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Abstract 
The constant growth in world population is accompanied by a steadily increasing 

demand for food. This challenge has to be addressed in several ways. One option is 

increasing the efficiency of food production, as modern agriculture struggles with pests, 

especially weeds, reducing the yield significantly. The excessive use of agrochemicals to 

reduce pests, however, leads to the accumulation of agrochemicals within the ecosystem. 

Thus, the overall amount of used agrochemicals has to be reduced in the future, to reduce 

burdens on the ecosystem while simultaneously providing the same or even enhanced crop 

protection. Within the GreenRelease project, microgels anchored to crops or weeds using 

specialized peptides are being developed for a controlled release of agrochemicals while 

minimizing the amount applied. To improve this novel technology, understanding the 

mechanisms at an atomistic level at every stage is key. In an interdisciplinary approach, in 

which I used molecular dynamics simulations in combination with experiments done by 

the working groups of Prof. Dr. Schwaneberg and Prof. Dr. Pich, key mechanisms of the 

GreenRelease technology were elucidated.  

First, I investigated the adsorption of different anchor peptides to the epicuticular wax 

of apple leaves using molecular dynamics simulations and identified residues of major 

importance for the binding to the leaf wax, which were subsequently validated 

experimentally. Moreover, my constructed model of a leaf surface can successfully 

distinguish anchor peptides of different binding affinities as determined in experiments, 

establishing a platform for the rational peptide design. 

Second, in an extensive simulation study on the temperature-induced coil-to-globule 

transition of poly-(N-vinylcaprolactam) oligomers in a multi-parameter approach, we 

established a platform for analyzing microgels as potential carriers. The transition was 

elaborated on in detail using various methods of free energy estimation and by constructing 

Hidden Markov Models. Here, I could show that the collapse of the oligomers may be 

caused by a delicate enthalpy-entropy compensation at elevated temperatures. 

Third, I used linear as well as crosslinked poly-(N-vinylcaprolactam) models in 

simulations with varying concentrations of the C4 plant key enzyme inhibitor okanin to 

investigate the uptake and release into/from the microgel used as a carrier. The simulations 

revealed a fraction of permanently bound molecules, providing a sensible explanation of 

the experimentally observed loading and establishing the basis for further tailoring and 

improvement of the microgel.  
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Zusammenfassung 
Die stetig wachsende Weltbevölkerung führt unweigerlich zu einem global 

steigenden Bedarf an Lebensmittel. Um diesen Bedarf zu decken, ist es nötig, mehreren 

Strategien zu folgen, von der eine die Effizienzsteigerung der Lebensmittelproduktion ist. 

In der modernen Agrarwirtschaft sorgen Schädlinge, besonders Unkraut, für hohe 

Ertragseinbußen. Der übermäßige Gebrauch von Agrochemikalien zur 

Schädlingsbekämpfung führt jedoch zu einer Akkumulierung dieser Stoffe im Ökosystem. 

Um dies zu verhindern, muss die Menge der verwendeten Chemikalien bei mindestens 

gleichbleibender Effizienz vermindert werden. Innerhalb des Projekts GreenRelease, 

werden Mikrogele, welche mit Ankerpeptiden versehen sind, entwickelt, um eine 

kontrollierte Freisetzung von Wirkstoffen zu erzielen und somit die benötigte Menge der 

genutzten Ressourcen zu reduzieren. Um diese neue Technologie optimieren zu können, ist 

es wesentlich, alle involvierten Mechanismen auf atomarer Ebene zu verstehen. In einem 

interdisziplinären Ansatz aus Simulationen und Laborexperimenten in den Gruppen von 

Prof. Dr. Schwaneberg und Prof. Dr. Pich wurden die wesentlichen Prozesse dieser 

Technologie auf atomarer Ebene untersucht. 

Zuerst habe ich die Adsorption der Ankerpeptide auf epikutikulärem Blattwachs 

mittels molekulardynamischer Simulationen untersucht und für die Adsorption wichtige 

Aminosäuren identifiziert, welche anschließend experimentell validiert wurden. Das Model 

der Blattoberfläche ermöglicht es, die Bindestärken verschiedener Ankerpeptide zu 

differenzieren und schafft somit die Grundlage das rationale Design der Ankerpeptide. 

Zweitens haben wir die thermoreaktiven Eigenschaften des Knäuel-Globuli-

Übergangs von oligomeren Poly-(N-Vinylcaprolactam) in einer Multiparameteranalyse 

untersucht, um eine Grundlage für die Erforschung der Mikrogele als Wirkstoffträger zu 

schaffen. Der Übergang wurde mittels Berechnung der freien Energie und der Erstellung 

von Markov Modellen näher betrachtet. Ich konnte eine Enthalpie-Entropie Kompensation 

als Ursache für den Übergang identifizieren. 

Drittens habe ich die Be- und Entladung von linearem und vernetztem Poly-(N-

Vinylcaprolactam) mit Okanin, einem Inhibitor des Schülsselenzyms von C4-Pflanzen, 

untersucht. In den Simulationen wurde die Adsorption des Okanin untersucht und eine 

Fraktion an permanent gebundenem Okanin beobachtet, welches die experimentell 

beobachtete Beladung erklärt. Diese Arbeit schafft ermöglicht die weitere Optimierung des 

Mikrogels als potenzielles Trägermaterial in agrochemischen Anwendungen. 
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1. Introduction 
With a steadily growing world population estimated to reach ten billion1 by the end 

of the year 2060 (Figure 1), innovative and sustainable resource management is more 

urgent than ever. Naturally, the growth in world population is accompanied by a growing 

demand for food2, notwithstanding the continuous struggle with the unsolved problem of 

world hunger3. 

 
Figure 1. Estimations and probabilistic projections of the total world population. Estimations are 

based on the probabilistic projections of total fertility and life expectancy at birth using a 
Bayesian Hierarchical Model. The probabilistic median is depicted as red solid line, the 
80 % prediction and the 95 % prediction intervals of the probabilistic population projection 
are depicted as dashed and dotted red lines, respectively. Figure adapted from ref. 1. 

This challenge presented by the continuously growing demand for food has to be 

addressed at many different levels simultaneously, e.g., by reducing food waste and 

overconsumption3 on the one hand and by increasing sustainable food production4 on the 

other hand. The latter can be achieved by either increasing the overall production quantity 

or by improving its efficiency. However, meeting the higher demand for food quantity will 

only be possible for a limited time, as the available area of arable land will eventually 

become scarce for numerous reasons, e.g., the demand for living space, environmental 

pollution, erosion, and soil degradation as well as other harm caused by climate change, 

and many more5. Moreover, modern agriculture is constantly at risk due to pests, including 

weeds, pathogens, and animals6-7. Exemplarily, the global loss due to pests varies from 
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~50 % in wheat production to more than 80 % in cotton production.6 Overall, with more 

than 30 %, weeds alone cause the highest loss among all pests. The losses combined with 

the costs for weed control and management pose a major part of farmers’ costs6. Despite 

lots of effort to overcome the weed challenge on global food production, there is a constant 

need in overcoming rapidly evolving resistances against herbicides among many weed 

species. Over the last century, many synthetic8 and natural compounds9-12 have been 

developed and investigated as potential herbicides. In recent years, a clear research trend 

towards natural and “greener”, i.e., biodegradable and/or bio-based, compounds is 

noticeable, as they are regarded as sustainable in contrast to purely synthetic herbicides13-

14. 

Despite the increasing use of sustainable agrochemicals, the high amount of pest 

control agents used during application inevitably leads to an accumulation of the 

compounds not only in the soil but also in the groundwater eventually15-17. Consequent 

concerns about the potential long-term health effects led to a change of thinking. The idea 

of a controlled release of agrochemicals to counter bioaccumulation has been proposed 

early, together with the recommendation to work on new, environmentally friendly 

herbicides18. Recently, carriers and active agents from the fields of nano-19-22 and 

microtechnology23-24 found their way into modern agriculture as potential candidates for 

pest control management. Often, these increase the rain fastness of pest control agents and 

formulations, which is of major importance not only for performance but also for 

sustainability. A decreased amount of applied chemicals is of economic benefit and 

eventually results in conservation of arable land increasing overall crop yields. 

Furthermore, the development of selective herbicides can decrease the amount of deployed 

herbicides, easier usage, and reduce the resistance development among weeds. 

Meurer et al. described a novel technology for the foliar delivery of nutrients using 

microgel (MG) containers as carriers, which are decorated with anchor peptides (APs) to 

promote adhesion to leaf surfaces24. Within the interdisciplinary GreenRelease project, this 

concept is used as the basis for further technological optimization and the development of 

a fundamental understanding of the involved mechanisms. Although the concept has been 

proven experimentally, detailed knowledge about the processes, at an atomistic level, has 

remained elusive so far. To further optimize the technology and tailor the application, it is 

essential, to understand the adsorption process to the plant and the interactions of the 

agrochemical with the carrier MG.  
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In this thesis, the investigation of the driving forces at an atomistic level for the most 

important steps within the GreenRelease technology is presented. By using computational 

means, such as molecular dynamics (MD) simulations and free energy estimations in 

combination with laboratory experiments provided by the working groups of Prof. Dr. 

Schwaneberg and Prof. Dr. Pich, it is possible to elucidate key interactions of this novel 

technology at an atomistic level.  

So far, the interface/interacting residues between the APs and a complex biological 

surface such as a plant leaf is/are unknown, yet vital for the rational design of better-

performing peptides. The knowledge about the interactions at atomistic level can be 

exploited to increase their adhesion or tailor the APs with switchable and/or targeted 

adhesion.  

Therefore, in Publication I, the adhesion of APs to apple leaf wax is elucidated in an 

integrated manner. To this end, all-atom models of an apple leaf surface including a 

cellulose layer, a cutin layer, and epicuticular wax were generated. The adsorption of AP 

was simulated to determine residues of importance for binding to the wax layer. 

Experiments performed in the working group of Prof. Dr. Schwaneberg confirmed the 

importance of the identified residues in an alanine scan using a novel fluorescence-based 

microtiter assay. By using steered simulations, I quantified the adsorption strength of 

different APs, which matches the experimentally determined binding strengths. 

Understanding the dynamics of the polymer used as a carrier allows for modifying 

the microgel’s uptake and releasing properties to yield optimal long-term release and/or 

targeted release. Stimuli-responsive carriers can be potentially exploited for a triggered 

release of agrochemicals. Based on the thermo-responsiveness and the favorable 

toxicological properties of poly(N-vinylcaprolactam) (PNVCL) MGs, they depict an 

excellent choice as potential carrier for agrochemicals. However, compared to the 

computational studies on other thermo-responsive polymers, simulation data on the coil-

to-globule transition of PNVCL was comparatively rare.  

Thus, in Publication II, the hitherto most comprehensive investigation of the 

temperature-induced coil-to-globule transition of linear oligomeric PNVCL using MD 

simulation is presented. MD simulations in combination with free energy calculations and 

the generation of Markov State Models provide insights into the driving forces of the 

temperature-induced coil-to-globule transition. Experimental data on the thermo-
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responsiveness of oligomeric PNVCL generated within the working group of Prof. Dr. Pich 

were in agreement with the computational studies. The work presented establishes a 

platform for the in-depth investigation of PNVCL MGs and the loading and release of 

substances into/from the MGs. 

Within the GreenRelease project, PNVCL MGs were used for the delivery of the 

C4 plant key enzyme inhibitor okanin. However, the interactions between okanin and 

PNVCL MGs have not been investigated at this point, neither experimentally nor in 

simulation experiments. Building upon knowledge gained in Publication II, in 

Publication III, the ad- and desorption of okanin on/from the PNVCL microgel is 

investigated in silico as well as experimentally. For this, atomistic models of sections of an 

MG with a densely crosslinked core and loosely crosslinked shell, as often found in PNVCL 

microgels25, were generated. Consecutively, the atomistic models were used in MD 

simulations to probe the interaction of okanin with PNVCL and elucidate the adsorption 

process as well as desorption in different solvents. Complementary, the loading and 

solvent-triggered release of okanin into/from PNVCL MGs were investigated 

experimentally within the working group of Prof. Dr. Pich. Simulations and free energy 

calculations yielded valuable insights into the ad- and desorption processes and provided 

potential explanations for the experimentally observed changes in the MGs morphology 

upon okanin loading. 
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2. Background 
2.1. Plant Protection 

In times of a constantly growing world population and increasing demand for food, 

sustainable agriculture is key. Within the interdisciplinary BioSC GreenRelease project, 

MGs decorated with adhesion promoting peptides are anchored to crops and used for a 

controlled release of fungicides, herbicides, or nutrients (Figure 2), while minimizing 

applied resources. Initial studies on the general mechanism of ingredient loading and 

release as well as the superior rain fastness of the decorated microgel containers have been 

reported24. 

 
Figure 2. Concept of the GreenRelease technology for foliar delivery of nutrients. Microgels (blue) 

loaded with nutrients (yellow) and decorated with anchor peptides (red) show adhesion to 
the surface of a leaf. The ingredients are not only limited to nutrients, but may also be 
insecticides, fungicides, or herbicides. Reprinted from Meurer et al.24 with permission. 

The majority of investigated APs are antimicrobial peptides that provide a green and 

versatile method for surface functionalization26-29. The rain fastness of pest control agents 

and formulations is of major importance not only for performance but also with regard to 

their economy and sustainability. Here, the APs promote the adhesion to the plant’s leaf or 

fruit, enabling the long-term release of the herbicide, fungicide, or insecticide. The MG 

serves as a carrier and reservoir for the agrochemical. The physicochemical properties of 

the MGs potentially allow a targeted release of the compounds, as some MGs are stimuli-

responsive30-32, i.e., they undergo conformational changes, such as collapsing or swelling, 

upon a change in temperature33-36 or pH37-38. In the following chapters, each component of 

the GreenRelease technology will be described in more detail. 
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2.1.1. Anchor Peptides for Surface Functionalization 

APs are a class of peptides used for surface functionalization, e.g., they promote 

adhesion to synthetic surfaces such as polypropylene (PP)29, 39, polystyrene (PS)28, 

polyethylene terephthalate (PET)26, and other polymers40-41, as well as complex biological 

surfaces such as plant leaves or fruits24. The immobilization of proteins and peptides with 

APs can be used in a variety of biomaterial surface modifications, e.g., in biocatalysis42 and 

biosensors43, for the generation of antimicrobial surfaces44, drug delivery45 and the foliar 

application of nutrients24. APs are often used in environmentally friendly and mild 

conditions, i.e., under moderate/ambient temperatures and often in aqueous 

solutions24, 40, 46. In plant protection applications, APs provide an environmentally-friendly 

way to increase the rain fastness and thus the efficiency.  

Commonly used APs are small peptides typically ~20 to ~60 amino acids (AAs) long 

and often show antimicrobial activity. One of the well-investigated APs so far is LCI (PDB 

ID: 2B9K, UniProt ID: P82243), a 47 AA long antimicrobial peptide (AMP) isolated from 

Bacillus subtilis47. LCI forms antiparallel beta-strands (Figure 3A) compared to the 

secondary structure of the majority of identified anchor peptides, which predominantly 

form α-helices, such as Macaque Histatin (Figure 3B and Figure 4A) and Plantaricin 

(Figure 4B). AMPs were found to be often suitable adhesion promoters and thus can be 

used as potential APs29. Moreover, AMPs cover a broad structural spectrum with regard to 

secondary structure elements, as already shown, and a diverse AA composition48. Attempts 

to deduce the AMP’s natural mode of action, e.g., membrane destabilization or 

permeabilization and pore formation, from its structure were presented in literature48-49. 

However, the knowledge on the structure-function relationship for the adhesion of the AMP 

towards other surfaces is comparatively sparse. The adhesion to synthetic surfaces such as 

PP, PS, and PET has been suggested to be caused by π-π interactions, where applicable, 

hydrophobic interactions, or hydrogen bonds41, 50-51. The results of the investigations are 

limited to small tetrameric and 7-mer peptides in one case50-51 and a 12-mer in the other 

case41. However, the potential number of AA combinations increases exponentially with 

every additional AA in the sequence. Moreover, the small peptides investigated barely form 

helical structures and the formation of more complex structures, e.g., anti-parallel beta-

sheets, is not possible at all. Even though artificial polymeric surfaces are less complex 

than biological ones in many cases, there is still a considerable amount of structural 

deviations, as the polymer’s composition, its crosslinking density, and the amount of linear 
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and branched elements determine its overall morphology. Despite the fact that initial 

investigations yield first insights into the different binding types of APs, only a section of 

the possible combinations of APs and (artificial) interfaces has been explored yet.  

 

Figure 3. Examples of anchor peptides used for surface functionalization. LCI (A, PDB ID: 2B9K47, 
UniProt ID: P82243) consists mainly of anti-parallel beta strands (yellow), whereas 
Macaque Histatin (B, homology model generated with TopModel52, UniProt ID: P34084) 
displays an α-helical (red) structure. Loop regions are colored green and the protein surface 
is shown in translucent grey. 

These initial investigations on the driving forces for the adhesion of small peptides 

on polymeric surfaces provide a basis for the further investigation of the adhesion of APs 

with a considerably higher number of AAs. For more complex APs, however, rational 

protein design using an adequate design of experiments (DoE) is necessary to fully 

understand the complex interactions with different surfaces. For LCI, the adhesion towards 

PP was improved using a knowledge-gaining directed evolution (KnowVolution) 

approach39. Rübsam et al. were able to identify 11 beneficial residues to be replaced for an 

increased adhesion towards PP within the first phase of the KnowVolution. During the 

second phase, site-saturation mutagenesis (SSM) was performed on the identified residues 

yielding 8 positions with significantly increased binding properties. In the third phase, 

computational analysis was used to elucidate potential cooperative effects. Finally, in the 

fourth phase of the KnowVolution, site-directed mutagenesis (SDM) was performed for the 
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two residues identified by the computational analysis, yielding an LCI variant with a 5-fold 

increased adhesion towards PP. The KnowVolution approach depicts a DoE for a rational 

design of APs. However, the first phase of the KnowVolution approach is dependent on a 

sufficiently large variant library. Moreover, the experimental effort is considerable, not 

only for the generation of the variant library but also for the SSM and SDM, if more 

residues are subject to further investigation in phases two and three of the KnowVolution. 

An expansion of the DoE of the KnowVolution has to be considered when it is 

applied for optimization of AP adhesion towards more complex surfaces, such as plant 

leaves and fruits. It has been shown, that selected APs can promote the adhesion towards 

these complex biological surfaces24. For the adsorption to cucumber plants leaves, 

Plantaricin A (PDB ID: 1YTR, UniProt ID: P80214) was one of the most promising APs. 

Plantaricin A is a 26 AA long peptide that originates from Lactobacillus plantarum, and it 

shows a partial α-helical structure with largely unstructured N-terminal part53 (Figure 4B). 

However, LCI and Macaque Histatin (MacHis, UniProt ID: P34084), which consists of 38 

AAs and also displays supposedly a predominantly helical structure, were found to be 

suitable APs to increase adhesion towards cucumber plant leaves, too (see SI of ref 24). As 

all three structurally different APs show adhesion to the same surface, the mode of action 

for the adhesion, i.e., the driving forces at the atomistic level, might differ for each AP. In 

terms of secondary structure, LCI differs from the majority of APs, as it displays anti-

parallel beta-sheets instead of a helical structure common for AMPs. Plantaricin A and 

MacHis on the other hand, predominantly form an α-helical structure (Figure 4). Despite 

their similar secondary structure, these two APs very distinctly show different hydrophobic 

and electrostatic properties. On the one hand, the Macaque Histatin shows a high fraction 

of basic, polar AAs (Histidine, Arginine, and Lysine) and a fraction of unpolar AAs 

(Glycine, Tyrosine, Leucine, and Phenylalanine) on the opposite side of the α-helix, giving 

the AP an amphipathic character (Figure 4A) with a higher polar fraction. This is similar 

to many C-termini of GPCRs, which act as membrane anchors and thus serve a similar 

purpose54. On the other hand, the majority of the AAs of Plantaricin A is nonpolar except 

for a few polar, but uncharged AAs (Serine, Glutamine) and six Lysine residues, giving the 

AP an amphipathic character as well, but with a comparatively higher nonpolar fraction 

(Figure 4B). 

Because of the complex nature of biological surfaces, such as in plants or fruits, it is 

not possible to infer adhesion properties directly from the AP’s structure, as key 
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interactions at the atomistic level presumably differ for each case. As depicted above, 

experiments24 have shown that the structurally different APs presented here display 

increased adhesion to the surface of cucumber leaves. 

 

Figure 4. Amphipathic character of the APs Macaque Histatin (A, UniProt ID: P34084) character of 
Plantaricin A (B, PDB ID: 1YTR, UniProt ID: P80214). The Macaque Histatin contains a 
considerable fraction of basic polar residues (red), mainly histidine, whereas the 
Plantaricin A consists of mainly nonpolar (blue) or uncharged polar (yellow) residues. The 
respective helical wheels show the location of the different AAs on the helix. Although 
structurally different in terms of hydrophobicity, both APs show good adhesion towards 
epicuticular waxes. 

In conclusion, gaining insights into the interactions of APs to complex synthetic as 

well as biological surfaces is key for the further development of the adsorption properties 

of APs. Tackling this challenge purely experimentally is exceedingly demanding in 

resources. However, in an integrated approach using computational means, it is possible to 

elucidate key interactions at an atomistic level allowing performing targeted experiments, 

saving time and costs in laboratory experiments. Moreover, computational methods allow 

tackling the problem of exponentially increasing complexity by better covering the 

structural space spanned by all possible AP variants using rationally chosen representatives.  
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2.1.2. Stimuli-responsive Polymers as Carrier 

However, being able to attach peptides to plant surfaces is only one of the challenges 

we face within the GreenRelease technology. Another challenge is finding a suitable carrier 

for the loading and controlled release of agrochemicals. Stimuli-responsive polymers are 

versatile and offer the possibility of achieving this. Stimuli-responsive polymers react to 

changes in their environment such as pH shifts37-38, 55-56, changes in osmolyte 

concentration55, 57-59, temperature35-36, 60-62, radiation63-65, or combinations thereof55, 66-68, 

either irreversibly or reversibly. The terms microgel and nanogel (NG) are commonly based 

on the sizes of the polymers, i.e., the sizes of the molecules are within the µm and nm range, 

respectively, irrespective of their molecular structure, stimuli-responsiveness, preparation, 

or application.69 MGs and NGs often can be customized and tailored as to stimuli-

responsiveness, size, and uptake properties. MGs and NGs are versatile and, thus, can be 

used in numerous applications70-71, e.g., as carriers in drug delivery31-32, 61, 66-67, 72-74, in crop 

protection24, 75, and for surface modification30, 76-77. For the use in crop and plant protection 

and the triggered release of nutrients, herbicides, fungicides, and insecticides numerous 

important aspects have to be considered. E.g., the used MGs have to be environmentally 

friendly, nontoxic, and preferably biodegradable. Moreover, the trigger mechanism for 

substance release has to be environmentally friendly as well as practically sensible. For this 

matter, thermo-responsive MGs are predestined for this use case, as no additional 

application of chemicals is needed. The most popular and potentially best investigated 

thermo-responsive polymer is poly(N-isopropylacrylamide) (PNIPAM)78-82. However, 

PNIPAM more toxic than poly(N-vinylcaprolactam) (PNVCL)83. The thermo-

responsiveness and the favorable toxicological properties made PNVCL popular, especially 

in bio(medical) applications35. 

Around 30 °C to 40 °C, a volume phase transition (VPT) is observed for PNVCL and 

PNIPAM, while the collapse of PNIPAM occurs in a narrower temperature interval 

compared to PNVCL84. The VPT is characterized by a sudden discontinuous change in the 

degrees of swelling (Figure 5A) and the potential coexistence of two gel phases with 

different degrees of swelling at a characteristic temperature (volume phase transition 

temperature (VPTT)85. The VPT can be exploited for a controlled release of active 

ingredients previously loaded into the MG. The VPT of an MG is closely related to the 

thermo-responsiveness of the oligomer of the same type. The lower critical solution 

temperature (LCST), at which the oligomer becomes insoluble and precipitates, is typically 
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around the VPTT of the corresponding MG. For PNVCL and PNIPAM, a so-called coil-

to-globule transition (Figure 5B) is observed at LCST, i.e., linear coils of the oligomer 

collapse, form a globule, and potentially agglomerate leading to the precipitation of the 

oligomer78, 80, 84, 86-87. Therefore, the driving forces causing the coil-to-globule transition of 

a thermoresponsive (linear) polymer observed at LCST are closely connected to the 

observed changes in the morphology of the corresponding microgel. 

 

Figure 5. Representation of the volume phase transition (VPT) of PNVCL MGs (A) and the coil-to-
globule transition of oligomeric PNVCL upon reaching the lower critical solution 
temperature (LCST) (B). The core of the core-shell structure of the PNVCL MG is depicted 
schematically as a transparent grey circle. Driving forces causing the coil-to-globule 
transition of a thermoresponsive (linear) polymer observed at LCST are closely connected 
to the observed changes in the morphology of the corresponding microgel 

Depending on the preparation technique25, PNVCL MGs display a core-shell 

structure, i.e., the center of the MG shows a higher crosslinking density and thus a 

decreased chain length between crosslinks, while the shell part shows a lower crosslinking 

density and an increased amount of unbranched PNVCL. Although a variety of 

(co)polymers show stimuli-responsiveness and thermo-responsiveness in particular, the 

driving forces at the atomistic level are strictly dependent on the polymer type and often 

cannot be transferred to other polymers. MD simulations have been proven to be a viable 
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tool to investigate the driving forces for the stimuli-responsiveness at the atomistic 

level86, 88-91. 

For the knowledge-based tailoring of the MG for an optimal use in plant protection 

applications, two mechanisms have to be understood thoroughly. First, the thermo-

responsiveness of oligomeric PNVCL and, closely related, the VPT of PNVCL MGs and, 

second, the interactions with substrates, their uptake and release kinetics, which are 

intertwined. The VPT and the corresponding changes in morphology of the MG are vital 

for the loading and release of substances into/from the carrier. Moreover, the carrier used 

for the delivery of agrochemicals have to be tailored to the respective compound. PNVCL-

based MGs are especially suited for the delivery of small organic compounds rather than 

metal ions. Chalcone derivatives, especially the C4 plant selective herbicide okanin, depict 

promising candidates to be used with a PNVCL carrier. 
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2.1.3. Herbicides in Modern Agriculture 

Modern agriculture makes high demands on agrochemicals, including pesticides such 

as fungicides, insecticides, and herbicides, which have to meet several criteria to ensure 

sustainability. Among all pests, weeds cause the highest loss, up to ~30 %, and thus add 

more to farmers’ production costs, as the use of herbicides is inevitable.6 For all 

agrochemicals, biodegradability is key to avoid accumulation and contamination of soil 

and eventually ground water15-16, 18. In addition to the demands on sustainability, increasing 

herbicide resistances among weeds has become an increasing concern8, 92-94. 

For example, in 2006 already over 300 biotypes of weeds were known to have 

developed resistances towards at least one and potentially more commonly used types of 

herbicide, including glyphosate (N-(phosphonomethyl) glycine), one of the most widely 

used herbicides globally95 and considered to be a “once-in-a-century”96 herbicide. Recent 

investigations on the use of glyphosate as herbicide, however, raise serious concerns97-99 

about bioaccumulation of glyphosate and its decomposition products, leading to chronic 

low dose effects on animals and humans98, changes in the microbiome, and the 

development of resistances among weeds. 

In 2015, the International Agency for Research on Cancer (IARC) of the World 

Health Organization reclassified glyphosate as probably carcinogenic to humans100-101. 

Notably, the U.S. Environmental Protection Agency came to the opposite conclusion as the 

IARC by classifying the substances as “not likely to be carcinogenic to humans”102. 

Although more research on the potential hazards of glyphosate is needed, this case serves 

as a good example of the importance of an in-depth risk assessment of a potential herbicide 

including potential health hazards, biodegradability, accumulation potential, as well as 

effects on the microbiome. 

In contrast, natural herbicides became an appealing alternative to synthetic ones in 

recent years9, 12-13. Natural compounds cover a considerable amount of the chemical space, 

as they include compounds such as phenols of varying complexity, derivatives of coumarin 

(2H-chromen-2-one), lignans, flavonoids, tannins, amino acids, and many more11. These 

compounds provide promising lead structures for a targeted design of herbicides with 

potentially fewer hazards and risks. Developing a pallet of potent herbicides with different 

modes of action, rather than broad-spectrum herbicides, can contribute to a reduced risk for 

the development of herbicide-resistant weeds103. 
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Furthermore, selective herbicides can decrease the amount of deployed herbicides, 

increase the ease of use, and help to avoid resistance development among weeds. Many 

weeds of agricultural importance are distinct from crops in the way they photosynthesize 

and fixate inorganic carbon, mainly CO2. This can be exploited to tailor and create selective 

herbicides. 

The temperature dependence of the photosynthetic efficiency led to the development 

of different carbon fixation pathways among plants. There are three different pathways for 

carbon fixation in plants, i.e., Crassulacean acid metabolism104 (CAM), C3
105, and C4

106 

carbon fixation. Independent of the pathway, the Calvin cycle105, which describes a series 

of redox reactions, is essential for carbon fixation. Within this cycle, CO2 is used for the 

carboxylation of ribulose-1,5-bisphosphate (RuBP) to 3-phosphoglyceric acid (PGA) by 

the ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo). Adenosine triphosphate 

(ATP) and NADPH, the reduced form of nicotinamide adenine dinucleotide phosphate 

(NADP+), which are produced in the light-dependent reactions of photosynthesis, are used 

for the conversion to sugars and starch as well as the regeneration of RuBP from PGA107. 

For C3 plants, open stomata are needed to adsorb CO2 used in the Calvin cycle. This 

way of CO2 absorption, however, displays a major disadvantage at elevated temperatures, 

as opened stomata inevitably lead to the loss of moisture. Thus, the stomata are (partly) 

closed at elevated temperatures to avoid dehydration. Thus, the photosynthetic efficiency 

of C3 plants is decreased at elevated temperatures. 

Therefore, plants growing under harsher conditions, such as elevated temperatures, 

high light intensities, and/or arid conditions, developed mechanisms to avoid dehydration 

by separating the initial carbon fixation either temporally or spatially from the carbon 

fixation in the Calvin cycle. In C4 plants, the initial fixation of absorbed CO2 takes place in 

the mesophyll cell. Within the mesophyll cell, the CO2 is hydrated by carbonic anhydrase 

(CA) to bicarbonate, which is consecutively used in the carboxylation of 

phosphoenolpyruvate (PEP) by the phosphoenolpyruvate carboxylase (PEPC) yielding 

oxaloacetate. The PEP needed in this reaction is produced by the pyruvate phosphate 

dikinase (PPDK) using pyruvate, inorganic phosphate, and ATP. Depending on the subtype 

of the C4 species, the oxaloacetate can be either reduced to malate or transaminated by the 

aspartate aminotransferase to aspartate in a reaction with alanine. Within the bundle sheath 

cell, where the RuBisCo is present, the respective C4 compound 

(oxaloacetate/malate/aspartate) is then decarboxylated either by NADP-malic enzyme 
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(NADP-ME), in the case of malate, or by phosphoenolpyruvate carboxykinase (PCK), in 

the case of oxaloacetate, yielding pyruvate and CO2 in both cases. The former is then 

regenerated to PEP by PPDK, the latter is fixed by RuBisCo within the Calvin cycle. This 

CO2 concentrating mechanism leads to a 10-100 fold increase in the CO2 concentration at 

the RuBisCo in the bundle sheath cell compared to CO2 concentration in mesophyll cells 

of C3 plants108-109. Because of the increased efficiency of CO2 fixation, fewer CO2 intake is 

necessary resulting in a lower need to open the stomata and thus a lower risk of dehydration. 

A comparison of both carbon fixation pathways, C3 and C4, is depicted in Figure 6. 

Similar to C4 plants, CAM plants are growing in arid conditions110. However, CAM plants 

differ from C4 plants as the carbon fixation happens in temporal rather than special 

separation. In CAM plants, CO2 is fixated at night as a 4-carbon intermediate (malic acids). 

During the daytime, this intermediate is then transformed into CO2 again for the further 

reaction in the Calvin cycle. 
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Figure 6. Difference in the photosynthetic reactions and carbon fixation in C3 (left) and C4 plants 
(right). In both cases, CO2 is absorbed through the leaf stomata. For C3 plants, RuBisCo 
uses the CO2 for the carboxylation of RuBP yielding PGA, which is then transformed into 
starch and sugars under ATP and NADPH consumption (Calvin cycle). In C4 plants, the 
CO2 is hydrated and then used for the carboxylation of PEP by PEPC yielding oxaloacetate, 
which is potentially reduced or transaminated further. Within the bundle sheath cell, the C4 
compound is then decarboxylated by PCK (in the case of oxaloacetate) yielding pyruvate 
and CO2, which is fixed by RuBisCo within the Calvin cycle. Figure adapted from Yamori 
and Hikosaka107. 

As the majority of all plants, the majority of crops, such as rice, wheat, barley, rye, 

soybean, and potato, are C3 plants, whereas a considerable amount of weeds are C4 plants, 

such as Amaranthus retroflexus. Hence, enzymes playing an important role in the C4 and 

not the C3 pathway, such as the PEPC (Figure 7A), represent attractive targets for potential 

inhibition leading to decreased or even no carbon fixation and eventually withering of the 

weed. The use of (trans)-chalcones as potential herbicides was first reported111 in 2014. 

However, neither a potential molecular target nor the mode of action was elucidated in 

these studies. To elucidate the binding of chalcones to the different PEPC, molecular 

docking has been performed10 using the available crystal structures of PEPC from F. 

trinervia (PDB ID 3ZGE112) and C3 PEPC from F. pringlei (PDB ID 3ZGB112). The work 

of Nguyen et al. on this topic showed that chalcone derivatives act on PEPC, rendering 
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them potential C4 plant selective herbicides10. Especially okanin (2′,3′,4′,3,4‐pentahydroxy-

chalcone), was shown to be a 45-times stronger inhibitor of PEPC of C4 plants 

(IC50 = 0.6 ± 0.1 µM, PEPC from Flanervia trinervia) than of the PEPC from C3 plants 

(IC50 = 26.8 ± 3.5 µM, PEPC from Flanervia pringlei)10. Moreover, okanin did not show 

any influence on bacterial growth on complex and minimal media, while showing a 

significant effect on plant growth10. 

 

Figure 7. PEPC plays an essential role in carbon fixation in C4 plants. A Homology model of the 
PEPC tetramer of A. retroflexus generated from sequence using SWISS-MODEL113. B 
Potential binding pose obtained by docking of okanin in the binding pocket of PEPC from 
A. retroflexus obtained via homology modeling [unpublished results]. C Chemical structure 
of the C4 plant selective herbicide okanin (2′,3′,4′,3,4‐pentahydroxy-chalcone). 

The binding pockets of both PEPC variants are nearly identical except for residue 

884, being a glycine in the C4 PEPC and an arginine in the C3 PEPC, which was identified 

to be the selectivity-determining residue. However, plant experiments were carried out for 

A. retroflexus and Brassica napus (rapeseed), as these plants depict a real-world scenario. 

Recent investigations on the transcriptomes of 1000 plants114 revealed, that the sequence 

of PEPC from A. retroflexus differs from the binding site of PEPC from F. trinervia. 

Sequence information in combination with homology modeling (see chapter 2.2.1) allowed 

the prediction of the protein structure of PEPC from A. retroflexus (Figure 7A). The 

structural model can be used in molecular docking to identify potential binding poses of 

okanin within the binding site of the protein (Figure 7B). Obtained binding poses for okanin 

(Figure 7C) were found to be similar to the ones identified by Nguyen et al., strengthening 

the hypothesis that okanin binds as a competitive inhibitor to PEPC [unpublished results].  
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2.2. Computational Chemistry and Molecular Modeling 

Computer-aided design, simulations, and modeling play an important role in today’s 

pharmaceutical and medicinal chemistry as well as in material sciences in both academic 

and industrial research115-117. The employed methods are extremely diverse, ranging from 

simulations at different scales, over docking of ligands into proteins to protein structure 

prediction using homology modeling (HM) and artificial intelligence (AI) based protein 

structure prediction. In HM, known structures of proteins are used as templates to predict 

the structure of a protein, for which, e.g., only sequence information is available. HM 

became an essential tool, where available experimental data is sparse, incomplete, or 

accompanied by high experimental burden and/or costs. The structures of the majority of 

the investigated APs in Publication I, for example, were determined using nuclear 

magnetic resonance (NMR) spectrometry, however, for the Macaque Histatin, the protein 

structure had to be modeled based on its sequence by using templates with TopModel52. 

Using HM, a structural model of Macaque Histatin was generated and investigated in MD 

simulations. 

Lately, novel approaches within the field of computational (bio)chemistry 

successfully employ AI. Interestingly, the idea of AI is comparatively old, starting in the 

1950s. The conference at Dartmouth College in July 1956 is often regarded as the starting 

point, as the phrase artificial intelligence was coined there118. Back then, potential 

applications for AI were limited. In the last decades, however, machine learning (ML) and 

in particular deep learning (DL) approaches have become popular for many applications, 

such as speech and image recognition, but also within computational (bio)chemistry119. 

Recently, DL algorithms have been successfully employed to predict complex protein 

structures with precision either close to or within the range of experimental errors120-121. 

With the current increase in available experimental data, ML approaches, especially DL, 

which are heavily dependent on big data sets, have become more precise and diverse, to 

the point where e.g. conventional HM approaches are superseded by DL-based approaches. 

Besides structural modeling, many other applications within the field of 

computational (bio)chemistry benefit considerably from the availability of big data sets as 

well as the increase in computational performance. Similar to the beginning of AI, the 

origin of MD simulations date back as far as the 1950s122. The constant development in 

computing performance, algorithms, and parametrizations throughout the years rendered 

this method an essential tool in modern (bio)chemistry. Today, it is one of the most widely 
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used techniques in scientific computing123, with a vast pool of MD simulation software 

available, delivering insight into molecular interactions on an atomistic scale124. Among 

these software, there are some notable programs and software suites such as AMBER125-126 

(“Assisted Model Building with Energy Refinement”), CHARMM127-128 (“Chemistry at 

HARvard Macromolecular Mechanics”), and GROMACS129-130, which find vast 

application in academic as well as industrial research. Atomistic simulations benefit from 

the increased computational performance, in particular, allowing simulations in the 

microsecond timescale131-132. 

In MD simulations, Newton's equations of motion are solved numerically for all 

particles of the system at any given time during the simulation. Interactions between the 

particles as well as their potential energy are calculated with the help of so-called force 

fields (FFs). The FFs may be derived from ab initio quantum chemical methods, can be 

empirical, or a combination of both. To adequately reflect thermodynamic, dielectric, 

structural, and dynamic properties obtained from experimental data, FFs are often tailored 

for certain types of molecules, such as water and ions133-134, peptides and proteins135-137, 

DNA138 and RNA139, carbohydrates140, lipids141, or small organic molecules142. For the 

latter, the general AMBER force field (GAFF2) is used. Although general FFs might be 

less refined compared to specifically designed FFs, they are capable of representing purely 

synthetic macroscopic structures, such as artificial polymers, as well as microscopic 

structures, such as drugs and inhibitors. In all of the presented publications, MD simulations 

were used to elucidate key interactions at the atomistic level. In Publication I, the adhesion 

of APs towards an atomistic model of an apple leaf surface was investigated (chapter 2.1.1). 

The simulations on the APs adhesion process revealed which residues of the APs are crucial 

for binding to the waxy leaf surface and thus established a platform for the rational design 

of APs with tailored leaf binding properties. In Publication II, MD simulations were 

employed to elucidate the thermo-responsiveness of PNVCL (chapters 2.1.2 and 2.2.2). 

The computational study revealed a delicate enthalpy-entropy compensation during the 

coil-to-globe transition of oligomeric PNVCL. Finally, in Publication III, the uptake and 

release of the C4 plant key enzyme inhibitor okanin (chapter 2.1.3) into/from an oligomeric 

and crosslinked PNVCL were probed in MD simulations. Obtained insights on the 

adsorption of okanin to the microgel were used to generate a copolymer microgel with 

increased loading capacity.  
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2.2.1. Modeling Peptides and Proteins 

In recent years, the available number of sequences and structural information for 

peptides and proteins have drastically increased (Figure 8). The structures deposited in the 

Protein Data Bank (PDB)143-144 are determined using modern high-resolution techniques 

such as X-ray crystallography, NMR, and cryogenic electron microscopy (cryo-EM). 

While X-ray crystallography and cryo-EM resolve static structures, NMR is capable of 

resolving structural dynamics of proteins, often rendering it a complemental method in 

structural proteomics145-146. High-resolution models of proteins deposited in the PDB 

establish a valuable platform for investigations of protein interactions at an atomistic level 

using computational means. However, solving the tertiary structure of proteins 

experimentally is often time-consuming and expensive. The determination of only protein 

sequences, however, is comparably cheap and time-inexpensive, yielding a more than 

1000-fold larger database for protein sequences. The Universal Protein Resource (UniProt) 

database147-148 comprises more than 214 million entries to date compared to the 

approximately 180 thousand structures deposited in the PDB (Figure 8A). 

 

Figure 8. Number of sequence entries in the UniProtKB and structures in the PDB (A) and the 
taxonomic distribution of the sequences within the complete UniProtKB dataset (B) and the 
Eukaryote subset (C). Decreasing entry numbers for the UniProtKB database are caused by 
merging similar entries to reduce redundancy. The graph contains data up to April 2021 and 
August 2021 for the UniProtKB and the PDB, respectively. 
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The majority of the sequences within the UniProt Knowledgebase (UniProtKB) 

database are sequences of proteins found in bacteria (Figure 8B), directly followed by 

sequences of eukaryotic proteins. Within the subset of sequences from Eukaryotes, not even 

1 % of the available sequences has a human origin, despite the fact that this subset 

corresponds to more than 175 thousand sequences (Figure 8B). The knowledge about 

sequences thus surpasses the knowledge about protein structures by far. Yet, knowledge 

about the structure is essential to understand the function of the protein. Modern algorithms 

for predicting proteins structures exploit the considerable increase in the size of both 

sequences and structure-based data sets. TopModel52 and SwissModel113 are notable 

representatives of HM software that use structural information derived from experiments 

to predict the structure of potentially similar proteins. Recent approaches, such as 

AlphaFold120 and RoseTTAFold121, exploit DL to predict a protein’s structure. DL 

algorithms can be trained on a variety of (structural) descriptors, such as information from 

multiple sequence alignment, geometric features such as angles and distances between 

atoms, contacts between residues of the protein, and potentially many more. 

In addition to HM, it has been shown in multiple studies that atomistic MD 

simulations can be used for in silico protein folding149-153. Although this approach is 

computationally often far more demanding compared to HM, it demonstrates the accuracy 

of modern FFs and their capability of accurately reproducing biologically relevant 

processes at an atomistic level. Exemplarily, Figure 9 shows the result of a 20 µs long 

folding simulation of the AP LCI. Starting from an unfolded structure, within the course of 

the simulation, LCI formed its characteristic secondary structure, matching structural data 

derived from NMR experiments (PDB ID: 2B9K). However, this approach is only 

practically feasible for smaller proteins. 

 

Figure 9. Crystal structure of the AP LCI (PDB ID: 2B9K, red) in comparison to a model obtained 
from ten 20 µs long folding simulations (blue) following the approach of Nguyen et al.150. 
The Cα-atoms show a root-mean-square deviation (RMSD) of 3.6 Å [unpublished results].  
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2.2.2. Exploring Polymer Dynamics in silico 

Simulations are a versatile tool for the investigation of not only proteins and peptides 

but have also proven to be a valuable tool for the investigation of synthetically synthesized 

polymers154-155. Besides atomistic MD simulations, especially coarse-grained (CG) 

simulations are a suitable tool to investigate larger systems that otherwise would be limited 

by particle number156-157. In CG simulations, one or several groups of atoms, (repeating) 

units, or even bigger structural elements are condensed into single beads or sticks, thus 

significantly reducing the overall number of particles158-159. Consequently, polymer 

structure and dynamics can be scrutinized on a multiscale160-161. Atomistic and CG 

simulations are used to investigate material characteristics and dynamics, e.g., 

physicochemical86, 162 as well as mechanical156, 163-164 properties and processes such as 

polymer chain folding165-166. However, for the investigation of stimuli-responsive 

polymers, knowledge of the mechanism at an atomistic level is required. The potentially 

best-investigated thermo-responsive polymer is PNIPAM, which has been excessively 

investigated experimentally73, 81, 167-169 as well as in simulations80, 90-91, 170-173. However, due 

to its toxicological properties, i.e., it is decomposed into small, potentially carcinogenic 

amide derivatives upon hydrolysis83, PNIPAM is unsuitable for an application as a carrier 

for agrochemicals. In contrast to PNIPAM, PNVCL shows favorable toxicological and 

ecological properties, making it a viable option for the use as carrier for agrochemicals. 

Studies on the thermo-responsiveness of PNVCL and the effect of the salt concentration 

and types on the LCST using simulations have been reported previously57, 88, 162, 174-176. 

These studies comprise simulations at the coarse-grained176, united-atom88, and atomistic 

level57, 174. Interestingly, the majority of the published simulation data86, 88-89, 91, 174 on 

thermo-responsive polymers describes the collapse at the LCST as a seemingly irreversible 

process, as no transition from globule back to coil is observed during the simulations. This, 

however, is in contradiction to experimental observations84, 177. Notable exceptions162 

showing simulations of a reversible process exist. 

As for all simulation studies, it is of vital importance to estimate the model’s accuracy 

and reliability. For this, it is inevitable to evaluate the impact of the known parameters on 

the model, i.e., in a DoE, the impact of the polymer’s size, tacticity, and concentration on 

the phase transition have to be scrutinized prior to any other experiment using the generated 

atomistic models.  
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2.2.3. Investigating Biological Interfaces 

Many biological systems are exceptionally complex and multifarious in their nature 

and composition178. Starting at the genetic level, over the cellular and system level, to a 

complete ecosystem, this complexity is observed at every stage. Plant leaves are no 

exception to this rule179. To describe complex systems, one might refer to the concept of 

thermodynamics, i.e., describing systems by their energetic traits, such as the free energy180 

or the entropy181, often as Shannon entropy182, of the system. This, however, often provides 

only a coarse-grained model of the system of interest. Despite the challenges complex 

biological systems pose, there has been an early and striving effort to generate 

computational (multiscale) models for various kinds of systems183-186. Understandably, 

these models are not able to fully represent and describe the complexity of the system. 

However, the generated models often provide valuable information and help to interpret 

and understand results obtained in experiments. For example, molecular dynamics 

simulations always include a certain level of approximation, uncertainty, and 

compromise117. However, as elucidated in chapters 2.2.1 and 2.2.2, computational models 

have come a long way and deliver extremely useful insights at an atomistic level. Although 

the main focus of computational biochemistry and structural modeling is the investigation 

of proteins and their interactions with substrates187-188, many other fields have been 

explored using in silico methods in recent years119, 189-191.  

In this work, the biological interface of interest is the surface of a plant leaf. The 

generation of an atomistic model of the leaf surface may lead to novel insights of 

interactions of various substrates with the epicuticular wax layer and is potentially useful 

for a variety of foliar applications. A simplified atomistic model of a leaf should contain 

the main structural elements of a leaf, i.e., cellulose, a cutin matrix, and finally a layer of 

cuticular waxes. Within the plant cell wall, cellulose is the most prominent polysaccharide. 

Cellulose fibers are linear polymers of hundreds of β(1→4)-linked D-glucopyranose 

moieties. The polymer chains aggregate into bundles, so-called (micro)fibrils192. These 

fibrils are embedded in a matrix of other polysaccharides forming a rigid cell wall. Atop of 

the polysaccharide cell wall, a cuticular polyester matrix of inter-esterified ω-hydroxy acids 

is located193. The fatty acids are interlinked via ester bonds, forming a polyester of 

indeterminate size.  
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An example of a section of the cutin matrix is depicted in Figure 10. The composition 

of the cutin layer may vary strongly depending on the plant194. 
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Figure 10. Exemplary structure of the cutin matrix as proposed by Fich et al.194. The polyester matrix 
is formed by ω-hydroxy fatty acids of different chain lengths, while C16 and C18 fatty acids 
account for the majority of fatty acids within the cutin matrix. Midchain hydroxyl groups 
allow for a dendritic/crosslinked structure. 

Cutin is impregnated and covered with cuticular and epicuticular waxes, 

respectively195. These waxes often comprise molecules of numerous structural classes, like 

long aliphatic molecules, sterols, and terpenoids. The composition and diversity of the 

epicuticular wax are also strongly dependent on the plant. Thus, it is mandatory to 

determine the exact composition beforehand, using modern analytical methods to generate 

an atomistic model. 
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3. Scope of the Thesis 
The increasing world population poses a variety of challenges. One of the most 

important questions humankind has to answer is how to overcome the increasing demand 

for food, while simultaneously limiting the exploitation of natural resources. As shown in 

the introduction of this thesis, the world population is estimated to reach ten billion people 

by the year 2050. Sustainable agriculture is of vital importance to ensure sufficient nutrition 

for the global population and future generations. Undisputedly, an overall reduction of the 

applied pest control leads to a decrease in environmental pollution and consequently to 

higher crop yields196. The amount of applied agrochemicals, such as pesticides and 

herbicides, can be decreased by developing target-specific agents. Moreover, the 

effectiveness of the application can be increased by reducing the number of treatments 

needed, e.g., by improving the formulation’s rain fastness. Chapter 2.1 depicts the novel 

GreenRelease technology, which follows the motto “achieve more with less”. Within the 

GreenRelease technology, anchor peptides (APs, described in chapter 2.1.1) are used to 

enhance the rain fastness of microgel carriers (MGs, described in chapter 2.1.2) for a smart 

delivery and release of agrochemicals. MGs can be used to deliver nutrients, pesticides, 

fungicides, and herbicides. Okanin, a small organic compound that could be delivered by 

such MGs, belongs to the structural class of chalcones and shows great potential as a 

C4 plant key enzyme inhibitor (chapter 2.1.3). While experiments in which MGs decorated 

with APs were used for foliar delivery of micronutrients (e.g. Fe3+) showed promising 

results24, many of the involved interactions remained elusive. Therefore, to fully unlock the 

potential of this novel plant protection technology, gaining deeper knowledge, especially 

at the atomistic level, is required. 

This thesis aims at understanding the involved mechanisms of the GreenRelease 

technology at every crucial step. This comprises the interaction of the APs with biological 

interfaces such as plant leaves (Publication I), the generation of structural models of the 

MGs (Publication II) and the potential understanding of their defining characteristics, and 

finally, the loading and release processes of okanin into/from the microgel carrier 

(Publication III). The obtained knowledge is essential for the optimization of the 

technology. 

First, the adsorption of APs to synthetic surfaces, such as polymers, has been well 

investigated experimentally, however, the adsorption to biological interfaces (chapters 

2.1.1 and 2.2.3), such as plant leaves has been hardly investigated, and there has not been 
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any investigation on the interactions at the atomistic level so far. In Publication I, an 

interdisciplinary approach to overcome this challenge is described. Here, the composition 

of the wax of an apple leaf was determined experimentally.* Based on the experimental 

findings, I generated a novel three-layered atomistic model of the apple leaf surface and 

used it in unbiased and steered MD simulations to obtain knowledge about the adsorption 

of APs at an atomistic level. Using unbiased MD simulations, I was able to identify residues 

within the AP that are of major importance for binding. The steered MD simulations were 

used to predict leaf binding performance of structurally different APs. A novel 

fluorescence-based assay was developed† to quantify the leaf wax binding properties of 

different APs and AP variants. Based on the atomistic insights I gained from the 

simulations, I proposed several AP variants to test experimentally to validate the simulation 

experiments. In conclusion, I generated a novel atomistic model of a leaf surface used it in 

MD simulations to identify residues of high importance for binding of the APs. The 

obtained knowledge about the interaction between the AP and the leaf wax at an atomistic 

level is helpful for the rational design of APs with increased adhesion properties. 

Second, for the investigation of the microgel container as a carrier for agrochemicals, 

it is of vital importance to generate atomistic models that correctly reflect the polymer’s 

physicochemical properties. Poly(N-vinylcaprolactam) (PNVCL) is a biodegradable, 

stimuli-responsive polymer. Upon reaching the volume phase transition temperature, 

PNVCL microgels transition from a swollen conformation to a collapsed one. Not only 

polymeric PNVCL shows a thermo-responsiveness but also oligomeric PNVCL shows a 

lower critical solution temperature upon which the oligomers undergo a conformational 

change known as coil-to-globule transition (chapters 2.1.2 and 2.2.2). In Publication II, I 

investigated the thermo-responsiveness of short-chain PNVCL oligomers in depth using 

exhaustive MD simulations in combination with experimental validation‡. For the first 

time, the impact of several parameters, such as the polymer concentration, its size, and the 

chosen water model and thermodynamic ensemble on the observed coil-to-globule 

transition, was studied systematically. Moreover, I investigated the transition using 

                                                 

* The leaf samples were provided by Dr. Shyam Pariyar at the Department of Horticultural Sciences, 
University of Bonn; the wax composition was analyzed by Dr. Viktoria Zeisler-Diehl and Prof. Dr. Lukas 
Schreiber at the Department of Ecophysiology, University of Bonn. 
† The experimental work was performed by Christin Brethauer under the supervision of Dr. Felix Jakob and 
Prof. Dr. Ulrich Schwaneberg at the Institute of Biotechnology, RWTH Aachen University. 
‡ The experimental work was performed by Michael Kather and Anna Holzberger under the supervision of 
Prof. Dr. Andrij Pich at the DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University. 
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end-point free energy methods and Markov State modeling. At the time of publication, this 

study was presumably the most comprehensive computational study on the temperature-

induced coil-to-globule transition of oligomeric PNVCL. 

Third, based on the knowledge gained from the simulations of the oligomeric 

PNVCL, the interactions of agrochemicals with the PNVCL carrier can be investigated in 

silico (chapters 2.1.2 and 2.2.2). Initial experiments revealed that upon uptake of the 

C4 plant key enzyme inhibitor okanin (chapter 2.1.3), PNVCL microgels show a distinct 

structural change. To elucidate interactions at the atomistic level and understand structural 

changes of the microgel, an integrated approach is necessary. In Publication III, the uptake 

of okanin into PNVCL-based microgels is studied experimentally§ and computationally. 

Upon loading, the microgel’s collapse was traced by dynamic light scattering (DLS). The 

change in the particle’s morphology was investigated using scanning transmission electron 

microscopy (STEM) and atomic force microscopy (AFM). I decomposed the complex and 

structural inhomogeneous microgel into two sections to elucidate the loading and release 

of the okanin in MD simulations: a linear PNVCL oligomer represents the loosely 

crosslinked shell/corona of the microgel including single linear polymer chains often 

referred to as dangling ends. A crosslinked cubic model of the PNVCL, on the other hand, 

represents the core of the microgel. I simulated the adsorption of okanin in various 

concentrations to the linear and crosslinked PNVCL. To determine the energetics of this 

process, I used end-point free energy estimations and discovered two different binding 

modes. The simulations explain the structural change of the microgel upon loading of 

okanin and match the results for the co-solvent triggered release. Insights gained from the 

atomistic study were used to generate a co-polymer with increased loading capacity and 

can be used for future tailoring of the microgel and optimizing the loading and release of 

different agrochemicals. 

 

                                                 

§ The experimental work was performed by Fabian Kolodzy and Dr. Alexander Töpel under the supervision 
of Prof. Dr. Andrij Pich at the DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University. 
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4. Publications 
4.1. Publication I 

 

Rational Design Yields Molecular Insights  

on Leaf-Binding of Anchor Peptides 
 

Jonas Dittrich#, Christin Brethauer#, Liudmyla Goncharenko, Jens Bührmann, Viktoria 

Zeisler-Diehl, Shyam Pariyar, Felix Jakob, Tetiana Kurkina, Lukas Schreiber, 

Ulrich Schwaneberg, and Holger Gohlke 
#these authors contributed equally. 

 

ACS Applied Materials & Interfaces, 2022, 14, 28412-28426. 

DOI: 10.1021/acsami.2c00648 

For the original publication, see pages 58-90.  
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The content in this chapter was taken and modified from Publication I. 

Background 

With the constantly growing world population and increasing demand for food, 

sustainable agriculture is necessary to insure sufficient nutrition. Increased rain fastness of 

agrochemical formulations is of vital importance to avoid severe environmental pollution 

due to the wash-off of active agents, such as nutrients, herbicides, fungicides, or pesticides. 

To date, polymeric adjuvants are added to the agrochemicals to increase the rain fastness 

of the formulation. However, some adjuvants will be classified as microplastics in the 

future; thus, a sustainable alternative is needed. Anchor Peptides (APs) are biobased and 

biodegradable adhesion promoters and represent a sustainable alternative. While the 

adsorption of several APs towards artificial surfaces, such as polymers, was already 

investigated in theory and experimentally, mechanisms at the atomistic level for the 

adhesion to complex biological surfaces remained elusive so far. Due to the complex nature 

of biological interfaces, such as the surface of a plant leaf, the generation of an accurate 

model is complicated. In this publication, I set up an integrated approach to generate an 

atomistic model of an apple leaf, taking into account the experimentally determined 

composition of leaf wax. The MD-based predictions obtained for AP variants and different 

APs were validated using a novel quantitative assay. For the AP Macaque Histatin, 

aromatic and positively charged amino acids were identified to be essential for binding to 

the waxy apple leaf surface. 

Generating a three-layered atomistic model of the apple leaf surface 

The surface of a leaf often consists of a cuticular polyester matrix of inter-esterified 

ω-hydroxy acids, impregnated with cuticular waxes, covered with epicuticular waxes195, 

and located atop of a polysaccharide cell wall193. To reflect the complex structure, a three-

layered model was generated stepwise using MD simulations for every addition of a new 

layer (Figure 11). For the generation of the first layer, the Cellulose-Builder197 was used to 

generate a crystalline sheet of Iβ cellulose (Figure 11A). Next, 

10,18-dihydroxyoctadecanoic acid was chosen as a representative fatty acid for the 

generation of the cutin matrix. Several linear and branched structures with up to 17 fatty 

acid moieties were generated and packed atop the sheet of Iβ cellulose using PACKMOL198 

(Figure 11B). A short MD simulation of 25 ns length yields a compact structure of the cutin 

layer (Figure 11C). 
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Figure 11. Stepwise creation of an atomistic leaf surface model. A) Three-layered crystalline Iβ 

cellulose. B) Loosely packed polyester matrix of crosslinked 10,18-dihydroxyoctadecanoic 
acid located above the cellulose sheet. C) Compacted cutin layer atop the cellulose sheet 
after 25 ns of NVT MD simulations. D) Randomly placed wax components above the 
compact cutin layer. E) Solvated system. F) Snapshot obtained after 100 ns of MD 
simulations of the complete model. Figure and figure caption taken from Publication I, see 
page 60. 

Consecutively, a wax layer was added using PACKMOL (Figure 11D) and the 

system was solvated in a water box (Figure 11E). A short simulation yielded compaction 

of the wax layer (Figure 11F), resulting in a system suitable to investigate the interaction 

of various APs with the cuticular wax. The composition of the cuticular wax was 

determined experimentally by my collaborators using gas chromatography equipped with 

flame ionization detection and mass spectrometry (GC-FID/GC-MS).  
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MD simulations reveal residues within Macaque Histatin (MacHis) that are important 

for leaf wax binding 

In the next step, the adoption of APs to the novel atomistic model of the leaf surface 

was simulated. It was possible to identify the residues of the proteins that form the majority 

of contacts to the waxy surface. Presumably, the number of contacts formed by each residue 

correlates to the contribution of the individual residue to the overall adsorption of the AP. 

Therefore, from unbiased MD simulation I identified residues with a high number of 

contacts to the leaf wax. Exemplarily, the adsorption of the AP MacHis to the waxy layer 

was investigated and the number of relative contacts was determined. The relative contact 

per residue is depicted in Figure 12A. In Figure 12B, the findings are mapped onto the 

structure, colored according to the observed contacts. 

 
Figure 12. A) Residue-wise relative contacts of MacHis with the wax molecules during 10 x 250 ns of 

MD simulations of AP adsorption. The secondary structure, as determined by DSSP,199 is 
indicated on the top. The color code relates to that shown in panel B. Error bars denote the 
SEM. B) Homology model of MacHis colored according to the relative number of contacts 
a residue forms within 7 Å with the wax molecules; sidechains of residues with a relative 
contact > 0.04 are depicted as sticks and spheres. Figure and figure caption taken from 
Publication I, see page 64. 

The MD simulations for the adsorption of MacHis showed that one side of the α-helix 

is favored for binding to the wax layer. Moreover, the simulations reveal that aromatic and 

positively charged amino acids are essential for binding to the waxy apple leaf surface.  
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The leaf wax binding strength of structurally different APs can be predicted using 

adaptive steered MD simulations 

The desorption of the APs from the leaf surface was investigated using adaptive 

steered molecular dynamics (ASMD) simulations. In ASMD simulations, the reaction 

coordinate along which the pulling force is applied is segmented into so-called stages. For 

each stage, several replicas were simulated. The non-equilibrium work was determined 

using Jarzynski’s equality200. The replica with the work closest to the determined average 

was used as starting point for all replicas of the subsequent stage. This way, the desorption 

of different APs and the non-equilibrium work, as well as the corresponding potential of 

mean force (PMF) were determined. Figure 13 depicts the steered desorption exemplarily 

for the AP MacHis. 

 
Figure 13. Adaptive steered MD of the desorption process of MacHis (cyan) from the leaf surface 

model. The potential of mean force (PMF, black solid line) of desorption determined as the 
average of the work of each stage (blue transparent lines) is depicted as inlay. The starting 
structure (stage 1) of MacHis as well as a structure selected from stage 12 of the steered 
MD are shown translucent, the completely detached AP is shown opaque (stage 17); 
corresponding stages are highlighted in the PMF profile. Figure and figure caption taken 
from Publication I, see page 66.  
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In this study, I used ASMD simulations to investigate the binding strength of 

structurally different APs, such as MacHis, Plantaricin, LCI, Pleurocidin, and Magainin. 

The investigated APs showed distinct differences in binding to the surface of apple leaves 

in a qualitative fluorescence-based assay using whole leaves. The needed work and PMF 

determined from the ASMD simulations for each AP are depicted in Figure 14A. The 

derivative of the work is indicative of the force applied during that stage (Figure 14B), i.e., 

the steeper the PMF, the higher the force applied during that step. Next to the overall PMF, 

and thus the amount of work needed for the desorption, the maximum amount of force 

needed (Figure 14C) potentially depicts thresholds for the AP to bind to the waxy surface. 

 
Figure 14. A) Potential of mean force (PMF) profiles for the desorption of MacHis (blue), Plantaricin 

A (green), LCI (orange), Pleurocidin (red), and Magainin (purple) as determined by 
adaptive steered MDs. The work of the 25 individual replicas per stage is depicted as 
transparent, and the PMF is shown opaque. B) Force profile as difference quotient 
∆PMF/1 Å, where the denominator relates to the distance difference with respect to the leaf 
surface. C) Bar plot depicting the maxima of the forces shown in panel B. Figure and figure 
caption taken from Publication I, see page 67. 

The results of the ASMD simulations identified MacHis as the best binding AP, while 

LCI and Plantaricin A still showed considerable binding, and Pleurocidin as well as 

Magainin, showed potentially the least binding. Experiments suggested that LCI is the best 

binding AP, followed by MacHis. Plantaricin A still shows considerable binding, 

Pleurocidin is indistinguishable from the pure fluorescence reporter (enhanced green 

fluorescent protein (eGFP)), and Magainin is potentially worse than pure eGFP. Overall, 

the ranking of the APs with regard to their wax binding potential determined by ASMD 

simulations matches the experimentally determined ranking well.  



Publication I 
 

35 

Conclusions and significance 

In this work, I established a multidisciplinary workflow for selecting suitable APs 

and rational improvement of their binding properties towards specific plant leaves. 

Therefore, I generated a multi-layered atomistic model of an apple leaf surface. The model 

was used to elucidate the interaction of APs with the waxy surface. In parallel, a 

quantitative fluorescence-based assay was developed by my collaborators to evaluate the 

leaf binding strengths of different APs and AP variants. Overall, predictions for the 

modification of the AP MacHis matched experimental observations, yielding molecular 

insights into the binding mechanism of MacHis. The prediction of the binding strength of 

structurally different APs matched results from the novel experimental assay and 

observations from experiments using the whole leaf. 

The main results of this study are: 

• The generation of a three-layer atomistic model of an apple leaf surface that can be 

used in MD simulations to investigate various kinds of foliar applications. 

• Unbiased MD simulations of the AP Macaque Histatin revealed residues of vital 

importance for binding to the waxy surface of a leaf. My collaborators validated the 

MD-based predictions by generating of Macaque Histatin variants and testing their 

binding properties using the novel binding assay. 

• ASMD simulations were used to investigate the desorption of the AP and the binding 

strength. The non-equilibrium work determined was used to calculate a PMF for 

desorption of structurally different APs. Predictions based on the calculated PMFs 

matched results from the novel binding assay and observations using whole apple 

tree leaves. 
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4.2. Publication II 

 

Cumulative Submillisecond All-Atom Simulations of the 

Temperature-Induced Coil-to-Globule Transition of 

Poly(N‑vinylcaprolactam) in Aqueous Solution 
 

Jonas Dittrich, Michael Kather, Anna Holzberger, Andrij Pich, and Holger Gohlke 

 

Macromolecules, 2020, 53, 9793−9810 

DOI: 10.1021/acs.macromol.0c01896 

For the original publication, see pages 92-147.  
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The content in this chapter was taken and modified from Publication II. 

Background 

PNVCL is polymer whose water solubility is dependent on temperature. Upon 

exceeding the LCST of ~32-37 °C, the polymer becomes insoluble in water and undergoes 

a conformational change from a coil to a globule87, 201. The LCST of PNVCL depends on 

multiple parameters such as polymer length and concentration60, 202-203, types and 

concentrations of ions204, detergents205, and other osmolytes57. Stimuli-responsive 

polymers play a vital role in health, biomedicine, environment, and agriculture/plant 

sciences. Understanding the thermo-responsiveness at the atomistic level allows the 

tailoring of the polymers. 

In this work, I aimed at elucidating the driving forces of the PNVCL coil-to-globule 

transition at the LCST by computational structural and energetic analyses. The coil-to-

globule transition was investigated while paying particular attention to the impact of 

polymer characteristics and validating the simulation results against experiments. The 

systematic assessment of the influence of polymer length, tacticity, and concentration on 

the coil-to-globule transition is particularly noteworthy as these analyses were novel for 

PNVCL. Moreover, energetic determinants of the transition have only been computed for 

interactions between two isolated VCL monomers so far, rather than for oligomeric 

structures. 

MD simulations are sensitive enough to capture the coil-to-globule transition of 

oligomeric PNVCL 

Simulations of not only PNVCL of varying sizes but also atactic poly(N-

vinylpyrrolidone) (PVP) 40mers were performed at 293 K and 313 K to probe if MD 

simulations can discriminate between polymers showing LCST or not. PVP generally does 

not show LCST behavior in water. Therefore, PVP oligomers provide a valuable negative 

control, as they are structurally similar to PNVCL oligomers but do not show the 

characteristic thermo-responsiveness.  

As the coil-to-globule transition describes a substantial change in the conformation 

of the polymer chain, it is well described by changes in geometric parameters such as the 

radius of gyration (RG), as it is a measure for the structural compactness of the polymer. 
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For PNVCL, the RG frequently fluctuated between 12 and 25 Å at lower temperatures 

(Figure 15A). Therefore, multiple collapses and extensions of the polymer are sampled 

during the simulation time of 1000 ns. At elevated temperatures, however, extended 

conformations are less frequently sampled, and the likelihood of observing such states 

decreases with increasing simulation time (Figure 15C). At 313 K, polymer conformations 

with RG < 15 Å dominate the frequency distribution, i.e., globular conformations are 

predominant at temperatures above LCST.  

For PVP, at both temperatures, fluctuations of RG between 10 and 24 Å were 

observed (Figure 15B, D). However, extended periods of simulation time showing low RG 

were not found, yielding highly similar frequency distributions between 292 K and 313 K. 

These findings indicate the absence of a coil-to-globule transition in a PVP 40mer.  

 

Figure 15. Radius of gyration (RG) during five⋅MD simulations of 1 μs length of an atactic PNVCL 
40mer (A, C) and during five MD simulations of 500 ns length of an atactic PVP 40mer (B, 
D) at 293 K (A, B) and 313 K (C, D). Corresponding frequency distributions are shown 
next to the time series in matching color, a frequency distribution of all data is shown as 
dashed black line. Sample structures taken from each simulation setup are depicted next to 
the corresponding simulation. Figure and figure caption taken from Publication II, see 
page 97 

In essence, atomistic MD simulations are seemingly capable to discriminate between 

the LCST behavior of the PNVCL 40mer and the absence of thermo-responsiveness of the 

structurally similar PVP 40mer.  
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Hidden Markov Models reveal an additional compact state for PNVCL at elevated 

temperatures as well as the inversion of state distribution and transition rates 

For the atactic PNVCL 40mer, two similar, coarse-grained hidden states, comprising 

PNVCL in coil and globular conformations, at 293 K and 313 K were identified in the 

HMM. However, the ratio of stationary distributions (π) for the two states inverted upon 

increasing the temperature. The predominant state (π = 0.68 at 293 K and π = 0.25 at 

313 K) comprised elongated polymer chains in coil conformation. The second state 

(π = 0.32 at 293 K and π = 0.42 at 313 K) comprised PNVCL oligomers in a hairpin 

conformation. The HMM constructed from the simulations at elevated temperature also 

unveils a new, compact state, which was not observed at lower temperatures. The third state 

comprised oligomers in a dense globular conformation (π = 0.33 at 313 K). 

Concerning the free energy differences of the coil-to-globule transition, the HMMs 

revealed that the free energy difference at 313 K versus 293 K is slightly larger than kT, 

where k is the Boltzmann constant and T the absolute temperature. 

 

Figure 16. HMMs for an atactic PNVCL 40mer at 293 K (A) and 313 K (B) projected on the same IC 
space. The probabilities πi obtained from the stationary distributions π are shown for each 
state; the size of the arrows between states is scaled by the corresponding transition 
probability for each HMM, which is given as label for the lag time of 0.5 ns. For each 
macrostate, the ten most probable representative structures are shown. The structure with 
the highest probability in each set is shown in non-transparent representation. Figure and 
figure caption taken from Publication II, see page 98.  
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A delicate enthalpy-entropy compensation is revealed by end-point free energy 

decomposition for the coil-to-globule transition of PNVCL 

To validate transition free energies obtained from the constructed HMMs, end-point 

free energy computations were performed following the molecular mechanics Poisson-

Boltzmann surface area (MM-PBSA) approach206-207. In this approach, effective energies, 

comprising molecular mechanics energies, solvation free energies, and configurational 

entropies, were computed on the structural ensembles extracted from the MD simulation 

(Figure 17). In this study, I determined differences in these energies for the coil-to-globule 

transition at 293 K and 313 K, respectively. 

 

Figure 17. Bar plot showing energetic differences for the coil-to-globule transition of an atactic 
PNVCL 40mer at 293 K and 313 K. ΔGeff is decomposed into the difference in gas-phase 
energy ΔEMM and solvation free energy ΔGsolv. Configurational entropies of the polymer 
are estimated by NMA. The error bars depict the standard error of the mean. Differences in 
energy components between both temperatures, as well as corresponding errors determined 
according to the laws of error propagation, are depicted below and above the respective 
horizontal lines. Figure and figure caption taken from Publication II, see page 99. 

The difference in free energy for the coil-to-globule transition at 313 K versus 293 K 

agreed with ∆∆G computed from the stationary distribution of the HMMs. The energy 

decomposition revealed that at a higher temperature, favorable van der Waals and 

intramolecular electrostatic interactions outbalance the loss in solvation free energy and 

configurational entropy supporting the coil-to-globule transition.  
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Conclusions and significance 

The presented study is the most comprehensive computational study on the 

thermo-responsiveness of PNVCL at the time of publication. For the first time, the 

influence of polymer length, tacticity, polymer concentration, and the chosen MD 

parameters, such as the water model and the used thermodynamic ensemble, on the thermo-

responsiveness of PNVCL were systematically investigated. The study is the first to use 

end-point free energy estimation methods such as MM-PBSA and the construction of 

Markov States to unravel the coil-to-globule transition of PNVCL. 

The main results of this study are: 

• All-atom MD simulations are sensitive enough to describe the coil-to-globule 

transition of PNVCL while correctly depicting the structural dynamics of PVP, which 

is not thermo-responsive although structurally very similar to PNVCL. 

• HMMs revealed that upon temperature increase, the stationary distributions of the 

polymer in coil and hairpin conformation inverse, as do the transitions between the 

states. Moreover, a compact globular conformation of the PNVCL oligomer was 

observed at elevated temperatures. 

• Simulations and experiments suggest that increasing intramolecular interactions 

between C3 and C4 of the caprolactam ring and more favorable cavity formation 

energies outweigh the loss in polar and hydrophobic solvation and the loss of 

configurational entropy in the coil-to-globule transition. Therefore, these interactions 

particularly can be considered the driving forces of the polymer's collapse at LCST. 

• MD simulations and (free) energy computations were validated experimentally 

internally by collaborators and against published experimental data. 
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4.3. Publication III 
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The content in this chapter was taken and modified from Publication III. 

Background 

Sustainable agriculture is of major importance for the constantly growing world 

population. Using fertilizers and pesticides can enhance crop productivity 

significantly10, 208-209. Among pests, weeds pose a major threat to global food production by 

rapidly developing resistance against commonly used herbicides. Rain, however, leads to 

losses of up to 80 % of the applied agrochemicals due to wash-off24. As a result, chemicals 

accumulate in the soil and groundwater, posing serious health risks for humans and animals. 

Reducing the amount of chemicals leaching into the environment is one of modern 

agriculture's most important challenges. This challenge can be addressed in several ways, 

one of which is increasing the formulation’s rain fastness utilizing a long-term release or 

release-on-demand mechanism210-211. Such release mechanisms can be achieved by using 

novel carriers such as PNVCL-based MGs. In this study, the interactions between the 

selective herbicide okanin and PNVCL-based MGs were investigated in an integrated 

manner, using experiments as well as MD simulations of structural elements of a PNVCL 

(pVCL) microgel (Figure 18). 

 

 
Figure 18. Decomposition of a microgel into atomistic models for the shell and core section. 

Simulations of linear oligomers mimic the loosely crosslinked shell of the microgel (left); 
the N,N'-methylenebisacrylamide crosslinked cubic PNVCL models mimic the highly 
crosslinked core (right). Figure and figure caption adapted from Publication III, see 
page 159. 
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Experiments reveal the collapse and rigidification of the PNVCL microgel. 

DLS measurements showed the collapse of the particle with an increasing amount of 

okanin in solution and thus with an increasing amount of okanin (given as the molar ratio 

between okanin and the constitutional units (CUs) of the MG) taken up by the MG 

(Figure 19A,B). Scanning transmission electron microscopy (STEM) reveals, that upon 

loading of okanin into PNVCL, the diffuse structure of the PNVCL MG becomes more 

rigid and spherical (Figure 19C). 

 

Figure 19. Influence of the loading of okanin on the hydrodynamic radius RH, the thermo-
responsiveness, and the morphology of PNVCL microgels. A Loading of okanin into pure 
PNVCL microgels determined by UV/Vis for varying molar ratios nokanin/nCU. B RH of 
PNVCL loaded with okanin as determined by DLS at 20 °C and 50 °C for varying nokanin/nCU 
ratios. C Exemplary STEM images of a PNVCL microgel for varying nokanin/nCU ratios. 
Figure and figure caption taken from Publication III, see page 166. 

The experimentally observed changes in the MG’s morphology and structures was 

investigated in-depth using MD simulations. Next to adsorption of okanin to the surface of 

the MG, simulations revealed inter-chain crosslinks between the PNVCL mediated by 

(stacking) okanin molecules.  
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To elucidate the okanin-MG interaction, MM-PBSA calculations were performed to 

estimate the binding free energy for the adsorption process (Figure 20). Favorable binding 

energies were found for binding poses in which okanin formed at least 475 contacts to the 

MG, e.g., as found in an MG-okanin-MG configuration. These findings support the idea of 

okanin-mediated inter-chain crosslink leading to the MG compaction. 

 
Figure 20. Two-dimensional histograms of the binding free energy of okanin to the linear PNVCL 

50mer and its components (changes in the gas phase energy and solvation free energy 
(∆EMM + ∆Gsolvation, A) and changes in the configurational entropy of the solutes (T∆S, B)) 
in relation to the number of formed contacts. The binding free energy (Δ𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏0 , C) of 
okanin to the PNVCL polymer shows an inverse linear correlation (regression line shown 
solid, 95% prediction interval shown dotted, Pearson correlation coefficient and linear 
equation are depicted in the corresponding legend) with the number of formed contacts. 
Exemplary binding poses are shown for adsorbed okanin (I, < 475 contacts, Δ𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏0  > 0) 
and bound okanin (II, > 475 contacts, Δ𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏0  < 0). The MM-PBSA analysis was 
performed for trajectories of the linear PNVCL 50mer, in which a collapse of the chain was 
observed; only frames where okanin formed contacts to PNVCL were considered. Figure 
and figure caption taken from Publication III, see page 169. 
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Thus, okanin molecules with a high number of contacts to the MG were considered 

bound, whereas okanin molecules with a lower number of contacts were considered 

adsorbed. While bound okanin remains within the MG, the okanin molecules adsorbed to 

the surface are in a constant exchange with okanin in solution. However, with increasing 

okanin concentration, it is not possible to experimentally determine the amount of okanin 

taken up by the polymer, as particles in the solution begin to precipitate. Simulations with 

high okanin concentrations were performed to unravel the reasons for this observation. 

With increasing okanin concentration, the number of okanin-okanin interactions increased, 

including okanin in solution (Figure 21A,B) and already bound/adsorbed okanin 

(Figure 21C,D). Stacking interactions involving okanin already interacting with the 

polymer are preferred over stacking in solution (Figure 21E). Considering that at higher 

okanin concentration within the system, okanin stacking interactions become more 

frequent, it is mandatory to consider new configurations, i.e. okanin-okanin-MG and MG-

okanin-okanin-MG, when determining the fraction of bound okanin. When including inter-

okanin contacts in the estimation of bound okanin, the amount of loaded okanin observed 

in MD simulation is similar to the experimentally determined amount of loaded okanin 

(Figure 21F). 

The energy decomposition of the free energy calculations revealed that mainly polar 

interactions between the okanin and the MG drive the adsorption and binding of the 

herbicide. Therefore, glycidyl methacrylate (GMA) was incorporated into the MG to 

increase its loading capacity potentially. GMA moieties increase potential polar 

interactions while providing an opportunity for further surface functionalization of the MG, 

e.g., the attachment of APs. Experimentally, the GMA copolymers showed an overall 

increased loading capacity compared to the PNVCL MG, supporting the findings of the 

free energy calculations. 

Finally, the co-solvent triggered release of okanin from the MG was investigated 

experimentally and in silico. Only green solvents212-213, which are environmentally 

compatible and authorized as additives in agricultural applications, were considered for 

release. Overall, for the release triggered by water and ethyl acetate, the observation in MD 

simulations agrees with the experimentally observed amount of released okanin, lending 

mutual support to either result.  
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Figure 21. Quantification of different okanin species and interactions. Okanin stacks in solution (A 
two molecules, B three molecules), on adsorbed okanin (C), and within a bound state (D) 
at high molar ratio (nokanin/nCU = 1.11). E Quantification of okanin species. Okanin species 
fractions are given in relation to the overall number of okanin molecules within the 
respective system. With increasing okanin concentration, the fraction of okanin molecules 
in a stacking configuration in solution increases linearly for molar ratios above 0.28 
(purple), while the overall fraction including stacking to bound/adsorbed okanin (blue) 
increases linearly for all molar ratios. The fraction of adsorbed (yellow), bound (green), and 
okanin stacked within the microgel (red) decreases with increasing okanin concentration. F 
Comparison of experimentally determined bound okanin per constitutional unit 
(nokanin,bound/nCU) with okanin considered bound and/or stacked within the microgel (> 475 
contacts to PNVCL or > 475 contacts and at least 250 contacts formed with PNVCL) in 
MD simulations. The grey shaded area depicts the uncertainty related to a change of the 
cutoff of ± 25 contacts (i.e., 450 and 500 contacts for the upper and lower bound, 
respectively), which corresponds to a change of the computed binding free energy of 
approximately ±1 kcal mol-1. Figure and figure caption taken from Publication III, see 
page 172.  
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Conclusions and significance 

The integrated study elucidates the interactions between the herbicide okanin and 

stimuli-responsive PNVCL-based MGs. Experimental work and simulations yielded 

insights into the interaction of the chalcone with the MG carrier. Collaborators 

experimentally determined the okanin loading capacity of the PNVCL MG, while I 

investigated interactions of okanin with the polymer at an atomistic level by employing 

MD simulations. Using simulations, it is possible to distinguish between permanently 

bound okanin and adsorbed okanin, which is in constant exchange with solvated okanin. I 

used robust free energy calculations to investigate the energetics of the adsorption/binding 

process. Moreover, the importance of okanin stacking for high okanin concentration during 

loading of the MG was revealed in my simulations. Finally, the solvent-triggered release 

of okanin from the MG was investigated both experimentally and in silico. Overall, 

experiments and simulations agreed with each other for the loading and release of okanin 

into/from the MG, establishing a platform for using PNVCL-based (co)polymers as a 

potential carrier for agrochemicals. 

The main results of this study are: 

• The generation of a linear and crosslinked PNVCL was used in MD simulation to 

investigate the interaction with the chalcone okanin. 

• Free energy calculation yielded insights into the nature of interactions between the 

okanin and the MG and revealed that polar interactions are the driving factor for 

okanin binding. Thus, the okanin-mediated inter-chain crosslink causing the MG to 

collapse is comparable to the physical crosslinking of PNVCL through tannic acid. 

• Green solvents, such as ethyl acetate may be used to trigger the release of okanin 

from the PNVCL-based carrier. Simulations of the solvent-triggered release agrees 

with the okanin release observed in experiments. 
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5. Summary and Perspectives 
GreenRelease is a novel plant protection technology, in which agrochemicals are 

loaded into MG carriers decorated with APs for increased rain fastness. This thesis aimed 

at understanding the atomistic mechanisms of each step of the GreenRelease technology. 

For this, the interaction of the APs with apple tree leaves was investigated experimentally 

and the adsorption mechanism was elucidated at an atomistic level using MD simulations 

(Publication I). To understand the loading and release processes of herbicides into/from 

the MG, an accurate model of the polymer had to be generated and validated first. 

Therefore, exhaustive simulations of oligomeric PNVCL were performed and validated 

using experimental data to establish a platform for all consecutive analyses 

(Publication II). Finally, using the obtained knowledge, the loading and release processes 

of the herbicide okanin into/from the microgel carrier were investigated (Publication III). 

Overall, molecular models of all components, i.e., APs, microgels, and the herbicide okanin 

were generated. Using the generated models in combination with atomistic MD simulations 

allowed fundamental insights into involved mechanisms and crucial interactions within the 

GreenRelease technology. 

In Publication I, the leaf binding of the AP MacHis was investigated in an integrated 

manner. A novel atomistic model of the leaf surface is used in unbiased as well as steered 

MD simulations to identify residues within the AP of major importance for the adsorption 

to the leaf surface and to estimate the binding strength. The identified residues were 

subjected to an alanine scanning, revealing that a single substitution might lead to a 

decrease in binding strength of up to 80 %. Using adaptive steered MDs, the binding 

strength of five different APs was determined in silico. The ranking based on binding 

strength matches the experimentally determined one. For further investigations on the 

experimental side, site-saturation mutagenesis is necessary to have a full picture. The same 

applies to the in silico studies on the adsorption, i.e., the explicit simulation of the 

adsorption of the different AP variants identified experimentally can potentially lead to new 

insights. The generated models also establish a platform for the generation of CG models, 

potentially enabling an in silico screening of AP variants or potentially novel APs. Besides 

the further rational improvement of APs, the generated model can be used for a multitude 

of other foliar applications. 

In Publication II, exhaustive MD simulations yielded valuable insights into the 

thermo-responsiveness of PNVCL at an atomistic level. Although the work was the most 
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comprehensive computational study on the coil-to-globule transition of PNVCL at the time 

of publication with 660 µs of cumulative simulation time, it revealed that potentially further 

sampling in simulations is needed to fully capture the temperature-induced transition of 

PNVCL. For the first time, methods such as end-point free energy estimation using MM-

PBSA and the construction of Markov State Models were used to elucidate the energetics 

of the coil-to-globule transition of PNVCL. However, the applied methods are limited by 

fundamental and, depending on the approach, technical reasons. For example, decomposing 

the solvation free energy into an enthalpic and entropic part using MM-PBSA is not 

straightforward. It is not possible to tell whether a major proportion of the solvation free 

energy is determined by the losses in translational and rotational entropy of water molecules 

when forming solvent cages. To elucidate the energetics further, novel computational 

methods have to be developed. Experimental validation of the determined energetics is 

mandatory, and thus, calorimetric experiments of the transition for oligomeric PNVCL are 

necessary. The presented study contributed significantly to the in silico investigation of 

thermo-responsive oligomers, promoting the unconventional use of computational methods 

and enhanced sampling to capture the polymer’s structural dynamics. 

In Publication III, the uptake and co-solvent triggered release of the herbicide 

okanin into/from a PNVCL microgel was investigated in an integrated approach. 

Experimentally, the uptake and release of okanin as well as changes in the morphology of 

the particles were assessed. The complex structure of an MG was decomposed into 

atomistic models of linear and crosslinked PNVCL to investigate the influence of the MG’s 

structure upon the uptake of okanin. The loading capacity and co-solvent triggered release 

observed in the MD simulations match experiments. Moreover, the determined binding 

modes explain the structural and morphological changes of the MG upon loading. 

Incorporating GMA of the PNVCL MG showed an increase in the okanin loading capacity 

of the MG. However, VCL-GMA copolymers have not been investigated in silico, yet. 

Moreover, there is a multitude of potential monomers that can be used instead of GMA to 

further increase the loading capacity or alter loading and release characteristics. The 

established procedures can be easily adapted to investigate the interaction of small organic 

molecules such as okanin with different PNVCL-based copolymers. Finally, the atomistic 

models can be used to generate a coarse-grained model of the full MG, to investigate 

diffusion processes within the carrier. 
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