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for being an excellent supervisor, mentor and boss. I am deeply grateful for all
the patience, scientific discussions, continued support, as well as for listening
and helping me when I encountered obstacles and problems. Furthermore,
I want to thank you for listening to my ideas, for discussing them and for
encouraging me to pursue them. Thanks to your supervision and teachings,
I genuinely enjoy research and science.
I want to thank Jun.-Prof. Anna Matuszyńska for all the help, shared projects
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1 Thesis Abstract

Although the two main processes of photosynthesis, the light dependent and
the light independent reactions, are often studied in isolation, both processes
exhibit a high interdependence. It is true that the energy provided by the
light reactions of photosynthesis are, amongst others, limiting for the light
independent reactions which utilize it. However, the fact that the rate and
e�ciency of the light independent reactions are apparently having a strong
e↵ect on all components of the light dependent reactions like the linear flow of
electrons, the alternative electron routes and even the NPQ mechanisms show
that the links between them are far more complex than just the consumption
of provided energy.
In this thesis, mathematical models are used to further understand the
interdependency between the light dependent reactions and the light
independent reactions of photosynthesis quantitatively. It is shown that the
light dependent and light independent reactions of photosynthesis can be
regarded as an molecular-economic supply-demand system. In this system,
the light dependent reactions represent the supply side of the system, and the
light independent reactions represent the demand side. It is shown that both
sides of the supply-demand system maintain control over the e�ciency and
rate of photosynthesis. Our model explains how a tight regulation of supply
and demand reactions leads to e�cient carbon fixation, and how a standby
mode is necessary for maintaining intermediates necessary for carbon fixation
in longer periods of darkness.
Furthermore, the e↵ect of alternative electron flows in the electron transport
chain on the rest of the photosynthetic apparatus has been investigated.
It is shown that the rate of the cyclic electron flow, as well as the rate of
the Calvin cycle, regulate the rate of linear electron flow and the rate of
the Mehler reaction by providing NADP+ as an electron acceptor. Lastly,
this thesis investigates the increased production of secondary metabolites in
high light conditions in photosynthetic glandular trichomes. It is shown that
higher light availability allows a shift in carbon partitioning from catabolic
to anabolic pathways, as well as isoprenoid production shifting from the
MEV to the MEP pathway. The results of this thesis highlight how the
interdependence of light dependent and independent reactions change in
di↵erent environments and reveal crucial interactions between reactions in
di↵erent pathways of photosynthesis and plant metabolism.
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2 Introduction to Photobiology

2.1 The relevance of photosynthesis

Photosynthetic organisms are established as the foundation of almost all
ecosystems and life on earth as we know it. Photosynthetic organisms are
also of utmost importance to the global human population. Especially
with increasing global population, environmental challenges like climate
change or shortage of fossil fuels, the interest for an increased e�ciency
in photosynthetic production of resources (like foods, biofuels and
pharmaceuticals) has never been higher.

The word photosynthesis literally means ’building with light’ and
describes the process of converting light energy into chemical energy by a
multitude of chemical reactions within living organisms. While this process
is typically known to be found in plants, it can also be found in algae and some
bacteria (e.g. Cyanobacteria). Photosynthetic organisms use light energy to
drive the synthesis of sugars and other energy storing carbohydrates from
carbon dioxide, usually producing oxygen as a byproduct in the process [5].

CO2 + H2O (CH2O)n + O2 (2.1)

Photosynthesis in living organisms is so powerful that it changed the
entire atmosphere and biosphere on earth in the past billions of years. It
has been shown that there has been a time period on earth in which there
was almost no oxygen in the atmosphere [35]. Approximately 2.5 billion
years ago, when the first Cyanobacteria evolved, the atmospheric oxygen
content slowly increased to 1-2% within the ’great oxygenation event’. The
oxygen content further increased until about 850 million years ago. Today,
the oxygen content in our atmosphere is approximately 21%. It is considered
that most organisms at that time died out due to the sudden and massive
changes in atmospheric composition, with the only survivors being species
that found oxygen-free niches or adapted to the new environmental conditions
[23].
Due to the immense e�ciency of photosynthesis in living organisms, a
non-photosynthetic organism enveloped a photosynthetic bacterium in an
endosymbiotic event. This cell formed the eukaryotic ancestor to all algae
and plants, with the photosynthetic bacterium developing into a cellular
organelle called chloroplast [49]. The chloroplast is the main location in
which the entirety of photosynthesis is taking place. Chloroplasts possess a
complex organisation of endomembranes, called the thylakoids. Thylakoid
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membranes are the main location for the absorption of photons and the
space within thylakoid membranes is called the lumen. The space inside
chloroplasts and outside of thylakoids is called the stroma. While the
thylakoid membrane and lumen is the location of the light dependent part of
photosynthesis, the chloroplast stroma is the location of the light independent
part of photosynthesis [5, 20]. Both processes are explained in detail in the
following sections. The general organisation and structure of chloroplasts
and photosynthesis can be found amongst all eukaryotic photosynthetic
organisms.

2.2 Light dependent reactions

2.2.1 The photosynthetic electron transport chain

Figure 1: Schematic of the reactions of the electron transport chain (Figure
taken from [55])

The light reactions, or light dependent reactions, of photosynthesis are
driving the conversion of light energy to chemical energy. They take place in
the thylakoid membrane and lumen of the chloroplast [2]. There, chlorophyll
pigments funnel light energy to a chain of redox reactions which produces
ATP and NADPH as chemical energy equivalents. This chain of redox
reactions is named the photosynthetic electron chain [65]. Photosystems
I and II are protein complexes which are responsible for the collection of
light energy and initiate the energy conversion process in the photosynthetic
electron transport chain. Photosystems consist of an antenna complex and
a reaction center. The antenna complex, or light harvesting complex, is
an aggregation of pigments like chlorophyll and carotenoids [32]. The role
of the light harvesting complexes in the photosynthetic electron transport
chain is to improve light absorption for the reaction centers of photosystems.
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In the reaction centers, the channeled light energy is used to bring a
dimeric chlorophyll molecule to a higher excitation state [46]. These dimeric
chlorophyll molecules are one of the main di↵erences between photosystems
I and II. In photosystem I, the dimeric chlorophyll molecules are mainly
absorbing far-red light at wavelengths of approximately 700nm (P700), while
in photosystem II the main absorption is in red light at wavelengths of 680nm
(P680) [54]. The dimeric chlorophyll molecules in reaction centers, which are
considered primary electron donors, are rapidly transferring an electron to
an adjacent electron acceptor.

2.2.2 Electron Flows (Linear vs. Cyclic)

The flow of electrons in the electron transport chain can take two routes:
One is the linear electron flow, and the other is the cyclic electron flow. The
linear electron flow is the primary route for the electron transport chain to
produce both NADPH and ATP [47, 25].

Beginning at photosystem II, light energy is used to donate two electrons
from P680 into the electron transport chain and transfer two electrons back
to P680 from a water molecule, producing half a oxygen molecule and two
protons in the lumen [3].

These two electrons are transferred to the electron carrier plastoquinone,
which is then reduced to plastoquinol [63].

H2O + 2hv + PQ + 2H +

stroma PQH2 +
1

2
O2 + 2H +

lumen (2.2)

The two electrons from plastoquinol are then transferred to plastocyanin via
the cytochrome B6f complex, which is pumping 2 protons from the stroma
and 2 protons from plastoquinol into the lumen [61].

2 PC + PQH2 + 2H +

stroma 2PC– + PQ + 4H +

lumen (2.3)

In photosystem I, the light energy is used to donate two electrons from P700
to ferredoxin, while the electrons from plastocyanin are transferred back to
P700, which is why no electrons from water are required at photosystem I
[7].

2 PC– + 2Fd 2PC + 2Fd– (2.4)

The two electrons are then transferred from ferredoxin to NADP+, reducing
it to NADPH, which is one of the main reduction equivalents in plant cells
[15].

2 Fd– + NADP+ + H +

stroma 2Fd + NADPH (2.5)
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The protons which have been transferred to the lumen in the process of the
electron transport chain form a proton gradient, which is essential for the
ATP production in photosynthesis. The proton gradient causes protons to
be pumped from the lumen into the stroma through the ATP synthase [18].
This enzyme uses the proton motive force to produce ATP from ADP and
orthophosphate.

3ADP + 3Pi + 14H +

lumen 3ATP + 3H2O + 14H +

stroma (2.6)

An alternative flow of electrons, the cyclic electron flow, is taking place on the
same components of the electron transport chain as the linear electron flow.
However, in this alternative electron flow, electrons which are transferred
from photosystem I to ferredoxin can be transferred back to the cytochrome
B6f complex via the PGR5 protein [42].

2 Fd– + PQ + 2H +

stroma 2Fd + PQH2 (2.7)

The cycling of electrons through this route causes the pumping of protons in
to the lumen without producing NADPH, and therefore increases the rate of
ATP production through the ATP synthase.

2.2.3 Non-photochemical quenching

The absorption of light through pigments in antenna complexes in
photosystems I and II is meant to funnel the respective energy to chlorophylls.
This energy excites the chlorophyll molecules to a higher energy state,
the first singlet excited state, in which the chlorophyll molecules are able
to initiate electron transfers [44]. However, excess light conditions can
cause the oversaturation of excited chlorophyll molecules, meaning that the
capacity to turn the chlorophyll molecules back to their ground state via
photosynthesis is full. Chlorophyll molecules that are in their singlet excited
state for an extended period of time may enter its triplet state, which can
provoke the evolution of reaction oxygen species (ROS) that are extremely
harmful to cells [31]. A variety of mechanisms for quenching this higher
energy level is present to prevent this oversaturation of excited chlorophyll
molecules. Besides the necessary photosynthetic electron transfer, excited
chlorophyll molecules can relax back to their ground state by emitting
fluorescence and heat. Energy quenching mechanisms which are not driving
photosynthesis are called non-photochemical quenching (NPQ) mechanisms
[38]. Amongst such mechanisms is the energy dependent factor, called qE.
Excess excitation in chlorophyll molecules leads to an increase in protons
pumped into the lumen and therefore a higher proton gradient along the
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thylakoid membrane. This initiates the activation of two proteins; PsbS
(photosystem II subunit S) and VDE (violaxanthin de-epoxidase). VDE
transforms Violaxanthin molecules to Zeaxanthin, while ZEP (zeaxanthin
epoxidase) converts Zeaxanthin back to Violaxanthin. This process, called
the Xanthophyll cycle, activates conformational modifications in light
harvesting complexes. These conformational modifications are enhanced by
PsbS activity which increases flexibility in protein complexes of photosystem
II [71].

Another factor is the state transition factor, qT. This mechanism
regulates excitations of antenna complex pigments in photosystem I and II
by shifting light harvesting complexes from photosystem II to photosystem I
via protein kinases and phosphorylases. In the first state, the light harvesting
complexes of photosystem II are associated with its primary photosystem.
The transition to the second state attaches them to photosystem I instead.
This mechanism of non-photochemical quenching is primarily present in lower
light intensities [9].

The final mechanism of non-photochemical quenching is photoinhibition,
qI. In this process, photosystem II complexes and reaction centers are
degraded, irreversibly inactivating the photosystems. This severe procedure
to prevent photodamage is usually present in extended periods of high light
intensities [71].

2.2.4 Alternative electron flows and photoprotection

Figure 2: Schematic of the reactions of the ascorbate-glutathione cycle
(Figure taken from [55])

In certain scenarios, the photosynthetic electron transport chain may
be overflowed with electrons. In prolonged periods of excess light, or if
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the consumption of NADPH is not fast enough and not enough NADP+ is
available as a terminal electron acceptor, the overflow of electrons may lead
to the production of reactive oxygen species [36]. Reactive oxygen species are
extremely reactive chemicals that are, amongst others, the result of oxygen
reduction. This scenario regularly happens at the photosynthetic electron
transport chain, and mechanisms have evolved to mitigate the damage and
production of reaction oxygen species. The photoreduction of oxygen is a
consequence of an overflow of electrons on the transport chain. In order to
counter this overflow, the enzyme called plastid terminal oxidase (PTOX)
can act as a valve for the electron transport chain. This enzyme oxidizes
plastoquinone and transfers its electrons and protons onto oxygen to produce
water [43].

PQH2 +
1

2
O2 + 2H +

stroma PQ + H2O (2.8)

This reaction can ease the flow of electrons on the transport chain to prevent
the formation of reactive oxygen species. Due to the fact that in the beginning
of the linear electron flow, water is used as an electron donor and transformed
to oxygen. These donated electrons are, if used by PTOX, spent to transform
oxygen and protons to water. Therefore, this electron flow is one of two
electron routes referred to as the ”water-to-water cycle”.
The other alternative electron flow, which can act as an rather unintended
valve for electrons, is the Mehler reaction. During linear electron flow, oxygen
may be photoreduced by photosystem I instead of ferredoxin. This leads to
the formation of superoxide O�

2
, a reactive oxygen species. The produced

superoxide is rapidly transformed to H2O2 (Hydrogen peroxide) and oxygen
by the enzyme superoxide dismutase.

2O –

2 + 2H+ H2O2 + O2 (2.9)

Hydrogen peroxide itself is a reactive oxygen species as well, however it is not
as volatile as most others. In order to detoxify hydrogen peroxide, an entire
biochemical cycle has evolved in higher plants, the ascorbate-glutathione
cycle [36].
In this cycle, the ascorbate peroxidase (APX) reduces hydrogen
peroxide to water by transferring electrons from ascorbate, producing
monodehydroascorbate.

H2O2 + 2Asc + 2H+ 2MDA + H2O (2.10)

Monodehydroascorbate is a highly reactive radical, and can be reduced
by the monodehydroascorbate reductase (MDAR), consuming an reduction
equivalent in the form of NADPH in the process.

2MDA + NADPH + 2H+ 2Asc + H2O (2.11)
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In the case that monodehydroascorbate is not reduced rapidly enough, it
might split into ascorbate and dehydroascorbate.

2MDA Asc + DHA + 2H+ (2.12)

Dehydroascorbate can then be reduced by the dehydroascorbate reductase
(DHAR) consuming an glutathione, and producing ascorbate and glutathione
disulfide.

DHA + 2GSH Asc + GSSG (2.13)

Glutathione disulfide can be transformed back into glutathione by the
glutathione reductase, which uses NADPH as an reduction equivalent in the
process.

GSSG + NADPH GSH + NADP+ (2.14)

This cycle is an e�cient way to quickly detoxify hydrogen peroxide which
evolved during the Mehler reaction at photosystem I [62]. Overall, electrons
that have been transferred from water, splitting it into oxygen, have now been
used via the Mehler reaction, the superoxide dismutase and the ascorbate-
glutathione cycle to end up as water again, therefore this alternative electron
flow is the second route considered to be a ”water-to-water cycle”. Although
this alternative electron flow is not only unintended, but includes the risk
of damage via reactive oxygen species and the consumption of energy in the
form of NADH or NADPH, it o↵ers an additional valve for electron overflow
on the photosynthetic electron transport chain. Furthermore, this electron
flow increases the proton gradient on the thylakoid membrane, and therefore
activates processes of non-photochemical quenching to protect the plant cell
[36].

2.3 Light independent reactions

2.3.1 The Calvin Benson Bassham Cycle

The light dependent reactions of photosynthesis are converting light energy
into chemical energy in the form of the energy equivalent ATP and the redox
equivalent NADPH. However, as every other living organism, plants need to
maintain an extensive carbohydrate metabolism. To access carbohydrates,
plants use ATP and NADPH produced by light dependent reactions in order
to fix carbon dioxide in a series of biochemical reactions. These reactions
are found in the stroma of the chloroplasts and are commonly known as the
light independent reactions of photosynthesis [6].
Amongst these light independent reactions, the reactions of the Calvin-
Benson-Bassham cycle (CBB cycle) are the main reactions responsible for

9



Figure 3: Schematic of the reactions of the Calvin-Benson-Bassham cycle
reactions (Figure taken from [55])

photosynthetic carbon fixation [56]. This biochemical cycle can be split
up into two phases. In the first phase, which can be considered the
fixation phase, the enzyme Ribulose-1,5-bisphosphate-carboxylase-oxygenase
(RuBisCO) converts a molecule of carbon dioxide and Ribulose-1,5-
bisphosphate (RUBP), which is a molecule containing 5 carbon atoms, into
two molecules of 3-phosphoglycerate (PGA).

RUBP + CO2 + H2O 2PGA + 2H+ (2.15)

This enzymatic step is crucial and universal for carbon fixation in plants,
and therefore RuBisCO is the most abundant enzyme on planet earth
[4]. The two molecules of PGA themselves are already 3C carbohydrates,
but are converted to glycerate-1,3-bisphosphate (BPGA) by the enzyme
phosphoglycerate kinase by consuming a molecule of ATP and returning a
molecule of ADP for each reaction [26].

PGA + ATP BPGA + ADP (2.16)

In the next step, the enzyme glyceraldehyde 3-phosphate dehydrogenase
converts the two BPGA molecules into glyceraldehyde 3-phosphate (GAP)
by consuming a molecule of NADPH and returning a NADP+ molecule for
each reaction [66].

BPGA + NADPH + H+ GAP + NADP+ + Pi (2.17)
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While PGA is a carbohydrate as well and could be in principle used for other
remaining metabolic pathways, GAP is a crucial carbohydrate because it can
be used as a metabolite in the plant metabolism, and it is also a critical
precursor in the next phase of the CBB cycle, which is the regenerative
phase [52]. This phase is responsible for the regeneration of RUBP, which is
the initial substrate of RuBisCO and therefore essential for further carbon
fixation. GAP is a 3C molecule, while RUBP is a 5C molecule. Therefore,
five GAP molecules are required to regenerate three RUBP molecules. Hence,
three carbon fixation phases (and therefore three carbon dioxide molecules)
are required to overall fix one molecule of GAP and replenish the essential
RUBP in the process.
The regenerative phase starts with the catalyzation of GAP into
dihydroxyacetone phosphate (DHAP) by the enzyme triose phosphate
isomerase [16]. This isomerase is not changing the atomic composition of
GAP, but its conformation.

GAP DHAP (2.18)

DHAP and GAP are transformed into fructose-1,5-bisphosphate (FBP) by
the enzyme aldolase [24].

GAP + DHAP FBP (2.19)

In the next step, FBP is dephosphorylated into fructose-6-phosphate (F6P)
by the enzyme fructose-1,6-bisphosphatase [60].

FBP + H2O F6P + Pi (2.20)

F6P and GAP are then converted into erythrose-4-phosphate (E4P), a
4C molecule, and xylulose-5-phosphate (X5P), a 5C molecule, by the
transketolase [22].

F6P + GAP E4P + X5P (2.21)

The aldolase then transforms E4P and DHAP into sedoheptulose-1,7-
bisphosphate (SBP), a 7C molecule.

DHAP + E4P SBP (2.22)

SBP is then dephosphorylated into sedoheptulose-7-phosphate (S7P) by the
sedoheptulose-1,7-bisphosphatase [24, 60].

SBP + H2O S7P + Pi (2.23)
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S7P and GAP are then converted into ribose-5-phosphate (R5P) and X5P,
both 5C molecules, by the transketolase [22].

S7P + GAP R5P + X5P (2.24)

Both R5P and X5P are converted into ribulose-5-phosphate (RU5P) by the
enzymes ribose-5-phosphate isomerase and ribulose-5-phosphate epimerase,
respectively [70, 29].

X5P RU5P (2.25)

R5P RU5P (2.26)

In the last step of the regeneration phase, the RU5P molecules are converted
into the RuBisCO substrate RUBP by the enzyme phosphoribulokinase by
consuming ATP and returning ADP [40].

RU5P + ATP RUBP + ADP + H+ (2.27)

2.3.2 Export and storage of carbohydrates

Within the previously described CBB cycle, carbon dioxide is fixed and the
main form in which it is used is as triose phosphates. Any usage of energy and
mass in the form of fixed carbohydrates starts with these phosphorylated 3C
molecules [14]. Triose-phosphates in the chloroplast, which are participating
in the regenerative phase of the CBB cycle, are mainly used for two things:
Either the synthesis of starch, which is a polysaccharidal energy storage in
all plants, or the synthesis of sucrose, which is a saccharide which is the
main form of energy and carbon transportation between cells and organs in
plants [39]. The synthesis of starch is taking place within the chloroplast,
where the triose phosphates themselves are being formed. Within the CBB
cycle, the triose phosphates DHAP and GAP are converted into FBP by
the aldolase, which is then dephosphorylated into F6P by the fructose-1,6-
bisphosphatase. F6P is then converted into glucose-6-phosphate (G6P) by
the glucose-6-phosphate isomerase. G6P is then transformed into glucose-1-
phosphate (G1P) by the enzyme phosphoglucomutase.

F6P G6P (2.28)

G6P G1P (2.29)
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G1P is the main substrate for starch synthesis. The enzyme ADPglucose
pyrophosphorylase is using G1P and ATP to produce pyrophosphate and
ADP-glucose.

G1P + ATP + H+ ADP Glc + PPi (2.30)

The substrate ADP-glucose can be used by multiple enzymes of the
family of starch synthases, to release ADP and add the glucosyl structure
of ADP-glucose to a specific position on an existing starch granule. This
position is specific to the enzyme utilizing the ADP-glucose [50]. If not
converted into starch, triose phosphates may be used for sucrose synthesis,
which takes place in the cytosol. Therefore, this process begins with
the relocation of triose phosphates from the chloroplast into the cytosol.
This relocation is facilitated by triosephosphate/phosphate translocators
(TPTs) which are present in the chloroplast membrane and translocate triose
phosphates from the chloroplasts to the cytosol, and orthophosphate from
the cytosol into the chloroplast [39]. Therefore, the chloroplast stroma is
overall releasing carbon without depleting phosphate. This means that the
phosphate concentration in the stroma is more or less constant. In the
cytosol, GAP and DHAP are converted into FBP and converted into Sucrose
via the UDP-glucose-pyrophosphorylase, the sucrose-phosphate synthase and
the sucrose-phosphate phosphatase [33].

G6P + UTP + H+ UDP Glc + PPi (2.31)

UDP Glc + F6P + H+ Sucrose-6P + Pi (2.32)

Sucrose-6P + H2O Sucrose + Pi (2.33)

The translocation of triose phosphates and orthophosphate has many e↵ects
on other upstream reactions in photosynthesis. If the rate of triosephosphate
translocation is high relative to the rate of carbon fixation, problems might
occur. For example, a depletion of the CBB cycle intermediates may
cause problems to the regenerative phase of the cycle, even risking its
collapse. On the other hand, increased levels of orthophosphate within the
chloroplast may lead to inhibition of starch synthesis [39]. However, if the
rate of triosephosphate translocation is low relative to the rate of carbon
fixation, other problems might occur. Besides the decreased availability
of triose phosphates and sucrose for the rest of the cells, a decrease in
orthophosphate levels in the chloroplast may cause problems for the ATP-
synthesis, which needs orthophosphate as a substrate [59]. Therefore, the
rate of triosephosphate translocation is a crucial part of the regulation and
limitation of the process of photosynthesis.
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2.3.3 Regulation of the Calvin Cycle

The CBB cycle is dependent on the energy and redox equivalents ATP and
NADPH, which are provided by the light-reactions of photosynthesis, to
fix carbon dioxide into triose phosphates which can be translocated out of
the chloroplast. However, as previously described, imbalances in rates of
carbon fixation and triosephosphate translocation may cause problems for
the CBB cycle. One of these problems is the risk to deplete the cycle of
necessary intermediates, needed to enable the regeneration of RUBP, through
the triosephosphate translocators. In order to prevent this scenario from
happening, the intermediates and the rate of the CBB cycle are regulated
by biochemical mechanisms. One regulatory mechanism is the oxidative
pentose phosphate pathway, which uses starch to synthesize additional 5C
and 6C sugars to replenish the intermediate pool of the CBB cycle [58].
This regulatory mechanism may consume fixed carbon, but prevents the
CBB cycle from collapsing during low CBB cycle fluxes, e.g. in extended
periods of low light. Another major regulatory mechanism is the light-
regulation of the rate of specific CBB cycle enzymes. The rate of these
enzymatic reactions is lowered in low-light conditions in order to prevent the
CBB cycle from working at constant rates in low light (and therefore low
energetic) conditions, in which the CBB cycle intermediates may deplete.
This regulatory mechanism is facilitated by the thioredoxin reductase system,
which regulates the activity of CBB cycle enzymes dependent on the amount
of reduced ferredoxin in the photosynthetic electron transport chain [27].
The enzymes fructose-1,6-bisphosphatase, sedoheptulose-1,6-bisphosphatase,
phosphoribulokinase and ADPglucose pyrophosphorylase [27, 57] are light-
regulated via the thioredoxin system, while RuBisCO is regulated by light
activation via the RuBisCO activase [69]. The light-regulation of these
enzymes is not only beneficial for maintaining the stability of the CBB
cycle, but is also a component of the delicate balancing between the
input and output of the light dependent and light independent reactions
of photosynthesis for maximal photosynthetic e�ciency.

2.3.4 Carbon fixation in C3, C4, CAM plants

In all plants, RuBisCO is the key enzyme for carbon fixation within the
CBB cycle. However, aside from using carbon dioxide as a substrate, the
RuBisCO also may use oxygen instead of carbon dioxide as substrate [1]. In
this reaction, which is the oxygenation reaction of RuBisCO, two molecules
of 2-phosphoglycolate (2PG) are produced instead of two molecules of PGA.
2PG is toxic and is therefore detoxified in a long and energy costly metabolic
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pathway named photorespiration [13]. In most plants photorespiration is a
well known process, while some other plant types developed cell structures to
minimize the rate of phororespiration. Generally, plants can be distinguished
into three types of carbon fixation pathways; C3, C4 and CAM. The most
abundant type is the C3 carbon fixation pathway, in which carbon dioxide
enters the plant via the stomata, from which it di↵uses into the chloroplasts
of cells and is used as a substrate for RuBisCO [67]. Notably, this same
path may be used by oxygen and therefore result in an oxygenation reaction
of RuBisCO. However, C4 plants evolved a di↵erent pathway, in which the
carbon dioxide is initially di↵using into the mesophyll cells of the leaves
[8]. There, the enzyme phosphoenolpyruvate carboxylase (PEPC) is using
carbon dioxide (in the form of bicarbonate) and phosphoenolpyruvate (PEP)
to produce oxalacetate (OAA).

PEP + HCO –

3 OAA + Pi (2.34)

OAA is then reduced to malate by the malate dehydrogenase, which is then
transported to the bundle sheath cells of the leaves. In the chloroplasts of
the bundle sheath cells, malate is decarboxylised by the NADP-malic enzyme
(NADP-ME) to carbon dioxide and Pyruvate (PYR), and carbon dioxide can
be used by RuBisCO as a substrate.

OAA + NADPH MAL + NADP+ (2.35)

MAL + NADP+ PYR + CO2 + NADPH (2.36)

The spatial separation of the location of carbon dioxide (and oxygen)
di↵usion, and the location of carbon fixation by RuBisCO is the key di↵erence
between C3 and C4 plants, and enables a much higher carbon dioxide
concentration near RuBisCO. The name C4 refers to the 4 carbon molecules
(OAA and malate) which are shuttling the carbon dioxide to the bundle
sheath chloroplasts [67].
Plants that use the CAM (Crassulacean acid metabolism) also accomplish
a higher carbon dioxide concentration at the RuBisCO location, but this
separation is not spatial but temporal [34]. CAM plants take up carbon
dioxide at night via the stomata, where it di↵uses into the cells and is
converted into OAA via the phosphoenolpyruvate carboxylase, and then
reduced to malate via an NAD-malic enzyme. The synthesized malate is
accumulated within the vacuole. During the day, the plant stomata remain
closed and malate is released from the vacuole, decarboxylated, and the
resulting carbon dioxide can be used by RuBisCO. The closed stomata
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prevent any unwanted oxygen molecules from di↵using into the cells during
the day through the stomata [67]. The name crassulacean acid metabolism
is derived from the discovery of the pathway in plants of the Crassulaceae
family.
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3 Introduction to modeling

3.1 General Introduction to metabolic modeling

Understanding biological phenomena and behaviors begins with observations
through experimentation. However, even with extensive knowledge about
the subject and its details, it is very di�cult to understand the underlying
mechanisms responsible for the observation from studying individual
observations. Furthermore, understanding the role and e↵ects of such
observations in the context of a bigger, complex biological system is almost
impossible. In order to get a deep understanding about these biological
phenomena, it is important to study them within the context of their
surrounding system. The collection and integration of biological knowledge
and data from separate measurements and experiments can culminate in a
model of the investigated biological system, which can be used to understand
such behaviors within complex systems.
A model is used as a simplified representation of systems and o↵ers a more
global perspective on processes. In contrast to models in experimental
biology, which are usually species or individuals which can be useful
for particular investigations, models can be purely theoretical in order
to qualitatively or quantitatively represent the investigated system.
Theoretical models can be as simple as a visual schematic representation
of e.g. interactions between species within an ecosystem. However, models
can also integrate far more information and be used for simulations like
constrained based networks, systems of ordinary di↵erential equations, or
even systems of partial di↵erential equations. Such models require in-depth
information about the biological systems like stoichiometric coe�cients,
appropriate rate equations, measured kinetic parameters and more. Such
models can be used for simulations of biological processes over time and are
extremely useful to understand the role of individual processes within the
context of a more complex system. More recently, the usage of mathematical
models to investigate biological systems has been known as systems biology.
Mathematical models are usually constructed not only to encapsulate
existing information about the studied biological system, but also to answer
specific research questions. Therefore, the level of complexity of the model
is also highly dependent on the research question. Generally, mathematical
models should be constructed as simplistic as possible, and should only grow
more complex if needed to answer the underlying research questions.
Even slightly more complex mathematical models in systems biology are
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di�cult to simulate and understand by hand. In order to access the true
capabilities of mathematical models, the implementation and simulation
of models using computer programs allows a broad range of calculations
and analyses. While there are existing programs which are intended for
mathematical modeling of biological systems (e.g. CellNetAnalyzer, Copasi,
Matlab), scientists are also able to implement models within programming
languages (e.g. Python, Julia, C, R) for access to modeling libraries and
generally less restrictions.

In the following section, the representation of biochemical systems as
models using mathematical methods is adressed. It is supposed to gain an
overview of the concepts of kinetic and constraint based modeling necessary
to understand the techniques applied in the presented manuscripts. This
section draws heavy inspiration from the books ”The regulation of cellular
systems” from 1996 by Heinrich and Schuster [21] and ”Systems biology: a
textbook” from 2016 by Klipp et al [28].

3.2 Kinetic modeling

In kinetic modeling of biochemical systems, the focus lies on the description of
the dependence of systems on time and space. One mathematical method is
the description of changes over time of quantities using di↵erential equations.
For changes over time, ordinary di↵erential equations are adequate. However,
if temporal and spatial changes are considered, partial di↵erential equations
are needed. In this thesis, all models are not describing changes in space
and are therefore not using partial di↵erential equations. Instead, in this
section, the concept of modeling dynamic biochemical systems with ordinary
di↵erential equations is described.

The behavior of biochemical systems over time can be described by a set
of di↵erential equations

dSi

dt
= fi(S1, ..., Sn, p1, ..., pj, t) i, j = 1, ..., n (3.1)

in which Si denotes quantities (e.g. the metabolite concentrations) and
pj denotes parameters, or rate constants, and t represents time. Equation
(3.1) can be written in vector notation as

dS

dt
= f(S,p, t) (3.2)

in which S = (S1, ..., Sn)T , f = (f1, ..., fn)T and p = (p1, ..., pj)T .
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In Eq. (3.1), fi and (p1, ..., pj) depict a simplified description of the
modeled biochemical system. This kinetic description is represented as rate
equations, which are described in more detail in a later part of this section.

In order to analyze the modelled biochemical system of interest, one may
be interested in finding solutions of ordinary di↵erential equations. Implicit
ordinary di↵erential equations

F (t, x, x0, ..., x(n)) = 0 (3.3)

contain the time variable t, the unknown function x, as well as all
derivatives of x up to the nth order. Explicit ordinary di↵erential equations
of the nth order are represented as

x(n) = f(t, x, x0, ..., x(n�1)) (3.4)

in which, again, the order of the ordinary di↵erential equation is
determined by n (the highest derivative). The solution of an nth order
ordinary di↵erential equation depends on n integration parameters. Such
a solution is considered a general solution. However, when certain
integration constants are specified (like the initial concentration of the
system’s metabolites), one may obtain a particular solution for the
ordinary di↵erential equation. While it is extremely di�cult to solve
multi-dimensional systems of ordinary di↵erential equations analytically,
it is certainly possible to use numerical integration for approximations to
particular solutions. In the following sections, the specifics of balance
equations, stoichiometric coe�cients and reaction rates are described in more
detail.

3.2.1 Balance Equations

The foundation of biochemical reaction kinetics is that reaction rate v at
a point r in space at a time t can be expressed as a nonlinear function of
the concentrations of all included metabolites Si (and frequently of time) at
point r and at time point t.

v(r, t) = v[S(r, t), t] (3.5)

In Eq. (3.5), the vector of metabolite concentrations is represented by S,
and the reaction rate v is allowed to be dependent on the time t. Systems
which are explicitly dependent on time, such as systems with oscillating
clocking inputs, are considered non-autonomous systems. However, in
this thesis such systems are not described and therefore the focus is on
autonomous systems which are not explicitly dependent on time. The
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states of autonomous biochemical systems are determined by all metabolite
concentrations at a certain point in space. However, this state is not
only given by the metabolite concentrations, but also by rate constants, or
parameters, which remain constant at any time point. Temperature and
pressure may be such parameters when systems are considered isothermic
and isobaric, like it is the case in this thesis. In some systems, certain
metabolite concentrations can be considered constant and can therefore be
treated as parameters as well. In the models presented in this thesis, spatial
homogeneity is assumed, meaning that all metabolite concentrations are
uniform in the considered volumes.
In biochemical systems, the stoichiometry of reactions is essential to
characterize the proportions of molecularities of substrates and products of
reactions. If we use the reaction

GAP + DHAP FBP (3.6)

catalyzed by the aldolase, the stoichiometric coe�cients of GAP and
DHAP are -1, while the stoichiometric coe�cient of FBP is 1. The signs
of the stoichiometric coe�cients depend on the role as substrate or products
of the metabolites within the reaction. In reversible reactions, the signs of
stoichiometric coe�cients may change, depending which reaction direction is
considered. Sets of stoichiometric coe�cients of reactions can be described
as vectors, which is especially useful in systems including a multitude of
di↵erent reactions, as these vectors can be applied in a matrix. In these
stoichiometric matrices, the rows indicate the metabolites and the columns
indicate the reactions of the system. For example, if we consider a system
including the malate dehydrogenase (MDH) and the NADP-malic enzyme
(NME)

OAA + NADPH MAL + NADP+ (3.7)

MAL + NADP+ PYR + CO2 + NADPH (3.8)

the vectors of stoichiometric coe�cients can construct a stoichiometric
matrix N
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N =

MDH NME
2

666664

3

777775

�1 0 OAA

1 �1 MAL

0 1 PYR

0 1 CO2

�1 1 NADPH

1 �1 NADP+

(3.9)

in which the stoichiometric coe�cients of all metabolites are included
that are not considered as constant. Furthermore, chemical species which
are practically parameter-independent due to overabundance like water are
considered external substrates and are usually not included in stoichiometric
matrices.

Biochemical systems almost always consist of a multitude of reactions.
While the reaction rates are represented by vj(j = 1, ..., r) and stoichiometric
coe�cients are represented by nij (i denotes the metabolite and j denotes
the reaction. When biochemical conversions are considered the only source
of concentration changes in the system, the time-dependent behavior of the
system can be described as

dSi

dt
=

rX

j=1

nijvj(S) (3.10)

which may be represented in matrix notation as

dS

dt
= Nv (3.11)

in which S is the vector of metabolite concentrations and v is the vector
of reaction rates.

Reaction rates, which represent mathematical descriptions and
representations of biological and biochemical behaviors of processes (e.g.
catalyzed by enzymes). The following section focuses on the description
of specifics about rate equations, as well as giving examples for rate laws.

3.2.2 Rate equations

The functions vj(S) in Eq. (3.10) are rate equations (also known as rate laws
or kinetic functions) which, to be precise, are to be formulated as vj(S,p)
in which p represents a vector of parameters pj which are also included in
Eqs. (3.1) and (3.2). In this section, two of the most fundamental kinetic
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functions used in biochemical modeling (mass-action kinetics and Michaelis-
Menten kinetics) are explained. The quantities of kinetic functions are the
metabolite concentration S (the number of molecules per volume) and the
reaction rate v (the change of metabolites S per time t). As mentioned
before, for simplicity we assume a spatially homogeneous system which is
autonomous. Therefore, rate equations may be written as

v(t) = v(S(t), p) (3.12)

3.2.2.1 The law of mass-action

The mass-action law is the fundament of biochemical kinetics, stating that
the rate of a reaction is proportional to the probability of reactants colliding.
Therefore, the higher the concentrations of metabolites in reactions, the
higher the probability of collision. Generally, mass-action kinetics for
reactions in which zi substrates with concentrations of Si are converted into
zj products with concentrations of Pj can be formulated as

v = v+ � v� = k+

ziY

i=1

Sni
i � k�

zjY

j=1

P
nj

j (3.13)

in which ni and nj represent the stoichiometric coe�cients of substrates
and products in the reaction. From this, the equilibrium constant q of
reactions can be derived as

q =
k+
k�

=

zjQ
j=1

P
nj

j,eq

ziQ
i=1

Sni
i,eq

(3.14)

in which Seq and Peq represent the respective concentrations in
equilibrium.

3.2.2.2 Michaelis-Menten kinetics

A general enzymatic mechanism for all one-substrate reactions can be
formulated as

E + S
k1
k�1

ES
k2 E + P (3.15)

in which the formation of the enzyme-substrate complex ES from free
enzyme and substrate is reversible, while the catalysis of ES to free enzyme
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and product is irreversible. This set of reactions can be written as ordinary
di↵erential equations:

dS

dt
= �k1 · E · S + k�1 · ES

dES

dt
= k1 · E · S � (k�1 + k2) · ES

dE

dt
= �k1E · S + (k�1 + k2) · ES

dP

dt
= k2 · ES

(3.16)

Due to the multidimensionalality of this system of ordinary di↵erential
equations, no analytical solutions are present. However, with the right
assumptions, it is possible to derive mathematical expressions of this system’s
behavior. One assumption, made by Michaelis and Menten, considers that
the rate of the association and dissociation reactions k1 and k�1 are much
faster than the irreversible catalytic reaction k2. That suggests that there is
a state of quasi-equilibrium between free enzyme E and bound enzyme ES. In
line with this, another assumption by Briggs and Haldane considers that if the
initial substrate concentration is much higher than the enzyme concentration,
the concentration of bound enzyme ES stays relatively constant within a
quasi-steady-state. For Eq. 3.16, this means

dES

dt
= 0 (3.17)

which allows the derivation of rate kinetics from the ordinary di↵erential
equations by describing that the total enzyme Etotal is constant:

dES

dt
+

dE

dt
= 0 (3.18)

meaning that

Etotal = E + ES = constant. (3.19)

which means that in steady state, the concentration of the enzyme-
substrate complex can be expressed as

23



ES =
k1 · Etotal · S

k1 · S + k�1 + k2
=

Etotal · S
S + (k�1+k2)

k1

(3.20)

and resulting in the reaction rate

v =
k2 · Etotal · S
S + (k�1+k2)

k1

(3.21)

In order to obtain a simpler form of this equation, the catalytic rate
parameter and enzyme concentration can be expressed together as the
maximum reaction rate is

Etotal · k2 = Vmax (3.22)

and the substrate concentration at which the reaction is at half its
maximum rate is calculated as

k�1 + k2
k1

= Km (3.23)

in which Km is known as the Michaelis constant. Eqts. (3.21), (3.22) and
(3.23) can be used to obtain the practical expression

v =
Vmax · S
Km + S

(3.24)

for the reaction rate of enzymatic one-substrate Michaelis-Menten kinetics.
In the case of enzymatic one-substrate reactions which are entirely

reversible, the enzymatic mechanism can be described as

E + S
k1
k�1

ES
k2
k�2

E + P (3.25)

which establishes maximum reaction rates (V for
max and V back

max ) and Michaelis
constants (KmS and KmP ) for both forward and backward reactions,
respectively. This establishes

v =
V for
max

KmS
· S � V back

max
KmP

· P
1 + S

KmS
+ P

KmP

(3.26)

with the equilibrium constant q defined as

q =
V for
max ·KmS

V back
max ·KmP

(3.27)
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While generally, an increase of substrate concentration S increases
reaction rates up to a maximum rate Vmax, there are enzymatic reactions
in which a decrease in reaction rate is observed after a certain threshold
of substrate concentration. This phenomenon is regarded as substrate
inhibition. One suggested explanation for this scenario is the binding of
additional substrates to the enzyme, forming an reversible enzyme-substrate-
substrate complex which occupies enzymes without product catalysis. This
inhibition can be competitive (occupation of enzymes from metabolites
similar to the substrate) or noncompetitive (occupation by more than one
molecule of the substrate). Both cases can be formulated in an extended
version of Michaelis-Menten kinetics which is expressed as

v = k2 · ES =
Vmax · S

Km + S · (1 + I
KI

)
(3.28)

in which the inhibition constantKI is determining the extent of inhibition
while the inhibitor I can be substrate S in the case of noncompetitive
inhibition, or a di↵erent metabolite in the case of competitive inhibition.

3.2.2.3 Convenience kinetics

In an attempt to establish an expression of reaction rates in which
all parameters are independent of each other and to simplify estimations
of mechanisms and parameters, convenience kinetics have been proposed.
Convenience kinetics apply a formulation of Michaelis-Menten kinetics which
can be applied to all reaction stoichiometries. Convenience kinetics are
expressed as

v = Etotal·
kfor
cat

Q
i(

Si
Km,Si

)n�i � kback
cat

Q
j(

Pj

Km,Pj
)n+j

Q
i(1 + ( Si

Km,Si
) + ...+ ( Si

Km,Si
)n�i) +

Q
j(1 + ( Pj

Km,Pj
) + ...+ ( Pj

Km,Pj
)n+j)� 1

(3.29)
in which Etotal represents enzyme concentration, Km represents

metabolite concentrations in which the reaction rate (in respective reaction
direction) is at half its maximum rate and kfor

cat and kback
cat represent turnover

rates.

3.2.3 Steady States and their stabilities

The investigation of systems in steady state is an essential component in
the analysis of dynamic models. The concept of steady states is especially
important for biochemical systems that do not change in metabolite
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concentrations for a certain time. However, it is important to note that
the analysis of systems in steady state is mathematically favorable, but
remains an approximation of realistic behavior, as life is always dynamic
and fluctuating. Nevertheless, the calculation of steady states, as well as
the analyses that are o↵ered by it, are very helpful to develop a deeper
understanding of the investigated system.

One important aspect of systems is analyses of the stability of steady
states. Linearizing systems in steady state is necessary to start such analyses.
If a biochemical system with the steady state S is perturbed by Ŝ(t) with

S(t) = S+ Ŝ(t) (3.30)

the change of the deviation over time can be written as

Ṡ =
d

dt
(S+ Ŝ(t)) =

d

dt
Ŝ(t) (3.31)

The system equations can be used to perform a Taylor expansion for
further stability analyses. It follows

d

dt
Ŝi = fi(S1, ..., Sn) +

nX

j=1

@fi
@Sj

Ŝj +
1

2

nX

j=1

nX

k=1

@2fi
@Sj@Sk

ŜjŜk + ... (3.32)

In steady state, in which fi(S1, ..., Sn) = 0, we can disregard terms of
higher order and it holds that

d

dt
Ŝi =

nX

j=1

@fi
@Sj

Ŝj =
nX

j=1

aijŜj (3.33)

in which aij =
@fi
@Sj

are constant coe�cients at steady state. From aij, the
Jacobian Matrix can be constructed as

J =
�
aij
 
=

0

BBB@

@f1
@S1

@f1
@S2

... @f1
@Sn

@f2
@S1

@f2
@S2

... @f2
@Sn

...
...

. . .
...

@fn
@S1

@fn
@S2

... @fn
@Sn

1

CCCA
(3.34)

which is the system matrix A in linear systems, meaning J = A.
In order to find the steady state S of the linear ODE system, Ṡ = 0

indicates that

A · S+ z = 0 (3.35)
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which means that the steady state can be found by matrix inversion of A

S = �A
�1 · z. (3.36)

In such linear homogeneous systems of ordinary di↵erential equations, it
holds

Ṡ = A · S (3.37)

which enables the approach

Ṡ = b · � · e�t = A · b · e�t (3.38)

which can be adjusted to read

(A� �In)b = 0 (3.39)

where I denotes the identity matrix, and which can be practically
rewritten as

S(t) =
nX

i=1

cibie
�it (3.40)

where bi are eigenvectors and �i are eigenvalues of A, while ci are
unknown coe�cients which are determined by initial conditions for particular
solutions.

The eigenvalues of the system can be calculated with

Det(A� �I) = an�
n + an�1�

n�1 + ...+ a1�+ a0 = 0 (3.41)

which is a characteristic polynomial equation of order n. The eigenvalues
that can be calculated from Eqt. 3.41 give the desired information about the
system’s stability. Generally, if all eigenvalues (real or complex) are negative,
the steady state is stable. However, if any eigenvalue is positive, the steady
state is unstable.

3.2.4 Metabolic Control Analysis

The characterization of the e↵ect of reactions on the system as a whole
is very important for a deeper biological understanding of investigated
systems. However, this can be particularly hard in dynamic systems
containing many variables and many interdependent regulations. Metabolic
Control analysis is a theoretical framework which allows the analysis of
the steady-state relationships between single reactions and the biochemical
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network in a quantitative, and qualitative fashion. The aim of metabolic
control analysis is to understand the sensitivities of reactions and metabolite
concentrations of networks in steady state on small parameter perturbations.
The quantification of these sensitivities is performed by the calculation of
coe�cients, specifically elasticity-coe�cients and control-coe�cients.

To introduce the general form for such coe�cients, we take the quantity
y(x) as an example which is dependent on x. We can define the sensitivity
coe�cient cyx as

cyx =

✓
x

y

�y

�x

◆

�x�!0

(3.42)

describing the e↵ect of �x on y. x
y is being used as a normalization factor

to express the sensitivity coe�cient independent of units. For limiting cases
�x �! 0, Eqt. 3.42 can be expressed as

cyx =
x

y

@y

@x
=

@ ln y

@ ln x
(3.43)

This general form can be applied to the coe�cients calculated for
metabolic control analysis. These coe�cients can either be local or global.
Elasticity coe�cients are local coe�cients, which means that the coe�cient
quantifies the e↵ect of perturbations on the reaction velocity itself, not on
the entire system. These perturbations are either changes in a parameter or
the concentration of a substrate. The elasticity " is written as

"ki =
Si

vk

@vk
@Si

(3.44)

which calculates the sensitivity of reaction rate vk to changes in
metabolite concentration Si. The calculation of control coe�cients relates
to the steady state fluxes J of the system, are given by the reaction
rates depending on respective parameters and steady state metabolite
concentrations. Control coe�cients calculate the e↵ect of small parameter
perturbations on all fluxes (or concentrations) of the system in steady state,
and therefore are considered global coe�cients. When calculating the control
of rate vk on flux Jj, the flux control coe�cient C

Jj
vk can be written as

CJj
vk

=
vk
Jj

@Jj
@vk

(3.45)

where the change in reaction rate vk is caused by perturbations in parameter
pk.

This calculation can be made for the steady state concentrations of the
system as well. When calculating the control of rate vk on the steady state
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metabolite concentration Si, the concentration control coe�cient CSi
vk

can be
expressed as

CSi
vk

=
vk
Si

@Si

@vk
. (3.46)

The control coe�cients are used in the Summation Theorem of metabolic
control analysis to explain the total control over fluxes and concentrations in
a stable steady state. It states that

rX

k=1

CJj
vk

= 1 and
rX

k=1

CSi
vk

= 0 (3.47)

where r is the number of reactions in the system. The summation of
flux control coe�cients to one and the summation of concentration control
coe�cients to zero displays that the fluxes and concentrations in steady state
in a biochemical system are systemic and the control over them is shared by
all reactions (whether in a positive or in a negative fashion). Furthermore, it
implies that changes in the control of one reaction are compensated by shifts
in control of the other reactions in the system.

3.3 Constraint-based modeling

3.3.1 Structural modeling

With increasing sequenced genomes accessible to science allows another
approach in the mathematical representation of biochemical systems. The
combination of available sequenced genomes and databases with knowledge
about biochemical processes in living organisms allows for a systematic
reconstruction of metabolic networks. Such networks are commonly known
as genome scale metabolic models (GSMs). Such models can be used to
simulate responses of metabolic fluxes to changes in gene activities and
nutrients, as well as designing desired strains of organisms of interest in
silico. GSMs describe all processes and biochemical conversions from the
uptake of nutrients to the production of cellular biomass mainly using the
stoichiometries of reactions. This is also why the construction and analyses
of GSMs is also considered ”stoichiometric” or ”structural” modeling. The
reason for the focus on structural model properties is, amongst others, the
relatively low computing time and the relatively low number of parameters
needed for model simulations.

To understand the concept of structural modeling, consider the reaction
network described in Eqts. (3.7) and (3.8). We may introduce two additional
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reactions to the model:
OAA (3.48)

PYR + CO2 (3.49)

Eqt. (3.48) represents a continuous influx of OAA into the system, while
Eqt. (3.49) removes PYR and CO2 from the system. This network can be
expressed as a set of ordinary di↵erential equations by

dOAA

dt
= vinf � vMDH

dMAL

dt
= vMDH � vNME

dPYR

dt
= vNME � vout

dCO2

dt
= vNME � vout

dNADPH

dt
= vNME � vMDH

dNADP+

dt
= vMDH � vNME

(3.50)

which can be expressed as a stoichiometric matrix N in matrix notation
as shown in Eqt. (3.9). The set of ordinary di↵erential equations from
Eqt.(3.50) may now be expressed in matrix notation as well by

2

6666664

�1 0 1 0
1 �1 0 0
0 1 0 �1
0 1 0 �1
�1 1 0 0
1 �1 0 0

3

7777775

2

664

vMDH

vNME

vinf
vout

3

775 =

2

6666664

dOAA/dt
dMAL/dt
dPYR/dt
dCO2/dt

dNADPH/dt
dNADP+/dt

3

7777775

or in simpler terms as
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N · v =
dS

dt
(3.51)

in which S is the vector of substrate concentration and v is the vector of
reaction rates.

3.3.2 Flux Balance Analysis

One approach to analyse fluxes in structural networks is Flux Balance
Analysis (FBA) [45]. It calculates a solution which maximizes or minimizes
fluxes of interest, while maintaining mass-conservation and being restricted
by sets of constraints. These constraints play a very big role in FBA, which
is why the combination of structural models with FBA is generally called
constraint-based modeling.

Structural modeling is assuming a steady state of the biochemical system,
in which the system is regarded to be in a state of metabolic exchange at
which no substrate concentrations are changing over time. This assumption
is expressed as

N · v =
dS

dt
= 0. (3.52)

In steady state, the stoichiometric matrix imposes that the flux of mass
is balanced and that the overall production of compounds has to be equal
to the consumption. With this mass balance, it is given that no species
can be produced without a valid source, and the consumption prevents any
overaccumulation of compounds.

The stoichiometries and the steady state assumption are not the only
constraints in FBA. The upper and lower bounds of reactions are another
constraint which limits the solution space of constraint based modeling.
These bounds limit the minimal and maximal flux reactions are allowed to
carry.

With the feasible solution space contrained by steady state, mass-
conservation and upper and lower bounds, fluxes are assigned to reactions
via a linear programming based approach which is attempting to maximize
or minimize the objective reaction(s). In many models, the objective is to
maximize the flux of an organism-specific biomass reaction. Generally, the
optimality problem investigated in FBA can be expressed as

max./min. c
T
v

subject to Sv = 0

and lb  vi  ub, i = 1, ..., n

(3.53)
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in which v is the vector of fluxes, c
T
v is the vector representing the

objective reaction, Sv = 0 is the steady state constraint and lb and
ub are the lower and upper bounds of reaction vi, respectively. There
is the possibility to introduce further problem-specific constraints like
thermodynamic constraints, maximum overall flux etc. can be introduced
as well.

The uptake of substrates (e.g. from a medium) and excretion of
byproducts (e.g. from respiration) is described by exchange reactions that
can allow the in and e✏ux of matter through the metabolic model. All
reactions introducing matter into the system and removing it out of the
system (including the often used biomass reaction) have to be balanced as
well to prevent matter from unrealistic disappearance or appearance.

It is important to note that multiple flux vectors may lead to the same
optimization result under the same constraints. This means that FBA
solutions from linear programming are usually non-unique solutions. In order
to still e�ciently investigate large metabolic systems, alternative but heavily
related methods are used.

To estimate the range of fluxes in any solution that results in the same
objective value, flux variability analysis (FVA) can be used [17]. FVA tries
to find the range of fluxes for every reaction that can be found in solutions
resulting in the same optimized objective value. This analysis is useful
for understanding which fluxes are unbound and which fluxes are relatively
restricted. This information can o↵er an overview of the solution space that
is present in the current optimization, and how the model can behave in
alternative flux solutions.

Another method is parsimonious FBA (pFBA) which is initially finding
an optimal solution to the FBA problem [30]. In the next step, a flux vector is
determined which represents the same objective value but carries the lowest
overall flux. Due to the fact that FBA solutions are non-unique, pFBA
solutions are especially useful when comparing simulation results after e.g.
perturbations of the system.
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4 Aims of the thesis

The light dependent and independent processes of photosynthesis
are often studied apart from each other, ignoring the fundamental
interdependence of both processes. One approach to study the detailed
and complex interdependence is the development of mathematical models
of photosynthesis that can help answering specific research questions which
are di�cult to answer experimentally. In the past decades, many kinetic
mathematical models have been developed to investigate the complexity
of photosynthesis. Still, most of these models have a clear focus on either
the light dependent or light independent reactions of photosynthesis.
Models which describe the light independent reactions, mainly the CBB
cycle are not including the photosynthetic electron transport chain, but
simplify the light dependent reaction by either constant ATP and NADPH
concentrations, or by providing lumped reactions of ATP and NADPH
synthesis [19, 48, 51, 12, 73, 72]. The research focus in these studies has been
the kinetics of the reactions of photosynthetic carbon fixation, therefore it
is understandable that no detailed descriptions for light dependent reactions
have been included for the sake of simplification. Similarly, many kinetic
models describing the light dependent processes, mainly the photosynthetic
electron transport chain, are not including the light independent reactions
[10, 11, 68, 38, 41]. Instead, lumped reactions are used as energy sinks.
With the research focus on the details of the electron transport in the
thylakoid membrane, it is understandable that a simplified description of the
light independent reactions is su�cient. Models like the ‘e-photosynthesis’
model by Zhu et al. (2013) include as many known photosynthetic reactions
as possible and therefore result in a very large model. While approach is
providing a useful knowledge basis, it is di�cult to use it for specific research
questions due to its complexity and highly detailed description, making it
hard to gain knowledge about precise interactions.

In this thesis, the aim is to use and develop mathematical models of
photosynthesis to explore research questions that focus on the behavior of
the CBB cycle in di↵erent light protocols, as well as the need for regulation
of CBB cycle activity in changing light. In additional analyses, we tried
to reveal the e↵ect of di↵erent CBB cycle rates in changing light intensities
on crucial system properties. Furthermore, the view of photosynthesis as
a economic supply-demand model is used to find out in which conditions
the supply or the demand reactions maintain highest overall control in the
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system. Another aim is to examine the behavior of alternative electron flows
in changing light conditions and their impact on the production of reactive
oxygen species. Lastly, the advantages of photosynthetic activity for the
production of secondary metabolites in glandular trichomes are investigated.

5 Research topics in this thesis

The results of the thesis are presented in submitted and/or published
manuscripts. The results are presented in the following organisation:

• Section 5.1 contains a manuscript which presents the software
modelbase which has been developed to implement ODE models in
the programming language Python. All ODE models presented in this
thesis have been implemented using this software package.

• Section 5.2 contains a manuscript which presents the software
moped which has been developed to construct, modify and ensure
reproducibility of constraint based genome scale metabolic models
in the programming language Python. All constraint-based models
presented in this thesis have been constructed using this software
package.

• Section 5.3 contains a manuscript which investigates a merged model
of photosynthesis as a supply-demand model. The results highlight
the need of standby mechanisms in carbon fixation for long phases of
darkness, as well as shifting control from supply to demand reactions
in increasing light conditions.

• Section 5.4 contains a manuscript which researches the role of
alternative electron flows in the production of reactive oxygen species
and in the rate of linear electron flow and carbon fixation. It is shown
that cyclic electron flow and carbon fixation improve linear electron
flow and decrease reactive oxygen evolution by providing additional
terminal electron acceptors and prevention of an overreduction of the
photosynthetic electron transport chain.

• Section 5.5 contains a manuscript which highlights the light-
induced increase in secondary metabolite production in photosynthetic
glandular trichomes. The results show shifts in carbon partitioning
from catabolic to anabolic reactions, as well as a switch in isoprenoid
synthesis from the MEV to the MEP pathway.
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6 Manuscripts

6.1 Building mathematical models of biological

systems with modelbase

6.1.1 Authors and Details

Authors: Oliver Ebenhöh, Marvin v. Aalst, Nima P. Saadat,
Tim Nies, Anna Matuszyńska

Authorship: 2. Author
Journal: Journal of Open Research Software
Status: Published (https://doi.org/10.5334/jors.236)

6.1.2 Contributions

Oliver Ebenhöh initiated the project, implementing code at an early stage
and providing teaching materials. Marvin van Aalst further improved
the code, as well as the documentation and implemented a kinetic CBB
cycle model to show the utility of modelbase. Nima P. Saadat developed
code to provide export options for modelbase models as SBML files for
reproducibility. Tim Nies implemented a Pentose-Phosphate-Pathway model
to show the utility of modelbase. Anna Matuszyńska further improved
code and prepared all example notebooks, as well as the first draft of the
manuscript.
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The modelbase package is a free expandable Python package for building and analysing dynamic mathematical 
models of biological systems. Originally it was designed for the simulation of metabolic systems, but it 
can be used for virtually any deterministic chemical processes. modelbase provides easy construction 
methods to define reactions and their rates. Based on the rates and stoichiometries, the system of 
differential equations is assembled automatically. modelbase minimises the constraints imposed on the 
user, allowing for easy and dynamic access to all variables, including derived ones, in a convenient manner. 
A simple incorporation of algebraic equations is, for example, convenient to study systems with rapid 
equilibrium or quasi steady-state approximations. Moreover, modelbase provides construction methods 
that automatically build all isotope-specific versions of a particular reaction, making it a convenient tool 
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(1) Overview
Introduction
Well designed mathematical models are excellent theoretical 
frameworks to analyse and understand the dynamics of 
a biological system. Here, the design process itself is the 
first important scientific exercise, in which biological 
knowledge is collected, organised and represented in 
a new, systematic way, that allows defining the model 
assumptions and formulating them in the language of 
mathematics. A working model then enables testing new 
hypotheses and allows for novel predictions of the system’s 
behaviour. Kinetic models allow simulating the dynamics 
of the complex biochemistry of cells. Therefore, they have 
the power to explain which processes are responsible 
for observed emergent properties and they facilitate 
predictions on how the system behaves under various 
scenarios, such as changed environmental conditions or 
modification of molecular components. Unfortunately, 
the construction of mathematical models is often already 
a challenging task, hampered by the limited availability of 
measured physiological and kinetic parameters, or even 
incomplete information regarding the network structure. It 

is therefore highly desirable to make the overall process of 
model construction as easy, transparent and reproducible 
as possible. Providing a toolbox with a wide range of 
methods that flexibly adapt to the scientific needs of the 
user, modelbase greatly simplifies the model-building 
process, by facilitating a systematic construction of kinetic 
models fully embedded in the Python programming 
language, and by providing a set of functionalities that help 
to conveniently access and analyse the results.

Despite the fact that mathematical models vary 
significantly in their complexity, from very simple and 
abstract models to extremely detailed ones, they share 
a set of universal properties. The process of building a 
kinetic model can be divided into a number of mandatory 
steps such as i) establishing the biological network 
structure (the stoichiometry), ii) defining the kinetic rate 
expressions, iii) formulation of the differential equations, 
iv) parametrisation, v) validation and, finally, vi) application 
[1]. modelbase supports researchers in every step of 
model development and application with its simple design 
aimed at being minimally restrictive. It has been written 
in Python, an open source, general-purpose, interpreted, 
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interactive, object-oriented, and high-level programming 
language. Due to a long list of its general features, such 
as clear syntax, useful built-in objects, a wealth of general-
purpose libraries, especially NumPy and SciPy, Python has 
become a widely used scientific tool [2]. Needless to say, 
the usage of Python over other, proprietary software, such 
as MATLAB or Wolfram Mathematica, decreases the risk 
of limited reproducibility and transparency, two critical 
factors while conducting research. Unfortunately, several 
powerful models of central biochemical pathways [3, 4] 
have been published before this need became apparent. 
As a consequence, some of these models are extremely 
difficult to implement to even attempt to reproduce their 
results. Therefore, modelbase provides an environment 
for relatively easy implementation of models that were 
published without source code, in a general-purpose and 
reusable format. Moreover, modelbase supports the 
export of a structural (stoichiometric) model into Systems 
Biology Markup Language (SBML) for further structural 
analysis with the appropriate software.

In recent years, several other Python-based modelling 
tools have been developed, such as ScrumPy [5] or 
PySCeS [6]. They allow performing various analyses of 
biochemical reaction networks, ranging from structural 
analyses ( null-space analysis, elementary flux modes) to 
kinetic analyses and calculation of control coefficients. To 
the best of our knowledge they do not provide dedicated 
methods for model construction inside Python, and the 
standard usage relies on loading previously assembled 
model definition files.

The modelbase package presented here provides an 
alternative toolbox, complementing the functionalities of 
existing programs for computer modelling. Its power lies 
mainly in integrating the model construction process into 
the Python programming language. It is envisaged that 
modelbase will greatly facilitate the model construction 
and analysis process as an integral part of a fully developed 
programming environment.

Motivation
In the course of our photosynthetic research, we identified 
several shortcomings that are not adequately met by 
available free and open source research software. When 
constructing a series of similar models, which share the 
same basic structure but differ in details, it is, in most 
modelling environments, necessary to copy the model 
definition file (or even pieces of code) and perform the 
desired modifications. This makes even simple tasks, 
such as changing a particular kinetic rate law, hideous 
and unnecessarily complicated, affecting the overall code 
readability. To facilitate a systematic and structured model 
definition, exploiting natural inheritance properties of 
Python objects, our intention was to fully integrate the 
model construction process into the Python programming 
language, allowing for an automated construction of 
model variants. The necessity for this fully Python-
embedded approach became further evident for isotope 
label-specific models [7], where an automatic construction 
of isotope-specific reactions from a common rate law and 
an atom transition map is desired. Such models are, for 

example, required to explain complex phenomena, such as 
the asymmetric label distribution during photosynthesis, 
first observed by Gibbs and Kandler in the 1950s [8, 9].

Implementation and architecture
modelbase is a console-based application written in 
Python. It supplies methods to construct various dynamic 
mathematical models, using a bottom-up approach, to 
simulate the dynamic equations, and analyse the results. 
We deliberately separated construction methods from 
simulation and analysis, in order to reflect the experimental 
approach. In particular, a model object constructed using 
the Model class can be understood as a representation of a 
model organism or any subsystem, on which experiments 
are performed. Instances of the Simulator class in turn 
correspond to particular experiments. The software 
components of modelbase are summarised in the 
Unified Modeling Language (UML) diagram in Figure 1.

Model construction
The user has the possibility to build two types of models, 
using one of the classes defined in the module model: 
Model, for differential-equation based systems, or 
LabelModel, for isotope-labelled models.

Class Model
Every model object is defined by:

1. model parameters,
2. model variables,
3. rate equations,
4. stoichiometries.

Model parameters can be simply defined in a dictionary, 
d. To build a mathematical model the user needs first to 
import the modelbase package and instantiate a model 
object (called m):
import modelbase

m = modelbase.Model(d)

After instantiation, the keys of the parameter dictionary d 
become accessible as attributes of an object of the internal 
class modelbase.parameters.ParameterSet, 
which is stored as the model’s attribute m.par.

To add reacting entities of the described system (referred 
to as species in SBML), e.g., metabolites, we pass a list of 
compounds names to the set_cpds method:
m.set_cpds(list_of_compounds)

Each of the added compounds becomes a state variable 
of the system. The full list of all variables is stored in the 
attribute m.cpdNames.

If S denotes the vector of concentrations of the 
biochemical reactants (as defined with the method  
set_cpds), the temporal change of the concentrations 
is governed by:

 ( )N , ,
dS

v S k
dt

=  (1)

where N denotes the stoichiometric matrix and v(S, k) 
the vector of reaction rates as functions of the substrate 
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concentrations S and parameters k. The system of ordinary 
differential equations is assembled automatically after 
providing all reaction rates and their stoichiometries to 
the method m.add_reaction(). The stoichiometric 
matrix of a model can be retrieved by the method 
m.print_stoichiometries() or m.print_

stoichiometries_by_compounds(), for the 
transposed matrix. A detailed example of instantiating 
objects and solving a simple biochemical system with 
three reactions and two metabolites is provided in Box 1.

Working with algebraic modules
A particularly useful function of the class Model has been 
developed to facilitate the incorporation of algebraic 
expressions, by which dependent variables can be computed 
from independent ones. Examples include conserved 
quantities, such as the sum of adenine phosphates, which 
is often considered to be constant, and rapid-equilibrium 
or quasi steady-state approximations (QSSA), which are 

applicable for systems with time-scale separation and 
allow calculation of fast from slow variables. The function  
add_algebraicModule() accepts as arguments a 
function describing the rule how the dependent variables 
are calculated from independent ones, the name of the 
newly created module, and lists of names of the independent 
and dependent variables. After definition of an algebraic 
module, all dependent variables become directly accessible. 
The full list of independent and dependent variables can be 
accessed using the method allCpdNames().

Various analysis methods
With import modelbase.Analysis the user has 
access to advanced analysis methods on the model object. 
Currently, it provides methods to numerically calculate 
elasticities and the Jacobian, find steady states by 
attempting to solve the algebraic equations, and calculate 
concentration control coefficients. We expect the range of 
analysis methods to increase continuously in the future.

Figure 1: UML class diagram of modelbase software components. It consists of six classes, with LabelModel inheriting 
from Model and LabelSimulate inheriting from Simulate. ParameterSet and Analysis are special classes containing 
parameter sets and static methods for analysis respectively.
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Box 1: Basic model use

We use modelbase to simulate a simple chain of reactions, in which the two state variables X and Y describe the 
concentrations of the intermediates. We assume a constant influx rate v0, a reversible conversion of X to Y, described 
with mass action kinetics with forward and backward rate constants k1p and k1m, respectively, and an irreversible 
efflux of Y described by mass action kinetics with the rate constant k2.

We import the modelbase package, numpy and matplotlib.pyplot, define a list of metabolite species and 
a dictionary with parameters

import numpy as np

import matplotlib.pyplot as plt

import modelbase

cmpds = ['X','Y']

p = {'v0':1,'k1p':0.5,'k1m':1,'k2':0.1}

We instantiate a model object of class Model

m = modelbase.Model(p)

and pass metabolites to the model (variables are always defined by names)

m.set_cpds(cmpds)

In the next step we define reaction rate functions. The rate functions always accept the model parameters as first 
argument, whilst the remaining arguments are metabolite concentrations.

v0 = lambda p: p.v0

def v1(p,x,y):

 return p.k1p*x – p.k1m*y

def v2(p,y):

 return p.k2*y

and then pass them to the model using add_reaction()

m.add_reaction('v0', v0, {'X':1})

m.add_reaction('v1', v1, {'X':-1,'Y':1}, 'X', 'Y')

m.add_reaction('v2', v2, {'Y':-1}, 'Y').

To perform the computation we generate an instance of a simulation class using the function Simulator()

s = modelbase.Simulator(m)

To integrate the system over a given period of time (T=np.linspace(0,100,1000)), with the initial 
concentrations set to 0 (y0=np.zeros(2)), we use the method timeCourse()

s.timeCourse(T, y0)

Convenient access to the results of simulation through various get*() methods enables easy graphical display.

plt.figure()
plt.plot(s.getT(),s.getY())

plt.legend(m.cpdNames)

plt.show()
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Class LabelModel for isotope-labelled models
The modelbase package includes a class to construct 
isotope-labelled versions of developed models. In 
order to simulate the dynamic distribution of isotopes, 
modelbase defines dynamic variables representing 
all possible labelling patterns for all intermediates. In 
contrast to instances of the class Model, for instances of the 
class LabelModel the number of potentially labelled atoms 
(usually carbon) needs to be defined for every compound. 
This is done with the method add_base_cpd(), which 
accepts the name and the number of labelled atoms of the 
compound. It automatically creates all 2N isotope variants 
of the compound, where N denotes the number of 
labelled atoms. Finally, the method add_carbonmap_
reaction() automatically generates all isotope-specific 
versions of a reaction. It accepts as arguments the reaction 
name, rate function, carbon map, list of substrates, list of 
products and additional variables to be passed.

To instantiate a model object for an isotope-labelled 
version of developed model simply call
m = modelbase.LabelModel(d),

where d is again a dictionary holding parameters. With 
an instance of this class a dynamic process, such as the 
dynamic incorporation of radioactive carbon during 
photosynthesis, can be easily defined and simulated, 
using the Simulator class described below. An example of 
how to use this class is provided in Box 2.

Integration methods and simulation subpackages
Methods for the numeric integration of models 
are provided by the two subclasses Simulate and 
LabelSimulate, where the latter inherits many methods 
from the first. The first is used for standard kinetic models, 
the latter for isotope-specific models. Both classes provide 
computational support for dynamic simulations and 
methods to numerically simulate the differential equation 
system and to analyse the results. To provide an automatic 
instantiation of the correct class, we provide the function 
Simulator. Calling
s = modelbase.Simulator(m)

returns an instance of either Simulate or LabelSimulate, 
depending on the class of model m, providing all methods 
to numerically simulate the differential equation system 
and to analyse the results. Simple applications to run and 
plot a time course are given in boxes 1 and 2. By default, 
the dynamic equations are numerically integrated using a 
CVODE solver for stiff and non-stiff ordinary differential 
equation (ODE) systems. The default solver uses the 
Assimulo simulation package [10], with the most central 
solver group originating from the SUNDIALS (a SUite of 
Nonlinear and DIfferential/ALgebraic equation Solvers) 
package [11]. If Assimulo is not available, standard 
integration methods from the SciPy library [12] are used. 
When needed, almost every integrator option can be 
overridden by the user by simply accessing
s.integrator

Additionally, the Simulate class includes methods to 
integrate the system until a steady-state is reached 
(sim2SteadyState()), and to estimate the period of 
smooth limit cycle oscillations (estimatePeriod()). 
The solution arrays are accessed with the methods getT() 

and getY(). The advantage of using this method over 
using Assimulo’s integrator.ysol is that getY() 
also returns the result for all the derived variables (for 
which algebraic modules have been used). In addition, the 
methods getVarByName(), getVarsByName() 
and getVarsByRegExp() allow to access the 
simulated values of one or several variables by their 
variable names or by regular expressions. Moreover, the 
method getV() gives access to the arrays of reaction 
rates and getRate() allows to access particular rates by 
the reaction name. The powerful Python plotting library 
matplotlib [13] provides numerous methods for graphical 
display of the results.

Systems Biology Markup Language (SBML)
modelbase supports export of a structural (stoichio-
metric) version of a created model into an XML file in the 
computer-readable SBML format. To export the model (m) 
simply use the method m.ModelbaseToSBML(file_
name). A minimal working example can be found in  
our repository (https://gitlab.com/ebenhoeh/
modelbase/blob/master/examples/sbml_

export.py). Structural and stoichiometric analyses 
are currently not implemented in modelbase, therefore 
such export allows to take advantage of other SBML 
compatible modelling environments developed for such 
tasks (e.g. PySCeS or CobraPy [14]). The import of SBML 
models into modelbase is currently not supported, 
mainly because of the complementary purpose for which 
it was developed. The modelbase framework simplifies 
construction of kinetic models, allowing to perform this 
task with minimal modelling experience. Therefore, the 
main purpose of modelbase is the model design process 
itself, rather than importing a predefined construct to 
perform complex computations. However, a full SBML 
export and import functionality is currently under 
development to allow model sharing across different 
environments and platforms.

Quality control
modelbase has been continuously developed and used 
within our lab since 2016. It has been successfully applied 
to study the complexity of photosynthesis and carbon 
assimilation in plants [7] and is being further maintained 
and developed.

(2) Availability
Operating system
modelbase is compatible with all platforms with 
working Python distribution.

Programming language
modelbase is written in the Python programming 
language, a general-purpose interpreted, interactive, 
object-oriented, and high-level programming language. 
It is available for every major operating system, including 
GNU/Linux, Mac OSX and Windows and has been tested 
with Python 3.6.

Additional system requirements
None
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Box 2: Isotope-labelled model

A minimal example of an isotope-label specific model simulates equilibration of isotope distribution in a system 
consisting of the two reactions of triose-phosphate isomerase and fructose-bisphosphate aldolase:

 GAP DHAPU  (2)   
GAP DHAP FBPU�  (3)

We import the modelbase package, numpy and matplotlib.pyplot.
import numpy as np

import matplotlib.pyplot as plt

import modelbase

We define a dictionary of parameters and instantiate the model of class LabelModel
p = {'kf_TPI': 1,'Keq_TPI': 21,'kf_Ald': 2000,'Keq_Ald': 7000}

m = modelbase.LabelModel(p).

Compounds are added with an additional argument defining the numbers of carbons
m.add_base_cpd('GAP', 3)

m.add_base_cpd('DHAP', 3)

m.add_base_cpd('FBP', 6)

leading to an automatic generation of 80 = 26 + 23 + 23 isotope-specific compounds. All reactions are assumed 
to obey mass-action rate laws. Standard rate laws are defined in the modelbase.ratelaws module. Due to 
simplicity, the following steps are only shown for the forward triose-phosphate isomerase reaction. For more details 
please see the file examples/isotopeLabels.py in the modelbase package.
import modelbase.ratelaws as rl

def v1f(p,y):

 return rl.massAction(p.kf_TPI,y)

All isotope-specific rates are generated by the add_carbonmap_reaction() method, based on a list defining 
in which positions the carbons appear in the products.
m.add_carbonmap_reaction('TPIf',v1f,[2,1,0],['GAP'],['DHAP'],'GAP')

We set the initial conditions such that the total pools are in equilibrium, but carbon 1 of GAP is fully labeled
GAP0 = 2.5e-5

DHAP0 = GAP0 * m.par.Keq_TPI

y0d = {'GAP': GAP0,

 'DHAP': DHAP0,

 'FBP': GAP0 * DHAP0 * m.par.Keq_Ald}

y0 =  m.set_initconc_cpd_labelpos(y0d,labelpos={'GAP':0})

and simulate equilibration of the labels for 20 arbitrary time units
s = modelbase.LabelSimulate(m)

T = np.linspace(0,20,1000)

s.timeCourse(T,y0).

We plot the result using the getLabelAtPos() method (see examples/isotopeLabels.py).
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Dependencies 
Dependencies are provided in the setup.py file and 
include:

•	 numpy == 1.14.3
•	 scipy == 1.1.0
•	 numdifftools == 0.9.20
•	 assimulo == 2.9
•	 pandas == 0.22.0
•	 python-libsbml == 5.17.0

Support for the differential equation solver sundials 
(CVODE) through the python package assimulo requires 
moreover:

•	 Sundials-2.6.0 (for 64bits machines, install Sundials 
using -fPIC)

•	 Cython 0.18
•	 C compiler
•	 Fortran compiler

The detailed instruction how to install the prerequisites is 
included in the repository in our installation guide.

List of contributors
In alphabetic order: Marvin van Aalst, Oliver Ebenhöh, 
Anna Matuszyńska, Nima P. Saadat.

Software location
Archive

Name: Python Package Index (PyPI)
�Persistent� identifier: https://pypi.org/project/
modelbase/
Licence: GPL3
Publisher: Oliver Ebenhöh
Version published: 0.2.5
Date published: 09/10/18

Code repository
Name: GitLab
�Persistent� identifier: https://gitlab.com/ebenhoeh/
modelbase
Licence: GNU General Public License v3.0
Date published: 09/10/18

Language
modelbase was entirely developed in English.

(3) Reuse potential
The strength of our package lies in its flexibility to be 
applied to simulate and analyse various distinct biological 
systems. It can be as efficiently used for the development 
of new models, as for the reconstruction of existing ones. 
Here, we demonstrate its power by reimplementing three 
mathematical models that have been previously published 
without providing the source code (Table 1). This includes 
i) a model of the photosynthetic electron transport chain 
(PETC) used to model photoprotective mechanisms in 
plants and green algae, originating from our lab and 
initially developed in MATLAB [15]; ii) a model of the 
Calvin-Benson-Bassham (CBB) Cycle by Poolman et al. [16], 
developed to study the dynamics of the carbon assimilation 
and iii) a model of the Pentose phosphate pathway 
(PPP), adapted by Berthon et al. [17] to investigate label 
distribution dynamics in isotope labelling experiments.

Modelling the PETC to study photoprotective 
mechanisms
Part of our research focuses on understanding the 
dynamics of various photoprotective mechanisms 
present in photosynthetic organisms [18, 15, 19]. The 
foundation of our further work constitutes the model 
of the photosynthetic electron transport chain in green 
algae Chlamydomonas reinhardtii published in 2014 [15]. 
We have reimplemented the original work in Python 
and reproduced the results published in the main text 
(Figure 2), providing a photosynthetic electron transport 
chain core model, compatible with other modelbase-
adapted modules, to further our studies on the dynamics 
of light reactions of photosynthesis.

CBB Cycle and the dynamics of carbon assimilation
Using modelbase, we have reimplemented a model 
of the CBB Cycle by Poolman et al. [16]. The model is a 
variant of the Pettersson and Ryde-Pettersson [3] model, 
where the strict rapid equilibrium assumption is relaxed 
and fast reactions are modelled by simple mass action 
kinetics. Its main purpose is to study short to medium time 
scale responses to changes in extra-stromal phosphate 
concentration and incident light. The concentrations 
of NADPH, NADP+, CO2 and H+ are considered constant, 
leaving the 13 CBB cycle intermediates, ATP, ADP and 
inorganic phosphate as dynamic variables. The model 
further incorporates a simplified starch production using 
glucose 6-phosphate and glucose-1-phosphate and a 

Table 1: Mathematical models originally published without the source-code, reconstructed in our lab using the 
modelbase package. The source code and examples are available from the GitHub repository of our lab https://
github.com/QTB-HHU/.

Process Original 
publication

GitHub.com/
QTB-HHU/

Developer

Photosynthetic Electron 
Transport Chain 

[15] ./petc-modelbase A.M.

Calvin-Benson-Bassham Cycle [16] ./cbb-modelbase M.v.A.

Pentose Phosphate Pathway [4, 17] ./ppp-modelbase T.N.
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simple ATP recovery reaction. We used the modelbase 
implementation of the Poolman model to simulate 
the steady state concentrations of the metabolites 
depending on the extra-stromal phosphate concentration 
(Figure 3), reproducing original work by Pettersson and 
Ryde-Pettersson [3]. We have observed that the system is 
not stable any more for [Pext] > 1.5, a feature not discussed 
in the Poolman paper [16].

The compatible mathematical representation of the 
two photosynthetic subsystems, the ATP-producing 
light reactions and the ATP-consuming CBB cycle, is a 
prerequisite to merge those two models. Technically, in 
the modelbase framework, this is a straight forward 
process. Scientifically, it turned out to be not a trivial task 
(unpublished work).

PPP and isotope labelling experiments
We envisage that especially our LabelModel extension will 
find a wide application in metabolic network analysis. 
Radioactive and stable isotope labelling experiments 
constitute a powerful methodology for estimating 
metabolic fluxes and have a long history of application in 
biological research [20]. Here, we showcase the potential 
of modelbase for the isotope-labelled experiments by 
reimplementing the model of the F-type non-oxidative 
PPP in erythrocytes originally proposed by McIntyre et al. 
[4]. This was later adapted by Berthon et al. for label 
experiments and in silico replication of 13C nuclear magnetic 
resonance (NMR) studies [17]. We have reproduced the 
results obtained by the authors, including the time course 
of diverse Glucose-6-phosphate isotopomers (Figure 4).

Figure 2: Reproduction of the Figures from [15]. Simulated fluorescence trace obtained through Pulse Amplitude 
Modulation (PAM) under light induced (left) and anoxia induced (right) conditions. The dynamics of the fluorescence 
decrease corresponds to the activation of a specific photoprotective mechanism called state transitions, while the 
increase in the signal after the inducer (light or anoxia) is switched off relates to the relaxation of the mechanism.

Figure 3: Metabolite steady state concentrations dependent on the extra-stromal phosphate concentration simulated 
with the Poolman implementation of the Pettersson and Ryde-Pettersson model of the CBB cycle [16].
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Figure 4: Formation of diverse Glc6P isotopomers in a haemolysate, obtained by solving the adapted model by Berthon 
et al. [17] reimplemented using modelbase.
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Other possible applications
Among many other applications, modelbase provides 
tools to reproduce the ‘photosynthetic Gibbs effect’. 
Gibbs and Kandler described it in 1956 and 1957 [8, 
9], when they observed the atypical and asymmetrical 
incorporation of radioactive 14CO2 in hexoses. An example 
of label incorporation by the CBB cycle intermediates is 
presented schematically in Figure 5.

Finally, our package provides a solid foundation for 
additional extensions to the framework architecture, its 
classes and modelling routines. To encourage its use and to 
facilitate the first steps to apply the modelbase package, 
we have prepared an interactive tutorial using a Jupyter 
Notebook [21], which showcases basic implementation of 
modelbase and each of its classes in easy to follow and 
thoroughly explained examples (see https://gitlab.com/
ebenhoeh/modelbase/blob/master/Tutorial.ipynb).

Abbreviations
CBB Calvin-Benson-Bassham; NMR Nuclear Magnetic 
Resonance; ODE Ordinary Differential Equations; PAM Pulse 
Amplitude Modulation; PPP Pentose Phosphate Pathway; 
QSSA Quasi Steady-State Approximation; SBML Systems 
Biology Markup Language; UML Unified Modeling Language.
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Abstract: Mathematical modeling of metabolic networks is a powerful approach to investigate the
underlying principles of metabolism and growth. Such approaches include, among others, differential-
equation-based modeling of metabolic systems, constraint-based modeling and metabolic network
expansion of metabolic networks. Most of these methods are well established and are implemented
in numerous software packages, but these are scattered between different programming languages,
packages and syntaxes. This complicates establishing straight forward pipelines integrating model
construction and simulation. We present a Python package moped that serves as an integrative hub for
reproducible construction, modification, curation and analysis of metabolic models. moped supports
draft reconstruction of models directly from genome/proteome sequences and pathway/genome
databases utilizing GPR annotations, providing a completely reproducible model construction and
curation process within executable Python scripts. Alternatively, existing models published in SBML
format can be easily imported. Models are represented as Python objects, for which a wide spectrum
of easy-to-use modification and analysis methods exist. The model structure can be manually
altered by adding, removing or modifying reactions, and gap-filling reactions can be found and
inspected. This greatly supports the development of draft models, as well as the curation and
testing of models. Moreover, moped provides several analysis methods, in particular including the
calculation of biosynthetic capacities using metabolic network expansion. The integration with other
Python-based tools is facilitated through various model export options. For example, a model can be
directly converted into a CobraPy object for constraint-based analyses. moped is a fully documented
and expandable Python package. We demonstrate the capability to serve as a hub for integrating
reproducible model construction and curation, database import, metabolic network expansion and
export for constraint-based analyses.

Keywords: metabolic networks; modeling; topological networks; metabolic network expansion;
network reconstruction

1. Introduction

Theoretical analysis of metabolic pathways has a longstanding tradition. The early ap-
proaches to study glycolysis, for example, have considerably increased our understanding
of fundamental regulatory principles in metabolism [1]. In recent approaches, metabolic
modeling was employed to study metabolic interdependencies in microbial communities
and to identify putative drug targets for microbial pathogens [2,3].

Several theoretical techniques to study metabolism have been established. The most
classic technique is the analysis of metabolic networks by representing them as systems of
ordinary differential equations (ODEs). This representation heavily depends on detailed
knowledge of stoichiometries, parameters of enzyme kinetics and regulatory mechanisms
of reactions [4]. This approach is extremely useful for investigating relatively small systems.
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The upsurge of novel high-throughput experimental “omics” techniques led to the collec-
tion of immense amounts of data, resulting in an ever-increasing number of fully sequenced
genomes. The improved quality of annotated genes resulted in a tremendous increase in
information of enzymes and the respective metabolic reactions. This information has been
collected in biochemical databases such as MetaCyc, BioCyc, KEGG or BiGG [5–8]. Such
databases provide information for large-scale metabolic networks of many different organ-
isms. However, analyzing such large-scale metabolic networks using systems of ordinary
differential equations is difficult. This is, to a large extent, due to missing information on
kinetic parameters of the involved enzymatic reactions [9]. One convenient alternative is
constraint-based modeling and its mathematical method flux balance analysis (FBA) [10].
This commonly used approach uses the stoichiometric matrix of a reaction network and
finds a steady-state vector of reaction fluxes that maximizes or minimizes an objective
function that linearly depends on the reaction rates. Other structural analysis techniques
focus on the topology of metabolic networks [11]. One such technique is metabolic network
expansion and the related concept of metabolic scopes. The metabolic scope describes
the set of metabolites, which are topologically producible by a given network from an
initial set of compounds [12,13]. Thus, metabolic network expansion allows to functionally
characterize metabolic networks with respect to their biosynthetic capacities [14].

Topological techniques are extremely useful in the process of curating models, in par-
ticular to identify and add missing reactions [15]. This process, called gap filling, allows,
for example, to complement draft metabolic networks in order to guarantee that observed
compounds can be produced from the growth medium [16].

Many of the techniques described above have been implemented as Python packages.
However, most of these software packages are not directly compatible with each other.

In this work, we present moped, a compact but useful Python package that serves as a
hub, offering tools for analysis, development and extension or modification of metabolic
models. The integration of BLAST and pathway/genome databases such as MetaCyc
and BioCyc into moped allows reconstructing metabolic network models directly from
genome sequences [17] and ensures that the reconstruction process is fully transparent
and reproducible. In addition to the de novo construction of models, moped provides an
interface to import existing metabolic network models in SBML format.

To facilitate curation of metabolic models, moped provides an interface to Meneco,
a topological gap-filling tool based on answer set programming [18]. All models created
with moped can easily be exported as CobraPy objects, thus directly integrating constraint-
based with model construction and modification [19]. It is even possible to extract a
scaffold model of metabolic pathways for kinetic modeling via modelbase [20]. The Python
package moped presented here is a mathematical modeling hub, which allows constructing
reproducible metabolic models de novo, integrating existing models in SMBL format,
curating models by gap filling and performing topological or constraint-based analyses.

2. Implementation

2.1. Model Import, Extension and Modification
moped uses SBML files or PGDB flat files as input for constructing a metabolic network

model. PGDBs are organism-specific pathway/genome databases containing annotated
reactions and compounds of the metabolism of the organism [6]. These databases further
include detailed information about reactions and compounds, such as sum formulas,
charges, references to other database entries or subcellular localization. This information is
of great importance for a consistent analysis of metabolic networks. SBML files represent
metabolic networks in an XML-based format and can be considered as a standard for the
exchange of reconstructed and curated metabolic models between tools and platforms [21].
Such files can be, among others, obtained from databases such as BiGG, which provides
SBML files of curated metabolic models together with information about the corresponding
publications [7].

49



Metabolites 2022, 12, 275 3 of 12

Because of the wide range of import methods (FASTA, PGDBs and SBML), one par-
ticular strength of moped is the integration of several analysis tools. An overview of
mopeds functionalities is shown in Figure 1. Furthermore, moped provides an accessible
environment to extend or modify constructed or imported models. Therefore, adding
alternative or additional metabolic pathways to pre-existing models, as well as modifying
compound and reaction identifiers, is simple and straightforward. Naturally, all moped
objects can be exported as SBML. A UML diagram of moped can be found in Figure S1 in
the Supplementary Material.

Figure 1. The modeling hub moped. moped accepts SBML, FASTA files or MetaCyc and BioCyc
PGDBs as inputs. PGDBs and SBML files are directly converted into a moped object. By BLASTing
genome/proteome-sequences against MetaCyc, moped models can be constructed utilizing GPR
rules. Further reconstruction can be achieved using Meneco for gap filling. Topological model
analysis is implemented in moped. For constraint-based and kinetic analysis, moped offers export as
CobraPy and modelbase objects, respectively [19,20].
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2.2. Tools for Metabolic Network Expansion
A useful and valuable feature of moped is the fully implemented network expansion

algorithm to perform metabolic network expansions on moped objects. Metabolic network
expansion can be used to investigate structural properties of metabolic networks, such as
biosynthetic capacities and their robustness against structural perturbations [12]. The core
concept of metabolic network expansion is the metabolic scope, which contains all com-
pounds that are producible by a network from a given initial set of compounds, termed the
seed (see Figure 2). In the expansion process, the seed is used to find all reactions that can
proceed in their annotated direction. The respective products are then added to the seed,
forming the new seed for the next expansion step. This process continues until no new
compounds can be added to the seed. Thus, scopes characterize biosynthetic capacities of
metabolic networks, based exclusively on their topology.

Figure 2. Metabolic network expansion. Beginning with an initial set of compounds, the seed (here
panel 1), the expansion process detects all producible compounds in a network and adds them to the
seed for the next generation until no additional producible compounds are found.

Network expansion depends on a precise definition of reaction reversibilities and
involved cofactors. Network expansion uses the stoichiometry of reactions to identify
producible compounds. However, stoichiometric coefficients of reactions are annotated for
one particular direction. To include the opposite direction (for reversible reactions) into
the metabolic network expansion, moped provides a method for reversibility duplication.
As illustrated in Figure 3 for triose-phosphoisomerase as an example, this method finds
all reversible reactions in a moped object and adds the reversed reaction to the network.
The new reaction identifier is identical to the identifier of the original reaction concatenated
with the suffix ‘ rev ’. This model modification can be reverted if no longer needed.

Many reactions depend on specific cofactors. Cofactors usually appear in pairs. One of
the most prominent examples is the cofactor pair ATP and ADP. In the majority of reactions
with ATP as substrate, ATP serves as a donor of a phosphate group, thus producing ADP.
Only a few reactions actually modify the adenosine moiety (for example, in nucleotide
de novo synthesis). In network expansion, therefore, no reaction utilizing ATP or ADP
as cofactor could proceed, unless these compounds are either included in the seed or can
be produced from metabolites within the seed. If the purpose of network expansion is to
realistically calculate a set of producible compounds, this behavior is not desired because it
leads to a drastic underestimation of the scope. The most naive approach to directly include
cofactors in the seed yields misleading results, because in such a case, all compounds that
can be generated from digesting, e.g., ATP would be included in the scope.

A pragmatic approach to solve this problem is the duplication of cofactors as proposed
in [12]. Here, reactions with cofactor pairs are duplicated, where the copied reactions
contain “mock cofactors”. In contrast to the real cofactors, the mock cofactors only occur
in reactions, in which they act in their role as cofactors. For ATP, this is the transfer of
a phosphate group, for NADH or NADPH the transfer of protons and electrons and for
acetyl coenzyme-A, the transfer of the acetyl group. The cofactor duplication allows the
use of mock cofactors inside the initial seed. Reactions depending on cofactors might now
be able to occur in the expansion process. However, reactions using the cofactors as proper
substrates can only occur if the real cofactor can be produced from the seed.

moped provides a convenient method for finding and duplicating all reactions using
cofactor pairs. The cofactor pairs can either be automatically determined by moped for
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networks imported from BiGG or MetaCyc (see Table S1 and S2 in the Supplementary
Material) or they can be declared individually by the user. The identifiers of the duplicated
cofactors are replaced by mock identifiers, which contain the suffix ‘ cof ’. The same
modification is applied to the respective reaction identifiers. This model modification can
be reverted if no longer needed.

The implemented methods for cofactor and reversibility duplication are commonly
used to obtain biologically meaningful results for metabolic network expansion. How-
ever, they are also highly useful for topological gap-filling using Meneco, during model
reconstruction. This is further explained in the next section.

Figure 3. Topological network modifications moped offers functions for splitting reversible reactions
into forward and backward reactions in a network. Adding a copy of each cofactor dependent
reaction and replacing cofactors (here ATP and ADP) with mock identifiers allows unblocking
cofactor dependent reactions while avoiding degradation products of cofactors contained in the seed.
Such modifications enable biologically feasible metabolic network expansion.

2.3. Reconstruction of Draft Network Models
Construction of metabolic networks highly depends on reliable databases. In order

to enable user-friendly metabolic network reconstruction, moped includes methods for
importing data from the MetaCyc and BioCyc databases, identifying homologous sets of
genes with BLAST and gap-filling.

MetaCyc is a universal, highly curated reference database of metabolic pathways
and biochemical reactions from all domains of life. BioCyc is a database of organism-
specific PGDBs containing metabolic network information based on predictions by the
PathoLogic component of the Pathway Tools software [22,23]. The MetaCyc and BioCyc
databases provide many advantages. Both databases are freely available for academic
and nonprofit users. All PGDBs are available in useful flat file formats. Furthermore,
these databases include information on the reaction directions based on experimental
references and thermodynamics, extensive annotations and, therefore, information about
gene–protein–reaction (GPR) associations, as well as thermodynamic information about
metabolites and reactions such as the Gibbs energy of formation and the standard Gibbs
energy of reactions.

In order to use BioCyc and MetaCyc for metabolic network construction and analysis,
moped offers a parser for PGDBs, allowing direct construction of moped objects from
MetaCyc or BioCyc flat files. moped objects can directly be used for network analyses
including network expansion and constraint-based modeling. Especially for the latter, it
is extremely important that all reactions are mass- and charge-balanced to ensure that all
solutions obey mass conversation. Therefore, only reactions which are mass- and charge-
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balanced are parsed in moped. While this process has the danger of omitting annotated
genes, including reactions that are not mass- or charge-balanced would violate fundamental
physical principles and lead to unrealistic model properties. This pipeline provided by the
database import and parsing of moped makes it straightforward to construct prokaryotic
network models. For eukaryotic metabolic networks, however, intensive and careful
curation is required due to missing compartment information. More detailed information
about the parsing of PGDBs using moped can be found in the documentation.

There exist several pipelines to automatically extract a set of metabolic reactions from
a genome or proteome sequence. One popular pipeline is the above mentioned PathoLogic
software. moped integrates such a pipeline into the Python programming language, directly
converting a genome/proteome sequence into a moped object that can be immediately used
for modeling applications. This functionality is provided by an implemented wrapper for
local BLAST to find enzyme reactions in genome sequence fasta files or proteome fasta files
by similarity search against enzyme reference sequences from the MetaCyc database. This
method constructs a new moped object representing a metabolic network of all reactions
that are found in a genome sequence or proteome using enzyme monomer amino acid
sequences and protein–reaction annotations from MetaCyc to ensure fulfilled gene–protein–
reaction associations (GPRs) in all found reactions [24]. This process can be controlled by
user-defined thresholds. This integrated pipeline makes the model reconstruction perfectly
reproducible and illustrates the functionality of moped as a modeling hub.

The next curation step after the initial automatic network construction is usually
gap-filling. This describes a process in which reactions are added to the network in order
to ensure that the reconstructed model reflects experimentally observed behavior, such
as the production of experimentally measured compounds from the growth medium [25].
There are many available gap-filling methods such as GapFill or MIRAGE [26,27]. Most
of these methods are based on constraint-based approaches. A common problem is that
these approaches can predict gap-filling solutions that use thermodynamically infeasible
cycles. In this sense, these approaches are sensitive to self-producing or energy-generating
cycles [18]. Meneco, in contrast, is a topological gap-filling tool based on the network
expansion algorithm. Meneco calculates a minimal set of reactions that need to be added to
a draft network such that a specified list of target compounds can be produced from a given
set of seed compounds. This gap-filling approach offers the advantage that it is inherently
impossible for gap-filling solutions to depend on infeasible cycles. Meneco gap-filling can
be directly applied as a method to moped objects. One moped object represents the draft
network and a second the repair network, from which the added reactions are chosen.

The topological network modifications, i.e., reversibility and cofactor duplication,
harmonize ideally with the application of Meneco, resulting in networks with biologically
realistic behavior. This again illustrates the integrative nature of the modelling hub moped.
For an accurate manual curation, automatically determined gap-filling reactions should
always be manually inspected before adding them to the network model.

A major advantage and distinguished feature of moped is the complete reproducibility
of the construction of draft models, which is much needed in systems biology, and the
subsequent manual curation [28]. In moped, the user can add and remove reactions, or even
entire pathways, from draft networks. Furthermore, the user can inspect the reactions
found by Meneco to fill gaps and decide if these reactions are valid for specific models.
All user decisions become part of an executable Python script, making them perfectly
reproducible by others. This underlines that in moped, early curation can be integrated
closely into the draft model reconstruction process. The importance of such reproducibility
and traceability has recently been highlighted [29]. To our knowledge, this feature is
unique to is unique to moped and is not yet found in any other reconstruction software.
For constraint-based modeling, the user can define which exchange reactions are to be
included and, if desired, define their own specific objective functions. moped offers a
template biomass function which is based on the iJO1366 and iML1515 biomass functions
(see Table S3 in the Supplementary Material); however, users should be encouraged to
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design their own specific and precise biomass function for their models as a part of correct
manual curation. Reconstructing draft networks in moped lays the ground for model
curation without the need to change software environments. In all reconstruction and
curation steps, user decisions are documented as commands in an executable Python script,
thus making them fully reproducible and transparent.

3. Results

3.1. Displaying the Advantage of Cofactor Duplications in Topological Network Analysis
To display the benefits of including the moped cofactor duplication, three established

models of E. coli, B. subtilis and Synechocystis sp. PCC 6803 have been parsed into moped
for a comparative metabolic network expansion [30–32]. In this analysis, we calculated all
single metabolite scopes (i.e., the scopes for the seed consisting only of a single metabolite
and water) for the respective models. This has been done in three variations: (i) including
no cofactors to the seed, (ii) including the original cofactor compounds and (iii) including
on the mock cofactors resulting from cofactor duplication (see above). Figure 4 displays
the scope sizes (number of compounds contained in the scope) for each model and each
variant to calculate the scopes. Apparently, without cofactors, the scopes are small for most
compounds (blue lines). This can be explained by the missing connectivity for reactions
that require cofactors. The analysis including the actual cofactor compounds in the seed
(orange lines) displays an unrealistically large metabolic scope for every compound, even
for inorganic metabolites. This can be explained by the fact that cofactors are usually
rather complex metabolites, and now all degradation processes are included during the
network expansion. Therefore, the resulting metabolic scopes are no longer reflecting
the property of the compound of interest but rather the degradation products of the
metabolized cofactor compounds. The corresponding analysis of models using cofactor
duplication and mock cofactors duplicates in the seed (green lines) demonstrates that for
small or inorganic metabolites, the scope is still relatively small. For more complex organic
compounds, the metabolic scope is increasing without artificially increasing the scope
size with degradation products of cofactors. This demonstrates the perks of including
cofactor duplication and mock cofactors in seeds for biologically more realistic metabolic
network expansions.

Figure 4. Metabolic scopes in established models of E. coli (iML1515), B. subtilis (iYO844) and
Synechocystis sp. PCC 6803 (iSynCJ816). The differently colored graphs represent the same analysis
but including no cofactors, actual cofactors and cofactor duplicates in the seed.

3.2. Applying Metabolic Network Expansion to a Model of E. coli Core Metabolism
We illustrate moped’s metabolic network expansion algorithm with a compact net-

work of E. coli core metabolism, which is freely available in SBML format from the BiGG
database [33]. After importing the SBML file into moped, we applied cofactor and re-
versibility duplications as described above.

For each metabolite in the network, we calculate the scope size, i.e., how many new
compounds are producible if only this metabolite, water and a set of mock cofactors are
available. The results of that analysis are displayed in Figure 5. In this relatively small
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metabolic network (72 metabolites and 95 reactions), eleven key compounds, which are
mostly part of central metabolism, exhibit a largest observed scope size of 47. Such detailed
metabolic network expansion is useful to provide insight about central metabolites, as well
as structural and functional characteristics of metabolic networks [14]. Whereas we here
only display the scope size, the methods implemented in moped allow a far wider
spectrum of analysis methods, including determination the set of producible metabolites,
as well as following each step of the expansion process. The code used to produce
the results and Figure 5 can be found on https://gitlab.com/marvin.vanaalst/moped-
publication-2021/-/tags/final-publication, accessed on 13 December 2021.

Figure 5. Metabolic scopes of all compounds in the E. coli core metabolic model calculated using
moped. The Y-axis indicates the total amount of compounds producible from every compound,
water and a set of acceptor mock cofactors.

3.3. Comparison of Draft Reconstructions with Established Models and Softwares
We demonstrate how moped provides a complete and easy-to-use pipeline to construct

genome scale models from genome and proteome sequences and how these models can be
directly applied for constraint-based analyses. For this, we download the freely available
proteome sequences of Escherichia coli str. K-12 substr. MG1655, Synechocystis sp. PCC
6803 and Bacillus subtilis strain 168 [34–36]. We import the MetaCyc PGDB to construct
a moped object of the MetaCyc database as a reference network. Applying the BLAST
wrapper, which was described above, to the FASTA files and the reference network, we
obtained three moped objects, representing the draft network reconstructions. Then, we
applied gap filling to ensure that the reconstructed models can produce all basic biomass
compounds (inspired by the E. coli biomass reaction from iJO1366 [37], including all nucleic
acids, amino acids and lipid precursors) from M9 minimal glucose medium. For this
analysis, we directly accepted all resulting gap-filling reactions. For a more accurate
reconstruction, the proposed gap-filling reactions should be manually inspected before
addition to the draft model. We added exchange reactions for all medium compounds
and tested if the draft models can exhibit a stationary flux distribution to produce biomass,
as determined by flux balance analysis. The construction of these models can be reproduced
using the notebooks provided on our accompanying git.

In order to test the quality of our draft models, we compared them with established
models for the respective organisms (iML1515, iYO844 and iSynCJ816) [34–36]. Further-
more, we used the same dataset and medium to construct draft models with the established
genome scale modeling reconstruction software CarveMe [38]. In order to quantitatively
compare all three versions of the organism network reconstructions, we used metabolic
model testing (MEMOTE) pipeline to establish a fair and reproducible comparison [39].
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MEMOTE calculates scores for genome scale metabolic models to evaluate the stoichiomet-
ric consistency, the GPR rules and the quality of annotations for reactions and metabolites
in the respective models. A summary of the MEMOTE evaluations for the three models
for the three organisms is presented in Figure 6. The MEMOTE evaluation shows that the
stoichiometric consistency of draft models produced by moped is always of high quality.
Figure 6 shows that draft models reconstructed by CarveMe and moped display generally
good overall scores and annotations. While CarveMe draft model reconstructions show
the tendency to provide better reaction annotations, moped draft model reconstructions
display a generally better annotation of genes and GPR rules.

Figure 6. MEMOTE evaluations for draft model reconstructions produced by CarveMe and moped,
as well as established models, for E. coli, Bacillus subtilis and Synechocystis sp. PCC 6803. MEMOTE
evaluations include the stoichiometric consistency and the annotation level of models.

The functionality and predictive power of draft models constructed by moped has
been compared for Escherichia coli str. K-12 substr. MG1655 with a similarly constructed
draft model using CarveMe, and the iML1515 model. For this analysis, the models auto-
matically constructed moped and CarveMe were analysed without further modification.
We calculated maximal growth rates, respective ATP production rates and exchange fluxes
for compounds in the medium. Furthermore, we calculated optimal production rates
for amino acids and nucleic acids. These model functionalities have been compared to
the predictions of iML1515. Figure 7A displays the predicted fluxes of the draft models
constructed by moped and by CarveMe relative to the predictions of iML1515. In the
radar plots, the relative distance is indicated. For two flux values v1 and v2, the distance
min(v1/v2, v2/v1) is plotted. The draft model constructed with moped shows a higher
similarity to the behaviour of iML1515 in almost all functionalities, especially in oxygen
uptake rate, ATP production rate and nucleic acid synthesis. Some discrepancies between
the model behaviours can be linked to slightly differing biomass compositions and lower
bounds for exchange fluxes. In order to reduce such bias, we performed the same analysis
but with such adjustments that biomass compositions and all lower and upper bounds are
identical. Extended MEMOTE evaluations can be found in Figure S2 in the Supplementary
Material. Figure 7B shows that now draft models produced with moped and CarveMe
exhibit very similar behaviour to iML1515 in all functionalities, except in nucleic acid
synthesis, in which moped draft models are more similar to iML1515. The overlap of GPR
annotations of the draft model constructed with moped and iML1515 is shown in Figure 7C.
The vast majority of genes in the draft model constructed with moped can be found in
iML1515 and therefore illustrates the quality of the automated reconstruction. This analysis
has only been performed with the draft model constructed with moped because the draft
model constructed with CarveMe and iML1515 do not share any common database links.
These results shows that draft model reconstructions made with moped exhibit a high
quality that is able to keep up with the quality of established models and software tools.
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(A)
(B) (C)

Figure 7. Functional comparison of the draft model reconstructions using moped and CarveMe with
iML1515. We calculated maximal growth rates, respective ATP production rates and exchange fluxes
for compounds in the medium, as well as optimal production rates for amino acids and nucleic
acids for completely unmodified draft models (A) and models with identical biomass functions and
reaction bounds (B). In the radar plots, the relative distance between the two values are reported.
Panel (C) shows the overlap of GPR annotations found in the draft model constructed with moped
and iML1515.

4. Conclusions

Here, we present moped, a Python package representing a hub connecting the con-
struction, modification and curation of genome scale metabolic networks with various
analysis methods, which support studies of metabolic networks. moped supports the de
novo construction of metabolic networks by importing databases, providing homology
searches, including GPR associations and integrating an established gap-filling routine
without the need to change software environments. Existing models from external sources
can be imported using the standardized format SBML. Metabolic network models are
represented as moped objects, which can be modified by easy-to-use and intuitive methods.
moped models can be exported into various formats, thus integrating a diverse set of
established analysis tools. Metabolic network expansion and constraint-based optimization
can be easily performed for any model represented as a moped object.

Examination of moped draft model reconstructions using MEMOTE demonstrated
that the resulting models are generally of a high quality. The strength of draft model
reconstructions with moped is the direct integration into the Python programming lan-
guage: Every decision in the automatic and manual reconstruction process is documented
in executable Python scripts. Therefore, the whole reconstruction process becomes fully
transparent and is easily reproducible by any interested user.

The modular architecture of the open source package moped is particularly designed
for allowing further extensions to enhance its functionality, such as the integration of
additional software tools. We provide an extensive documentation for moped, as well as
troubleshooting guides, unit-tests for all provided methods and example notebooks illustrat-
ing the usage of moped at https://gitlab.com/marvin.vanaalst/moped-publication-2021
(accessed on 13 December 2021).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12040275/s1, Figure S1: UML diagram of core packages in moped, Figure S2: Extended
MEMOTE evaluations for draft model reconstructions, Table S1: Cofactor pairs of MetaCyc identifiers,
Table S2: Cofactor pairs of BiGG identifiers, Table S3: Default biomass composition
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The photosynthetic electron transport chain (PETC) provides energy and redox
equivalents for carbon fixation by the Calvin-Benson-Bassham (CBB) cycle.
Both of these processes have been thoroughly investigated and the underlying
molecular mechanisms are well known. However, it is far from understood
by which mechanisms it is ensured that energy and redox supply by photo-
synthesis matches the demand of the downstream processes. Here, we deliver
a theoretical analysis to quantitatively study the supply–demand regulation
in photosynthesis. For this, we connect two previously developed models,
one describing the PETC, originally developed to study non-photochemical
quenching, and one providing a dynamic description of the photosynthetic
carbon fixation in C3 plants, the CBB Cycle. The merged model explains how
a tight regulation of supply and demand reactions leads to efficient carbon
fixation. The model further illustrates that a stand-by mode is necessary in the
dark to ensure that the carbon fixation cycle can be restarted after dark–light
transitions, and it supports hypotheses, which reactions are responsible to gen-
erate such mode in vivo.

Introduction

Decades of multidisciplinary research of photosynthe-
sis resulted in a detailed understanding of the molecu-
lar, regulatory and functional mechanisms of light-driven
carbon fixation. Yet, still much is to uncover, especially
in terms of identifying processes limiting photosynthetic
productivity, and further basic research will be necessary
to redesign and potentially optimize photosynthesis (Ort
et al. 2015, Cardona et al. 2018). Historically, the pro-
cess of photosynthesis has been divided into two parts.
The so-called ‘light reactions’ of the photosynthetic elec-
tron transport chain (PETC) convert light into chemical

Abbreviations – CBB, Calvin-Benson-Bassham; MCA, metabolic control analysis; NPQ, non-photochemical quenching;
ODE, ordinary differential equations; PETC, photosynthetic electron transport chain; PPP, pentose phosphate pathway;
PQ, plastoquinone; PS, photosystem; Ru5P, ribulose-5-phosphate; SBPase, seduheptulose-1,7-bisphosphatase; TPT, triose
phosphate transporters.

†These authors equally contributed to this work.

energy, supplying ATP and NADPH. This energy is used
to drive the carbon dioxide reduction and fixation pro-
cesses known as the ‘dark reactions’. Thus, the photo-
synthetic light and dark reactions can be viewed as a
molecular economy supply–demand system (Hofmeyr
and Cornish-Bowden 2000, Rohwer and Hofmeyr 2008,
Christensen et al. 2015).

Despite this clear interdependence, these processes
are often studied in isolation. This approach permits a
detailed and in-depth analysis of particular components
at the cost of simplifying others. This separation is also
reflected in theoretical research. Numerous approaches
in the past decades aimed at translating the complexity
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of photosynthesis into a mathematical language, result-
ing in an impressive portfolio of kinetic models. The
majority of these models focus either on the supply
or on the demand side. Many classical models of the
Calvin-Benson-Bassham (CBB) cycle, such as the bio-
chemical models for C3 photosynthetic CO2 assimila-
tion (Hahn 1986, 1987, Pettersson and Ryde-Pettersson
1988, Poolman et al. 2000, Farquhar et al. 2007, Zhu
et al. 2007, 2009), made no attempt to model the pro-
cesses of the PETC in any detail. Instead, they simplify
the rate of electron transport supplying ATP and NADPH
in often just one lumped reaction (e.g. non-rectangular
hyperbola as a function of absorbed irradiance in the
study by Morales et al. (2018a)), or even considered key
components as constant (NADPH in the study by Petters-
son and Ryde-Pettersson (1988)). Likewise, many mod-
els of the PETC made no attempt to include details of
the energy consuming reactions and describe ATP and
NADPH demand by simple lumped reactions. Such an
understandable simplification resulted from the fact that
these models were created to study specific light harvest-
ing mechanisms, such as state transitions (Ebenhöh et al.
2014), non-photochemical quenching (NPQ) (Ebenhöh
et al. 2011, Zaks et al. 2012, Matuszyńska et al. 2016)
or the role of antenna complexes in photosynthetic pro-
ductivity (Rubin and Riznichenko 2009).

The purpose of this study is to provide a theoreti-
cal understanding of the interactions and interdepen-
dencies of the PETC and the carbon fixation cycle,
with a focus on investigating the supply–demand con-
trol of photosynthesis. For such an exercise, mathe-
matical models are ideally suited, because they allow
systematic alterations of parameters, which are not eas-
ily accessible experimentally, and thus to draw gen-
eral conclusions about regulatory principles. Apparently,
investigating the delicate supply–demand system of pho-
tosynthesis requires a mathematical model that contains
both processes. Noteworthy, there exist a few success-
ful attempts to include both electron transport and car-
bon assimilation processes into a unified mathematical
framework. The model proposed by Laisk et al. (2006)
provides a solid summary of our knowledge on photo-
synthesis. The model was constructed with an emphasis
on including the electron transport through photosys-
tems PSII and PSI, together with a detailed description of
the downstream metabolism. As a result, the model can
represent steady state photosynthesis and chlorophyll flu-
orescence, but is insufficient to reproduce dark–light
induction of photosynthesis, a property that is critical
in the context of our proposed supply–demand analy-
sis. The ‘e-photosynthesis’ model by Zhu et al. (2013)
is a comprehensive description including ‘as many
photosynthesis-related reactions as possible’. Because of

its complexity, using the e-photosynthesis model (Zhu
et al. 2013) for a systematic supply–demand analysis
is challenging. Moreover, the highly detailed descrip-
tion of the molecular processes included in the model
makes it hard to draw conclusions of general validity.
Finally, Morales et al. (2018b) recently developed a thor-
ough model of the PETC, including all relevant pro-
cesses at the chloroplast and leaf level. Nevertheless,
as the emphasis of this model was on the PETC regu-
lation, the CBB cycle has been simplified into two steps.
This imbalance in the levels of detail describing the two
sub-processes is the main reason why we decided against
using it.

We have therefore developed a new photosynthe-
sis model that contains the key components of both
subsystems, yet is simple enough to allow for system-
atic investigations. The model has been constructed by
merging a model of the PETC, originally designed to
study photoprotective mechanisms (Ebenhöh et al. 2014,
Matuszyńska et al. 2016), with a kinetic model of C3 car-
bon fixation (Pettersson and Ryde-Pettersson 1988, Pool-
man et al. 2000). We demonstrate that coupling these
two models into a connected supply–demand system is
possible, but far from trivial, and results in new emer-
gent properties. Using metabolic control analysis (Kacser
and Burns 1973, Heinrich and Rapoport 1974, Hein-
rich and Schuster 1996) and metabolic supply–demand
analysis (Hofmeyr and Cornish-Bowden 2000), we pro-
vide a quantitative description how the control over the
overall photosynthetic flux is distributed under various
conditions. Moreover, our model analysis illustrates the
need for a stand-by mode of the carbon fixation cycle
in the dark to ensure that it can be restarted after pro-
longed dark periods. Our model results demonstrate that
the oxidative pentose phosphate pathway (PPP) can pro-
vide exactly this functionality. Remarkably, deactivation
of CBB enzymes in the dark alone is insufficient to
enable reactivation. These insights could not have been
obtained without a model that merges light-dependent
and -independent reactions.

We further expect that our model presented here
serves as a basis for future developments. We have
specifically constructed the model in a modular archi-
tecture, which makes it technically straight-forward
to include other relevant interacting pathways, such
as photorespiration or other ATP consuming pro-
cesses. Together with quantitative experimental data,
it will be possible to parameterize the model to spe-
cific organisms and conditions. Thus validated, we
expect that the model becomes a useful tool to pre-
dict how photosynthetic efficiency is affected upon
environmental or genetic perturbations. We therefore
envision that our model, with suitable modifications,
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Fig. 1. Schematic representa-
tion of the photosynthetic pro-
cesses described by our merged
mathematical model. The reac-
tions take place in two compart-
ments. In the lumen, the four
protein supercomplexes (PSII, PSI,
Cytb6f and ATPase) are embed-
ded, which drive the electron
transport in two modes, lin-
ear and cyclic; the stroma pro-
vides the compartment of C3
photosynthetic carbon fixation.
The cytosol defines the system
boundary. In color (green and
blue) we have highlighted the
reactions linking the two sub-
models: The production and con-
sumption of ATP and NADPH,
respectively.

will provide a sound theory that supports attempts
to improve photosynthetic performance in a targeted
manner.

The model

We are presenting here the result of connecting two
previously developed kinetic models of photosynthesis,
both based on ordinary differential equations (ODEs).
The first model describes the primary photosynthetic
reactions through the PETC, leading to the production
of ATP and NADPH. The CBB cycle is considered as the
main consumer of the produced energy and reducing
equivalents. Therefore in this model, the downstream
metabolism has been simplified to two consuming
reactions governed by mass action kinetics. It has been
developed based on our previous work: the core model
of the PETC by Ebenhöh et al. (2014) and the model
of high-energy dependent quenching in higher plants
developed by Matuszyńska et al. (2016). Using this
model, we are able to compute the fluorescence emis-
sion under various light protocols, monitor the redox
state of the thylakoids and the rate of ATP and NADPH
synthesis. The second model is the Poolman (Poolman
et al. 2000) implementation of the carbon fixation
model by Pettersson and Ryde-Pettersson (1988), repro-
duced in our institute using the modelbase software
(Ebenhöh et al. 2018). In contrast to the original model

(Pettersson and Ryde-Pettersson 1988), in the Poolman
representation the rapid equilibrium assumptions were
not solved explicitly, but instead approximated by
mass-action kinetics with very large rate constants.
Solving the system of ODEs allows computation of
different carbon fixation rates and reaction activities
at varying concentrations of external orthophosphate.
In the original model, the input of the ETC has been
simplified by a single lumped reaction of ATP synthesis
(v16 in the study by Pettersson and Ryde-Pettersson
1988), while NADPH has been kept as a constant
parameter.

Included processes and the stoichiometry

The model, schematically represented in Fig. 1, com-
prises 35 reaction rates and follows the dynamics of
24 independent state variables (Appendix S1, Sup-
porting Information, for a full list of reaction rates and
ODEs). In addition, we compute a number of val-
ues such as emitted fluorescence or variables derived
from conserved quantities. Light is considered as an
external, time-dependent variable. As the focus of this
model is to study basic system properties, such as the
response to relative changes in the light intensity, we
did not calibrate our simulations to experimentally
measured light intensities. Therefore in this work, light
is expressed in micromoles of photons per square meter

394 Physiol. Plant. 166, 2019

63



per second (�mol m*2 s*1) and reflects the quantity of
light efficiently used, but the conversion factor to the
photon flux density of the incident light is unknown. We
included two compartments in our model, the thylakoid
lumen and the chloroplast stroma. In the lumen, the reac-
tion kinetics for oxidized plastoquinone (PQ), oxidised
plastocyanin, oxidized ferrodoxin, lumenal protons
(H) and non-phosphorylated antenna (light harvesting
complexes) were taken from Ebenhöh et al. (2014). The
four-state description of the quencher activity, based on
the protonation of the PsbS protein and activity of the
xanthophyll cycle, was taken from our mathematical
model of NPQ, initially developed to study short-term
light memory in plants (Matuszyńska et al. 2016). The
previous description of ATP and NADPH consuming
reactions is supplemented by the detailed description of
the CBB cycle, taking place in the stroma. Processes of
the CBB cycle have been implemented as in the math-
ematical model of C3 photosynthesis by Poolman et al.
(2000), based on the original work of Pettersson and
Ryde-Pettersson (1988). The original model reproduces
different carbon fixation rates and reaction activities
at different concentrations of external orthophosphate,
and includes the conversion of fixed carbon into either
triose phosphates or sugar and starch. This model has
been parametrized for CO2 saturating conditions and
we kept the same assumption for all our analyses. The
previous description of ATP synthesis is supplemented in
our model with the new rate vATPsynthase, which depends
on the proton motive force built up by the PETC activ-
ity. Moreover, the stromal concentration of NADPH
is dynamic.

Model compartments and units

The original models were initially developed for different
organisms (Ebenhöh et al. (2014) for Chlamydomonas
reinhardtii, Matuszyńska et al. (2016) for Arabidopsis
thaliana and Pettersson and Ryde-Pettersson (1988),
Poolman et al. (2000) based on data for isolated
spinach chloroplasts). Moreover, concentrations and
rates were expressed in different units. This patch-
work of parameters motivated us to create a general
model of photosynthesis, which is not restricted to a
single organism. To keep the original structure of the
models, but provide consistency, we have kept the
original units for each of the compartments and used
a conversion factor (pconvf, Appendix S1) to convert
quantities where needed. Thus, concentrations of pro-
teins and pool sizes inside the lumen are expressed
as in previous models of the electron transport (Eben-
höh et al. 2014, Matuszyńska et al. 2016) in mmol
(mol Chl)*1, and the first order rates in mmol (mol

Chl)*1 s*1. Concentrations of metabolites and pools
inside the stroma are expressed in mM, as in (Pettersson
and Ryde-Pettersson 1988; Poolman et al. 2000). To
convert the concentration of ATP produced through
the electron transport chain activity, expressed in mmol
(mol Chl)*1, to mM, used to express concentrations
in the stroma, we made several assumptions, as in our
previous models of photosynthesis (Ebenhöh et al. 2011,
2014, Matuszyńska et al. 2016), which were originally
derived from Laisk et al. (2006)): (1) chlorophyll content
is assumed to be fixed and equal to 350 · 10*6 mol m*2

thylakoid membrane, (2) the volume of thylakoid
stroma and lumen are 0.0112 and 0.0014 l m*2,
respectively. Thus, 1 mmol (mol Chl)*1 corresponds
to 2.5 · 10*4 M in the lumen and 3.2 · 10*5 M in the
stroma. Although the results presented here have been
obtained for these particular values describing the
surface-to-volume ratios inside the chloroplast, it is in
principle easy to change the according parameters to
reflect different experimental conditions (Matuszyńska
et al. 2016).

Computational analysis

The model has been implemented using the modelbase
software, a console-based application written in Python,
recently developed by us (Ebenhöh et al. 2018). Sto-
ichiometry and parameters are provided in Appendix
S1, to be found on our GitHub repository (www.github
.com/QTB-HHU/photosynthesismodel). Moreover, we
provide a Jupyter Notebook that allows the user to repeat
all the simulations leading to the production of the
figures presented in this manuscript.

Reliability of the model

We have assembled the model of photosynthesis adapt-
ing previously validated and published mathematical
models of two interdependent processes. We have used
the same parameters as reported in the previous work
and did not perform any further parameter fits (the full list
of parameters is provided in Tables S1–S5 in Appendix
S1). We have monitored the evolution of several critical
parameters to evaluate physiological plausibility of our
computational results, including lumenal pH (kept under
moderate light around 6), RuBisCO rate (in the order of
magnitude of measured values) and the redox state of
the PQ pool, used as an estimate of the overall redox
state. Moreover, systematic steady state analysis of the
model under different light conditions lead to plausible
concentrations of CBB cycle intermediates and fluxes, as
reported in the literature (Pettersson and Ryde-Pettersson
1988).
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Fig. 2. Simulations of light–dark–light transitions for different light intensities, ranging from 20 to 200 �mol m*2 s*1. Shown are the dynamics of
internal orthophosphate concentration, triose phosphate transporter (TPT) export and carbon fixation rates. The simulated time-courses are shown
from 200 s, when the system has reached a stationary state. From 300 to 500 s (gray area), the external light has been set to 5 �mol m*2 s*1. The
figure illustrates that for low light intensities the CBB cycle fails to restart in the second light period.

Results and discussion

We used our merged model of photosynthesis and car-
bon fixation to perform a systematic supply–demand
analysis of the coupled system. First, we have integrated
the system for various constant light intensities until it
reached steady state. Examples are provided in Fig. S1
in Appendix S1. We observed reasonable stationary val-
ues of intermediates and fluxes for most of the light inten-
sities. However, under very low light intensities (below
5 �mol m*2 s*1), the phosphorylated CBB cycle inter-
mediates dropped to zero, and ATP reached the maxi-
mal concentration equalling the total pool of adenosine
phosphates. Depending on the initial conditions, either
a non-functioning state, characterized by zero carbon
fixation rate, or a functioning state, characterized by a
positive stationary flux, was reached. This observation of
bistability constituted the starting point of our analysis of
the tight supply–demand relationship.

In order to analyze this behavior in more detail, we
performed time course simulations, in which the light
was dynamically switched from constant sufficient light
(between 20 and 200 �mol m*2 s*1), to a ‘dark phase’ of
200 s duration with a light intensity of 5 �mol m*2 s*1,
back to high light, and observed the dynamics of the
model variables. In Fig. 2 we display the dynamics of
the internal orthophosphate concentration, the sum of
all three triose phosphate transporter (TPT) export rates
and the RuBisCO rate (from top to bottom, respectively)
during such light–dark–light simulations.

In agreement with the steady-state simulations, higher
light intensities result in a higher overall flux during the
initial light phase. Higher carbon fixation and export
fluxes are accompanied by lower orthophsophate con-
centrations, which reflect higher levels of CBB cycle
intermediates. In the dark phase, the non-functional
state with zero carbon flux is approached. While rates
decrease, orthophosphate increases, reflecting a deple-
tion of the CBB intermediate pools. In the second light
phase, only the simulated transitions to light intensities
of 150 and 200 �mol m*2 s*1 could recover a functional
state under the chosen conditions. For lower light intensi-
ties, apparently the CBB intermediate pool was depleted
to a level, at which re-illumination fails to recover
the CBB cycle activity. Obviously, this behavior dis-
agrees with everyday observations in nature (plant leaves
recover from dark periods also under low light intensi-
ties). Nevertheless, the model is useful to generate novel
insights. First, it illustrates that a critical threshold of inter-
mediate concentrations exists. If levels drop below this
threshold, the cycle cannot be re-activated. Second, it
explains the mechanisms leading to intermediate deple-
tion. Under low light conditions, insufficient energy sup-
ply results in reduced activity of ATP and NADPH depen-
dent reactions in the carbon fixation cycle, leading to a
reduced regeneration rate of ribulose 1,5-bisphosphate
from ribulose-5-phosphate (Ru5P). Simultaneously, the
reversible (ATP independent) reactions remain active.
As triose phosphates are products of reversible reac-
tions, these continue to be exchanged via the TPT
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Fig. 3. Simulations in light
intensity of 500 �mol m*2 s*1 for
different initial concentrations
of Ru5P, ranging from 0.35 to
0.5 mM. The Ru5P abundance
is shown after 10 s, when
the system is approximately
equilibrated. The dashed line
displays the critical concentration
for sufficient cyclic activity after
equilibrating. The figure displays
that initial Ru5P concentrations
below 0.44 mM result in a loss of
Ru5P abundance.

export reactions with free phosphate, which leads to a
depletion of the CBB cycle intermediates and a con-
comitant increase of the orthophosphate pool. This fur-
ther illustrates that even deactivating key light-regulated
CBB enzymes in the dark will not prevent the col-
lapse of the cycle, because the continued activity of the
reversible reactions and the triose phosphate transloca-
tor will still lead to depleted cycle intermediates (Fig. S2
in Appendix S1).

Clearly, the model is missing important mechanisms
that prevent such a functional failure. In particular, we
are interested in how a stand-by mode can be realized,
in which intermediate levels are maintained above the
critical threshold, while at the same time the resources
required to do so, are minimized. A possible strategy to
prevent the collapse of the carbon fixation cycle is to
resupply important intermediates. One biochemical pro-
cess in plants that is known to produce Ru5P is the oxida-
tive phase of the PPP, in which one glucose-6-phosphate
molecule is oxidized and decarboxylated to Ru5P, while
producing NADPH and CO2 (Kruger and Von Schaewen
2003). In order to estimate critical intermediate levels
required to prevent the collapse of the carbon fixation
cycle, we performed simulations under sufficient light
(500 �mol m*2 s*1), with different initial conditions: the
initial concentrations of all carbon fixation intermedi-
ates are set to zero, except for Ru5P. The simulated
Ru5P concentration, depicted in Fig. 3, displays a char-
acteristic dynamic. In the first seconds, the CBB cycle
intermediates are equilibrated by the fast reversible reac-
tions. If the equilibrated Ru5P concentration remains
above the critical threshold of approximately 2.5 �M,
the cycle reaches a functional state, if it falls below, it
will collapse. Interestingly, the threshold concentration
is rather independent of the light intensity (Fig. S3 in
Appendix S1).

To simulate a simple mechanism implementing a
stand-by mode, which maintains sufficient CBB cycle
intermediate levels, we introduced a trivial conceptual
reaction, exchanging inorganic phosphate with Ru5P.
Fig. 4 displays simulated steady state values of the
relative stromal ATP concentrations, Ru5P concentra-
tions and lumenal pH in insufficient light conditions
(5 �mol m*2 s*1) as a function of the Ru5P influx. Again,
a clear threshold behavior can be observed. If the
Ru5P influx exceeds approximately 4 �M s*1, not only
CBB intermediates assume non-zero concentrations, but
also the lumenal pH reaches realistic and non-lethal
levels.

As expected, increased Ru5P influx results in
increased stationary Ru5P concentrations, which is
accompanied by an increased flux through RuBisCO
and the TPT exporter (Fig. S4 in Appendix S1),
indicating a higher stand-by flux, and therefore,
a higher requirement of resources to maintain this
mode.

These results suggest that a constant flux providing
Ru5P in the dark with a rate just above the critical
threshold of 4 �M s*1 should maintain intermediate
CBB levels sufficiently high, while at the same time
minimize the required investment. Indeed, with a con-
stant supply of Ru5P with 5 �M s*1, the system can
be restarted and reaches a functional stationary state
after a prolonged dark period (Fig. S5 in Appendix S1).
Per carbon, this rate translates to 25–30 �M carbon/s,
depending whether the pentoses are directly imported
or derived from hexoses. Comparing this to stationary
carbon fixation in the light of 0.1–1 mM s*1 (for light
intensities between 20 and 200 �mol m*2 s*1, Fig. 2 and
Fig. S1 in Appendix S1) shows that resupply under these
conditions would consume a considerable fraction of
the previously fixed carbon. This calculation demon-
strates the importance of down-regulating the CBB
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Fig. 4. Steady state simula-
tions in low light intensity of
5 �mol m*2 s*1 and systemati-
cally increasing influxes of Ru5P
from 0 to 0.08 mM s*1. The
figure displays normalized ATP
abundance, Ru5P concentration
and lumenal pH.

cycle in dark conditions for a positive carbon fixation
balance over a day/night cycle. Indeed, key enzymes
in the carbon fixation cycle are known to be regu-
lated by the pH and the redox state of the chloroplast
stroma. For example, RuBisCO activity is controlled
by proton levels and magnesium ions (Tapia et al.
2000, Andersson 2008). Fructose-1,6-bisphosphatase,
seduheptulose-1,7-bisphosphatase (SBPase) and Phos-
phoribulokinase are all controlled by the redox state
through the thioredoxin-ferredoxin system, and also by
pH (Chiadmi et al. 1999, Raines et al. 2000, Raines
2003). Furthermore, Hendriks et al. showed the light
dependency of the ADP-glucose pyrophosphorylase
(Hendriks et al. 2003), which is part of the lumped
reaction vStarch in our model. All these mechanisms will
lead to a considerable reduction of the required stand-by
flux of the CBB cycle, but are not yet included in our
simple merged model.

In the original formulation of our model without con-
stant Ru5P supply or light-dependent regulation of CBB
enzymes, low light intensities lead to a rapid collapse of
the cycle. However, in sufficient light ATP levels are very
high and carbon fixation rates are already saturated in
moderate light conditions (Fig. 2 and Fig. S1 in Appendix
S1). These findings indicate that the sets of parameters
for the carbon fixation enzymes and the light reactions,
derived from the respective original publications, might
not be suitably adapted when employed in a merged,
cooperating, system. This is not surprising considering
that they originate from completely different systems and
conditions. However, we wish to highlight here that sys-
tems biology models are known to include a ‘sloppy’
spectrum of parameter sensitivities, and yet still provide
robust predictions (Gutenkunst et al. 2007).

In order to systematically investigate the
supply–demand behavior of the coupled system in

different light conditions, we introduce a ‘regulation
factor’ fCBB of the CBB cycle, by which all Vmax-values
of the light-regulated enzymes (see above) are mul-
tiplied. This allows for a systematic variation of the
energy demand by simulating accelerated or deceler-
ated carbon fixation activity. Performing this variation
under different light conditions gives insight into the
synchronization of ATP and NADPH production and
consumption rates, and thus enables a more profound
analysis of the supply–demand regulation of photosyn-
thesis (Brandes et al. 1996, Chiadmi et al. 1999, Raines
et al. 2000). For the following steady-state analysis, the
conceptual Ru5P influx reaction is not included.

Fig. 5 displays stationary values of key model vari-
ables for different light intensities and regulation factors.
In agreement with the observations presented above,
that very low light intensities lead to a collapse of the
cycle, ATP concentrations (Fig. 5A) are maximal (zero
ADP), triose phosphate export (Fig. 5B) and starch pro-
duction (Fig. 5C) are zero, and the lumenal pH (Fig. 5D)
is very low (around 4). The latter is readily explained by
the fact that the pH gradient built up by the low light
cannot be reduced by the ATPase, which lacks the sub-
strate ADP. Further, it becomes clear that the regulation
factor of fCBB = 1, corresponding to the original param-
eters, is far from optimal. The ATP:ADP ratio remains
very high, and TPT export and starch production rates
are well below their optimum, regardless of the light
intensities. The stationary lumenal pH further illustrates
that parameters are not ideally adjusted. Not only for
very low light, but also for moderate to high light condi-
tions (above 300 �mol m*2 s*1) the lumen is dramatically
acidic, indicating a mismatch in production and con-
sumption processes. Increasing the regulation factor to
values fCBB ˘4 leads to a dramatic improvement of the
performance of the system. The ATP:ADP ratio assumes
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Fig. 5. Steady state analysis of the merged photosynthesis model under varying light intensities (x-axis) and carbon fixation velocities (y-axis). On the
z-axis (A) the relative ATP abundance, (B) TPT export flux, (C) starch production rate and (D) lumenal pH are displayed.

realistic and healthy values around one, triose phosphate
export approximately doubles, and starch production
increases by one order of magnitude compared with the
original parameter values. Concomitantly, the lumenal
pH remains moderate (pH 5.8, as suggested by Kramer
et al. 1999). An advantage of mathematical modelling is
that one can also predict the behavior of system vari-
ables, which are not easy to obtain experimentally. In
Fig. S6 in Appendix S1, we exemplarily depict oxidized
ferredoxin, oxidized PQ, relative NADP+ and violaxan-
thin levels.

Quantitative analysis of the supply–demand behavior
of the system can be performed by calculating flux
control coefficients (Kacser and Burns 1973, Heinrich
and Rapoport 1974). To investigate the relative overall
flux control of supply and demand reactions, we first
divide the set of all reactions in the model (R) into two
non-overlapping sets S and D. S represents the supply
set containing all PETC reactions and D represents the
demand reaction set including all CBB cycle reactions.
We define the overall control of supply (CSupply) and
demand (CDemand) reactions as the sum of the absolute
values of all control coefficients of reactions from S

and D, respectively, on the steady-state flux through the
RuBisCO reaction,

CDemand =
…
kÀD

› CJ
k › (1)

CSupply =
…
kÀS

› CJ
k ›, (2)

where CJ
k denotes the normalized control coefficient

of reaction k on the steady-state carbon fixation rate.
Fig. 6 displays the normalized overall control of demand
reactions CDemand/(CDemand +CSupply), in dependence on
different light intensities and carbon fixation regulation
factors. Low light intensities and fast carbon fixation
reactions shift the overall flux control to the supply reac-
tions. This can readily be explained because under these
conditions (low light and fast CBB enzymes) energy and
redox provision by the light reactions are the limiting
factor. Interestingly, PSII and PSI contribute strongest to
the overall flux control on the supply side (Fig. S7 in
Appendix S1). Conversely, high light intensities and slow
carbon fixation reactions shift the overall flux control to
the demand side, because under these conditions, the
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Fig. 6. Normalized overall control of the demand reactions (CDemand)
under different light intensities (x-axis) and CBB cycle activities (y-axis).
The results show how the control shifts from the demand reactions under
high light conditions, but low CBB activity, to the supply, under low light
conditions but faster CBB cycle.

system is energetically saturated, and the bottleneck is in
the CBB cycle consuming the energy and redox equiva-
lents. Noteworthy, it is the SBPase reaction that exhibits
the highest overall flux control (Fig. S8 in Appendix S1),
while RuBisCO has only minor control.

Conclusions

Merging mathematical models is a highly non-trivial
task. Even if two individual models yield plausible
results, there is no guarantee that this is also true
after mathematically combining these models. Besides
pure technicalities, such as converting concentrations
to appropriate units, there are a number of issues that
make merging models challenging. Commonly, indi-
vidual models have been developed with quite dif-
ferent scientific questions in mind, and may therefore
display drastically different degrees of details of the
involved processes. Moreover, parametrization is often
performed for different organisms, tissues or conditions.
Most importantly, increasing the system size by integrat-
ing two or more models may lead to novel emergent
properties that were not observable in the individual
models.

In this work, we have successfully merged a model of
the PETC, supplying ATP and NADPH, to a model of the
CBB cycle, consuming ATP and NADPH. The successful
merge was largely facilitated by ensuring a comparable
level of simplification of the two individual models (PETC
described by 9 ODEs and CBB cycle by 15 ODEs). Our
merged model represents a supply–demand system and
as such exhibits systemic properties that did not exist
in each of the individual models. Linking supply and
demand processes into one functional model allowed
us to employ metabolic control analysis for a systematic
investigation of the regulatory dependence between the
PETC and CBB cycle. By simulating the light–dark–light
transitions, we could rationalize the importance of the
oxidative PPP in providing substrates as a mechanism
to operate the CBB cycle in a stand-by mode. Simulta-
neously, we illustrate that regulating the activity of the

CBB cycle in very low light is critical to avoid excessive
investment into the stand-by mode. Moreover, the model
demonstrates that regulation adapting to different light
intensities is important to balance the supply by the PETC
to the downstream demand. Using metabolic control
analysis (MCA), we quantified the control distribution
of supply and demand in the system for different light
conditions and for varying CBB cycle activities. By intro-
ducing a regulation factor, corresponding to the CBB
cycle enzyme activities, we demonstrate that the sys-
tem requires higher input of light to obtain saturation for
faster carbon fixation. Our MCA analysis showed that
supply reactions exhibit high overall flux control when
light is limited. Conversely, the demand reactions con-
trol the flux in light-saturating conditions. Among the
supply reactions, the activity of PSII and PSI exhibit the
highest overall flux control, while among the demand
reactions, SBPase maintains the highest overall flux con-
trol (Figs S7 and S8 in Appendix S1). Interestingly, the
often considered bottleneck enzyme RuBisCO exhibits
only little overall flux control. This observation can be
explained by the fact that the model assumes saturated
CO2 conditions.

Our model is freely available as open source software,
and we ensure that the results presented here can easily
be reproduced. Because of its balanced simplicity and
clear modular structure, we envisage that it serves as a
platform for future development. Our model results have
been obtained for specific experimental values of chloro-
phyll content and surface-to-volume ratios of the chloro-
plast stroma and lumen. However, these values strongly
depend on the growth conditions and vary between
plant species. The clear structure of the model and the
documented code make it straight-forward to change
model parameters for alternative experimentally deter-
mined values. Only relatively minor modifications of the
model structure will be necessary to employ it for fur-
ther analyses of the relationship between the PETC and
other subprocesses. For instance, by describing starch
as a dynamic variable and by providing a simplified
representation of the oxidative PPP, one could improve
our understanding of the light dependent turnover of
starch (Stitt and Zeeman 2012) and rationalize the resup-
ply of pentoses from hexoses in the chloroplast by the
oxidative PPP (Neuhaus and Emes 2000, Kruger and
Von Schaewen 2003) and investigate the role of alter-
native shunts (Preiser et al. 2018). In principle it is
also straight-forward to simulate non-saturated carbon
dioxide concentrations by modifying the RuBisCO rate
equation accordingly (e.g. Witzel et al. 2010). How-
ever, under these conditions photorespiration can no
longer be neglected. Therefore, for a realistic simula-
tion of such scenarios, a simplified representation of
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the photorespiratory pathway should be included in the
model. With such an extension of the model, one could
further investigate the energy balance (Igamberdiev et al.
2001) and the distribution of flux control between the
PETC, the CBB cycle and the photorespiration reactions.
Another model assumption is that all ATP produced by
the light reactions is consumed by the CBB cycle. This,
however, is of course only an approximation. Under
severe stress conditions, or in different organisms, such
as C4 plants or nitrogen-assimilating algae, this approx-
imation is certainly not justified. Our implementation
of the model in the modelbase environment (Ebenhöh
et al. 2018) is designed to facilitate modifications in an
intuitive way. Therefore, adding additional ATP consum-
ing processes is technically simple, allowing theoretical
investigations how such an additional demand will influ-
ence the behavior of the photosynthetic supply–demand
system. The challenge here will be the derivation of real-
istic rate equations that describe the dependence of the
additional ATP consumption rate on the ATP concentra-
tion and possibly other system variables.

The process of integrating two models described
here illustrates the strength of theoretical approaches.
Linking two processes leads to novel properties (here
supply–demand balancing), which can be investigated
to provide new fundamental insight. The merged model
can rationalize the importance of systemic properties,
and thus explain why certain mechanisms exist. In
particular, none of the individual models could have
explained the relevance of the stand-by mode or the
role of adaptive regulation in maximizing efficiency, and
thus explain the functional importance of the oxidative
PPP or the redox and pH sensitivity of key CBB enzymes
in a dynamic environment.

Author contributions

A.M. merged the models and provided all mathemat-
ical descriptions. N.P.S. performed the computational
analyses and prepared the first draft of the Results. All
authors were involved in the interpretation of the results
and preparation of the manuscript.

Acknowledgements – This study was funded by the
Deutsche Forschungsgemeinschaft (DFG) under Germany’s
Excellence Strategy EXC 2048/1, Project ID: 390686111.

References

Andersson I (2008) Catalysis and regulation in rubisco.
J Exp Bot 59: 1555–1568

Brandes HK, Larimer FW, Hartman FC (1996) The
molecular pathway for the regulation of

phosphoribulokinase by Thioredoxin f. J Biol Chem 271:
3333–3335

Cardona T, Shao S, Nixon PJ (2018) Enhancing
photosynthesis in plants: the light reactions. Essays
Biochem 62: 85–94

Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP,
Cherfils J (1999) Redox signalling in the chloroplast:
structure of oxidized pea fructose-1,6-bisphosphate
phosphatase. EMBO J 18: 6809–6815

Christensen CD, Hofmeyr JHS, Rohwer JM (2015) Tracing
regulatory routes in metabolism using generalised
supply-demand analysis. BMC Syst Biol 9: 1–18

Ebenhöh O, Houwaart T, Lokstein H, Schlede S, Tirok K
(2011) A minimal mathematical model of
nonphotochemical quenching of chlorophyll
fluorescence. Biosystems 103: 196–204

Ebenhöh O, Fucile G, Finazzi GG, Rochaix JD,
Goldschmidt-Clermont M (2014) Short-term acclimation
of the photosynthetic electron transfer chain to changing
light: a mathematical model. Philos Trans R Soc Lond
B Biol Sci 369: 20130223

Ebenhöh O, van Aalst M, Saadat NP, Nies T,
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During photosynthesis, organisms respond to their energy demand and ensure

the supply of energy and redox equivalents that sustain metabolism. Hence, the

photosynthetic apparatus can, and in fact should, be treated as an integrated

supply-demand system. Any imbalance in the energy produced and consumed can

lead to adverse reactions, such as the production of reactive oxygen species (ROS).

Reaction centres of both photosystems are known sites of ROS production. Here, we

investigate in particular the central role of Photosystem I (PSI) in this tightly regulated

system. Using a computational approach we have expanded a previously published

mechanistic model of C3 photosynthesis by including ROS producing and scavenging

reactions around PSI. These include two water to water reactions mediated by Plastid

terminal oxidase (PTOX) and Mehler and the ascorbate-glutathione (ASC-GSH) cycle, as

a main non-enzymatic antioxidant. We have used this model to predict flux distributions

through alternative electron pathways under various environmental stress conditions

by systematically varying light intensity and enzymatic activity of key reactions. In

particular, we studied the link between ROS formation and activation of pathways

around PSI as potential scavenging mechanisms. This work shines light on the role of

alternative electron pathways in photosynthetic acclimation and investigates the effect of

environmental perturbations on PSI activity in the context of metabolic productivity.

Keywords: reactive oxygen species, cyclic electron flow, mathematical model, photosynthesis, electron transport

(photosynthetic)

1. INTRODUCTION

Photosynthetic organisms are the primary producers of biomass available in the biosphere. By
employing complex biophysical processes, which act on multiple temporal and spatial scales, they
perform highly efficient energy converting reactions (see for example Ksenzhek and Volkov, 1998).
The basic machinery behind these reactions consists of two parts. The first one is the photosynthetic
electron transport chain (PETC). Embedded in the thylakoid membrane, the PETC mediates the
transfer of electrons, extracted from water molecules, over the complexes of Photosystem II (PSII),
Cytochromeb6f , and Photosystem I (PSI) to the final electron acceptor NADP+ via the mobile
electron carriers plastoquinone (PQ), plastocyanin (PC), and ferredoxin (Fd). Thereby a proton
gradient is formed, which is used to drive the synthesis of ATP by the ATP synthase. The second
part of the photosynthetic process is the Calvin-Benson-Bassham (CBB) cycle, regulated by the
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thioredoxin system (Geigenberger et al., 2017). NADPH and
ATP produced by the PETC are used during the CBB cycle
to fix CO2 into organic compounds. Any imbalance between
production and consumption can lead to adverse reactions, such
as the production of reactive oxygen species (ROS) (Asada, 2006;
Suzuki et al., 2012; Schwarzlander and Finkemeier, 2013) and
affect the overall photosynthetic efficiency. Several sub-processes
exist, distributed over the whole PETC, that contribute to the
production of potentially toxic ROS compounds (Maurino and
Flügge, 2008; Dietz et al., 2016; Khorobrykh et al., 2020).

To fine-adjust the formation of ATP and NADPH in the
PETC, alternative electron transport pathways evolved (Curien
et al., 2016). These alternative electron transport pathways are
used to react immediately to changing environmental conditions
(Alric and Johnson, 2017). Foremost, the cyclic electron flow
(CEF) around PSI including the PGR5-PGRL1mediated pathway
is worth mentioning (Johnson, 2011). Studies have shown that
CEF is essential for the functioning of photosynthesis (Munekage
et al., 2004) and acts as a protective mechanism in fluctuating
light conditions (Kono et al., 2014; Kono and Terashima, 2016).
Alternative electron transport pathways balance the ATP and
NADPH ratio to prevent an overexcitation of photosystems and
redox imbalance in the PETC. Thus, the chance of forming
toxic ROS is lowered. The Mehler reaction at PSI, which forms
superoxide radicals O−·

2 , was extensively investigated in multiple
species (Makino et al., 2002; Curien et al., 2016). Scavenging
of ROS, for instance via the ascorbate-glutathione (ASC-GSH)
cycle, is potentially an energy-demanding process (Das and
Roychoudhury, 2014). However, it prevents physical damage
inflicted on the molecular machinery of photosynthesis, which
would be even more severe for the energy balance (for an analysis
of costs associated with photoinhibition, see for example Raven,
2011). Multiple sophisticated regulatory mechanisms evolved to
prevent the formation of ROS beforehand by lowering the energy
pressure that acts on the PETC, such as non-photochemical
quenching (NPQ) (see Müller et al., 2001).

Because of the existence and possible interaction of numerous
mechanisms acting on different parts of the PETC, a system-
wide investigation of the dynamics of photosynthesis is necessary.
Existing evidence of the beneficial role of various water to
water (W-W) cycles during photosynthesis (Curien et al., 2016)
inspired us to investigate their impact on balancing the ATP to
NADPH ratio. Computational kinetic models of photosynthesis
have been proven to be useful for such analyses (Stirbet et al.,
2020). Yet, none of these models investigated the role of
ROS formation and scavenging. Our goal was to expand the
existing model (Matuszyńska et al., 2019) of photosynthesis
with key steps of both ROS formation and scavenging (via
the ASC-GSH cycle) around PSI as well as linking the W-W

Abbreviations: ASC, ascorbate; CBB, Calvin-Benson-Bassham; CEF, cyclic
electron flow; OE, overexpressor; Fd, ferredoxin; GSH, glutathione; LEF, linear
electron flow; KD, knock down; KO, knock out; MCA, Metabolic Control
Analysis; MDA, monodehydroascorbate radicals; PETC, photosynthetic electron
transport chain; PC, plastocyanin; PPFD, photosynthetic photon flux density;
PSI, photosystem I; PSII, photosystem II; PTOX, Plastid terminal oxidase; PQ,
plastoquinone; ROS, reactive oxygen species; SOD, superoxide dismutase; TrxR,
thioredoxin reductase; W-W, water-water.

cycle with acclimation mechanisms. Moreover, based on our
previous supply-demand analyses (Matuszyńska et al., 2019), we
have included the regulation of key CBB enzymes through the
thioredoxin system. This model thus provides the theoretical
background to investigate non-trivial connections of the different
components and to study complex systemic behaviour.

In this work we present the results of multiple analyses
that allowed us to investigate the importance of alternative
electron flows around PSI. We systematically investigated the
impact of the Mehler reaction and the CEF on intermediate
concentrations of both PETC and CBB cycle. We found
out that some of the fluxes in the PETC are drastically
influenced by the CEF. Therefore, we performed a Metabolic
Control Analysis (MCA) that clearly showed a high impact of
the Sedoheptulose-bisphosphate enzyme (SBPase) on the ROS
scavenging mechanism, CBB and the PETC. Finally, the role
of the SBPase was further elucidated. With this scientific work,
we formalised a connection between the CBB cycle, PETC, and
ASC-GSH cycle. We showed the interconnection between these
parts of photosynthesis and also shed light on the control each
part has over others via mathematical modelling. We therefore
expanded our understanding of the complex interplay between
different acclimatory processes in photosynthesis and created a
computational framework to stimulate future scientific efforts in
this direction.

2. METHODS

2.1. Model Description
We have developed further the previously published mechanistic
model of photosynthesis (Matuszyńska et al., 2019). The
description of the demand side (Figure 1B) has been firstly
complemented by including the thioredoxin reductase (TrxR)
regulation. TrxR regulates the activation of the CBB-enzymes,
depending on reduced Fd. Next, considering that the CBB
cycle is the main, but not the only consumer of the energy
equivalents produced by the PETC (Figure 1C), we included
two reactions representing additional consumption of ATP and
NADPH. Finally, the focus was put on adding two mechanisms
responsible for the production and scavenging of ROS around
PSI. An alternative electron transfer from PSI to oxygen has
been included, leading to the production of superoxide which
is rapidly converted to hydrogen peroxide (H2O2) by the
superoxide dismutase (SOD). This implementation required
changing the description of the PSI mechanism from the
original model (Matuszyńska et al., 2019). Because of the
rapid velocity of the SOD enzyme, the H2O2 production is
modelled as a single step, representing the Mehler reaction.
We based our simplified description of the ROS scavenging
reactions on the published kinetic models of the ASC-GSH cycle
by Valero et al. (2009, 2015). Our description of the cycle is
represented by four saturating enzymatic reactions [mediated by
ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDAR), dehydroascorbate reductase (DHAR), glutathione
reductase (GR)] and one spontaneous disproportion of
monodehydroascorbate radicals (MDA), see Figure 1A. The
pools of ASC and GSH are considered constant.
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FIGURE 1 | Schematic representation of the processes included in the computational model of photosynthesis. The model consists of three modules:

ascorbate-glutathione (ASC-GSH) cycle (A), CBB with TrxR regulated reactions (B), and PETC (C). The compounds in the circle in the centre are the ones exchanged

between the compartments. Created with BioRender.com.

2.1.1. Linear and Alternative Electron Flows
The rates of electron flow through various pathways are directly
calculated from the rates through PSII and FNR. In the model,
the stoichiometry of the rate of PSII is

H2O+ 2hν → 2e− +
1

2
O2 + 2H+

lumen, (1)

which produces 2 electrons. Therefore, the rate of linear electron
flow (LEF) is twice the simulated rate through PSII. Likewise, the
rate of CEF is twice the rate mediated by FNR.

2.1.2. Units
The choice of units is the same as in Matuszyńska et al.
(2019), keeping the original units of stromal and lumenal
compartments. The concentrations in the lumen are expressed
in mmol (mol Chl)−1 and inside the stroma in mM. To convert
the concentrations of ATP, NADPH and H2O2 produced in
the lumen to the unit of the stroma, where these metabolites
are consumed/scavenged, we employ a conversion factor where

1 mmol (mol Chl)−1 corresponds to 3.2 · 10−5 M in the
stroma (Laisk et al., 2006).

2.2. Computational Analysis
The mathematical model is a system of 30 ordinary differential
equations with 46 reaction rates. The model was integrated
with Assimulo (Andersson et al., 2015) via the Python-based
software modelbase version 1.3.8 (van Aalst et al., 2021).
Python files containing the model and Jupyter notebooks
with our simulations used to produce all figures are provided
on our GitLab repository https://gitlab.com/qtb-hhu/models/
cyclicphotosyn-2021.

2.2.1. Metabolic Control Analysis

Flux (C
Jj
vk ) and concentration (C

Sj
vk ) control coefficients are

defined as

C
Jj
vk =

vk
Jj

∂Jj/∂p

∂vk/∂p
, (2)
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C
Sj
vk =

vk
Sj

∂Sj/∂p

∂vk/∂p
, (3)

where Jj and Sj are respectively the steady-state fluxes and
concentrations of the system, p is a kinetic parameter which
affects directly only reaction k with the rate vk (see Kacser
and Burns, 1973; Heinrich and Rapoport, 1974; Heinrich and
Schuster, 1996). We approximated these formulas numerically
using the central difference, varying the parameters by ±1%.
Control coefficients quantify the relative effect of a parameter
perturbation on steady state fluxes and concentrations.

3. RESULTS

The model has been used to study electron flows around PSI and
their relevance to the overall performance of the photosynthetic
machinery under both steady-state and dynamic conditions.
To confirm that our improved model can indeed be used
beyond steady-state and can realistically reproduce short-term
acclimation responses we simulated a standard PAMfluorescence
trace. The results exhibit typical fluorescence dynamics under
high light conditions (Figure 2). It should be however noted
that quantities discussed here should not be understood as
precise predictions of a specific experimental observations, but
are rather meant to illustrate the general plausibility of the
model behaviour.

3.1. Steady-State Behaviour Under
Continuous Light
We first investigate the steady-state behaviour of the model
under various light intensities (Figure 3). In the left panel
(Figure 3A), the stationary electron fluxes over different light

intensities through the PSI, LEF, CEF, the Mehler reaction and
the plastid terminal oxidase (PTOX) are depicted. The rate
of the electron transport chain increases linearly for low light
conditions and saturates in high light. Carbon fixation rates
follow the same general pattern (see Supplementary Material),
which has been repeatedly confirmed in experiments for a wide
range of photosynthetic organisms (Hesketh and Baker, 1967;
Huang et al., 2016). In our simulations, the transition to the light-
saturated regime occurs around a photosynthetic photon flux
density (PPFD) of 900µmolm−2s−1, which is in good agreement
with previously observed and modelled values (Kromdijk et al.,
2019). In contrast to the electron transport chain, the rate of
the Mehler reaction strongly increases in high light conditions,
leading also to increased stationary hydrogen peroxide (H2O2)
concentrations (Figure 3B). Nevertheless, even in high light, the
rate of the electron transfer to oxygen by the Mehler reaction
reaches only around 0.2% of the electrons transferred by PSI. This
means that even under high light, less than 1% of the NADPH
produced by the electron transport chain is required to scavenge
the ROS produced in PSI through the Mehler reaction. Most
redox carriers are more reduced in high light, with the exception
of PC, which is more oxidised in higher light. This observation
can be explained by the fact that more light increases the rate
of PSI, which directly removes electrons from the PC pool. This
explanation is supported by the results of the MCA, indicating
that increased PSI leads to a more oxidised PC pool (see also
Figure 6).

A key enzyme in the ASC-GSH cycle is the MDA reductase,
which reduces MDA back to ASC using NADPH as an
electron donor (Figure 1A). Interestingly, a simulated knock-
down of this enzyme to 1% of its original value does not
affect the overall electron fluxes. However, in high light, the

FIGURE 2 | Calculated fluorescence trace (red) of a PAM experiment of a generic photosynthetic organism without CEF. A standard dark-light-dark protocol was

simulated (dark phase shaded). We used 1,000 µmolm−2s−1 photosynthetic photon flux density (PPFD) as the intensity of the actinic light and 40 µmolm−2s−1 PPFD

for dark/dimmed light with pulses every 2 min. The calculated NPQ is marked in black (dashed). It exhibits well-known dynamics of excitation and relaxation.
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FIGURE 3 | Stationary fluxes and stationary energy and redox status of the electron transport chain for different intensities of constant light. (A) displays the electron

flux through PSI, linear (LEF) and cyclic electron flow (CEF), the Mehler reaction and the plastid terminal oxidase (PTOX). (B) displays the energy equivalents (ATP,

NADPH) and redox states of the electron chain (PQ, PC, Fd), as well as the stationary H2O2 concentration resulting from the Mehler reaction.

deficiency in MDA reductase is compensated by the spontaneous
disproportionation of MDA into DHA and ASC, which leads to
approximately 100-fold increased levels of the MDA radical (see
Supplementary Material). Because overall electron fluxes and
H2O2 production rates are not affected, also the ratio of NADPH
required for scavenging ROS is unaltered in the MDA reductase
knock-down.

3.2. Performance of PGR5 Mutants Under
Continuous Light
By transferring electrons from Fd back into the PQ pool, the
protein PGR5 mainly mediates the CEF. We employed our
model to study how altering the CEF affects electron flows
and downstream metabolism, by systematically varying the
corresponding enzyme activity (Figure 4) under simulated high
light conditions (PPFD 1000 µmolm−2s−1). These simulations
correspond to knocking down (KD) or overexpressing (OE)
the PGR5 protein, which catalyses the reduction of PQ by
Fd. Slowing down CEF does not only result in a slower
CEF rate but also leads to a reduced overall photosynthetic
electron flux and carbon fixation rate (top panel of Figure 4).
This behaviour illustrates the physiological role of CEF to
adjust the ATP/NADPH ratio produced by the PETC to the
downstream demand. Because the provided ratio does not align
with downstream demand, electrons accumulate in the final
products of the PETC, leading to over-reduced Fd and NADPH
pools (lower panel of Figure 4). Over-reduced Fd, in turn,
reduces the availability of electron acceptors for PSI, which
leads to an increased rate of the Mehler reaction and H2O2

levels. The reduced photosynthetic capacity of PGR5 mutant
plants has been demonstrated experimentally (DalCorso et al.,
2008). A simulated knockout (KO) quantitatively reproduces the
observation that maximal PSII rate is approximately half of the
wildtype (∼ 300 vs. 520 mmol e−/mol Chl/s in Figure 4), and
that light saturation is reached at lower intensities compared
to the wildtype (approximately at PPFD 500 µmolm−2s−1—see
Supplementary Material). Also increasing the CEF has negative

effects on the performance. If more electrons are re-inserted
into the PETC, the overall ATP level increases and electron
carriers are less reduced, but the overall production rate of
NADPH and ATP decreases, leading again to a reduced carbon
fixation rate. It seems, therefore, that there exists an optimal
PGR5 activity, that maximises photosynthetic efficiency and
carbon fixation by avoiding over-reduction of the electron chain,
while at the same time redirecting not more electrons than
necessary back into the chain. Under low light (for figures,
see Supplementary Material), the CEF plays a less important
role. Under these conditions, increasing PGR5 activity increases
the ratio of CEF to LEF and slightly decreases carbon fixation
rates. The simulations suggest that, whereas under high light
CEF is clearly beneficial for the photosynthetic efficiency, under
low light conditions a low PGR5 activity is favourable for CO2

fixation rates.

3.3. Importance of Alternative Electron
Flows Under Fluctuating Light
It was repeatedly demonstrated experimentally that the CEF is
particularly important to maintain photosynthetic activity under
fluctuating light conditions (Yamori et al., 2016; Yamamoto
and Shikanai, 2018). Comparing simulations of wildtype with
PGR5 mutant shows that carbon fixation is indeed drastically
reduced when no CEF operates (Figure 5). These results are
in qualitative agreement with experimental findings (Yamori
et al., 2016). However, the experimentally observed dynamics are
quantitatively different from our simulations. In particular, the
reactivation dynamics of RuBisCO in the transition to high light
are considerably slower in the experiment as compared to the
model simulations. This indicates that the mechanisms activating
the CBB cycle in such transitions are not yet represented in the
model in a quantitatively correct way. Still, the model provides a
theoretical explanation for the reduced photosynthetic efficiency
by illustrating that the PGR5 mutant is unable to establish a
healthy redox balance in light periods.
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FIGURE 4 | Response of the model under high light (PPFD 1,000µmolm−2s−1) to changes in CEF activity. Altered CEF activity was simulated by changing the rate

constant for PGR5, the enzyme transferring electrons from Fd to PQ. The top panel displays electron flows through the PETC and the H2O2 concentrations resulting

from the flux through the Mehler reaction and the ASC-GSH cycle. The bottom panel shows the energy (ATP) and redox state (NADPH, Fd, PQ, PC) of the system. In

both panels, the solid lines indicate stationary values. The thin dashed lines indicate a parameter range, in which limit cycle oscillations were observed, denoting the

minimum and maximum values of the oscillating variable. Outside these parameter regions, the solid line indicates stationary values, within the bubble averages over

oscillations.

3.4. SBPase Exhibits Striking Control Over
Photosynthesis Under High Light
The above investigations illustrate that electron flow around PSI
apparently affects not only the PETC itself but also downstream
metabolism, in particular carbon fixation. In order to understand
which processes carry the strongest control in this complex
supply-demand system, we performed MCA and systematically
determined flux and concentration control coefficients for high
(PPFD 1000 µmolm−2s−2) and low (PPFD 100 µmolm−2s−2)
light conditions. A selection of flux and concentration control
coefficients are depicted in Figure 6. Additionally to get a
global picture of the model’s behaviour we performed a simple
golbal sensitivity analysis using Latin Hyperspace Sampling and
Partial Rank Correlation Coefficients that can be found in the
Supplementary Material.

In agreement with the analysis of the effects of perturbing
PGR5 activity, and thus CEF (Figure 4), it is observed that
increasing PGR5 leads to slightly decreased fluxes in the PETC
and the CBB cycle. In contrast, increasing CEF strongly decreases

the Mehler reaction and the associated scavenging pathways.
Remarkably, under high light, the strongest control on PETC
and CBB cycle fluxes is exhibited by the SBPase, whereas
RuBisCO carries almost no flux control. This observation
confirms previous theoretical results obtained from a model
simulating the CBB cycle alone (Poolman et al., 2000). Increasing
SBPase results in a significant increase of both PETC and CBB
cycle rates, and strongly suppresses the Mehler reaction and
associated scavenging reactions, while the redox pools except PC
are more oxidised, and ATP levels are decreased. PSII is the initial
complex of the PETC and thus a natural candidate for high flux
control. Indeed, it exerts positive control over PETC and CBB
cycle fluxes in high light, but with a much lower control strength

compared to SBPase. Increasing PSII (and PSI and to a lesser
extent the cytochrome b6f complex) predominantly increases
the Mehler reaction. This behaviour changes dramatically under
low light. Here, CBB enzymes exert almost no flux control, but
electron transport and carbon fixation rates are mostly controlled
by the activities of the photosystems. Increasing PSII leads
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FIGURE 5 | Simulating fluctuating light for the wildtype and the PGR5 knockout (KO) mutant. Shown are the Fd redox state (left) and the RuBisCO activity (right) for

the wildtype (black) and the PGR5 knockout (red). Light intensities were changed every 60s between high light (PPFD 600 µmolm−2s−1, white regions) and low light

(PPFD 40 µmolm−2s−1, grey regions).

to more reduced redox pools and lower ATP levels, whereas
increasing PSI leads to more oxidised redox pools and higher
ATP levels. Both photosystems have a positive control on CBB
cycle intermediates RuBP and PGA, while only PSI positively
affects the bisphosphates FBP and SBP. Altogether these analyses
confirm the previous observation (Matuszyńska et al., 2019) that
under low light control resides predominantly on the supply side
(PETC), while under high light control is shifted toward the
demand side (CBB).

3.5. ROS Production as a Balancing
Mechanism
To increase our understanding of the antagonistic behaviour
of the Mehler reaction and the CEF, and to account for the
changing relative importance of these processes under low
and high light, we systematically investigated the efficiency of
photosynthesis for altered CEF under different light intensities.
Figure 7 displays simulated linear electron fluxes and H2O2

concentrations in response to changed light intensities and PGR5
activities. Whereas under low light conditions (of less than
approximately 500 µmolm−2s−1, the photosynthetic efficiency
is rather independent of the PGR5 activity, this is dramatically
different in high light. Both, too low and too high CEF activity
leads to a reduced photosynthetic flux, but for different reasons.
Impaired CEF results in drastically elevated H2O2 levels because
ATP and NADPH production ratios cannot be adapted to the
downstream requirements. In contrast, increased activity of
PGR5 mediated CEF simply leads to more oxidised NADPH and

Fd (see Figure 5), and redirects electron flux from linear to cyclic,
thus reducing the overall net carbon fixation rate.

4. DISCUSSION

In oxygenic photosynthesis, LEF is considered the basic driver of
photosynthetic carbon fixation. Yet alone, it does not provide the
exact ratio of ATP to NADPH that is necessary to drive carbon
assimilation (Kramer and Evans, 2009). Hence, alternative
circuits of the electron flow are considered to balance the
production of ATP per NADPH (Curien et al., 2016). In this
work the presented computational model has been developed
to investigate the alternative electron circuits around PSI that
produce a proton gradient without NADPH synthesis, therefore
altering this ratio. These include the CEF around PSI and two
of the W-W cycle including the Mehler reaction at PSI and the
PTOX downstream PSII (Curien et al., 2016). Additionally, we
have provided an important link between ROS formation and
metabolism regulation by including a simple description of ROS
scavenging around PSI via the ASC-GSH cycle. This allowed us to
further investigate the role of the cycle in keeping photosynthetic
activity at medium and higher light intensities (Muller-Schussele
et al., 2020). Although it is only one of the many known pathways
(Maurino and Flügge, 2008), it is considered as the first step in the
long process of including redox balance through ROS production
into computational models of photosynthesis, in an attempt to
support the synthetic redesign of photosynthetic systems (Zhu
et al., 2020).
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FIGURE 6 | Results of the MCA. Flux (left) and concentration (right) control coefficients of representative reactions of photosynthesis in high and low light conditions.

The top panels show the distribution of control under high light (PPFD 1,000 µmolm−2s−1), the bottom panels under low light (PPFD 100 µmolm−2s−1). For all

panels, on the x-axis we marked the perturbed parameters. The parameters are perturbed by ± 1% and the resulting effect on steady state values is monitored for the

quantities on the y-axis. It can be clearly seen how the control of photosynthesis shifts from the supply side in low light (bottom) to the demand side under high light,

exhibiting striking control of SBPase (top).

FIGURE 7 | Surface plots of the stationary linear electron flux (left) and H2O2 concentration (right) in response to altered PGR5 (CEF) activity and light intensity.

Increased CEF activity reduces stationary H2O2 concentrations. For higher light intensities, more CEF activity is required to maintain low H2O2 levels. This indicates

that CEF activity should be regulated for maximal efficiency under various light regimes.
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We have argued before that photosynthesis shall be viewed as
a supply-demand system because of the connection between the
ATP and NADPH production and consumption (Matuszyńska
et al., 2019). Considering the tight regulation of such a system,
we investigated the influence of alternative electron pathways on
the rate of CO2 assimilation, with a particular focus on their
photoprotective behaviour and the role of the CEF (see change in
rate of RuBisCO in Figure 5). The presented model is intended
to serve as a theoretical workbench that is not only valid for a
single experiment or plant species but is in principle adaptable to
a wide range of scenarios and photosynthetic organisms. While
not precisely calibrated to a particular experimental dataset, we
ensured that the model displays realistic behaviour. In particular,
the steady-state of key variables, such as the redox state of
electron carriers as well as carbon fixation fluxes are plausible,
and the simulated PAM experiments show characteristic NPQ
dynamics (Figure 2). The model allows moreover the simulation
of genetic perturbations, such as KO, KD andOE, which has been
demonstrated extensively on the PGR5 mutant, impaired with its
capacity of a CEF. The focus on the PGR5/PGRL1 pathway was
motivated by its particular role in regulating proton motive force
around PSI (Wang et al., 2015). Figure 4 highlights the critical
role of the CEF by displaying a strongly reduced LEF, highly
oxidised redox state of the electron carriers and a very strong
increase in hydrogen peroxide concentration. Interestingly, our
computational analysis systematically displayed the dependency
of the system behaviour in PGR5 KO and OE to different light
intensities. The differences between PGR5 mutants are mostly
visible in higher light conditions, as shown in Figure 7.

Light, although necessary to drive photosynthesis, can be also
harmful to the organism. NPQ is a central part of the first line
of defence of plants against damaging effect of light. In order to
prevent high ROS levels, plants developed mechanisms allowing
dissipation of excess light energy as heat (Ruban, 2016). Our
simulations demonstrate that in high light intensity the whilst
Mehler and PTOX reactions continue to increase, contributing
significantly to the photoprotection and overall redox balance
(Figure 3). These results are in line with the previously proposed
role of the W-W cycle acting as a relaxation system to suppress
the photoproduction of 1O2 in PSII (Asada, 2006).We expect that
the model presented in this work will be useful for a systematic
assessment of the possible beneficial effect of ROS formation in
a physiological context (Foyer and Noctor, 2005; Foyer, 2018;
Mhamdi and Van Breusegem, 2018).

Within our expanded model of photosynthesis we have
performed MCA and confirmed the pivotal role of SBPase in
control over the system, as in our previous work (Poolman
et al., 2000; Matuszyńska et al., 2019). SBPase has been shown
to control both supply and demand of photosynthesis and,
consequently, in this expanded model, it exhibits a strong
influence on the electron flows. Figure 6 displays that in high
light conditions, an increase of SBPase activity strongly decreases
theMehler reaction rate and as a consequence the rate of themain
scavenging reactions DHAR and MDAR. This phenomenon
can be explained by the increase in efficiency of the CBB
cycle, which causes faster ATP consumption and prevents over-
reduction of the PETC, therefore reducing the rate and impact

of the Mehler reaction. It is important to consider that this
behaviour is observed in scenarios with saturated carbon dioxide
conditions. However, the model can in principle be directly
applied to other, more natural, conditions. For example, it would
be interesting to compare the electron flux distribution under
non-saturating conditions. Further, although we have varied
oxygen systematically, to mimic conditions under which oxygen
becomes limiting, all our analysis have been performed under
saturated CO2 conditions.

A natural further step of expanding this work would be to
include the mechanism of photorespiration, mainly because it
plays a physiological role in reducing the redox pressure in the
stroma under conditions leading to low carbon fixation (Ort and
Baker, 2002) and because it is a major source of ROS associated
with the photosynthetic activity (Dietz et al., 2016). A reliable
mathematical model of photorespiration to be considered has
been proposed by Yokota et al. (1985).

With this work we provide a tool to further study the dynamics
and cross-talk between the multiple regulatory mechanisms
activated by photosynthetic organisms in response to changes in
light. With our model, we could demonstrate how electron flows
around PS1 affect photosynthetic efficiency and how increasing
CBB cycle activity decreases Mehler reaction activity. Moreover,
the model allowed us to rationalise that CEF should be regulated
with changing light intensities as a trade-off between optimising
electron flux efficiency and minimising ROS production. We
envisage that this model helps to further investigate the tight
relation between ROS scavenging in the chloroplast and the
dynamic adaptation of photosynthesis to changing conditions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

AM: initial idea and conceptualisation. AM and OE: funding
acquisition. AM, MA, and NS: visualisation. AM, OE, MA, NS,
and TN: model building. AM, BH, OE, MA, NS, and TN: formal
analyses. BD and TN: writing—original draft and introduction.
BH: writing—original draft and methods. OE and NS: writing—
original draft and results. AM and NS: writing—original draft,
discussion, and writing—review and editing. All authors read and
accepted the final version of the manuscript.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC-2048/1 - project ID 390686111 (AM
and OE), the Deutsche Forschungsgemeinschaft Research Grant
MA 8103/1-1 (AM), the Deutsche Forschungsgemeinschaft
(DFG), project ID 391465903/GRK 2466 (TN), and the EU’s

Frontiers in Plant Science | www.frontiersin.org 9 October 2021 | Volume 12 | Article 750580

81



Saadat et al. Electron Flows Around PSI

Horizon 2020 research and innovation programme under the
Grant Agreement 862087 (MA).

ACKNOWLEDGMENTS

We would like to thank Veronica Maurino for a fruitful
discussion on ROS at the beginning of this project and all
members of the Photosynthesis Task Force at the Institute

of Quantitative and Theoretical Biology whose ideas and
engagement was essential for this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
750580/full#supplementary-material

REFERENCES

Alric, J., and Johnson, X. (2017). Alternative electron transport pathways in
photosynthesis: a confluence of regulation. Curr. Opin. Plant Biol. 37, 78–86.
doi: 10.1016/j.pbi.2017.03.014

Andersson, C., Claus, F., and Akesson, J. (2015). ScienceDirect Assimulo: a
unified framework for ODE solvers. Math. Comput. Simul. 116, 26–43.
doi: 10.1016/j.matcom.2015.04.007

Asada, K. (2006). Production and scavenging of reactive oxygen species
in chloroplasts and their functions. Plant Physiol. 141, 391–396.
doi: 10.1104/pp.106.082040

Curien, G., Flori, S., Villanova, V., Magneschi, L., Giustini, C., Forti, G., et
al. (2016). The water to water cycles in microalgae. Plant Cell Physiol. 57,
1354–1363. doi: 10.1093/pcp/pcw048

DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schunemann, D., Finazzi, G., et
al. (2008). A complex containing PGRL1 and PGR5 is involved in the switch
between linear and cyclic electron flow in Arabidopsis. Cell 132, 273–285.
doi: 10.1016/j.cell.2007.12.028

Das, K., and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and
response of antioxidants as ROS-scavengers during environmental stress in
plants. Front. Environ. Sci. 2:53. doi: 10.3389/fenvs.2014.00053

Dietz, K.-J., Turkan, I., and Krieger-Liszkay, A. (2016). Redox- and reactive oxygen
species-dependent signaling into and out of the photosynthesizing chloroplast.
Plant Physiol. 171, 1541–1550. doi: 10.1104/pp.16.00375

Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and
the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142.
doi: 10.1016/j.envexpbot.2018.05.003

Foyer, C. H., and Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a
re-evaluation of the concept of oxidative stress in a physiological context. Plant
Cell Environ. 28, 1056–1071. doi: 10.1111/j.1365-3040.2005.01327.x

Geigenberger, P., Thormählen, I., Daloso, D. M., and Fernie, A. R. (2017). The
unprecedented versatility of the plant thioredoxin system. Trends in Plant
Science 22, 249–262. doi: 10.1016/j.tplants.2016.12.008

Heinrich, R., and Rapoport, T. A. (1974). A linear steady-state treatment of
enzymatic chains. General properties, control and effector strength. Eur. J.
Biochem. 42, 89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x

Heinrich, R., and Schuster, S. (1996). The Regulation of Cellular Systems. London:
Chapman & Hall. doi: 10.1007/978-1-4613-1161-4

Hesketh, J., and Baker, D. (1967). Light and carbon
assimilation by plant communities 1. Crop Sci. 7, 285–293.
doi: 10.2135/cropsci1967.0011183X000700040002x

Huang, W., Hu, H., and Zhang, S.-B. (2016). Photosynthesis and photosynthetic
electron flow in the alpine evergreen species Quercus guyavifolia in winter.
Front. Plant Sci. 7:1511. doi: 10.3389/fpls.2016.01511

Johnson, G. N. (2011). Physiology of psi cyclic electron transport
in higher plants. Biochim. Biophys. Acta Bioenerg. 1807, 384–389.
doi: 10.1016/j.bbabio.2010.11.009

Kacser, H., and Burns, J. A. (1973). The control of flux. Symp. Soc. Exp. Biol. 27,
65–104.

Khorobrykh, S., Havurinne, V., Mattila, H., and Tyystjärvi, E. (2020). Oxygen and
ROS in photosynthesis. Plants 9:91. doi: 10.3390/plants9010091

Kono, M., Noguchi, K., and Terashima, I. (2014). Roles of the cyclic electron flow
around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of
the photosynthetic electron flow in short-term fluctuating light in Arabidopsis
thaliana. Plant Cell Physiol. 55, 990–1004. doi: 10.1093/pcp/pcu033

Kono, M., and Terashima, I. (2016). Elucidation of photoprotective mechanisms of
PSI against fluctuating light photoinhibition. Plant Cell Physiol. 57, 1405–1414.
doi: 10.1093/pcp/pcw103

Kramer, D. M., and Evans, J. R. (2009). The importance of energy balance
in improving photosynthetic productivity. Plant Physiol. 155, 70–78.
doi: 10.1104/pp.110.166652

Kromdijk, J., Głowacka, K., and Long, S. P. (2019). Predicting light-induced
stomatal movements based on the redox state of plastoquinone: theory and
validation. Photosynth. Res. 141, 83–97. doi: 10.1007/s11120-019-00632-x

Ksenzhek, O. S., and Volkov, A. G. (1998). Plant Energetics. San Diego, CA:
Academic Press, Elsevier.

Laisk, A., Eichelmann, H., and Oja, V. (2006). C3 photosynthesis in silico.
Photosynth. Res. 90, 45–66. doi: 10.1007/s11120-006-9109-1

Makino, A., Miyake, C., and Yokota, A. (2002). Physiological functions of the
water–water cycle (Mehler reaction) and the cyclic electron flow around
PSI in rice leaves. Plant Cell Physiol. 43, 1017–1026. doi: 10.1093/pcp/
pcf124
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1 | INTRODUCTION

Most plant species exhibit cellular outgrowths of their epidermis called trichomes. Due to their often species-speci�c
characteristic, many criteria for classi�cation exist, themost popular one being the division into non-glandular and glan-
dular trichomes (GT) [1]. Whilst non-glandular trichomes serve more as a physical and mechanical defence against
biotic and abiotic stresses, all GTs are characterised by the ability to synthesize and accumulate vast amounts of valu-
able specialised (secondary) metabolites. Due to extremely high metabolic �uxes in these organs, production of some
metabolites can reach up to 20% of the leaf dry weight, qualifying GTs as true metabolic cell factories. Products of
GTs include terpenoids, phenylpropanoids, �avonoids, fatty acid derivatives and acyl sugars [2] exhibiting antifungal,
insecticide or pesticide properties. Thereby GTs are not only incredibly important to plant �tness, as they contribute
to the chemical arsenal of plants, but are also of relevance to multiple industries.

The key carbon source in most GTs of tomatoes is sucrose which is converted into a multitude of organism-
speci�c metabolites in the glands [3]. The massive productivity of hydrocarbon compounds implies however a supply
of adequate amounts of not only carbon, energy and reducing power, but also precursors, produced by intermediate
pathways. Terpenoids represent the largest and structurallymost diverse class of plantmetabolites and aremajor prod-
ucts of GT biosynthesis. Despite their multiplicity, with over 30 000 well-known structures, they are all assemblies of
C5 isoprene units built from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). There
are two identi�ed pathways for IPP and DMAPP production: i) the plastidial 2-C-methyl-D-erythritol 4-phosphate
(MEP) pathway from pyruvate and glyceraldehyde-3-phosphate or ii) the cytosolic mevalonate (MVA) pathway from
acetyl-CoA [4]. Although the pathways are thought to be largely independent, some exchange of precursors may
occur [5], and such (and others [6]) cross-talk require further investigation. For instance, is there some cross-talk of
plastidial and cytosolic pathways providing the 5-carbon precursors? And if so, what e�ect does it have on overall
productivity? Beyond this, a major issue is the source of energy and its distribution to understand how GTs achieve
their high productivity. The question becomes more intriguing when one realises that some of the GTs contain pho-
tosynthetically active chloroplasts (as the type VI GT in S. lycopersicum [7]). It is still unclear what the advantages
and disadvantages of photosynthetic GTs, are in contrast to non-photosynthetic GTs. The separation of cytosolic and
chloroplast bound pathways, as well as the utility of photosynthesis, are until now only vaguely understood, and the
most recent summary of current advances has been recently provided [8].

To shed light on the advantages of photosynthetic GT for terpenoid synthesis and secondary metabolism, in-
vestigations of the systems bioenergetics and reaction �ux distributions are needed. Mathematical, computational
models provide a coherent framework to study metabolism. Constraint-based stoichiometric models [9] are partic-
ularly adequate for exploratory studies of the systemic properties of a metabolic network and investigations of the
�ux distributions. Such models are static and represent mathematically the network of biochemical reactions of an
organism in the form of a matrix [10]. They can focus on various scales, with genome-scale metabolic models (GEMs)
aiming at representing the whole biochemical network of an individual organism. GEMs are constructed by assigning
biochemical functions to enzymes encoded in the genome, and due to the expansion of thewhole genome sequencing,
many plant GEMs are currently available, with Oryza sativa indica [11], Arabidopsis thaliana [12] and Solanum lycoper-
sicum L. [13] among many others. Flux Balance Analysis (FBA) [14, 15], a mathematical method that allows calculating
the �ow of metabolites through the network, is a popular tool to predict the production rate of the compound of in-
terest. FBA requires two assumptions: i) the experimental system is at a steady state, and ii) the network is optimised
to maximise or minimise certain biological outcomes, for instance, its biomass. The so-called, cell-speci�c, objective
functions in GEMs are optimized in a linear programming (LP) approach in which all reaction �uxes are constrained
within given boundaries. This constraint-based analysis of GEMs allows the calculation of optimal �ux solutions in
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di�erent conditions, therefore allowing investigations on the metabolic �uxes and bioenergetics of systems.
In this work, we have reconstructed the metabolism in the photosynthetic glandular trichome of a Solanum lycop-

ersicum LA4024 using previously published transcriptome and metabolome data [3]. With a general, mathematical
framework, we investigated the e�ect of having photosynthetically active machinery inside of a trichome. In our simu-
lations, we observed the increase in terpenoid production under increasing light intensities. Increased photosynthetic
activity shifts the partitioning of uptaken carbons from catabolism to anabolism due to increased energy levels. Bioen-
ergetics and energy levels determine which of the known terpenoid precursor production pathways (MEV, MEP) is
more desirable/optimal in di�erent light/stress conditions. Our model can explain the bene�ts of having chloroplasts
in GTs and serves as a groundwork for further investigations of the possible cross-talks between the two pathways
of terpenoid precursor synthesis.

2 | METHODS

2.1 | Choice of the model organism

In this study, we have chosen to investigate GT in the tomato genus. Solanum lycopersicum serves as an excellent
model organism for glandular trichome study due to the availability of i) high-quality complete genome sequence [16],
ii) excellent genetic resources [17], iii) comparative multi-omics data [3], iv) several mathematical models available,
including whole genome metabolic network reconstruction [13], and v) in contrast to other well studied organisms
like peppermint [18, 19], possession of only photosynthetic GT.

2.2 | Modelling environment

Ourmodel is implemented in Python, using our in-house developed package moped. With moped all decision processes
and taken steps are well documented in a transparent and repeatable fashion [20]. The annotated script detailing
every step we used to construct the model can be found in our GitLab repository at https://gitlab.com/qtb-
hhu/models/glandular-trichomes.

2.3 | Model design and assumptions

Although a genome-scale model of tomato metabolism is available (iHY3410 model [13]), we decided to use the
bottom-up approach and perform a reconstruction ourselves, as we were not able to reconstruct the steps of manual
curation performed by the authors. Webased themodel reconstruction on available transcriptomics andmetabolomics
data [3], the LycoCyc database (tomato metabolic pathway database, version 3.3 [21], available from Solanaceae Ge-
nomics Network, http://www.sgn.cornell.edu) and biochemical knowledge in plants from scienti�c publications. The
resulting model consists of 1307 reactions and 1371 metabolites and its behaviour have been ensured to match
reported observations [3]. Furthermore, the model quality and consistency have been thoroughly inspected using
MEMOTE to ensure the highest quality [22]. There are nine exchange reactions, allowing free exchange of metabo-
lites such as oxygen, as well as light absorption. Light is represented as photosynthetically active photons absorbed
by the photosystems. The units of light absorption are represented in µmolPhotons

s ·m2 and the detailed calculation of
our calculations are provided in the Supporting Information. In this model, we decided not to include a free carbon
dioxide in�ux as it has been reported that carbon dioxide exchange is 100 times lower in photosynthetic GTs than in
leaves [3].
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In most constraint-based models and their analyses, the maximization objective is the production of biomass [23].
While thismay be applicable for prokaryotic organisms, we doubt that photosynthetic glandular trichome cells aremax-
imising the increase of their replication rate, and rather maximise terpenoid synthesis while also having a mandatory
production rate of macromolecules to keep cells intact. For this, our model includes an objective function to produce
terpenoids while requiring a �xed �ux through a function of biomass synthesis, consuming typical components like
amino acids, sugars, nucleotides and fatty acid precursors. For this, we used an Escherichia coli (E. coli) biomass func-
tion, as our main concern was to capture the necessity for growth and self-repair, while the primary objective function
of a glandular trichome is terpenoid production. To describe additional energy required for the maintenance of cells,
we implemented a representative reaction for ATP maintenance, as it is common practice in metabolic modelling [24].
After subsequent gap-�lling using Meneco, a tool for metabolic network completion [25], our model can simulate the
synthesis of all compounds found within the metabolomics data [3], all terpenoids found in photosynthetic GTs of
tomato [26] as well as all compounds within biomass from sucrose, light, orthophosphate, ammonia, sulfate, protons
and water. The resulting model is a data-driven, yet simpli�ed, constraint-based model which is tested against infea-
sible energy and mass generating cycles. Within our model simpli�cations, we found that a model consisting of three
essential compartments (cytosol, intermembrane space and extracellular space) su�ciently represents photosynthetic
GT metabolic pro�les (Fig. 1). While detailed compartmental separation is common practice in large genome-scale
metabolic models, it would not make any di�erence to the results of our model simulations due to the fact that there
are several intercompartmental transporters between the chloroplast and the cytosol for energy equivalents like ATP
and other key metabolites [27]. Adding over-detailed compartmentalisation to the model would therefore not alter
any of our results and is left out for the sake of model simplicity and preventing unfavourable model modi�cations. All
details and information about the exact construction process of the model, as well as all investigations and analyses,
can be found in our provided scripts at https://gitlab.com/qtb-hhu/models/glandular-trichomes.

3 | RESULTS

We used our model to perform a general analysis in which we simulate the rate of terpenoid synthesis over systemati-
cally increasing light intensities via parsimonious Flux Balance Analysis (pFBA). Fig. 2 displays that with increasing light
absorptions, the rate of terpenoid synthesis in photosynthetic glandular trichomes increases up until approximately
10 µmol Photons

s ·m2 . This increase in terpenoid synthesis rate with increasing absorbed light is particularly interesting
due to the fact that the model can not utilize atmospheric carbon dioxide, and Sucrose being the only carbon source.
This means that there is a change in metabolic �uxes which enables this increase in terpenoid synthesis rate. To fur-
ther investigate what changes in the metabolism of photosynthetic glandular trichomes in increasing light intensities,
we inspect the respective changes in the exchange �uxes of the model. Fig 2 shows the exchange �uxes of carbon
dioxide and oxygen in our pFBA model simulations over increasing light absorptions. Noticeably, the excretion of
carbon dioxide systematically decreases up until approximately 10 µmol Photons

s ·m2 . Interestingly, the consumption of
oxygen decreases to zero at approximately 7 µmol Photons

s ·m2 . From this light intensity on, oxygen excretion begins and
increases until 10 µmol Photons

s ·m2 . These observations are crucial for a general understanding of the model behaviour.
An increase in absorbed light causes higher photosynthetic activity, resulting in oxygen production. This explains the
decreasing oxygen uptake and the switch to oxygen excretion at 7 µmol Photons

s ·m2 absorbed light. However, the steady
decrease in carbon dioxide excretion is especially noteworthy. Most carbon dioxide is produced within catabolism,
therefore the model behaviour hints at a decrease in catabolic activity in higher light intensities.

To investigate how the catabolic activity in our model simulations changes over increasing light intensities, we
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further inspect representative reactions for relevant catabolic pathways in our model. As Sucrose, a disaccharide is the
only carbon source in our model, we inspect representatives of the upper glycolysis, the lower glycolysis and the TCA
cycle. Fig. 3 displays the �uxes of these reactions over di�erent light intensities (shown on the x-axis as fractions of
saturating light intensities) relative to their �uxes in the dark. The Sucrose Synthase and Saccharase represent upper
glycolysis activity. The 6-Phosphofructokinase, GAP Dehydrogenase and Pyruvate Kinase represent lower glycolysis
activity and the Pyruvate Dehydrogenase and the Citrate Synthase represent TCA cycle activity. Furthermore, the
RuBisCO rate is displayed to monitor the rate of carbon re�xation. The results show that �uxes of upper glycolysis
remain completely unchanged in increasing light intensities, however, the �uxes in lower glycolysis decrease in higher
light conditions. An even higher impact can be observed for the TCA cycle activity. The Pyruvate Dehydrogenase
activity steadily decreases, and the Citrate Synthase activity abruptly decreases in increasing light conditions. These
observations show that catabolic pathways which are not responsible for energy and redox equivalent production
(like upper glycolysis) are una�ected by increasing light intensities. However, the lower glycolysis and the TCA cycle,
both catabolic pathways that produce energy and redox equivalents, display a strong �ux decrease in higher light
conditions. The increase in terpenoid synthesis �ux observed in Fig 2, and the decrease in catabolic �uxes in Fig 3
strongly suggest that increasing light conditions shift the carbon partitioning from catabolic to anabolic pathways.
This shift is enabled due to the energy and redox equivalent production of the photosynthetic electron transport
chain in photosynthetic glandular trichomes. The metabolic network is not dependent on the energy from oxidising
carbon bodies in high light conditions, and can therefore use more of those carbon bodies in terpenoid synthesis
pathways. Interestingly, RuBisCO activity increases in higher light intensities, displaying that higher energy levels
allow the re�xation of carbon that is lost as carbon dioxide in anabolic processes (like Terpenoid synthesis). GAP,
Pyruvate and Acetyl-CoA are carbon bodies which can be used to produce either energy and redox equivalents or
terpenoid precursors. Acetyl-CoA is the initial substrate of the TCA cycle in which it is oxidised to gain energy and
redox equivalents but is also the initial substrate of the MEV pathway.GAP and pyruvate are metabolites within the
lower glycolysis pathway and also initial substrates of the MEP which is a terpenoid synthesis pathway exclusive to
photosynthetic GTs.

To further analyse how the consumption of these metabolites depends on the illumination, we simulated the
relative consumption rate of GAP/pyruvate and Acetyl-CoA by the aforementioned pathways over increasing light
intensities. Fig 4 displays the proportions of the consumption of these compounds by the TCA, MEV and MEP path-
ways. In low light intensities, more than half of the substrates are consumed by the MEV pathway, and the remainder
is consumed by the TCA cycle, in both cases in the form of Acetyl-CoA. In higher light intensities, the fraction of
substrates consumed by the TCA cycle is decreasing until it does not consume any more substrates. At this point,
the relative �ux of lower glycolysis starts decreasing, and the MEP pathway is beginning to consume proportions of
the substrates, gradually taking over. This is a very important observation that shows that increasing light intensities,
leading to higher energy levels due to photosynthetic activity, shift the carbon partitioning from catabolic to anabolic
pathways by reducing the TCA cycle and lower glycolytic �ux and increasing terpenoid synthesis. Furthermore, it
shows that the two terpenoid synthesis pathways, MEP and MEV, are more advantageous at di�erent energetic lev-
els. In lower light intensities, and therefore lower energetic levels, the MEV pathway seems to be more advantageous
because the conversion of GAP and pyruvate to Acetyl-CoA produces energy and redox equivalents, and the resulting
Acetyl-CoA can directly be used in the TCA cycle to generate additional energy and redox equivalents. In higher light
intensities, and therefore higher energetic levels, the MEP pathway is more advantageous because the high energy
levels provided by photosynthetic activity remove the necessity of providing energy and redox equivalents via lower
glycolysis and the TCA cycle. Instead, GAP and pyruvate can directly be used as substrates with higher energy con-
tents (than Acetyl-CoA) in the MEP pathway, and therefore further increase the fraction of carbon used in anabolism,
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enabling more e�cient terpenoid synthesis. This phenomenon can also be observed in Fig 5, in which we used model
simulations to calculate the �uxes of the �nal MEV and MEP reactions in systematically changing light conditions and
ATP maintenance costs.

In this analysis, higher ATP maintenance costs re�ect increased energy requirements of cells in e.g. stress con-
ditions. At low light conditions and low ATP maintenance costs, the MEV pathway is the main terpenoid synthesis
pathway, with very little MEP pathway activity. In low light conditions and high ATP maintenance costs, the MEV
pathway is the only active pathway. However, the overall terpenoid synthesis �ux is relatively low due to the in-
creased demand for catabolic �ux in such conditions. At high light conditions and high ATP maintenance costs, the
MEP pathway is carrying the majority of terpenoid synthesis �ux. In high light conditions and low ATP maintenance
costs, theMEP pathway is the only active terpenoid synthesis pathway, providing the highest terpenoid synthesis �ux.
It appears as the distribution of terpenoid synthesis between the MEV and the MEP pathways are highly dependent
on the light conditions and resulting energy levels of the photosynthetic GTs.

The high rate of terpenoid synthesis in high light conditions is also resulting from increased rates of carbon re-
�xation. It remains unknown how active the CBB cycle is in photosynthetic GTs. To quantify the impact of di�erent
carbon re�xation �uxes, we performed a systematic analysis in which we calculated the terpenoid synthesis rate over
di�erent amounts of absorbed light and systematically changed the activities of RuBisCO. Fig. 6 displays that in higher
light conditions, increased carbon re�xation �uxes can increase the rate of terpenoid synthesis by almost 20%. How-
ever, interestingly, the overall rate of carbon re�xation is not very high. This is because the rate of carbon re�xation
is purely dependent on the available carbon dioxide produced by anabolic processes, which is limited.

4 | DISCUSSION

In photosynthetic glandular trichomes, synthetic pathways of terpenoids and other secondary metabolites are not
only found in the cytosol of the cells, but also the chloroplasts. The additional terpenoid synthesis pathways in photo-
synthetic glandular trichomes have been subject to many speculations. One speculation for example is that terpenoid
production in chloroplasts is specialized for the production of particular secondary metabolites. Another speculation
is that the pH in chloroplasts may be more bene�cial for terpenoid synthesis.In our work, we introduce a simpli�ed,
yet a data-driven constraint-based model of photosynthetic glandular trichome metabolism which shows that one
of the two di�erent synthesis pathways is more advantageous for terpenoid production than the other in di�erent
energy availabilities. We show that with lower energy availability, the cytosolic MEV pathway is more advantageous
for terpenoid synthesis because the catabolic pathways, producing the key initial substrate Acetyl-CoA from Sucrose,
provide additional energy and redox equivalents needed for all cellular activities, including terpenoid synthesis. How-
ever, higher energy availability (coming from photosynthetic activity in higher light conditions) removes the need for
the additional energy and redox equivalents gained from the conversion of Sucrose to Acetyl-CoA. Therefore sub-
strates with higher energy levels (GAP and pyruvate) can be directly used for terpenoid synthesis. This basic shortcut
of catabolic reactions reduces the loss of carbon as carbon dioxide and increases the �ux of carbon through anabolic
processes with the help of energy equivalents gathered through photosynthesis.

We show that in higher light conditions, energy levels of the photosynthetic GTs are so advantageous, that the
energy can be spent to perform carbon re�xation using the CBB cycle. In the supplementary material, we calculated
that in order to maintain the same rate of Terpenoid synthesis in low light, only half of the sucrose is required in
high light conditions. This displays again that the bene�t of including chloroplasts in glandular trichomes is not only
the ability to shift carbon partitioning from catabolic to anabolic processes but also to further maximize carbon use
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e�ciency. It is important to note that the increase in terpenoid synthesis from carbon re�xation is not nearly as high
as the increase from the shift in carbon partitioning, as seen in Fig. 6.

Interestingly our model showed that even without CBB cycle activity and without special constraints, the TCA
cycle may be reversed in high energy availability and function as a reductive TCA cycle. A reductive TCA cycle could
be able to replace the function of the CBB cycle, using energy to �x carbon dioxide which was produced in catabolic
and anabolic reactions, increasing carbon use e�ciency. This is a very interesting observation, as, from a bioenergetic
point of view, such a scenario is possible. However, we decided to adjust the key reactions of the TCA cycle for this
scenario as irreversible reactions to prevent this phenomenon to be included in our results for now. The reason for this
decision is that the reductive TCA cycle is usually found in green sulfur bacteria and di�erent thermophilic prokaryotes
and archaea [28, 29]. This indicates that from a phylogenetic perspective, the presence of a reductive TCA cycle in
photosynthetic GTs is rather unlikely. However, we think that this model suggestion is worth investigating the �uxes of
the TCA cycle in light conditions in photosynthetic GTs, as it has been suggested that carbon dioxidemay be recovered
[30]. Generally, instead of showing that chloroplastic terpenoid synthesis pathways provide improved production of
particular terpenoids, our work shows that the chloroplast in photosynthetic GTs functions as an energy battery in
light conditions, which can be used to shift carbon from catabolic to anabolic �uxes and even enable carbon dioxide
re�xation and therefore improve carbon use e�ciency. To support our �ndings, experiments are needed which can
keep track of the rate of terpenoid synthesis in similar sucrose availability but di�erent light absorptions.

The photosynthetic carbon re�xation indicates that there may be photorespiration present in photosynthetic GTs.
Although photorespiration is not included in our model, we show that in high light there is oxygen evolution in photo-
synthetic GTs. Therefore, further data is required to investigate putative photorespiratory activities. Furthermore, it
remains unclear if and how high evolution of reactive oxygen species and photodamage is present in photosynthetic
GTs. For this, quantitative metabolic data for the components of the electron transport chain is needed, as well as
measurements of the photosynthetic e�ciency in photosynthetic GTs. Finally, more questions regarding the dynam-
ics, and not only bioenergetics of trichomes arise. E.g., what is the composition of terpenoids under di�erent light
intensities, or how can we improve the production of a terpenoid of interest? As these processes are heavily depen-
dent on enzyme kinetics and saturation, constraint-based models like ours are not the optimal method for answering
these questions. However, mechanistic models based on ordinary di�erential equations can include such information
(if available) and may be helpful to give further insights into terpenoid synthesis in photosynthetic GTs. New exper-
imental data is therefore required to advance further our understanding of the biosynthesis of these metabolic cell
factories.
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| Calculation of �ux units and light intensity units

A suggested terpenoid production rate of glandular trichomes has been provided by Turner et al. [31] at 0.017 nmol
h·g l and .

Assuming that this rate can be applied to themaximal terpenoid production rate of photosynthetic glandular trichomes

of tomatoes, we transform our calculated �uxes to the corresponding units by Flux ·
0.017 nmol

h·g l and
max. Terp flux .

In order to convert the Fluxes of Photons into units of light intensities, we �rst have to calculate the surface of the
glandular trichome on which light can be absorbed. Measured values of the diameters of glandular trichomes from
[32] providing an estimate of 50 µm diameter of circular surface of a glandular trichome. Assuming that the glandular
trichomes surface is a circle, the surface area can be calculated as:
A = ⇡ ( 50µm2 )2 = 2000µm2 = 2 · 10�9m2

To calculate the conversion factor for the photon absorption of glandular trichomes, we �rst calculate the units of
photons absorbed by the gland at saturated light �ux and maximal terpenoid production predicted by our model as:
0.017 ⇤ Max. Light Flux

Max. Terp. Flux = 0.017 ⇤ 300
7.3 = 0.7 nmolPhotons

h·g l and .
To convert this unit into µmol

s ·m2 , we �rst calculate the corresponding unit for nmolPhotons
h·g l and by:

1nmolPhotons
h·g l and = 1

7200
molPhotons

s ·m2 = 14 µmolPhotons
s ·m2

for our maximal Light �ux, this corresponds to 0.7 · 14 µmolPhotons
s ·m2 = 9.8 µmolPhotons

s ·m2 as the saturating light intensity,

providing the light �ux conversion factor of Light Flux ·
9.8 µmolPhotons

s ·m2
sat. Light flux .
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F IGURE 1 Schematic overview of the key processes included in a constraint-based model of photosynthetic
glandular trichome metabolism. While the model is built using transcriptome and metabolome data and includes a
large number of reactions, only pathways and metabolites of importance to the results are highlighted in the
presented model scheme.
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A B

F IGURE 2 Impact of light in�ux on the predicted �uxes through the photosynthetic glandular trichome. a
Terpenoid synthesis �ux over di�erent rates of absorbed light. b Oxygen and carbon dioxide exchange �uxes over
di�erent rates of absorbed light.

F IGURE 3 The relative �uxes of eight selected catabolic reactions calculated for increasing fractions of
saturating light. The �uxes are normalised to the respective �uxes under completely dark conditions.
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F IGURE 4 Relative consumption of GAP, pyruvate and Acetyl-CoA (here described as 3C bodies) by di�erent
pathways over increasing fractions of saturating light. The fraction of the lower glycolysis �ux relative to dark
conditions is displayed as a dotted line.
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F IGURE 5 Fluxes of the �nal reaction steps of the MEV and MEP pathway over increasing relative ATP
maintenance activities, as well as increasing rates of light absorption.
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F IGURE 6 Predicted �ux of the terpenoid synthesis under changing carbon re�xation rates, as well as increasing
rates of light absorption.
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7 Discussion and Outlook

Photosynthesis and its light dependent and independent reactions are
complex processes that are not working separately, but are connected
in a tightly regulated supply-demand system. The implementation of
mathematical models representing the dynamics of these systems is a
powerful method to understand the underlying processes and the impact of
each of the involved enzymes in di↵erent environmental conditions.
The theoretical and systematic investigation of photosynthetic processes is
beneficial due to its promising use in crop design with focus on increased
crop yield and plant stress resistance. With an increasing global population
and consequential limitations in resources like food and energy, it has never
been more important to optimise crops for improved bioeconomical usage.

In this work, the software packages modelbase and moped presented in
chapters 6.1 and 6.2 have been developed and used to construct kinetic
models of the photosynthetic apparatus, as well as a constraint-based
genome scale metabolic model of photosynthetic glandular trichomes in
tomatoes.

The work presented in chapter 6.3 focused on the analysis of a kinetic model
of photosynthesis by merging models describing the photosynthetic electron
transport chain and the CBB cycle. It was shown that photosynthesis can
be viewed as a supply-demand system in which di↵erent light conditions
and CBB cycle activities lead to changes in overall control between
supply and demand processes in the system. Furthermore, the need for a
”standby mode” for the CBB cycle in the form of thioredoxin regulation
and pentose supply via the oxidative pentose phosphate pathway has been
highlighted. The model results have been produced to represent specific
experimental conditions, as well as chlorophyll contents. Depending on
the cell type that is being simulated, certain parameter values may have
to be substituted with measurements specific to the organism and cell of
interest. However, the results that have been obtained are giving insights
into the general principles of photosynthesis and have been supported by
recent experimental findings [37]. Furthermore, the simulations have been
performed with the assumption of carbon dioxide saturation. In conditions
without carbon dioxide saturations, the control of RuBisCO would be a
lot higher than in our simulation results, and would subsequently need an
integration of photorespiration to the model. The results of this model
analysis provided the groundwork for a functioning photosynthetic model
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that opened additional research questions, especially with regards to the
e↵ect of alternative electron fluxes in the photosynthetic electron transport
chain on the rest of photosynthesis.

The main focus of the work in chapter 6.4, is the behavior of linear
electron flow and its alternatives (cyclic electron flow, PTOX and the
Mehler reaction) in di↵erent light conditions and in silico mutants. For
this, the model presented in 4.3 is further extended by modular addition
of the ascorbate-glutathione cycle, as well as a simplified description of
thioredoxin regulations. The results show that the cyclic electron flow is
an important valve of the PETC and its activity prevents an overreduction
of the PETC. This overreduction of PETC components otherwise leads to
a strong increase in Mehler reaction rate and subsequent ROS evolution.
Furthermore, an increased activity of key CBB cycle enzymes (like SBPase)
systematically decrease the rate of ROS production via increased NADPH
consumption and therefore providing more NADP+ to function as the final
electron acceptor for linear electron flow, therefore reducing overreductions
in the PETC. The model results give crucial insights into the importance
and impact of alternative electron flows on the photosynthetic apparatus
in di↵erent conditions. However, in this work, the main focus was on the
investigation of electron flows around photosystem I. In future work, adding
NDH1 and AOX as modular extensions of the model could give a more
detailed perspective on electron flows and valves apart from photosystem
I, especially with focus on their roll in environmental stress conditions like
drought-stress [53, 64].

Chapter 6.5 displays the work on the bioenergetics of photosynthetic
glandular trichomes, for which a genome scale metabolic model has been
developed by including transcriptomics and metabolomics data, metabolic
databases and manual curation. The results show that energy and redox
equivalents gained in photosynthetic activity allows the shift of carbon
usage from catabolic to anabolic processes, therefore decreasing the loss
of carbon in oxidative phosphorylation. This also leads to an increase
in terpenoid production, as well as a shift from terpenoids produced by
the MEV pathway to the MEP pathway. Furthermore, carbon dioxide
produced in biosynthetic pathways can be refixed by the CBB cycle in light
conditions that provide enough energy from photosynthetic activity. It is
important to note that experimentally validating the simulated increase in
terpenoid synthesis rate is very di�cult due to the fact that the simulations
are performed under the assumption that the influx of sucrose is constant
in all light conditions. This may change in response to di↵erent levels of
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irradiation in plants. Furthermore, the constraint based model is not capable
of investigating which conditions and pathways change the composition of
produced terpenoids. To answer this research question, a detailed kinetic
model of the MEV and the MEP pathway is necessary.

In future work, the models that have been presented are to be improved
for further research questions. The modular design of the kinetic models
allow the addition and removal of reactions for specific research questions,
therefore providing a sca↵old for models that can be adjusted to be simplified
and yet detailed instead of just expanding one existing model. For instance,
the e↵ect of dynamic oxygen and the addition of photorespiratory pathways
and its e↵ects on the control on the rest of the system. Furthermore, many
research articles have displayed the regulation of photosynthetic components
by phytohormone signalling to adjust changing environmental cues. The
presented kinetic model can be used to describe the interdependence of
photosynthetic e�ciency and phytohormone crosstalk.

Adjusting the model for investigations in the aforementioned research
topics requires experimental data of intermediate concentrations and
photosynthetic e�ciencies in plants that have been treated with
phytohormones in di↵erent light intensities, as well as a good description of
enzyme regulation by phytohormone activity. To ensure that the developed
models can be used for such tasks, every model presented in this work is
designed in a modular fashion and all models are available via open-access.
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