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1. Introduction

1.1. Antibiotics

In 1899, Emmerich and Low firstly described the clinical use of bacterial extracts to treat
infections [1]. By that time, they could only speculate on the nature of the compounds they were
using. Later in 1910, Paul Ehrlich was the first person to introduce a synthetic antibiotic for
clinical use to the world, Salvarsan, a triphenylic compound with arsenic atoms bound
covalently to it, and which was used for treatment against syphilis [2]. A huge downside was
its rather strong toxicity. A random occasion in 1928 led to the discovery of penicillin by
Alexander Fleming [3], surely one of the most famous and iconic moments in the history of
drug discovery.

One of the first systematic studies in the history of antibiotic drug discovery from
microorganisms was conducted by Selman Waksman and H. Boyd Woodruffin 1940 [4], where
the focus was on the isolation of microorganisms from soil samples and the subsequent isolation
of antibacterial compounds produced by these microorganisms. These scientists were the
discoverers of the peptidic antibiotic class of actinomycins [5]. With their studies, they initiated
the entry into the so-called “Golden Age” of antibiotic discovery from 1950 to 1970, where
dozens of new antibiotical classes from different sources were introduced to the world [6].
Unfortunately, in the time past these years, the discovery of new antibiotics strongly decreased,
while antibiotic resistance steadily increased. Today we are facing the challenge of finding new
solutions to the emerging microbial resistance crisis to prevent the death of millions of people

that otherwise could occur in the future [7].

1.1.1. Fungal antibiotics

The history of fungal antibiotics that are still in use today started around the “golden age” of
antibiotic drug discovery. Some of these compound classes were so successful that new
semisynthetic derivatives with improved activity and safety were investigated. Here, a short

overview of the most important fungal antibiotics classes is given.

As described above, the penicillins introduced the world to a completely new class of
medication: antibiotics. Penicillin G (see Figure 1) is one of the early discovered members of
this class of B-lactam antibiotics and still has a therapeutic meaning. An inexpensive isolation

process for its application for systemic use in humans was first described in 1945 by Berger et



al. [8]. In 1948 a derivative, penicillin V, being more acid-stable and therefore improving oral
intake, was introduced to the world [9]. Decades later amoxicillin was synthesized, which on
the one hand improved the bioavailability even more and on the other hand had a broader
spectrum of action by also including some gram-negative bacteria that were not tackled by the
penicillins described before [10]. The mode of action, the inhibition of the transpeptidase that
is damaging the cell wall of bacteria indirectly resulting in a bactericidal effect, was already

described in 1957 [11].

The cephalosporins are structurally close relatives of the penicillins, also bearing the beta-
lactam group as the central element, necessary for its antibiotic activity (see Figure 1). In 1953
the first compound of this class, cephalosporin N, was isolated from a Cephalosporium sp.[12].
Even though the naturally occurring cephalosporins only inherit a weak antibacterial activity,
it was recognised that they could not be inactivated by certain enzymes, namely penicillinases
or beta-lactamases, which at that time already led to the first antibiotic resistances against the
penicillins [13]. Semisynthetically derived compounds from the class of cephalosporins, like
cefuroxime, led to a strong increase in its antibiotic activity, by also killing bacteria resistant to

penicillins [14].

Griseofulvin was isolated in 1939 from Penicillium griseofulvum (see Figure 1) [15]. Its special
ability to influence the morphology of the germ tubes of certain fungi also gave it the name
“curling factor” [16]. This spiro compound with a grisan base structure is selectively active
against dermatophytes by inhibiting the function of microtubules [17, 18], allowing its clinical

use for treatment ofskin infections caused by these pathogens.

The first antibiotic isolated from the genus Fusarium was enniatin (see Figure 1), which was
discovered in 1947 by Gaumann et al. and showed good antibacterial activity against
Mycobacterium paratuberculosis [19]. More of these cyclic depsipeptides were isolated in the
following years, namely enniatin A and B and beauvericin [20, 21]. However, their high level

of genotoxicity made them unapplicable for use as antibiotics [22].

In 1951, the antibacterial class of the pleuromutilins (see Figure 1) was discovered from the
basidiomycetes Pleurotus mutilus (now Omphalina mutila) and Pleurotus passeckerianus [23].
The lead compound pleuromutilin showed bacteriostatic activity against Staphylococcus aureus
via inhibition of the peptidyl transferase of the ribosomal 50S subunit [24, 25]. Nevertheless,
concerns of hepatotoxicity, gastrointestinal side effects, low bioavailability and stability, and
the complicated side chain chemistry regarding semisynthesis, stopped this interesting class of

diterpenes from its entry into the world of antibiotics for clinical use for around 50 years [26].
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Now, with the semisynthesis of lefamulin, there is another systemic antibiotic for use in infected

humans [27, 28].

In 1962, fusidic acid (see Figure 1) was isolated from the genus Fusidium and is a fungal
antibiotic mainly active against Gram-positive bacteria [29]. The bacteriostatic effect can be
explained through the inhibition of prokaryotic elongation factor EF-G and thus the inhibition
of protein biosynthesis [30]. This steroid antibiotic is mainly in use in the treatment of skin

infections, but systemic application is possible [31].

This summary of the history of antibiotics derived from fungal sources shows only a part of the
underlying potential that is still to be unfolded. While in the last decades the focus was mainly
put on the semisynthetic modification of known compounds, it is about time that yet another

new class of naturally derived antibiotics will be discovered.
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Figure 1. Chemical structures of antibiotic lead compounds derived from fungi. The core structures that are

being shared in most derivatives of a group are marked in red.
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1.1.2. Resistance mechanisms

Ever since antibiotics were introduced to the world of medications, antimicrobial resistance
sooner or later emerged [32], limiting the effectiveness and applicability of many antibiotics
that had been in use for several decades. Antimicrobial resistance to antibiotics can be achieved

through different mechanisms, which are shortly described in this chapter.

Some bacteria exhibit an intrinsic resistance against several drugs, meaning the resistance
already exists preexposure and is not induced mainly through the use of antibiotics.
Mycobacteria, for example, have a high lipid content in their cell wall so that hydrophilic
compounds cannot pass. In contrast, relatively lipophilic compound, such as rifampicin, can
permeate through it and passively diffuse into the cell [33]. Furthermore, gram-negative
bacteria are often less susceptible to most antibiotics if compared with their gram-positive
counterparts. This is because of their sophisticated cell wall structure, consisting of an outer
membrane in addition to the cytoplasmic membrane. The outer membrane is an additional
selective permeability barrier, which can be passed by hydrophilic molecules only through
porins [34]. Adaptation of these porins, for instance, is described for Pseudomonas sp., leading

to more limited uptake of certain drugs and subsequently to higher resistance rates [35].

Another resistance mechanism is the protection or modification of a drug target. Target
protection is being achieved, for example, by the tetracycline-resistance determinants Tet(M)
and Tet(O). These proteins, belonging to the superfamily of the GTPases, prevent the antibiotic
tetracycline from binding to the 16S rRNA by conformational changes in the 30S ribosomal
subunit, and, therefore, from inhibiting the protein translation [36, 37].

A modification of the drug target is something that can be observed, for example, in rifampin
resistance of certain bacteria. Single nucleotide polymorphism in the rpoB gene leads to an
amino acid exchange in the rifampin target site and loss of affinity of rifampicin to the beta-

subunit of the RNA polymerase [38].

The inactivation of the drug is a resistance mechanism that can be achieved through cleavage
or minor modification of the antibiotic. A prominent example of a cleavage-based resistance
mechanism is the production of B-lactamases to dismantle penicillins and other beta-lactam
antibiotics. The general mechanism of action of bacterial B-lactamases is to hydrolyze the amide
group of the B-lactam antibiotic. This can be accomplished by both gram-positive and gram-
negative bacteria. Nowadays, a variety of different classes of beta-lactamases with differing
specificity to the wide range of PB-lactam antibiotics is known, such as OXA-48 from

Acinetobacter baumannii responsible for carbapenem resistance, to threaten the impact of
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antibiotics that are saving human lives for many decades [39].

An example of the modification of a drug is found in the acetylation of chloramphenicol,
leading to a strongly decreased binding affinity to its target [40]. Different types of
chloramphenicol acetyltransferases (CAT) are described, yielding 3-mono- and 1,3-
diacetylchloramphenicol [41]. An example is EC 2.3.1.28 originating from Escherichia coli

and leading to high-level resistances [42].

Bacteria possess efflux pumps that among other substrates can also expel antibiotics. These
pumps can be encoded intrinsically, can acquire selectivity towards certain antibiotics due to
mutations driven by selective pressure or can be recruited by horizontal gene transfer. We know
different types of bacterial efflux pumps, some of them being relatively unspecific multidrug
transporters, such as the ATP-binding cassette (ABC) transporters, some of them being highly
specific for certain antibiotics, such as Tet-pumps conferring resistance towards tetracycline in
E. coli. Efflux pumps reduce the effective concentration of antibiotics inside the cell,

circumventing them from reaching lethal concentrations [43, 44].

An overview of the most important antimicrobial resistance mechanisms is provided in the

following Figure 2.

A, B
A A AU A

A Decreased uptake VoY Efflux pumps

A ‘ Target modification }’ <' f

Drug inactivation

Figure 2. Summary of the most important antimicrobial resistance mechanisms. A: Decreased uptake can be
achieved through transport proteins (e.g. porins) that control the uptake of hydrophilic compounds. In the case of
gram-negative bacteria, the special membrane structure is highly controlling the uptake of drugs. B: Specialized
or multidrug efflux pumps can efficiently reduce the concentration of antibiotics inside the bacterial cell. C: Drug
inactivation via enzymes can either dismantle an antibiotic or add a molecular group to it, both reducing its activity.
D: Target modification alters the molecular target of the antibiotic, reducing or completely abolishing its affinity

to it.
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1.1.3. Biofilms

The bacterial biofilm is an accumulation of bacterial cells embedded in extracellular polymeric
substances (EPS) forming the biofilm matrix consisting of polysaccharides, proteins, and
extracellular nucleic acids. Bacteria can grow as a biofilm on biotic (e.g. soft tissues) or abiotic
(e.g. medical devices) surfaces [45]. A biofilm can be formed by only one bacterial species, but
most of the time it consists of different species living together in a community [46]. Also, a
biofilm can consist of only a monolayer or of multilayers, where the cells are attached to the
surface as well as to other organisms [47].

The formation of a bacterial biofilm is mainly divided into five steps (see Figure 3). Step one
is the reversible attachment phase. In this phase, the bacteria can attach to a certain surface, but
this binding is not very specific and therefore completely reversible. In step two, the irreversible
attachment phase, additional more specific cell-cell- and cell-surface interactions are
established, amongst others via adhesins, which lead to a stronger attachment. In step three, the
EPS are synthesized and secreted, which is induced by the recognition of quorum sensing (QS)
molecules. These QS molecules are an essential part of infection and biofilm formation and are
different among gram-positive and gram-negative bacteria. The main QS molecule in gram-
positive bacteria is called autoinducing peptide (AIP) and is recognised by a sensor-kinase,
which phosphorylates a transcription factor that regulates the expression of genes involved in
infection and biofilm formation (two-component system). In gram-negative bacteria, N-acyl
homoserine lactones (AHL) are the main QS molecules and bind directly to a transcription
factor controlling the expression of virulence- and biofilm-related genes. After the release and
recognition of QS molecules, biofilm maturation is the fourth step in biofilm formation. Step
five is the dispersal or detachment phase, in which cells are dispersed from the biofilm and

transformed back to the planktonic state [48, 49].
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Figure 3. The five main phases of biofilm formation. 1 — Reversible attachment to a surface. 2 — Irreversible
attachment via specific binding mechanisms. 3 — Growth via secretion of extracellular polymeric substances (EPS)
and quorum sensing molecules. 4 — QS molecules induce the maturation of the biofilm. § — Cells can leave the

biofilm and transform back into the planktonic state. Figure adapted from [48].

The production of a biofilm gives a lot of advantages to microorganisms. While nutrients can
diffuse through the biofilm and spread homogenously, the biofilm matrix forms a physical
barrier and protects the bacteria against harsh environmental conditions, like extreme
temperatures, pH values and UV light, but also against antibiotics rising the tolerance against
antibiotic treatment up to 1000-fold [50, 51]. For E. coli and Myxococcus xanthus, it has been
described that a lack of nutrients can convert them from the biofilm state back to the planktonic

state, suggesting that biofilms are preferably built under good nutritive circumstances [52].

Bacterial persisters are a slow-growing or even growth-arrested sub-population of cells.
Because many antibiotics are most effective on fast-growing bacteria, persisters are hard to
treat. This subpopulation is being found in high concentrations in bacterial biofilms and is one
of the reasons for the long-term treatment of infections caused by Mycobacterium tuberculosis

[53].

The flexibility of microorganisms to form biofilms depending on the environmental situation is
also advantageous in terms of host-immune defence mechanisms during infections in humans

[54]. A variety of diseases is described where the production of biofilms plays a crucial role in
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its pathophysiological development. Some examples are auditory, cardiovascular, respiratory,
or urinary diseases, to name but a few [55]. However, the formation of biofilms is not always
connected to human diseases, such as biofilms inside the healthy mouth that are commonly
found and consist of different bacterial species living together. A problematic situation occurs
when biofilm formation leads to persistent infections that cannot be cured within short periods
[56]. An example is an infection with Mycobacterium tuberculosis, forming cavities in the lung
tissue, where the mycobacteria are surrounded by EPS within a biofilm-like structure that some
antibiotics are not able to permeate through to reach single cells, increasing the bacteria’s
intrinsic drug tolerance. Also, the higher amount of persistent cells within the biofilm turns the
treatment into a lengthy and tedious purpose [57]. Another example is the infection with the
gram-negative bacterium Pseudomonas aeruginosa that can occur in patients with a weak
immune system and is especially endangering patients suffering from cystic fibrosis. The big
armamentarium of antimicrobial resistances, which commonly is found in P. aeruginosa,
together with the ability to form biofilms that can even grow on implant materials such as joints
or catheters, makes it hard to treat after an productive infection has been established [58]. A big
threat of high clinical relevance is the gram-positive bacterium Staphylococcus aureus, which
often also carries a variety of resistances against common antibiotics and can grow biofilms on

medical devices [59].

Finding compounds that can inhibit or disrupt biofilms gained additional interest in recent years
because of the threatful character in medicine and industry causing a health burden [60].

The difference between the inhibition of biofilm formation and its disruption is as follows:
Compounds that inhibit the biofilm formation are active before the biofilm is built, disturbing
the complex interbacterial signalling, so that the biofilm is not formed properly. In contrst,
biofilm disrupting compounds can break up already existing, mature biofilm structures [61]. A
mechanistic example of the inhibition of biofilm formation is the inhibition of QS, called
quorum quenching [62]. A rather recent example of natural compounds able to inhibit biofilm
formation are the cytochalasans. Yuyama et al. isolated 13 cytochalasan derivatives from
different fungal organisms that were able to inhibit biofilm formation of S. aureus efficiently,
while providing a good cytotoxic profile. Yet the mode of action still needs to be investigated
[63]. An example of a compound showing biofilm disrupting activity is the antibacterial agent
triclosan. Even though this compound is in use since a long time as an antibacterial agent in a
wide range of consumer goods, it is connected to a variety of side effects ranging from an
increase in thyroid hormone levels, and higher abortion rates to increased risk of asthma,

allergies and food sensitization [64, 65]. Furthermore, there is a variety of macromolecular
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compounds showing biofilm disrupting activities. Amongst these are peptides, enzymes,
synthetic polymers, polycationic materials, and peptidomimetics [66]. When it comes to natural
products, the field of known antibiofilm compounds is rather scarce and therefore requires a

stronger focus of researchers worldwide [67].

1.1.4. Resistance Crisis

The appearance of antimicrobial resistance (AMR) in the history of antibiotics has always been
tightly connected to the application of antibiotic drugs. Ever since antibiotics were used, at
some point sooner or later antimicrobial resistance occurred [32].

Following the “golden age” of antibiotic drug discovery, the time between 1962 and 2000
sometimes is referred to as an innovation gap because no new antibiotic classes have been
introduced to the world [68]. Nevertheless, the extensive development of (semi-)synthetic
antibiotics till the early 1990s made the scientific world not pay enough attention to possibly
one of our most threatening problems of the future [69]. Recently, based on predictive statistical
models, it was calculated that in 2019 already 1.27 million deaths worldwide were directly
attributable to bacterial AMR alone, and the yearly death toll will possibly increase to approx.
more than 10 million deaths within the next 30 years [70, 71].

The reasons for this widespread occurrence of AMR that is affecting every part of the world
are assembled by a multicausal nature. First of all, problems occur during the prescription
process of antibiotics. Wrongly chosen antibiotics with insufficient effectiveness, an unspecific
treatment against unknown pathogens, or the premature termination of drug intake are some
problems arising from the management of antibiotics in the clinical environment. This leads to
a high selective pressure, and mutations are more likely to spread increasing the risk of AMR.
Another issue is the overuse of antibiotics in livestock and food industries. Antibiotics are
widely used to prevent infections in animals and to promote growth for maximum productivity.
H this immense overuse perfectly paves the way for AMR [72].

Another problem is that incentives for the pharmaceutical industry are rather low. Research in
the field of antibiotics was becoming less fruitful and ineffective since not only the discovery
of new antibacterial natural products proved more and more difficult, but also the high
expectations placed in the high-throughput screening of synthetic compound libraries were
fulfilled only to a very limited extent. Furthermore, mode of action studies are very elaborate

and a high number of failures had a discouraging effect. Additionally, the clinical testing of
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drug candidates is cost-intensive usually devouring several hundred million dollars. If the drug
is successfully introduced to the pharmaceutical market, a new antibiotic, especially if it
belongs to a completely new class, is likely to be used as a drug of last resort and even if used
will naturally be applied only during a short period. Altogether, this is limiting its economical
value for the producer drastically. These are reasons why many antibiotics developed or isolated
by researchers in universities never leave the state of basic research and go into the cost-

intensive clinical phase [73].

AMR is severely threatening our future health system. If there is no substantial change in
finding new and effective antibiotics, calculations estimate more than 10 million deaths
annually by the year 2050 worldwide caused only by AMR. This is more than the predicted
number of deaths caused by cancer for the same year [74].

In May 2019, there were 407 projects worldwide, focussing on the development of antibacterial
agents in preclinical development. Some of them took new routes, like strategies modifying the
microbiome, constructing phages and probiotics, or approaching antivirulence therapy.

Nevertheless, this number is still too low and will not alone overcome the resistance crisis [75].

While some companies also recognise this problem, organisations were founded to tackle AMR.
One such organisation is the Global Antibiotic Research and Development Partnership
(GARDP), which aims to develop four new treatments against drug-resistant infections by 2023
[76]. Also, 20 leading biopharmaceutical companies created the AMR action fund. One billion
dollar of funding shall support small companies developing new antibiotics to bring two to four

new antibiotics to patent by the year 2030 [77].

For future times, the current efforts should be strongly increased and improved to defeat the

silent pandemic of AMR.
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1.2. High Priority Pathogens

In 2017, the World Health Organisation (WHO) published a list of 12 bacteria for which new
antibiotics are urgently needed. This high-priority pathogens list itself is divided into three
subsections, ranking these 12 bacteria into the levels of medium, high, and critical risk. The risk
level is determined based on criteria like mortality rate, nosocomial infections, or broad
resistance and therefore gives a clear sign on which pathogens research should be focused on
the most. The authors highlighted that M. tuberculosis is not included because its treatment is

already targeted in different other programs but bears the same importance [78].

Table 1. High-priority pathogens list as determined by the WHO in 2017. Pathogens with frequently acquired

resistances are divided into the three risk and priority levels “Critical”, “High” and “Medium”. Table adapted from

[78].

Risk level/Priority Pathogen Resistance
Critical Acinetobacter Carbapenem
baumannii
Pseudomonas Carbapenem
aeruginosa
Enterobacteriaceae Carbapenem, ESBL-producing
High Enterococcus faecium | Vancomycin
Staphylococcus Methicillin, Vancomycin
aureus
Helicobacter pylori Clarithromycin
Campylobacter spp. Fluoroquinolone
Salmonellae Fluoroquinolone
Neisseria Cephalosporin, Fluoroquinolone
gonorrhoeae
Medium Streptococcus Penicillin (non-susceptible)
prneumonia
Haemophilus Ampicillin
influenzae
Shigella spp. Fluoroquinolone
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This information is based on surveillance worldwide. Every few years, the WHO publishes
surveillance data from countries around the world, showing new developments in the field of

AMR [79].

Another classification of microorganisms with multidrug resistances and an endangering
armamentarium of virulence factors are the ESKAPE pathogens. These were grouped by “The
Infectious Diseases Society of America” to highlight them as important hospital-acquired
pathogens, being able to “escape” the effect of antibiotics [80, 81]. The acronym ESKAPE
includes the bacteria Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia,
Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. It is of high
importance to discover new antibiotics being able to tackle these microorganisms efficiently to

increase our scope of potential treatments [82]

In the following subchapters, two of the most important pathogens, Staphylococcus aureus and
Pseudomonas aeruginosa, will be described, and the special importance of developing new

antimicrobials that can efficiently eradicate these bacteria will be highlighted.

1.2.1. Staphylococcus aureus

The gram-positive bacterium Staphylococcus aureus was named after its cluster-like
colonisation and its gold-like pigmentation compared to other Staphylococcus species.
Additionally, it reacts positively to testing for coagulase, mannitol fermentation, and
deoxyribonuclease [83].

The first person isolating this bacterium was the Scottish surgeon Alexander Ogston in 1880,
who recognised it being content of pus in one of his patients. Remarkably, he already
understood it is one of the reasons for the high mortality rate after operations by that time. He
also found out that heat sterilisation and the use of disinfectants remove the infectiousness of

the pus [84].

S. aureus can cause a wide range of different infections, including the skin or respiratory
system. This is of huge concern regarding hospitalized patients when they suffer from
staphylococcal pneumonia. Also, immune deficient patients are especially endangered or
patients with viral infections, which can be superinfected by S. aureus. In these situations, the
infections can cause endocarditis, osteomyelitis, or toxic shock syndrome, to name but a few

[85]. One of the most problematic situations occurs when an infection leads to sepsis, so-called
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S. aureus bacteremia (SAB), where the bacterium spreads over the blood circulation throughout

the whole body leading to mortality rates of around 20 % [86].

The high versatility of S. aureus gives it a threatening character. Often, S. aureus strains
comprise mobile genetic elements (MBEs) that can bear virulence factors. The exchange of
plasmids for example can thus transfer virulence factors via horizontal gene transfer (HGT)
from one bacterium to another [87]. These virulence factors are also called toxins because they
support the pathogenicity of S. aureus drastically. One example is the a-toxin, which helps the
cocci to efficiently penetrate the skin through different molecular mechanisms. The next step
could then be a systemic infection. Also, the bacteria can encapsulate in an abscess, which limits
the effectiveness of attacks by the host immune system. While being transported by the
circulation of the bloodstream, S. aureus can produce leukocidins, which destroy phagocytes
indirectly by inducing cell lysis via a cell membrane receptor. Also, the bacterium is capable of
inhibiting the innate immune system via the complement system by the production of
staphylococcal complement inhibitor (SCIN), which inhibits C3 convertases, altogether

weakening the immune response [88].

Furthermore, the high genetic adaptability of S. aureus is also notable in its acquisition of
antibiotic resistances. Already in 1942, the first clinical isolate with penicillin resistance was
described [89]. In 1959 methicillin was developed, being the first beta-lactam antibiotic that
was not dismantled by penicillinases [90]. But it took only two years to again discover the first
S. aureus isolate with methicillin resistance [91], which the bacterium achieves through the
expression of high levels of penicillin-binding protein 2a (PBP2a) [92]. This subtype is not

inhibited by methicillin but can take over the main transpeptidation function of the host PBP.

S. aureus is a common nosocomial pathogen because of its ability to produce biofilms on
catheters and other medical devices and thus can be easily transmitted. The formation of
biofilms overcomplicates the therapy because some antibiotics are not able to penetrate them,
while others are less effective on the higher number of persistent bacteria embedded in the EPS

[93].

The standard treatment for a methicillin-resistant S. aureus (MRSA) infection with bacteremia
is the glycopeptide antibiotic vancomycin. A lot of experience has been made with this
compound because it is already in use for decades. To optimize treatment success, it is
important to exactly adjust the serum concentration. In some cases, its slow bactericidal effect
unfortunately can decrease the chances of successful treatment.

Other possible treatments are the use of the glycopeptide teicoplanin or the lipoglycopeptide
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telavancin, with the latter having higher nephrotoxicity compared to vancomycin. The
lipopeptide daptomycin has a fast bactericidal effect, but is less effective in pneumonia and has
a toxic effect on muscles. The mechanism of the muscle toxicity of daptomycin, which in severe
cases can cause rhabdomyolysis, has not completely been elucidated. A study in 2020, however,
has revealed in vitro results proposing membrane damage via the necroptotic pathway [94].
Also, the use of the fifth-generation cephalosporine ceftaroline and the bacteriostatic-acting
oxazolidinones is possible. Finally, the combination of vancomycin or daptomycin with a beta-

lactam antibiotic can be used [95].

Clinical isolates with combined resistance against methicillin and vancomycin have been
described, but the cases are fortunately still rather scarce. Responsible use of existing antibiotics
is a key factor to continue limiting these numbers in the future and not generating virtually

untreatable pathogens [96].

1.2.2. Pseudomonas aeruginosa

In 1882, the French pharmacist Carle Gessard managed to isolate Pseudomonas aeruginosa
from green and blue coloured bandages of wounded soldiers. At that time it was known under
the name Bacillus pyocyaneus [97]. The pigment, which is blue under basic conditions and
could change to green at neutral pH, was named pyocyanin and investigated in more detail by

Edwin Jordan at the end of the 19" century [98].

P. aeruginosa is a gram-negative rod-shaped bacterium that is an oxidase-positive glucose non-
fermenter [99]. It is found in nearly every surrounding because of its high adaptability. It thus
can be found in soil, water, or in plants as an endophyte [100]. Also, it was found to be

associated with nematodes, insects, and amoebae [101].

For humans, P. aeruginosa is an opportunistic pathogen that is mainly infecting
immunosuppressed and weak patients. Examples are patients with severe burns, HIV infections,
or tumour diseases. It is a dangerous threat for patients with cystic fibrosis and people in
intensive care units. It is estimated that P. aeruginosa is responsible for around 10% of

nosocomial infections in European hospitals [102].

Once infected, P. aeruginosa is a hard-to-treat pathogen. It has developed a variety of molecular
mechanisms to efficiently protect itself from the immune system, both defensively and

aggressively. The central key point in this regard are the diverse virulence factors.
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P. aeruginosa, like most gram-negative bacteria, has lipopolysaccharides (LPS) incorporated
into its outer membrane. While these lipid molecules can be used by the host immune system
to detect and eliminate the bacterial cell, the bacterium itself can use them to bind to host cells,
cause damage to tissues, develop the bacterial biofilm and create resistance to certain antibiotics
[103].

Outer membrane proteins (OMPs) are used for adhesion, antimicrobial resistance, and exchange
of nutrients. An example is the OMP OprD, which normally is used by carbapenem antibiotics
like imipenem to passage through the bacterial cell membrane. Mutations in this protein can
lead to resistance to this antibiotics class [104].

The formation of biofilms is of huge concern in P. aeruginosa. It leads to a bunch of effects
that severely limit the successful treatment. The bacterial cells become much more evasive
while being attacked by antibiotics less efficiently, the community has a higher amount of
persistent cells in comparison to the planktonic state, and phagocytes can be repelled easier.
Biofilms of P. aeruginosa pave the way to long-term resistance and chronic infections in the
lung, wounds, and paranasal sinuses, to name but a few [105].

Another virulence factor is the type III secretion system. This secretion system is used to inject
effector proteins into host cells, such as exoenzyme S (ExoS), which is even able to induce
apoptosis in phagocytes and thus reduce the bacterial clearance of the infected organism [106].
The mentioned pyocyanin also acts as a bacterial virulence factor, by inhibiting prostacyclin
release, cell respiration, ciliary functions, and host enzymes [107]. It is described that the
pathogenicity of pyocyanin is also connected to the production of reactive oxygen species

(ROS), but further studies need to be undertaken to confirm these suggestions [108].

Its success as a nosocomial pathogen is surely also driven by its ability to form biofilms in
sinks, plumbings, and other areas with ponding water in hospital surroundings [ 109]. In addition
to these non-specific antibiotic resistances also a variety of specific resistance mechanisms are
described. A mutation in the gene encoding the porin OprD for instance drives a resistance
against the carbapenem antibiotic imipenem [110]. This is of huge concern because the
carbapenem-resistant P. aeruginosa is one of the three critical level bacteria on the WHO high
priority pathogens list [78]. Another example of a specific AMR is the overexpression of the
MexXY multidrug transporter operon by a mutation in the mexZ gene. This mutation increases
the activity of an efflux pump responsible for transporting aminoglycosides, fluoroquinolones
and B-lactam-antibiotics out of the bacterial cell, reducing the susceptibility against these

antibiotics drastically [111].
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Effective treatment options for P. aeruginosa infections comprise B-lactam-antibiotics, like
penicillins, cephalosporins or carbapenems, and aztreonam in case of a penicillin allergy,
fluoroquinolones and aminoglycosides. P-Lactam-antibiotics can be combined with a -
lactamase-inhibitor, such as clavulanic acid. While fluoroquinolones can be administered
orally, they exhibit a higher rate of resistance development. For multi-drug-resistant P.
aeruginosa (MDR-PA) infections, treatment with the polymyxins colistin or polymyxin B is
possible. In general, the decision for a certain treatment should be based on the local resistance
situation and, if tolerable, the treatment period should be long enough to reduce the chance of
AMR. Also, a combination therapy with different antibiotics might be carried out to reduce the

risk of acquiring resistances [112].

As an interesting alternative treatment approach, phage therapy has gained more attention
during the last years. While there is still more scientific investigation necessary to improve
these therapies to a level allowing usedful clinical application, promising results have already
been published, for example focusing on biofilm deformation to lower intrinsic resistances and

improve the effectiveness of available antibiotics [113].

1.3. Isolation of microorganisms from environmental samples

The isolation of microorganisms from environmental samples and the subsequent isolation of
bioactive compounds derived from these organisms was already initiated in the middle of the
20" century when Waksman and Woodruff as pioneers isolated actinomycin A and B from the
soil-derived bacterium Streptomyces antibioticus [4]. This was the starting point for a new era
of microbial research and drug discovery. Some scientists discussed that the isolation of
antibiotics from soil-derived microorganisms is a promising strategy due to the limitation of
resources and space in the soil. Thus, the production of antimicrobial compounds can lead to a
selective advantage. Others argued that in nature these antimicrobial compounds are normally
present in sublethal concentrations and are rather being used as signal molecules. Inhibition of
other microorganisms in unnaturally high concentrations is therefore a random occasion [114-

116].

Compared to synthetically derived antibiotics, isolation of antimicrobial compounds from
environmental microorganisms can most of the time be accomplished faster and easier. This

might be due to the fact that these compounds have been steadily developed and improved
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under conditions of constant microbial competition during evolution over thousands of years

[117].

Of huge concern is the limitation of the cultivability of environmental microorganisms. It is
estimated that around 99 % of the microorganisms living in soil are not able to grow under
standard laboratory conditions [118]. This led to approaches of developing new cultivation
techniques in recent years, to grow microorganisms in artificial surroundings, that have been
tagged to be uncultivable before [119]. In 2015, for example, a special chip-based process led
to the discovery of the new peptide antibiotic teixobactin. The researchers were able to use a
special plastic chip with semipermeable membranes to grow the gram-negative bacterium
Eleftheria terrae in its natural soil habitat while isolating the antibiotic compound at the same

time [120].

In the last decades, the focus more and more shifted to lesser investigated environmental niches
to reduce the frequent rediscovery of already known natural products. Endophytic
microorganisms for example are microorganisms associated with a plant host in a mutually
supportive relationship. This special natural habitat has an influence on the metabolic pathways
of these microorganisms, which led to the discovery of a variety of new bioactive natural
products from endophytes [121]. Other prominent ecological niches that have contributed to
increase our treasure chest of natural products and antibiotics are marine surroundings [122],
microorganisms associated with insects [123], and microorganisms derived from animal faeces

[124].

This short overview is supposed to provide a glimpse of the diversity and sheer scale that is
connected to environmental microorganisms. New developments and progress in this field of
research will continue to deliver new natural products with antimicrobial activities for many

years.
1.3.1. Soil

The soil as a source for antimicrobial metabolites produced by microorganisms was firstly
discovered by Waksman and Woodruff in 1940 with the isolation of actinomycin A and B [4].
The idea that led to their intense investigations was that pathogenic microorganisms for
hundreds of years must have been in contact with soil microorganisms, being constantly
transmitted by humans and animals. Nevertheless, the proportion of pathogenic
microorganisms in soil remains very low, suggesting mechanisms that inhibit the growth of

these organisms.
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In the years after the pioneering work of Waksman and Woodruff, Albert Schatz continued with
the isolation of streptomycin, the first antitubercular antibiotic, from soil-borne Streptomyces
griseus [125]. Later, chlortetracyclin was firstly described as a metabolite from Streptomyces
aureofaciens [126], and chloramphenicol was isolated by Ehrlich from another Streptomyces

sp. from a soil sample [127].

The content and diversity of microorganisms in soil are subject to huge differences and depend
on a lot of different factors. In 1 g of soil, an estimated number of several billion bacteria
comprising around 200 million actinomycetes can be found [128]. There are 100-9,000 different
prokaryotic organisms per cm® and 200-235 different fungi per gram of soil [129]. However,
there is an immense variety of the richness of different organisms that depends on the quality
of the soil. The amount and diversity of prokaryotes in arable soil for example are markedly
lower compared to natural forest soil [130]. The preference for certain species of fungi also
differs strongly with respect to pH values and the general content of soils [131]. Generally,
more microorganisms can be found at soil depths of 0-25 cm, because of a higher content of
organic materials that serve as nutrients [132]. Also, a variety of microorganisms reside in the
rhizosphere, showing different diversifications of microorganisms depending on the particular

plant species [133].

To expand the range of cultivable microorganisms from soil samples, a lot of new methods have
been developed in recent years. A rather crude but effective approach is the intense adaptation
of the parameters used for laboratory culturing of soil microorganisms. For example, new
species from the divisions acidobacteria and verrucomicroba were isolated by adding humic
acid and quorum-signalling compounds to the growth medium, prolonging the growth phase to
more than 30 days, building up an anoxic or hypoxic atmosphere or protecting the bacteria from
endogenous peroxides [134].

A more sophisticated approach was the construction of a diffusion bioreactor that should mimic
the naturally occurring environmental conditions in forest soil. This bioreactor contains an outer
and an inner chamber that is separated by a perforated layer. The outer layer is filled with forest
soil, while the inner layer is filled with the soil sample distributed in the growth medium. During
the growth process, natural components from the forest soil can diffuse through fine pores into
the inner chamber and promote the growth of microorganisms that are dependent on certain
ingredients that synthetical media cannot provide [119].

Another modern approach tackling the problem of unculturable soil microorganisms was
accomplished by Hover et al. in 2018. They discovered the new antibacterial class of the

malacidins without the need of culturing any bacteria in a process known as “genome mining”.
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Microbial DNA was directly isolated from soil samples, and the genetic information was used

to rationally search for calcium-dependent antibiotic-like tags [135].

These works impressively show the complexity and diversity of microbial life in the soil.
Further, they give an insight into the intertwined dependences that the different contents, living

and not living, have in this gigantic natural community.

1.3.2. Plants

Endophytes are microorganisms, mostly bacteria, and fungi, which live inside plant tissues
mainly in a symbiotic relationship. Normally these microorganisms are harmless to the plant
host, and endophytic organisms have been described for nearly every known plant [136].
Interestingly, it strongly depends on the part of the plant that is being processed, which

endophytes and what pattern of microorganisms can be isolated from it [137].

Endophytes can be very useful for their plant host. It is described that they can improve the
uptake of minerals into the plant [138], support nitrogen fixation [139], play a crucial role in
the host defence mechanisms [140], increase cellulose and lamina density in the plant tissues
and thus reducing herbivory of insects [ 141], and protect from oxidative stress by the production

of enzymes like the superoxide dismutase [142].

In recent years research work suggested an even closer relationship between the endophytic
organism with its host. Some publications even described that horizontal gene transfer (HGT)
can happen between the plant and its endophytes. An example is the subtilisin gene that is
relatively typical for plants, which was found in an endophytic Colletotrichum sp. [143]. Also,
the transfer of genes from endophytic fungi to their host plants was reported. An example is the
transfer of the hemerythrin gene to mosses, where it plays a role in oil body biogenesis and
dehydration resistance [144]. There is still a need for extensive research on this exciting topic,
but there is a high possibility that the contact of the endophyte with its host plant can lead to
the acquisition of genes necessary for the production of bioactive secondary metabolites [145].
This theory is supported by the description of plant hosts and their corresponding endophytes,
that both are capable of producing the same bioactive metabolite. An early and famous example
is the biosynthesis of the cytotoxic taxol, which was found to be a secondary metabolite
produced both by Taxus brevifolia and its fungal endophyte Taxomyces andreanea [146]. Other
examples are the biosynthesis of hypericin by Hypericum perforatum and its endophyte
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Chaetomium sp. and camptothecin by Fusarium solani and its host plant Apodytes dimidiate

[147, 148].

In the last years, a colourful spectrum of new and bioactive compounds exclusively found in
endophytic organisms has been described, ranging from peptidic structures to a huge variety of
small molecules with different bioactivities [ 149]. Endophytes have proven to be a precious and
prolific complementation to other natural sources of microorganisms and attempts in finding
new antimicrobials. Each plant's unique fingerprint of endophytic organisms and the possible
genetic interactions between the microorganisms and their host turn the research of endophytes

into a fruitful and promising field with high potential.

1.3.3. Other ecological niches

Microorganisms can be found in various places to form ecological niches, which shows their
huge potential to adapt. In the following, three additional ecological niches shall be highlighted

that could possibly play an important role in the discovery of new bioactive natural products.

The frequent rediscovery of compounds from terrestrial microorganisms shifted the interest
towards lesser explored ecological niches. Marine microorganisms are of special interest in this
respect because research in this area is still very scarce [150]. This is quite surprising because
marine organisms, in general, comprise the biggest part of the overall known biodiversity of
the world because of the immense size of the oceans [151]. The conditions in marine
environments often are more extreme and very different from terrestrial surroundings. The
hydrostatic pressure, salt content and a big range of temperatures up to extreme points influence
the living microorganisms here, forcing them to develop a range of diverse adaptations also
leading to the production of unique secondary metabolites [152].

In the past, a wide range of interesting compounds with different bioactivities was isolated from
marine microorganisms. Some examples are salinosporamide A from Salinospora sp., which
showed strong cytotoxic activities on cancer cells [153]; dolastatin 10 from a marine
cyanobacterium, a precursor of one of the strongest cytotoxic compounds on earth; the
semisynthetic monomethylauristatin E [154]; the antiviral antimycin A [155]; and salinopostin

A, which is an antimalaria compound with a strong activity in the nanomolar range [156].

Another interesting ecological niche for microorganisms that gained more and more interest
especially in recent decades are insects. Most of the time these microorganisms live in a

symbiotic relationship with the insect, similar to that of the endophytes [157]. Interestingly, the
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microorganisms can live inside different parts of the insect, like the gut, but also in specialized
cells called “bacteriocytes” and thus play an important role in the uptake and processing of
nutrients for the insect [158-160].

Some new bioactive compounds have been isolated from microorganisms obtained from
insects. A symbiotic Serratia marcescens from the microbiota of the Anopheles mosquito was
found to produce the lipodepsipeptides stephensiolides A-K that possess activities against
Bacillus subtilis and Plasmodium falciparum [161]. Furthermore, from a Streptomyces sp.
found in the fungus-growing ant Cyphomyrmex sp., a macrocyclic polyketide named
cyphomycin has been isolated that showed a range of different antifungal activities, including

antifungal activity against the multiresistant yeast Candida auris [162].

Microorganisms also play an important role in the gut of animals as symbionts, where they
improve and increase the nutrient uptake for the host while also profiting from the nutrients and
strengthening the host’s immune defence against pathogenic microorganisms [124]. The
composition of the nutrient uptake is central here because it also influences the diversity and
composition of the gut microbiome of the animal [124, 163, 164]. The faeces of herbivore
animals for example is made up of a unique diversity of microorganisms because of the plant-
based diet that is also rich in the uptake of endophytic organisms that live inside the plant tissue
and have extensive probiotic effects [165].

Research on bioactive compounds from microorganisms derived from animal faeces is rather
scarce. The isolation of new azaphilone pigments and the compound pyrenophorin from the
goose dung-derived fungus Coniella fragariae, which possesses strong cytotoxic activity, has
been described [166]. Further, the isolation of new anti-inflammatory metabolites from a
Streptomyces sp. isolated from zebra dung can be found in the literature [167]. Nevertheless,
this ecological niche is still underexplored and potentially rich in unique metabolites with

interesting bioactivities.
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1.4. Activation of silent gene clusters and the OSMAC concept

Biosynthetic gene clusters (BGCs) are genes that are physically located close to each other and
together are responsible for the synthesis of certain metabolic products [168]. There are
different types of BGCs, each developing different structural classes of metabolites, like
polyketides, non-ribosomal peptides or terpenes, to name a few [169]. Interestingly, not all
BGCs are expressed constitutively, meaning some are only active under certain conditions.
Some of them need triggers from the environment or are being expressed stronger under special
genetic influences. These BGCs are silent and if activated can lead to cryptic metabolites that
are not present under standard conditions [170]. The possibilities for the isolation of
undiscovered and bioactive secondary metabolites from microorganisms, therefore, are
substantially increasing by approaches trying to address these activation processes. This is
further supported by the increasing number of whole genome sequencing data during the last
years that underline that most of the BGCs microorganisms likely possess the genetic capacity
to produce many metabolites we still have not discovered yet [171]. The potential for the
isolation of new and bioactive secondary metabolites through the activation of silent BGCs thus

is high and promising.

There are different strategies to access these cryptic and potentially interesting compounds. A
biotechnological method is the heterologous expression of a certain inactive BGC. The BGC of
interest is being transferred from the parental and naturally occurring host strain to a known lab
strain, where it can be expressed to exploit the metabolites. The biggest challenge here is the
size of the BGCs, which often can exceed 100 kilobases [172].

Another methodology is the so-called refactoring of BGCs. This means the substitution of
transcriptional regulatory elements to turn the silent BGCs into permanently active ones. Of
special interest here is the promotor engineering because promotors drive the transcription of a
BGC [173].

Addionally, epigenetic modifications are able to change the metabolic profile of an organism.
This is typically not specific and leads to changes in different genetic positions. An example is
the knockout of genes that encode histone deacetylases. In eukaryotic cells, histone proteins
form a condensed structure with DNA, which is called nucleosome. The interaction of the
histone proteins with the DNA and consequently the structural appearance of the nucleosome
influences the activity of certain genes. This is tightly connected to the acetylation status of the
histone proteins, which is being controlled by histone acetylases (HATs) and deacetylases

(HDACSs). Hyperacetylation of histones, which can be achieved by downregulation and
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knockout of HDAC:s, leads to transcriptional activation of silent chromosomal regions, and this
migth result in the biosynthesis of secondary metabolites that are not produced otherwise [174-

176].

A strategy not directly focussing on biotechnological methods, but on the activation of silent
gene clusters is the OSMAC concept (see figure 4). OSMAC was conceived in 2002 by Bode
et al. and is the acronym for One Strain Many Compounds, meaning that different cultural
conditions of the same strain can lead to different secondary metabolite profiles. This effect can
occur on different levels, concerning transcription, translation, or activation and inhibition of
different enzymes [177]. The big advantage of OSMAC is the ease of use. Prominent and easy-
to-apply examples for the OSMAC concept are changes in physical parameters, like the
temperature during cultivation or changing the oxygen concentration, co-cultivations with other
microorganisms to mimic situations that occur in nature, or the supplementation of different

nutrients or other small compounds to the cultivation medium [178].

A

Figure 4. Examples of OSMAC approaches in the cultivation of a microorganism. A: alteration of
the nutrient medium, B: adaptation of the physical parameters, C: co-cultivation with different
microorganism (prokaryotic-prokaryotic, prokaryotic-eukaryotic or eukaryotic-eukaryotic). Figure

adapted from [178].

The heterologous expression of BGCs was already quite fruitful and yielded a variety of
different metabolites. Taromycin A is an antibiotic from the bacterium Saccharomonospora sp.
that was isolated by transferring its BGCs to Streptomyces coelicolor [179]. Also, the BGC
from a marine Streptomyces sp. coding for the antibiotics class of the berninamycins was

expressed in Streptomyces albus and led to two new members of this family of thiopeptides,
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named berninamycin J and K [180].

Cryptic metabolites that were isolated through the OSMAC concept are also quite manifold.
An interesting example is the supplementation of fruit and vegetable juice to the cultivation
medium of Fusarium tricinctum, which gave new fusarielin derivatives, a class of compounds
with members being active against human ovarian cancer cells [181]. The addition of different
salts to the cultivation medium of the endophytic fungus Bulgaria inquinans isolated from
mistletoe led to the biosynthesis of new butyrolactones [182]. Furthermore, the co-cultivation
of Bacillus subtilis with the endophytic fungus Trichocladium sp. from the Vietnamese
medicinal plant Houttuynia cordata gave the new spiro compound 5-epi-pestafolide A and

increased the production of the antibiotic colleketol by tenfold [183].
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1.5. Bioassay-guided compound isolation

While the isolation of new natural products is steadily increasing our knowledge about the
chemical space covered by nature, often compounds with no detected activities are not followed
any further after discovery because of a lack of practical use. In fact, the major aim of natural
product isolation is the discovery of bioactive molecules that could lead to potential therapeutic
applications. A rational design for the isolation process of bioactive compounds from natural
sources that track certain activities starting from the crude extract to the pure compound is
purposeful and time-saving. This is what bioassay-guided compound isolation is focussing on.
Any kind of bioactivity can be traced throughout the whole isolation process and only the
samples with promising bioactivities are further processed. It can also be used to explore lesser
investigated bioactivities to isolate known compounds that inherit these activities but were
never tested for them. Especially in high-throughput screening processes, it helps reduce the
number of samples to the most important ones and thus saves a lot of unnecessary work and

time [184].

A good example of the helpfulness of bioassay-guided isolation of natural products is a study
from 2009, where 126 different Actinomycetes from the Aegean region of Turkey have been
isolated and screened for bioactivity against MRSA and E. coli. The bioactivity guidance helped
the authors reduce this total amount of bacteria to the most interesting isolate and precisely let
them isolate the two antimicrobial compounds 4’-deacetyl griseusin A and griseusin A, both
showing MICs lower than 1 pg/mL against MRSA and E. coli, respectively [185]. Another
study from 2018 aimed to isolate compounds with biofilm-inhibiting properties against
different Candida sp.. The bioactivity-guided isolation of Salvia officinalis extracts yielded the
two biofilm-inhibiting compounds carnosol and 12-methoxy-trans-carnosic acid [186]. A cell-
based activity-guided screening in 2013 led to the isolation of the bacterial steroids bendigole
D-F with anti-inflammatory properties [187].

These examples underline the versatility and benefit of bioassay-guided isolation processes.
The tracking of interesting activities throughout a complete isolation process, in addition to
searching for new and structurally interesting compounds, helps to improve the outcome for

natural product isolation-based studies.
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2 Aim

The increasing resistance rates of microorganisms against known antibiotics and a lack of
discovery of new, clinically applicable antimicrobial compounds endanger our health system.
We are in urgent need of finding new antibiotics to secure the use of effective antibiotic
therapies against life-threatening pathogens in the future. Additionally, compounds being able
to inhibit and disrupt the formation of microbial biofilms, which can lead to high tolerance and
resistance against antimicrobial compounds are of special interest. Microorganisms from
environmental samples in this regard have proven to be rich sources of bioactive compounds.
In this work, the isolation of natural products from microbial fungi isolated from different
environmental niches with a focus on bioactivity and molecular novelty was the main target.
Endophytic microorganisms are interesting sources of bioactive compounds. The close and
intense contact with their host has been shown to play an important role in their production of

secondary metabolites.

In chapter 4, the endophytic fungus Paraboeremia selaginella was isolated from Philodendron
monstera. Because information about secondary metabolites from this fungus is hardly found
in the literature the main metabolites should be isolated and tested for interesting bioactivities.
Special focus was put on bioactivity testing against the apicomplexan pathogen Toxoplasma

gondii.

The endophytic fungus Trichocladium sp. has already been shown to be influenced by different
OSMAC approaches in earlier studies. Especially high protein and amino acid concentrations
seem to change the metabolic profile in different ways. In the study presented in chapter 5, we
highlight the influence of a new OSMAC approach with high concentrations of the amino acid
L-phenylalanine on the production of secondary metabolites. The isolated compounds are tested
for different bioactivities and new compounds should be elucidated to their absolute

configuration.

The genus Fusarium even if well known, is still interesting because of its high versatility when
it comes to the activation of silent BGCs. In chapter 6, we introduce an OSMAC approach,
where we co-cultivate the soil-borne fungus Fusarium oxysporum together with different
bacteria. The isolation and structure elucidation of compounds derived from the most promising
co-cultivation with Paenibacillus ehimensis and their bioactivities should be described. Special

focus is put on bioactivities regarding biofilm disruption. Finally, a proposal of the biosynthesis
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of interesting compounds on the basis of a whole genome sequencing approach should be

carried out.
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3 Summary

Looking back on the last decades, we face a period with a lack of new antibiotics. Together
with the increasing emergence of multi- and extensively drug-resistant pathogens, the discovery
of new antimicrobial compounds becomes a key factor in not losing the race against AMR.
Since we have an increasing rate of rediscovery in the research field of natural product isolation,
it becomes important to go new routes. The focus on lesser investigated ecological niches, new
cultivation strategies and activation of silent gene clusters is promising and provides us with

nearly unlimited possibilities.

Toxoplasma gondii is an apicomplexan parasite that can infect different warm-blooded animals
and humans. Toxoplasmosis is a related infection that can cause severe damage in
immunocompromised patients and lead to fetal abortion in pregnant women. Since therapeutic
options are limited, the discovery of new anti-toxoplasma compounds with a low side effect
profile is of special interest. In the study “In vitro biological activity of natural products from
the endophytic fungus Paraboeremia selaginellae against Toxoplasma gondii” presented in
chapter 4, the isolation of the endophytic fungus Paraboeremia selaginellae and the subsequent
isolation of eight compounds from a culture on solid rice medium was accomplished. The
structures were elucidated and 5, 6S-phomalactone VCD data were measured for the first time.
All eight compounds were tested for antibacterial, cytotoxic, and anti-toxoplasma activity.
Results showed that six of the eight compounds had moderate to good anti-toxoplasma activity

while having a preferably good cytotoxic profile against the tested human cell lines.

In chapter 5, the endophytic fungus 7Trichocladium sp was cultivated in an OSMAC-based
approach on solid rice medium supplemented with high concentrations of the aromatic amino
acid L-phenylalanine. From the crude extract, ten compounds were isolated and their structures
were elucidated. In previous studies, supplementation with a high protein medium or the
aromatic amino acid L-tyrosine already yielded new compounds. In this study, five new
compounds were successfully isolated and described. Interestingly three of the five new
compounds are structural precursors of the cyclic dilactone colletodiol and derivatives.
Although colletodiol or closely related derivatives were isolated in the previous studies, we
describe their linear derivatives for the first time and propose L-phenylalanine to be an inhibitor
of the cyclisation of colletodiol and related cyclic dilactones, leading to additional alternative

metabolites.
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Soil samples were one of the early sources for the isolation of microorganisms. Since the
rediscovery of known microorganisms from soil samples happens frequently under standard lab
conditions, researchers started to focus on lesser-investigated natural sources. Fusarium
oxysporum is a well-investigated microbial fungus often associated with plant diseases as a
pathogen. Even though a plethora of interesting compounds from the genus Fusarium was
already isolated in the last decades, recent studies still reveal that there is a huge hidden treasure
chest of unknown natural products that can be assessed by activation of silent BGCs. In chapter
6, we present our study of an F. oxysporum that was isolated from a soil sample. Employing
the OSMAC concept, co-cultivation with five different bacteria was carried out on a solid rice
medium to activate silent BGCs and reveal cryptic secondary metabolites. The co-cultivation
with the soil-borne bacterium Paenibacillus ehimensis showed a strong shift in its macroscopic
appearance on rice medium. While the axenic culture of F. oxysporum and the four other co-
cultivations only showed an orange to red colour inside the rice medium, the co-cultivation with
P. ehimensis led to the appearance of dark purple coloured spots. The HPLC-chromatogram
showed a strong increase in the production of 9-O-methylfusarubin, which in high
concentrations could be connected to the appearance of the purple colour. From this crude
extract, ten compounds were isolated and resulted in three yet undescribed structures. Two of
the three new compounds, named fusapurpurin A and B had the 9-O-methylfusarubin core
structure that was extended by a phenyl pyruvic acid moiety, leading to a new structural
subclass of fusarubin derivatives. A nanopore whole genome sequencing approach revealed a
biosynthetic gene cluster (BGC) that could be responsible for the synthesis of the 9-O-
methylfusarubin core structure. Genes encoding for an amino acid transporter and a L-amino
acid oxidase inside this BGC supported the hypothesis that fusapurpurin A and B are formed
over a reaction of 9-O-methylfusarubin and a structural derivative of L-phenylalanine.
Interestingly, these compounds disrupt pre-formed biofilms of Staphylococcus aureus,
Pseudomonas aeruginosa and, in the case of fusapurpurin B, Mycobacterium tuberculosis. This
study underlines that new natural products can still be isolated from well-investigated
microorganisms. The power of the OSMAC concept is immense and can help to increase and

revive the potential of already-known species.
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Abstract: Toxoplasma gondii is an apicomplexan pathogen able to infect a wide range of warm-blooded
animals, including humans, leading to toxoplasmosis. Current treatments for toxoplasmosis are
associated with severe side-effects and a lack efficacy to eradicate chronic infection. Thus, there
is an urgent need for developing novel, highly efficient agents against toxoplasmosis with low
toxicity. For decades, natural products have been a useful source of novel bioactive compounds
for the treatment of infectious pathogens. In the present study, we isolated eight natural products
from the crude extract of the endophytic fungus Paraboeremia selaginellae obtained from the leaves
of the plant Philodendron monstera. The natural products were tested for inhibiting Toxoplasma gondii
proliferation, and their cytotoxicity was evaluated in different human cell lines. Six natural products
showed antitoxoplasma activity with low or no cytotoxicity in human cell lines. Together, these
findings indicate that biphenyl ethers, bioxanthracenes, and 55,65-phomalactone from P. selaginellae
are potential candidates for novel anti-toxoplasma drugs.

Keywords: Toxoplasma gondii; Paraboerentia selaginellae; endophytic fungi; natural products; bioactivity;

biphenyl ether; bioxanthracene; phomalactone

1. Introduction

Toxoplasma gondii is an obligate intracellular protozoan parasite member of the phylum
Apicomplexa, which includes known human pathogens such as Plasmodium sp., Eimeria
sp., Neospora, Babesia, Theileria, and Cryptosporidium spp., with which it shares significant
biological similarities [1]. Beyond these organisms, the study of T. gondii has experimental
advantages since its basic biology and the methodology for the genetic manipulation and
quantification of its different stages are well established. Thus, T. gondii is considered a
major model for the study of apicomplexan biology and for anti-apicomplexan drug target
validation [2]. T. gondii infections are among the most common human zoonoses, leading
to toxoplasmosis disease [3]. T. gondii is considered one of the world’s most successful
parasites due its ability to infect a wide range of warm-blooded vertebrate intermediate
hosts [4]. T. gondii is estimated to chronically infect one-third of the world’s human pop-
ulation and is acquired mainly through two ways: by ingesting oocysts shed from feline
hosts (the definitive hosts) in contaminated food or water and by the consumption of
raw or undercooked meat containing viable tissue cysts [5]. Waterborne and food-borne
outbreaks of toxoplasmosis have been reported from countries with diverse cultural, social,
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and ethnic backgrounds [6]. In immunocompetent individuals, infection with T. gondii is
usually asymptomatic or has a subclinical course with mild symptoms. In contrast, im-
munocompromised (i.e., acquired immune deficiency syndrome (AIDS), organ transplant
or cancer) patients can develop the disease, leading to life-threatening cerebral and ocular
toxoplasmosis due to a reactivation of the latent infection. Additionally, primary infection
in pregnant women may result in fetal death, spontaneous abortion, and birth defects [7-9].
Although many gaps have been filled in the epidemiological, diagnostic, and biological
fields to understand of the interaction of the parasite with the host, little progress has been
made in drug discovery for the treatment of toxoplasmosis.

Current treatments of acute toxoplasmosis are largely limited to anti-folate therapy.
Pyrimethamine and sulfadiazine, the current gold-standards for the treatment of toxoplas-
mosis, can suppress the parasite growth in the active stage of the infection by targeting
the tachyzoite stage, but they have no effect in the bradyzoites stage. Additionally, they
have been found to have high rates of toxic side effects, leading to discontinuation of
therapy. Thus, there is an urgent need to identify novel potent candidates that would be
well-tolerated to eradicate latency as well as to treat the acute infection [10,11]. Natural
products profoundly impact the history of drug discovery, especially in the research of
novel anti-cancer, anti-bacterial, and anti-parasitic treatments. Nature continues to provide
diverse and unique chemical sources of bioactive lead compounds that inspire novel drug
discoveries [12]. The antiparasitic bioactivity of natural products from various sources,
especially plant-derived secondary metabolites, has been deeply investigated in in vitro
and in vivo studies [13]. Many fungal metabolites have also been reported to exhibit an-
timicrobial properties against parasitic pathogens. However, most of these studies focused
on bioactivity against Plasmodium falciparum, whereas there is a scarcity of investigations to
explore the potential of fungi as a source of novel anti-toxoplasma agents [14].

In this study, we extracted and purified eight natural products from the crude extract
of Paraboeremia selaginellae, an endophytic fungus isolated from the ornamental plant
Philodendron monstera. Isolated compounds were structurally characterized and evaluated
for their anti-toxoplasma activities. Biphenyl ethers, bioxanthracenes, and phomalactone
showed substantial activity against T. gondii proliferation. Therefore, we suggest these
compounds as promising candidates for novel anti-parasitic therapies.

2. Results
2.1. Isolation of Compounds from Paraboeremia selaginella

We isolated an endophytic fungus from fresh surface-sterilized leaves of the ornamen-
tal plant Philodendron monstera. The isolated strain was identified as Paraboeremia selaginella
by the internal transcribed spacer (ITS) sequence with 99.56% identity in comparison with
the ITS database of the National Center for Biotechnology Information. From the crude
extract of a culture of Paraboeremia selaginella grown on solid rice medium, eight compounds
were isolated by chromatographic methods and structurally elucidated by complementary
spectroscopic analyses (Figure 1). All eight compounds have previously been reported
from other sources but are reported here for the first time as natural products occurring in
the genus Paraboerentia.

Different stereoisomers of phomalactone (F) were isolated and reported previously
from various sources [15-18], and some papers did not specify the absolute configura-
tion [19,20], while others assigned the (5R,6R) absolute configuration to the large positive
specific rotation [21], which was opposite to previous studies [15-18,22]. In order to de-
termine the absolute configuration of phomalactone independently and unambiguously,
we performed TDDFT-ECD, TDDFT-OR, and DFT-VCD studies, which consistently con-
firmed the (+)-cis-(55,65) absolute configuration (see Supplementary Materials) [23,24].
Comparisons of the experimental and computed VCD spectra of cis-(55,65) are shown in
Figure 2, which produced good agreement. Other computational results are shown in the
Supplementary Materials.
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Figure 1. Chemical structures of the isolated compounds. NK-A 17e233 (A); 1,2-benzenediol, 3-(4-
hydroxy-2-methoxy-6-methylphenoxy)-5-methyl-(ACI) (B); cyperin (C); ES-242-1 (D); ES-242-3 (E);
55,65-phomalactone (F); methyltriaceticlactone (G); S 39163 /F-1 (H).
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Figure 2. Comparison of the experimental VCD spectrum of F measured in CDCl; and the calculated
VCD spectrum of cis-(55,65)-F computed at the BALYP/TZVP PCM/CHCI; level for the eight lowest-
energy conformers gained from the DFT optimization performed at the same level.

2.2, Anti-T. gondii Activity

The eight natural products isolated from P. selaginellae were tested for anti-T. gondii
activity. Interestingly, A-F showed activity against T. gondii growth, with ICs; values of
5.75,22.16,27.22,7.38,17.99, and 5.13 uM, respectively (Table 1 and Figure 3). Therefore,
we further explored the in vitro cytotoxicity of the natural compounds in different human
cell lines.
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Table 1. In vitro activity (IC5, values) of the natural compounds (A-H) from P. selaginellae against the
T. gondii strain ME49. All experiments were conducted in triplicate.

Compound IC5 (uM)
NK-A 17e233 (A) 5.75
1,2-benzenediol, 3-(4-hydroxy-2-methoxy-6-
methylphenoxy)-5-methyl-(ACI) 22.16
(B)
cyperin (C) 27.22
ES-242-1 (D) 7.38
ES-242-3 (E) 17.99
55,65-phomalactone (F) 5.13
methyltriaceticlactone (G) Not active
539163/F-1 (H) Not active
pyrimethamine 0.06
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Figure 3. Toxoplasma proliferation assays. Toxoplasma proliferation assays were performed to
investigate the activity of the natural products against T. gondii strain ME49. Hs27 cells were cultured
in a monolayer in 96-well plates and infected with T. gondii (3 x 10%). Cultures were treated with the
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natural products at the concentration range of 0.56-50.00 uM for 48 h at 37 °C. Afterwards, the
cultures were labelled with 3H-U (5 mCi, diluted 1:30) for 28-30 h at 37 °C. Based on the incor-
poration of 3H-U into the parasite nucleic acid, the parasite growth was quantified. As controls,
uninfected Hs27 cells without treatment (pink triangles) and IFNy pre-stimulated infected Hs27
cells (green triangles) were used, while untreated T. gondii-infected Hs27 cells (red squares) served
as a negative control. Values shown in (A-H) represent the means of three independent experiments
each done in duplicate (1 = 6) £ SEM. The mean of the ICs) values (red line) of each compound is
shown. Activity of NK-A 17e233 (A); 1,2-benzenediol, 3-(4-hydroxy-2-methoxy-6-methylphenoxy)-5-
methyl-(ACI) (B); cyperin (C); ES-242-1 (D); ES-242-3 (E); 55,65-phomalactone (F); methyltriaceti-
clactone (G); S 39163/F-1 (H).

2.3. Cytotoxicity Assays

First, we evaluated the cytotoxicity of compounds A to F in an MTT assay against Hs27
human fibroblasts (same cell type used for the T. gondii proliferation assay). The results of
the MTT assay are shown in Figure 4 and Table 2. A-E showed no cytotoxicity at 100 uM
against Hs27 cells. Only F showed moderate cytotoxicity with a cytotoxic concentration
CCsp = 81 4 2.16 uM.
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Figure 4. Effect of the natural products on the metabolic activity of Hs27 cells via MTT assay. Hs27
cells were plated in 96-well plates and grown to confluence prior to incubation at 37 °C for 24 h
with the natural products in the concentration range of 0.56-100.00 pM. The cultures were incubated
with 10 uL of the 12 mM MTT stock solution for approximately 4 h. Afterwards, 100 uL of SDS
dissolved in HCl was added to each well and incubated again for 4 h at 37 °C. Finally, the absorbance
was measured at 570 nm by spectrophotometry. Values shown in (A-F) represent the means of
three independent experiments each done in duplicate (1 = 6) & SEM. Cytotoxicity in Hs27 cells of
NK-A 17233 (A); 1,2-benzenediol, 3-(4-hydroxy-2-methoxy-6-methylphenoxy)-5-methyl-(ACI) (B);
cyperin (C); ES-242-1 (D); ES-242-3 (E); 55,65-phomalactone (F).
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Table 2. In vitro cytotoxicity (CCsp values) of the natural compounds (A-F) from P. selaginellae against
human fibroblasts Hs27. Concentration >100 uM indicates no activity in the experimental setup. All
experiments were conducted in triplicate.

Compound CCsp (uM)
A =100
B =100
& =100
D =100
E =100
F 81
Pyrimethamine 44

These compounds also were tested against the THP-1, Huh-7, and Hek 293 cell lines

in a Resazurin assay. The mean ICs; values of the Resazurin assay are shown in Table 3.

While compounds A—-C showed no cytotoxic effect in concentrations < 100 uM against any
of the tested cell lines, D had only a weak cytotoxic activity against the Hek 293 cell line
with an ICs; of 93.8 uM. E showed moderate cytotoxic activity against all of the three tested
cell lines and thus was the most cytotoxic of the tested compounds. F showed no or weak
cytotoxic effects against the Huh-7 and Hek-293 cell lines. The cytotoxic effect against the
THP-1 cell line was higher, with an ICsp of 24.3 uM. The graphs for the Resazurin assay are
shown in Figure 5.
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Figure 5. Effect of the natural products on the viability of THP-1, Huh-7, and HEK-293 cells. Cytotoxic
effect of NK-A17e233 (A); 1,2-benzenediol,3-(4-hydroxy-2-methoxy-6-methylphenoxy)-5-methyl-
(ACI) (B); cyperin (C); ES-242-1 (D); ES-242-3 (E); 55,6S-phomalactone (F) against the human cell
lines THP-1, Huh-7, and HEK-293 as determined by resazurin assay. 100% growth control DMSO, 0%
growth control cycloheximide. Values represent the means of triplicates + SEM.
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Table 3. Mean IC5; values of compounds A-F against human cell lines THP-1, Huh-7, and Hek293.
All concentrations are shown in uM. Concentration >100 uM indicates no activity in the experimental
setup. All experiments were conducted in triplicate. The ICs) values were calculated using GraphPad
Prism 7.

Mean ICg, [uM]

Compound
THP1 Huh-7 HEK-293
A =100 =100 =100
B =100 =100 =100
C =100 =100 =100
D =100 =100 93.8
E 219 13 16.95
F 243 100 66.9

2.4. Determination of Anti-Bacterial Activity

In our ongoing research for antibacterial and particularly antitubercular compounds,
A to H were also tested in a minimal inhibitory concentration assay against S. aureus ATCC
700699, P. aeruginosa ATCC 87110, and M. tuberculosis H37Rv. Compounds A to H had
no inhibitory effect on S. aureus ATCC 700699 and P. aeruginosa ATCC 87110, except for
compound F, which showed a weak inhibitory effect on P. aeruginosa ATCC 87110 with
an MICgp of 100 pM. Compounds A, B, C, F, G, and H had no inhibitory effect on the
growth of M. tuberculosis, and compounds D and E showed a weak inhibitory effect with
an MICq of 50 and 100 uM, respectively. The results are shown in Table 4, highlighting
that compounds A to F had a specific anti-toxoplasma effect and were devoid of broad,
unspecific antimicrobial activity.

Table 4. MICq; against 5. aureus ATCC 700699, P. aeruginosa ATCC 87110, and M. tuberculosis H37Rv.
All concentrations are shown in uM. Concentration >100 uM indicates no activity in the experimental
setup. All experiments were conducted in triplicate.

MICgg [uM]
Compound
5. aurens ATCC 700699  P. aeruginosa ATCC 87110 M. tuberculosis H37Rv

A =100 =100 =100
B >100 =100 =100
c =100 =100 =100
D =100 =100 50

E >100 =100 100
F =100 100 =100
G =100 =100 =100
H =100 =100 =100

3. Discussion

Natural products have played an important role in the history of drug discovery for
infectious disease. In the quest for new anti-T. gondii drugs, natural products have been
proven to exhibit high potential for the discovery and development of new lead compounds
with strong anti-T. gondii activity [25,26]. In this study, we isolated eight natural products
from the crude extract of the endophytic fungus P. selaginellae. A previous report on the
inhibitory activity of one of these compounds (phomalactone, F) against the apicomplexan
parasite Plasmodium falciparum with an ICsq of 84.32 uM [27] prompted us to test the natural
products for anti-T. gondii activity. Interestingly, six compounds showed activity against
T. gondii proliferation with no or low cytotoxicity in different human cell lines and no or
low antibacterial activity against a gram-positive, a gram-negative, and a mycobacterial
representative, revealing reasonable anti-T. gondii specificity and promising therapeutic
windows. These results establish diphenyl ethers, bioxanthracenes, and lactones from
P. selaginellae as potential candidates for further preclinical development of novel anti-
toxoplasma therapeutics.
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Some of the isolated compounds share similar structural elements, which give insights
into a structure-activity relationship of the natural products against the tested T. gondii
strain ME49. Compounds A, B, and C are biphenyl ether derivatives that differ either in
the position of the methoxy group or in the number of substituted hydroxyl groups. The
most potent of these compounds is A (ICs; = 5.75 uM), followed by B (IC5; = 19.35 uM)
and C (ICsp = 27.22 uM). While A only differs from B by a switch in the position of the
methoxylated hydroxyl group from position 2 to 4, it differs from C only by an additional
hydroxyl group in position 2/, which it shares with B. Because of the higher potency
of A in the toxoplasma proliferation assay compared to B and C, the position of the
methoxy group in 4 and the amount and position of hydroxyl groups in 2’ and 3’ both
are likely to have an influence on the antitoxoplasma activity of these derivatives. This
suggestion, nevertheless, needs further experimental evidence. Furthermore, diphenyl
ethers A, B, and C are structurally related to triclosan, a well-known broad spectrum
antifungal and antibacterial agent targeting lipid synthesis [28]. It has been shown that
triclosan also inhibits the growth of apicomplexans by inhibition of the enoyl reductase
ENR (Fabl) enzyme, the second reductive step in the type II fatty acid biosynthesis pathway.
Nevertheless, due the poor solubility of triclosan, there is considerable interest in finding
novel potent triclosan analogs with improved properties such as solubility, activity, and
toxicity [29,30]. The mechanism of action of A, B, and C may be similar to that of triclosan,
but further studies are necessary to explore and confirm their mode of action and cellular
target. Furthermore, in vitro and in vivo pharmacokinetic characterization is needed to
reveal whether any of the compounds reported here has superior properties compared
to triclosan.

Compounds D and E represent bioxanthracenes belonging to the ES-242 class and
share the same structure, differing only in position 4’ by the hydroxyl group that is present
only in E. The ICs; values in the toxoplasma proliferation assay were 7.38 uM and 17.99 uM
for D and E, respectively, suggesting a reduction in the antitoxoplasma activity if position
4' is substituted by a hydroxyl group. The bioxanthracenes D and E were previously
isolated from Verticillium spp. and are well-known to act as N-methyl-D-aspartate receptor
antagonists [31]. Both compounds were also found to be active against the apicomplexan
parasite P. falciparum with ICs; values of 8.44 and 13.22 uM, respectively [32]. Interestingly,
the activities of D and E against T. gondii in this study were comparable to their reported
activity in P. falciparum with ICsp values of 7.38 uM and 17.99 uM (see Table 1). Nevertheless,
the mechanism of action of D and E on apicomplexans is still unknown and is probably
independent from their activity as NMDA receptor antagonists [32].

Compounds F and G are small §-lactonic molecules; 55,65-phomalactone (F) differs
from methyltriaceticlactone (G) in the length of the sidechain in position 6, the hydroxyl
group in position 5, and in the absence of the methyl group that is present in methyltriaceti-
clactone in position 2. Interestingly, antitoxoplasmal activity was observed for F, but not for
G, suggesting that one or more of these structural differences and not only the presence of
the 3-lactonic base structure plays a crucial role in the bioactivity against T. gondii. Phoma-
lactone (F) is a frequent fungal metabolite and was first isolated from the plant-pathogenic
fungus Nigrospora sp. [16]. It has a wide range of activities such as antifungal, immunomod-
ulating, insecticide, nematocidal, and phytotoxic activity [15,19,33-35]. In addition, it has
been found to be active against the apicomplexan parasite P. falciparum, with an ICs; of
84.32 uM [27]. In the present study, we tested F for inhibition of T. gondii proliferation and,
interestingly, it showed a more potent activity with an ICs; of 5.13 uM (see Table 1). No
target or mode of action has been suggested for phomalactone in P. falciparum, and the
target of this compound in T. gondii also remains elusive and has to be determined in the
future. Importantly, the newly identified natural products with inhibitory activity against
T. gondii showed very little in vitro toxicity and should be evaluated in in vivo infection
model systems in the future. In general, this study highlights the potential of endophytic
fungi as a promising source for novel antitoxoplasma compounds.
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4. Materials and Methods
4.1. General Experimental Procedures

Optical rotations were measured on a Jasco P-2000 polarimeter (Jasco, Pfungstadt,
Germany). UV-spectra were obtained by the use of a Dionex P580 system in combination
with a diode array detector (UVD340S) and an Eurosphere 10 C18 column (125 mm x 4 mm).
ECD spectra were measured on a JASCO J-810 spectropolarimeter. VCD spectra were
recorded on a BioTools Chiral-IR-2X at a resolution of 4 cm ™! under ambient temperature
for 18 x 3000 scans. Samples were dissolved in CDCl;, and the solution was placed in
a 100 um BaF; cell. 1D and 2D NMR spectra were recorded on a Bruker Avance I1I ('H,
600 MHz; 1*C 150 MHz) spectrometer. Mass spectra were measured on a Finnigan LCQ
Deca (Thermo Quest, Egelsbach, Germany) mass spectrometer and for HRESIMS, on a UHR-
QTOF maXis 4G (Bruker Daltonics, Bremen, Germany) mass spectrometer. Semipreperative
HPLC was performed on a Lachrom-Merck Hitachi system (pump L7100, UV-detector
L7400, Eurospher 100 C18 column 300 mm x 8 mm, Knauer, Everswinkel, Germany).
VLC and non-vacuum-column chromatography were accomplished using Macherey Nagel
silica gel 60M (0.04-0.063 mm). Precoated TLC silica gel 60 F254 plates (Merck, Darmstadt,
Germany) were used for tracking separation using detection under UV light at 254 and
365 nm wavelengths or spraying anisaldehyde-sulfuric acid reagent. Sephadex LH20 (GE
Healthcare Bio.Sciences AB, Uppsala, Sweden) was used as a stationary phase for column
chromatography. The measurement of optical rotations was accomplished by using spectral
grade solvents.

4.2. Fungal Material

The fungus was obtained from the leaves of the plant Philodendron monstera as an
endophyte. A single leaf was surface sterilized by soaking it with 70% ethanol for 30 s and
letting it dry under sterile conditions. With a heat-sterilized scalpel, the leaf was cut into
pieces and put onto a YPD agar plate, which was enriched with 100 mg /L chloramphenicol
to suppress bacterial growth. After seven days of incubation at room temperature, distinct
fungal growth was observed on the plate. A 1 cm? piece of the fungus was cut out of the agar
medium using a heat-sterilized scalpel under sterile conditions and was transferred onto a
new sterile YPD agar plate to isolate a pure organism. The isolated strain was identified
as Paraboeremia selaginella by the internal transcribed spacer (ITS) sequence with 99.56%
identity in comparison with the ITS database of the National Center for Biotechnology
Information (GenBank Accession ON231784).

4.3. Fermentation and Extraction

The fungus was fermented on solid rice medium. Ten Erlenmeyer flasks were used;
100 g of rice and 100 mL of demineralized water were added to each flask and autoclaved
at 121 °C for 15 min. Under sterile conditions, 1 cm? of fungal material was cut out of an
agar plate using a sterile scalpel and transferred onto the autoclaved rice medium. The
fungus was grown for 4 weeks under static conditions at room temperature. Each flask
was soaked with 250 mL of ethylacetate for at least 12 h. The rice medium was then cut
into small pieces and shaken for 8 h at 150 rpm. The liquid crude extract was filtrated into
round flasks and evaporated using a rotary evaporator to yield 14.66 g of dry crude extract.

4.4. Isolation

The crude extract (14.66 g) obtained from the fermentation was separated using
vacuum liquid chromatography with silica gel as a stationary phase. A step gradient from
100% hexane to 100% ethylacetate followed by a step gradient from 100% dichloromethane
to 100% methanol gave 18 fractions (V1-V18). Two fractions (V4 and V6) were chosen
based on initial bioactivity observed against Candida albicans. However, this bioactivity was
lost during the purification process. Fraction V4 (200.7 mg) was further separated using a
Sephadex LH20 column with MeOH as eluent to give five subfractions (V4-51-55). Fraction
V4S3 (47.3 mg) was subjected to semipreparative HPLC using a MeOH-H,O step gradient
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from 50% to 80% MeOH followed by a washing step with 100% MeOH to yield A (20.7 mg),
B (2.8 mg), and C (7.7 mg). Fraction V6 (1010 mg) was purified using a Sephadex LH20
column with CH,Cl, and MeOH (50/50) as eluent to yield six subfractions (V6-51-56).
Subfraction S2 (72.0 mg) was purified using a silica column with 40% hexane and 60%
ethylacetate to elute D (25.0 mg) and E (8.6 mg) as pure compounds. Subfraction V6-54
(516 mg) was further purified by using a Sephadex LH20 column with MeOH as eluent to
yield five subfractions (V654-51-S5). Subfraction V65452 (496 mg) was subjected to a silica
column with a mixture of CH,Cl; and MeOH (95/5) as eluent to give four subfractions
(V65452-K1-K4). Silica subfraction V65452K2 (47 mg) was then purified by semipreparative
HPLC using a MeOH-H,O step gradient from 10% to 30% MeOH followed by a washing
step with 100% MeOH to yield F (22.2 mg) and G (4.5 mg). Fraction V12 (744.1 mg) was
separated using a Sephadex LH20 column with 50% MeOH and 50% CH:Cl to yield
six subfractions (V12-51-56). Subfraction S2 (180.3 mg) was then further separated using
a silica column with 10% MeOH and 90% CHCl; as eluent to give seven subfractions
(V1252-K1-K7). Silica subfraction K7 (56.1 mg) was subjected to semipreparative HPLC
using a step gradient from 70% to 100% MeOH to yield H (5.0 mg).

NK-A 17233 (A): Brown oil; UV (MeOH) Apmay 220.0, 234.3, 279.7 nm; 'H NMR
(DMSO-d6) see Supplementary Materials Figure S1; HRESIMS m/z 277.1075 [M + H]*
(caled. for Cy5Hy705 277.1071 my/z).

3-(4-Hydroxy-2-methoxy-6-methylphenoxy)-5-methylbenzene-1,2-diol (B): Brown oil;
UV (MeOH) Amax 211.7, 286.3 nm; 'H NMR (CDCls), see Supplementary Materials Figure 56;
HRESIMS m/z 277.1065 [M + H]* (calcd. for C15H1705 277.1071 m/z).

Cyperin (C): Brown oil; UV (MeOH) Amax 212.1, 279.8 nm; 'H NMR (CDCls), see
Supplementary Materials Figure 510; HRESIMS m/z 261.1126 [M + H]* (caled. for CysH; 704
261.1121 m/z).

ES-242-1 (D): Brown amorphous powder; [a]**p +18 (c 1.0, MeOH); UV (MeOH)
Amax 239.0, 309.8, 345.8 nm; 'H NMR (CDCls) and *C NMR (CDCls), see Supplementary
Materials Figures 514 and S15; HRESIMS m/z 622.2644 [M + NHy* (caled. for C33HgNOyg
622.2647 my/z).

ES-242-3 (E): Brown amorphous powder; [a]**p +66 (c 1.0, CHCl3); UV (MeOH)
Amax 239.2, 298.6, 309.4 nm; 'H NMR (CDCls) and '*C NMR (CDCls), see Supplementary
Materials Figures 519 and S20; HRESIMS m1/z 638.2588 [M + NHy;* (caled. for C33HygNOyy
638.2596 m/=).

Phomalactone (F): light yellowish oil; [a]**p +172 (c 1.0, EtOH); UV (MeOH) Amax 216.0
nm; For the details of VCD, ECD, and OR calculations, see Supplementary Materials; THNMR
(CDCl3) and *C NMR (CDCly), see Supplementary Materials Figures 524 and 525; HRESIMS
myz 155.0702 [M + H]* (caled. for CgHy1 O3 155.0703 m/z) and my/z 137.0597 [M — OH]*
(caled. for CgHgOa 137.0597 myz).

Methyltriaceticlactone (G): White amorphous powder; UV (MeOH) Amax 290.5 nm; 'H
NMR (DMSO-d6) and *C NMR (DMSO-d6), see Supplementary Materials Figures 529 and S30;
HRESIMS my/z 141.0549 [M + H]* (caled. for C;HgO5 141.0546 my/z).

S 39163/F-1 (H): Brown amorphous gum; [a]**p —11 (c 1.0, MeOH); UV (MeOH)
Amax 218.2, 238.8, 291.9 nm; '"H NMR (CDCl3), see Supplementary Materials Figure S34;
HRESIMS m/z 661.4312 [M + H]* (caled. for C3gHg Og 661.4310 m/z).

4.5. Preparation of Compounds for T. gondii Proliferation Assay

The purified natural products A-F and pyrimethamine [36] were dissolved in DMSO
as 10 mM stocks and stored at —20 “C. The compounds were diluted in Iscove’s Modified
Dulbecco’s medium (Gibco-Thermo Fisher Scientific, Braunschweig, Germany) immedi-
ately prior to use.

4.6. Parasites and Cell Culture for T. gondii Proliferation Assay

T. gondii ME49 tachyzoites (ATCC/LGC Standards GmbH, Wesel, Germany) were cul-
tured in human foreskin fibroblast Hs27 cells (ATCC/LGC Standards GmbH, Wesel, Germany)
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as host cells as described previously [37]. The cells were maintained in Iscove’s modified Dul-
becco’s medium (Gibco-Thermo Fisher Scientific, Braunschweig, Germany) supplemented
with 10% heat-inactivated fetal bovine serum (Invitrogen, Karlsruhe, Germany) and 50 mM
2-mercaptoethanol (Gibco-Thermo Fisher Scientific, Braunschweig, Germany) and were
grown in a humidified incubator at 37 °C with 5% CO; in air atmosphere. For toxoplasma
propagation, 25 cm? cell culture flasks, containing a confluent monolayer of Hs27 cells,
were infected with 5 x 10° T. gondii tachyzoites after medium change. After three days,
the supernatant of the cell culture containing parasites was harvested and transferred to a
15 mL centrifuge tube and centrifuged at 700 rpm for five minutes and resuspended in cell
culture medium. The number of parasites was counted using a hemocytometer.

4.7. T. gondii Proliferation Assay

Microtiter plates (96-well) with a final volume of 200 pL per well were used for the
assay. Hs27 fibroblast monolayers were infected with 3 x 10* freshly harvested tachyzoites
per well (MOI = 1) and incubated for 48 h at 37 “C, after which various concentrations of
the tested compounds (0.04, 0.09, 0.19, 0.39, 0.78, 1.5, 3.12, 6.25, 12.5, 25, 50 uM) in culture
medium were added to the cells. Pyrimethamine (0.007, 0.01, 0.03, 0.06, 0.125, 0.25, 0.5,
1 uM) was added under identical conditions as a positive drug control [37]. Hs27 cells were
pre-stimulated for 24 h with IFNy (300 U/mL) and infected with T. gondii cells without
further treatment as the growth inhibition control. After 48 h, proliferating toxoplasma
parasites were radioactively labelled with tritiated uracil (5 mCi, Hartmann Analytic,
Braunschweig, Germany) and diluted 1:30 (10 puL per 200 pL total culture volume per well)
in order to determine parasite proliferation [38]. After 28-30 h, the microtiter plates were
frozen at —20 °C. To evaluate the assay, the microtiter plates were thawed at room tempera-
ture. Cells were transferred to glass-fiber filters (Printed Filtermat A 102 mm x 258 mm,
PerkinElmer, Waltham, MA, USA) using a cell harvester (Basic96 Harvester, Zinsser An-
alytic, Skatron Instruments, Northridge, CA, USA). The filters were dried for 20 min at
130 °C in a drying cabinet and were then soaked in 10 mL of scintillation fluid (Betaplate
Scint, PerkinElmer, Waltham, MA, USA) and shrink-wrapped in plastic covers (Sample Bag
for Betaplate, PerkinElmer, Waltham, MA, USA). The filters were then clamped in cassettes
and evaluated using a beta-counter device (Betaplate Liquid Scintillation Counter 1205,
LKB-WALLAK, Melbourne, Australia) to measure the Cherenkov radiation, which refers
to the amount of incorporation of tritiated uracil into the RNA of T. gondii. ICs; values,
the concentration of inhibitors necessary to inhibit the growth of tachyzoites by 50%, were
determined for each experiment with the use of Prism GraphPad version 9.2.0 software.

4.8. Cell Viability Assay against Hs27 Cells

The 3-[4,5-dimethylthiazole-2-yl1]-2,5-diphenyltetrazolium bromide (MTT) test was
used to assess cell viability of the isolated active compounds against Hs27 cells. The MTT
assay is a colorimetric reaction based on the enzymatic reduction of MTT to MTT-formazan,
which is catalyzed by mitochondrial succinate dehydrogenase [39].

In brief, Hs27 cells were seeded 96-well plates in a monolayer in Iscove’s modified Dul-
becco’s medium (Gibco-Thermo Fisher Scientific, Braunschweig, Germany) and incubated
at 37 °C with different concentrations of the tested natural products (1.56, 3,12, 6.25, 12,5, 25,
50, 100 pM) in the culture media. Staurosporine (0.007, 0.01, 0.03, 0.06, 1.25, 0.25, 0.5, 1 uM),
a well-known cytotoxicity-inducing kinase inhibitor [40], untreated Hs27 cells, and DMSO
were used as controls. After 24 h, the medium of the culture was removed and replaced
with 100 uL of DMEM without red phenol (Gibco-Thermo Fisher Scientific, Braunschweig,
Germany) plus 10% heat-inactivated fetal bovine serum (Invitrogen, Karlsruhe, Germany),
and 50 mM 2-mercaptoethanol (Gibco-Thermo Fisher Scientific, Braunschweig, Germany).
Afterwards, the 12 mM MTT solution was added to each well according to the manufac-
turer’s instruction (Vybrant MTT Cell Proliferation Assay Kit, Thermo Fisher Scientific,
Braunschweig, Germany). The OD value of each well was assayed at the wavelength
of 570 nm on a microplate reader (TECAN Sunrise, Minnedorf, Switzerland). The 50%
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cytotoxic concentration (CCsp values) of the tested natural products on Hs27 cells was
calculated and all data were analyzed using Prism GraphPad version 9.2.0 software.

4.9. Determination of the Minimal Inhibitory Concentration against Different Pathogenic Bacteria

Testing for antibacterial activity was done as described previously [37]. Briefly, a single
colony of Methicillin-resistant Staphylococcus aureus (MRSA strain Mu50, ATCC 700699) or
Pseudomonas aeruginosa (strain PAO1, ATCC 87110) were grown in Mueller-Hinton broth
(MHB) at 37 °C shaking at 120 rpm to reach an optical density of approx. 0.4. The cell
suspension was adjusted to 10° CFU/mL, of which 50 uL was seeded into a prepared
96-well polystyrene round-bottom plate containing test compounds diluted in MHB in a
1:1 serial dilution ranging from 100 uM to 0.78 uM. The plates were incubated at 37 °C
statically for 24 h, and readout was performed using the BacTiter Glo assay (Promega)
following the manufacturer’s instructions. Briefly, BacTiter Glo reagent was added to a
white flat-bottom 96-well plate, and an equal volume of bacteria suspension was added
to each well and mixed carefully. After 5 min, the luminescence was measured using a
TECAN plate reader. The growth was calculated in regard to the vehicle (DMSO) and
sterile control. Moxifloxacin and cefuroxime were used as a positive and negative control,
respectively. All compounds were tested in triplicate.

For the testing against M. tuberculosis H37Rv, the Minimal Inhibitory Concentration
(MIC) was determined in 96-well microtiter plates containing a total volume of 100 uL
employing a resazurin reduction assay [41]. Briefly, a 96-well plate was prepared containing
7H9 medium supplemented with 10% ADS (0.81% NaCl, 5% BSA, 2% dextrose), 0.5%
glycerol, and 0.05% tyloxapol. Compounds were two-fold serially diluted with the highest
tested concentration of 100 uM. A M. tuberculosis culture was pre-grown to an ODgpo nm
of approx. 0.4-0.6 by shaking at 37 °C in PETG square bottles (ThermoFisher Scientific,
Braunschweig, Germany) containing 10 mL supplemented 7H9 medium. The cell density
was adjusted to an ODggg m 0f 0.08 (10° CFU/mL, and 5 x 10* CFU were added to each well).
Rifampicin and DMSO were used as a positive and solvent control, respectively. The 96-well
plates were incubated for 5 days at 37 °C and 5% COz in humidified atmosphere. Afterwards,
10 uL of a 100 mg/mL resazurin solution was added to each well and resuspended carefully.
After another 24 h at room temperature, the cells were fixed by adding 100 uL of a 10%
formalin solution to each well. The readout was performed using a TECAN plate reader at
535 nm excitation and 590 nm emission. The growth was calculated in relation to the solvent
control being 100% growth. The experiment was performed in triplicate.

4.10. Cytotoxicity Assay against Different Human Cell Lines

The cytotoxicity study was carried out using the THP-1 (human monocytic leukemia
cell line), Huh-7 (Human liver carcinoma cell line), and HEK293 (human embryonic kidney
cell line) cell lines as described before [37]. The THP-1 cells were cultured using RPMI
1640 medium containing 2 mM L-glutamine and supplemented with 10% fetal calf serum
(FCS) and 1% sodium pyruvate. Huh-7 cells were cultured using a 1:1 mixture of RPMI
1640 medium containing 2 mM L-glutamine and 10% FCS medium and DMEM containing
10% FCS and 1% sodium pyruvate. The HEK-293 cells were cultured with DMEM including
2 mM L-glutamine and supplemented with 1% NE amino acids, 1% 1.0 mM sodium
pyruvate and 10% FCS. All three cell lines were then incubated at 37 °C in an atmosphere
of 5% COz under humid conditions for 2 weeks while renewing the medium twice weekly.
Subsequently, the cells were suspended and adjusted to a density of 2 x 10° cells/mL. In
a 96-well flat-bottom microtiter plate, the cells were adjusted to a total volume of 100 pL
containing 2-fold serial dilutions of the tested compounds A-F ranging from 100 to 1.56 pM.
Cycloheximide (4, 2, 1, 0.5, 0.25, 0.13, 0.06, 0.03 pg/mL) was used as a positive control. After
an incubation time of 48 h at 37 °C in an atmosphere of 5% CO; under humid conditions,
10 pL resazurin solution (100 ug/mL) was added to each well and incubated for another
4 h. The fluorescence was then quantified using a Tecan Infinite 200pro microplate reader
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(excitation 540 nm, emission 590 nm). The residual growth was calculated relative to
non-inoculated conditions (0% growth) and controls treated with DMSO (100% growth).

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com /article/10.3390 /antibiotics11091176,/s1, Figures 51-558: Spectroscopic data used for the
structure elucidation of compounds A-H; Figure $59: Comparison of the experimental ECD spectrum
of F measured in MeCN and the calculated ECD spectra of (55,65)-F computed at various levels of
theory for the 10 lowest-energy wB97X/TZVFP PCM /MeCN conformers; Figure S60: Geometries of
the low-energy wB97X/TZVP PCM/MeCN conformers of (55,65)-F; Figure S61: Geometries of the
low-energy B3LYP/TZVP PCM/CHCI3 conformers of (55,65)-F; Table 51: Boltzmann populations
and specific optical rotations of the low-energy conformers of (55,65)-F computed at various levels
for the low-energy wB97X conformers. References [42-45] are cited in Supplementary Materials.
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$33. HMBC NMR spectrum (DMSO-d6 - 600 MHz) of compound G

Simons.621.fi
PS-V12 - 52

Simons.524.ser
PS-V6-4-S2-K2-H3

d
-K7 - H4

6 5
f2 (ppm)

7.5

7.0 6.5 6.0

4.5

T
4.0

35 3.0 25 2.0

f1 (ppm)

$34. "H NMR spectrum (CDCls-600 MHz) of compound H
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Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 l/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 3.4-3.6min #206-218
x105
1 277.1075
5_
4.
3_
2_
2570811
13 299.0892
| I 292.1181
gl e — i -
250 260 270 280 290 300 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
257.0811 1 C15H1304 257.0808 -1.1 7.2 1 10000 95 even ok
275.0919 1 C15H1505 275.0914 -1.8 581.8 1 10000 85 even ok
2771076 1 C15H1705 277.1071 -1.6 84 1 10000 7.5 even ok
299.0892 1 C15H16NaO5 299.0890 -0.8 06 1 10000 7.5 even ok
§35. HRESIMS (MeOH) of compound A
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. ] +MS, 3.6-3.8min #214-226
x1084
275:0912
0.8
0.6
0.4
2990886
257.0806
0.21
] 292.1178 l
0.0 T T T - T . s r v I U ‘l
250 260 270 280 290 300 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
257.0806 1 C15H1304 257.0808 14 8.7 1 100.00 95 even ok
275.0912 1 C15H1505 275.0914 0.7 192.5 1 100.00 8.5 even ok
277.1065 1 C15H1705 277.1071 2.4 4.8 1 98.95 7.5 even ok
2 C14H14N4NaO 277.1060 -1.8 6.5 2 100.00 9.5 even ok
297.0730 1 C13H9ON60O3 297.0731 0.3 1.1 1 100.00 125 even ok
2 C15H14Na05 297.0733 1.2 602.8 2 0.00 85 even ok
299.0886 1 C13H11N6O3 299.0887 0.4 3.4 1 100.00 11.5 even ok
2 C15H16Na05 299.0890 1.3 4.2 2 87.30 7.5 even ok

S$36. HRESIMS (MeOH) of compound B



Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF 600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.3-2.4min #139-142
x105]
] 261:1126
3_
2‘
1]
G:‘ 239.1491 ] : 283.0944 300.2018
200 220 240 ' 260 ' 280 ' 300 320 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
2611126 1 C15H1704 261.1121 -1.8 26 1 100.00 7.5 even ok

$37. HRESIMS (MeOH) of compound C

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 miz Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
g
Intens. ¥ +MS, 4.0-4.2min #241-251
x105 5o FFHG. . o
. 1+ 622.2644
1.59 545.2168
1.04

f# V¢+

0.5
121;15 I 1+ 1+
] 512. 1 lkh 556.4412 600.4675 dl ] 644.4938
0.0 b nll L e LLI:V. L : llll - hlLL b ".I' li < lu ALl |.|.' ‘MJ. " M‘.' i P
500 520 540 560 580 600 620 640 660 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma # mSigma Score rdb e Conf N-Rule
5452168 1 (C32H3308 545.2170 0.4 86 1 100.00 16.5 even ok
2 (C29H25N1002 545.2156 -2.1 10.0 2 60.03 22.5 even ok
3 C33H29N404 545.2183 2.8 202 3 3817 215 even ok
622.2644 1 C34H40NO10 622.2647 04 6.3 1 100.00 15.5 even ok
2 C31H32N1104 622.2633 -1.8 7T 2 6341 215 even ok
3 C35H36N506 622.2660 26 17.9 3 3803 205 even ok
4 C32H28N15 622.2647 04 18.6 4 7933 265 even ok
627.2193 1 (C34H36Na010 627.2201 1.2 11.0 1 100.00 16.5 even ok
2 C30H32N6NaO8  627.2174 -3.1 1.3 2 4590 17.5 even ok
3 C31H28N10NaO4 627.2187 -1.0 14.8 3 9878 225 even ok
4 C32H24N14Na 627.2201 1.2 242 4 7655 27.5 even ok

$38. HRESIMS (MeOH) of compound D
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Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 miz Set End Plate Offset  -500 Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 3.5-3.Bmin #207-228
X109 1+
282.2790
0.8
0.6
0.4+ 1+
1 304 2608 14 563.5503 1+
0.2 HESE a4 iy
q 256.2633 360 3233 \ l
0.0 i {l e n Ak NP PO, W T T .k h (i
250 350 400 450 500 550 600 650 miz
Meas. miz # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
2822780 1 C18H3BNO 2822791 0.4 302 1 100.00 1.5 even ok
304.2608 1 C18H35NNaO 304.2611 0.9 13.8 1. 10000 1.5 even ok
2 C15H34N303 304.2595 -4.5 204 2 4340 05 even ok
488.3939 1 C23H50NT704 488.3919 -4.1 271 1 3439 25 even ok
2 C24H48N11 488.3932 -1.4 27.8 2 7911 7.5 even ok
3 C27H54NO6 488.3946 1.4 29.9 3 10000 1.5 even ok
4 C26H51NSNaO2 488.3935 -0.8 304 4 B524 35 even ok
5 (C28H50N502 488.3959 41 386 5 2493 B85 even ok
516.4251 1 C29H58NO6 516.4259 1.5 9.1 1 10000 1.5 even ok
2 C28H55N5Na02 5164248 -0.6 111 2 9044 35 even ok
3 C26H50N11 516.4245 -1.1 13.2 3 7615 7.5 even ok
4 C25H54NTO4 516.4232 =37 247 4 2614 25 even ok
5444564 1 C31HB62NO6 5444572 1.4 11.0 1 83.92 1.5 even ok
2 C2TH58NTO4 544.4545 -3.5 134 2 3901 25 even ok
3 C30H59NSNa02 544.4561 0.5 14.2 3 100.00 35 even ok
4 C2BH54N11 544 4558 -1.1 14.5 4 6537 75 even ok
563.5503 1 C36H71N202 563.5510 1.3 54.5 1 10000 25 even ok
2 C34HTZN2ZNaO2 563.5486 -3.0 61.2 2 4445 -05 even ok
3 C32H67N8 563.5483 -3.5 638 3 3338 35 even ok
603.2217 1 (C34H35010 603.2225 1.3 49 1 83.81 17.5 even ok
2 (C33H32N4NaO8 6032214 -0.5 T7 2 100.00 195 even ok
3 C31H27N1004 603.2211 -1.0 10.0 3 B393 235 even ok
4 C34H28NBNaD2 603.2227 1.7 116 4 B405 245 even ok
5 C32H23N14 603.2225 1.2 12.8 5 73.02 285 even ok
6 C30H24N14Na 603.2201 2.7 13.7 6 4154 255 even ok
7 (C32H3ENa010 603.2201 2.7 16.0 7 3993 145 even ok
8 C30H31N608 603.2198 -3.2 176 8 3181 185 even ok
619.6126 1 C40H79N202 619.6136 16 28.2 1 10000 25 even ok
2 C38HBONZNaD2 6196112 -2.3 35.7 2 6489 -0.5 even ok
3 C38H75N8 619.6109 -27 38.1 3 5045 35 even ok
638.2588 1 C32H41NNaO11 6382572 -25 55 1 5661 125 even ok
2 C30H36NTO8 638.2569 -3.0 7.4 2 4483 165 even ok
3  C34H40NO11 638.2596 12 13.7 3 8116 155 even ok
4 C33H3TN5NaQO7 638.2585 -0.4 15.4 4 100.00 17.5 even ok
5 C31H32N1105 638.2582 0.9 15.8 5 B7.00 215 even ok
6 C30H28N15NaQ 638.2572 26 18.7 6 4383 235 even ok
7 (C32H28N150 638.2596 1.2 26.8 7 B167 265 even ok
8 C34H33N9NaD3 638.2599 18 26.8 8 5280 225 even ok
9 C47H32N3 638.2591 0.4 87.5 9 1088 335 even ok

$39. HRESIMS (MeOH) of compound E
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Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.9-3.1min #175-186
x105
137.0597
34
. 155.0702
1_
149.0231
0 132.}017 | N L |
130 135 140 145 150 155 160 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
137.0597 1 (C8H902 137.0597 03 2.4 1 100.00 45 even ok
165.0702 1 C8H1103 155.0703 06 3.0 1 10000 35 even ok

$40. HRESIMS (MeOH) of compound F

Acquisition Parameter

Soutce Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus _ Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. i
x106' +MS, 3.4-3.7min #204-219
141.0549
0.84
0.64
0.4
0.2
142.0582
0.0 T — r T T — T T —r— T
139 140 141 142 143 144 145 146 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
1410549 1 C7H903 141.0546 -1.7 1.3 1 100.00 35 even ok

S41. HRESIMS (MeOH) of compound G
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Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens, +MS, 2.5-2.6min #152-157
x105
6 6614312
4.
662.4343
21
663.4372
Jk i 664.4405
659 660 861 662 663 664 665 666 'z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
661.4312 1 C38H6108 661.4310 -0.3 200 1 100.00 8.5 even ok
2 C39H57N405 661.4323 1.7 31.3 2 48.27 13.5 even ok

S42. HRESIMS (MeOH) of compound H
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$43. HPLC chromatogram (MeOH) of compound A
700 Peak #3 100% at 22.71 min
% No spectra library hits founq!
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$44. UV-Vis spectrum (MeOH) of compound A

77



20210223-PSV4S3-Semiprap #4 PS-V4-S3-H3 UV _VIS 1

1.400 mAU WVL:235 nn

1-23,347

)]
o
T

2 - 26,047
4 - 38,367

3-32,127

-200 I \ I \ \ ‘
0,0 10,0 20,0 30,0 40,0 50,0 60,0

S$45. HPLC chromatogram (MeOH) of compound B

Peak #1 100% at 23.35 min

70,0 % No spectra library hits found!
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546. UV-Vis spectrum (MeoH) of compound B
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S47. HPLC chromatogram (MeOH) of compound C
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700 Peak #1 100% at 23.99 min
% No spectra library hits found!
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$48. UV-Vis spectrum (MeOH) of compound C
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PLC chromatogram (MeOH) of compound D

700 Peak #1 100% at 30.71 min
% No spectra library hits found!
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§50. UV-Vis spectrum (MeOH) of compound D
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20201209 - PS-V6-S4-Sephadex (MeOH) + PS-V6-S2-K3+5 Rerun #8
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S51. HPLC chromatogram (MeOH) of compound E

700 Peak #1 100% at 26.92 min
" % No spectra library hits found!
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§52. UV-Vis spectrum (MeOH) of compound E
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S53. HPLC chromatogram (MeOH) of compound F
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700 Peak #2 100% at 6.23 min
% No spectra library hits found!
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S54. UV-Vis spectrum (MeOH) of compound F
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§55. HPLC chromatogram (MeOH) of compound G

700 Peak #1 100% at 10.66 min
% No spectra library hits found!
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S56. UV-Vis spectrum (MeOH) of compound G
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S57- HPLC-chromatogram (MeOH) of compound H
700 Peak #3 100% at 34.92 min
% No spectra library hits founq!
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§58. UV-Vis spectrum (MeOH) of compound H
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Stereochemical studies of F

The ROESY spectrum of F showed correlation between the 5-H and 6-H protons of the
adjacent stereogenic centers indicating their cis relative configuration. Therefore the
conformational analysis and chiroptical calculations were performed on the arbitrarily
selected cis-(5S,6S) stereoisomer. The Merck molecular force field (MMFF) conformational
search produced 16 conformers in a 21 kJ/mol energy window which were re-optimized at
the wB97X/TZVP PCM/MeCN and the B3LYP/TZVP PCM/CHCIs levels, separately, yielding
10 and 8 low-energy conformers over 1% Boltzmann population, respectively (Figures S60
and S61). In the low-energy computed conformers, the 5,6-dihydro-a-pyrone moiety adopted
a conformation, which oriented the C-5 hydroxyl group to axial and the C-6 prop-1-en-1-yl
substituent to equatorial position. ECD spectra computed at four levels for the wB97X
conformers gave acceptable agreement with the experimental ECD spectrum (Figure S59)
with CAM-B3LYP/TZVP giving the best agreement. Optical rotation calculations performed
for the same conformers at four levels and PCM solvent model for EtOH reproduced the
large experimental positive value {[@/*p+172} in the range of +81 —+99 (Table S1). VCD
spectra computed at the BSLYP/TZVP PCM/CHCIs level for the same level optimized
conformers gave good agreement with the experimental VCD spectrum (Figure X3). That is,
all three applied chiroptical methods suggested (55,6S) absolute configuration for F allowing
elucidation of the absolute configuration as (55,6S).

12

—— Experimental ECD

Ae (B3LYP/TZVP)

Ag (BH&HLYP/TZVP)
Ae (CAM-B3LYP/TZVP)
Az (PBEO/TZVP)

200 250 300 350
wavelength (nm)

§59. Comparison of the experimental ECD spectrum of F measured in MeCN and the calculated ECD
spectra of (55,6S)-F computed at various levels of theory for the 10 lowest-energy wB97X/TZVP
PCM/MeCN conformers. Black: experimental, red: BBLYP/TZVP PCM/MeCN with half-
height width 4200 cm™, blue: BH&HLYP/TZVP PCM/MeCN with half-height width 2100 cm-
1, olive: CAM-B3LYP/TZVP PCM/MeCN with half-height width 4200 cm™, purple:
PBEO/TZVP PCM/MeCN with half-height width 4200 cm.
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Conf. H

560. Geometries of the low-energy wB97X/TZVP PCM/MeCN conformers of (55,65)-F.

1.3%

Conf. |
1.2%

Conf. J
1.2%

S61. Boltzmann populations and specific optical rotations of the low-energy conformers of (5S,6S)-F

computed at various levels for the low-energy wB97X conformers.

Conformer Boltzma‘nn B3LYP/TZVP | BH&HLYP/TZVP B3L(;II§/1\"1/;VP PBEO/TZVP
population | PCM/EtOH PCM/EtOH PCM/EtOH PCM/EtOH
Conf. A 26.93% 134.70 98.20 104.21 130.74
Conf. B 23.55% 29.58 5.44 9.46 29.68
Conf. C 20.95% 214.32 199.47 197.39 211.76
Conf. D 9.90% -104.45 -80.52 -97.75 -93.21
Conf. E 8.24% 211.30 192.34 193.43 209.37
Conf. F 2.73% -128.11 -87.40 -111.23 -111.39
Conf. G 2.09% 228.43 189.15 199.16 223.73
Conf. H 1.32% -56.67 -26.86 -45.34 -45.81
Conf. I 1.24% -155.48 -96.97 -122.07 -146.94
Contf. ] 1.19% 263.77 211.06 223.80 260.09
Average N/A 98.79 81.43 81.10 98.73
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562. Geometries of the low-energy B3LYP/TZVP PCM/CHCI3 conformers of (5S,6S)-F.

Computational details

Mixed torsional/low-frequency mode conformational searches were carried out by means of
the Macromodel 10.8.011 software by using the MMFF with an implicit solvent model for
CHCls [1]. Geometry re-optimizations were carried out at the wB97X/TZVP level with the
PCM solvent model for MeCN and the B3LYP/TZVP level with PCM solvent model for
CHCls. TDDFT-ECD and OR calculations were run with various functionals (B3LYP,
BH&HLYP, CAMB3LYP, and PBEQ) and the TZVP basis set as implemented in the Gaussian
09 package with the PCM/MeCN and the PCM/EtOH solvent models, respectively [2]. ECD
spectra were generated as sums of Gaussians with 2100-4200 cm™ width at half-height, using
dipole-velocity-computed rotational strength values [3]. VCD spectra were generated with 8
cm half-height width and scaled by a factor of 0.99. Boltzmann distributions were estimated
from the wB97X and the B3LYP energies. The Molekel software package was used for
visualization of the results [4].
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Abstract: The OSMAC (one strain many compounds) concept is a cultivation-based approach to
increase the diversity of secondary metabolites in microorganisms. In this study, we applied the
OSMAC-approach to the endophytic fungus Trichocladium sp. by supplementation of the cultivation
medium with 2.5 % phenylalanine. This experiment yielded five new compounds, trichocladiol (1),
trichocladic acid (2), colletodiolic acid (3), colletolactone (4) and colletolic acid (5), together with five
previously described ones (6-10). The structures were elucidated via comprehensive spectroscopic
measurements, and the absolute configurations of compounds 1 and 3-5 was elucidated using CD
calculations. For formation of compounds 3-5, a pathway based on colletodiol biosynthesis is
proposed. Compound 6 exhibited strong antibacterial activity against methicillin-resistant
Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.78 pM as well as a strong
cytotoxic effect against the human monocytic cell line THP1 with an ICsy of 0.7 uM. Compound 8
showed moderate antibacterial activity against Mycobacterium tuberculosis with a MIC of 25 uM and

a weak cytotoxic effect against THP1 cells with an ICso of 42 uM.

Keywords: Trichocladium sp.; OSMAC; dihydronaphthalenone; macrocarpon; colletodiol precursors;

biosynthesis; antibacterial activity; cytotoxicity
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1. Introduction

Since the early 20th century, microorganisms derived from natural samples became a
promising source for novel bioactive compounds. The isolation and characterization of penicillin in
1929 by Alexander Fleming marked the beginning of a new era of natural product-based drug
discovery [1]. In 1940, Waksman and Woodruff firstly described soil microorganisms able to inhibit
the growth of pathogenic bacteria and isolated the peptide antibiotic actinomycin [2]. This was the
beginning of a prolific area of discovery of bioactive natural compounds from soil-derived
microorganisms. The isolation of taxol from the endophytic fungus Taxomyces andreanae in 1993
then shed light onto endophytic microorganisms and showed a glimpse of their potential as a
promising source of bioactive secondary metabolites [3]. Endophytic microorganisms live in a
symbiotic relationship with their plant host and are able to release antibiotics and other compounds as
a defense mechanism [4]. Previously studied plant species mostly contain at least one microbe, and
growth in unique environmental surroundings often lead to the discovery of novel endophytes. Thus,
the given opportunities for the isolation of promising microorganisms from plants are manifold [4, 5].
Under laboratory cultivation conditions, many biosynthetic gene clusters (BGCs) of microbes are not
expressed in axenic cultures. This led to different approaches trying to activate these silent genes in
order to isolate new cryptic metabolites [6]. A cultivation-based concept termed OSMAC (One Strain
Many Compounds) was described by Bode et al. in 2002 where even small changes in the cultivation
conditions such as modification of the cultural medium, temperature or the introduction of co-
cultivation attempts are able to activate silent gene clusters and thus can result in the discovery of new
natural products [7]. Previous work has indicated that the endophytic fungus Trichocladium sp. is
amenable to triggering of secondary metabolism by the OSMAC approach [8]. Building upon this
observation, we now extended the OSMAC concept to an axenic culture of Trichocladium sp. by
enrichment of solid rice medium with the amino acid L-phenylalanine. This fermentation yielded ten
natural compounds including five new compounds (1-5) and five already described ones (6-10). The
two macrolides colletoketol and colletodiol were isolated previously from cultures of Trichocladium
sp.[8]. Compounds 3-5 now seem to represent intermediates or alternative metabolites of the fungal
biosynthesis pathway for these macrolides. The molecular structures of the compounds 1-10 were
elucidated using high-resolution electrospray ionization mass spectrometry (HRESIMS) combined
with 1D- and 2D-NMR measurements. All isolated compounds were tested for their antimicrobial
activity against the human pathogens Staphylococcus aureus ATCC 700699, Pseudomonas
aeruginosa ATCC 87110, Candida albicans ATCC 24433 and Mycobacterium tuberculosis ATCC
27294, and for their cytotoxic activity against the THP1 human cell line.
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2. Results and discussion

During our ongoing investigation of the endophytic fungus Trichocladium sp. HCRSW, which
was isolated from roots of the Vietnamese plant Houttuynia cordata, we have already reported on the
isolation of natural compounds resulting from an OSMAC-approach employing L-tryptophane feeding
as well as from a fungal-bacterial co-cultivation experiment [8]. We now present the results of an
additional OSMAC experiment employing 2.5% (w/v) phenylalanine supplementation to solid rice
medium. HPLC-DAD chromatographic comparison of ethylacetate (EtOAc) extracts of the
phenylalanine cultures to the control cultures revealed the presence of formerly undetected secondary
metabolites in the semi-polar range. Chromatographic workup of the extract resulted in the isolation of
the five known compounds chaetochromin A (6) [9], phenazine-1-carboxylic acid (7) [10], phenazine-
1-carboxamide (8) [11], dechlorodihydromaldoxin (9) [12] and fuscoatramide (10) [13], as well as of
five new compounds including a new dihydronapthalenone compound (1), a new macrocarpon [14]
derivative (2) and three new open chain derivatives (3-5) of the macrocyclic dilactones colletol [15]
and colletodiol [16]. Colletodiol itself is a direct precursor of the antibiotic grahamimycin A1l [17],
which is equal to colletoketon. Interestingly, compounds 3-5 are structurally closely related
monoesters to colletodiol and dilactonic derivatives. The planar structures of all isolated compounds
were unequivocally elucidated based on NMR and MS spectral data, and their bioactivity against
several pathogenic microorganisms and the human THP1 cell line was investigated. We present the
structure elucidation of new compounds 1-5 together with a proposal of a pathway to build compounds

3-5.
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Fig. 1. Structures of isolated compounds from Trichocladium sp. resulting from OSMAC approach

with 2.5% n(w/v) L-phenylalanine.

2.1 Structure elucidation
Structure elucidation of compound 1:

Compound 1 was isolated as a yellowish solid and showed UV absorption maxima at 219 and
291 nm. Its molecular formula was assigned as C;1H;,0s based on its HRESIMS pseudomolecular ion
peak at 225.0756 m/z (calcd. for C;H;30s) with six degrees of unsaturation. When analyzing the 'H-
and *C-spectra (Table 1), the presence of a strongly deshielded, chelated J 13.03 ppm (OH-8) and
non-chelated phenol 6 10.56 ppm (6-OH), one aromatic singlet 6 6.61 ppm (H-5) and one aromatic
methyl singlet 6 1.93 ppm (CH3-9) suggested the presence of a pentasubstituted phenyl ketone unit.
This was confirmed by detailed analysis of the HMBC correlation from H-5 to quaternary
C-7 (6 108.5 ppm), C-8a (6 108.5 ppm) and C-4a (6 144.6 ppm) and from chelated OH-8 to adjacent
quaternary C-8 (6 162.0 ppm), C-7 and C-8a. The relative configuration can be accessed through the
NOESY measurement. Because H-3 (d 4.29 ppm, acetone-d6) and H-4 (6 4.77 ppm, acetone-d6) give
a clear cross signal, both atoms have the same axial orientation, showing that atoms H-3 and H4 are

syn-positioned. The absolute configuration was then calculated on the basis of CD measurements.
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Figure 2: Key NMR correlations for 1

Table 1: NMR data for 1 (measured in DMSO-ds , MeOH-d, and acetone-ds at 150 Hz and 600 MHz,

respectively)

o oc* on, m (J in Hz) on, m (J in Hz) Jc on, m (J in Hz)
position  py» ey g DMSO-ds MeOH-ds4 Acetone-ds Acetone-ds
1 201.2,C 201.7,C
5 sl ch,  280.dd(172,3.4) 2388,dd(17.2,39) 43.7,CH> 2.83,d (3.6)

Y 2.66,dd (17.2,5.8) 2.77,dd (17.2,7.4)
3 69.0, CH 411, m 42135) ddd (7.4, 3.9, 70.3,CH 4.29,brs
3-OH 4.94,d (4.1) 4.12,d (4.6)
4 68.9, CH 4.61,dd (6.7,2.0) 4.70,d (2.9) 70.8, CH 4.77,brs
4-OH 5.38,d(6.7) 4.41,d(6.7)
4a 144.6, C 1448, C
5 1058,CH  6.61,brs 6.58, s 107.4, CH 6.72, s
6 162.9,C 163.6,C
6-OH 10.56, brs 9.38,brs
7 108.5,C 111.0,C
8 162.0,C 163.6, C
8-OH 13.03, s 13.09, s
8a 108.5,C 111.5,C
9 6.9, CHs 1.93,s 2.02,s 7.5, CH3 2.03,s

*Signals were extracted from HSQC and HMBC spectra.

Structure elucidation of compound 2:

Compound 2 was isolated as a white powder and showed UV absorption maxima at 256 and
300 nm. The molecular formula was assigned as CisH140s based on its HRESIMS pseudomolecular
ion peak at 291.0866 m/z (calcd. for CisH;sO¢) with nine degrees of unsaturation. Analysis of the 'H-
NMR spectrum (Table 2) showed strongly deshielded aromatic OH-groups with ¢ 10.14 ppm (3-OH)
and 13.22 ppm (1-OH), three aromatic protons H-4 (6 6.20 ppm), H-6 (6 6.20 ppm) and H-10 (J 5.67
ppm), a methylenic group H-8 (6 4.11 ppm) and two methyl groups H-14 (6 2.24 ppm) and H-15 (¢
1.77 ppm). Analysis of the HMBC correlations of the three aromatic protons revealed H-4 and H-6
being meta-positioned in a tetrasubstituted phenyl group, while H-10 is positioned in a different
aromatic ring system. HMBC correlations from H-8 to C-10 (6 110.9 ppm), C-2 (6 106.4 ppm) and C-
6 (0 110.9 ppm) highlighted H-8 being a methylene group connecting two aromatic ring systems.
HMBC correlations from H-4 to C-1 (6 172.4 ppm), C-2 and C-3 (J 164.2 ppm), H-5 to C-2 and C-5
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(0 161.6 ppm) and H-8 to C-2, C-6 and C-7 (6 139.0 ppm) revealed the structure of a
dihydroxybenzoic acid moiety, while HMBC correlations from H-8 to C-9 (6 167.7 ppm) and C-10,
from H-10 to C-11 (6 178.3 ppm) and C-12 (0 119.6 ppm), from H-14 to C-12 and C-13 (¢ 161.3
ppm) and adjacent H-15 to C-11, C-12, C-13 and C-14 (6 17.4 ppm) elucidated the structure of a
dimethyl-pyranone.

key HMBC

Figure 3: Key NMR correlations for 2

Table 2: NMR data for 2 (measured in DMSO-ds at 150 Hz and 600 MHz, respectively)

position oc* on, m (J in Hz)
1 172.4,C
2 106.4, C
3 164.2,C
4 101.6, CH 6.20, br s 2H
5 161.6,C
6 110.9, CH 6.20, br s 2H
7 139.0,C
8 38.2, CH, 4.11,s
9 167.7,C
10 110.9, CH 5.67,s
11 178.3,C
12 119.6,C
13 161.3,C
14 17.4, CH3 2.24,d(0.9)
15 9.3, CH; 1.77,d (0.9)
1-OH 13.22,brs
3-OH 10.14, s

*Signals were extracted from HSQC and HMBC spectra.

Structure elucidation of compound 3:

Compound 3 was isolated as a yellowish oil and showed only one UV absorption maximum at

218 nm near the solvent cut-off. The molecular formula was assigned as Ci4H»,07 based on its
HRESIMS pseudomolecular ion peak at 303.1439 m/z (calcd. for CisH2307) with four degrees of
unsaturation. Detailed analysis of "H-NMR, 3C-NMR, COSY and HSQC spectra revealed two distinct

spin systems starting from an E-double bond (H-2/H-3 and H-8/H-9) connected to an oxygenated alkyl

chain ending in a terminal methyl moiety each. The E-double bonds both exhibit asymmetrically

deshielded protons (H-2/H-8: 5.8-6.0 ppm and H-3/H-9: 6.7-7.0 ppm) suggesting an adjacent carbonyl
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moiety. Furthermore, investigation of the HMBC spectrum revealed these two carbonyl moieties to be
esters or carboxylated by observing the correlation of H-3 (6u 6.74 ppm) to C-1 (8¢ 166.9 ppm) and
H-9 (61 6.97ppm) to C-7 (3¢ 165.2 ppm). With this information, COSY, HSQC and HMBC revealed
two scaffold subunits. Carbons C-1 to C-6 formed a hex-2-enoic acid substructure with an oxygenated
position CH-5 (6u 4.99 ppm, 6¢ 68.9 ppm) and C-7 to C-14 formed an oct-2-enoic acid substructure
with oxygenated positions CH-10 (du 4.12 ppm, d¢ 72.8 ppm), CH-11(du 3.61 ppm, d¢c 71.5 ppm) and
CH-13(0u 3.78 ppm, 6c 64.5 ppm). Connection of these subunits was determined to be through an
ester bond between position CH-5 and carboxyl C-7 based on HMBC correlation from H-5 to C-7 and
the stronger relative deshielding of H-5 (6u 4.99 ppm) when compared to other oxygenated methin
protons (dy < 4.12 ppm) in the molecule. The remaining oxygenated methins where determined to be
hydroxyl moieties based on the calculated molecular formula, as there were no missing degrees of
unsaturation. Thus, the planar structure of 3 was elucidated as shown. The compound may be
interpreted as a linear non-lactonized precursor to colletodiol [ 18], which has been isolated from this

fungal strain before [8].

OH OH r/\o CH3’//_\O
R 7 51N 1
HaCH N SN O NS N ~OH
H

COSY — key HMBC

Figure 4: Key NMR correlations for 3

Table 3: NMR data for 3 (measured in DMSO-ds at 150 Hz and 600 MHz, respectively)

position Jc ou, m (J in Hz)
1 1669, C
2 124.6, CH 5.83, dt (15.6, 1.5)
3 143.7. CH 6.74, dt (15.6,7.3)
4 37.6, CHa 248, m 2H
5 68.9, CH 4.99. m
6 19.6, CH; 121.d (6.3) 3H
7 1652, C
8 1200, CH 5.96, dd (15.7, 1.9)
9 150.1. CH 6.97.dd (157, 4.1)
10 72.8, CH 412, m
11 715, CH 3.61, dt (9.4, 4.0)
142, ddd (13.6, 6.3, 3.7)
12 41.0, CH: 135, ddd (13.6, 9.4, 6.7)
13 64.5, CH 3.78. m
14 23.4, CH; 1.04.d (6.2) 3H
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Structure elucidation of compounds 4 and 5:

Compound 4 was isolated as a colorless oil and showed only one UV absorption maximum at
218 nm near the solvent cutoff. Its molecular formula was determined as Ci4H2,07 with four degrees
of unsaturation. This was based on the HRESIMS signals of the pseudomolecular ion at 303.1442 m/z
and ammonium adduct at 320.1708 m/z, which calculated for Ci14H2307 and C14H26NO7, respectively.
Analysis of the 'H- and *C-NMR spectra revealed a high degree of similarity to 3. The common
substructure was revealed to be a similar oxygenated hex-2-enoic acid subunit with £ configuration (J
15.6 Hz) between CH-10 (du 5.85 ppm, d¢ 122.7 ppm) and CH-11 (dx 6.89 ppm, d¢c 146.6 ppm). The
major difference compared to 3 was the relative shielding (- 1.24 ppm) of the oxygenated methin CH-
13 (0u 3.74 ppm, 6¢ 65.0 ppm) and the presence of hydroxyl 13-OH (6u 4.67 ppm), which was
detectable via COSY correlation to H-13. This confirmed the connection to the remaining molecule to
be established through an ester bond via carbonyl C-9 (8¢ 165.0 ppm) rather than through a hydroxyl
function as in 3. Detailed analysis of the COSY spectrum revealed that the remaining signals all
belonged to a single second spin system starting from a terminal methyl CH3-8 (dn 1.22 ppm), which
is connected to a series of oxygenated methin protons CH-7 (6 5.04 ppm), CH-5(6x 3.51 ppm), CH-
2(0n 4.45 ppm) and methylene units CH,-3 (6 2.38/1.87 ppm), CH»-6 (0u 1.78/1.59 ppm), ending in a
tertiary alcohol 2-OH (6 5.19 ppm). Analysis of the HMBC spectrum revealed the connection to the
(E)-5-hydroxyhex-2-enoic acid subunit through ester bond with oxygenated methin CH-7 via
correlation from H-7 to C-9, as well as the deshielded chemical shift of H-7 compared to the
remaining oxygenated methin units (6x 5.04 ppm). Furthermore, HMBC correlations from H-2 and H-
3 revealed an adjacent carbonyl C-1 (3¢ 177.0 ppm) with unusually strong deshielding, suggesting
incorporation into a five membered ring system. This ring system was established as a lactone bond
between carboxylate C-1 and oxygenated methin C-4 (3¢ 78.3 ppm) which is in agreement with the
unusually strong deshielding of both carbons. The position of the hydroxyl moiety 5-OH (du 5.19
ppm) was unequivocally determined via COSY correlation to H-5. Thus, all signals and degrees of
unsaturation were assigned and the planar structure of 4 was elucidated as shown. The proposed
structure reflects the same biosynthetic building blocks for colletodiol as 3 with a reversed order of the
hex-2-enoic acid and oct-2-enoic acid. Additionally, a water molecule was added to the £ double bond
of the oct-2-enoic acid, thus removing the stereochemical obstacle and allowing for intramolecular
lactonization to take place.

Compound 5 was isolated as a colorless oil and exhibited one UV absorption maximum at
219 nm near the solvent cutoff. The molecular formula was determined to be C14H2O¢ based on the
HRESIMS pseudomolecular ion signal at 287.1492 m/z and ammonium adduct ion signal at
304.1759 m/z, which were calculated for Ci4H230¢ and C14H26NOg, respectively. This molecular
formula suggested 5 to be a desoxy derivative of 3 or 4. Comparison of 'H-, 3C-NMR, COSY, HSQC
and HMBC spectra of 5 with those of 3 and 4 revealed that 5 contains a terminal (E)-5-hydroxyhex-2-

enoic acid subunit identical to the one expressed in 4 with proton chemical shifts differing less than
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0.1 ppm and carbon chemical shifts less than 0.4 ppm. Analysis of COSY for the remaining signals
revealed a singular additional spin system consisting of an £ double bond (J 15.7 Hz) between H-2 (8n
5.66 ppm) and H-3 (& 6.66 ppm), followed up by alternating methylene CH»-4 (du 2.37/2.26 ppm),
CH»-6 (6u 1.78/1.54 ppm) and oxygenated methin protons CH-5 (6u 3.37 ppm), CH-7 (6u 4.76 ppm)
and ending in a terminal methyl unit CH3-8 (6n 1.17 ppm). Analysis of HMBC correlations from H-3
revealed carboxylic C-1 (8¢ 167.2 ppm), and the connection to the (£)-5-hydroxyhex-2-enoic acid
subunit via ester bond was established based on the HMBC correlation of H-7 to C-9 (3¢ 165.1 ppm),
as well as the strongly deshielded chemical shift of H-7. Furthermore, the position of hydroxyl unit 5-
OH (31 4.71 ppm) was ascertained based on its COSY correlation to H-5, thus unequivocally
confirming the second part of the structure to be a (E)-7, 5-dihyroxy-oct-2-enoic acid. Thus, the planar

structure of 5 was elucidated as shown.

S WIS b 12
SSRGS

COSY=—  key HMBC 7\

Figure 5: Key NMR correlations for compounds 4 (left) and 5 (right).
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Table 4: NMR data for compounds 4 and 5 (measured in DMSO-ds at 150 Hz and 600 MHz,

respectively)
.. compound [4] compound [5]
position S S m (J in Hz) S Sw m (J in Hz)
1* 177.0, C 167.2,C
2 67.4, CH 445,dd (11.2,8.1) 122.5,C 5.66,dd (15.7,0.9)
2-OH 5.89, m
2.38, ddd (12.0, 8.6,
3 32.8, CH; 5.4) 149.3, CH 6.66, dd (15.7,9.1)
1.87, dt (12.0, 10.9)
2.37,ddd (15.7, 8.1, 3.7)
4 78.3, CH 4.21,dt(10.3,5.1) 41.2, CH» 226, m3H
5 67.8, CH 3.51,q (4.5 63.7, CH 3.37,dt (6.3, 3.6)
5-OH 5.19,d (5.7) 4.71,brs
;zf’ ddd (135, 9.3, 1.78, ddd (13.8, 9.7, 3.8)
6 38.3, CH» 159, ddd (13.5, 8.1, 36.2, CH; 1.54, ddd (13.9, 10.3,
4.1) 3:5)
7 67.9, CH 5.04, dp (8.0, 6.3) 68.0, CH 4.79,dqd (9.7, 6.1, 3.4)
8 19.3, CH; 1.22,d (6.2) 3H 20.1, CH3 1.17,d (6.2)
9%* 165.0, C 165.1,C
10 122.7, CH 5.85, dt (15.6, 1.5) 122.1, CH 5.84, dt (15.6, 1.5)
11* 146.6, CH 6.89, dt (15.6, 7.3) 146.8, CH 6.89, dt (15.6, 7.3)
12 41.4, CH» 2.25, m 2H 41.2, CH» 2.26, m 3H
13 65.0, CH 3.74,h (6.1) 64.6, CH 3.75, m
13-OH 4.67,brs not detected
14 23.4, CH; 1.05,d (6.2) 3H 23.0, CH3 1.06, d (6.2)

*Signals were extracted from HSQC and HMBC spectra.

2.2 Determination of antibacterial activity

Compounds 1-10 were tested in a minimal inhibitory concentration assay against methicillin
resistant Staphylococcus aureus ATCC 700699 (MRSA), Pseudomonas aeruginosa ATCC 87110,
Candida albicans ATCC 24433 and Mycobacterium tuberculosis ATCC 27294. None of the new

compounds (1-5) showed inhibition against the pathogenic microorganisms in concentrations up to

100 uM. The cytotoxic mycotoxin chaetochromin A [19](6) on the other hand showed strong

inhibition against MRSA with a MICy of 0.78 uM, which fits antibacterial activity against S. aureus

reported in the literature [20]. Interestingly, compound 8 showed a moderate inhibition of M.

tuberculosis with a MICyg of 25 uM, whereas its carboxylic acid derivative (7) showed no inhibition

even at 100 uM. The results are shown in Table 5.
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Table 5: MICq against S. aureus ATCC 700699, P. aeruginosa ATCC 87110, C. albicans ATCC
24433 and M. tuberculosis H37Rv. All concentrations are shown in uM. Concentration >100 uM

indicate no activity in the experimental setup. Values represent means of experiments conducted in

triplicates.
MICyo [uM]
Compound 8. aureus ATCC  P. aeruginosa ATCC  C. albicans ATCC M. tuberculosis ATCC

700699 87110 24433 27294
1 >100 >100 >100 >100
2 >100 >100 >100 >100
3 >100 >100 >100 >100
4 >100 >100 >100 >100
5 >100 >100 >100 >100
6 0.78 >100 >100 >100
7 >100 >100 >100 >100
8 >100 >100 >100 25
9 >100 >100 >100 >100
10 >100 >100 >100 >100

2.3 Determination of cytotoxic activity

Compounds 1-10 were also tested for cytotoxic potential against the human monocytic cell

line THP-1 using a resazurin assay. The mean ICso values are shown in table 6. Compound 6

(chaetochromin A) had a strong cytotoxic effect with 0.7 uM that is similar to values described in the

literature [19], while compound 8 (phenazin-1-carboxamide) had a weak cytotoxic effect with 42 pM

on the THP-1 cell line. All remaining compounds including the five new compounds 1-5 showed no

cytotoxic effect up to a concentration of 100 pM.

Table 6: ICsy values of the isolated compounds 1-10 against human cell line THP1. All concentrations

are shown in uM. Concentrations >100 uM indicate no activity in the experimental setup. Values

represent means of experiments conducted in triplicates. ICso values were calculated using GraphPad

Prism 7.

Compound

Mean ICs [pM]

SOOIV R WN =

>100
>100
>100
>100
>100
0.7
>100
42
>100
>100
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2.4 Proposed biosynthesis of linear colletodiol-derivatives

Structures of compounds 3-5 suggest that they represent direct precursors or alternative
metabolites of the macrocyclic dilactones colletodiol and of close biosynthetic derivatives like colletol
and colletoketol. It seems that this variation is related to one of the later biosynthetic steps, in which
the closed ring form of the metabolites is being formed [21, 22]. The last steps of the biosynthetic
pathway of colletodiol and derivatives as proposed by O’Neill ef al. [22] are presented in Figure 6.

Figure 6: Biosynthesis of colletodiol (e), colletoketol (f) and colletoketon (g = grahamimycin A1)
from a and b as described by O’Neill ef al. [22]. After cyclisation of ¢, an oxidative step introduces an
epoxide group to form intermediate d. Hydrolysis of the epoxide leads to colletodiol, which can be

oxidized to yield colletoketol and colletoketon.

On the basis of the given information about the biosynthetic pathway of colletodiol and
derivatives in Cytospora sp. from the literature [21, 22], we propose a possible biosynthetic pathway in
Figure 7 that leads to the production of compounds 3-5. However, it remains unclear whether the

colletodiol biosynthetic pathways of Cytospora sp. and Trichocladium sp. are identical.
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Figure 7: Proposed biosynthesis to form compounds 3-5. An alternative route starting from a and b
results in the two different linear monoesters ¢1 and ¢2. The following biosynthetic steps are likely
similar to those of colletodiol biosynthesis, yielding el (compound 3) and e2 over d1 and d2. g
(compound 4) and h (compound 5) might be formed from e2 over f and ¢2, respectively, through

undescribed metabolic steps.
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3. Experimental section

3.1 General experimental procedures

Optical rotations were measured on a Jasco P-2000 polarimeter. UV-spectra were obtained
using a Dionex P580 system in combination with a diode array detector (UVD340S) and an
Eurosphere 10 C18 column (125 x 4 mm) with a flow rate of 1 ml/min. 1D and 2D NMR spectra were
recorded on a Bruker Avance III (H, 600 MHz; '*C 150 MHz) spectrometer. Mass spectra were
obtained on a Finnigan LCQ Deca (Thermo Quest) mass spectrometer and for HRESIMS on a UHR-
QTOF maXis 4G (Bruker Daltonics) mass spectrometer. Semipreperative HPLC was performed on a
Lachrom-Merck Hitachi system (pump L7100, UV-detector L7400, Eurospher 100 C18 column, 300 x
8 mm, Knauer Germany) and a Knauer system (pump Azura P6.1L, autosampler Smartline 3950, UV-
detector Smartline 2600, autocollector FOXY R1, column thermostat CT 2.1), respectively, with a
flow rate of 5 ml/min. Precoated TLC silica gel 60 F254 plates (Merck) were used for tracking
separation using detection under UV-light at 254 and 365 nm wavelengths or spraying with
anisaldehyde-sulfuric acid reagent. VLC and non-vacuum-column chromatography was accomplished
using Macherey Nagel silica gel 60M (0.04-0.063 mm). Sephadex LH20 and RP18 was used as
stationary phase for column chromatography. For the measurement of optical rotations, spectral grade

solvents were used.

3.2 Fungal material

The isolation and identification of the endophytic fungus was described by Tran-Cong et al.
[8]. Briefly, the fungus was isolated from the roots of the plant Houttuynia cordata (voucher specimen
GOET038305, Gottingen University Herbarium) as an endophyte and was identified as Trichocladium
sp. by sequencing of the ITS-sequence and data base comparison via the NCBI Blast tool (accession
number MK241585). The voucher strain is deposited in the Institute of Pharmaceutical Biology and
Biotechnology, Heinrich Heine University, Diisseldorf, Germany, under the code HCRSW.

3.3 Fermentation and extraction

Fermentation of the fungus was carried out in ten 1-L Erlenmeyer flasks using solid rice
medium enriched with L-phenylalanine. For this, for each flask 2.5 g of phenylalanine were dissolved
in 100 ml water and then added to 100 g of rice followed by autoclaving. Agar plates section of 1 x 1
cm? fungal material was inserted into each Erlenmeyer flask using a flame sterilised scalpel. The
fungus was then grown for 21 days at 22 °C under static conditions. Each flask was extracted with 600
ml of EtOAc. The rice medium was cut into small pieces and shaken for 8 hours followed by

evaporation of the EtOAc.
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3.4 Isolation

The crude extract (5.5 g) obtained from the fungal rice culture enriched with L-phenylalanine
was seperated using a silica gel vacuum liquid chromatography (VLC). A step gradient of n-
hexane/EtOAc and CH>Cl,/MeOH was used that yielded 16 fractions (V1-V16). Fractions V6 (510
mg) and V7 (53 mg) were combined and further purified using a LH20 sephadex column with MeOH
as eluent giving nine subfractions (V6S1-V6S9). Subfraction V654 (31 mg) was conducted to semi-
preparative HPLC using a MeOH-H»O step gradient from 58-78 % MeOH to give 1 (0.8 mg), 8 (5.4
mg) and 9 (1 mg). Fractions V9 (792 mg), V10 (301 mg) and V11 (186 mg) were combined and then
further separated by reverse-phase vacuum liquid chromatography using a step gradient of H,O and
MeOH, ranging from 0-100 % MeOH, to give 7 subfractions (V9-11RP1-V9-11RP7). Subfractions
V9-11RP1 (218 mg) and V9-11RP2 (146 mg) were purified similarly to V6S4 via semi-preparative
HPLC using MeOH-H»O gradients of 5-50 % MeOH and 30-56 % MeOH respectively to yield 2 (3.4
mg), 3 (43.7 mg), 4 (5.4 mg), 5 (5.6 mg) and 10 (1.3 mg). Subfractions V4 (750 mg) and V5 (545 mg)
were combined and conducted to silica column liquid chromatography using EtOAc as eluent
followed by a step gradient of CH>Clo,/MeOH to give five subfractions (V4-5K1-V4-5K5). Subfraction
V4-5K2 (207 mg) was purified by semi-preparative HPLC with a HO-MeOH step gradient from 50-
80 % MeOH giving 7 (3.4 mg). Subfraction V4-5K1 (221 mg) was transferred to a LH20 sephadex
column using MeOH as eluent to yield 6 (106.9 mg).

Spectral data:

Trichocladiol ((3R*,45%)-3,4,6,8-tetrahydroxy-7-methyl-3,4-dihydronaphthalen-1(2H)-one -
compound 1): white powder; [a]p*® -8.4 (¢ 0.225, MeOH); UV (MeOH) Amax 291 nm; 'H and *C
NMR data, Table 1; HRESIMS m/z 225.0756 [M + H]" (calcd for C1;Hi30s, 225.0757).

Trichocladic acid (2-((5,6-dimethyl-4-ox0-4H-pyran-2-yl)methyl)-4,6-dihydroxybenzoic acid
— compound 2): white powder, UV (MeOH) Amax 256 and 300 nm; 'H and '*C NMR data, Table 2;
HRESIMS m/z 291.0866 [M + H]" and 313.0683 [M + Na]" (calcd for CisH150s, 291.0863 and
C1sH14NaOg, 313.0680).

Colletodiolic acid ((E)-5-(((E)-4,5,7-trihydroxyoct-2-enoyl)oxy)hex-2-enoic acid —
compound 3): colorless oil, [a]p* + 15.3 (¢ 1.0, MeOH), UV (MeOH) Amax 218 nm; 'H and '*C NMR
data, Table 3; HRESIMS m/z 303.1439 [M + H]", 320.1703 [M + NH4]" and 325.1257[M + Na]*
(caled for Ci14H2307, 303.1438; C14H26NO7, 320.1704 and C14H22NaO7, 325.1258).

Colletolactone (4-hydroxy-4-(4-hydroxy-5-oxotetrahydrofuran-2-yl)butan-2-yl (E)-5-
hydroxyhex-2-enoate — compound 4): colorless oil, [a]p?? - 18.4 (¢ 1.0, MeOH), UV (MeOH) Amax

218 nm; 'H and *C NMR data, Table 4; HRESIMS m/z 303.1442 [M + H]" and 320.1708 [M + NH.4]*
(calcd for C14H2307, 303.1438 and C14H26NO7, 320.1704).

103



Colletolic acid ((E)-5-hydroxy-7-(((E)-5-hydroxyhex-2-enoyl)oxy)oct-2-enoic acid —
compound 5): colorless oil, [a]p*? — 43.2 (¢ 1.0, MeOH), UV (MeOH) Amax 219 nm; 'H and C NMR
data, Table 4; HRESIMS m/z 287.1492 [M + H]" and 304.1759 [M + NH.]" (calcd for C14Hz:0s,
287.1489 and C14H26NOs, 304.1755).

3.5 Media and strains

Nosocomial bacteria Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 700699 and
Pseudomonas aeruginosa ATCC 87110 were grown in Mueller-Hinton-broth (MHB). The pathogenic
yeast Candida albicans ATCC 24433 was grown in standard YPD medium (1% yeast extract, 2%
peptone, and 2% glucose). The pathogenic bacterium Mycobacterium tuberculosis (Mtb) ATCC 27294
was grown in 7H9 supplemented with ADS (0.85% NaCl, 5% BSA, 2% dextrose), 0.5% glycerol, and
0.05% tyloxapol. Nosocomial bacteria and C. albicans were grown shaking at 120 rpm and 37 °C, Mtb
was grown at 37 °C shaking at 80 rpm.

3.6 Determination of the minimal inhibitory concentration

Microbroth dilution assays were performed to determine the minimal inhibitory concentration
(MICy) of compounds. Briefly, a serial 1:1 dilution of compounds was prepared in a 96-well round-
bottom polystyrene plate in 50 uL. growth medium ranging from 200 uM to 1.56 uM. The ODeoo nm of
pre-grown bacterial cultures was determined, and a cell suspension in growth medium was adjusted to
10° CFU/mL. Afterwards, 50 pL of the cell suspension were added to each well thereby changing the
compound concentration range to 100 uM to 0.78 uM. For MRSA ATCC 700699, P. aeruginosa ATCC
87110 and C. albicans ATCC 24433, the BacTiter Glo assay (Promega) was used to quantify growth
after 24 h of incubation following the manufacturer's manual. Briefly, equal volumes of bacterial cell
suspension and BacTiter Glo reagent were mixed in a white flat-bottom 96-well plate. After 5 minutes,
luminescence was measured with a TECAN plate reader. Moxifloxacin was used as positive control for
MRSA and P. aeruginosa, hygromycin was used as positive control for C. albicans, while DMSO was
used as solvent control for all of the three organisms. For quantifying growth of Mtb ATCC 27294, the
resazurin assay was used following a protocol as described previously [23]. Briefly, 10 pL of a 100
pg/mL resazurin solution were added to each well of the 96-well plate after five days of incubation at
37 °C, 5% CO,, and in humified atmosphere. The plates were incubated for another 18 hours at room
temperature before stopping the reaction by addition of 100 uL 10% formalin solution to each well. The
fluorescence was measured at 535 nm excision and 590 nm emission using a TECAN plate reader.
Rifampicin and DMSO were used as positive and vehicle control, respectively. All experiments have

been conducted in triplicates.
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3.7 Determination of the cytotoxic activity against THPI cells

The cytotoxicity assay was performed using THP-1 cells (human monocytic leukemia cell
line) in a procedure described before [24]. The cells were cultivated in RPMI 1640 medium containing
2 mM L-glutamine and supplemented with 10% fetal calf serum (FCS) and 1% sodium pyruvate at 37
°C in an atmosphere of 5% CO,. Cells were adjusted to a density of 2 x 10° cells/ml, and 50 pl of this
suspension was transferred per well to 96-well flat bottom microtiter plates containing 2-fold serial
dilutions of the tested compounds resulting in final concentrations ranging from 100 to 0.78 uM in a
total volume of 100 ul. Cycloheximide at concentrations of 4 to 0.03 pg/ml was used as positive
control. The cells were then incubated for 48 h at 37 °C in a humidified atmosphere with 5% COx.
Subsequently, 10 pl of a resazurin solution (100 pg/ml) was added to each well, followed by another
incubation step for 4 h. The fluorescence was quantified using a Tecan Infinite 200pro microplate
reader (excitation 540 nm, emission 590 nm). The residual growth was calculated relative to non-

inoculated (0 % growth) and controls treated with DMSO (100 % growth), respectively.
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S1.NMR Table of Compound 1 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)

3,4,6,8-tetrahydroxy-7-methyl-3,4- OH
dihydronaphthalen-1(2H)-one
Chemical Formula: C11H45,05

Molecular Weight: 224,21 COSY — key HMBC / ™\

. . on, m (J in Hz) Jc on, m (J in Hz)
position oc* On, m (J in Hz) MeOH-d, Acetone-ds Acetone-ds
1 201.2,C 201.7,C
) 43.1. CH, 2.80,dd (17.2,3.4) 2.88,dd(17.2,3.9) 43.7,CH; 2.83,d (3.6)

" 2.66,dd (17.2,5.8) 2.77,dd (17.2,7.4)
3 69.0, CH 411, m 42155), ddd (7.4, 3.9, 70.3,CH 4.29, brs
4 68.9, CH 4.61,dd (6.7,2.0) 4.70,d(2.9) 70.8, CH 477, brs
4a 144.6, C 144.8, C
5 105.8, CH 6.61, brs 6.58,s 107.4, CH 6.72, s
6 162.9,C 163.6, C
7 108.5,C 111.0,C
8 162.0,C 163.6,C
8a 108.5,C 111.5,C
9 6.9, CHs 1.93,s 2.02,s 7.5, CHs 2.03,s
3-OH 4.94,d (4.1) 4.12,d (4.6)
4-OH 5.38,d(6.7) 4.41,d(6.7)
6-OH 10.56, brs 9.38,brs
8-OH 13.03, s 13.09, s

*signals were extracted from HSQC and HMBC spectra.

111



S2. 'TH-NMR Spectrum of Compound 1 (DMSO-ds, 600 MHz)
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S3. BC-NMR Spectrum of Compound 1 (DMSO-d;, 150 MHz)
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S4.'H-1B3C-HSQC Spectrum of Compound 1 (DMSO-ds, 'H: 600MHz, 3C: 150
MHz)
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S5.'H-3C-HMBC Spectrum of Compound 1 (DMSO-d;, 'H: 600MHz, *C: 150
MHz)
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S6.'H-'H-COSY Spectrum of Compound 1 (DMSO-ds, 600MHz)

I

Simon 4.ser
TC-Ph -S4 -H1 %

b
‘\”“

]

114

F T %A
| J
i® L -
1P000000000000MO0CE0000000C oot 14 9 m
3

2 boH-3 -3 _]

[} b-4___kom-ay_|°

{ Bso
0 | leaon

5 k-5

w15~ 1IZ I 10— 9 & "~ FJ T 0 & Zz T L) T

2 (ppm)

f1 (ppm)



S7.HPLC-DAD UV-Vis Spectrum of Compound 1 (Methanol)
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S8.ESI(+)MS Spectrum of Compound 1
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S9.High Resolution ESI(+)MS Spectrum of Compound 1

_ Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  3/31/2021 4:05:43 PM
Analysis Name D:\Data\Spektren 2021\KAL21HR000033.d >
Method tune_low_new.m Operator  Peter Tommes
Sample Name M. Frank TCPhV6S4H1 (CH30H) Instrument maXis 288882.20213
Comment Sulin1ml
Acquisition Parameter =
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 l/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 3.4-3.6min #202-215|
x104]
2250756
4]
3]
2]
) 226.0791
: 223.2055 | 227.2367 3781955
222 223 224 225 226 227 228 229 miz
Meas.m/z # lon Formula miz er [ppm] mSigma #mSigma Score rdb e Conf N-Rule
2250756 1 C11H1305  225.0757 - 0.7 47 1 10000 55 even ok
2 C12HIN4O 225.0771 6.6 9.3 2 4483 105 even ok

S10.NMR Table of Compound 2 (DMSO-ds, 'H: 600MHz, '3C: 150 MHz)

0. _OH

H _
0 R

H
Chemical Formula: C45H440¢ s
Molecular Weight: 290,27 key HMBC X
position oc* on, m (J in Hz)
1 172.4,C
2 106.4, C
3 164.2,C
4 101.6, CH 6.20, br s 2H
5 161.6,C
6 110.9, CH 6.20, br s 2H
7 139.0,C
8 38.2, CH, 4.11,s
9 167.7,C
10 110.9, CH 5.67,s
11 178.3,C
12 119.6,C
13 161.3,C
14 17.4, CH3 2.24,d(0.9)
15 9.3, CH3 1.77,d (0.9)
1-OH 13.22,brs
3-OH 10.14, s

*signals were extracted from HSQC and HMBC spectra.
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S11."H-NMR Spectrum of Compound 2 (DMSO-ds, 600 MHz)
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S12.3C-NMR Spectrum of Compound 2 (DMSO-ds, 150 MHz)
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S13.'"H-1*C-HSQC Spectrum of Compound 2 (DMSO-d;s, 'H: 600MHz, 1*C: 150
MHz)
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S14.'"H-1*C-HMBC Spectrum of Compound 2 (DMSO-ds, 'H: 600MHz, 1*C:
150 MHz)
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S15.HPLC-DAD UV-Vis Spectrum of Compound 2 (Methanol)
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S16.ESI(+)MS Spectrum of Compound 2
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S17.High Resolution ESI(+)MS Spectrum of Compound 2

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  3/30/2021 2:58:03 PM
Analysis Name D:\Data\Spektren 2021\KAL21HR000032.d
Method tune_low_new.m Operator  Peter Tommes
Sample Name  Simons TCPhV3-11RP2H4 (CH30H) Instrument maXis 288882.20213
Comment
'Acqulsltlon Parameter -
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V * Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 l/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.9-3.0min #172-182
x105
291.0866
2.57
2.01
1.53
1.0
051 292.0899
i \ 293.0922
0.0+~ - - i y et T ——
289 290 291 292 293 294 295 m/z
Meas. m/z # lon Formula m/z “err[gpm] mSigma #mSigma Score rdb e Conf N-Rule
291.0866 1 C15H1506 291.0863 - .-0.9 1.7 1 10000 8.5 even ok
313.0683 1 C15H14NaO6 313.0683 0.1 7.9 1 10000 85 even ok
.2 C13H9NEO4 313.0680 -1.0 8.9 2 87.26 12.5 even ok
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S18.NMR Table of Compound 3 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)

14

(E)-5-(((E)-4,5,7-trihydroxyoct-2-enoyl)oxy)hex-2-enoic acid

OH OH

13 |11, 9

H,C 3

H

5

6

(0] CH, (0]
)5\/3\/U\
70 : \2 1~0OH

Chemical Formula: C44H5,07
Molecular Weight: 302,32

OH OH

O CHs, 0

N ,’-/\
H3C€, > O—j
H

o AN

NN

COSY — key HMBC /~

OH

position oc ou, m (J in Hz)
1 1669, C
2 124.6, CH 5.83, dt (15.6, 1.5)
3 1437, CH 6.74, dt (15.6,7.3)
4 37.6, CH, 248, m 2H
5 68.9. CH 4.99. m
6 19.6, CH; 121, d (6.3) 3H
7 1652, C
8 120.0, CH 5.96, dd (15.7, 1.9)
9 150.1, CH 6.97.dd (157, 4.1)
10 72.8, CH 412, m
3 715, CH 3.61, dt (9.4, 4.0)
142, ddd (13.6, 6.3, 3.7)
12 41.0, CHz 135, ddd (13.6, 9.4, 6.7)
13 64.5, CH 3.78. m
14 23.4, CH; 1.04.d (6.2) 3H
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S19.'"H-NMR Spectrum of Compound 3 (DMSO-ds, 600 MHz)
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S20.13C-NMR Spectrum of Compound 3 (DMSO-ds, 150 MHz)
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S21.'H-BC-HSQC Spectrum of Compound 3 (DMSO-ds, 'H: 600MHz, *C: 150
MHz)
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S22."H-BC-HMBC Spectrum of Compound 3 (DMSO-d,, 'H: 600MHz, 1*C:
150 MHz)
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S23.'"H-'H-COSY Spectrum of Compound 3 (DMSO-ds, 600MHz)
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S25.ESI(+)MS Spectrum of Compound 3

F:\115-046 3/22/2021 10:26:00 AM M.Frank, TCPhV9-11RP2 H2

115-046 #25 RT: 0.39 AV: 1 NL: 1.07E6
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S26.High Resolution ESI(+)MS Spectrum of Compound 3

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. | +MS, 2.5-2.7min #150-163
x109
303.1439
0.8+
3251257
0.6 3201703
0.44
0.24
- 0.0 ——— L A ; : - i 307 1993 b L P ...ﬁ[ﬁ'. .
302.5 305.0 307.5 310.0 312.5 315.0 317.5 320.0 3225 325.0 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma. #mSigma Score rdb e Conf N-Rule
303.1439 1 C14H2307 303.1438 -0.2 14.5 1 100.00 3.5 even ok
320.1703 1 C14H26NO7 320.1704 0.1 2.6 1 100.00 25 even ok
325.1257 1 C14H22NaO7 325.1258 0.1 6.1 1 100.00 3.5 even ok
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S27.NMR Table of Compound 4 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)

12

10
14H3C 13 9
PR
H

(@)
AN T o) <\\>< Y oH

\:y\_/ ‘\)
OH CH; OH
4-hydroxy-4-(4-hydroxy-5-oxotetrahydrofuran-2-
yh)butan-2-yl (E)-5-hydroxyhex-2-enoate
Chemical Formula: C44H5,07
Molecular Weight: 302,32 COSY — key HMBC
position Jc on, m (J in Hz)
1* 177.0,C
2 67.4, CH 4.45,dd (11.2,8.1)
2.38,ddd (12.0, 8.6, 5.4)
3 328, CHy 1.87, dt (12.0, 10.9)
4 78.3, CH 4.21,dt(10.3,5.1)
5 67.8, CH 3.51,q (4.5
1.78,ddd (13.5,9.3,5.5)
6 38.3, CHz 159, ddd (13.5. 8.1, 4.1)
7 67.9, CH 5.04, dp (8.0, 6.3)
8 19.3, CHs 1.22,d (6.2) 3H
9%* 165.0,C
10 122.7, CH 5.85,dt (15.6, 1.5)
11* 146.6, CH 6.89, dt (15.6, 7.3)
12 41.4, CH; 2.25, m2H
13 65.0, CH 3.74,h (6.1)
14 23.4, CH3 1.05,d (6.2) 3H
2-OH 5.89, m
5-OH 5.19,d(5.7)
13-OH 4.67,brs

*signals were extracted from HSQC and HMBC spectra.
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S30.'H-13C-HSQC Spectrum of Compound 4 (DMSO-ds, 'H: 600MHz, *C: 150
MHz)
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S31.'H-3C-HMBC Spectrum of Compound 4 (DMSO-d,, 'H: 600MHz, *C:

150 MHz)
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S32.'H-'"H-COSY Spectrum of Compound 4 (DMSO-ds, 600MHz)
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S33.HPLC-DAD UV-Vis Spectrum of Compound 4 (Methanol)
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S34.ESI(+)MS Spectrum of Compound 4
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S35.High Resolution ESI(+)MS Spectrum of Compound 4

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  3/29/2021 9:58:06 AM
Analysis Name D:\Data\Spektren 2021\KAL21HR000030.d
Method tune_low_new.m Operator  Peter Tommes
Sample Name  Simons TCPhV9-11RP2H1 (CH30H) Instrument maXis 288882.20213
Comment
Acquisition Parameter -
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 3.1-3.2min #185-192
x106]
320,1708
1.004
0.75
0.504
0.254
287.1490
| | 335.1699
0.00 T . T — b T - T . T
280 290 300 310 320 330 mz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
287.1490 1 C14H2306 287.1489 , <03 1.9 1 100.00 3.5 even ok
2 C13H20N4NaO2 287.1478 -4.0 45 2 56.01 55 even ok
3 C11H15N10 287.1476 -5.0 6.4 3 4555 95 even ok
4 C15H19N402 287.1503 44 16.2 4 4262 85 even ok
303.1442 1 C14H2307 303.1438 -1.2 1.8 1 10000 3.5 even ok
2 C11H15N100 303.1425 5.7 17.7 2 4544 095 even ok
3 C13H20N4NaO3 303.1428 -4.8 18.1 3 5454 55 even ok
4 C15H19N403 303.1452 32 306 4 5523 85 even ok
320.1708 1 C14H26NO7 320.1704 -1.3 217 1 100.00 25 even ok
2 C11H18N110 320.1690 -5.5 219 4 4520 85 even ok
3 C13H23N5NaO3 320.1693 -46 224 3 5419 45 even ok
4 C15H22N503 320.1717 29 349 4 5587 7.5 even ok
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S36.NMR Table of Compound 5 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)

1210 6 4 2
14H3C 13 o~ 0. 7 5 — 0]
H H; OH H
8
(E)-5-hydroxy-7-(((E)-5-hydroxyhex-2-enoyl)oxy)oct-2-enoic acid

Chemical Formula: C44H5,04
Molecular Weight: 286,32

AN

H;C & @)
M W’\f
H CHY OH H

— COSY . key HMBC

position Jc on, m (J in Hz)
1 167.2,C
2 122.5,C 5.66,dd (15.7,0.9)
3 149.3, CH 6.66, dd (15.7,9.1)
2.37,ddd (15.7, 8.1, 3.7)
4 41.2,CH» 226, m 3H
5 63.7, CH 3.37,dt (6.3, 3.6)
1.78, ddd (13.8, 9.7, 3.8)
6 362, CHz 1.54,ddd (13.9, 10.3, 3.5)
7 68.0, CH 4.79,dqd (9.7, 6.1, 3.4)
8 20.1, CH3 1.17,d (6.2)
9 165.1,C
10 122.1,CH 5.84, dt (15.6, 1.5)
11 146.8, CH 6.89, dt (15.6, 7.3)
12 41.2,CH» 2.26, m 3H
13 64.6, CH 3.75, m
14 23.0, CH3 1.06, d (6.2)
5-OH 4.71,brs
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S37.'"H-NMR Spectrum of Compound 5 (DMSO-ds, 600 MHz)
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S39.'H-13C-HSQC Spectrum of Compound 5 (DMSO-ds, 'H: 600MHz, *C: 150

MHz)
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S40.'H-3C-HMBC Spectrum of Compound 5 (DMSO-ds, 'H: 600MHz, *C:

150 MHz)
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S41.'H-"H-COSY Spectrum of Compound 5 (DMSO-ds, 600MHz)
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S42.UV-Vis Spectrum of Compound 5 (Methanol)
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S43.ESI(+)MS Spectrum of Compound 5
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S44.High Resolution ESI(+)MS Spectrum of Compound 5

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  3/29/2021 10:32:02 AM
Analysis Name D:\Data\Spektren 2021\KAL21HR000031.d ¢
Method tune_low_new.m Operator  Peter Tommes
Sample Name  Simons TCPhV9-11RP2H3 (CH30H) Instrument maXis 288882.20213
Comment
Acquisition Parameter .
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 Umin
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Im.?é s olms, 4.5-4.6min #273-277)
1 |
> 304.1759 c o]
1.251
1.004
7
0.751 [M i H]
0.501 2871492
o2y 385 3201705
g 283.1751 Jiaey i)
0.00 v T B 8 i
270 280 290 300 310 320 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
269.1385 1 C15H17N40 269.1397 45 43 1 6374 95 even ok
2 C14H2105 269.1384 -04 109 2 10000 45 even ok
3 C13H18N4NaO 269.1373 44 111 3 5783 6.5 even ok
287.1492 1 C14H2306 287.1489 -1.2 52 1 10000 35 even ok
2 C13H20N4NaO2 287.1478 -4.9 Ly 2 5396 55 even ok
3 C11H15N10 287.1476 -5.9 8.1 3 4392 95 even ok
4 C15H19N402 287.1503 35 18.7 4 5478 8.5 even ok
304.1759 1 C14H26NO6 304.1755 -1.6 218 1 100.00 25 even ok
2 C11H18N11 304.1741 -6.0 221 2 4419 85 even ok
3 C13H23N5NaO2 304.1744 -5.1 225 3 5327 45 even ok
4 C15H22N502 304.1768 28 35.0 4 6025 75 even ok
320.1706 1 C14H26NO7 320.1704 -0.5 19 1 10000 25 even ok
2 C13H23NSNaO3 320.1693 -3.9 137 2 5546 45 even ok
3 C11H18N110 320.1690 47 14.1 3 4597 85 even ok
4 C15H22NS03 3201717 36 255 4 4509 75 even ok
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S45.NMR Table of Compound 6 (600 MHz, CDCI3)

Chaetochromin A (KoYAMA et al. 1987)

Chemical Formula: C3yH56049
Molecular Weight: 546,53

position ou, m (Jin Hz)
2,2 4.16,dq (12.3, 6.1)
3,3 2.58,dq (11.1, 6.9)
7,7 591,s
10, 10° 6.36, s

2-CH; 2-CHs  1.40,d(6.2)
3-CH; 3°-CH; 120, d (6.9)
5:0H,5-OH  15.07,s
6-OH,6-OH  9.42,’s
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S46.'H-NMR Spectrum of Compound 6 (600 MHz, CDCI3)
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S48 .ESI(+)MS Spectrum of Compound 6
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S49.NMR Table of Compound 7 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)
Phenazine-1-carboxylic acid (Mehnaz et al. 2013)

HO_ _O
11
9
2 1 N 8
10a ™
3 4aN/ 7
4 6
Chemical Formula: C43HgN,O,
Molecular Weight: 224,22

position oc* on, m (J in Hz)
| 129.4,C
2 133.0, CH 8.49,d (8.1) 2H
3 130.4, CH 8.08, m 3H
4 128.5, CH 8.39,dd (7.7, 1.3)
4a 143.3,C
Sa 141.0,C
6 129.2, CH 8.35,dd (7.3, 2.0)
7 132.1,CH 8.08, m 3H
8 132.1,CH 8.08, m 3H
9 133.0, CH 8.49,d (8.1) 2H
9a 139.9
10a 139.9
11 166.8, C
11-OH 14.43, br s

*signals were extracted from HSQC and HMBC spectra.
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S50."H-NMR Spectrum of Compound 7 (DMSO-ds, 600 MHz)
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S51.13C-NMR Spectrum of Compound 7 (DMSO-ds, 150 MHz)
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S52."H-13C-HSQC Spectrum of Compound 7 (DMSO-ds, 'H: 600MHz, *C: 150
MHz)
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S53.'H-3C-HMBC Spectrum of Compound 7 (DMSO-ds, 'H: 600MHz, *C:
150 MHz)
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S54.'"H-'H-COSY Spectrum of Compound 7 (DMSO-ds, 600MHz)
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S55.UV-Vis Spectrum of Compound 7 (Methanol)

700 Peak #1 100% at 24.72 min
% No spectra library hits found!
248.7

1 204.8

368.4

T T L T T L T T L

nm

T L T

[
550 595

T L T T L T T L T

T
300

T T T T
350 400 450 500

S56.ESI(+)MS Spectrum of Compound 7

F:\115-043 3/19/2021 12:56:57 PM M.Frank, TC 4 V4 -§ Led ~HY

T: + p ESI Full ms [100.00-1200.06
100, : _
95
. 904
853
80—
75-
70—3
65—

60 |
55
50—
i 483
40 :

Relative Abundance

355
30~
25-

661

585

484 515 579 || 609 62}@"’ 693
528 &

| 247 335 357 \

723 791 801

287 387 425‘439 o

Lk

250 300 350 400 450 500

600 650 700 750 800

145




S57.NMR Table of Compound 8 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)
Phenazine-1-carboxamide «umar et al. 2005)

HN_ O
1
9
2 1 N 8
10a ™
4 6
Chemical Formula: C43HgN;O
Molecular Weight: 223,24

position Jc on, m (J in Hz)
1 131.0,C
2 134.1,CH 8.68,dd (7.0, 1.5)
3 130.3, CH 8.07,dd (8.7, 7.0)
4 133.1,CH 8.43,dd (8.6, 1.5)
4a 142.8,C
Sa 142.6,C
6 129.4, CH 8.41, m
7 131.7, CH 8.04, m 2H
8 132.1,CH 8.04, m 2H
9 129.2, CH 8.30, m
9a 141.4,C
10a 140.2,C
11 165.8,C
9.74, br s
11-NH, 8.10, br s
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S58."H-NMR Spectrum of Compound 8 (DMSO-ds, 600 MHz)
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S59.13C-NMR Spectrum of Compound 8 (DMSO-ds, 150 MHz)
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S60."H-1*C-HSQC Spectrum of Compound 8 (DMSO-ds, 'H: 600MHz, *C: 150
MHz)
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S61."H-3C-HMBC Spectrum of Compound 8 (DMSO-d,, 'H: 600MHz, *C:
150 MHz)
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S62.'"H-'H-COSY Spectrum of Compound 8 (DMSO-ds, 600MHz)
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S63.UV-Vis Spectrum of Compound 8 (Methanol)
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S64.ESI(+)MS Spectrum of Compound 8
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S65.High Resolution ESI(+)MS Spectrum of Compound 8
Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  3/23/2021 1:04:54 PM
Analysis Name D:\Data\Spektren 2021\KAL21HR000027.d
Method tune_low_new.m Operator  Peter Tommes
Sample Name M. Frank TCPhV6S4H3 (CH30H) Instrument maXis 288882.20213
Comment Sulin1ml
Acquisition Parameter 5 :
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.7-2.8min #162-170|
xlg 224.0820
. ¢
3.
2.
14 207,0552
; ] l 2391489  247.1241 2540923
190 200 210 220 230 240 250 260 miz
Meas. m/z # lon Formula m/z verr [ppm] mSigma #mSigma Score rdb e Conf N-Rule
207.0552 1 C13H7N20 207.0553 . ‘02 5.7 1 100.00 115 even ok
2240820 1 C13H10N30 224.0818 ~-0.8 14.0 1 100.00 10.5 even ok
239.1489 1 C11H19N402 239.1503 * 58 7T 1 5763 45 even ok
2 C7H15N10 239.1476 -5.4 11.3 2 57.02 5.5 even ok
3 C10H2306 239.1489 0.2 154 3 100.00 -0.5 even ok
254.0923 1 C14H12N302 254.0924 04 171 1 100.00 10.5 even ok

151



S66.NMR Table of Compound 9 (MeOH-d4, 'H: 600MHz, 1*C: 150 MHz)
Dechlorodihydromaldoxin (vuund snider 2011)

Chemical Formula: C47H4¢0g
Molecular Weight: 348,31

position oc* ou, m (Jin Hz)
1 undetected*
2 160.1, C
3 106.8, CH 5.85,brs
4 146.2, C
5 112.1,CH 6.42,br s
6 163.2, C
7 undetected*
8 21.5, CH; 2.13,s
1’ 136.7, C
2’ 153.2,C
3 107.9, CH 6.75,d (3.1)
4’ 158.8, C
5’ 107.0, CH 6.96,d (3.1)
6’ 126.3, C
7 167.1, C
4’-OCH; 55.8, CH3 3.82,s
7’-OCH3 52.4, CH; 3.72,s

*signals were extracted from HSQC and HMBC spectra.
*matches observation from literature data.
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S67.'"H-NMR Spectrum of Compound 9 (MeOH-d4, 600 MHz)
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S68.°C-NMR Spectrum of Compound 9 (MeOH-d4, 150 MHz)
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S69.'H-13C-HSQC Spectrum of Compound 9 (MeOH-d4, 'H: 600MHz, 13C: 150
MHz)
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S70.'"H-13C-HMBC Spectrum of Compound 9 (MeOH-d4, 'H: 600MHz, *C:
150 MHz)
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S71.'"H-'H-NOESY Spectrum of Compound 9 (MeOH-d4, 600MHz)
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S72.UV-Vis Spectrum of Compound 9 (Methanol)
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S74.High Resolution ESI(+)MS Spectrum of Compound 9

Mass Spectrum SmartFormula Report
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S75.NMR Table of Compound 10 (DMSO-ds, 'H: 600MHz, *C: 150 MHz)
Fuscoatramide (Joshi et al. 2002)

Chemical Formula: C4gH{7NO4
Molecular Weight: 215,25

position oc* on, m (J in Hz)

1 174.6,C

2 31.1, CH» 2.20,t(7.4)
3 24.3, CH 1.61,p (7.2)
4 37.6, CH» 3.06, q (6.8)
5 166.3, C

6 120.4, CH 5.68,d (1.6)
7 1494, C

8 35.6, CH» 2.69,1(6.7)
9 59.3, CH: 3.51,t(6.7)
10 25.0, CH3 1.80,d (1.4)
4-NH 7.88, m

*signals were extracted from HSQC and HMBC spectra.
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S76."H-NMR Spectrum of Compound 10 (DMSO-ds, 600 MHz)
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S77.°C-NMR Spectrum of Compound 10 (DMSO-ds, 150 MHz)
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S78.'H-13C-HSQC Spectrum of Compound 10 (DMSO-ds, 'H: 600MHz, 1*C:

150 MHz)
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S79.'"H-3C-HMBC Spectrum of Compound 10 (DMSO-d;, 'H: 600MHz, *C:

150 MHz)
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S80.'H-'H-COSY Spectrum of Compound 10 (DMSO-ds, 600MHz)
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S81.UV-Vis Spectrum of Compound 10 (Methanol)
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6. Fusarubin derivatives with biofilm-dispersing activities
derived from Fusarium oxysporum

Manuscript draft (unpublished)
Overall contribution:

- Isolation of the fungus from a soil sample

- Fermentation in co-cultivation with different bacteria
- Extraction and preparation of the crude extract

- Isolation and purification of the fungal metabolites

- Structure elucidation of isolated compounds

- Writing of the first version of the complete manuscript draft
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Abstract: The genus Fusarium is known for its versatility in the production of secondary metabolites.
Based on the OSMAC (one strain many compounds) concept, in this study, the co-cultivation of the
soil-borne fungus Fusarium oxysporum with the soil-borne bacterium Paenibacillus ehimensis yielded
the three new natural products fusachinon (2), fusapurpurin A (3) and fusapurpurin B (4), together
with seven previously described compounds (1 and 5-10). The structures were elucidated based on
comprehensive spectroscopic measurements. The unusually bridged structures of fusapurpurin A and
B were confirmed via single crystal X-ray diffraction analysis. Nanopore whole genome sequencing of
F. oxysporum together with antiSMASH analysis led to the identification of a biosynthetic gene
cluster (BGC) likely responsible for the biosynthesis of fusarubin base structures, which are
structurally closely related to the novel fusapurpurins. On this basis, a possible biosynthetic route to
fusapurpurin A and B is being proposed. Fusapurpurin A and B showed potent biofilm-desintegrating
activities against Staphylococcus aureus Mu50 with IC90 = 6.25 uM and Pseudomonas aeruginosa
PAOI1 with IC90 = 12.5 uM. Additionally, fusapurpurin B also showed moderate biofilm-disrupting
activity against Mycobacterium tuberculosis H37Rv and reduced pre-formed biofilm by more than
50% at 100 uM. Of the three new compounds (2-4), only fusapurpurin B showed a weak direct
antibacterial activity against S. aureus Mu50 with a minimal inhibitory concentration (MIC) of 100
uM. Compound 9 had weak activity against S. aureus Mu50 with a MIC of 50 uM and strong activity
against Mycobacterium tuberculosis H37Rv with a MIC of 3.125 uM. Fusapurpurin A and B showed
weak to moderate cytotoxic effects against the tested human cell lines THP1 (40.66 vs. 11.57 uM),
Huh-7 (47.85 vs. 12.67 uM) and HEK 293 (>100 vs. 26.81 uM).

Keywords: Fusarium oxysporum; OSMAC; fusarubin; fusapurpurin; natural products; co-cultivation;
biofilms; biofilm disruption; antibiofilm activity; antibacterial activity; cytotoxicity; whole-genome

sequencing; antiSMASH
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1. Introduction

Antimicrobial resistance has become a steadily increasing threat to human health during the
last decades. The golden era between 1950 and 1970, where a lot of new antibiotics have been
introduced to the clinic, was followed by decades of underdevelopment of new antibiotic compounds
[1]. Environmental microorganisms are still a very fruitful natural source of novel antibiotics since
new chemical skeletons derived from these sources have been continuously being identified during the
last decades [2]. Even though there is a long history of isolation of bioactive natural products, various
approaches for the activation of silent gene clusters have emerged during recent years leading to a
substantial expansion of our portfolio of natural compounds, highlighting the huge hidden treasure
chest of what is still to be found [3-5]. Especially fungi belonging to the genus Fusarium have been
shown to be very versatile when it comes to the activation of silent gene clusters for the production of
cryptic metabolites [6-10]. In this regard, the so-called OSMAC concept (One Strain Many
Compounds) [Bode et al. 2002] is an easy and valuable tool to manipulate Fusarium species under
laboratory conditions [11, 12]. One of the possible activating parameters of the OSMAC concept is co-
cultivation with other microorganisms since it mimics naturally occurring interactions and competition
[13, 14]. Interestingly, co-cultivation with different bacteria can also induce different cryptic
metabolites [15, 16].

The ability of many pathogenic bacteria to form biofilms is severely complicating antiinfective
treatment and a major factor promoting the development of antimicrobial resistance. Bacterial biofilms
are one of the main reasons for the establishment of chronic bacterial infections [17]. Biofilms
represent a robust physical barrier that effectively protects the imbedded bacteria from being reached
by most antibiotics. In addition, the majority of imbedded cells are in a metabolically inactive and
non-replicating state that causes phenotypic resistance, meaning that the bacteria are tolerant to
antibiotics, which typically target processes of active metabolism and cell division. On the flip side,
this also promotes the development of genetic resistance because the amount of antibiotics reaching
the bacteria is lower than expected and the treatment is therefore at subinhibitory concentrations
promoting the occurrence of mutations [18]. A recent study suggests that biofilms can even put
mechanical stress on the infected tissues, leading to additional damage [19]. This shows the huge
importance of finding new biofilm-inhibiting and disrupting compounds.

In this study, the soil-borne fungus Fusarium oxysporum was co-cultivated with the soil-borne
bacterium Paenibacillus ehimensis resulting in the production and isolation of one new anthrachinone
and two new naphthoquinones together with seven known compounds. The two new naphthoquinones,
fusapurpurin A and B, inherit a completely new structural subclass of fusarubin derivatives, where the
addition of a phenyl pyruvic acid moiety adds a complex bridged element to the 9-O-methylfusarubin
base structure. The absolute configurations of novel compounds 3 and 4 were determined via single
crystal X-ray diffraction analysis. A whole genome nanopore sequencing of F. oxysporum was

accomplished and analysed by the antiSMASH fungi version to identify a possible biosynthesic
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pathway for fusapurpurins A and B. Fusapurpurins A and B exhibit dispersing activity against pre-
formed biofilms of methicillin-resistant Staphylococcus aureus Mu50 and Pseudomonas aeruginosa

PAOI and to a lesser extent also against Mycobacterium tuberculosis H37Rv.

2. Results and Discussion
2.1 Influence of bacterial co-cultivation on the secondary metabolite profile of Fusarium oxysporum
In our ongoing search for new antimicrobial compounds derived from microorganisms, we
isolated the filamentous fungus Fusarium oxysporum from a soil sample collected in Texel, the
Netherlands. Since members of the genus Fusarium appear to be particularly amenable to the OSMAC
concept for the induction of silent biosynthetic gene clusters [20], F. oxysporum was grown in co-
culture with cells of five different bacterial species on solid rice medium enriched with LB-medium
including one lab strain (Acinetobacter baylyi ADP1) and four strains that have been isolated from
various soil samples in our laboratory (Bacillus amyloliquefaciens, Pseudomonas sp., Lysinibacillus
sp. and Paenibacillus ehimensis). Interestingly, the fungus responded in very distinct ways to the
presence of the different bacteria. While B. amyloliquefaciens supressed growth of F. oxysporum
almost completely, presence of A. baylyi ADP1, Lysinibacillus sp., Pseudomonas sp. and P. ehimensis
led to the production of red-coloured pigments after four weeks of culturing. However, only during co-

cultivation with P. ehimensis, the fungus responded by strong production of darker, purple-coloured

pigments (Fig. 1).

Figure 1. Co-cultivations of different bacteria with Fusarium oxysporum on rice medium
supplemented with LB-medium. Co-cultivation with Lysinibacillus sp. (1), Bacillus amyloliquefaciens
(2), Paenibacillus ehimensis (3), Pseudomonas sp. (4) and Acinetobacter baylyi ADP1 (5) after four
weeks of growth at room temperature. Captured is the bottom view of the 1-1 Erlenmeyer flasks

containing the solidified rice cultures.
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To compare the co-cultures analytically, crude extracts were obtained from small-scale
cultivations and measured via High-Performance Liquid Chromatography (HPLC). HPLC-
chromatograms of different crude extracts from co-cultivations with F. oxysporum and axenic cultures
are shown in Fig. 2. Comparison of the HPLC-chromatograms of extracts obtained from co-cultivation
with A. baylyi ADP1, Lysinibacillus sp.and Pseudomonas sp. showed only moderate differences to the
extract obtained from the axenic F. oxysporum culture, while co-cultivation with B. amyloliquefaciens
strongly repressed overall production of secondary metabolites. In contrast, co-culture with P.
ehimensis resulted in the elicitation of a very different metabolite profile with strong induction of a
peak at retention-time 24.32 minutes that was later identified as 9-O-methylfusarubin (compound 1,
see 2.2), among some additional minor peaks (Fig. 2). These new peaks were not detactable in the

HPLC-chromatograms of extracts from the axenic F. oxysporum and P. ehimensis controls (Fig. 2).

mAU WVL:235 nn|

min

=500
15,0 20,0 25,0 30,0 35,0 40,0 45,0

Figure 2. Overlay of HPLC-chromatograms from different axenic and co-culture extracts measured at
235 nm. The chromatograms of crude extracts from F. oxysporum axenic (1), P. ehimensis axenic (2)
and co-cultures of F. oxysporum with Pseudomonas sp. (3), Lysinibacillus sp. (4), P. ehimensis (5), A.

baylyi ADP1 (6) and B. amyloliquefaciens (7) are overlayed.

2.2 Compound isolation and structure elucidation

The crude ethyl acetate extract of the co-cultivation of F. oxysporum with P. ehimensis was
purified via silica and Sephadex column chromatography and semi-preparative HPLC to yield one
new anthrachinone (2) and the two new naphthoquinone derivatives 3-4 together with seven known
compounds including the five naphthoquinones 9-O-methylfusarubin (1) [21], 9-O-methylbostrycoidin
(5) [21], 2,5-dihydroxy-6,8-dimethoxy-3-(2-oxopropyl)-1,4-naphthalenedione (6) [22], 9-O-
methylanhydrofusarubin (7) [22], 9-O-methylanhydrofusarubinlactol (8) [23], and the two
cyclopeptides beauvericin (9) [24] and beauvericin J (10) [25]. An overview of the chemical structures
of the isolated compounds is provided in Fig. 3. The absolute configuration of compounds 3 and 4 was

determined via single crystal X-ray diffraction.
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14
1 2 3: 1S,3aR,4R,5R,11bR, 1R,3aS,4S,5S,11bS
4: 1R,3aS,4R,5S,11bS, 1S,3aR,4S,5R,11bR

Figure 3. Chemical structures of the isolated compounds from co-culture of F. oxysporum with P.
ehimensis. 9-O-methylfusarubin (1), fusachinon (2), fusapurpurin A (3 — racemic mixture),
fusapurpurin B (4 — racemic mixture), 9-O-methylbostrycoidin (5), 2,5-dihydroxy-6,8-dimethoxy-3-
(2-oxopropyl)-1,4-naphthalenedione (6), 9-O-methylanhydrofusarubin (7), 9-O-

methylanhydrofusarubinlactol (8), beauvericin (9), beauvericin J (10).

Structure elucidation of compound 2:

Compound 2 was isolated as an amorphous orange solid. The molecular formula was assigned
as Ci7H 1407 based on the high-resolution quasi-molecular ion peak at 331.0817 m/z (calcd. for
Ci7H1507 311.0812 m/z). The UV spectrum exhibited high similarity to other co-isolated fusarubin
derivatives. Detailed analysis of the HMBC and HSQC correlations of aromatic methoxy-unit 2-
OCH3 (8 3.96 ppm), aromatic protons H-3 (6 6.96 ppm), H-5 (5 8.35 ppm), H-8 (5 7.62 ppm) and
phenolic protons OH-1 (6 13.17 ppm), OH-4 (& 13.70 ppm) and OH-7 (5 11.21 ppm) revealed an
anthraquinone core structure. The position of C9 (6 187.6 ppm) was confirmed through a strong

HMBC correlation from H-8 and a weak J4 correlation from H-5. The position of C10 (6 183.8 ppm)
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was confirmed the same way mirrored through a strong correlation from H-5 and a weak J4
correlation from H-8. The COSY correlations between H3-12 (6 1.33 ppm) and H-11 (8 5.03 ppm), in
addition to HMBC correlations from H-12 to C-11 (8 62.6 ppm) and C-6 (& 141.6 ppm), a strong
HMBC correlation between H-5 and C11 and an NOE correlation between H-5 and H11 revealed the
presence of the hydroxyethyl group at position C-6. The position of OH-1 was confirmed by strong
HMBC correlations between OH-1 and C-1 (6 149.0 ppm), C-2 (5 156.6 ppm) and C-9a (5 112.0
ppm). In the same manner, position of OH-4 was revealed by HMBC correlations with C-3 (5 107.2
ppm), C-4 and C-4a (& 104.7 ppm). OH-7 was confirmed by correlations with C-6, C-7 (5 158.9 ppm)
and C8 (6 111.3 ppm).

— CcosY /~ 7\ key HMBC
key NOE ,-~~~. key long-range
' ¥ HMBC

Figure 4. Key NMR correlations for 2 (fusachinon)
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Table 1. NMR data for 2 (measured in DMSO-ds at 150 MHz for the *C- and at 600 MHz for the 'H-

NMR spectrum)
position oc* on, m (J in Hz)
1 149.0, C
2 156.6, C
3 107.2, CH 6.96, s
4 159.2,C
4a 104.7,C
5 124.8, CH 8.35,s
6 141.6, C
7 158.9,C
8 111.3,CH 7.62,s
8a 132.9,C
9 186.7, C
9a 112.0,C
10 183.8,C
10a 125.0,C
11 62.6, CH 5.03,dq (4.2, 6.4)
12 23.5, CH3 1.33,d (6.4)
1-OH 13.17, s
2-OCH3 56.5, CH3 3.96, s
4-OH 13.70, s
7-OH 11.21,s
11-OH 5.42,d (4.2)

*signals were extracted from HSQC and HMBC spectra.

Structure elucidation of compounds 3 and 4:

Compound 3

1R,3aS,4S8,5S5,11bS

Compound 4

OH O

18,3aR,4S,5R,11bR
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— COSY /" 7\ key HMBC key NOE (only 4)

COSY (only 3) /7, weak HMBC

Figure 5. Key NMR correlations for 3 (fusapurpurin A) and 4 (fusapurpurin B)

Compound 3 was isolated as an amorphous purple solid, which crystallized in form of pink
square crystals from a mixture of ethyl acetate and n-heptane. The molecular formula was assigned as
C25H2009 based on the high-resolution quasi-molecular ion peak at 465.1177 m/z (calcd. for CasH2109
465.1180 m/z). The UV spectrum exhibited high similarity to other co-isolated fusarubin derivatives,
suggesting a shared chromophore, but had a stronger bathochromic shift in the highest maximum at
around 520 nm. Detailed analysis of the HMBC and HSQC correlations of aromatic methoxy units 9-
OCH3 (6 4.02 ppm), 7-OCH3 (6 3.88 ppm), isolated aromatic proton H-8 (8 7.10 ppm) and chelated
phenolic proton OH-10 (12.99 ppm) revealed a naphthoquinone core structure identical to §-O-
methylfusarubin. The position of carbonyl C-6 (6 175.4 ppm) was confirmed based on a weak
J+-HMBC correlation from H-8, while carbonyl C-11 (& 186.7 ppm) was inferred from the chelated
nature of OH-10 as well as the absence of an HMBC correlation from H-8. The remaining '"H-NMR
signals revealed a phenyl-moiety expressing the typical overlapping multiplet pattern of protons H-13
to H-17 (6 7.03 — 7.12 ppm), a strongly deshielded hydroxyl proton 3a-OH (& 6.71 ppm), three
deshielded methine protons H-5 (8 5.30 ppm), H-11b (6 4.34 ppm), H-4 (& 3.97 ppm) and an aliphatic
methyl unit Hs-1-CH3 (3 1.44 ppm). Detailed analysis of the HMBC and HSQC correlations of signals
H-5, H-11b and H3-1-CH3 revealed the presence of a pyrano-unit connected to the formerly
established naphthoquinone core via fusing carbons C-5a (6 148.9 ppm) and C-11a (6 138.9 ppm). The
orientation of the pyrano-unit relative to the naphthoquinone core was established based on the strong

J3-HMBC correlations of H-11b to C-11 & C-5a and H-5 to C-6 & C-11a.

Compound 4 was isolated as an amorphous purple solid, which crystallized in form of purple
crystals from MeOH. The molecular formula was assigned as C>sH2009 based on the high-resolution
quasi-molecular ion peak at 465.1174 m/z (calcd. for CosH2109 465.1180 m/z). The UV spectrum was
identical to that of 3. The NMR data (Table 2) for compounds 3 and 4 also showed that they are
largely structurally identical. Surprisingly for compound 4, we could observe a lower chemical shift
for position H-4 (8 2.91 ppm) compared to that of compound 3 and positions H-4 and H-5 (8 5.41
ppm) both showing singlet signals instead of doublets. Besides these findings, both compounds share

the same information with only very low differences in the chemical shifts. The missing COSY signals
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for H-4 and H-5 also supported the missing doublet signals in the 'H-NMR. This could be caused by a

dihedral angle that is close to 90° as described by the Karplus equation [26]. Nevertheless, HMBC
signals from H-5 to C-12 (& 136.8 ppm) and H-4 to C-13/17 (6 127.7 ppm) showed a close range and

connection to the phenyl moiety and also proved H-4 and H-5 being directly adjacent to each other.

These findings were independently confirmed through X-ray crystallographic measurements that gave

the absolute configurations shown in Fig. 5. The absolute configuration is also congruent to the

relative configuration found through the NOE signals from the same NMR measurement finding 3a-

OH (3 6.65 ppm), H-4, H-5 and H-11b (6 4.30 ppm) all having the same orientation.

Table 2: NMR data for 3 and 4 (measured in DMSO-d; at 150 MHz for the '*C- and at 600 MHz for
the "TH-NMR spectrum)

.\ Compound 3 Compound 4

position oc* on, m (J in Hz) oc* on, m (J in Hz)
1 105.5,C 104.7,C

176.7, CO 173.3, CO
3a 76.4,C 75.1,C
4 51.6, CH 3.97,d(4.2) 51.5,CH 291,s
5 70.9, CH 5.30,d (4.2) 69.1, CH 541,s
Sa 148.9, C 149.8, C
6 175.4, CO 175.5,CO
6a 109.0, C 109.5,C
7 157.2, CO 156.4, CO
8 105.1, CH 7.10, s 104.2, CH 7.14,s
9 156.3, CO 155.9,CO
10 148.9, C 148.1,C
10a 114.6,C 114.2,C
11 186.7, CO 187.2, CO
11a 138.9,C 135.5,C
11b 46.9, CH 4.34,s 472, CH 4.30, s
12 130.7,C 136.8, C
13/17 131.3,CH 7.03, m, 2H 127.7, CH 7.37, m, 2H
14/16 127.9, CH 7.12, m, 2H 128.6, CH 7.33, m, 2H
15 127.9, CH 7.08, m 128.1, CH 7.29, m
1-CH; 22.9, CH;3 1.44,s,3H 22.4, CHs 1.47,s,3H
3a-OH 6.71,s 6.65, s
7-OCH3;  57.1, OCH3 3,88,s,3H 56.2, OCH; 3.97,s,3H
9-OCH;  57.1, OCH3 4.02,s,3H 56.2, OCH; 4.03,s,3H
10-OH 12.99, s 12.94, s

*signals were extracted from HSQC and HMBC spectra

The constitutions of compounds 3 and 4 with their absolution configurations were confirmed

through single crystal X-ray structures. Before the X-ray structure measurements the compounds were

assumed to be chiral. During the crystallographic data collection no restraints were applied with

respect to acentric or centrosymmetric space groups. Therefore measurement parameters were chosen

for the highest quality absolute configuration data with the Friedel pairs being non-equivalent. During

the data integration and data reduction process the Friedel pairs were also not merged to retain the
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highest quality absolute configuration data. The resulting reduction statistics suggested
centrosymmetric space groups for both compound 3 and 4 for the later solution and refinement of both
compounds, indicating racemic mixtures. Thus, the X-ray structures of both compounds 3 and 4 were
solved and refined in centrosymmetric space groups. Upon structure solution no acentric space group
was suggested.

A centrosymmetric space group contains an inversion centre as a symmetry element. Thus, a
chiral molecule in such a space group will be present in both enantiomeric forms in perfectly equal
amounts, that is, as a racemate or practically very close to a racemic mixture.

For compound 3 this means that the investigated single crystal contained the enantiomers with
configuration 1S,3aR,4R,5R,11bR and 1R,3aS,4S,5S,11bS.

For compound 4 the single crystal had the enantiomers 1R,3aS,4R,5S,11bS and
1S,3aR,4S,5R,11bR, which are the diastereomers and epimers to the content of compound 3.

In the solid state, the O-H groups are engaged in intra- and inter-molecular hydrogen bonding
(Supplementary Fig. S1). The intramolecular packing is further controlled by n-n stacking
interactions (Supplementary Fig. S2). The molecular structures of 3 and 4 cannot pack very

efficiently in the solid state so that solvent filled voids are formed in the crystal lattice

(Supplementary Fig. S3).
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(b)
Figure 6. Molecular structures of compounds 3 (a) and 4 (b) from the single crystal X-ray structure
(50% thermal ellipsoids, H atoms with arbitrary radii). Compound 3 crystallizes with a partially
occupied ethyl acetate molecule (not shown here; see Supplementary Fig. S4), compound 4 with
disordered methanol molecules which were removed by solvent masking during the refinement. (See

Supplementary Fig. S4 and Supplementary Fig. S5 for the atom numbering.)

2.3 Whole genome sequencing, assembly, biosynthetic gene cluster identification and proposed
biosynthesis of compounds 3 and 4

To gather more information about the possible synthesis route of compounds 3 and 4, whole
genome sequencing of F. oxysporum employing nanopore sequencing followed by antiSMASH
processing and comparison was carried out. Because of the high structural relationship to 9-O-
methylfusarubin, the focus was put on biosynthetic gene clusters (BGCs) with high similarity to BGCs
known to be involved in the biosynthesis of fusarubin and derivatives. A core genome identity (ANI)
0f 97.073% with the NCBI reference GCF_000271745.1 using FastANI was established [27], clearly
labelling the assembly as F. oxysporum. The genome assembly consisted of 537 contigs, with 11
contigs exceeding 1,000,000 base pairs (Total assembly length: 53,627,915, Fragment N50: 3253949,
Mean coverage: 215X). An overview of the top 20 assembled contigs and the overall distribution of
contigs from the nanopore sequencing sorted by lengths is provided in the supplementary information
(Supplementary Fig. S6). Subsequently, the assembly was transferred to the antiSMASH fungal
version for comparison to known Fusarium BGCs. This led to identification of a cluster [Region 1] in
contig 160 of the type 1 polyketide synthase (T1PKS) that had a reported similarity of 87% to the
known cluster BGC0001242 from Fusarium fujikuroi IMI 58289, which is responsible for the

biosynthesis of oxyjavanicin (= fusarubin) [23]. For this gene cluster, besides the core biosynthetic
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gene region, nine additional genes with one regulatory gene were reported together with four other

putative genes with unknown functions (Fig. 7).

B STPK  HH RHaSP I AATI LAAO Hyp I OR
F. oxysporum Bl T1PKS 1M OMT MO [ CCR/ADH WM SDR ABH Unknown
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Figure 7. Comparison of the fsr cluster in F. fujikuroi with the F. oxysporum cluster of contig 160
region 1. The sequence identities on the amino acid level are given as percentages. Abbreviations of
the enzymes encoded by the genes are as follows: STPK = serine/threonine protein kinase, RHaSP =
ring-hydroxylating a-subunit domain-containing protein, AAT = amino acid transporter, LAAO = L-
amino acid oxidase, Hyp = hydrophobin, OR = oxidoreductase, T1PKS = type-1 polyketide synthase,
OMT = O-methyltransferase, MO = monooxygenase, CCR/ADH = crotonyl-CoA-reductase/alcohol
dehydrogenase, SDR = short-chain dehydrogenase/reductase, ABH = alpha/beta hydrolase

Compounds 3 and 4 (fusapurpurin A and B) share the same 9-O-methylfusarubin core
structure, which was isolated by us from the crude ethyl acetate extract of the co-cultivation of F.
oxysporum with P. ehimensis as known natural compound 1. 9-O-methylfusarubin has already been
previously described as a pigment produced from different members of the genus Fusarium including
Fusarium oxysporum [21, 22]. In the case of fusapurpurins A and B, the 9-O-methylfusarubin core is
extended by a phenyl pyruvic acid moiety. To our best knowledge, this has never been described for a
fusarubin derivative before and therefore represents a completely new structural subclass. The reported
route to form naphthoquinone structures as basis for different fusarubins is accomplished through
polyketide synthases. While the core structure is built by Fsr1, the introduction of keto- and O-methyl
groups is carried out by Fs#2 and Fsr3 as described in the literature [23]. Interestingly, gene 4 codes
for an amino acid transporter exhibiting 84.5 % identity to the amino acid/polyamine transporter I
from an unrelated F. oxysporum strain that is not present in the reference gene cluster (Accession Nr.
KAH7221724.1). Furthermore, gene B encodes an L-amino acid oxidase with 98 % identity with an
enzyme from F. oxysporum sp. vasinfectum (Accession Nr. EXM20109.1). Thus, we propose that 4
could introduce L-phenylalanine as a phenylpropanoid to the biosynthesis of 3 and 4, while B converts

it into phenylpyruvic acid via oxidative deamination to form the a-keto acid that subsequently is added
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to the 9-O-methylfusarubin core structure. The complete proposed biosynthesis of fusapurpurin A and

B starting from the 9-O-methylfusarubin core structure is presented in Fig. 8.

OH O . (@)
OH o ) Ox. deamination
CH3 HO - HO

NH,,

HaC”

OH O
Ox. 3 )
X " OH
N
e

Diels-Alder
cycloaddition [4+2]

Figure 8. Proposed biosynthetic pathway for formation of compounds 3 and 4. The amino acid L-
phenylalanine (a) is oxidized via oxidative deamination to build phenylpyruvic acid (b). 9-O-
Methylfusarubin (c) reacts with phenyl pyruvic acid (b) in a nucleophilic substitution to form
intermediate d. After an oxidative step to build intermediate e, structure f (compounds 3 and 4) is built

via a Diels-Alder cycloaddition [4+2] as the final step to build the proposed racemic products.

The Diels-Alder reaction shown in Fig. 8 could be mediated enzymatically by a Diels-
Alderase. While the predicted functions of proteins encoded in the gene cluster shown in Fig. 7 did not
provide such an enzyme, we identified a gene putatively coding for a Diels-Alderase in contig 44
region 8 in our F. oxysporum strain. This gene is part of a gene cluster that has 45 % similarity with an
equisetin gene cluster from Fusarium heterosporum ATCC 74349 (Fig. 9).
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Figure 9. Comparison of a segment of the egx gene cluster in F. heterosporum with the F. oxysporum
cluster of contig 44 region 8. The sequence identities on the amino acid levels are given as
percentages. Abbreviations of the enzymes encoded by the genes are as follows: Hybrid PKS-NRPS =
hybrid polyketide synthase-nonribosomal peptide synthase, DA = Diels-Alderase, CPN10 =

chaperonin 10-like protein, TER = trans-enoyl reductase, OMT = O-methyltransferase

While the known Diels-Alderase gene egx3 from F. heterosporum has 60 % identity on the
amino acid level with E, E shares 95 % identity on the amino acid level with a putative Diels-Aderase
from F. oxysporum f. sp. matthiolae (Accession Nr. KAH7489926.1). The essential role of the Diels-
Alderase FsaZ2, which is encoded by egx3, in the biosynthesis of equisetin has already been described
[28]. The same reaction is also described for the fungus Chaetomium globosum in the biosynthesis of
the compound Sch 210972, which is structurally closely related to equisetin [29]. Other examples of
fungal Diels-Alderases that are involved in the biosynthesis of secondary metabolites are solanapyrone
synthase from Alternaria solana in the production of solanapyrone A [30], LovB from Aspergillus
terreus in the biosynthesis of Lovastatin [31] or the macrophomate synthase MPS from Macrophoma
commeliniae to yield macrophomic acid [32]. Further work is required to demonstrate whether the
proposed biosynthetic pathway shown in Fig. 8 is plausible and whether P encoded in the F.
oxysporum cluster of contig 44 region 8 or other Diels-Alderase potentially present in this fungus are
indeed involved in the biosynthesis of fusapurpurin A and B.

Another question is how compounds 3 and 4 could be built up as racemic or scalemic mixtures. While
natural products most of the time are described as chiral molecules, research about the biosynthesis of
racemic natural compounds is rather scarce. On the one hand, the biosynthesis of chiral natural
products through enzymatically driven pathways is a reasonable outcome. On the other hand, the
biosynthesis of racemic natural products is described in several publications, including alkaloids and

polyketides, and often seems to be rather underestimated [33].
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In the case of compounds 3 and 4, the proposed pericyclic reaction described in Fig. 8 connecting the
9-O-methylfusarubin with the phenylpyruvate moiety could be mediated in a reaction having a radical
intermediate, which quickly is being rearranged. This could be a driving factor for the production of
different configurations [34]. In general, natural Diels-Alderases are not clearly defined and unified. It
is described that often they seem to have a certain stereoselectivity, but also that some enzymes lead to
the production of at least two isomers. Also, pericyclic reactions often can happen spontaneously,
without enzymatic catalysis, which could support the non-stereoselective production of isomers [35].
The appearance of at least four isomers definitely is intriguing. For future research, it will be of great
interest to elucidate the biosynthetic pathway and possible corresponding reactions in detail, which
lead to the different isomeric forms of this novel substructure of fusarubin-derivatives.

With respect to the biosynthetic pathway, also the strong promotion of 9-O-methylfusarubin
production (compound 1) during co-culture with P. ehimensis is noteworthy (Fig. 2) as this molecule
likely is the direct precursor for synthesis of the novel fusapurpurins A and B (compounds 3 and 4).
While it is currently not known how presence of P. ehimensis, but not of the other tested bacterial
species, specifically stimulates 9-O-methylfusarubin formation in F. oxysporum, elucidation of the F.
oxysporum genome sequence now opens an avenue to identify genes potentially involved in

fusapurpurin biosynthesis employing comparative transcriptomic and/or proteomic analyses.

2.4 Biofilm-dispersing activities

Initial explorative bioactivity testings with Mycobacterium tuberculosis H37Rv revealed a low
biofilm-dispersing activity in addition to a direct antibacterial effect of the crude ethyl acetate extract
of the co-cultivation of F. oxysporum with P. ehimensis. Thus, the pure compounds derived from the
isolation process were submitted to assays assessing their ability to disperse preformed biofilms
against three important human pathogenic bacteria known to notoriously form biofilms during chronic
infections: the gram-positive methicillin-resistant Staphylococcus aureus (MRSA) strain Mu50, the
gram-negative Pseudomonas aeruginosa strain PAO1, and M. tuberculosis strain H37Rv.
Interestingly, the racemic mixtures of compounds 3 and 4 showed potent biofilm-dispersing activities
against both MRSA Mu50 and P. aeruginosa PAO1 with IC90 of 6.25 uM and 12.5 uM, respectively
(Fig. 10 A+B), while only 4 caused partial dispersion of M. tuberculosis H37Rv biofilms at the
highest tested concentration of 100 uM (Fig. 10 E). Intriguingly, both fusapurpurins were unable to
prevent the formation of biofilms (Fig. 10 C+D) . Furthermore, they also did neither impair viability
of cells in biofilms (Supplementary Fig. S7) nor show any direct antimicrobial effect on actively
growing submersed microbial cells (Table 3). Quorum sensing has been identified as a cell density-
dependent mechanism of cell-cell communication that is involved in all steps of biofilm development
and maturation [36]. Consistent with the inability to prevent biofilm-formation, the fusapurpurins also
did not interfere with quorum sensing-induced violacein production in a bioassay employing

Chromobacterium violaceum (Supplementary Fig. S8).
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Consequently, both fuspurpurins exhibit an unusal, very specific desintegratiung effect at low

micromolar concentration only when added to preformed biofilms. This effect appears to be broad

spectrum including both gram-positive and gram-negative bacteria and to a lesser extent also

mycobacteria.
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Figure 10. Fusapurpurin A and B (3 and 4) mediated dispersion of preformed biofilms in MRSA

Mu50 (A) and P. aeruginosa PAO1 (B). Moxifloxacin, a bactericidal antibiotic only active gainst

replicating bacterial cells, and DMSO were used as negative controls.

Fusapurpurin A and B (3 and 4) do not prevent biofilm formation when added to suspended cells of
MRSA Mu50 (C) and P. aeruginosa PAO1 (D). Moxifloxacin, a bactericidal antibiotic active gainst

replicating bacterial cells, was used as positive control, and DMSO was used as negative control. The

graphs show the biofilm integrity compared to the control in MRSA Mu50 (C) and P. aeruginosa

PAO1 (D) when fusapurpurin A and B are added during biofilm formation.
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Disruption of biofilm integrity in Mycobacterium tuberculosis H37Rv by fusapurpurin B (E).
Fusapurpurin A and B were adjusted at 100 uM to the preformed mycobacterial biofilm. Isoniazide
(INH, 200 uM) and rifampicin (RIF, 350 uM) were used as controls. UT = Untreated biofilms. All

assays (A-E) were carried out in triplicates and graphs show mean + SEM.

Table 3. MICy of isolated compounds against MRSA Mu50, P. aeruginosa PAO1, Candida albicans
ATCC 24433 and M. tuberculosis H37Rv. All concentrations are shown in pM. Concentrations >100
uM indicate no activity in the experimental setup. The experiment was conducted in triplicates. All
compounds except 9 were virtually devoid of antimicrobial activity. Compound 9 (beauvericin)
showed weak antibacterial activity against MRSA Mu50 with an MICy of 50 uM and good activity
against Mtb H37Rv at 3.125 uM, which is in agreement with the antibacterial and antimycobacterial

activity of this mycotoxin reported in the literature [37].

MICy [uM]
Compound S. aureus Mu50 P. aeruginosa C. albicans M. tuberculosis
PAO1 ATCC 24433 H37Rv
1 >100 >100 >100 >100
2 >100 >100 >100 >100
3 >100 >100 >100 >100
4 100 >100 >100 >100
5 >100 >100 >100 >100
6 >100 >100 >100 >100
7 >100 >100 >100 >100
8 >100 >100 >100 >100
9 50 >100 >100 3.125
10 >100 >100 >100 >100

Bacterial biofilms are virulence factors that are complicating treatment, prolonging infections
and increasing mortality of infectious diseases and are therfore a huge health concern [38]. Thus, the
discovery of new and potent biofilm-inhibiting compounds is crucial. In addition of compounds that
are able to prevent biofilm formation and/or kill bacterial cells imbedded in the biofilms, molecules
able to disintegrate the biofilm matrix thereby removing biofilms from biotic and abiotic surfaces are
also of great clinical relevance [36]. Therefore, our discovery of the specific biofilm-desintegrating
properties of fusapurpurin A and B at low micromolar concentrations are of potential medical interest
as these compounds in combination with antibiotics targeting the dispersed bacterial cells might be
able to eradicate chronic bacterial infections. In this regard, the unusual broad-spectrum activity of
these compounds against a gram-positive, a gram-negative and a mycobacterial organism is a highly
beneficial attribute as it might suggest potential broad clinical applicability. For future research, it will
be of great interest to distinguish, if the activity of 3 and 4 is connected to either one of the two

enantiomers of the mixture or if all isolated isomers show a biofilm disrupting activity. If the shown
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activity is only connected to one enantiomer, the biofilm disrupting activity could be stronger than
expected, elucidating an even higher potential.

In order to assess the therapeutic potential of the fusapurpurins, the cytotoxic activity of
compound enantiomeric mixtures 3 and 4 was evaluated against the human cell lines THP-1 (human
monocytic leukaemia cell line), Huh-7 (Human liver carcinoma cell line), and HEK293 (human
embryonic kidney cell line). Compound 3 showed weak cytotoxicity against THP-1 and Huh-7 cell
lines and no cytotoxic effect on the Hek 293 cell line, while compound 4 showed moderate cytotoxic
activities against all three tested cell lines, showing no to moderate cytotoxic effects (Table 4).
Although this results in some selectivity particularly for fusapurpurin A (compound 3) (selectivity
index = IC50 cytotoxicity / I[C90 antibiofilm activity against MRSA ranging from 6 to >16 dependent
on human cell type), these properties might not be sufficient for direct clinical application.
Nevertheless, elucidation of the mode of action of fusapurpurin A and B and identification of their
molecular target might allow the development of more potent and more specific broad-spectrum

biofilm-desinteragting drugs in future studies.

Table 4. Mean ICs values of compounds 3 and 4 against human cell lines THP-1, Huh-7 and Hek293.
All concentrations are shown in uM. A concentration >100 uM indicates no activity in the
experimental setup. All experiments have been conducted in triplicates. The ICs values were

calculated using GraphPad Prism 7. 100 % growth control: DMSO. 0 % growth control:

cycloheximide.
Mean ICsy [pM]
THP-1 Huh-7 Hek 293
Compound
3 40.66 47.85 >100
4 11.57 12.67 26.81
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3. Experimental section
3.1 General Experimental Procedures

Optical rotations were measured on a Jasco P-2000 polarimeter. UV spectra were obtained by
the use of a Dionex P580 system in combination with a diode array detector (UVD340S) and a
Eurosphere 10 C18 column (125x4 mm). 1D and 2D NMR spectra were recorded on a Bruker Avance
111 (‘H, 600 MHz; '*C 150 MHz) spectrometer. Mass spectra were measured on a Finnigan LCQ Deca
(Thermo Quest) mass spectrometer and for HRESIMS on a UHR-QTOF maXis 4G (Bruker Daltonics)
mass spectrometer. Semipreperative HPLC was performed on a Lachrom-Merck Hitachi system
(pump L7100, UV-detector L7400, Eurospher 100 C18 column 300x8 mm, Knauer Germany) and a
Chromaster-VWR Hitachi system (pump 5110, UV-detector 5410, Eurospher 100 C18 column 300x8
mm, Knauer Germany). VLC and non-vacuum-column chromatography were accomplished using
Macherey Nagel silica gel 60M (0.04-0.063 mm). Precoated TLC silica gel 60 F254 plates (Merck)
were used for tracking separation using detection under UV light at 254 and 365 nm wavelengths or
spraying Anisaldehyde-sulfuric acid reagent. Sephadex LH20 (GE Healthcare Bio. Sciences AB) was
used as a stationary phase for column chromatography. The measurement of optical rotations was
accomplished by using spectral-grade solvents. The optical density of fungal yeast cultures was

measured using a WPA Biowave CO8000 Cell Density Meter.

3.2 Fungal Material

The fungus Fusarium oxysporum was obtained from a soil sample collected from Texel, the
Netherlands (GPS 53.00 N 4.44 E) by using a co-cultivation method. A spatula of the soil was mixed
with 100 pl from an overnight culture of the auxotrophic yeast Saccharomyces cerevisiae FY1679-
01B with the optical density of 1.0 and 20 ml Lysogeny Broth (LB)-medium in a 100-ml Erlenmeyer
flask. The co-cultivation mixture was incubated statically for 14 days at 30 °C, initially aiming at
enriching microorganisms that can antagonize yeast growth. 10 pl of the liquid co-culture were spread
on an agar plate containing Yeast Nitrogen Base without Amino Acids (BD Difco), enriched with D-
glucose and 20 mg/1 chloramphenicol, using a spatula and incubated for 3 days at 30 °C. The fungus
was growing on top of the agar plate as a white filamentous spot. The isolated strain was identified as
Fusarium oxysporum by internal transcribed spacer (ITS) sequences with 100 % identity to known
Fusarium oxysporum (GenBank Accession OP122502). Additionally, the identity was confirmed via
whole genome sequencing with a core genome identity (ANI) of 97.073% with the NCBI reference
GCF_000271745.1 using FastANI (GenBank Accession PRINA861985).

3.3 Fermentation and Extraction
The fermentation of the fungus was carried out as a co-cultivation approach, first at a small-
scale to compare different co-cultivation attempts followed by large-scale cultivation for isolation

purposes. For all samples, solid rice medium enriched with Lysogeny Broth (LB)-medium was used as
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the main nutrient. For the small-scale co-cultivation approaches, 100 g of rice and 100 ml of LB-
medium were added to seven Erlenmeyer flasks followed by autoclaving. 10 ml of overnight cultures
of five different bacteria respectively, namely Acinetobacter baylyi ADPI, Pseudomonas
qingdaonensis, Bacillus amyloliquefaciens, Lysinibacillus macroides and Paenibacillus ehimensis
were then each added to one of these Erlenmeyer flasks and incubated for four days at 22 °C under
static conditions. Then 1 x 1 cm? fungal material was inserted into each of the Erlenmeyer flasks
containing bacterial cultures using a flame-sterilized scalpel and into one of the Erlenmeyer flasks not
containing bacterial cultures as a control. One Erlenmeyer flask was used as a background control for
the LB medium. All flasks were then incubated for four weeks at 22°C under static conditions. For the
large-scale co-cultivation approach, ten Erlenmeyer flasks were prepared with rice and LB-medium as
mentioned above. 10 ml of an overnight culture of P. ehimensis was then added to each flask and
incubated for 4 days at 22°C under static conditions followed by the addition of 1 x 1 cm? fungal
material and incubation for four weeks at 22°C under static conditions. Each flask of the small-scale
and large-scale fermentations was extracted with 250 ml Ethylacetate. The rice medium was cut into

small pieces and shaken for eight hours followed by evaporation of the EtOAc.

3.4 Isolation

The crude extract (3.89 g) obtained from the large-scale co-cultivation with P. ehimensis was
separated by the use of Vacuum Liquid Chromatography with silica gel as a stationary phase. A step
gradient from 100 % hexane to 100 % EtOAc followed by a step gradient from 100 % CH,Cl, to 100
% CH3CN and finished with 100 % EtOH, with 500 ml for each eluent, yielded 16 fractions (V1-V16).
Fractions V3 (787.9 mg), V4 (901.6 mg) and V5 (328.6 mg) were combined and further separated
over a Sephadex LH20 column with Acetone as eluent to give 6 subfractions (V3-5S1-V3-5S6).
Subfraction V3-555 (35.3 mg) was purified over semi-preparative HPLC using a MeOH-H,O step
gradient from 50-100 % MeOH to give 2 (2.9 mg). Fractions V6 (229.7 mg), V7 (28.0 mg), V8 (2.8
mg), V9 (5.9 mg), V10 (11.0 mg), V11 (13.9 mg), V12 (41.9 mg), V13 (56.8 mg), V14 (72.8 mg) and
V15 (38.8 mg) were combined and then separated using a LH20 Sephadex column with 100 %
Acetone as an eluent to yield 4 subfractions (V6-15S1-V6-15S4). Subfraction V6-15S1 was finally
purified over semi-preparative HPLC using a CH3CN-H20 step gradient from 30-80 % CH3CN to
give 3 (2.4 mg) and 4 (2.9 mg).

Spectral Data of compounds 2-4:

Fusachinon (2): orange amorphous solid; [a/*’p -65 (¢ 0.8, MeOH) hmax 230, 277, 480 nm; 'H
NMR (DMSO-de) and *C NMR (DMSO-ds) see Table 1; HRESIMS m/z 331.0817 [M + H]" (calcd.
for Ci7H1507 311.0812 m/z).
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Fusapurpurin A (3): pink crystals (Ethylacetate); UV (MeOH) Amax 200, 226, 284, 520 nm;
"H NMR (DMSO-d¢) and *C NMR (DMSO-de) see Table 2; HRESIMS m/z 465.1177 [M + H]*
(calcd. for CysH2109 465.1180 m/z).

Fusapurpurin B (4): purple crystals (MeOH),; UV (MeOH) hmax 201, 226, 283, 520 nm; 'H
NMR (DMSO-de) and *C NMR (DMSO-ds) see Table 2; HRESIMS m/z 465.1174 m/z [M + H]"
(calcd. for CasH2109 465.1180 m/z).

The detailed NMR- and other spectral data for compounds 1-10 are provided in the
supplementary information S9-S68.

3.5 X-ray crystallographic data

Suitable crystals were carefully selected under a polarized-light microscope, covered in
protective oil and mounted on a cryo-loop. The single crystal diffraction data was collected on a Rigaku
XtaLAB Synergy S four circle diffractometer with a Hybrid Pixel Array Detector and a PhotonJet X-
ray source for Cu-Ka radiation (A = 1.54184 A) with a multilayer mirror monochromator. Data was
collected at 100.0 + 0.1 K using w-scans. Data reduction and absorption correction were performed with
CrysAlisPro 1.171.41.105a [39]. Structure analysis and refinement: The structures were solved by direct
methods (SHELXT-2015), Full-matrix least-squares refinements on F? were carried out using the
SHELXL-2017/1 program package in OLEX 2.1.3 [40-42]. All hydrogen atoms on C were positioned
geometrically (with C—H = 0.95 A for aromatic and aliphatic CH, C—H = 1.00 A for ternary CH, C-H =
0.99 A for CH, and C-H = 0.98 A for CH3) and refined using riding models (AFIX 43, 13, 23 and 137
with Uiem = 1.2 Ueq (CH, CHy) and 1.5 Ueq (CH3). The protic hydrogen atom for OH in compound 3
and 4 was found and refined freely. Strongly disorderd solvent molecules of MeOH for compound 4
have been removed with the solvent mask feature as implemented in OLEX 2.1.3. 176 electrons were
found in a volume of 1300 A3 per unit cell, which may correspond to about 10 methanol molecules
(18 electrons each) as the solvent of crystallization per unit cell or about 1.25 methanol per asymmetric
unit (Z = 8). Crystal data and details on the structure refinement are given in Table 5. Graphics were
drawn with the program DIAMOND [43]. Computations on the supramolecular interactions were
carried out with PLATON for Windows [44-46]. The crstallographic data for compound 3 and 4 reported
in this paper has been deposited in the CCDC under the numbers 2232516 and 2232517. This data can
be obtained free of charge from the Cambridge Crystallographic Data Centre via

www.ccde.cam.ac.uk/data_request/cif.
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Table 5. Crystal data and structure refinement for compounds 3 and 4.

Compound 3

Compound 4

Formula

M;

Cryst. size, mm?
Crystal system
Temp. (K)

Space group

a, A

b, A

c, A

Vv, A3

Z

Deaied, g cm™

u, mm-!

0 range (°)

F(000)

Trans. (max/min)
hkl range

Refl. measured
Refl. unique

Rint

Param. Refined/Restraints
GoF (F?)®

Ri/wWR, [I>26 (I)] ®
Ri/WR; (all data) ®
Max./min. Ap (e. A?)°
CCDC number

C25H2009, 0.401(C4H30»)
499.74

0.18 x 0.15 x 0.02
orthorhombic
100

Pnna

14.4569 (2)
24.5575 (4)
12.8869 (2)
4575.18 (12)
8

1.451

0.940

3.6-67.1

2090
0.991/0.991
+17; £29 15
28841

4096

0.039

363/0

1.162
0.0598/0.1438
0.0644/0.1466
0.54/-0.42
2232516

C25H2009, 1.25(CH30H)

464.41

0.15 x 0.12 x 0.08

orthorhombic
100

Pbcn

17.8013 (5)
13.8375 (4)
20.7494 (6)
5111.1 (3)

8

1.207

0.780
4.1-67.1

1936
0.992/0.992
+21; £16; £24
43551

4545

0.061

316/0

1.553
0.1095/0.3282
0.1182/0.3438
0.674/-0.556
2232517

* Goodness-of-fit = [Y[W(F,* — F&)?(n — p)I'% ° R=[X([Fo] — [Fel/E[Foll; wRA[X[W(Fo* —

F)2/Y [W(F)?1]2; © Largest difference peak and hole.
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3.6 Whole genome nanopore sequencing and genome assembly

For long-read nanopore sequencing, the GDE 9141 v112 revE 01Dec2021 protocol for
ligation sequencing of genomic DNA was followed, using the SQK-LSK 112 ligation kit and a
MinlON Flow Cell R10 Version. Reads were assembled using Flye [47]. Assembled contigs are
available under the SRA accession [PRINA861985]. The antiSMASH software [48] was used to
detect gene clusters and identify potential genes of interest involved in the production of fusarubin and

derivatives.

3.7 Biofilm assays

Biofilm assays were performed as previously described [49]. Briefly, biofilm integrity was
evaluated using the crystal violet assay. A bacterial cell suspension was prepared in Mueller-Hinton
broth supplemented with 10% glucose and adjusted to an OD equal to 10® cells per mL. One hundred
microlitres of the bacteria cell solution were added to each well and incubated statically for 24 h at 37
°C to allow the formation of biofilms. The wells were washed twice with PBS to remove planktonic
cells and compounds were added in a 1:1 serial dilution to the wells. Crystal violet staining was
performed 24 h later as follows. The liquids in the wells were aspirated and each well was washed
twice with PBS. After air drying for 30 min, 100 pL of a 0.1% crystal violet solution was added and
allowed to stain the biofilms for 15 min. Afterwards, the plates were washed twice with PBS and 100
uL 30% acetic acid was added for 30 min to solubilise the dye. Fifty microlitres were transferred to a
fresh 96-well round-bottom plate and absorption was measured at 600 nm in a TECAN plate reader. A
sterile and vehicle control were used as controls for calculations.

For mycobacterial biofilms, 24-well polystyrene flat-bottom cell culture plates and Sauton
medium without tyloxapol were used. A saturated Mtb H37Rv culture in Sauton medium (ODggo = 1.0)
was used to start the growth of the biofilms. 450 uLL Sauton medium and 50 pL saturated Mtb H37Rv
cell suspension was added to each well of the 24-well plate. The plate was covered with a clear sealing
foil and was incubated for five weeks at 37 °C, 5% CO,, and humified atmosphere to allow the formation
of the biofilms. Hereafter, test compounds were injected beneath the pellicle to a final concentration of
100 uM. Rifampicin (RIF, 100 pg/mL = 121.5 pM), isoniazid (INH, 50 pg/mL = 365 uM), and DMSO
were used as a positive and negative control, respectively. After five days, the medium was carefully
removed from each well without disturbing the pellicle and 1000 pL of a 0.1% crystal violet solution
was added to stain the extracellular polymeric substances. After staining for 30 minutes, the staining
solution was removed and the wells were washed twice with PBS. The pellicles were allowed to air-dry
for 15 minutes and 500 pL methanol was added to each well to extract the colour from the pellicles.
Using a polystyrene 96-well round bottom plate, 100 pL of each well was transferred into the 96-well
plate and absorbance was measured at 600 nm in a TECAN plate reader.

The quorum sensing assay with Chromobacterium violaceum was carried out as follows. 100

uL of an overnight culture of C. violaceum in Mueller Hinton broth (MHB) were evenly spread over
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an agar plate of Mueller Hinton medium. Cotton test discs were put on the surface of the agar medium
using forceps. Each disc was soaked with 5 pLL of samples or control solutions in DMSO. 125 mg/mL
vanillin was used as a positive control. DMSO was used as negative control. Samples were added at
concentrations of 10 mg/mL and for fusapurpurin A and B at 100 uM. Test plates were incubated at
30°C over night.

3.8 Cytotoxicity assays

The cytotoxicity assays were performed using THP-1 (human monocytic leukaemia cell line),
Huh-7 (Human liver carcinoma cell line) and HEK293 (human embryonic kidney cell line) cell lines
as described before [50]. The THP-1 cells were cultured using RPMI 1640 medium containing 2 mM
L-glutamine and supplemented with 10 % fetal calf serum (FCS) and 1 % sodium pyruvate. Huh-7
cells were cultured using a 1:1 mixture of RPMI 1640 medium containing 2 mM L-glutamine and 10%
FCS medium and DMEM medium containing 10% FCS and 1% sodium pyruvate. The HEK293 cells
were cultured with EMEM medium including 2 mM L-glutamine and supplemented with 1% NE
amino acids, 1% 1.0 mM sodium pyruvate and 10% FCS. All three cell lines were then incubated at 37
°C in an atmosphere of 5 % CO; at humid conditions for 2 weeks while renewing the medium twice
weekly. Subsequently, the cells were suspended and adjusted to a density of 2 x 10° cells/ml. In a 96-
well flat-bottom microtiter plate, the cells were adjusted to a total volume of 100 pl containing 2-fold
serial dilutions of the tested compounds 2 and 3 ranging from 100 to 0.78 uM. Cycloheximide (4, 2, 1,
0.5, 0.25,0.13, 0.06, 0.03 png/ml) was used as a positive control. After an incubation time of 48 h at 37
°C in an atmosphere of 5 % CO» under humid conditions, 10 pl resazurin solution (100 pg/mL) was
added to each well and incubated for another 4 h. The fluorescence was then quantified using a Tecan
Infinite 200pro microplate reader (excitation 540 nm, emission 590 nm). The residual growth was
calculated relative to non-inoculated (0 % growth) and controls treated with DMSO (100 % growth),

respectively.

3.9 Media and Strains

Methicillin-resistant Staphylococcus aureus (MRSA) Mu50 (ATCC 700699) and
Pseudomonas aeruginosa PAO1 (ATCC 47085) were grown in Mueller-Hinton-broth (MHB). The
yeast Candida albicans ATCC 24433 was grown in a standard YPD medium (1% yeast extract, 2%
peptone, and 2% glucose). The pathogenic bacterium Mycobacterium tuberculosis (Mtb) H37Rv
(ATCC 27294) was grown in 7H9 supplemented with ADS (0.85% NaCl, 5% BSA, 2% glucose),
0.5% glycerol, and 0.05% tyloxapol. Nosocomial bacteria and C. albicans were grown shaking at 120

rpm and 37 °C, Mtb was grown at 37 °C shaking at 80 rpm.
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3.10 Determination of the minimal inhibitory concentration

The minimal inhibitory concentration (MICog) of compounds was determined via microbroth
dilution assays. Briefly, a serial 1:1 dilution of compounds was prepared in a 96-well round-bottom
polystyrene plate in 50 uL. growth medium ranging from 200 uM to 1.56 pM. Pre-grown bacterial
cultures were measured for their ODgoonm, and a cell suspension in the growth medium was adjusted to
10° CFU/ml. After 50 pL of the cell suspension was added to each well, the compound concentration
changed to a range from 100 pM to 0.78 uM. In the case of MRSA Mu50, P. aeruginosa PAO1 and C.
albicans ATCC 24433, the BacTiter Glo assay (Promega) was used to quantify growth after 24 h of
incubation as described in the manufacturer’s manual. Briefly, equal volumes of BacTiter Glo reagent
and bacterial cell suspensions were mixed in a white flat-bottom 96-well plate. After 5 minutes,
luminescence was measured with a TECAN plate reader. The positive control for MRSA Mu50 and P.
aeruginosa PAO1 was moxifloxacin and for C. albicans hygromycin was used, while DMSO was
used as solvent control for all three organisms. The growth of Mtb H37Rv was quantified via the
resazurin assay following a protocol as described earlier [S1]. Briefly, 10 uL of a 100 ug/mL resazurin
solution was added to each well of the 96-well plate after five days of incubation at 37 °C, 5% CO,,
and in a humidified atmosphere. After incubating the plates for another 18 hours at room temperature,
the reaction was stopped by the addition of 100 pL 10% formalin solution to each well. The
fluorescence was measured at 535 nm excision and 590 nm emission using a TECAN plate reader.
Rifampicin and DMSO were used as positive and vehicle control, respectively. All experiments have

been conducted in triplicates.

3.11 Impairment of cell viability in biofilms

The impairment of cell viability in biofilms of Staphylococcus aureus (MRSA) Mu50 (ATCC
700699) and Pseudomonas aeruginosa PAO1 (ATCC 47085) by fusapurpurin A and B (3 and 4) was
tested in a microbroth dilution assay. First, cells were grown to form biofilms as described above.
Subsequently, a serial 1:1 dilution of fusapurpurin A and B and moxifloxacin was prepared in a 96-
well round-bottom polystyrene plate containing the bacterial biofilms, using 50 pL growth medium
ranging from 100 pM to 0.78 uM. The viability of cells in the biofilms was measured using the
BacTiter Glo assay (Promega) as described above. DMSO was used as solvent control for both
organisms.
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S1. Hydrogen bonding interactions of compound 3 and 4

(b)

Hydrogen-bonding interaction in the structures of 3 (a) and 4 (b). The hydrogen-bonding
parameters are given in Table S1
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Table S1. Hydrogen-bond geometry (A, °) in the solid-state structures of compound 3 and 4

D—H -4 D—H H-A DA D—H -4
Compound 3

O3—H3---02 [0.90 (4) 1.68 (4) 2.534(2) 156 (4)
09—H9---06' |0.96 (4) 1.75 (4) 2.689 (3) 164 (4)
Compound 4

O3—H3---02 |0.87 (6) 1.72 (6) 2.571 (4) 163 (6)
09—H9---06' |0.76 (7) 1.96 (7) 2.680 (4) 160 (6)

Symmetry code: Compound 3 (i) x-1/2, y, -z+1. Compound 4 (i) -x+3/2, y-1/2, z
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S2. n-m stacking interactions in 3 and 4

(a)

(b)

n-1 stacking interactions in compound 3 (a) and 4 (b) with the centroid-centroid distances
indicated.
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S3. Section of the packing diagram in compound 3 and 4

(b)

Section of the packing diagram in compound 3 (a) and 4 (b) showing the solvent-filled voids.
For compound 3 the partially-occupied ethyl acetate is indicated semi-transparent. In
compound 4 disordered methanol molecules which were removed by solvent masking during
the refinement, hence cannot be shown.
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S4. Molecular structure of 3 from the single crystal X-ray structure

Molecular structure of compounds 3 from the single crystal X-ray structure (50% thermal
ellipsoids, H atoms with arbitrary radii) with the ethyl acetate solvent molecule of
crystallization. The atoms of the ethyl acetate molecule are only partially occupied (sof = 0.4).
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S5. Molecular structures of 3 and 4 with full atom numbering from the single
crystal X-ray structure

(b)

Molecular structures of compounds 3 (a) and 4 (b) with full atom numbering from the single
crystal X-ray structure (50% thermal ellipsoids, H atoms with arbitrary radii).
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S6. Top 20 assembled contigs and distribution of contigs

Distribution of assembled contig lengths
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S6 shows the top 20 assembled contigs and the overall distribution of contigs from the
nanopore whole genome sequencing, both sorted by lengths

S7. Effect of fusapurpurin A and B (3 and 4) on the cell viability of S. aureus
Mu50 and P. aeruginosa PAO1 in preformed biofilms

>

B

150+

-

[$2]

o
1

-+ DMSO

=¥ Moxifloxacin
-

-0

e e = e

50 50

Fusapurpurin B

biofilm viability [%o of control]

0 +rrr—————rrrry o+—r—

1 10 100 1 10
c [pM] ¢ [nM]

S7 is showing the effect of fusapurpurin A (3), fusapurpurin B (4) and the antibiotic
moxifloxacin on the viability of cells in bacterial biofilms formed by MRSA Mu50 (A) and P.
aeruginosa PAO1 (B). Fusapurpurin A, fusapurpurin B and moxifloxacin do not impair the
viability of cells in biofilms. DMSO was used as negative control. Both assays were carried
out in triplicates. Graphs show mean + SEM.
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S8. Quorum quenching assay of fusapurpurins in Chromobacterium violaceum

— p—

The ability to inhibit quorum sensing (QS) was evaluated using C. volaceum. The positive
control vanillin (V) inhibits QS, indicated by the colourless circle surrounding the test discs,
while negative control DMSO is inactive, indicated by the intensive staining of the test disc

and the bacteria around. The different test samples, including fusapurpurin A and B did not
inhibit QS.
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S9. NMR Table of Compound 1 (9-O-methylfusarubin) (DMSO-ds, 'H:
600MHz)

9-O-methylfusarubin

Chemical Formula: C4gH407
Exact Mass: 320,09
Molecular Weight: 320.30

position on, m (J in Hz)
1 444, m
451, m
4 2.40, m
2.60, m
8 7.06, s
3CH3 1.44,s,3H

70CH;  3.93,s,3H
90CH;  3.99,s,3H
3-OH 6.05,d (1.4)
6-OH 13.00, s
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S10. 'H-NMR Spectrum of Compound 1 (9-O-methylfusarubin) (DMSO-ds, 600

MHz)
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S11. HPLC-DAD UV-Vis Spectrum of Compound 1 (9-O-methylfusarubin)

(Methanol)
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S12. ESI(+)MS Spectrum of 1 (9-O-methylfusarubin)

F:\115-004a 1/25/2021 1:04:42 PM V.Simons, FFPE S4 K2 H1
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S13. NMR Table of Compound 2 (fusachinon) (DMSO-ds, 'H: 600MHz, 1*C:
150 MHz)

1,4,7-trihydroxy-6-(1-hydroxyethyl)-2-  __ CosY m key HMBC
methoxyanthracene-9,10-dione
Chemical Formula: C47H40- key NOE ---~_ key long-range
Molecular Weight: 330,29 ! Y HMIBC
position oc* on, m (J in Hz)
1 149.0, C
2 156.6, C
3 107.2, CH 6.96, s
4 159.2,C
4a 104.7,C
5 124.8, CH 8.35,s
6 141.6, Ca
7 158.9,C
8 111.3,CH 7.62,s
8a 132.9,C
9 186.7,C
9a 112.0,C
10 183.8,C
10a 125.0,C
11 62.6, CH 5.03,dq (4.2,6.4)
12 23.5, CH3 1.33,d (6.4)
1-OH 13.17,s
2-OCH3 56.5, CH3 3.96,s
4-OH 13.70, s
7-OH 11.21,s
11-OH 542,d(4.2)

*signals were extracted from HSQC and HMBC spectra.
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S14. "TH-NMR Spectrum of Compound 2 (fusachinon) (DMSO-ds, 600 MHz)
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S15. BC-NMR Spectrum of Compound 2 (fusachinon) (DMSO-d;, 150 MHz)

Simons.1251.fid

FFPE-V3-S-S5 - H6 {36000

52 DMSO-d6

{34000
{32000

‘ ‘ {30000

s o,
/KBE/
28000

E \’
6. 10a, 4a.
Y \'O/ {26000
I
{24000

{22000

{20000
{18000
{16000
{14000
{12000
{10000
(8000

L6000

{4000

7 [] ® 0
910 00 0 6 8 10a (B 11 20CH3 e -2000

{--2000

210 " 200 180 " 180 " 170 “ 160 “ 150 " 1do " 130 120 1o 160 90 80 70 e S0 40 30 20 10 06 -lo
f1 (ppm)

209



S16. 'H-*C-HSQC Spectrum of Compound 2 (fusachinon) (DMSO-ds, 'H:

600MHz, 1*C: 150 MHz)
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S17. 'H-BC-HMBC Spectrum of Compound 2 (fusachinon) (DMSO-d;, 'H:

600MHz, 1*C: 150 MHz)
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S18. 'H-'H-COSY Spectrum of Compound 2 (fusachinon) (DMSO-ds,
600MHz)
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S19. 'H-'H-NOESY Spectrum of Compound 2 (fusachinon) (DMSO-ds,
600MHz)
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S20. HPLC-DAD UV-Vis Spectrum of Compound 2 (fusachinon) (Methanol)
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S21. High Resolution ESI(+)MS Spectrum of Compound 2 (fusachinon)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  5/27/2021 3:55:13 PM
Analysis Name D:\Data\Spektren 2021\KAL21HR000051.d
Method tune_low_new.m Operator  Peter Tommes
Sample Name  Simons FFPE-V3-5-S\§H6 (CH30H) Instrument maXis 288882.20213
Comment Sulin1ml
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens . +MS, 2.2-2.4min #130-142,
x104
331.0817

3<

2.

’ B

332.0851
gt L L. R ,
330 331 332 333 334 335 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
331.0817 1 C17H1507 331.0812 -1.5 3.0 1 100.00 10.5 even ok
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S22. NMR Table of Compound 3 (fusapurpurin A) (DMSO-d;s, 'H: 600MHz,

13C: 150 MHz)

1S,3aR,4R,5R,11bR

1R,3aS,45,55,11bS

Chemical formula: C2sH20O9
Molecular weight: 464.43 g/mol

* weak HMBC
position oc* on, m (Jin Hz)

1 105.5,C

176.7, CO
3a 76.4,C
4 51.6,CH 3.97,d (4.2)
5 70.9, CH 5.30,d (4.2)
Sa 148.9,C
6 175.4,CO
6a 109.0,C
7 157.2, CO
8 105.1, CH 7.10, s
9 156.3, CO
10 148.9,C
10a 114.6,C
11 186.7, CO
lla 138.9,C
11b 46.9, CH 4.34,s
12 130.7,C
13/17 131.3,CH 7.03, m, 2H
14/16 127.9,CH 7.12, m, 2H
15 127.9, CH 7.08, m
1-CH;3 22.9, CH3 1.44,s,3H
3a-OH 6.71,s
7-OCH3 57.1, OCH;3; 3,88,s,3H
9-OCH3 57.1, OCH;3; 4.02,s,3H
10-OH 12.99, s
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S23. 'TH-NMR Spectrum of Compound 3 (fusapurpurin A) (DMSO-ds, 600
MHz)
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S24. BC-NMR Spectrum of Compound 3 (fusapurpurin A) (DMSO-ds, 150
MHz)
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S25. 'H-13C-HSQC Spectrum of Compound 3 (fusapurpurin A) (DMSO-ds, 'H:

600MHz, 1*C: 150 MHz)
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S27. 'H-'H-COSY Spectrum of Compound 3 (fusapurpurin A) (DMSO-ds,

600MHz)

S28. 'H-'H-NOESY Spectrum of Compound 3 (fusapurpurin A) (DMSO-ds,

600MHzZ)
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S29. HPLC-DAD UV-Vis Spectrum of Compound 3 (fusapurpurin A)
(Methanol)
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S30. High Resolution ESI(+)MS Spectrum of 3 (fusapurpurin A)
Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:\Data\Spektren 2021\KAL21HR000041.d

Method tune_low_new.m Operator ~ Peter Tommes
Sample Name  Simons FFPE-V6-15-S1-H4 (CH3CN/H20) Instrument maXis
Comment

Achisition Parameter

Acquisition Date 4/23/2021 10:07:15 AM

288882.20213

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 l/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Imens.: +MS, 4.0-4.3min #242-259
x104]
] 465:1177
2.59
2.0
1.5
1.04
0.5
429.2398 437.1872 447.3468 487.0992 503.0716
0.0 e oy At 1 ma— bt —— et r
430 440 450 460 470 480 490 500 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
465.1177 1 C25H2109 465.1180 0.8 4.8 1 100.00 155 even ok
2 C22H13N1003 465.1167 -2.1 11.2 2 4801 215 even ok
3 C26H17N405  465.1193 3.6 12.0 3 4062 20.5 even ok
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S31. NMR Table of Compound 4 (fusapurpurin B) (DMSO-ds, 'H: 600MHz,
BC: 150 MHz)

1R,3aS,4R,55,11bS 15,3aR,4S,5R,11bR

Chemical formula: CysH2009
Molecular weight: 464.43 g/mol

— COoSY /" key HMBC

“\‘ weak HMBC
position oc* on, m (J in Hz)

1 104.7,C

173.3,CO
3a 75.1,C
4 51.5,CH 291, s
5 69.1, CH 541,s
5a 149.8,C
6 175.5,CO
6a 109.5,C
7 156.4, CO
8 104.2, CH 7.14,s
9 155.9,CO
10 148.1,C
10a 114.2,C
11 187.2, CO
I1a 135.5,C
11b 47.2,CH 4.30,s
12 136.8,C
13/17 127.7, CH 7.37, m, 2H
14/16 128.6, CH 7.33, m, 2H
15 128.1, CH 7.29, m
1-CH3 22.4, CH; 1.47,s,3H
3a-OH 6.65, s
7-OCHj; 56.2, OCH; 3.97,s,3H
9-OCHj; 56.2, OCH; 4.03,s,3H
10-OH 12.94, s
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S32. 'H-NMR Spectrum of Compound 4 (fusapurpurin B) (DMSO-djs, 600

MHz)
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S33. BC-NMR Spectrum of Compound 4 (fusapurpurin B) (DMSO-ds, 150

MHz)
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S34. 'H-13C-HSQC Spectrum of Compound 4 (fusapurpurin B) (DMSO-d, !
600MHz, 13C: 150 MHz)
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S35. 'H-13C-HMBC Spectrum of Compound 4 (fusapurpurin B) (DMSO-dj, !
600MHz, *C: 150 MHz)
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S36. 'H-'H-COSY Spectrum of Compound 4 (fusapurpurin B) (DMSO-d,

600MHz)
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S37. 'H-'H-NOESY Spectrum of Compound 4 (fusapurpurin B) (DMSO-d,
p

600MHz)
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S38. HPLC-DAD UV-Vis Spectrum of Compound 4 (fusapurpurin B)
(Methanol)
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S39. High Resolution ESI(+)MS Spectrum of 4 (fusapurpurin B)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  4/23/2021 8:29:49 AM
Analysis Name D:\Data\Spektren 2021\KAL21HR000038.d

Method tune_low_new.m Operator  Peter Tommes

Sample Name  Simons FFPE-V6-15-S1-H5 (CH3CN/H20) Instrument maXis 288882.20213
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 /min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 4.0-4.5min #239-271
x104]
465:1174
4]
34
24
1] 419.3148
391.2837 487.0991
413:2655 A0 e asny l 503.0720
ol PR L.l " A Tt v L : L ok ’
380 400 420 440 460 480 500 m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
391.2837 1 C24H3904 391.2843 14 220 1 100.00 55 even ok
413.2655 1 C22H33N602 413.2660 1.0 236 1 100.00 9.5 even ok
419.3148 1 C26H4304 419.3156 1.9 12.9 1 100.00 55 even ok
441.2970 1 C26H42NaO4 441.2975 1.2 23.0 1 92.64 55 even ok
2 C24H37N602 441.2973 0.6 254 2 100.00 9.5 even ok
465.1174 1 C25H2109 465.1180 14 1.7 1 100.00 15.5 even ok
2 C24H18N4NaO5 465.1169 -0.9 4.7 2 78.38 175 even ok
3 C22H13N1003 465.1167 -1.5 T 3 65.27 215 even ok
4 C25H14N8NaO 465.1183 1.9 14.3 4 51.78 225 even ok
487.0991 1 C25H20NaO9 487.1000 1.8 1.4 1 89.88 155 even ok
2 C23H15N607 487.0997 1.2 13.4 2 100.00 19.5 even ok
3 C22H12N10NaO3 487.0986 -1.0 16.5 3 7524 215 even ok
4 C20H7N160 487.0983 -1.5 19.0 4 62.03 255 even ok
5 C22H19N2011 487.0983 -1.5 204 5 80.74 145 even ok
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S40. NMR Table of Compound 5 (9-O-methylbostrycoidin) (DMSO-ds, 'H:
600MHz)

9-0-methylbostrycoidin

Chemical Formula: C4gH3NO5
Molecular Weight: 299,28

position on, m (J in Hz)
1 9.16, s
4 7.85,s
8 7.18, s
3-CH3 2.68,s,3H
6-OH 12.98, s

7-OCHj3 3.97,s,3H
9-OCH; 4.01,s,3H
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S41. 'TH-NMR Spectrum of Compound 5 (9-O-methylbostrycoidin)(DMSO-dj,

600 MHz)
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S42. HPLC-DAD UV-Vis Spectrum of Compound 5 (9-O-methylbostrycoidin)

(Methanol)
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S43. High Resolution ESI(+)MS Spectrum of Compound 5 (9-O-
methylbostrycoidin)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  7/26/2022 3:14:53 PM
Analysis Name D:\Data\Spektren 2022\KAL22HR000104.d

Method tune_low_new.m Operator TM

Sample Name  FFPE-V6S1H6 Instrument maXis 288882.20213
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 vV Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. { +MS, 5.6-6.0min #338-359|
x105-
300.0867
1.0
0.8
0.6
0.4
] 2032434 321.0967
0.24
237.2214 261.0757 273.2179 l l | l ' 343.0785
0.0Lus lA'A | PO PUTES SN DR VN1 111 NN I PSR GPw | VS OUUURTON It v yul
240 260 280 300 320 340 - m/z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
300.0867 1 C16H14NO5 300.0866 -0.2 4.1 1. 100.00 10.5 even ok
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S44. NMR Table of Compound 6 (2,5-Dihydroxy-6,8-dimethoxy-3-(2-
oxopropyl)-1,4-naphthalenedione) (DMSO-d6, 600MHz)

2,5-Dihydroxy-6,8-dimethoxy-3-(2-oxopropyl)-1,4-
naphthalenedione

Chemical Formula: C45H4407
Molecular Weight: 306,27

position on, m (J in Hz)
7 6.98, s
9 3.53,s2H
11 2.16,s 3H
2-OH 11.34,brs
5-OH 13.69, s

6-OCH3 3.99,s3H
8-OCH; 3.96,s 3H
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S45. TH-NMR Spectrum of Compound 6 (2,5-Dihydroxy-6,8-dimethoxy-3-(2-
oxopropyl)-1,4-naphthalenedione) (DMSO-d6, 600 MHz)
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S46. UV-Vis Spectrum of Compound 6 (2,5-Dihydroxy-6,8-dimethoxy-3-(2-
oxopropyl)-1,4-naphthalenedione) (Methanol)
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S47. High Resolution ESI(+)MS Spectrum of Compound 6 (2,5-Dihydroxy-6,8-
dimethoxy-3-(2-oxopropyl)-1,4-naphthalenedione)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  7/27/2022 10:17:57 AM
Analysis Name D:\Data\Spektren 2022\KAL22HR000112.d

Method tune_low_new.m Operator TM

Sample Name  FFPE-V6S1H1 Instrument maXis 288882.20213
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens +MS, 4.4-5.4min #266-322,
x1047
307.0814
64
44
293.2436
2 329.0633
319.0813
343.2951 365.1053
255.2683 2732181 I ‘
Lo shoal piadad | adeal IR )J'AAl doad 'nl TS [PV THY L.l §5A512839v. Alul.l kil
240 260 280 300 320 340 360 m'z
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
307.0814 1 C15H1507 307.0812 -0.7 3.1 1 10000 85 even ok
2 C12H7N100  307.0799 -5.1 7.8 2 4390 145 even ok
3 C16H11N40O3 307.0826 a7 10.8 3 5437 135 even ok
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S48. NMR Table of Compound 7 (9-O-methylanhydrofusarubin) (DMSO-ds,
'H: 600MHz)

9-0-methylanhydrofusarubin

Chemical Formula: C4gH440¢
Molecular Weight: 302,28

position on, m (J in Hz)
1 5.02,s 2H
4 5.83,d(0.9)
8 7.05, s
3-CH3 1.98,d (0.9)
6-OH 1291, s

7-OCHj3 397,s
9-OCH; 391,s
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S49. 'TH-NMR Spectrum of Compound 7 (9-O-methylanhydrofusarubin)
(DMSO-ds, 600 MHz)
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S51. High Resolution ESI(+)MS Spectrum of Compound 7 (9-O-
methylanhydrofusarubin)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  8/4/2022 12:18:33 PM
Analysis Name D:\Data\Spektren 2022\KAL22HR000115.d
Method tune_low_new.m Operator  PT
Sample Name  Simons FFPE-V6-15S1H8 (CH30H) Instrument maXis 288882.20213
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.7-2.8min #163-169|
x1 05_
] 303.0866

2.5]

2.09

1.54

1.04

0.51 304.0896

B ] 302.0736 o 305.0917

73015 3020 3025 3030 3035 3040 3045 3050 3055 3060  306.5 mz
Meas. m/z # lon Formula m/z err[ppm] . mSigma #mSigma Score rdb e Conf N-Rule
303.0866 1 C16H1506 303.0863 -0.8 Ll 1 100.00 9.5 even ok
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S52. NMR Table of Compound 8 (9-O-methylanhydrofusarubinlactol) (DMSO-
ds, '"H: 600MHz, *C: 150 MHz)

232

9-0-methylanhydrofusarubinlactol

Chemical Formula: C4gH407
Molecular Weight: 318,28

COSY =— weak HMBC . --
key HMBC . —

position oc* ou, m (Jin Hz)
1 87.5,CH 6.35,d(6.9)
3 159.8,C
4 91.4,CH 6.01,d (0.9)
4a 133.2,C
5 188.5,C
Sa 113.8,C
6 147.8,C
7 154.6,C
8 104.6, CH 7.10, s
9 155.1,C
9a 109.5,C
10 178.5,C
10a 125.6,C
1-OH 7.54,d (6.9)
3-CH3 20.3, CH3 2.07,d (0.9)
6-OH 12.92, s
7-OCH3 56.2, CH; 3.98,s
9-OCHj3 56.2, CHs 3.92,s

*signals were extracted from HSQC and HMBC spectra.



S53. 'TH-NMR Spectrum of Compound 8 (9-O-methylanhydrofusarubinlactol)
(DMSO-ds, 600 MHz)
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S54. BC-NMR Spectrum of Compound 8 (9-O-methylanhydrofusarubinlactol)
(DMSO-ds, 150 MHz)
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S55. 'TH-3C-HSQC Spectrum of Compound 8 (9-O-

methylanhydrofusarubinlactol) (DMSO-ds, 'H: 600MHz, 1*C: 150 MHz)
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S57. 'H-'H-COSY Spectrum of Compound 8 (9-O-
methylanhydrofusarubinlactol) (DMSO-ds, 600MHz)
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S58. 'H-'H-NOESY Spectrum of Compound 8 (9-O-
methylanhydrofusarubinlactol) (DMSO-ds, 600MHz)
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S59. HPLC-DAD UV-Vis Spectrum of Compound 8 (9-O-

methylanhydrofusarubinlactol) (Methanol)
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S60. High Resolution ESI(+)MS Spectrum of Compound 8 (9-O-
methylanhydrofusarubinlactol)

Analysis Info

Mass Spectrum SmartFormula Report

Analysis Name D:\Data\Spektren 2021\KAL21HR000040.d
Method tune_low_new.m
Sample Name  Simons FFPE-V6-15-S1-H2 (CH3CN/H20)

Comment

Acquisition Parameter

Acquisition Date  4/23/2021 9:52:08 AM

Operator

Instrument

Peter Tommes

maXis

288882.20213

Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V Set Dry Gas 4.0 Umin
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. { +MS, 4.5-4.9min #271-296|
x104
301.0702
08
8 305.0653
04 3iRpes 341,0628
345.0577
0.24
] 282.2787 327.2522
Bl e |1 T O TR LLl, )
280 290 300 310 320 330 340 350 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
298.3484 1 C20H44N 298.3468 13 14.0 1 10000 -0.5 even ok
301.0702 1 C16H1306 301.0707 15 43 110000 105 even ok
2 C15H10N4NaO2 301.0696 20 74 2 8860 125 even ok
3 C13HS5N10 301.0693 -29 9.9 3 7310 165 even ok
4 C17H9N4O2 301.0720 6.0 1.1 4 3985 155 even ok
5 C14H14NaO8 301.0683 6.4 16.5 5 3236 75 even ok
305.0853 1 C16HON4O3 305.0669 54 6.0 1 5499 145 even ok
2 C15H1307 305.0656 1.0 147 2 10000 95 even ok
3 C14H10N4NaO3  305.0645 25 15.5 3 7955 115 even ok
4 C12H5N100 305.0642 34 17.4 4 6563 155 even ok
319.0808 1 C16H1507 319.0812 1.3 14.6 1 10000 95 even ok
2 C15H12N4NaO3  319.0802 2.0 18.9 2 8208 115 even ok
3 C17H11N403 319.0826 55 19.1 3 4154 145 even ok
4 C13H7N100 319.0799 2.9 214 4 6705 155 even ok
5 C14H16NaQ7 319.0788 8.2 228 5 3240 65 even ok
341.0628 1 C13H13N209 341.0616 -35 125 1 61.01 85 even ok
2 C16H14NaO7 341.0632 1o 135 2 9143 95 even ok
3 C14HONGOS 341.0629 04 152 3 10000 13.5 even ok
4 C13HEN10NaO 341.0618 2.7 19.7 4 6158 155 even ok
§ C17H10N4NaO3  341.0645 5.1 251 5 3256 145 even ok
6 C15H5N100 341.0642 43 26.0 6 3866 185 even ok
3450577 1 C15H14NaO8 345,0581 1.1 407 1 9484 85 even ok
2 C16H10N4NaO4  345.0594 5.0 423 2 4161 135 even ok
3 C13HON6OS6 345.0578 03 433 3 10000 125 even ok
4 C14H5N1002 345.0591 42 447 4 4705 175 even ok
5§ C12H13N2010  345.0565 36 458 § 5252 7.5 even ok
6 C12HBN10NaO2 345.0567 -2.8 475 6 5849 145 even ok
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S61. NMR Data of Compound 9 (Beauvericin) (CDCl;, '"H: 600MHz)

Beauvericin

Chemical formula: C45sHe N4Oo*
Molecular weight: 801.44 g/mol

'H-NMR Data: & 7.29-7.24 (12H, m), 7.21-7.18 (3H, m), 5.48 (3H, dd, J = 12.2, 5.1 Hz), 4.94 (3H, d,
J=8.6 Hz), 3.38 (3H, dd, J = 14.6, 5.0 Hz), 3.02 (9H, s), 2.99 (3H, m), 2.04 (3H, m), 0.82 (9H, d, J =
6.6 Hz), 0.45 (9H, d, J = 6.8 Hz)
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S62. 'H-NMR Spectrum of Compound 9 (Beauvericin) (CDCls;, 600 MHz)
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S63. HPLC-DAD UV-Vis Spectrum of Compound 9 (Beauvericin) (Methanol)
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S64. High Resolution ESI(+)MS Spectrum of Compound 9 (Beauvericin)

Analysis Info

Analysis Name

Method tune_low_new.m Operator ~ Peter Tommes
Sample Name  Simons FFPE-S2-H1 (CH30H) Instrument maXis 288882.20213
Comment 10ulin 1 ml
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V/ Set Dry Gas 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 0.0-0.1min #2-4|
x1
4 801:4430
3.
2] 802.4465
14
803.4487
4 804.4520 806.3971
798 800 802 804 806 808 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
801.4430 1 C45H61N409 801.4433 04 1.8 1 100.00 17.5 even ok
2 C42H53N1403  801.4420 -1.2 8.0 2 6453 235 even ok
3 C44H65013 801.4420 -1.2 12.0 3 60.23 125 even ok
4 C28H45N30 801.4438 11 57.6 4 20.06 215 even ok
5 C30H57N16010 801.4438 1.1 65.2 5 1642 105 even ok
6 C57H57N202 801.4415 -1.9 65.2 6 1041 305 even ok
7 C27H49N2604 801.4425 -0.6 67.7 74 16.90 16.5 even ok
8 C32H69N2020 801.4438 11 74.4 8 1090 -0.5 even ok
9 C29H61N12014 801.4425 -0.6 76.0 9 12.41 55 even ok

Mass Spectrum SmartFormula Report

Acquisition Date  2/11/2021 4:20:39 PM

D:\Data\Spektren 2021\KAL21HR000011.d
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S65. NMR Data of Compound 10 (Beauvericin J) (DMSO-d6, 'H: 600MHz)

Beauvericin J

o/‘ T 0
o

s o

X

Chemical formula:CssHeN4O1o"
Molecular mass: 817.44 g/mol

'H-NMR-data: 8 9.18 (1H, s), 7.27-7.21 (8H, m), 7.18 (2H, tt, J = 7.0, 2.4), 6.99 (2H, m), 6.62 (2H,
m), 5.43 (2H, m), 5.32 (1H, dd, J = 11.9, 4.8), 4.83 (3H, m), 3.18 (2H, dt, J = 14.6, 5.3), 3.04 (3H, m),
3.02 (3H, 5), 3.01, (3H, s), 3.01 (3H, s), 1.78 (3H, m), 0.78 (3H, d, J = 6.6), 0.74 (6H, dd, ] = 6.6, 4.9),
0.33 (3H, d, ] = 6.8), 0.23 (6H, dd, ] = 10.9, 6.8)
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S66. 'H-NMR Spectrum of Compound 10 (Beauvericin J) (DMSO-d6, 600

MHz)
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S67. HPLC-DAD UV-Vis Spectrum of Compound 10 (Beauvericin J)
(Methanol)
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S68. High Resolution ESI(+)MS Spectrum of Compound 10 (Beauvericin J)

Mass Spectrum SmartFormula Report

Analysis Info Acquisition Date  7/27/2022 10:27:21 AM
Analysis Name D:\Data\Spektren 2022\KAL22HR000113.d
Method tune_low_new.m Operator TM
Sample Name  FFPE-V6S1H11 Instrument maXis 288882.20213
Commént
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.3 Bar
Focus Not active Set Capillary 4000 V Set Dry Heater 180 °C
Scan Begin 50 m/z Set End Plate Offset  -500 V SetDry Gas - 4.0 I/min
Scan End 1500 m/z Set Collision Cell RF  600.0 Vpp Set Divert Valve Source
Intens. +MS, 2.5-2.8min #147-170)
x105
817.4394
4_.
34
2_
1 4
" 5 838.3673
720 740 760 780 800 820 840 860 miz
Meas. m/z # lon Formula m/z err[ppm] mSigma #mSigma Score rdb e Conf N-Rule
817.4394 1 C45H61N4O10 817.4382 -1.4 23.2 1 80.86 17.5 even ok
2 CA43H49N18 817.4382 -1.4 33.6 2 62.75 285 even ok
3 C46H57N8O6 817.4396 0.2 34.8 3 100.00 225 even ok
4 C47H53N1202 817.4409 1.9 46.6 4 3478 275 even ok
5 CB62H570 817.4404 13 1154 5 285 345 even ok
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7. Further contributions

Further minor contributions have been made for the following publications or manuscript

drafts:

Peter M Eze, Viktor Simons, Tino Seidemann, Lin Wang, Anna-Lene Kiffe-Delf, Marian
Frank, Lasse van Geelen, Chika C Abba, Charles O Esimone, Festus BC Okoye, Rainer
Kalscheuer, Serratiochelins A and B from Serratia marcescens show xenosiderophoric
characteristics towards Acinetobacter baumannii and Mycobacterium tuberculosis.

Status: published in Tropical Journal of Pharmaceutical Research. 20 (12), 2551-2558, (2021).
DOI: 10.4314/tjpr.v20il2.14

Lin Wang, Anna-Lene Kiffe-Delf, Viktor Simons, Di He, Philipp Niklas Ostermann, Ying
Gao, Lasse van Geelen, Hao-Fu Dai, You-Xing Zhao, Heiner Schaal, Attila Mandi, Sandor
Balazs Kiraly, Tibor Kurtan, Zhen Liu, Rainer Kalscheuer, Asperphenalenones isolated from
the biocontrol agent Clonostachys rosea and their antimicrobial activities.

Status: Submitted to Journal of Agricultural and Food Chemistry

Peter M Eze, Yang Liu, Viktor E. Simons, Sherif S. Ebada, Tibor Kurtan, Charles O.
Esimone, Festus B.C. Okoye, Peter Proksch, Rainer Kalscheuer, Two new metabolites from
coculturing a marine-derived fungus Penicillium ochrochloron and Bacillus subtilis.

Status: Manuscript draft (unpublished)
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8. Discussion and Perspectives

The increasing antimicrobial resistance rates for clinically important pathogens around the
world raise the demand for new antibiotics. A lack of innovation of new antimicrobial
compounds during the last decades together with a widespread over- and misuse of already
established antibiotics have led to the global antimicrobial resistance crisis. While it is now
time to improve and strengthen the research for new antimicrobial compounds to help discover
new classes of antibiotics, natural products have always been a great source. Over the last four
decades, around 60% of clinical antibacterial drugs are based on natural products [188]. Also,
nature has always proven to deliver a wide range of different antimicrobial activities comprising
all known domains. The studies presented in the chapters 4-7 give examples of the diversity
and complexity and the variety of opportunities when it comes to research about natural

products derived from microbial sources.

In chapter 4, we introduced a project about the isolation of the endophytic fungus Pareboeremia
selaginellae from the ornamental plant Philodendron monstera and the subsequent isolation of
natural products derived from a solid rice fermentation process. We found selective activity
against the apicomplexan parasite Toxoplasma gondii for six of the eight tested compounds.
While the anti-toxoplasma activities ranged from moderate to good, they could not reach the
sub-micromolar values of the approved drug and positive control pyrimethamine. Building
upon these results, a semisynthetic approach to synthesise more active derivates and decrease
the minimal inhibitory concentration to nanomolar levels could be very fruitful. Especially, in
the case of the three isolated biphenyl ethers (1, 2 and 3 — see Figure 5) that showed no
cytotoxicity at 100 uM against the tested human cell lines, semisynthesis should be accessible.
They exhibit a low molecular weight and no stereocentres, which also makes them perfect for
whole synthesis approaches. Interestingly, the two isolated bioxanthracenes (4 and 5 — see
Figure 5) differed markedly in their anti-toxoplasma activities and the cytotoxicity assay,
preferring compound 4 over 5. 55, 6S-Phomalactone (6 — see Figure 5) also is a quite interesting
compound, since it is described in the literature to have a wide range of different activities,
ranging from antibacterial, antifungal, anti-plasmodium to nematicidal and trypanocidal
activities [189-192]. Thus, this compound seems to have a rather unselective mode of action.
Nevertheless, in our studies, it had a very low antibacterial activity with an MICoo of 100 uM
against Pseudomonas aeruginosa ATCC 87110 and >100 uM against methicillin-resistant

Staphylococcus aureus ATCC 700699.
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OH

HO

Figure 5. Active compounds against Toxoplasma gondii derived from the endophytic fungus
Paraboeremia selaginellae. Compounds 1-3 are biphenylether-derivatives, 4-5 oxanthracenes and

compound 6 is 55, 6S-phomalactone. All compounds are described in chapter 4 of this thesis.

Since all of the isolated compounds were already known from other microbial sources, this
project is a perfect example of the discovery of new activities from already known natural
products. Often, the isolation of natural products is linked to the aim of finding specific
bioactivities. If a bioassay-guided isolation process is being performed, due to limited time or
testing opportunities, it is often restricted to certain types of bioactivity testing systems.
Unfortunately, known compounds are often of less interest to natural product researchers, which
can lead to the neglect of the inherent undiscovered potential of these molecules. While, of
course, it will never be possible for a research group to test for all possible bioactivities, it
should still be encouraged to also include known compounds from an isolation process to a
variety of bioassays. Approaches that already face this direction focus on the so-called “drug
repurposing” or “drug repositioning”. While these projects do not focus on non-licensed natural
products but include already established drugs or investigational drugs to identify new targets
for them to extend their medical indications, they still are exemplary for sustainable research

and also extend the possibilities for the scientific outcome [193].

In our second study, presented in chapter 5, we isolated ten compounds from the endophytic
fungus Trichocladium sp.. Five of the isolated compounds turned out to be undescribed before.

This project was interesting from different perspectives. The cultivation was carried out on rice
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medium supplemented with the aromatic amino acid L-phenylalanine in an OSMAC-approach.
This was already the fourth OSMAC-experiment with this fungus. First, Trichocladium sp. was
co-cultivated with the bacterium Bacillus subtilis on rice medium to yield a new spiro
compound. Then the medium was changed from rice to peas medium to increase the protein
content. This approach yielded a new sesquiterpene derivative. Further, the fermentation on rice
medium with 2.0 % L-tryptophane gave a new bismacrolactone [183]. Now in context of this
thesis, the cultivation with 2.5 % L-phenylalanine yielded one new dihydronaphthalenone, one

new macrocarpon and three new linear monoester-acids (see Figure 6).

Co-cultivation with Bacillus subtilis

HO

/4,

Peas medium

HO

2 % L-tryptophane

HOOC

2
Supplementation of 2.5 % L-phenylalanine
OH O Ox-OH
HsC HO O OH OH O CH, 0
H
4 O H Hs
5 6
OH O CH; OH
3 OH O CH; OH o)
Hacwj\o OH )\/\/U\ )\/K/\/U\
HaC 0 OH
7 8

Figure 6. Isolation of new compounds from Trichocladium sp. in different OSMAC-approaches.
The co-cultivation with Bacillus subtilis gave a new spiro compound (1). The fermentation on peas
medium yielded a new sesquiterpene derivative (2). Supplementation of 2 % L-tryptophane to the

culture medium led to a new macrobislactone (3). The supplementation of 2.5 % L-phenylalanine to the
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rice medium yielded five new compounds (4-8). Compounds 1-3 were isolated and described by Tran-

Cong et al. [183]. Compounds 4-8 are described in chapter 5 of this thesis.

This sequence of OSMAC approaches impressively demonstrates the power of this method.
While no new bioactivities were found in our last approach, this project shows that OSMAC
can influence the production of secondary metabolites on many different levels. Even small
changes, like little adaptations of the nutrients, can trigger the production of otherwise cryptic
metabolites from BGCs. In this case, we increased the concentration of L-phenylalanine to an
unnaturally high level, which could have influenced the biosynthesis of colletodiol and other
bislactonic derivatives. This study suggests that L-phenylalanine in high concentrations
influences enzymes necessary for the last steps of the biosynthesis of colletodiol and
derivatives, where the cyclisation takes place. This influence could happen either directly on
enzymes involved in the late biosynthetic steps or indirectly via regulation of genes from BGCs
that encode these enzymes. Nevertheless, further studies focussing on the elucidation of our
hypothesis are still necessary.

Our experience from this study also provides us with a suggestion for a standard procedure for
the application of OSMAC experiments to discover cryptic metabolites efficiently. In the
beginning, we start with a large-scale axenic culture to create a secondary metabolite profile for
our standard conditions, while creating an HPLC-chromatogram for the crude extract and
isolating the main compounds with subsequent structure elucidation. Then, we perform
different OSMAC approaches, each in a single fermentation flask to have the opportunity to
apply a relatively big number of different OSMAC approaches at the same time without special
laboratory equipment. While measuring the HPLC-chromatograms of the crude extracts for
each small-scale OSMAC approach, we can directly see the difference in the pattern of
metabolite production. The most promising OSMAC approaches can then be conducted in
large-scale fermentations to isolate and elucidate the induced metabolites. While the outcome
of an OSMAC experiment can hardly be foreseen, this setup still gives the whole methodology
a rational design. Afterwards, when secondary metabolites are isolated from the crude extract,
a bioassay-guided isolation process can purposefully lead to interesting bioactive metabolites.
While modern bioinformatics-based approaches can lead to promising results, they are often
still quite sophisticated and time-consuming. The OSMAC- and bioassay-guided isolation is an
accessible and relatively fast process with a huge variety of possibilities.

Some results for nutrient-based OSMAC experiments in the past yielded secondary metabolites
that can be structurally connected to the nature of the supplemented ingredients. Frank et al. for

example supplemented solid rice medium with 5% NaBr and thus induced the production of
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novel brominated azaphilones from the sponge-associated fungus Penicillium canescens [194].
Since chlorinated azaphilones like the chaetoviridins have also been described [195], the high
concentrations of NaBr probably lead to a substitution of one halogen atom by the other.
Another approach by Yu ef al. focussed on the supplementation of 3.5% Nal to the solid rice
medium of a culture of the endophytic fungus Pestalotiopsis lespedezae. This study yielded ten
new ambuic acid derivatives, interestingly containing one new iodinated compound that was

only produced during Nal substitution [196].

The example of the OSMAC concept can also be transferred to the isolation of microorganisms
from environmental samples to improve the inherent potential. With the huge variety of
different microorganisms in nature, we have still only been able to isolate a small part of them
[118]. Often, we see a rediscovery of already-known species over and over again. In chapter
1.3, we discussed the hidden potential in the isolation of microorganisms from environmental
samples that can be tapped through new and alternative approaches. The reason that most of
the microorganisms in soil cannot grow under standard laboratory conditions probably is
connected to special needs that cannot be fulfilled under artificial circumstances that easily. In
very early studies, the role of the soil on the growth of soil-derived microorganisms was already
discussed. It was stated that there must be some kind of growth factors inside the soil that
specifically induce the growth of certain soil bacteria [197]. Today, we are still not able to
understand the nature of the soil completely. We know that it is a specialised ecosystem with
complex interactions between the living microbes among each other and the surrounding flora,
fauna and soil structure. Interestingly, most microorganisms in soil stay in a dormant, inactive
state till the proper circumstances for growth appear. The trigger factors that switch these
organisms from the inactive to the active state can be diverse and complex and are still a matter
of scientific discussion. Some microorganisms seem to have their micro-niches with special
environmental and physicochemical conditions that turn them into an active growth state. Also,
the nutrient composition and dynamics in soil are yet to be investigated sufficiently to better
understand and influence the growth of uncultivable bacteria under lab conditions [198]. If the
secrets about the complex structures and interactions that are inherent in the soil habitat are
being deciphered, it will pave the way to more rational cultivation methods to give access to
the metabolic profiles of uncultivable microorganisms. This will raise the possibilities for the
discovery of new and bioactive natural products.

In chapter 1.3.1, we have discussed another interesting study by Hover et al. that circumvents
the problem of the cultivation of microorganisms. The bacterial DNA was directly isolated from

soil samples and investigated for certain BGCs that encode for a typical calcium-binding motif
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to isolate new antimicrobial peptides. The appropriate gene was amplified and transferred into
a lab organism for expression. The peptide can then be isolated from the culture of the lab strain
[135]. While this study is impressive because of its rational and modern design to tap hidden
bioactive molecules from environmental microorganisms, it also bears some limitations. First
of all, the authors had to restrict their search to known genetic motifs that are connected to a
certain type of activity right from the start. While the structure of certain BGCs can give
information about the structural class they are encoding, the complete molecular structure can
hardly be predicted precisely by this method when it comes to small molecules. This restricts
the method to the isolation of peptidic compounds. Also, this method depends on already known
genetic motifs because the structure is isolated based on the genetic information. Standard
isolation processes normally work the other way around, since natural products are first
isolated, and, if the genetic information is of concern, the elucidation of the BGC is carried out
afterwards. Altogether, this sophisticated work enriches and complements the available
methods of natural product isolation and is quite valuable, since it can be performed with a
variety of different motifs and with DNA from microorganisms of different domains to support
the discovery of new compounds from known structural classes. However, it is rather an
enhancement than a replacement in the research of antimicrobial compounds derived from
microorganisms.

A common problem in the isolation of microorganisms from environmental samples is that
often dominant fast-growing species overgrow the slow-growing microbiota during cultivation
in standard isolation medium. However, it is known that some bacteria from soil samples are
only able to grow in medium with low concentrations of certain nutrients [199]. These
oligotrophic bacteria will not be isolated in a standard laboratory medium. Also, some
microorganisms are slow-growing and under standard isolation conditions and will not be able
to compete against fast-growing opponents. The combination of a medium with low nutrient
concentrations together with a prolonged incubation time of up to three months in a study by
Davis et al. led to the isolation of rare slow-growing soil bacteria, such as members of the phyla
Verrucomicrobia and Gemmatimonadetes [200].

The described examples above give an insight into the complex structures and dependencies
which are connected to the isolation of microorganisms from environmental samples.
Moreover, this also grants us a countless range of varieties starting from how we are taking the
sample over to the isolation and the cultivation of the microorganisms. If scientists around the

world will continue to creatively improve the isolation and cultivation process of environmental
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microorganisms, different combinations and decisions will influence the outcome, enabling us

to discover new microbial species and unfold the map to unknown bioactive natural products.

In chapter 6, we isolated biofilm-disrupting fusarubin-derivatives with a new and uncommon
substructure. These bioactive molecules, named fusapurpurin A and B, were isolated from a
crude extract of a co-cultivation of the soil-derived fungus Fusarium oxysporum together with
the also soil-derived bacterium Paenibacillus ehimensis. This co-cultivation attracted our
attention through development of an unusual dark purple colouring on solid rice medium
compared to the axenic culture and other bacterial co-cultures. The HPLC-chromatogram
showed a strong increase for the 9-O-methylfusarubin peak in the crude extract of the
Paenibacillus ehimensis co-culture compared to the other crude extracts. Interestingly, the
molecular structure of the fusapurpurins comprises 9-O-methylfusarubin as a core structure that
is extended by a phenyl pyruvic acid moiety (see Figure 7). The strong induction of the 9-O-
methylfusarubin in the HPLC-chromatogram thus is comprehensible. Unfortunately, the
fusapurpurins cannot be detected in the crude extract even at higher concentrations because
they seem to be small side products of the crude extracts. A series of purification steps is
necessary to get to a point, where the peaks are being detected. To improve our understanding
of the biosynthetic background of the fusapurpurins, we applied nanopore whole genome
sequencing. Subsequently, we analysed the whole genome employing the antiSMASH fungi-
SMASH algorithm to discover BGCs potentially responsible for fusapurpurin synthesis
(antiSMASH version 6.1.1, retrieved at 27.06.2022). Interestingly, we could find a BGC with
high similarity to a BGC known to be responsible for the biosynthesis of fusarubin in Fusarium
Sfujikuroi. Upstream of the core sequence of this BGC, we discovered genes encoding for an
amino acid transporter and a L-amino acid oxidase. These enzymes could be responsible for the
transport of the aromatic amino acid L-phenylalanine into the fungal cell and the oxidative
deamination to form phenylpyruvic acid and thus support our hypothesis of the fusapurpurin A
and B biosynthesis .
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Figure 7: A proposed biosynthetic pathway to form fusapurpurin A and B. The amino acid L-
phenylalanine (1) is oxidised via oxidative deamination to build phenylpyruvic acid (2). 9-O-
Methylfusarubin (3) reacts with phenyl pyruvic acid (2) in a nucleophilic substitution to form
intermediate 4. After an oxidative step to building intermediate 5, structure 6 (fusapurpurin A and B)

is built over a Diels-Alder cycloaddition [4+2] as the final step.

The biofilm-disrupting activity of the fusapurpurins can be tracked throughout the whole
isolation process. In our bioassays, we were able to show this activity for biofilms being
produced by S. aureus Mu50, P. aeruginosa PAO1 and only for fusapurpurin B also on biofilms
being produced by M. tuberculosis H37Rv. The compounds were not able to inhibit the

formation of biofilms but disrupted pre-grown biofilms when administered to them, which was
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shown in a serial dilution assay. They had no effect on quorum sensing and no antimicrobial
effect alone and did neither improve nor impair the efficacy of moxifloxacin in a checkerboard
assay.

This project emphasised that co-culture approaches can be very specific and the use of different
types of microorganisms can be significant. Co-cultures are a powerful OSMAC tool because
they mimic naturally occurring situations and can activate the biosynthesis of bioactive
metabolites. In 2016 for example, Yu ef al. published an impressive study about a co-cultivation
attempt of the marine-derived fungus Aspergillus flavus with an actinomycete Streptomyces sp.
This co-culture led to the induction of six novel cytochalasins that were toxic to Streptomyces
sp.. Interestingly, the authors could show that direct physical contact between the fungus and
the bacterium was necessary to result in these inductions [201].

In our case, the type of influence that P. ehimensis has on F. oxysporum in comparison to the
other bacterial co-cultures remains elusive. P. ehimensis can form biofilms on its own [202].
Therefore, the production of compounds that can disrupt the biofilm matrix to compete against
this bacterium and open up new spaces for growth is a possible explanation. Also, it might be
possible that the fusapurpurins are being synthesized outside of the fungus in cooperation with
P. ehimensis in a direct or indirect manner. However, this hypothesis is in agreement with the
rather unspecific biofilm disrupting activities of fusapurpurin A and B. On the other hand, the
exact mode of action of the fusapurpurins remains to be investigated. Fusapurpurin A and B are
both inactive during the formation of biofilms and only disrupt pre-formed biofilms.
Additionally, they did not inhibit quorum sensing in Chromobacterium violaceum. These
results indicate that these compounds could have a direct and more generalised effect on the
structural integrity of the biofilms. This hypothesis would also be supported by the fact that we
could see activities against biofilms of three different pathogens, while it is also interesting that
fusapurpurin B, in contrast to fusapurpurin A, was active against M. tuberculosis H37Rv
biofilms. Also, the mechanism of fusapurpurin biosynthesis has to be confirmed in
comprehensive biosynthetic studies. A deeper understanding of how the phenylpyruvate moiety
is being added to the 9-O-methylfusarubin core structure will give important insights into
finding and confirming the responsible BGC. This could pave the way for comprehensive
transcriptome analyses. In this regard, it is of concern for future research under which
conditions the fusapurpurins are being produced, and which are the best conditions for a
maximised yield. It would be interesting to examine the activity of fusapurpurins in in vivo
assays to see if there is a distinct benefit from it and if it can disrupt biofilms on natural surfaces.

Since chemical synthesis of the fusapurpurins appears to be sophisticated because of the
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complex structure and five stereocentres, a biotechnological approach can help to improve the
yield of these biosynthetic side products. The BGC responsible for the fusapurpurin synthesis
could be transformed into a fast-growing lab strain that would produce these compounds in high
amounts. Because of the deep purple colour of these metabolites, a guided isolation process is

simplified.

The variety and complexity that nature provides to us are noticeable in every detail. Small
changes can often have a significant impact, which is underlined in this work and highlights
that natural products derived from microorganisms are still of great importance. To tackle the
problem of AMR in the future, it is important to approach it from different perspectives and
look at it in its entirety. The isolation of antimicrobial compounds is one building block that
should be supported by other modern technologies and methods. An example is phage therapy,
which have some interesting benefits over common antibiotics. They are host-specific, have
low toxicity to humans, can degrade biofilms and are self-amplifying. More scientific research
is necessary to unfold their potential since development and application are more sophisticated.
The high host-specificity makes it necessary to precisely know the pathogen causing a certain
infection if a targeted application should be reached. Also, concerns about phages being vectors
of virulence or resistance genes or killing valuable bacteria of the human microbiome are
discussed [203, 204]. Also, antibody therapies are of growing interest. Antibodies can target
common surface structures of microorganisms, like surface proteins or polysaccharides to
mediate an innate immune response through opsonisation. Also, antibodies can target specific
bacterial products like toxins. An example is the antibody bezlotoxumab, which can bind and
neutralise toxin B produced by the gram-positive bacterium Clostridium difficile and reduce
recurrence of C. difficile infections in patients [205]. While antibody therapies can be quite
successful if a specific target is being addressed, downsides have also been described.
Correlations of preclinical and clinical study results are not congruent in a variety of cases, and
the specific target of the antibody is not always expressed by the targeted bacterium at all times
[206].

Anyway, the most crucial and precious possibility to reduce AMR is how we are dealing with
already available antibiotics in our dayly life, the medical, industrial and agricultural sector. A
widespread and unspecific prescription of antibiotics by doctors is a common issue that paves
the way for the development of AMR. A wrong, undifferentiated and unspecific treatment of
common infections that often are associated with viruses as pathogens and an insufficient
identification of the pathogens before treatment can lead to the unnecessary application of

antibiotics. This overprescribing is mainly carried out by general practitioners during treatment
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of respiratory tract infections [207, 208]. This problem should be tackled from different sides:
increase of laboratory identification of pathogens before treatment, antimicrobial stewardship
programs in hospitals, delayed antibiotic prescribing strategies, a structured standard operating
procedure for the prescription of antibiotics, and improving and extending the communication
with the patients are some examples to lower the overuse and incorrect use of antimicrobial
substances. Another problem in the development of AMR is the free access to antibiotics in
low- and middle-income countries without medical prescription. While a bad medical
prescription management is promoting the development of AMR as described above, the
complete lack of it can be even more harmful. Especially in Asian regions, the number of AMR
is one of the highest worldwide, where antibiotics often can be directly accessed without
prescription by a physician [209-211]. Most of the antibiotics worldwide are used for
agriculture and livestock. They are used to promote growth and prevent infections in the
animals. However, there is growing evidence that this widespread use has a strong influence on
the overall development of AMR. Since, about 70% percent of the antibiotics used in livestock
are also relevant in the treatment of human infections, this problem is endangering the effective
and successfull application of antibiotics in the future and it is urgently necessary to switch to
a more sustainably and responsible use in agriculture and livestock [212-214].

If we continue to invest in basic research and modern technologies and educate ourselves in the
careful handling of antibiotics, we will make sure to keep the power of antimicrobial therapies

alive and save the lives of millions of people now and in the future.
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