 43
3.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Linear Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Disordered Isotropic State . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Ordered Polar State . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Global Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Nonlinear Stability and Turbulence . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Disordered Isotropic State . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Ordered Polar State . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



Contents

4 A Global Attractor for the Living Fluids Problem 57
4.1 Semiflow on L2

σ(Qn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 H∞-calculus and Maximal Regularity . . . . . . . . . . . . . . . 58
4.1.3 Local and Global Well-Posedness . . . . . . . . . . . . . . . . . 60

4.2 Global Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Absorbing Set in L2

σ(Qn) . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Higher Regularity for Absorbing Sets . . . . . . . . . . . . . . . 70
4.2.3 Existence of a Global Attractor . . . . . . . . . . . . . . . . . . 75
4.2.4 Injectivity on the Attractor . . . . . . . . . . . . . . . . . . . . 76

4.3 Dimensional Bounds for the Global Attractor . . . . . . . . . . . . . . 79
4.4 Inertial Manifold in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Stability for a Class of Heterogeneous Catalysis Models 89
5.1 Maximal Regularity for the Linearized Equations . . . . . . . . . . . . 89
5.2 Lp-stability for Isolated Equilibria . . . . . . . . . . . . . . . . . . . . . 91
5.3 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Duality Scales for Partial Differential Equations 105
6.1 Projections on Duality Scales . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Application to the Stokes Equations . . . . . . . . . . . . . . . . . . . . 113
6.3 A Criterion for Projected Duality Scales based on Compactness . . . . 122

7 Conclusions 127

Contributions 131

Bibliography 133

viii



1 Introduction

Dynamically changing processes occur in many phenomena in our world, e.g. in fluid
flows, evolution of populations, movements of particles or distribution of heat. There-
fore, it is of great interest to develop mathematical models and tools in order to analyze
such processes and learn about their behavior. This leads to the class of evolution equa-
tions, which is a subclass of the so-called partial differential equations in mathematics.

In general, we observe an evolving quantity u (e.g. a temperature, a density of some
substance, a velocity field, etc.), which depends on the time t. Therefore, u(t) describes
the value or state of the quantity at time t. In many cases, we assume the time to
be positive, i.e. t ⩾ 0, and prescribe some initial value u0, which describes the state
of the quantity at the beginning (t = 0), which, for example, could be a real world
measurement of the quantity. Then, a general evolution equation (or system) formally
reads as

u̇ = F (u) (t > 0), u(0) = u0, (1.1)

where u̇ is the time-derivative of u, i.e. the rate of change of the quantity u w.r.t. the
time t, and F is some mapping which describes how the quantity evolves. Note that
in most cases, F depends on the quantity u itself. Given an evolution equation, one
usually has to find spaces X, the solution space where the solution u shall live in, and
Y , the data space where the initial value u0 comes from. These spaces characterize the
properties of the solution and the initial value, which gives rise to different questions
regarding the mathematical treatment. For instance, one can ask for:

• Local solubility: Given any initial value u0 ∈ Y , does there exist a solution u ∈ X

of (1.1) on some time interval (0, T ), where 0 < T <∞ may depend on u0?

• Global solubility: Given any initial value u0 ∈ Y , does there exist a solution
u ∈ X of (1.1) on any time interval (0, T ), where T ∈ (0,∞]?

• Continuous dependence on the data: If one chooses some initial data u1 which
deviates from u0 only at a small scale, does the solution v corresponding to u1 de-
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Chapter 1. Introduction

viate from u corresponding to u0 at a small scale too? In other words, continuous
dependence on the data ensure that small perturbations of the initial values only
cause small perturbations in the solutions. This property becomes important
if one wants to use real world measurements for (numerical) simulations, since
these measurements are usually only accurate up to some degree.

• Uniqueness of the solution: Can there exist two ore more different solutions in
X corresponding to the same initial value u0?

• Stability: Given a steady state (also called equilibrium) of (1.1), i.e. a u∗ ∈ X

with F (u∗) = 0 such that the system is at rest and does not evolve anymore, do
solutions which start from u0 near u∗ converge back to a steady state? A stable
equilibrium will force the system back into some steady state if it is perturbed,
whereas an unstable equilibrium does not have this property and perturbations
can cause the system to evolve further away from the steady state.

• Long-term dynamics: Does there exist a (small) subset A ⊆ X of possible solu-
tions which attracts all other solutions of the system as time evolves? If such an
(global) attractor A exists, the solution to any initial value u0 ∈ Y will evolve
towards the attractor as t → ∞. In such a case, the dynamics of the whole sys-
tem can be reduced to the dynamics on the attractor A, which is in some cases
less complex to analyze.

In many examples of typical evolution equations, the equations have a more concrete
structure than in (1.1), which leads to the development of mathematical tools exploiting
the concrete structure of the equation in order to answer some of these questions. This
is the case for so-called linear, semilinear or quasilinear evolution equations.
This thesis aims to contribute to the last two questions in particular, but also presents
some mathematical theory which helps to answer the first questions.
First, we analyze the model of a living fluid and find conditions for stability and
instability. Afterwards, we consider the long-term dynamics of this model and show
that there exists a global attractor of finite dimension which characterizes the long-
term behavior of any solution. Then, we turn to another model describing the process
of heterogeneous catalysis and establish settings for stability and instability. In the
last part of this thesis, we consider the concept of duality scales. This concept will
help to show the existence of solutions to certain partial differential equations in a
more general way. We will shortly introduce the topics and the results in the following
sections.
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Chapter 1. Introduction

1.1 Living Fluids

The first model which is analyzed in this thesis is a so-called active or living fluid
model. One example for the dynamics of a living fluid is the motion of a dense bac-
terial suspension at low Reynolds number. In this case, a major driving force is the
self-propulsion of the bacteria which causes the motion in the fluid. Observations and
simulations of such suspensions show that active turbulence and the formation of vor-
tices are likely to occur, cf. e.g. [59, 57, 13].
Given these results, it is highly desirable to analyze the behavior of active fluids rig-
orously in a mathematical model. A suitable model using a generalized Navier-Stokes
equations was proposed in [59] and also used e.g. in [14, 36]. This model extends the
Navier-Stokes equations with Swift-Hohenberg and Toner-Tu terms that respect the
behavior of the self-propulsed motion of the bacteria. In this thesis, we use this model
and analyze stability and instability as well as the long-term dynamics. We consider
the equations

v̇ + λ0v · ∇v = f −∇p+ λ1∇|v|2 − (α + β|v|2)v + Γ0∆v − Γ2∆2v,

div v = 0,
v(0) = v0

(1.2)

in a box Qn := [0, L]n with periodic boundary conditions, where L > 0 and n ∈ {2, 3}.
Here, v is the (divergence-free) velocity field of the suspension with n components.
The parameter λ0 ∈ R describes the advection, where λ1 ∈ R describes the active
pressure contribution. In addition, we have a viscosity parameter Γ0 ∈ R and the
Swift-Hohenberg term of fourth order lead by Γ2 > 0, which contributes to pattern
formation of the bacteria. In order to describe the flocking-like behavior of the bacteria
we consider the Toner-Tu term characterized by α ∈ R and β > 0, which determines
the manifold of ordered polar equilibrium states if α < 0. By p we denote the (scalar)
pressure contribution, which only appears as a gradient in the equations.
Note that a rigorous mathematical analysis of this model was first considered in L2(Rn)
(cf. [61]). There, a stability analysis is performed for the isotropic disordered and the
ordered polar state. A major drawback in this analysis is the fact that the manifold
of ordered polar states Bα,β, which consists of vectors of constant velocity of a given
length, and the wave functions for a classical wave ansatz do not belong to L2(Rn).
Therefore, another analysis was carried out in spaces of Fourier transformed Radon
measures FM(Rn) in [9]. Here, the functions of a wave ansatz exp(ik · x + σt) are
contained in FM(Rn). However, in both approaches it seems difficult to capture the
instability behavior of the ordered polar states on the manifold Bα,β. It is shown that a
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Chapter 1. Introduction

single polar state admits instability. But it is unclear, if the solution converges back to
another equilibrium on Bα,β. This behavior near the manifold of equilibria is important
to describe the behavior of active turbulence which is observed in active fluids.
Therefore, our approach carries out the analysis in a bounded box Qn := [0, L]n in
spatial dimensions n = 2 and n = 3 with periodic boundary conditions. There are
several advantages using this setting: on the one hand, all considered equilibrium
states belong to L2(Qn). On the other hand, the corresponding linearized operators
have a discrete point spectrum due to compactness of the resolvent, which makes the
analysis of the spectrum easier and allows us to prove that λ = 0 is a semi-simple
eigenvalue. This gives rise to the application of the theory of normally stable and
normally hyperbolic equilibria (cf. [39, 40, 38] and Section 2.3), which describes the
behavior of solutions near Bα,β rigorously.
In Chapter 3 we address the issue of stability and instability. Therefore, we first collect
the relevant equlibria of (1.2). It turns out that the relevant equilibria consist of the
already mentioned manifold of ordered polar states Bα,β, which are fixed vectors of a
given length, and the disordered isotropic state, where the velocity field equals zero.
Then, we mention basic results of (global) well-posedness and carry out an analysis
of (in)stability in the linear setting, which is based on the Fourier series symbols of
the corresponding linear operators. We see that stability or instability depends on the
parameter set (Γ2,Γ0, α) and - in the case of instability - additionally on the existence of
unstable Fourier modes. Finally, we apply the theory of normally hyperbolic equilibria
to the manifold of ordered polar states Bα,β in order to show evidence for turbulence
under certain conditions for Γ0 < 0. Additionally we use the theory of normally stable
equilibria to the nonlinear system in order to show stability for Γ ⩾ 0 in the phase
space H2

π(Qn) ∩ L2
σ(Qn). Nonlinear (in)stability of the disordered isotropic state will

also be discussed. With these results we have given a complete analysis of stability
and instability of the disordered isotropic and the ordered polar states in the nonlinear
setting. The results presented in this regard where first proposed in [8].
While the behavior of solutions near equilibria already gives some insight into the
dynamics of the living fluid system, we are also interested in the long-term dynamics
of the whole system. Therefore we carry out a complete analysis in this regard in
Chapter 4, based on the theory from [41, 55, 47]. First we show the well-posedness
of (1.2), projected by the Helmholtz projection, with initial values in L2

σ(Qn) in order
to obtain some semigroup S(t) as a solution operator. In the next step, we see that
there exists a global attractor A for this system, which can be roughly described as a
compact set that attracts all solutions. We prove that this attractor is of arbitrary high
regularity. In a last step it is shown that A is finite dimensional in the fractal and the
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Chapter 1. Introduction

Hausdorff dimension. These results imply that the long-term dynamics of (4.1) can be
reduced to a finite dimensional system. If n = 2, then there exists an inertial manifold
that attracts all solutions at an exponential rate and contains the global attractor.
To the best of the author’s knowledge, such types of rigorous analysis where not carried
out to this model in the periodic setting before. However, there exist examples of a
formal stability analysis based on the standard wave ansatz e.g. in [59], and, as already
noted, an analysis of stability and instability in the Rn setting in [61] and [9]. Regarding
the long-term behavior, a complete analysis of the global attractor was carried out,
for instance, for the classical Navier-Stokes equations and the Kuramoto-Sivashinsky
equation (cf. [55]), but not for the living fluids model.

1.2 Heterogeneous Catalysis

The process of catalysis is an important tool in the field in chemical engineering. By
exploiting the reaction of chemical substances with each other, catalysis allows for an
increase in the speed of chemical reactions or for a change of the selectivity in favor of
a desired product of a reaction. Thus, it is used in many real-world applications e.g.
in the automotive industry or laboratory chemical syntheses. For more information on
catalysis in general we refer to [33, 43] and the references therein. For our purpose of
obtaining and analyzing a mathematical model, one can roughly differentiate between
homogeneous catalysis, where the catalyst itself is in the same phase as the other
reactants, and heterogeneous catalysis, where the catalyst is in a different phase and
usually given on a solid wall. In the latter case, a high area-to-volume ratio is required,
which is fulfilled in porous media. For more information on heterogeneous catalysis we
refer to [28, 4, 60]. In this thesis we only consider the case of heterogeneous catalysis
and assume that the catalyzer has the shape of a cylinder, i.e. there is some sufficiently
smooth, simply connected domain G ⊆ R2, which is the floor and the lid of the cylinder,
and a length h > 0 given. We then consider the cylindric domain Ω = G× (0, h). We
may decompose the smooth part of the boundary of this domain into several parts:
the inflow surface Γin = A × {0}, the outflow surface Γout = A × {h} and the lateral
surface Σ = ∂A× (0, h) (cf. Figure 1.1).
The basic idea of the catalysis model is given as follows. We have some velocity field u,
which pushes the substrate in a dilute phase through the cylinder by advection. At the
inflow surface Γin, the substrate is transported into the catalyzer. In the bulk phase Ω,
the substrate is moved by the advection due to the velocity field u and by diffusion due
to diffusive fluxes. The chemical reactants are transported onto the lateral boundary,
the active surface Σ, by adsorption. On the active surface, the chemical reaction of the
catalysis process as well as diffusion take place and the product is then transported
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Chapter 1. Introduction

back into the bulk phase by desorption. Finally, the velocity field transports the
substrate out of the cylinder through the outflow surface Γout. Note that adsorption,
desorption and diffusion take place on a larger time scale than the chemical reaction.
Furthermore, the reaction and the sorption processes take place on the lateral, two
dimensional surface of the cylinder, which may help in the process of mathematical
analysis.
The mathematical model of the heterogeneous catalysis process we use in this thesis
was first considered in [7]. It is derived from continuum mechanics w.r.t. the second
law of thermodynamics in the isothermal case and partial mass balances on bulk and
surface for molar mass concentrations. Additionally, due to the dilute phase in the
bulk, there are diffusive fluxes governed by Fickian diffusion with constant coefficients.
On the lateral boundary, there is no dilute phase in general, but for the mathematical
model the same type of diffusion with constant coefficients is chosen. This results in
a coupled system of diffusion-advection equations in the bulk and reaction-diffusion-
sorption equations on the active surface. For a more detailed outline of the modeling
we refer to [30, 7] and the references therein.

Let A ⊆ R2 be a bounded, simply connected C2-domain and h > 0. Furthermore,
let Ω = A × (0, h) be a finite three-dimensional cylinder and T > 0. We consider the
following coupled system

∂tci + (u · ∇)ci − di∆ci = 0 in (0, T )× Ω,
∂tc

Σ
i − dΣi ∆Σc

Σ
i = rsorpi (ci, cΣi ) + rchi (cΣ) on (0, T )× Σ,

(u · ν)ci − di∂νci = gini on (0, T )× Γin,

−di∂νci = rsorpi (ci, cΣi ) on (0, T )× Σ,
−di∂νci = 0 on (0, T )× Γout,

−dΣi ∂νΣcΣi = 0 on (0, T )× ∂Σ,
ci|t=0 = ci,0 in Ω,
cΣi |t=0 = cΣi,0 on Σ,

(1.3)

where N ∈ N denotes the number of involved species, c := (ci)Ni=1 denote the bulk
concentrations and cΣ := (cΣi )Ni=1 denote the surface concentrations of the involved
chemical species (Ci)Ni=1. A prescribed velocity field u is given in the transport term.
The functions (rsorpi )Ni=1 describe the rates of adsorption and desorption on the lateral
surface, whereas (rchi )Ni=1 describe the chemical reaction rates.
Throughout this thesis we restrict our choice for rsorpi to the linear case

rsorpi (ci, cΣi ) = kadi ci − kdei c
Σ
i , (1.4)
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Chapter 1. Introduction

Figure 1.1: An exemplary cylinder for the heterogeneous catalysis model.

where kadi , kdei > 0. For the choice of rchi , we assume that the reaction of N species is
given as a reversible reaction

N∑︂
k=1

αkCk
κf

⇄
κb

N∑︂
k=1

βkCk.

Here, κf > 0 denotes the forward reaction rate and κb > 0 the backward reaction rate,
while (αk)Nk=1 ∈ ({0} ∪ [1,∞))N and (βk)Nk=1 ∈ ({0} ∪ [1,∞))N , α, β ̸= 0 denote the
stoichiometric coefficients. The reaction rate for this reaction is given through

rchi (cΣ) := (αi − βi)
(︄
κb

N∏︂
k=1

(cΣk )βk − κf
N∏︂
k=1

(cΣk )αk

)︄
. (1.5)

In Chapter 5, we analyze the stability and instability behavior of the equations (1.3).
To this end, we first cite some result on well-posedness of the linearized equations and
propose conditions regarding the equilibria and the velocity field u. Then we prove a
stability result in the Lp-setting for p ∈ [2,∞)\{3} and non-negative equilibria (c∗, cΣ∗ )
using the principle of linearized stability (cf. Section 2.3). This result yields stability
dependent on the first derivative of the chemical reaction rates and the Poincaré con-
stant of the lateral boundary of the cylinder. We provide some examples for isolated
positive equilibria and show that under special circumstances stability is to be expected
without a smallness condition on the first derivative of the chemical reaction rates. In
a last step we present a result on instability.

The equations modeling heterogeneous catalysis processes considered in this thesis
were proposed in [7], where a mathematical analysis of linear and nonlinear local well-
posedness is carried out. Additionally, global well-posedness is proved taking into
consideration a triangular structure for the chemical reactions. There are more recent
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Chapter 1. Introduction

results on the mathematical modeling of the heterogeneous catalysis process, see e.g.
[53] for a detailed approach modeling a coupled system of equations in a suitable
thermodynamic framework. In [6], several limit models are derived taking into account
the time scale on which the chemical reaction and the sorption occur. Additionally,
a three component model problem is analyzed in terms of well-posedness, positivity
of solutions, blow-up criteria and a-priori bounds. The approach is extended to more
general systems in [5]. Recent results regarding global well-posedness of volume-surface
reaction-diffusion systems were presented in [34]. However, no cylindrical structure
with inflow and outflow surface is considered in these works and the results do not
cover stability or instability of equilibria. In [46], a general theory regarding stable and
unstable manifolds is developed for quasilinear problems with nonlinear dynamical
boundary conditions. However, the functional analytic setting in this work differs from
the one we use in this thesis.

1.3 Duality Scales

In the field of fluid dynamics, the Navier-Stokes equations are a standard model to
describe the movement of an incompressible fluid in a given domain Ω ⊆ Rn, where
n ∈ {2, 3}. For a mathematical analysis of these equations the stationary Stokes
equations often play a central role. These are given as

λu−∆u+∇p = f in Ω,
divu = 0 in Ω,
Bu = g on ∂Ω,

where λ > 0, u is the n-dimensional velocity field, p is the pressure, B represents the
imposed (linear) boundary conditions and f and g is the data in appropriately chosen
spaces. Often it is useful to assume homogeneous boundary conditions for a start, i.e.
g = 0. In this case, we can write the equations as

λu−∆u+∇p = f in Ω,
divu = 0 in Ω,

where u is in some Banach space XB where the boundary conditions are fulfilled.
In order to get rid of the divergence condition and the pressure term, one possibility
may be to use a Helmholtz-Weyl projection P and obtain the projected equations

λu−∆u = f in Ω

8
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on XB,σ := P (XB). In this setting, we want to analyze the mathematical properties
of the appearing operator AB,σu := ∆Bu in XB,σ subject to the boundary conditions,
where AB,σ is called the Stokes operator. The question whether the functional analytic
properties of the (often) well-known Laplace operator ABu := ∆Bu on XB can be
carried over to the projected Stokes operator AB,σ on XB,σ arises naturally in this
context. Since there are many results on the Stokes operator or the Stokes equations
on various types of domains (e.g. [52, 20, 10, 3, 51, 35, 50, 16, 48, 49, 31]; see also
the survey [24] and the references in [44]), one could ask if there exists some abstract
theory which links the properties of the operators defined on XB and XB,σ = P (XB),
respectively.
One possible approach arises if we think of weak solutions of elliptic problems, which
lead to the introduction of duality scales. Consider for instance the weak Neumann
problem in

W 1,q
ν (Ω) = {u ∈ W 1,q(Ω,R3) : ν · u|∂Ω = 0}

for some sufficiently smooth domain Ω ⊆ R3 and 1 < p < ∞. We have the weak
formulation

a(u, v) := λ
∫︂
Ω
uv dx+

∫︂
Ω
∇u∇v = ℓ(u) (u ∈ W 1,q′

ν (Ω))

for 1/q+1/q′ = 1 and ℓ ∈ (W 1,q′
ν (Ω))′. This problem has a unique solution v ∈ W 1,q

ν (Ω)
if and only ifW 1,q

ν (Ω) is a representation of the dual space ofW 1,q′
ν (Ω) for 1/q+1/q′ = 1

and q ∈ (1,∞) w.r.t. a. Then we call (W 1,q′
ν (Ω),W 1,q

ν (Ω), a) a duality system.
Considering the Stokes equations, it would be helpful to know whether the duality
system is preserved if we restrict to projected subspaces. In our example, this would
be the application of the Helmholtz projection P . By setting W 1,q

ν,σ (Ω) := P (W 1,q
ν (Ω))

this leads to the question, if (W 1,q′
ν,σ (Ω),W 1,q

ν,σ (Ω), a) also is a duality system, i.e. if

(W 1,q′
ν,σ (Ω))′ = {a(·, y) : y ∈ W 1,q

ν,σ (Ω)} (q ∈ (1,∞), 1/q + 1/q′ = 1).

In a more general notation, let E,F be two Banach spaces that embed into a linear
Haussdorff space H and let a : E × F → C be bilinear and continuous such that

E ′ = {a(·, y) : y ∈ F}, F ′ = {a(x, ·) : x ∈ E},

9
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i.e. such that (E,F, a) is a duality system. If P is a projection on E and F , then we
ask whether the equations

P (E)′ = {a(·, y) : y ∈ P (F )}, P (F )′ = {a(x, ·) : x ∈ P (E)}

hold, such that P (E) and P (F ) are representatives of the duals of P (F ) and P (E)
w.r.t. a.
Note that if P is a symmetric projection w.r.t. a or if (E, a) is a Hilbert space, the
result is true. But if both conditions are not met, it is a priori unclear if the property
of duality is preserved for the projected subspaces.

These considerations lead to the introduction of duality systems and duality scales,
which where first considered in [44] and are introduced in Chapter 2.
As a first step, we establish a more precise meaning of duality between Banach spaces.
In general, for a Banach space E we define its dual by

E ′ := L (E,K),

where K ∈ {R,C} and E ′ is equipped with the induced operator norm. However, this
does not reveal many details about the structure of E ′. Especially if we want to work
with E ′, it is more practicable to have it represented by a well known space, e.g. a Lp

or a Sobolev space. This often leads to some imprecise notations. One example is the
commonly used notation

(Lp(Ω))′ = Lp
′(Ω), 1 < p <∞,

1
p
+ 1
p′

= 1 (1.6)

for a domain Ω ⊆ Rn. Here, the representative of (Lp(Ω))′ is also given as a Lp space,
but w.r.t. the duality pairing

⟨u, v⟩Lp,Lp′ =
∫︂
Ω
uv dx (u ∈ Lp(Ω), v ∈ Lp

′(Ω)).

There can be infinitely many further representatives of (Lp(Ω))′ w.r.t. different duality
pairings, which differ from each other in structure and properties. Consequently, the
notation used in (1.6) is not precise and can lead to wrong conclusions about the
relationship of Banach spaces to each other.
This motivates a more precise notation of duality by the use of duality systems of the
already mentioned form (E,F, a). This notion will be developed further to duality
scales (Eq, Fq, aq)q∈I0 . Here, we consider complex interpolation scales of Banach spaces

10
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like (Eq)q∈I0 and (Fq)q∈I0 , where I0 is some appropriately chosen interval I0 ⊆ R. The
scale parameter q can refer to the integrability of the underlying spaces (e.g. if we work
in Lq spaces) or to the regularity (e.g. if we work in Sobolev spaces). In the latter case
we usually denote the scale parameter by s. In order to work with these duality scales,
the property of strong consistency will play an important role.
In Chapter 6 we deal with the central and already motivated question if the property
of being a duality scale can be preserved if we restrict to complemented subspaces Eq,P
and Fq,P with some projection P on Eq and Fq. This question was already answered
in [44] for a duality scale consisting of a single scale (Eq)q∈I0 of Banach spaces. But it
is - to the best of the author’s knowledge - open if we consider two different scales of
Banach spaces, which leads to new possibilities regarding the application of the results.
In the main theorem of this Chapter it is shown that the property of being a duality
scale can be preserved if, roughly spoken, 1 ∈ ρ(P ′(1 − P )) is fulfilled on the whole
scale, where P ′ is the dual of P w.r.t. a in this case.
Next, we apply this theorem to a stationary Stokes-Neumann problem on C3-domains
with compact boundary and show that we may obtain unique solutions to this problem
in W 1+ε,q

ν,σ (Ω), where q ∈ (1,∞), 0 < ε < min{1/q, 1/q′} and 1/q + 1/q′ = 1. Note
that we only require solubility of the problem in the non-projected spaces W 1+ε,q

ν (Ω)
and use abstract theory in order to obtain solubility in the projected subspaces. A
direct approach to achieve similar results without applying the theory of duality scales
can be found e.g. in [25]. In our case, we may exploit the compactness of P ′(1 − P ),
since it makes the spectrum of the operator invariant for the whole scale. Finally, we
generalize the principles used in the application and present theorems for duality scales
on complemented subspaces which rely on compactness.

11
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2 Preliminaries

2.1 Notation

Let N = {1, 2, 3, ...} denote the natural numbers, N0 = N∪ {0} and Z = N0 ∪ (−N) be
the integers. Moreover, let K ∈ {R,C} be the field of the real or complex numbers and
m,n ∈ N. For a vector x ∈ Kn we denote by xj, j ∈ {1, ..., n} the j-th component and
for a matrix A ∈ Km×n by aij, (i, j) ∈ {1, ...,m} × {1, ..., n} the entry in the i-th row
and the j-th column. By xT and AT we describe the corresponding transposed vector
or matrix. For k = 1, ..., n, let ek denote the unit vector in the k-th direction.
For two matrices A,B ∈ Kn×n we define

A : B :=
n∑︂

i,j=1
aijbij. (2.1)

If D ∈ Kn×n is a diagonal matrix with diagonal values d1, ...dn ∈ K, we set

diag(d1, ..., dn) :=

⎛⎜⎜⎜⎝
d1

. . .
dn

⎞⎟⎟⎟⎠ .

Moreover, given x, y ∈ Rn we write

x · y := (x, y)Rn =
n∑︂
j=1

xjyj

for the standard scalar product and

|x| :=
⎛⎝ n∑︂
j=1

x2j

⎞⎠1/2

for the Eucledian norm defined on Rn.
For a value z ∈ C we denote by Re z and Im z its real and imaginary part, so that
z = Re z+ i Im z, where i is the imaginary unit. We write arg(z) ∈ R for the argument,
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i.e. the angle of a complex value and

Σϕ := {z ∈ C \ {0} : |arg(z)| < ϕ} ⊆ C

for a sector with opening angle ϕ ∈ [0, π]. Moreover, given z = Re z + i Im z ∈ C, we
define the complex conjugation as z := Re z − i Im z. Then, the absolute value of z is
given as

|z| :=
√
z · z (z ∈ C),

and the eucledian norm of a complex vector as

|z| :=
⎛⎝ n∑︂
j=1

|zj|2
⎞⎠1/2

(z = (z1, ..., zn)T ∈ Cn).

For u, z ∈ Cn we write

u · z = (u, z)Cn =
n∑︂
j=1

ujzj.

for the Hermitian inner product on Cn. Additionally, we set

C+ := {z ∈ C : Rez > 0}, C− := {z ∈ C : Rez < 0}.

Let α = (a1, ..., an) ∈ [0,∞)n and x = (x1, ..., xn) ∈ Kn be vectors, then

xα :=
N∏︂
k=1

xαk
k .

For a metric space (X, d), r > 0 and x ∈ X let BX(x, r) be the open ball of radius r
centered at x and BX(x, r) the closed ball respectively. For T ⊆ X let T ◦ be the inner,
∂T the boundary, T the completion and T c the complement of T in X. Moreover,
we write distX(x, T ) for the distance of a point x ∈ X to a set T measured in X and
distX(M,T ) for the distance of two sets M,T ⊆ X in X. If Ω ⊆ Kn is a (sufficiently
smooth) domain, we denote by ∂Ω its boundary and write ν(x) := ν for the outer
normal unit vector at x ∈ ∂Ω.
For a Banach space X we denote its norm by

∥x∥X (x ∈ X)

14
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and for a Hilbert space H we use

(x, y)H (x, y ∈ H)

as the scalar product. For Banach spaces X, Y we write L (X, Y ) for the space of
bounded, linear operators fromX to Y and set L (X,X) = L (X). For an (unbounded)
operator A : D(A) ⊆ X → X with domain of definition D(A) let σ(A) be the spectrum
of A and ρ(A) = C \ σ(A) be the resolvent set of A. Sometimes we write σ(A,X) and
ρ(A,X) respectively if we want to emphasize in which space the operator A is defined.
Furthermore, N(A) and R(A) denote kernel and range of A. Additionally, we set
Lis(X, Y ) for the set of all bounded linear isomorphisms between X and Y , where
X

.= Y denotes that two spaces are isomorphic and such an isomorphism exists. We
write X ′ = L (X,K) for the (abstract) dual space of X equipped with the induced
norm

∥ℓ∥X′ := sup
0̸=x∈X

|ℓ(x)|
∥x∥X

= sup
x∈E, ∥x∥X=1

|ℓ(x)|.

The (abstract) duality pairing between X and X ′ is then denoted by ⟨·, ·⟩X,X′ such
that we can write

ℓ(x) = ⟨x, ℓ⟩X,X′ (x ∈ X, ℓ ∈ X ′).

For a subspace M ⊆ X we define the annihilator as

M⊥ := {ℓ ∈ X ′ : ℓ(x) = 0 (x ∈M)}.

The direct decomposition ofX in two complemented subspacesX1 andX2 is denoted by
X = X1⊕X2. I.e., X1∩X2 = {0} and for every x ∈ X there exist uniquely determined
x1 ∈ X1 and x2 ∈ X2 such that x = x1 + x2. By X ↪→ Y we define the injective,
continuous embedding of X into Y , while with X d

↪→ Y we denote an embedding that
is injective, continuous and dense. If an injective, continuous embedding is compact, we
write X c

↪→ Y . If two Banach spaces X and Y are embedded into a common Hausdorff
space H, then we define the Banach spaces X ∩ Y with norm

∥z∥X∩Y = ∥z∥X + ∥z∥Y (z ∈ X ∩ Y )
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and X + Y := {z = x+ y : x ∈ X, y ∈ Y } with norm

∥z∥X+Y = inf{∥x∥X + ∥y∥Y : z = x+ y (x ∈ X, y ∈ Y )}.

For a general functional T : X → Y and a subset M ⊆ X we write T |M for the restric-
tion of T onto M .
Let n ∈ N and Ω ⊆ Rn be a domain. For a mapping f : Ω → X we denote by ∂jf
for j = 1, ..., n the partial derivative in the j-th direction and by ∂αf the (distribu-
tional) derivative w.r.t. α ∈ Nn

0 . For f : Ω → K we denote by ∇f = (∂1f, ..., ∂nf)T

the gradient and by ∆f = ∇ · ∇f the Laplacian of f , where ∇ = (∂1, ..., ∂n). For
f = (f1, ..., fm) : Ω → Km with m ∈ N we write ∇f = (∇f1, ...,∇fm)T for the Jaco-
bian matrix. The Laplacian then has the form ∆f = (∆f1, ...,∆fm). The divergence
of f : Ω → Kn is given as div f = ∇ · f .
If Ω ⊆ K, we use f ′ for the first derivative. If a mapping u depends (among other
variables) on a time variable t ∈ R, sometimes we will make use of the notation u̇ or ut
for the first derivative w.r.t t. If a mapping φ : M → X is defined on the (sufficiently
smooth) surface M , then ∇Mφ := (∇u)|M −ν(ν · (∇u)|M) denotes the surface gradient
and ∆Mφ := ∇M · ∇Mφ denotes the Laplace-Beltrami operator.
If Ω ⊆ Rn is a domain with (sufficiently smooth) boundary ∂Ω and f : Ω → Km, we
denote by ∂νf the outer normal derivative w.r.t. ∂Ω. The projection onto the nor-
mal and tangential part of a mapping f : Ω → Rn at the boundary ∂Ω is given as
Πνf := (ννT )f and Πτf := (I − ννT )f .
Let Ω ⊆ Rn be a domain or Ω = Rn. For a Banach space X and k ∈ N we will de-
note by C(Ω, X) the space of continuous functions, by Ck(Ω, X) the space of k-times
continuously differentiable functions and by C∞(Ω, X) the space of infinitely often
differentiable functions. Moreover, let CLip(Ω, X) be the space of globally Lipschitz
continuous functions, whereas CLip, loc(Ω, X) is the space of locally Lipschitz continu-
ous functions. Note that these notations remain valid if Ω ⊆ Y is an open subset of a
Banach space Y . Furthermore, let C∞

c (Ω, X) be the space of infinitely often differen-
tiable functions with compact support. For X = Kn we will usually drop the second
parameter. Then, D(Ω) denotes the space of test functions, i.e. C∞

c (Ω) equipped with
the standard topology, and D′(Ω) the space of distributions.
For 1 ⩽ p ⩽ ∞ let Lp(Ω, X) be the Bochner-Lebesgue space equipped with the norm

∥f∥Lp(Ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃∫︂

Ω
∥f(x)∥pXdx

)︃1/p
, 1 < p <∞,

ess sup
x∈Ω

∥f(x)∥X , p = ∞,
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and W k,p(Ω, X) be the Sobolev space of order k ∈ N0 equipped with the norm

∥f∥Wk,p(Ω,X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝∑︂
|α|⩽k

∥∂αf∥pLp(Ω,X)

⎞⎠1/p

, 1 < p <∞,

max
|α|⩽k

∥∂αf(x)∥L∞(Ω,X), p = ∞.

Sometimes we will drop the parameters X and Ω if no confusion is possible. For
s ∈ (0,∞) \ N we denote by

W s,p(Ω, X) := [Lp(Ω, X),W k,p(Ω, X)]s/k,
W s
p (Ω, X) := (Lp(Ω, X),W k,p(Ω, X))s/k,p

the Sobolev and Sobolev-Slobodeckii spaces of order s, where [·, ·] and (·, ·) denote the
complex and real interpolation functors and s < k ∈ N. If p = 2 and s ∈ [0,∞), we
set Hs(Ω, X) = W s,2(Ω, X) and remark that Hs(Ω, X) is a Hilbert space. We utilize
some of these spaces on the boundary Γ = ∂Ω of a domain by implicitly taking trace
or on a manifold Σ by the implicit use of local charts.
In estimates, we will make use of positive constants, which we usually denote by C > 0.
If we want to make a distinction between several constants, we sometimes use the
notation C1, C2, ... or CX , where X is a set of values on which the constant does
depend on.
Throughout this thesis some general results regarding parabolic evolution equations,
especially the theory of analytic semigroups, maximal Lp-regularity, the H∞-calculus
and R-bounded multipliers, will implicitly play an important role. Since these results
are generally well known and part of many other works, we refer the reader to [12, 38, 27]
and the references therein for the definitions and results regarding this topic.
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2.2 Sobolev Spaces in the Periodic Setting

In order to analyze the long-time behavior of so-called living fluids, we will assume peri-
odic boundary conditions for the equations. In this setting, Fourier series and Sobolev
spaces with periodic boundary conditions will play a central role. In the following
section, we give a short introduction into this topic. For more detailed information we
refer to [21, 41, 42] and the references therein.
Let L > 0, ℓ, n ∈ N and Qn := [0, L]n. We define the spaces of smooth functions with
periodic boundary conditions as

Ck
π(Qn) :=

{︂
f ∈ Ck(Qn,Rℓ) : ∂αf |xj=0 = ∂αf |xj=L (∀|α| ⩽ k)

}︂
,

C∞
π (Qn) :=

∞⋂︂
k=0

Ck
π(Qn).

The L2 space with periodic boundary conditions is defined as

L2
π(Qn,Rℓ) := C∞

π (Qn,Rℓ)L
2(Qn,Rℓ)

. (2.2)

In order to simplify the notation we set L2(Qn) := L2
π(Qn) := L2

π(Qn,Rℓ). Indeed, by
[21, Proposition 3.2.1] it follows that the definitions of L2

π(Qn,Rℓ) and L2(Qn,Rℓ) as
a standard Lebesgue space are equivalent. In the following we will just write Ck

π(Qn),
C∞
π (Qn) and L2

π(Qn) if no confusion is likely.
Working in L2(Qn) enables the use of Fourier series in order to represent L2-functions,
which gives several advantages. Let f ∈ L2(Qn). The Fourier coefficient ˆ︁f(m) for
m = (m1, ...,mn) ∈ Zn is defined as the integral

ˆ︁f(m) := Ff(m) := 1
Ln

∫︂
Qn

f(x)e−2πim·x/L dx.

Using integration by parts one easily verifies the identity

ˆ︃∂αf(m) =
(︃2πi
L

)︃|α|
mα ˆ︁f(m) (2.3)

if f ∈ C
|α|
π (Qn), m ∈ Zn and α ∈ Nn

0 . Then the scalar product in L2(Qn) is defined as

(f, g)L2
π(Qn) :=

1
Ln

∫︂
Qn

f(x)g(x) dx (f, g ∈ L2(Qn))

and by ∥·∥L2
π
we denote the induced norm on L2(Qn), which differs by a factor of L−n/2

from the standard L2 norm. Here we will keep the notation L2
π or L2

π(Qn) as a subscript
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to emphasize that we are working in the periodic setting. Some important properties
of the Fourier series and L2(Qn) functions are listed below ([21, Proposition 3.2.7]).

2.1 Proposition. Let f, g ∈ L2(Qn) be arbitrary. The following properties hold in
L2(Qn).

(i) Plancherel theorem:

∥f∥2L2
π(Qn) =

∑︂
m∈Zn

| ˆ︁f(m)|2.

(ii) Parseval’s identity:

(f, g)L2
π
= 1
Ln

∫︂
Qn

f(x)g(x) dx =
∑︂
m∈Zn

ˆ︁f(m)ˆ︁g(m).

(iii) The function f can be represented as the L2(Qn)-limit of trigonometric polyno-
mials, i.e. as the Fourier series

f =
∑︂
m∈Zn

ˆ︁f(m)e2πim·/L.

The periodic Sobolev spaces for k ∈ N are defined as follows.

Hk
π(Qn) :=

{︄
u =

∑︂
m∈Zn

ˆ︁u(m)e2πim·/L : ˆ︁u(m) = ˆ︁u(−m), ∥u∥
H̃

k
π(Qn)

<∞
}︄

=
{︂
u ∈ Hk(Qn) : ∂αu|xj=0 = ∂αu|xj=L, (|α| < k, j = 1, ..., n)

}︂
= C∞

π (Qn)
Hk(Qn)

,

where the norm above is defined as

∥u∥2
H̃

k
π

:=
∑︂
m∈Zn

⃓⃓⃓⃓
⃓
(︄
1 +

(︃2π
L

)︃k
|m|k

)︄ ˆ︁u(m)
⃓⃓⃓⃓
⃓
2

,

cf. [41, Chapter 5.10]. We will also make use of the homogeneous periodic Sobolev
space

ˆ︂H1
π(Qn) = C∞

π (Qn)
∥∇·∥L2(Qn)

=
{︂
u ∈ L1

loc(Qn) : ∇u ∈ L2(Qn), u|xj=0 = u|xj=L (j = 1, ..., n)
}︂

equipped with the semi-norm ∥∇·∥L2
π(Qn) (note that the trace in the second character-

ization is defined in a local sense). If u ∈ Hk
π(Qn) and α ∈ Nn

0 with |α| ⩽ k, then the
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derivative ∂αu can be written as the L2(Qn)-limit

∂αu =
∑︂
k∈Zn

ˆ︃∂αu(k)e2πik·/L =
∑︂
k∈Zn

(︃2πi
L

)︃|α|
kαˆ︁u(k)e2πik·/L,

where we used the fact that the identity in (2.3) also holds for u ∈ Hk
π(Qn). It follows

that the ∥·∥
H̃

k
π(Qn)

and the ∥·∥Hk
π(Qn) norms are equivalent, where

∥u∥2Hk
π(Qn) :=

∑︂
|α|⩽k

∑︂
m∈Zn

⃓⃓⃓(︃2π
L

)︃|α|
mα ˆ︁u(m)

⃓⃓⃓2
,

by the Plancherel theorem. Periodic Sobolev spaces of fractional powers are defined in
the canonical way. For s ⩾ 0 set

Hs
π(Qn) =

{︄
u =

∑︂
m∈Zn

ˆ︁u(m)e2πim·/L : ˆ︁u(m) = ˆ︁u(−m), ∥u∥Hs
π
<∞

}︄
,

where

∥u∥2Hs
π
:=

∑︂
m∈Zn

(︄
1 +

(︃2π
L

)︃2
|m|2

)︄s/2
|ˆ︁u(m)|2,

and it is straightforward to see that for s ∈ N these two definitions for Sobolev spaces
coincide.

Finally, let m : Zn → Cn×n be a function. We define Tm : D(Tm) ⊆ L2(Qn) → L2(Qn)
as the L2(Qn)-limit

Tmf :=
∑︂
k∈Zn

m(k) ˆ︁f(k)e2πik·/L
for a function f ∈ D(Tm), where

D(Tm) :=
⎧⎨⎩f ∈ L2(Qn) : ∥Tmf∥2L2(Qn) =

∑︂
k∈Zn

|m(k) ˆ︁f(k)|2 <∞

⎫⎬⎭ .
Note that Tm is well-defined and a bounded operator by the Plancherel theorem if m
is a bounded function. Then m is called a Fourier multiplier on L2(Qn).
As an important example we introduce the Helmholtz-Weyl projection on L2(Qn). Here
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we use the Fourier multiplier

σP : Zn −→ Cn×n, m ↦→

⎧⎪⎪⎨⎪⎪⎩
I − mmT

|m|2
, m ̸= 0,

I, m = 0,

and set

P : L2(Qn) −→ L2(Qn), u ↦→ Pu :=
∑︂
m∈Zn

σp(m)ˆ︁u(m)e2πim·/L. (2.4)

We obtain the Helmholtz decomposition as L2(Qn) = L2
σ(Qn)⊕G2(Qn) with

L2
σ(Qn) :=

{︂
u ∈ L2(Qn) : ˆ︁u(m) = ˆ︁u(−m), m · ˆ︁u(m) = 0 ∀m ∈ Zn

}︂
= P (L2(Qn)),

G2(Qn) :=
{︂
u = ∇g ∈ L2(Qn) : g ∈ L1

loc(Qn)
}︂
= (I − P )(L2(Qn)).

We note that P admits higher regularity for k ∈ N, i.e. P is a projection on Hk
π(Qn)

with P (Hk
π(Qn)) = Hk

π(Qn) ∩ L2
σ(Qn). With [58] we immediately obtain the following

lemma.

2.2 Lemma. Let θ ∈ [0, 1] and k ∈ N. Then we have

[L2
σ(Qn), Hk

π(Qn) ∩ L2
σ(Qn)]θ = Hkθ

π (Qn) ∩ L2
σ(Qn).

Sobolev-Lieb-Thirring inequality

We recall the Sobolev-Lieb-Thirring inequality in its form for periodic Sobolev spaces
from [19].

2.3 Proposition (Sobolev-Lieb-Thirring inequality). Let m,n ∈ N. For every p sat-
isfying

max
{︃
1, n2m

}︃
< p ⩽ 1 + n

2m

there exists constants C1, C2 > 0 such that for every finite family {ϕj}Nj=1 ⊆ Hm
π (Qn)

(N ∈ N) which is orthonormal in L2(Qn) we have

(︃∫︂
Qn

ρ(x)p/(p−1) dx
)︃2m(p−1)/n

⩽ C1

N∑︂
j=1

∫︂
Qn

∑︂
|α|=m

|∂αϕj(x)|2 dx+ C2

∫︂
Qn

ρ(x) dx,
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where

ρ(x) =
N∑︂
j=1

|ϕj(x)|2.

2.4 Remark. Note that the constants C1 and C2 only depend on k,m, n and p, where
k ∈ N stems from Hm

π (Qn) = Hm
π (Qn,Rk).

2.3 Stability Theory for Quasilinear Parabolic Problems

The principle of linearized stability is an important tool to investigate the behavior
of ordinary differential equations near equilibrium points. For quasilinear parabolic
problems a similar theory is available, which will be of significant importance for the
analysis of equilibria of the living fluids problem (cf. chapter 3) and the heterogeneous
catalysis model (cf. chapter 5). Here, we outline the most important points of this
theory, which is taken from and described in greater detail in [39, 40, 38, 37].
Let E0, E1 be Banach spaces with E1

d
↪→ E0 and 1 < p < ∞. Let Ip := (E0, E1)1−1/p,p

and V ⊆ Ip open. We consider the quasilinear problem

u̇(t) + A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0, (2.5)

where (A,F ) ∈ C1(V,L (E1, E0)×E0) and u0 ∈ V . We denote by E ⊆ V ∩E1 the set
of equilibria of (2.5) fulfilling

u ∈ E ⇔ u ∈ V ∩ E1, A(u)u = F (u).

Especially we have u̇∗ = 0 for u∗ ∈ E . Next, we define a manifold of equilibria for a
quasilinear problem.

2.5 Definition. Let u∗ ∈ E . We say that u∗ lies on a m-dimensional manifold of
equilibria, if there exists an open U ⊆ Rm (where m ∈ N0) with 0 ∈ U and a mapping
Ψ ∈ C1(U,E1) such that

(i) Ψ(U) ⊆ E and Ψ(0) = u∗;

(ii) the rank of Ψ′(0) equals m;

(iii) A(Ψ(η))Ψ(η) = F (Ψ(η)), η ∈ U .

In the following, we will assume that about a fixed u∗ ∈ E there exist no other equilibria
than those that lie on the manifold itself, i.e. there exists a ρ = ρ(u∗) > 0 such that
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E ∩ BE1(u∗, ρ) = Ψ(u). Moreover, we will impose conditions on the tangent space
Tu∗E = Ψ(0)Rm.
In order to analyze the behavior of (2.5) near an equilibrium we will use a first order
linearization at the point u∗. To this end we assume that A(u∗) possesses maximal
Lp-regularity on E0. For u0 ∈ V and u∗ ∈ E we set v := u− u∗ as the deviation of the
solution from the equilibrium and linearize (2.5) as follows.

v̇(t) + A0v(t) = G(v(t)), t > 0, v(0) = v0.

Here, v0 := u0 − u∗,

A0v := A(u∗)v + (A′(u∗)v)u∗ − F ′(u∗) (v ∈ E1), (2.6)

and G(v) := G1(v) +G2(v, v), where

G1(v) := (F (u∗ + v)− F (u∗)− F ′(u∗)v)− (A(u∗ + v)− A(u∗)− A′(u∗)v)u∗,
G2(v, w) := −(A(u∗ + v)− A(u∗))w

for w ∈ E1, v ∈ V∗ := V −u∗. It follows that G1 ∈ C1(V∗, E0) and G2 ∈ C1(V∗×E1, E0)
with

G1(0) = G2(0, 0) = 0, G′
1(0) = G′

2(0, 0) = 0.

Setting ψ(η) := Ψ(η)− u∗ we obtain

A0ψ(η) = G(ψ(η))

for all η ∈ U , which yields A0ψ
′(0) = 0 and Tu∗E ⊆ N(A0).

With these prerequisites we are able to formulate the theorem for normally stable
equilibria, cf. [38, Theorem 5.3.1] and [39].

2.6 Theorem. Let 1 < p < ∞, (A,F ) ∈ C1(V,L (E1, E0) × E0) and u∗ ∈ V ∩ E1 be
an equilibrium of (2.5). Moreover, assume that A(u∗) possesses maximal Lp-regularity.
Let A0 be given as in (2.6). Then u∗ is called normally stable, if the following conditions
are fulfilled.

(i) near u∗ the set of equilibria E is a C1-manifold in E1 of dimension m ∈ N,

(ii) the tangent space at u∗, Tu∗E, is isomorphic to N(A0),

(iii) the eigenvalue λ = 0 of A0 is semi-simple, i.e. E0 = R(A0)⊕N(A0),
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(iv) σ(A0) \ {0} ⊆ C+.

If u∗ is normally stable, then there exists ρ > 0 such that the unique solution u of (2.5)
for u0 ∈ BIp(u∗, ρ) exists on R+ and converges to a u∞ ∈ E in Ip for t → ∞ at an
exponential rate.

The proof of this theorem exploits the spectral properties of A0 to obtain a decompo-
sition of A0 and X0 into a stable and a center part. The equation is then analyzed on
these parts in order to obtain the exponential convergence to an equilibrium u∞ ∈ E .
We make the following observations.

2.7 Remark. (i) It does not necessarily hold that u∗ = u∞. Normal stability only
ensures that every solution u starting near the manifold of equilibria E converges
back onto this manifold.

(ii) In case that m = 0, the manifold of equilibria just consists of one point u∗,
where u∗ is an isolated equilibrium. In this case Theorem 2.6 reduces to the
principle of linearized stability and the solution u converges back to u∞ = u∗

at an exponential rate. We can even relax the conditions imposed on A and F
to A : Ip → L (E1, E0) and F : Ip → E0 being locally Lipschitz continuous.
Additionally, A and F then need to meet the following condition: There exist
constants ρ, ε, L > 0 such that

∥A(u∗ + v)u∗ − A(u∗)u∗ − (A′(u∗)v)u∗∥E0 ⩽ ε∥v∥Ip ,
∥F (u∗ + v)− F (u∗)− F ′(u∗)v∥E0 ⩽ ε∥v∥Ip ,

∥A(u∗ + v)− A(u∗)∥L (E1,E0) ⩽ L∥v∥Ip ,

for ∥v∥Ip ⩽ r. For details we refer to [37].

Another case occurs if we have unstable parts in σ(A0) and there is a spectral gap in
C (cf. [38, Theorem 5.4.1]).

2.8 Theorem. Let 1 < p <∞, (A,F ) ∈ C1(V,L (E1, E0)×E0) and u∗ ∈ V ∩E be an
equilibrium of (2.5). Moreover, assume that A(u∗) possesses maximal Lp-regularity. If
there exists κ ⩾ 0 such that

σ(−A0) ∩ [κ+ iR] = ∅, σ(−A0) ∩ {z ∈ C : Rez > κ} ≠ ∅,

then u∗ ∈ E is unstable in Ip.

A special form of instability occurs in the case of normally hyperbolic equilibria (cf. [38,
Theorem 5.5.1] and [39, Theorem 6.1]), where we have stable and unstable foliations
near u∗.
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2.9 Theorem. Let 1 < p < ∞, (A,F ) ∈ C1(V,L (E1, E0) × E0) and u∗ ∈ V ∩ E1 be
an equilibrium of (2.5). Moreover, assume that A(u∗) possesses maximal Lp-regularity.
Let A0 be given as in (2.6). Then u∗ is called normally hyperbolic, if the following
conditions are fulfilled.

(i) near u∗ the set of equilibria E is a C1-manifold in E1 of dimension m ∈ N,

(ii) the tangent space at u∗, Tu∗E, is isomorphic to N(A0),

(iii) the eigenvalue λ = 0 of A0 is semi-simple, i.e. E0 = R(A0)⊕N(A0),

(iv) σ(A0) ∩ iR = {0} and σu := σ(A0) ∩ C− ̸= ∅.

If u∗ is normally hyperbolic, then u∗ is unstable in Ip. For each sufficiently small ρ > 0
there exists 0 < δ ⩽ ρ, such that the unique solution u of (2.5) for u0 ∈ BIp(u∗, δ)
either satisfies

• distIp(u(t0), E) > ρ for some finite t0 > 0 or

• u(t) exists on R+ and converges to an u∞ ∈ E in Ip for t→ ∞ at an exponential
rate.

2.4 Infinite-dimensional Dynamical Systems and Global At-
tractors

Besides the analysis of the behavior of solutions near equilibria of partial differential
equations, another important topic is the long-time behavior of solutions. This leads
to the theory of dynamical systems and their attractors. Especially the existence and
properties of a so-called global attractor, which can be roughly described as a compact
set which attracts all solutions after some time, is of special interest. Since we will use
this theory in order to analyze the long-time behavior of the living fluids model, we
give a brief introduction. We use the terminology and results from [41], but refer also
to [55, 47].
In order to describe time-dependent processes, we want analyze (time-dependent) par-
tial differential equations and therefore work with evolution equations of type

d

dt
u(t) = F (u(t)), u(0) = u0, (2.7)

where u(t), u0 ∈ X for some Banach space X and F : X → X. In case of parabolic
partial differential equations a solution u for (2.7) only exists for t ⩾ 0. In order to
describe such types of solutions, we introduce the notion of semigroups.
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2.10 Definition. A familiy of mappings (S(t))t⩾0 ⊆ C(X) is called C0-semigroup, if
the following conditions are fulfilled.

(i) S(0) = I, where I is the identity operator on X,

(ii) S(s+ t) = S(s)S(t) = S(t)S(s) for s, t ⩾ 0,

(iii) and S(t)x is continuous in t ⩾ 0 for x ∈ X.

If S(t) additionally exists for t < 0 fulfilling these properties, we call (S(t))t∈R ⊆ C(X)
a (C0)-group. Note that S(t) is nonlinear in general. We will just write S for a
semigroup if no confusion is likely.

One can use semigroups to write the solution of u(t;u0) of (2.7) with initial value u0 ∈ X

in the form u(t;u0) = S(t)u0. This gives rise to the notation of a semidynamical system,
which is given by (X, (S(t))t⩾0), where S is sometimes denoted as a semiflow. If the
solution exists also for t < 0, we call (X, (S(t))t∈R) a dynamical system.

2.11 Remark. Note that especially in the theory of analytic semigroups, the semigroup
S is generally assumed to be generated by a linear operator A. In the context of
dynamical systems however, the semigroup S mostly corresponds to some nonlinear
function F since it can be seen as a (nonlinear) solution operator to an evolution
equation.

As outlined at the beginning of the section, we usually want to find a set M ⊆ X

which attracts the solutions of the equation. To formalize this notion, we introduce
dissipative semigroups as follows.

2.12 Definition. A set B ⊆ X is called absorbing set, if for any bounded set M ⊆ X

there exists a finite t0(M) ⩾ 0 such that

S(t)M ⊆ B for all t ⩾ t0(M),

where S(t)M describes the image of M under S(t). A (semi-)group S is called dissi-
pative if it possesses a compact absorbing set.

2.13 Definition. A set M ⊆ X is called positively invariant under the semigroup S,
if

S(t)M ⊆M (t ⩾ 0).

It is called invariant under S, if

S(t)M =M (t ⩾ 0).
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One may note that in general we want absorbing sets to be compact since we work in
infinite dimensional Banach spaces. The intention of dissipativity is that it helps to
find a global attractor A, which is defined as follows.

2.14 Definition. The global attractor A of a semigroup S is given as a set A ⊆ X

which is the maximal compact invariant set under S and the minimal set that attracts
all bounded sets M ⊆ X, i.e.

distX(S(t)M,A) t→∞−−−→ 0.

From the definition it is not clear how to obtain such a set A. We introduce the notion
of the ω-limit set, which is given as

ω(M) := {x ∈ X : ∃(tn)n∈N ⊆ (0,∞), tn n→∞−−−→ ∞, (xn)n∈N ⊆M with S(tn)xn n→∞−−−→ x}

and can also be characterized as

ω(M) =
⋂︂
t⩾0

⋃︂
s⩾t

S(s)M.

If M is an absorbing set, then the ω-limit set simplifies to

ω(M) =
⋂︂
t⩾0

S(t)M. (2.8)

Using the notion of an ω-limit set we are able to describe the existence of a global
attractor for a dissipative semigroup as follows.

2.15 Theorem. Let the semigroup S be dissipative and B ⊆ X be a compact absorbing
set. Then there exists a global attractor A which is given as A = ω(B). In addition,
A is connected if X is connected.

This theorem reduces the task of finding a global attractor to showing that the semi-
group possesses a compact absorbing set. In particular, the dynamics of S on the global
attractor A is of interest. If the semigroup yields injectivity on A, then the dynamics
on A is even defined for t ∈ R and we obtain a dynamical system on A.

2.16 Theorem. Let S be a semigroup on X which possesses a global attractor A. If
S is injective on A, i.e.

S(t)u0 = S(t)u1 for some t > 0 ⇒ u0 = u1 (u0, u1 ∈ A), (2.9)

then every trajectory of S in A is defined for t ∈ R and we have S(t)A = A for t ∈ R.
Moreover, (A, (S(t))t∈R) is a dynamical system.
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In order to prove injectivity of S on A in a Hilbert space setting, the following Lemma
can be helpful.

2.17 Lemma. Let H and V be Hilbert spaces and V ′ be the dual of V such that
V

c
↪→ H

.= H ′ ↪→ V ′ by the Riesz representation theorem. Suppose that

w ∈ L∞((0, T ), V ) ∩ L2((0, T ), D(A))

satisfies

ẇ + Aw = h(t, w)

as an equality in L2((0, T ), H), where A ∈ L (V, V ′) and

∥h(t, w(t))∥H ⩽ k(t)∥w(t)∥V

with k ∈ L2((0, T )). If w(t0) = 0 for some t0 > 0, then w(t) = 0 for all t ∈ (0, t0).

Given a global attractor A, studying the long-term dynamics of an evolution equation
can now be reduced to studying the dynamics on A, which - depending on the structure
of A - can be a somewhat easier task. Indeed, we will see that in some cases the global
attractor admits a finite dimensional structure in opposite to the infinite dimensional
phase space X. Consequently, it seems to be useful to analyze the structure of a global
attractor in greater detail. One first result is given for injective semigroups on A.

2.18 Definition. Let S be a semigroup on X with global attractor A. A complete
orbit is a solution of the (partial) differential equation (2.7) that is defined for all t ∈ R.

2.19 Theorem. Let S be a semigroup on X with global attractor A. Then all complete
bounded orbits lie in A. If S is injective on A in the sense of (2.9), then A is the union
of all complete bounded orbits.

Another fact about the global attractor concerns the so-called unstable manifold of
compact invariant sets. The stable and unstable manifolds are defined as follows.

2.20 Definition. Let S be a semigroup on X and x ∈ X be fixed. The stable manifold
of x is given as

W s(x) := {u0 ∈ X : S(t)u0 t→∞−−−→ x}

and the unstable manifold of x is given as

W u(x) := {u0 ∈ X : S(t)u0 is defined for t ∈ R, S(−t)u0 t→∞−−−→ x}.
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If M ⊆ X is an invariant set, then we have

W u(M) := {u0 ∈ X : S(t)u0 is defined for t ∈ R, distX(S(−t)u0,M) t→∞−−−→ 0}.

We have the following result.

2.21 Theorem. Let S be a semigroup on X with global attractor A. If M is a compact
invariant set, then W u(M) ⊆ A.

Now that we have some results about the global attractor at hand and it is somehow
clear that the long-term dynamics of (2.7) is connected to the global attractor, one
may ask if the relationship between the latter two can be expressed detailed. In fact,
we have the following result.

2.22 Theorem. Let S be a semigroup on X with global attractor A. Given a solution
u of (2.7), there exists a sequence of errors (εk)k∈N ⊆ (0,∞) with εk → 0 for k → ∞
and an increasing sequence of times (tk)k∈N ⊆ (0,∞) with

tk+1 − tk −→ ∞ for k −→ ∞

and a sequence of points on the attractor (vk)k∈N ⊆ A such that

∥u(t)− S(t− tk)vk∥X ⩽ εk for all tk ⩽ t ⩽ tk+1.

Moreover, ∥vk+1 − S(tk+1 − tk)vk∥X decreases to zero.

The result shows that each solution of the evolution equation is tracked by the dy-
namics on the attractor after some time. Roughly speaking, instead of analyzing the
long-term behavior of (2.7) we can analyze the dynamics of the global attractor.
In most cases, the global attractor is a smaller subset of X such that we expect a better
understanding of the dynamics. However, the question remains in which sense A is
smaller than X given the fact that X is usually infinite dimensional. A finite dimen-
sional attractor would reduce the dynamics to a simpler structure which is easier to
analyze. Although A is not a manifold of finite dimension in general, we are interested
in dimensional bounds on A by using different notions of dimensions. To this end, we
introduce the fractal and the Hausdorff dimension, which can be used to bound the
dimension of A.

2.23 Definition (Fractal dimension). Let M ⊆ X be relatively compact and N(M, ε)
be the minimum number of balls of radius ε > 0 that are needed to cover M . Then
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the fractal dimension of M is defined as

df (M) := lim sup
ε→0

log(N(M, ε))
log(1/ε) .

Here, the balls that are used to cover a set M have to be of equal radius ε > 0. For
the Hausdorff dimension, we require the radius of the balls to be bounded by ε > 0,
but allow different radii. This results in the definition of the Hausdorff measure.

2.24 Definition (Hausdorff measure). Let M ⊆ X and ε, d > 0. We set

µ(M,d, ε) := inf
{︄∑︂

k

rdk : 0 < rk ⩽ ε, M ⊆
⋃︂
k

BX(xk, rk)
}︄

and define the d-dimensional Hausdorff-measure of M as

Hd(M) := lim
ε→0

µ(M,d, ε).

One can see that for a fixed compact set M ⊆ X there may be one δ > 0 such that
Hd(M) = 0 for d < δ and Hd(M) = ∞ for d > δ. This gives rise to the definition of
the Hausdorff dimension.

2.25 Definition (Hausdorff dimension). Let M ⊆ X be a compact set. Then the
Hausdorff dimension is defined as

dH(M) := inf
d>0

{d : Hd(M) = 0}.

A rough comparison between these two definitions of dimensions is given in the follow-
ing remark. For more properties we refer to [41, Chapter 13].

2.26 Remark. Let M ⊆ X be compact. Then dH(M) ⩽ df (M).

Next we want to find conditions under which the global attractor A is expected to be
finite dimensional in the sense introduced above. We restrict to the case that X = H

is a Hilbert space since the application in this thesis restricts to this case, too. The
first assumption we have to make is the uniform differentiability of the semigroup S

on the attractor.

2.27 Definition. Let S be a semigroup on H with global attractor A. Then S is
uniformly differentiable on A, if for every x ∈ A there exists a bounded linear operator
Λ(t, x) ∈ L (H) such that for all t ⩾ 0 we have

sup
x,y∈A; 0<∥x−y∥H⩽ε

∥S(t)y − S(t)x− Λ(t, x)(y − x)∥H
∥y − x∥H

ε→0−−→ 0
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and additionally

sup
x∈A

∥Λ(t, x)∥L (H) <∞

is fulfilled for each t ⩾ 0.

In addition we need to impose a rather technical condition which arises from the proof
of Theorem 2.28 (cf. [41, Chapter 13]). We consider the linearized equation (2.7) in
the form

d

dt
v = F ′(S(t)u0)v(t), v(0) = v0, (2.10)

where we assume F to be differentiable, v0 ∈ H and S to be the semigroup corre-
sponding to the original equation (2.7) with initial value u0 ∈ H. Moreover, we set
L(t, u0) := F ′(S(t)u0) and assume that Λ(t, u)v0 is the solution of (2.10).
Now, we fix m ∈ N and {ξ0j : j = 1, ...m} ⊆ H where the ξ0j are linearly indepen-
dent. Then ξj(t) = Λ(t, u0)ξ0j is the solution of (2.10) with initial value ξ0j . We define
Pm
ξ01 ,...,ξ

0
m
(t) as the projection onto the subspace spanned by the vectors ξj(t), j = 1, ...,m

for t ⩾ 0 and set

T Rm(A) := sup
u0∈A

sup
ξ0
j
∈H

∥ξ0
j
∥H⩽1

j=1,...,m

⟨︂
Tr
(︂
L(t, u0)Pm

ξ01 ,...,ξ
0
m
(t)
)︂⟩︂
, (2.11)

where Tr is the trace of the operator and ⟨f(t)⟩ is the time-average given by

⟨f(t)⟩ = lim sup
t→∞

1
t

∫︂ t

0
f(s)ds.

With these notions clarified, we can state the theorem for finite dimensional global
attractors.

2.28 Theorem. Suppose that the semigroup S on H with global attractor A is uni-
formly differentiable on A and that there exists a t0 > 0 such that Λ(t, u0) is compact
for all t ⩾ t0. Then df (A) ⩽ m, if T Rm(A) < 0.

With this final result we close the short introduction into infinite dimensional systems
and their global attractors and refer the reader to the literature stated at the beginning
of this section for further details, especially regarding the proofs of the theorems.
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Gronwall inequalities

An important tool to obtain estimates in the setting of dynamical systems is the lemma
of Gronwall. We will present the standard and a generalized Gronwall lemma, which
are taken from [55, III. Section 1.1.3]. The standard Gronwall lemma reads as.

2.29 Lemma (Standard Gronwall Lemma). Let g, h, y be three locally integrable func-
tions on (t0,∞) for some t0 ⩾ 0 that satisfy the inequality

ẏ(t) ⩽ g(t)y(t) + h(t) (t ⩾ t0),

where ẏ = dy
dt

is locally integrable. Then we have

y(t) ⩽ y(t0) exp
(︃∫︂ t

t0
g(τ) dτ

)︃
+
∫︂ t

t0
h(s) exp

(︃∫︂ t

s
g(τ) dτ

)︃
ds (t ⩾ t0).

While this version of the Gronwall lemma is especially useful for bounded values of t,
it is of interest to have a version where the bound does not grow exponentially in t.
This leads to the generalized Gronwall lemma, which gives a uniform bound for t ⩾ t0.

2.30 Lemma (Generalized Gronwall Lemma). Let g, h, y be three positive, locally inte-
grable functions on (t0,∞) for some t0 ⩾ 0, such that ẏ is locally integrable on (t0,∞)
and

ẏ(t) ⩽ g(t)y(t) + h(t) (t ⩾ t0)

is satisfied. Furthermore, assume that
∫︂ t+r

t
g(s) ds ⩽ C1,

∫︂ t+r

t
h(s) ds ⩽ C2,

∫︂ t+r

t
y(s) ds ⩽ C3 (t ⩾ t0),

where r > 0 and C1, C2, C3 > 0 may depend on r but not on t. Then we have

y(t+ r) ⩽
(︃
C3

r
+ C2

)︃
exp(C1) (t ⩾ t0).

2.5 Duality of Banach Spaces and Projections

2.5.1 Duality Scales

Based on [44] we give a short introduction to duality pairings and duality scales. We
skip the proofs and refer to the original work for more details. Most of them are rather
straight forward and elementary. In the following, let E and F be real or complex
valued Banach spaces. We begin with a first definition of a duality pairing.
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2.31 Definition (Duality systems). (1) A duality pairing for (E,F ) is a bilinear
form

a(·, ·) : E × F → C

that is continuous in the sense of

|a(x, y)| ⩽ C∥x∥E∥y∥F (x ∈ E, y ∈ F )

for some C > 0.

(2) A triple (E,F, a) is called right duality system, if the mapping

ra : F → E ′, y ↦−→ ra(y) := a(·, y)

is bijective. We call F the dual space of E w.r.t. a in that case and write F = E ′
a.

(3) A triple (E,F, a) is called left duality system, if the mapping

ℓa : E → F ′, x ↦−→ ℓa(x) := a(x, ·)

is bijective. We call E the dual space of F w.r.t. a in that case and write E = F ′
a.

(4) A triple (E,F, a) is called duality system if it is a left and a right duality system.

This definition gives rise to some facts that we will collect in the following remark.

2.32 Remark. (1) If (E,F, a) is a right duality system, then we have equivalence of
∥·∥F and the induced norm

∥y∥aF := sup
0̸=x∈E

|a(x, y)|
∥x∥E

. (2.12)

Furthermore, we have

E ′ = {a(·, y) : y ∈ F},

which justifies the notation F = E ′
a. The corresponding assertions also hold in

the case that (E,F, a) is a left duality system.

(2) Let (E,F, a) be a right duality system. Then (E,F, a) is a left duality system if
and only if E (and hence F ) is reflexive. The corresponding assertion also holds,
if (E,F, a) is a left duality system.
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(3) We may introduce operators

Ar : F → E ′, y ↦−→ Ary := a(·, y),
Aℓ : E → F ′, x ↦−→ Aℓx := a(x, ·),

which are continuous since a is continuous. We have Ar ∈ Lis(F,E ′) if and only
if (E,F, a) is a right duality system and Aℓ ∈ Lis(E,F ′) is and only if (E,F, a)
is a left duality system.

After introducing these basic notations, we consider duality pairings on scales of Banach
spaces. We will use two types of parameters for these scales in this thesis, i.e.

• Let q0 ∈ (2,∞]. Then we set I0 := (q′0, q0) where 1/q0 + 1/q′0 = 1 and consider
scales (Eq)q∈I0 of Banach spaces which are centered at q = 2. Typically, this type
of scale parameter q describes a integrability parameter, e.g., for spaces Eq = Lq.

• Let s0 > 0. Then we set I0 := (−s0, s0) and consider scales (Es)s∈I0 of Banach
spaces which are centered at s = 0. Typically, this type of scale parameter s
describes a regularity parameter, e.g. for spaces Es = W s,q with a fixed q ∈ [1,∞].

In the following, we will consider the latter case of a regularity parameter s, but all
arguments work with an integrability parameter q after some minor modifications. We
will assume that Es ↪→ H for all s ∈ I0 and some fixed Hausdorff space H. The next
definition clarifies what we understand under a complex interpolation scale.

2.33 Definition. A scale (Es)s∈I0 of Banach spaces is called complex interpolation
scale, if the following conditions hold.

(i) Er ∩ Es
d
↪→ Eq for q ∈ [r, s], r, s ∈ I0,

(ii) Eq = [Er, Es]θ for q, r, s ∈ I0, θ ∈ [0, 1] with q = θs+ (1− θ)r.

In order to define a scale of duality systems, we must consider consistency of duality
pairings on the scales of Banach spaces they are operating on. While consistency
ensures that a mapping is well-behaved on a scale of spaces, we will introduce the
stronger notion of strong consistency, which is necessary to obtain well-behaved scales
of duality pairings.

2.34 Definition ((Strong) consistency). Let (Es)s∈I0 , (Fs)s∈I0 be two complex inter-
polation scales and (as)s∈I0 be a scale of duality pairings as : E−s × Fs → C.
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(i) Let (As)s∈I0 be a scale of mappings As : Es → K into some fixed Hausdorff space
K. We say that (As)s∈I0 is consistent on (Es)s∈I0 , if

Ar|Er∩Es = As|Er∩Es (r, s ∈ I0).

(ii) The scale (as)s∈I0 is called consistent on (Es, Fs)s∈I0 , if (as)s∈I0 is consistent on
(E−s × Fs)s∈I0 in the sense introduced in (i).

(iii) The scale (as)s∈I0 is called strongly right consistent on (Es, Fs)s∈I0 , if for arbitrary
r, s ∈ I0 and x ∈ Fr, y ∈ Fs we have

ar(x′, x) = as(x′, y) (x′ ∈ E−r ∩ E−s) ⇔ x = y in H.

The scale (as)s∈I0 is called strongly left consistent on (Es, Fs)s∈I0 , if for arbitrary
−r,−s ∈ I0 and x′ ∈ E−r, y′ ∈ E−s we have

ar(x′, x) = as(y′, x) (x ∈ Fr ∩ Fs) ⇔ x′ = y′ in H.

Here, we assume Es ↪→ H and Fs ↪→ H for all s ∈ I0 and a Hausdorff space H.
The scale (as)s∈I0 is called strongly consistent on (Es, Fs)s∈I0 , if it is strongly left
consistent and strongly right consistent.

2.35 Remark. Let (E1, F1, a1) and (E2, F2, a2) be duality systems with E2 ↪→ E1,
F1 ↪→ F2 and a1 and a2 consistent. Moreover, let x1 ∈ E1 and x2 ∈ E2 such that

a1(x1, x′) = a2(x2, x′) (x′ ∈ F1 ∩ F2). (2.13)

Then we already have x2 ∈ E1 and x′ ∈ F1 = F1 ∩ F2. It follows by the fact that
(E1, F1, a1) is a duality system, that x1 = x2. If in converse x1 = x2, then (2.13)
follows directly, so that we have proved strong left consistency for the two duality
pairings. In the same way one can show strong right consistency in this case, such that
we obtain strong consistency.

The definition of strong consistency enables us to define a duality scale on two scales
of Banach spaces, which is given as follows.

2.36 Definition (Duality scales). We assume that for every s ∈ I0 a duality pairing
as(·, ·) : E−s×Fs → C is given. Then the scale (Es, Fs, as)s∈I0 is called duality scale, if

(1) (Es)s∈I0 and (Fs)s∈I0 are complex interpolation scales;

(2) (as)s∈I0 is strongly consistent on (Es, Fs)s∈I0 ;

35



Chapter 2. Preliminaries

(3) (E−s, Fs, as)s∈I0 is a duality system for every s ∈ I0.

2.37 Remark. (i) It is clear that every duality scale (Es, Fs, as)s∈I0 consists of re-
flexive Banach spaces due to Remark 2.32 (2)

(ii) If (Es)s∈I0 and (Fs)s∈I0 are decreasing scales, i.e. Er ↪→ Es and Fr ↪→ Fs for
r ⩾ s, then strong consistency is automatically fulfilled if the duality pairings are
consistent (cf. Remark 2.35).

The next result deals with the dual space of sums and intersections of Banach spaces
and underlines the importance of strong consistency.

2.38 Lemma. Let E,F, Ẽ, F̃ ↪→ H be reflexive Banach spaces with E ∩ F
d
↪→ E,F

and Ẽ ∩ F̃ d
↪→ Ẽ, F̃ . For two right duality systems (E, Ẽ, aE) and (F, F̃ , aF ) we define

the mapping

ba : (E ∩ F )× (Ẽ + F̃ ) → C, ba(x, x′) = aE(x, x′E) + aF (x, x′F )

for x′ = x′E + x′F with x′E ∈ Ẽ and x′F ∈ F̃ . Then are equivalent:

(i) for x′ ∈ Ẽ and y′ ∈ F̃ it holds that

aE(·, x′)|(E∩F ) = aF (·, y′)|(E∩F ) ⇔ x′ = y′ in H.

(ii) (E ∩ F, Ẽ + F̃ , ba) is a right duality system.

(iii) For

ΦE : Ẽ → E ′, x ↦→ aE(·, x),
ΦF : F̃ → F ′, x ↦→ aF (·, x),

we have ΦEx = ΦFx in E ′ + F ′ for x ∈ Ẽ ∩ F̃ as well as (ΦE)−1ℓ = (ΦF )−1ℓ for
ℓ ∈ E ′ ∩ F ′ in H.

2.39 Remark. (1) Note that strong consistency implies consistency in the sense of
Definition 2.34 (ii). By the consistency, in turn, the map ba is well-defined.

(2) By Remark 2.32 (2) we have that (E ∩ F, Ẽ + F̃ , ba) is even a duality system if
condition (i) is fulfilled. The analogous assertions hold if the lemma is formulated
for left duality systems.

(3) The consequence of this lemma underlines the importance of the notion of strong
consistency. Especially, we obtain that (E−r∩E−s, Fr+Fs, ba) is a duality system
for r, s ∈ I0, given a duality scale (Es, Fs, as)s∈I0 .
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2.5.2 Dual Operators

In order to define dual operators w.r.t. a duality pairing we consider two duality systems
(E1, Ẽ1, aE1) and (E2, Ẽ2, aE2). Then, for an operator T ∈ L (E1, E2) we can define
the dual operator w.r.t. the duality pairings as follows. For every x′ ∈ Ẽ2 we see that

(x ↦→ aE2(Tx, x′)) ∈ E ′
1

such that (by the meaning of a duality system) there exists a unique y′ ∈ Ẽ1 with

aE1(x, y′) = aE2(Tx, x′) (x ∈ E1).

Thus, we can define

T ′
aE

: Ẽ2 → Ẽ1, x′ ↦→ T ′
aE
x′ := y′

as the dual operator of T w.r.t. (aE1 , aE2). Now, set ℓx′ = aE2(·, x′) ∈ E ′
2 and let

T ′ ∈ L (E ′
2, E

′
2) be the standard dual operator. Then we have

(T ′ℓx′)(x) = ℓx′(Tx) = aE2(Tx, x′) = aE1(x, T ′
ax

′) (x ∈ E1).

This shows that - as with the definition of the dual space itself - we have to be careful
with the definition of the dual operator, since we can have different representations of
T ′ depending on the duality pairing we chose.
This definition of the dual operator gives rise to the question of consistency of dual
operators, which is answered by the following lemma.

2.40 Lemma. For j = 1, 2 let (Ej, Ẽj, aEj) and (Fj, F̃ j, aFj) be duality systems satis-
fying the assumptions of Lemma 2.38. Moreover, let one of the equivalences of Lemma
2.38 be satisfied for j = 1, 2. Then for all TE ∈ L (E1, E2), TF ∈ L (F1, F2) such
that TE = TF on E1 ∩ F1, we have T ′

aE
= T ′

aF
on Ẽ2 ∩ F̃ 2 for the corresponding dual

operators.

2.41 Remark. Note that Lemma 2.40 especially implies consistency of dual operators
on duality scales.

2.5.3 Projections and Duality

For a great number of partial differential equations, especially concerning fluid dy-
namics, projections on subspaces, e.g. the Helmholtz projection, are of special interest.
Given a duality scale (Es, Fs, as)s∈I0 and consistent scales of projections (Ps,F )s∈I0 on
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(Fs)s∈I0 and (Ps,E)s∈I0 on (Es)s∈I0 , one could ask if (PEEs, PFFs, as)s∈I0 is a duality
scale, too. Here, we skipped the indices of the different projections due to their con-
sistency. We will treat this question in chapter 6, but give a short overview over the
important results regarding projections and duality.
We begin with some basic facts about projections. Let P be a projection on a Banach
space E, i.e. P ∈ L (E) and P 2 = P . We set EP := P (E). It is well known that EP
is a closed complemented subspace of E, i.e.

E = EP ⊕ E1−P .

We collect some properties of the dual of P . Therefore, let (E,F, a) be a duality system
and P ∈ L (E) be a projection on E. We set P ′ := (P )′a as the dual operator of P
w.r.t. a. Additionally, we define the annihilators of subsets A ⊆ E and B ⊆ F w.r.t a
as follows.

A⊥
a := {x′ ∈ F : a(x, x′) = 0 (x ∈ A)}

B⊥
a := {x ∈ E : a(x, x′) = 0 (x′ ∈ B)}

With these information in mind we state some results on projections and their dual
operators.

2.42 Lemma. Let E, F be Banach spaces, P be a projection on E and (E,F, a) be a
duality system. We write P ′ for P ′

a since no confusion is possible here.

(i) P ′ is a projection on F with

(EP )⊥a = F1−P ′ and (E1−P )⊥a = FP ′

and

(F1−P ′)⊥a = EP and (FP ′)⊥a = E1−P .

w.r.t. a. Moreover,

(EP , FP ′ , a) and (E1−P , F1−P ′ , a)

are duality systems.

(ii) If X is another Banach space and T ∈ Lis(E,X), then

X = T (EP )⊕ T (E1−P ).
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(iii) If T ∈ L (E), then T ∈ Lis(EP ) ∩ Lis(E1−P ) implies T ∈ Lis(E).

Now we will consider the situation that scales of projections are given. In the following,
we set (Ps,E)′ = P ′

s,E ∈ L (F−s) to simplify notation. We obtain the following result.

2.43 Lemma. Let (Es, Fs, as)s∈I0 be a duality scale and (Ps,E)s∈I0, (Ps,F )s∈I0 be con-
sistent scales of projections on (Es)s∈I0 and (Fs)s∈I0 respectively. Then the following
assertions hold.

(i) (P ′
−s,E)s∈I0 is a consistent scale of projections on (Fs)s∈I0 and (P ′

−s,F )s∈I0 is a
consistent scale of projections on (Es)s∈I0.

(ii) For every r, s ∈ I0 we have

Er ∩ Es =
(︂
Er,Pr,E

∩ Es,Ps,E

)︂
⊕
(︂
Er,1−Pr,E

∩ Es,1−Ps,E

)︂
,

Fr ∩ Fs =
(︂
Fr,Pr,F

∩ Fs,Ps,F

)︂
⊕
(︂
Fr,1−Pr,F

∩ Fs,1−Ps,F

)︂
.

(iii) For every r, s ∈ I0 we have

Er + Es =
(︂
Er,Pr,E

+ Es,Ps,E

)︂
⊕
(︂
Er,1−Pr,E

+ Es,1−Ps,E

)︂
,

Fr + Fs =
(︂
Fr,Pr,F

+ Fs,Ps,F

)︂
⊕
(︂
Fr,1−Pr,F

+ Fs,1−Ps,F

)︂
.

Next, we consider a pair of projections P,Q ∈ L (X) on a Banach space E. In our
application of these results in Chapter 6 we will set Q = P ′ as the dual projection,
but for now we can assume two general projections. First, we state a basic equivalence
which is due to [26].

2.44 Lemma. Let P,Q be projections on E. Then the following assertions are equiv-
alent:

(i) E = EQ ⊕ E1−P ,

(ii) P ∈ Lis(EQ, EP ),

(iii) 1−Q ∈ Lis(E1−P , E1−Q).

Note that P and Q (and later on P and P ′) do not commute in general, but the
quadratic difference

R := (P −Q)2 = P +Q− PQ−QP ∈ L (E)
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of these two does commute with P , Q as well as with I−P and I−Q. For the following
lemma, we define some auxiliary operators

U := 1− P −QP, V := 1−Q− PQ

and obtain 1−R = UV = V U . We state another result from [26].

2.45 Lemma. Let R,U, V ∈ L (E) be defined as above. Then the following assertions
are equivalent.

(i) 1 ∈ ρ(R),

(ii) V, U ∈ Lis(E),

(iii) E = EP ⊕ E1−Q = EQ ⊕ E1−P .

If one of these assertions is fulfilled, we have

V −1 = (1−R)−1U ∈ L (E) and U−1 = (1−R)−1V ∈ L (E).

Moreover, the projection subject to the decomposition E = EP ⊕ E1−Q respectively
E = EQ ⊕ E1−P is given by

Q := V QV −1 = PQ(1−R)−1,

P := UPU−1 = QP (1−R)−1.

Here, we have Q(E) = EP , (1−Q)(E) = E1−Q, P(E) = EQ and (1− P)(E) = E1−P .

Although the value of this result may not be obvious at this moment, it will be a useful
tool in order to characterize projected duality scales.

2.5.4 Scales of Compact Operators

By an extension of a corresponding lemma in [44] we show that the spectrum of compact
operators on a duality scale is independent of the parameter s ∈ I0. This invariance of
the spectrum is useful for some applications of duality scales.

2.46 Lemma. Let (Es, Fs, as)s∈I0 be a duality scale and (Ts)s∈I0 with Ts ∈ L (Es) for
s ∈ I0 be a consistent scale of compact operators on (Es)s∈I0. Then the spectrum of T
is s-invariant, i.e. σ(Ts, Es) = σ(T0, E0) for s ∈ I0.

Proof. Using Schauder’s theorem and Lemma 2.40, we first note that the scale (T ′
s)s∈I0

of compact dual operators w.r.t. a given by T ′
−s := (Ts)′a is consistent. Let λ ∈ ρ(T0, E0)
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and s ∈ I0. Then we have λ ∈ ρ(T ′
0, F0), too. Due to the fact that the intersection of

relatively compact sets remains relatively compact, we have that

T ′ : F0 ∩ F−s → F0 ∩ F−s (s ∈ I0)

is compact, where we omitted the parameter s of T ′
−s due to consistency. Additionally,

by F0∩F−s ↪→ F0 and λ ∈ ρ(T ′
0, F0) we have injectivity of λ−T ′ on F0∩F−s. Fredholm’s

alternative then yields λ− T ′ ∈ Lis(F0 ∩ F−s).
By reflexivity and Lemma 2.38 we have λ − T ∈ Lis(E0 + Es). Then, Es ⊆ E0 + Es

and applying Fredolm’s alternative again gives λ− T ∈ Lis(Es) and λ ∈ ρ(Ts, Es) due
to compactness, which completes the proof.

2.47 Remark. Note that an equivalent assertion also holds if we assume (Ts)s∈I0 to
be defined on (Fs)s∈I0 .

2.5.5 Consistency of Operator Scales

In this last section we cite two results from [44] concerning the consistency of operator
scales. In the original reference the assertions are proved for q-scales, but they can
easily be transferred to the case of s-scales used here.
The first result shows that consistency of analytic operator families can be easily ex-
tended from one point to the whole domain.

2.48 Lemma. Let s0 > 0, I0 = (−s0, s0), ∅ ̸= K ⊆ C be a domain and (Es)s∈I0 be
a complex interpolation scale. Let (Ts(z))s∈I0,z∈K be a family of operators such that
Ts(z) ∈ L (Es) for every s ∈ I0 and z ∈ K. Moreover, let K ∋ z ↦→ Ts(z) be analytic
for each s ∈ I0. Then the following assertions are equivalent:

(i) The scale (Ts(z))s∈I0 is consistent for one z ∈ K.

(ii) The scale (Ts(z))s∈I0 is consistent for all z ∈ K.

The second result shows that the scale of resolvents of consistent operators is also
consistent, which can be useful to prove consistency of operators that can be represented
(among others) by the resolvent.

2.49 Lemma. Let s0 > 0, I = (−s0, s0) and (Es)s∈I0 be a complex interpolation scale.
Moreover, let (Ts)s∈I0 be a consistent scale of operators Ts ∈ L (Es). Let G ⊆ C be
an unbounded domain such that G ⊆ ⋂︁

s∈I ρ(Ts, Es). Then for every λ ∈ G the scale
((λ− Ts)−1)s∈I0 is consistent on (Es)s∈I0.
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3 Stable and Unstable Flow Regimes for Living Flu-
ids

In this chapter we analyze the behavior of the active fluid model (1.2) near an equilib-
rium (steady) state and determine, whether stability or instability is likely to occur.
To this end, we first present results regarding the well-posedness of the equations (1.2)
and list the (physically) relevant equilibria, i.e., the disordered isotropic and the glob-
ally ordered polar states. Afterwards, an analysis of stability and instability for the
linearized equations is carried out before we consider stability and instability in the
nonlinear setting. Here, the theory from Section 2.5 plays a central role in order to
analyze the manifold of globally ordered polar states.

3.1 Equilibria

In order to analyze (in)stability of the living fluids model (1.2), we will consider the
following physically relevant equilibria.

• Disordered isotropic state: For α ∈ R, set

(v, p) = (0, p0), (3.1)

where the pressure p0 is constant.

• Globally ordered polar state: For α < 0 set

(v, p) = (V, p0), (3.2)

where V ∈ Bα,β :=
{︃
x ∈ Rn : |x| =

√︂
−α/β

}︃
is a constant vector of arbitrary

orientation and p0 is constant.

Especially the latter case will be of interest since we obtain a manifold of equilibria
which allows to apply theory from Section 2.3.
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We use a generalization of (1.2) in order to consider the two relevant types of equilibria.

u̇+ λ0[(u+ V ) · ∇]u+ (M + β|u|2)u− Γ0∆u+ Γ2∆2u+∇q = f +N(u),
divu = 0,
u(0) = u0,

(3.3)

where q = p − λ1|v|2, M ∈ Rn×n symmetric, N(u) = ∑︁
j,k ajkujuk with (ajk)nj,k=1 is a

nonlinearity of second order and the spatial dimension is n = 2 or n = 3. Additionally
we assume

λ0, λ1,Γ0, α ∈ R, Γ2, β > 0 (3.4)

for the parameters in this chapter. In order to recover the original system (1.2) from
(3.3), we set u := v − V and

• for the disordered state (3.1) we assume

V = 0, M = αI, N(u) = 0, (3.5)

where I ∈ Rn×n denotes the identity matrix.

• for the ordered polar state (3.2) we assume

V ∈ Bα,β, M = 2βV V T , N(u) = −β|u|2V − 2β(u · V )u. (3.6)

Note that from now on the equilibrium is always denoted by V and the deviation of
the solution v from the equilibrium is denoted by u.

3.2 Linear Stability

In order to analyze stability of the nonlinear equations, it is helpful to analyze the
linearized equations in a first step. Following the generalization in (3.3), we consider
the following linearized system.

u̇+ λ0(V · ∇)u+Mu− Γ0∆u+ Γ2∆2u+∇q = f in (0,∞)×Qn,

divu = 0 in (0,∞)×Qn,

u(0) = u0 in Qn.

(3.7)

Here, we assume periodic boundary conditions

∂αu|xj=0 = ∂αu|xj=L for |α| < 4, j = 1, ..., n.
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We define the operator resulting from the linearization as

ALFu := λ0(V · ∇)u+ PMu− Γ0∆u+ Γ2∆2u,

D(ALF ) := H4
π(Qn) ∩ L2

σ(Qn),

where P is the Helmoltz-Weyl projection as in Section 2.2. The corresponding Fourier
symbol is given as

σALF
(ℓ) := Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 + λ0

(︃2πi
L

)︃
(V · ℓ) + σP (ℓ)M (ℓ ∈ Zn).

First, we get the following result.

3.1 Proposition. There exists an ω > 0 such that ω + ALF admits a bounded H∞-
calculus on L2

σ(Qn) with H∞-angle ϕ∞
ω+ALF

= 0.

Proof. Using Γ2 > 0 one can immediately see that ASHu := Γ2∆2u is selfadjoint with
D(ASH) = D(ALF ), hence ω + ASH is selfadjoint and positive for ω > 0 and admits
a bounded H∞-calculus with ϕ∞

ω+ASH
= 0. Perturbation theory for perturbations of

lower order then yields the assertion (cf. [27, Proposition 13.1]).

Consequently we obtain maximal Lp-regularity of ALF on time intervals (0, T ) for
0 < T <∞ and −ALF is generator of an analytic C0-semigroup on L2

σ(Qn).
In order to characterize linear (in)stability, we use the representation

exp(−tALF )v =
∑︂
ℓ∈Zn

exp(−tσALF
(ℓ))ˆ︁v(ℓ)e2πiℓ·/L (v ∈ L2

σ(Qn)), (3.8)

which is easy to verify.

3.2.1 Disordered Isotropic State

In this case we set Ad := ALF with V = 0 and M = αI. From the definition of
P we have that P commutes with M and PMu = αu for u ∈ L2

σ(Qn). By using
representation (3.8) and

σAd
(ℓ) := Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 + α (ℓ ∈ Zn).

we can characterize (in)stability of the disordered isotropic state as follows.

3.2 Proposition. Let Γ2 > 0 and Γ0, α ∈ R. Then the semigroup (exp(−tAd))t⩾0

corresponding to the disordered state (3.1) is
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(1) stable, if σAd
⩾ 0;

(2) exponentially stable, if σAd
⩾ δ > 0;

(3) exponentially unstable, if there exists some ℓ0 ∈ Zn such that σAd
(ℓ0) < 0.

We can give a more precise characterization based on the involved parameters by
substituting z = |ℓ|2 in σAd

and analyzing the intersection points of the resulting
parabola

p(z) := Γ2

(︃2π
L

)︃4
z2 + Γ0

(︃2π
L

)︃2
z + α.

This gives the following characterization of stability.

3.3 Lemma. Let Γ2 > 0. If Γ0 < 0 and 4α > Γ2
0/Γ2 or if Γ0 ⩾ 0 and α > 0, then

the semigroup (exp(−tAd))t⩾0 is exponentially stable. To be precise, the semigroup
corresponding to the disordered state (3.1) is

(1) stable, if Γ0 < 0 and 4α ⩾ Γ2
0/Γ2 or if Γ0 ⩾ 0 and α ⩾ 0;

(2) exponentially stable, if Γ0 < 0 and 4α > Γ2
0/Γ2 or if Γ0 ⩾ 0 and α > 0 or if

Γ0 < 0 and 4α = Γ2
0/Γ2 with |ℓ|2 ̸= − Γ0

2Γ2

(︂
L
2π

)︂2
for all ℓ ∈ Zn.

3.2.2 Ordered Polar State

In this case we set Ao := ALF with V ∈ Bα,β and M = 2βV V T . Then we have

σAo := Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 + λ0

(︃2πi
L

)︃
(V · ℓ) + 2βσP (ℓ)V V TσP (ℓ) (ℓ ∈ Zn).

If Γ0 ⩾ 0, then

ReσAo := Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 + 2βσP (ℓ)V V TσP (ℓ) ∈ Rn×n

is positive semi-definite for every ℓ ∈ Zn and positive definite for ℓ ̸= 0 due to the fact
that σP (ℓ)V V TσP (ℓ) is positive semi-definite. We can use

∥exp(−tAo)v∥2L2(Qn) ⩽ |ˆ︁v(0)|2 + ∑︂
ℓ∈Zn\{0}

|e−tσAo (ℓ)|2|ˆ︁v(ℓ)|2
in order to obtain stability. Conversely, if Γ0 < 0 and if there exists 0 ̸= ℓ0 ∈ Zn such
that

Γ2

(︃2π
L

)︃2
|ℓ0|2 + Γ0 < 0, (3.9)
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then for n = 3 we can choose x ∈ Rn \ {0} with x ⊥ V and x ⊥ ℓ0 such that
xTReσAo(ℓ0)x < 0. In case of n = 2, due to

2β|V · ˆ︁v(ℓ)|2
|ˆ︁v(ℓ)|2 ∈ [0,−2α],

we assume the existence of a 0 ̸= ℓ0 ∈ Zn such that

Γ2

(︃2π
L

)︃4
|ℓ0|4 + Γ0

(︃2π
L

)︃2
|ℓ0|2 < 2α. (3.10)

This yields xTReσAo(ℓ0)x < 0 for some x ∈ Rn \ {0} such that x ⊥ ℓ0. Consequently,
the matrix ReσAo(ℓ0) ∈ Rn×n is negative semi-definite or indefinite and the growth
bound of (exp(−tAo))t⩾0 strictly positive. These considerations yield the following
result.

3.4 Proposition. Let Γ2 > 0. Then the semigroup (exp(−tAo))t⩾0 corresponding to
the ordered polar state is

(1) stable, if Γ0 ⩾ 0;

(2) exponentially unstable, if Γ0 < 0 and

(a) if there exists some 0 ̸= ℓ0 ∈ Zn such that (3.10) holds for n = 2;

(b) if there exists some 0 ̸= ℓ0 ∈ Zn such that (3.9) holds for n = 3.

3.5 Remark. (i) In the situation in [61, Section 3.1], where L2(Rn) is considered,
we have a continuous ξ ∈ Rn. Thus we can always find a ξ parallel to V , which
in general is not possible in the discrete case where ℓ ∈ Zn. As a consequence,
for n = 2 we can always find a nontrivial x ∈ R2 satisfying x ⊥ V and x ⊥ ξ in
the continuous case and the more restrictive condition (3.10) does not appear in
[61, 9] for n = 2.

(ii) Note that for n = 2 the condition (3.10) does not impose any restrictions re-
garding the analysis of nonlinear instability due to condition (3.12) in Theorem
3.11.

3.3 Global Well-posedness

It is possible to obtain local and global well-posedness of (3.3) by analogous arguments
as in [61, Section 3.2].
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3.6 Theorem (Global well-posedness). Let Γ2, β > 0 and Γ0, α, λ0 ∈ R and
T ∈ (0,∞). Let an initial value u0 ∈ H2

π(Qn) ∩ L2
σ(Qn) and an exterior force

f ∈ L2((0, T ), L2
σ(Qn)) be given. Then there exists a unique solution (u, q) for (3.3)

with periodic boundary conditions satisfying

u ∈ H1((0, T ), L2
σ(Qn)) ∩ L2((0, T ), H4

π(Qn)),
∇q ∈ L2((0, T ), L2(Qn)).

3.7 Remark. Note that in contrast to the Navier-Stokes equations the leading term
Γ2∆2u dominates the convective term, yielding global existence by standard energy
techniques even for n = 3.

3.4 Nonlinear Stability and Turbulence

Now we consider nonlinear (in)stability of the equilibrium states of (1.2). We analyze
the disordered isotropic state and the ordered polar state separately as follows.

• Disordered isotropic state: We apply energy methods in combination with the
lemma of Gronwall (cf. Lemma 2.29) in order to obtain stability results. For
instability results, Henry’s instability theorem [23, Corollary 5.1.6] is used.

• Ordered polar state: Since we have a manifold of equilibria at hand, we consider
normal hyperbolicity and normally stability as in Section 2.5.

In the following, we will only give a short outline of the disordered isotropic state and
focus on the ordered polar state.

3.4.1 Disordered Isotropic State

First we collect the following property of the nonlinearity in (3.3).

3.8 Lemma. Let H(u) := βP |u|2u + λ0P (u · ∇)u − PN(u). Then, for η ⩾ 5/4 we
have H ∈ C1(Hη

π(Qn) ∩ L2
σ(Qn), L2

σ(Qn)) and H can be estimated as follows.

∥H(u)∥L2
π(Qn) ⩽ C∥u∥2Hη

π(Qn) (∥u∥2Hη
π(Qn) ⩽ 1).

Proof. Follows in an analogous way as in [61, Lemma 4].

Given a global solution (u, q) to (3.3) we can now consider the isotropic state (3.1) and
obtain

ut + Γ2∆2u− Γ0∆u+ λ0(u · ∇)u+ (α + β|u|2)u+∇q = 0.
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Testing this equation with u yields the energy equation

1
2
d

dt
∥u(t)∥2L2

π(Qn) + Γ2∥∆u(t)∥2L2
π(Qn) + Γ0∥∇u(t)∥2L2

π(Qn)

+ α∥u(t)∥L2
π(Qn) + β 1

Ln∥u(t)∥4L4(Qn) = 0
(3.11)

for t > 0.

3.9 Theorem. Let Γ2, β > 0 and Γ0, α, λ0 ∈ R. Then the velocity V ≡ 0 of the
isotropic disordered state (3.1) is nonlinearly

(1) stable in L2
σ(Qn), if Γ0 ⩾ 0 and α ⩾ 0 or if Γ0 < 0 and 4α ⩾ Γ2

0/Γ2;

(2) (globally) exponentially stable in L2
σ(Qn), if Γ0 ⩾ 0 and α > 0 or if Γ0 < 0 and

4α > Γ2
0/Γ2 or if Γ0 < 0 and 4α = Γ2

0/Γ2 and |ℓ|2 ̸= −Γ0
2Γ2

(︂
L
2π

)︂2
for all ℓ ∈ Zn;

(3) unstable in H4γ
π (Qn)∩L2

σ(Qn) for γ ∈ [5/16, 1) if there exists some ℓ0 ∈ Zn such
that σAd

(ℓ0) < 0.

Proof. We will only give a short outline of the proof and refer the reader to [8] for the
details. Using the energy equality (3.11) and estimates of the Fourier symbol one can
obtain the (exponential) stability by an application of the Gronwall lemma (cf. Lemma
2.29) in order to show (1) and (2).
On the other hand, exploiting the H∞-calculus of ω+Ad for ω > 0, spectral properties
of Ad under the given assumptions as well as the consequences of Lemma 3.8, an
application Henry’s instability [23, Corollary 5.1.6] yields instability of the disordered
isotropic state in H4γ

π (Qn) ∩ L2
σ(Qn) for γ ∈ [5/16, 1) and therefore assertion (3).

3.10 Remark. Note that we neglected stability for the pressure p0 of the corresponding
equilibrium in Theorem 3.9. Since we can prove convergence of u in the stronger H2

π-
norm (e.g. by an application of [38, Theorem 5.3.1] combined with remark [38, Remark
5.3.2(a)]), we may show exponential convergence of the pressure p(t) in ˆ︂H1

π(Qn) to
some constant p∞ as t→ ∞ in the same way as in the proof of Theorem 3.11.

3.4.2 Ordered Polar State

Next we consider α < 0 and fix an ordered polar state V ∈ Bα,β. First we show
that under certain restrictions regarding the parameters of (3.3) the equilibrium V is
normally hyperbolic.

3.11 Theorem. Let Γ2, β > 0, α < 0 and λ0 ∈ R. Let (V, p0) be an ordered polar
steady state with V ∈ Bα,β. Then V is normally hyperbolic, if

Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 /∈ [2α, 0], ℓ ∈ Zn \ {0} (3.12)
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for Γ0 < 0 and if there exists some ℓ0 ∈ Zn such that (3.9) holds. Thus, for each
sufficient small ρ > 0 there exists 0 < δ < ρ such that the unique solution (v, p) of
(1.2) with initial value v0 ∈ BH2(Qn)(V, δ) either satisfies

(i) distH2(Qn)(v(t0), Bα,β) > ρ for some finite time t0 > 0 or

(ii) the solution (v(t), p(t)) exists on R+ and converges at exponential rate to some
(V∞, p∞) ∈ Bα,β × R in (H2

π(Qn) ∩ L2
σ(Qn))× ˆ︂H1

π(Qn) as t→ ∞.

Proof. We apply Theorem 2.9. In the notation of Theorem 2.9 we have E0 = L2
σ(Qn),

E1 = H4
π(Qn)∩L2

σ(Qn) and V = H2
π(Qn)∩L2

σ(Qn). The manifold of equilibria is given
as E = Bα,β und u∗ = V is the equilibrium. The structure of the quasilinear problem
is

Aṽ := A(v)ṽ := Γ2∆2ṽ − Γ0∆ṽ + αṽ (ṽ ∈ H4
π(Qn) ∩ L2

σ(Qn))
F (v) := −λ0P (v · ∇)v − βP |v|2v

for v ∈ H2
π(Qn) ∩ L2

σ(Qn). We first consider the projected version of system (1.2)

v̇ + Av = F (v), v(0) = v0 (3.13)

and will recover the pressure in the last step. By the structure of A and F (linear and
semilinear respectively) it is obvious that

(A,F ) ∈ C1(H2
π(Qn) ∩ L2

σ(Qn),L (H4
π(Qn) ∩ L2

σ(Qn), L2
σ(Qn))× L2

σ(Qn)).

Furthermore, we see that Ao is the linearization of (3.13) at V , where Ao has maximal
Lp-regularity on (0, T ) for 0 < T < ∞, cf. Proposition 3.1. We split the proof of the
conditions of Theorem 2.9 into several steps.
Step 1: Characterization of N(Ao)
Let u ∈ N(Ao). By

(Aou,Aou)L2
π(Qn) =

∑︂
ℓ∈Zn

|σAo(ℓ)ˆ︁u(ℓ)|2 = 0

we obtain σAo(ℓ)ˆ︁u(ℓ) = 0 for every ℓ ∈ Zn. This yields

0 = Re
(︃ˆ︁u(ℓ)TσAo(ℓ)ˆ︁u(ℓ))︃

= Γ2

(︃2π
L

)︃4
|ℓ|4|ˆ︁u(ℓ)|2 + Γ0

(︃2π
L

)︃2
|ℓ|2|ˆ︁u(ℓ)|2 + 2βˆ︁u(ℓ)TσP (ℓ)V V TσP (ℓ)ˆ︁u(ℓ)
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for all ℓ ∈ Zn. We exploit that σP (ℓ) is symmetric and σP (ℓ)ˆ︁u(ℓ) = ˆ︁u(ℓ) to obtain

Γ2

(︃2π
L

)︃4
|ℓ|4|ˆ︁u(ℓ)|2 + Γ0

(︃2π
L

)︃2
|ℓ|2|ˆ︁u(ℓ)|2 + 2β|V · ˆ︁u(ℓ)|2 = 0.

We have V ⊥ ˆ︁u(0) by setting ℓ = 0. Moreover, for ℓ ̸= 0 and ˆ︁u(ℓ) ̸= 0 we see that

Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 = −2β|V · ˆ︁u(ℓ)|2

|ˆ︁u(ℓ)|2 ∈ [2α, 0] (3.14)

due to |V |2 = −α/β. With (3.12) it follows that ˆ︁u(ℓ) = 0 in this case. Moreover, any
constant u ∈ H4

π(Qn) ∩ L2
σ(Qn) that fulfills u ⊥ V yields

Aou = Γ2∆2u− Γ0∆u+ λ0(V · ∇)u+ 2βPV V Tu = 0,

such that we have

N(Ao) = {u ∈ H4
π(Qn) ∩ L2

σ(Qn) : u constant and u ⊥ V }.

Obviously, N(Ao) has dimension n− 1.

Step 2: Bα,β is a C1-manifold in H4
π(Qn) ∩ L2

σ(Qn) of dimension n− 1
We will only show the case n = 3 here, since the steps for n = 2 are analogous. So let
n = 3, then V ∈ Bα,β can be written as

V =
√︄
−α
β

⎛⎜⎜⎝
sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

⎞⎟⎟⎠
for fixed angles θ ∈ [0, π] and φ ∈ [0, 2π). We define a C1-map as

Ψ : [0, π]× [0, 2π) → H4
π(Qn) ∩ L2

σ(Qn),⎛⎝y
z

⎞⎠ ↦−→ Ψ(y, z) :=

⎛⎜⎜⎝
sin(θ + y) cos(θ + z)
sin(θ + y) sin(θ + z)

cos(θ + y)

⎞⎟⎟⎠ .

Hence, Ψ(y, z) ∈ Bα,β is a constant function in H4
π(Qn) ∩ L2

σ(Qn) for every value
(y, z) ∈ [0, π] × [0, 2π). Moreover, we have Ψ(0, 0) = V . The tangent space of Bα,β is
of dimension m = 2 and obviously given as

TVBα,β = ⟨V ⟩⊥.
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Combining this with our result from step 1, we have

N(Ao) = ⟨V ⟩⊥ = TVBα,β,

so the tangent space of Bα,β at V is isomorphic to N(Ao).

Step 3: Characterization of σ(Ao)
We first note that due to H4

π(Qn) ∩ L2
σ(Qn)

c
↪→ L2

σ(Qn) by the Rellich-Kondrachov
theorem (cf. [1] and [41, Theorem A.4, Corollary A.5]), the resolvent

(λ− Ao)−1 : L2
σ(Qn) → D(Ao)

c
↪→ L2

σ(Qn)

is compact for λ ∈ ρ(Ao). Therefore σ(Ao) is discrete and consists only of the point
spectrum, i.e. σ(Ao) = σp(Ao). So it is sufficient to restrict to eigenvalues in order to
characterize σ(Ao). In step 1 we have already seen that λ = 0 is an eigenvalue of Ao.
By assumption (3.12) condition (3.10) is fulfilled and Proposition 3.4(2) ensures that
σ(Ao) ∩ C− ̸= ∅.
In order to show σ(Ao) ∩ iR = {0} we fix λ ∈ σ(Ao) such that Reλ = 0. Let u ̸= 0 be
a corresponding eigenfunction, then

Re
(︃ˆ︁u(ℓ)TσAo(ℓ)ˆ︁u(ℓ))︃ = Reλ|ˆ︁u(ℓ)|2 = 0 (ℓ ∈ Zn).

By our argumentation in step 1 this implies ˆ︁u(ℓ) = 0 for all ℓ ∈ Zn \{0} and ˆ︁u(0) ⊥ V .
This yields u ∈ N(Ao), i.e. λ = 0.
It remains to show that λ = 0 is a semi-simple eigenvalue, i.e. L2

σ(Qn) = N(Ao)⊕R(Ao).
To this end, we define the map

S : L2
σ(Qn) → L2

σ(Qn), u ↦→ Su := 1
Ln

∫︂
Qn

S∗u(x) dx,

where S∗ : L2
σ(Qn) → L2

σ(Qn) is the map given by S∗u(x) = (I−V V T/|V |2)u(x). Here,
I denotes the identity matrix in Rn×n. We first note that if u ∈ L2

σ(Qn) , then Su is
constant and Su ∈ L2

σ(Qn).
One can directly prove that S is a projection and that there exists a decomposition
S(L2

σ(Qn)) ⊕ (I − S)(L2
σ(Qn)) = L2

σ(Qn), where I here denotes the identity operator
on L2

σ(Qn). We proceed in two substeps.

N(Ao) = S(L2
σ(Qn)): First, we show S(L2

σ(Qn)) ⊆ N(Ao). Let u ∈ S(L2
σ(Qn)). As

already seen, u = Su is constant and we have

V Tu = V TSu = 1
Ln

∫︂
Qn

V Tu(x) dx− 1
Ln

∫︂
Qn

1
|V |2

V TV V Tu(x) dx
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= 1
Ln

∫︂
Qn

V Tu(x) dx− 1
Ln

∫︂
Qn

V Tu(x) dx = 0,

which yields u ⊥ V and thus u ∈ N(Ao) by our characterization of N(Ao) in Step 1.
To see the inverse inclusion, let u ∈ N(Ao). We know that u is constant and u ⊥ V .
This yields

Su = 1
Ln

∫︂
Qn

u(x) dx− 1
Ln

∫︂
Qn

1
|V |2

V V Tu(x) dx

= u
(︃ 1
Ln

∫︂
Qn

dx
)︃
= u,

hence u ∈ S(L2
σ(Qn)) and the claim is proved.

R(Ao) = (I − S)(L2
σ(Qn)): We note that L2

σ(Qn) = S(L2
σ(Qn)) ⊕ (I − S)(L2

σ(Qn)) is
orthogonal due to the fact that L2

σ(Qn) is a Hilbert space and S is self-adjoint. Let
u ∈ D(Ao) and w ∈ N(Ao), then we have

(Aou,w)L2
π(Qn) = Γ2(∆u,∆w)L2

π(Qn) + Γ0(∇u,∇w)L2
π(Qn)

− λ0(u, (V · ∇)w)L2
π(Qn) + 2β(V Tu, V Tw)L2

π(Qn) = 0

since w is constant and w ⊥ V . This yields R(Ao) ⊥ N(A0) = S(L2
σ(Qn)) and by the

orthogonality of the decomposition we obtain R(Ao) ⊆ (I − S)(L2
σ(Qn)).

We note again that Ao has compact resolvent. Following [29, Remark A.2.4] it suffices
to show that

N(Ao) = N(A2
o)

to prove that λ = 0 is a semi-simple eigenvalue of Ao. The inclusion N(Ao) ⊆ N(A2
o)

is obvious. To show the inverse inclusion, fix u ∈ N(A2
o). Then A2

ou = 0 such that
Aou ∈ N(A0) ∩ R(A0). Due to N(A0) ⊥ R(A0) we have Aou = 0, thus u ∈ N(Ao).
Finally, N(Ao) = N(A2

o) and λ = 0 is semi-simple.

We now have proved that the conditions required by Theorem 2.9 are fulfilled, thus V
is a normally hyperbolic equilibrium of (3.13). It remains to recover the pressure p.
Observe that

∇p = (I − P )G(v),

where P denotes the Helmholtz-Weyl projection and

G(v) = [−λ0(v · ∇)v + λ1∇|v|2 − β|v|2v].
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Since V is normally hyperbolic, there are two possibilities:

• distH2(Qn)(v(t0), Bα,β) > ρ for some finite time t0 > 0. Then there is nothing else
to show since (v, p) is already unstable.

• v(t) exists on R+ and converges to some V∞ ∈ Bα,β in H2
π(Qn) ∩ L2

σ(Qn) at
an exponential rate as t → ∞. Analogously to Lemma 3.8 we can show that
G ∈ C1(H2

π(Qn), L2(Qn)). Due to the convergence of the solution v it remains in
a ball B ⊆ H2

π(Qn) for t ⩾ 0. Note that this ball also includes V∞. Then we have

∥DG(w)∥L (H2
π(Qn),L2

π(Qn)) ⩽ C (w ∈ B).

An application of the mean-value theorem yields

∥G(v)−G(V∞)∥L2
π(Qn) ⩽ C∥v − V∞∥H2

π(Qn).

Thus (I − P )G(v) converges to (I − P )G(V∞) in L2
π(Qn) at an exponential rate.

On the other hand, the fact that (V∞, p1) is a stationary solution of (1.2) for
every p1 ∈ R implies that (I − P )G(V∞) = 0. It follows that p(t) converges to
some constant p∞ ∈ R in ˆ︂H1

π(Qn) at an exponential rate.

This completes the proof and the assertions for (v, p) follow.

3.12 Remark. It is easy to verify that, e.g. by setting L = 2π, Γ2 = 4, Γ0 = −5 and
α = −1/4 all conditions of Theorem 3.11 are satisfied, which yields unstable equilibria
on Bα,β. Thus, condition (3.12) is meaningful.

3.13 Remark. Note that a normally hyperbolic equilibrium implies the existence of
a stable and an unstable foliation near V . In fact, if V is normally hyperbolic, then
there exists r > 0 and a manifold Ms, called the stable foliation, such that for each
v0 ∈ BH2

π(Qn)(V, r) we have that v0 ∈ Ms if and only if the solution v(t, v0) exists on R+

and converges to a V∞ ∈ Bα,β at an exponential rate. Moreover, the projection onto
the stable part of Ao is exactly the projection onto the tangent space of Ms at V (cf.
[40, Theorem 3.1]). Analogously, there exists an unstable foliation Mu ([40, Theorem
4.1]).

In order to complete the analysis of (in)stability of the ordered polar state, let us now
turn to the case of normal stability of a given V ∈ Bα,β.

3.14 Theorem. Let Γ2, β > 0, Γ0 ⩾ 0, α < 0 and λ0 ∈ R. Let (V, p0) with V ∈ Bα,β

be an ordered polar stationary state of (1.2). Then V is normally stable, thus (V, p0)
is stable in the space (H2

π(Qn) ∩ L2
σ(Qn)) × H1

π(Qn). There exists a δ > 0 such that
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if (v, p) is a solution to (1.2) with initial data v0 ∈ H2
π(Qn) ∩ L2

σ(Qn) ∩ BH2
π(Qn)(V, δ),

then (v, p) exists globally on R+ and converges to some (V∞, p∞) ∈ Bα,β ×R as t→ ∞
at an exponential rate in (H2

π(Qn) ∩ L2
σ(Qn))×H1

π(Qn).

Proof. From the proof of Theorem 3.11 we already know that

• Bα,β is a C1-manifold of equilibria of dimension n− 1 and

• we have σ(Ao) = σp(Ao) and λ = 0 is a semi-simple eigenvalue of Ao,

since the proof can be carried out in the same way for the parameter set assumed in
Theorem 3.14. We will prove the remaining assumptions in two several steps.
Step 1: Characterization of N(Ao)
Let u ∈ N(Ao) such that Aou = 0. Testing this equation with u yields

0 = Γ2(∆2u, u)L2
π(Qn) − Γ0(∆u, u)L2

π(Qn)

+ λ0((V · ∇)u, u)L2
π(Qn) + 2β(PV V Tu, u)L2

π(Qn).

By taking the real part and applying partial integration we obtain

0 = Γ2∥∆u∥2L2
π(Qn) + Γ0∥∇u∥2L2

π(Qn) + 2β∥V · u∥2L2
π(Qn)

due to the fact that the λ0-term is skew-symmetric. Since by assumption Γ2, β > 0
and Γ0 ⩾ 0, we arrive at

∥∆u∥2L2
π(Qn) = ∥V · u∥2L2

π(Qn) = 0,

hence u ⊥ V and

∥∆u∥2L2
π(Qn) =

∑︂
ℓ∈Zn

|ℓ|2|ˆ︁u(ℓ)|2 = 0,

so u is constant. Altogether we have the same characterization for N(Ao) as in the
proof of Theorem 3.11, i.e.

N(Ao) = {u ∈ H4
π(Qn) ∩ L2

σ(Qn) : u constant and u ⊥ V }.

Step 2: Characterization of σ(Ao)
We need to show that

σ(Ao) ⊆ C+ ∪ {0}.
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To this end, let λ ∈ σ(Ao) = σp(Ao) and u ∈ D(Ao) be a nontrivial eigenvector such
that (λ− Ao)u = 0. Testing the equation and applying partial integration yields

0 = λ∥u∥2L2
π(Qn) − Γ2∥∆u∥2L2

π(Qn) − Γ0∥∇u∥2L2
π(Qn)

− λ0((V · ∇)u, u)L2
π(Qn) − 2β∥V · u∥2L2

π(Qn).

By taking the real part the λ0-term vanishes and we obtain

0 = Reλ∥u∥2L2
π(Qn) − Γ2∥∆u∥2L2

π(Qn) − Γ0∥∇u∥2L2
π(Qn) − 2β∥V · u∥2L2

π(Qn),

which gives us

Reλ = Γ2

(︄
∥∆u∥L2

π(Qn)

∥u∥L2
π(Qn)

)︄2

+ Γ0

(︄
∥∇u∥L2

π(Qn)

∥u∥L2
π(Qn)

)︄2

+ 2β
(︄
∥V · u∥L2

π(Qn)

∥u∥L2
π(Qn)

)︄2

⩾ 0.

Furthermore, if Reλ = 0, then u is constant and u ⊥ V , thus u ∈ N(Ao) by step 1 and
λ = 0. This yields σ(Ao) ⊆ C+ ∪ {0}.

By Theorem 2.6 we obtain that V is normally stable for (3.13). We may recover the
pressure p and prove the assertion in the same way as in the proof of Theorem 3.11.
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In Chapter 3 we proved parameter settings for stability and instability of concrete
equilibria of the living fluid problem (1.2). In this chapter, we analyze the long-term
dynamics of the problem in a more general way and show that there exists a global
attractor of finite dimension in n = 2 and n = 3 dimensions. Moreover, in n = 2 di-
mensions it will be possible to show the existence of an inertial manifold which attracts
all solutions by an exponential rate. These results reduce the analysis of the dynamics
of the living fluids problem into a finite dimensional problem.
The outline of this chapter is as follows. First, we provide a setting and show global
well-posedness of the living fluids problem in L2

σ(Qn) in order to obtain a correspond-
ing semiflow. Then we prove the existence of a global attractor with arbitrary high
regularity. Afterwards, we show that this attractor has finite dimension and obtain an
inertial manifold in n = 2 dimensions.

4.1 Semiflow on L2
σ(Qn)

4.1.1 The Setting

We consider problem (1.2) with periodic boundary conditions, where we apply the
Helmholtz projection and obtain

∂tu+ Γ2∆2u− Γ0∆u+ (α + Pβ|u|2)u+ Pλ0(u · ∇u) = f,

u|t=0 = u0,
(4.1)

on L2
σ(Qn),where n = 2, 3, L > 0, Qn = [0, L]n, Γ2, β > 0, Γ0, α, λ0 ∈ R and P denotes

the Helmholtz projection on L2(Qn) as in Chapter 3. Additionally, an external force f
is given. We already know from Theorem 3.6 that the problem is globally well-posed
if we choose u0 ∈ H2

π(Qn) ∩ L2
σ(Qn), but for an application of results from the theory

of dynamical systems we aim to have a semiflow

S(t) : L2
σ(Qn) → L2

σ(Qn), u0 ↦→ S(t)u0 = u(t),
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where u(t) solves (4.1) for t > 0. Thus we need to decrease the regularity of the initial
data.
In order to prove the existence of a semiflow S we will use interpolation-extrapolation
theory from [2, Chapter V], thus we will introduce some new notation: Let E := L2

σ(Qn)
and

A : D(A) ⊆ L2
σ(Qn) → L2

σ(Qn), u ↦→ Au := Γ2∆2u,

where D(A) := E1 := H4
π(Qn) ∩ L2

σ(Qn), be a closed operator. By Theorem 3.1 there
exists an ω > 0 such that A := ω+A has a bounded H∞-calculus and A ∈ Lis(E1, E0).
Thus we obtain a densely injected consistent interpolation-extrapolation scale
[(Eα,Aα) : α ∈ [−1,∞)], where A0 := A, E0 := E and Aα ∈ Lis(Eα+1, Eα). Note
that we have

D(Aθ
0) = Eθ = [E0, E1]θ = H4θ

π (Qn) ∩ L2
σ(Qn) (θ ∈ [0, 1]).

Due to the fact that A0 restricts or extends consistently to an operator Aα on Eα, we
will sometimes just write A in the following. Moreover, due to the fact that A is self-
adjoint and positive, [(Eα,Aα) : α ∈ [−1,∞)] is a Hilbert scale. We have (Eα)′ = E−α

and (Aα)′ = A−α for 0 ⩽ α ⩽ 1 w.r.t. the canonical duality pairing induced by the
scalar product (·, ·)E0 = (·, ·)L2

π
.

Note that

(Eα, Eβ)η,2 .= [Eα, Eβ]η .= E(1−η)α+ηβ (−1 ⩽ α < β <∞, 0 < η < 1) (4.2)

and Aα−β ∈ Lis(Eα, Eβ) for −1 ⩽ α < β <∞.

4.1.2 H∞-calculus and Maximal Regularity

In this section we will consider the linear part of (4.1) on E−1/2 and prove well-posedness
of the linear equations. To this end, let

A−1/2 : D(A−1/2) = E1/2 = H2
π(Qn) ∩ L2

σ(Qn) ⊆ E−1/2 → E−1/2

be the E−1/2 realization of A. Moreover, we set

B : D(B) := E1/2 = H2
π(Qn) ∩ L2

σ(Qn) → L2
σ(Qn), u ↦→ Bu := −Γ0∆u+ αu
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and denote by

B−1/2 : D(B−1/2) = L2
σ(Qn) = E0 ⊆ E−1/2 → E−1/2

the E−1/2 realization of B. Then we obtain the following result.

4.1 Theorem. Let T > 0, A−1/2 and B−1/2 be defined as above. Moreover, let the
initial value be given as u0 ∈ (E−1/2, E1/2)1/2,2 = E = L2

σ(Qn) and the exterior force as
f ∈ L2((0, T ), E−1/2).
Then there exists a unique solution

u ∈ H1((0, T ), E−1/2) ∩ L2((0, T ), E1/2)

of the problem

ut + (A−1/2 +B−1/2)u = f in (0, T )×Qn,

u|t=0 = u0 in Qn.

Proof. We note that A is an injective, sectorial operator on E. Then A−1/2 has an R-
bounded H∞-calculus on E−1/2 with ϕ∞

A−1/2
= 0 (cf. [22, Theorem 6.5]), where ϕ∞

A−1/2

denotes the H∞-angle.
Using perturbation theory for the H∞-calculus, e.g. [27, Proposition 13.1], we will show
that A−1/2+B−1/2+ν possesses a bounded H∞-calculus for ν ⩾ 0 large enough. First,
it is obvious that D(A−1/2) ⊆ D(B−1/2). Let u ∈ D(A−1/2), then we have

∥B−1/2u∥E−1/2 = ∥B−1/2(A−1/2)−1/2(A−1/2)1/2u∥E−1/2 ⩽ C∥(A−1/2)1/2u∥E−1/2 (4.3)

where we used that (A−1/2)−1/2 ∈ Lis(E−1/2, D((A−1/2)1/2)) with domain of definition
D((A−1/2)1/2) = L2

σ(Qn). Moreover, it is easy to see that B ∈ L (E1/2, E). Thus by a
standard duality argument we obtain B′ = B−1/2 ∈ L (E,E−1/2). This yields

B−1/2(A−1/2)−1/2 ∈ L (E−1/2),

which justifies estimate (4.3). Hence, by perturbation arguments there exists a ν ⩾ 0
such that ν+A−1/2+B−1/2 possesses a bounded H∞-calculus. Therefore, the operator
ν + λ+ A−1/2 +B−1/2 has maximal Lp regularity in E−1/2 and

A−1/2 +B−1/2 : E1/2 ⊆ E−1/2 → E−1/2

enjoys maximal Lp-regularity on finite time intervals (0, T ) for T > 0. This completes
the assertion.
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4.1.3 Local and Global Well-Posedness

In this section we want to make use of the maximal Lp-regularity for the linear problem
in order to solve the nonlinear problem locally and globally. To this end, we first define
the relevant solution and data spaces for T ∈ (0,∞).

ET := H1((0, T ), E−1/2) ∩ L2((0, T ), E1/2),
F1
T := L2((0, T ), E−1/2),

F2 := (E−1/2, E1/2)1/2,2 = E0 = L2
σ(Qn),

FT := F1
T × F2.

We begin with a definition and some auxiliary lemmas.

4.2 Definition. We set Ẽ := Ẽ0 := L2(Qn), Ẽ1 := H4
π(Qn) and define

Ẽα := [Ẽ0, Ẽ1]α = H4α
π (Qn), Ẽ−α = Ẽ

′
α (α ∈ [0, 1]).

Moreover, let P = P0 ∈ L (L2(Qn)) = L (E0̃) be the Helmholtz projection.

4.3 Lemma. The Helmholtz projection P0 ∈ L (E0̃) extends consistently to a projection
P−1/2 ∈ L (Ẽ−1/2) with P−1/2(Ẽ−1/2) = E−1/2.

Proof. It is known that the Helmholtz projection P0 on Ẽ admits higher regularity on
Ẽα for α ∈ [0, 1] such that it restricts consistently to a projection Pα with P (Ẽα) = Eα

(cf. Lemma 2.2). By duality, we may obtain an operator P−1/2 ∈ L (Ẽ−1/2). In fact,
due to symmetry of P0, P−1/2 extends P0 consistently and is also a projection with
P−1/2(Ẽ−1/2) = E−1/2.

4.4 Lemma. The nonlinearity

H : ET → F1
T , H(u) := βP−1/2|u|2u+ λ0P−1/2(u · ∇)u

fulfills H ∈ C1(ET ,F1
T ).

Proof. First we prove that H : ET → F1
T is well-defined. From [2, III, Theorem 4.10.2]

we know that

ET ↪→ L∞((0, T ), I2(A )) = L∞((0, T ), L2
σ(Qn))

since I2(A ) = F2 = L2
σ(Qn). We have

∇ ∈ L (H2
π(Qn)n, H1

π(Qn)n×n) = L (D(Ã1/2)n, D(Ã1/4)n×n) = L ((Ẽ1/2)n, Ẽ1/4)n×n),
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where we clarify the dimensions w.r.t. n in this case in order to avoid confusion. Since
we can identify ((Ẽ1/4)n×n)′ with (Ẽ−1/4)n×n and ((Ẽ1/2)n)′ with (Ẽ−1/2)n, we can use
duality arguments in order to obtain

div ∈ L ((Ẽ1/4)n×n, (Ẽ−1/2)n).

We first note that

Ẽ1/2 = H2
π(Qn) ↪→ L∞(Qn) (4.4)

and estimate the second nonlinearity as

∥P−1/2(u · ∇)u∥F1
T
= ∥P−1/2(u · ∇)u∥L2((0,T ),E−1/2)

⩽ C∥div (u⊗ u)∥L2((0,T ),Ẽ−1/2)

⩽ C∥u⊗ u∥L2((0,T ),Ẽ−1/4)

⩽ C∥u⊗ u∥L2((0,T ),L2
π(Qn))

⩽ C∥u∥L2((0,T ),L∞(Qn))∥u∥L∞((0,T ),L2
π(Qn))

⩽ C∥u∥L2((0,T ),Ẽ1/2)∥u∥L∞((0,T ),L2
π(Qn))

⩽ C∥u∥2ET
.

Regarding the first nonlinearity we will again use (4.4): by choosing f ∈ L1(Qn) and
ϕ ∈ Ẽ1/2 we have

|⟨f, ϕ⟩Ẽ−1/2,Ẽ1/2
| ⩽ C

∫︂
Qn

|f(x)ϕ(x)| dx ⩽ C∥f∥L1(Qn)∥ϕ∥L∞(Qn) ⩽ C∥f∥L1(Qn)∥ϕ∥Ẽ1/2
,

which leads to

∥f∥Ẽ−1/2
= sup

0 ̸=ϕ∈Ẽ1/2

|⟨f, ϕ⟩Ẽ−1/2,Ẽ1/2
|

∥ϕ∥Ẽ1/2

⩽ C∥f∥L1(Qn).

Summarized we have shown that

L1(Qn) ↪→ Ẽ−1/2 (4.5)

and can estimate as follows.

∥P−1/2|u|2u∥F1
T
⩽ C∥|u|2u∥L2((0,T ),Ẽ−1/2) ⩽ C∥|u|2u∥L2((0,T ),L1(Qn))

⩽ C∥u∥2L∞((0,T ),L2(Qn))∥u∥L2((0,T ),L∞(Qn))
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⩽ C∥u∥2L∞((0,T ),L2(Qn))∥u∥L2((0,T ),Ẽ1/2) ⩽ ∥u∥3ET
.

Hence, the nonlinearity H : ET → F1
T is well defined and the derivative is given as

DH(u)v = βP−1/2|u|2v + 2βP−1/2(u · v)u+ λ0P−1/2(v · ∇)u+ λ0P−1/2(u · ∇)v

for u, v ∈ ET . By similar estimates as for H itself we see that DH : ET → L (ET ,F1
T )

is well-defined and that H ∈ C1(ET ,F1
T ).

We obtain the following result on local well-posedness.

4.5 Theorem (Local well-posedness). Let T > 0 and (f, u0) ∈ FT . Then there exists
a 0 < T ′ < T such that (4.1) possesses a unique solution u ∈ ET ′.

Proof. We already know that

A : E1/2 ⊆ E−1/2 → E−1/2, u ↦→ A u := A−1/2u+B−1/2u

has maximal Lp-regularity in E−1/2 due to Theorem 4.1 and that

L : ET → FT , Lu := (u̇+ A u, u(0))

is an isomorphism.
According to Lemma 4.3 and Lemma 4.4 we may write (4.1) as

ut + A u+H(u) = f,

u|t=0 = u0

and rephrase the problem as F (u) = (f, u0), where

F : ET → FT , F (u) := Lu+ (H(u), 0).

Next, we pick v ∈ ET arbitrary and show that the perturbed linear solution operator
L+(DH(v), 0) is an isomorphism, where we have already proved that L ∈ Lis(ET ,FT ).
To this end, we want to show that

∥DH(v(t))u∥E−1/2 ⩽
Cv

λ1/2−α/4
∥(λ+ µ+ A )u∥E−1/2

for u ∈ E−1/2, λ > 0 arbitrary, µ > 0 large, a fixed v ∈ ET and some α ∈ (3/2, 2). We
estimate

∥(u · ∇)v(t)∥Ẽ−1/2
= ∥div (u⊗ v(t))∥Ẽ−1/2

⩽ C∥u⊗ v(t)∥Ẽ−1/4
⩽ C∥u⊗ v(t)∥L2

π(Qn)
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⩽ C∥u∥L∞(Qn)∥v(t)∥L2
π(Qn) ⩽ C∥u∥Eα/4∥v∥L∞((0,T ),L2

π(Qn))

⩽ C∥u∥Eα/4∥v∥ET
,

where we use v ∈ ET ↪→ L∞((0, T ), L2
σ(Qn)) and

Eα/4 = Hα
π (Qn) ∩ L2

σ(Qn) ↪→ L∞(Qn) ∩ L2
σ(Qn)

for α > 3/2.
Next, we choose µ > 0 arbitrary such that µ + A admits an H∞-calculus in E−1/2.
Then we have

(λ+ µ+ A )−1 ∈ L (E−1/2, E1/2) ∩ L (E−1/2)

and

∥(λ+ µ+ A )−1∥L (E−1/2,E1/2) <∞, ∥(λ+ µ+ A )−1∥L (E−1/2) ⩽
C

λ

for λ > 0. By a standard interpolation result for bounded linear operators, applied
with θ = 1/2 + α/4 we obtain

(λ+ µ+ A )−1 ∈ L ([E−1/2, E−1/2]θ, [E−1/2, E1/2]θ) = L (E−1/2, Eα/4)

and

∥(λ+ µ+ A )−1∥L (E−1/2,Eα/4) ⩽
C

λ1−1/2−α/4 .

Thus, we obtain the estimate

∥(u · ∇)v(t)∥Ẽ−1/2
⩽ C∥u∥Eα/4∥v∥ET

⩽
Cv

λ1/2−α/4
∥(λ+ µ+ A )u∥E−1/2 ,

where Cv > 0 depends on ∥v∥ET
. The (v(t) · ∇)u-term can be estimated analogously

since (v(t) · ∇)u = div (v(t)⊗ u).
For the second nonlinearity we use (4.5) and have

∥|v(t)|2u∥Ẽ−1/2
⩽ C∥|v(t)|2u∥L1(Qn) ⩽ C∥u∥L∞(Qn)∥v(t)∥2L2

π(Qn) ⩽ C∥u∥Eα/4∥v∥
2
ET

⩽
Cv

λ1/2−α/4
∥(λ+ µ+ A )u∥E−1/2 ,

where Cv > 0 depends on ∥v∥2ET
. We can estimate the (v(t) · u)v(t)-term analogously.
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Summing up, we have the estimate

∥DH(v(t))u∥E−1/2 ⩽
Cv

λ1/2−α/4
∥(λ+ µ+ A )u∥E−1/2

for λ > 0 arbitrary, µ > 0 large, v ∈ ET and u ∈ E1/2. By choosing µ > 0 large enough
we set {λ+ µ+ A }t∈[0,T ] as a constant family of bounded invertible operators having
maximal Lp-regularity. Choosing λ > 0 large such that

Cv
λ1/2−α/4

< 1,

we obtain maximal Lp-regularity of λ + µ + A + DH(v) in E−1/2 by applying [45,
Theorem 2.5]. Hence, A +DH(v) has maximal Lp-regularity in E−1/2 as well on time
intervals (0, T ) for 0 < T <∞. Summarized we have

L+ (DH(v), 0) ∈ Lis(ET ,FT ). (4.6)

Finally we want to prove local well-posedness using the maximal Lp-regularity. We
already know that

L : ET → FT , Lu = (u̇+ A u, u(0))

is an isomorphism. We set u∗ := L−1(f, u0) as a reference solution for a given pair of
data (f, u0) ∈ FT . We want to apply the local inverse theorem to

F : ET → FT , u ↦→ F (u) = Lu+ (H(u), 0).

Next, we prove that F fulfills the assumptions of the local inverse theorem. To this
end, we note that

DF (u∗) = L+ (DH(u∗), 0) ∈ Lis(ET ,FT )

and F ∈ C1(ET ,FT ). Using the local inverse theorem there exist ε > 0 and δ > 0 such
that F : BET

(u∗, ε) → BFT
(F (u∗), δ) is bijective. Let 0 < T ′ < T . We define

fT ′ : (0, T ) → E−1/2, t ↦→ fT ′(t) :=
⎧⎨⎩ f(t), t ∈ (0, T ′),
f(t) +H(u∗)(t), t ∈ [T ′, T )

and see that

∥fT ′ − (f +H(u∗))∥2F1
T
=
∫︂ T

0
∥fT ′(t)− (f(t) +H(u∗)(t))∥2E−1/2

dt
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=
∫︂ T ′

0
∥H(u∗)(t)∥2E−1/2

dt
T ′→0−−−→ 0

by applying the dominated convergence theorem. We choose 0 < T ′ < T such that

∥fT ′ − (f +H(u∗))∥F1
T
< δ.

By noting that F (u∗) = (f +H(u∗), u0) we see that

∥(fT ′ , u0)− F (u∗)∥FT
< δ

and hence (fT ′ , u0) ∈ BFT
(F (u∗), δ). Then there exists a unique u ∈ BET

(u∗, ε) such
that F (u) = (fT ′ , u0) and therefore Lu+(H(u), 0) = (f, u0) in (0, T ′), which completes
the assertion.

In order to obtain a semigroup

S(t) : L2
σ(Qn) → L2

σ(Qn), u0 ↦→ S(t)u0 = u(t)

that solves (4.1) for 0 < t < ∞, it remains to show that a local solution u which is
given by Theorem 4.5 is a global solution. By making use of energy methods this will
be proved in the following Theorem.

4.6 Theorem (Global well-posedness). Let 0 < T < ∞ and (f, u0) ∈ FT . Then there
exists a unique solution u ∈ ET to (4.1).

Proof. Let (f, u0) ∈ FT and u ∈ ET ′ be the unique local solution from Theorem 4.5 for
some 0 < T ′ < T . Let 0 < t < T ′. We test the equation (4.1) with u and integrate
from 0 to t with the result

1
2∥u(t)∥

2
L2
π
+ Γ2

∫︂ t

0
∥∆u(s)∥2L2

π
ds− Γ0

∫︂ t

0
(∆u(s), u(s))L2

π
ds+ α

∫︂ t

0
∥u(s)∥2L2

π
ds

+ β

Ln

∫︂ t

0
∥u(s)∥4L4 ds =

1
2∥u0∥

2
L2
π
.

By applying the Cauchy-Schwarz and the Young inequality on the Γ0-term we arrive
at

1
2∥u(t)∥

2
L2
π
+ Γ2

2

∫︂ t

0
∥∆u(s)∥2L2

π
ds+

(︄
α− |Γ0|2

2Γ2

)︄∫︂ t

0
∥u(s)∥2L2

π
ds

+ β

Ln

∫︂ t

0
∥u(s)∥4L4 ds ⩽

1
2∥u0∥

2
L2
π
,
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which yields

∥u(t)∥2L2
π
⩽ ∥u0∥2L2

π
+ C

∫︂ t

0
∥u(s)∥2L2

π
ds,

where C = C(α,Γ0,Γ2) > 0. We apply the Gronwall lemma (cf. Lemma 2.29) and
obtain

∥u(t)∥2L2
π
⩽ exp(Ct)∥u0∥2L2

π
⩽ exp(CT )∥u0∥2L2

π

for 0 < t < T . This yields the bound

∥u∥L∞((0,T ),L2
σ(Qn)) ⩽ C∥u0∥L2

π

with some C = C(T, α,Γ0,Γ2) > 0, which gives global well-posedness.

4.2 Global Attractor

In this chapter we will prove the existence of a global attractor A for the problem
(4.1). Additionally, we show that this attractor has Hk-regularity for k ∈ N. We will
construct the attractor in several steps which are laid out in the next sections. Note
that from now on we will assume f = 0 in (4.1) for simplification. Furthermore, we
will omit the domain Qn in the subscript of norms which are used.

4.2.1 Absorbing Set in L2
σ(Qn)

First we prove the existence of an absorbing set in L2
σ(Qn) which serves as a starting

point for the bootstrapping arguments we will use to obtain higher regularity.

4.7 Lemma. There exists some R0 > 0 and t0 ∈ (0,∞) such that

∥u(t)∥2L2
π
⩽ R0 (t ⩾ t0)

for any (global) solution u to (4.1). Note that t0 does not depend on the initial value
u0 ∈ L2

σ(Qn). Thus there exists a bounded absorbing set B0 := BL2
π
(0,

√
R0) in L2

σ(Qn).

Proof. Let u be a (global) solution to (4.1) with initial value u0 ∈ L2
σ(Qn). We test

equation (4.1) with u w.r.t. the inner scalar-product (·, ·)L2
π
and obtain

1
2
d

dt
∥u(t)∥2L2

π
= −Γ2∥∆u(t)∥2L2

π
− Γ0∥∇u(t)∥2L2

π
− α∥u(t)∥2L2

π
− β

Ln
∥u(t)∥4L4 , (4.7)
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where the λ0-term vanishes due to its anti-symmetry and the pressure term λ1 vanishes
due to the fact that u is divergence free. By using the Fourier expansion we obtain

u(t, x) =
∑︂
ℓ∈Zn

uℓ(t) exp(2πiℓ · x/L),

where (uℓ(t))ℓ∈Zn ⊆ Rn denote the Fourier coefficients. Plugging this into (4.7) yields

1
2
d

dt
∥u(t)∥2L2

π
= −

∑︂
ℓ∈Zn

(︄
Γ2

(︃2π
L

)︃4
|ℓ|4 + Γ0

(︃2π
L

)︃2
|ℓ|2 + α

)︄
|uℓ(t)|2 −

β

Ln
∥u(t)∥4L4 .

By substituting z := |ℓ|2 we obtain a parabola

p(z) := Γ2

(︃2π
L

)︃4
z2 + Γ0

(︃2π
L

)︃2
z + α,

for which the set U := {ℓ ∈ Zn : p(|ℓ|2) < 0} is finite. This leads to the estimate

1
2
d

dt
∥u(t)∥2L2

π
⩽ −

∑︂
ℓ∈U

p(|ℓ|2)|uℓ(t)|2 −
β

Ln
∥u(t)∥4L4

⩽ δ
∑︂
ℓ∈U

|uℓ(t)|2 −
β

Ln
∥u(t)∥4L4

⩽ δ∥u(t)∥2L2
π
− β∥u(t)∥4L2

π

with some δ := δ(Γ2,Γ0, α) > 0, where we used L4(Qn) ∩ L2
σ(Qn) ↪→ L2

σ(Qn) with

∥u(t)∥L2
π
⩽

|Ω|1/2−1/4

Ln/2
∥u(t)∥L4 = L−n/4∥u(t)∥L4

in the last step. By setting γ1 := δ, γ2 := β and ϕ(t) := ∥u(t)∥2
L2
π
we arrive at the

differential inequality

d

dt
ϕ(t) ⩽ 2γ1ϕ(t)− 2γ2ϕ(t)2 (t > 0). (4.8)

Thus in order to analyze the long-time behavior of u in L2
π(Qn) we can analyze the

differential inequality (4.8). We will first take a look at (4.8) as a differential equation to
get an idea of the long-term behavior: let t∗ ⩾ 0. We consider the ordinary differential
equation

d

dt
ψ(t) = 2γ1ψ(t)− 2γ2ψ(t)2 (t > t∗), ψ(t∗) = ∥u(t∗)∥2L2

π
. (4.9)

By using a separation ansatz and calculating we obtain the following solutions to (4.9).
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• If ψ(t∗) = 0, then ψ(t) = 0 for t > 0 is a unique global solution.

• If ψ(t∗) > 0, then

ψ(t) = γ1
1

γ1−γ2ψ(t∗)
ψ(t∗) exp(−2γ1(t− t∗)) + γ2

(4.10)

is a unique solution. We have to distinguish two cases: if γ1 − γ2ψ(t∗) > 0, then
the maximal existence interval is given by (−∞,∞). If γ1 − γ2ψ(t∗) < 0, then
we have the maximal existence interval (t̃,∞), where

t̃ := − 1
2γ1

ln
(︄

γ2ψ(t∗)
γ2ψ(t∗)− γ1

)︄
+ t∗ < t∗.

We obtain

ψ(t) = γ1
1

γ1−γ2ψ(t∗)
ψ(t∗) exp(−2γ1(t− t∗)) + γ2

t→∞
↗ γ1

γ2

if γ1 − γ2ψ(t∗) > 0 and

ψ(t) = γ1
1

γ1−γ2ψ(t∗)
ψ(t∗) exp(−2γ1(t− t∗)) + γ2

t→∞
↘ γ1

γ2

if γ1 − γ2ψ(t∗) < 0. Finally, for γ1 − γ2ψ(t∗) = 0 we have ψ(t) := γ1/γ2 as a
unique solution to the initial value ψ(t∗) = γ1/γ2 for t ∈ (−∞,∞).

We observe that

V :=
{︄
γ1
γ2
, 0
}︄

is a global attractor for the ordinary differential equation (4.9).

Next, we compare ϕ from the inequality (4.8) to the solution ψ of (4.9) in order to
obtain information about the long-term behavior of ϕ and therefore of ∥u(t)∥2

L2
π
. To

this end, let u be a global solution to (4.1) with initial value u0 ∈ L2
σ(Qn).

Moreover, let g : R⩾0 → R with g(z) := 2γ1z−2γ2z2, ψ : [t∗,∞) → R be the solution of
the differential equation (4.9) to the initial value ψ(0) and ϕ be the function satisfying
the differential inequality (4.8). Obviously g is locally Lipschitz continuous and ϕ, ψ

are both almost everywhere differentiable in (0,∞). We have

ϕ(0) = ∥u0∥2L2
π
= ψ(0), d

dt
ϕ(t)− g(ϕ(t)) ⩽ 0 = d

dt
ψ(t)− g(ψ(t)) (t > 0). (4.11)
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By applying [56, Theorem 1.3] we obtain the estimate

ϕ(t) ⩽ ψ(t) (t ⩾ 0). (4.12)

4.8 Remark. Note that [56, Theorem 1.3] originally requires differentiable functions
ϕ, ψ (in the classical sense) and the inequality in (4.11) to hold for t ⩾ 0, which we
cannot guarantee. However, it is easy to see from the proof that we can also work
with functions that are differentiable almost everywhere and that it is sufficient if the
inequality only holds for t > 0 as in our case. We then obtain inequality (4.12) almost
everywhere for t ⩾ 0, which yields the inequality for all t ⩾ 0 due to continuity.

We distinguish the following cases.

• ϕ(0) = ψ(0) = 0: Then we have ϕ(t) ⩽ ψ(t) = 0 for t ⩾ 0.

• ϕ(0) = ψ(0) = γ1
γ2
: Then we have ϕ(t) ⩽ ψ(t) = γ1

γ2
for t ⩾ 0.

• 0 < ϕ(0) = ψ(0) < γ1
γ2
: Then we have

ϕ(t) ⩽ ψ(t) = γ1
1

γ1−γ2ψ(0)
ψ(0) exp(−2γ1t) + γ2

⩽
γ1
γ2

for t ⩾ 0.

• ϕ(0) = ψ(0) > γ1
γ2
: Then we have

ϕ(t) ⩽ ψ(t) = γ1
1

γ1−γ2ψ(0)
ψ(0) exp(−2γ1t) + γ2

.

Due to

γ1 − γ2ψ(0)
ψ(0) exp(−2γ1t) + γ2 = γ2(1− exp(−2γ1t)) +

γ1
ψ(0) exp(−2γ1t)

⩾ γ2(1− exp(−2γ1t))

we have

ϕ(t) ⩽ γ1
γ2(1− exp(−2γ1t))

t→∞−−−→ γ1
γ2
.

Thus for every ε > 0 there exists some t0 = t0(ε) > 0 such that

γ1
γ2(1− exp(−2γ1t))

− γ1
γ2

=
⃓⃓⃓⃓
⃓ γ1
γ2(1− exp(−2γ1t))

− γ1
γ2

⃓⃓⃓⃓
⃓ < ε.
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and

ϕ(t) ⩽ γ1
γ2(1− exp(−2γ1t))

− γ1
γ2

+ γ1
γ2

< ε+ γ1
γ2

(4.13)

for t ⩾ t0 independently of ϕ(0) = ψ(0) (i.e. u0).

Finally, let ε > 0 be arbitrary and t0 := t0(ε) > 0 be chosen as in (4.13). Putting
everything together, we have shown that for every u0 ∈ L2

σ(Qn) the corresponding
solution u to (4.1) is bounded as

∥u(t)∥2L2
π
⩽
γ1
γ2

+ ε =: R0 (t ⩾ t0), (4.14)

where t0 does not depend on u0. We conclude that B0 := BL2
σ
(0,

√
R0) is a bounded

absorbing set in L2
σ(Qn).

4.9 Remark. With (4.14) in the proof of Lemma 4.7 we proved a stronger, uniform
estimate than it would be required for an absorbing set (cf. Definition 2.12). This will
also be the case in the proofs for absorbing sets with higher regularity in Lemma 4.10
and Theorem 4.11.
Moreover, we note that BL2

σ
(0, γ1/γ2) ⊆ L2

σ(Qn) is forward invariant thanks to (4.12).
We have that

∥u(t)∥2L2
π
= ϕ(t) ⩽ ψ(t) t→∞−−−→ γ1

γ2

for u0 ̸= 0, hence limt→∞ u(t) ∈ BL2
σ
(0, (γ1/γ2)1/2).

4.2.2 Higher Regularity for Absorbing Sets

In order to show the existence of a global attractor A for (4.1), we want to make use of
compact embeddings of the type Hk

π(Qn)
c
↪→ Hk−1

π (Qn) for k ∈ N. Thus we will show
in two steps that we can find absorbing sets for (4.1) of arbitrary high regularity. In
the first step, we will show this assertion for H1

π-regularity.

4.10 Lemma. There exists some R1 > 0 and t1 ⩾ 0 such that

∥u(t)∥2H1
π
⩽ R1 (t ⩾ t1)

for any (global) solution u to (4.1). Note that t1 does not depend on the initial value
u0. Thus there exists a bounded absorbing set B1 := BH1

π
(0,

√
R1) in H1

π(Qn)∩L2
σ(Qn).
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Proof. Let u be a (global) solution to (4.1) with initial value u0 ∈ L2
σ(Qn). We test

(4.1) with −∆u w.r.t. the L2
π scalar product and infer

1
2
d

dt
∥∇u(t)∥2L2

π
+ α∥∇u(t)∥2L2

π
+ Γ0∥∆u(t)∥2L2

π
+ Γ2∥∆∇u(t)∥2L2

π

+ β

Ln

∫︂
Qn

(∇(|u(t)|2 u(t))) : ∇u(t) dx = −λ0((u(t) · ∇)u(t),∆u(t))L2
π
.

A direct calculation yields∫︂
Qn

(∇(|u(t)|2 u(t))) : ∇u(t) dx ⩾ 0,

see e.g. [61, Theorem 2]. By using the estimate

∥∇u∥2L2
π
= |(∆u, u)L2

π
| ⩽ ∥∆u∥L2

π
∥u∥L2

π
(4.15)

and applying Young’s inequality we infer

∥∆u∥2L2
π
⩽ ε∥∆∇u(t)∥2L2

π
+ C∥∇u(t)∥2L2

π
,

where ε > 0 will be chosen later and C := C(ε) > 0. Then we can estimate as

1
2
d

dt
∥∇u(t)∥2L2

π
+ Γ2

2 ∥∆∇u(t)∥2L2
π
⩽ C∥∇u(t)∥2L2

π
+ |λ0||((u(t) · ∇)u(t),∆u(t))L2

π
|

with C > 0. We estimate the λ0-term as

|((u(t) · ∇)u(t),∆u(t))L2
π
| = |(div (u(t)⊗ u(t)),∆u(t))L2

π
|

⩽ ∥u(t)⊗ u(t)∥L2
π
∥∆∇u(t)∥L2

π

⩽ ε∥∆∇u(t)∥2L2
π
+ C∥u(t)∥4L4

with ε > 0 arbitrary and C := C(ε,Qn) > 0. Plugging this into our inequality we
obtain

1
2
d

dt
∥∇u(t)∥2L2

π
+ Γ2

4 ∥∆∇u(t)∥2L2
π
⩽ C1∥∇u(t)∥2L2

π
+ C2∥u(t)∥4L4 (4.16)

with C1, C2 > 0 independent of u, which leads to

1
2
d

dt
∥∇u(t)∥2L2

π
⩽ C1∥∇u(t)∥2L2

π
+ C2∥u(t)∥4L4 . (4.17)

We want to apply the generalized Gronwall lemma (cf. Lemma 2.30) to (4.17) in order
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to obtain a uniform bound of u in H1
π(Qn). To this end, we define f(t) := ∥∇u(t)∥2

L2
π
,

g(t) := C1 and h(t) := C2∥u(t)∥4L4 . We have to show that f , g and h are uniformly
integrable on [t, t+ r] for t ⩾ t′, where t′ > 0 has to be chosen later.
Therefore let R0 > 0 and t0 > 0 as in Lemma 4.7 such that ∥u(t)∥2

L2
π
⩽ R0 for t ⩾ t0.

Moreover, let r ⩾ 0 and t ⩾ t0 be arbitrary. By multiplying (4.1) with u and integrating
from t to t+ r we obtain

1
2∥u(t)∥

2
L2
π
= 1

2∥u(t+ r)∥2L2
π
+ Γ2

∫︂ t+r

t
∥∆u(s)∥2L2

π
ds+ Γ0

∫︂ t+r

t
∥∇u(s)∥2L2

π
ds

+ α
∫︂ t+r

t
∥u(s)∥2L2

π
ds+ β

Ln

∫︂ t+r

t
∥u(s)∥4L4 ds.

By using (4.15) with Young’s inequality on ∥∇u(t)∥2
L2
π
and by exploiting the uniform

boundedness of u in L2
σ(Qn) for t ⩾ t0 according to Lemma 4.7 we arrive at

1
2∥u(t+ r)∥2L2

π
+ Γ2

2

∫︂ t+r

t
∥∆u(s)∥2L2

π
ds+ β

Ln

∫︂ t+r

t
∥u(s)∥4L4 ds

⩽
1
2∥u(t)∥

2
L2
π
+ C3

∫︂ t+r

t
∥u(s)∥2L2

π
ds ⩽ C4

(4.18)

for t ⩾ t0, where C3 := C3(Γ2,Γ0, α) > 0 and C4 := C4(C3, R0, r) > 0. This yields
∫︂ t+r

t
h(s) ds = C2

∫︂ t+r

t
∥u(t)∥4L4 ds ⩽ C5

with 0 < C5 := C5(C4, β,Qn) <∞. Obviously we have
∫︂ t+r

t
g(s) ds =

∫︂ t+r

t
C1 ds = C6

with 0 < C6 := C6(C1, r) <∞. Finally we obtain
∫︂ t+r

t
f(s) ds =

∫︂ t+r

t
∥∇u∥2L2

π
ds ⩽ C7,

where 0 < C7 := C7(C4,Γ2,Γ0, α, R0, r) <∞ and we used (4.15) and (4.18). Applying
the generalized Gronwall lemma (cf. Lemma 2.30) and choosing a fixed r > 0 we obtain

f(t) = ∥∇u(t)∥2L2
π
⩽ C8 exp(C6) (t ⩾ t0 + r)

with 0 < C8 := C8(C5, C7, r). This yields a uniform bound on the H1-norm as

∥u(t)∥2H1
π
= ∥u(t)∥2L2

π
+ ∥∇u(t)∥2L2

π
⩽ R0 + C8 exp(C6) =: R1 (t ⩾ t1).
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By defining the ball

B1 := {u ∈ H1
π(Qn) ∩ L2

σ(Qn) : ∥u(t)∥2H1
π
⩽ R1}

we see that

distH1
π
(u(t),B1) = 0 (t ⩾ t1)

and B1 is a bounded absorbing set for (4.1) in H1
π(Qn) ∩ L2

σ(Qn) and therefore also in
L2
σ(Qn).

Using the results for bounded absorbing sets in L2
σ(Qn) and H1

π(Qn) ∩ L2
σ(Qn) we

can prove the existence of bounded absorbing sets with arbitrary high regularity by
induction.

4.11 Theorem. Let k ⩾ 0. There exists some Rk > 0 and tk ⩾ 0 such that

∥u(t)∥2Hk
π
⩽ Rk (t ⩾ tk)

for any (global) solution u to (4.1). Note that tk does not depend on the initial value
u0. Thus there exists a bounded absorbing set Bk := BHk

π
(0,

√
Rk) in Hk

π(Qn)∩L2
σ(Qn).

Proof. We have shown the assertion for k = 0 in Lemma 4.7 and for k = 1 in Lemma
4.10. Therefore, let k ⩾ 2 and assume that there exist Rk−1 ⩾ ... ⩾ R0 > 0 and
tk−1 ⩾ ... ⩾ t0 > 0 such that ∥u(t)∥2

Hj
π
⩽ Rj for j ∈ {0, ..., k − 1} and t ⩾ tj.

Testing (4.1) with (−1)k∆ku(t) yields

0 = 1
2
d

dt
∥∇ku(t)∥2L2

π
+ Γ2∥∇k+2u(t)∥2L2

π
+ Γ0∥∇k+1u(t)∥2L2

π
+ α∥∇ku(t)∥2L2

π

+ (−1)kλ0(∇k−2(u(t) · ∇)u(t),∇k+2u(t))L2
π
+ (−1)kβ(∇k−2(|u(t)|2u(t)),∇k+2u(t))L2

π
.

By using (4.15) we have

Γ0∥∇k+1u(t)∥2L2
π
⩽ ε∥∇k+2u(t)∥2L2

π
+ C(ε)∥∇ku(t)∥2L2

π

with ε > 0 and C(ε) > 0. From now on let t ⩾ tk−1. Regarding the β-term we have

∥∇k−2(|u(t)|2u(t))∥L2
π
⩽ C

k−2∑︂
j,k,ℓ=0

∥∇ju(t)∥L6∥∇iu(t)∥L6∥∇ℓu(t)∥L6

⩽ C
k−2∑︂

j,k,ℓ=0
∥∇ju(t)∥H1

π
∥∇iu(t)∥H1

π
∥∇ℓu(t)∥H1

π
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⩽ C
k−2∑︂

j,k,ℓ=0
∥u(t)∥Hj+1

π
∥u(t)∥Hi+1

π
∥u(t)∥Hℓ+1

π

⩽ C∥u(t)∥3
Hk−1

π

with C := C(Qn) > 0, where we used the Sobolev embedding as H1
π(Qn) ↪→ L6(Qn)

(cf. [1] and [41, Theorem A.3]), and therefore

|β||(∇k−2(|u(t)|2u(t)),∇k+2u(t)))L2
π
| ⩽ ε∥∇k+2u(t)∥2L2

π
+ C(ε)∥u(t)∥6

Hk−1
π

⩽ ε∥∇k+2u(t)∥2L2
π
+ C(ε)R3

k−1.

Regarding the λ0-term we can use similar arguments and obtain

∥∇k−2(u(t) · ∇)u(t)∥L2
π
⩽ C

k−2∑︂
i,j=0

∥∇ju(t)∥L4∥∇i+1u(t)∥L4

⩽ C
k−2∑︂
i,j=0

∥∇ju(t)∥H1
π
∥∇i+1u(t)∥H1

π

⩽ C
k−2∑︂
i,j=0

∥u(t)∥Hj+1
π

∥u(t)∥Hi+2
π

⩽ C∥u(t)∥Hk−1
π

∥u(t)∥Hk
π

⩽ C∥u(t)∥Hk−1
π

(∥u(t)∥2L2
π
+ ∥∇ku(t)∥2L2

π
)1/2

with C := C(Qn) > 0 where we used H1
π(Qn) ↪→ L4(Qn) (cf. [1] and [41, Theorem

A.3]), and therefore

|λ0||(∇k−2(u(t) · ∇)u(t),∇k+2u(t))L2
π
|

⩽ ε∥∇k+2u(t)∥2L2
π
+ C(ε)(∥u(t)∥2

Hk−1
π

(∥u(t)∥2L2
π
+ ∥∇ku(t)∥2L2

π
))

⩽ ε∥∇k+2u(t)∥2L2
π
+ C(ε)Rk−1∥∇ku(t)∥2L2

π
+ C(ε)R0Rk−1.

This yields

d

dt
∥∇ku(t)∥2L2

π
+ Γ2

2 ∥∇k+2u(t)∥2L2
π
⩽ C(α, ε, Rk−1)∥∇ku(t)∥2L2

π
+ C(ε, R0, Rk−1)

for t ⩾ tk−1. By applying the generalized Gronwall lemma (cf. Lemma 2.30) we have

∥∇ku(t)∥2L2
π
⩽ C (t ⩾ tk)
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for some tk > tk−1 and therefore

∥u(t)∥2Hk
π
⩽ Rk (t ⩾ tk)

for a Rk > 0 chosen accordingly. We set

Bk := {u ∈ Hk
π(Qn) ∩ L2

σ(Qn) : ∥u∥2Hk
π
⩽ Rk}

in order to obtain an absorbing set for (4.1) in Hk
π(Qn) ∩ L2

σ(Qn).

4.2.3 Existence of a Global Attractor

Since we have proved the existence of absorbing sets of arbitrary high regularity, we
can show the existence of global attractors of arbitrary high regularity, too. Moreover,
we will see that the attractors of different regularity coincide.

4.12 Remark. If it is known that the semigroup S regularizes such that the solution
u(t) = S(t)u0 to some initial value u0 ∈ L2

σ(Qn) is of arbitrary high spatial regularity
u ∈ H4

π(Qn) ∩ C∞(Qn), then it is clear that the global attractor is of arbitrary high
regularity due to S(t)A = A for t > 0. Since this property of the semigroup is not
shown in this thesis, we use another approach to prove that the global attractor has
arbitrary high regularity.

4.13 Theorem. Let k ∈ N0 be chosen arbitrarily. Then there exists a global attrac-
tor Ak ⊆ Hk

π(Qn) ∩ L2
σ(Qn) for (4.1). Moreover, all attractors of different regularity

coincide, i.e. Ak = Aj for j, k ∈ N0. Consequently, we write A for the unique global
attractor of (4.1).

Proof. Let k ∈ N0. Due to the Rellich embedding theorem (cf. [1] and [41, Corollary
A.5]) we know that Hk+1

π (Qn) ∩ L2
σ(Qn)

c
↪→ Hk

π(Qn) ∩ L2
σ(Qn). Then the bounded

absorbing set Bk+1 ⊆ Hk+1
π (Qn) ∩ L2

σ(Qn), which exists due to Theorem 4.11, is a
relatively compact absorbing set in Hk

π(Qn) ∩ L2
σ(Qn). Thus, Bk+1

Hk
π is a compact

absorbing set. There exists a global attractor Ak ⊆ Hk
π(Qn)∩L2

σ(Qn), which is due to
Theorem 2.15 and given as Ak = ω(Bk+1

Hk
π) in Hk

π(Qn) ∩ L2
σ(Qn).

Now let j, k ∈ N0 and w.l.o.g. j < k. Let S(t) : L2
σ(Qn) → L2

σ(Qn) be the semigroup
to (4.1) . Since Aj is a global attractor, we know that

Aj = S(tk+1)Aj ⊆ Bk+1 ⊆ Hk+1
π (Qn) ∩ L2

σ(Qn)

such that Aj actually admits Hk+1
π -regularity and is a bounded, invariant set in

Hk+1
π (Qn) ∩ L2

σ(Qn). We obtain that Aj
Hk

π ⊆ Hk
π(Qn) ∩ L2

σ(Qn) is a compact set,
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using the compact embedding. Let (un)n∈N ⊆ Aj be a sequence such that there exists
a u ∈ Hk

π(Qn) ∩ L2
σ(Qn) with un n→∞−−−→ u in Hk

π(Qn) ∩ L2
σ(Qn). Then we have

∥un − u∥Hj
π
⩽ ∥un − u∥Hk

π

n→∞−−−→ 0

and - since Aj is closed in Hj
π(Qn)∩L2

σ(Qn) - we obtain u ∈ Aj. Thus Aj = Aj
Hk

π and
Aj is a compact invariant set in Hk

π(Qn) ∩ L2
σ(Qn). Since Ak is the maximal compact

invariant set in that space, we obtain Aj ⊆ Ak.
In order to retrieve the opposite inclusion, we fix the absorbing set Bk+1 and note that
Bk+1

Hk
π and Bk+1

Hj
π are compact absorbing sets in Hk

π(Qn) ∩ L2
σ(Qn) and respectively

in Hj
π(Qn)∩L2

σ(Qn) due to Rellich’s compact embedding theorem. Obviously, we have
Bk+1

Hk
π ⊆ Bk+1

Hj
π . Then (2.8) and Theorem 2.15 yield

Ak =
⋂︂
t⩾0

S(t)Bk+1
Hk

π ⊆
⋂︂
t⩾0

S(t)Bk+1
Hj

π = Aj,

thus Aj = Ak and the assertion is proved.

4.2.4 Injectivity on the Attractor

Injectivity of the semigroup S(t) on the attractor A yields some interesting conse-
quences, such that it is worthwhile to investigate it. At first we will prove injectivity
in the sense of Theorem 2.16.

4.14 Theorem. Let A be the global attractor of (4.1) as in Theorem 4.13. Then the
semigroup S is injective on A in the sense of Theorem 2.16.

Proof. Let u and v be solutions to (4.1) for initial values u0 ∈ A and v0 ∈ A, where
u(t) = S(t)u0 and v(t) = S(t)v0 for t > 0. We define w := u− v which solves

∂tw + Γ2∆2w − Γ0∆w + αw + Pβ(|u|2u− |v|2v) + Pλ0((u · ∇)u− (v · ∇)v) = 0.
(4.19)

We already know that u, v ∈ L2((0, T ), H4
π(Qn) ∩ L2

σ(Qn)) for T > 0, which
comes from the arbitrary high regularity of u0, v0 ∈ A (cf. Theorem 3.6), and that
u, v ∈ L∞((0, T ), H2

π(Qn) ∩ L2
σ(Qn)). We use Lemma 2.17 with H = L2

σ(Qn) and
V = H2

π(Qn) ∩ L2
σ(Qn). For this purpose, we note that

M : E1/2 = H2
π(Qn) ∩ L2

σ(Qn) → E−1/2, w ↦→ Γ2∆2w − Γ0∆w + αw

is a bounded operator (cf. Section 4.1). Finally, it remains to show the estimate
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∥h(t, w(t))∥L2
π
⩽ K(t)∥w(t)∥H2

π
with K ∈ L2((0, T )) and

h(t, w(t)) := Pβ(|u(t)|2u(t)− |v(t)|2v(t)) + Pλ0((u(t) · ∇)u(t)− (v(t) · ∇)v(t)).

Now, consider G(u) = |u|2u with Fréchet-derivative G′(ξ)λ = 2(ξ · λ)ξ + |ξ|2λ. We
obtain

∥|u|2u− |v|2v∥L2
π
= ∥G(u)−G(v)∥L2

π

⩽ C sup
ξ∈B2

∥G′(ξ)∥L (H1
π ,L2)∥u− v∥H1

π

⩽ sup
ξ∈B2

sup
∥λ∥

H1
π
=1
∥2(ξ · λ)ξ + |ξ|2λ∥L2

π
∥u− v∥H1

π

⩽ C∥u− v∥H1
π
,

where C := C(Qn, R2) > 0 and we used the generalized mean value theorem, Sobolev
embeddings as well as A ⊆ B2

H1
π . Moreover, we have

∥(u · ∇)u− (v · ∇)v∥L2
π
= ∥(u · ∇)(u− v)− ((v − u) · ∇)v∥L2

π

⩽ C(∥u∥L4∥∇(u− v)∥L4 + ∥u− v∥L4∥∇v∥L4)
⩽ C(∥u∥H1

π
∥u− v∥H2

π
+ ∥v∥H2

π
∥u− v∥H1

π
)

⩽ C∥u− v∥H2
π
,

where C := C(Qn, R2) > 0 and we used H1(Qn) ↪→ L4(Qn). This yields the desired
estimate on h and we can use Lemma 2.17 to obtain the following:
If S(t0)u0 = S(t0)v0 for some t0 > 0, then S(t)u0 = S(t)v0 for 0 ⩽ t ⩽ t0 and especially
u0 = v0, which means injectivity in the sense of Theorem 2.16.

4.15 Remark. Note that Theorem 4.14 yields some further consequences regarding
the global attractor A.

• (A, S(t))t∈R is a dynamical system (cf. Theorem 2.16),

• A = ⋃︁{u is a complete, bounded orbit} (cf. Theorem 2.19).

As a last step we prove some lemma to estimate w in equation (4.19). We will need
this estimate in the next section where we show uniform differentiability of S.

4.16 Lemma. Let u and v be solutions to (4.1) for initial values u0 ∈ A and v0 ∈ A,
where u(t) = S(t)u0 and v(t) = S(t)v0 for t > 0. Then w := u−v satisfies the estimate

d

dt
∥w∥2L2

π
+ C1∥w∥2H2

π
⩽ C2∥w∥2L2

π
, (4.20)
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where C1, C2 > 0 denote some constants independent of u0 and v0.

Proof. Let w := u− v be given. Then w fulfills equation (4.19). Testing this equation
with w yields

1
2
d

dt
∥w∥2L2

π
= −Γ2∥∆w∥2L2

π
− Γ0∥∇w∥2L2

π
− α∥w∥2L2

π
− β(|u|2u,w)L2

π
+ β(|v|2v, w)L2

π

− λ0((u · ∇)u,w)L2
π
+ λ0((v · ∇)v, w)L2

π
.

Due to the fact that u and v are divergence free we know that

((v · ∇)v, v)L2
π
= ((v · ∇)u, u)L2

π
= 0 (4.21)

and

((v · ∇)v, u)L2
π
= −((v · ∇)u, v)L2

π
.

We can then rewrite the λ0-terms as

−((u · ∇)u,w)L2
π
+ ((v · ∇)v, w)L2

π
= −((u · ∇)u,w)L2

π
− ((v · ∇)u, v)L2

π

= −((w · ∇)u,w)L2
π
.

Using the embeddingH1
π(Qn) ↪→ L4(Qn) and u(t) ∈ A for t ⩾ 0, we obtain the estimate

|((w · ∇)u,w)L2
π
| ⩽ C∥w∥L2

π
∥w∥H1

π
∥u∥H2

π
⩽ C∥w∥L2

π
∥w∥H1

π

with C = C(Qn, R2) > 0. We apply (4.15) to that term and to the Γ0-term and obtain

1
2
d

dt
∥w∥2L2

π
⩽ −Γ2

4 ∥∆w∥2L2
π
+ C∥w∥2L2

π
− β(|u|2u,w)L2

π
+ β(|v|2v, w)L2

π
.

By the same arguments as in the proof of Theorem 4.14 we have

|(|u|2u− |v|2v, w)L2
π
| ⩽ C∥w∥H1

π
∥w∥H2

π

with C = C(β,R1) and by an application of (4.15) also

1
2
d

dt
∥w∥2L2

π
⩽ −Γ2

8 ∥∆w∥2L2
π
+ C∥w∥2L2

π
, (4.22)

which completes the proof.

4.17 Remark. Note that by an application of the Gronwall lemma (cf. Lemma 2.29)
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to (4.20) we can also show

∥w(t)∥2L2
π
⩽ C(t)∥w(0)∥2L2

π
(4.23)

with C(t) > 0 monotonically increasing in t.

4.3 Dimensional Bounds for the Global Attractor

In the last section we proved that there exists a global attractor A for (4.1) that has
arbitrary high regularity. In this section we want to show that the long-term dynamics
is basically finite dimensional, i.e. the global attractor has finite (Hausdorff or fractal)
dimension. To this end we proceed in two steps: At first we show that the semigroup
S corresponding to (4.1) is uniformly differentiable in the sense of Definition 2.27. In
the second step, we will prove that T Rm(A) < 0 is fulfilled for some m ∈ N in order
to apply Theorem 2.28.
Following this scheme, we start with the uniform differentiability.

4.18 Lemma. The semigroup S corresponding to (4.1) is uniformly differentiable on A
in L2

σ(Qn) in the sense of Definition 2.27. Moreover, Λ(t, v0) ∈ L (L2
σ(Qn)) is compact

for v0 ∈ A and t > 0.

Proof. We will proceed in two steps: first, we want to find the operator Λ(t, v0) in
order to show uniform differentiability. Then we show compactness of this operator.
Step 1: Uniform differentiability
Let v0 ∈ A. By (4.6) and the inverse function theorem it is clear that the derivative
Λ(t, v0)V0 is given as the solution of the linearized problem

dV

dt
=− Γ2∆2V + Γ0∆V − αV − Pλ0((v · ∇)V

+ (V · ∇)v)− Pβ((2(v · V )v) + |v|2V )
(4.24)

with V (0) = V0 ∈ L2
σ(Qn), where v is the solution of (4.1) with initial value v0. This

equation is locally and globally well-posed due to (4.6).
Let v1, v2 be two solutions of (4.1) with initial values v10, v20 ∈ A ⊆ H2

π(Qn) ∩ L2
σ(Qn).

Let V be a solution of (4.24) with v1 and initial value V (0) = v20 − v10. The error due
to the linearization is given as θ := v2 − v1 − V and fulfills the equation

dθ

dt
=− Γ2∆2θ + Γ0∆θ − αθ − Pλ0((v1 · ∇)θ + (θ · ∇)v1

+ ((v1 − v2) · ∇)(v1 − v2))− Pβ(|v2|2v2
− |v1|2v1 − 2(v1 · V )v1 − |v1|2V ).

(4.25)
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By calculations on the β-term we obtain

|v2|2v2 − |v1|2v1 − 2(v1 · V )v1 − |v1|2V
= |v2|2v2 − |v1|2v1 − 2(v1 · (v2 − v1 − θ))v1 − |v1|2(v2 − v1 − θ)
= |v2|2v2 − |v1|2v1 − |v1|2(v2 − v1)− 2(v1 · (v2 − v1))v1 + 2(v1 · θ)v1 + |v1|2θ
= g(v1, v2) + 2(v1 · θ)v1 + |v1|2θ,

where

g(v1, v2) := |v2|2v2 − |v1|2v1 − |v1|2(v2 − v1)− 2(v1 · (v2 − v1))v1.

We want to apply Taylor’s formula in order to estimate g. To this end we write g with
G : H1

π(Qn) ∩ L2
σ(Qn) → L2

σ(Qn), G(x) := |x|2x as

g(v1, v2) = G(v2)−G(v1)−G′(v1)(v2 − v1),

where G′ denotes the Fréchet-derivative, which is given as

G′(u)v = 2(u · v)u+ |u|2u (u, v ∈ H1
π(Qn) ∩ L2

σ(Qn)).

The Gâteau-derivative of G′ for u, v, w ∈ H1
π(Qn) ∩ L2

π(Qn) is easily calculated as

G′′(u)[v, w] = 2(u · v)w + 2(w · v)u+ 2(u · w)v.

We apply a Taylor expansion on G in a ball B ⊆ H2
π(Qn) ∩ L2

σ(Qn) such that A ⊆ B

and estimate the remainder:

∥g(v1, v2)∥L2
π
⩽ C sup

0⩽t⩽1
∥G′′(v2 + t(v1 − v2))∥L (H1

π×H1
π ,L

2
π)∥v2 − v1∥2H1

π

⩽ C sup
u∈B

sup
∥(v,w)∥

H1
π×H1

π
=1
∥G′′(u)[v, w]∥L2

π
∥v2 − v1∥2H1

π

⩽ C sup
u∈B

sup
∥(v,w)∥

H1
π×H1

π
=1
∥u∥H1

π
∥v∥H1

π
∥w∥H1

π
∥v2 − v1∥2H1

π

⩽ C∥v2 − v1∥2H1
π
.

Here, we used H1
π(Qn) ↪→ L6(Qn) and C := C(Qn, R1) > 0 denotes a constant.
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By testing (4.25) with θ we obtain

1
2
d

dt
∥θ∥2L2

π
= −Γ2∥∆θ∥2L2

π
− Γ0∥∇θ∥2L2

π
− α∥θ∥2L2

π
− λ0((θ · ∇)v1, θ)L2

π

− λ0(((v2 − v1) · ∇)(v2 − v1), θ)L2
π
− β(g(v1, v2), θ)L2

π

− 2β((v1 · θ)v1, θ)L2
π
− β(|v1|2, |θ|2)L2

π
.

(4.26)

First, we note that

β(|v1|2, |θ|2)L2
π
⩾ 0

and

β((v1 · θ)v1, θ)L2
π
= L−n

∫︂
Qn

|v1(x) · θ(x)|2 dx ⩾ 0.

Next, we apply the estimates

|((θ · ∇)v1, θ)L2
π
| ⩽ C∥θ∥L4∥∇v1∥L4∥θ∥L2

π
⩽ C∥θ∥H1

π
∥v1∥H2

π
∥θ∥L2

π
(4.27)

and

|(((v2 − v1) · ∇)(v2 − v1), θ)L2
π
| ⩽ C∥v2 − v1∥L2

π
∥∇(v2 − v1)∥L4∥θ∥L4

⩽ C∥v2 − v1∥L2
π
∥v2 − v1∥H2

π
∥θ∥H1

π
,

where C := C(Qn) > 0 and we used the embedding H1
π(Qn) ↪→ L4(Qn). Furthermore,

we have

|(g(v1, v2), θ)L2
π
| ⩽ 1

2∥g(v2, v2)∥
2
L2
π
+ 1

2∥θ∥
2
L2
π

⩽ C∥v2 − v1∥4H1
π
+ 1

2∥θ∥
2
L2
π

⩽ C(∥v2 − v1∥4L2
π
+ ∥v2 − v1∥2H2

π
∥v2 − v1∥2L2

π
+ ∥θ∥2L2

π
),

where C := C(Qn, R1) > 0 and we used ∥∇(v2 − v1)∥4L2
π
⩽ C∥v2 − v1∥2H2

π
∥v2 − v1∥2L2

π
by

(4.15) in the last step. Plugging these estimates into (4.26) and applying (4.15) onto
the Γ0-term yields

1
2
d

dt
∥θ∥2L2

π
⩽− Γ2

2 ∥∆θ∥2L2
π
+ C

(︂
∥θ∥2L2

π
+ ∥θ∥H1

π
∥v1∥H2

π
∥θ∥L2

π

+∥v2 − v1∥L2
π
∥v2 − v1∥H2

π
∥θ∥H1

π
+ ∥v2 − v1∥4L2

π

+∥v2 − v1∥2H2
π
∥v2 − v1∥2L2

π
+ ∥θ∥2L2

π

)︂
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with C := C(Γ2,Γ0, α, β, λ0, Qn, R1) > 0. We apply (4.15) to the ∥θ∥H1
π
-terms and

obtain

1
2
d

dt
∥θ∥2L2

π
⩽− Γ2

4 ∥∆θ∥2L2
π
+ C

(︂
∥θ∥2L2

π
+ ∥v2 − v1∥4L2

π
+ ∥v1 − v2∥2L2

π
∥v1 − v2∥2H2

π

)︂
,

where again C := C(Γ2,Γ0, α, β, λ0, Qn, R1) > 0. By dropping the Γ2-term and using
the embeddings H2

π(Qn) ↪→ H1
π(Qn) ↪→ L2

π(Qn) we finally have

d

dt
∥θ∥2L2

π
⩽C

(︂
∥θ∥2L2

π
+ ∥v1 − v2∥2L2

π
∥v1 − v2∥2H2

π

)︂
and can apply the standard Gronwall inequality (cf. Lemma 2.29, note that θ(0) = 0)
to obtain

∥θ(t)∥2L2
π
⩽ C(t)

∫︂ t

0
∥v1(s)− v2(s)∥2L2

π
∥v1(s)− v2(s)∥2H2

π
ds

with C(t) > 0. Testing (4.22) with ∥v2 − v1∥2L2
π
(note that w = v2 − v1), integrating

w.r.t. t and using (4.23) yields
∫︂ t

0
∥v1(s)− v2(s)∥2L2

π
∥v1(s)− v2(s)∥2H2

π
ds ⩽ C

(︃
∥v02 − v01∥4L2

π
+
∫︂ t

0
∥v2(s)− v1(s)∥4L2

π
ds
)︃

⩽ C(t)∥v02 − v01∥4L2
π

such that we have

∥θ(t)∥L2
π
⩽ C(t)∥v02 − v01∥2L2

π
.

For a fixed t > 0 we finally obtain

∥v2(t)− v1(t)− V (t)∥L2
π

∥v02 − v01∥L2
π

=
∥θ(t)∥L2

π

∥v02 − v01∥L2
π

⩽ C(t)∥v02 − v01∥L2
π
−→ 0

as v20 → v10 in L2
π(Qn). Hence, we obtain uniform differentiability of S on A with

V (t) = Λ(t, v10)V (0) = Λ(t, v10)(v20 − v10).

Step 2: Compactness of Λ(t, v0)
Next we want to show that Λ(t, v0) is a compact operator for t > 0 and v0 ∈ A. In
order to apply Rellich’s embedding theorem we first prove the existence of L2

π and H1
π

bounds for Λ(t, v0)V0. Let v be a solution of (4.1) for v0 ∈ A. Testing (4.24) with its
solution V yields

1
2
d

dt
∥V ∥2L2

π
= −Γ2∥∆V ∥2L2

π
− Γ0∥∇V ∥2L2

π
− α∥V ∥2L2

π
− λ0((v · ∇)V, V )L2

π
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− λ0((V · ∇)v, V )L2
π
− 2β((v · V )v, V )L2

π
− β(|v|2V, V )L2

π
.

With similar arguments as before we deduce

1
2
d

dt
∥V ∥2L2

π
⩽ −Γ2

4 ∥∆V ∥2L2
π
+ C∥V ∥2L2

π
(4.28)

with C = C(Γ2,Γ0, α, λ0, R2) > 0. Then we may apply the standard Gronwall lemma
(cf. Lemma 2.29) to obtain L2

π-bounds for t > 0:

∥V (t)∥2L2
π
⩽ C(t)∥V (0)∥2L2

π
, (4.29)

where C(t) > 0 is monotonically increasing in t. This inequality gives us a bound on
the operator norm of Λ(t, v0) that does not depend on v0. To obtain bounds for higher
regularity, we test (4.24) with −∆V :

1
2
d

dt
∥∇V ∥2L2

π
=− Γ2∥∆∇V ∥2L2

π
− Γ0∥∆V ∥2L2

π
− α∥∇V ∥2L2

π
+ λ0((v · ∇)V,∆V )L2

π

+ λ0((V · ∇)V,∆V )L2
π
+ 2β((v · V )v,∆V )L2

π
+ β(|v|2V,∆V )L2

π
.

By the usual use of (4.15) and H1
π(Qn) ↪→ L6(Qn), L4(Qn) we arrive at

1
2
d

dt
∥∇V ∥2L2

π
⩽ −Γ2

2 ∥∆∇V ∥2L2
π
+ C(∥∇V ∥2L2

π
+ ∥V ∥2L2

π
), (4.30)

where C > 0 does not depend on t, V and v0. We integrate (4.28) from t/2 to t, neglect
the ∥V (t)∥2

L2
π
on the left-hand side and add

∫︁ t
t/2∥V (s)∥2

L2
π
ds on both sides to obtain

∫︂ t

t/2
∥V (s)∥2H2

π
ds ⩽ C

(︄∫︂ t

t/2
∥V (s)∥2L2

π
ds+ ∥V (t/2)∥2L2

π

)︄
.

We use this inequality in combination with (4.29), which yields
∫︂ t

t/2
∥∇V (s)∥2L2

π
ds ⩽ C

∫︂ t

t/2
∥V (s)∥2H2

π
ds ⩽ C(t)∥V (0)∥2L2

π
. (4.31)

Next, dropping the ∥∆∇V ∥2
L2
π
-term in (4.30) and integrating this inequality from s to

t with t/2 ⩽ s ⩽ t gives us

∥∇V (t)∥2L2
π
⩽ ∥∇V (s)∥2L2

π
+ C

(︃∫︂ t

s
∥∇V (r)∥2L2

π
dr +

∫︂ t

s
∥V (r)∥2L2

π
dr
)︃

⩽ ∥∇V (s)∥2L2
π
+ C

(︄∫︂ t

t/2
∥∇V (r)∥2L2

π
dr +

∫︂ t

t/2
∥V (r)∥2L2

π
dr

)︄
.
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By integrating this inequality from t/2 to t w.r.t. s we have

t

2∥∇V (t)∥2L2
π
⩽
∫︂ t

t/2
∥∇V (s)∥2L2

π
ds+ t

2C
(︄∫︂ t

t/2
∥∇V (r)∥2L2

π
dr +

∫︂ t

t/2
∥V (r)∥2L2

π
dr

)︄

and by applying (4.29) and (4.31) we arrive at

∥∇V (t)∥2L2
π
⩽ C(t)∥V (0)∥2L2

π
.

Thus Λ(t, v0) : L2
σ(Qn) → L2

σ(Qn) is bounded as

∥Λ(t, v0)V (0)∥2H1
π
= ∥V (t)∥2H1

π
⩽ C(t)∥V (0)∥2L2

π

and therefore a compact operator for t > 0 and v0 ∈ A: LetM ⊆ L2
σ(Qn) be a bounded

set. For V (0) ∈ M we obtain the boundedness of Λ(t, v0)V (0) in H1
π(Qn)∩L2

σ(Qn) for
t > 0, where the bound may depend on t. Hence, the image Λ(t, v0)M is bounded in
H1
π(Qn) ∩ L2

σ(Qn) and therefore relatively compact in L2
σ(Qn).

Next, we prove a bound on T Rm(A).

4.19 Lemma. Let A be the global attractor of (4.1). Then there exists a m0 ∈ N such
that we have T Rm(A) < 0 for m0 ⩽ m ∈ N, where T Rm is defined as in (2.11).

Proof. Fix m ∈ N and choose {ξ0j : j = 1, ...,m} ⊆ L2
σ(Qn) arbitrary but linearly

independent. Let v be a solution of (4.1) with initial value v0 ∈ A. Moreover, let
L(t, v0) be the linear operator of equation (4.24) (which is equation (4.1) linearized
about v) and Λ(t, v0) be the corresponding solution operator as in the proof of Lemma
4.18.
Then ξj(t) := Λ(t, v0)ξ0j is a solution to the linearized problem with initial value ξ0j .
Let Pm

ξ01 ,...,ξ
0
m
(t) be the projection onto the subspace spanned by {ξj(t) : j = 1, ...,m}.

For a fixed t > 0 we may obtain an orthonormal base {ϕj(t) : j = 1, ...,m} of
Pm
ξ01 ,...,ξ

0
m
(t)(L2

σ(Qn)) w.r.t. the L2
π scalar product. Due to H2

π(Qn) ∩ L2
σ(Qn)

d
↪→ L2

σ(Qn)
we may choose {ϕj(t) : j = 1, ...,m} ⊆ H2

π(Qn) ∩ L2
σ(Qn).

Testing L(t, v0)ϕj(t) with ϕj(t) w.r.t the L2
π-scalar product yields

(L(t, v0)ϕj, ϕj)L2
π
=− Γ2∥∆ϕj∥2L2

π
− Γ0∥∇ϕj∥2L2

π
− α∥ϕj∥2L2

π
− λ0((ϕj · ∇)v, ϕj)L2

π

− λ0((v · ∇)ϕj, ϕj)L2
π
− 2β((v · ϕj)v, ϕj)L2

π
− β(|v|2ϕj, ϕj)L2

π

⩽− Γ2∥∆ϕj∥2L2
π
− Γ0∥∇ϕj∥2L2

π
− α + C|λ0|∥v∥H2

π
∥ϕj∥H1

π
,
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where we used (4.21), (4.27), ∥ϕj∥L2
π
= 1 and the fact that

2β((v · ϕj)v, ϕj)L2
π
+ β(|v|2ϕj, ϕj)L2

π
⩾ 0.

Note that we omit t in the following and that all appearing constants are independent
of m and t. Applying (4.15) and v ∈ A then yields

(L(t, v0)ϕj, ϕj)L2
π
⩽ −Γ2

4 ∥∆ϕj∥2L2
π
+K,

where K := K(Γ2,Γ0, λ0, α, R2, Qn) > 0. By summing up for j = 1, ...,m and time
averaging we obtain

⟨︂
Tr
(︂
L(t, v0)Pm

ξ01 ,...,ξ
0
m
(t)
)︂⟩︂

⩽ −
m∑︂
j=1

Γ2

4
⟨︂
∥∆ϕj∥2L2

π

⟩︂
+mK. (4.32)

Next, we want to apply the Sobolev-Lieb-Thirring inequality (cf. Proposition 2.3) in
order to estimate ∥∆ϕj∥2L2

π
accordingly. To this end, we define

ρ(x) :=
m∑︂
j=1

|ϕj(x)|2 (x ∈ Qn). (4.33)

First, let n = 2. Then the Sobolev-Lieb-Thirring inequality applied with p = 3/2 yields

(︃∫︂
Qn

ρ(x)p/(p−1) dx
)︃2·2·(p−1)/n

=
∫︂
Qn

ρ(x)3 dx

⩽ C

⎛⎝ m∑︂
j=1

∫︂
Q2

∑︂
|α|=2

|∂αϕj(x)|2 dx+
∫︂
Q2
ρ(x) dx

⎞⎠
⩽ C

m∑︂
j=1

∥ϕj∥2H2
π

⩽ C

⎛⎝m+
m∑︂
j=1

∥∆ϕj∥2L2
π

⎞⎠
with C > 0 independent of m. Applying the Hölder inequality gives us

m3 =
⎛⎝ m∑︂
j=1

∥ϕj∥2L2
π

⎞⎠3

=
(︃ 1
L2

∫︂
Q2
ρ(x) dx

)︃3

⩽ C

(︄(︃∫︂
Q2

13/2 dx
)︃2/3 (︃∫︂

Q2
ρ(x)3

)︃1/3
)︄3

⩽ C
∫︂
Q2
ρ(x)3 dx
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⩽ C

⎛⎝m+
m∑︂
j=1

∥∆ϕj∥2L2
π

⎞⎠ .
Inserting this estimate into (4.32) yields

⟨︂
Tr
(︂
L(t, v0)Pm

ξ01 ,...,ξ
0
m
(t)
)︂⟩︂

⩽ −Γ2

4

(︄
m3

C
−m

)︄
+mK

= −C1m
3 + C2m,

where C1 > 0 and C2 ∈ R are constants independent of m and t. Then there exists a
m0 ∈ N such that for all m0 ⩽ m ∈ N we have

⟨︂
Tr
(︂
L(t, v0)Pm

ξ01 ,...,ξ
0
m
(t)
)︂⟩︂

< 0.

A similar result can be achieved for n = 3 if we choose p = 7/4 in the calculations
above, resulting in a leading term −C1m

7/3.
Altogether we have

T Rm(A) = sup
v0∈A

sup
ξ0
j
∈L2

σ(Qn)
∥ξ0

j
∥
L2
π
⩽1

j=1,...,m

⟨︂
Tr
(︂
L(t, v0)Pm

ξ01 ,...,ξ
0
m
(t)
)︂⟩︂

< 0

for m > m0.

Now, an application of Theorem 2.28 gives the following main result of this section. It
guarantees that the global attractor A of (4.1) is of finite dimension.

4.20 Theorem. Let A be the global attractor of (4.1). Then there exists a m ∈ N
such that dH(A) ⩽ m and df (A) ⩽ m, where dH and df denote the Hausdorff and the
fractal dimension.

Proof. Follows directly from Lemma 4.18 and Lemma 4.19 by an application of Theo-
rem 2.28.

4.4 Inertial Manifold in 2D

For n = 2 dimensions, we can even prove more than the existence of a global, finite di-
mensional attractor for (4.1). It turns out that there exists a so-called inertial manifold
M with the following properties (cf. [47, Chapter 8]).

(i) M is a finite dimensional, Lipschitz continuous manifold in H3/2
π (Q2) ∩ L2

σ(Q2);
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(ii) M is positively invariant under the semigroup S corresponding to (4.1);

(iii) M is exponentially attracting, i.e. there exists a δ > 0 such that for every initial
value u0 ∈ L2

σ(Q2) there is a C = C(u0) with

distL2
π
(S(t)u0,M) ⩽ C exp(−δt) (t ⩾ 0).

It is clear that possessing an inertial manifold is a stronger property than possessing
a (finite dimensional) global attractor. In fact, the global attractor lies within the
inertial manifold, that is A ⊆ M. For more information about inertial manifolds and
their derivation we refer to [47, Chapter 8] and [15]. We are able to prove the following
result.

4.21 Theorem. There exists an inertial manifold M ⊆ H
3/2
π (Q2)∩L2

σ(Q2) for equation
(4.1) in n = 2 dimensions.

Proof. We want to apply the theory from [47, Chapter 8], especially Theorem 81.1 and
Theorem 81.2. To this end, we define

Aω : D(Aω) = H4
π(Q2) ∩ L2

σ(Q2) ⊆ L2
σ(Q2) → L2

σ(Q2),
u ↦→ Aωu := Γ2∆2u− Γ0∆u+ αu+ ωu

and choose ω > 0 such that Aω is a positive, self-adjoint linear operator with compact
resolvent (cf. Chapter 3). Moreover, in the setting of [47, Chapter 8] we choose β = 3/8.
Then clearly D((Aω)3/8) = H

3/2
π (Q2) ∩ L2

σ(Q2). Moreover, we define

Fω : H3/2
π (Q2) ∩ L2

σ(Q2) → L2
σ(Q2), u ↦→ Fω(u) := −Pβ|u|2u− Pλ0(u · ∇)u+ ωu

such that (4.1) is equivalent to

∂tu+ Aωu = Fω(u).

It is easy to see that

Fω ∈ CLip, loc(H3/2
π (Q2) ∩ L2

σ(Q2), L2
σ(Q2))

by using

∥|u|2v∥L2
π
⩽ C∥u∥2L6∥v∥L6 ⩽ C∥u∥2

H
3/2
π

∥v∥
H

3/2
π
,

∥(u · ∇)v∥L2
π
⩽ C∥u∥L6∥∇v∥L3 ⩽ C∥u∥

H
3/2
π

∥v∥
H

3/2
π
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and the embedding H3/2
π (Q2) ↪→ W 1,3(Q2).

Moreover, it is well known that the ordered eigenvalues 0 < λ̃1 ⩽ λ̃2 ⩽ ... of Aω behave
as λ̃k ∼ Ck2 = Ck4/n (cf. [47, Table 8.1]). Therefore, they fulfill the spectral gap
condition in [47, Theorem 81.1]. This completes the assertion.

4.22 Remark. Note that it is not possible to satisfy the spectral gap condition in
[47, Theorem 81.1] for n = 3. This is due to the fact that we need β ⩾ 1/4 in order
to estimate the nonlinearity F accordingly, but at the same time we need β < 1/4 in
order to fulfill the gap condition, cf. [47, Table 8.1].
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5 Stability for a Class of Heterogeneous Catalysis
Models

In this chapter we analyze the model of a heterogeneous catalysis process, which is given
as in (1.3), in terms of stability and instability. First, we define the solution and data
spaces and give a result concerning maximal Lp-regularity for the linearized equations.
Then, we show stability of isolated equilibria using the principle of linearized stability
(cf. Remark 2.7(ii)) and give an example for equilibria. In the last section we present
a result on instability.

5.1 Maximal Regularity for the Linearized Equations

In order to apply the principle of linearized stability to (1.3), we first need to obtain
results on maximal Lp-regularity for a linearized version of (1.3). The results presented
here are due to [7] and will only be cited without giving a proof.
Let T ∈ (0,∞). First, we need to define the corresponding solution spaces

EΩ
p (T ) := W 1,p((0, T ), Lp(Ω)) ∩ Lp((0, T ),W 2,p(Ω)),

EΣ
p (T ) := W 1,p((0, T ), Lp(Σ)) ∩ Lp((0, T ),W 2,p(Σ)),

and the data spaces, given by appropriate trace theorems.

FΩ
p (T ) := Lp((0, T )× Ω),

FΣ
p (T ) := Lp((0, T )× Σ),

Gin
p (T ) := W 1/2−1/2p

p ((0, T ), Lp(Γin)) ∩ Lp((0, T ),W 1−1/p
p (Γin)),

GΣ
p (T ) := W 1/2−1/2p

p ((0, T ), Lp(Σ)) ∩ Lp((0, T ),W 1−1/p
p (Σ)),

Gout
p (T ) := W 1/2−1/2p

p ((0, T ), Lp(Γout)) ∩ Lp((0, T ),W 1−1/p
p (Γout)),

Ip(Ω) := W 2−2/p
p (Ω),

Ip(Σ) := W 2−2/p
p (Σ).
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Now we define the tupel data space for (1.3) without initial data as

FΩ,Σ
p (T ) := FΩ

p (T )× FΣ
p (T )×Gin

p (T )×GΣ
p (T )×Gout

p × {0}

and the corresponding space with initial data as

FΩ,Σ
p,I (T ) := FΩ,Σ

p (T )× Ip(Ω)× Ip(Σ).

Moreover, we set

ENp := W 2,p(Ω)N ×W 2,p(Σ)N

and

INp := Ip(Ω)N × Ip(Σ)N .

Additionally, we impose the following assumptions regarding the prescribed velocity
field u.

• (Avel) Let u denote a given velocity field of regularity

u ∈ UΩ
p (T ) := W 1,p((0, T ), Lp(Ω,R3)) ∩ Lp((0, T ),W 2,p(Ω,R3))

fulfilling
u · ν ⩽ 0 on Γin, u · ν = 0 on Σ and u · ν ⩾ 0 on Γout,

and ∇ · u = 0 in the distributional sense.

Then we can obtain maximal Lp-regularity for the linearized equations

∂tci + (u · ∇)ci − di∆ci = fi in (0, T )× Ω,
∂tc

Σ
i − dΣi ∆Σc

Σ
i = fΣ

i on (0, T )× Σ,
(u · ν)ci − di∂νci = gini on (0, T )× Γin,

−di∂νci = gΣi on (0, T )× Σ,
−di∂νci = gouti on (0, T )× Γout,

−dΣi ∂νΣcΣi = 0 on (0, T )× ∂Σ,
ci|t=0 = ci,0 in Ω,
cΣi |t=0 = cΣi,0 on Σ.

(5.1)

5.1 Theorem (Bothe, Köhne, Maier and Saal). Let T > 0 be finite and 5/3 < p <∞
with p ̸= 3. Suppose the velocity field u satisfies (Avel). Then (1.3) admits a unique

90



Chapter 5. Stability for a Class of Heterogeneous Catalysis Models

solution

(ci, cΣi ) ∈ EΩ
p (T )× EΣ

p (T ),

if and only if the data satisfy the regularity condition

(fi, fΣ
i , g

in
i , g

Σ
i , g

out
i , 0, ci,0, cΣi,0) ∈ FΩ,Σ

p,I (T )

and in case of p > 3 the compatibility condition

ci,0u(0) · ν − di∂νci,0 = gini (0) on Γin,

−di∂νci,0 = rsorpi (ci,0, cΣi,0) on Σ,
−di∂νci,0 = 0 on Γout,

−dΣi ∂νΣcΣi,0 = 0 on ∂Σ.

(5.2)

Additionally, the corresponding solution operator 0ST w.r.t. zero time trace satisfies

∥0ST∥L (0FΩ,Σ
p (τ)N , 0EΩ

p (τ)N×0EΣ
p (τ)N ) ⩽M (0 < τ < T ),

for a constant M > 0 independent of τ , where 0EΩ
p (τ)N , 0EΣ

p (τ)N and 0FΩ,Σ
p (τ)N denote

the corresponding spaces of zero time trace.

5.2 Lp-stability for Isolated Equilibria

In this section we want to prove a result about stability of equilibria of the catalysis
model in the Lp-setting for p ∈ [2,∞)\{3}. First we give a short example of a common
type of equilibria which arises from the chemical reaction.

5.2 Remark. One may choose the constant equilibria of chemical balance which are
determined by the rates of the chemical reaction. In this case, we have

ci∗ ≡ ψi > 0, cΣi∗ ≡ ξi > 0 (i = 1, ..., N),

where

ψi =
kdei
kadi

ξi, κb
N∏︂
k=1

(ξk)βk = κf
N∏︂
k=1

(ξk)αk

such that rchi (cΣ∗ ) = 0. Additionally, we assume that the inflow profile fulfills gini ⩽ 0,
gini ̸= 0 on Γin for every i = 1, ..., N . The velocity profile at the inflow is then determined
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by

(u · ν) = kadi
kdei ξi

gini .

This example of equilibria motivates the following assumptions we impose onto all
equilibria.

• (Aeq
P ) The equilibrium is non-negative, i.e.

ci∗(x) ⩾ 0 (x ∈ Ω, i = 1, .., N), cΣi∗(x) ⩾ 0 (x ∈ Σ, i = 1, .., N).

• (Aeq
R ) The equilibrium fulfills the following regularity conditions.

ci∗ ∈ W 2,p(Ω), cΣi∗ ∈ W 2,p(Σ) (i = 1, ..., N).

• (Aeq
I ) The equilibrium is isolated: there exists ε > 0 such that there is no

equilibrium in BEN
p
((c∗, cΣ∗ ), ε) \ {(c∗, cΣ∗ )}.

In order to apply the Poincaré inequality we impose an additional assumption regarding
the velocity field u.

• (Avel
in ) The velocity field has non-trivial inflow, i.e. u · ν ̸= 0 on Γin.

First we recall the following fact.

5.3 Remark. By [54, Lemma 10.2 (vi)] we have the following: Let M ⊆ Rn be a
nonempty open subset and 1 ⩽ p ⩽ ∞. Let V ⊆ W 1,p(M) be a subspace. If the
injection V ↪→ Lp(M) is compact and the constant function u ≡ 1 does not belong to
V , then there exists a C > 0 such that

∥u∥Lp(M) ⩽ C∥∇u∥Lp(M) (u ∈ V )

and one says that the Poincaré inequality holds. This assertion also holds if M is
replaced by the lateral boundary Σ of a cylindrical domain Ω = A × (0, h) with a
simply connected C2-domain A ⊆ Ω.

Then we obtain the following result.

5.4 Theorem. Let p ∈ [2,∞) \ {3}, T = ∞ and gini ∈ Gin
p . Let the sorption rates be

given as
rsorpi (ci, cΣi ) := kadi ci − kdei c

Σ
i (i = 1, ..., N),
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and the reaction rates as

rchi (cΣ) := (αi − βi)
(︃
κb
(︂
cΣ
)︂β

− κf
(︂
cΣ
)︂α)︃

(i = 1, ..., N),

with kadi , kdei > 0, κb, κf > 0 and α, β ∈ ({0}∪ [1,∞))N , α, β ̸= 0. Assume that (c∗, cΣ∗ )
is an equilibrium of (1.3) satisfying (Aeq

P ), (Aeq
R ), (Aeq

I ) and the velocity field u satisfies
the conditions (Avel) and (Avel

in ). Let

max
Σ

{︂
|a||b(cΣ∗ )|

}︂
⩽

1
CP

, (5.3)

where CP > 0 denotes the Poincaré constant (cf. Remark 5.3) on Σ and

ak := (αk − βk),

bk := bk(cΣ∗ ) :=
(︃
κbβk

(︂
cΣ∗
)︂β−ek − κfαk

(︂
cΣ∗
)︂α−ek)︃

.

Then there exists ρ > 0 such that for

(c0, cΣ0 ) ∈ BINp ((c∗, c
Σ
∗ ), ρ),

which in case of p > 3 have to fulfill (5.2), there exists a unique global solution (c, cΣ)
satisfying

(c, cΣ) ∈ W 1,p
loc (R+, L

p(Ω)N × Lp(Σ)N) ∩ Lploc(R+,W
2,p(Ω)N ×W 2,p(Σ)N).

Moreover, the equilibrium (c∗, cΣ∗ ) is exponentially stable in INp = Ip(Ω)N × Ip(Σ)N .
Proof. In order to obtain the assertions, we want to apply the principle of linearized
stability (cf. Theorem 2.6). Since the equilibria are assumed to be isolated points, we
want to make use of Remark 2.7 (ii). To shorten the notation throughout the proof,
we write e.g. c = (c1, ...cN)T with the corresponding meaning for all other appearing
quantities.
Let (c∗, cΣ∗ ) ∈ ENp = W 2,p(Ω)N ×W 2,p(Σ)N be an equilibrium fulfilling the assumptions
(Aeq

P ), (Aeq
R ), (Aeq

I ). We carry out the proof in three steps.
Step 1: Translation of the system and mapping properties
Let (c̃, c̃Σ) be a local solution of (1.3) for initial values (c̃0, c̃Σ0 ). We write the system in
the following form:

∂t(c̃, c̃Σ) + Ã(c̃, c̃Σ) = F̃ (c̃, c̃Σ) in (0, T )× (Ω× Σ),
B̃(c̃, c̃Σ) = 0 on (0, T )× Π,

(c̃, c̃Σ)|t=0 = (c̃0, c̃Σ0 ) on Ω× Σ,
(5.4)
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where Π := Γin × Σ× Γout × ∂Σ and the linear operator Ã is given as

Ã :=
⎛⎝U∇ −D∆ 0

−Kad −D∆Σ +Kde

⎞⎠ : D(Ã) → Lp(Ω)N × Lp(Σ)N ,

D(Ã) := ENp = W 2,p(Ω)N ×W 2,p(Σ)N .

Note that we implicitly take the trace on Σ in the second component of Ã(c̃, c̃Σ). The
nonlinearity is denoted by

F̃ (c̃, c̃Σ) :=
⎛⎝ 0
rch(c̃Σ)

⎞⎠ ,
and the inhomogeneous boundary conditions are given as

B̃(c̃, c̃Σ) := (Uν c̃−Dν c̃− gin,−Dν c̃−Kadc̃+Kdec̃Σ,−Dν c̃,−DνΣ c̃
Σ)|Π.

We also set

D∆ := diag(d1∆, ..., dN∆), D∆Σ := diag(dΣ1∆Σ, ..., d
Σ
N∆Σ)

and

U∇ := diag(u · ∇, ..., u · ∇), Uν := diag(u · ν, ..., u · ν)

in N dimensions as well as

Kad := diag(kad1 , ..., kadN ), Kde := diag(kde1 , ..., kdeN ).

Additionally, we have

Dν := diag(d1∂ν , ..., dN∂ν), DνΣ := diag(dΣ1 ∂νΣ , ..., dΣN∂νΣ).

We write rch for the vector of chemical reaction rates (rchi )Ni=1 and gin for the vector of
inflow profiles (gini )Ni=1.
In order to apply the principle of linearized stability, we decompose the solution (c̃, c̃Σ)
into the equilibrium part (c∗, cΣ∗ ) and the deviation part (c, cΣ) as follows.

(c̃, c̃Σ) = (c∗, cΣ∗ ) + (c, cΣ).

By subtracting the system for the equilibrium from the whole system (5.4) we arrive
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at

∂t(c, cΣ) + A(c, cΣ) = F (c, cΣ) in (0, T )× (Ω× Σ),
(c, cΣ)|t=0 = (c0, cΣ0 ) on Ω× Σ,

(5.5)

where

A := Ã|N(B), D(A) := {(c, cΣ) ∈ D(Ã) : B(c, cΣ) = 0}

with linear boundary conditions

B(c, cΣ) := (Uνc−Dνc,−Dνc−Kadc+KdecΣ,−Dνc,−DνΣc
Σ)|Π.

Note that we got rid of the dependency on gin in the boundary conditions. Moreover,
we have

F (c, cΣ) := F̃ (c∗ + c, cΣ∗ + cΣ)− F̃ (c∗, cΣ∗ )

and c0 := c̃0 − c∗, cΣ0 := c̃Σ0 − cΣ∗ . Note that it is equivalent whether we analyze system
(5.5) about its equilibrium (0, 0) or system (1.3) about its equilibrium (c∗, cΣ∗ ).
Next, we want to assure that the assumptions regarding the nonlinearity in Theorem
2.6 and Remark 2.7 (ii) are fulfilled. For a fixed rch it is clear that we have a polynomial
growth bound of type

|rch(y)| ⩽M(1 + |y|γ) (y ∈ [0,∞)N),

where M > 0 and γ ∈ [1,∞). Therefore, we may apply [7, Remark 4.1] to obtain

rch : Lpγ(Σ)N → Lp(Σ)N .

Since Σ is a manifold of dimension m = 2, by Ip(Σ) ↪→ Lpγ(Σ) we obtain

F : INp → Lp(Ω)N × Lp(Σ)N .

Here, we used that 2 − 2/p − 2/p ⩾ −2/γp for p ∈ [2,∞). Again by [7, Remark 4.1],
we can show that F is locally Lipschitz. To this end, let ρ > 0. Then there exists
C(ρ, cΣ∗ ) > 0 such that

∥F (c, cΣ)− F (z, zΣ)∥Lp(Ω)N×Lp(Σ)N ⩽ ∥rch(cΣ∗ + cΣ)− rch(zΣ + cΣ∗ )∥Lp(Σ)N

⩽ C(ρ, cΣ∗ )∥cΣ − zΣ∥Lpγ(Σ)N ⩽ C(ρ, cΣ∗ )∥(c− z, cΣ − zΣ)∥Ip(Ω)N×Ip(Σ)N
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for (c, cΣ), (z, zΣ) ∈ BINp ((0, 0), ρ), which yields the assertion.
Now we consider the Fréchet derivative of the nonlinearity F at (0, 0). First, we see
that

N∑︂
k=1

∂kr
ch
i (cΣ∗ )cΣk =

N∑︂
k=1

(αi − βi)
(︃
κbβk

(︂
cΣ∗
)︂β−ek − κfαk

(︂
cΣ∗
)︂α−ek)︃

cΣk .

To shorten the notation, we introduce

ak := (αk − βk),

bk := bk(cΣ∗ ) :=
(︃
κbβk

(︂
cΣ∗
)︂β−ek − κfαk

(︂
cΣ∗
)︂α−ek)︃

for k = 1, ..., N , where α := (α1, ..., αN) and β := (β1, ..., βN). Furthermore, we set
a := (a1, ..., aN) and b := b(cΣ∗ ) := (b1, ..., bn). Now we can write the derivative of the
chemical reaction rates as

M̃ := M̃(cΣ∗ ) := a⊗ b =

⎛⎜⎜⎜⎝
a1b1 . . . a1bN
... . . . ...

aNb1 . . . aNbN

⎞⎟⎟⎟⎠.

One can easily see that, for a and b linearly independent, we have dim(N(M̃)) = N−1
and σ(M̃) = {λ1, ..., λN} is given by λ1 = aT b and λ2 = ... = λN = 0. Note that
b and therefore λ1 may depend on x ∈ Σ. For a fixed x ∈ Σ, the symmetric part
S := 1

2(M̃ + M̃
T ) of M̃ has the eigenvalues

σ(S) =
{︂
1
2 (ab± |a||b|) , 0

}︂
if a and b are linearly independent and

σ(S) =
{︂
1
2 (ab+ |a||b|) , 0

}︂
if a and b are linearly dependent. We write F ′(0, 0) = M(cΣ∗ ) for the first Fréchet
derivative of F at (0, 0) and obtain

M(cΣ∗ ) : Lp(Ω)N × Lp(Σ)N → Lp(Ω)N × Lp(Σ)N ,
⎛⎝ c

cΣ

⎞⎠ ↦→

⎛⎝0 0
0 M̃

⎞⎠⎛⎝ c

cΣ

⎞⎠
for the Lp-realization of the multiplication operator corresponding to M̃ . Since we have
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cΣ∗ ∈ W 2,p(Σ)N , M̃ is bounded on Σ and

M :=M(cΣ∗ ) ∈ L (Lp(Ω)N × Lp(Σ)N).

Finally we have to show that A and F fulfill the assumptions in Remark 2.7 (ii). To
this end, note that A is a constant linear operator which does not depend on (c, cΣ),
so we only have to take F into consideration: let r > 0. By [7, Remark 4.1] and
M ∈ L (Lp(Ω)N × Lp(Σ)N) we obtain

∥F (c, cΣ)− F (0, 0)−M(cΣ∗ )(c, cΣ)∥Lp(Ω)N×Lp(Σ)N

⩽ ∥rch(cΣ∗ + cΣ)− rch(cΣ∗ )∥Lp(Σ)N + ∥M(cΣ∗ )(c, cΣ)∥Lp(Ω)N×Lp(Σ)N

⩽ C(r, M̃ , cΣ∗ )
(︂
∥cΣ∥Lpγ(Σ)N + ∥(c, cΣ)∥Lp(Ω)N×Lp(Σ)N

)︂
⩽ C(r, M̃ , cΣ∗ ) ∥(c, cΣ)∥Ip(Ω)N×Ip(Σ)N

for (c, cΣ) ∈ BINp ((0, 0), r) and a C(r, M̃ , cΣ∗ ) > 0, which completes the necessary esti-
mates.

Step 2: Linearization
By a first-order linearization of (5.5) about (0, 0) we obtain the linear system

∂t(c, cΣ) + A0(c, cΣ) = G(c, cΣ) in (0, T )× (Ω× Σ),
(c, cΣ)|t=0 = (c0, cΣ0 ) on Ω× Σ,

(5.6)

where

A0 := A−M

with

D(A0) :=
{︂(︂
c, cΣ

)︂
∈ W 2,p(Ω)N ×W 2,p(Σ)N : B(c, cΣ) = 0

}︂
= D(A).

Note that for (c, cΣ) ∈ D(A0) constant we have (c, cΣ) = 0 immediately due to
B(c, cΣ) = 0 and (Avel

in ). Thus, we can use the Poincaré inequality (cf. Remark 5.3).
Regarding G we have

G(c, cΣ) := F (c, cΣ)− F (0, 0)−M(c, cΣ).

It remains to note that, due to the fact that A has maximal Lp-regularity (cf. Theorem
5.1), we also obtain maximal Lp-regularity for A0 by perturbation theory.

97



Chapter 5. Stability for a Class of Heterogeneous Catalysis Models

Step 3: Characterization of the spectrum
We will use the notation

Kα
β :=

(︂
Kad

)︂α(︂
Kde

)︂β
(α, β ∈ R)

in the following and note the special cases

K0
0 = Id, Kα

0 =
(︂
Kad

)︂α
, K0

β =
(︂
Kde

)︂β
.

Moreover, we have that Kα
β commutes with D∆, D∆Σ , U∇, Uν , Dν and DνΣ .

Since Ω and Σ are bounded, it is easy to see that A0 has compact resolvent. Therefore,
we have σ(A0) = σp(A0), where σp denotes the point spectrum. Furthermore, due to
compactness the spectrum of A0 is p-invariant. We will exploit this fact and analyze
the L2-spectrum of A0 only, since the results are also applicable for A0 in the Lp-setting
for p ∈ [2,∞) \ {3}.
Let (fΩ, fΣ) ∈ D(A0) be an eigenvector corresponding to the eigenvalue λ ∈ σ(A0).
We set ⎛⎝ c

cΣ

⎞⎠ :=
⎛⎝K1

−1 0
0 K1

−1

⎞⎠⎛⎝fΩ
fΣ

⎞⎠ ∈ D(A0).

Testing in the L2-setting yields

Re
⎛⎝λ

⎛⎝K−1
1 0
0 K−1

1

⎞⎠⎛⎝ c

cΣ

⎞⎠ ,
⎛⎝Id 0
0 K−1

1

⎞⎠⎛⎝ c

cΣ

⎞⎠⎞⎠
L2(Ω)N×L2(Σ)N

=Re
⎛⎝A0

⎛⎝K−1
1 0
0 K−1

1

⎞⎠⎛⎝ c

cΣ

⎞⎠ ,
⎛⎝Id 0
0 K−1

1

⎞⎠⎛⎝ c

cΣ

⎞⎠⎞⎠
L2(Ω)N×L2(Σ)N

=Re
⎛⎝⎛⎝U∇ −D∆ 0

−K1
0 −D∆Σ +K0

1 − M̃

⎞⎠⎛⎝ K−1
1 c

K−1
1 cΣ

⎞⎠ ,
⎛⎝ c

K−1
1 cΣ

⎞⎠⎞⎠
L2(Ω)N×L2(Σ)N

=ReFΩ + ReFΣ,

where

FΩ :=(K−1
1 U∇c, c)L2(Ω)N − (K−1

1 D∆c, c)L2(Ω)N ,

FΣ :=− (K−1
2 c, cΣ)L2(Σ)N − (K−2

2 D∆Σc
Σ, cΣ)L2(Σ)N

+ (K−2
3 cΣ, cΣ)L2(Σ)N − (M̃K−1

1 D∆Σc
Σ, K−1

1 cΣ)L2(Σ)N .
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First we look at FΩ. Here we obtain

ReFΩ = Re
N∑︂
i=1

(︃
−
(︃(︂
kadi

)︂−1
kdei di

∫︂
Ω
∆cicidx

)︃
+
(︂
kadi

)︂−1
kdei

∫︂
Ω
(u · ∇)cicidx

)︃
.

Applying Green’s formula to the first addend and using the boundary conditions leads
to

Re
(︃
di

∫︂
Ω
∆cicidx

)︃
=Re

(︃
di

∫︂
∂Ω
∂νcicidσ

)︃
− di

∫︂
Ω
|∇ci|2dx

=
∫︂
Γin

(u · ν)|ci|2dσ −
∫︂
Σ
kadi |ci|2dσ + Re

(︃∫︂
Σ
kdei c

Σ
i cidσ

)︃
− di

∫︂
Ω
|∇ci|2dx.

The second addend can be written as∫︂
Ω
(u · ∇)cicidx = 1

2

∫︂
∂Ω
(u · ν)|ci|2dσ

= 1
2

∫︂
Γin

(u · ν)|ci|2dσ + 1
2

∫︂
Γout

(u · ν)|ci|2dσ

using partial integration, boundary conditions in (5.6) and (Avel). Combining the
results yields

ReFΩ = ∥K−1/2
1/2 D∇c∥2L2(Ω)N×N − 1

2(K
−1
1 Uνc, c)L2(Γin)N + 1

2(K
−1
1 Uνc, c)L2(Γout)N

+ ∥K0
1/2 c∥2L2(Σ)N − Re (K−1

2 c, cΣ)L2(Σ)N ,

where

D∇ := diag
(︃√︂

d1∇, ...,
√︂
dN∇

)︃
, D∇Σ := diag

(︃√︂
dΣ1∇Σ, ...,

√︂
dΣN∇Σ

)︃
.

Examining FΣ leads to

ReFΣ = ∥K−1
1 D∇Σc

Σ∥2L2(Σ)N×N + ∥K−1
3/2 c

Σ∥2L2(Σ)N

− Re (K−1
2 c, cΣ)L2(Σ)N − Re (M̃K−1

1 cΣ, K−1
1 cΣ)L2(Σ)N .

Finally, we obtain

Reλ
(︂
∥K−1/2

1/2 c∥2L2(Ω)N + ∥K−1
1 cΣ∥2L2(Σ)N

)︂
= ReFΩ + ReFΣ. (5.7)

In order to determine the sign of Reλ we first note that the norms are non-negative
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and

−1
2(K

−1
1 Uνc, c)L2(Γin)N ,

1
2(K

−1
1 Uνc, c)L2(Γout)N ⩾ 0,

due to (Avel). It remains to find appropriate estimates for the remaining terms. Using
the Cauchy-Schwarz and the Young inequality we have

2
⃓⃓⃓
Re(K−1

2 c, cΣ)L2(Σ)N
⃓⃓⃓
⩽ 2

⃓⃓⃓
(K0

1/2 c,K
−1
3/2 c

Σ)L2(Σ)N
⃓⃓⃓

⩽ ∥K0
1/2 c∥2L2(Σ)N + ∥K−1

3/2 c
Σ∥2L2(Σ)N ,

which leaves the term which is caused by the chemical reaction to be estimated.
⃓⃓⃓
Re (M̃(cΣ∗ )K−1

1 cΣ, K−1
1 cΣ)L2(Σ)N

⃓⃓⃓
=
⃓⃓⃓
Re (S(cΣ∗ )K−1

1 cΣ, K−1
1 cΣ)L2(Σ)N

⃓⃓⃓
⩽ max

Σ
|S(cΣ∗ )|2∥K−1

1 cΣ∥2L2(Σ)N

⩽ max
Σ

{︂
1
2 |a(b(cΣ∗ ))T ± |a||b(cΣ∗ )||

}︂
∥K−1

1 cΣ∥2L2(Σ)N

⩽ CP max
Σ

{︂
|a||b(cΣ∗ )|

}︂
∥K−1

1 D∇Σc
Σ∥2L2(Σ)N×N ,

where CP > 0 denotes the Poincaré constant on Σ which does not depend on cΣ.
In order to obtain the stability result we want to show that Reλ has positive sign, so
we impose the condition

max
Σ

{︂
|a||b(cΣ∗ )|

}︂
⩽

1
CP

.

Now, let Reλ = 0. From (5.7) we obtain (c, cΣ) = 0 such that every eigenvector
corresponding to λ is zero. This yields λ ∈ ρ(A0). Since ρ(A0) is open, we obtain that
for every λ ∈ C with Reλ = 0 there exists an ελ > 0 such that B(λ, ελ) ⊆ ρ(A0).
Additionally, we know that A0 has maximal Lp-regularity, so A0 + µ is sectorial with
angle ϕµ+A0 < π/2 for some µ ⩾ 0. This gives us

Cε := {λ ∈ C : Reλ < ε} ⊆ ρ(A0)

for some ε > 0 and thus σ(A0) ⊆ C+, which yields the assertion.

5.5 Remark. If (c∗, cΣ∗ ) is an equilibrium of chemical balance (cf. Remark 5.2) and
a = ϕb for some ϕ ∈ R, i.e. a and b are linearly dependent, then the situation simplifies
as follows. The spectrum of the symmetric part S of M̃ consists of the eigenvalues

λ1 = φ|b|2, λ2 = ... = λN = 0,
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such that we obtain stability immediately if ϕ ⩽ 0 due to the fact that the correspond-
ing bilinear form is negative semidefinite. Moreover, by

cΣi,∗bi =
(︃
κbβi

(︂
cΣ∗
)︂β

− κfαi
(︂
cΣ∗
)︂α)︃

= −(αi − βi)κf
(︂
cΣ∗
)︂α

= −κf
(︂
cΣ∗
)︂α
ai

we obtain that the condition ϕ ⩽ 0 is always fulfilled in this case and therefore the
stability result in Lp for p ∈ [2,∞) \ {3} holds without condition (5.3) if a and b are
linearly dependent.
Additionally, we note that such equilibria exist if α ̸= β since we have

cΣ1,∗ = ... = cΣN,∗ =: γ > 0

and

κb
N∏︂
i=1

γβk − κf
N∏︂
i=1

γαk = 0 ⇔ κbγ
|β| − κfγ

|α| = 0 ⇔
(︄
κb
κf

)︄ 1
|α|−|β|

= γ.

5.3 Instability

Having proved a result on stability of the heterogeneous catalysis model, we may drop
condition (Avel

in ) since the Poincaré inequality is not longer needed to prove a corre-
sponding result regarding the instability of equilibria.

5.6 Theorem. Let p ∈ [2,∞) \ {3}, T = ∞ and gini ∈ Gin
p . Let the sorption rates be

given as
rsorpi (ci, cΣi ) := kadi ci − kdei c

Σ
i , (i = 1, ..., N)

and the reaction rates as

rchi (cΣ) := (αi − βi)
(︃
κb
(︂
cΣ
)︂β

− κf
(︂
cΣ
)︂α)︃

(i = 1, ..., N)

with kadi , kdei > 0, κb, κf > 0 and α, β ∈ ({0} ∪ [1,∞))N , α, β ̸= 0. Assume (c∗, cΣ∗ )
is an equilibrium of (1.3) satisfying (Aeq

P ), (Aeq
R ), (Aeq

I ) and that u satisfies (Avel).
Furthermore, we assume that there exists an eigenvector (c, cΣ) of A0, such that

(b(cΣ∗ )cΣ, acΣ)L2(Σ)N >
⃓⃓⃓
(A(c, cΣ), (c, cΣ))L2(Ω)N×L2(Σ)N

⃓⃓⃓
(5.8)

where A0, A, a and b(cΣ∗ ) are defined as in Theorem 5.4.
Then (c∗, cΣ∗ ) is unstable in INP = Ip(Ω)N × Ip(Σ)N and there exists a ρ > 0 such that
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for η > 0 there is a

(c0, cΣ0 ) ∈ BINp ((c∗, c
Σ
∗ ), η),

in case of p > 3 satisfying (5.2), but the solution (c, cΣ) corresponding to (c0, cΣ0 )
satisfies

∥(c(tη), cΣ(tη))− (c∗, cΣ∗ )∥INp > ρ

for some finite time tη > 0.

Proof. Let (c, cΣ) be an eigenvector of A0 corresponding to the eigenvalue λ ∈ σ(A0)
fulfilling the assumption (5.8). As in the proof of Theorem 5.4 we remark that it is
sufficient to characterize the spectrum of A0 in the L2-setting to obtain the result for
all p ∈ [2,∞) \ {3} due to compactness. By testing A0(c, cΣ) = λ(c, cΣ) with (c, cΣ)
and taking the real part we obtain

Reλ(∥c∥2L2(Ω)N + ∥cΣ∥2L2(Σ)N ) = ((A−M) (c, cΣ), (c, cΣ))L2(Ω)N×L2(Σ)N

and

(A (c, cΣ), (c, cΣ))L2(Ω)N×L2(Σ)N ⩾ 0.

Then condition (5.8) yields Reλ < 0 and there exists a λ0 ∈ σ(A0) ∩ C−. As before
we exploit that A0 has compact resolvent, which implies that A0 has a discrete point
spectrum. Moreover, since µ+ A0 is sectorial for a µ ⩾ 0 with angle ϕµ+A0 < π/2, we
know that σ(A0) ∩ C− is compact and therefore we obtain a spectral gap in C−. This
means that there exists a δ ∈ (Reλ0, 0) such that σ(A0)∩ [δ+ iR] = ∅. Then Theorem
2.8 yields the result.

5.7 Remark. (1) Note that due to dropping the condition (Avel
in ) there may be con-

stant functions in D(A0), which is not the case in the stable setting.

(2) Even with condition (Avel
in ) dropped, there does not exist some constant eigen-

vector for eigenvalues in σ(A0) \ {0}. Indeed, let λ ∈ σ(A0) \ {0} and (c, cΣ) be a
corresponding constant eigenvector. Due to B(c, cΣ) = 0 we have Kadc = KdecΣ

and therefore c, cΣ ̸= 0. Then

λ(c, cΣ) = A0(c, cΣ) = (A−M)(c, cΣ) = −(0, M̃cΣ)

yields the contradiction.
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(3) In general it is not clear if an eigenvector fulfilling (5.8) exists. Especially the
condition b(cΣ∗ )cΣ, acΣ ̸= 0 has to be fulfilled in such a case. Due to the fact
that A0 is not normal in general, it is not even clear if there exists a basis of
L2(Ω)N × L2(Σ)N consisting of eigenvectors of A0.
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6 Duality Scales for Partial Differential Equations

In this chapter we analyze the coherence between duality scales and complemented
subspaces, projected by some projection P . First, we collect some results regarding the
resolvent set of the operator R = (P −P ′)2 and give a characterization of duality scales
on complemented subspaces in Theorem 6.2. Then we apply the developed theory to
a Stokes problem on a C3-domain with compact boundary and see that compactness
may simplify the application of Theorem 6.2. Therefore, we develop some abstract
results relying on compactness in the last section.

6.1 Projections on Duality Scales

In the following, let s0 > 0 and I0 := (−s0, s0). We assume that (Es)s∈I0 , (Fs)s∈I0
are complex interpolation scales of Banach spaces which are continuously embedded
into a common Hausdorff space H and that (Ps,E)s∈I0 , (Ps,F )s∈I0 are consistent scales of
projections on these interpolation scales. Let (Es, Fs, as)s∈I0 be a duality scale. We will
use the notation Es,Ps,E

:= Ps,E(Es) for simplicity. Note that in the following (Ps,E)′a =
P ′
s,E ∈ L (F−s) always denotes the dual operator w.r.t. the pairing a. Moreover, we

will use the following notations according to Lemma 2.45.

Rs,E := (Ps,E − P ′
−s,F )2, Rs,F := (Ps,F − P ′

−s,E)2,

as well as

Qs,E := Ps,EP
′
−s,F (1−Rs,E)−1, Qs,F := Ps,FP

′
−s,E(1−Rs,F )−1,

Ps,E := P ′
−s,FPs,E(1−Rs,E)−1, Ps,F := P ′

−s,EPs,F (1−Rs,F )−1.

First we prove an auxiliary result.

6.1 Lemma. Let (Es, Fs, as)s∈I0 be a duality scale and (Ps,E)s∈I0, (Ps,F )s∈I0 be consis-
tent scales of projections. Let λ ∈ C. Consider the following assertions.

(i) For every s ∈ I0 we have λ ∈ ρ(Rs,E, Es).
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(ii) For every s ∈ I0 we have λ ∈ ρ(Rs,F , Fs).

(iii) For every s ∈ I0 we have

λ ∈ ρ(P ′
−s,F (1− Ps,E), Es,P ′

−s,F
) ∩ ρ((1− P ′

−s,F )Ps,E, Es,1−P ′
−s,F

).

(iv) For every s ∈ I0 we have

λ ∈ ρ(P ′
−s,E(1− Ps,F ), Fs,P ′

−s,E
) ∩ ρ((1− P ′

−s,E)Ps,F , Fs,1−P ′
−s,E

).

(v) For every s ∈ I0 we have

λ ∈ ρ(P ′
−s,F (1− Ps,E), Es) ∩ ρ(P ′

−s,E(1− Ps,F ), Fs).

Then we have
(v) ⇒ (i) ⇔ (ii) ⇔ (iii) ⇔ (iv).

Moreover, if λ = 1, then all assertions are equivalent.

Proof. (i) ⇔ (ii): Follows immediately due to

R′
s,E = [(Ps,E − P ′

−s,F )2]′ = [((P ′
−s,F )′ − P ′

s,E)2] = [P−s,F − P ′
s,E]2 = R−s,F

and vice versa taking into account reflexivity of Es and Fs.

(i) ⇒ (iii): By restriction of Rs,E onto subspaces we obtain

Rs,Ex = (Ps,E − P ′
−s,F )2x = P ′

−s,F (1− Ps,E)x (x ∈ Es,P ′
−s,F

) (6.1)

Rs,Ex = (Ps,E − P ′
−s,F )2x = (1− P ′

−s,F )Ps,Ex (x ∈ Es,1−P ′
−s,F

). (6.2)

Then, Rs,E(Es,P ′
−s,F

) ⊆ Es,P ′
−s,F

and

λ−Rs,E : Es,P ′
−s,F

−→ Es,P ′
−s,F

is injective with closed range for s ∈ I0. Due to R′
s,E = R−s,F for s ∈ I0 w.r.t. the

duality pairing (Es,P ′
−s,F

, F−s,Ps,F
, a−s) and due to R−s,F (F−s,P−s,F

) ⊆ F−s,P−s,F
we also

see that

(λ−Rs,E)′ = λ−R−s,F : F−s,P−s,F
→ F−s,P−s,F
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is injective and by duality arguments that λ− Rs,E ∈ Lis(Es,P ′
−s,F

). By (6.1) we have
that

λ ∈ ρ(P ′
−s,F (1− Ps,E), Es,P ′

−s,F
). (6.3)

Using analogous arguments and (6.2) we also obtain λ ∈ ρ((1−Ps,E)P ′
−s,F ), Es,1−P ′

−s,F
).

(ii) ⇒ (iv): Follows in the same way as (i) ⇒ (iii).

(iii) ⇒ (i): Follows from (6.1), (6.2) and Lemma 2.42(iii).

(iv) ⇒ (ii): Follows in the same way as (iii) ⇒ (i).

(v)⇒ (i): We dualize λ ∈ ρ(P ′
s,E(1−P−s,F ), F−s) w.r.t. the duality pairing (Es, F−s, a−s)

for s ∈ I0 and obtain

λ ∈ ρ((1− P ′
−s,F )Ps,E, Es).

With (6.1) and (6.2) we again have that

λ−Rs,E = λ− P ′
−s,F (1− Ps,E) : Es,P ′

−s,F
→ Es,P ′

−s,F
,

λ−Rs,E = λ− (1− P ′
−s,F )Ps,E : Es,1−P ′

−s,F
→ Es,1−P ′

−s,F

are injective with closed range. Moreover,

(λ−Rs,E)(Es,P ′
−s,F

)⊕ (λ−Rs,E)(Es,1−P ′
−s,F

) ⊆ Es

is closed in Es. Thus,

λ−Rs,E : Es = Es,P ′
−s,F

⊕ Es,1−P ′
−s,F

→ (λ−Rs,E)(Es,P ′
−s,F

)⊕ (λ−Rs,E)(Es,1−P ′
−s,F

)

is isomorphic and therefore λ− Rs,E : Es → Es is injective with closed range. By ap-
plying the same arguments to λ−R−s,F and using duality we obtain λ−Rs,E ∈ Lis(Es).

From now on let λ = 1. We prove
(i) ⇒ (v): We already know that (i) implies 1 ∈ ρ(P ′

−s,F (1 − Ps,E), Es,P ′
−s,F

). Due to
1 ∈ ρ(Rs,E, Es) by assumption, an application of Lemma 2.45 yields

Es = Es,Ps,E
⊕ Es,1−P ′

−s,F
= Es,P ′

−s,F
⊕ Es,1−Ps,E

(6.4)
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and an application of Lemma 2.44 results in

1− P ′
−s,F ∈ Lis(Es,1−Ps,E

, Es,1−P ′
−s,F

). (6.5)

Let x ∈ Es,1−Ps,E
, then (1− (P ′

−s,F (1− Ps,E))x = (1− P ′
−s,F )x. Thus we have

1− P ′
−s,F (1− Ps,E) ∈ Lis(Es,P ′

−s,F
⊕ Es,1−Ps,E

, Es,P ′
−s,F

⊕ Es,1−P ′
−s,F

) = Lis(Es)

by (6.3), (6.4) and 6.5. The assertion

1− P ′
−s,E(1− Ps,F ) ∈ Lis(Fs)

follows by using (i) ⇔ (ii) and similar arguments.

Regarding the central question if (Es,Ps,E
, Fs,Ps,F

, as)s∈I0 is a duality scale, we obtain
the following main result.

6.2 Theorem. Let (Es, Fs, as)s∈I0 be a duality scale and (Ps,E)s∈I0, (Ps,F )s∈I0 be con-
sistent scales of projections. Then the following assertions are equivalent.

(i) We have 1 ∈ ρ(Rs,E, Es) for every s ∈ I0.

(ii) We have 1 ∈ ρ(Rs,F , Fs) for every s ∈ I0.

(iii) For every s ∈ I0 we have Es = Es,P ′
−s,F

⊕ Es,1−Ps,E
and Fs = Fs,P ′

−s,E
⊕ Fs,1−Ps,F

as well as Es = Es,Ps,E
⊕ Es,1−P ′

−s,F
and Fs = Fs,Ps,F

⊕ Fs,1−P ′
−s,E

.

(iv) There exist consistent scales of projections (Ps,E)s∈I0 and (Ps,F )s∈I0 as well as
(Qs,E)s∈I0 and (Qs,F )s∈I0 which are symmetric w.r.t. each other, i.e. P′

s,E = P−s,F ,
P′
s,F = P−s,E, Q′

s,E = Q−s,F and Q′
s,F = Q−s,E, such that Ps,E(Es) = Es,P ′

−s,F
,

Ps,F (Fs) = Fs,P ′
−s,E

, Qs,E(Es) = Es,Ps,E
and Qs,F (Fs) = Fs,Ps,F

.

(v) (E−s,P ′
s,F
, Fs,P ′

−s,E
, as) and (E−s,P−s,E

, Fs,Ps,F
, as) are duality systems for all s ∈ I0.

(vi) (Es,P ′
−s,F

, Fs,P ′
−s,E

, as)s∈I0 and (Es,Ps,E
, Fs,Ps,F

, as)s∈I0 are duality scales.

(vii) We have

1 ∈ ρ(P ′
−s,F (1− Ps,E), Es) ∩ ρ(P ′

−s,E(1− Ps,F ), Fs)

for every s ∈ I0.
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Proof. We will prove the assertion in several steps.

(i) ⇔ (ii) ⇔ (vii): Follows from Lemma 6.1.

(i) ⇔ (iii): We can use (i) ⇔ (ii) and apply Lemma 2.45 to obtain the equivalence by
setting Q := P ′

−s,F or Q := P ′
−s,E respectively.

Next, we show (iii) ⇒ (iv) ⇒ (v) ⇒ (iii) without consistency of (Ps,E)s∈I0 , (Ps,F )s∈I0 ,
(Qs,E)s∈I0 and (Qs,F )s∈I0 .

(iii)⇒ (iv): Lemma 2.45 yields scales of projections (Ps,E)s∈I0 on (Es)s∈I0 and (Ps,F )s∈I0
on (Fs)s∈I0 . We already have R′

s,E = R−s,F for s ∈ I0. Furthermore, we know that
(1−Rs,E) commutes with Ps,E and P ′

−s,F . This leads to

P′
s,E = [P ′

−s,FPs,E(1−Rs,E)−1]′ = P ′
s,EP−s,F (1−R−s,F )−1 = P−s,F ,

thus the symmetry of Ps,E. Symmetry of Ps,F , Qs,E and Qs,F follows in the same
manner.

(iv) ⇒ (v): The symmetry of (Ps,E)s∈I0 and (Ps,F )s∈I0 and Lemma 2.42 imply that
(E−s,P−s,E

, Fs,Ps,F
, as) is a duality system for every s ∈ I0. Lemma 2.45 implies

E−s,P−s,E
= E−s,P ′

s,F
and Fs,Ps,F

= Fs,P ′
−s,E

, which yields that (E−s,P ′
s,F
, Fs,P ′

−s,E
, as)

is a duality system. The assertion for (E−s,P−s,E
, Fs,Ps,F

, as) follows in an analogous way.

(v) ⇒ (iii): We consider the bounded map Ps,E : Es,P ′
−s,F

→ Es,Ps,E
and pick z ∈ Es,Ps,E

arbitrary. Then we have a−s(z, ·) ∈ (F−s,P ′
s,E

)′. Since (Es,P ′
−s,F

, F−s,P ′
s,E
, a−s) is a duality

system, there exists a unique y ∈ Es,P ′
−s,F

such that

a−s(Ps,Ey, x) = a−s(y, P ′
s,Ex) = a−s(y, x) = a−s(z, x) (x ∈ F−s,P ′

s,E
).

From Lemma 2.42 we already know that (Es,Ps,E
, F−s,P ′

s,E
, a−s) is a duality system. This

yields Ps,Ey = z and Ps,E ∈ Lis(Es,P ′
−s,F

, Es,Ps,E
), thus

Es = Es,P ′
−s,F

⊕ Es,1−Ps,E

by Lemma 2.44. The same arguments lead to the remaining decompositions in (iii).

It remains to show consistency of (Ps,E)s∈I0 , (Ps,F )s∈I0 , (Qs,E)s∈I0 and (Qs,F )s∈I0 ,
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which will be postponed to the last step of the proof. Next, we show the equivalence
(v) ⇔ (vi). The conclusion (vi) ⇒ (v) is clear, so we only give a proof for the opposite
direction.

(v) ⇒ (vi): Let (v) and therefore (iii) and (iv) be fulfilled. It remains to show that
(Es,P ′

−s,F
)s∈I0 and (Fs,P ′

−s,E
)s∈I0 are complex interpolation scales and that (as)s∈I0 is

strongly consistent. Let r, s ∈ I0 and q ∈ [r, s]. Due to the fact that (Fs)s∈I0 is a
complex interpolation scale, we immediately obtain Fr ∩ Fs

d
↪→ Fq. We know that

(P ′
−s,E)s∈I0 is a consistent scale of projections on (Fs)s∈I0 , such that

Fr,P ′
−r,E

∩ Fs,P ′
−s,E

d
↪→ Fq,P ′

−q,E

follows immediately. On the other hand, we have

[Fr,P ′
−r,E

, Fs,P ′
−s,E

]θ = P ′
E[Fr, Fs]θ (θ ∈ (0, 1), r, s ∈ I0)

by [58, 1.2.4], which yields the complex interpolation scale. Note that the notation
P ′
E without parameter s is justified due to consistency. It remains to show strong

consistency of (as)s∈I0 . To this end, we first show strong right consistency. Pick
r, s ∈ I0 and x ∈ Fr,P ′

−r,E
, y ∈ Fs,P ′

−s,F
such that

ar(x′, x) = as(x′, y) (x′ ∈ E−r,P ′
r,F

∩ E−s,P ′
s,F

). (6.6)

Now, let x′ ∈ E−r ∩ E−s and remember that by (iv) (Pr,E)r∈I0 is a consistent scale of
(symmetric) projections on (Er)r∈I0 with Pr,E(Er) = Er,P ′

−r,F
. We have P′

−r,E = Pr,F
and P′

r,F = P−r,E with Pr,F (Fr) = Fr,P ′
−r,E

, where (Pr,F )r∈I0 is consistent on (Fr)r∈I0 .
Combining these facts with (6.6) we obtain

ar(x′, x) = ar(x′,Pr,Fx) = ar(P−r,Ex
′, x) = as(P−s,Ex

′, y) = as(x′,Ps,Fy) = as(x′, y)

for x′ ∈ E−r ∩ E−s. Due to strong consistency of (as)s∈I0 on (Es, Fs)s∈I0 this leads to
x = y in H, thus to strong right consistency of (as)s∈I0 on (Es,P ′

−s,F
, Fs,P ′

−s,E
)s∈I0 . Next,

pick r, s ∈ I0 and x ∈ E−r,P ′
r,F

, y ∈ E−s,P ′
s,F

such that

ar(x, x′) = as(y, x′) (x′ ∈ Fr,P ′
−r,E

∩ Fs,P ′
−s,E

).

By the same arguments as above we obtain

ar(x, x′) = ar(P−r,Ex, x
′) = ar(x,Pr,Fx′) = as(y,Ps,Fx′) = as(P−s,Ey, x

′) = as(y, x′)
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for all x′ ∈ Fr ∩ Fs, thus strong left consistency of (as)s∈I0 on (Es,P ′
−s,F

, Fs,P ′
−s,F

)s∈I0 .
This shows that (Es,P ′

−s,F
, Fs,P ′

−s,E
, as)s∈I0 is a duality scale. The assertion for

(Es,Ps,E
, Fs,Ps,F

, as)s∈I0 follows analogously.

Finally, we show consistency of (Ps,E)s∈I0 , (Ps,F )s∈I0 , (Qs,E)s∈I0 and (Qs,F )s∈I0 .
We just show consistency of (Ps,F )s∈I0 . From (iv) we obtain an operator P0,F : F0 → F0

onto F0,P ′
0,E

. We fix s ∈ I0. For x ∈ F0 ∩ Fs and x′ ∈ E0 ∩ E−s,P ′
s,F

we have

|a0(x′,P0,Fx)| = |a0(P ′
s,Fx

′,P0,Fx)| = |a0(P0,EP
′
0,Fx

′, x)|
= |a0(P ′

s,Fx
′, x)| = |as(x′, x)| ⩽ C∥x′∥E−s∥x∥Fs ,

by consistency of (as)s∈I0 and (P ′
−s,F )s∈I0 regarding Lemma 2.43 and E0,P ′

0,F
= E0,P0,E .

From assertion (v) we know that E−s,P ′
s,F

= (Fs,P ′
−s,E

)′a. By E−s ∩ E0
d
↪→ E−s we have

E−s,P ′
s,F

∩ E0
d
↪→ E−s,P ′

s,F
. This yields

∥P0,Fx∥Fs = ∥P0,Fx∥Fs,P ′
−s,E

= sup
0̸=x′∈E−s,P ′

s,F
∩E0

|a0(x′,P0,Fx)|
∥x′∥E−s

⩽ C∥x∥Fs

for x ∈ F0 ∩ Fs
d
↪→ Fs. So for each s ∈ I0 the operator P0,F on F0 ∩ Fs extends to

an operator P̃s,F ∈ L (Fs). In the same way we obtain a scale of extended operators
(P̃s,E)s∈I0 with P̃s,E|Es∩E0 = P0,E for s ∈ I0. Next, we show that (P̃s,E)s∈I0 and (P̃s,F )s∈I0
are consistent scales of symmetric projections on (Es)s∈I0 and (Fs)s∈I0 . Let s ∈ I0.

(1) P̃s,E and P̃s,F are projections: We start with P̃s,E. Let x ∈ Es and an approxi-
mating sequence (xk)k∈N ⊆ Es ∩E0 be given, such that xk → x in Es for k → ∞
by Es ∩ E0

d
↪→ Es. Then we have

∥P̃s,EP̃s,Ex− P̃s,Ex∥Es ⩽ ∥P̃s,EP̃s,Ex− P̃s,EP̃s,Exk∥Es + ∥P̃s,Exk − P̃s,Ex∥Es

k→∞−→ 0

due to P̃s,E = P0,E on Es ∩ E0. The assertion for P̃s,F follows in the same way.

(2) (P̃s,E)s∈I0 and (P̃s,F )s∈I0 are symmetric w.r.t. each other: Let x ∈ Fs, x′ ∈ E−s

for s ∈ I0 and (xk)k∈N ⊆ Fs ∩ F0 such that xk → x in Fs for k → ∞. Moreover,
let (x′k)k∈N ⊆ E−s ∩ E0 such that x′k → x′ in E−s for k → ∞. Then we have

as(x′, P̃s,Fx) = lim
j,k→∞

as(x′j, P̃s,Fxk) = lim
j,k→∞

as(x′j,P0,Fxk)

= lim
j,k→∞

as(P0,Ex
′
j, xk) = lim

j,k→∞
as(P̃−s,Ex

′
j, xk) = as(P̃−s,Ex

′, x)
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by P′
0,F = P0,E and P′

0,E = P0,F , which yields the symmetry w.r.t each other.

(3) (P̃s,E)s∈I0 and (P̃s,F )s∈I0 are consistent: We only show consistency for (P̃s,E)s∈I0 .
Let r, s ∈ I0 and w.l.o.g. r < s. If r < 0 < s, then Er ∩ Es ↪→ E0 such that

P̃r,Ex = P0,Ex = P̃s,Ex (x ∈ Er ∩ Es).

If r < s < 0, then we know from Lemma 2.38 that (E−η + E0, Fη ∩ F0, b
a
η) with

baη = aη + a0 is a duality system for each η ∈ [0,−r]. Moreover, we know that
(P̃η,F )η∈[0,−r] is consistent on (Fη ∩ F0)η∈[0,−r]. Let (P̃η,F )′ba be the dual operator
on E−η + E0 w.r.t. baη for each η ∈ [0,−r].
Since we have F−r ∩F0 ↪→ F−s∩F0, we may apply Remark 2.35 and Lemma 2.40
to obtain consistency of (P̃−r,F )′ba and (P̃−s,F )′ba . By exploiting Eη

d
↪→ Eη + E0

and symmetry of the operator scales it is easy to see that

(P̃−θ,F )′ba : Eθ + E0 → Eθ + E0

is the unique extension of

(P̃−θ,F )′a = P̃θ,E : Eθ → Eθ

for θ ∈ {r, s}. Now, let x ∈ Er ∩ Es ↪→ Er + E0, Es + E0. Then we have

P̃r,Ex = (P̃−r,F )′bax = (P̃−s,F )′bax = P̃s,Ex

by consistency of (P̃−r,F )′ba and (P̃−s,F )′ba , which yields consistency of P̃r,E and
P̃s,E. If 0 < r < s, the assertion follows in an analogous way.

Finally we have to show that P̃s,E(Es) = Es,P ′
−s,F

, (1 − P̃s,E)(Es) = Es,1−Ps,E
as well

as P̃s,F (Fs) = Fs,P ′
−s,E

and (1 − P̃s,F )(Fs) = Fs,1−Ps,F
. We will only prove the first

assertion, the other ones follow in a similar manner.

• P̃s,E(Es) ⊆ Es,P ′
−s,F

: First, let x ∈ P̃s,E(Es) ∩ E0. It is obvious by definition of
(P̃s,E)s∈I0 that x = P̃s,Ex = P0,Ex. Due to P0,E(E0) = E0,P ′

0,F
and consistency of

(P ′
−s,F )s∈I0 on (Es)s∈I0 we also have x = P ′

0,Fx = P ′
−s,Fx for x ∈ P̃s,E(Es) ∩ E0,

which yields P̃s,E(Es) ∩ E0 ⊆ Es,P ′
−s,F

∩ E0

Since Es ∩ E0
d
↪→ Es and by the fact that P̃s,E, P ′

−s,F are bounded projections
we have P̃s,E(Es) ∩ E0

d
↪→ P̃s,E(Es) as well as Es,P ′

−s,F
∩ E0

d
↪→ Es,P ′

−s,F
. For

each x ∈ P̃s,E(Es) there exists a sequence (xk)k∈N ⊆ P̃s,E(Es) ∩ E0 such that
∥xk − x∥Es → 0 for k → ∞. Thus, we have (xk)k∈N ⊆ Es,P ′

−s,F
∩ E0 and, since
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Es,P ′
−s,F

is closed in Es, also x ∈ Es,P ′
−s,F

.

• Es,P ′
−s,F

⊆ P̃s,E(Es): Follows in an analogous way by using consistency of
(P ′

−s,F )s∈I0 on (Es)s∈I0 and the fact that P̃s,E|Es∩E0 = P0,E.

We obtain P̃s,E = Ps,E due to the fact that every decomposition has a unique projection.
Thus, (Ps,E)s∈I0 and by the same arguments (Ps,F )s∈I0 , (Qs,E)s∈I0 and (Qs,F )s∈I0 are
consistent.

In addition to this main result we will present special case which will be helpful in
order to fulfill the condition 1 ∈ ρ(Rs,E, E).

6.3 Lemma. Let E be a complex Banach space and a : E × E → C a duality pairing
such that (E,E, a) is a duality system and E equipped with the scalar product a( · , · )
is a Hilbert space. Moreover, let P : E → E be a projection with Px = Px for x ∈ E,
P ′ be its dual w.r.t. a and R = (P − P ′)2. Then we have 1 ∈ ρ(R,E).

Proof. First we note that ∥·∥a :=
√︂
a( · , · ) is a norm on E which is equivalent to ∥·∥E.

We denote by Ea the space E equipped with the norm ∥·∥a. By Px = Px for x ∈ Ea

we also have P ′x = P ′x. Let x ∈ Ea. Then we can write

a(Rx, x) = a((P − P ′)2x, x) = −a((P − P ′)x, (P − P ′)x)
= −∥(P − P ′)x∥2a = a(x,Rx).

This shows that R is dissipative and symmetric on Ea and hence there exists an r > 0
such that σ(R,E) ⊆ [−r, 0].

6.2 Application to the Stokes Equations

As an application of the theory of duality scales we want to consider the stationary
Stokes equation with mixed-type boundary conditions in a C3-domain Ω ⊆ R3 with
compact boundary for some λ > 0.

λu−∆u+∇p = f in Ω,
divu = 0 in Ω,

Πτ∂νu = 0 on ∂Ω,
ν · u = 0 on ∂Ω,

(6.7)

where we note that Πτ∂νu = Πτ∇u · ν with Πτ given as the tangential projection onto
∂Ω. By perturbation with the lower order term Πτ (∇u)T · ν (cf. [25, Lemma 9.1]),
solubility of this problem leads to solubility of the Stokes problem with perfect slip
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boundary conditions. We want to show that the use of duality scales yields solutions
with regularity up to W 1+ε,q(Ω) for 0 < ε < 1/max{q, q′}, where q ∈ (1,∞) and
1/q + 1/q′ = 1.
In order to formulate the problem in terms of duality scales, we introduce the following
spaces.

W s,q
N,ν(Ω) := {u ∈ W s,q(Ω,R3) : Πτ∂νu|∂Ω = 0, ν · u|∂Ω = 0} (s > 1 + 1/q),

W s,q
ν (Ω) := {u ∈ W s,q(Ω,R3) : ν · u|∂Ω = 0} (s > 1/q).

First we define the ν-Laplace operator as follows.

6.4 Definition. Let Ω ⊆ R3 be a C3-domain with compact boundary and 1 < q <∞.
Then the ν-Laplace operator is defined as

AN,ν,q : D(AN,ν,q) ⊆ Lq(Ω) → Lq(Ω), u ↦→ AN,ν,qu = ∆u,
D(AN,ν,q) := W 2,q

N,ν(Ω).

Next, for a fixed λ > 0, where λ has to be chosen accordingly, we define the operator

A0,q : D(AN,ν,q) ⊆ Lq(Ω) → Lq(Ω), u ↦→ (λ− AN,ν,q)u,

which admits a bounded H∞-calculus and 0 ∈ ρ(A0,q) (cf. [17, 25]). Now, let E0 :=
Lq

′(Ω) and F0 := Lq(Ω) with 1/q + 1/q′ = 1. By [2, Chapter V], the pair (A0,q,F0)
generates a densely injected interpolation-extrapolation scale [(Fα,Aα,q)]α∈[−1,∞) with

Fα :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W 2α,q
N,ν (Ω) for α ∈ (1/2 + 1/2q,∞),

W 2α,q
ν (Ω) for α ∈ (1/2q, 1/2 + 1/2q),

W 2α,q(Ω,R3) for α ∈ [0, 1/2q),
W 2α,q

0 (Ω,R3) for α ∈ (−1/2 + 1/2q, 0),
W 2α,q
ν (Ω) for α ∈ (−1 + 1/2q,−1/2 + 1/2q),

W 2α,q
N,ν (Ω) for α ∈ [−1,−1 + 1/2q),

where W−s,q
0 (Ω,R3) = (W s,q′(Ω,R3))′ for 0 < s < 1/q′, W−s,q

ν (Ω) = (W s,q′
ν (Ω))′ for

1/q′ < s < 1 + 1/q′ and W−s,q
N,ν (Ω) = (W s,q′

N,ν (Ω))′ for s > 1 + 1/q′. Here we left out
the critical cases since they do not play a role in our further considerations. Note
that Aα,q ∈ Lis(Fα+1,Fα) and (Aα,q)α−β ∈ Lis(Fα,Fβ) for −1 ⩽ α < β < ∞ and the
scales of operators (Aα,q)α∈[−1,∞) and ((Aα,q)−1)α∈[−1,∞) are consistent. By the same
arguments we obtain a densely injected consistent interpolation-extrapolation scale
[(Eα,Aα,q′)]α∈[−1,∞) if we exchange the roles of q and q′. Due to the consistency we will
write Aα,q = Aq where no confusion is likely. Note that E0 ∼= (F0)′ and vice versa w.r.t.
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the standard pairing

â(u, v) :=
∫︂
Ω
uv dx (u ∈ E0, v ∈ F0)

and we have (A0,q)′ = A0,q′ w.r.t. this pairing. Moreover, there is a duality system of
the form

dλα : E−α × Fα, (u, v) ↦→
∫︂
Ω
(Aq′)−αu (Aq)αv dx (6.8)

for α ∈ [−1, 1] such that we can identify (Fα)′ ∼= E−α and (Eα)′ ∼= F−α.
Throughout this section we use the following notation corresponding to the obtained
interpolation-extrapolation scale.

6.5 Definition. Let 1 < q < ∞, 1/q + 1/q′ = 1, s0 := min{1/q, 1/q′} and I0 :=
(−s0, s0). We set Es := W 1+s,q′

ν (Ω), Fs := W 1+s,q
ν (Ω) and

aλs : E−s × Fs → C, (u, v) ↦→
∫︂
Ω
(Aq′)

1−s
2 u (Aq)

1+s
2 v dx (6.9)

for s ∈ I0.

6.6 Remark. We note that Es = E(1+s)/2 and Fs = F(1+s)/2 for s ∈ I0 as well as
(Aq′)

1−s
2 ∈ Lis(E−s,E0) and (Aq)

1+s
2 ∈ Lis(Fs,F0).

Moreover, we make use of a symmetric duality pairing for which it is straightforward
to show that admits a duality system.

6.7 Lemma. Let

bλ : E0 × F0 → C, (u, v) ↦→ λ
∫︂
Ω
uv dx+

∫︂
Ω
∇u : ∇v dx. (6.10)

Then (E0, F0, b
λ) is a duality system.

Now we are able to show that Definition 6.5 indeed yields a duality scale which is
consistent with bλ.

6.8 Lemma. The scale (Es, Fs, aλs )s∈I0 is a duality scale which is consistent with bλ.

Proof. By using Remark 6.6 we see that (E−s, Fs, a
λ
s ) is a duality system for s ∈ I0.

Due to the considerations from above it is clear that (Es)s∈I0 and (Fs)s∈I0 are complex
interpolation scales. It remains to show the strong consistency in order to obtain a
duality scale.
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To this end, we utilize the induced isomorphisms

Φs,E : Es → (F−s)′, u ↦→ aλ−s(u, ·),
Φs,F : Fs → (E−s)′, v ↦→ aλs (·, v).

By

Aq′ : E(1+s)/2 → E(−1+s)/2 = (F−s)′, u ↦→ (Aq′u)(·)

we obtain

(Aq′u)(v) = dλ(1−s)/2(Aq′u, v) =
∫︂
Ω
Aq′(Aq′)(−1+s)/2u (Aq)(1−s)/2v dx

=
∫︂
Ω
(Aq′)(1+s)/2u (Aq)(1−s)/2v dx = aλ−s(u, v) = (Φs,Eu)(v)

for all u ∈ Es and v ∈ F−s, thus Φs,E = Aq′ . In an analogous way one can show
Φs,F = Aq. Thus, by consistency of Aq, (Aq)−1 and Aq′ , (A−1

q′ ) respectively we obtain
strong consistency of aλ by Lemma 2.38. Finally, (Es, Fs, aλs )s∈I0 is a duality scale.
Next, we show consistency of aλs with bλ on E0 × Fs for s ∈ [0, s0). By choosing
u ∈ E0

d
↪→ E−s and v ∈ F1

d
↪→ Fs and using partial integration we obtain

aλs (u, v) =
∫︂
Ω
(Aq′)

1−s
2 u (Aq)

1+s
2 v dx

=
∫︂
Ω
u (Aqv) dx =

∫︂
Ω
u (λ−∆)v dx

= λ
∫︂
Ω
uv dx+

∫︂
Ω
∇u : ∇v dx = bλ(u, v).

Now, let u be as before and v ∈ Fs with (vk)k∈N ⊆ F1 such that vk → v in Fs for
k → ∞. Then

aλs (u, v) =
∫︂
Ω
(Aq′)

1−s
2 u (Aq)

1+s
2 v dx

= lim
k→∞

∫︂
Ω
(Aq′)

1−s
2 u (Aq)

1+s
2 vk dx

= lim
k→∞

λ
∫︂
Ω
uvk dx+

∫︂
Ω
∇u : ∇vk dx

= λ
∫︂
Ω
uv dx+

∫︂
Ω
∇u : ∇v dx = bλ(u, v).

Here we use that

|aλs (u, v − vk)| ⩽ ∥(Aq′)
1−s
2 u∥E0∥(Aq)

1+s
2 (v − vk)∥F0

⩽ ∥(Aq)
1+s
2 ∥L (Fs,F0)∥v − vk∥Fs∥(Aq′)

1−s
2 u∥E0

k→∞−−−→ 0
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and ⃓⃓⃓⃓∫︂
Ω
u(v − vk) dx

⃓⃓⃓⃓
,
⃓⃓⃓⃓∫︂

Ω
∇u : ∇(v − vk) dx

⃓⃓⃓⃓
⩽ ∥u∥E0∥v − vk∥Fs

k→∞−−−→ 0.

In an analogous manner one can show consistency of aλs with bλ on E−s × F0 for
s ∈ (−s0, 0].

As usual in the (Navier-)Stokes setting, we have to deal with the divergence condition
divu = 0 and the pressure gradient ∇p. In the following, we want to address this issue
with help of the Helmholtz projection P , which maps onto divergence free functions.
Finally, we want to show that (Es,P , Fs,P , as)s∈I0 is also a duality scale. To this end,
it is necessary to introduce the Helmholtz projection and show its higher regularity in
W 1+s,q(Ω) for s ∈ I0.

6.9 Definition (Helmholtz projection). For 1 < q < ∞ the projection Pq subject to
the decomposition

Lq(Ω,R3) = Lqσ(Ω)⊕Gq(Ω)

with

Lqσ(Ω) := {u ∈ C∞
c (Ω,R3) : divu = 0 in Ω}L

q

,

Gq(Ω) := {u ∈ Lq(Ω,R3) : u = ∇p for some p ∈ W 1,p
loc (Ω)}

is called Helmholtz projection.

It is known (cf. [38, Corollary 7.4.4]) that the Helmholtz projection exists on Lq(Ω,R3)
for 1 < q < ∞ and C1-domains Ω with compact boundary and hence also for C3-
domains with compact boundary. Moreover, Pq is consistent w.r.t. q. We show that in
our setting Pq admits higher regularity.

6.10 Lemma. Let Pq be the Helmholtz projection on Lq(Ω) for 1 < q < ∞. Then
there exists a consistent scale of Helmholtz projections (Ps,q)s∈I0 on (W 1+s,q

ν (Ω))s∈I0
(and therefore on (Fs)s∈I0), such that Pq|W 1+s,q

ν (Ω) = Pq|Fs = Ps,q.

Proof. Let 1 < q <∞. First we show that Pq admits W 2,q-regularity. To this end, for
a given u ∈ W 2,q(Ω,R3) we consider the following problem.

∆p = divu in Ω,
∂νp = u · ν on ∂Ω.
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Then there exists an - up to a constant - unique solution p with ∇p ∈ W 2,q(Ω,R3) and

∥∇p∥W 2,q(Ω,R3) ⩽ C
(︃
∥divu∥W 1,q(Ω) + ∥u · ν∥

W
2−1/q
q (∂Ω)

)︃
,

cf. [38, Corollary 7.4.5]. We define

P2,qu := u−∇p

and obtain

∥P2,qu∥W 2,q(Ω,R3) = ∥u−∇p∥W 2,q(Ω,R3)

⩽ ∥u∥W 2,q(Ω,R3) + ∥∇p∥W 2,q(Ω,R3)

⩽ ∥u∥W 2,q(Ω,R3) + C
(︃
∥divu∥W 1,q(Ω) + ∥u · ν∥

W
2−1/q
q (∂Ω)

)︃
⩽ C∥u∥W 2,q(Ω,R3),

thus P2,q ∈ L (W 2,q(Ω,R3)). Moreover, it is easy to check that the boundary condition
u·ν = 0 on ∂Ω is left invariant by P2,q and we have P2,q ∈ L (W 2,q

ν (Ω)). By construction
it is clear that P2,q is a projection and Pq|W 2,q

ν (Ω) = P2,q, c.f. [16, Lemma III.1.2]. We
obtain W 2,q

ν (Ω) = W 2,q
ν,σ (Ω)⊕G2

q(Ω) with

W 2,q
ν,σ (Ω) = W 2,q

ν (Ω) ∩ Lqσ(Ω), G2
q(Ω) = W 2,q

ν (Ω) ∩Gq(Ω).

Then, we have consistent projections Pt,q ∈ L (W t,q
ν (Ω)) for t ∈ (0, 2) by interpolation

theory (cf. [58, 1.2.3]) and W t,q
ν (Ω) = W t,q

ν,σ(Ω)⊕Gt
q(Ω), where

W t,q
ν,σ(Ω) = W t,q

ν (Ω) ∩ Lqσ(Ω), Gt
q(Ω) = W t,q

ν (Ω) ∩Gq(Ω).

Hence, the Helmholtz projection Pq on Lq(Ω,R3) admits higher regularity and we
obtain a scale of consistent projections (Ps,q)s∈I0 on (W 1+s,q

ν (Ω))s∈I0 .

6.11 Remark. Due to symmetry of the Helmholtz projection w.r.t. the Lq−Lq′ pairing
we can also extend the scale of projections consistently onto Eα and Fα for α ∈ (0,−1].

In the following results we work with dual projections of Ps,q and Ps,q′ w.r.t. to different
pairings, which we define in the following.

6.12 Definition. Let s ∈ I0, Ps,q be the Helmholtz projection on Fs = W 1+s,q
ν (Ω) and

Ps,q′ be the Helmholtz projection on Es = W 1+s,q′
ν (Ω) for 1 < q <∞ and 1/q+1/q′ = 1.

Then we set P ′
s,q′ = (Ps,q′)′aλ ∈ L (F−s) and P ′

s,q = (Ps,q)′aλ ∈ L (E−s), i.e. the dual
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w.r.t. the pairing aλ. Moreover, for s = 0 we denote by P̂ ′
0,q′ = (P0,q′)′bλ ∈ L (F0) and

P̂
′
0,q = (P0,q)′bλ ∈ L (E0) the dual w.r.t. the pairing bλ as in (6.10).

An important ingredient in order to show that the projected scale
(Es,Ps,q′

, Fs,Ps,q , a
λ
s )s∈I0 is a duality scale is the fact that the operator

P̂
′
0,q′(1 − P0,q) : F0 → F0 is compact. The proof of this assertion is based on

[44] and will be carried out in the following.

6.13 Remark. Note that by [25, Lemma 9.1] there exists a V ∈ W 1,∞(∂Ω,R3×3) such
that for all u ∈ W 2,q(Ω,R3) satisfying ν · u = 0 on ∂Ω we have

Πτ (∇u+ (∇u)T )ν = (∇u− (∇u)T )ν +ΠτV u on ∂Ω.

6.14 Lemma. The operator P̂ ′
0,q′(1− P0,q) : F0 → F0 is compact.

Proof. First, we note that E0 = W 1,q′
ν (Ω) and F0 = W 1,q

ν (Ω). Let u ∈ W 1,q
ν (Ω).

Then we have (1 − P0,q)u = ∇p ∈ W 1,q
ν (Ω) for some p by definition of the Helmholtz

projection. Let v ∈ W 1,q′
ν (Ω), then

bλ(v, P̂ ′
0,q′(1− P0,q)u) = bλ(P0,q′v,∇p)

= λ
∫︂
Ω
P0,q′v · ∇p dx+

∫︂
Ω
∇2p : ∇P0,q′v dx

=
∫︂
Ω
∇2p : ∇P0,q′v dx,

where we know by Lemma 6.10 that P0,q′v ∈ W 1,q
ν (Ω). It is div (∇P0,q′v)T = 0 such

that the normal trace (∇P0,q′v)Tν is well-defined in W−1/q′
q′ (∂Ω,R3). We calculate

div [(∇P0,q′v)∇p] = ∇divP0,q′v · ∇p+∇P0,q′v : ∇2p = ∇P0,q′v : ∇2p

in D′(Ω). Applying the generalized Gauß theorem yields∫︂
Ω
∇2p : ∇P0,q′v dx = ⟨∇p, (∇P0,q′v)Tν⟩W 1−1/q

q (∂Ω,R3),W−1/q′
q′

(∂Ω,R3) .

We use the tangential and normal projection on the boundary to the result

(∇P0,q′v)Tν = Πν(∇P0,q′v)Tν +Πτ (∇P0,q′v)Tν.

This leads to

bλ(v, P̂ ′
0,q′(1− P0,q)u) = ⟨∇p, (∇P0,q′v)Tν⟩W 1−1/q

q (∂Ω,R3),W−1/q′
q′

(∂Ω,R3)
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= ⟨Πν∇p,Πν(∇P0,q′v)Tν⟩W 1−1/q
q (∂Ω,R3),W−1/q′

q′
(∂Ω,R3)

+ ⟨∇p,Πτ (∇P0,q′v)Tν⟩W 1−1/q
q (∂Ω,R3),W−1/q′

q′
(∂Ω,R3)

= ⟨ν · u,Πν(∇P0,q′v)Tν⟩W 1−1/q
q (∂Ω,R3),W−1/q′

q′
(∂Ω,R3)

+
∫︂
∂Ω
(∇p)T ΠτV P0,q′v dσ

=
∫︂
∂Ω
(∇p)T ΠτV P0,q′v dσ

for some V ∈ L∞(∂Ω,R3×3) (cf. Remark 6.13).
Next, set G := Ω if Ω is bounded. If Ω is exterior, choose a ball B ⊆ R3 such that
R3 \ Ω ⊆ B and set G = Ω ∩ B. For α ∈ (1/q, 1] the trace operator γ : u ↦→ u|∂Ω
satisfies (cf. [32])

γ ∈ L (Wα,q(G,R3),Wα−1/q
q (∂Ω,R3)) ∩ L (W 1,q′(Ω,R3), Lq′(∂Ω,R3)).

Thus we can estimate as

|bλ(v, P̂ ′
0,q′(1− P0,q)u)| ⩽ C∥γ(1− P0,q)u∥Lq(∂Ω,R3)∥γP0,q′v∥Lq′ (∂Ω,R3)

⩽ C∥u∥W 1−ε,q(G,R3)∥P0,q′v∥W 1,q′ (Ω,R3)

⩽ C∥u∥W 1−ε,q(G,R3)∥v∥W 1,q′ (Ω,R3)

for all v ∈ W 1,q′
ν (Ω) with some ε > 0 sufficiently small. According to Remark 2.32 (1)

this yields

∥P̂
′
0,q′(1− P0,q)u∥W 1,q(Ω,R3) ⩽ C∥u∥W 1−ε,q(G,R3) (u ∈ W 1,q

ν (Ω)). (6.11)

Let (uk)k∈N ⊆ W 1,q
ν (Ω) be a bounded sequence. Since the standard norms of

W 1,q(Ω,R3) and W 1,q
ν (Ω) coincide and the embedding W 1,q(Ω,R3) ↪→ W 1−ε,q(G,R3)

is compact, there exists a subsequence (ukj)j∈N that converges in W 1−ε,q(G,R3) and
therefore is a Cauchy sequence in this space. Due to (6.11), (P̂ ′

0,q′(1 − P0,q)ukj)j∈N
is a Cauchy sequence in W 1,q

ν (Ω) and converges. Hence, P̂ ′
0,q′(1 − P0,q) : F0 → F0 is

compact.

6.15 Remark. By the same arguments we may also obtain compactness of the operator
P̂

′
0,q(1− P0,q′) : E0 → E0.

The results from above allow us to consider the duality scale of projected subspaces.
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6.16 Theorem. Let 1 < q < ∞, 1/q + 1/q′ = 1, Es := W 1+s,q′
ν (Ω), Fs := W 1+s,q

ν (Ω),
s0 := min{1/q, 1/q′} and I0 := (−s0, s0). Then (Es,Ps,q′

, Fs,Ps,q , a
λ
s )s∈I0 is a duality

scale.

6.17 Remark. Note that Es,Ps,q′
= W 1+s,q′

ν,σ (Ω) and Fs,Ps,q = W 1+s,q
ν,σ (Ω).

Proof of Theorem 6.16. We split the proof into several steps.

Step 1: Compactness of P ′
s,q′(1− Ps,q) for s ∈ I0.

Let (Ps,q)s∈I0 and and (Ps,q′)s∈I0 be the consistent scales of the Helmholtz projections
on (Fs)s∈I0 = (W 1+s,q

ν (Ω))s∈I0 and (Es)s∈I0 = (W 1+s,q′
ν (Ω))s∈I0 as in Lemma 6.10. From

Lemma 6.14 we already know that P̂ ′
0,q′(1 − P0,q) : F0 → F0 is compact. We want to

exploit the compactness in order to obtain a projected duality scale. To this end, we
first note that

bλ(u, P̂ ′
0,q′v) = bλ(P0,q′u, v) = aλ0(P0,q′u, v) = aλ0(u, P ′

0,q′v) = bλ(u, P ′
0,q′v)

for u ∈ E0 and v ∈ F0 due to consistency of aλ0 and bλ. Since bλ is a dualitiy pairing
between E0 and F0, this yields P̂

′
0,q′ = P ′

0,q′ and therefore P̂ ′
0,q′(1−P0,q) = P ′

0,q′(1−P0,q)
and compactness of P ′

0,q′(1− P0,q).
Now, fix s ∈ [0, s0) and s < ε < s0. We know that F±s and F0 are complex interpola-
tion spaces of type [F−ε, F+ε]θ for certain θ ∈ (0, 1). Furthermore, (P ′

−s,q′(1− Ps,q))s∈I0
is consistent by assumption and Lemma 2.40. Due to compactness of P ′

0,q′(1−P0,q) and
the extrapolation result for compactness in [11, Theorem 2.1] we obtain compactness
of P ′

±s,q′(1− P∓s,q) for s ∈ [0, s0).

Step 2 (from W 1,2
ν to W 1,q

ν ): 1 ∈ ρ(P ′
0,q′(1− P0,q), F0) for 1 < q <∞.

From Lemma 6.3 we know that 1 ∈ ρ(R0,2,W
1,2
ν (Ω)) and thus, by Lemma 6.1, also

1 ∈ ρ(P ′
0,2(1 − P0,2),W 1,2

ν (Ω)) if we restrict the scale to the case s = 0 and q = 2.
Moreover, we know that P ′

0,q′(1−P0,q) : W 1,q
ν (Ω) → W 1,q

ν (Ω) is compact for 1 < q <∞.
By Lemma 2.46 (use the duality scale (W 1,q′

ν (Ω),W 1,q
ν (Ω), bλ)q∈I0 with I0 = (q′0, q0) for

q0 > 2) we obtain that 1 ∈ ρ(P ′
0,q′(1− P0,q),W 1,q

ν (Ω)) for 1 < q <∞.

Step 3 (from W 1,q
ν to W 1+s,q

ν ): 1 ∈ ρ(P ′
−s,q′(1− Ps,q), Fs) for s ∈ I0.

Now, fix 1 < q <∞ and consider the scale (Es, Fs, aλs )s∈I0 again. Due to the compact-
ness of P ′

−s,q′(1 − Ps,q) for s ∈ I0 we may apply Lemma 2.46 again in order to obtain
1 ∈ ρ(P ′

−s,q′(1 − Ps,q), Fs) for s ∈ I0. By using the same arguments we also obtain
1 ∈ ρ(P ′

−s,q(1− Ps,q′), Es) for s ∈ I0. Then, an application of Theorem 6.2 yields that
(Es,Ps,q′

, Fs,Ps,q , a
λ
s )s∈I0 is a duality scale.
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6.18 Theorem. Let 1 < q < ∞, 1/q + 1/q′ = 1, s0 := min{1/q, 1/q′} and s ∈
[0, s0). Let λ > 0 be chosen accordingly large. Then for every f ∈ W−1+s,q

ν,σ (Ω), where
W−1+s,q
ν,σ (Ω) := L (W 1−s,q′

ν,σ (Ω),C), the Stokes resolvent problem
∫︂
Ω
(Aq′)

1−s
2 u (Aq)

1+s
2 v dx = ⟨u, f⟩

W 1−s,q′
ν,σ (Ω),W−1+s,q

ν,σ (Ω) (u ∈ W 1−s,q′
ν,σ (Ω))

possesses a unique solution v ∈ W 1+s,q
ν,σ (Ω) satisfying

∥v∥W 1+s,q
ν,σ (Ω) ⩽ C∥f∥W−1+s,q

ν,σ (Ω)

with C > 0 independent of f .

Proof. From Theorem 6.16 we know that aλs is a duality system between W 1−s,q′
ν,σ (Ω)

and W 1+s,q
ν,σ (Ω). Hence, for f ∈ W−1+s,q

ν,σ (Ω) there exists a unique v ∈ W 1+s,q
ν,σ (Ω) such

that

aλs (·, v) = ⟨·, f⟩
W 1−s,q′

ν,σ (Ω),W−1+s,q
ν,σ (Ω) ∈ (W 1−s,q′

ν,σ (Ω))′, (6.12)

which yields the unique solution of the Stokes resolvent problem. Moreover, we have

∥v∥W 1+s,q
ν,σ (Ω) = sup

0̸=u∈W 1−s,q′
ν,σ (Ω)

|aλs (u, v)|
∥u∥

W 1−s,q′
ν,σ (Ω)

= sup
0̸=u∈W 1−s,q′

ν,σ (Ω)

⃓⃓⃓⃓
⟨u, f⟩

W 1−s,q′
ν,σ (Ω),W−1+s,q

ν,σ (Ω)

⃓⃓⃓⃓
∥u∥

W 1−s,q′
ν,σ (Ω)

⩽ C∥f∥W−1+s,q
ν,σ (Ω)

with C > 0 independent of f .

6.3 A Criterion for Projected Duality Scales based on Com-
pactness

In the application of Theorem 6.2 to the Stokes operator in the last section, compactness
playes a central role. This motivates the assumption that compactness of the operator
Rs,E or Rs,F enables us to formulate another criterion under which a duality scale is
preserved when it is restricted to complemented subspaces. In this section we will trade
of the condition 1 ∈ ρ(R) for compactness of R and injectivity of 1 − R in order to
obtain projected duality scales. In fact, we observe that in case of compactness of R,
we see that 1 ∈ ρ(R) if 1−R is only injective due to Fredholm’s alternative, which will
play an important role in Theorem 6.20.
At first we prove a lemma, where we use the following notation: For a projection P on
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a Banach space E and x ∈ E let xP := Px and x1−P := (1−P )x as well as EP := P (E)
and E1−P := (1− P )(E).

6.19 Lemma. Let E be a Banach space and P,Q ∈ L (E) be projections on E. Then
the following assertions are equivalent:

(i) 1−R : E → E is injective, where R := (P −Q)2.

(ii) EP ∩ E1−Q = EQ ∩ E1−P = {0}.

(iii) P : EQ → EP and Q : EP → EQ are injective.

(iv) 1− P : E1−Q → E1−P and 1−Q : E1−P → E1−Q are injective.

Proof. (ii) ⇒ (iii): Consider P : EQ → EP and Px = 0 for a x ∈ EQ. Then we have
x = (1− P )x ∈ EQ ∩E1−P , thus x = 0 by (ii). The assertion for Q : EP → EQ follows
in the same way.

(iii) ⇒ (ii): Obviously, we have Px = 0 for x ∈ EQ ∩E1−P and thus, due to injectivity
of P : EQ → EP by (iii), x = 0. This yields EQ ∩ E1−P = {0}. The assertion for the
intersection EP ∩ E1−Q follows in an analogous way.

(ii) ⇔ (iv): Follows in the same way as (iii) ⇔ (ii) by interchanging the roles of P
and Q with 1− P and 1−Q.

(i) ⇒ (iii): We have

(1−R)x = (1− (P +Q− PQ−QP ))x = PQx (x ∈ EP ).

Furthermore 1 − R is injective on E due to (i), so PQ is injective on EP ⊆ E. This
yields injectivity of Q on EP . The injectivity of P on EQ follows in the same manner.

(ii) and (iii) and (iv) ⇒ (i): Let x ∈ E with (1 − R)x = 0. Due to the fact that
E = EP ⊕ E1−P , we have uniquely determined xP ∈ EP and x1−P ∈ E1−P such that
x = xP + x1−P . This yields

0 = (1−R)x = (1−R)xP + (1−R)x1−P ,

consequently (1 − R)xP = P (1 − R)x = 0 and (1 − R)x1−P = (1 − P )(1 − R)x = 0
since (1−R) commutes with P . We obtain

PQxP = (1−R)xP = 0 (6.13)
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and

(1−Q+ PQ)x1−P = (1−R)x1−P = 0. (6.14)

By (6.13) and (iii) it follows that xP = 0. Moreover, by (6.14) and (ii) we have
(1−Q)x1−P = 0, which yields x1−P = 0 by using (iv). Finally, it is x = xP +x1−P = 0,
which completes the proof.

Using the result from above and Theorem 6.2, we obtain the following result.

6.20 Theorem. Let (Es, Fs, as)s∈I0 be a duality scale and (Ps,E)s∈I0 and (Ps,F )s∈I0 be
consistent scales of projections. Let Rs,E := (Ps,E−P ′

−s,F )2 and Rs,F := (Ps,F−P ′
−s,E)2.

If there exist s1, s2 ∈ I0 such that Rs1,E is compact and one of the conditions

(i) 1−Rs2,E : Es2 → Es2 is injective,

(ii) EPs2,E
∩ E1−P ′

−s2,F
= EP ′

−s2,F
∩ E1−Ps2,E

= {0},

(iii) Ps2,E : EP ′
−s2,F

→ EPs2,E
and P ′

−s2,F : EPs2,E
→ EP ′

−s2,F
are injective,

(iv) 1 − Ps2,E : E1−P ′
−s2,F

→ E1−Ps2,E
and 1 − P ′

−s2,F : E1−Ps2,E
→ E1−P ′

−s2,F
are

injective,

is fulfilled, then (Es,Ps,E
, Fs,Ps,F

, as)s∈I0 is a duality scale.

Proof. At first we note that due to Lemma 6.19 the conditions (i)-(iv) are equivalent.
Thus we will only work with condition (i).
Next, by [11, Theorem 2.1] and compactness of Rs1,E we obtain compactness of Rs,E

for s ∈ I0 and, by the duality (Rs,E)′ = R−s,F and vice versa, compactness of Rs,F

for s ∈ I0. Moreover, due to Fredholm’s alternative we have 1 ∈ ρ(Rs2,E). Then
Lemma 2.46 yields 1 ∈ ρ(Rs,E) for s ∈ I0 and the assertion follows by an application
of Theorem 6.2.

6.21 Remark. (i) Theorem 6.20 also holds if we place the conditions upon Rs1,F

and Rs2,F on the scale (Fs)s∈I0 .

(ii) Note that in contrast to Theorem 6.2, only injectivity of 1−Rs,E is needed, but
this comes with the tradeoff that we need compactness. Section 6.2 shows that
such a condition is meaningful in some applications.

Finally, by similar arguments we obtain the following lemma.

6.22 Lemma. Let (Es, Fs, as)s∈I0 be a duality scale and (Ps,E)s∈I0 and (Ps,F )s∈I0 be
consistent scales of projections. Let Rs,E := (Ps,E−P ′

−s,F )2 and Rs,F := (Ps,F−P ′
−s,E)2.

Assume that there exist s1, s2, s3 ∈ I0 such that
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(i) 1−Rs1,E : Es1 → Es1 is injective,

(ii) P ′
−s2,F (1− Ps2,E) : Es2 → Es2 is compact,

(iii) P ′
−s3,E(1− Ps3,F ) : Fs3 → Fs3 is compact.

Then (Es,Ps,E
, Fs,Ps,F

, as)s∈I0 is a duality scale.

Proof. First we note that by an application of [11, Theorem 2.1] we obtain compactness
of (P ′

−s,E(1− Ps,F )s)s∈I0 and (P ′
−s,F (1− Ps,E)s)s∈I0 . Due to Schauder’s theorem and

reflexivity we have

[P ′
s,E(1− P−s,F )]′a = (1− P ′

−s,F )Ps,E ∈ L (Es)

compactly for s ∈ I0. Note that we may obtain the same results with E replaced by
F . We have that

Rs,E|P ′
−s,F

(Es) = P ′
−s,F (1− Ps,E),

Rs,E|(1−P ′
−s,F

)(Es) = (1− P ′
−s,F )Ps,E,

which yields compactness of Rs,E ∈ L (Es) for s ∈ I0, especially for s1 ∈ I0. Then,
an application of Fredholm’s alternative, Lemma 2.46 and Theorem 6.2 yields the
assertion.
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7 Conclusions

In this thesis, we considered three different topics related to the field of partial differ-
ential equations: first, the analysis of stability, instability and the long-term behavior
of a living fluid model, second the analysis of stability and instability for a class of
heterogeneous catalysis models and third the theory of duality scales on complemented
subspaces with an application to the Stokes equations on C3-domains. New results
related to all three topics were presented and discussed, leaving space for some future
considerations.

Living Fluids

We analyzed generalized Navier-Stokes equations with fourth order terms, which de-
scribes the self propulsed motion of living fluids, e.g. bacteria in some liquid fluid.
First, we noted that the model (1.2) is globally well-posed in the periodic L2-setting
and listed the physically relevant equilibria, i.e., the disordered isotropic and the or-
dered polar states. Next we considered linear stability and instability. It turned out
that stability and instability can be characterized by the model parameters Γ2, Γ0, α
and the existence of unstable Fourier modes for instability.
The essential part of Chapter 3 deals with the topic of nonlinear stability and instabil-
ity. Especially the behavior of solutions about the ordered polar states, which build a
manifold of equilibria, is of interest. We showed that - depending on the parameter set
and the existence of unstable Fourier modes - the equilibria on this manifold turn out
to be normally stable or normally hyperbolic. The latter case is a potential indication
for active turbulence, which was previously observed in real world experiments. From
this point of view, the theoretical results confirm the assumptions and simulations that
where previously made for this model.
In Chapter 4, we performed a complete analysis of the long-term behavior of the living
fluids model. We showed that there exists a finite dimensional global attractor of ar-
bitrary high regularity. The long-term dynamics of the living fluids model is therefore
determined by a finite dimensional subset of modes. Especially the fact that the global
attractor is finite dimensional in terms of the Hausdorff and the fractal dimension in-
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dicates, that the long-term dynamics reduce to a simpler structure than one would
assume given the infinite dimensional phase space. Utilizing some further results on
inertial manifolds, we proved the existence of such a manifold for the model in n = 2
dimensions by using a spectral gap condition.
Regarding the living fluids model there are still some aspects left open for future con-
siderations. It is unknown if there exist further physically relevant equilibria for this
model, if they build a structure like a manifold and how solutions behave in their
surrounding. It is known that there exist more equilibria (cf. [61]), but these are not
relevant in a physical context. Given the global attractor, there is not much more
known about its concrete structure. Considering the fact that it is finite dimensional
(at least in some sense), it may be worth to do some numerical simulations in order
to obtain more information regarding the structure. Moreover, it is unclear if the ex-
istence of an inertial manifold can be proved for n = 3 dimensions without relying on
a spectral gap condition.

Heterogeneous Catalysis

In Chapter 5 of this thesis we dealt with stability and instability of a heterogeneous
catalysis model in a cylindrical domain. One feature of the model is the coupling of
equations in the bulk and nonlinear equations on the lateral surface of the cylinder,
modeling the chemical reaction which occurs during the catalysis process.
Based on previous results regarding the maximal regularity of the linearized equations,
we showed a stability result in the Lp-setting that indicates that the behavior of solu-
tions near stationary points of the system is determined by the chemical reactions. In
our result, stability of equilibria is given dependent on a bound on the first derivative
of the chemical reaction rates. As an example, we considered the chemical equilibria
in which the chemical reaction itself is at rest.
Based on the analysis of the stability behavior we extracted a result for instability,
too. It seems to be difficult to give a concrete example fulfilling these conditions for
instability. Several approaches to this end were made, e.g. considering the concrete cal-
culations for several types of chemical reactions and a reduction to the half space setting
in order to apply the Fourier transform in two directions. Especially the attempts to
find (abstract or concrete) eigenvectors fulfilling the conditions of the instability result
suffered from some hindrances, cf. Remark 5.7 for more details. Consequently the topic
of a detailed characterization of instability of the heterogeneous catalysis is left open
for future considerations.
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Duality Scales and Partial Differential Equations

Concerning the functional analytic properties of linear operators on projected sub-
spaces, e.g. the well-known Stokes operator, we addressed scales of Banach spaces,
duality pairings and duality scales as well as projections on those scales in Chapter 6.
To the best of the author’s knowledge, the concept of duality scales for complemented
subspaces was first introduced in [44] for one scale of Banach spaces. In the first section
of this chapter, we proved conditions under which the property of being a duality scale
(Es, Fs, as)s∈I0 is preserved if we project the Banach spaces Es and Fs. One of the
equivalent conditions was given as 1 ∈ ρ(P ′(1− P )), where P ′ denotes the dual of the
projection P w.r.t. a. Note that in contrast to the results from [44], the scales (Es)s∈I0
and (Fs)s∈I0 can consist of different Banach spaces.
We used these results in order to show well-posedness of the Neumann-Stokes opera-
tor on a C3-domain Ω with compact boundary in W 1+ε,q

ν,σ (Ω), where 1 < q < ∞ and
0 ⩽ ε < min{1/q, 1/q′}. Based on the functional analytic properties of the Neumann-
Laplace operator in W 1+ε,q

ν,σ (Ω), we were able to prove the well-posedness of the pro-
jected equations, where the projection P is given by the well-known Helmholtz projec-
tion. In the proof of the result, compactness of the operator P ′(1−P ) played a central
role, since it allowed us to generalize properties of the spectrum and the resolvent set
of the involved operator to the whole scale.
Regarding duality scales, there are still questions open for future considerations. On
one hand, one could ask for more general results that do not require compactness of the
involved operators. The requirement of compactness is a rather strong condition and
fails e.g., if we modify the boundary conditions of (6.7) to general Neumann boundary
conditions, i.e. ∂νu = 0 on ∂Ω. To the best of the author’s knowledge it is not possible
to show compactness of P ′(1−P ) in this case, such that results in Section 6.3 can not
be applied. Furthermore, the theory developed in [44] and this thesis only applies to
stationary equations by now. In order to solve non-stationary equations, an extension
of this theory seems to be required.
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Contributions

The content of this thesis is based on joint work with other contributors.

The Chapters 3 and 4 are based on joint work of Jürgen Saal, Christiane Bui and the
author of this thesis. The results of Chapter 3 are published in [8]. The part regarding
global well-posedness with initial values in H2

π(Qn) ∩ L2
σ(Qn) and linear and nonlinear

(in)stability of the disordered states is due to Christiane Bui and Jürgen Saal. The
results regarding linear (in)stability, normal stability and normal hyperbolicity of the
ordered polar states were developed by Christiane Bui, Jürgen Saal and the author of
this thesis.
The global well-posedness of the living fluids model with initial values in L2

σ(Qn),
the existence, regularity and properties of the global attractor as well as the finite
dimensionality in Chapter 4 were developed by Christiane Bui and the author of this
thesis in equal parts, complemented with some fruitful discussions of these two with
Jürgen Saal. The existence of the inertial manifold in n = 2 dimensions is the result
of common work of all three contributors, supplemented by a discussion with Edriss
Titi.

The content of Chapter 5 is the result of joint work of Matthias Köhne, Jürgen Saal
and the author of this thesis, where the author of this thesis contributed substantial
parts of the theorems characterizing stability and instability of equilibria. The
results are going to be published in [18]. Much effort was put into a more concrete
characterization of instability in several working sessions of Matthias Köhne, Jürgen
Saal and the author of this thesis.

The results regarding duality scales and the application to a Stokes system are based
on joint work by Jürgen Saal and the author of this thesis. The results in Sections 6.1
and 6.3 are substantially contributed by the author of this thesis, based on former work
of Jürgen Saal. The results regarding the application to a Stokes system in Section 6.2
are the result of several working sessions of Jürgen Saal and the author of this thesis.
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