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Abstract

Quantum nonlocality, i.e., the effect that distant quantum systems can exhibit

stronger correlations than allowed by any classical theory, is one of the most re-

markable features of nature. Beyond its foundational significance, it was realized in

recent years that nonlocality is a central resource for information processing tasks

such as the reduction of communication complexity, randomness generation, and

cryptography.

These practical applications necessitate the systematical analysis and quantification

of which resources facilitate quantum nonlocality in a so-called Bell experiment.

That is, we need to thoroughly understand which properties of the used quantum

states and the performed local measurements enhance quantum nonlocality and how

these state and measurement resources result quantitatively in nonlocal correlations.

This thesis is devoted to deepening the understanding of the interplay of quantum

resources in Bell-type scenarios that lead to quantum nonlocality using the general

framework of quantum resource theories. To that end, we first study some counter-

intuitive effects of this interplay of quantum resources leading to Bell nonlocality.

Furthermore, we study systematically how hierarchical structures for state and mea-

surement resources result in bounds on the strength of nonlocal correlations.

Regarding the interplay of nonlocality and entanglement, we prove that there exist

bound entangled states that are local in any standard Bell experiment. Nevertheless,

their nonlocal properties can be activated by local filters in a sequential Bell scenario.

Therefore, our results show that hidden nonlocality does not imply entanglement

distillability.

Including more state resources in our analysis, we determine analytically the mini-

mal purity necessary to achieve a certain level of nonlocality for any Bell experiment

in which the used measurements are fixed. We also discuss the implications of our

results for coherence, discord, and entanglement of quantum states using that the

purity bounds these quantities. Furthermore, we show that, in general, there is no

trade-off between entanglement and incompatibility of quantum measurements, i.e.,

increasing one resource does not allow for decreasing the other while keeping the

desired amount of nonlocality fixed.
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Our study of measurement resources is built upon a general framework of distance-

based resource quantification that we propose for any convex resource theory of

measurements. Using a particular distance-based monotone, relying on the diamond

norm, we derive a hierarchy of measurement resources that includes quantum

steering and Bell nonlocality. We study instances in which different resources of

the hierarchy attain the same value and derive upper and lower bounds on the

incompatibility of any set of measurements.

Focusing specifically on the incompatibility of measurements, we show how the

incompatibility of a set of measurements is limited through the incompatibility of its

subsets. That allows us to bound the maximal incompatibility that can be gained

from adding more measurements to an existing measurement scheme. Finally, we

discuss the implications of our bounds for the nonlocal correlations of Bell tests with

more than two measurements.
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Zusammenfassung

Quanten-Nichtlokalität, d.h. der Effekt, dass weit voneinander entfernte Quantensys-

teme stärkere Korrelationen aufweisen können als jede klassische Theorie es zulässt,

ist eine der bemerkenswertesten Eigenschaften der Natur. Über ihre fundamentale

Bedeutung hinaus, wurde in den letzten Jahren erkannt, dass Nichtlokalität eine

zentrale Ressource für Informationsverarbeitungsaufgaben wie der Reduzierung von

Kommunikationskomplexität, Zufallsgenerierung und Kryptographie ist.

Diese praktischen Anwendungen erfordern eine systematische Analyse und Quan-

tifizierung der Ressourcen die Quanten-Nichtlokalität in einem sogenannten Bell-

Experiment ermöglichen. Das heiût, es ist notwednig zu verstehen welche Eigen-

schaften der verwendeten Quantenzustände und der durchgeführten lokalen Mes-

sungen die Quanten-Nichtlokalität ermöglichen und wie diese Zustands- und Mess-

ressourcen quantitativ zu nichtlokalen Korrelationen führen.

Diese Arbeit widmet sich der Vertiefung des Verständnisses des Zusammenspiels von

Quantenressourcen in Bell-Szenarien, die zu Quanten-Nichtlokalität führen, unter

Verwendung des allgemeinen Rahmens der Quantenressourcen-Theorien. Zu diesem

Zweck untersuchen wir zunächst einige kontraintuitive Effekte des Zusammenspiels

von Quantenressourcen, die zu Bell-Nichtlokalität führen. Auûerdem untersuchen

wir systematisch, wie hierarchische Strukturen für Zustands- und Messressourcen zu

einer Begrenzung der Stärke von nichtlokalen Korrelationen führen.

Was das Zusammenspiel von Nichtlokalität und Verschränkung betrifft, beweisen

wir, dass es gebunden verschränkte Zustände gibt, die in jedem Standard-Bell-

Experiment lokal sind. Dennoch können ihre nichtlokalen Eigenschaften durch

lokale Filter in einem sequentiellen Bell-Szenario aktiviert werden. Daher zeigen

unsere Ergebnisse dass versteckte Nichtlokalität keine Destillierbarkeit der Ver-

schränkung impliziert.

Indem wir weitere Zustandsressourcen in unsere Analyse einbeziehen, bestimmen

wir analytisch die minimale Reinheit, die notwendig ist, um ein bestimmtes Maû

an Nichtlokalität für jedes Bell-Experiment zu erreichen, in dem die verwendeten

Messungen festgelegt sind. Wir erörtern auch die Auswirkungen unserer Ergeb-

nisse auf Kohärenz, Dissonanz und Verschränkung von Quantenzuständen, unter

Verwendung der Tatsache, dass die Reinheit diese Gröûen beschränkt. Des Weiteren,

zeigen wir, dass es im Allgemeinen kein Gleichgewicht zwischen Verschränkung und

der Inkompatibilität von Quantenmessungen gibt, d.h. eine Erhöhung der einen
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Ressource erlaubt nicht die Verringerung der anderen, während das gewünschte

Maû an Nichtlokalität beibehalten wird.

Unsere Untersuchung der Messressourcen basiert auf einem allgemeinen Konzept

der distanzbasierten Ressourcenquantifizierung für jede konvexe Ressourcentheorie

von Messungen, welches wir vorschlagen. Unter Verwendung eines bestimmten

distanzbasierten Monoton, das auf der Diamant-Norm beruht, leiten wir eine Hierar-

chie von Messressourcen ab, die auch Quantenfernsteuerung und Bell-Nichtlokalität

umfasst. Wir untersuchen Instanzen, in denen verschiedene Ressourcen der Hier-

archie den gleichen Wert erreichen, und leiten obere und untere Grenzen für die

Inkompatibilität einer beliebigen Menge von Messungen her.

Wir konzentrieren uns dann speziell auf die Inkompatibilität von Messungen und

zeigen, wie die Inkompatibilität einer Menge von Messungen durch die Inkompatibil-

ität ihrer Teilmengen begrenzt wird. Dies erlaubt uns die maximale Inkompatibilität

zu begrenzen, die durch das Hinzufügen weiterer Messungen zu einem bestehenden

Messschema gewonnen werden kann. Schlieûlich diskutieren wir die Auswirkungen

unserer Schranken für die nichtlokalen Korrelationen in Bell-Tests mit mehr als zwei

Messungen.
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1Introduction

„Fall in love with some activity, and do it! Nobody

ever figures out what life is all about, and it

doesn’t matter. Explore the world. Nearly

everything is really interesting if you go into it

deeply enough. Work as hard and as much as

you want to on the things you like to do the best.

Don’t think about what you want to be, but what

you want to do. Keep up some kind of a

minimum with other things so that society

doesn’t stop you from doing anything at all.

Ð Richard P. Feynman

In 2022, the year of writing this thesis, the Nobel Prize in Physics was awarded to

Alain Aspect, John F. Clauser, and Anton Zeilinger "for experiments with entangled

photons, establishing the violation of Bell inequalities and pioneering quantum

information science" [1]. In their reasoning, the Royal Swedish Academy of Sciences

argues that the accomplishments of these three scientists "have cleared the way for

new technology based upon quantum information."

Indeed, today, the field of quantum information represents a promising field of

science that paves the way for potential technological advances in fields like com-

putation [2±5], sensing [6], and secure communication [7±9]. On the other hand,

quantum information is a field that aims at answering central questions regarding

the foundations of quantum theory, such as the role of measurements and the corre-

lations predicted in experiments that date back to the early works of Einstein [10,

11], Schrödinger [12, 13], and Heisenberg[14].

Arguably, one of the most impactful discoveries for the field of quantum physics, if

not all of science, was made by Bell in the ’60s [15]. He discovered that the puzzling

features of quantum mechanics, and entangled states in particular, can be tested

in an experiment that would rule out local hidden-variables as an explanation for

the strong correlations between distant quantum systems predicted by quantum

theory. His proposed test of quantum mechanics, nowadays known as Bell test or

Bell experiment, was first experimentally realized by Clauser [16] and later in a

refined experiment by Aspect [17]. Many even more refined Bell tests followed

these pioneering experiments in recent years, see e.g., [18±21]. Their results show
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that quantum theory is indeed Bell nonlocal, i.e., that nature cannot be explained

by a (more specifically, Bell’s) model of local realism. Moreover, these works show

the importance and the power of the correlations of entangled quantum states.

Anton Zeilinger then used these entangled states to demonstrate the feasibility of the

important quantum teleportation protocol [22], which is the transfer of a quantum

state from one system to another over a distance.

Besides their fundamental importance, these results are also milestones for under-

standing the technological advances that quantum theory promises. Other notable

milestones for these technological advances are the works by Bennett and Brassard

[23, 24] and Ekert [25]. They showed that quantum theory, particularly entangled

states and nonlocal correlations, can be used for secure cryptography. Their works

sparked a huge field devoted to developing device-independent quantum cryptogra-

phy protocols [26], which also advanced the field of randomness generation using

quantum systems based on Bell’s theorem [27±29].

Not only the field of quantum communication promises applications of the founda-

tions of quantum theory, but also the fields of quantum sensing and computation

make steady process. Here, the most remarkable result is probably Shor’s work [30],

which shows that a quantum computer can, in principle, perform prime factoring in

polynomial time, which seems unlikely to be possible with a conventional computer.

All these emerging applications of so-called quantum information processing tasks

have a common theme. They rely on particular quantum states with very distinct

quantum properties. The same is true for the measurement schemes that are used

to obtain classical information about the quantum system. That is, these quantum

information processing tasks rely on quantum resources [31], such as entanglement

[32]. The field of quantum resource theories is devoted to studying the quantum

phenomena that boost quantum technologies. It studies which quantum states and

measurements provide an advantage for specific tasks and how to use them optimally.

Moreover, it provides methods to quantify this advantage and tools to study the

conversion of quantum resources into each other.

Over the years, many promising candidates for quantum advantages, besides entan-

glement, have been proposed, and these resources have been systematically analyzed

using the framework of resource theories (see, e.g., [33±42] for a non-exhaustive

list). However, as quantum states and measurements typically possess many of these

different quantum resources simultaneously, it becomes increasingly important to

understand the interplay of these resources. Understanding this interplay in the

context of Bell nonlocality sets the primary motivation for this thesis.
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1.1 Motivation and Results

This thesis and the author’s doctoral research that preceded it are devoted to

deepening the understanding of the role of quantum resources [31] in quantum

information processing tasks. Quantum correlation phenomena such as Bell nonlo-

cality [15, 43] and quantum steering [44, 45] are central to this thesis. Our goal

is to understand quantitatively which quantum resources of quantum states and

measurements are necessary to achieve a certain level of quantum nonlocality. As

the respective quantum phenomena themselves are understood already rather well,

we focus particularly on the interplay of different state and measurement resources

and how they result in nonlocal quantum correlations, which then can be further

used as a resource.

That this interplay of resources sets certain challenges can be understood by ex-

amining some of the milestones in studying the influence of quantum resources on

each other. For instance, Gisin showed that every pure bipartite quantum state that

is entangled could also reveal nonlocality if appropriate measurements are chosen

for the Bell test [46]. On the hand, Werner and Barrett showed that entanglement

and nonlocality are different notions for mixed quantum states [47, 48]. However,

a more general Bell test involving the nonlocality activation of states that appear

local in the standard Bell test questions, whether nonlocality and entanglement are

entirely different phenomena [49±52]. Moreover, there exist quantitative examples

for the so-called anomaly of nonlocality [53], i.e., the effect that more entanglement

does not necessarily imply more nonlocality.

From the viewpoint of measurement resources, it is known that non-jointly mea-

surable measurements are necessary to reveal Bell nonlocal correlations but not

sufficient beyond the simplest scenario [54±56]. On the other hand, a one-to-one

correspondence exists between the incompatibility of measurements and quantum

steering [57±59]. Understanding the interplay of quantum resources becomes even

more challenging when resources like purity [60, 61], coherence [35], and discord

[36] on the state side and informativeness [40] and coherence [41, 62] on the

measurement side are also considered.

To this aim, the author’s doctoral research contributes to a better understanding

of the interplay of a variety of quantum resources in two different ways. On the

one hand, we analyze the hierarchical structure of quantum resources and develop

frameworks for identifying the minimal necessary resources for a desired amount

of nonlocality. On the other hand, we also study specific instances of the quantum

resource interplay to reveal some peculiar effects of quantum nonlocality.

In the first publication [63] (Appendix A), we studied the interplay between en-

tanglement and nonlocality in a hidden nonlocality scenario. In particular, we first

showed that there exists a multipartite bound entangled state with a local model for

all possible quantum measurements. In a second step, we showed that the nonlocal

1.1 Motivation and Results 3



properties of this seemingly local state could be activated in a sequential Bell scenario

using local filters. Hence, we show that bound entangled states can possess genuine

hidden nonlocality. Together with the result in [52] our findings imply that hidden

nonlocality and distillability of quantum states are entirely different concepts.

In our second publication [64] (Appendix B), we quantified what minimal state

resources in terms of purity, coherence, discord, and entanglement are necessary to

achieve a certain violation of a given Bell inequality once the measurements are fixed.

We show that the minimal purity necessary to achieve said violation can always be

determined analytically by explicitly constructing the state that minimizes the purity

for a given Bell operator and a fixed violation. Notably, this result is general, i.e.,

it applies to any Bell inequality, with any number of parties, measurements, and

outcomes, in any finite dimension. Using our insights from the resource of purity, we

show in the case of two qubits and any full-correlation Bell inequality that there exists

a quantum state that simultaneously minimizes the purity, coherence, discord, and

entanglement that is necessary to achieve a fixed violation. We show that our results

have a counterintuitive consequence for the Clauser-Horne-Shimony-Holt (CHSH)

inequality in particular. Namely, we show that for a fixed violation of the CHSH

inequality, there are instances where increasing the measurement resources in terms

of their incompatibility requires increasing the state resources in terms of the entan-

glement. That is, there is generally no trade-off between measurement and state

resources for a target violation of the CHSH inequality.

In our third manuscript [65] (Appendix C), we developed a distance-based frame-

work for the quantification of measurement resources for any convex resource theory.

More specifically, we define distances between sets of measurements and show that

they naturally induce resource quantifiers. Based on a specific quantifier, the dia-

mond distance, we derive a hierarchy of different measurement resources, including

quantum steering and Bell nonlocality. Furthermore, we analytically derive bounds

on several measurement resources, with a special focus on the incompatibility of

measurements that are valid for any set of measurements.

In our fourth and final work [66] (Appendix D), we focused specifically on mea-

surement incompatibility. First, we analyze how the incompatibility of subsets of

measurements constrains the incompatibility of the whole. That allows us to find

bounds on the incompatibility gained from increasing the number of measurements

in a particular setup. Moreover, we decompose the total incompatibility in terms of

the measurements’ incompatibility with respect to substructures like pairwise and

genuine triplewise incompatibility. Finally, we present tight examples for most of our

bounds and discuss the consequences of our work for the limits that can be set on the

correlations in steering and Bell experiments with more than two measurements.

4 Chapter 1 Introduction



1.2 Thesis Structure

This thesis is structured as follows:

• In Chapter 2, we introduce the theoretical background of this thesis. In partic-

ular, we revisit the basic construction of the framework of quantum mechanics.

Afterward, we introduce the basic concepts from quantum information theory

necessary to follow this thesis. In particular, we introduce geometric and

entropic measures for quantum information that will later be useful to quantify

quantum resources.

• We introduce the framework of quantum resource theories in Chapter 3. First,

we study the general notions of resource theories, such that particular resource

theories emerge as a specific case of our framework. Afterward, we review

each of the state, measurement, and quantum correlation resources relevant to

this thesis. Section 3.4.1 contains a detailed introduction to the Bell scenario

and the phenomenon of Bell nonlocality.

• Chapter 4 contains an overview and a discussion of the results obtained during

the author’s doctoral research.

• In Chapter 5, we conclude this thesis and look out for directions of future

research.

• The original works can be found in the appendices A to D.

1.2 Thesis Structure 5





2Theoretical Background

„Do not worry about your difficulties in

mathematics, I assure you that mine are greater.

Ð Albert Einstein

Since its inception in the first half of the 20th century, quantum theory has proven

its success time and time again. Indeed, quantum theory is one of our most accurate

descriptions of nature so far, as demonstrated by many experiments (see, e.g., [67,

68]). The foundations of quantum mechanics are a few postulates from which the

theory can be derived. These postulates were heavily debated in the early days

and are still subject to active research (see, e.g., [69]). However, up to this day,

these postulates are the minimal set of assumptions necessary to formulate the

framework of quantum mechanics. The mathematical language of this framework is

linear algebra. Throughout this chapter, we will revisit the postulates of quantum

mechanics and use the opportunity to introduce the essential concepts from linear

algebra necessary to follow this thesis as we go along. To round up the theoretical

background of this work, we will also introduce the concepts of quantum information

theory necessary to understand the following chapters.

If not stated otherwise, the mathematical introduction in the following sections

follows the same lines as [70±72] and is also inspired by [73±82].

2.1 Hilbert Spaces and State Vectors

The first postulate introduces state vectors and the Hilbert spaces they live in. In this

thesis, we exclusively consider physical systems with a finite number d of degrees of

freedom. Thus, we will always deal with finite-dimensional Hilbert spaces. Therefore,

the Hilbert spaces we consider always reduce to inner product spaces Cd over the

complex field C.
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Postulate 1. To any isolated physical system, there is an associated state space,

described by a Hilbert Space H (complex vector space with an inner product) of the

system. Any physical state of that system is completely described by a state vector , i.e.,

a unit vector ♣ψ⟩ ∈ H that is unique up to a complex phase factor.

The first postulate already requires some commenting, as it introduces many

of quantum mechanics’ structures and includes two implicit assumptions. First,

Postulate 1 specifically deals with isolated physical systems, which means we assume

for now that the system does not interact with other systems and, in particular,

any environment. Second, Postulate 1 implicitly states that we are using the Dirac

notation for abstract vectors throughout this work, in which the vectors ♣ψ⟩ are

known as ket. In principle, any other label can replace the ψ. For instance, ♣i⟩ with

i = 0, · · · , d − 1, will often be used to denote the i-th degree of freedom of a d-

dimensional system. Note that ♣0⟩ is an entirely different object than the zero-vector,

which we denote by 0.

To properly introduce the inner product, we first introduce the dual space H∗ and

its elements, the dual vectors ⟨ψ♣.

Definition 2.1.1. (Dual space and dual vectors). Let H be a Hilbert space over the

complex field C. Its corresponding dual space H∗ is the vector space of all linear maps

⟨ψ♣ : H 7→ C. The elements ⟨ψ♣ ∈ H∗ are called bra.

Note that the dual space H∗ is isomorphic to H due to Riesz’ representation theorem

(see, e.g., [72]). Hence, there is a one-to-one mapping between kets ♣ψ⟩ ∈ H and

bras ⟨ψ♣ ∈ H∗. This mapping is given by the Hermitian adjoint or Hermitian conjugate

(·)†.

Definition 2.1.2. (Hermitian adjoint). Let ♣ψ⟩ ∈ H and ⟨ψ♣ ∈ H∗. The one-to-one

correspondence between ♣ψ⟩ and ⟨ψ♣ is given by the Hermitian adjoint (♣ψ⟩)† := ⟨ψ♣
that acts such that

(α♣ψ1⟩ + β♣ψ2⟩)† = α⟨ψ1♣ + β⟨ψ2♣, (2.1a)

(α⟨ψ1♣ + β⟨ψ2♣)† = α♣ψ1⟩ + β♣ψ2⟩, (2.1b)

for any complex numbers α, β with complex conjugates α, β.
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Definition 2.1.3. (Inner product). The inner product of a Hilbert space H is a mapping

⟨·♣·⟩ : H × H 7→ C, which associates to any pair of vectors ♣ψ⟩, ♣ϕ⟩ ∈ H a complex

number and that satisfies the following conditions:

1. ⟨ϕ♣ψ⟩ = ⟨ψ♣ϕ⟩, (2.2a)

2. ⟨ψ♣ψ⟩ ≥ 0, and ⟨ψ♣ψ⟩ = 0 ⇐⇒ ♣ψ⟩ = 0, (2.2b)

3. ⟨ϕ♣αψ1 + βψ2⟩ = α⟨ϕ♣ψ1⟩ + β⟨ϕ♣ψ2⟩, for any α, β ∈ C. (2.2c)

Note that it follows from the conditions (2.2a) and (2.2c) that ⟨αϕ1 + βϕ2♣ψ⟩ =

α⟨ϕ1♣ψ⟩ + β⟨ϕ2♣ψ⟩, which means the inner product is a sesquilinear form.

We already used in the Definitions 2.1.2 and 2.1.3 the very basic fact that linear

combinations of vectors in H are also contained in H. The very innocent-looking

postulation that vectors in a Hilbert space describe quantum mechanics already

allows for some of its key features. For instance, the superposition principle, which is

the foundation for the phenomenon of coherence that we explicitly discuss in Section

3.2.2, follows from this simple postulate.

A vector ♣ψ⟩ is called a state vector if it is normalized, i.e., ∥♣ψ⟩∥ =
√

⟨ψ♣ψ⟩ = 1.

Here, ∥·∥ is the norm induced by the inner product. Furthermore, the family of states

♣ψθ⟩ = exp(iθ)♣ψ⟩ with θ ∈ R are regarded as physically equivalent, as they only

differ by a global complex phase which is not observable in any experiment. Besides

the notion of a norm, the inner product also gives a sense of orientation between

two vectors. Like for two vectors and the Euclidean dot product between them, the

vectors ♣ψ⟩ and ♣ϕ⟩ are said to be orthogonal if and only if ⟨ϕ♣ψ⟩ = 0.

Throughout this thesis, we will need some additional concepts from linear algebra

to study vector spaces and state vectors in more detail. However, we assume that

any potential reader will be familiar with them, so we introduce the concepts in the

context of Hilbert spaces without further commenting.

Definition 2.1.4. (Spanning set). A set of vectors ¶♣vi⟩♢n−1
i=0 is a spanning set of a

Hilbert space H if any vector ♣v⟩ ∈ H can be written as a linear combination

♣v⟩ =
n−1∑

i=0

ci♣vi⟩, (2.3)

with some complex coefficients ci.

Definition 2.1.5. (Linear independence). A set of non-zero vectors ¶♣vi⟩♢n−1
i=0 is said

to be linearly independent if the equation

n−1∑

i=0

ci♣vi⟩ = 0, (2.4)
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only holds true if ci = 0, for all i = 0, · · · , n− 1, and it is called linearly dependent

otherwise.

Definition 2.1.6. (Basis). Any set ¶♣vi⟩♢d−1
i=0 of linear independent vectors that spans

H is called a basis of H. Any basis of H contains the same number of elements, which is

called the dimension d of the Hilbert space. A basis is said to be orthonormal if it holds

that ⟨vi♣vj⟩ = δij for any i, j ∈ ¶0, 1, · · · , d− 1♢, where δij is the Kronecker delta, i.e.,

the vectors are pairwise orthogonal and normalized.

Definition 2.1.7. (Mutually unbiased bases). Two orthonormal bases ¶♣vi⟩♢d−1
i=0 ,

¶♣wi⟩♢d−1
i=0 on a Hilbert space H are said to be mutually unbiased bases (MUB) if it holds

that ♣⟨vi♣wj⟩♣ = 1√
d

for all i, j.

It is often convenient to work with the representation of state vectors in a particular

basis. That leads to the concept of coordinate vectors.

Definition 2.1.8. (Coordinate vector). Given an orthonormal basis ¶♣vi⟩♢d−1
i=0 of H.

Than any vector ♣v⟩ ∈ H admits a unique decomposition

♣v⟩ =
d−1∑

i=0

vi♣vi⟩, (2.5)

i.e., any ♣v⟩ can be represented by a (column) vector, the so-called coordinate vector

v :=










v0

v1

...

vd−1










=̂♣v⟩.

We will obey the convention that slightly abuses the notation in the following and

also use the symbol ♣v⟩ for its representation v. Having specified the representation

of a particular ket ♣v⟩ as column vector, we can identify the corresponding bra as row

vector, i.e., ⟨v♣ = (♣v⟩)† =
(

v0 v1 · · · vd−1



, which means that the Hermitian conjugate

(·)†, is a conjugate transpose in a particular basis. With that, we can write the inner

product of two vectors ♣v⟩, ♣w⟩ as

⟨v♣w⟩ =
d−1∑

i=0

viwi, (2.6)

that is, as the matrix product of the row vector ⟨v♣ and the column vector ♣w⟩.
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2.2 Linear Operators

Besides state vectors and Hilbert spaces, additional ingredients are necessary to

reconstruct quantum mechanics. Namely, we also need linear operators to act on

these states to account for state transformations and measurements in quantum

mechanics.

Definition 2.2.1. (Linear operator). Let H1 and H2 be two Hilbert spaces. A linear

operator A between H1 and H2 is a function A : H1 7→ H2 that maps any vector

♣ψ⟩ ∈ H1 to a vector A♣ψ⟩ := A(♣ψ⟩) ∈ H2 such that

A
(∑

i

ci♣ψi⟩


=
∑

i

ciA♣ψi⟩, (2.7)

for any ♣ψi⟩ ∈ H1 and any coefficients ci ∈ C.

In the following, we will often consider linear operators that map elements of a

Hilbert space onto other elements of the same Hilbert space, i.e., mappings A : H 7→
H, in which case we say A is defined (or acts) on H. We denote by L(H1,H2) the

set of all linear maps from H1 to H2 with L(H) := L(H,H), which itself is a vector

space. We will often focus on the set L(H) for simplicity. One particularly important

operator is the identity operator 1H, which acts trivially on any vector in the sense

that 1H♣ψ⟩ = ♣ψ⟩ for any ♣ψ⟩ ∈ H.

We already saw that kets ♣ψ⟩ ∈ H can be represented by column vectors and

bras ⟨ψ♣ = (♣ψ⟩)† ∈ H∗ as row vectors. We will see that linear operators can be

represented as matrices in the following. We use the dyadic or outer product to do

so. Consider vectors ♣v⟩, ♣w⟩, ♣z⟩ ∈ H and the linear operator ♣v⟩⟨w♣ that defines the

outer product of ♣v⟩ and ⟨w♣ = (♣w⟩)†, which acts on ♣z⟩ such that

(♣v⟩⟨w♣)♣z⟩ := ⟨w♣z⟩♣v⟩. (2.8)

We can also consider linear combinations of outer products. In particular we

consider an orthonormal basis ¶♣vi⟩♢d−1
i=0 and a vector ♣v⟩ =

∑d−1
i=0 vi♣vi⟩. It follows

directly that ⟨vi♣v⟩ = vi. This allows us to see that

( d−1∑

i=0

♣vi⟩⟨vi♣


♣v⟩ =
d−1∑

i=0

♣vi⟩⟨vi♣v⟩ =
d−1∑

i=0

vi♣vi⟩ = ♣v⟩, (2.9)
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from which we obtain the completeness relation
∑d−1
i=0 ♣vi⟩⟨vi♣ = 1H.

One can use the completeness relation to establish the matrix representation of a

linear operator A ∈ L(H) in an orthonormal basis ¶♣vi⟩♢d−1
i=0 . Namely,

1HA1H =
( d−1∑

i=0

♣vi⟩⟨vi♣


A
( d−1∑

j=0

♣vj⟩⟨vj ♣


=
d−1∑

i,j=0

⟨vi♣A♣vj⟩♣vi⟩⟨vj ♣ =
d−1∑

i,j=0

Aij ♣vi⟩⟨vj ♣,

(2.10)

where Aij = ⟨vi♣A♣vj⟩ is the matrix element (i-th row and j-th column) of A in the

basis ¶♣vi⟩♢d−1
i=0 . Therefore, we denote by (Aij) the matrix representation of A with

respect to the basis ¶♣vi⟩♢d−1
i=0 . Similar to the case for state vectors, we synonymously

use the symbol A to talk about a particular representation.

There are many important classes of linear operators that we want to define in

what follows. However, before we do so, we define some frequently used concepts

that come up when we deal with these operators.

Definition 2.2.2. (Eigenvalue and eigenvector). Let A ∈ L(H) be a linear operator

and ♣v⟩ ∈ H a non-zero vector such that

A♣v⟩ = λ♣v⟩, (2.11)

for some scalar λ ∈ C. We say that ♣v⟩ is an eigenvector of A and λ its corresponding

eigenvalue. We say that a normalized eigenvector is an eigenstate and we call the set

of all eigenvalues of A the spectrum λ(A).

Definition 2.2.3. (Hermitian adjoint of operators). Let A ∈ L(H) be a linear operator

on H. We define the Hermitian adjoint operator A† ∈ L(H∗) of A to be the unique

linear operator that fulfills

⟨ψ♣A†♣ϕ⟩ = ⟨ϕ♣A♣ψ⟩, (2.12)

for any ♣ψ⟩, ♣ϕ⟩ ∈ H. This means in particular that (A†)ij = (A)ji for the matrix repre-

sentation of A in any orthonormal basis. That is, the Hermitian adjoint corresponds to

a complex conjugation and a transpose, once a particular basis is fixed. Note that this

is consistent with the definition of (·)† acting on vectors.

Definition 2.2.4. (Commutator). Let A,B ∈ L(H) be two linear operators. We say A

and B commute if the commutator defined as

[A,B] := AB −BA, (2.13)

vanishes, i.e., if [A,B] = 0.
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Definition 2.2.5. (Normal operators). An operator A ∈ L(H) is said to be normal if

it commutes with its Hermitian adjoint, that is

A†A = AA†. (2.14)

The class of normal operators is essential in the context of quantum mechanics

because it contains two important cases as subclasses. These classes are the Hermi-

tian operators, which are crucial in the context of observable quantities in quantum

mechanics, and the unitary operators, which describe the evolution of quantum

systems.

Definition 2.2.6. (Hermitian operators). A linear operator A ∈ L(H) is said to be

Hermitian, if it holds that

A = A†. (2.15)

We denote the set of all Hermitian operators by Herm(H) ⊂ L(H). Note that it follows

directly from Definition 2.2.3 of the Hermitian adjoint, that any operator A ∈ Herm(H)

can only have real-valued eigenvalues, i.e., λ(A) ∈ R.

There is an additional subset of Hermitian operators that will come up frequently.

These are the so-called positive semi-definite operators.

Definition 2.2.7. (Positive semi-definite operators). A Hermitian operator A ∈
Herm(H) is said to be positive semi-definite, if

⟨v♣A♣v⟩ ≥ 0, (2.16)

for any non-zero vector ♣v⟩ ∈ H. We will denote this in the following by A ⪰ 0 (A ≻ 0 if

⟨v♣A♣v⟩ > 0) and the set of all positive semi-definite operators by Pos(H) ⊂ Herm(H).

Note, it follows directly that any positive semi-definite operator has only non-

negative eigenvalues. In fact, this property is an equivalent definition of a positive

semi-definite operator.

Definition 2.2.8. (Unitary operators). A linear operator U ∈ L(H) is said to be

unitary if it holds that

UU † = U †U = 1H, (2.17)

i.e., U † = U−1 is the inverse of U .
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Unitary operators are themselves a subset of the set of linear isometries.

Definition 2.2.9. (Isometry). A linear operator V ∈ L(H1,H2) with dH2
≥ dH1

is

said to be an isometry if

V †V = 1H1
. (2.18)

An important concept, very similar to eigenvalues, are the so-called singular values

and the singular value decomposition, where unitary operators (and a diagonal

matrix) are used to decompose an operator A conveniently.

Theorem 2.2.10. (Singular values and the singular value decomposition). Let

A ∈ L(H) be a linear operator. There exist unitary operators U, V ∈ L(H) and a

diagonal matrix Σ with non-negative entries σi, such that A admits a so-called singular

value decomposition given by

A = UΣV. (2.19)

The entries σi of Σ are called the singular values of A. The proof can be found in [70]

(Corollary 2.4 therein).

Definition 2.2.11. (Projector). A linear operator Π ∈ L(H) is called a projector if

Π2 = Π. (2.20)

Additionally, if Π ∈ Herm(H), we say Π is an orthogonal projector.

Note that it follows directly that any eigenvalue λ of a projector Π has to be in

¶0, 1♢. This can be seen from

Π2♣v⟩ = λ2♣v⟩ = λ♣v⟩ = Π♣v⟩, (2.21)

for any eigenstate ♣v⟩ of Π.

One example of particular importance is the instance of a rank-one orthogonal

projector ♣ψ⟩⟨ψ♣. Such an operator maps any vector ♣v⟩ ∈ H onto a 1-dimensional

subspace which is spanned by ♣ψ⟩. Moreover, given an orthonormal basis ¶♣bi⟩♢d−1
i=0 ,

any orthogonal projector on a subspace S can be written as Π =
∑

i∈S
♣bi⟩⟨bi♣.
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Rank-one projectors can, for instance, be used to write any normal operator A in a

convenient way. By virtue of the spectral decomposition it holds that

A =
d−1∑

i=0

λi♣ai⟩⟨ai♣, (2.22)

where the λi ∈ λ(A) are the eigenvalues of A and ♣ai⟩⟨ai♣ are the rank-one projectors

onto the corresponding eigenstates ♣ai⟩.
As a final tool in this section, we introduce the trace of an operator, respectively, of

a matrix.

Definition 2.2.12. (Trace). The trace of any operator A ∈ L(H) in an orthonormal

basis ¶♣bi⟩♢d−1
i=0 is given by

Tr[A] :=
d−1∑

i=0

⟨bi♣A♣bi⟩ =
d−1∑

i=0

Aii, (2.23)

i.e., by the sum of its diagonal elements.

Note that the trace is cyclic under products. That means Tr[AB] = Tr[BA], which

guarantees that the trace Tr[A] is independent of the particular orthonormal basis.

This follows since the change of the representation of A in one orthonormal basis to

another is described by a unitary mapping A 7→ UAU †. That means, in particular,

that Tr[A] =
∑d−1
i=0 λi for any normal operator A, where the λi are the eigenvalues

of A. Finally note that Tr[A♣ψ⟩⟨ψ♣] = ⟨ψ♣A♣ψ⟩, which follows from the completeness

relation.

Having the concept of the trace at hand, we can upgrade the vector space of linear

operators L(H) to a Hilbert space by introducing the Hilbert-Schmidt inner product

⟨A,B⟩HS := Tr[A†B].

2.3 Density Operators

So far, we have described quantum states via state vectors ♣ψ⟩. However, there are

situations where it is not possible to say in which state of an ensemble ¶♣ψi⟩♢n−1
i=0 a

quantum state is in. Consider, for instance, a state preparation device that depends on

some classical parameter I, that we have no direct access to. Instead, we only observe

that the device produces a quantum state ♣ψi⟩ with probability pi := p(i) := p(I = i).

In such a situation, we cannot describe the quantum system by a single state vector

♣ψ⟩, but instead we have to describe it as a statistical mixture of quantum states
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¶♣ψi⟩♢n−1
i=0 that occur with probabilities ¶pi♢n−1

i=0 . This leads to the density operator

(or density matrix) ρ of the system which is per definition given by

ρ :=
∑

i

pi♣ψi⟩⟨ψi♣, (2.24)

i.e., by a convex combination (i.e., pi ≥ 0,
∑n−1
i=0 pi = 1) of the projectors onto the

states ♣ψi⟩. Let us characterize the density operator more formally.

Theorem 2.3.1. (Density operator). An operator ρ ∈ L(H) is a density operator of

some ensemble of probabilities and states ¶pi, ♣ψi⟩♢n−1
i=0 if and only if

ρ = ρ†, ρ ⪰ 0, Tr[ρ] = 1, (2.25)

which means ρ ∈ Pos(H) is a positive semi-definite operator that is normalized to

Tr[ρ] = 1. The proof can be found in [70](Theorem 2.5 therein). We denote the set of

all density operators acting on H by S(H).

State vectors ♣ψ⟩ can be described in the density operator formalism as the particular

operator ρ = ♣ψ⟩⟨ψ♣, which means there is only one state ♣ψ⟩ that occurs with

probability p = 1. From now on, we call state vectors or their corresponding

projectors pure states. On the other hand, density operators that do not correspond

to a single projector are called mixed states, reflecting that these states are a statistical

mixture of two or more pure states. Clearly, the set S(H) contains both of these

particular cases. Moreover, it can directly be seen from Theorem 2.3.1 that the

set of all density operators S(H) is a convex set, i.e., for any two density matrices

ρ1, ρ2 ∈ S(H) and any η ∈ [0, 1] the operator ρ = ηρ1 + (1 − η)ρ2 is again in S(H).

The pure states ρ = ♣ψ⟩⟨ψ♣ describe the extreme points of S(H), i.e., those states

that cannot be written as a convex combination of other states. Note that S(H)

cannot be described by a finite amount of extreme points and that the ensemble a

density matrix ρ describes is not unique. Take, for instance, any orthonormal basis

¶♣bi⟩♢d−1
i=0 of a d-dimensional Hilbert space and let ¶pi♢d−1

i=0 be distributed uniformly,

i.e, pi = 1
d ∀i. It follows directly that ρ =

∑d−1
i=0 pi♣bi⟩⟨bi♣ = 1

d . From now on, we

say that ρ = 1

d is the maximally mixed state, which is a name that we will justify

later (see Sections 2.8 and 3.2.1). There is a simple way to see, whether a density

operator describes a pure or a mixed state. It holds that 1
d ≤ Tr[ρ2] ≤ 1 for all

ρ ∈ S(H) and Tr[ρ2] = 1 if and only if ρ = ♣ψ⟩⟨ψ♣ is a pure state.

2.3.1 Qubits

So far, we have only described quantum states from an abstract point of view and

discussed some generic properties. However, for any particular application, we need
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a more concrete description of the physical situation. The simplest yet non-trivial

system we frequently deal with is the quantum bit or, in short, the qubit. Remember

that a classical bit takes on one of the values in ¶0, 1♢. To describe a qubit, we

consider a two-dimensional Hilbert space C2 and use the so-called computational

basis described by the states ¶♣0⟩, ♣1⟩♢ with ♣0⟩ =

(

1

0

)

and ♣1⟩ =

(

0

1

)

.

Multiple physical degrees of freedom can implement a qubit. For instance, the

state of a spin-1/2 particle, such as an electron, the polarization of a photon, or a

two-level transition of an atom. Contrary to a classical bit, a qubit is generally in a

superposition state (as a linear combination of two basis vectors of a Hilbert space),

i.e., a pure qubit state can be written as

♣ψ⟩ = α♣0⟩ + β♣1⟩, (2.26)

where α, β are complex numbers such that ♣α♣2 + ♣β♣2 = 1, due to the normalization

of ♣ψ⟩. Not all of the parameters (four real numbers) within α, β are independent.

Due to the normalization and the fact that state vectors are unique only up to a

global phase, only two (real) degrees of freedom are necessary to describe a general

pure qubit state. Namely,

♣ψ⟩ = cos
ϑ

2
♣0⟩ + e−iφ sin

ϑ

2
♣1⟩, (2.27)

where 0 ≤ ϑ ≤ π, 0 ≤ φ < 2π. To describe a general qubit state, including mixed

states, we first introduce a convenient basis for for all Hermitian 2 × 2 matrices. This

basis is given in terms of the Pauli matrices

σ0 = 1 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.28)

Note that the Pauli matrices ¶σi♢ are unitary, Hermitian, and fulfill σ2
i = 1. Moreover,

they are orthogonal with respect to the Hilbert-Schmidt inner product, i.e., Tr[σiσj ] =

2δij for all i, j and Tr[σi] = 0 for i ∈ ¶1, 2, 3♢. Let σ be the vector that contains the

Pauli matrices such that σ = (σ1 σ2 σ3)T . It is possible to write any qubit state such

that

ρ =
1

2
(1 + r · σ), (2.29)

where r ∈ R3 is the so-called Bloch vector of ρ. Note that the eigenvalues of ρ are

given by λ1,2 = 1
2(1 ± ♣r♣), which means it is necessary that ♣r♣ =

√

r2
1 + r2

2 + r2
3 ≤ 1

to describe a quantum state ρ. It follows directly that ♣r♣ = 1 corresponds to a pure

state.

Describing a qubit by its (unique) Bloch vector allows not only for a compact

description of its density operator ρ, but also for a nice geometrical representation.

2.3 Density Operators 17



|ψ⟩⟨ψ|

r1

r2

r3

ϕ

ϑ

Fig. 2.1.: Representation of qubit states on the Bloch sphere. A pure quantum state ♣ψ⟩⟨ψ♣
corresponds to a Bloch vector r of length one with components r1, r2, r3. The
pure state ♣ψ⟩⟨ψ♣ is completely determined by the two angles φ, ϑ. While the pure
states lie on the surface of the Bloch sphere, the mixed states are in its interior.

Namely, all qubit states ρ are contained within a sphere, the Bloch sphere, of radius

1. The pure states are on the surface of the Bloch sphere, while the mixed states are

in its interior, see also Figure 2.1.

2.4 Composite Systems

Until now, we only considered single quantum systems. However, many of the

remarkable features of quantum theory that we discuss in later chapters only become

prevalent when considering two or more quantum systems. Here, we recall the

mathematical foundations for these phenomena.

Systems composed of multiple systems are mathematically described by the tensor

product between Hilbert spaces and the Kronecker product on the level of matrix

representations. We use the symbol ⊗ to denote both of these operations.

Postulate 2. The state space H of a system composed of n (sub-)systems with associated

Hilbert spaces Hi, where i = 1, · · · , n, is described by the tensor product of the single

system’s Hilbert spaces: H := H1 ⊗ H2 ⊗ · · · ⊗ Hn. Furthermore, if the individual

systems are prepared in the states ♣ψi⟩, the joint state of the system is given by ♣ψ⟩ =

♣ψ1⟩ ⊗ ♣ψ2⟩ ⊗ · · · ⊗ ♣ψn⟩, analogously if the individual systems are prepared in the states

ρi, the joint state of the system is given by ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Note that we will use the shorthand notations ♣ψ1⟩ ⊗ ♣ψ2⟩ = ♣ψ1⟩♣ψ2⟩ = ♣ψ1ψ2⟩.
Furthermore, we call states of the form ♣ψ⟩ = ♣ψ1⟩ ⊗ ♣ψ2⟩ ⊗ · · · ⊗ ♣ψn⟩, respectively

ρ = ρ1 ⊗ρ2 ⊗ · · · ⊗ρn, product states. We say that a quantum state of n systems, is an

n-partite quantum system, shared by n parties in a quantum information processing
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task. In the following discussions, we will primarily focus on systems composed of

two subsystems, i.e., bipartite states.

Consider two Hilbert spaces HA and HB in which we fix a particular orthonormal

basis ¶♣ai⟩♢dA−1
i=0 and ¶♣bj⟩♢dB−1

j=0 , respectively. Then ¶♣aibj⟩♢ij (we omit the explicit

indexing of the set here and in the following whenever it simplifies the notation and

does not leave out crucial information) is a basis on the composite Hilbert space

HAB := HA ⊗ HB. It follows directly that any state ♣ψ⟩ ∈ HAB can be written as

♣ψ⟩ =
∑

i,j

cij ♣aibj⟩, (2.30)

with some complex coefficients cij . However, it is often helpful to choose a different

decomposition of ♣ψ⟩ into bases of the subsystems in order to reduce the number

of coefficients necessary to describe ♣ψ⟩. This decomposition is known as Schmidt

decomposition.

Theorem 2.4.1. (Schmidt decomposition). Let ♣ψ⟩ ∈ HAB be a bipartite state vector

of systems with local Hilbert spaces HA,HB of dimension dA and dB such that HAB =

HA⊗HB and dAB = dAdB . Then there exist orthonormal bases ¶♣iA⟩♢dA−1
i=0 , ¶♣iB⟩♢dB−1

j=0

such that

♣ψ⟩ =
dmin−1∑

i=0

√
ci♣iAiB⟩, (2.31)

where the
√
ci are non-negative real numbers such that

∑

i ci = 1, known as Schmidt

coefficients, and dmin = min¶dA, dB♢. The number of non-zero Schmidt coefficients is

the Schmidt rank R of ♣ψ⟩. A proof can be found in [72] (Proposition 3.4.1 therein).

The Schmidt decomposition, which is entirely based on the singular value decompo-

sition (see Theorem 2.2.10), can also be formulated for (density-)operators, which

often allows for simplified calculations on mixed states of two systems. The op-

erator Schmidt decomposition [83] guarantees that any state ρ ∈ S(HAB) can be

decomposed such that

ρ =

d2
min−1
∑

i=0

γiAi ⊗Bi, (2.32)

where γi ≥ 0 for all i and ¶Ai♢d
2
A

−1
i=0 ,¶Bi♢d

2
B

−1
i=0 are orthonormal bases (with respect

to the Hilbert-Schmidt inner product) for dA, dB dimensional matrices respectively.

As before, it holds dmin = min¶dA, dB♢.

The Schmidt decomposition plays a crucial role in deciding whether a bipartite

pure state ♣ψ⟩ is a product state ♣ψ⟩ = ♣ψ1⟩ ⊗ ♣ψ2⟩ or not. Namely, product states are

states of Schmidt rank 1. An example of a state that has a higher Schmidt rank is
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given by ♣Φ+⟩ = 1√
2
(♣00⟩ + ♣11⟩), which is clearly already in its Schmidt form and has

Schmidt rank 2, the maximum for a two-qubit state. The distinction between pure

product states and non-product states leads to the phenomenon of entanglement,

which is not only one of the most remarkable features of nature but also a crucial

resource for quantum information processing tasks.

Definition 2.4.2. (Pure state entanglement). Let HAB = HA ⊗ HB be the Hilbert

space of a bipartite system. A pure quantum state ♣ψ⟩ ∈ HAB is called entangled if it

cannot be written as a product state, i.e.,

♣ψ⟩ ≠ ♣ψA⟩ ⊗ ♣ψB⟩, (2.33)

for any states ♣ψA⟩ ∈ HA, ♣ψB⟩ ∈ HB, and it is called separable otherwise. Equivalently,

a pure quantum state ♣ψ⟩ is called entangled if it has a Schmidt rank larger than 1.

We will study the phenomenon of entanglement and its role and applications in

quantum information processing tasks in depth in Section 3.2.3. Here, we also

introduce the concept of entanglement for bipartite mixed states, which is slightly

more technical than its pure state counterpart.

Definition 2.4.3. (Entanglement). Let S(HAB) be the set of all density operators on

HAB = HA ⊗ HB. A density operator ρ ∈ S(HAB) is called entangled, if it cannot be

written as a probabilistic mixture (that is a convex combination) of product states, i.e.,

ρ ̸=
∑

i

piρ
A
i ⊗ ρBi , (2.34)

for any quantum states ρAi ∈ HA, ρBi ∈ HB, and it is called separable otherwise.

2.4.1 Reduced Density Operators

Sometimes when dealing with multipartite quantum states, one is in a situation

where only partial information about the system is available. Consider, for instance,

a bipartite quantum state ρAB ∈ S(HAB) held by two parties, Alice (A) and Bob

(B), where only system A is available to us. That might be the case in some

quantum information processing tasks, where one can only control and observe

particle A due to experimental limitations. For instance, particle B could be stored

and manipulated in a different lab than particle A. Alternatively, system B could

describe the environment of particle A, which is not under our control and, therefore,

unknown to us.

We want to find a description of the system A that allows us to be ignorant about
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system B while being consistent with the state ρAB. The unique operation which

describes this process is the so-called partial trace.

Definition 2.4.4. (Partial trace). Let V ∈ L(HA) and W ∈ L(HB) be any two

linear operators and HAB = HA ⊗ HB. The partial trace Tr2 is a linear mapping

Tr2 : L(HAB) 7→ L(HA) such that

Tr2[V ⊗W ] = Tr[W ]V. (2.35)

Note that it holds in particular that Tr2[♣a1⟩⟨a2♣ ⊗ ♣b1⟩⟨b2♣] = ⟨b2♣b1⟩♣a1⟩⟨a2♣ and that

the partial trace Tr1 with respect to system A is defined analogously.

Having the partial trace as a mathematical tool available, we can define the reduced

density operator of a bipartite quantum state and convince us that the partial trace is

the correct (and unique) method to describe reduced density operators.

Definition 2.4.5. (Reduced density operator). Let ρAB ∈ S(HAB) be a density

operator and HAB = HA ⊗ HB . Then, the reduced density operators ρA ∈ S(HA), and

ρB ∈ S(HB) of ρAB are defined as

ρA := Tr2[ρAB], ρB := Tr1[ρAB]. (2.36)

In particular, for any orthonormal basis ¶♣bi⟩♢ on HB it holds that ρA = Tr2[ρAB] =
∑

i(1A ⊗ ⟨bi♣)ρAB(1A ⊗ ♣bi⟩) =:
∑

i⟨bi♣ρAB♣bi⟩, where 1A is the identity acting on HA.

The analogous holds for ρB = Tr1[ρAB].

While it might not be surprising that the reduced density operators of a mixed

quantum state ρAB can be mixed, it is pretty astonishing that the reduced density

operators of a pure state ♣ψAB⟩⟨ψAB♣ can also be mixed states. To see that this

is indeed the case, we can use the Schmidt-decomposition in Theorem 2.4.1. Let

the Schmidt decomposition of ♣ψAB⟩ be given by ♣ψAB⟩ =
∑

i

√
λi♣iAiB⟩. It follows

directly, that the reduced density operators ρA, ρB are given by

ρA =
∑

i

λi♣iA⟩⟨iA♣, ρB =
∑

i

λi♣iB⟩⟨iB♣, (2.37)

which also directly implies that the spectrum of both reduced states is equivalent,

i.e., λ(ρA) = λ(ρB). Note that this is a feature of pure states that does clearly not

translate to mixed states. We consider again the state ♣Φ+⟩ = 1√
2
(♣00⟩ + ♣11⟩) and

compute its reduced states. It follows straightforwardly that ρA = ρB = 1

2 , which

is a mixed state, in particular, the maximally mixed state. This means, there are

(pure) quantum states ♣ψAB⟩, of which there exist a global (on HAB) complete
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description, but the local states ρA and ρB lack information about the system.

Moreover, a description of ρA and ρB is not sufficient to describe the state ♣ψAB⟩. In

fact, as shown in the particular example above, the local systems can be completely

undetermined. This observation plays a crucial role for entanglement, which we

discuss in detail in Section 3.2.3.

To conclude this section, we want to discuss why the partial trace is the correct and

(unique) operation to define the reduced states.

Theorem 2.4.6. (Uniqueness of the partial trace). Consider any linear operator

XA ∈ L(HA) and any density operator ρAB ∈ S(HAB) with HAB = HA ⊗ HB. Let

f : S(HAB) 7→ S(HA) be any map that maps density operators in S(HAB) onto density

operators in S(HA). The partial trace Tr2 is the unique function that satisfies

Tr[XAf(ρAB)] = Tr[(XA ⊗ 1B)ρAB]. (2.38)

A proof can be found in [70](page 107, Box 2.6 therein).

That is, the partial trace is the unique operation that gives a consistent description

of operations (in particular measurements) on a subsystem of a larger system.

Finally, we want to show that it is possible to write any mixed state ρA ∈ S(HA) as

part of a pure quantum state ♣ψ⟩AB ∈ HAB such that Tr2[♣ψAB⟩⟨ψAB♣] = ρA. This

purely mathematical procedure is known as purification.

Definition 2.4.7. (Purification). Any quantum state ♣ψAB⟩ ∈ HAB = HA ⊗ HB that

fulfills

Tr2[♣ψAB⟩⟨ψAB♣] = ρA, (2.39)

is called a purification of ρA ∈ S(HA).

Theorem 2.4.8. (Existence of a purification). Consider a quantum state ρA ∈ S(HA)

with spectral decomposition ρA =
∑dA−1

i=0 λi♣iA⟩⟨iA♣, where dA is the dimension of HA.

Let ¶♣iB⟩♢dB−1
i=0 and ¶♣iB′⟩♢dB′−1

i=0 be orthonormal bases on HB, HB′ with dB′ ≥ dB ≥
dA. Then, the two states

♣ψAB⟩ =
dA−1
∑

i=0

√

λi♣iAiB⟩ and ♣ψ′
AB′⟩ =

dA−1
∑

i=0

√

λi♣iAiB′⟩, (2.40)

are purifications of ρA. Moreover, there exists an isometry V : L(HB) 7→ L(HB′) such

that ♣ψ′
AB′⟩ = (1 ⊗ V )♣ψAB⟩.
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Proof. It is readily verified that Tr2[♣ψAB⟩⟨ψAB♣] = Tr2[♣ψAB′⟩⟨ψAB′ ♣] = ρA. Since

¶♣iB⟩♢dB−1
i=0 and ¶♣iB′⟩♢dB′−1

i=0 are both orthonormal bases, but not necessarily of the

same dimension, it follows that the mapping V : L(HB) 7→ L(HB′) describes an

isometry. See also [72] (Proposition 4.1.1 therein).

2.5 Evolution of Quantum Systems

Now that we introduced the fundamental properties of quantum states and before

we study the measurement process, we discuss the evolution of quantum states, i.e.,

the possible transformations a quantum state can undergo from a time ti to a time

tf . The most fundamental transformation is given by a unitary evolution of a closed

system.

Postulate 3. The evolution of a quantum state ♣ψ(ti)⟩ at time t = ti to a quantum

state ♣ψ′(tf )⟩ at time t = tf in a closed quantum system is described by a unitary

transformation U(ti, tf ), which is unique up to a complex phase, such that

♣ψ′(tf )⟩ = U(ti, tf )♣ψ(ti)⟩. (2.41)

Moreover, a quantum state ρ(ti) undergoing the same unitary evolution U(ti, tf ) is

transformed to the state ρ′(tf ) = U(ti, tf )ρ(ti)U(ti, tf )†. The unitary time evolution is

determined by the Hamiltonian H of the system through the Schrödinger equation

iℏ∂t♣ψ(t)⟩ = H♣ψ(t)⟩, (2.42)

where ℏ is the reduced Planck’s constant. For a Hamiltonian that is not explicitly

time-dependent, the unitary evolution is given by U(ti, tf ) = exp (− i
ℏH(tf − ti)).

Postulate 3 deals with the evolution of closed systems. This requires specifically

that the system does not interact with any environment. However, this requirement

is, in reality, never met. Therefore, we need to find a framework that describes the

evolution of quantum systems interacting with an environment. We will see in the

following that there are different ways to represent such an evolution, each of which

has its advantages.

2.5.1 Representations of Quantum Channels

The first and maybe most intuitive way to describe a more general physical trans-

formation Λ(ρ) = ρ′, including the interaction with the environment, is to describe

the environment as part of the system. From here on, we will leave out the explicit
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time dependence of the evolution of a quantum system and only consider the ex-

plicit transformation. Consider that our quantum system is prepared in the state

ρ ∈ S(HS) and the environment in some pure state ♣χ⟩⟨χ♣ ∈ S(HE). Note that it

is not restrictive to consider the environment to be in a pure state, as we did not

specify the dimension of the Hilbert space HE and we can make use of purifications

if necessary. Let ¶♣χi⟩♢i be an orthonormal basis on HE . Since we included the envi-

ronment into our system, the evolution of the system on HSE = HS ⊗ HE is again

governed by unitary operators. This means, we can describe the transformation as

Λ(ρ) = Tr2[U(ρ⊗ ♣χ⟩⟨χ♣)U †] =
∑

i

⟨χi♣U(ρ⊗ ♣χ⟩⟨χ♣)U †♣χi⟩. (2.43)

It turns out that this evolution does not only describe a valid transformation from

quantum states to quantum states but also that this is the most general way to treat

the evolution of quantum systems, as guaranteed by Stinespring’s dilation theorem

(see, e.g., [71]). We say that every such evolution describes a quantum channel Λ(·).
We conceptualize the transformations of quantum states further in the following.

Definition 2.5.1. (Completely positive and trace preserving (CPTP) map). Let

L(Hin) and L(Hout) be the set of linear operators on the Hilbert spaces Hin and Hout

and let 1n be the n-dimensional identity operator. A linear map Λ : L(Hin) 7→ L(Hout)

is called positive if Λ(X) ∈ Pos(Hout) for any X ∈ Pos(Hin). It is called completely

positive (CP) if (Λ ⊗ 1n)(X) ∈ Pos(Hout) for any X ∈ Pos(Hin) and any n ∈ N.

Furthermore, the linear map Λ is called trace preserving (TP) if Tr[Λ(X)] = Tr[X] for

any X ∈ L(Hin). Finally, a linear map Λ : L(Hin) 7→ L(Hout) is said to be CPTP, or

simply a quantum channel, if it is CP and TP.

Let us comment on each of the properties of a CPTP map. To describe the most gen-

eral transformation Λ of a quantum state ρ ∈ S(Hin) to a quantum state ρ′ ∈ S(Hout),

it is necessary that Λ maps positive semi-definite operators to positive semi-definite

operators. This should also be true when Λ is only applied to a subsystem of ρ,

which means that also (Λ ⊗ 1n) has to fulfill the positivity condition. Note, it is

enough to check positivity for the case 1n = 1din
, where din is the dimension of Hin,

to guarantee complete positivity (see, e.g., [71]). Finally, we want that the map

Λ preserves the normalization of quantum states, from which the trace preserving

property follows. An additional property of linear maps that is frequently used is the

notion of unitality. A linear map Λ is said to be unital if it preserves the form of the

identity, i.e., Λ(1din
) = 1dout

.

So far, we have described how quantum channels act on quantum states, reflecting

the so-called Schrödinger picture. However, it is also possible to describe quantum

channels in terms of their action on observables, which reflects the Heisenberg pic-

ture. In the next section, we will discuss this possibility when we introduce quantum
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measurements. This allows us to generalize the notion of a quantum channel by

introducing sub-channels and instruments, which take into account that a quantum

channel can be seen as a sum of linear maps that are CP and trace non-increasing.

For now, we focus on the representation of CPTP maps. A very convenient represen-

tation of quantum channels can be obtained directly from the previous representation

through the environment in Eq. (2.43). Namely, it follows that

Λ(ρ) = Tr2[U(ρ⊗ ♣χ⟩⟨χ♣)U †] =
∑

i

⟨χi♣U(ρ⊗ ♣χ⟩⟨χ♣)U †♣χi⟩ =
∑

i

KiρK
†
i , (2.44)

where Ki := ⟨χi♣U ♣χ⟩ is a so-called Kraus operator and the representation

Λ(ρ) =
∑

i

KiρK
†
i ,

is the operator sum or Kraus representation of a quantum channel. The Kraus

representation is especially convenient, as it has many useful properties, which we

formalize in the following theorem.

Theorem 2.5.2. (Kraus representation). Let Λ : L(Hin) → L(Hout) be a linear map

between the Hilbert spaces Hin and Hout. It is CP if and only if it admits a decomposition

Λ(ρ) =
∑

i

KiρK
†
i ,

with Kraus operators ¶Ki♢. Moreover, Λ is TP if
∑

iK
†
iKi = 1din

and unital if
∑

iKiK
†
i = 1dout

. The minimal number R of Kraus operators ¶Ki♢R−1
i=0 necessary to

decompose a CP map Λ, is called the Kraus rank and it is upper bounded by R ≤ dindout.

Furthermore, it is always possible to chose R Kraus operators that are orthogonal, i.e.,

Tr[K†
iKj ] =∝ δij . A proof can be found in [71] (Theorem 2.1 therein).

Finally, there is a third powerful representation of quantum channels that uses

the Choi-Jamioøkowski isomorphism. Namely, there is a one-to-one correspondence

between quantum channels and bipartite quantum states.

Theorem 2.5.3. (Choi-Jamioøkowski representation). Let Λ : L(HHin
) → L(HHout

)

be a linear map between the Hilbert spaces Hin and Hout and let ♣Φ+⟩ = 1√
din

∑din−1
i=0 ♣ii⟩

be a quantum state in Hin⊗Hin. The following statements, called the Choi-Jamioøkowski

isomorphism, defines a one-to-one mapping between linear maps Λ and linear operators

J(Λ):

J(Λ) := (Λ ⊗ 1)(♣Φ+⟩⟨Φ+♣), ΛJ(ρ) := din Tr2[(1out ⊗ ρT )J(Λ)].
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Here, the transpose is taken with respect to the basis ¶♣i⟩♢ . Moreover it holds: Λ is

CP ⇐⇒ J(Λ) ⪰ 0, Λ is TP ⇐⇒ Tr1[J(Λ)] = 1in/din, Λ is unital ⇐⇒ Tr2[J(Λ)] =

1out/dout. A proof can be found in [71] (Proposition 2.1 therein), see also [72].

An example of a non-unitary quantum channel of particular importance in quantum

information theory is the depolarizing channel given by

Λη(ρ) = ηρ+ (1 − η) Tr[ρ]
1

d
, (2.45)

which means it describes a probabilistic mixture of the state ρ with the maximally

mixed state 1

d depending on the noise parameter η ∈ [0, 1].

2.6 Quantum Measurements

„An experiment is a question which science poses

to nature, and a measurement is the recording of

nature’s answer. But before an experiment can be

performed, it must be planned±the question to

nature must be formulated before being posed.

Before the result of a measurement can be used,

it must be interpreted±nature’s answer must be

understood properly.

Ð Max Planck

So far, we have discussed quantum states and their evolution. However, we still miss

how to obtain information about a system’s state and how to make predictions about

a quantum state’s observable properties. For this purpose, we introduce the notion

of quantum measurements, which will play an essential role in this thesis. Here, we

only introduce the basic notions of quantum measurements, focusing mainly on the

mathematical description. A more refined discussion about the properties of specific

quantum measurements and, in particular, of sets of quantum measurements can be

found in Section 3.3. For more background on the theory of quantum measurements,

we refer to the book [84].

Quantum measurements have two main remarkable properties that differentiate

them from classical ones: First, quantum mechanics only allows for probabilistic

statements, i.e., quantum theory is inherently random and it is only possible to

predict the probability that a specific outcome occurs. Second, a quantum measure-

ment will generally disturb the quantum state. That means, contrary to classical

physics, we need to update the system’s state once the measurement took place.
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Both properties are summarized in the following pivotal postulate, which tells us

how to obtain the probability of a given outcome and how to update the quantum

state after the measurement takes place.

Postulate 4. A quantum measurement is described by a set of k measurement operators

¶Ea♢k−1
a=0 ∈ L(H), that fulfill the completeness relation

∑k−1
a=0 E

†
aEa = 1H, where the

label a denotes one of the k possible measurement outcomes. If the measurement is

performed on a quantum state ρ ∈ S(H), the probability to obtain outcome a is given

by the Born rule

p(a) = Tr[E†
aEaρ].

Moreover, immediately after the measurement, the state ρ has to be replaced by the

post-measurement state ρa of the system via the update rule

ρa =
EaρE

†
a

Tr[E†
aEaρ]

.

In the following subsections, we first introduce the general notion of positive opera-

tor valued measures (POVMs) to describe quantum measurements and afterward

focus on the particular case of projective measurements.

2.6.1 POVMs

In some experiments, one might only be interested in the measurement statistics,

i.e., the probability distribution ¶p(a)♢k−1
a=0 and not in the post-measurement state.

That can be the case, for example, when the post-measurement state is not accessible

due to experimental limitations. In that case, we are only interested in operators

Ma ∈ Pos(H) that map the quantum state ρ onto the probability p(a). Following

Postulate 4, this map is given by the Born rule p(a) = Tr[Maρ]. It follows directly

that the operators Ma, called measurement effects or POVM elements, have to ful-

fill 0 ⪯ Ma ⪯ 1 ∀a and, due to the normalization of the distribution ¶p(a)♢k−1
a=0,

∑

aMa = 1. The set ¶Ma♢k−1
a=0 is known as POVM. The connection between effect

operators and measurement operators could be seen by setting Ea =
√
Ma, where√

Ma is the (unique) positive semi-definite operator such that
√
Ma

†√
Ma = Ma. It

follows directly that E†
aEa = Ma. However, the decomposition of the measurement

operators Ma into effect operators Ea (which are essentially just Kraus operators)

itself is not unique. In particular E′
a = Ua

√
Ma for any unitary Ua is also a valid

decomposition, as E′†
a E

′
a = Ma. This means that the post-measurement state ρa is

not uniquely defined by a given POVM.

Having the concept of measurements at hand, we can further refine our under-
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standing of quantum channels, which on the other hand also offer a way to imple-

ment POVMs. Consider a quantum channel Λ that can be decomposed such that

Λ =
∑

a Λa, where the Λa are CP trace non-increasing maps. Any decomposition

¶Λa♢ of a quantum channel Λ is called an instrument and the maps Λa are known

as subchannels. The interpretation of an instrument is the following: The subchan-

nels ¶Λa♢a map the state ρ onto the sub-normalized state Λa(ρ) with probability

Tr[Λa(ρ)], hence the state of the system is updated to ρa = Λa(ρ)/Tr[Λa(ρ)]. This

offers the possibility to see a quantum measurements in the POVM formalism as a

particular instrument. The simplest way to realize the POVM ¶Ma♢ is given by the

Lüders instrument ¶Λa(ρ) =
√
Maρ

√
Ma♢.

Let us now consider, in the Schrödinger picture, the measurement statistics of any

state evolved through the channel Λ, i.e., Tr[MaΛ(ρ)]. We can now introduce the

unique Hilbert-Schmidt adjoint map Λ† such that Tr[MaΛ(ρ)] = Tr[Λ†(Ma)ρ] for

all quantum states ρ and POVM elements Ma. The right hand side of the equation

corresponds to the (equivalent) Heisenberg picture, where the POVM evolves accord-

ing to Λ† and the state is left unchanged. It follows directly that a CPTP map Λ in

the Schrödinger picture corresponds to a CP and unital map Λ† in the Heisenberg

picture.

Finally, a second connection between a quantum measurement and quantum

channels is obtained by considering the so-called measure-and-prepare channel. A

measure-and-prepare channel is given by

ΛM(ρ) =
∑

a

Tr[Maρ]♣a⟩⟨a♣, (2.46)

where ¶♣a⟩♢k−1
a=0 is any orthonormal basis. This type of channel corresponds to the

situation where we measure the outcome a with probability p(a) = Tr[Maρ] and

prepare the register state ♣a⟩⟨a♣. Note that the states ♣a⟩⟨a♣ could in principle be

replaced by any other states τa and that this form of channel corresponds to a

situation where the post-measurement state is not relevant, as no information over

it is kept.

2.6.2 Projective Measurements

Projective measurements are a special case of POVMs, of particular relevance, in-

troduced in any quantum mechanics textbook. The POVM elements of a projective

measurement are given by orthogonal projectors Ma = Πa such that ΠaΠa′ = δaa′Πa.

It follows directly that the measurement operators can be written as Ea = Ma = Πa.

Given the projective measurement ¶Πa♢ with outcomes a, we can define the Hermi-

tian operator A =
∑

a aΠa associated to it, which is known as observable. With that,

the expected outcome of the measurement can be calculated as ⟨A⟩ =
∑

a ap(a) =
∑

a aTr[Πaρ] = Tr[Aρ]. In the case all projectors are rank-one operators, i.e.,
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Πa = ♣a⟩⟨a♣, we say ¶Πa♢ is a von Neumann measurement.

Finally, we want remark that every POVM can be realized by a projective measure-

ment in a higher dimensional Hilbert space, by means of the Naimark extension (see,

e.g., [71]). This can already be seen from the fact that any POVM can be imple-

mented by a particular quantum instrument ¶Λa♢, which itself can be implemented

with projective measurements on the environment state and a unitary evolution (see

Eq. (2.44)).

2.6.3 Measurements on Composite Systems

In this work, we will often consider local measurements that are performed on a

composite quantum state ρAB ∈ S(HAB) with HAB = HA⊗HB . That is, two parties,

Alice and Bob, each hold a quantum measurement described by POVMs ¶Ma♢ and

¶Nb♢, respectively. The measurement formalism on a composite system has to

fulfill two crucial properties. First, the measurement ¶Ma♢ on Alice’s reduced state

ρA = Tr2[ρAB] has to agree with the measurement ¶Ma ⊗ 1B♢ on the global state

ρAB. This is always straightforwardly fulfilled, as Tr[MaρA] = Tr[(Ma ⊗ 1B)ρAB]

(see Theorem 2.4.6). Second, in order to not violate the laws of special relativity,

Alice should not be able to signal information about her measurement (specifically

her choice of measurement) to Bob, who might hold his part of the state in a distant

lab. This means that
∑

a Tr1[(Ma ⊗ 1B)ρAB] = ρB, which is also naturally fulfilled

due to the properties of the trace, using
∑

aMa = 1A. Note that all arguments

hold analogously for Bob’s measurements ¶Nb♢ on his share of ρAB. This further

underpins the partial trace’s role in consistently describing observable quantities on

composite systems.

2.7 Geometric Measures for Quantum Information

In almost any quantum information processing task, one wishes to prepare a certain

target quantum state ρ, measure a certain target POVM ¶Ma♢, apply a particular

target quantum channel Λ, or obtain some specific target probability distribution

¶p(a)♢. However, as quantum processes are always subjected to some kind of noise

or imperfection, we will eventually end up preparing a state ρ′, measuring the POVM

¶M ′
a♢, applying the channel Λ′ or obtaining the probability distribution ¶p′(a)♢.

Many questions come immediately to our minds. (i) How does the performance of

a particular quantum information processing task change when we deal with the

primed objects instead of our targeted objects? (ii) How to quantify this change?

(iii) How similar is the primed object to the target object? (iv) How well can we

distinguish the primed from the target objects in an experiment?

In order to answer any of these questions, it is essential to find measures/functions

2.7 Geometric Measures for Quantum Information 29



that quantify quantum information or, more precisely, quantify the closeness or the

distinguishability of two objects of interest. These functions should fulfill some

necessary mathematical conditions and ideally have an operational interpretation.

It is not hard to imagine that there will not be a single measure that answers all

of these questions for any application. Therefore, it is often helpful to consider a

variety of functions, each of which tells us some part of the answers to our questions.

One approach to obtain such measures is to look for functions that quantify some

distance in state space, for instance. As we will quickly see, many useful functions

are actually not a metric (a distance) but they are still valuable for distinguishing

quantum objects. This broader class of functions is called geometric measures.

2.7.1 Distances

We first focus on "true" distance measures in the sense that they induce a metric

and a metric space.

Definition 2.7.1. (Metric). Let V be a set and D : V × V 7→ R≥0 a function that maps

any two elements X,Y ∈ V to the non-negative real numbers. We say D(X,Y ) is a

metric (or simply a distance) if it fulfills the following conditions:

1. D(X,Y ) = 0 ⇐⇒ X = Y (faithfulness), (2.47a)

2. D(Y,X) = D(X,Y ) (symmetry), (2.47b)

3. D(X,Z) ≤ D(X,Y ) + D(Y,Z) (triangle inequality), (2.47c)

for any elements X,Y, Z ∈ V. The tuple (V,D) is called a metric space.

Moreover, we will often employ the distance of a point (i.e., an element X ∈ V) to

a non-empty subset W ⊂ V. We define the distance of a point to a set as follows.

Definition 2.7.2. (Distance to a subset). Let V be a set and D : V × V 7→ R≥0 a

distance function that promotes V to the metric space (V,D). Furthermore, let W ⊂ V
be a non-empty subset of V. We define the distance of a point X ∈ V to the set W as

D(X,W) := inf
Y ∈W

D(X,Y ). (2.48)

Note that the infimum is attained whenever W is a compact set, which means the

infimum can be replaced by a minimum in this instance.

To get an idea of distances for quantum objects, it is helpful to first consider

distances of probability distributions before generalizing them to quantum states.
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Once we introduce distances for quantum states, we can introduce distances for

quantum channels, which helps us find specific distances for quantum measurements.

Consider two probability distributions ¶p(x)♢, ¶q(x)♢ over the same index set x. We

can represent them by probability vectors p,q, with entries px, qx, i.e., p,q ∈ [0, 1]n,

such that
∑n−1
x=0 px = 1 =

∑n−1
x=0 qx and px = p(x), qx = q(x) respectively. Let us

introduce the ℓp norms of a general vector v ∈ Cn.

Definition 2.7.3. (ℓp-norm/distance). Let v ∈ Cd be a general vector and p ∈ [1,∞).

The ℓp-norm of v is defined as

∥v∥ℓp :=
( d−1∑

i=0

♣vi♣p
1/p

, (2.49)

with the special case ∥v∥ℓ∞ := max
i

♣vi♣. The instance p = 2 is the usual Euclidean

norm and the case p = 1 is also known as Kolmogrov norm or as classical trace norm.

Every ℓp-norm naturally induces a distance on Cd defined as

Dℓp(v,w) :=
1

2
∥v − w∥ℓp . (2.50)

Definition 2.7.3 already provides us with an infinite number of possible distances

with which we can compare two probability distributions. However, in practice, only

a few distances (typically the cases p = 1, 2,∞) find applications. Here, we focus on

p = 1, i.e., the classical trace distance, which is particularly important for us as it

has a clear operational meaning. Namely, it can be shown (see, e.g., [70]) that for

any two probability distributions p and q it holds

Dℓ1(p,q) = max
E

∣
∣
∣

∑

x∈E
px −

∑

x∈E
qx
∣
∣
∣, (2.51)

where E denotes all subsets of the index set ¶x♢, i.e., E is the optimal event with

which p and q can be distinguished from each other.

We now seek to generalize the ℓp-norms to matrices, such that we obtain a notion of

distances between quantum states. In particular, we want to generalize the classical

trace distance. To do so, let us introduce the Schatten p-norm of a linear operator.

Definition 2.7.4. (Schatten p-norm/distance). Let X ∈ L(H1,H2) be a linear

operator between the Hilbert spaces H1 and H2 and p ∈ [1,∞). The Schatten p-norm

of X is given by

∥X∥p := (Tr[♣X♣p])1/p, (2.52)
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where ♣X♣ :=
√
X†X. Equivalently, we can define the Schatten p-norm as ∥X∥p :=

(
∑

i σi(X)p)1/p, where σi(X) is the i-th singular value of X (ordered in non-increasing

order). In particular, we define ∥X∥∞ := σ1(X) to be the largest singular value of X.

The case p = ∞ is known as spectral norm (sometimes also called the operator norm),

while p = 1 corresponds to the trace norm and p = 2 to the Frobenius norm (which

is the norm induced by the Hilbert-Schmidt inner product). Every Schatten p-norm

naturally induces a distance on L(H1,H2) defined as

Dp(X,Y ) :=
1

2
∥X − Y ∥p. (2.53)

Schatten p-norms enjoy a lot of useful properties (see, e.g., [82]), which we list

here:

• ∥UXV †∥p = ∥X∥p for any X ∈ L(H2,H3) and any isometries U ∈ L(H3,H4),

V ∈ L(H2,H1).

• ∥X∥p ≥ ∥X∥q for any X ∈ L(H1,H2) and 1 ≤ p ≤ q ≤ ∞.

• For any X ∈ L(H1,H2) and numbers p, q ∈ [1,∞) such that 1
p + 1

q = 1 (with
1
∞ := 0) it holds: ∥X∥p = sup¶♣Tr[Y †X]♣ : Y ∈ L(H1,H2), ∥Y ∥q ≤ 1♢.

• ∥XY ∥1 ≤ ∥X∥p∥X∥q for any Y ∈ L(H1,H2), X ∈ L(H2,H3) and p, q ∈ [1,∞)

such that 1
p + 1

q = 1.

• ♣Tr[Y †X]♣ ≤ ∥X∥p∥Y ∥q for any X,Y ∈ L(H1,H2) and p, q ∈ [1,∞) such that
1
p + 1

q = 1.

• ∥XY ∥p ≤ ∥X∥p∥Y ∥p for any Y ∈ L(H1,H2), X ∈ L(H2,H3).

Similar to the situation for the ℓp-distances, not all Schatten p-distances are relevant

in typical applications. We will focus here on the trace distance, i.e., the case p = 1.

The trace distance can be seen as a generalization of the classical trace distance in

the following sense. Consider two quantum states ρ =
∑

i pi♣i⟩⟨i♣ and ρ′ =
∑

i qi♣i⟩⟨i♣.
It follows directly that

D1(ρ, ρ′) = Dℓ1(p,q), (2.54)

where p and q are the distributions of the eigenvalues of ρ and ρ′ here. The trace

distance has an operational interpretation that can be seen as a generalization
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of its classical counterpart. Namely, it can be shown for any two quantum states

ρ0, ρ1 ∈ S(H) that

D1(ρ0, ρ1) = max
0⪯M⪯1

Tr[M(ρ0 − ρ1)], (2.55)

which allows us to connect the trace distance to the optimal distinguishability of two

equally likely distributed states ρ0 and ρ1 in a single-shot (i.e., one round) experiment.

To do so, we use a dichotomic POVM ¶M0,M1♢, where M0 corresponds to guessing

the label ”0” (corresponding to ρ0) and M1 to guessing ”1” (corresponding to ρ1),

respectively. It follows directly that the optimal probability to guess the labels

correctly is given by

p
(ρ0,ρ1)
1,guess :=

1

2
(p(0♣ρ0) + p(1♣ρ1)) =

1

2
(1 + D1(ρ0, ρ1)), (2.56)

where p(0♣ρ0) is the probability to guess the label ”0” provided that ρ0 was distributed

and p(1♣ρ1) is the probability to guess the label ”1” provided that ρ1 was distributed.

Besides this operational interpretation and the basic properties of a metric, the trace

distance enjoys an additional property, which is especially useful in the context of

quantum information and, in particular, for quantifying quantum resources. That is,

the trace distance is also contractive under general CPTP maps, i.e., for two quantum

states ρ0, ρ1 and a general CPTP map Λ it holds

D1(ρ0, ρ1) ≥ D1(Λ(ρ0),Λ(ρ1)). (2.57)

That means there exists no quantum channel that can increase the distinguishability

of ρ0 and ρ1. Note that in the particular case of the partial trace, it follows that

reduced density operators can never be distinguished better than the corresponding

global states.

Now that we have a notion of distances in state space, we also want to define

distances between quantum channels. In particular, we will see how the trace norm

can be generalized to quantum channels through the diamond norm. Probably the

most intuitive way to distinguish quantum channels based on the trace norm is to

introduce the induced norm

∥Λ∥1→1 := max
ρ∈S(Hin)

∥Λ(ρ)∥1, (2.58)

where Λ : L(Hin) 7→ L(Hout) is any linear map between linear operators on Hin and

Hout. The induced distance between CPTP maps Λ0,Λ1 is then given by

D1→1(Λ0,Λ1) :=
1

2
∥Λ0 − Λ1∥1→1. (2.59)

However, it turns out that this is not the optimal generalization of the trace distance

to quantum channels. In particular, quantum channels can be distinguished with a
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Λ0

Λ1

ρ ? p
(Λ0,Λ1)
⋄,guess (x)

Λ0/1(ρ)

Fig. 2.2.: Representation of the operational interpretation of the diamond norm from [65]
(Paper C). Two quantum channels Λ0,Λ1 are distinguished by preparing an opti-
mal state ρ and subjecting the states Λ0(ρ),Λ1(ρ) to a dichotomic measurement
that distinguishes the states as well as possible. The probability p(Λ0,Λ1)

⋄,guess signifies
the optimal probability to correctly guess the label ”0/1”.

higher probability if one considers an ancilla space HE such that quantum channel

acts only on a subsystem of a possibly entangled bipartite quantum state. This leads

to the definition of the diamond norm.

Definition 2.7.5. (Diamond norm/distance). Let Λ : Hin 7→ Hout be a CP map

between the Hilbert spaces Hin and Hout. The diamond norm of Λ is defined as

∥Λ∥⋄ := ∥Λ ⊗ 1in∥1→1, (2.60)

where 1in denotes the identity operator with dimension of Hin. The diamond distance

between two CP maps Λ0,Λ1 induced by the diamond norm is defined as

D⋄(Λ0,Λ1) :=
1

2
∥Λ0 − Λ1∥⋄. (2.61)

Since the diamond norm is a natural extension of the trace distance, it enjoys very

similar properties. Most importantly, the trace distance’s operational interpretation

directly translates to the diamond norm. This means that the optimal probability with

which two equally likely quantum channels Λ0,Λ1 can be distinguished by preparing

an optimal quantum state ρ and performing an ideal (dichotomic) measurement is

given by

p
(Λ0,Λ1)
⋄,guess =

1

2
(1 + D⋄(Λ0,Λ1)). (2.62)

This operational interpretation is schematized in Figure 2.2. The main task we will

use the diamond distance for within this thesis, is to compare measure-and-prepare

channels (see Eq. (2.46)) with each other. That gives us a notion of distances

between measurements. We will specifically use distances between measurements in

Sections 4.3 and 4.4, which discuss Publication C and D, to quantify the resources of

different sets of measurements.
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2.7.2 Robustnesses

Apart from metrics, many more functions give us a notion of closeness or similarity

between different quantum objects. Among the most popular of such functions

are the so-called robustnesses. These are typically employed to quantify how noise

robust a given quantum state ρ is. Consider, for instance, the depolarizing channel

in Eq. (2.45) which we repeat here for convenience:

Λη(ρ) = ηρ+ (1 − η) Tr[ρ]
1

d
. (2.63)

As the parameter (1 − η) ∈ [0, 1] increases, the fraction of the maximally mixed

state 1

d becomes more and more dominant. This means, that even a pure state

ρ = ♣ψ⟩⟨ψ♣ will eventually end up in the maximally mixed state, hence losing all its

useful properties.

We can generalize this notion of susceptibility to noise as follows. First, instead

of mixing the state ρ with the maximally mixed state, we allow for mixtures with

states τ ∈ T (H) ⊂ S(H), where T (H) is any subset of all states S(H). Second, we

are generally interested in the robustness with respect to a second set V(H) ⊂ S(H)

instead of the robustness with respect to the maximally mixed state 1

d . Finally, we

substitute η = 1
1+r . With these generalizations, we can define different robustnesses

(see, e.g., [31]) for any choice of T (H) and V(H), i.e.,

RT (ρ) = inf
τ∈T ,r

{

r ≥ 0 :
ρ+ rτ

1 + r
∈ V

}

, (2.64)

where we take the infimum over all possible states τ ∈ T that we can mix ρ with

and the mixing parameter r. Note that this robustness function is not a metric, as it

is not symmetric and does generally not obey the triangle inequality. Moreover, it

could be infinite, depending on our choice of the sets T and V. In practice however,

these sets are always chosen such that RT (ρ) is finite.

The concept of robustness can be further generalized to any type of set, such that it

also applies to probability distributions, measurements, and quantum channels.

Definition 2.7.6. (Robustness). Let V, T ⊂ S be two subsets of a set S. The T -

robustness RT (X) : S 7→ R≥0 of a point X ∈ S with respect to the non-empty set

V ⊂ S is defined as

RT (X) := inf
Y ∈T ,r

{

r ≥ 0 :
X + rY

1 + r
∈ V

}

. (2.65)

There are two specific choices for the set T that are frequently used. First, in the

case T = V, we say RT (X) is the absolute robustness. Second, in the case T = S we

say RT (X) is the generalized robustness [31].
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2.7.3 Weight Decompositions

Similar to robustnesses, weight decompositions quantify the similarity or closeness

of an object with respect to a specific set. However, instead of asking how much

noise has to be mixed to a state in order to end up in the specific set, one asks

how objects can be decomposed into a general object and a noise component. Take

again the example of a depolarized state ρη = ηρ+ (1 − η)1d . That means ρη can be

decomposed as a probabilistic mixture of a general state ρ (with probability η) and

the maximally mixed state (with probability (1 − η)). We want to generalize this

concept to general sets, the same way we generalized the robustness.

Definition 2.7.7. (Weight). Let V ⊂ S be a non-empty subset of a set S. The weight

W(X) : S 7→ [0, 1] of an element X ∈ S with respect to V is defined as

W(X) := inf
Y ∈V,X′∈S,w

{

w ≥ 0 : X = wX ′ + (1 − w)Y
}

. (2.66)

Similarly to the robustness, weight functions are not metrics. However, by definition,

they are always finite. Moreover, extremal points X /∈ V always have weight

W(X) = 1, as they are exactly those points of a set S \ V that cannot be written as a

non-trivial convex combination.

2.8 Entropic Measures for Quantum Information

„You should call it entropy, for two reasons. In the

first place your uncertainty function has been

used in statistical mechanics under that name, so

it already has a name. In the second place, and

more important, nobody knows what entropy

really is, so in a debate you will always have the

advantage.

Ð John von Neumann

In correspondence to Claude Shannon.

As we have already seen, quantum mechanics is an inherently probabilistic the-

ory, meaning generally only probabilistic statements about measurement outcomes

are possible. Moreover, when we introduced mixed states, we already saw some

uncertainty in our system’s description, which is not prevalent for pure states. The

mathematical tools that can be used to quantify this uncertainty are entropies. Fur-
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thermore, entropies allow for yet another notion of similarity between probability

distributions and quantum states. Let us first define the Shannon entropy of a proba-

bility distribution p that describes the distribution of the outcomes x of a random

variable X.

Definition 2.8.1. (Shannon entropy). Let X be a random variable with outcomes x

that are distributed according to the probability distribution p. The Shannon entropy

of p is defined as

H(p) := −
∑

x

p(x) log p(x), (2.67)

where the logarithm is taken with respect to base 2 in this thesis and 0 log(0) := 0.

The Shannon entropy is a quantifier of the uncertainty or ignorance about the value

of X before we learn its outcome x. On the other hand, the Shannon entropy can be

seen as the information gained after learning the value of X.

It can be shown that 0 ≤ H(p) ≤ logn for any probability distribution p having

n different outcomes. The bounds H(p) = 0 and H(p) = logn are particularly

important. The lower bound H(p) = 0 holds if and only if p(x) = δx′,x for a specific

outcome x′ of X. That is, one particular outcome occurs with probability 1 while all

the other outcomes never occur. This means that H(p) = 0 signifies that there is no

uncertainty about the value of X and that there is no information to obtain when

X is measured. On the other hand, H(p) = logn holds if and only if p(x) = 1
n∀n,

i.e. the outcome probability is uniformly distributed. This represents the fact, that

we are maximally uncertain about the value of X, if all of its outcomes are equally

likely. This implies that learning the value of a random variable X that is uniformly

distributed, lets us obtain the maximal amount of information possible.

2.8.1 Von Neumann Entropy

We now want to extend the concept of entropies to the quantum regime. This leads

us to the definition of the von Neumann entropy.

Definition 2.8.2. (Von Neumann entropy). The von Neumann entropy of a quantum

state ρ ∈ S(H) is defined as

S(ρ) := − Tr[ρ log ρ]. (2.68)
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Moreover, let λ(ρ) = ¶λi♢ be the spectrum of ρ. Then, the von Neumann entropy can be

written as

S(ρ) = −
∑

i

λi log λi, (2.69)

which is the Shannon entropy of the eigenvalues λ(ρ).

Similarly to the Shannon entropy, the von Neumann entropy is bounded such that

0 ≤ S(ρ) ≤ log d, where d is the dimension of H. It holds that S(ρ) = 0 if and

only if ρ = ♣ψ⟩⟨ψ♣ is a pure state, which means the state of the system contains no

uncertainty. On the other hand, S(ρ) = log d if and only if ρ = 1

d is the maximally

mixed state. This further justifies the name maximally mixed state, as it is the state

of maximal uncertainty.

2.8.2 Rényi Entropies

The Shannon entropy is not the unique measure of the uncertainty of a random

variable and many other entropies can be used instead. One important family

consists of the so-called Rényi entropies.

Definition 2.8.3. (Rényi entropies). Let X be a random variable with outcomes x

that are distributed according to the probability distribution p. The Rényi entropy of

order α is defined as

Hα(p) :=
1

1 − α
log

(∑

x

p(x)α


, (2.70)

for any α ≥ 0 such that α ̸= 1. Note that in the limit lim
α→1

Hα(p) = H(p), i.e., the

Rényi entropies converges to the Shannon entropy.

Like the Shannon entropy, the Rényi entropies fulfill 0 ≤ Hα(p) ≤ logn for any

probability distribution p and all α. Furthermore, the bound Hα(p) = 0 is achieved

if and only if p(x) = δx′,x and Hα(p) = logn if and only if p(x) = 1
n for all x. The

Rényi entropies can also be generalized to quantum states.

Definition 2.8.4. (Quantum Rényi entropies). The quantum Rényi entropy of order

α of a quantum state ρ ∈ S(H) is defined as

Sα(ρ) :=
1

1 − α
log Tr[ρα], (2.71)
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for all α ≥ 0 such that α ̸= 1. Note that in the limit lim
α→1

Sα(ρ) = S(ρ), i.e., the

quantum Rényi entropies converge to the von Neumann entropy.

Moreover, let λ(ρ) be the spectrum of ρ. Then, the quantum Rényi entropies can be

written as

Sα(ρ) =
1

1 − α
log

(∑

i

λαi



, (2.72)

which are the Rényi entropies of the eigenvalues λ(ρ).

The quantum Rényi entropies and the von Neumann entropy as a special case,

enjoy many useful mathematical properties (see e.g. [78]) which we list in the

following:

• 0 ≤ Sα(ρ) ≤ log d with Sα(ρ) = 0 if and only if ρ is pure and Sα(ρ) = log d if

and only if ρ is maximally mixed.

• Sα(ρ) = Sα(V ρV †) for any isometry V ∈ L(H1,H2).

• Sα(ρ1 ⊗ ρ2) = Sα(ρ1) + Sα(ρ2).

• Sα1
(ρ) ≥ Sα2

(ρ) for any 1 < α1 ≤ α2.

Additionally, the von Neumann entropy S(ρ) fulfills:

• S(ρAB) ≤ S(ρA) + S(ρB) for any bipartite state with ρB = Tr1[ρAB] and

ρA = Tr2[ρAB].

• S(
∑

i piρi) ≥ ∑

i piS(ρi) for any probability distribution ¶pi♢ and density oper-

ators ¶ρi♢, i.e., the von Neumann entropy is concave.

2.8.3 Relative Entropy

Until now, we focused on entropies that tell us something about the uncertainty or

the possible information gain in a quantum state (or a classical random variable).

Now, we want to introduce a tool that gives us a notion of similarity for quantum

states in terms of entropies. This leads to the concept of the (quantum) relative

entropy. Note that the quantum relative entropy is a generalization of the classical

relative entropy or Kullback-Leibler divergence, which we do not discuss here. Instead,

we introduce the quantum case directly.
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Definition 2.8.5. (Relative entropy). The relative entropy of two quantum states

ρ0, ρ1 ∈ S(H) is defined as

S(ρ0∥ρ1) := Tr[ρ0(log ρ0 − log ρ1)], (2.73)

with the convention S(ρ0∥ρ1) := ∞ in the case supp(ρ0) ∩ ker(ρ1) ̸= 0, where supp(ρ0)

is the support of ρ0 and ker(ρ1) is the kernel of ρ1.

From the definition of the relative entropy, it is not clear that it can be used as a

tool for distinguishing quantum states. In particular, it is not hard to see that the

relative entropy is not only non-symmetric, i.e., S(ρ0∥ρ1) ̸= S(ρ1∥ρ0), but also that it

does not obey the triangle inequality. That means the relative entropy is not a metric.

However, Klein’s inequality (see e.g. [78]) tells us that

S(ρ0∥ρ1) ≥ 0, (2.74)

with the equality holding if and only if ρ0 = ρ1. This means, the relative entropy

is at least faithful. Moreover, the relative entropy is contractive under CPTP maps.

Namely, it holds

S(ρ0∥ρ1) ≥ S(Λ(ρ0)∥Λ(ρ1)) (2.75)

for any two quantum states ρ0, ρ1 ∈ S(H) and any CPTP map Λ.

The relevance of the relative entropy is twofold: First, many other entropies

which are important in quantum information theory can be formulated as particular

instances of the relative entropy. Second, it has a clear (but more complicated)

operational interpretation in hypothesis testing through quantum Stein’s Lemma [85,

86]. Throughout this thesis, it will simply serve as an additional method to compare

quantum states and quantify quantum resources.

2.9 Semidefinite Progamming

Many problems in quantum information involve optimizing some quantity of in-

terest over the set of density matrices, quantum measurements, or over the set of

CPTP maps. These problems typically have in common that one seeks to minimize

a linear function or, more generally, a convex function over some convex domain.

Such problems are often tackled via semidefinite programming, which is a special

instance of convex optimization for which efficient numerical tools and ready-to-use

software exists. However, the framework of semidefinite programming goes beyond

its numerical uses, as it can also be used to obtain analytical bounds and, in some

instances, even the exact analytical results. Here, we give a short introduction to
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semidefinite programming in the language of [44], which is itself heavily based on

[82]. For a wider overview see also [87]. Note that there are many equivalent for-

mulations, and we will only present one, which is particularly close to the problems

in quantum information. A general semidefinite program (SDP) is given by:

Primal problem: (2.76)

given : A,B,Λ

find α := min
X

Tr[AX]

subject to:

Λ(X) = B, X ⪰ 0,

where A ∈ Herm(H1) and B ∈ Herm(H2) are some Hermitian matrices and Λ(·) :

Herm(H1) 7→ Herm(H2) is a linear mapping between Hermitian matrices. The

meaning of the name primal problem will become clear later. We say that Tr[AX] is

the primal objective function that is to be minimized subject to the primal constraints

Λ(X) = B, X ⪰ 0. Furthermore, we say that every X that fulfills all constraints is a

primal feasible point and α is the primal optimal value.

One can associate every such primal problem with a Lagrangian that incorporates

the constraints explicitly into the primal objective function by introducing Lagrange

multipliers. We obtain the Lagrangian given by

L (X,Y, Z) = Tr[AX] + Tr[Y (B − Λ(X))] − Tr[ZX] (2.77)

= Tr[X(A− Λ†(Y ) − Z)] + Tr[Y B],

where Y, Z are Hermitian Lagrange multipliers (matrices of appropriate size) and

Λ†(Y ) is the Hilbert-Schmidt conjugate map of Λ such that Tr[Λ(X)Y ] = Tr[Λ†(Y )X].

It is convenient to restrict to Z ⪰ 0 because in that case we have α ≥ L (X,Y, Z)

for any primal feasible X. We want to obtain a function from L (X,Y, Z) that is still

a lower bound to α but that is independent of X. This will give us the possibility to

get a lower bound for any matrices Y,Z. We define the dual function

G(Y, Z) := inf
X

L (X,Y, Z). (2.78)

Note that the dual function G(Y,Z) is unbounded from below unless certain con-

straints (the dual constraints) are met. More formally,

G(Y,Z) =







Tr[Y B], if A− Λ†(Y ) = Z, Z ⪰ 0,

−∞, otherwise.
(2.79)
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Clearly, α ≥ G(Y, Z) for any Y, Z. To find the best lower bound on α, we maximize

the dual function G(Y,Z) over the dual constraints. This means, we obtain the

optimization problem:

Dual problem: (2.80)

given : A,B,Λ

find β := max
Y,Z

Tr[Y B]

subject to:

A− Λ†(Y ) = Z, Z ⪰ 0,

which is formally called the dual problem of our primal problem. However, we can

simplify the dual problem by eliminating the variable Z, that only functions as a

slack variable here. We finally obtain:

Dual problem: (2.81)

given : A,B,Λ

find β := max
Y

Tr[Y B]

subject to:

A− Λ†(Y ) ⪰ 0.

We way that Tr[Y B] is the dual objective and β is the dual optimal value. Furthermore,

way say that every Y that satisfies the dual constraints is a dual feasible point.

From the above derivation, it follows by design that

∆ := α− β ≥ 0, (2.82)

which is referred to as weak duality and ∆ is called the duality gap. Note that weak

duality holds for general problems, even if they do not fall under the category of

convex optimization problems.

Most important for our purposes are the instances where ∆ = 0, i.e., α = β,

which we refer to as strong duality. In that case, we can use the primal and dual

as equivalent formulations of the same problem. While it is, in general, a difficult

task to certify that strong duality holds, there is one powerful condition that is

often applicable in practice and will help us to prove strong duality for semidefinite

programs. This sufficient condition, known as Slater’s condition (see e.g. [82, 87]),

states that strong duality of an SDP problem holds if at least one of the problems

(primal or dual) has a strictly feasible point, i.e., a point X ≻ 0 with Λ(X) = B

for the primal or a point Y with A− Λ†(Y ) ≻ 0 for the dual. Note that this strictly

feasible point does not need to be optimal.

Finally, we want to comment that the above formulation of an SDP can straight-

forwardly be extended to the case of multiple variables or constraints. Also further
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inequality constraints can be incorporated using slack variables. Furthermore, SDPs

used in practice are often not written in the standard form of the primal or dual

problem shown above. Instead, they are often formulated in a more complicated

form, which can always be reduced to the standard form. Nevertheless, formulating

the Lagrangian and obtaining the dual function works also in these more complicated

situations.

2.9 Semidefinite Progamming 43





3
Quantum Resource Theories

„My favorite things in life don’t cost any money.

It’s really clear that the most precious resource

we all have is time.

Ð Steve Jobs

Studying quantum resources and their interplay in quantum information processing

tasks is an integral part of this thesis. Our main goal is to investigate the role of

quantum resources in Bell-type scenarios. We study the Bell scenario in depth in

Section 3.4.1 after introducing the components necessary to discuss Bell nonlocality

and Bell’s theorem in detail. These components are the resources of quantum states

and quantum measurements. The field of quantum resource theorys (QRTs) adapts

many ideas from economics, as it deals in the broader sense with goods of different

utility, commonness, demand, and cost. Clearly, the different properties of a good are

not necessarily independent. The cost of a good typically correlates to its demand,

which, for instance, originates from its utility.

An example of resources in the economic sense are different energy sources. These

are highly useful, and the demand is ever-growing, which results in a high cost, even

though different energy sources are available nowadays. Some forms of energy are

easier to use or transform into other forms of energy than others. We could regard

these as more resourceful than forms of energy that are difficult to use or transform.

We need functions that quantify the resource to see how valuable an energy source

is. For instance, one could quantify the resource of an energy source in terms of its

energy density or the amount of electricity that can be generated from it.

Coming back to the quantum case, roughly speaking, a quantum resource is a

property of some quantum object, e.g., of a state or a measurement that provides

some advantage in a quantum information processing task over objects that do

not have said property. QRTs offer a general framework to study and quantify

the usefulness of specific resources in a given scenario. In the following, we will

study the general structure of resource theories before we study resource theories of

quantum states, measurements, and correlations in depth.
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3.1 General Structures in Resource Theories

QRTs are used to analyze the properties of various essential objects in quantum

information theory, like quantum states, measurements, channels, instruments, or

correlations. Historically, resource theories for quantum states have been developed

earlier than those of other fields. That is because the entanglement of quantum

states has been recognized as a resource first and quickly became the prime example

of a resource theory. Therefore, QRTs of quantum states are well-established, and

the analysis of the general underlying structures is more developed for states than for

other fields of QRTs. However, more recently, the focus of attention shifted toward

the resources of quantum channels and measurements. Typically, the framework of

resource theories is introduced separately for each of the objects mentioned above.

Here, we go a different route and introduce the structures of resource theories

more generally by adapting the framework presented in [31], such that the specific

cases emerge as a particular instance of our formulation. Then, we will have a

more detailed look at the specific resource theories of the particular objects in the

upcoming sections.

A general resource theory consists of the following ingredients:

• Sets S1,S2 that are each divided into two sets Vi ⊂ Si and Ri := Si\Vi for

i = ¶1, 2♢.

• A set F (S1,S2) of linear maps Λ : S1 7→ S2 such that Λ(X) ∈ V2 for any

X ∈ V1.

• Functions R : S1 ∪ S2 7→ R≥0 that fulfill R(X) = 0 for any X ∈ Vi and

R(X) ≥ R(Λ(X)) for any Λ ∈ F (S1,S2) and any X ∈ S1.

The sets S1,S2 define the general objects we deal with. For instance, these could

be the set of density operators on Hilbert spaces H1,H2 or sets of POVMs acting on

these Hilbert spaces. These general sets are divided into sets Ri of resource objects

and the sets Vi of free (or void) objects. Considering a general quantum information

processing task, the free objects F ∈ Vi do not provide any advantage (hence, fail in

the task), while the resources X ∈ Ri do provide such an advantage. Moreover, free

objects F are typically easy to produce or obtain in an experimental situation, while

resource objects are more challenging to generate. Typically, the sets Vi are defined

via some condition that unambiguously describes the mathematical form of their

elements. This condition is essentially the same for the sets V1 and V2. However,

they could, for instance, be defined via vector spaces of different dimensions.

The linear maps Λ ∈ F (S1,S2) do map free objects F ∈ V1 to free objects

Λ(F ) ∈ V2, i.e., they cannot create resources from nothing and are therefore called
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Free Free

Resource Resource

Fig. 3.1.: Sketch of a resource theory. The resource theory is determined by the sets of free
objects V1 ⊂ S1, V2 ⊂ S2 and the set F (S1,S2) of free maps Λ : S1 7→ S2 that
map resource free objects to resource free objects.

free maps. On the other hand, maps Λ : S1 7→ S2 such that Λ(X) /∈ V2 for at

least one X ∈ V1 are called resource creating maps. Free maps are typically those

transformations that are easier to perform in practice.

The functions R : S1 ∪ S2 7→ R≥0 quantify the given resource. Hence, they give

us a tool to go beyond the dichotomy of free and resource objects by telling us

how useful a given object is (for a particular task). To do so, they have to fulfill

two fundamental properties. First, they should assign zero value to free objects,

i.e., R(F ) = 0 for any F ∈ Vi. Second, they should be monotonous under free

operations i.e., R(X) ≥ R(Λ(X)) for any Λ ∈ F (S1,S2) and any X ∈ S1, which

captures the fact that free operations cannot increase resources. In particular, this

implies that R(Λ(F )) = 0 for any F ∈ V1. We explicitly assumed that R is defined

on both the domains S1,S2, however, in practice it is more convenient to restrict it

to specific domain of R in each separate case. To simplify the notation, we consider

in the following that S = S1 = S2, hence V = V1 = V2. Note that this is often

assumed implicitly for resource theories in the literature. However, in practice, we

can always achieve this situation by embedding vector spaces of smaller dimensions

into higher-dimensional ones.

Let us formalize the above ingredients into definitions so we can use them through-

out this thesis. In the remainder of this section, we use the term resource theory

instead of QRT, as the following definitions are general and could, in principle, apply

to other concepts outside of quantum theory.

Definition 3.1.1. (Resource theory for general sets). Let S be a set with the subset

V ⊂ S and let Q be the set of all linear maps Λ : S 7→ S. A resource theory for general

sets is defined by the tuple Q := (V,F ), where F ⊂ Q is a subset of all maps Q such

that:

1. The set F contains the identity map idS with idS(X) = X for any X ∈ S.

2. For any two maps Λ1,Λ2 ∈ F , their composition Λ1 ◦ Λ2 is contained in F .

3. For any F ∈ V and any Λ ∈ F , it holds Λ(F ) ∈ V.
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The set V is the set of free objects and F is called the set of free operations. The set

S\V is the so-called set of resource objects and Q\F is the set of resource creating

operations.

Typically, we deal with the situation that a probabilistic mixture of any free resources

is a free resource again. Hence, the set of free objects V is often convex. The same

holds for a probabilistic mixture of free operations, which implies that also the set of

free operations F is usually convex. We say that a resource theory is convex if the

free set V and the set of free operations F are convex, i.e., ηF1 + (1 − η)F2 ∈ V for

any η ∈ [0, 1] and any F1, F2 ∈ V. Similarly, it has to hold ηΛ1 + (1 − η)Λ2 ∈ F for

all free maps Λ1,Λ2 ∈ F . Note that the free objects play a more important role than

the set of free operations in this thesis. Therefore, we will also call any resource

theory convex if the set V is convex and implicitly assume that we take the closure

of the convex hull of F if it is not convex already.

Definition 3.1.1 captures two important points. First, doing nothing is always free.

Hence, the identity map has to be a free operation. Second, one can employ free

operations in any order and any number of times. They can never create resources

from free objects. Condition 3. is sometimes referred to as the golden rule of QRTs

[31] as it captures the main feature of resource theories, i.e., some operations cannot

create resources from resource-free objects.

Instead of defining the set of free objects and free operations simultaneously, in

some situations, it is desirable to define either the free operations or free objects first

and adjust the respective counterpart accordingly. This leads to the maximal set of

free operations and the minimal set of free objects.

Definition 3.1.2. (Maximal set of free operations). Let V ⊂ S be a set of free objects

F . The maximal set of free operations Fmax consistent with V contains all maps

Λ : S 7→ S such that

Λ(F ) ∈ V(S), (3.83)

for any F ∈ V. That is, Fmax is the largest set that contains free operations Λ, such

that Q = (V,Fmax) is a resource theory.

Definition 3.1.3. (Minimal set of free objects). Let F be a set of free operations. The

associated minimal set of free objects Vmin is defined as

Vmin :=
{

F : ∀ X ∈ S ∃ Λ ∈ F such that F = Λ(X)
}

, (3.84)

which means every F ∈ Vmin can be generated by operations in F from any other

object X ∈ S.
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A fixed set F of free operations Λ imposes a preorder on the set S. We write

X
F−→ Y if there exist a map Λ ∈ F such that Λ(X) = Y . In the case X F−→ Y

and Y F−→ X, we write X
F≈ Y . If X F−→ Y holds, X is at least as resourceful as Y ,

since it can be transformed into it for free. To see that F−→ is a preorder, note that

X
F−→ Y and Y F−→ Z clearly imply X F−→ Z. We can use the notion of a preorder

to establish more properties of the set of minimal free states Vmin.

First, note that for every other set of free objects V consistent with the free op-

erations F such that Q = (V,F ) is a resource theory, it holds Vmin ⊂ V. This

shows that Vmin is indeed the minimal set of free objects. To see this, note that for

every F ∈ V and any G ∈ Vmin it holds by definition F F−→ G, which implies that

G ∈ V, since G can be obtained from a free object and free operations. Next, we

want to see in which situation Vmin is the only set of free objects consistent with

the free operations F . This is the case, when any two free objects F,G ∈ V can be

transformed into each other, i.e., F
F≈ G. The statement follows from F

F−→ G for

any F ∈ Vmin and G ∈ V and the fact that X F−→ F for any X ∈ S by definition.

Therefore, X F−→ G, which implies G ∈ Vmin.

3.1.1 Quantification

Definition 3.1.4. (Resource monotones). Let Q = (V,F ) be a resource theory of

objects S and let R : S 7→ R≥0 be a function from the set S to the non-negative numbers.

Any function R that obeys the following two conditions is a resource monotone for the

resource theory associated to Q.

1. Vanishing for free objects: F ∈ V =⇒ R(F ) = 0.

2. Monotonicity: R(X) ≥ R(Λ(X)) for any X ∈ S and any free map Λ ∈ F .

Moreover, a resource monotone R is said to be faithful if R(X) = 0 ⇐⇒ X ∈ V, i.e.,

it is zero if and only if it is evaluated on a resource free object. We will use the terms

resource monotone and resource quantifier interchangeably.

Note that R(X) > R(Y ) directly implies that there is no free transformation Λ ∈ F

such that X = Λ(Y ). However, it does not generally hold that R(X) ≥ R(Y ) implies

X
F−→ Y .

A resource monotone R : S 7→ R≥0 is said to be a convex resource monotone if it

holds that

R
(∑

i

piXi



≤
∑

i

piR(Xi), (3.85)
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for any ensemble of objects Xi ∈ S and any probability vector p. Note that we

implicitly assumed here that S is a convex set, i.e.,
∑

i piXi ∈ S.

There are several classes of relevant resource monotones. The first class are resource

monotones based on contractive distances, i.e., distance functions D(X,Y ) between

elements X,Y ∈ S that satisfy

D(X,Y ) ≥ D(Λ(X),Λ(Y )), (3.86)

for any allowed map Λ ∈ Q. An example of such a distance is the trace distance

between quantum states, that is contractive under all CPTP maps (see Eq. (2.57)).

Theorem 3.1.5. (Distance based resource monotones). Let Q = (V,F ) be a resource

theory and let D : S × S 7→ R≥0 be a contractive distance. It follows that

Rdist(X) := D(X,V) = inf
F∈V

D(X,F ), (3.87)

is a faithful resource monotone for the resource theory Q induced by the distance D.

Proof. The faithfulness follows trivially. The proof of the monotonicity follows

directly from the contractiveness of the distance D under any map Λ ∈ Q and the

fact that set V is closed under free transformations. Namely,

Rdist(X) = inf
F∈V

D(X,F ) ≥ inf
F∈V

D(Λ(X),Λ(F )) (3.88)

≥ inf
F ′∈V

D(Λ(X), F ′) = Rdist(Λ(X)).

Note that the infimum can be replaced by a minimum whenever V is a compact set.

Furthermore, it follows directly that Rdist is a convex function whenever V is convex

and the underlying distance D(X,Y ) is jointly convex, i.e., it holds

D(pX1 + (1 − p)X2, pY1 + (1 − p)Y2) ≤ pD(X1, Y1) + (1 − p)D(X2, Y2), (3.89)

for any p ∈ [0, 1] and any X1, X2, Y1, Y2 ∈ S. In particular, all distances based on

norms are jointly convex, as norms are convex functions.

As we did not use specifically all properties of a distance, we can extend the above

statement to all faithful and contractive functions. This includes functions that are

not a metric, like the relative entropy (see Eq. (2.75)) in the case of quantum states.

The next resource quantifier is based on robustnesses with respect to a set. We

focus here on the generalized robustness, the most commonly used robustness.
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Theorem 3.1.6. (Robustness based resource monotones). Let Q = (V,F ) be a

resource theory. It follows that

Rrob(X) := inf
Y ∈S,r

{

r ≥ 0 :
X + rY

1 + r
∈ V

}

. (3.90)

is a faithful resource monotone for the resource theory Q.

Proof. The faithfulness follows again trivially. The proof of the monotonicity follows

directly from the fact that we can apply any linear map Λ ∈ F onto the left hand

side in the definition of Rrob(X). Therefore,

Λ(X) + rΛ(Y )

1 + r
=

Λ(X) + rY ′

1 + r
∈ V, (3.91)

is a valid convex combination of Λ(X) and an other element Y ′ ∈ S into a free

resource with the robustness Rrob(X) = r. However, this convex combination

does not need to be optimal, which implies Rrob(X) ≥ Rrob(Λ(X)). Note that by

following the ideas in [88], it can also be shown that Rrob(X) is convex, if and only

if V is convex.

Finally, we can define a resource monotone based on the weight decompositions.

Theorem 3.1.7. (Weight based resource monotones). Let Q = (V,F ) be a resource

theory. It follows that

Rweight(X) := inf
F∈V,Y ∈S,w

{

w ≥ 0 : X = wY + (1 − w)F
}

, (3.92)

is a faithful resource monotone for the resource theory Q.

Proof. The faithfulness holds trivially. The proof of the monotonicity follows from

the fact that Λ(X) admits the decomposition

Λ(X) = wΛ(Y ) + (1 − w)Λ(F ) = wY ′ + (1 − w)F ′ (3.93)

with Y ′ ∈ S and F ′ ∈ V. Since this decomposition for Λ(X) does not need to be

optimal, it follows Rweight(X) ≥ Rweight(Λ(X)). By adapting the ideas from [34]

one can show that Rweight(X) is convex as well for convex sets V.
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3.2 Resource Theories for Quantum States

Having the general structures and all the above resource monotones at hand, we

are in the position to study the most relevant QRTs within the context of this thesis.

We start by looking at resource theories for quantum states.

Here, the set S of all objects is replaced by the set S(H) of all density matrices ρ,

where we denote by d the dimension of H. Furthermore, the set Q now denotes the

set of all CPTP maps from S(H) to itself.

3.2.1 Purity

The first resource theory of quantum states we look at is the resource theory of

purity, which is probably the simplest resource theory for quantum states. In a

certain sense, that we justify later (see Section 3.2.4), it is also the most fundamental

resource of a quantum state. The resource theory of purity, which originated from

studying resources in the context of thermodynamics [89±94], follows the simple

idea that pure states are more valuable than mixed states in quantum information

processing tasks. We already saw in Sections 2.3 and 2.8 that mixed states come

with an inherent drawback, that is, it is only probabilistically determined in which

pure state our system is in. The resource theory of purity captures this idea and aims

at quantifying how non-mixed a certain quantum state is. Within this section, we

follow the same lines as [61] and we also refer to [60] for a detailed overview.

In the resource theory of purity, the set of free states is particularly simple, as it only

contains a single state. More precisely, the only free state is the maximally mixed

state

VPurity :=
1

d
. (3.94)

It is now easy to identify the maximal set of free operations (see Definition 3.1.2)

as the set of all unital CPTP maps. This means Fmax = FU contains all quantum

channels that fulfill

ΛU
(1

d



=
1

d
. (3.95)

Note that FU includes two frequently used subsets of free operations. First, the set

FNO of noisy operations, whose elements are given by channels of the form

ΛNO(ρ) = Tr2[U
(

ρ⊗ 1E

dE



U †], (3.96)
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for any unitary U and any maximally mixed state 1E

dE
on a dE-dimensional ancilla

(environment) space HE . Second, the set FMU of channels that can be written as a

mixture of unitaries, i.e.,

ΛMU(ρ) =
∑

i

piUiρU
†
i , (3.97)

with p being a probability vector and the Ui being unitary operators.

It can be shown that the (strict) set inclusion

FMU ⊂ FNO ⊂ FU (3.98)

holds. However, interestingly, the state conversion abilities of all sets are equivalent,

in the sense that ρ
FU−→ σ implies ρ

FMU−→ σ. The other relations follow trivially. For

more details, see [60].

Whether a state transformation ρ
FU−→ σ is possible can be elegantly determined

through the majorization (see, e.g., [70]) of quantum states. This is a consequence

of the fact that unital channels are a generalization of classical bistochastic maps. A

quantum state ρ is said to majorize the state σ if

k∑

i=0

λ↓
i (ρ) ≥

k∑

i=0

λ↓
j (σ), (3.99)

for all 0 ≤ k ≤ d − 1, where λ↓
i (ρ) is the i-th largest eigenvalue of ρ. We use the

shorthand notation ρ ⪰m σ to signify that ρ majorizes σ.

Theorem 3.2.1. (State transformation and majorization). Let ρ, σ ∈ S(H) be two

quantum states. The state ρ can be transformed to the state σ by a unital CPTP map

ΛU if and only if ρ majorizes σ, i.e, ρ ⪰m σ.

Proof. The proof can be found in [95] and we also refer to [82] (Theorem 4.32

therein).

According to [60] and [61], a resource quantifier P in the resource theory QPurity =

(VPurity,FU) of purity should fulfill the following four conditions, of which the first

two are the typical (faithful) monotone requirements:

(P1) Faithfulness: P(ρ) ≥ 0 for any ρ ∈ S(H) and P(ρ) = 0 ⇐⇒ ρ =
1

d
.

(P2) Monotonicity: P(ρ) ≥ P(ΛU (ρ)) for any ΛU ∈ FU and any ρ ∈ S(H).

(P3) Additivity: P(ρ⊗ σ) = P(ρ) + P(σ) for any ρ, σ ∈ S(H).
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(P4) Normalization: P(♣Ψ⟩⟨Ψ♣) = log2 (d) for any ♣Ψ⟩ ∈ H.

By design, any of the general resource monotones introduced in Section 3.1.1 fulfill

the conditions (P1) and (P2). However, these monotones do not fulfill the conditions

(P3) and (P4) in general. Note that these conditions could be seen as conditions

coming more from a mathematical than a physical point of view. An important

family of resource quantifiers that fulfills all four conditions is given by the Rényi

α-purities (see [61] and Section 2.8.4)

Pα(ρ) = log2 (d) − Sα(ρ), (3.100)

where the Sα(ρ) are the Rényi α-entropies as defined in Eq. (2.71). Note that in

the case lim
α→1

Pα(ρ) = log2 (d) − S(ρ) = S(ρ∥1d ) we obtain the relative entropy of

purity, where S(ρ) denotes the von Neumann Entropy (see Definition 2.8.2) of ρ.

Additionally, Pα(ρ) is convex for 0 ≤ α ≤ 1. Besides the case of the relative entropy,

two additional Rényi purities are of particular importance. First, the case α = 2

leads to the Rényi 2-purity

P2(ρ) = log2(dTr[ρ2]), (3.101)

which is a monotonic function of the linear purity Tr[ρ2]. We want to emphasize here

that the term (linear) purity, often used for the expression Tr[ρ2] in the literature, is

misleading as it does not fulfill the requirements (P1) − (P4). Furthermore, it also

does not capture an important point. The dimension of a quantum state is part of

its purity resource. That is, any pure state fulfills Tr[ρ2] = 1 but higher dimensional

pure states are generally more useful than lower dimensional states, which is exactly

captured by the Rényi α-purities in Eq. (3.100).

The final important instance is the case

lim
α→∞ Pα(ρ) = log2 (dλ1(ρ)), (3.102)

where λ1(ρ) is the largest eigenvalue of ρ. It is noteworthy that the case lim
α→∞ Pα(ρ)

is particularly easy to study and compute, since it does only depend on a single

eigenvalue of ρ. Furthermore, it was shown in [96] that λ1(ρ) also completely

determines the generalized robustness of purity (see Definition 3.1.6 ) as Prob(ρ) =

dλ1(ρ) − 1. We use the fact that there exists a purity quantifier that only depends on

λ1(ρ) in Section 4.2, respectively in Publication B.

3.2.2 Coherence

The purity of a quantum state can hardly count as a genuine quantum property. It

is more like a classical resource a quantum state has to have to be useful. Quantum
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coherence [35], on the other hand, is a phenomenon that divides quantum and

classical physics. Quantum coherence describes the effect, respectively the possibility,

that quantum states can be in a superposition of basis states. Originating from the

superposition principle and being responsible for effects like interference, quantum

coherence has a longstanding research history, starting from the coherence of optical

fields [97±99]. The modern day notion of coherence, commonly used in quantum

information theory today, was first introduced by Åberg [100] before it was further

developed in [101]. Nowadays, quantum coherence represents a mature research

field which attracts a lot of attention. In the following, we will follow the notions of

[35] and [101]. Moreover, we generally refer to the review [35] for more details.

The resource theory of coherence is inherently basis-dependent. Typically, one

chooses the energy-eigenbasis of a given Hamiltonian, the eigenbasis of a specific

observable, or simply the computational basis. Basis states of the fixed basis ¶♣i⟩♢d−1
i=0

are considered as free, while superpositions of basis states are considered resourceful.

More generally, including mixed states, the set of free or incoherent states is given

by

VCoherence :=
{

ρI =
d−1∑

i=0

pi♣i⟩⟨i♣
}

, (3.103)

where p is a probability vector. Clearly, VCoherence is convex by design. An alternative

definition of the free set can be given via the dephasing operation

∆(ρ) =
d−1∑

i=0

⟨i♣ρ♣i⟩♣i⟩⟨i♣, (3.104)

which destroys the coherence of any quantum state and acts on an incoherent state

such that ∆(ρI) = ρI . In general, a resource theory with a CPTP map that maps

any quantum state to a free state, while keeping any free state invariant is called a

resource theory with a resource destroying map [31].

Several classes of free operations are typically considered, each motivated by a

different physical context. Formally, one can define the maximal set of free opera-

tions, called the set of maximally incoherent operations (MIO) as the set containing

all channels ΛMIO ∈ Q that fulfill

ΛMIO(ρI) ∈ VCoherence (3.105)

for any ρI ∈ VCoherence. However, this set of operations is not very well charac-

terized, and in many cases, the more relevant set of free operations is the set

FIO of incoherent operations (IO). The set FIO contains all CPTP maps ΛIO(ρ) =
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∑

a Λa(ρ) =
∑

aKaρK
†
a that can be implemented via an instrument ¶Λa♢ such that

each of the subchannels Λa is incoherent in the sense that

KaρIK
†
a

Tr[KaρIK
†
a]

∈ VCoherence. (3.106)

That means IO cannot create coherence, even in a probabilistic sense. Alternatively,

we can say that IO are those operations which can be written in terms of incoherent

Kraus operators Ka, such that Ka♣i⟩ ∼ ♣j⟩, where ♣i⟩ and ♣j⟩ are (incoherent) basis

states.

A third relevant set FSIO of free operations contains the strictly incoherent operations

(SIO). These are given by those CPTP maps that can be implemented via instruments

with incoherent Kraus operators Ka such that K†
a is an incoherent Kraus operator as

well. For further relevant classes of free operations see [35].

It can be shown [102, 103] that the set of free operations obey the strict set

inclusions

FSIO ⊂ FIO ⊂ FMIO. (3.107)

The state conversion abilities of coherent states under free operations are less clear

than in the case of purity. We refer, however, to the notable results in [104], where

the possible transformations between pure states are characterized in terms of a

majorization criterion, and the results in [105], where the state transformation

abilities for single-qubit states are solved entirely. Furthermore, it was shown in

[101] that states of the form

♣Ψ⟩ =
1√
d

d−1∑

j=0

exp (iφj)♣j⟩, (3.108)

can be converted to any other d-dimensional state ρ via IO (and therefore also via

MIO). Therefore, states of the form in Eq. (3.108) are called maximally coherent

states. The notion of a maximally coherent state was generalized in [61] to mixed

states for a fixed spectrum. To understand what a maximally coherent mixed state is,

we must understand how coherence is typically quantified.

According to [100], respectively [101], a coherence quantifier C in the resource

theory QCoherence = (VCoherence,FIO) of coherence, should fulfill the following four

conditions. The first two are our familiar (faithful) monotone requirements:

(C1) Faithfulness: C(ρ) ≥ 0 for any ρ ∈ S(H) and C(ρ) = 0 ⇐⇒ ρ ∈ VCoherence .

(C2) Monotonicity: C(ρ) ≥ C(ΛIO(ρ)) for any ΛIO ∈ FIO and any ρ ∈ S(H).
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(C3) Strong monotonicity: C(ρ) ≥ ∑

i piC(σi) for any σi =
KiρK

†
i

pi
with pi =

Tr[KiρK
†
i ] and incoherent Kraus operators ¶Ki♢ and any ρ ∈ S(H).

(C4) Convexity: C
(
∑

i qiρi


≤ ∑

i qiC(ρi) for any probability vector q and any

ρi ∈ S(H).

Note that convexity is typically a requirement for a quantifier in the resource

theory of coherence, contrary to the resource theory of purity, where convexity is

typically regarded as an additional feature. More importantly, in the resource theory

of coherence one requires typically that a quantifier behaves also monotonic on

average under the selective IO as captured by condition (C3). In [35], two additional

requirements are proposed: a uniqueness condition for pure states and the additivity

under tensor products. Finally, note that the conditions (C2) and (C3) can trivially

be adapted to other sets of incoherent operations.

Clearly all resource monotones introduced in Section 3.1.1 fulfill the conditions

(C1), (C2), and (C4) by design. However, not all of them will fulfill condition

(C3). In particular, the coherence monotone based on the trace distance does not

fulfill condition (C3), as shown in [106]. However, it was shown in [107] that the

generalized robustness of coherence does indeed fulfill the conditions (C1) − (C4)

for the class of IO operations. In the following, we discuss two important coherence

monotones in more detail. Both of them obey the conditions (C1) − (C4) and admit

a closed form expression which does not require any optimization [35].

The first quantifier is defined via the entrywise ℓ1-distance between a quantum

state ρ and the incoherent states ρI ∈ VCoherence and it is given by

Cℓ1(ρ) = min
ρI∈VCoherence

∥ρ− ρI∥ℓ1 =
∑

i̸=j

♣ρij ♣, (3.109)

where the closed form expression on the right-hand-side was shown in [101]. This

makes the ℓ1-distance of coherence not only particularly easy to compute but also

reflects the intuitive view that the magnitude of the off-diagonal elements determines

a state’s coherence. Interestingly, this intuitive quantifier violates the monotonicity

condition (C2) for the class of MIO.

The second quantifier is based on the relative entropy and is given by

Crel(ρ) = min
ρI∈VCoherence

S(ρ∥ρI) = S(∆(ρ)) − S(ρ), (3.110)

where the closed form expression on the right-hand-side, in terms of the von-

Neumann entropy S(ρ), was also shown in [101]. The relative entropy of coherence

also obeys the condition (C2) for MIO. Moreover, it coincides with the distillable

coherence [35], hence it has a well-defined operational meaning.
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Coming back to the question of what a maximally coherent mixed state is, it was

shown in [61] that for a fixed spectrum λ(ρ) the state

ρmax =
d−1∑

ñ=0

λñ♣ñ⟩⟨ñ♣, (3.111)

maximizes any coherence monotone (under MIO), where ¶♣ñ⟩♢ is a mutually un-

biased basis to the incoherent basis ¶♣i⟩♢, i.e., ♣⟨i♣ñ⟩♣ = 1√
d

for all i, ñ (see also

Definition 2.1.7). Note that the maximally coherent pure states in Eq. 3.108 are

exactly defined such that they are diagonal in a basis that is mutually unbiased to

¶♣i⟩♢.

Finally, let us comment on the coherence of multipartite states. Coherence is in-

herently a local property and can straightforwardly be defined for a multipartite

state by treating the multiple particles as one system. However, the more exciting

scenario occurs if one considers the coherence of a multipartite state with respect to

an incoherent product basis. Namely, a bipartite incoherent state can be written in

the form

ρI =
∑

i

pi♣iA⟩⟨iA♣ ⊗ ♣iB⟩⟨iB♣, (3.112)

which can directly be generalized to n-partite systems. The coherence of multipartite

states with respect to product bases was first studied in [108, 109] and was also

further investigated in [61, 110]. In our Publication B, we deal with a specific case

of coherence with respect to incoherent product bases. We consider the minimal

coherence with respect to all possible product bases, which is equivalent [61, 111]

to

Cmin(ρ) = min
UA⊗UB

C((UA ⊗ UB)ρ(UA ⊗ UB)†), (3.113)

where UA, UB are unitaries on system A and system B, respectively. This introduces

not only a basis independent form of quantum coherence but also coincides with the

symmetric discord [36, 112] of a quantum state ρ. Quantum discord [38, 113, 114]

was introduced as a measure of quantum correlations in addition to entanglement,

which can be non-zero for separable states and quantifies the difference between

the total and classical correlations in a quantum state. For a detailed discussion

and review on discord, see [36, 112]. While discord can be viewed as a resource

for certain quantum information processing tasks, it also has certain drawbacks. In

particular, the set of zero-discord states is non-convex as it contains (in the case of

symmetric discord) all states of the form

ρ(c−c) =
∑

i

pi♣ϕi⟩⟨ϕi♣ ⊗ ♣ψi⟩⟨ψi♣, (3.114)
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with ⟨ϕi♣ϕj⟩ = δij and similarly ⟨ψi♣ψj⟩ = δij . These states are also known as

classical-classical states. Moreover, the set of free operations is not well charac-

terized for discord. So far, it is only known that discord is invariant under local

unitary operations, which follows in the case of symmetric discord directly from

Eq. (3.113).

3.2.3 Entanglement

„I would not call that one but rather the

characteristic trait of quantum mechanics, the

one that enforces its entire departure from

classical lines of thought.

Ð Erwin Schrödinger

About the role of entanglement.

Entanglement [32] is by far one of the most puzzling and, at the same time,

astonishing features of nature. While it led to many philosophical questions in the

early days of quantum theory, it was later realized that there are specific quantum

information processing tasks in which entanglement plays a crucial role. In fact,

it was realized that entanglement is necessary for certain cryptographic [8, 25],

communication [7, 115] and computation tasks [30, 116]. Furthermore, it is a

key ingredient for the existence of quantum correlations like EPR-steering [44, 45]

and Bell nonlocality [43, 117] (see also Section 3.4). All these findings led to

the development of the resource theory of entanglement [118, 119] as the first

application of resource theories to quantum theory. Nowadays, it is the prime

example of the field of quantum resource theories. Here, we give an overview of

the essential concepts from entanglement theory relevant to this thesis. For a review

and more details on entanglement, see [32, 120, 121].

We already formally defined the concept of entanglement in Section 2.4 (see

Definition 2.4.2 and 2.4.3) which we repeat here for convenience. A pure bipartite

state ♣Ψ⟩ ∈ HAB = HA ⊗ HB is called separable if it can be written as ♣Ψ⟩ = ♣ΨA⟩ ⊗
♣ΨB⟩ and it is called entangled otherwise. The canonical example for entangled pure

states are the two-qubit Bell states

♣Φ±⟩ =
1√
2

(♣00⟩ ± ♣11⟩), ♣Ψ±⟩ =
1√
2

(♣01⟩ ± ♣10⟩). (3.115)
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We have already established a method to check whether a pure state ♣Ψ⟩ is entangled

through the Schmidt decomposition (see Theorem 2.4.1). Namely, by decomposing

a pure state such that

♣ψ⟩ =
R−1∑

i=0

√
ci♣iAiB⟩, (3.116)

one can identify separable pure states as those of having a Schmidt-rank of R = 1.

Entangled states, on the other hand, have a Schmidt-rank R ≥ 2. As the Schmidt

decomposition relies entirely on the sigular value decomposition, the problem of

deciding whether a pure state is entangled or separable can be solved efficiently

(in the Hilbert space dimension). Note that quantum states of Schmidt rank R = d,

(where d = dim(HA) = dim(HB) in the following) with
√
ci = 1√

d
∀ i are called

maximally entangled states. We will justify this name later within this section (see

the discussion of Theorem 3.2.4). The Bell states in Eq. (3.115) are examples for

maximally entangled states.

A general mixed state ρ ∈ S(HAB) is separable if it can be written as

ρ =
∑

i

piρAi
⊗ ρBi

, (3.117)

and it is called entangled otherwise. From here on, we denote by Sep(HAB) ⊂
S(HAB) the set of all separable states on HAB. To decide whether a given mixed

state ρ is entangled or separable is much harder than for pure states. In fact, it has

been shown to be NP-hard [122].

There are, however, a variety of sufficient entanglement criteria (for a detailed

review, see [32, 121]), out of which the positive partial transpose (PPT) crite-

rion [123] is probably the most famous one. The PPT criterion is a powerful and

easy-to-compute criterion that relies on the fact that separable quantum states are

mapped to (separable) quantum states when the transposition map is applied only

to one of the subsystems of ρ. More precisely, the partial transpose ρTB (with

respect to Bob’s, respectively the second subsystem) of a general quantum state

ρ =
∑

i,j,k,l cij,kl♣i⟩⟨j♣ ⊗ ♣k⟩⟨l♣ is defined as

ρTB = (1 ⊗ T )(ρ) :=
∑

i,j,k,l

cij,kl♣i⟩⟨j♣ ⊗ (♣k⟩⟨l♣)T (3.118)

=
∑

i,j,k,l

cij,kl♣i⟩⟨j♣ ⊗ ♣l⟩⟨k♣ =
∑

i,j,k,l

cij,lk♣i⟩⟨j♣ ⊗ ♣k⟩⟨l♣,

where (·)T denotes the usual transposition. This means that the partial transposition

acts on the basis element ♣i⟩⟨j♣ ⊗ ♣k⟩⟨l♣ such that (♣i⟩⟨j♣ ⊗ ♣k⟩⟨l♣)TB = ♣i⟩⟨j♣ ⊗ ♣l⟩⟨k♣.
Note that all definitions can trivially be adapted to Alice’s (the first) subsystem.

Furthermore, we want to emphasize that the form of ρTB depends on the basis we
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transpose in, however, the eigenvalues of ρTB do not depend on the particular basis.

The PPT criterion now states the following:

Theorem 3.2.2. (PPT criterion). Let ρ ∈ S(HAB) be a quantum state. If ρ ∈
Sep(HAB) is a separable state, it follows that ρTB ⪰ 0.

Proof. The proof [123] follows directly from inspection of

ρTB =
∑

i

piρAi
⊗ (ρBi

)T , (3.119)

which has to be non-negative since (ρBi
)T is in itself a density operator. Note that

ρTB ⪰ 0 =⇒ ρTA ⪰ 0, which follows by simply transposing ρTB (with respect to

both subsystems).

The power of the PPT criterion stems from the fact that ρTB ⪰̸ 0 for some entangled

states. That means there is at least one negative eigenvalue of ρTB . In fact, violation

of the PPT criterion is even necessary for entanglement in systems with dimensions

dA, dB such that dAdB ≤ 6 [124]. However, in higher dimensions, there exist

entangled quantum states with PPT [125] (see also down below).

The underlying reason why the PPT criterion is able to detect entanglement is that

the transposition is a positive map but no CP map (see Definition 2.5.1). As shown

in [124], the separability of a quantum state ρ can be rephrased in the sense that

ρ ∈ Sep(HAB) ⇐⇒ (1A ⊗ Λ)(ρ) ⪰ 0, (3.120)

for all positive maps Λ.

While entanglement criteria based on positive but not CP maps are beneficial for

detecting entanglement from a mathematical point of view, they are problematic

from a practical or experimental view. The problem with these entanglement criteria

is that they rely on non-physical transformations. Therefore, they are hard to exploit

experimentally, as one typically relies on state tomography. There is, however, a

related way to detect entanglement, which is also highly usable from an experimental

perspective. That leads us to the entanglement detection via entanglement witnesses

[124, 126].

Definition 3.2.3. (Entanglement witness). Let W ∈ Herm(HAB) be a Hermitian

operator. It is called an entanglement witness if it fulfills the following two conditions:

1. Tr[Wρsep] ≥ 0 for all separable states ρsep ∈ Sep(HAB).
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Fig. 3.2.: Geometrical representation of an entanglement witness. The entanglement wit-
ness W divides the space of all quantum states into two half-spaces. While all
separable quantum states ρSep ∈ Sep(HAB) lead to Tr[WρSep] ≥ 0 there exists an
entangled state ρ such that Tr[Wρ] < 0, which means W detects the entanglement
of ρ.

2. Tr[Wρ] < 0 for (at least) one state ρ ∈ S(HAB).

The concept of entanglement witnesses is based on the Hahn-Banach, respectively

the separating hyperplane theorem (see, e.g., [87]). The separating hyperplane

theorem states that for any two disjoint convex and compact sets, there exists

a hyperplane (actually even two parallel ones separated by a non-zero gap, see,

e.g., [127]) that separates the two sets into different half-spaces. For a geometric

representation, see Figure 3.2. As the set of separable quantum states is compact

and convex and a single point is convex and compact as well, it follows that there

exist observables W that lead to a positive expectation value for any separable

state. In contrast, at least one entangled state ρ leads to a negative expectation

value, which means the witness W detects the entangled state ρ. Besides this

geometrical interpretation, entanglement witnesses have the advantage that they

can be measured in an experiment, even without full knowledge of the quantum

state that is to be detected. For further details on entanglement witnesses and ways

to construct them, see [121].

Several relevant classes of operations cannot create entanglement from separable

states. The maximal set of free operations FSep ⊂ Q contains all CPTP maps Λsep

that admit the separable decomposition [128, 129]

Λsep(ρ) =
∑

i

(Ai ⊗Bi)ρ(Ai ⊗Bi)
†. (3.121)

The most important subset of all separable CPTP maps is given by those channels

that can be implemented via local operations and classical communication (LOCC)

[115]. These operations often describe the physical situation in a lab. For exam-

ple, Alice and Bob can perform local operations in their respective lab (including

measurements) and send bits via a classical channel. Then, conditioned on the

information received from the other party, they can perform additional local opera-

tions and restart the process by sending further bits to their counterpart. However,

they are not allowed or able to send quantum information. Hence, they cannot
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Alice round 1

Input

Alice round 2 

Alice round 3 

Bob round 1

Bob round 2 

Bob round 3 

Input

Output Output

Fig. 3.3.: LOCC paradigm scheme. Alice and Bob perform in each round of the protocol
some local operation on their quantum system which can be based on the infor-
mation they received from the other party via a classical channel (dotted lines).

send quantum states from one lab to the other. For a pictorial representation of

the LOCC paradigm, see Figure 3.3. Unfortunately, the mathematical structure of

LOCC is rather complicated [130], which is why the larger and easier-to-handle set

of separable operations is often used instead.

An important variant of LOCC are those operations that only succeed with a cer-

tain probability, respectively rely on post-processing. Formally, this enlarges the

class of LOCC to the class of stochastic local operations and classical communica-

tion (SLOCC). The most prominent example for these stochastic operations are local

filters [49]. Local filters are operations from the set of SLOCC described by Kraus

operators FA, FB such that FAF
†
A ⪯ 1 and FBF

†
B ⪯ 1 which map a state ρ to the

state

ρF =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]
, (3.122)

with probability p = Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]. Local filters can be understood via

the concept of subchannels or they can be regarded as quantum measurement with

four outcomes (see, e.g., [131]) given by ¶FA ⊗ FB, FA ⊗ F̄B, F̄A ⊗ FB, F̄A ⊗ F̄B♢,
where F̄A and F̄B are operators such that FAF

†
A + F̄AF̄

†
A = 1 (FBF

†
B + F̄BF̄

†
B = 1).

Classical communication allows Alice and Bob to keep only the quantum state

corresponding to the first outcome, which is equivalent to obtaining the state in
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Eq. (3.122).

The concept of LOCC allows us to justify that pure states with Schmidt coefficients

ci = 1√
d

for all i = 0, · · · , d − 1 are termed maximally entangled. The canonical

example for such a state is given by

♣Φ+
d ⟩ =

1√
d

d−1∑

i=0

♣ii⟩. (3.123)

The name is justified, as states of this form can deterministically be transformed to

any other d-dimensional pure states via LOCC. More precisely, Nielsen [132] proved

the following theorem.

Theorem 3.2.4. (Pure state conversion via LOCC). Let ♣ψ⟩ and ♣ϕ⟩ be two quantum

states in the Hilbert space HAB = HA ⊗ HB. The state transformation ♣ψ⟩ FLOCC−→ ♣ϕ⟩
is possible if and only if

Tr2[♣ϕ⟩⟨ϕ♣] ⪰m Tr2[♣ψ⟩⟨ψ♣], (3.124)

which means ♣ψ⟩ can be transformed via LOCC into ♣ϕ⟩ exactly when the reduced state

ρA(♣ψ⟩⟨ψ♣) = Tr2[♣ψ⟩⟨ψ♣] is majorized by ρA(♣ϕ⟩⟨ϕ♣) = Tr2[♣ϕ⟩⟨ϕ♣].

Theorem 3.2.4 together with the fact that states in Eq. (3.123) lead to a spectrum

λ(ρA) = ¶1/d, · · · , 1/d♢ allows us to conclude that maximally entangled states can

be transformed to any d-dimensional pure state.

To study the conversion possibilities ρ
FLOCC−→ σ for general mixed states is a more

challenging task, due to the complexity of the LOCC paradigm and the structure

of entanglement itself. See, however, the results [133] for more details regard-

ing advanced (pure) state conversion schemes, including probabilistic transfor-

mations. Note that local filters can be used to transform a pure entangled state

♣ψ⟩ = a♣00⟩ + b♣11⟩ with a > b > 0 into the maximally entangled state ♣Φ+
2 ⟩ with

non-zero probability.

The transformation of an entangled quantum state ρ via local filtering into a max-

imally entangled state of the same Hilbert space dimension can be seen as the

simplest form of entanglement distillation [134]. However, local filters are generally

not enough to achieve this task. In general, entanglement distillation describes

the task to transform n-copies of a state ρ into m copies of a maximally-entangled

two-qubit state ♣Φ+
2 ⟩ via all possible distillation protocols, i.e., via all possible LOCC

acting on ρ⊗n = ρ⊗ ρ⊗ · · · ⊗ ρ
︸ ︷︷ ︸

n times

. It is convenient to write m = rn, which introduces
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the distillation rate r. The optimal distillation rate is now described via the distillable

entanglement (see e.g. [32, 120]) defined as

ED(ρ) = sup
{

r : lim
n→∞

(

inf
Λ∈FLOCC

∥Λ(ρ⊗n) − (♣Φ+
2 ⟩⟨Φ+

2 ♣)⊗rn∥1



= 0
}

, (3.125)

in the limit of infinitely many copies of ρ. The distillable entanglement is physically

very relevant, however, it is hard to compute in practice due to its optimization over

all possible distillation protocols. For an overview over some distillation protocols

see [32].

While it is obvious that entanglement is necessary for a quantum state to be

distillable, it is less obvious whether it is also sufficient. Indeed, there exist entangled

quantum states with ED(ρ) = 0 [135]. Hence, these states cannot be distilled to the

maximally entangled state. This particularly weak form of entanglement has been

termed bound entanglement. The characterization of bound entangled states is a

famously complex problem. However, a very powerful sufficient criterion exists for

a state to be bound entangled. That is, if a state is entangled but its entanglement

cannot be detected via the PPT criterion, it is bound entangled [135]. Whether there

exists also bound entangled states with a negative partial transpose is one of the

most famous open problems of entanglement theory [136].

Despite their weak entanglement, bound entangled states where found to be

useful for several quantum information processing tasks [137, 138], including the

generation of nonlocal correlations [139, 140]. In our Publication A, we demonstrate

nonlocality in bound entanglement in a hidden nonlocality scenario, which answers

a question close to the Peres conjecture [141].

While the distillable entanglement quantifies the entanglement in terms of its

usefulness for a particular set of protocols, it is also possible to follow the more

axiomatic approach. In the following, we present this axiomatic approach, which

states that an entanglement monotone has to fulfill the following conditions:

(E1) Vanishing for separable states: ρ ∈ Sep(HAB) =⇒ E(ρ) = 0.

(E2) Monotonicity: E(ρ) ≥ E(ΛLOCC(ρ)) for any ΛLOCC ∈ FLOCC and any ρ ∈
S(HAB).

(E3) Strong monotonicity: E(ρ) ≥ ∑

i piE(σi) for any σi =
KiρK

†
i

pi
with pi =

Tr[KiρK
†
i ] and Kraus operators ¶Ki♢ describing some LOCC channel and any

ρ ∈ S(HAB).

(E4) Convexity: E
(
∑

i qiρi


≤ ∑

i qiE(ρi) for any probability vector q and any

ρi ∈ S(HAB).
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Due to the hardness of the separability problem, entanglement monotones are

typically not required to be faithful. Prominent examples of non-faithful monotones

are the distillable entanglement introduced above, and the negativity [142]. Like

for coherence, the typical monotonicity condition (E2) is sometimes replaced by the

stronger condition (E3). However, it is often considered as an additional property

and not as a necessary requirement. Clearly, all the monotones introduced in Section

3.1.1 satisfy at least the conditions (E1), (E2), and (E4). For a more general overview

over entanglement monotones and discussions about additional requirements for a

proper entanglement quantifier, see [32].

We want to finish the discussion about entanglement by describing the structural

differences between multipartite and bipartite entanglement. However, we will focus

here on the tripartite case since we need it to discuss Publication A. A tripartite

quantum state ρABC ∈ S(HA ⊗ HB ⊗ HC) is called (fully) separable if it can be

written as convex combination of product states, i.e.,

ρABC =
∑

i

piρAi
⊗ ρBi

⊗ ρCi
, (3.126)

and it is entangled otherwise. Besides the notion of full separability, tripartite

entanglement can also be defined with respect to certain bipartitions. For instance,

the state

ρABC = ♣0⟩⟨0♣A ⊗ ♣Φ+⟩⟨Φ+♣BC , (3.127)

is clearly entangled. However, the entanglement is only prevalent due to the

entanglement in the BC system and it is separable with respect to the bipartition

A♣BC. More generally, a quantum state ρABC is called biseparable if it can be written

as convex combination of biseparable states with respect to the different bipartitions,

i.e,

ρABC = pA♣BC ρA♣BC + pB♣AC ρB♣AC + pC♣AB ρC♣AB, (3.128)

with probabilities pA♣BC , pB♣AC , pC♣AB such that pA♣BC + pB♣AC + pC♣AB = 1. If a

quantum state is not biseparable, it is called genuinely multipartite entangled, which

is the strongest form of multipartite entanglement.

The most important examples of genuinely multipartite entangled states are the

GHZ [143] and the W state [144], given by

♣GHZ⟩ =
1√
2

(♣000⟩ + ♣111⟩), ♣W⟩ =
1√
3

(♣001⟩ + ♣010⟩ + ♣100⟩), (3.129)

which both can be regarded as maximally entangled tripartite states. However, the

notion of maximally entangled states is much more complex for multipartite states,

as different SLOCC orbits of entangled states exist. This has the consequence that
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no SLOCC protocol exists that can convert the GHZ state to the W state and vice

versa.

3.2.4 Relations Between State Resources: A Hierarchy

In general, the different resources of a quantum state are not independent of each

other. Therefore, the framework of resource theories is advantageous as the general

structures allow us to compare different resources and establish relations among

them. In the following, we present a hierarchy of quantum resources presented in

[61]. Consider the purity P(ρ), the coherence with respect to some product basis

C(ρ), the symmetric discord D(ρ), and the entanglement E(ρ) of a general quantum

state ρ ∈ S(HAB) quantified by any of the resource quantifiers (by varying the free

set for a fixed quantification method) presented in Section 3.1.1. It holds that

P(ρ) ≥ C(ρ) ≥ D(ρ) ≥ E(ρ). (3.130)

The hierarchy in Eq. (3.130) establishes the purity P(ρ) as the most fundamental

resource as all other resources are upper bounded by it. As noted in [61] the

hierarchy also holds in the form

P(ρ) = sup
U

C(UρU †) ≥ sup
U

D(UρU †) ≥ sup
U

E(UρU †), (3.131)

that is, even when the resources of coherence, discord, and entanglement are

maximized over arbitrary unitaries applied on the state ρ. The bound between

coherence and purity was proven to be tight using the concept of the maximally

coherent state in Eq. (3.111).

The proof of the hierarchy in Eq. (3.130) is surprisingly simple. It follows directly

from the fact that each of the quantifiers in Section 3.1.1 is defined as the minimum

of some distance-like function (like the robustness or the relative entropy) with

respect to the set of free states. As the separable states (Eq. (3.117)) contain all

classical-classical states (Eq. (3.114)), which themselves contain the incoherent

states (Eq. (3.103)) with the maximally mixed state 1

d as particular instance, the

hierarchy follows directly from the nested structure of the free states.

3.3 Resource Theories for Quantum

Measurements

Quantum measurements have been recognized to fit into the framework of QRTs

only recently. However, certain (sets) of quantum measurements were known to

be more valuable than others in specific tasks already earlier, for instance, for
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the violation of Bell inequalities [56, 145], and especially in the field of state

discrimination [146±148].

Resource theories for quantum measurements have many similarities with those

of states and quantum channels [149±151] but also some critical differences. For

instance, we typically consider the resource of one state, while, in the case of

measurements, the resource of a set of measurements is of particular interest. Some

attempts to give a global overview on resources of quantum measurements were

made in [41, 152]. However, the works focus either on the notion of measurement

simulability [153] or consider only a single measurement and particular resource

theories. On the other hand, the general quantification of convex measurement

resources in the context of robustness and weight quantifiers was studied, for

instance, in [154±156].

In the context of measurements, the set S (see Definition 3.1.1) of all objects will

be replaced by the set A(m,d,k), which contains itself all sets of m measurements

acting on a d-dimensional Hilbert space H, each containing k outcomes. Given

that a POVM is defined by a set of effects ¶Ma♢a, where the index a denotes the

outcome, we denote by M = ¶Ma♣x♢a,x a set of multiple POVMs, where x denotes

the measurement setting (the respective POVM). From here on, we call M a

measurement assemblage. Furthermore, the set of all transformations Q† denotes the

set of all unital maps (acting on the POVM elements) on the Hilbert space H.

3.3.1 Informativeness

The resource theory of measurement informativeness was recently introduced in

[40] to quantify how valuable a given measurement is in obtaining information about

a quantum state. It formalized and translated earlier ideas (see, e.g., [157±160]) to

the language of resource theories and proposed a framework for a single POVM. We

will review the resource theory of measurement informativeness as introduced in

[40] in the following and present our generalization to measurement assemblages in

Section 4.3, respectively our Publication C.

In the resource theory of measurement informativeness, the set of free POVMs is

given by

VInfo :=
{¶q(a)1♢a

}
, (3.132)

where q is a probability distribution that contains the probabilities q(a) of obtaining

the outcome a. These measurements are termed trivial or uninformative, as they are

unable to reveal any information about a quantum state. Instead, random outcomes

are obtained according to the distribution q.

The convexity of the set VInfo can be easily checked. Moreover, it is closed under

all unital maps Λ† ∈ Q†, since unital maps preserve the identity by definition. This
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means that the set F of free channels Λ† coincides with the set of all channels Q†.

We want to point out that this is a distinction to resource theories of states. Such a

case would immediately deem the resource theory trivial by using quantum channels

that simply prepare a quantum state ρ.

Furthermore, we emphasize that unital channels Λ† were actually not considered as

a free resource in [40]. Instead, the authors considered measurement simulations ξ

[153]. A POVM M simulates the measurement N = ξ(M) if there exists conditional

probabilities such that:

Nb =
∑

a

p(b♣a)Ma. (3.133)

This means that, upon obtaining the outcome a from measuring the POVM M, we

output the new outcome b with the probability p(b♣a). This way, actually measuring

M gives us access to the measurement statistics of N .

Measurement simulability plays an essential role in resource theories for measure-

ments, and measurement simulations can be seen as an additional type of free

operation besides unital channels. We will consider them in more detail in the

Section 3.3.3 and in our Publication C. For a detailed overview on the topic see,

[153]. To capture both types of free operations appropriately for resource theo-

ries of measurements, we will define measurement resource theories via the tuple

Q = (V,F ,S). Here, the set S contains all free measurement simulations ξ. Typically,

and for all measurement resources presented in this thesis, S coincides with the set

of all possible measurement simulations, meaning that any possible measurement

simulation is also considered to be free.

An informativeness quantifier IF(M) should fulfill the following conditions (see

also [40]):

(IF1) Faithfulness: IF(M) = 0 ⇐⇒ M ∈ VInfo.

(IF2) Monotonicity under free channels: IF(M) ≥ IF(Λ†(M)) for any Λ† ∈ Q†.

(IF3) Monotonicity under simulations: IF(M) ≥ IF(ξ(M)) for any measurement

simulation of the form in Eq. (3.133).

(IF4) Convexity: IF(
∑

i qiMi) ≤ ∑

i qiIF(Mi) for any POVMs Mi and any probabil-

ity distribution q.

Note that
∑

i qiMi denotes a POVM whose respective effects are convex combina-

tions of those of the Mi with the weights qi.
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In [40], the authors focused on the quantifier known as the generalized robustness

of informativeness, given by

IFrob(M) := inf
N ,r,q

{

r ≥ 0 :
Ma + rNa

1 + r
= q(a)1 ∀a

}

, (3.134)

where q is any probability distribution and N is a general POVM of the same

dimension and number of outcomes as M. The robustness IFrob(M) clearly fulfills

the conditions (IF1), (IF2), and (IF4) due to our general considerations in Section

3.1.1. The monotonicity under simulations in condition (IF3) was shown in [40]

and follows from similar ideas.

Moreover, it was shown that IFrob(M) admits the closed form expression

IFrob(M) =
∑

a

∥Ma∥∞ − 1, (3.135)

in terms of the spectral norm ∥·∥∞. The expression in Eq. (3.135) was derived by

exploiting the SDP formulation of the generalized robustness of informativeness. A

straightforward analysis leads to the bound

IFrob(M) ≤ min(k, d) − 1, (3.136)

for a measurement with k outcomes. That means for a fixed dimension d, the

maximal informativeness IFrob(M) = d− 1 can only be obtained for measurements

with at least d outcomes. This maximal informativeness can easily be seen to be

achieved by any POVM with effects that are proportional to rank-1 projectors.

Finally, it was shown that IFrob(M) admits an operational interpretation in terms

of a state discrimination task (following the general results in [41, 155, 156]) and

also in terms of the accessible min-information of the measurement, if it is treated as

a measure-and-prepare channel (see Eq. (2.46)). We refer to the original work [40]

for more details.

3.3.2 Coherence of Measurements

The second measurement resource that we consider is the coherence of measure-

ments. The coherence of measurements was considered recently [41, 62, 161]

and follows the ideas of coherence for quantum states. The idea of coherence for

measurements comes also from the practical fact that coherence in a quantum state

is only useful, if it can be detected by measurements. Beyond the case of measure-

ments, coherence has also been considered as a resource for quantum operations

[150]. Here, we follow the lines in [41, 62] to introduce the concept of coherence

for a single POVM. In Section 4.3, which discusses Publication C, we present our

approach to quantifying the coherence of a measurement assemblage. See also [161]
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for an alternative, basis-independent, approach to the coherence of a set.

In the resource theory of measurement coherence, the set of free POVMs is given

by those POVMs that are diagonal in a fixed basis ¶♣i⟩♢. Namely,

VCoh :=
{

¶Ma =
d−1∑

i=0

αi♣a♣i⟩⟨i♣♢a
}

, (3.137)

where αi♣a = ⟨i♣Ma♣i⟩. This definition not only mirrors the situation for quantum

states but is also equivalent to the set of measurements for which it holds that

Tr[Maρ] = Tr[Ma∆(ρ)], (3.138)

for any state ρ and all outcomes a. Here, ∆(ρ) =
∑d−1
i=0 ⟨i♣ρ♣i⟩♣i⟩⟨i♣ is the fully de-

phased version (see also Eq. (3.104)) of ρ. Therefore, incoherent measurements are

those that cannot distinguish between a state ρ and its incoherent version ∆(ρ) in

an experiment.

The set VCoh is convex, as convex combinations of diagonal operators remain diag-

onal. Essentially for the same reason, measurement simulations (see Eq. (3.133))

also preserve the incoherence of measurements. Similarly to the situation for the

coherence of quantum states, there are multiple options for classes of incoherent

quantum channels. For instance, in [41] all incoherent channels were considered.

This means that all unital channels Λ† that preserve diagonal operators are free. On

the contrary, in [62] only SIO, i.e., channels for which the Kraus operators Ka and

their adjoint K†
a are incoherent Kraus operators, were considered. It was argued

that this is the best choice, since these operators cannot create coherence on the

measurement and on the state side. For simplicity, we will consider here the set FIO,

which contains all unital channels Λ† that map diagonal operators (in the basis ¶♣i⟩♢)

to diagonal operators, following [41].

A quantifier of measurement coherence for the resource theory Q = (VCoh,FIO,S),

where S denotes as before the set of all measurement simulations, should fulfill the

requirements:

(C1) Faithfulness: C(M) = 0 ⇐⇒ M ∈ VCoh.

(C2) Monotonicity under free channels: C(M) ≥ C(Λ†(M)) for any Λ† ∈ FIO.

(C3) Monotonicity under simulations: C(M) ≥ C(ξ(M)) for any measurement

simulation of the form in Eq. (3.133).

(C4) Convexity: C(
∑

i qiMi) ≤ ∑

i qiC(Mi) for any POVMs Mi and any probability

distribution q.
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Note that in [62], a stronger form of the monotonicity was considered in terms of

selective operations. However, this condition does not play a role in our discussions,

therefore we refer to the original work at this point.

Several candidates for measurement coherence quantifiers have been proposed in

[62]. Among them are quantifiers based on the relative entropy (see also [162]), the

classical trace distance, and most notably matrix norm and robustness quantifiers.

We focus on the latter here, which has also been discussed in [41]. The generalized

robustness of coherence is defined as

Crob(M) := inf
N ,r,αi♣a

{

r ≥ 0 :
Ma + rNa

1 + r
=

d−1∑

i=0

αi♣a♣i⟩⟨i♣ ∀a
}

, (3.139)

where αi♣a are some positive coefficients and N is a general POVM of the same

dimension and number of outcomes as M. The generalized robustness of measure-

ment coherence fulfills all the conditions (C1) − (C4), which can be seen by applying

the general methods from Section 3.1.4.

Analogously to the informativeness, it was shown in [41] that the generalized

robustness of measurement coherence is bounded such that

Crob(M) ≤ min(k, d) − 1. (3.140)

Notably, this is the exact same upper bound as for the informativeness in Eq. (3.136).

In Section 4.3, which discusses Publication C, we show that this is no coincidence but

a consequence of a nested structure between the uninformative and incoherent mea-

surements. The bound in Eq. (3.140) can be tight. In particular, it can be achieved

by measurements defined in the Fourier basis with respect to the incoherent basis

¶♣i⟩♢. We show in our Publication C that a similar result holds for the generalization

to sets of measurements.

3.3.3 Measurement Incompatibility

Measurement incompatibility is arguably the most prominent resource of quantum

measurements. In recent years, there has been extensive research on the incom-

patibility of quantum devices and measurement incompatibility in particular. The

importance of measurement incompatibility can be understood from different per-

spectives. From a quantum foundations point of view, it generalizes Heisenberg’s

and Robertson’s studies about the uncertainty of observables. From the standpoint of

quantum correlations, measurement incompatibility is an essential prerequisite for

Bell nonlocality and for quantum steering, which has particularly close connections

to measurement incompatibility. Also, the connection to quantum contextuality has

been investigated in recent works. Finally, from a prepare-and-measure perspective,

measurement incompatibility is an important resource as it provides advantages in
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state discrimination tasks and for quantum random access codes.

For a general overview of measurement incompatibility, including a list of the recent

literature mentioned above, we refer to the reviews [163] and [39], where we follow

the notions of the latter here.

The most popular notion of incompatible measurements, concerns the statistics

of two observables A,B that do not share a common set of eigenstates, i.e., that

do not commute. It captures the fact that [A,B] ̸= 0 results in a restriction of the

precision that can be obtained from A and B simultaneously, as described by the

Heisenberg-Robertson uncertainty relation [164]:

∆ψA · ∆ψB ≥ 1

2
♣⟨[A,B]⟩ψ♣. (3.141)

Here, ∆ψX =
√

⟨X2⟩ψ − ⟨X⟩2
ψ denotes the standard deviation of X and ⟨X⟩ψ =

⟨ψ♣X♣ψ⟩ is the expectation value of X with respect to the pure state ♣ψ⟩.
Despite its fundamental importance, the uncertainty relation in Eq. (3.141) does

not capture the whole notion of measurement incompatibility and comes with certain

drawbacks. First, it is a state-dependent statement about the incompatibility of two

observables in terms of their non-commutativity. Second, it is written as a product

of the standard deviations, which can make it trivial in specific scenarios. For an

overview of modern formulations of generalized uncertainty relations, see [165].

More importantly, the non-commutativity of two observables only captures the

incompatibility of projective measurements. That it does capture the commutativity

properties of projective measurements follows directly from the spectral decompo-

sition, see Eq. (2.22). Generally, we say a measurement assemblage M describes

commuting measurements if

[Ma♣x,Ma′♣x′ ] = 0 ∀ a, a′ and x ̸= x′. (3.142)

To include also general POVMs into the framework, we have to introduce a more

general notion of measurement simulations. We already saw in Eq. (3.133) how one

POVM M can simulate a different POVM via classical post-processing i.e.,

Nb =
∑

a

p(b♣a)Ma. (3.143)

This notion of a measurement simulation can be generalized in many different ways

[42, 153]. In particular, a POVM ¶Gλ♢ can be used to simulate the statistics of

more than one measurement. More specifically, ¶Gλ♢ simulates the measurement

assemblage F if it holds that

Fa♣x =
∑

λ

p(a♣x, λ)Gλ ∀ a, x. (3.144)
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That means, the measurement statistics of the assemblage F can be obtained by

performing the measurement ¶Gλ♢ and post-processing its outcome distribution

p(λ) = Tr[Gλρ] via the probabilities p(a♣x, λ). Since all the measurements from

F can be measured by only performing a single measurement, it is called jointly

measurable or compatible. Assemblages that are not jointly measurable are called in-

compatible. This clearly generalizes the idea of commuting projective measurements

to general POVMs.

At this point, we have to comment on a few points. First, there are more no-

tions apart from non-joint measurability that can be seen as a generalization of

measurement incompatibility to POVMs. For instance, there are the notions of

non-disturbance [166] and coexistence [167]. However, joint measurability is by

far the most studied and important notion and we will use the term measurement

incompatibility interchangeably here. Second, in order to decide whether there exist

a joint measurement ¶Gλ♢ for the assemblage F , also known as parent POVM, it is

useful to realize that all the randomness in the post-processing p(a♣x, λ) can by hid-

den inside the parent POVM ¶Gλ♢. This means that one can restrict to deterministic

post-processing strategies v(a♣x, λ) such that

Fa♣x =
∑

λ

v(a♣x, λ)Gλ ∀ a, x, (3.145)

where the v(a♣x, λ) are vertices of a probability polytope, taking on only the values

0 or 1. This limits the numbers of outcomes needed to describe ¶Gλ♢, as there are

only Ndet = km deterministic assignements for an assemblage F of m measurements

with k outcomes.

The deterministic post-processing in Eq. (3.145) can also be seen from a different

perspective. Namely, the joint measurability of F can equivalently be written as

Fa♣x =
∑

a⃗\ax

Ga⃗, (3.146)

where Ga⃗ is a parent POVM with differently labeled outcome sets and the sum over

all elements a⃗\ax refers to all elements of a⃗ but ax [168].

To clarify the notation and to show the differences between commutativity and

joint measurability, we consider the following canonical example. Let Mη
i♣1 =

{
1
2(1±ησx)

}

i=±1
andMη

j♣2 =
{

1
2(1±ησz)

}

j=±1
be two measurements corresponding

to noisy Pauli-x and z measurements. We want to find out when the measurements

become jointly measurable, depending on the noise parameter η. It is relatively easy

to see that

Gηi,j =
{1

4
(1 + η(iσx + jσz))

}

i,j=±1
(3.147)

is a good candidate for a parent POVM, as it is complete, i.e.,
∑

i,j=±1G
η
i,j = 1 and

reproduces the measurements via Mη
i♣1 =

∑

j G
η
i,j and Mη

j♣2 =
∑

iG
η
i,j . However,
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Gηi,j is only a positive operator for η ∈ [0, 1√
2
]. This means that Mη

i♣1 and Mη
j♣2 are

jointly measurable for η ≤ 1√
2
. Indeed, it can be shown that the measurements are

incompatible for η > 1√
2
, which means the construction based on ¶Gηi,j♢i,j is optimal.

Notably, except for the case η = 0, the measurements Mη
i♣1 and Mη

j♣2 do not commute

but are still jointly measurable for η ≤ 1/
√

2. To see that commutativity implies joint

measurability, it is enough to notice that ¶Gi,j = Mi♣1Mj♣2♢i,j is a valid parent POVM

provided that ¶Mi♣1♢i and ¶Mj♣2♢j are commuting measurements (see, e.g., [169]).

The generalization to pairwise commuting measurements is straight forward.

Let us finally comment on more general measurement simulations. In Eq. (3.144)

we saw how one measurement can simulate many. In general, an assemblage M can

simulate the assemblage N if there exist probabilities p(x♣y) and p(b♣y, x, a) such

that:

Nb♣y =
∑

a,x

p(x♣y)p(b♣y, x, a)Ma♣x. (3.148)

That means, we choose measurement x of the assemblage M with the probability

p(x♣y), given that we want to simulate setting y of N . Finally, upon receiving the

outcome a we declare the outcome b with probability p(b♣y, x, a).

Measurement simulations cannot generate incompatibility from compatible mea-

surements. Indeed, by applying the simulation in Eq. (3.148) onto a compatible

assemblage F , we obtain

F ′
b♣y =

∑

a,x

p(x♣y)p(b♣y, x, a)Fa♣x =
∑

λ

∑

a,x

p(x♣y)p(b♣y, x, a)p(a♣x, λ)Gλ, (3.149)

which means ¶Gλ♢ is a parent POVM for F ′ with the post processing

p(b♣y, λ) =
∑

a,x

p(x♣y)p(b♣y, x, a)p(a♣x, λ), (3.150)

which defines a well-defined probability distribution.

Also quantum channels cannot be used to create incompatible measurements from

compatible ones. Indeed, by simply using linearity one can show that:

Λ†(Fa♣x) =
∑

λ

p(a♣x, λ)Λ†(Gλ),

which is a valid decomposition of the assemblage Λ†(F) through the parent POVM

¶Λ†(Gλ)♢.

This means that all quantum channels Λ† ∈ Q† and all classical simulations ξ ∈ S

are free operations in a resource theory of measurement incompatibility. Together

with the convex set of jointly measurable assemblages VJM, we obtain the resource

theory of measurement incompatibility QIncomp = (VJM,Q
†,S).

Before we can discuss ways to quantify incompatibility, we have to find ways to
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certify that a given assemblage is incompatible or jointly measurable in the first

place. This can be done via the following SDP:

given : M = ¶Ma♣x♢
maximize

¶Gλ♢
µ

subject to: Ma♣x =
∑

λ

v(a♣x, λ)Gλ ∀ a, x, (3.151)

Gλ ⪰ µ1 ∀ λ,
∑

λ

Gλ = 1,

which will result in a value µ ≥ 0 for any jointly measurable assemblage M. On

the other hand, incompatible assemblages lead to a value µ < 0. Therefore, the

incompatibility decision problem is efficiently solvable by an SDP. Note, however, that

the number Ndet = km of deterministic assignments v(a♣x, λ) grows exponential in

the number of settings m, which typically represents the bottle neck in applications.

There exist also various analytical criteria to certify joint measurability, respectively

incompatibility and several methods for the explicit construction of parent POVMs

for certain types of measurements have been proposed. We refer to the review [39]

for more details.

The quantification of measurement incompatibility has been studied in various

works and is very much subject of active research. In Section 4.3, which discusses

Publication C, we discuss a distance-based approach to measurement incompatibility.

Here, we follow similar lines as [169] and require that an incompatibility quantifier

for the resource theory on incompatibility QIncomp = (VJM,Q
†,S) has to fulfill the

typical four conditions:

(I1) Faithfulness: I(M) = 0 ⇐⇒ M ∈ VJM.

(I2) Monotonicity under free channels: I(M) ≥ I(Λ†(M)) for any Λ† ∈ Q†.

(I3) Monotonicity under simulations: I(M) ≥ I(ξ(M)) for any measurement simu-

lation of the form in Eq. (3.148).

(I4) Convexity: I(
∑

i qiMi) ≤ ∑

i qiI(Mi) for any POVMs Mi and any probability

distribution q.

Two classes of incompatibility quantifiers were subject to extensive research. These

two classes are the incompatibility weight [170] and the robustness-based quantifiers

(see, e.g., [169]). It is an interesting open problem to find the most incompatible

assemblage in a dimension d for a certain quantifier and a fixed number of mea-

surements m. Especially the role of MUB in that context has gained some attention

recently [171, 172].
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Let us finish this section by discussing more detailed structures of incompatibility in

the case of m = 3 measurements. Similarly to the case of multipartite entanglement,

incompatibility reveals more complex structures when we go beyond the simplest

non-trivial case. More precisely, in [173] two additional forms of incompatibility

for m = 3 measurements were discussed. Beyond the case of full incompatibility in

which the assemblage M = ¶M1,M2,M3♢ can be obtained from a single parent

POVM, there exist also the notions of pairwise incompatibility and genuine triplewise

incompatibility. Pairwise incompatibility describes the effect that the measurement

pairs M(1,2) = ¶M1,M2♢, M(1,3) = ¶M1,M3♢, and M(2,3) = ¶M2,M3♢ are com-

patible, but M could possibly be incompatible.

Finally, an assemblage M is genuine triplewise incompatible if it cannot be decom-

posed as a convex combination of the form

Ma♣x = p(1,2)F
(1,2)
a♣x + p(2,3)F

(2,3)
a♣x + p(1,3)F

(1,3)
a♣x , (3.152)

where F (s,t)
a♣x is an assemblage of m = 3 measurements, where the measurement s

and t are compatible.

Note that this definition of triplewise incompatibility mirrors the definition of

genuinely multipartite entanglement. An illustrative example for the different

incompatibility structures is given by using the three projective measurements

corresponding to the Pauli operators σx, σy, σz and subject them to white noise.

Namely, we consider the measurements given such that

Mη
a♣x = ηΠa♣x + (1 − η) Tr[Πa♣x]

1

2
, ∀ a, x (3.153)

where Πa♣x are the projectors corresponding to the Pauli measurements. The assem-

blage Mη is fully jointly measurable for η ≤ 1√
3
, pairwise compatible for η ≤ 1√

2

and genuinely triplewise incompatible for η >
√

2+1
3 [173].

In Section 4.4, which discusses Publication D, we study these incompatibility

structures in more detail and analyze how the incompatibility of an assemblage is

constrained through the incompatibility of its subsets.

3.4 Resource Theories for Quantum Correlations

In this section, we introduce resources of quantum correlations. In particular, we

discuss that Bell nonlocal correlations are stronger than local or classical correlations

and how nonlocality can be analyzed and quantified on the level of the statistics

obtained from a Bell experiment. Furthermore, we look at the quantum correlations

and their resources from steering experiments, representing an intermediate level

between entanglement and nonlocality. In a certain sense, these two quantum

resources are the product of the formerly discussed state and measurement resources.
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Steering and nonlocality rely on entangled states and incompatible measurements as

prerequisite resources for the respective experiments. We will also see in more detail

how these different resources are connected. Note that other forms of quantum

correlations, e.g., contextuality, are not discussed within this thesis. Finally, note that

the resources of quantum entanglement and discord are also frequently denoted as

quantum correlations in the literature. However, within this thesis, we have already

classified these resources as state resources.
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3.4.1 Bell Nonlocality

„Bell’s theorem is the most profound discovery of

science.

Ð Henry Stapp

Bell nonlocality is arguably one of the most fascinating facets of quantum theory.

Bell’s seminal work [15], as his answer to the infamous EPR-paradox [174], and his

theorem that shows that nature is not compatible with (his model of) local realism

are cornerstones for the foundations of quantum physics. In 2022, the importance

of Bell nonlocality and the experiments that verify Bell’s predictions were finally

also acknowledged by the Royal Swedish Academy of Sciences [1]. Not only does Bell

nonlocality contradict our everyday experience, but it is also a key component for

many applications in quantum information theory, such as randomness generation

[27±29] and cryptography based on the device-independent paradigm [26, 175], see

also [176]. Here, we introduce the key features of quantum nonlocality and Bell’s

theorem and refer for more details to the literature, see especially the review [43]

and the references therein. For a historical perspective on the topic, see also [177].

On a very basic level, Bell nonlocality makes statements about the behavior, and

the possible underlying causal structure, of two parties and their systems which are

subjected to a series of measurements in an experiment. Let us call the parties (their

systems) Alice (A) and Bob (B). Imagine that Alice and Bob each hold a measurement

device that has m buttons as input and k light bulbs that represent the output or

outcome of the measurement device. In each round of the experiment, Alice and

Bob are allowed to press one of their m buttons, which will lead to one of the k

outcomes for each of them. Let us denote by x the input of Alice and by y the input

of Bob. Further, let a and b be the outcome of Alice, respectively, Bob.

Our aim is to make statements about the nature of the underlying correlations

that Alice and Bob could observe while making as few assumptions as possible.

Therefore, their measurement devices can be regarded as black boxes, as depicted

in Figure 3.4. The only assumption we make, for now, is that Alice and Bob are

placed in distant labs such that the measurement events corresponding to the same

round of the experiment are space-like separated. That means Alice cannot see what

button Bob pushes in each round of the experiment and vice versa. Even more,

every signal (which is limited by the speed of light in the vacuum) going from A

to B or B to A needs a longer traveling time than the time one experiment round

took. By performing enough experiment rounds, Alice and Bob collect the outcomes’

frequencies, given their measurement setting. This means Alice can approximate the

probabilities p(a♣x) and Bob the probabilities p(b♣y). Moreover, they can meet after

the experiment to approximate the probabilities p(ab♣xy). For the sake of simplicity,
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Bob Alice

Fig. 3.4.: Sketch of the Bell scenario. Alice and Bob have each access to a measurement
device in a spacelike separated setup (indicated by the dashed red line). In each
round of the Bell experiment, they get an input to their device from a source,
which could, for instance, distribute a bipartite quantum state. Alice and Bob
perform a measurement and treat their devices as a black box, i.e., the experiment
does not rely on any specific implementation or the assumption that quantum
mechanics describes the experiment. Upon performing the measurement x and
y, Alice and Bob obtain the outcome a and b, respectively. The central object of
interest is the behavior p containing the probabilities p(ab♣xy).

we assume here that the respective distributions are obtained exactly, i.e., we work

in the limit of infinitely many measurement rounds.

The question now is, which underlying model could explain their observed dis-

tribution and its potential correlations? Let us refer to p = ¶p(ab♣xy)♢a,b,x,y as a

behavior or distribution. We can see p alternatively as a vector in probability space

that describes the experiment. Therefore, abusing notations slightly, we use the

boldface symbol p for both notions interchangeably here. We say that the behavior

p is uncorrelated if

p(ab♣xy) = p(a♣x)p(b♣y) ∀ a, b, x, y. (3.154)

However, Alice and Bob generally observe that their behavior is correlated. That is

nothing unexpected, as our everyday experience tells us that the past interaction of

systems A and B could be responsible for the underlying correlations. To speak about

any kind of model that is in accordance with causality, respectively special relativity,

a probability distribution p has to obey the so-called no-signaling principle that states

that the marginals ¶p(a♣x)♢, ¶p(b♣y)♢ of Alice and Bob should be independent of the

actions (and in particular the measurement setting) of the other party. Note that

the no-signaling principle is imposed due to the assumption of spacelike separated

events here. More formally, a no-signaling behavior p has to obey

∑

b

p(ab♣xy) =
∑

b

p(ab♣xy′) = p(a♣x) ∀a, x, y, y′, (3.155a)

∑

a

p(ab♣xy) =
∑

a

p(ab♣x′y) = p(b♣y) ∀b, y, x, x′. (3.155b)
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This means that Alice and Bob cannot use their black-box measurement device

to signal their measurement setting to the other party (which would allow for

superluminal communication), and it assures that the marginals of Alice and Bob are

well-defined and consistent with the global distribution p. We denote the set of all

behaviors that obey the no-signaling conditions by N S. The set N S is a (convex)

polytope in the space of all behaviors, as it is fully described by an intersection of

half-spaces. This means that the set N S can equivalently be described by a finite

set of extremal points, namely the vertices of the no-signaling polytope.

What could be an explanation for the correlations that Alice and Bob observe? One

very plausible explanation would be that the systems A and B obey a local model, or

more precisely, a local hidden-variable model (LHV). To motivate it, we follow the

same lines as in [43], which gives a modern-day motivation for the local model Bell

proposed in his seminal paper [15]. In an LHV, we assume that a variable λ fully

accounts for the correlations between Alice and Bob. It could be that the description

of λ is not accessible to us but it influences the behavior p on a statistical level. It

could especially contain information about the past interaction of the systems A and

B. Therefore, the parameter λ is a type of hidden influence on the experiment that

is fully responsible for the observed correlations. The hidden variable is local if it

allows for a factorization of the global distribution into its marginals, i.e.,

p(ab♣xy, λ) = p(a♣x, λ)p(b♣y, λ). (3.156)

This means that the systems A and B are uncorrelated if the influence of the

parameter λ is taken into account. In general, the hidden variable λ does not

need to be constant during the time of the experiment. Moreover, λ could involve

parameters that cannot be perfectly controlled in an experiment. This means, it could

vary according to a probability distribution π(λ). Taken this factor into account, a

behavior p that admits an LHV can be decomposed such that

p(ab♣xy) =

∫

Λ
π(λ)p(a♣x, λ)p(b♣y, λ)dλ, ∀ a, b, x, y, (3.157)

where Λ denotes the parameter space the variable λ lives in. Note that it is enough

to consider one variable λ, instead of a set of local variables, by enlarging the

parameter space Λ if necessary. Note further that we specifically assume in the LHV

in Eq. (3.157) that π(λ) = π(λ♣x, y), i.e., that λ is statistically independent of the

measurement settings x and y.

The model in Eq.(3.157) is undoubtedly a reasonable explanation for the origin of

correlations in an experiment, and it clearly matches our intuition from everyday life.

However, it cannot be an explanation for all possible no-signaling correlations, and

the central point of Bell’s theorem is that it cannot be in accordance with quantum

mechanics. In other words, Bell showed that an LHV cannot explain quantum

mechanics and how this can be witnessed.
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We denote the set of all behaviors admitting an LHV according to Eq. (3.157) by L

and we say that a behavior is (Bell-)local if p ∈ L and it is (Bell-)nonlocal otherwise.

Note that Eq. (3.157) can be rewritten as

p(ab♣xy) =
∑

λ

p(λ)p(a♣x, λ)p(b♣y, λ), (3.158)

for any finite number of measurement settings for Alice and Bob, where ¶p(λ)♢ is the

probability distribution of λ in this case. The set L is, similarly to the no-signaling

set, a convex polytope. The extremal points of the local polytope L are given by

local-deterministic strategies (vertices), i.e., by distributions p(ab♣xy) = v(a♣x)v(b♣y),

where v(a♣x), v(b♣y) denote deterministic input-output distributions for Alice and

Bob [178].

Before we see how quantum mechanics’ incompatibility with a local hidden variable

model can be proven, let us quickly define quantum behaviors formally. Quantum

behaviors are those behaviors p that admit a quantum implementation in terms of a

quantum state ρ ∈ HA ⊗ HB and measurement assemblages M acting on HA and

N acting on HB such that

p(ab♣xy) = Tr[(Ma♣x ⊗Nb♣y)ρAB], (3.159)

where the dimension of the Hilbert spaces HA,HB can be possibly be infinite.

Since we do not constraint the dimension of the underlying Hilbert space, all

the measurements and the state in Eq. (3.159) can be assumed to be projective,

respectively pure. We denote the set of all quantum behaviors by Q. Note that for

infinite dimensional systems, the behaviors defined via the tensor product structure

in Eq. (3.159) have been shown (the paper actually still needs to be peer-reviewed

at the time of writing this thesis) to not coincide with behaviors based on commuting

strategies [179]. However, this does not play a role for our discussion here.

The concept of a Bell inequality was introduced to show that not all no-signaling,

and especially not all quantum behaviors, can be explained by an LHV. Since the

set L is a convex and compact subset in the space of all behaviors, it follows via the

separating hyperplane theorem (see, e.g., [87], see also Section 3.2.3) that every

behavior q /∈ L can be detected (witnessed) by a hyperplane that separates q and L

into different half-spaces. Every such Bell inequality can be written as

F =
∑

a,b,x,y

Cabxyp(ab♣xy) ≤ L, (3.160)

where the ¶Cabxy♢a,b,x,y are real coefficients and L ≥ max
q∈L

F is the local bound that

is obeyed by every behavior q ∈ L. A Bell inequality with L = max
q∈L

F touches

the local polytope at some point and a Bell inequality that describes a facet of the

local polytope is called a facet inequality. See also Figure 3.5 for a depiction of the

different cases.
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Fig. 3.5.: Depiction of Bell inequalities. Behaviors outside the local polytope L can be
witnessed by different types of Bell inequalities. The Bell inequality F1 does not
touch the local polytope, while Bell inequality F3 touches it in one point. The Bell
inequality F2 corresponds to a facet of the local polytope.

The description of the local polytope in terms of deterministic vertices is equivalent

to the description in terms of its facets. This conversion is computationally costly

but can be performed for simple Bell scenarios. In the simplest non-trivial scenario

of two inputs per party, i.e., m = 2 and dichotomic outputs, i.e., k = 2, there exists

only one facet Bell inequality up to relabelings of the inputs, outputs, and parties.

This inequality is the famous CHSH inequality [180], which is the by far most

studied Bell inequality in the literature. It is given by

⟨FCHSH⟩ = ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, (3.161)

where ⟨AxBy⟩ =
∑

a,b ab p(ab♣xy) with a, b ∈ ¶±1♢. In quantum theory, it holds

⟨Ax ⊗ By⟩ = Tr[(Ax ⊗ By)ρ], where Ax, By are the observables of Alice and Bob,

that are defined by Ax = M+1♣x − M−1♣x and analogously for Bob’s observables

By. The operator FCHSH = A0 ⊗ B0 + A1 ⊗ B0 + A0 ⊗ B1 − A1 ⊗ B1 is known

as the Bell operator corresponding to the CHSH inequality. More generally, Fop =
∑

a,b,x,y Cabxy(Ma♣x ⊗Mb♣y) is the Bell operator corresponding to the Bell inequality

defined by the coefficients ¶Cabxy♢ and it holds ⟨Fop⟩ = Tr[ρFop].

By measuring the observables

A0 = σx, A1 = σz, B0 =
σx + σz√

2
, B1 =

σx − σz√
2

, (3.162)

on the maximally entangled state ρ = ♣Φ+⟩⟨Φ+♣ with ♣Φ+⟩ = 1√
2
(♣00⟩ + ♣11⟩), it can

be shown that ⟨FCHSH⟩ = 2
√

2 > 2. This shows, that not all quantum behaviors can

be explained by an LHV, i.e., L ̸= Q. That Q contains indeed all local correlations,

i.e., that L ⊂ Q holds was, for instance, shown in [181].

Moreover, using a separable state ρ =
∑

λ p(λ)ρAλ
⊗ ρBλ

and performing arbitrary
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local measurements ¶Ma♣x♢a,x and ¶Mb♣y♢b,y on it, always results in a local model of

the form

p(ab♣xy) =
∑

λ

p(λ) Tr[Ma♣xρAλ
] Tr[Mb♣yρBλ

], (3.163)

as a special instance of obtaining local behaviors. This implies that entanglement is

a pivotal resource for the violation of Bell inequalities.

The value of ⟨FCHSH⟩ = 2
√

2 is special for the CHSH inequality, as it is the maximal

value that can be attained by quantum theory [182]. In general, the quantum bound

of a Bell inequality, i.e., the maximal expectation value of its Bell operator (optimized

over all possible quantum measurements), is known as Tsirelson bound.

To show that Q ⊂ N S, let us first check that every quantum behavior is indeed

no-signaling. This follows by realizing that

∑

a

p(ab♣xy) = Tr[
(
(
∑

a

Ma♣x) ⊗Mb♣y
)
ρ] (3.164)

= Tr[(1 ⊗Mb♣y)ρ]

= Tr[Mb♣yρB]

= p(b♣y),

where ρB = Tr1[ρ] is the reduced state of Bob. The calculation for Alice’s marginal

distribution is analogous. Note that this property was already implicitly discussed

in Section 2.6.3 and follows from the properties of the (partial) trace and the

underlying tensor product structure.

Finally, consider the behavior pPR defined via

pPR(ab♣xy) =







1/2, if a⊕ b = xy

0, otherwise
, (3.165)

where ⊕ denotes the addition modulo two. The behavior pPR is known as a PR-box

[183]. It is straight forward to see that pPR ∈ N S. However, it follows for the

CHSH inequality that ⟨FCHSH⟩(pPR) = 4. Hence, pPR /∈ Q and it follows that

L ⊂ Q ⊂ N S. (3.166)

It is an essential question of why quantum theory is weaker than general no-

signaling theories and which other well-motivated physical principles could lead to

the description of quantum correlations. The question has been studied in various

works which we refer to for the interested reader, see, e.g., [184, 185].

In the following, we want to discuss the relationship between measurement and

state resources on the one side and Bell nonlocality on the other. We already saw in

Eq. (3.163) that entanglement is necessary for Bell nonlocality. For pure states, it is

also sufficient, as shown by Gisin [46]. However, as Werner showed [47], there exist
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mixed entangled states that cannot show Bell nonlocality, even if an infinite number

of projective measurements is employed. Later, this result was even extended to

arbitrary POVMs [48]. Surprisingly, this is not the whole story. Popescu [186] and

Gisin [50] showed that states that cannot lead to any Bell inequality violation in the

standard setup can still lead to Bell nonlocality in a sequential scenario. Take for

instance the state

ρ = q♣Ψ−⟩⟨Ψ−♣ + (1 − q)♣0⟩⟨0♣ ⊗ 1

2
, (3.167)

where ♣Ψ−⟩ = (♣01⟩ − ♣10⟩)/
√

2 is the singlet state and 0 ≤ q ≤ 1. The state was

proven in [51] to admit an LHV for all projective measurements if q ≤ 1/2 while it

is entangled for any q > 0. However, if the local filters (see Eq. (3.122))

FA = ϵ♣0⟩⟨0♣ + ♣1⟩⟨1♣, FB = δ♣0⟩⟨0♣ + ♣1⟩⟨1♣, (3.168)

with δ = ϵ/
√
q are applied onto ρ, one obtains the state

ρF =
(FA ⊗ FB)ρ(FA ⊗ FB)†

Tr[(FA ⊗ FB)ρ(FA ⊗ FB)†]
, (3.169)

by appropriately selecting one of the four outcomes in the filtering measurement

prior to the Bell test. Evaluating the expression above, one obtains the state

ρF =
√
q♣Ψ−⟩⟨Ψ−♣ + (1 − √

q)
♣01⟩⟨01♣ + ♣10⟩⟨10♣

2
+ O(ϵ2), (3.170)

that can violate the CHSH inequality up to a value of ⟨FCHSH⟩ = 2
√

1 + q in the limit

of ϵ → 0. This effect is called hidden nonlocality and it can be extended to genuine

hidden nonlocality [51] for states that even admit a local model for all POVMs but

exhibit Bell nonlocality after local filtering.

In Section 4.1, that discusses Publication A, we show that there exist bound entan-

gled states that admit an LHV for general POVMs but can nevertheless be activated

to show Bell nonlocality in a sequential scenario. This proves that genuine hidden

nonlocality does not imply entanglement distillability.

Note that hidden nonlocality via local filters is only one method for activating the

nonlocality of an entangled state that admits a local model in the usual Bell scenario.

For a more detailed overview, we refer to [43].

From the measurement resource side, it is also easy to see that measurement in-
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compatibility is necessary for Bell nonlocality. Indeed, let Alice’s measurements be

jointly measurable, i.e., Ma♣x =
∑

λ p(a♣x, λ)Gλ. It follows that

p(ab♣xy) = Tr[(Ma♣x ⊗Mb♣y)ρ] (3.171)

=
∑

λ

p(a♣x, λ) Tr[(Gλ ⊗Mb♣y)ρ]

=
∑

λ

p(λ)p(a♣x, λ) Tr[Mb♣yρλ]

=
∑

λ

p(λ)p(a♣x, λ)p(b♣y, λ),

which is a particular implementation of an LHV. Therefore, incompatible mea-

surements are a prerequisite for Bell nonlocality. In the CHSH scenario, i.e., two

dichotomic measurements per party, measurement incompatibility is also sufficient

for nonlocality [56]. However, for general assemblages, it was shown that mea-

surement incompatibility is not sufficient for exhibiting Bell nonlocality [54, 55].

Further relations between measurement incompatibility and Bell nonlocality have

been established for instance in [173, 187].

In the Sections 4.2 and 4.3 that discuss the Publications B and C, we follow these

lines by quantifying which state resources are necessary to violate a Bell inequality

given that certain measurement resources are fixed. Furthermore, we establish a

hierarchy of measurement resources that, for instance, upper bounds the amount of

nonlocality that can be obtained from a given measurement assemblage.

Let us conclude this section by commenting on the resource theory of nonlocality

of behaviors p. The resource theory of nonlocality was first studied in [188] and

further developed in [189, 190]. Most notably in [191] the set of free operations on

the level of the behaviors has been identified. Here, we follow the lines of [33], as it

gives a general overview of the topic. However, as there are many different aspects

of the resource theory of nonlocality, we will restrict to a very general and high-level

overview and refer to the above references for more details. Also, we restrict to a

single copy scenario, i.e., to a scenario where only one copy (often called a box) of a

behavior p is accessible, and protocols like nonlocality distillation or wirings do not

play a role.

In the resource theory of nonlocality, the free set is given by the set L of local

behaviors, and all allowed objects are elements of the no-signaling set N S. Our goal

is to establish a framework for the quantification of the nonlocality of a behavior p.

There are several classes of free operations[33], of which the four relevant for us

are :

1. Relabelings R of outcomes and settings.

2. Mixing operations M with local behaviors.
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3. Output merging or splitting operations O.

4. Input shortening and input enlarging operations I .

The relabeling operations R exchange the labels of the outcomes and inputs by

some permutation. Of course, it makes only sense to relabel outcomes to other

outcomes and inputs to other inputs. However, as these operations merely permute

the order of entries within a behavior p, they cannot change the nonlocality of

behaviors, which implies that relabeling operations cannot create nonlocality.

The probabilistic mixing operations M of a given behavior p with a local behavior

pL (that can always be created from Alice and Bob by preparing marginal distribu-

tions and correlating them via shared-randomness) such that p′ = ηp + (1 − η)pL

also cannot increase the nonlocality of any behavior. Note that this is intuitively

clear from the perspective of a convex resource quantifier.

Output merging and splitting operations O are operations that, in principle, can

change the number of outputs of a behavior. Therefore, these operations can be

used to compare behaviors with a different number of outputs. The operations

O consist of merging two outcomes a and a′ together to a new outcome a′′. This

operation could depend on the setting x. Similarly, Bob could merge his outcomes b

in a certain setting y. Reversely, an outcome a could also be split into new outcomes

a1 and a2. These operations convert local distributions pL to other local behaviors

p′
L in a possibly different Bell scenario (concerning the number of outcomes) and

are therefore free.

Finally, input shorting and input enlarging operations I represent the action of Al-

ice and Bob to either ignore a specific input or add more inputs. First, ignoring some

entries from a behavior p clearly preserves locality. Second, Alice and Bob could

decide to use for the measurement setting m+ 1 a desired marginal distribution that

is uncorrelated to the output of the other party. Finally, both parties have the choice

to copy the input-output statistics of a particular setting into a new one. However,

also these operations were shown to preserve locality in the new Bell scenario (with

a possibly different number of settings than the initial one).

Following the above discussion, we require the following conditions from a nonlo-

cality quantifier N(p):

(N1) Faithfulness: N(p) = 0 ⇐⇒ p ∈ L.

(N2) Monotonicity: N(p) ≥ N(p′), where p′ is any behavior obtained from relabel-

ing R, local mixing M , output merging or splitting operations O, and input

shortening and input enlarging operations I applied on p.
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(N3) Convexity: N(
∑

i ηipi) ≤ ∑

i ηiN(pi), for any behaviors pi and any probability

distribution η.

Many candidates for resource quantifiers have been considered, including the

nonlocal weight, or EPR2 decomposition [192], robustness measures (see. e.g.,

[187]) or distance-based quantifiers, like the classical trace distance [193] (see also

Section 2.7.1) to the local polytope. Also the violation of a singular Bell inequality

has been used widely. However, as it was pointed out, for instance in [33], using

the violation of a fixed Bell inequality as nonlocality quantifier is flawed, as it is not

monotonic under free operations.

Here, we present the distance-based approach from [193]. The nonlocality of a

behavior q can be quantified by its distance to the local polytope L. More precisely,

the nonlocality of q as quantified by the trace-distance is given by

N1(q) =
1

2
min
t∈L

∑

a,b,x,y

p(x, y)♣q(a, b♣x, y) − t(a, b♣x, y)♣, (3.172)

where the p(x, y) are the probabilities that Alice chooses setting x and Bob setting

y.

3.4.2 Steering

The final quantum resource that we consider is the resource of quantum steering.

The phenomenon of quantum steering dates back to the works of Einstein [11]

and Schrödinger [12, 13], following the already mentioned EPR-paper [174]. In a

nutshell, quantum steering describes the possibility of Alice to remotely steer the

state of Bob’s particle into different sets of conditional states by measuring her share

of an entangled state. While she cannot transfer any information to Bob through

this process, she can convince Bob that he shares an entangled state with her. That

is, his observed conditional states, respectively, the correlations of the experiment,

cannot be explained by pre-determined states on Bob’s side. Even though the initial

idea of quantum steering is already rather old, it was only more recently [194] that

the field gained popularity. From a quantum information point of view, steering

describes a scenario between entanglement and nonlocality. While both parties have

complete control over their measurement devices in an entanglement setup, they

treat their device as black boxes in a nonlocality scenario. In quantum steering, one

of the parties, Alice, treats her device as a black box, while Bob has full control over

his particle and can perform state tomography in principle. That makes steering

inherently asymmetric. See also Figure 3.6 for a distinction of the three scenarios.

Like Bell nonlocality in the device-independent paradigm, steering as a one-sided

device-independent setup has found various applications in quantum information

processing tasks. For instance, in randomness certification [195, 196], cryptography
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b)

c)

a)

Fig. 3.6.: Comparison of three forms of inseparability. In scenario a), Alice and Bob certify
entanglement with their trusted measurement devices that, in principle, are able
to perform state tomography. In the nonlocality scenario c), both parties treat
their measurement devices as black box, i.e., they only use the outcome statistics.
In the steering scenario b), Alice treats her device as a black box, while Bob trusts
his measurement device like in the entanglement scenario.

[197] or sub-channel discrimination [198]. Additionally, its close connection to

measurement incompatibility [39] makes quantum steering an exciting field for

research.

As the research on quantum steering gained much momentum in the last 15 years,

a wide variety of literature exists. We will follow in this introduction the lines of the

reviews [44, 45] but would also like to mention the overview in [199]. Furthermore,

we will skip the historical motivation and arguments here and directly start with

the modern-day formulation. For the interested reader, we refer to Section V.M. of

reference [45] for a historical overview of the topic.

In steering, Alice has a black box measurement device with m measurements,

where we assume that each of the settings x has k outcomes for simplicity. Upon

receiving the outcome a with probability p(a♣x), the state on Bob’s side is updated

(transformed) to the state ρa♣x. This means, the information one has available in

steering is given by the collection (¶ρa♣x♢a,x, ¶p(a♣x)♢a,x) of conditional probabilities

and states. Usually, this information is conveniently summarized by considering the
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steering assemblage σ⃗ = ¶σa♣x♢a,x, where σa♣x = p(a♣x)ρa♣x are the sub-normalized

conditional states on Bob’s side after Alice’s measurement.

Invoking the quantum formalism, the conditional states σa♣x are given by

σa♣x = Tr1[(Ma♣x ⊗ 1)ρ], (3.173)

where, in general, the measurement assemblage M = ¶Ma♣x♢a,x and the state ρ

are assumed to be unknown. Even the Hilbert space dimension of Alice’s system is

considered to be unknown.

Every steering assemblage must fulfill three constraints corresponding to the positiv-

ity of probabilities, no-signaling, and normalization. More formally, any assemblage

σ⃗ has to obey

σa♣x ⪰ 0 ∀ a, x,
∑

a

σa♣x =
∑

a

σa♣x′ = ρB ∀ x, x′, (3.174)

Tr[
∑

a

σa♣x] = 1 ∀ x,

where ρB = Tr1[ρ] is the reduced state of Bob in the quantum formalism.

We want to point out that it is a priori unclear whether all assemblages σ⃗ on

Bob’s side admit a quantum realization in terms of a bipartite quantum state ρ

and measurements M. That is, also for steering, there could exist a discrepancy

between general no-signaling theories and quantum theory. However, this is not the

case in the simple bipartite scenario, as it was shown in [200] by using the HJW

theorem [201]. That means, every steering assemblage admitting the constraints in

Eq. (3.174) can be regarded as having a quantum origin. However, this is no longer

true for multipartite systems [200] and more involved bipartite scenarios [202].

The central question regarding quantum steering is whether an assemblage σ⃗ can be

explained by local means (i.e., classically) or not. In the case it cannot be explained

by a so-called local hidden-state model (LHS), Bob has to believe that Alice can steer

his conditional states by measuring on an entangled state. Steering can be seen as a

weaker notion of nonlocality than Bell nonlocality. We will shortly see that an LHS

is a particular form of an LHV. More formally, an assemblage σ⃗ is said to admit an

LHS, following the ideas from Bell nonlocality, if it can be written such that

σa♣x =

∫

Λ
π(λ)p(a♣x, λ)ρλdλ ∀ a, x, (3.175)

and it is called steerable otherwise. The LHS in Eq. (3.175) can be understood as

follows. If an assemblage σ⃗ admits an LHS, the conditional states σa♣x that Bob

observes can be explained by the existence of a source that sends a classical message

or variable λ to Alice, who announces after performing the measurement x the

outcome a with probability p(a♣x, λ). Furthermore, the source sends a corresponding

state ρλ to Bob. If a local model of the form in Eq. (3.175) fails to explain the

observed assemblage σ⃗, Bob has to conclude that Alice can steer his system and that
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they have shared an entangled state.

To see that entanglement is indeed necessary for steering, we first simplify our

notation, as we will always work in the scenario of finitely many measurements on

Alice’s side. That means, it is always possible to write the LHS in Eq. (3.175) as

σa♣x =
∑

λ

p(λ)p(a♣x, λ)ρλ =
∑

λ

p(a♣x, λ)σλ, (3.176)

where the σλ are sub-normalized hidden states such that
∑

λ σλ = ρB . Moreover, the

probabilities p(a♣x, λ) can always be replaced with deterministic response functions

v(a♣x, λ) by possibly enlarging the number of hidden states [44]. We want to high-

light here, that the definition of an LHS resembles very much the joint measurability

condition in Eq. (3.144).

Now, if Alice applies measurements from a measurement assemblage M on a

separable state ρ =
∑

λ p(λ)ρAλ
⊗ ρBλ

, we obtain an assemblage of the form

σa♣x = Tr1[(Ma♣x ⊗ 1)ρ] (3.177)

=
∑

λ

p(λ) Tr[Ma♣xρAλ
]ρBλ

=
∑

λ

p(λ)p(a♣x, λ)ρBλ
,

which is clearly unsteerable, i.e., it admits an LHS of the form in Eq. (3.176). To

see that steering is arranged between entanglement and nonlocality, let us apply

measurements N on an unsteerable state assemblage held by Bob. We obtain that

the distribution

p(ab♣xy) =
∑

λ

p(λ)p(a♣x, λ) Tr[Mb♣yρBλ
] (3.178)

=
∑

λ

p(λ)p(a♣x, λ)p(b♣y, λ),

admits an LHV. More precisely, it admits a special type of LHV in which Bob’s

response function is of the form p(b♣y, λ) = Tr[Mb♣yρBλ
]. Therefore, we can conclude

that nonlocality implies steerability of the underlying assemblage, and steerability

implies entanglement of the underlying state. However, the converse does not

hold. Not every mixed entangled state can lead to steering, and not all steerable

assemblages can be used to reveal Bell nonlocality, see also Figure 3.7. Similarly

to the situation for Bell nonlocality, there exist also entangled quantum states that

cannot exhibit steering for all possible measurements [203].

Interestingly, quantum steering is also directional, i.e., there exists states that are

steerable from Alice to Bob but not vice versa. This phenomenon is known as one-way

steerability [204]. Also phenomenona like hidden nonlocality and more general

nonlocality activation translate to the steering scenario, i.e., to hidden steering [51,

203] and activation of steering in general [45].
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AllLHVLHSSeparable

Fig. 3.7.: Scheme of subsets in state space. The states that admit an LHV for all POVMs are
a convex subset of all quantum states. Some of the local quantum states even
admit an LHS, which means that they are not only Bell local but also unsteerable.
The set of separable states is a proper subset of all unsteerable states.

Regarding measurement resources, steering has a particularly close connection to

measurement incompatibility. Let us first check that measurement incompatibility is

necessary for quantum steering. Let Alice’s measurements be jointly measurable, i.e,

Ma♣x =
∑

λ p(a♣x, λ)Gλ. It follows that

σa♣x = Tr1[(Ma♣x ⊗ 1)ρ] (3.179)

=
∑

λ

p(a♣x, λ) Tr1[(Gλ ⊗ 1)ρ]

=
∑

λ

p(λ)p(a♣x, λ)ρλ,

where we used that Tr1[(Gλ ⊗ 1)ρ] = p(λ)ρλ. Since the jointly measurable as-

semblage M leads to an unsteerable assemblage for any state ρ, incompatible

measurements are necessary for steering.

The other way around, measurement incompatibility also implies steerability, when

the assemblage σ⃗ is optimized over all possible states. This might not come as a big

surprise, if we compare the definitions in Eq. (3.176) and Eq. (3.144). The simplest

way [58] to show that measurement incompatibility can always lead to steering is

by using the maximally entangled state ♣Φ+⟩ = 1√
d

∑d−1
i=0 ♣ii⟩ of dimension d. Any

steering assemblage coming from measurements M on ♣Φ+⟩ will evaluate to

σa♣x = Tr1[(Ma♣x ⊗ 1)♣Φ+⟩⟨Φ+♣] =
MT
a♣x
d

, (3.180)

where the transpose is with respect to the computational basis. By comparing the

definitions of joint measureability and local assemblages, it follows directly that
{MT

a♣x
d

}

a,x
is steerable if and only if M is incompatible. The above one-to-one

correspondence can be extended from the maximally entangled state to all Schmidt-
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rank d states ♣ψ⟩⟨ψ♣ [59].

A similar idea allows a mapping of steerability to incompatibility problems and

vice versa [57, 205]. Given any steering assemblage σ⃗ such that ρB =
∑

a σa♣x is the

reduced state of Bob. One can define the so-called steering equivalent measurement

assemblage N via

Nb♣y = ρ
−1/2
B σa♣xρ

−1/2
B , (3.181)

which is certainly well-defined if ρB has full rank. In the other cases one restricts ρB
to its support, i.e., one applies a pseudo-inverse. It now follows, that σ⃗ is steerable if

and only if N is incompatible.

So far, we have not yet discussed how steering is detected, i.e., how one practically

decides whether an assemblage σ⃗ is steerable or not. Due to the similarities to

measurement incompatibility and Bell nonlocality, we can use very similar methods.

Similarly, as for measurement incompatibility, the steerability problem can be decided

by looking at the following SDP:

given : σ⃗

maximize
¶σλ♢

µ

subject to: σa♣x =
∑

λ

v(a♣x, λ)σλ ∀ a, x, (3.182)

σλ ⪰ µ1 ∀ λ,

which returns a non-negative value if σ⃗ is unsteerable, while it returns a negative

value for steerable assemblages. The corresponding dual problem introduces the

concept of steering inequalities. The dual is given by

given : σ⃗

minimize
¶Fa♣x♢

∑

a,x

Tr[Fa♣xσa♣x]

subject to:
∑

a,x

Fa♣xv(a♣x, λ) ⪰ 0 ∀ λ, (3.183)

Tr[
∑

a,x,λ

Fa♣xv(a♣x, λ)] = 1,

which can be understood as a steering inequality, analog to a Bell inequality, in the

following sense. The matrices Fa♣x correspond to the Bell coefficients, while the

local bound of the inequality was fixed to L = 0. Indeed, it follows from the first

constraint that

∑

a,x

Tr[Fa♣x
∑

λ

v(a♣x, λ)σλ] ≥ 0, (3.184)
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for any collection of hidden states σλ. However, steerable assemblages might lead

to a value µ =
∑

a,x Tr[Fa♣xσa♣x] < 0, which witnesses the steerability. The second

constraint in the dual SDP simply fixes the scale of the optimization, such that it is

bounded. The idea behind steering inequalities is essentially the same as for Bell

nonlocality and entanglement witnesses, as it relies on the separating hyperplane

theorem. Besides the SDP method, many analytical and numerical methods on the

level of states, assemblages, and correlations have been developed. We refer for an

overview to the reviews [44, 45].

The resource theory of steering was proposed in [34], and several resource mono-

tones have been identified. The free objects in the resource theory of steering are the

unsteerable assemblages τ⃗ ∈ LHS. The class of operations that do not create steering

from unsteerable assemblages is given by the class of one-way LOCC operations.

The party allowed to perform local operations is Bob (the trusted party), who is

afterward allowed to communicate classically to Alice. After receiving the message,

Alice can apply classical pre-and post-processing to her measurement device. Since

the concrete structure is rather complicated, we will simply denote such operations

by maps Λ1W−LOCC and refer to the literature [34] for more details. For a steering

quantifier S(σ⃗), we require the typical conditions:

(S1) Faithfulness: S(σ⃗) = 0 ⇐⇒ σ⃗ ∈ LHS.

(S2) Monotonicity: S(σ⃗) ≥ S(Λ1W−LOCC(σ⃗)) for any one-way LOCC map Λ1W−LOCC

and any assemblage σ⃗.

(S3) Convexity: S(
∑

i piσ⃗i) ≤ ∑

i piS(σ⃗i), for any steering assemblages σ⃗i and any

probability distribution p.

The steerability can than be quantified by typical weight [206] and robustness

quantifiers [198], as well as entropic [34] and distance-based monotones [207]. We

focus on the latter here. The distance-based steering quantifier is given by

S1(σ⃗) = min
τ⃗∈LHS

1

2

∑

a,x

p(x)∥σa♣x − τa♣x∥1, (3.185)

where p(x) denotes the probability that Alice decides to perform the measurement

x on her share of the bipartite system. We analyze and relate the quantifier S1(σ⃗)

to measurement resources within a resource hierarchy in Section 4.3. Furthermore,

we explicitly formulate it as an SDP and relate it to the violation of an optimal

steering inequality in our Publication C. For more details, we refer to the original

work [207].
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4Overview of the Results

In this chapter, we summarize the main results of this thesis, based on the scientific

publications prepared during the time of the author’s doctoral research. The original

publications can be found in the appendices: Paper A to Paper D.

4.1 Activation of Nonlocality in Bound

Entanglement (Paper A)

In the work [63], we analyzed the interplay of entanglement and Bell nonlocality

in the sequential hidden nonlocality scenario (see Section 3.4.1). We focused on the

particularly weak form of entanglement, called bound entanglement (see Section

3.2.3). Due to their weak entanglement, Peres conjectured that bound entangled

states can never lead to nonlocal correlations [141]. However, this conjecture was

recently proven to be false, i.e., even bound entangled states can lead to violations

of Bell inequalities [140, 208].

Our contribution advances scientific research in two directions. First, despite the

Peres conjecture, it was never proven that there actually exist bound entangled

states with an LHV for all POVMs. We show that this is the case by employing an

SDP method proposed in [209, 210] that is in principle able to find local models

for arbitrary quantum states without relying on special symmetries. Even more, we

show by explicit construction that the Bell nonlocal properties of this seemingly local

bound entangled state can be revealed in the hidden nonlocality scenario, i.e., we

prove that local filters can activate its nonlocality. This proves that genuine hidden

nonlocality does not imply entanglement distillability. Our results are summarized

in Figure 4.1 and Figure 4.2, from the original publication [63].

Fig. 4.1.: Enlarging the set of nonlocal bound entangled states from [63] (Paper A). Our
work shows that the set of nonlocal bound entangled states is enlarged in the
hidden nonlocality (HNL) scenario. To show potential nonlocality for all bound
entangled states, methods like superactivation (SA) and more asymptotic sce-
narios, involving infinitely many copies of a state and local operations, might be
necessary.
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Fig. 4.2.: Scheme of nonlocality activation by local filters from [63] (Paper A). In our work,
we show that there exists a state ρL that is bound entangled and that admits a
local model for all POVMs. Next, we show that local filters can reveal the nonlocal
properties of ρL.

Going more into the details, we focused on a three-qubit bound entangled state.

Specifically, we considered in a first step the nonlocal state (respresented in the

computational basis ¶♣000⟩, ♣001⟩, ♣010⟩, ..., ♣111⟩♢ABC)

ρNL = (rij)1≤i,j≤8, (4.186)

where the entries rij are given by

r11 = 0.0290, r12 = r13 = r15 = −0.0098, (4.187)

r14 = r16 = r17 = r23 = r25 = r35 = −0.0083,

r18 = r27 = r36 = r45 = 0.0646,

r22 = r33 = r55 = 0.0412,

r24 = r26 = r34 = r37 = r56 = r57 = −0.0335,

r28 = r38 = r46 = r47 = r58 = r67 = −0.0598,

r44 = r66 = r77 = 0.1352,

r48 = r68 = r78 = 0.0102, r88 = 0.4418,

with all other entries being fixed by the Hermiticity of ρ.

By design, the state is invariant under partial transpose with respect to any party,

and it is also invariant under the exchange of any of the subsystems. This makes

the state not only PPT but also fully biseparable, i.e., biseparable with respect to any

bipartiton. Hence, it is bound entangled. Nevertheless, the state can be shown to

violate a Bell inequality, in particular, Sliwa’s inequality number 5 [211]. Note that

this state is similar to the states considered in [140]. Note further that we used

numerical methods based on SDPs and the see-saw algorithm [212] to find the state

ρNL, its description as given in Eq. (4.187) is, however, exact.
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In a second step, we showed that there exist invertible local filters FA, FB, FC and

a local state ρL such that

ρNL =
FA ⊗ FB ⊗ FC ρL F

†
A ⊗ F †

B ⊗ F †
C

Tr(FA ⊗ FB ⊗ FC ρL F
†
A ⊗ F †

B ⊗ F †
C)
, (4.188)

with the local filters being given by

FA =

[

0.4310 −0.2971

−0.2488 0.7291

]

,

FB =

[

0.0342 −0.0808

−0.3664 0.8688

]

,

FC =

[

0.3268 −0.1873

−0.1773 0.6440

]

.

Note that this directly implies that ρL is entangled and PPT with respect to any

bipartiton, since (invertible) local filters map PPT states onto PPT states [32] and

preserve the non-separability. To prove that the state ρL is indeed local for all POVMs,

we used the algorithmic SDP method in [209, 210], that is able to generate LHV

for an infinite set of measurements by approximating it from the inside and adding

potentially noise on the targeted state. For more details on the specific use of this

method, see also our original publication [63].

The locality of ρL, the nonlocality of ρNL, and their connection via the local filters

FA, FB, and FC prove that there exist local bound entangled states of which the

nonlocal nature can be revealed in the hidden nonlocality scenario. Even more,

we actually employed an LHS for ρL, which implies the LHV. That means we also

show that the activation of genuine hidden steerability in bound entanglement is

possible.

4.2 Quantifying Necessary Quantum Resources for

Nonlocality (Paper B)

Our work [64] analyzes what quantum state resources are necessary to achieve a

specific Bell inequality violation, given that the measurements of Alice and Bob that

determine the corresponding Bell operator are fixed. We focus first on the minimal

purity necessary to achieve the targeted Bell inequality violation. As purity is the

most fundamental resource of a quantum state (see Section 3.2.4) that bounds its

other resources, this has consequences for the minimal necessary coherence, discord,

and entanglement. Our setup is summarized in Figure 4.3.

In a second step, we show that our method is also helpful in determining the mini-

mal coherence, discord, and entanglement necessary to achieve a specific violation of
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ρ
IA IB

Fig. 4.3.: State resources versus measurement resources in a Bell experiment from [64]
(Paper B). In our work, we consider a state’s necessary purity P, coherence C,
discord D, and entanglement E, given that Alice and Bob apply measurements
with incompatibility IA, respectively IB. The goal of the Bell experiment is to
achieve the violation v, beyond the local bound L.

any two-qubit full-correlation Bell inequality. In particular, we show that there exists

a two-qubit quantum state ρopt that simultaneously minimizes all necessary state

resources for a given full-correlation Bell inequality and a targeted Bell inequality

violation.

Surprisingly, this has a counter-intuitive consequence for the CHSH-inequality.

Namely, we demonstrate that more measurement resources, in terms of incompat-

ibility, do not always allow for fewer state resources, for instance, in terms of the

entanglement needed to achieve a fixed violation. In particular, sometimes it is

possible to achieve the same (fixed) Bell violation while decreasing the amount of

entanglement and incompatibility used to achieve this violation simultaneously.

Going more into the details, we first fix a Bell operator

Fop =
∑

a,b,x,y

Cabxy Ma♣x ⊗Mb♣y, (4.189)

corresponding to a Bell inequality defined by the Bell coefficients ¶Cabxy♢a,b,x,y and

the local bound L, such that
∑

a,b,x,y
Cabxy p(ab♣xy) ≤ L, for any behavior p ∈ L. Our

main objective is it to find the minimal resource

R∗ = min
ρ

¶R(ρ) : ⟨Fop⟩ = Tr(ρFop) = L+ v♢, (4.190)

for a given violation v > 0 and some state resource R(ρ). For the state resources of

purity P, coherence C, discord D, and entanglement E, we considered the respective

generalized robustness

Rrob(ρ) := inf
r,τ∈S(H)



r ≥ 0 :
ρ+ rτ

1 + r
∈ V

}

, (4.191)

where V denotes the set of free resource states for the above considered resources.

See also Section 2.7.2 and Section 3.1.1.

In our first main result, we show that it is always possible to determine the min-
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Fig. 4.4.: Entanglement versus incompatibility for the CHSH inequality from [64] (Paper B).
We consider the minimal entanglement Erob a state has to contain to achieve the
violation v, given the incompatibility I. Surprisingly, for every level of violation
v, there is a region where more measurement resources also require higher
entanglement. This effect is especially strong for small violations. The curves
diverge, if there does not exist a state that achieves the violation for a given
parameter I.

imal generalized robustness of purity necessary, independently of the dimension,

number of measurements, outcomes, parties or the considered Bell operator. The

generalized robustness of purity was previously shown [96] to be fully characterized

by the largest eigenvalue λ1(ρ), as it holds Prob(ρ) = dλ1(ρ) − 1. Using the spectral

decomposition (see Eq. (2.22)), we were able to determine the minimal λ1(ρ), such

that the constraints in Eq. (4.190) hold.

Our second main result extends this finding to the resources of coherence with

respect to product bases, discord, and entanglement for two-qubit full-correlation

Bell inequalities, i.e., for inequalities with Bell operators of the form

Fop =
∑

x,y

gxy Ax ⊗By. (4.192)

Here, the gxy are real-valued coefficients and Ax = a⃗x · σ⃗, respectively By = b⃗y · σ⃗ are

the local observables of Alice and Bob, determined by the Bloch vectors a⃗x and b⃗y.

More precisely, we show by construction that there exists a quantum state ρopt that

simultaneously minimizes all state resources under the constraint in Eq. (4.190).

That is, we construct analytically from the eigenstates and eigenvalues of Fop the

state ρopt that minimizes all required state resources for a given violation.

As a surprising application of our results, we show that for the CHSH inequality,

4.2 Quantifying Necessary Quantum Resources for Nonlocality (Paper B) 99



there is no general trade-off between measurement and state resources. Consider

the CHSH operator

FCHSH = A1 ⊗B1 +A1 ⊗B2 +A2 ⊗B1 −A2 ⊗B2, (4.193)

and the quantifier I = IAIB = ∥[A1, A2]∥∞ · ∥[B1, B2]∥∞, where IA and IB are

the measurement incompatibility of Alice’s and Bob’s observables. Note that the

quantities IA and IB are related to the noise robustness of the underlying projective

measurements, as it was shown in [213]. A large value of I allows for potentially

large violations of the CHSH-inequality, as it determines the eigenvalues ¶µi♢ of

FCHSH, such that

µ1/4 = ±
√

4 + I, µ2/3 = ±
√

4 − I. (4.194)

Now, one might intuitively think that a higher value of the measurement resource I

allows for fewer state resources, while keeping the Bell value ⟨FCHSH⟩ = L+ v fixed.

That this is actually not the case for the minimal necessary resources, is our final

result as shown in Figure 4.4. For more details, see our work [64].

4.3 Distance-based Resource Quantification for

Sets of Quantum Measurements (Paper C)

In our work [65], we provide a distance-based framework to quantify and compare

the resources of measurement assemblages in any convex resource theory. We use

this framework to introduce a hierarchy for measurement resources that is similar to

the hierarchy for states presented in [61] (see also Section 3.2.4). We focus mainly

on a specific resource monotone based on the diamond distance between measure-

and-prepare channels. We show that said quantifier fulfills all required monotone

conditions and enjoys many additional properties, such as continuity, an operational

interpretation, and an efficient way to compute it utilizing SDPs. Based on this

resource quantifier, we identify scenarios when specific measurement resources of a

given measurement assemblage obtain the same value. For the resource theory of

measurement incompatibility specifically, we derive general upper and lower bounds

on the incompatibility of any measurement assemblage. Finally, we show that these

bounds are tight for certain measurement assemblages based on MUB.

Our work extends the existing literature in several ways. First, our work provides

the first method to use a proper distance (in the sense of a metric) as a resource quan-

tifier for measurement assemblages. Previous methods relied chiefly on weight and

robustness quantifiers to circumvent the problem of a missing metric for measure-

ment assemblages (see, e.g., [40, 154±156, 169, 170, 187]). Especially properties
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such as continuity and the obeyed triangle inequality, which have not been available

for previous quantifiers, could prove very useful in the future.

Second, we extend the hierarchy relations found in [187] and [161] and compare

the resource hierarchies for states and measurements. Furthermore, we prove an-

alytically instances in which the different resources of an assemblage coincide to

an equal amount. Finally, for the resource theory of measurement incompatibility,

we provide results that accompany previously established results [169, 171] and

show that MUB lead to asymptotic (in the Hilbert space dimension d) maximal

incompatibility among all rank−1 projective measurements.

Going more into the details, we first define contractive distances between weighted

measurement assemblages. A measurement assemblage M is weighted by a prob-

ability distribution p that contains the probabilities p(x) with which a particular

measurement setting x is performed. This captures, for instance, the spirit of Bell

and steering scenarios. A weighted measurement assemblage is simply defined as

the tuple Mp = (M,p). Now, any distance (see Section 2.7.1) D(Mp,Np) between

two weighted measurement assemblages Mp,Np is called contractive (see also Eq.

(3.86)), if it holds that

D(Mp,Np) ≥ D(Λ†(M)p,Λ
†(N )p), (4.195a)

D(Mp,Np) ≥ D(ξ(Mp), ξ(Np)), (4.195b)

for any CP unital quantum channel Λ† and any classical measurement simulation ξ.

Our first result shows that any contractive and jointly convex distance induces

a faithful convex resource monotone for a resource theory Q = (V,F ,S), with

a convex (and compact) free set V, free operations Λ† ∈ F , and free classical

simulations ξ ∈ S, via the construction

R(Mp) := min
F∈V

D(Mp,Fp). (4.196)

The quantifier we then focus on, is induced by the distance

D⋄(Mp,Np) :=
∑

x

p(x) D⋄(ΛMx
,ΛNx

), (4.197)

where D⋄(Λ1,Λ2) is the diamond distance between two channels as introduced

in Definition 2.7.5 and ΛMx
(ρ) =

∑

a Tr[Ma♣xρ]♣a⟩⟨a♣ is the measure-and-prepare

channel associated to the POVM ¶Ma♣x♢a. Due to the operational interpretation

of the diamond distance, our resource quantifier R⋄(Mp) = min
F∈V

D⋄(Mp,Fp) has

a similar operational interpretation in terms of hypothesis testing in a single-shot

experiment.
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As an example, the incompatibility of Mp in our distance-based framework is now

quantified by

I⋄(Mp) = min
F∈VJM

∑

x

p(x) D⋄(ΛMx
,ΛFx

). (4.198)

On the other hand, the informativeness is now given by

IF⋄(Mp) = min
F∈VInfo

∑

x

p(x) D⋄(ΛMx
,ΛFx

), (4.199)

generalizing the informativeness of a single measurement to the average informa-

tiveness of the assemblage M. Note that we generalize the coherence of a single

POVM in the same way to the average coherence of an assemblage.

We show in our second result, based on the diamond distance quantifier R⋄(Mp),

that there exists a resource hierarchy for measurements, similar to the in [61] for

quantum states. Namely, we show that the following chain of inequalities holds:

IF⋄(MpA
) ≥ C⋄(MpA

) ≥ I⋄(MpA
) ≥ S1(σ⃗pA

) ≥ N1(qp), (4.200)

where IF⋄(MpA
), C⋄(MpA

), and I⋄(MpA
) are the informativeness, the coherence,

and the incompatibility of Alice’s weighted measurement assemblage MpA
=

(M,pA). As mentioned above, this extends the notions of informativeness and

coherence from one POVM (as introduced in the Sections 3.3.1 and 3.3.2) to

an assemblage, by taking the average informativeness, respectively, coherence of

the assemblage. Furthermore, S1(σ⃗pA
) is the steerability of any weighted steer-

ing assemblage σ⃗pA
= (σ,pA) obtained from the weighted assemblage MpA

via

σa♣x = Tr1[(Ma♣x ⊗ 1)ρ] and quantified via the distance-based quantifier defined

in Eq. (3.185). Finally, N1(qp) with qp = (q,p) is the nonlocality, as quan-

tified by the monotone defined in Eq. (3.172), of a behavior q obtained via

q(ab♣xy) = Tr[(Ma♣x⊗Nb♣y)ρ], where NpB
is any weighted measurement assemblage

on Bob’s side and the distribution p is obtained via p(x, y) = pA(x)pB(y).

The proof idea relies on the nested structure of the problem. For instance, all unin-

formative assemblages are also incoherent, as their POVM effects are proportional to

the identity by definition. Further, incoherent measurements commute pairwise, i.e.,

they are also jointly measurable. Finally, we use that incompatibility is necessary for

steering and that steering is necessary for Bell nonlocality. See also Figure 4.5 for a

depiction of the proof idea.

In our work, we then ask in which instances the equalities IF⋄(MpA
) = C⋄(MpA

)

and I⋄(MpA
) = S1(σ⃗pA

) can be obtained. We show that certain measurement as-

semblages based on MUB can be used to achieve this equality. Furthermore, we

conjecture that the strict inequalities C⋄(MpA
) > I⋄(MpA

) and S1(σ⃗pA
) > N1(qp)

hold for non-trivial scenarios, i.e., whenever the involved quantities are non-zero.

For more details see our work [65].
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Fig. 4.5.: Nested structure of measurement resources from [65] (Paper C). Part of the proof
idea of the hierarchy in Eq. (4.200) relies on the nested structure of the respective
free sets. Consider two resources associated to the free sets V1 and V2. If it holds
that V2 ⊂ V1, it follows directly that R2(M) ≥ R1(M) for the resources of the
measurement assemblage M, in the case that the respective resource monotones
are induced by the same distance.

Finally, based on the SDP formulation of the quantifier I⋄(Mp), we derive general

upper and lower bounds on the incompatibility of any measurement assemblage in

dimension d that is weighted with a distribution p, such that p(x) = 1
m , where m is

the number of measurements. More formally, we prove that the following bounds

hold:

I⋄(Mp) ≥ 1

md

∑

a,x

Tr[M2
a♣x] − 1

m

(

max
a,x

∥Ma♣x∥∞+ (4.201a)

(m− 1) max
a,a′,x,x′ ̸=x

∥M1/2
a♣xM

1/2
a′♣x′∥∞



,

I⋄(Mp) ≤ m− 1

(d+ 1)m2

∑

x

∥d1 −
∑

a

Tr[Ma♣x]Ma♣x∥∞. (4.201b)

In the special case of measurements based on MUB and in the limit d → ∞ both

bounds collapse to I⋄(Mp) ≈ 1 − 1
m . Now, since the upper bound is completely

general, this shows that MUB lead to maximally incompatible assemblages of m

measurements among all measurement assemblages consisting of rank−1 projective

measurements in the limit of large dimensions.

Indeed, notice that the upper bound in Eq. (4.201b) is the same for all measure-

ments with Tr[Ma♣x] = 1 for all a, x. This includes, in particular, all rank-1 projective

measurements. Therefore, we conclude that MUB lead asymptotically (for d → ∞)

to maximally incompatible assemblages of m measurements among all assemblages

consisting of rank −1 projective measurements.

4.4 Distribution of Quantum Incompatibility Across

Subsets of Measurements (Paper D)

In this work [66], we continue to study measurement resources by focusing specif-

ically on measurement incompatibility. We analyze how the incompatibility of a
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measurement assemblage with m > 2 settings depends on the incompatibility of

subsets of its measurements. In particular, we are interested in the incompatibility

gain, i.e., the amount of incompatibility obtained by adding further measurements

to an existing measurement scheme.

We show that this incompatibility gain is bounded by the incompatibility of the

parent POVMs that are associated with the closest jointly measurable assemblages.

More precisely, the incompatibility of these different parent POVMs (associated to

the different subsets) with each other, sets a limit on the possible incompatibility

gain. More generally, we show how to bound the incompatibility of an assemblage

with multiple measurements using the incompatibilities of subsets of measurements.

We also analyze how to decompose the total incompatibility of an assemblage into

different components associated with different incompatibility structures [173], such

as pairwise or genuine triplewise incompatibility (see also Section 3.3.3). We provide

tight examples for most of our bounds by using measurements based on MUB to

prove the relevance of our bounds. Finally, we show how to apply our methods to

steering and Bell nonlocality.

Our work promises further advance of scientific research in many directions, as

it provides new tools to find optimal measurement resources and illustrates poten-

tially crucial differences between nonlocality on the one hand and measurement

incompatibility on the other hand. Furthermore, our work provides a foundation for

comparing the power of specific protocols using a different number of measurements,

such as the six-state protocol [214] and the BB84 protocol [23].

Going more into the details, we write a measurement assemblage within this

work as an ordered list M(1,2,··· ,m) = (M1,M2, · · · ,Mm) of m POVMs M1 to Mm.

Focusing on the case m = 3, this allows us to write an assemblage M(1,2,3) as

M(1,2,3) = (M1,M2,M3). On the other hand, it also allows us to consider assem-

blages M(1,2,2) = (M1,M2,M2) where the second and the third measurement are

equal. Adding a measurement M3 to an assemblage M(1,2) = (M1,M2) is now

described by the concatenation ++ of ordered lists. That is, M(1,2,3) is given such

that

M(1,2,3) = M(1,2) ++ M3 = (M1,M2,M3). (4.202)

The two main questions that we try to answer are the following: How much

incompatibility can be gained by concatenating the third measurement to M(1,2)?

How does the incompatibility of M(1,2,3) depend quantitatively on the incompatibility

of its subsets?

The incompatibility quantifier which is best suited to answer these questions is the

quantifier based on the diamond distance, as introduced in our work [65] (Paper C),
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see also Eq. (4.198). That means the incompatibility of a weighted measurement

assemblage Mp = (M,p) (see also Section 4.3) is given by

I⋄(Mp) = min
F∈JM

∑

x

p(x) D⋄(ΛMx
,ΛFx

), (4.203)

where, as before, ΛMx
(ρ) =

∑

a Tr[Ma♣xρ]♣a⟩⟨a♣ is the measure-and-prepare channel

associated to the POVM Mx and D⋄(Λ1,Λ2) is the diamond distance between two

channels Λ1 and Λ2. In order to be closer to the original work, we use the notation

JM instead of VJM for the set of jointly measurable assemblages within this section.

The diamond distance quantifier is especially well-suited for answering our ques-

tions, as it inherits all metric properties and is written as a convex combination over

individual settings. For the sake of simplicity, we consider here the scenario that

p = ¶p(x)♢ is always uniformly distributed, i.e., p(x) = 1
m ∀ x and we simply use

the symbol M for the weighted assemblage in that case. However, our results [66]

are general, i.e., they can be adapted to general distributions p.

We denote by M#
(1,2,··· ,m) the closest jointly measurable approximation of M(1,2,··· ,m),

i.e., the arg-min on the RHS in Eq.(4.203). Moreover, we denote by M#(1,2,··· ,n)
(1,2,··· ,m) =

M#
(1,2,··· ,n) ++ Mn+1 ++ · · · ++ Mm an assemblage in which the subset of first n < m

measurements are replaced by their respective closest jointly measurable assem-

blage.

As depicted in Figure 4.6, m = 3 measurements allow for more incompatibil-

ity structures beyond standard incompatibility. For instance, the sets JM(s,t) with

s, t ∈ ¶1, 2, 3♢ and s ̸= t contain assemblages in which the pair (s, t) are jointly

measurable. Their intersection JMpair := JM(1,2) ∩ JM(1,3) ∩ JM(2,3) contains all

pairwise compatible measurements, and, as a proper subset, the set JM. Moreover,

JMconv := Conv(JM(1,2), JM(1,3), JM(2,3)) denotes the convex hull of the sets JM(1,2),

JM(1,3), and JM(2,3). Finally, as defined in [173] and also explained in Section 3.3.3,

assemblages M(1,2,3) /∈ JMconv are called genuine triplewise incompatible.

We define the incompatibility gain from adding the third measurement M3 to the

assemblage M(1,2) as

∆I(1,2)→(1,2,3) := I⋄(M(1,2,3)) − I⋄(M(1,2)). (4.204)

Our main objective is to find upper bounds on the gained incompatibility, i.e., to un-

derstand how much resources can maximally be gained. Using the triangle inequality

with respect to JM and exploiting the fact that I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)), where

each of the measurements is now treated as two copies of itself, occurring with

probability p(x) = 1
6 , we obtain our first main result.

Namely, assuming that I⋄(M(1,2)) ≥ max¶I⋄(M(1,3)), I⋄(M(2,3))♢ the incompati-

bility gain is bounded such that

∆I(1,2)→(1,2,3) ≤ I⋄(N ) ≤ I⋄(G), (4.205)
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TraditionFig. 4.6.: Incompatibility structures for m = 3 measurements from [66] (Paper D). Three
measurements allow for incompatibility structures, such as the sets JM(s,t) in
which the measurements s and t are compatible. Their intersection, the set
JMpair of pairwise jointly measurable assemblages, contains as a proper subset
the set of all jointly measurable assemblages JM. Assemblages M(1,2,3) that
are not contained in the convex hull JMconv of JM(1,2), JM(1,3), and JM(2,3) are
genuinely triplewise incompatible. Using the triangle inequality with respect to
JM via the assemblage M#(1,2)

(1,2,3), it is possible to upper bound the incompatibility
of M(1,2,3).

where N = M#
(1,2) ++ M#

(1,3) ++ M#
(2,3) is the assemblage that contains the clos-

est jointly measurable approximations of each of the two-measurement subsets

of M(1,2,3). Moreover, G = G(M#
(1,2)) ++ G(M#

(1,3)) ++ G(M#
(2,3)) is the assem-

blage that contains the three parent POVMs associated to these closest jointly

measurable approximations. Note that I⋄(N ) ≤ I⋄(G) holds since N is a classi-

cal simulation (see Eq. (3.148)) of G by the definition of a parent POVM (see

Eq. (3.144)). Similarly, I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)) holds as M(1,2,3) can sim-

ulate M(1,2,1,3,2,3) classically and vice versa. Note further that the assumption

I⋄(M(1,2)) ≥ max¶I⋄(M(1,3)), I⋄(M(2,3))♢ is not relevant for all practical purposes,

as one can relabel the measurements such that M(1,2) contains the maximal incom-

patibility among the different subsets.

Our result reveals the polygamous nature of measurement incompatibility: for

a high incompatibility of M(1,2,3), each of the subsets, as well as the assemblage

containing the parent POVMs associated to the respective closest jointly measurable

approximations, have to be highly incompatible. Moreover, we show in our work

[66] that the first bound in Eq. (4.205) is tight for noisy Pauli measurements.

Besides bounding the incompatibility gain, we also derive more general bounds
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on the incompatibility of M(1,2,3) using information about the subsets. That is, we

derive the bound

I⋄(M(1,2,3)) ≤ 2

3
I⋄(M(1,2)) + I⋄(M#(1,2)

(1,2,3)). (4.206)

This means, we show that I⋄(M(1,2,3)) is upper bounded by the incompatibility of

M(1,2) weighted by the probability p = 2
3 that one of the measurements (1, 2) is cho-

sen among the available measurements (1, 2, 3) plus the incompatibility I⋄(M#(1,2)
(1,2,3)).

The incompatibility of M#(1,2)
(1,2,3) can be understood as a new notion of incompatibility

of M(1,2,3). That is, all other incompatibility contributions apart those that are

present due to the measurement M3 are omitted since M#
(1,2) is jointly measurable

by itself. Hence, it gives us an idea of the contribution of M3 toward the whole

incompatibility of M(1,2,3). We show [66] that Eq. (4.206) can straightforwardly be

generalized to

I⋄(M(1,2,··· ,m)) ≤ ♣C♣
m

I⋄(MC) + I⋄(M#C
1,2,··· ,m)), (4.207)

for any assemblage M(1,2,··· ,m) with a subset of measurements C of cardinality ♣C♣.
Moreover, we prove the tightness of Eq. (4.206) analytically for noisy Pauli mea-

surements and also provide analytical proofs for more general scenarios covered

by Eq. (4.207) based on MUB in any dimension d. Besides this, we also discuss

generalizations of Eq. (4.205) in our work.

Moreover, we also show that our methods and results can be adapted to any proba-

bility distribution p that weights the assemblage M and also derive lower bounds

on the incompatibility of any assemblage in terms of its subsets’ incompatibility.

We also introduce a bound that uses the decomposition of the total incompatibility

I⋄(M(1,2,3)) in terms of its different incompatibility components. More precisely, we

show that

I⋄(M(1,2,3)) ≤ I⋄gen(M(1,2,3)) + I⋄pair(M(1,2,3)) + I⋄hol(M(1,2,3)), (4.208)

with the genuine triplewise incompatibility I⋄gen(M(1,2,3)), the pairwise incom-

patibility I⋄pair(M(1,2,3)) and the hollow incompatibility I⋄hol(M(1,2,3)). Note that

we define I⋄gen(M(1,2,3)) to be the minimal distance of M(1,2,3) to an assemblage

Mconv
(1,2,3) ∈ JMconv. Similarly, we define I⋄pair(M(1,2,3)) as the minimal distance of

Mconv
(1,2,3) to an assemblage Mpair

(1,2,3) ∈ JMpair and I⋄hol(M) := I⋄(Mpair
(1,2,3)). Again, we

show in our work [66] analytically that the decomposition in Eq. (4.208) is tight for

Pauli measurements and give numerical evidence that this is generally the case for

measurements based on MUB for any dimension d > 2.

Let us finally discuss how to apply our results and methods to the Bell nonlocality

that could be gained from increasing the number of measurements in a Bell experi-

ment. First, due to the similarities between quantum steering and incompatibility,
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our results can also be adapted directly to the steering distance introduced in [207]

and also discussed in Eq. (3.185).

For the bounds on the nonlocality of a distribution q(1,2,3) = ¶q(ab♣xy)♢ in which

Alice uses mA = 3 measurements, we use a variant of the nonlocality distance

introduced in [193] (see also Eq. (3.172)). That is, we quantify the nonlocality via

the quantifier

N1(q) =
1

2
min
t∈CL

∑

a,b,x,y

1

mAmB
♣q(a, b♣x, y) − t(a, b♣x, y)♣, (4.209)

where we set the input probabilities p(x, y) = 1
mAmB

to be uniformly distributed and

we assume mB = 2 for simplicity in the following. Moreover t ∈ CL denotes a local

probability distribution that is consistent with q, i.e., t has the same marginal distri-

butions for Alice and Bob as q. Using the same methods as for the incompatibility

before, we derive the bound

N1(q(1,2,3)) ≤ 1

3
[N1(q(1,2)) + N1(q(1,3)) + N1(q(2,3))] + N1(r), (4.210)

where q(1,2),q(1,3), and q(2,3) are the respective distributions when Alice uses only

the measurements (s, t). Moreover r = q
#
(1,2) ++ q

#
(1,3) ++ q

#
(2,3) is a probability distri-

bution in which Alice has 6 measurements, containing the closest local-consistent

distributions to these subset distributions. Surprisingly, the bound on the nonlocality

in Eq. (4.210) shows a fundamental difference between nonlocality and measure-

ment incompatibility or steering. While all two-measurement subsets could be

maximally incompatible for an assemblage of m = 3 measurements, this is generally

impossible for the corresponding nonlocality terms. That is, it generally holds that
1
3 [N1(q(1,2)) + N1(q(1,3)) + N1(q(2,3))] < N1(qmax), where qmax is the distribution

that contains the maximal possible nonlocality using two measurements on Alice’s

side. The reason for this is that there generally do not exist m = 3 measurements

for Alice, out of which every pair of two measurements can be used to violate a Bell

inequality maximally while the state and Bob’s measurements remain unchanged.

We show this explicitly for dichotomic measurements by showing that there does

not exist a combination of three versions of the CHSH inequality involving two of

the three measurements, such that they are all maximally violated simultaneously.

Now crucially, in the case of two inputs and outputs for Alice and Bob N1(q) is

directly linked to the violation of a CHSH inequality [193]. The insight that the

upper bounds on nonlocality behave qualitatively different than for measurement

incompatibility could prove helpful for future applications, as it is an open question

[193, 215] whether increasing the number of measurements provides any advantage

for the maximal nonlocality in a Bell test at all.
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5Conclusion and Outlook

This thesis was devoted to the interplay of different quantum resources and their im-

pact on quantum nonlocality. With the advent of more and more technologies based

upon quantum information, it is crucial to understand which properties of quantum

systems are essential for a quantum advantage over conventional technologies. The

field of quantum resource theories [31] is particularly concerned with understanding

and quantifying those properties of quantum systems, the quantum resources, that

lead to an advantage in quantum information processing tasks. Due to the variety of

different quantum phenomena that play a role as a quantum resource, it is essential

to understand how they influence each other and to find quantitative dependencies

among them.

The goal of this thesis and the preceding doctoral research [63±66] was to solidify

further and extend this understanding of different quantum resources. We went two

different routes in doing so. On the one hand, we studied some peculiar effects of

the interplay of quantum resources, showing the counter-intuitive behavior of quan-

tum theory. On the other hand, we developed general frameworks for quantifying

quantum resources and understanding minimal required resources for a certain level

of Bell nonlocality.

From the side of peculiar quantum effects, we showed that there exists bound

entangled states that admit a local model for all measurements in the standard Bell

scenario. Nevertheless, they display nonlocality in a sequential Bell scenario [63].

That shows that even very weakly entangled states, like bound entangled states that

appear to provide no advantage for obtaining nonlocal correlations, can be used as a

quantum resource if one uses them in the appropriate scenario.

Moreover, we showed that for the CHSH inequality, despite maximal entanglement

and maximally incompatible measurements being necessary for a maximal violation

of it, there is, in general, no trade-off between measurement and state resources

[64]. We analytically proved that increasing the available measurement resource

generally does not allow fewer state resources to achieve a fixed violation of the

CHSH inequality. Contrary to our intuition, it is sometimes necessary to increase

the state resources if the measurement resources, in terms of their incompatibility,

are increased while keeping the targeted violation constant. That shows that more

entangled states and more incompatible measurements do not always result in

stronger quantum nonlocality.

In our work [64], we also provided general results concerning the minimal purity
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that is necessary to achieve a certain violation of any Bell inequality with given

measurements. Our insights from the resource theory of purity and the use of hierar-

chical structures of quantum resources [61] allowed us to prove that a simultaneous

minimization of quantum state resources is possible in the context of two-qubit full

correlation Bell inequalities and any level of Bell violation.

Following the lines of resource quantification, we developed in our work [65] a

general distance-based framework to quantify resources of quantum measurements

in any convex resource theory. We established the notion of distances between

measurement assemblages and focused on the diamond distance, which has a clear

operational interpretation in terms of single-shot distinguishability. Based on the

diamond distance, we established a hierarchy of measurement resources, including

quantum steering and Bell nonlocality, that establishes a parallel to the hierarchy

[61] from the measurement side. Furthermore, our work provides insights into

specific resource theories, such as measurement incompatibility [39]. In particular,

we obtained bounds for the incompatibility of any measurement assemblage. We

showed that measurements based on MUB take a special role in the resource theory

of incompatibility because they are asymptotically (in the Hilbert space dimension

d) maximally incompatible.

Our final work [66] concerned the constraints that the incompatibility of subsets

of measurements set on the whole assemblage. We showed that our distance-based

way of quantifying incompatibility allows for bounding the incompatibility of an

assemblage, using the information of the subset incompatibilities. This allowed us

to bound the incompatibility that can be gained from adding measurements to an

existing measurement scheme. Moreover, we showed that the incompatibility of

any assemblage can be upper bound by decomposing its total incompatibility in

different components, regarding incompatibility structures like pairwise and genuine

triplewise incompatibility. Finally, we showed that our methods also apply to steering

and nonlocality and discussed the implications for these resources.

Summing up, this thesis provides a general overview of (many of) the essential

quantum resources for quantum nonlocality and discusses how their interplay leads

to nonlocal correlations. In addition to the publications, this thesis provides a general

framework to apply the machinery of quantum resource theories to more quantum

phenomena in the future.

Despite the results in this thesis, there are many directions for future research.

Especially the analysis of measurement resources offers a variety of different paths.

For instance, our framework of distance-based resource quantification could be

applied to quantum resources like projective simulability [42] or to a resource theory

of imaginarity [216] that has to be developed for quantum measurements in the

first place. Also, the nonlocality revealing properties of quantum measurements, i.e.,

which measurements can lead to a Bell inequality violation, needs more structural

analysis beyond the results in [54±56]. That also includes the possibility of analyzing

measurement resources in sequential Bell scenarios.
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For the resource theory of measurement incompatibility, it is also necessary to study

and quantify more complex incompatibility structures, i.e., incompatible assemblages

where subsets of measurements are jointly measurable [173, 217±219]. In particular,

a good characterization of sets like pairwise (n-wise) jointly measurable assemblages

could prove useful in the future.

An even more promising route to study quantum measurement resources lies in

considering measurements on more than one system. In this work and most of the

literature, resources like measurement incompatibility [39] are considered as a local

resource, i.e., acting on a single Hilbert space. However, considering measurements

on more systems would require new notions of measurement incompatibility, similar

to multipartite steering [44, 45]. Due to the advent of quantum networks [220±230]

as a technology for communication between distant parties, this is a promising

path in understanding the measurement resources that are necessary for desired

nonclassical effects. In a sense, measurements of joint systems combine effects

from entanglement and incompatibility theory. It would be interesting to study the

notions of nonclassicality that arise in such scenarios and how different quantum

phenomena interplay.
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[136]P. Horodecki, è. Rudnicki, and K. Życzkowski, Five open problems in quantum infor-
mation theory, PRX Quantum 3, 010101 (2022) (cit. on p. 65).

[137]K. G. H. Vollbrecht and M. M. Wolf, Activating Distillation with an Infinitesimal Amount
of Bound Entanglement, Phys. Rev. Lett. 88, 247901 (2002) (cit. on p. 65).

120 Bibliography



[138]L. Masanes, All Bipartite Entangled States Are Useful for Information Processing, Phys.
Rev. Lett. 96, 150501 (2006) (cit. on p. 65).

[139]T. Vértesi and N. Brunner, Disproving the Peres conjecture by showing Bell nonlocality
from bound entanglement, Nature communications 5, 1 (2014) (cit. on p. 65).

[140]T. Vértesi and N. Brunner, Quantum Nonlocality Does Not Imply Entanglement Distill-
ability, Phys. Rev. Lett. 108, 030403 (2012) (cit. on pp. 65, 95, 96).

[141]A. Peres, Foundations of Physics 29, 589 (1999) (cit. on pp. 65, 95).
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bound entangled state with a local model for the most general (nonsequential) measurements. This proves

for the first time that bound entangled states can admit a local model for general measurements. We

furthermore show that the local model breaks down when suitable local filters are applied. Our results

demonstrate the first example of activation of nonlocality in bound entanglement. Hence, we show that

genuine hidden nonlocality does not imply entanglement distillability.

DOI: 10.1103/PhysRevLett.124.050401

Performing local measurements on certain entangled

quantum states can lead to the phenomenon of quantum

nonlocality. That is, the correlations obtained from the

measurements are not compatible with the principle of local

realism, witnessed by the violation of a so-called Bell

inequality [1]. Although entanglement and nonlocality

were extensively studied since the foundation of quantum

theory [2,3], the relation between both is still not fully

understood.

After the seminal work by Bell [1] as an answer to the

EPR-Gedankenexperiment [4], it was widely believed that

entanglement and nonlocality are just two different notions

of the inseparability of quantum states. Indeed, for pure

entangled states nonlocality is a generic feature [5,6].

However, Werner [7] showed that there exist mixed

entangled states (so-called Werner states) which admit a

local model for projective measurements. Later, Barrett [8]

extended this result by showing that certain Werner states

admit a local model even when positive-operator valued

measures (POVMs), i.e., most general nonsequential mea-

surements are considered. This displays the inequivalence

of entanglement and nonlocality in the Bell scenario.

It was first noticed by Popescu [9] and more recently by

Hirsch et al. [10] that some local entangled states can

violate a Bell inequality when the observers apply judicious

local filters as probabilistic preselection before the Bell test.

This phenomenon is referred to as hidden nonlocality, or as

genuine hidden nonlocality when one considers an

entangled quantum state ρ with a local model even for

POVMs. However, it was shown that genuine hidden

nonlocality is not a general feature [11]. For example, a

particular two-qubit Werner state remains local even after

arbitrary local filtering.

Note that hidden nonlocality is not the only extension of

the Bell scenario. For instance, nonlocality can also be

superactivated [12,13] by allowing the parties to perform

joint measurements on multiple copies of a local entangled

state. An even more general concept is that of entanglement

distillation [3]. In this scenario the parties have access to

both local filters and multiple copies of a given state, with

the goal to probabilistically obtain pure entangled states.

Distillable states can therefore always be seen as nonlocal

resource in the so-called asymptotic scenario [14].

However, there exist entangled states which are not

distillable to pure entangled states. These states build the

famous set of bound entangled states [15], which were the

subject of various scientific works in the past [16–20].

Studying the nonlocal properties of bound entangled states

will approach the answer of the fundamental open question

of whether all entangled states are nonlocal resources.

Since bound entanglement is the weakest form of entan-

glement, it was conjectured by Peres [21] that bound

entangled states cannot lead to any nonlocal correlations

at all. However, nowadays we know that the Peres con-

jecture is false [22,23]: bound entangled states can violate a

Bell inequality. Despite these results and more advanced

scenarios [24], nothing is known about the activation of

local bound entanglement.

In this Letter, we answer the open question of whether

bound entangled states with genuine hidden nonlocality

exist in the affirmative. Specifically, we show that a certain

three-qubit bound entangled state with a local model for

POVMs can violate a Bell inequality when local filters are

applied. This proves that genuine hidden quantum non-

locality does not imply entanglement distillability. Our

results and possible extensions are visualized in Fig. 1.

Preliminaries.—Consider three distant parties Alice,

Bob, and Charlie sharing an entangled quantum state ρ.

The parties can perform local measurements via the

positive semidefinite operators Majx, Mbjy, and Mcjz with

the settings x, y, z and the outcomes a, b, c. These operators
form POVMs, as they satisfy the completeness relation
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P

a Majx ¼ 1 (and analogously for Bob and Charlie),

where 1 denotes the identity operator. The resulting

statistics is given by

pðabcjxyzÞ ¼ Tr½ðMajx ⊗ Mbjy ⊗ McjzÞρ�: ð1Þ

The state ρ is said to be local (for fMajxg, fMbjyg, and

fMcjzg) if the distribution (1) admits a local decomposition

of the following form:

pðabcjxyzÞ ¼

Z

πðλÞpðajxλÞpðbjyλÞpðcjzλÞdλ: ð2Þ

That is, the statistics can be explained by a local hidden-

variable model (LHV), where λ ∈ R is the shared local

hidden variable, distributed according to the density πðλÞ
such that

R

πðλÞdλ ¼ 1. The probability distributions

pðajxλÞ, pðbjyλÞ, and pðcjzλÞ are typically called local

response functions in this context. A state ρ with such a

decomposition for all possible measurements cannot vio-

late any Bell inequality; otherwise it does violate (at least)

one Bell inequality.

A concept which is easier to handle and necessary for

Bell nonlocality is the concept of quantum steering [25].

The steering scenario is an asymmetric scenario where one

or more parties remotely steer the state of the remaining

parties by performing measurements on their part of the

state. Here, we focus on the so-called one-sided steering

scenario where Alice tries to steer Bob and Charlie. We say

a state ρ demonstrates steering if its probability distribution

does not admit a decomposition of the form

pðabcjxyzÞ ¼

Z

πðλÞpðajxλÞTrðMbjyσ
B
λ ÞTrðMcjzσ

C
λ Þdλ:

ð3Þ

That is, the statistics can be explained by a so-called local

hidden-state model (LHS), where the local response func-

tions of Bob and Charlie are obtained from measurements

on predetermined quantum states σBλ and σCλ , respectively.

The set of (unnormalized) conditional states fσBC
ajxg that

Alice can prepare for Bob and Charlie, the so-called

assemblage, is given by

σBC
ajx ¼ TrA½ðMajx ⊗ 1 ⊗ 1Þρ�; ð4Þ

where TrA denotes the partial trace and TrðσBC
ajxÞ ¼ pðajxÞ

is the probability that Alice obtains outcome a. Here, the
measurement sets of Bob and Charlie fMbjyg and fMcjzg

are assumed as tomographically complete. Further, note

that any LHS can be considered as an LHV, while the

converse does not hold [26]. An assemblage is said to

demonstrate steering if it does not admit the decomposition

σBC
ajx ¼

Z

πðλÞpðajxλÞρBCλ ; ð5Þ

here ρBCλ is a separable quantum state shared by Bob and

Charlie.

We present now the hidden nonlocality scenario in the

spirit of [10]. In this scenario the parties perform a

probabilistic preselection according to a desired outcome

before the Bell test. Hence, they apply a sequence of

measurements on the shared state ρL which can lead to

nonlocal correlations even if ρL admits an LHV for

POVMs. In particular, this idea can be implemented by

the use of local filters given by arbitrary Kraus operators

Fx, fulfilling F†
xFx ≤ 1; x ∈ fA;B;Cg and acting on the

respective local Hilbert space of the observers. The state

which the parties share after filtering is given by

ρ ¼
FA ⊗ FB ⊗ FCρLF

†

A ⊗ F†
B ⊗ F†

C

TrðFA ⊗ FB ⊗ FCρLF
†

A ⊗ F†
B ⊗ F†

CÞ
; ð6Þ

where the success probability of the filtering is given by the

normalization factor. We say that a state ρL possesses

genuine hidden nonlocality if it admits an LHV for POVMs

but the state ρ for some judiciously chosen filters FA, FB,

FC violates a Bell inequality. Note that local invertible

filters do not change the entanglement character of a given

state [3], i.e., bound entangled states remain bound

entangled. Nevertheless the filters can increase the amount

of entanglement (probabilistically) between the parties

[27], which gives an intuitive reason why local filters

can be useful. Further, by bound entangled states we mean

entangled states with positive partial transpose (PPT).

Methods.—In order to derive our results, we will solve

two main tasks: we show that the filtered state does violate

a Bell inequality and that the state before filtering admits a

local model for POVMs. The first task can be solved

efficiently by an iterative sequence of semidefinite pro-

grams (SDPs) [28], using the so-called seesaw [29] method.

FIG. 1. Abstract overview of our results. We show that the set of

nonlocal bound entangled states (BE states) can be enlarged in the

hidden nonlocality scenario (HNL). This is the first step towards a

possible equivalence of all BE states and all nonlocal BE states.

Further enlargements of the set of nonlocal BE states could be

provided by superactivation (SA) and the asymptotic scenario

(Asymp.), similar to the case for distillable states. It is also an

open question, whether the set can be enlarged to all BE states in

such scenarios.
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Consider a Bell inequality of the form

I ¼
X

a;b;c;x;y;z

cabcjxyzpðabcjxyzÞ ≤ L; ð7Þ

with given (real) coefficients cabcjxyz and a local bound L.
The Bell operator according to this inequality is then

given by

B ¼
X

a;b;c;x;y;z

cabcjxyzMajx ⊗ Mbjy ⊗ Mcjz: ð8Þ

The goal is to maximize the quantum value Q ¼ TrðBρÞ
for PPT entangled states ρ. Optimizing such an expression

over all local measurements and the state is a problem,

which cannot be solved by an SDP in general. However, the

seesaw method provides a solution: we fix the measure-

ments for two of the parties for a given state ρ, such that the

problem becomes linear in the remaining party, let us say

Alice. We maximize the expression Q subject to the

constraints Majx ≥ 0,
P

aMajx ¼ 1, which leads us to

the optimal measurements of Alice. This strategy is

iteratively applied over the individual parties and the state,

to optimize the quantum valueQ, without being guaranteed

that it is a global maximum.

The second task is more difficult to solve. Even though

there exist analytical constructions for LHVs, they mostly

restrict to certain classes of states with high symmetry or

they are restricted to projective measurements. Recently

in [30,31] a method was presented to algorithmically

construct local models, again making use of SDPs. Here,

we only point out the main use of this construction (for

details see [30,31]). Consider a discrete set of measure-

ments fMajxg associated with a so-called shrinking factor

0 ≤ η ≤ 1 and the target state ρL. Further, consider the

following SDP:

given ρL; fMajxg; η

find q� ¼ maxq

s:t: TrA½ðMajx ⊗ 1 ⊗ 1Þχ� ¼
X

λ

DλðajxÞσ
BC
λ ; ∀ a; x

σBCλ ≥ 0; ðσBCλ ÞTB ≥ 0 ∀ λ

ηχ þ ð1 − ηÞ
1

dA
⊗ TrAðχÞ ¼ qρL þ ð1 − qÞ

1

dAdBdC
;

ð9Þ

where the Hermitian matrices χ and σBCλ are the optimi-

zation variables. The SDP can be understood as follows.

The first constraint ensures that (not necessarily positive-

semidefinite quasistate) χ does admit an LHS for the

finite set of measurements fMajxg, where DλðajxÞ are

the deterministic strategies corresponding to Alice’s set of

inputs and outputs. More specifically, DλðajxÞ ¼ δa;λx ,

where λ ¼ λ1λ2 � � � λmA
is a string of length mA, where

mA is the number of Alice’s settings. The (subnormalized)

states σBCλ have to be separable between Bob and Charlie

which is in general a nontrivial task, but for two qubits can

simply be enforced by the partial transpose constraint

ðσBCλ ÞTB ≥ 0 [32]. The last constraint contains the shrinking

factor 0 ≤ η ≤ 1 and ensures that also a noisy version of the

target state ρL admits an LHS, but this time for the

continuous set of measurements M (e.g., four-outcome

POVMs) which was approximated by the discrete set

fMajxg ⊂ M.

The SDP is based on the fact that the statistics from noisy

measurements on a noiseless state are equal to the statistics

of a noisy state with noiseless measurements, i.e.,

TrA½ðM
η
a ⊗ 1 ⊗ 1Þχ� ¼ TrA½ðMa ⊗ 1 ⊗ 1ÞρL�; ð10Þ

where the target state is defined by

ρL ¼ ηχ þ ð1 − ηÞ
1

dA
⊗ TrAðχÞ; ð11Þ

and the noisy measurements are given by

M
η
a ¼ ηMa þ ð1 − ηÞTrðMaÞ

1

dA
; ð12Þ

for any Ma ∈ M.

Note that because χ admits an LHS for the discrete set

fMajxg, by convexity it admits also a local model for the

noisy measurements M
η
a. From the equality in (10) it

follows that ρL does also admit an LHS for a set of

continuous noiseless measurements.

Here, the shrinking factor η is the largest number such

that all noisy measurements M
η
a can be written as a convex

mixture of elements from the discrete set fMajxg, i.e.,

M
η
a ¼

X

x

pxMajx; ð13Þ

with
P

x px ¼ 1 and px ≥ 0 ∀ x.
The shrinking factor can only be obtained analytically in

the case of qubit projective measurements, but for general

measurements it can be obtained by an SDP [31].

Results.—We now display our main result by first pre-

senting a nonlocal three-qubit bound entangled state and in a

second step show that this state originates from local filtering

of a different statewith an LHSmodel for POVMs. Note that

the following results were recovered from the numerical data

and are therefore exact in an analytical sense, unless indicated

differently. Consider the (real-valued) density matrix in the

basis fj000i; j001i; j010i;…; j111igABC given by

ρNL ¼ ðrijÞ1≤i;j≤8; ð14Þ
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with the following defining entries:

r11 ¼ 0.0290; r12 ¼ r13 ¼ r15 ¼ −0.0098;

r14 ¼ r16 ¼ r17 ¼ r23 ¼ r25 ¼ r35 ¼ −0.0083;

r18 ¼ r27 ¼ r36 ¼ r45 ¼ 0.0646;

r22 ¼ r33 ¼ r55 ¼ 0.0412;

r24 ¼ r26 ¼ r34 ¼ r37 ¼ r56 ¼ r57 ¼ −0.0335;

r28 ¼ r38 ¼ r46 ¼ r47 ¼ r58 ¼ r67 ¼ −0.0598;

r44 ¼ r66 ¼ r77 ¼ 0.1352;

r48 ¼ r68 ¼ r78 ¼ 0.0102; r88 ¼ 0.4418:

Note that ρNL is invariant under partial transpose with

respect to any party, as well as invariant under permutation

of parties, by construction. Therefore, the state is PPT and

also biseparable with respect to any bipartite cut [23,33].

Note further that ρNL has the same symmetry properties as

the family of states in [23] without being a member of this

family. Nevertheless, using the seesaw method it can be

shown to violate Śliwa’s inequality number 5 [34] (which

implies ρNL is entangled), which reads

I ¼ hsym½A1 þ A1B2 − A2B2 − A1B1C1

− A2B1C1 þ A2B2C2�i ≤ 3; ð15Þ

where sym½X� denotes the symmetrization of X over the

three parties, e.g., sym½A1B2� ¼ A1B2 þ A1C2 þ A2B1þ
A2C1 þ B1C2 þ B2C1. Here, Aj¼Bj¼Cj;j∈f1;2g, and
Aj¼M1jj−M2jj. We choose A1 ¼ −0.7909σz − 0.6119σx,

A2 ¼ −0.2344σz þ 0.9721σx, which leads to a quantum

violation Q ≈ 3.0152 > 3 of inequality (15). Note that the

maximal quantum value achievable by PPT states only

allows violations up to Q ≈ 3.0187 [35].

Next, we show that ρNL can originate from a local state

by filtering. Consider the state ρL defined via the relation

ρNL ¼
FA ⊗ FB ⊗ FCρLF

†

A ⊗ F†
B ⊗ F†

C

TrðFA ⊗ FB ⊗ FCρLF
†

A ⊗ F†
B ⊗ F†

CÞ
; ð16Þ

with the local filters

FA ¼

�

0.4310 −0.2971

−0.2488 0.7291

�

;

FB ¼

�

0.0342 −0.0808

−0.3664 0.8688

�

;

FC ¼

�

0.3268 −0.1873

−0.1773 0.6440

�

:

For more details, see the Supplemental Material [36]. Note

that it is immediately clear that there exists a valid quantum

state ρL fulfilling the above equation. This can be seen by

using the fact that the above local filters are invertible

and the only constraint F†F ≤ 1 can always be achieved,

since the filters F and cF map onto the same state for any

c ∈ Cnf0g.
In order to finally show that ρL possesses genuine hidden

nonlocality, we need to show that it admits a local model for

all POVMs. Therefore, we use the same parametrization as

in [31] for Alice’s finite set of measurements fMajxg. It

consists of all relabellings of fPþ; P−; 0; 0g where Pþ is a

projector onto a vertex of an icosahedron in the Bloch

sphere and P− onto the opposite direction, as well as all

relabellings of the trivial set f1; 0; 0; 0g. This leads to a set

of 76 elements with a shrinking factor of η ≈ 0.673. Note

that it is sufficient to consider only extremal POVMs,

which for qubits have at most four outcomes [38].

The optimization for the LHS, according to (9) results in

q� ¼ 1. The precision of this result is subject to the

standard precision of MATLAB [39] as well as the SDP

solvers SeDuMi [40] andMosek [41] for Yalmip [42]. Hence, ρL
admits a local model for POVMs without the need of

additional noise. For a graphical illustration of our main

results, see Fig. 2.

Conclusions and outlook.—In the present Letter, we

have shown that a fully biseparable bound entangled state

of three qubits can admit a local model for POVMs, but can

give rise to nonlocal correlations when local filters were

applied before the Bell test. Hence, we have shown that

bound entangled states can possess genuine hidden non-

locality. This is the first example of activation of non-

locality in bound entanglement. Furthermore, this is also

the first example of an LHVof a bound entangled state for

all POVMs, while previous models were restricted to

projective measurements [31,43]. One important conclu-

sion of our results is that genuine hidden nonlocality (since

it also exists for bound entangled states) does not imply

entanglement distillability. Together with the result of [11]

it shows that genuine hidden nonlocality and entanglement

FIG. 2. Schematic overview over the relevant sets of states. The

states in the shaded area are undistillable. Our results confirm the

existence of bound entangled states with an LHV for POVMs.

However, (invertible) local filters F are able to reveal the hidden

nonlocality of these states. They map a state ρL from the set of

states admitting an LHV onto a nonlocal state ρNL.
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distillation are inequivalent. Note that since the local model

we have constructed is an LHS model, our results are also

relevant for the steering scenario.

It would be interesting to know whether there exist also

bound entangled states without hidden nonlocality. Even

though we could not prove the existence of such states, we

found a bipartite bound entangled state with a local model

for POVMs in the so-called filter normal form [27], which

seems to play an important role for hidden nonlocality. We

think, therefore, that this state is a good candidate to show

bound entanglement without hidden nonlocality. For fur-

ther details, see the Supplemental Material [36]. In the

future, one should investigate the potential of bound

entangled states in the superactivation or even in the

asymptotic scenario. Even 20 years after the Peres con-

jecture [21], we still learn what bound entangled states are

useful for. In the spirit of these developments it seems to be

well motivated to state an “inverse Peres conjecture”: all

bound entangled states are nonlocal resources in the

asymptotic case, see Fig. 1.
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[26] M. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M.

Demianowicz, A. Acín, and N. Brunner, Inequivalence of

entanglement, steering, and Bell nonlocality for general

measurements, Phys. Rev. A 92, 032107 (2015).

[27] F. Verstraete, J. Dehaene, and B. DeMoor, Local filtering

operations on two qubits, Phys. Rev. A 64, 010101 (2001).

[28] L. Vandenberghe and S. Boyd, Semidefinite programming,

SIAM Rev. 38, 49 (1996).

[29] R. F. Werner and M.M. Wolf, Bell inequalities and entan-

glement, arXiv:quant-ph/0107093.

[30] D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk,

General Method for Constructing Local Hidden Variable

Models for Entangled Quantum States, Phys. Rev. Lett. 117,

190401 (2016).

[31] F. Hirsch, M. Quintino, T. Vértesi, M. F. Pusey, and
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❙✉♣♣❧❡♠❡♥t❛❧ ▼❛t❡r✐❛❧ ❢♦r ✏❆❝t✐✈❛t✐♦♥ ♦❢

♥♦♥❧♦❝❛❧✐t② ✐♥ ❜♦✉♥❞ ❡♥t❛♥❣❧❡♠❡♥t ✑

❙❡♣t❡♠❜❡r ✷✶✱ ✷✵✶✾

❉❡t❛✐❧s ♦♥ t❤❡ ❧♦❝❛❧ st❛t❡ ρL✳✖■♥ ♦r❞❡r t♦ ❣✐✈❡ ❛ ✉s❡❢✉❧ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡
❧♦❝❛❧ st❛t❡ ρL ❢r♦♠ ✭✶✻✮ ✐♥ t❤❡ ♠❛✐♥ t❡①t✱ ♦♥❡ ❤❛s t♦ ✉♥❞❡rst❛♥❞ ❤♦✇ t♦ ♦❜t❛✐♥
t❤✐s st❛t❡✳ ◆❛t✉r❛❧❧②✱ t❤❡r❡ ✐s ♥♦ ❤✐♥t ✇❤✐❝❤ st❛t❡s ♦♥❡ s❤♦✉❧❞ ✐♥✈❡st✐❣❛t❡ ✐♥ ♦r❞❡r
t♦ tr② t♦ ♣r♦✈❡ t❤❡✐r ❧♦❝❛❧✐t② ♦r ✇❤❡t❤❡r t❤❡② ♣♦ss❡ss ❣❡♥✉✐♥❡ ❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✳
❍♦✇❡✈❡r✱ ✐t ❜❡❝♦♠❡s ✐♠♠❡❞✐❛t❡❧② ❝❧❡❛r ✇❤❡♥ ♦♥❡ ✐♥✈❡rts t❤❡ ♣r♦❜❧❡♠ ❛♥❞ tr✐❡s
t♦ ✜♥❞ ❛ ❧♦❝❛❧ st❛t❡ ❛❢t❡r ✇❡ ❛♣♣❧✐❡❞ ❧♦❝❛❧ ✜❧t❡rs ♦♥ ❛ ♥♦♥❧♦❝❛❧ st❛t❡✳ ❙✐♥❝❡
✇❡ ❝❤♦♦s❡ t❤❡ ✜❧t❡rs t♦ ❜❡ ✐♥✈❡rt✐❜❧❡✱ ✇❡ ❝❛♥ ❡❛s✐❧② ✜♥❞ ✜❧t❡rs ✇❤✐❝❤ ♠❛♣ t❤❡
❧♦❝❛❧ st❛t❡ ♦♥t♦ t❤❡ ♥♦♥❧♦❝❛❧ st❛t❡✳ ❚❤❡ ♥♦♥❧♦❝❛❧ st❛t❡ ♦❜t❛✐♥❡❞ ❜② t❤❡ s❡❡✲s❛✇
❛❧❣♦r✐t❤♠ ❤❛s ❜② ❝♦♥str✉❝t✐♦♥ ❛ ❤✐❣❤ ❛♠♦✉♥t ♦❢ s②♠♠❡tr②✱ ✇❤✐❝❤ ✇❡ ❞❡❝r❡❛s❡ ❜②
t❤❡ ❧♦❝❛❧ ✜❧t❡rs ❛♥❞ t❤❡♥ ❛♣♣❧② t❤❡ ❙❉P t❡❝❤♥✐q✉❡s t♦ ✜♥❞ ❛♥ ▲❍❙✳ ❆❢t❡r✇❛r❞s✱
t❤❡ ✐♥✈❡rt❡❞ ✜❧t❡rs ✐♥❝r❡❛s❡ t❤❡ s②♠♠❡tr② ♦❢ t❤❡ st❛t❡ ❛❣❛✐♥✳ ❚❤❡r❡❢♦r❡✱ ρL ✐s
s✐♠♣❧② ❣✐✈❡♥ ❜②

ρL =
GA ⊗GB ⊗GC ρNL G

†
A
⊗G

†
B
⊗G

†
C

Tr(GA ⊗GB ⊗GC ρNL G
†
A
⊗G

†
B
⊗G

†
C
)
, ✭❙✶✮

✇✐t❤ t❤❡ ❧♦❝❛❧ ✐♥✈❡rt✐❜❧❡ ✜❧t❡rs

GA =

[

0.7291 0.2971
0.2488 0.4310

]

,

GB =

[

0.8688 0.0808
0.3664 0.0342

]

,

GC =

[

0.6440 0.1873
0.1773 0.3268

]

.

❛♥❞ t❤❡ ♥♦♥❧♦❝❛❧ st❛t❡ ρNL ❞❡✜♥❡❞ ✐♥ ❊q✳ ✭✶✹✮ ✐♥ t❤❡ ♠❛✐♥ t❡①t✳
▲♦❝❛❧ ❜♦✉♥❞ ❡♥t❛♥❣❧❡♠❡♥t ✐♥ t❤❡ ✜❧t❡r ♥♦r♠❛❧ ❢♦r♠✳✖❍❡r❡✱ ✇❡ ✇❛♥t t♦ ❡①✲

t❡♥❞ ♦✉r ♦✉t❧♦♦❦ ❜② ♣r❡s❡♥t✐♥❣ ❛ ❜✐♣❛rt✐t❡ ❜♦✉♥❞ ❡♥t❛♥❣❧❡❞ st❛t❡ ✇❤✐❝❤ ❛❞♠✐ts
❛♥ ▲❍❙ ❢♦r P❖❱▼s ❛♥❞ ✐s ❛ ❣♦♦❞ ❝❛♥❞✐❞❛t❡ t♦ s❤♦✇ ❜♦✉♥❞ ❡♥t❛♥❣❧❡♠❡♥t ✇✐t❤✲
♦✉t ❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✱ ❛s ✇❡ ✇✐❧❧ ❛r❣✉❡ ❜❡❧♦✇✳ ❆♥ ✐♠♣♦rt❛♥t ❢❡❛t✉r❡ ♦❢ t❤✐s
st❛t❡ ✐s t❤❛t t❤❡ st❛t❡ ✐s ❛❧r❡❛❞② ✐♥ t❤❡ ✜❧t❡r ♥♦r♠❛❧ ❢♦r♠ ❬✶❪✱ ✇❤✐❝❤ ♠❡❛♥s ❛❧❧
s✐♥❣❧❡✲♣❛rt② r❡❞✉❝❡❞ ❞❡♥s✐t② ♠❛tr✐❝✐❡s ❛r❡ ♠❛①✐♠❛❧❧② ♠✐①❡❞✳ ❚❤❡ ✜❧t❡r ♥♦r♠❛❧
❢♦r♠ ❞♦❡s ♣❧❛② ❛♥ ✐♠♣♦rt❛♥t r♦❧❡ ✇❤❡♥ ✐t ❝♦♠❡s t♦ ❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✳ ❋♦r
❡①❛♠♣❧❡✱ t❤❡ ✜❧t❡r ♥♦r♠❛❧ ❢♦r♠ ❞♦❡s ♠❛①✐♠✐③❡ t❤❡ ✈✐♦❧❛t✐♦♥ ♦❢ t❤❡ ❈❍❙❍ ✐♥✲
❡q✉❛❧✐t② ❢♦r t✇♦✲q✉❜✐ts✱ ❛s ✇❡❧❧ ❛s ❡♥t❛♥❣❧❡♠❡♥t ♠♦♥♦t♦♥❡s ❬✶❪✳ ❋✉rt❤❡r✱ ✐♥ ❬✷❪ ✐t
✇❛s s❤♦✇♥ t❤❛t ❝❡rt❛✐♥ ❲❡r♥❡r st❛t❡s ❛❞♠✐t ❛♥ ▲❍❙ ♠♦❞❡❧✱ ❡✈❡♥ ❛❢t❡r ❛r❜✐tr❛r②
❧♦❝❛❧ ✜❧t❡r✐♥❣✳ ❲❡r♥❡r st❛t❡s ❛r❡ ❛❧s♦ ❛❧r❡❛❞② ✐♥ t❤❡ ✜❧t❡r ♥♦r♠❛❧ ❢♦r♠✳

✶



■♥t✉✐t✐✈❡❧②✱ t❤❡r❡ ✐s ♥♦ ♦❜✈✐♦✉s r❡❛s♦♥ ✇❤② ❧♦❝❛❧ ✜❧t❡rs ✇♦✉❧❞ st✐❧❧ ❜❡ ❛❜❧❡
t♦ ❛❝t✐✈❛t❡ t❤❡ ♥♦♥❧♦❝❛❧✐t② ♦❢ s✉❝❤ st❛t❡s ❜❡❝❛✉s❡ t❤❡② ❝❛♥♥♦t ❞✐st✐♥❣✉✐s❤ t❤❡
✉s❡❢✉❧ ♣❛rt ♦❢ ❛ st❛t❡ ❢r♦♠ ✇❤✐t❡ ♥♦✐s❡✳ ❈♦♥s✐❞❡r t❤❡ st❛t❡✱ ✐♥ ✜❧t❡r ♥♦r♠❛❧ ❢♦r♠
❣✐✈❡♥ ❜②

σ =
1

dAdB
+

d
2

A
−1

∑

k=1

ξAH
A

k ⊗HB

k ✭❙✷✮

✇✐t❤ dA = 2✱ dB = 4✱ t❤❡ ❝♦❡✣❝✐❡♥ts ξk✱ ❛♥❞ t❤❡ tr❛❝❡❧❡ss ♠✉t✉❛❧❧② ♦rt❤♦♥♦r♠❛❧
♠❛tr✐❝✐❡s HA

k
✱ HB

k
✳ ❙♣❡❝✐✜❝❛❧❧②✱ ✇❡ ❝❤♦♦s❡

ξ1 = ξ2 = 1.3219, ξ3 = 1.1348,

❛♥❞ t❤❡ ♠❛tr✐❝✐❡s

HA

1
=

(

0 0
1 0

)

, HA

2
=

(

0 −1
0 0

)

,

HA

3
=







1
√
2

0

0 −
1
√
2






,

❢♦r ❆❧✐❝❡✬s s✉❜s②st❡♠✱ ❛s ✇❡❧❧ ❛s

HB

1
=









0 0 0 −0.0983
−0.6393 0 0 0

0 −0.4158 0 0
0 0 −0.6393 0









,

HB

2
=









0 0.6393 0 0
0 0 0.4158 0
0 0 0 0.6393

0.0983 0 0 0









,

HB

3
=









−0.4859 0 0 0
0 −0.5137 0 0
0 0 0.5137 0
0 0 0 0.4859









,

❢♦r ❇♦❜✬s s✐❞❡✳ ❆s ♦♥❡ ❝❛♥ q✉✐❝❦❧② ✈❡r✐❢②✱ σ ✐s ❛ PP❚ st❛t❡✳ ◆❡✈❡rt❤❡❧❡ss✱ ✐t ❝❛♥
❜❡ s❤♦✇♥ t♦ ❜❡ ❡♥t❛♥❣❧❡❞ ❜② t❤❡ ❙❉P t❡❝❤♥✐q✉❡s ♣r❡s❡♥t❡❞ ✐♥ ❬✸❪✳ ❲✐t❤ t❤❡
♠❡t❤♦❞s ❞❡s❝r✐❜❡❞ ✐♥ t❤❡ ♠❛✐♥ t❡①t✱ ✇❡ ✇❡r❡ ❛❜❧❡ t♦ s❤♦✇ t❤❛t σ ❞♦❡s ❛❞♠✐t
❛♥ ▲❍❙ ♠♦❞❡❧ ❢♦r ❣❡♥❡r❛❧ P❖❱▼s ♦♥ ❆❧✐❝❡✬s s✐❞❡✳

❆s ❛r❣✉❡❞ ❛❜♦✈❡✱ t❤✐s st❛t❡ ✐s ❛ ❣♦♦❞ ❝❛♥❞✐❞❛t❡ t♦ s❤♦✇ ❜♦✉♥❞ ❡♥t❛♥❣❧❡✲
♠❡♥t ✇✐t❤♦✉t ❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✳ ❍♦✇❡✈❡r✱ ✐t ✐s q✉✐t❡ ❝♦♠♣❧✐❝❛t❡❞ t♦ ♣r♦✈❡ ♦✉r
❝♦♥❥❡❝t✉r❡✱ ❞✉❡ t♦ t❤❡ ❢❛❝t t❤❛t ♠❛♥② ❞❡❣r❡❡s ♦❢ ❢r❡❡❞♦♠ ❛r❡ ✐♥✈♦❧✈❡❞✳ ■❢ ♦✉r
❝♦♥❥❡❝t✉r❡ t✉r♥s ♦✉t t♦ ❜❡ tr✉❡✱ ♦t❤❡r s❝❡♥❛r✐♦s ❧✐❦❡ t❤❡ s✉♣❡r❛❝t✐✈❛t✐♦♥ ♦r t❤❡
❛s②♠♣t♦t✐❝ s❝❡♥❛r✐♦ ❤❛✈❡ t♦ ❜❡ ❝♦♥s✐❞❡r❡❞✳ ■❢ ✐t t✉r♥s ♦✉t t❤❛t σ ❝❛♥ s❤♦✇
❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✱ ✐t ✇♦✉❧❞ ❜❡ t❤❡ ✜rst ❡①❛♠♣❧❡ ♦❢ ❛ ♥♦♥❧♦❝❛❧ ❜♦✉♥❞ ❡♥t❛♥✲
❣❧❡❞ st❛t❡ ✐♥ t❤❡ ❧♦✇❡st ♣♦ss✐❜❧❡ ❞✐♠❡♥s✐♦♥ ❢♦r t✇♦ ♣❛rt✐❡s✳ ❙♦ ❢❛r t❤❡ s♠❛❧❧❡st
❞✐♠❡♥s✐♦♥ ❢♦r ❡①❛♠♣❧❡s ♦❢ ♥♦♥❧♦❝❛❧ ❜♦✉♥❞ ❡♥t❛♥❣❧❡❞ st❛t❡s ✐s 3× 3 ❬✹❪✳

✷



❘❡❢❡r❡♥❝❡s

❬✶❪ ❋✳ ❱❡rstr❛❡t❡✱ ❏✳ ❉❡❤❛❡♥❡✱ ❛♥❞ ❇✳ ❉❡▼♦♦r✳ ▲♦❝❛❧ ✜❧t❡r✐♥❣ ♦♣❡r❛t✐♦♥s ♦♥ t✇♦
q✉❜✐ts✳ P❤②s✳ ❘❡✈✳ ❆✱ ✻✹✿✵✶✵✶✵✶✱ ❏✉♥ ✷✵✵✶✳

❬✷❪ ❋✳ ❍✐rs❝❤✱ ▼✳ ◗✉✐♥t✐♥♦✱ ❏✳ ❇♦✇❧❡s✱ ❚✳ ❱ért❡s✐✱ ❛♥❞ ◆✳ ❇r✉♥♥❡r✳ ❊♥t❛♥❣❧❡♠❡♥t
✇✐t❤♦✉t ❤✐❞❞❡♥ ♥♦♥❧♦❝❛❧✐t②✳ ◆❡✇ ❏♦✉r♥❛❧ ♦❢ P❤②s✐❝s✱ ✶✽✭✶✶✮✿✶✶✸✵✶✾✱ ✷✵✶✻✳

❬✸❪ ❆✳ ❈✳ ❉♦❤❡rt②✱ P✳ ❆✳ P❛rr✐❧♦✱ ❛♥❞ ❋✳ ▼✳ ❙♣❡❞❛❧✐❡r✐✳ ❈♦♠♣❧❡t❡ ❢❛♠✐❧② ♦❢
s❡♣❛r❛❜✐❧✐t② ❝r✐t❡r✐❛✳ P❤②s✳ ❘❡✈✳ ❆✱ ✻✾✿✵✷✷✸✵✽✱ ❋❡❜ ✷✵✵✹✳
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Quantifying necessary quantum resources for nonlocality
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Nonlocality is one of the most important resources for quantum information protocols. The observation of

nonlocal correlations in a Bell experiment is the result of appropriately chosen measurements and quantum

states. We quantify the minimal purity to achieve a certain Bell value for any Bell operator. Since purity is

the most fundamental resource of a quantum state, this enables us also to quantify the necessary coherence,

discord, and entanglement for a given violation of two-qubit correlation inequalities. Our results shine a light

on the Clauser-Horne-Shimony-Holt inequality by showing that for a fixed Bell violation an increase in the

measurement resources does not always lead to a decrease of the minimal state resources.

DOI: 10.1103/PhysRevResearch.4.L012002

It is arguably one of the most astonishing features of

quantum theory that local measurements performed on cer-

tain quantum states can lead to the phenomenon of quantum

nonlocality [1]. That is, the measurement statistics cannot

be explained classically as they are not compatible with the

principle of local realism. Mathematically this can be wit-

nessed by the violation of a so-called Bell inequality [2].

Even though nonlocality [3] has been studied ever since the

foundations of quantum theory [4], it is not yet completely

understood.

Especially its connection to the properties of the used

states and measurements remain challenging. On a qualitative

level it is well understood that the resources entanglement

and measurement incompatibility are necessary but not suf-

ficient for nonlocality [5–7]; on a quantitative level things are

much less clear. One particular example for open challenges

is the anomaly of nonlocality [8,9] i.e., the effect that par-

tially entangled states can lead to more nonlocality than the

maximally entangled state. The situation becomes even more

unclear when we include the influence of the state resources

purity [10], coherence [11,12], and discord [13] which all

found growing attention recently [14–19]. If one wants to

analytically analyze the resources within quantum states and

measurements and study their influence on nonlocal corre-

lations, it is most natural to use the full description of the

involved physical systems. Resources like purity, entangle-

ment, and coherence are defined naturally in this so-called

device-dependent (DD) formalism. An alternative approach to

study nonlocality is the device-independent formalism which

makes minimal assumptions on the involved systems and

usually relies on numerical hierarchies [20,21]. We address

*Lucas.Tendick@hhu.de
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in this Letter the following fundamental question in the DD

scenario: What are the required properties of a quantum state

and its measurements to exhibit nonlocality? In other words,

we quantify the interplay between the resource of nonlocal

correlations and other resources like purity, coherence, dis-

cord, and most famously entanglement on the state side and

measurement incompatibility [22] on the measurement side.

The physical situation we are going to consider is illustrated

in Fig. 1. We derive from the spectrum of any given Bell

operator an analytical expression for the minimal purity of a

quantum state that is needed to achieve some fixed amount

of nonlocality in terms of a Bell inequality violation. This

result is general, i.e., it holds for any dimension, any num-

ber of parties, measurement settings, and outcomes. In a

second step, we show that this criterion also provides the min-

imal amount of coherence, discord, and entanglement needed

for the violation of an inequality with any Bell-diagonal

Bell operator, which is of particular interest for the case

of two-qubit systems. As an application of our results, we

present a closed expression for the maximal possible viola-

tion of the Clauser-Horne-Shimony-Holt (CHSH) inequality

[23] given some fixed amount of entanglement or purity and

a given level of measurement incompatibility. This enables

us to establish a surprising link between the incompatibil-

ity of quantum measurements and the minimal entanglement

needed. More precisely, we show that highly incompatible

projective measurements need, in some instances, a higher

amount of entanglement in order to show some fixed CHSH

nonlocality than less incompatible projective measurements.

In other words, a smaller resource on the measurement side

does not require a higher resource on the state side, which is

counterintuitive. An analogous result follows for the case of

the two-setting linear steering inequality [24].

Preliminaries. In general, we are considering Hermitian

Bell operators of the form

I =
∑

a,b,x,y

cab|xyMa|x ⊗ Mb|y, (1)

2643-1564/2022/4(1)/L012002(6) L012002-1 Published by the American Physical Society
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FIG. 1. Illustration of a Bell experiment. A (bounded) quantum

state ρ ∈ B(Hd ) with adjustable resources purity P , coherence C,

discord D, and entanglement E is distributed to Alice and Bob who

perform measurements {Ma|x} and {Mb|y} with also adjustable in-

compatibilities CA and CB. The interplay between the state resources

and the measurement resources results in the observed Bell value

〈I〉. Minimal resource requirements for an observed Bell violation v

beyond the local bound L are derived in the text.

where the real coefficients cab|xy together with the local bound

L (see below) describe the corresponding Bell inequality. The

measurements are described by positive semidefinite opera-

tors Ma|x, Mb|y with outcomes a, b and inputs x, y which form

a positive operator-valued measure such that
∑

a Ma|x = 1

and
∑

b Mb|y = 1. A Bell inequality is given by

∑

a,b,x,y

cab|xy p(ab|xy)LHV � L, (2)

with the (real) local bound L for all correlations obeying a

so-called local hidden-variable model (LHV). This inequal-

ity may be violated by some entangled quantum states ρ,

where the probability distribution is given by p(ab|xy) =
Tr[(Ma|x ⊗ Mb|y)ρ]. We call states which violate (at least) one

Bell inequality nonlocal. The achieved Bell value is denoted

by 〈I〉 = Tr(Iρ) = L + v where v > 0 is the amount by which

the bound L is violated. During the course of this Letter, we

will often use the spectral decomposition of a quantum state

ρ = ∑d
i λi|φi〉〈φi| with λi � 0 and

∑d
i λi = 1 and the Bell

operator I = ∑d
j μ j |� j〉〈� j | with real eigenvalues μ j where

d is the dimension of ρ ∈ B(Hd ) and B(Hd ) denotes the set of

bounded operators. The sets {|φi〉}, {|� j〉} form orthonormal

bases. We order (without loss of generality) the eigenvalues

in descending order, i.e., λi � λs for i < s and μ j � μt for

j < t .

Main task. We want to quantify the minimal quantum

resources of a state ρ of dimension d in order to achieve

some given violation v for a given Bell operator I (i.e., the

measurements are fixed). Thus, we want to minimize a general

resource quantifier R(ρ) such that ρ is consistent with the

observed data in terms of the Bell expectation value 〈I〉, i.e.,

we want to find

R∗ = min
ρ

{R(ρ)|〈I〉 = Tr(ρI ) = L + v}. (3)

Optimizations of this form naturally occur in inference

schemes based on entanglement witnesses [25–28]. The

important difference to the task we consider here is that non-

locality itself is also a resource. In the context of nonlocality

this problem has only been addressed for the CHSH inequality

[29–34] with the main focus on entanglement. This approach

based on the Bell operator makes use of the full information

available and therefore allows us to study in a simple way how

the required state resources depend on the chosen measure-

ments.

Let us specify what we mean by the term quantum resource

without going into detail. In any resource theory, one first

defines the states which are no resource, the so-called void

states (or free states), which constitute the set V . Second, one

defines the (maximal) set of operations � (free operations)

that cannot turn a void state into a resource state. Finally, one

has to find measures R which quantify the respective resource.

The measures have to be faithful monotones, i.e., R(ρ) = 0

iff ρ ∈ V and R[�(ρ)] � R(ρ) ∀ρ and free operations �.

Additional properties of many measures are normalization for

the maximal resource and additivity under tensor products.

For more details, see [35]. For example, in the resource theory

of entanglement, the free states are the separable ones, the free

operations are local operations and classical communication,

and a quantifier is the relative entropy of entanglement.

Purity. Our main result is an analytical result for the mini-

mal purity of ρ needed to achieve the Bell value 〈I〉 = L + v

for a general Bell operator I of any dimension d , any number

of parties n, settings k, and outcomes m. We want to em-

phasize that the commonly used expression Tr(ρ2) (known

as linear purity) is not a proper purity measure [10] since

it lacks additivity and normalization [P(|�〉) = log2(d ) for

any d-dimensional pure state |�〉] and does not vanish for

the maximally mixed state. Instead one should use the Rényi

2-purity P2(ρ) = log2 [d Tr(ρ2)]. Here, we will employ the

generalized robustness of purity, which is easier to handle

mathematically. It is defined via the general robustness quan-

tifier

GR(ρ) := min
τ

{

x|x � 0, ∃ a state τ,
ρ + xτ

1 + x
∈ V

}

, (4)

where the set V consists of the void states. GR(ρ) leads to the

log robustness log2[GR(ρ) + 1], which is a proper measure of

the resources considered in this Letter [16,36]. Because it is

fully determined via GR(ρ), we focus the main discussions

in this Letter on the generalized robustness for simplicity.

Since τ can be any state, GR(ρ) can be seen as general noise

robustness of ρ with respect to a void set V and can therefore

be used to quantify a general resource G. In the case of purity,

the void set V consists of only the maximally mixed state 1/d .

It was shown in [36] that the generalized robustness of purity

is given by

PR(ρ) = dλ1(ρ) − 1. (5)

Thus, minimizing PR(ρ) reduces to minimizing λ1(ρ). In or-

der to show our main result we first answer the (easier to

solve) reverse question: Given PR(ρ), what is the maximal

possible Bell value 〈I〉max = L + vmax the state ρ can achieve

for a fixed Bell operator I?

Theorem 1. Given the Hermitian operator I =
∑d

j=1 μ j |� j〉〈� j | with μ j � μt for j < t and a fixed

robustness of purity PR(ρ) of a quantum state ρ. The

maximal expectation value 〈I〉max can be achieved by

ρ = ∑r
i=1 λi|�i〉〈�i|, where λi � 0,

∑r
i=1 λi = 1, λi � λs

L012002-2
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for i < s, and is given by

〈I〉max =
r

∑

j=1

μ jλ j, (6)

where r is an integer such that 1
r−1

> λ1 �
1
r

and all eigenval-

ues λi for i ∈ {1, . . . , r − 1} are equal to λ1 = (1 + PR)/d .

Proof. The theorem follows from the generalization of

Ruhe’s trace inequality [37] and the fact that it is optimal

to choose all eigenvalues λi equal to λ1 except the lowest

nonzero one, which is given by normalization. The integer r

defines the rank of the optimal ρ which we construct from

the {λi} and the eigenstates of I . This choice is unique for

nondegenerate eigenvalues of I . See [38] for the specifics of

the proof. �

Theorem 1 can be used reversely (see Lemma 1 in the

Supplemental Material [38]), which provides our first main

result. Namely, for given 〈I〉max we can use Eq. (6) to deter-

mine the minimal PR(ρ) or λ1(ρ) needed to achieve the Bell

value 〈I〉max. In order to determine λ1(ρ) one only needs to

find the integer r such that Theorem 1 is valid. The usefulness

of Theorem 1 lies in its simplicity. Not only does it allow one

to minimize the generalized robustness of purity PR(ρ) for a

fixed expectation value of the most general Bell operator via

an easily accessible criterion; also, one needs to check at most

d linear equations. We also proved a more involved analogon

to Theorem 1 with respect to the Rényi 2-purity P2(ρ). See

the Supplemental Material [38] for a detailed discussion.

Equality of quantum resources for two qubits. In the fol-

lowing we show which effect minimizing the purity has on

the other state resources. In other words, we demonstrate the

power of Theorem 1 by showing that for the subset of two-

qubit correlation inequalities, i.e., inequalities without single

party correlation terms, the states of minimal generalized

robustness of purity for a fixed violation v also minimize

the respective generalized robustnesses of coherence CR(ρ),

discord DR(ρ), and entanglement ER(ρ), which in fact turn

out to be equal. This is of particular interest since for every

quantum state the hierarchy [10]

P (ρ) � C(ρ) � D(ρ) � E (ρ) (7)

holds when quantified by the same distance-based [39] mea-

sure and coherence is quantified with respect to any product

basis. We will in particular choose the product basis that

minimizes the coherence of the state ρ. This notion of coher-

ence coincides with the notion of symmetric quantum discord

with respect to all subsystems [10,40]. Therefore, we will

only summarize the concept of coherence [12] here; for more

details about discord, see [41]. Coherence in general is a

basis-dependent concept and is connected to the ability of a

state to be in a superposition of some (fixed) basis states. The

void states δ are called incoherent states. These are diagonal

with respect to a fixed basis |i〉, i.e,

δ =
∑

i

pi|i〉〈i|, pi � 0,
∑

i

pi = 1. (8)

Note that our notion of coherence corresponds to a minimiza-

tion over all states equivalent to ρ under local unitaries.

Our result is summarized in the following theorem.

Theorem 2. Given a Bell operator of the form

I =
∑

x,y

gx,yAx ⊗ By, (9)

with real coefficients gx,y and local observables Ax = 	ax · 	σ ,

By = 	by · 	σ where 	ax, 	by are Bloch vectors and 	σ is the vector

containing the Pauli matrices. For a fixed expectation value

〈I〉 = L + v, where L is the local bound and v > 0, there

exists a two-qubit quantum state ρopt which simultaneously

minimizes the generalized robustness of purity PR, coherence

with respect to all product bases CR, and entanglement ER.

Proof. The proof relies on the fact that the states of mini-

mal entanglement are Bell-diagonal states (BDS), which are

entangled if and only if λ1 > 1/2. The generalized robust-

ness of entanglement [42] reduces for two-qubit BDS to

ER(ρBDS) = 2λ1(ρBDS) − 1. Using this fact and Lemma 1 (see

the Supplemental Material [38]) the optimal state ρopt can

always be chosen to be of at most rank 2. This enables us

to show that the closest separable state is always incoherent in

some product basis. Therefore minimizing λ1 minimizes all

state resources. We relocated the specifics of the proof to the

Supplemental Material [38]. �

Note that an equivalence between coherence and en-

tanglement for maximally correlated states has also been

shown in different contexts [16,17]. We want to highlight

that there is a straightforward generalization to genuine-

multipartite entanglement (GME) quantification for N-qubit

Greenberger-Horne-Zeilinger (GHZ) -diagonal Bell operators

(e.g., two-setting full-correlation inequalities [43]) when we

ask for a violation v which requires GME [44], since the

optimal states will then be diagonal in the GHZ basis and the

GME of these states is completely characterized by λ1 > 1/2

[45], analogously to two-qubit BDS.

However, in general the hierarchy (7) will not be tight.

Based on numerical optimization we find that there is indeed a

(nontrivial) gap between purity, coherence, and entanglement

for judiciously chosen observables in the I3322 inequality

[46], an inequality with three settings and two outcomes for

both parties including single party expectation values. One

reason for this is the fact that the considered Bell operator

is, in contrast to those for the previous discussed correlation

inequalities, not diagonal in the Bell basis. That leads to

different optimal states for the respective resources. See the

Supplemental Material [38] for more details.

CHSH inequality. Remarkably, our results bring insights

into the well-known CHSH inequality and systems of two

qubits. The CHSH operator [23] is defined as

I = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2, (10)

with |〈I〉| � 2 for local-realistic models. The general form of

Eq. (6) can for the case of two-qubit states be reduced to at

most rank-2 solutions

λ1μ1 + (1 − λ1)μ2 = L + v, (11)

which recovers the finding made in [31]. Furthermore it is

well known [47] that if the observables fulfill A2
i = B2

j = 1,

it holds

I2 = 41⊗ 1− [A1, A2] ⊗ [B1, B2], (12)

L012002-3
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where [X,Y ] denotes the commutator between X and Y . The

observables X and Y describing projective measurements are

called incompatible, i.e., they cannot be measured jointly if

and only if [X,Y ] 
= 0. This quantum effect is the central

aspect of the famous Heisenberg-Robertson uncertainty rela-

tion [48]. The use of incompatible measurements is necessary

but not sufficient for Bell nonlocality [6,7]. There exists a

resource theory [22] which allows the quantification of mea-

surement incompatibility of one party. Let us introduce as a

quantifier C for the (global) incompatibility the product of

the single party measurement incompatibilities defined by the

operator norm (largest absolute eigenvalue) of the commuta-

tors. Namely, C = CACB = ‖[A1, A2]‖‖[B1, B2]‖. This is well

motivated since C = 0 if and only if one of the parties holds

compatible measurements, i.e., the CHSH inequality cannot

be violated and C = 4 is achieved with Pauli commutation

relations only. Note that the single party incompatibility CA

is directly related to incompatibility quantifiers studied in

[22]. After some algebra, we obtain the eigenvalues of I as

a function of C, i.e. [49,50],

μ1/4 = ±
√

4 + C, μ2/3 = ±
√

4 − C. (13)

This shows that the quantity C quantifies the maximal

nonlocality which can possibly be revealed by the given

observables. By introducing the global measurement in-

compatibility we can study relations between the necessary

resources contained in the states and those contained in the

measurements, when wanting to achieve a certain nonlocality.

The maximal possible violation given in Eq. (6) reduces to

〈I〉max =
√

4 + Cλ1 +
√

4 − C(1 − λ1). (14)

Note that after inserting the optimal incompatibility Cmax =
4(2λ1−1)

2λ2
1−2λ1+1

to maximize the Bell value 〈I〉max for fixed λ1 one

easily recovers the special case [30] and notably the result [34]

where a formula for the maximal CHSH value of a two-qubit

state in terms of its concurrence was found.

Intuitively one would expect now for a fixed violation

of the CHSH inequality, that there is a trade-off between

the necessary measurement resources and the necessary state

resources in the sense that more of the resource in the mea-

surements requires less resource in the state. This, however,

is not always the case. As one can see in Fig. 2 there are pa-

rameter regions where less resources on the measurement side

go together with less resources on the state side. Especially

for very small violations, weakly incompatible measurements

require much less entanglement for the same amount of non-

locality. We want to emphasize that the behavior of the other

resources with respect to the quantifier C is qualitatively the

same, since these are also monotonic functions of λ1(ρ).

We further highlight that extensions of the considered Bell

operators to higher dimensions, such as those in [49], can

in the case of suboptimal extensions only increase the nec-

essary purity while keeping the quantifier C constant. Is the

surprising behavior discussed above a generic feature, or does

it possibly depend on the chosen quantifiers for measure-

ment incompatibility and/or the resources in the state? We

discuss other possible quantifiers for state resources in the

Supplemental Material [38] and conclude that the behavior

is generic, by arguing that when other quantifiers are chosen

FIG. 2. The minimal generalized robustness of entanglement

ER(ρ ) for a given level of incompatibility C for different amounts of

desired violation v. The curves diverge at some C because there is no

state achieving the given violation. For low violations the effect that

less entanglement for lower C is necessary becomes clearly visible,

for a large regime of C.

only purity could possibly show a qualitatively different be-

havior. We show that this is indeed the case for the relative

entropy of purity, while the Rényi 2-purity shows a similar

behavior as the generalized robustness of purity as a function

of C. For measurement incompatibility, we also show that the

generalized robustness of incompatibility displays the same

qualitative behavior. However, in general, it is still an open

question whether these results are influenced by the particular

choice of the incompatibility quantifier.

We strengthen this conclusion by highlighting that plots of

the same qualitative behavior follow for the two-setting linear

steering inequality [24] given by

F2 =
∣

∣

∣

∣

∣

2
∑

i=1

〈Ai ⊗ Bi〉
∣

∣

∣

∣

∣

�
√

2, (15)

where Bob’s measurements have to be aligned orthonormally

while Alice is free to choose any projective measurements. In

this case, the eigenvalues of the steering operator of F2 only

depend on CA = ‖[A1, A2]‖ in an analogous way to the CHSH

inequality, i.e.,

μ̃1/4 = ±
√

2 + CA, μ̃2/3 = ±
√

2 − CA, (16)

from which a behavior of the resources that is analogous to

that for the CHSH inequality follows. This shows that the

qualitative dependency of the state resources on the measure-

ment incompatibility is not just due to our definition of the

bipartite quantifier C, but a true physical phenomenon.

Discussion. In the present Letter we have analyzed the

minimal resource requirements on the states and measure-

ments for a given level of Bell nonlocality. We have shown

that the minimal purity necessary to achieve a certain Bell

value for the most general Bell operator can be found analyt-

ically via an easily accessible criterion. Since the purity of a

state is its most fundamental resource which bounds all other

L012002-4



QUANTIFYING NECESSARY QUANTUM RESOURCES FOR … PHYSICAL REVIEW RESEARCH 4, L012002 (2022)

resources of this state, this has major consequences for the

inference of other necessary resources such as coherence and

entanglement. We demonstrated this concretely by showing

that the generalized robustness of all state resources can be

minimized by the same state for two-qubit correlation inequal-

ities. Finally, we have connected the nonlocality of quantum

correlations, the incompatibility of quantum measurements,

and the state’s resources via the CHSH inequality. This re-

vealed the counterintuitive effect, that sometimes more state

resources are required to reach the same level of nonlocality,

when the measurement resources are increased. While the

CHSH inequality is by far the most studied Bell inequality,

this behavior has, to the best of our knowledge, not been

reported so far. The same effect is also prevalent for a steering

inequality and thus excludes the existence of any possible

conservation law for the necessary resources in states and

measurements, regarding steering.

Several points are open for future research. First, one

should investigate more general Bell scenarios, including the

optimization over all Bell operators for a particular Bell

inequality. Second, one could investigate further important

resource measures. Finally, one should further investigate how

the spectrum of Bell operators depends on the properties of the

used measurement operators.
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Maximal expectation value for fixed generalized robustness of purity PR(ρ). —Here, we give more detailed derivation
of Theorem 1 in the main text.

Theorem 1. Given the Hermitian operator I =
∑d

j=1
µj |Ψj〉〈Ψj | with µj ≥ µt for j < t and a fixed robustness of

purity PR(ρ) of a quantum state ρ. The maximal expectation value 〈I〉max can be achieved by ρ =
∑r

i=1
λi|Ψi〉〈Ψi|,

where λi ≥ 0,
∑r

i=1
λi = 1, λi ≥ λs for i < s, and is given by

〈I〉max =
r

∑

j=1

µjλj , (1)

where r is an integer s.t.
1

r − 1
> λ1 ≥ 1

r
and all eigenvalues λi for i ∈ {1, · · · , r − 1} are equal to λ1 = (1 + PR)/d.

Proof. It holds PR(ρ) = dλ1(ρ) − 1, i.e. the constraint of fixed purity PR(ρ) depends only on the largest eigenvalue
of ρ and we have to do the optimization w.r.t. the remaining degrees of freedom. The generalization of Ruhe’s trace
inequality [1] states that if A,B are d× d Hermitian matrices, then

d
∑

i=1

ηi(A)ηd−i+1(B) ≤ Tr(AB) ≤
d

∑

i=1

ηi(A)ηi(B) (2)

where ηi(A) denotes the i-th eigenvalue of A and the eigenvalues ηi are ordered in descending order. This simply
means that in order to maximize (minimize) the expectation value 〈I〉 = Tr(ρI), ρ has to be diagonal in the same
basis as I. Further, the i-th largest eigenvalue of ρ has to be multiplied with the i-th largest (smallest) eigenvalue of
I.This means the ordering of the eigenstates of I and ρ are the same with respect to their eigenvalues. Since λ1 is
by assumption the largest eigenvalue of ρ, all other λi cannot be larger. In order to maximize the magnitude of the
expectation value all λi should be as big as possible, which means equal to λ1. This however is only possible for r− 1
eigenvalues, where r (which describes the rank of ρ) is the largest integer such that the {λi} describe a normalized
quantum state. The remaining non-zero eigenvalue λr is given by the normalization constraint which also provides
the upper bound to λ1. The lower bound comes from the requirement that λ1 is the largest eigenvalue, which finishes
the proof. �

As an extension, we show in the following Lemma that Theorem 1 can also be used to determine the minimal λ1

for a fixed expectation value 〈I〉max.

Lemma 1. Given the Hermitian operator I =
∑d

j=1
µj |Ψj〉〈Ψj | with µj ≥ µt for j < t. The minimal robustness of

purity PR(ρ) of a quantum state ρ =
∑d

i=1
λi|φi〉〈φi|, where λi ≥ 0 and

∑d
i=1

λi = 1, λi ≥ λs for i < s, achieving the

expectation value 〈I〉max ≥ 1

d
Tr(I) is determined by the equation

〈I〉max =
r

∑

j=1

µjλj , (3)

provided that
1

r − 1
> λ1 ≥ 1

r
, and all eigenvalues λi for i ∈ {1, · · · , r − 1} are equal to λ1.

Proof. Since PR(ρ) = dλ1(ρ)− 1, we need to minimize λ1. The expectation value in general is given by

〈I〉max = Tr(Iρ) =
∑

i,j

µiλj |〈Ψi|φj〉|2. (4)

We achieve a minimization of λ1 by exploiting the following two observations. First, since 〈I〉max ≥ 1

d
Tr(I) [2] we

need to maximize for fixed j the term
∑

i µiλj |〈Ψi|φj〉|2, i.e. we need to appropriately choose the eigenbasis of ρ which
according to Theorem 1 will be done by choosing ρ diagonal in the same basis as I, or more specifically |φj〉 = |Ψj〉 ∀ j.
This can be seen by realizing that

∑

i µiλj |〈Ψi|φj〉|2 is upper bounded by λjµj . Hence, if |φj〉 6= |Ψj〉, λ1 has to be
larger than necessary because some part of the contribution towards the expectation value is lost due to a sub-optimal



2

basis choice. Second, λ1 will be minimal for maximal possible λ2, λ3, · · · , λr, where r is just an index for now. More
precisely, it is optimal to choose as many λi equal to λ1 as possible, since by definition λ1 is the maximal eigenvalue
and for any lower value of the λi, λ1 would again be larger than necessary since we did not choose the maximal
contribution of the terms λiµi ∀ i towards the expectation value. However, we still have to incorporate that ρ is a
normalized quantum state, which means not all λi can actually be equal to λ1. In general it possible to choose all λi

equal to λ1 for i ∈ {1, · · · , r − 1} and to determine the smallest non-zero eigenvalue λr by normalization. Hence r
denotes the rank of ρ. This leads to

〈I〉max =
r

∑

j=1

µjλj , (5)

where we still do not know the value of the rank r. However, we can just make an Ansatz for some r ∈ {1, · · · , d}
and check whether the conditions

1

r − 1
> λ1 ≥ 1

r
, which are necessary for ρ to be a normalized density matrix and

for λ1 to be the largest eigenvalue of ρ are fulfilled or not. �

Equality of quantum resources for two qubits.—Here, we give a detailed derivation of Theorem 2 in the main text.

Theorem 2. Given a Bell operator of the form

I =
∑

x,y

gx,y Ax ⊗By, (6)

with real coefficients gx,y and local observables Ax = ~ax · ~σ, By = ~by · ~σ where ~ax,~by are Bloch vectors and ~σ is the

vector containing the Pauli matrices. For a fixed expectation value 〈I〉 = L+ v, where L is the local bound and v > 0,
there exists a two-qubit quantum state ρopt which simultaneously minimizes the generalized robustnesses of purity PR,

coherence with respect to all product bases CR, and entanglement ER.

Proof. The generalized robustness is defined as

GR(ρ) := min
τ

{

x|x ≥ 0, ∃ a state τ,
ρ+ xτ

1 + x
∈ V

}

, (7)

where the set V consists of the respective void states and τ can be any quantum state. For more information see
the main text. Note that Bell operators of the form (6) are (up to local unitaries) diagonal in the Bell basis [3].
This means I =

∑

j µj |Ψj〉〈Ψj | where the {|Ψj〉} are maximally entangled states. As a consequence, the states of

minimal entanglement (for all measures) ρBDS =
∑

i λi|Ψj〉〈Ψj | are also diagonal in this Bell basis [4]. These states
are entangled iff λ1(ρBDS) > 1/2 and it was shown in [5] that the generalized robustness of entanglement for two-
qubit BDS is given by ER(ρBDS) = 2λ1(ρBDS)− 1. This means minimizing ER(ρBDS) is equivalent to minimizing the
generalized robustness of purity PR(ρ) = dλ1(ρ)− 1, since both are monotonic functions of λ1(ρ). Due to Lemma (1)
and the fact that λ1(ρ) > 1/2, the state ρopt can always chosen to be of the form ρopt = λ1|Ψ1〉〈Ψ1|+(1−λ1)|Ψ2〉〈Ψ2|
where λ1 can be determined from eq. (5). It is convenient to choose τ = |Ψ2〉〈Ψ2| as optimal noisy state in eq.(7) to
minimize the generalized robustness of entanglement. This is always possible since mixing the minimal noise necessary,
i.e. x = 2λ1 − 1 of τ with ρopt will end up in a separable state

ρopt + (2λ1 − 1)τ

1 + (2λ1 − 1)
=

1

2
(|Ψ1〉〈Ψ1|+ |Ψ2〉〈Ψ2|) =: ξ. (8)

Since all considered quantifiers are invariant under local unitaries, we fix the Bell operator w.l.o.g. to be of the form

I =µ1|Φ+〉〈Φ+|+ µ2|Φ−〉〈Φ−| (9)

+µ3|Ψ+〉〈Ψ+|+ µ4|Ψ−〉〈Ψ−|,

where |Φ±〉 =
1√
2
(|00〉 ± |11〉) and |Ψ±〉 =

1√
2
(|01〉 ± |10〉) or any permutation of the eigenvalues. It follows now

directly from the form of the closest separable state ξ in eq. (8) that it is also incoherent in some product basis,
which means it is also the closest incoherent state to ρopt. This is because the hierarchy PR ≥ CR ≥ DR ≥ ER has to
hold [6] (see also the main text), which means CR(ρopt) is lower bounded by ER(ρopt). It can easily be seen that ξ is
incoherent for the mixtures of {|Φ+〉〈Φ+|, |Φ−〉〈Φ−|} or {|Ψ+〉〈Ψ+|, |Ψ−〉〈Ψ−|} and the computational basis. For the
other combinations one finds as optimal bases tensor products of the eigenstates of the Pauli matrices σx or σy. The
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eigenstates of the the Pauli matrix σz are given by {|0〉, |1〉}, the eigenstates of σx by |±〉 = 1√
2
(|0〉 ± |1〉) and those

of σy are given by |R/L〉 =
1√
2
(|0〉 ± i|1〉). Below we list for any of the possible rank-2 combinations the specific

decomposition of the closest separable state ξ into these states. Namely, it can easily be verified that

{|Φ+〉〈Φ+|, |Φ−〉〈Φ−|} ⇒ ξ =
1

2
(|00〉〈00|+ |11〉〈11|), (10)

{|Φ+〉〈Φ+|, |Ψ+〉〈Ψ+|} ⇒ ξ =
1

2
(|++〉〈++ |+ | − −〉〈− − |),

{|Φ+〉〈Φ+|, |Ψ−〉〈Ψ−|} ⇒ ξ =
1

2
(|RL〉〈RL|+ |LR〉〈LR|),

{|Φ−〉〈Φ−|, |Ψ+〉〈Ψ+|} ⇒ ξ =
1

2
(|RR〉〈RR|+ |LL〉〈LL|),

{|Φ−〉〈Φ−|, |Ψ−〉〈Ψ−|} ⇒ ξ =
1

2
(| −+〉〈−+ |+ |+−〉〈+− |),

{|Ψ+〉〈Ψ+|, |Ψ−〉〈Ψ−|} ⇒ ξ =
1

2
(|01〉〈01|+ |10〉〈10|),

all other cases of rank-2 BDS are equivalent under local unitaries to one of the above cases. This finishes the proof. �

Maximal expectation value for fixed Rényi 2-purity.—Here, we give a detailed derivation of an analogon to Theorem
1 regarding the Rényi 2-purity P2(ρ) = log2(dTr(ρ

2)).

Theorem 3. Given the Hermitian operator I =
∑d

j=1
µj |Ψj〉〈Ψj | with µj ≥ µt for j < t and a fixed Rényi 2-purity

P2(ρ) of a quantum state ρ. The maximal expectation value 〈I〉max can be achieved by ρ =
∑r

i=1
λi|Ψi〉〈Ψi|, where

λi ≥ 0,
∑r

i=1
λi = 1, λi ≥ λs for i < s, and is given by

〈I〉max =

G+

√

(1− r

d
2P2)(G2 −Hr)

r
, (11)

where G =
∑r

i µi, H =
∑r

i µ
2
i , and r ∈ {1, · · · , d} is the largest integer s.t.

λi =
(r〈I〉max −G)µi +H −G〈I〉max

Hr −G2
≥ 0 ∀ i ≤ r. (12)

Proof. We first show that we can solve a different but connected optimization task which will lead to a proof of
the theorem. The first simplification will be, that instead of considering the Rényi 2-purity P2 directly, we can just
consider PL = Tr(ρ2), since the logarithm is a monotonic function of PL. We emphasize again that, PL is no proper
measure of purity (see main text), even though it is known in the literature as linear-purity. Note that for any given

PL, the maximal achievable expectation value is s.t. 〈I〉max ≥ 1

d
Tr(I). This follows from the fact that 〈I〉 = 1

d
Tr(I) is

the expectation value achieved by the maximally mixed state (which minimizes PL) and for any other P ′
L > PL(1/d)

one is able to choose a state Ω = x|Ψ1〉〈Ψ1|+ (1− x)
1

d
with appropriately chosen x ∈ [0, 1] s.t. P ′

L = Tr(Ω2). Since

|Ψ1〉〈Ψ1| is the eigenstate corresponding to the largest eigenvalue of I it follows trivially that 〈I〉Ω ≥ 1

d
Tr(I). This

allows us to formulate an alternative optimization problem which proves the theorem. Given the Hermitian operator
I =

∑

j µj |Ψj〉〈Ψj | with fixed expectation value 〈I ′〉. We want to find the minimal P ∗
L of a valid quantum state that

achieves the expectation value 〈I ′〉. We will now show by contradiction that for the minimal P ∗
L it holds 〈I ′〉 = 〈I〉max.

First, it is trivial that 〈I ′〉 > 〈I〉max leads to a contradiction since 〈I〉max is by assumption the maximal expectation

value for a given P ∗
L. Second, if 〈I ′〉 < 〈I〉max we could construct a state ρ̃ = tρmax + (1− t)

1

d
where ρmax is a state

with P ∗
L achieving the expectation value 〈I〉max and choose t ∈ (0, 1) s.t. 〈I〉ρ̃ = 〈I ′〉. It follows now for PL(ρ̃) that

PL(ρ̃) = PL(tρmax + (1− t)
1

d
) < tPL(ρmax) + (1− t)PL(

1

d
) ≤ P ∗

L, (13)

where we used the strict convexity of PL (which is the square of the Frobenius norm) and the fact that PL(ρmax) = P ∗
L.

This however is a contradiction, since P ∗
L is by assumption the minimum for states achieving the expectation value
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〈I ′〉 and we showed that PL(ρ̃) would be smaller while achieving the expectation value 〈I ′〉. This allows us to solve
the minimization problem for a fixed expectation value and use the optimal state of minimal PL to solve the problem
we consider in the theorem. With the same argumentation as for the generalized robustness or alternatively the proof
shown in [3] (originally in the context of the CHSH inequality) we can reduce the problem of minimizing PL under
the Bell constraint s.t. the Bell operator I =

∑

i µi|Ψi〉〈Ψi| and the optimal quantum state ρopt =
∑

i λi|Ψi〉〈Ψi|
will be diagonal in the same basis. Note that the eigenvalues of both operators are ordered in descending order i.e.,
λi ≥ λs for i < s and µj ≥ µt for j < t. The Lagrangian of the problem is given by

L(λi, α, β) =
∑

i

λ2
i − α(

∑

i

λi − 1)− β(
∑

i

λiµi − 〈I〉), (14)

where α is the multiplier according to the normalization constraint and β the multiplier for the expectation value
constraint. We ignored for now the non-negativity of the eigenvalues but will come back to it later. Note that due

to the eigenvalue ordering 〈I〉 ≥ 1

d

∑

i

µi =
1

d
Tr(I), since λiµi > λsµs for i < s. Obviously this does not represent

a loss of generality for our theorem since we are only interested in values 〈I〉 ≥ 1

d

∑

i

µi =
1

d
Tr(I) anyway, as shown

above. To find an optimum, we have to take the partial derivatives of L(λi, α, β) with respect to the eigenvalues and
the Lagrange multiplier. In the case of the multipliers we simply retrieve the constraints, for the eigenvalues we find

∂L
∂λk

= 2λk − α− βµk
!
= 0, (15)

which results in

λk =
1

2
(βµk + α). (16)

From the normalization constraint
∑

k λk = 1 we get

α =

2− β
r
∑

k=1

µk

r
, (17)

where the sum runs from k = 1 until the rank r, which means we make an Ansatz for a rank r solution of the problem,
i.e. all eigenvalues λi of the state are zero ∀ i > r. This method is not restrictive, in the sense that we are still able to
find the true optimizer of the problem including the positivity constraints. PL = Tr(ρ2) is strictly convex, as it is the
square of the Frobenius norm, which means there is unique global minimum. The projection (in the Frobenius norm)
of a quasi-state η with negative eigenvalues onto the feasible set of proper quantum states ρ will be of smaller rank
than η itself. Therefore, we can start by making an Ansatz for an optimal state ρopt of full rank r = d. If this is a
proper quantum state according to (16), it is the state of minimal PL consistent with the expectation value constraint.
If the state is not a proper quantum state, we consider solutions of rank r = d−1. By iteratively decreasing the rank,
we will find a solution ρopt which is a proper quantum state and we do not have to consider states with an even lower
rank. In the following, we will introduce the quantities G =

∑r
k µk and H =

∑r
k µ

2
k. Using the Bell value constraint

we find

β(Hr −G2) = 2〈I〉r − 2G, (18)

which defines β provided that Hr−G2 6= 0. It is easy to see that Hr−G2 = 0 iff µi = µ1 ∀ i ≤ r i.e. the operator has
r degenerate largest eigenvalues µ1. This is a consequence of the Cauchy-Schwarz inequality when we consider the
inner product of a vector ~µ containing the r eigenvalues µi and a vector ~1 containing only ones. The case Hr−G2 = 0
can however only lead to the optimal state ρopt iff 〈I〉 = µ1 which follows from the requirement that the r.h.s. of eq.

(18) also vanishes. In this case the problem is independent of β and we find λk =
1

r
∀ k ≤ r. If Hr −G2 6= 0 we find

the optimal state ρopt by taking the eigenvalues from eq. (16) with the corresponding eigenstates from the operator I.
Reversely, this spectrum of eigenvalues can now be used to find the maximum expectation value 〈I〉max for a fixed PL.

Multiplying (16) with λk and summing over k leads to PL =
1

2
(β〈I〉+α), where we identified PL = Tr(ρ2) =

∑r
k=1

λ2
k.

By solving for 〈I〉 = 〈I〉max =
∑r

k=1
µkλk we will find

〈I〉max =
G+

√

(1− PLr)(G2 −Hr)

r
. (19)
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From eq. (19) we see that for PL ≥ 1/rdeg where rdeg is the number of degenerate largest eigenvalues of I the
maximum is given by µ1, since G2 −Hrdeg = 0 which can trivially be checked to be correct. While for PL ≤ 1/rdeg

for only rdeg times degenerate eigenvalues µ1 of I, we see that G2 −Hr 6= 0 which shows that eq. (19) is valid for all
operators I. The theorem follows now by rewriting the PL in terms of the Rényi 2-purity P2 and the requirement that
all λk ∀ k = 1, · · · , r are positive semidefinite (the remaining d − r eigenvalues are zero) and inserting the Lagrange
multipliers into the expression (16). Note that the optimal r for a given PL can be found by the above described
feasibility check. In other words, we check whether (16) leads to a valid quantum state for the rank r, given PL and
maximal expectation value 〈I〉max. Note further that in order to derive (19), we have to solve a quadratic equation,
which generally has two solutions. However, we are only interested in the maximum of those two solutions which is
the solution corresponding to taking the positive root in (19). �

The hierarchy of quantum resources in the context of the I3322 inequality.—Here, we show that the hierarchy

PR ≥ CR ≥ DR ≥ ER, (20)

is not always tight for the states minimizing the respective generalized robustnesses for a given Bell operator I. The
I3322 inequality is given by [7]

〈A1〉+ 〈A2〉 − 〈B1〉 − 〈B2〉 (21)

+〈A1B1〉+ 〈A2B1〉+ 〈A3B1〉+ 〈A1B2〉
+〈A2B2〉 − 〈A3B2〉+ 〈A1B3〉 − 〈A2B3〉 ≤ 4.

By generating random projective measurements {Aa|x} (and similar for Bob) which lead to the observables Ax =
A2|x − A1|x we searched for Bell operators I, which will lead to a non-tight hierarchy. We found that the following
measurements of Alice and Bob do lead to such a case. The measurements (rounded to four digits) are given in the
computational basis {|0〉, |1〉} by

A1|1 =

(

0.4379 0.3455 + 0.3560i
0.3455− 0.3560i 0.5621

)

, (22)

A1|2 =

(

0.6885 0.3964− 0.2394i
0.3964 + 0.2394i 0.3115

)

,

A1|3 =

(

0.9187 −0.0737 + 0.2632i
−0.0737− 0.2632i 0.0813

)

,

B1|1 =

(

0.6973 0.0630− 0.4551i
0.0630 + 0.4551i 0.3027

)

,

B1|2 =

(

0.8982 −0.2538 + 0.1645i
−0.2538− 0.1645i 0.1018

)

,

B1|3 =

(

0.6472 −0.0110 + 0.4777i
−0.0110− 0.4777i 0.3528

)

,

where the remaining POVM-elements are obtained by the completeness relation
∑

a Aa|x = 1 (and similar for Bob).
For the generalized robustnesses of purity, coherence, and entanglement we find for these settings and a required Bell
value of 〈I〉 = 4.001 that,

PR > CR > ER, (23)

with PR = 2.6756, CR = 0.8418, and ER = 0.8291. We calculated the purity robustness analytically with the methods
described in the main text. The entanglement robustness was determined by semidefinite programming [8], and for
the coherence robustness we used a combination of a simplex algorithm and semidefinite programming over all Bell
operators of the form

Ĩ = (UA ⊗ UB)I(UA ⊗ UB)
†, (24)

where UA, UB are local unitaries. For the simplex algorithm we used different randomly initialized starting points
which all lead to the same result, suggesting it is the true minimum. Note that the gap between purity and coherence
is not just due to a trivial factor like for correlation inequalities (see main text) but due to entirely different optimal
states. One reason for this is the fact that the considered Bell-operator I is, in comparison to the correlation
inequality case, not diagonal in the Bell-basis. As a consequence of that, the states of minimal entanglement are no
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longer diagonal in the eigenbasis of I and therefore different from the states of minimal purity.
Discussion on the definition of the quantifier C.—In the main text we defined the quantifier C = ||[A1, A2]|| ·

||[B1, B2]|| in order to judge the quality of the observables in the CHSH scenario. While the magnitude of a single
party’s commutator is a valid incompatibility monotone for projective measurements and directly related to the
robustness of the observable with respect to white noise [9], it is not clear that C has a similar meaning for the
measurements of both parties. As we argued in the main text, C is meaningful for the CHSH inequality since
it determines the eigenvalues of the Bell operator and especially the maximal possible violation enabled by the
observables {A1, A2, B1, B2}. In more general Bell scenarios, the ability to show nonlocality with some measurements
is a distinct resource from measurement incompatibility [10, 11]. However, there exists so far no resource theory or
straightforward quantification for the ability of observables to show nonlocality. In Fig. 1 we show that indeed, the
general resource requirement of two-qubit states for higher Bell values increases. We can reduce the discussion to
Bell-diagonal states ρBDS as they minimize the needed resources. (see Theorem 3). The curves in Fig. 1 were obtained
by minimizing the largest eigenvalue λ1(ρBDS) for a given CHSH-Bell value. To do so, we used that the optimal C for

fixed λ1(ρBDS) is given by Cmax =
4(2λ1 − 1)

2λ2
1 − 2λ1 + 1

. We also use that the formula for the maximal expectation value

〈I〉max =
√
4 + Cλ1 +

√
4− C(1 − λ1) can also be used to fix 〈I〉max and calculate the minimal λ1(ρBDS) needed.

The generalized robustness of purity and entanglement are both determined by λ1(ρBDS). If we consider the sum of

Figure 1. The minimal resources in terms of generalized robustness of purity PR(ρBDS) = 4λ1(ρBDS) − 1 and entanglement
ER(ρBDS) = 2λ1(ρBDS) − 1 needed to achieve a fixed Bell value. As stated in the main text, coherence and entanglement are
equivalent (and discord as well) while purity is the largest of these resources.

the single party’s incompatibilities C̃ = CA + CB = ||[A1, A2]|| + ||[B1, B2]||, which due to linearity might be more
intuitive to do, it would lead to eigenvalues

µ1/4 = ±
√

4 +
(CA + CB)

2 − C2
A − C2

B

2
, (25)

µ2/3 = ±
√

4− (CA + CB)
2 − C2

A − C2
B

2
.

This however, is a problem since for fixed values of C̃ there are multiple possible eigenvalue distributions {µi} as one

can easily see by fixing C̃ = 2 and comparing the cases CA = 2, CB = 0 and CA = 1, CB = 1. This means there
cannot be a well defined function of the quantum resources of the state depending C̃ in general. Note that in the
special case CA = CB , the eigenvalues will again be well defined. Finally, we could also be interested in the functional
form of the resources depending on CA and CB . In this case, the fundamental effect that maximal incompatible
measurements for Alice and Bob will not lead to the minimal required state resources will remain. Especially for very
small violations v = 10−3, we show in Fig. 2 that the behavior is essentially the same. While it might be possible
that the behaviour depends also qualitatively on the choice of the incompatibility measure for the individual parties
we want to argue that this is unlikely. The commonly used measures of measurement incompatibility are all based
on the robustness with respect to the set of jointly measurable POVMs and measurement incompatibility reduces to
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Figure 2. The necessary λ1 vs. the single party’s incompatibility quantifier CA, CB for a violation of v = 10−3. The plot
shows that higher incompatibility resources need higher entanglement to achieve the same violation for some parameter region
of CA, CB .

commutation for projective measurements [9]. We therefore expect that the behaviour reported here does not depend
on the specific measure. To further support this claim, we analyze the qualitative behaviour of the state resources
depending on the generalized robustness of measurement incompatibility [12]. For a set of POVMs {Ma|x}a,x, the
generalized robustness of measurement incompatibility is given by

CGRA({Ma|x}a,x) = min{t ≥ 0
∣

∣

Ma|x + tNa|x

1 + t
= Oa|x ∈ JM ∀ a, x}, (26)

where {Na|x}a,x is any set of POVMs and JM denotes the set of POVMs {Oa|x}a,x that are jointly measurable
(as generalization of commutativity from projective measurements to POVMs), hence classical or resource free. For
more details, see [12]. We define now in correspondence to Fig. (2) in the main text the (global) incompatibility
CGR = CGRACGRB as the product of the incompatibility of Alice and Bob. As one can see from Fig. (3), the
qualitative dependence of the state resources is the same as in Fig. (2) of the main text. To obtain these results, we

Figure 3. The minimal generalized robustness of entanglement ER(ρ) for a given level of incompatibility CGR for different
amounts of desired violation v. The qualitative behaviour is equivalent to that of Fig. (2) in the main text.

sampled projective measurements over the whole range of incompatibility values, which we calculated via semidefinite
programming [8, 12] in tandem with Theorem 1 and Lemma 1 to calculate the minimal needed largest eigenvalue
λ1(ρ) and therefore ER. However, to get a complete understanding on the functional behaviour of the minimal state
resources on the incompatibility, further studies of different incompatibility monotones are necessary.

Variation of state resource quantifiers. Here, we discuss the qualitative influence when we chose a quantifier for
the state’s resources different than the generalized robustness. It turns out that only purity can show a qualitatively
different behaviour as a function of C. This is the case for the relative entropy of purity.
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First, since the entanglement of Bell diagonal states

ρBDS =

4
∑

i

λi|Ψj〉〈Ψj |, (27)

where the |Ψj〉 span an orthonormal basis of maximally entangled states, is completely characterized by their largest
eigenvalue λ1 and the resource measures are by definition resource monotones, it does not matter which distance-based
entanglement quantifier we choose, since all of them will be monotonic functions of λ1. By the same argumentation
we can see, that for any rank-2 BDS state, the closest separable state ξ (see eq. (8)) does not change when we change
the quantifier. Now the proof of Theorem 2 guarantees, that also the minimal coherence only depends on λ1 and
not on the concrete quantifier, since the closest separable state ξ is incoherent in some product basis. However, if we
chose a different purity measure, it will in general depend on the whole spectrum of the state and not just the largest
eigenvalue. This can lead to a potentially different functional behaviour with respect to the incompatibility quantifier
C. We show that this is indeed the case by considering the relative entropy of purity. The relative entropy is defined
as

S(ρ||ξ) = Tr(ρ log2 ρ)− Tr(ρ log2 ξ). (28)

In the case of purity, the relative entropy reduces to

SP (ρ||1/d) = log d− S(ρ), (29)

where S(ρ) = −Tr(ρ log ρ) denotes the von Neumann entropy. Mathematically, maximizing the von Neumann entropy
under the constraint that 〈I〉 = Tr(ρI) for quantum states ρ is a standard textbook task [8]. Physically, we find that
the relative entropy of purity shows a distinct qualitative behaviour with respect to the incompatibility quantifier C
from all the other considered resource measures. More precisely, the relative entropy of purity is not only minimized
by different states, it also monotonically decreases with increasing C as depicted in Fig. (4).

Figure 4. Comparison of the logarithm of the generalized robustness of purity, the so-called log-robustness (purple) with the
Rényi 2-purity P2 (orange), and the relative entropy of purity (green) for an exemplary violation of v = 0.2. The minimal
relative entropy decreases with increasing C, for all C, contrary to the other measures as described in the text.
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Distance-based resource quantification for sets of quantum measurements

Lucas Tendick,∗ Martin Kliesch, Hermann Kampermann, and Dagmar Bruß
Institute for Theoretical Physics, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany

The advantage that quantum systems provide for certain quantum information processing tasks
over their classical counterparts can be quantified within the general framework of resource theories.
Certain distance functions between quantum states have successfully been used to quantify resources
like entanglement and coherence. Perhaps surprisingly, such a distance-based approach has not been
adopted to study resources of quantum measurements, where other geometric quantifiers are used
instead. Here, we define distance functions between sets of quantum measurements and show that
they naturally induce resource monotones for convex resource theories of measurements. By focusing
on a distance based on the diamond norm, we establish a hierarchy of measurement resources and
derive analytical bounds on the incompatibility of any set of measurements. We show that these
bounds are tight for certain projective measurements based on mutually unbiased bases and identify
scenarios where different measurement resources attain the same value when quantified by our
resource monotone. Our results provide a general framework to compare distance-based resources
for sets of measurements and allow us to obtain limitations on Bell-type experiments.

I. INTRODUCTION

It is arguably one of the most astonishing features of
quantum theory that certain quantum systems exhibit
behaviours without any classical analogue. While these
quantum phenomena were first just regarded as a strange
feature of nature which led to many philosophical ques-
tions [1–3], it has later been realized that these phenom-
ena can actually be used as a resource in real world appli-
cations such as computation [4], sensing [5], or cryptogra-
phy [6]. To understand the potential of these upcoming
technologies, it is important to understand how much
advantage they can provide over conventional methods
and which physical phenomena enable it. To achieve
this advantage, properties of both, quantum states and
measurements, are relevant. Among the most important
types of quantum correlations that are know to enable
advantages over classical systems are entanglement [7],
EPR-steering [8–10], and Bell nonlocality [11, 12].

The latter two are similar in the sense that both types
of correlations can be seen as resources that require one
out of several judiciously chosen quantum measurements
to be performed on a resourceful quantum state in each
round of an experiment. In particular, it is well-known
that entangled states and incompatible measurements are
necessary to witness steering or nonlocality [9] and also
limit these phenomena quantitatively [13, 14]. However,
states and measurements posses a variety of different re-
sources in general [15–23].

Quantum resource theorys (QRTs) [24] allow to iden-
tify, study, and quantify quantum resources for certain
quantum information processing tasks in a general frame-
work. Moreover, this allows to identify similarities among
different resources, adapt concepts and quantification
methods [25–28] from one to another, and to establish
relations between different resources [13–15, 29]. Any

∗ lucas.tendick@hhu.de
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Figure 1. Distance-based resource quantification. A set of
measurements M contains different quantum resources in
general. These different quantum resources are associated
with their respective sets of free measurements, here denoted
by F1 for QRT Q1 and F2 for QRT Q2. The amount of
resource in M associated to Q1 and Q2 is quantified by its
distance R1(M) to the set F1 and the distance R2(M) to the
set F2, respectively. As all free measurements F ∈ F2 are
also contained in F1 it follows that R1(M) ≤ R2(M).

QRT aims to answer at least the following three ques-
tions: (i) Which objects (e.g. states or measurements)
are resources for a certain task and which ones are free,
i.e., do not provide any advantage? (ii) Which transfor-
mations are free, i.e., cannot create resources from free
objects? (iii) How can we quantify the amount of the re-
source? A standard approach to quantify any quantum
resource, illustrated in Figure 1, is to ask how far away a
given resource is from the set of free objects, as measured
by some distance-based function. Together with the class
of robustness-based [22, 30–34] and weight-based quan-
tifiers [28, 35–38] the class of distance-based [39–42] re-
source quantifiers form the class of so-called geometric
quantifiers. One main advantage of these quantifiers is
that they generally can be defined for any convex QRT
(i.e., a QRT where the set of free objects is convex), which
for instance allows a practical way to compare certain re-
sources with each other. The combined insights from all
three classes of geometric quantifiers usually gives a de-
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Resource Monotone Free objects Free operations Optimization Type

General • R⋄(Mp) (12) F ∈ F Λ† ∈ F, simulations ξ ∈ S SDP (36),(37) Set\Average

Informativeness • IF⋄(Mp) (17) Fa|x = q(a|x)1d (16) Unital maps Λ† a, simulations ξ [22] SDP (F1), (F2) Average

Coherence • C⋄(Mp) (19) Fa|x =
∑

i
αi|(a,x)|i〉〈i| (18) SI-operations Λ†

SIO
b [23], simulations ξ c SDP (F4), (F5) Average

Incompatibility • I⋄(Mp) (21) Fa|x =
∑

λ
v(a|x, λ)Gλ (20) Unital maps Λ† [33], simulations ξ [21] SDP (E1), (E2) Set

Steering S(~σp) (24), [46] τa|x =
∑

λ
v(a|x, λ)σλ (23) (Restricted) 1W-LOCC d [46, 49] SDP (C6), (C12) Set

Nonlocality N(qp) (26), [47]
t(a, b|x, y) (25)

=
∑

λ
π(λ)vA(a|x, λ)vB(b|y, λ)

WCCPI e[50] Linear (C3), (C5) Set

a Even though it is not discussed in [22], it follows directly from the definition of unitality, that no quantum channel Λ† can create
informativeness from uninformative measurements.

b SIO stands for strictly incoherent operations.
c Even though it is not discussed in [23], it follows directly from the definition of the classical simulations ξ that they cannot create

coherence, as linear combinations of diagonal matricies are diagonal.
d 1W-LOCC stands for one-way local operations and classical communication
e WCCPI stands for wirings and classical communication prior to the inputs.

Table I. Overview over the resources analyzed in this work. The different resources are presented in terms of the monotones
we consider, the respective free objects, and the set of free operations associated to the considered QRT. The monotones we
introduce in this work are marked with a bullet point •. Furthermore, we present by which kind of optimization the respective
monotone can be computed and whether the resources are genuine properties of a set of objects or an average over single object
properties. The free operations for steering and nonlocality are listed for completeness here and we refer to the references in
the table for more details.

tailed picture of any convex QRT.
Historically, quantum states were recognized first as

quantum resources and the approach of geometric quan-
tification has been employed with great success to re-
sources like entanglement [7] or coherence [16]. More re-
cently, quantum measurements became the focus of QRT
research. Interestingly, for quantum measurements, the
analysis of resources developed in a different direction
than for quantum states. While weight and robustness
quantifiers for measurements are well-established, dis-
tances between different measurements have only been
studied recently [43, 44] and distance-based resource
quantification for sets of measurements remains widely
unexplored until now.

In this work, we complete the class of geometric quan-
tifiers for convex QRTs of sets of measurements (so-
called assemblages) by introducing distance-based re-
source quantifiers. First, we discuss necessary properties
any distance between sets of measurements has to fulfil.
Then, we show that every such distance induces a convex

resource monotone. We propose one particular quanti-
fier, which is based on the diamond norm [45] between
different measure-and-prepare channels and is especially
tailored to Bell-type experiments, as it captures the idea
that only one particular measurement out of a given col-
lection is applied at a time in a round-by-round proto-
col. Based on this quantifier, we establish a hierarchy
of measurement resources including recently introduced
steering [46] and nonlocality monotones [47]. See Table
I for an overview of the resources and the quantities we
analyze in this work. We show that our quantifier can
be computed efficiently by means of a semidefinite pro-
gram (SDP) which we use to obtain analytical upper and
lower bounds on the incompatibility (i.e., the non-joint
measureability) [19] for any set of measurements. Finally,
we show that these bounds are tight for special instances
of projective measurements based on mutually unbiased
bases (MUB) [48], which also play a special role for cases
when different measurement resources attain the same
value when quantified with our proposed quantifier.

II. DISTANCE-BASED RESOURCE

QUANTIFICATION

Consider the canonical example of the trace dis-
tance [51]. The trace distance between two quantum
states ρ, τ ∈ S(H), where S(H) is the set of density ma-
trices acting on a Hilbert space H ∼= Cd of dimension d,

is given by

D1(ρ, τ) =
1

2
‖ρ− τ‖1 ≥ 0, (1)

where ‖X‖1 = Tr[
√
X†X] is the trace norm of X. The

trace distance is a useful tool to distinguish ρ and τ , as it
fulfils all necessary properties of a metric between quan-
tum states. Consider ρ, τ, χ ∈ S(H) and any completely
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positive and trace preserving (CPT) map Λ also known
as quantum channel. It holds that

D1(ρ, τ) = 0 ⇐⇒ ρ = τ, (2)

D1(ρ, τ) = D1(τ, ρ),

D1(ρ, τ) ≤ D1(ρ, χ) + D1(χ, τ),

D1(ρ, τ) ≥ D1(Λ(ρ),Λ(τ)),

i.e., D1(ρ, τ) is a faithful and symmetric function that
obeys the triangle inequality and monotonicity (i.e. it
does not increase) under arbitrary CPT maps Λ. In ad-
dition to these minimal requirements, it is well known
that D1(ρ, τ) has an operational interpretation in terms
of the optimal probability to distinguish ρ and τ in a
single-shot experiment [51]. That is, the optimal guess-

ing probability is given by p
(ρ,τ)
1,guess =

1

2
(1 + D1(ρ, τ)).

These properties make the trace distance a viable tool to
quantify (convex) resources.

Let us consider the prime example of a resource, the
entanglement of a bipartite state ρ ∈ S(H⊗H). One can
quantify the entanglement of ρ by its distance to the set
Sep(H⊗H) of separable quantum states [39] given as

E1(ρ) = min
ρS∈Sep(H⊗H)

D1(ρ, ρS). (3)

It is now readily verified that E1(ρ) is a non-negative,
convex function with E1(ρ) = 0 ⇐⇒ ρ ∈ Sep(H ⊗ H)
obeying the monotonicity E1(ρ) ≥ E1(ΛLOCC(ρ)) un-
der any local operations and classical communication
(LOCC) [7] map ΛLOCC. That is, E1(ρ) is a faithful (i.e.
E1(ρ) = 0 ⇐⇒ ρ ∈ Sep(H⊗H)) convex resource mono-
tone. Note that the monotonicity E1(ρ) ≥ E1(ΛLOCC(ρ))
captures the fact that LOCC maps cannot create entan-
glement. The monotonicity of resources under these so-
called free operations is sometimes also referred to as
golden rule of QRTs [24].

We can use the insights for distances and resources of
quantum states to define distance-based resource mono-
tones for sets of quantum measurements in the following.
A quantum measurement is most generally described by
a positive operator valued measure (POVM) i.e., a set
{Ma}a of effect operators 0 ≤ Ma ≤ 1d, acting on a
d-dimensional Hilbert space H such that

∑

a Ma = 1d.
A set of POVMs with outcomes a for different settings
x is known as measurement assemblage M = {Ma|x}a,x.
Note that we will omit in the following the set-indices and
simply write M = {Ma|x} when there is no risk of confu-
sion. If we talk about a specific element of the assemblage
M, for instance the POVM corresponding to setting x,
we will write Mx = {Ma|x}a. Here, we consider assem-
blages with m measurement settings and o outcomes in
each setting, i.e. x = 1, · · · ,m and a = 0, · · · , o − 1.
The outcome statistics of a measurement on any state ρ
is given by p(a, x) = p(x)p(a|x) = p(x)Tr[Ma|xρ], where
p(x) is the probability to choose the setting x.

A measurement assemblage can be converted by two
different processes to another assemblage. First, as any

quantum state ρ can be transformed via any CPT map
Λ to another state Λ(ρ), it follows from Tr[Ma|xΛ(ρ)] =

Tr[Λ†(Ma|x)ρ] that an assemblage M can be trans-
formed via the Hilbert-Schmidt adjoint (unital) map
Λ† to another assemblage Λ†(M). Second, mixtures
and classical post-processing maps M′ = ξ(M) with
M ′

b|y =
∑

x p(x|y)
∑

a q(b|y, x, a)Ma|x can be used to sim-

ulate [21] the assemblage M′ from M via the conditional
probabilities p(x|y) and q(b|y, x, a) for all y, respectively
for all y, x, a. Note that as p(x) =

∑

y q(y)p(x|y) one also

obtains the probability q(y) to perform setting y.
We use the probability distribution p = {p(x)} to cap-

ture the fact that typically only one quantum measure-
ment can be performed at a time and it is also natural
to assume that the likelihood of the settings x influences
the capabilities of M in experiments. Note that we con-
sider only the case p(x) > 0 ∀ x, as measurements that
are never performed can be discarded trivially. We define
a distance between sets of measurements weighted with
the distribution p as follows.

Definition 1. Let M be a measurement assemblage con-
taining m POVMs and let p be a probability distribu-
tion with p(x) > 0 ∀ x = 1, · · · ,m.We call the tu-
ple Mp := (M,p) a weighted measurement assemblage
(WMA). Let Mp, Np, and Kp be WMAs. Any function
D(Mp,Np) that fulfils the conditions

D(Mp,Np) = 0 ⇐⇒ M = N , (4)

D(Mp,Np) = D(Np,Mp),

D(Mp,Np) ≤ D(Mp,Kp) + D(Kp,Np),

D(Mp,Np) ≥ D(Λ†(Mp),Λ
†(Np)),

D(Mp,Np) ≥ D(ξ(Mp)q, ξ(Np)q).

is a distance between Mp and Np.

Note that all conditions are in direct correspondence
to the conditions in Eq. (2) for quantum states. Any
distance that fulfills the conditions in Definition 1 can be
used to define a faithful convex resource monotone for
convex QRTs of measurement assemblages.

Definition 2. Let F be a convex and compact set of
measurement assemblages, F the (maximal) set of free
quantum maps Λ† such that Λ†(F) ∈ F for any F ∈ F ,
and let S be the set of simulations ξ such that ξ(F) ∈ F

for any F ∈ F . The tuple Q := (F ,F, S) is called a
QRT of measurement assemblages.

Definition 3. Let Q = (F ,F, S) be a QRT of WMAs
Mp, Np. Any function R(Mp) that fulfils

R(Mp) = 0 ⇐⇒ M ∈ F , (5)

R(Mp) ≥ R(Λ†(M)p), ∀ Λ† ∈ F,

R(Mp) ≥ R(ξ(Mp)q), ∀ ξ ∈ S,

R(ηMp + (1− η)Np) ≤ ηR(Mp) + (1− η)R(Np),

for any η ∈ [0, 1] is a faithful convex resource monotone
of WMAs.
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With these definitions we obtain the following lemma,
showing that every distance between measurement as-
semblages induces a faithful convex resource monotone.

Lemma 1. Let Q = (F ,F, S) be any QRT of WMAs
Mp and D(Mp,Fp) a distance function. The function

R(Mp) := min
F∈F

D(Mp,Fp), (6)

is a faithful convex resource monotone.

Proof. The proof relies on the conditions in Defini-
tion 1. The convexity, non-negativity, and faithfulness
(i.e. R(Mp) = 0 ⇐⇒ M ∈ F ) follow directly, and the
monotonicity conditions follow from

R(Mp) = min
F∈F

D(Mp,Fp) (7)

≥ min
F∈F

D(Λ†(M)p,Λ
†(F)p)

≥ min
F ′∈F

D(Λ†(M)p,F ′
p) = R(Λ†(M)p),

where we used the monotonicity of the distance and the
fact that free operations Λ† ∈ F map free assemblages
to free assemblages. An analogous calculation follows for
the simulations ξ ∈ S. Note that the arguments used here
are similar to those for distance-based resource mono-
tones of quantum states. �

We propose in the following a specific distance on
which we focus on in the remainder of the work (see how-
ever the appendix for alternatives). More specifically, we
associate to any POVM Mx = {Ma|x}a a measure-and-
prepare channel defined by

ΛMx
(ρ) =

∑

a

Tr[Ma|xρ]|a〉〈a|, (8)

where the register states |a〉 form an orthonormal basis
{|a〉}0≤a≤o−1. Note that the channel ΛMx

can equiv-
alently be described by its Choi–Jamiołkowski-matrix
(see e.g. [52]). The Choi–Jamiołkowski-matrix of a quan-
tum channel is obtained by applying a given chan-
nel to the first subsystem of the (unnormalized) maxi-

mally entangled state |Φ̃+〉 = ∑d−1
i=0 |ii〉. More precisely,

the Choi–Jamiołkowski-matrix of a measure-and-prepare
channel as described in Eq. (8) is given by

J(Mx) = (ΛMx
⊗ 1)(|Φ̃+〉〈Φ̃+|) =

∑

a

|a〉〈a| ⊗MT
a|x,

(9)

where the transpose is with respect to the computational
basis.

We denote the diamond distance between two quantum
channels Λ1,Λ2 by

D⋄(Λ1,Λ2) = max
ρ∈S(H⊗H)

1

2
‖((Λ1 − Λ2)⊗ 1d)ρ‖1. (10)

Due to the connection to the trace distance, the diamond
distance determines the optimal single-shot probability

p
(Λ1,Λ2)
⋄,guess =

1

2
(1 + D⋄(Λ1,Λ2)) to distinguish between Λ1

and Λ2. Based on the diamond distance, we propose the
distance D⋄(Mp,Np) between the WMAs defined as

D⋄(Mp,Np) :=
∑

x

p(x)D⋄(ΛMx
,ΛNx

), (11)

and its induced resource monotone

R⋄(Mp) := min
F∈F

∑

x

p(x)D⋄(ΛMx
,ΛFx

). (12)

Note that the diamond distance between measure-and
prepare-channels has also been introduced in the context
of single POVM discrimination [43, 44]. To prove that
R⋄(Mp) is indeed a resource monotone, we need to show
that D⋄(Mp,Np) is a distance function according to the
conditions in Definition 1.

Theorem 1. The function D⋄(Mp,Np) is a distance
function between the WMAs Mp and Np, i.e., it fulfils
all the conditions stated in Definition 1.

Proof. The proof relies mostly on the properties of the
diamond distance. It is possible to rewrite

D⋄(Mp,Np) =
1

2

∑

x

p(x)max
ρ

∑

a

‖σa|x(ρ)− τa|x(ρ)‖1,

(13)

where we have introduced σa|x(ρ) = Tr1[(Ma|x⊗1)ρ] and
τa|x(ρ) = Tr1[(Na|x⊗1)ρ]. Note that we omit here and in
the following the Hilbert space ρ acts on. All conditions
in Definition 1 can now be verified by direct computation.
See Appendix A for all details. �

Note that it follows directly from its definition that
R⋄(Mp) is upper bounded by R⋄(Mp) ≤ 1, and that it
fulfills the continuity condition

|R⋄(Mp)− R⋄(Np)| ≤ D⋄(Mp,Np), (14)

due to the triangle inequality for the diamond norm.
Moreover, it can be rewritten as

R⋄(Mp) = min
F∈F

2
∑

x

p(x)p
(M,F)
⋄,guess(x)− 1, (15)

which is up to normalization the average optimal proba-
bility to distinguish the resources M from the free mea-
surements F in a single-shot experiment. See also Fig-
ure 2 for an illustration of the operational meaning of
R⋄(Mp).

III. HIERARCHY OF MEASUREMENT

RESOURCES

One main goal while studying QRTs is to obtain rela-
tions between different resources. In particular, we want
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ΛMx

ΛFx

ρ ? p
(M,F)
⋄,guess(x)

ΛMx/Fx
(ρ)

Figure 2. Illustration of the idea to use the diamond distance
as resource monotone. Quantum measurements Mx,Fx are
associated with quantum channels ΛMx ,ΛFx . These are dis-
tinguished by applying the channels to an optimal quantum
state ρ and performing an ideal dichotomic measurement af-
terwards to distinguish between the output of the channels
ΛMx and ΛFx . The probability p

(M,F)
⋄,guess(x) tells us how dis-

tinguishable the resourceful measurement Mx is from the free
measurements Fx.

to understand how one resource limits another quantita-
tively. This will show one strength of a geometric quanti-
fier, as it can be defined for various resource theories and
the discussion often reduces to an analysis of the free
sets F . In the following, we will establish a hierarchy
of measurement resources based on the newly introduced
quantifier R⋄(Mp). We start by introducing the differ-
ent resources.

The most basic resource of an assemblage is its infor-
mativeness [22]. The informativeness of a WMA quanti-
fies how valuable it is to actually perform measurements
compared to randomly guessing the outcomes in an ex-
periment. An assemblage M is called uninformative (UI)
if

Ma|x = q(a|x)1d ∀ a, x, (16)

where {q(a|x)} are some probability distributions of a
conditioned on setting x. These measurements are UI as
their measurement result does not depend on the quan-
tum state. We denote the set of UI assemblages by FUI

and introduce the informativeness monotone

IF⋄(Mp) = min
F∈FUI

∑

x

p(x)D⋄(ΛMx
,ΛFx

). (17)

Note that measurement informativeness was initially in-
troduced only for a single POVM and studied in terms
of the generalized robustness [22]. We have extended the
notion here by considering the average informativeness
of Mp.

A resource that is the foundation for the distinction
between classical and quantum systems is the coherence
of measurements [23]. An assemblage M is incoherent
(in some predefined orthonormal basis {|i〉}) if

Ma|x =
∑

i

αi|(a,x)|i〉〈i| ∀ a, x, (18)

where αi|(a,x) = 〈i|Ma|x|i〉. These measurements cannot
distinguish quantum states ρ from their fully dephased
versions ∆(ρ) =

∑

i|i〉〈i|ρ|i〉〈i|, hence they cannot detect
coherence. We denote the set of incoherent assemblages
by FIC and introduce the coherence monotone

C⋄(Mp) = min
F∈FIC

∑

x

p(x)D⋄(ΛMx
,ΛFx

). (19)

Similarly to the informativeness, the coherence of mea-
surements was initially introduced for a single POVM
and we have extended it here by considering the average
coherence of Mp. See also [26] for a different approach
to coherence of measurement assemblages.

The incompatibility of measurements is probably the
best-known example of a QRT for measurements and has
been studied extensively in recent years [19, 33, 34, 53–
55]. Contrary to classical physics, different quantum
measurements may be incompatible, i.e., they cannot be
performed simultaneously and one cannot access their
joint measurement statistics as famously illustrated by
the Heisenberg-Robertson uncertainty relation [3]. Ini-
tially interpreted as a drawback, this phenomenon lies at
the heart of Bell-type experiments, as incompatibility is a
necessary prerequisite to witness steering and nonlocality.
An assemblage M is called compatible or jointly measur-
able (JM) if the statistics of M can be simulated by a
single measurement via some POVM {Gλ} and classical
post-processing via the deterministic probability distri-
butions {v(a|x, λ)} such that

Ma|x =
∑

λ

v(a|x, λ)Gλ ∀ a, x, (20)

and is called incompatible otherwise. Note that using
deterministic post-processings {v(a|x, λ)} (which repre-
sent the vertices of the corresponding probability poly-
tope) is not a restriction as all randomness from non-
deterministic distributions can be put inside Gλ. We
denote the set of JM assemblages by FJM and introduce
the incompatibility monotone

I⋄(Mp) = min
F∈FJM

∑

x

p(x)D⋄(ΛMx
,ΛFx

). (21)

It is important to note that the incompatibility in
Eq. (21) is not the average of single POVM properties, as
incompatibility is always a property of sets of measure-
ments. Therefore, the incompatibility I⋄(Mp) is qualita-
tively different from the coherence or informativeness.

Similar to entanglement, incompatibility can be wit-
nessed in a Bell-type experiment, as both are neces-
sary resources for steering and nonlocality. Consider the
WMA Mp and any bipartite quantum state ρ shared by
two-parties, Alice and Bob. By performing the measure-
ments Mp on her share of the state, Alice prepares the
conditional states

σa|x = Tr1[(Ma|x ⊗ 1)ρ], (22)

for Bob. Here p(a|x) = Tr[σa|x] is the probability to
obtain σa|x. We denote the obtained state assemblage by
~σ = {σa|x} and its weighted version by ~σp = (~σ,p).

To make sure that Alice performs incompatible mea-
surements on an entangled state, she can prove that she
can demonstrate steering. A state assemblage ~σ is said to
be steerable if it cannot be obtained from a local hidden-
state model (LHS) given by

σa|x =
∑

λ

v(a|x, λ)σλ ∀a, x, (23)
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where the σλ are operators that satisfy σλ ≥ 0 ∀λ and
Tr[

∑

λ σλ] = 1. Otherwise we say ~σ is unsteerable which
we denote by ~σ ∈ LHS. Steering can also be quantified
and we use the distance-based monotone introduced by
Ku et al. [46] as

S(~σp) = min
~τ∈LHS

1

2

∑

a,x

p(x)‖σa|x − τa|x‖1. (24)

Note that originally an additional consistency constraint
∑

a
τa|x =

∑

a
σa|x was introduced [46], which we do not

require here.
Consider now that both parties, Alice and Bob, want

to prove that they perform incompatible measurements
on an entangled state. Let MpA

and NpB
be the WMAs

of Alice and Bob, respectively, and let ρ be their shared
quantum state. Alice and Bob obtain the probability dis-
tribution q = {q(a, b|x, y)} via q(a, b|x, y) = Tr[(Ma|x ⊗
Mb|y)ρ]. Note that p(x, y) = pA(x)pB(y) is the probabil-
ity to choose setting x for Alice and y for Bob and we
introduce the tuple qp = (q,p). To assure themselves
that they share an entangled state and perform incom-
patible measurements, they can check whether they can
demonstrate nonlocality. A probability distribution q is
local if it can be obtained from a local hidden-variable
model (LHV) given by

q(a, b|x, y) =
∑

λ

π(λ)vA(a|x, λ)vB(b|y, λ) ∀a, b, x, y,

(25)

where π(λ) is the probability distribution of the hidden
variable λ and {vA(a|x, λ)} and {vB(b|y, λ)} are deter-
ministic probability distributions of Alice and Bob, re-
spectively. In this case we denote q ∈ LHV and we say
q is nonlocal otherwise. To quantify the nonlocality, we
use the distance-based resource monotone for nonlocality
introduced by Brito et al. [47] as

N(qp) =
1

2
min

t∈LHV

∑

a,b,x,y

p(x, y)|q(a, b|x, y)− t(a, b|x, y)|.

(26)

Having introduced all these different notions of quan-
tum resources, we can complete our goal to establish re-
lations among them.

Theorem 2. Let MpA
, NpB

be any WMAs and ρ any bi-
partite quantum state of appropriate dimensions. Let ~σpA

be a state assemblage obtained via σa|x = Tr1[(Ma|x⊗1)ρ]
and let qp = (q,p) be a probability distribution obtained
via q(a, b|x, y) = Tr[Nb|yσa|x] and p(x, y) = pA(x)pB(y).
The following sequence of inequalities holds:

IF⋄(MpA
) ≥ C⋄(MpA

) ≥ I⋄(MpA
) ≥ S(~σpA

) ≥ N(qp).
(27)

Proof. The inequalities IF⋄(MpA
) ≥ C⋄(MpA

) ≥
I⋄(MpA

) follow from the nested structure of the sets of

free assemblages. More formally, FUI ⊂ FIC ⊂ FJM

which can be seen by realising that POVM effects that
are proportional to the identity are also incoherent (in
any basis) and as incoherent POVMs commute pairwise,
they are jointly measurable [26]. Since we are minimiz-
ing the distance with respect to these sets, the inequal-
ities hold. To prove that I⋄(MpA

) ≥ S(~σpA
) holds, we

use that incompatibility is necessary for steering. This
allows us to use ~τ = {τa,x = Tr1[(F

∗
a|x ⊗ 1)ρ]} as an un-

steerable assemblage for any state ρ, as the closest JM
measurements F∗ (with respect to the assemblage M)
cannot lead to steerable assemblages. It follows,

S(~σpA
) (28)

≤ 1

2

∑

x

pA(x)
∑

a

‖Tr1[(Ma|x ⊗ 1)ρ]− Tr1[(F
∗
a|x ⊗ 1)ρ]‖1

≤ 1

2

∑

x

pA(x)max
ρ

∑

a

‖Tr1[((Ma|x − F ∗
a|x)⊗ 1)ρ]‖1

= I⋄(MpA
),

where we used the representation of I⋄(MpA
) according

to Eq. (13) in the last line. We employ a similar approach
to show that S(~σpA

) ≥ N(qp) in Lemma 2 in Appendix B.
�

Note that hierarchies related to that in Eq. (27) have
also been established, at least partly, for weight- and
robustness-based resource quantifiers [13, 26]. The con-
nection between incompatibility, steering, and nonlocal-
ity has been studied by Cavalcanti et al. [13] extensively
for for weight- and robustness-based quantifiers while
Designolle et al. [26] discussed the relation between co-
herence and incompatibility and, for a single POVM, be-
tween the informativeness and the coherence in terms of
the generalized robustness.

The hierarchy (27) in Theorem 2 gives insights how
resources like the incompatibility limit steering and non-
local correlations quantitatively. On the other hand, ev-
ery detection of these quantum correlations gives a lower
bound to the measurement resources. In particular, the
violation of every appropriately normalized steering or
Bell inequality, in the nonlocal game formulation [56, 57],
can lower bound these measurement resources. We show
in Appendix C that S(~σpA

) is the maximal possible steer-
ing inequality violation given by

S(~σpA
) = max

Ga,x,ℓ

∑

a,x

pA(x)Tr[σa|xGa|x]− ℓ, (29)

where ℓ = max
~τ∈LHS

∑

a,x
pA(x)Tr[τa|xGa|x] is the classical

bound obeyed by all unsteerable assemblages ~τ ∈ LHS
and the Ga|x are positive semidefinite matrices s.t.
‖Ga|x‖∞ ≤ 1, where ‖ · ‖∞ is the spectral norm.

Moreover, the nonlocality N(qp) can be reformulated
as the violation of a Bell inequality given by

N(qp) = max
Cab|xy,ℓ

∑

a,b,x,y

p(x, y)Cab|xyq(a, b|x, y)− ℓ, (30)
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where ℓ = max
t∈LHV

∑

a,b,x,y

p(x, y)Cab|xyt(a, b|x, y) is the lo-

cal bound obeyed by all local correlations t ∈ LHV and
Cab|xy are Bell coefficients s.t. 0 ≤ Cab|xy ≤ 1.

It is worth to highlight that the hierarchy (27) is rem-
iniscent of the resource hierarchy for quantum states for-
mulated by Streltsov et al. [15]. For quantum states, it
holds that

P(ρ) ≥ C(ρ) ≥ D(ρ) ≥ E(ρ), (31)

where P(ρ), C(ρ), D(ρ), and E(ρ) denote the quantum
state’s purity, coherence with respect to product bases,
discord, and entanglement, respectively, using the same
geometric quantifier. Comparing both hierarchies, it be-
comes clear that the informativeness of measurements is
in some sense the analogue to a state’s purity, as both
quantify the deviation from their respective uninforma-
tive element. We also observe that coherence is an impor-
tant resource for states as well as measurements, which
allows for more complex phenomena such as entangle-
ment and incompatibility. Incompatibility and entangle-
ment both play a similar role in their respective hierar-
chies, as both are the smallest known resource that is
necessary for steering and nonlocality. Interestingly, in-
compatibility and entanglement also share similarities in
their respective resource breaking maps [58].

Moreover, we show in Appendix D that the entangle-
ment E1(ρ) as defined in Eq. (3) also upper bounds the
steerability S(~σpA

) ≤ E1(ρ). This leads to the conclusion
that the nonlocality N(qp) and the steerability S(~σpA

)
are upper bounded by the smallest of the used resources
to obtain qp, respectively ~σpA

.

Corollary 1. Let MpA
, NpB

be any WMAs and ρ
any bipartite quantum state of appropriate dimensions.
Let ~σpA

be a state assemblage obtained via σa|x =
Tr1[(Ma|x ⊗ 1)ρ] and let qp = (q,p) be a probability
distribution obtained via q(a, b|x, y) = Tr[Nb|yσa|x] and
p(x, y) = pA(x)pB(y). The following inequalities hold

N(qp) ≤ min{E1(ρ), I⋄(MpA
), I⋄(NpB

)}, (32)

S(~σpA
) ≤ min{E1(ρ), I⋄(MpA

)}. (33)

An example illustrating the hierarchy (27) is given by
considering the respective resources of the Collins-Gisin-
Linden-Massar-Popescu (CGLMP) measurements [59,
60] applied to the maximally entangled state |Φ+〉 =
1√
d

∑d−1
i=0 |ii〉. In the CGLMP scenario, Alice and Bob

perform two projective measurements in dimension d,
given by {Ma|x = |ax〉〈ax|}, {Mb|y = |by〉〈by|}, where

|ax〉 =
1√
d

d−1
∑

q=0

exp [
2πi

d
q(a− αx)]|q〉, (34)

for Alice’s measurements and

|by〉 =
1√
d

d−1
∑

q=0

exp [−2πi

d
q(b− βy)]|q〉, (35)

Figure 3. Comparison of the measurement resources. The
incompatibility I⋄, steerability S (both from Alice), and non-
locality N are shown here for the CGLMP measurements,
for different dimensions d and m = 2 settings. The infor-
mativeness IF⋄ and the coherence C⋄, which are not shown
here, coincide in this particular case. More specifically,

IF⋄ = C⋄ = 1 −
1

d
as we show in section V. The hierarchy

IF⋄ ≥ C⋄ ≥ I⋄ ≥ S ≥ N is clearly obeyed. While the non-
locality and the steerability converge quickly for growing d,
the incompatibility increases further. The numerical methods
used to obtain the results are explained in section IV.

for Bob’s measurements, with αx = (x − 1/2)/2, βy =
y/2, and a, b = 0, · · · , d − 1 for x, y = 1, 2. We visualize
our results in Figure 3.

IV. SDP FORMULATIONS

To study the hierarchy from Theorem 2 and the re-
sources in more detail, an efficient method to numerically
compute the respective resource quantifiers is needed.
This can be done by formulating the quantifiers in terms
of an SDP, which also allows us to study the quantifiers
analytically by exploiting duality theory. The computa-
tion of the general quantifier R⋄(Mp) from Eq. (12) can
be stated as the following optimization problem:

Primal problem (general): (36)

given : Mp

minimize
Zx,F

∑

x

p(x)‖Tr1[Zx]‖∞

subject to:

Zx ≥ J(Mx)− J(Fx), Zx ≥ 0 ∀ x, F ∈ F ,

where the Zx are positive semidefinite matrices, J(Mx) is
the Choi–Jamiołkowski-matrix (see Eq. (9)) associated to
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setting x of the assemblage M, and F are the elements
of the set of free assemblages F . The formulation of
the optimization in Eq. (36) mainly relies on the SDP
formulation of the diamond distance due to Watrous [61].

This compact representation of R⋄(Mp) can be
brought into an explicit SDP formulation whenever the
set F admits an SDP formulation as we show in Ap-
pendix E for the resources considered in this work. Every
SDP comes with a dual formulation which under some
mild conditions (Slater’s condition see e.g. [62]) returns
the same optimal value as the primal problem. This
condition is always satisfied for the SDP (36). Hence,
R⋄(Mp) can also be written as optimal value of the op-
timization problem:

Dual problem (general): (37)

given : Mp

maximize
Ca|x,ρx,F,O

O

subject to:

O =
∑

a,x

p(x)Tr[Ma|xCa|x]− max
F∈F

∑

a,x

p(x)Tr[Fa|xCa|x],

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x,

where the Ca|x, ρx are positive semidefinite matrices and
F are the elements of the set of free assemblages F .
Note that the dual formulation in Eq. (37) is in direct
correspondence to the steering and Bell inequality for-
mulations in Eq. (29) and Eq. (30), as we maximize the
difference of the resource value and the classical bound.
The matrices Ca|x describe a hyperplane in the assem-
blage space, while the states ρx fix the scale (i.e. O ≤ 1
for any Mp) of the dual program.

Since R⋄(Mp) can be formulated as an SDP, it is ef-
ficiently computable (in the Hilbert space dimension d)
and one can resort to standard toolboxes for its compu-
tation [63–66]. We want to remark that it is also possible
to use a variation of the SDP (37) to obtain the optimal
setting distribution p instead of fixing one in advance.
This can be seen by introducing C ′

a|x = p(x)Ca|x and ad-

justing the constraints accordingly. See Appendix I for
an example where optimizing over p leads to an advan-
tage over the uniform distribution for the incompatibility
I⋄(Mp), even when only two measurement settings are
considered.

Even though SDPs are mainly used for numerical opti-
mization, the underlying structure of an SDP also offers
a method to obtain analytical upper and lower bounds or
even exact analytical expressions for R⋄(Mp) depending
on the complexity of the considered resource. More pre-
cisely, every feasible (but possibly sub-optimal) solution
of the primal problem corresponds to an upper bound on
R⋄(Mp), while every feasible solution of the dual prob-
lem results in a lower bound. If we find feasible solutions
of the primal and dual that result in the same value,
we can conclude that this value is exactly R⋄(Mp). We
make use of this approach to derive bounds on the incom-
patibility I⋄(Mp) for any assemblage M weighted with a

uniform distribution p in Theorem 3 and to identify cases
in which the hierarchy in Theorem 2 is tight in section V.

Theorem 3. Given any WMA Mp consisting of m
POVMs in dimension d, with uniformly distributed mea-
surement settings, i.e., p(x) = 1/m ∀ x. The incompati-
bility I⋄(Mp) is upper and lower bounded by

I⋄(Mp) ≥
1

md

∑

a,x

Tr[M2
a|x]−

1

m

(

max
a,x

‖Ma|x‖∞+ (38a)

(m− 1) max
a,a′,x,x′ 6=x

‖M1/2
a|x M

1/2
a′|x′‖∞

)

,

I⋄(Mp) ≤
m− 1

(d+ 1)m2

∑

x

‖d1−
∑

a

Tr[Ma|x]Ma|x‖∞.

(38b)

Proof. The proof relies on finding feasible solutions of the
primal (upper bound) and dual problem (lower bound)
in Eq. (36) and Eq. (37) for the specific set of JM mea-
surements FJM. For the primal, we choose

Zx = (1− η)
∑

a

|a〉〈a| ⊗ d− Tr[Ma|x]

d
MT

a|x, (39)

where η ∈ [0, 1] is the largest number such that F ob-
tained from

Fa|x = ηMa|x + (1− η)Tr[Ma|x]
1

d
(40)

is JM. The coefficient η is known as the depolarizing
robustness of the assemblage M. Now by design, F
is JM and Zx ≥ 0. The remaining constraint, Zx ≥
∑

a|a〉〈a| ⊗ (Ma|x − Fa|x)
T , can be verified by direct

computation. It follows that I⋄(Mp) ≤
1− η

md

∑

x‖d1 −
∑

a Tr[Ma|x]Ma|x‖∞, where we used that p is uniformly
distributed. Finally, the upper bound follows from [34],

where it was found that ηlow =
1

m
(1 +

m− 1

d+ 1
) is a lower

bound to the depolarizing robustness and therefore al-
ways leads to jointly measurable measurements for gen-
eral measurement assemblages M with m measurements
of dimension d.

To obtain the lower bound from the dual problem,
we rewrite O =

∑

a,x p(x)Tr[Ma|xCa|x] − Tr[L], where

L is a matrix such that L ≥ ∑

a,x p(x)v(a|x, λ)Ca|x ∀ λ.
Note that such an L always exists, which can be veri-
fied by multiplying both sides of the inequality with the
POVM effect Gλ before summing over all λ and taking

the trace. We choose as feasible solution Ca|x =
Ma|x

d
,

ρx =
∑

a Ca|x =
1

d
, and L = l1 with some free pa-

rameter l. Clearly, in this way all constraints are satis-
fied for some appropriately chosen parameter l which still
needs to be determined. We obtain that the incompat-

ibility is lower bounded such that
1

md

∑

a,x Tr[M
2
a|x] −

dl ≤ I⋄(Mp). The constraint to find l is now given by
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l1 ≥ ∑

a,x

1

md
v(a|x, λ)Ma|x ∀ λ, which means l is the

spectral norm ‖ 1

md
v(a|x, λ)Ma|x‖∞ maximized over the

deterministic distributions {v(a|x, λ)}. This means to
find a valid l, we need to find an l such that

l ≥ 1

md
‖
∑

a,x

v∗(a|x, λ)Ma|x‖∞, (41)

where T := ‖∑a,x v
∗(a|x, λ)Ma|x‖∞ and {v∗(a|x, λ)}a,x

are the deterministic probability distributions that max-
imize the right-hand side of Eq (41), respectively the
spectral norm in the definition of T . Using the re-

sults in [67] it follows that l =
1

md
(max

a,x
‖Ma|x‖∞ + (m−

1) max
x,x′ 6=x,a,a′

‖M1/2
a|x M

1/2
a′|x′‖∞) is a valid choice, from which

the lower bound on I⋄(Mp) follows. �

While the bounds in Theorem 3 look complicated, we
highlight that they become much simpler in the case
of rank-1 projective measurements and especially for
measurements based on MUB. Two orthonormal bases
{|va〉}0≤a≤d−1 and {|wb〉}0≤b≤d−1 are MUB if

|〈va|wb〉| =
1√
d
∀ a, b. (42)

The set of projectors onto the vectors of a basis form
a measurement M = {Ma = |va〉〈va|}. An MUB mea-
surement assemblage is a set of measurements where the
condition (42) holds for any two projections from differ-
ent bases. MUB measurement assemblages find many
applications in quantum information [48] and are natu-
ral candidates for highly incompatible measurements as
studied in [34, 54, 68]. It is known, that in every dimen-
sion d ≥ 2 there exist at least m = 3 different and at
most m = d + 1 mutually unbiased bases. While it is in
general an open problem how many MUB really exist in
a given dimension d, explicit constructions for m = d+1
MUB are known when d is a prime-power. Due to the fact
that Tr[Ma|x] = ‖Ma|x‖∞ = 1 for rank-1 projections, we
obtain the following corollary.

Corollary 2. The incompatibility I⋄(Mp) of any mea-
surement assemblage M consisting of m rank-1 projec-
tive measurements, weighted with a uniformly distributed

p(x) =
1

m
∀ x, is bounded as

1− T

m
≤ I⋄(Mp) ≤ (1− η)

d− 1

d
, (43)

with T := ‖∑a,x v
∗(a|x, λ)Ma|x‖∞ and the depolarizing

robustness η defined via Eq. (40).

Using the overlap relation in Eq. (42) and the same
lower bound on η as in Theorem 3, it follows for a uni-
formly weighted MUB measurement assemblage that

1− 1

m

(

1 +
(m− 1)√

d

)

≤ I⋄(Mp) ≤
(d− 1)(m− 1)

(d+ 1)m
.

(44)

Some asymptotic behaviours for the incompatibility of
MUB measurement assemblages can be observed. In the
case of large dimensions d for a fixed number of measure-

ments, the incompatibility approaches I⋄(Mp) ≈ 1− 1

m
(as the upper and lower bound collapse onto each other)
i.e. it asymptotically approaches the value 1 for large d
and m. To get an impression of the quality of the bounds
in Eq. (44) we investigate a specific construction of MUB
in prime dimensions d based on the Heisenberg-Weyl op-
erators

X̂ =

d−1
∑

k=0

|k + 1〉〈k|, Ẑ =

d−1
∑

k=0

ωk|k〉〈k|, (45)

where {|k〉}0≤k≤d−1 is the computational basis and

ω = exp
(2πi

d

)

is a root of unity. In prime di-

mensions d, the eigenbases of the d + 1 operators
X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑd−1 are mutually unbiased [69].
We use these eigenbases to form sets of projective
POVMs. Note that it matters which subset of eigen-
bases we choose. For example, the set of mea-
surements associated with the eigenbases of M(1) =
{X̂, Ẑ, X̂Ẑ} can possibly have a different incompatibility
than the measurements associated with the set M(2) =
{X̂Ẑd−3, X̂Ẑd−2, X̂Ẑd−1}. This is indeed the case for
MUB measurement assemblages in dimension d = 5 and

m = 3 settings. We find that I⋄(M(1)
p ) = 0.3750, while

I⋄(M(2)
p ) = 0.3685. This shows that different MUB are

operationally inequivalent, which has also been demon-
strated for the depolarizing robustness [54]. For the val-
ues in Table II, we used the assignment of MUB according

to the WMA M(1)
p , i.e., we take the first m eigenbases.

As one can see in Table II, the upper and lower bounds
combined give a good idea on how incompatible this im-
plementation of MUB is in practical scenarios. The lower
bound can be tightened significantly by using the bound
from Corollary 2 directly. Note that this requires an op-
timization over all Ndet = om deterministic assignments
{v(a|x, λ)}, where o is the number of measurement out-
comes for each of the m settings. Surprisingly, the tight-
ened lower bound coincides with the numerical values for
the incompatibility I⋄(Mp) for all m, d in Table II up to
the fourth digit. While we were not able to show that
the lower bound from Corollary 2 is tight for MUB mea-
surement assemblages in general, we are able to identify
important cases where this is indeed the case.

More specifically, it was shown by Designolle et al.

[54] that η =
dT −m

dm−m
is the depolarising robustness for

the standard construction of MUB measurement assem-
blages in prime power dimensions given in [70] for m = 2,
m = d, and m = d+ 1 measurements. It is important to
highlight that the construction used above, based on the
Heisenberg-Weyl operators, is an equivalent reformula-
tion of this construction for prime dimensions [69]. From

Eq. (43), it follows directly that I⋄(Mp) = 1 − T

m
, since
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m\d 2 3 5 7
2 0.1667

0.1464
0.1464

0.2500
0.2113
0.2113

0.3333
0.2764
0.2764

0.3750
0.3110
0.3110

3 0.2222
0.2113
0.1953

0.3333
0.2876
0.2818

0.4444
0.3750
0.3685

0.5000
0.4154
0.4147

4 0.3750
0.3455
0.3170

0.5000
0.4307
0.4146

0.5625
0.4724
0.4665

5 0.5333
0.4657
0.4422

0.6000
0.5040
0.4976

6 0.5556
0.4910
0.4607

0.6250
0.5257
0.5184

7 0.6429
0.5413
0.5332

8 0.6563
0.5728
0.5443

Table II. Incompatibility I⋄(Mp) of MUB in prime dimen-
sions d with m settings. In each cell, the first number is the
upper bound on the incompatibility, the second number is the
actual incompatibility which can be computed via the SDPs
(36) and (37), marked in blue, and the third number is the
lower bound on the incompatibility. The bounds are obtained
from Eq. (44). Note that the lower bound is tight for m = 2
measurements. Furthermore, it is shown in the text, that the
incompatibilities for m = 2, m = d, and m = d+ 1 measure-
ments can be obtained analytically.

the upper and lower bound coincide for these cases. Note
that while this result holds only for this special construc-

tion, it was conjectured [54] that η =
dT −m

dm−m
holds

for all constructions of MUB and m = 2, m = d, and
m = d + 1. Note further that the bounds in Eq. (44)
can also be used to study cases where it is not known
whether MUB exist. For instance, if there exists a set
of m = 4 MUB in d = 6, the WMA needs to have an
incompatibility in between 0.4438 ≤ I⋄(Mp) ≤ 0.5357.

To conclude this section, we want to emphasize that
analogous discussions to obtain bounds on the resource
quantifier R⋄(Mp) can be made for any QRT with a free
set F that can be described by SDP constraints. For in-
stance, we show in Appendix F that the informativeness
IF⋄(Mp) of rank-1 projective measurements is given by

IF⋄(Mp) = 1−1

d
for any probability distribution p. Note

that since the set FUI of UI assemblages (see Eq. (16))
has a much simpler structure than the set of JM mea-
surements, it is also easier to obtain exact expressions.

V. TIGHTNESS OF THE HIERARCHY

It is particularly interesting to study the optimal con-
version of one resource to another, i.e., to study for

which measurements (and states) the bounds in Eq. (27)
are tight. Obviously, for UI measurements it holds
IF⋄(Mp) = 0 and all bounds are trivially tight. We
study nontrivial cases of resource equivalences where
IF⋄(Mp) = C⋄(Mp) and I⋄(Mp) = S(~σp) holds. We
start with the latter.

Incompatibility and steerability are known to be deeply
connected and equivalences have been reported for ro-
bustness and weight-based quantifiers [13, 29]. We con-
sider again the situation of uniformly distributed mea-
surements, i.e., p(x) = 1/m. Let ρ = |Φ+〉〈Φ+| be the

maximally entangled state, where |Φ+〉 = 1√
d

∑d−1
i=0 |ii〉.

It is readily verified that

σa|x = Tr1[(Ma|x ⊗ 1)ρ] =
MT

a|x

d
, (46)

where the transposition is with respect to the compu-
tational basis. Using the state assemblage ~σ = {σa|x}
obtained via Eq. (46) is the standard approach to map in-
compatibility problems to steering problems and proves
also to be useful here. In section IV, we showed that for
the construction of MUB in [70] and m = 2, m = d,

m = d + 1 measurements I⋄(Mp) = 1 − T

m
holds,

where T = ‖∑a,x v
∗(a|x, λ)Ma|x‖∞. It follows that

1 − T

m
≥ S(~σp). Using the state assemblage ~σ obtained

from Eq. (46), it is possible to show that this bound is
indeed fulfilled. To show this, we employ the steering
inequality formulation of S(~σp) as discussed in Eq. (29),
which we repeat here for convenience:

S(~σp) = max
Ga,x,ℓ

∑

a,x

p(x)Tr[σa|xGa|x]− ℓ, (47)

where ℓ = max
~τ∈LHS

∑

a,x
p(x)Tr[τa|xGa|x] is the classi-

cal bound obeyed by all unsteerable assemblages ~τ ∈
LHS and ‖Ga|x‖∞ ≤ 1. We want to emphasize
that ℓ can equivalently be written such that ℓ1 ≥
∑

a,x p(x)v(a|x, λ)Ga|x for all λ. By multiplying both
sides of the inequalities with the hidden states σλ

and taking the trace trace afterwards it follows ℓ ≥
max
~τ∈LHS

∑

a,x
p(x)Tr[τa|xGa|x] and the equality follows from

the fact that we maximize over ℓ. Now, by choos-

ing Ga|x = MT
a|x and ℓ =

T

m
, clearly all constraints

are fulfilled and the steerability is lower bounded by

S(~σp) ≥ 1 − T

m
, which coincides with the upper bound.

Therefore, it follows that I⋄(Mp) = S(~σp). While this
result is only valid for m = 2, m = d, and m = d + 1
and the special construction of MUB in [70] we conjec-
ture that the equivalence between incompatibility and
steerability holds for general constructions of MUB and
2 ≤ m ≤ d+ 1.

We searched numerically for other cases with an equal-
ity between incompatibility and steerability. However,
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apart from the case of generic qubit projective measure-
ments we were not able to identify any other scenarios.
Note that this finding deviates from the observations for
consistent weight and robustness quantifiers studied by
Cavalcanti et al. [13], where an equivalence between in-
compatibility and steerability was found for all assem-
blages. This difference is not artificial, as it remains even
if we include the consistency constraint for the steerabil-
ity below Eq. (24).

The second equivalence of resources we want to dis-
cuss is that between the informativeness and the coher-
ence of assemblages. More precisely, we discuss when
IF⋄(Mp) = C⋄(Mp) holds. Interestingly, this equiva-
lence is achieved by WMAs Mp that are mutually un-
biased to the set of projective measurements onto the
incoherent basis {|i〉〈i|}. To see this, we note first that

IF⋄(Mp) = 1− 1

d
holds for all rank-1 projective measure-

ments as shown in section IV. From there it follows that

the coherence of MUB is bounded by 1 − 1

d
≥ C⋄(Mp).

To show that this bound can be achieved, we use the
dual formulation of C⋄(Mp). More specifically, C⋄(Mp)
is given by

C⋄(Mp) = max
Ca|x,ℓx,i

∑

a,x

p(x)Tr[Ma|xCa|x]−
∑

x,i

ℓx,i,

(48)

where the ℓx,i are scalars such that ℓx,i ≥
p(x)Tr[Ca|x|i〉〈i|] ∀ a, x, i, and the Ca|x are matri-
ces such that 0 ≤ Ca|x ≤ ρx ∀ a, x, where the ρx are
quantum states. The optimal solutions of the dual

problem are Ca|x =
Ma|x

d
and ℓx,i =

p(x)

d2
. Clearly,

these choices are feasible, which can be verified by using

that Tr[|i〉〈i|Ma|x] =
1

d
, due to the unbiasedness of

M and the incoherent basis {|i〉〈i|}. Further, they are

optimal since they lead to C⋄(Mp) ≥ 1 − 1

d
, which

coincides with the upper bound.
The fact that measurements that are mutually un-

biased to the incoherent basis maximize the coherence
is very similar to the situation for quantum states
[15]. There, for a fixed spectrum, the coherence is
maximized by states that have an eigendecomposition
in a mutually unbiased basis with respect to the in-
coherent basis. Note that the measurements within
M do not need to be MUB measurement assemblages
themselves, as long as they are mutually unbiased to
the incoherent bases. Indeed, we show in Appendix F
that the CGLMP measurements defined via Eq. (34)
and Eq. (35) also maximize the coherence in the sense

that IF⋄(Mp) = C⋄(Mp) = 1 − 1

d
. Note that it is

known that the maximal coherence of a single POVM
in terms of the generalized robustness can be achieved
by measurements in the Fourier basis of the incoherent
basis [71] .

Let us briefly comment on the other two inequalities of

the hierarchy in Eq. (27). The remaining two inequalities
are C⋄(Mp) ≥ I⋄(Mp) and S(~σpA

) ≥ N(qp). While the
relation between steering and nonlocality is notoriously
hard to study, even for two-qubit states, the connection
between coherence and incompatibility has only recently
gained some attention [26, 72]. Our numerical search
suggests that both bounds are true inequalities in
non-trivial scenarios. However, future research is needed
to come to a conclusion.

VI. CONCLUSION AND OUTLOOK

The quantification of quantum advantages plays an im-
portant role in modern quantum information theory and
in particular in the framework of QRTs. In the present
work, we have introduced the general notion of distance-
based resource quantification for sets of measurements.
We have studied which prerequisites are necessary for a
function to be a proper distance between measurement
assemblages and showed that every such distance induces
a resource monotone. We have proposed one particular
quantifier, based on the diamond norm, with a clear op-
erational meaning in terms of the optimal single-shot dis-
tinguishability of different measurement assemblages.

On the basis of this particular quantifier, we have es-
tablished a hierarchy of measurement resources in Theo-
rem 2 and showed that recently introduced steering [46]
and nonlocality quantifiers [47] fit naturally into this hi-
erarchy. Furthermore, we have shown that our quanti-
fier can be studied numerically and analytically in terms
of SDPs. We have used this insight to establish ana-
lytical upper and lower bounds on the incompatibility
of any measurement assemblage in Theorem 3. Note-
worthy, by focussing on rank-1 projective measurements
we have shown that the bounds on the incompatibility
in Corollary 2 are tight for particular MUB measure-
ment assemblages, which play a special role in the estab-
lished measurement hierarchy. More precisely, we showed
in section V that the incompatibility of MUB measure-
ment assemblages attains the same value as the steer-
ability of the state assemblages obtained from performing
these measurements on one part of a maximally entangled
state. Furthermore, we showed that measurements that
are mutually unbiased to the incoherent basis maximize
the coherence among all rank-1 projective measurements.

It would be interesting to see which insights can be ob-
tained when distance-based quantifiers like the one pre-
sented here are studied for other resource theories like
projective-simulability [20] or the QRT of imaginarity
[18] applied to measurements. Furthermore, distance-
based quantifiers should also be compared to possible en-
tropic resource quantifiers of measurements assemblages.
So far entropic quantifiers have only been considered very
recently [73] for a single POVM. With the definition of
a distance between measurement assemblages, it is also
possible to study continuity of functions of measurement
resources, which could be of independent interest for ro-
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bust self-testing [74] or measurement tomography [75].
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Appendix A: Proof of Theorem 1

Here, we show that the function D⋄(Mp,Np) defined
in Eq. (11) is a distance function between the two WMAs
Mp and Np. In the following, we use that a measure-

and-prepare channel (see Eq. (8)) corresponding to set-
ting x of the assemblage M applied to the first subsystem
of a bipartite state is given by

(ΛMx
⊗ 1)(ρ) =

∑

a

(|a〉〈a| ⊗ Tr1[(Ma|x ⊗ 1)ρ]). (A1)

Furthermore, we introduce the quantities σa|x(ρ) =
Tr1[(Ma|x ⊗ 1)ρ] and τa|x(ρ) = Tr1[(Na|x ⊗ 1)ρ].

Theorem 1. The function D⋄(Mp,Np) is a distance
function between the WMAs Mp and Np, i.e., it fulfils
all the conditions stated in Definition 1.

Proof. We start by writing D⋄(Mp,Np) in a more conve-
nient form. More precisely, we use in the following that
the triangle inequality for the trace norm ‖·‖1 results
in an equality due to the support on different subspaces
of the terms with different a within the sum over the
outcomes a. Furthermore, we used the multiplicity of
the trace norm under tensor products and the fact that
‖|a〉〈a|‖1 = 1 ∀ a. It follows that

D⋄(Mp,Np) =
1

2

∑

x

p(x)max
ρ

‖
∑

a

|a〉〈a| ⊗ [σa|x(ρ)− τa|x(ρ)]‖1 (A2)

=
1

2

∑

x

p(x)max
ρ

∑

a

‖|a〉〈a| ⊗ [σa|x(ρ)− τa|x(ρ)]‖1

=
1

2

∑

x

p(x)max
ρ

∑

a

‖σa|x(ρ)− τa|x(ρ)‖1.

We use the form of D⋄(Mp,Np) according to Eq. (A2) in the following.
Clearly D⋄(Mp,Np) is a non-negative function with D⋄(Mp,Np) = 0 if and only if M = N . The triangle inequality

is obeyed due to the linearity of D⋄(Mp,Np) in the trace norm. The monotonicity under quantum channel Λ† follows
from direct calculation,

D⋄(Mp,Np) =
1

2

∑

x

p(x)max
ρ

∑

a

‖Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1 (A3)

≥ 1

2

∑

x

p(x)max
ρ′

∑

a

‖Tr1[((Ma|x −Na|x)⊗ 1)(Λ⊗ 1)(ρ′)]‖1

=
1

2

∑

x

p(x)max
ρ′

∑

a

‖Tr1[(Λ†(Ma|x −Na|x)⊗ 1)ρ′]‖1

= D⋄(Λ
†(Mp),Λ

†(Np)),

where we introduced in the second line a new quantum state ρ′ (acting on a possibly different Hilbert space) and a
CPT map Λ acting on the first subsystem of ρ′. The resulting state (Λ ⊗ 1)(ρ′) is clearly already included in the
optimization of the first line, hence the inequality. In the third line, we used the fact that we can swap the evolution
under the CPT map Λ onto the POVMs by introducing the adjoint channel Λ†. This results exactly in the definition
of D⋄(Λ

†(Mp),Λ
†(Np)), from which the monotonicity under quantum channel Λ† follows.
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The monotonicity under measurement simulations ξ can be shown in a similar fashion,

D(ξ(Mp)q, ξ(Np)q) =
1

2

∑

y

q(y)max
ρ

∑

b

‖Tr1[((M ′
b|y −N ′

b|y)⊗ 1)ρ]‖1 (A4)

=
1

2

∑

y

q(y)max
ρ

∑

b

‖
∑

x

p(x|y)
∑

a

q(b|y, x, a)Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1

≤ 1

2

∑

y

q(y)max
ρ

∑

b

∑

x

p(x|y)
∑

a

q(b|y, x, a)‖Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1

=
1

2

∑

y

q(y)max
ρ

∑

x

p(x|y)
∑

a

‖Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1

≤ 1

2

∑

x,y

q(y)p(x|y)max
ρ

∑

a

‖Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1

=
1

2

∑

x

p(x)max
ρ

∑

a

‖Tr1[((Ma|x −Na|x)⊗ 1)ρ]‖1

= D⋄(Mp,Np),

where we used the following properties. In the first line,
we used the definition of D(ξ(Mp)q, ξ(Np)q) by intro-
ducing the assemblages M′

q and N ′
q with measurement

outcomes b for the settings y, associated with the prob-
ability distribution q. In the second line, we use that
M ′

b|y =
∑

x p(x|y)
∑

a q(b|y, x, a)Ma|x and the analogous

expression for N ′
b|y. In the third line, we used the tri-

angle inequality. In the fourth line, we performed the
sum over b. In the fifth line, we interchanged the max-
imization with the sum over x, which leads to more
degrees of freedom since we can now chose a different
ρ for each x. Finally, in the sixth line, we used that
∑

y q(y)p(x|y) = p(x), which leads exactly to the defi-

nition of D⋄(Mp,Np) from which the monotonicity un-
der measurement simulations ξ(Mp)q follows. This con-
cludes the proof. �

Appendix B: Steerability as upper bound to

nonlocality

Here, we show that the steerability of a state assem-
blage ~σpA

upper bounds the nonlocality of any probabil-
ity distribution qp obtained from it. This completes the
proof of Theorem 2.

Lemma 2. Let ~σpA
= (~σ,pA) be any state assemblage

weighted with the probability distribution pA, NpB
any

WMA of appropriate dimension and qp = (q,p) a prob-
ability distribution obtained via q(a, b|x, y) = Tr[Nb|yσa|x]
and p(x, y) = pA(x)pB(y). Then, it holds that

S(~σpA
) ≥ N(qp). (B1)

Proof. Let ~τ be the closest LHS assemblage to ~σ with
respect to the quantifier S(~σpA

). We use the fact that

unsteerable assemblages always lead to local probability
distributions. It follows that

N(qp) ≤
1

2

∑

a,b,x,y

p(x, y)|Tr[Nb|y(σa|x − τ∗a|x)]| (B2)

≤ 1

2

∑

a,b,x,y

p(x, y)Tr[Nb|y|σa|x − τ∗a|x|]

=
1

2

∑

a,x

pA(x)Tr[|σa|x − τ∗a|x|]

=
1

2

∑

a,x

pA(x)‖σa|x − τ∗a|x‖1 = S(~σpA
),

where we used in the first line the definition in Eq. (26)
of the nonlocality N(qp) and the fact that any measure-
ment on the closest LHS assemblage ~τ (with respect to ~σ)
results in a local probability distribution. In the second
line, we used some basic property of the absolute value
and the fact that we can always decompose the difference
of two Hermitian matrices like σa|x − τ∗a|x = Ta|x − Sa|x,

where Ta|x and Sa|x are positive operators with orthog-
onal support. It follows that |σa|x − τ∗a|x| = Ta|x + Sa|x,

where |X| =
√
X†X. Finally, we used in the third line

that
∑

b Nb|y = 1d ∀ y,
∑

y p(x, y) = pA(x), and the

definition of S(~σpA
). Therefore, it follows that the steer-

ability is an upper bound to the nonlocality. �

Appendix C: Dual formulation of steerability and

nonlocality

Here, we show that the steerability S(~σpA
) and the

nonlocality N(qp) can be understood as optimal steering,
respectively Bell inequality violation.
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Theorem 4. Let S(~σpA
) be the steerability of the state

assemblage ~σpA
. The steerability S(~σpA

) can be reformu-
lated as the violation of an optimized steering inequality
given by

S(~σpA
) = max

Ga,x,ℓ

∑

a,x

pA(x)Tr[σa|xGa|x]− ℓ, (C1)

where ℓ = max
~τ∈LHS

∑

a,x
pA(x)Tr[τa|xGa|x] is the classical

bound obeyed by all unsteerable assemblages ~τ ∈ LHS
and the Ga|x are positive semidefinite matrices s.t.
‖Ga|x‖∞ ≤ 1.

Moreover, the nonlocality N(qp) of any probability dis-
tribution qp can be reformulated as the violation of an
optimized Bell inequality

N(qp) = max
Cab|xy,ℓ′

∑

a,b,x,y

p(x, y)Cab|xyq(a, b|x, y)− ℓ′,

(C2)

where ℓ′ = max
t∈LHV

∑

a,b,x,y

p(x, y)Cab|xyt(a, b|x, y) is the local

bound obeyed by all local correlations t ∈ LHV and Cab|xy

are Bell coefficients s.t. 0 ≤ Cab|xy ≤ 1.

Proof. The proof relies on the dual formulations of
S(~σpA

) which can be written in terms of an SDP and
N(qp) which can be written as a linear program. We
start with the nonlocality N(qp) by stating the optimiza-
tion for an optimal Bell inequality violation given the
distribution q and by showing that it is dual to N(qp).
Note that all of the following optimization problems re-
quire the knowledge of the deterministic probability dis-
tributions of the corresponding problem, which for the
nonlocality N(qp) are denoted by {vA(a|x, λ)vB(a|y, λ)}.
Since these are fixed for a given problem and are trivially
accessible, we will not treat them as input variables.

Dual problem (nonlocality): (C3)

given : qp

maximize
Cab|xy,ℓ′

∑

a,b,x,y

p(x, y)Cab|xyq(a, b|x, y)− ℓ′

subject to:

ℓ′ ≥
∑

a,b,x,y

p(x, y)Cab|xyvA(a|x, λ)vB(b|y, λ) ∀ λ,

0 ≤ Cab|xy ≤ 1 ∀ a, b, x, y,

where Cab|xy are the Bell coefficients of the Bell
inequality and ℓ′ is the local bound. Note that
ℓ′ = max

t∈LHV

∑

a,b,x,y

p(x, y)Cab|xyt(a, b|x, y) follows directly

from the first constraint. Remember that t ad-
mits an LHV decomposition according to Eq. (25).
The equality be seen by multiplying the constraints
ℓ′ ≥ ∑

a,b,x,y p(x, y)Cab|xyvA(a|x, λ)vB(b|y, λ) ∀ λ with

the probabilities π(λ) before summing all the con-
straints together. This leads to the bound ℓ′ ≥

max
t∈LHV

∑

a,b,x,y

p(x, y)Cab|xyt(a, b|x, y), with t(a, b|x, y) =
∑

λ

π(λ)vA(a|x, λ)vB(b|y, λ). The equality follows from

the fact that we maximize the objective function.

Now, we show that the optimal value of the optimiza-
tion in Eq. (C3) is equal to N(qp) by deriving the pri-
mal program. Note that this generally requires deal-
ing with inequality constraints, which can be done by
generalizing the method of Lagrange multipliers to us-
ing the Karush–Kuhn–Tucker conditions (see e.g. [62]).
However, since we are interested in formulating dual for-
mulations of convex optimization problems, we can rely
on simpler but less general conditions for the equivalence
of the primal and the dual problem, which we come back
to down below. We start by stating the Lagrangian of
the problem:

L = −
∑

a,b,x,y

p(x, y)Cab|xyq(a, b|x, y) + ℓ′

+
∑

λ

π(λ)
(

∑

a,b,x,y

p(x, y)Cab|xyvA(a|x, λ)vB(b|y, λ)− ℓ′
)

+
∑

a,b,x,y

Aab|xy(Cab|xy − 1) +
∑

a,b,x,y

Bab|xy(−Cab|xy),

where we rewrote the maximization of the objective func-
tion as a minimization for convenience and introduced
the Lagrange parameters π(λ), Aab|xy, and Bab|xy, which
are non-negative numbers to make the constraints ex-
plicit. Note that N(qp) ≥ L for any feasible point of the
dual problem in Eq. (C3). We obtain the dual function
by taking the infimum of the Lagrangian over the primal
variables. More precisely, the dual function is given by

G({π(λ)}, {Aab|xy}, {Bab|xy}) (C4)

= inf
Cab|xy,ℓ′

{

ℓ′(1−
∑

λ

π(λ))−
∑

a,b,x,y

Aab|xy

+
∑

a,b,x,y

Cab|xy

(

− p(x, y)q(a, b|x, y)

+ p(x, y)
∑

λ

π(λ)vA(a|x, λ)vB(b|y, λ) +Aab|xy −Bab|xy

)}

.

The dual function is unbounded from below, unless cer-
tain constraints (the primal constraints) are met. This
can for instance be seen by realizing that unless 1 −
∑

λ π(λ) = 0, it is always possible to make the term
ℓ′(1−∑

λ π(λ)) arbitrarily small, since ℓ′ is now treated
as an unconstrained variable. We obtain the primal pro-
gram by maximizing the dual function under these con-
straints. Note that we rewrite the maximization as mini-
mization to avoid a sign. The primal program is formally
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given by

Primal problem (nonlocality): (C5)

given : qp

minimize
Aab|xy,Bab|xy,π(λ),R

∑

a,b,x,y

Aab|xy

subject to:

Aab|xy −Bab|xy = R

R = p(x, y)
(

q(a, b|x, y)−
∑

λ

π(λ)vA(a|x, λ)vB(b|y, λ)
)

,

∑

λ

π(λ) = 1, π(λ) ≥ 0 ∀ λ, Aab|xy, Bab|xy ≥ 0 ∀ a, b, x, y.

Now, by definition of the ℓ1-distance between two nor-
malized probability distributions, the optimal value of
Eq. (C5) is exactly N(qp). Since we are dealing with a
linear program, there is no duality gap between the pri-
mal and the dual formulation. Hence, N(qp) describes
the maximal Bell violation possible with the probability
distribution qp.

Next, we need to show that S(~σpA
) corresponds to the

optimal steering inequality violation. The procedure is
the same as before for the nonlocality. However, this
time we start from the primal problem.

Primal problem (steerability): (C6)

given : ~σpA

minimize
σλ

1

2

∑

a,x

pA(x)‖σa|x −
∑

λ

v(a|x, λ)σλ‖1

subject to:

Tr[
∑

λ

σλ] = 1, σλ ≥ 0 ∀ λ.

First, we need to rewrite the trace norm explicitly in
SDP form. We use the following formulation of the trace

norm: ‖Z‖1 = min
Y

{Tr[Y1]

2
+

Tr[Y2]

2
:

[

Y1 Z
Z† Y2

]

≥ 0
}

.

This leads to the primal problem in explicit SDP form

Primal problem (steerability): (C7)

given : ~σpA

minimize
σλ,Ua|x,Wa|x

1

4

∑

a,x

pA(x)Tr[Ua|x +Wa|x]

subject to:
[

Ua|x σa|x −∑

λ v(a|x, λ)σλ

σa|x −∑

λ v(a|x, λ)σλ Wa|x

]

≥ 0 ∀ a, x,

Tr[
∑

λ

σλ] = 1, σλ ≥ 0 ∀ λ,

where we introduced the Hermitian matrices Ua|x,Wa|x.

This allows us to state the Lagrangian

L =
1

4

∑

a,x

pA(x)Tr[Ua|x +Wa|x] + ℓ′(1− Tr[
∑

λ

σλ])

(C8)

−
∑

a,x

(

Tr[H11
a|xUa|x] + Tr[H22

a|xWa|x]

+ Tr[2H12
a|x(σa|x −

∑

λ

v(a|x, λ)σλ)]
)

,

where ℓ′ is a scalar and H11
a|x, H

12
a|x, and H22

a|x are block-

matrices such that

Ha|x =

[

H11
a|x H12

a|x

H12
a|x H22

a|x

]

≥ 0 ∀ a, x. (C9)

Note that S(~σpA
) ≥ L for any feasible point of the dual

problem in Eq. (C6). Analogous to the optimization for
the nonlocality before, we can now formulate the dual
function G({Ha|x}, ℓ′) = inf

σλ,Ua|x,Wa|x

L. By identifying

the conditions (the dual constraints) that make the dual
function bounded we obtain the following dual program

Dual problem (steerability): (C10)

given : ~σpA

maximize
Ha|x,ℓ′

−
∑

a,x

Tr[2σa|xH
12
a|x] + ℓ′

subject to:

− ℓ′1 ≥ −
∑

a,x

v(a|x, λ)2H12
a|x ∀ λ,







1

4
pA(x)1 H12

a|x

H12
a|x

1

4
pA(x)1






≥ 0 ∀ a, x.

We can rewrite the dual problem in a more convenient
form. By identifying the SDP formulation of the spectral

norm ‖Z‖∞ = min
t

{

t :

[

t1 Z
Z† t1

]

≥ 0
}

and substituting

ℓ′ = −ℓ̃ and H12
a|x = −p(x)

G′
a|x

2
, we arrive at

Dual problem (steerability): (C11)

given : ~σp

maximize
G′

a|x
,ℓ̃

∑

a,x

p(x)Tr[G′
a|xσa|x]− ℓ̃

subject to:

ℓ̃1 ≥
∑

a,x

p(x)v(a|x, λ)G′
a|x ∀ λ,

− 1

2
1 ≤ G′

a|x ≤ 1

2
1.

To finally arrive at the dual formulation equivalent to
the statement in Eq. (C1) we shift the variables such
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that Ga|x = G′
a|x +

1

2
1 and ℓ̃ = ℓ− 1

2
. This leads to

Dual problem (steerability): (C12)

given : ~σpA

maximize
Ga|x,ℓ

∑

a,x

pA(x)Tr[Ga|xσa|x]− ℓ

subject to:

ℓ1 ≥
∑

a,x

pA(x)v(a|x, λ)Ga|x ∀ λ,

0 ≤ Ga|x ≤ 1.

Note that it follows again directly that the classical
bound ℓ fulfills ℓ = max

~τ∈LHS

∑

a,x
pA(x)Tr[τa|xGa|x], where ~τ

admits an LHS as defined in Eq. (23).

As last step of the proof, we note that we can always
find a strictly feasible point in the SDP corresponding
to Eq. (C12) by choosing the Ga|x proportional to the
identity and ℓ sufficiently large. Hence there is no duality
gap due to Slater’s theorem (see e.g. [62]). Therefore,
S(~σpA

) can be written as optimized steering inequality,
which concludes the proof. �

Appendix D: Entanglement as upper bound for the

steerability

Here, we show that the geometric entanglement E1(ρ)
defined in Eq. (3) as

E1(ρ) = min
ρS∈Sep(H⊗H)

D1(ρ, ρS), (D1)

where Sep(H ⊗ H) with H ∼= Cd is the set of separa-
ble states, upper bounds the steerability S(~σp) of the
assemblage ~σp. More precisely, when ~σp is obtained
by performing d-dimensional measurements form any
WMA Mp onto any state ρ ∈ S(H ⊗ H) via σa|x =
Tr1[(Ma|x ⊗ 1)ρ] we show that it follows S(~σp) ≤ E1(ρ).
Let ρ∗S be the closest separable state with respect to the

given state ρ. It holds,

S(~σp) (D2)

≤ 1

2

∑

a,x

p(x)‖Tr1[(Ma|x ⊗ 1)(ρ− ρ∗S)]‖1

=
1

2

∑

a,x

p(x) max
‖Oa‖∞≤1

|Tr[OaTr1[(Ma|x ⊗ 1)(ρ− ρ∗S)]]|

=
1

2

∑

a,x

p(x) max
‖Oa‖∞≤1

|Tr[(Ma|x ⊗Oa)(ρ− ρ∗S)]|

=
1

2

∑

x

p(x) max
‖Oa‖∞≤1

∑

a

Tr[(Ma|x ⊗Oa)(ρ− ρ∗S)]

=
1

2

∑

x

p(x) max
‖Oa‖∞≤1

Tr[
∑

a

(Ma|x ⊗Oa)(ρ− ρ∗S)]

≤ 1

2

∑

x

p(x) max
‖Oa‖∞≤1

‖
∑

a

(Ma|x ⊗Oa|x)‖∞‖ρ− ρ∗S‖1

≤ 1

2

∑

x

p(x)‖ρ− ρ∗S‖1 =
1

2
‖ρ− ρ∗S‖1 = E1(ρ),

where we used in the second line the definition of the
steerability S(~σp) and the fact that separable states ρS
cannot lead to steering. In the third line, we used the
variational characterization of the trace norm by intro-
ducing the optimization variables Oa. In the fourth line,
we used some basic property of the trace and the par-
tial trace. Next, we used in the fifth line, that we can
interchange the sum over a and the maximization. Fur-
thermore, we used that we can omit the absolute value,
since we simply can change the sign of Oa if necessary. In
the seventh line, we used the Hölder inequality. Finally,
in the last line we used the fact that

∑

a(Ma|x ⊗ Oa) ≤
∑

a(Ma|x⊗1) in the positive semidefinite sense. This lets
us find as an upper bound ‖∑a Ma|x ⊗ 1‖∞ = 1, due to
the completeness relation of the POVMs. Therefore, the
entanglement E1(ρ) limits the steerability S(~σp) ≤ E1(ρ).

Appendix E: SDP formulations of incompatibility

Here, we give detailed information about the SDP for-
mulations in Eq. (36) and Eq. (37). As an example, we
explicitly derive the primal and the dual formulation of
the incompatibility quantifier I⋄(Mp). More specifically,
we show that the incompatibility I⋄(Mp) is the optimal
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value of the following two SDPs.

Primal problem (incompatibility): (E1)

given : Mp

minimize
ax,Zx,Gλ

∑

x

p(x)ax

subject to:

ax1− Tr1[Zx] ≥ 0 ∀ a, x,

Zx ≥
∑

a

|a〉〈a| ⊗ (Ma|x − Fa|x)
T ∀ x,

Fa|x =
∑

λ

v(a|x, λ)Gλ ∀ x, a, Gλ ≥ 0 ∀ λ,
∑

λ

Gλ = 1,

Zx ≥ 0, ax ≥ 0 ∀ x,

Dual problem (incompatibility): (E2)

given : Mp

maximize
Ca|x,ρx,L

∑

a,x

p(x)Tr[Ma|xCa|x]− Tr[L]

subject to:

L ≥
∑

a,x

p(x)v(a|x, λ)Ca|x ∀ λ,

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x,

where {v(a|x, λ)} are the deterministic probability dis-
tributions. The optimization variables of the primal
problem are the positive coefficients ax, and the posi-
tive semidefinite matrices Zx and Gλ. The optimization
variables of the dual problem are the positive semidefi-
nite matrices Ca|x, ρx, and L.

The formulation of the primal problem heavily re-
lies on the SDP formulation of the diamond norm due
to Watrous [61], see also [76]. Let us recall that
the Choi–Jamiołkowski-matrix of a measure-and-prepare
channel (see Eq. (9)) corresponding to one POVM Mx =
{Ma|x}a is given by

J(Mx) =
∑

a

|a〉〈a| ⊗MT
a|x, (E3)

where the transpose is with respect to the computational
basis. The diamond distance between the quantum chan-
nels ΛMx

and ΛFx
can now be computed as

given : J(Mx), J(Fx) (E4)

minimize
Zx

‖Tr1[Zx]‖∞
subject to: Zx ≥ J(Mx)− J(Fx), Zx ≥ 0.

Using this form of the diamond norm, the primal prob-
lem in Eq. (36) follows by summing over the settings
x weighted with probabilities p(x) and by explicitly
minimizing over the Choi–Jamiołkowski-matrices J(Fx),
where Fx is the POVM corresponding to setting x of the
free assemblages F .

To arrive at the specific SDP for the incompatibil-
ity in Eq. (E1) from the general formulation in Eq. (36)
we first note that the spectral norm ‖Tr1[Zx]‖∞ of a
positive semidefinite matrix Tr1[Zx] can be written as
the minimal value ax such that ax1 ≥ Tr1[Zx] holds.
Next, we write out the Choi–Jamiołkowski-matrices cor-
responding to the channels ΛMx

and ΛFx
in terms of

the POVM elements Ma|x and Fa|x. Finally, we con-
straint the Fa|x explicitly to be JM i.e., that it holds
Fa|x =

∑

λ v(a|x, λ)Gλ ∀ x, a, where {Gλ} is the POVM
simulating F .

To derive the dual formulation in Eq. (E2), we formu-
late the Lagrangian of the primal problem by incorporat-
ing the constraints explicitly. The Lagrangian is given by

L =
∑

x

p(x)ax +
∑

x

Tr[Hx(Tr1[Zx]− ax1)] (E5)

+
∑

x

Tr[Cx

(

∑

a

|a〉〈a| ⊗ [Ma|x

−
∑

λ

v(a|x, λ)Gλ]
T − Zx

)

] + Tr[L(
∑

λ

Gλ − 1)],

where the Hx are d-dimensional positive semidefinite ma-
trices, the Cx are (o × d)-dimensional positive semidef-
inite matrices, where o is the number of measurement
outcomes, and L is a d-dimensional Hermitian matrix.
Note that for every feasible point in Eq. (E1), it holds
I⋄(Mp) ≥ L.

By using the property Tr[Tr1(Zx)Hx] = Tr[Zx(1 ⊗
Hx)], we can formally state the dual function
G({Hx}, {Cx}, L), which is obtained by taking the infi-
mum of the Lagrangian L over the variables of the primal
problem. More precisely,

G({Hx}, {Cx}, L) = (E6)

inf
ax,Zx,Gλ≥0

{

∑

x

ax(p(x)− Tr[Hx])− Tr[L]

+
∑

x

Tr[Zx(1⊗Hx − Cx)]

+
∑

λ

Tr[Gλ(L−
∑

a,x

v(a|x, λ)Tr1[(|a〉〈a| ⊗ 1)Cx]
T )]

+
∑

x

Tr[Cx(
∑

a

|a〉〈a| ⊗MT
a|x)]

}

.

It is clear that G({Hx}, {Cx}, L) is unbounded from be-
low, unless certain conditions (the dual constraints) are
met. For instance, if p(x)−Tr[Hx] < 0 holds for some x,
the corresponding term ax(p(x)−Tr[Hx]) can be made ar-
bitrarily small by increasing ax, which is only constrained
to be non-negative. The corresponding dual program is
obtained by maximizing the dual function G over the dual
variables {Cx}, {Dx}, L under the dual constraints. This
leads to the optimal lower bound to the primal problem.
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We obtain

Dual problem (incompatibility): (E7)

given : Mp

maximize
Cx,Hx,L

∑

x

Tr[Cx(
∑

a

|a〉〈a| ⊗MT
a|x)]− Tr[L]

subject to:

L ≥
∑

a,x

v(a|x, λ)Tr1[(|a〉〈a| ⊗ 1)Cx]
T ∀ λ,

Hx ≥ 0, Cx ≥ 0, p(x) ≥ Tr[Hx] ∀ x,

1⊗Hx − Cx ≥ 0, ∀ x, L = L†,

which is formally the dual program to the primal formu-
lation of Eq. (E1). However, we can rewrite the program
in Eq. (E7) in a more useful form.

First, we can get rid of all transposes by using
Tr[ABT ] = Tr[ATB], i.e., by swapping the transposi-
tion on the optimization variables Cx. Since the trans-
pose CT

x is already included in the optimization, we can
simply ignore it. Second, we rewrite the first term of
the objective function as Tr[Cx(

∑

a|a〉〈a| ⊗ Ma|x)] =
∑

a Tr[Ma|x(Tr1[(|a〉〈a| ⊗ 1)Cx])]. This shows that only
the block-diagonal entries of Cx are important. Note
that the same observation holds for the constraints Cx

is involved in. It is therefore no loss of generalization to
assume Cx as block diagonal. We denote Tr1[(|a〉〈a| ⊗
1)Cx] = C ′

a|x. With this, we arrive at

Dual problem (incompatibility): (E8)

given : Mp

maximize
C′

a|x
,Hx,L

∑

a,x

Tr[Ma|xC
′
a|x]− Tr[L]

subject to:

L ≥
∑

a,x

v(a|x, λ)C ′
a|x ∀ λ,

Hx ≥ 0, p(x) ≥ Tr[Hx] ∀ x,Hx ≥ C ′
a|x ≥ 0 ∀ a, x, L = L†.

Next, we note that it is always possible (without loss
of optimality) to chose p(x) = Tr[Hx], since Hx con-
straints other variables only from above. We rewrite
Hx = p(x)ρx, introducing the variables ρx ≥ 0 with
Tr[ρx] = 1. Finally, we rewrite C ′

a|x such that C ′
a|x =

p(x)Ca|x which leads to

Dual problem (incompatibility): (E9)

given : Mp

maximize
Ca|x,ρx,L

∑

a,x

p(x)Tr[Ma|xCa|x]− Tr[L]

subject to:

L ≥
∑

a,x

p(x)v(a|x, λ)Ca|x ∀ λ,

0 ≤ p(x)Ca|x ≤ p(x)ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x,

which is equivalent to the SDP (E2). Note that by virtue
of the first constraint in Eq. (E10), it follows that

Tr[L] = max
F∈FJM

∑

a,x

p(x)Tr[Fa|xCa|x]. (E10)

The bound Tr[L] ≥ max
F∈FJM

∑

a,x p(x)Tr[Fa|xCa|x] can

be seen by multiplying all the inequalities L ≥
∑

a,x p(x)v(a|x, λ)Ca|x ∀ λ with Gλ, then summing over
all λ and taking the trace. The equality follows from the
fact, that a strict inequality would contradict with the
maximization of the objective function.

As a final step in the proof, we need to show that there
is no duality gap between the primal and the dual pro-
gram. This follows from Slater’s theorem (see e.g. [62])
since it always possible to find a strictly feasible point in
either the primal or the dual problem. This can be seen
directly for the dual program in Eq. (E2), as we can chose
all Ca|x to be proportional to the identity and adjust the
ρx and L accordingly.

Appendix F: SDP formulation of informativeness

and coherence

While the calculations in Appendix E are specific to
the quantifier I⋄(Mp) and the QRT of incompatibility,
analogous considerations can be made for any resource
that has a free set F that admits a formulation as an
SDP. In order to not repeat almost the same calculation
as above, we simply state the corresponding SDP formu-
lations for the coherence and the informativeness in the
following. We start with the latter. The informativeness
IF⋄(Mp) is given as the optimal value of the following
SDPs.

Primal problem (informativeness): (F1)

given : Mp

minimize
ax,Zx,q(a|x)

∑

x

p(x)ax

subject to:

ax1− Tr1[Zx] ≥ 0 ∀ a, x,

Zx ≥
∑

a

|a〉〈a| ⊗ (Ma|x − Fa|x)
T ∀ x,

Fa|x = q(a|x)1, q(a|x) ≥ 0 ∀ a, x,
∑

a

q(a|x) = 1, ∀ a,

Zx ≥ 0, ax ≥ 0 ∀ x,
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Dual problem (informativeness): (F2)

given : Mp

maximize
Ca|x,ρx,ℓx

∑

a,x

p(x)Tr[Ma|xCa|x]−
∑

x

ℓx

subject to:

ℓx ≥ p(x)Tr[Ca|x] ∀ a, x,

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x.

The optimization variables of the primal problem are the
positive coefficients ax, the positive semidefinite matri-
ces Zx and the probabilities q(a|x). The optimization
variables of the dual problem are the positive semidefi-
nite matrices Ca|x, ρx, and the scalars ℓx. Note that it
follows directly from the first constraint of the dual that

∑

x

ℓx = max
F∈FUI

∑

a,x

p(x)Tr[Fa|xCa|x]. (F3)

This can be seen by realizing that ℓx ≥ p(x)Tr[Ca|x] ∀a, x
implies ℓxq(a|x) ≥ p(x)Tr[Ca|xq(a|x)1] ∀a, x, where we
multiplied both sides with the conditional probabilities
q(a|x). We identify q(a|x)1 = Fa|x due to the definition
of the UI measurements in Eq. (16). Finally, we sum
both sides over a and x. The equality follows from the
fact that we maximize the objective function.

Like for the incompatibility, the SDP formulations of
the informativeness IF⋄(Mp) allow us to gain additional
inside on the informativeness of WMA Mp. In partic-
ular, we show in the following that the informativeness
IF⋄(Mp) of any set of rank−1 projective measurements

is given by IF⋄(Mp) = 1 − 1

d
for any probability distri-

bution p(x).

This follows by choosing Ca|x =
Ma|x

d
, ρx =

∑

a

Ma|x

d
=

1

d
, and ℓx =

p(x)

d
as feasible solution for

the dual problem in Eq. (F2). It follows by direct calcu-

lation that IF⋄(Mp) ≥ 1 − 1

d
. As feasible solution for

the primal problem in Eq. (F1) we chose q(a|x) = 1

d
and

Zx = (1− 1

d
)
∑

a |a〉〈a|⊗Ma|x. This leads by direct com-

putation to the upper bound IF⋄(Mp) ≤ 1 − 1

d
, which

equals the lower bound.
State discrimination.—Note that in the particular case

of rank-1 projective measurements, the informativeness
IF⋄(Mp) can be understood as state discrimination
game. More precisely, we consider the following task.
Given the (known) states {ρa|x} that are distributed

with probability p(a|x) =
1

d
given that we chose the

setting x with probability p(x). That is, with proba-
bility p(a, x) = p(a|x)p(x) we receive the state ρa|x. The
goal of the game is now to identify the label a correctly
with as high probability as possible, given that we have

access to the measurement assemblage M. We com-
pare this to the situation where we do not perform a
measurement and simply guess the label a. The term
∑

a,x p(x)Tr[Ma|xCa|x] =
∑

a,x

1

d
p(x)Tr[Ma|xρa|x] can

be seen as average probability to correctly guess the label

a of the states ρa|x that are send out with probability
1

d
given that the setting x has been chosen with probability

p(x). The value IF⋄(Mp) = 1− 1

d
describes now the dif-

ference of the optimal average probability, achieved with
the assemblage Mp compared to randomly guessing the
label a for each setting x.

Coherence.—Finally, the coherence C⋄(Mp) can also
be computed by SDPs. In particular, C⋄(Mp) is the
optimal value of the following two SDPs.

Primal problem (coherence): (F4)

given : Mp

minimize
ax,Zx,αi|(a,x)

∑

x

p(x)ax

subject to:

ax1− Tr1[Zx] ≥ 0 ∀ a, x,

Zx ≥
∑

a

|a〉〈a| ⊗ (Ma|x −
∑

i

αi|(a,x)|i〉〈i|)T ∀ x,

αi|(a,x) ≥ 0 ∀ i, a, x,
∑

a

αi|(a,x) = 1, ∀ i, x,

Zx ≥ 0, ax ≥ 0 ∀ x,

Dual problem (coherence): (F5)

given : Mp

maximize
Ca|x,ρx,ℓx,i

∑

a,x

p(x)Tr[Ma|xCa|x]−
∑

x,i

ℓx,i

subject to:

ℓx,i ≥ p(x)Tr[Ca|x|i〉〈i|] ∀ a, x, i,

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x.

The optimization variables of the primal problem are the
positive coefficients ax, the positive semidefinite matrices
Zx and the coefficients αi|(a,x). The optimization vari-
ables of the dual problem are the positive semidefinite
matrices Ca|x, ρx, and the scalars ℓx,i. With the same
reasoning as with the previous resources, it can directly
be seen that

∑

x,i

ℓx,i = max
F∈FIC

∑

a,x

p(x)Tr[Fa|xCa|x]. (F6)

We use these insights about the informativeness
IF⋄(Mp) and the coherence C⋄(Mp) to identify non-
trivial cases for which it holds that IF⋄(Mp) = C⋄(Mp)
in the following. We start by considering assemblages
Mp where every POVM is a rank-1 projective measure-
ment that is mutually unbiased to the incoherent basis.
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More formally, it has to hold

Tr[|i〉〈i|Ma|x] =
1

d
∀ i, a, x. (F7)

Note that this holds true for appropriately chosen as-
semblages M of MUB measurement assemblages that are
also mutually unbiased to the incoherent basis. However,
it is actually not necessary that the measurements within
the assemblage are MUB themselves. All what is needed
is that Eq. (F7) holds true for an assemblage M of rank-1
projections. For instance, the CGLMP (see Eq. (34) and
Eq. (35)) measurements are also a valid choices. Under
the condition in Eq. (F7) it is easy to see that the choices

Ca|x =
Ma|x

d
, ρx =

∑

a

Ma|x

d
=

1

d
, and ℓx,i =

p(x)

d2
for

the dual problem in Eq. (F5) lead to C⋄(Mp) ≥ 1− 1

d
for

any probability distribution p(x). Since IF⋄(Mp) = 1−1

d
and IF⋄(Mp) ≥ C⋄(Mp) for any assemblage of rank-1
projections it has to hold IF⋄(Mp) = C⋄(Mp) whenever
the condition in Eq. (F7) is fulfilled.

Appendix G: More distances

In the main text, we defined general distances between
measurement assemblages in Definition 1. However, so
far we only focused on one particular distance. Here, we
introduce more examples of distances for measurements
and discuss their basic properties.

We start by introducing the Schatten p−norm func-

tions Dp(Mp,Np) for p ∈ [1,∞), defined as

Dp(Mp,Np) =
∑

a,x

p(x)
1

2
‖Ma|x −Na|x‖p, (G1)

where ‖X‖p = (Tr[|X|p])1/p is the Schatten p−norm of
X. Note that the cases p = 1 and p = ∞ correspond
to the trace norm, respectively the spectral norm. While
the functions Dp(Mp,Np) will generally not fulfil the
monotonicity under Hilbert-Schmidt adjoint channels Λ†

according to Definition 1, we will show in the following
that the p = ∞ case corresponds to a proper distance.
Note that for p = 1, the monotonicity under quantum
channel Λ† is not fulfilled, which can be seen by consid-
ering trivial extensions of the form Λ†(Ma|x) = 1⊗Ma|x.
Nevertheless, we also define the induced functions

Rp(Mp) = min
F∈F

Dp(Mp,Fp) (G2)

We formulate the following theorem to show that
D∞(Mp,Np) is a distance between measurement assem-
blages.

Theorem 5. The function D∞(Mp,Np) is a distance
function between the WMAs Mp and Np, i.e., it fulfils
all the conditions stated in Definition 1.
Proof. The proof can be split into several parts. Note
first, that since D∞(Mp,Np) is a weighted sum of
spectral norms, it follows that D∞(Mp,Np) ≥ 0 with
equality holding if and only if M = N . Note further
that the symmetry and triangle inequality condition in
Definition 1 are fulfilled trivially.

For the monotonicity under quantum channel, we consider a more general data-processing type inequality for the
∞− distance between two POVM elements. Namely, for Λ†(Ma|x) and Λ†(Na|x), where Λ† is a unital completely
positive map, it follows

‖Λ†(Ma|x)− Λ†(Na|x)‖∞ = max
ρ

|Tr[(Λ†(Ma|x)− Λ†(Na|x))ρ]| (G3)

= max
ρ

|Tr[(Ma|x −Na|x)Λ(ρ)]|

≤ max
ρ′

|Tr[(Ma|x −Na|x)ρ
′]|

= ‖Ma|x −Na|x‖∞,

where we used the dual representation of the Schatten-∞ norm and the fact that maximum is always achieved for a
density matrix ρ (more specifically the projector onto the eigenvalue of largest absolute value of Λ†(Ma|x)−Λ†(Na|x)).

Furthermore, we used that the adjoint of the unital completely positive map Λ† is a CPT map Λ which maps density
matrices onto density matrices and therefore shrinks the state-space one optimizes over. Since D∞(Mp,Np) is a sum
of norms ‖Ma|x −Na|x‖∞, it follows that D∞(Mp,Np) ≥ D∞(Λ†(Mp),Λ

†(Np)).
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The monotonicity under measurement simulations ξ(Mp)q follows by direct computation,

D∞(ξ(Mp)q, ξ(Np)q) =
1

2

∑

b,y

q(y)‖
∑

x,a

p(x|y)q(b|y, x, a)[Ma|x −Na|x]‖∞ (G4)

≤ 1

2

∑

b,y

q(y)
∑

x,a

p(x|y)q(b|y, x, a)‖Ma|x −Na|x‖∞

=
1

2

∑

y,x,a

q(y)p(x|y)‖Ma|x −Na|x‖∞

=
1

2

∑

x,a

p(x)‖Ma|x −Na|x‖∞ = D∞(Mp,Np),

where we used the following properties. In
the first line, we used the definition of
D∞(ξ(Mp)q, ξ(Np)q) by introducing the assem-
blages M′

q = ξ(Mp)q and N ′
q = ξ(Np)q where we

inserted M ′
b|y =

∑

x p(x|y)
∑

a q(b|y, x, a)Ma|x and

N ′
b|y =

∑

x p(x|y)
∑

a q(b|y, x, a)Na|x directly. In the

second line, we used the triangle inequality. In the third
line, we performed the sum over b. Finally, in the fourth
line, we used that

∑

y q(y)p(x|y) = p(x), which leads

exactly to the definition of D⋄(Mp,Np) from which
the monotonicity under measurement simulations ξ
follows. Therefore, D∞(Mp,Np) is a distance between
measurement assemblages according to Definition 1. �

Even though they are not resources monotones gen-
erally, the functions Rn(Mp) in Eq. (G2) can be used

to bound the resource quantifier R⋄(Mp) defined in
Eq. (12). More specifically, we derive in the following
the bounds on the diamond distance based quantifier
R⋄(Mp) given by

1

d
R∞(Mp) ≤

1

d
R1(Mp) ≤ R⋄(Mp) (G5)

≤ R∞(Mp) ≤ R1(Mp),

where d is the dimension of the Hilbert space H the
POVMs from M act on. Note that due to the mono-
tonicity of Schatten norms, it holds ‖X‖p ≤ ‖X‖p′ for

p ≥ p′ from which the bounds
1

d
R∞(Mp) ≤

1

d
R1(Mp)

and R∞(Mp) ≤ R1(Mp) follow directly.

The bound R⋄(Mp) ≤ R∞(Mp) follows from

R⋄(Mp) = min
F∈F

1

2

∑

x

p(x)max
ρ

∑

a

‖Tr1[(Ma|x ⊗ 1)ρ]− Tr1[(Fa|x ⊗ 1)ρ]‖1 (G6)

≤ min
F∈F

1

2

∑

x

p(x)max
ρ

∑

a

‖(Ma|x ⊗ 1)ρ− (Fa|x ⊗ 1)ρ‖1

≤ min
F∈F

1

2

∑

a,x

p(x)max
ρ

‖(Ma|x ⊗ 1)− (Fa|x ⊗ 1)‖∞‖ρ‖1

= min
F∈F

1

2

∑

a,x

p(x)‖(Ma|x ⊗ 1)− (Fa|x ⊗ 1)‖∞ = R∞(Mp),

where we used the definition of R⋄(Mp) in the first line and the monotonicity of the trace norm under partial trace
in the second line. In the third line, we used the Hölder inequality and in the last line identified the definition of
R∞(Mp).

The last remaining bound
1

d
R1(Mp) ≤ R⋄(Mp) can directly be obtained by using ρ = |Φ+〉〈Φ+| within the

optimization of the diamond norm. Here, |Φ+〉 = 1√
d

∑d−1
i=0 |ii〉 is the maximally entangled state, where (as before) d
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is the dimension the POVMs of the measurement assemblage M act on. It follows

R⋄(Mp) = min
F∈F

1

2

∑

x

p(x)max
ρ

∑

a

‖Tr1[(Ma|x ⊗ 1)ρ]− Tr1[(Fa|x ⊗ 1)ρ]‖1 (G7)

≥ min
F∈F

1

2

∑

x

p(x)
∑

a

‖Tr1[(Ma|x ⊗ 1)|Φ+〉〈Φ+|]− Tr1[(Fa|x ⊗ 1)|Φ+〉〈Φ+|]‖1

= min
F∈F

1

2

∑

x

p(x)
∑

a

1

d
‖(Ma|x − Fa|x)

T ‖1

= min
F∈F

1

2

∑

x

p(x)
∑

a

1

d
‖Ma|x − Fa|x‖1 =

1

d
R1(Mp),

where we used in the first line the definition of R⋄(Mp) and in the second line that ρ = |Φ+〉〈Φ+| is a feasible
point within the maximization over the quantum states within the diamond norm. In the third line, we used that

Tr1[(Ma|x ⊗ 1)|Φ+〉〈Φ+|] = 1

d
MT

a|x, where the transposition is with respect to the computational basis. Finally, we

can use that a transposition does not change the singular values.

The monotone R∞(Mp) in particular is not only a
valuable tool to bound the diamond distance R⋄(Mp)
but is also interesting in itself. More specifically, we
show in the following that R∞(Mp) obeys also a mea-
surement hierarchy similar to that in Eq. (27). Let
IF∞(Mp),C∞(Mp), and I∞(Mp) be the informative-
ness, coherence, and incompatibility of Mp as measured
by the distance R∞(Mp) in Eq. (G2) with respect to the
free sets FUI, FIC, and FJM. It follows directly from
FUI ⊂ FIC ⊂ FJM that the hierarchy

IF∞(MpA
) ≥ C∞(MpA

) ≥ I∞(MpA
), (G8)

holds. Moreover, it can be shown that I∞(MpA
) ≥

S(~σpA
) (remember that we already showed that S(~σpA

) ≥
N(qp)). This follows from the direct computation for any
quantum state ρ of appropriate dimension and the closest
JM assemblage F∗ to M (with respect to the monotone
I∞(Mp)):

S(~σpA
) (G9)

≤ 1

2

∑

a,x

pA(x)‖Tr1[((Ma|x − F ∗
a|x)⊗ 1)ρ]‖1

≤ 1

2

∑

a,x

pA(x)‖((Ma|x − F ∗
a|x)⊗ 1)ρ‖1

≤ 1

2

∑

a,x

pA(x)‖(Ma|x − F ∗
a|x)⊗ 1‖∞‖ρ‖1

=
1

2

∑

a,x

pA(x)‖Ma|x − F ∗
a|x‖∞ = I∞(MpA

),

where we first used that JM measurements always lead to
unsteerable assemblages. Second, we used that the trace
norm is non-increasing under partial traces. Third, we
used the Hölder inequality. It therefore follows, that the
hierarchy

IF∞(MpA
) ≥ C∞(MpA

) ≥ I∞(MpA
) ≥ S(~σpA

) ≥ N(qp),
(G10)

holds.
Another distance for measurement assemblages that

can be considered is based on the ℓ1-distance between
probability distributions. More specifically, the induced
ℓ1-distance between two WMAs is given by

Dℓ1(Mp,Np) =
1

2

∑

x

p(x)max
ρA

∑

a

|Tr[(Ma|x −Na|x)ρA]|,

(G11)

which is the ℓ1-distance of the probability distribu-
tions {Tr[Ma|xρA]} and {Tr[Na|xρA]} maximized over all
quantum states ρA. With the same methods as for the
distances D∞(Mp,Np) and D⋄(Mp,Np) it can be shown
that Dℓ1(Mp,Np) fulfills all the conditions in Defini-
tion 4. Hence, Dℓ1(Mp,Np) is a distance function which
induces the distance-based monotone

Rℓ1(Mp) = min
F∈F

Dℓ1(Mp,Fp). (G12)

Note that while it follows directly that Rℓ1(Mp) will
naturally induce a hierarchy between the informative-
ness, coherence, and the incompatibility of a WMA Mp,
it is not clear whether there exist steering or nonlocality
monotones that are in natural correspondence to it. Note
further that in the context of coherence of single POVMs,
this kind of statistical measure has also been defined by
Baek et al. [23].

Even though it is not clear whether a complete hi-
erarchy of measurement resources holds, the quantifier
Rℓ1(Mp) is important, as it can be seen as limiting case
of the quantifier R⋄(Mp) when the maximization is per-
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formed only over product states. More formally, it holds

R⋄(Mp) (G13)

≥ min
F∈F

1

2

∑

x

p(x) max
ρ=ρA⊗ρB

∑

a

‖Tr1[((Ma|x − Fa|x)⊗ 1)ρ]‖1

= min
F∈F

1

2

∑

x

p(x) max
ρ=ρA⊗ρB

∑

a

‖Tr[(Ma|x − Fa|x)ρA]ρB‖1

= min
F∈F

1

2

∑

x

p(x) max
ρ=ρA⊗ρB

∑

a

|Tr[(Ma|x − Fa|x)ρA]|‖ρB‖1

= min
F∈F

1

2

∑

x

p(x)max
ρA

∑

a

|Tr[(Ma|x − Fa|x)ρA]|

= Rℓ1(Mp),

where we used in the first line that we maximize only
over the set of product states. In the second line we
used the definition of the partial trace and finally, we
used that states ρB are normalized in the 1−norm and
identified the last line with the definition of the induced
ℓ1-distance quantifier Rℓ1(Mp).

Appendix H: Dichotomic measurements

Here, we show an additional property of R⋄(Mp) that
can be useful for the case where we consider measure-
ment assemblages M with only two outcomes for each
setting x. We show that in this special case, the diamond
distance quantifier R⋄(Mp) is equivalent to R∞(Mp)
and Rℓ1(Mp). Consider the WMAs {M1|x,1 − M1|x}x
and {F1|x,1−F1|x}x. Remember that we already showed
previously that R⋄(Mp) ≤ R∞(Mp), so we only need to
show that in the case of dichotomic measurements it also
holds R⋄(Mp) ≥ R∞(Mp) = Rℓ1(Mp). This follows
directly via

R⋄(Mp) ≥ Rℓ1(Mp)

= 2
1

2
min
F∈F

∑

x

p(x)max
ρA

|Tr[(Ma|x − Fa|x)ρA]| = R∞(Mp),

(H1)

where we used the bound R⋄(Mp) ≥ Rℓ1(Mp) and
the fact that for dichotomic measurements both out-
comes contribute equally towards Rℓ1(Mq). Finally, we
used that this holds also true for R∞(Mp). Alterna-
tively, it is also enough to see that the same ρA is op-
timal for both outcomes, which leads to the conclusion
that R∞(Mp) = Rℓ1(Mp). Note that the above result
shows that entanglement does not offer an advantage in
distinguishing two measure-and-prepare channels for di-
chotomic measurements by means of the diamond norm.

Appendix I: Optimal input distribution

Here, we give an example where an optimization over
the input distribution p = {p(x)} for the settings x is

Figure 4. The optimal input probability p(x = 1) for the
first (noise free) measurement setting of the assemblage M
in Eq. (I1) depending on the dimension d and the noise pa-
rameter µ. The plot shows the optimal probability p(x = 1)
which maximizes the incompatibility I⋄(Mp). It can be seen
that a uniform distribution is only optimal in the absence
of noise (i.e. µ = 1). Especially for high noise regimes (e.g.
µ = 0.1) a strong bias towards the noise free measurement can
be seen. However, this strong bias decreases with increasing
dimension d.

relevant to optimize the available resources. In partic-
ular, we show that for the incompatibility I⋄(Mp) (see
Eq. (21)) of a measurement assemblage with only two set-
tings, the optimal incompatibility is not always achieved

for a uniform distribution p(1) = p(2) =
1

2
. The idea is to

introduce noise in only one of the measurement settings,
here for x = 2. Let us consider an MUB measurement
assemblage N containing m = 2 POVMs, constructed in
the same way as the assemblages considered in Table II.
From the MUB measurement assemblage N we obtain
the measurement assemblage M via

Ma|1 = Na|1 ∀ a, (I1)

Ma|2 = µNa|2 + (1− µ)Tr[Na|2]
1

d
∀ a,

where µ ∈ [0, 1] is a depolarizing noise parameter for
the second measurement. In the following, we analyze
how to choose the probability distribution p = {p(x)}
such that the incompatibility I⋄(Mp) is maximized for
the given assemblage M. As mentioned in section IV,
the SDP (37) can be rewritten such that it includes a
maximization over the input distribution p = {p(x)}. We
illustrate our results in Figure 4 for the optimal setting
probabilities p(x) of the assemblage M in dimension d
with noise parameter µ.

As one can see, even for only two measurements, strong
biases towards one setting can be necessary in order to
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Figure 5. Comparison of the incompatibility I⋄(Mp) between
the optimal input distribution (dashed lines) and the uniform
distribution (solid lines) depending on the noise parameter µ

for a given dimension d. It can be seen that the optimized
input distribution outperforms the uniform distribution for
the measurement assemblage described in Eq. (I1). For low
noise regime (µ close to 1) the solid and the dashed lines
approach each other, as the uniform distribution is optimal
for µ = 1.

maximize the incompatibility I⋄(Mp). We want to re-
mark that except for the noise free case, i.e. µ = 1,
the optimized input distribution leads to a strictly larger
incompatibility than with a uniform distribution. Note
that in this particular example, the advantage is weak as
can be seen in Figure 5. However, an optimization over
the distribution p can lead to a strong increase in in-
compatibility for m ≥ 3, by essentially neglecting weakly
incompatibly subsets of measurements. On a qualitative

basis, this effect can be explained in terms of the infor-
mativeness IF⋄(Mp) (see Eq. (17)). For large noise (e.g.
µ = 0.1) the distribution is strongly biased towards the
noise-free, hence more informative measurement.
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Distribution of quantum incompatibility across subsets of measurements

Lucas Tendick,∗ Hermann Kampermann, and Dagmar Bruß
Institute for Theoretical Physics, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany

Incompatible, i.e. non-jointly measurable quantum measurements are a necessary resource for
many information processing tasks. It is known that increasing the number of distinct measurements
usually enhances the incompatibility of a measurement scheme. However, it is generally unclear
how large this enhancement is and on what it depends. Here, we show that the incompatibility
which is gained via additional measurements is upper and lower bounded by certain functions of
the incompatibility of subsets of the available measurements. We prove the tightness of some of
our bounds by providing explicit examples based on mutually unbiased bases. Finally, we discuss
the consequences of our results for the nonlocality that can be gained by enlarging the number of
measurements in a Bell experiment.

The incompatibility of quantum measurements, i.e.,
the impossibility of measuring specific observable quan-
tities simultaneously, is one of quantum physics’ most
prominent and striking properties. First discussed by
Heisenberg [1] and Robertson [2], this counterintuitive
feature was initially thought of as a puzzling curios-
ity that represents a drawback for potential applica-
tions. Nowadays, measurement incompatibility [3, 4] is
understood as a fundamental property of nature that
lies at the heart of many quantum information process-
ing tasks, such as quantum state discrimination [5–10],
quantum cryptography [11, 12], and quantum random ac-
cess codes [13, 14]. Even more importantly, incompati-
ble measurements are a crucial requirement for quantum
phenomena such as quantum contextuality [15], EPR-
steering [16, 17], and Bell nonlocality [18].

Its fundamental importance necessitates gaining a deep
understanding of measurement incompatibility from a
qualitative and quantitative perspective. By its very
definition, measurement incompatibility arises when at
least m ≥ 2 measurements are considered that cannot
be measured jointly by performing a single measurement
instead. Generally, adding more measurements to a mea-
surement scheme may allow for more incompatibility,
hence increasing advantages in certain applications.

However, it is generally unclear how much incompat-
ibility can be gained from adding further measurements
to an existing measurement scheme and on what this po-
tential gain depends. Similarly, it is unclear how the in-
compatibility of measurement pairs contributes towards
the total incompatibility of the whole set. Answering
these questions is crucial to understanding specific pro-
tocols’ power over others, such as protocols involving dif-
ferent numbers of mutually unbiased bases (MUB) [19].
For example, in quantum key distribution, the six-state
protocol [20] provides an advantage over the BB84 proto-
col [11] by using three instead of two qubit bases. While it
is known [21] that the different incompatibility structures
(e.g., genuine triplewise and pairwise incompatibility)
arising for m ≥ 3 measurements set different limitations

∗ lucas.tendick@hhu.de

on the violation of Bell inequalities, so far no systematical
way to quantify the gained advantage is known. Incom-
patibility structures beyond two measurements have also
been studied in [22–24] and measurement incompatibil-
ity was shown to be only necessary but not sufficient for
nonlocality beyond the case of two dichotomic measure-
ments [25–27].

In this work, we take a step toward answering these
questions by showing how an assemblage’s incompati-
bility depends quantitatively on its subsets’ incompat-
ibilities. More specifically, we show how the potential
gain of adding measurements to an existing measurement
scheme is bounded by the incompatibility of the parent
positive operator valued measures (POVMs) that approx-
imate the respective subsets of measurements by a single
measurement.

Our results reveal the polygamous nature of measure-
ment incompatibility in the sense that an assemblage of
more than two measurements can only be highly incom-
patible if all its subsets and the respective parent POVMs
of the closest jointly measurable approximation of these
subsets are highly non-jointly measurable. Our consid-
erations lead to a new notion of measurement incompat-
ibility that accounts only for a specific measurement’s
incompatibility contribution. We prove the relevance of
our bounds on the incompatibility that can maximally
be gained by showing that they are tight for particular
measurement assemblages based on MUB. Finally, we
show that our results have direct consequences for steer-
ing and Bell nonlocality and discuss future applications
of our results and methods.

Preliminaries.—We describe a quantum measurement
most generally by a POVM, i.e., a set {Ma} of operators
0 ≤ Ma ≤ 1 such that

∑

a Ma = 1. Given a state ρ,
the probability of obtaining outcome a is given by the
Born rule p(a) = Tr[Maρ]. A measurement assemblage
is a collection of different POVMs with operators Ma|x,
where x denotes the particular measurement. We write
an assemblage M(1,2,··· ,m) = (M1,M2, · · · ,Mm) of m
measurements as an ordered list of POVMs, where Mx

refers to the x-th measurement. For instance,M(1,2,3) =
(M1,M2,M3) refers to an assemblage with three (dif-
ferent) measurements and M(1,2,2) = (M1,M2,M2)
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denotes an assemblage where the second and the third
POVM are equal.

An assemblage is called jointly measurable if it can be
simulated by a single parent POVM {Gλ} and conditional
probabilities p(a|x, λ) such that

Ma|x =
∑

λ

p(a|x, λ)Gλ ∀ a, x, (1)

and it is called incompatible otherwise. Various func-
tions can quantify measurement incompatibility [28–30].
The most suitable incompatibility quantifier for our pur-
poses is the recently introduced diamond distance quan-
tifier [31], given by

I⋄(Mp) = min
F∈JM

∑

x

p(x)D⋄(ΛMx
,ΛFx

), (2)

where JM denotes the set of jointly measurable assem-
blages, ΛMx

=
∑

a Tr[Ma|xρ]|a〉〈a| is the measure-and-
prepare channel associated to the measurement Mx,

and D⋄(Λ1,Λ2) = max
ρ∈S(H⊗H)

1

2
‖((Λ1 − Λ2) ⊗ 1d)ρ‖1 is

the diamond distance [32] between two channels Λ1 and

Λ2, with the trace norm ‖X‖1 = Tr[
√
X†X]. Further-

more, Mp = (M,p) denotes a weighted measurement
assemblage, where p contains the probabilities p(x) with
which measurement x is performed. Note that I⋄(Mp)
is induced by the general distance D⋄(Mp,Np) :=
∑

x p(x)D⋄(ΛMx
,ΛNx

) between two assemblages Mp

and Np.
We denote by M#

(1,2,··· ,m) the closest jointly measur-

able assemblage with respect toM(1,2,...,m), i.e., the arg-

min on the RHS in Eq. (2). WhileM#
(1,2,··· ,m) and its un-

derlying parent POVM are generally not unique [23, 33],
all the results derived in this work hold for any valid
choice, as we do not assume uniqueness. If we only ap-
proximate a subset of n < m measurements ofM(1,2,...,m)

by jointly measurable ones, for instance the first n set-
tings, while keeping the remaining measurements un-

changed, we write M#(1,2,...,n)
(1,2,··· ,m) .

The diamond distance quantifier I⋄(Mp) is partic-
ularly well-suited for our purposes, as it is not only
monotonous under the application of quantum channels
and classical simulations but it also inherits all proper-
ties of a distance (in particular the triangle inequality
of D⋄(Mp,Np)), and it is written in terms of a convex
combination of the individual measurement’s distances.

For pedagogical reasons, we focus in the main text
on the scenario 2 → 3, i.e., we consider an assemblage
of m = 2 measurements that is promoted to one with
m′ = 3 settings. Furthermore, we set p(x) to be uni-
formly distributed and simply use the symbolM for the
weighted assemblage in this case. Moreover, we use the
reoccurring example of measurements corresponding to
the three Pauli observables X,Y, Z, the simplest case of
measurements based on three MUB. We refer to the Sup-
plemental Material (SM) [34] for all proofs, more back-
ground information, and generalizations to an arbitrary

TraditionFigure 1. Different structures of incompatibility for three
measurements, see also Ref. [21]. The sets JM(s,t) contain as-
semblages of measurements where the pairs (s, t) are compat-
ible. Their intersection JMpair := JM(1,2) ∩ JM(1,3) ∩ JM(2,3)

contains all pairwise compatible assemblages, with the set
JM of all jointly measurable assemblages as a proper sub-
set. Assemblages not contained in the convex hull JMconv :=
Conv(JM(1,2)

, JM(1,3)
, JM(2,3)) of the sets JM(s,t), i.e., those

that cannot be written as a convex combination of as-
semblages from the sets JM(1,2), JM(1,3), and JM(2,3) are
genuinely triplewise incompatible. The incompatibility of
M(1,2,3) is given by the distance to its closest jointly mea-
surable approximation M

#
(1,2,3). This distance can be up-

per bounded using the triangle inequality via the assemblage
M

#(1,2)

(1,2,3).

number of measurements and general probability distri-
butions.

Adding a third measurement M3 to the assemblage
M(1,2) = (M1,M2) is mathematically described by the
concatenation of ordered lists, using the symbol ++, i.e.,
we write

M(1,2,3) =M(1,2) ++M3 = (M1,M2,M3). (3)

Using the concatenation of ordered lists, we formally de-

fine M#(1,2)
(1,2,3) such that

M#(1,2)
(1,2,3)

:=M#
(1,2) ++M3. (4)

Three measurements allow for incompatibility struc-

tures [21–24] beyond Eq. (1). We define the sets JM(s,t)

with s 6= t ∈ {1, 2, 3} as those containing assemblages in
which the measurements s and t are jointly measurable.
This allows us to define pairwise and genuinely triplewise
incompatible assemblages [21] as those that are not con-
tained in the intersection and the convex hull of the sets
JM(s,t), respectively. See also Figure 1 for a graphical
representation and more details.

Incompatibility gain.—We investigate the incompatibil-
ity gain obtained from adding measurements to an al-
ready available assemblage. That is, for an assemblage
M(1,2,3) defined via Eq. (3) we want to quantify the gain

∆I(1,2)→(1,2,3) := I⋄(M(1,2,3))− I⋄(M(1,2)). (5)
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Note that ∆I(1,2)→(1,2,3) is the difference of two quan-
tities that can be computed via semidefinite programs
(SDPs) [31], however, the purely numerical value of the
gained incompatibility does only provide limited physical
insights by itself. While it seems generally challenging to
find an exact analytical expression for the incompatibil-
ity gain, we will derive bounds on it in the following.

Our approach relies on a two-step protocol. First, we
employ a measurement splitting, i.e., instead of consider-
ing the incompatibility of M(1,2,3), we consider the in-
compatibility I⋄(M(1,2,1,3,2,3)). That is, each measure-
ment ofM(1,2,3) is now split up into two equivalent ones,

each occurring with a probability of 1
6 . Furthermore, it

holds I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)) since the assem-
blages can be converted into each other by (reversible)
classical post-processing [34]. The second step involves
a particular instance of the triangle inequality and uses
specifically that I⋄(M) is defined as convex combination
over the individual settings. More precisely, let

N =M#
(1,2) ++M

#
(1,3) ++M

#
(2,3), (6)

be an assemblage that contains itself three assemblages
(of two measurements each) that are the closest jointly
measurable approximations with respect to the individ-
ual subsets of M(1,2,3). We point out that N itself can
be incompatible in general. Using the triangle inequality,
it follows that

I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)) (7)

≤ D⋄(M(1,2,1,3,2,3),N ) + I⋄(N ).

Due to our choice of N , the term D⋄(M(1,2,1,3,2,3),N )
evaluates to the average incompatibility of the subsets,
as we can split the sum over all six settings into three
pairs, i.e. we obtain

I⋄(M(1,2,3)) ≤
1

3

[

I⋄(M(1,2)) + I⋄(M(1,3)) (8)

+ I⋄(M(2,3))
]

+ I⋄(N ).

That is, the incompatibility ofM(1,2,3) is upper bounded
by the average incompatibility of its two-measurement
subsets plus the incompatibility I⋄(N ) that contains the
information about how incompatible the respective clos-
est jointly measurable POVMs are with each other. No-
tice that I⋄(N ) ≤ I⋄(G) holds, where

G = G(M#
(1,2)) ++G(M#

(1,3)) ++G(M#
(2,3)) (9)

is the assemblage that contains the parent POVMs of the
respective subsets, as N is a classical post-processing of
G [34]. This shows that the incompatibility ofM(1,2,3) is
limited on two different levels through its subsets. More-
over, it reveals a type of polygamous behavior of incom-
patibility. For high incompatibility of M(1,2,3) each of
the subsets, as well as the underlying parent POVMs of
the respective jointly measurable approximations, have
to be highly incompatible. Coming back to the incom-
patibility gain, we are ready to present our first main
result.

Result 1. Let I⋄(M(1,2)) ≥ max{I⋄(M(1,3)), I⋄(M(2,3))}.
It follows that the incompatibility gain as defined in
Eq.(5) is bounded such that

∆I(1,2)→(1,2,3) ≤ I⋄(N ) ≤ I⋄(G). (10)

This means that the potential incompatibility gain is
limited by the incompatibility of the assemblage N in
Eq. (6), i.e., the concatenation of the respective clos-
est jointly measurable approximations of the subsets.
Physically more intuitive, it is limited by the incom-
patibility of the assemblage that contains the respec-
tive parent POVMs. The assumption I⋄(M(1,2)) ≥
max{I⋄(M(1,3)), I⋄(M(2,3))} represents no loss of gener-
ality for all practical purposes, as one can simply optimize
over all possible two-measurement subsets.

We point out that Result 1 allows for the definition
of a single maximally incompatible additional measure-
ment, in the sense that it is the measurement M3 that
maximizes the incompatibility gain ∆I(1,2)→(1,2,3) for a
given assemblage M(1,2). As an illustrative example,
we consider the three projective measurements {Πa|x}
which represent the Pauli X,Y, Z observables subjected
to white noise, i.e., we analyze the incompatibility of the
assemblage Mη

(1,2,3) = (Mη
1 ,Mη

2 ,Mη
3) defined via

Mη
a|x = ηΠa|x + (1− η) Tr[Πa|x]

1

2
, (11)

where (1−η) is the noise level. It holds in this particular
case that (see Figure 2):

∆I(1,2)→(1,2,3)(η) = I⋄(N (η)), (12)

which we prove analytically in the SM [34]. For the
regime 1√

2
≤ η ≤ 1 we also show that I⋄(N (η)) =

I⋄(M1/
√
2

(1,2,3)), which means that the gained incompatibil-

ity is exactly given by the incompatibility of Mη
(1,2,3) at

the noise threshold where it becomes pairwise compati-
ble.

Our methods can also be applied to obtain lower
bounds. For instance, we show [34] that I⋄(M(1,2,3)) is
bounded by the average subset incompatibility:

I⋄(M(1,2,3)) ≥
1

3
[I⋄(M(1,2)) + I⋄(M(1,3)) + I⋄(M(2,3))].

(13)

In general, I⋄(M(1,2,3)) < I⋄(M(1,2)) is possible, i.e.,
adding a measurement to an assemblage can actually de-
crease the incompatibility, if we do not optimize over the
input distribution p. While this might seem surprising,
it can be explained by the fact that using measurements
of little resource can be disadvantageous.

Another way to see how the incompatibility of an as-
semblageM(1,2,3) can be upper bounded in terms of the
incompatibility I⋄(M(1,2)) plus the gained incompatibil-
ity due to measurementM3 relies solely on the structure
of incompatible measurements in the metric space of all
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Figure 2. Incompatibility gain for adding a third Pauli mea-
surement. The gained incompatibility is given by the red
(dotted) line. In the regime where I⋄(M(1,2)) 6= 0, the gained
incompatibility remains constant. The red (dotted) curve and
the blue curve add up to the violet one. The compared re-
sources are exactly those used in the BB84 [11], respectively
the six-state protocol [20], ideally with η = 1.

measurement assemblages. That means, it is sufficient to
rely only on specific instances of the triangle inequality
without splitting the measurements.

A new notion of incompatibility.—Consider the gen-
eral assemblage M(1,2,3) as defined in Eq. (3). Due to
the triangle inequality, see also Figure 1, it holds

I⋄(M(1,2,3)) ≤ D⋄(M(1,2,3),N(1,2,3)) + I⋄(N(1,2,3)),

(14)

for any assemblage N(1,2,3). By choosing N(1,2,3) =

M#(1,2)
(1,2,3)

:= M#
(1,2) ++M3, we obtain our second main

result.

Result 2. LetM(1,2,3) =M(1,2)++M3 be a concatenated

measurement assemblage and M#
(1,2) the closest jointly

measurable approximation of M(1,2). It holds

I⋄(M(1,2,3)) ≤
2

3
I⋄(M(1,2)) + I⋄(M#(1,2)

(1,2,3)). (15)

This means that the incompatibility ofM(1,2,3) is up-
per bounded by the incompatibility of the subsetM(1,2),

weighted with the probability p = 2
3 , plus the incompat-

ibility of the added measurement M3 with the closest

jointly measurable approximation M#
(1,2) of M(1,2). In

[34] we also show that the incompatibility of M(1,2,3) is
lower bounded by

I⋄(M(1,2,3)) ≥ 2
3 I⋄(M(1,2)). (16)

The only incompatibility that contributes to

I⋄(M#(1,2)
(1,2,3)) is the incompatibility of M3 with the

assemblage M#
(1,2), which itself is jointly measurable.

Therefore, this term in Eq. (15) can be understood as a
new notion of incompatibility of the assemblageM(1,2,3),

where all incompatibilities apart of the contribution
that comes from the presence of measurement M3 are
omitted.

We show analytically in the SM [34] that the bound
in Eq. (15) is tight for depolarized Pauli measurements
(see Eq. (11)). Moreover, we show analytically that a
similar bound is tight for certain measurements based
on d-dimensional MUB in cases where the number of
measurements m is changed such that m = 2→ m′ = d,
m = 2→ m′ = d+1, and m = d→ m′ = d+1. Namely,
we prove and analyze the generalization of Eq. (15):

I⋄(M(1,2,··· ,m)) ≤
|C|
m

I⋄(MC) + I⋄(M#C
(1,2,··· ,m)), (17)

for any assemblageM(1,2,··· ,m) and any subset C of mea-
surements with cardinality |C|.

Incompatibility decomposition.—Looking at the results
in Figure 2 leads to the question whether there exists
a more general decomposition of I⋄(M(1,2,3)) into differ-
ent incompatibility structures. Indeed, since I⋄(M) is a
distance-based incompatibility quantifier, our final main
result follows.

Result 3. The incompatibility of any assemblage M of
m = 3 measurements is upper bounded such that

I⋄(M) ≤ I⋄
gen(M) + I⋄

pair(M) + I⋄
hol(M), (18)

where I⋄
gen(M) is the genuine triplewise incompatibil-

ity of M, i.e., its minimal distance to an assemblage
Mconv ∈ JMconv. Furthermore, we define I⋄

pair(M) :=
D⋄(Mconv,Mpair) to be the pairwise incompatibility,

where Mpair ∈ JMpair is the closest pairwise compatible
assemblage with respect toMconv. The term I⋄

hol(M) :=
I⋄(Mpair) is the hollow incompatibility, which implicitly
depends on M. See also Figure 1.

We emphasize that the bound in Eq. (18) relies
crucially on the distance properties of the quantifier
I⋄(M) and cannot be adapted directly to robustness or
weight quantifiers [28, 29]. In the SM [34] we show that
the decomposition in Eq. (18) is tight for the three Pauli
measurements, and give numerical indication that this
is generally the case for measurements based on MUB.

Implications for steering and Bell nonlocality.—Due
to the mathematical structure of our methods, they
can directly be applied to quantum steering and Bell
nonlocality. We describe our results regarding steering
and nonlocality in more detail in the SM [34]. The
analysis of the gain in nonlocal correlations in Bell
experiments is particularly interesting as it seems
fundamentally different from incompatibility and steer-
ing. Consider a Bell experiment where Alice performs
mA = 3, Bob mB = 2 measurements, and we want to
upper bound the nonlocality of the resulting distribution
q(1,2,3) = {q(ab|xy)} in terms of the nonlocality of the
distributions q(1,2),q(1,3), and q(2,3) where Alice uses
only two of the measurements (analogous to Eq.(8)). For
a properly chosen nonlocality distance, we obtain a cor-
responding bound (see SM [34]). However, this involves
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the average nonlocality of the distributions q(1,2),q(1,3),
and q(2,3), which, in general, is lower than the maximal
obtainable nonlocality with two measurements on Alice’s
side. This is a consequence of the fact that there gener-
ally do not exist three different measurements for Alice,
out of which any two allow for the maximal violation of
a Bell inequality, while the measurements of Bob and
their shared quantum state remain unchanged. We show
this explicitly in the case of dichotomic measurements
[34], by considering three different versions of the
Clauser-Horne-Shimony-Holt (CHSH) inequality [35].
As a consequence, we observe that the nonlocality of
distributions involving more than two measurements is
stricter upper bounded than in the case of measurement
incompatibility or steering. This observation could
prove crucial in understanding why nonlocality seems
to behave differently to incompatibility and steering,
in the sense that using more than two measurements is
not known to provide any advantages for the maximal
obtainable Bell nonlocality [36, 37].

Conclusion and outlook.—In this work, we analyzed
how much incompatibility can maximally be gained
by adding measurements to an existing measurement
scheme. We showed that this gain is upper bounded by
the incompatibility of the underlying parent POVMs
that approximate subsets of measurements. Our analysis
shines light on a new notion of incompatibility, which
decomposes the total incompatibility of an assemblage
into the contributions of a single measurement that
is concatenated with a jointly measurable assemblage.
We proved the relevance of our bounds analytically by
showing that they are tight for specific measurements
based on MUB. Moreover, we showed that our methods

are directly applicable to quantum steering and Bell
nonlocality. For nonlocality specifically, we discovered
a promising path to understand better why using more
than two measurements may not provide any advantage
for maximal nonlocal correlations.

Our work provides a foundation for several new direc-
tions of research. First, it would be interesting to see
whether resource quantifiers such as the incompatibility
robustness [29] or weight [28] can also be used to analyze
how the incompatibility of an assemblage depends on
its subsets. Second, our methods might prove helpful
to find better bounds on the incompatibility of general
assemblages, particularly assemblages based on MUB.
Especially for understanding which measurements
are maximally incompatible, our work provides new
tools. Finally, it would be interesting to analyze the
performance gain of specific cryptography [11, 20] or
estimation protocols [38] with different numbers of
measurements.
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SUPPLEMENTAL MATERIAL

In this Supplemental Material, we give detailed background information on measurement incompatibility, provide
proofs for the results and statements in the main text, and discuss how to apply our results to steering and nonlocality.
Furthermore, we show how to generalize our results to general sets of m measurements and weighted measurement
assemblages Mp = (M,p) with general probability distributions p.

I. BACKGROUND INFORMATION ON INCOMPATIBILITY

Here, we give detailed background information on the important properties of the diamond distance quantifier
I⋄(Mp) defined in Eq. (2). To provide a relatively self contained overview in this Supplemental Material, we also repeat
the relevant definitions from the main text. An assemblage M(1,2,··· ,m) = (M1,M2, · · · ,Mm) of m measurements
with outcomes a and settings x is called jointly measurable if it can be simulated by a single parent POVM {Gλ} and
conditional probabilities p(a|x, λ) such that

Ma|x =
∑

λ

p(a|x, λ)Gλ ∀ a, x, (19)

and it is called incompatible otherwise. Note that the probabilities p(a|x, λ) can always be identified with deterministic
response functions v(a|x, λ) since the randomness in p(a|x, λ) can be shifted to the parent POVM by appropriately
redefining the Gλ. Let us denote by JM the set of all jointly measurable assemblages. For more than two measurements,
there exist different sub-structures of incompatibility. Focusing on the case of three measurements, we define the sets

JM(s,t) with s, t ∈ {1, 2, 3} such that s 6= t as the sets containing assemblages in which the measurement s and t are

jointly measurable. Their intersection JMpair := JM(1,2) ∩ JM(1,3) ∩ JM(2,3) contains all assemblages in which any
pair of two measurements are compatible, the so-called pairwise compatible assemblages. On the other hand, the set

JMconv := Conv(JM(1,2), JM(1,3), JM(2,3)) describes the convex hull of the sets JM(1,2), JM(1,3), and JM(2,3), i.e., it
contains all assemblage that can be written as a convex combination of assemblages where one pair of measurements
is compatible. More formally, it contains all assemblages of the form

M(1,2,3) = p(1,2)J (1,2)
(1,2,3) + p(1,3)J (1,3)

(1,2,3) + p(2,3)J (2,3)
(1,2,3), (20)

where J (s,t)
(1,2,3) ∈ JM(s,t) and the convex combination is to be understood on the level of the individual POVM effects.

Finally an assemblage M(1,2,3) /∈ JMconv is said to be genuinely triplewise incompatible. Note, these notions can
straightforwardly be generalized to more than three measurements. See also [21] and for a graphical representation
Figure 1 in the main text.

To quantify the incompatibility as a resource, we use the diamond distance quantifier [31] given by

I⋄(Mp) = min
F∈JM

∑

x

p(x)D⋄(ΛMx
,ΛFx

), (21)

where ΛMx
=

∑

a Tr[Ma|xρ]|a〉〈a| is the measure-and-prepare channel associated to the measurement Mx, and

D⋄(Λ1,Λ2) = max
ρ∈S(H⊗H)

1

2
‖((Λ1 − Λ2) ⊗ 1d)ρ‖1 is the diamond distance [32] between two channels Λ1, and Λ2,

with the trace norm‖X‖1 = Tr[
√
X†X]. Technically speaking, I⋄(Mp) quantifies the incompatibility of a weighted

assemblage Mp = (M,p) which contains the information about the probabilities p(x) with which the measurement
x is performed. The distance between two assemblages Mp and Np that induces the quantifier I⋄(Mp) is given by

D⋄(Mp,Np) :=
∑

x

p(x)D⋄(ΛMx
,ΛNx

). (22)

Like in the main text, we will simply write I⋄(M) to imply the case where p(x) = 1
m∀x. We denote byM#

(1,2,··· ,m) the

closest jointly measurable assemblage toM(1,2,...,m), i.e., the arg-min on the RHS in Eq. (21). Therefore,M#
(1,2,··· ,m)

can be seen as the closest jointly measurable approximation of the assemblage M(1,2,...,m). If we only approxi-
mate a subset of n < m measurements of M(1,2,...,m) by jointly measurable measurements, for instance the first

n settings, while keeping the remaining measurements unchanged, we write M#(1,2,...,n)
(1,2,··· ,m) . Adding measurements
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M′
(m+1,m+2,...,m+n) = (M′

m+1,M′
m+2, · · · ,M′

m+n) to the assemblage M(1,2,··· ,m) = (M1,M2, · · · ,Mm) is mathe-

matically described by the concatenation of ordered list, using the symbol ++, i.e., we write

M(1,2,··· ,n+m) =M(1,2,··· ,m) ++M′
(m+1,m+2,··· ,m+n) = (M1,M2, · · · ,Mm,M′

m+1, · · · ,M′
m+n). (23)

Using the notion of concatenation of ordered lists, we formally define

M#(1,2,...,n)
(1,2,··· ,m)

:=M#
(1,2,··· ,n) ++Mn+1 ++ · · ·++Mm. (24)

The diamond distance quantifier in Eq. (21) is a faithful resource quantifier, i.e., it holds that

I⋄(Mp) = 0 ⇐⇒ M =M# ∈ JM. (25)

For the above statement to be true, we assume that p(x) 6= 0 ∀x, which is no restriction, since measurements that are
never performed can be excluded from the assemblage before calculating the incompatibility.

Furthermore, I⋄(Mp) is a monotone under any unital quantum channel Λ† (these are exactly those channels that
map POVMs to POVMs), i.e.,

I⋄(Mp) ≥ I⋄(Λ
†(M)p), (26)

which follows from the fact that the trace distance is contractive under the application of completely positive and
trace preserving (CPTP) maps. Note that in the resource theory of incompatibility, all unital quantum channels Λ†

are free. Indeed, it is straight forward to see that {Λ†(Gλ)} is a parent POVM for the assemblage Λ†(M) whenever
{Gλ} is a parent POVM forM. That is, it holds

Λ†(Ma|x) =
∑

λ

p(a|x, λ)Λ†(Gλ). (27)

Additionally, I⋄(Mp) is non-increasing under classical simulations M′ = ξ(M) with

M ′
b|y =

∑

x

p(x|y)
∑

a

q(b|y, x, a)Ma|x ∀ b, y, (28)

where M can be used to simulate [39] the assemblage M′ via the conditional probabilities p(x|y) and q(b|y, x, a) for
all y, respectively for all y, x, a. Using the classical simulations, one also obtains the possible probabilities q(y) to
perform setting y via p(x) =

∑

y q(y)p(x|y). That means, it holds [31]:

I⋄(Mp) ≥ I⋄(ξ(Mp)q), (29)

for all measurement simulations ξ. Eq. (29) follows ultimately from the fact that I⋄(Mp) is based on a norm and that
it is written as a convex combination over the settings.

Finally, since I⋄(Mp) is based on the diamond distance D⋄(Mp,Np) :=
∑

x p(x)D⋄(ΛMx
,ΛNx

) between two
weighted assemblages and the set JM of jointly measurable assemblage is convex, it is a convex function. Even more
the distance D⋄(Mp,Np) fulfills the triangle inequality, i.e.,

D⋄(Mp,Np) ≤ D⋄(Mp,Lp) + D⋄(Lp,Np), (30)

for any weighted measurement assemblages Mp,Lp, and Np. It therefore follows that

I⋄(Mp) ≤ D⋄(Mp,N#,p) ≤ D⋄(Mp,Np) + I⋄(Np), (31)

for any assemblagesM and N , where N# ∈ JM is the closest jointly measurable assemblage with respect to N . Note
that the first inequality follows from the fact that N# is jointly measurable but not necessarily the closest jointly
measurable assemblage to M, i.e., N# 6=M#.

To prove the tightness of our bounds in the main text, we rely on the SDP formulation of I⋄(Mp), which besides
its numerical uses allows us, in some instances, to determine the incompatibility of an assemblage analytically. In [31]
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it was shown that that I⋄(Mp) is equivalent to the optimal value of the SDP:

Primal problem (incompatibility): (32)

given :Mp

minimize
ax,Zx,Gλ

∑

x

p(x)ax

subject to:

ax1− Tr1[Zx] ≥ 0 ∀ a, x,

Zx ≥
∑

a

|a〉〈a| ⊗ (Ma|x − Fa|x)
T ∀ x,

Fa|x =
∑

λ

v(a|x, λ)Gλ ∀ x, a, Gλ ≥ 0 ∀ λ,
∑

λ

Gλ = 1,

Zx ≥ 0, ax ≥ 0 ∀ x,

where the ax are non-negative coefficients, the Zx are positive semidefinite matrices and the Gλ are the POVM effects
of the parent POVM. SDPs represent a special instance of convex optimization for which there exist off-the-shelf
software [40–43] to efficiently solve them. Importantly, every SDP comes with a dual formulation that yields the same
optimal value under some mild assumptions (see e.g., [44]). This is indeed the case here [31], i.e., I⋄(Mp) can also be
understood as the optimal value of the SDP:

Dual problem (incompatibility): (33)

given : Mp

maximize
Ca|x,ρx,L

∑

a,x

p(x)Tr[Ma|xCa|x]− Tr[L]

subject to:

L ≥
∑

a,x

p(x)v(a|x, λ)Ca|x ∀ λ,

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x,

where the Ca|x, ρx, and L are positive semidefinite matricies. Since the primal problem in Eq. (32) corresponds to a
minimization, every feasible point (i.e., any set of variables that fulfills all constraints) leads to an upper bound on
I⋄(Mp). Similarly, every feasible solution of the dual in Eq. (33) leads to a lower bound.

II. MEASUREMENT SPLITTING

In the main text, we argue that it is equivalent to consider the incompatibility of the assemblageM(1,2,1,3,2,3) instead
ofM(1,2,3), i.e., we use that I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)) in order to derive the bound on the incompatibility gain
in Eq. (10). Note that M(1,2,1,3,2,3) is an assemblage in which each of the measurements M1,M2, and M3 occurs

twice with probability 1
6 each. On the other hand in M(1,2,3) each of the measurements is used with a probability

of 1
3 . To show the equivalence I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)), we actually show that I⋄(M(1,2,3)) = I⋄(M′

(1,1,2,2,3,3))

and finally use that the set JM of jointly measurable measurements is closed under relabeling. We first show that
M′

(1,1,2,2,3,3) = ξ(M(1,2,3)) for a measurement simulation (see also Eq. (28)) of the form

M ′
b|y =

∑

x

p(x|y)
∑

a

q(b|y, x, a)Ma|x ∀ b, y, (34)

where we set q(b|y, x, a) = δba for all b, y, x, a with δba being the Kronecker delta. Furthermore, we use mixing
probabilities p(x|y) such that p(x = 1|y = 1) = p(x = 1|y = 2) = 1, p(x = 2|y = 3) = p(x = 2|y = 4) = 1, and
p(x = 3|y = 5) = p(x = 3|y = 6) = 1 with all other probabilities set to zero. This is clearly a valid measurement
simulation of M′

(1,1,2,2,3,3) using the measurements M(1,2,3). Finally, notice that due to p(x) =
∑

y q(y)p(x|y), it

holds

1

3
= p(x = i) = q(y = 2i− 1) + q(y = 2i), for i = 1, 2, 3, (35)
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which is clearly fulfilled for q(y) = 1
6 ∀y.The above equation actually shows a more general statement, i.e., any

probabilities p(y = 1) + p(y = 2) that sum to 1
3 are allowed. The same holds for the other instances.

To show the other direction, i.e., M(1,2,3) = ξ(M′
(1,1,2,2,3,3)) we use again q(b|y, x, a) = δba for all b, y, x, a. For

the mixing probabilities, we set p(x = 1|y = 1) = p(x = 2|y = 1) = 1
2 , p(x = 3|y = 2) = p(x = 4|y = 2) = 1

2 , and

p(x = 5|y = 2) = p(x = 6|y = 3) = 1
2 with all other probabilities set to zero. Again, it straightforward to check that

this a valid measurement simulation. From the equivalence

p(x = 1) =
1

6
=

∑

y

q(y)p(1|y) = q(y = 1)
1

2
, (36)

it follows directly that q(y = 1) = 1
3 and similarly for the other cases. Now, since M′

(1,1,2,2,3,3) = ξ(M(1,2,3)) and

M(1,2,3) = ξ(M′
(1,1,2,2,3,3)), it holds that I⋄(M(1,2,3)) = I⋄(M′

(1,1,2,2,3,3)). Analogously follows the measurement

splitting with more measurements.
Let us note here, that measurement simulations can also be used to show that the incompatibility of the parent

POVMs of different subsets of jointly measurable assemblages is an upper bound on the incompatibility of these

assemblages. More formally, letM(1,2,3) be an assemblage and let N =M#
(1,2) ++M

#
(1,3) ++M

#
(2,3) be the assemblage

that contains the closest jointly measurable assemblages for the three subsets. Furthermore, let G = G(M#
(1,2)) ++

G(M#
(1,3))++G(M#

(2,3)) be the assemblage that contains the parent POVMs of the respective subsets. With the above

methods (and by the definition of the parent POVM in Eq. (19)) it can be seen that there exists a measurement
simulation ξ such that ξ(G) = N , which directly implies that I⋄(N ) ≤ I⋄(G) holds.

III. LOWER BOUNDS

Here, we prove the lower bounds stated in Eq. (13) and Eq. (16). Remember, we consider the case in which p(x) = 1
3 ,

i.e., the input probabilities are uniformly distributed. Let us start by showing that

I⋄(M(1,2,3)) ≥
1

3
[I⋄(M(1,2)) + I⋄(M(1,3)) + I⋄(M(2,3))], (37)

holds. We start by using that I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)). Now, the closest jointly measurable assemblage

M#
(1,2,1,3,2,3) with respect to M(1,2,1,3,2,3) allows us to rewrite I⋄(M(1,2,1,3,2,3)) such that

I⋄(M(1,2,1,3,2,3)) = D⋄(M(1,2,1,3,2,3),M#
(1,2,1,3,2,3)). (38)

Now, concerning the measurement pairs (1, 2), (1, 3), and (2, 3) the subsets of M#
(1,2,1,3,2,3) are jointly measur-

able by definition but not necessarily optimal for the respective subsets of M(1,2,1,3,2,3). Using that the distance

D⋄(M(1,2,1,3,2,3),M#
(1,2,1,3,2,3)) is a convex combination over the individual settings, it follows that

I⋄(M(1,2,3)) = I⋄(M(1,2,1,3,2,3)) ≥
1

3
[I⋄(M(1,2)) + I⋄(M(1,3)) + I⋄(M(2,3))]. (39)

To show the second lower bound, i.e.,

I⋄(M(1,2,3)) ≥ 2
3 I⋄(M(1,2)), (40)

it is enough to notice that leaving out the contribution of the setting x = 3 can only lead to lower values than
I⋄(M(1,2,3)). Finally, we use again that the remaining measurements (for the settings x = 1, 2) from the closest jointly

measurable assemblage M#
(1,2,3) do not need to be optimal.

IV. STEERING AND NONLOCALITY

Here, we show that our methods can directly be applied to quantum steering and Bell nonlocality. We start by
considering steering. Let ~σ(1,2,··· ,m) = (σ1, σ2, · · · , σm) with σx = {σa|x}a be the steering assemblage that Alice
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prepares for Bob by performing the measurements from a measurement assemblage M(1,2,··· ,m) on a shared state ρ
such that σa|x = TrA[(Ma|x ⊗ 1)ρ]. The consistent steering distance [49] given by

S(~σ) = min
~τ∈CLHS

1

2

∑

a,x

1

m
‖σa|x − τa|x‖1, (41)

can be used to quantify the steerability of any steering assemblage S(~σ). Here, ~τ ∈ CLHS denotes an assemblage that
admits a local hidden-state model (LHS) and fulfills the consistency condition

∑

a
τa|x =

∑

a
σa|x = ρB = TrA[ρ] ∀x. A

LHS for ~τ is given by

τa|x =
∑

λ

p(a|x, λ)σλ, (42)

where the σλ are sub-normalized states and the p(a|x, λ) resemble a classical post-processing, similarly to that in
Eq. (19) in the definition of jointly measurable assemblages. Note that we directly used here that the choice of the
settings is uniformly distributed, i.e., p(x) = 1

m . However, generally, we can use any distribution with p(x) 6= 0 ∀x,
just like in the case for incompatibility. Note further that our following arguments are independent, as it was also the
case for the incompatibility, of the number of outcomes a in the steering assemblage ~σ.

Now, since S(~σ) is based on a distance (the trace distance) we can directly derive the steering analog to the
incompatibility bounds in the main text. In fact, our method relies only on the metric properties of the respective
quantifiers, the fact they are written as a convex combination over the individual settings, and the general idea that
a measurement can be split in two separate copies of itself. We make the following correspondence statements to our
definitions for the incompatibility case:

~σ(1,2,··· ,m) ←→M(1,2,··· ,m), (43a)

S(~σ)←→ I⋄(M), (43b)

~σ#
(1,2,··· ,m) ←→M

#
(1,2,··· ,m), (43c)

~σ
#(1,2,··· ,n)
(1,2,··· ,m) ←→M

#(1,2,··· ,n)
(1,2,··· ,m) . (43d)

That is, ~σ#
(1,2,··· ,m) is the closest assemblage in the set CLHS to ~σ(1,2,··· ,m) with respect to the distance

DA(~σ(1,2,··· ,m), ~σ′
(1,2,··· ,m)) :=

∑

a,x

1

m
‖σa|x − σ′

a|x‖1, (44)

which induces the steering distance in Eq. (41). Furthermore, it holds

~σ
#(1,2,··· ,n)
(1,2,··· ,m)

:= ~σ#
(1,2,··· ,n) ++ σn+1 ++ · · ·++ σm. (45)

This implies, it holds that

S(~σ(1,2,3)) ≤
1

3
[S(~σ(1,2)) + S(~σ(1,3)) + S(~σ(2,3))] + S(~τ), (46)

where ~τ = ~σ#
(1,2)++~σ#

(1,3)++~σ#
(2,3) is a state assemblage (with m = 6 settings) that contains itself three assemblages (of

two settings each) that are the closest consistent unsteerable assemblages to the respective subsets. Note that ~τ can
be steerable in general. Note further that it is crucial to use a consistent steering quantifier here, in order to avoid
signaling in the assemblage ~τ . All the other bounds follow from here on directly. That is, it follows that

S(~σ(1,2,3)) ≥
1

3
[S(~σ(1,2)) + S(~σ(1,3)) + S(~σ(2,3))], (47)

S(~σ(1,2,3)) ≥
2

3
S(~σ(1,2)).

Moreover, using the assemblage ~σ
#(1,2)
(1,2,3) it holds that

S(~σ(1,2,3)) ≤
2

3
S(~σ(1,2)) + S(~σ

#(1,2)
(1,2,3)). (48)
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For nonlocality, very similar arguments can be made. However, we will see that additional constraints arise that
distinguish nonlocality from steering and incompatibility. Let q = {q(ab|xy)} be a general probability distribution
between two distant parties Alice and Bob. We consider the case where both, Alice and Bob, have two different
measurement settings already available and Alice upgrades her measurement scheme with an additional third mea-
surement. We denote the resulting distribution by q(1,2,3). The nonlocality of a general distribution q can be quantified
via the consistent version of the classical trace distance quantifier introduced in [37], which is given by

N(q) =
1

2
min

t∈CLHV

∑

a,b,x,y

1

mAmB
|q(a, b|x, y)− t(a, b|x, y)|. (49)

Here, we denote by CLHV the set of consistent local hidden-variable models (LHVs), i.e., the set of those lo-
cal distributions t ∈ LHV that fulfill

∑

a t(a, b|x, y) = t(b|y) = q(b|y) =
∑

a q(a, b|x, y) ∀ b, y, x and similarly
∑

b t(a, b|x, y) = t(a|x) = q(a|x) =
∑

b q(a, b|x, y) ∀ a, y, x. The (Bell) locality condition is expressed in terms of
the LHV:

t(a, b|x, y) =
∑

λ

π(λ)pA(a|x, λ)pB(b|y, λ) ∀a, b, x, y, (50)

for the distribution t. Finally, we denote by mA the number of measurement settings of Alice and by mB those of
Bob, which we set to mB = 2 here. Once again, we restrict our discussion to the case where the input probabilities
p(x, y) = p(x)p(y) = 1

mA

1
mB

are uniformly distributed.

Since N(q) relies on a distance that is written as a convex combination over the individual settings, we can use
the triangle inequality together with the measurement splitting method. We make the following correspondence
statements to our definitions in the incompatibility case:

q(1,2,··· ,mA) ←→M(1,2,··· ,m), (51a)

N(q)←→ I⋄(M), (51b)

q
#
(1,2,··· ,mA) ←→M

#
(1,2,··· ,m), (51c)

q
#(1,2,··· ,nA)
(1,2,··· ,mA) ←→M

#(1,2,··· ,n)
(1,2,··· ,m) . (51d)

That is, q#
(1,2,··· ,mA) is the closest consistent and local distribution to q(1,2,··· ,mA) with respect the the classical trace

distance (ℓ1 distance) that induces the nonlocality distance in Eq. (49). Furthermore, q
#(1,2,··· ,nA)
(1,2,··· ,mA) = q

#
(1,2,··· ,nA) ++

qnA+1 ++ · · · ++ qmA
, where we treat the probability vector that describes a distribution q(1,2,··· ,mA) as ordered list.

We would like to emphasize that the indices (1, 2, · · · ,mA) refer to the measurements of Alice, and Bob’s number of
measurements remains fixed here.

These correspondence relations imply that it is possible to obtain the bounds

2

3
N(q(1,2)) ≤ N(q(1,2,3)) ≤

2

3
N(q(1,2)) + N(q

#(1,2)
(1,2,3)), (52)

Furthermore, we obtain the bounds

1

3
[N(q(1,2)) + N(q(1,3)) + N(q(2,3))] ≤ N(q(1,2,3)) ≤

1

3
[N(q(1,2)) + N(q(1,3)) + N(q(2,3))] + N(t), (53)

where t = q
#
(1,2) ++ q

#
(1,3) ++ q

#
(2,3) is a distribution (with mA = 6 settings for Alice) which contains the closest local

distributions with respect to the corresponding two-measurement subsets of Alice’s measurement settings.

Interestingly, the term
1

3
[N(q(1,2)) +N(q(1,3)) +N(q(2,3))] behaves differently from its steering and incompatibility

counterpart. Namely, it is limited by the fact that N(q(1,2)), N(q(1,3)), and N(q(2,3)) cannot, in general, be maximal
simultaneously. That is, contrary to incompatibility or steering, where all of the subset resources can be maximal at
the same time.

The reason for this is that there are not enough degrees of freedom for Alice to violate a given Bell inequality with
different measurements, given that Bob keeps his settings fixed (besides the state that is also fixed). To exemplify
this, we consider the scenario where both parties have two outcomes for each setting. In that case, the nonlocality
of N(q(1,2)), N(q(1,3)), and N(q(2,3)) is directly linked to the amount of violation of the CHSH inequality [35], as it
was shown in [37]. However, the CHSH inequality requires very specific combinations measurements to get maximal
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violation. Indeed, consider the three corresponding versions of the CHSH inequality:

CHSH(1,2) := 〈A1 ⊗B1〉+ 〈A1 ⊗B2〉+ 〈A2 ⊗B1〉 − 〈A2 ⊗B2〉 ≤ 2, (54)

CHSH(1,3) := 〈A1 ⊗B1〉+ 〈A1 ⊗B2〉+ 〈A3 ⊗B1〉 − 〈A3 ⊗B2〉 ≤ 2,

CHSH(2,3) := 〈A2 ⊗B1〉+ 〈A2 ⊗B2〉+ 〈A3 ⊗B1〉 − 〈A3 ⊗B2〉 ≤ 2,

and their sum

CHSH(1,2,3) := CHSH(1,2) +CHSH(1,3) +CHSH(2,3) ≤ 6. (55)

The inequality CHSH(1,2,3) ≤ 6 can also be rewritten as

2[〈A1 ⊗B1〉+ 〈A1 ⊗B2〉+ 〈A3 ⊗B1〉 − 〈A3 ⊗B2〉] + 2〈A2 ⊗B1〉 ≤ 6, (56)

which directly implies that the Tsirelson bound [45], i.e., the quantum bound of CHSH(1,2,3) is given by Q = 4
√
2+2 <

6
√
2, i.e., quantum mechanics cannot reach the value 6

√
2 that would correspond to all three contributions of Alice

to be maximal simultaneously. The same is true for no-signaling theories, where the bound is given by NS = 10.
Further, one needs to consider all possible combinations of different versions of the CHSH inequalities in Eq. (54).
That is, one needs to consider all 8 symmetries of the CHSH inequality, corresponding to the 8 CHSH facets of the
local polytope. However, going through all the combinations shows that there is no combination which allows for a
higher combined CHSH value than CHSH(1,2,3) in Eq. (55).

We want to emphasize again that such additional restrictions are not prevalent for the incompatibility and steering
quantifiers analog of Eq. (53), which shows a clear separation of nonlocality to the other resources. Since the term
1

3
[N(q(1,2))+N(q(1,3))+N(q(2,3))] is also used in upper bounding the nonlocality N(q(1,2,3)), this could be a promising

path to understanding why additional settings do not seem to increase the resource of nonlocality [36, 37], in strict
contrast to the resources of incompatibility and steerability. We expect that the same is true for more than two
outcomes, however, more research in this direction is necessary.

V. GENERALIZATIONS

In this section, we will generalize our framework from the main text in two directions. First, we discuss the scenario
for more measurements i.e, m > 3. Then, we will discuss the case in which the assemblage Mp = (M,p) is weighted
by a general probability distribution p, instead of a uniform one.

Using the methods from the main text and from Section II, general bounds can be derived. We demonstrate this
in the following for the assemblage M(1,2,3,4) of m = 4 uniformly distributed measurements. Further generalizations

follow straightforwardly then. Let M#(1,2,3)
(1,2,3,4) be the closest assemblage with respect to the first three measurements

of M(1,2,3,4). Using the triangle inequality we get

I⋄(M(1,2,3,4)) ≤ D⋄(M(1,2,3,4),M#(1,2,3)
(1,2,3,4)) + I⋄(M#(1,2,3)

(1,2,3,4)) =
3

4
I⋄(M(1,2,3)) + I⋄(M#(1,2,3)

(1,2,3,4)), (57)

as a direct generalization of Eq. (15).
In general, let C0 = {1, 2, · · · ,m} be the set of of all possible measurements from an assemblage M(1,2,··· ,m).

Furthermore, let C ∈ C0 be any non-empty subset of C0 with cardinality |C|. It follows that

I⋄(M(1,2,··· ,m)) ≤
|C|
m

I⋄(MC) + I⋄(M#C
(1,2,··· ,m)), (58)

where |C| is the number of measurements contained in the subset C ∈ C0. Since Eq. (58) holds for any subset C, we
can conclude that

I⋄(M(1,2,··· ,m)) ≤ min
C∈C0

[ |C|
m

I⋄(MC) + I⋄(M#C
(1,2,··· ,m))

]

, (59)

which in particular includes the optimization over all n measurement subsets. Note the upper bound trivially results in
an equality in the case that |C| = 1, i.e., for practical purposes, one might exclude these cases from the minimization.
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However, we can generalize our framework even more. Denote by {Ci} a set of disjoint subsets of C0 such that
∪iCi = C0. It can directly be concluded that

I⋄(M(1,2,··· ,m)) ≤
∑

i

|Ci|
m

I⋄(MCi
) + I⋄(M#

C1
++M#

C2
++ · · ·++M#

Cn
), (60)

where M#
C1

++M#
C2

++ · · · ++M#
Cn

is an assemblage that contains itself the closest jointly measurable assemblages
for the n respective subsets Ci. Again, it is possible to minimize Eq. (60) over a particular choice of different subsets
and, in particular, over all non-trivial sets of subsets.

Besides the generalization of our bounds based solely on particular instances of the triangle inequality, we can also
use the measurement splitting method in a more general setup. For instance, by splitting each measurement from
M(1,2,3,4) three times, we obtain the assemblage M(1,2,3,1,2,4,1,3,4,2,3,4). This lets us conclude that it holds

I⋄(M(1,2,3,4)) ≤
1

4
[I⋄(M(1,2,3)) + I⋄(M(1,2,4)) + I⋄(M(1,3,4)) + I⋄(M(2,3,4))] + I⋄(N ), (61)

with N =M#
(1,2,3) ++M

#
(1,2,4) ++M

#
(1,3,4) ++M

#
(2,3,4) as a direct generalization of Eq. (8). This leads for the general-

ization of the incompatibility gain in Eq. (10) to

∆I(1,2,3)→(1,2,3,4) ≤ I⋄(N ) ≤ I⋄(G), (62)

where we assume I⋄(M(1,2,3)) ≥ max{I⋄(M(1,2,4)), I⋄(M(1,3,4)), I⋄(M(2,3,4))} analogous to the condition stated in
Result 1 and G is the assemblage containing the parent POVMs of the corresponding subsets. Again, further gener-
alizations of (62) for other scenarios can be derived by applying our methods.

We show, in the following, that our results can be applied to any probability distribution p with which an as-
semblage M is weighted. Here, we focus on assemblages with m = 3 measurements. Further generalizations follow
directly from the above discussion. Let Mp = (M,p) be a general weighted measurement assemblage. Using the
triangle inequality, it holds

I⋄(Mp

(1,2,3)) ≤ D⋄(Mp

(1,2,3),N
p

(1,2,3)) + I⋄(Np

(1,2,3)), (63)

for any assemblage N(1,2,3). By setting N =M#(1,2)
(1,2,3)

:=M#
(1,2) ++M3, it follows that

D⋄(Mp

(1,2,3),N
p

(1,2,3)) = [p(1) + p(2)] I⋄(Mq

(1,2)), (64)

where q = ( p(1)
p(1)+p(2) ,

p(2)
p(1)+p(2) ) is the probability distribution weighting the assemblage M(1,2). It is important to

note here, thatM#
(1,2) refers specifically to the closest assemblage toM(1,2) with respect to the distribution q. Note

further that the particular instance of a uniform distribution can straightforwardly be recovered from here. This
shows that I⋄(Mp

(1,2,3)) is upper bounded by the incompatibility of its subset M(1,2) weighted by the likelihood of

choosing a measurement from that subset, plus the incompatibility I⋄(M#(1,2),p
(1,2,3) ). Similarly, if we want to use the

measurement splitting method, we can chose any initial distribution p and proceed as usual to obtain bounds. As we
noted in Section II the method is not limited to split a measurement into two equally likely versions of itself. The
only conditions that have to be satisfied are the conditions in the second equality of Eq. (35).

VI. PROOFS REGARDING THE INCOMPATIBILITY OF MUTUALLY UNBIASED BASES

In this section, we present the proofs related to statements in the main text regarding the incompatibility of
measurements based on MUB [19]. Two orthonormal bases {|va〉}0≤a≤d−1 and {|wb〉}0≤b≤d−1 are said to be MUB if
it holds that

|〈va|wb〉| =
1√
d
∀ a, b. (65)

The set of projectors onto the vectors of a basis form the measurement M = {Ma = |va〉〈va|}. Now, an MUB
measurement assemblage [31] is a set of measurements where the condition (65) holds for any two projections from
different bases. While it is generally unknown how many MUB exist in a dimension d, it is known that for every
d ≥ 2, there exist at least m = 3 and at most m = d + 1 MUB. In the case where d is a prime-power there exist
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explicit constructions of MUB [46], which are known to be operationally inequivalent [31, 47]. The possibly most
simple construction of a complete set of MUB, i.e., m = d+ 1 bases, can be used whenever d is a prime. In this case,
we can use the Heisenberg-Weyl operators

X̂ =
d−1
∑

k=0

|k + 1〉〈k|, Ẑ =
d−1
∑

k=0

ωk|k〉〈k|, (66)

for a specific construction. Here, {|k〉}0≤k≤d−1 is the computational basis and ω = exp
(2πi

d

)

is a root of unity. In

prime dimensions d, the eigenbases of the d + 1 operators X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑd−1 are mutually unbiased [48].
Most notably, for m = 2, m = d, and m = d + 1 there exists an analytical expression for the incompatibility of
the MUB measurement assemblages obtained via this construction [31, 47]. For d = 2, our MUB measurement
assemblage reduces to the projective measurements defined by the Pauli operators.

A. Tightness proof for Eq. (10)

We start by proving that Eq. (10) is tight for a noisy MUB measurement assemblage based on Pauli measurements,
i.e., we show that

∆I(1,2)→(1,2,3)(η) := I⋄(Mη
(1,2,3))− I⋄(Mη

(1,2)) = I⋄(N (η)), (67)

with N (η) =M#η
(1,2) ++M

#η
(1,3) ++M

#η
(2,3) holds true for measurements of the form

Mη
a|x = ηΠa|x + (1− η) Tr[Πa|x]

1

2
, (68)

where the Πa|x = Mη=1
a|x are projectors defined via the eigenvectors of Pauli operators and η defines the amount of

noise in the measurements.
We divide our proof into three different parameter regimes. Let η∗2 and η∗3 be the white-noise robustness ofM(1,2),

respectively M(1,2,3), i.e., the maximal η where the noisy assemblages are still jointly measurable. We consider the
regimes 1) : η ≤ η∗3 ≤ η∗2 , 2) : η∗3 < η ≤ η∗2 , and 3) : η∗3 ≤ η∗2 < η corresponding to the three regimes in Figure 2.

Note that regime 1) : η ≤ η∗3 leads trivially to

∆I(1,2)→(1,2,3)(η) = I⋄(N (η)) = 0. (69)

For the second regime, i.e., η∗3 < η ≤ η∗2 it follows directly that

∆I(1,2)→(1,2,3)(η) = I⋄(Mη
(1,2,3)) = I⋄(N (η)). (70)

The first equality follows from the fact that I⋄(Mη
(1,2)) = 0 by definition. The second equality follows from the

fact that M#η
(s,t) = Mη

(s,t) for any s, t ∈ {1, 2, 3} such that s 6= t, since the subset Mη
(s,t) is jointly measurable by

definition. Now, due to the reverse direction of the measurement splitting method outlined in Section II, it holds
I⋄(Mη

(1,2,3)) = I⋄(N (η)). That means, the only non-trivial case is regime 3) : η∗3 ≤ η∗2 < η.

Our proof for this regime relies on solving the SDPs in Eq. (32) and Eq. (33) analytically. Starting from the dual:

Dual problem (incompatibility): (71)

given : Mη,p

maximize
Ca|x,ρx,L

∑

a,x

p(x)Tr[Mη
a|xCa|x]− Tr[L]

subject to:

L ≥
∑

a,x

p(x)v(a|x, λ)Ca|x ∀ λ,

0 ≤ Ca|x ≤ ρx ∀ a, x, ρx ≥ 0,Tr[ρx] = 1 ∀ x,
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we choose the specific instance where Ca|x =
Πa|x

2 , L = l1, and ρx =
∑

a Ca|x = 1

2 for some appropriately chosen
scalar-variable l. For a qubit assemblageM with POVM effects of the form

Mη
a|x = ηΠa|x + (1− η) Tr[Πa|x]

1

2
= ηΠa|x + (1− η)

1

2
, (72)

this evaluates to the lower bound I⋄(Mη) ≥ η + (1−η)
2 − T

m , where T := ‖∑a,x v
∗(a|x, λ)Ma|x‖∞ and {v∗(a|x, λ)}a,x

is the deterministic strategy maximizing the norm. Note that this bound results from choosing l = T
2m , which can be

shown to be always a valid choice [31].
For (noise-free, i.e., η = 1) MUB measurement assemblages it was proven in [47] that whenever m = 2, m = d, or

m = d+ 1, it holds that

η∗m =
dT −m

dm−m
. (73)

This lets us conclude (for the qubit case, i.e., d = 2) that

I⋄(Mη) ≥ η +
(1− η)

2
− η∗m + 1

2
(74)

=
1

2
(η − η∗m).

For the upper bound of I⋄(Mη) we invoke the primal SDP:

Primal problem (incompatibility): (75)

given :Mη,p

minimize
Zx,Gλ

∑

x

p(x)‖Tr1[Zx]‖∞

subject to:

Zx ≥
∑

a

|a〉〈a| ⊗ (Mη
a|x − Fa|x)

T ∀ x,

Fa|x =
∑

λ

v(a|x, λ)Gλ ∀ x, a, Gλ ≥ 0 ∀ λ,
∑

λ

Gλ = 1,

Zx ≥ 0, ∀ x,

where we have explicitly replaced the constraints involving the variables ax in the SDP in Eq. (32) by using the
spectral norm (largest singular value). By choosing Fa|x = η∗mΠa|x + (1− η∗m)12 and Zx = 1

2 (η − η∗m)
∑

a|a〉〈a| ⊗ΠT
a|x

for η ≥ η∗m all constraints can directly be verified to hold. Therefore, we obtain the upper bound

I⋄(Mη) ≤ 1

2
(η − η∗m). (76)

That implies I⋄(Mη) =
1

2
(η−η∗m) for any assemblage involving m = 2 or m = 3 noisy MUB measurement assemblages

with η ≥ η∗m in d = 2. Therefore, the incompatibility gain ∆I(1,2)→(1,2,3)(η) := I⋄(Mη
(1,2,3))− I⋄(Mη

(1,2)) evaluates to

∆I(1,2)→(1,2,3)(η) =
1

2
[(η − η) + (η∗2 − η∗3)]. (77)

=
1

2
[(η∗2 − η∗3)].

Note that the gain is constant in this regime, as it is also evident from Figure 2. Now, to finish the proof, we
have to show that I⋄(N (η)) has the same incompatibility. However, this follows almost directly, since N (η) =

M#η
(1,2) ++M

#η
(1,3) ++M

#η
(2,3) contains the closest jointly measurable assemblages with respect to the subsets. As it is

known from [47] and [31] (and we confirmed it with the above calculation) all of these subsets are again just noisy
versions of MUB measurement assemblages, with the same noise contained in every subset. From the reverse direction
of the measurement splitting method, it follows that

I⋄(N (η)) = I⋄(Mη
(1,2,3)) (78)

for η = η∗2 = 1√
2
. Therefore, it follows that I⋄(N (η)) =

1

2
[(η∗2 − η∗3)] for η ≥ η∗2 which concludes the proof.
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Figure 3. Incompatibility bound from Eq. (15) for measurements corresponding to the three Pauli measurements. The different
contributions (depicted by the dashed red and the blue line) result together in the incompatibility I⋄(M

η

(1,2,3)). The two

discontinuities of I⋄(M
#(1,2),η

(1,2,3) ) (dashed red line) indicate the points where M
η

(1,2,3) becomes compatible, respectively pairwise
compatible.

B. Tightness proof for Eq. (15)

Here, we show that Eq. (15) is tight for the case of noisy Pauli measurements (see Eq. (68)). That is, we show that

I⋄(Mη
(1,2,3)) =

2

3
I⋄(Mη

(1,2)) + I⋄(M#(1,2),η
(1,2,3) ), (79)

holds for the assemblage Mη
(1,2,3) that contains noisy Pauli measurements. To give a better overview, we also plot

the respective incompatibility contributions of I⋄(Mη
(1,2,3)) in Figure 3. The proof reduces to show the equality for

the case η > η∗2 , as the other cases follow trivially from the discussions made in Section VI A. We already evaluated
the values of I⋄(Mη

(1,2,3)) and I⋄(Mη
(1,2)), i.e., we only have to show that

I⋄(M#(1,2),η
(1,2,3) ) = I⋄(Mη

(1,2,3))−
2

3
I⋄(Mη

(1,2)) =
1

2
(η − η∗3)−

1

3
(η − η∗2) (80)

=
1

6
η +

1

3
η∗2 −

1

2
η∗3 .

Since we already know that
1

6
η +

1

3
η∗2 −

1

2
η∗3 ≤ I⋄(M#(1,2),η

(1,2,3) ), due to the general bound in Eq. (58), it is enough to

show that I⋄(M#(1,2),η
(1,2,3) ) ≤ 1

6
η +

1

3
η∗2 −

1

2
η∗3 also holds true.

We rely again on the primal problem in Eq. (75) using the feasible point where Fa|x = η∗3Πa|x + (1 − η∗3)
1

2 and

Zx = 1
2 (η

∗
2 − η∗3)

∑

a|a〉〈a| ⊗ΠT
a|x for x = 1, 2 and Zx = 1

2 (η − η∗3)
∑

a|a〉〈a| ⊗ΠT
a|x for x = 3. It can be checked again

directly that this point is indeed feasible. Moreover, we obtain a primal objective value of

∑

x

1

3
‖Tr1[Zx]‖∞ = 2

1

3
· 1
2
(η∗2 − η∗3) +

1

6
(η − η∗3) =

1

6
η +

1

3
η∗2 −

1

2
η∗3 , (81)

which concludes the proof.

C. Tightness proof for generalizations of Eq. (15)

Here, we show that in the scenarios m = 2→ m′ = d, m = 2→ m′ = d+ 1, and m = d→ m′ = d+ 1 there exists
analog bounds to Eq. (15) that are tight for d-dimensional noisy MUB measurement assemblages. As before, we only
consider the non-trivial case here and in the following, i.e., the noisy regime where none of the incompatibilities vanish.
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Also, we refer to the noise-free measurements, i.e., the projectors on the MUB by Πa|x = Mη=1
a|x . The corresponding

bound (see Eq. (58)) for the instance 2→ d reads

I⋄(Mη
(1,2,··· ,d)) ≤

2

d
I⋄(Mη

(1,2)) + I⋄(M#(1,2),η
(1,2,··· ,d)), (82)

where we know that I⋄(Mη
(1,2)) = (d−1

d )(η − η∗2) by generalizing the previous qubit result. Indeed, carefully checking

the calculation for the d = 2 case in the Section VIA, reveals the general (dimension dependant) prefactor for the
incompatibility of two noisy MUB measurements.

Furthermore, using essentially the same feasible points as before (simply extended to the case of m = d instead of
m = 2 measurements) we obtain that I⋄(Mη

(1,2,··· ,d)) = (d−1
d )(η − η∗d). With that, we know that

I⋄(M#(1,2),η
(1,2,··· ,d)) ≥ I⋄(Mη

(1,2,··· ,d))−
2

d
I⋄(Mη

(1,2)) =
(d− 1

d

)

(η − η∗d)−
2

d

(d− 1

d

)

(η − η∗2), (83)

which means, it remains to show that I⋄(M#(1,2),η
(1,2,··· ,d)) ≤ (d−1

d )(η − η∗d)− 2
d (

d−1
d )(η − η∗2) also holds. This can directly

be verified by using the feasible point Fa|x = η∗dΠa|x+(1−η∗d)
1

d and Zx = (d−1
d )(η∗2−η∗d)

∑

a|a〉〈a|⊗ΠT
a|x for x = 1, 2,

and Zx = (d−1
d )(η − η∗d)

∑

a|a〉〈a| ⊗ΠT
a|x for x = 3, · · · , d. This concludes the proof.

The corresponding bound for the 2→ d+ 1 scenario (see Eq. (58)) reads

I⋄(Mη
(1,2,··· ,d+1)) ≤

2

d+ 1
I⋄(Mη

(1,2)) + I⋄(M#(1,2),η
(1,2,··· ,d+1)), (84)

with I⋄(Mη
(1,2)) = (d−1

d )(η− η∗2). Using the same feasible points as for the m = 2 and m = d case, it also follows that

I⋄(Mη
(1,2,··· ,d+1)) = (d−1

d )(η − η∗d+1), i.e, to prove tightness, we have to show that

I⋄(M#(1,2),η
(1,2,··· ,d+1)) ≤

(d− 1

d

)

(η − η∗d+1)−
( 2

d+ 1

)(d− 1

d

)

(η − η∗2), (85)

holds true. Using the same construction as before, this can be checked directly. Namely, using the feasible point Fa|x =

η∗d+1Πa|x+(1−η∗d+1)
1

d and Zx = (d−1
d )(η∗2−η∗d+1)

∑

a|a〉〈a|⊗ΠT
a|x for x = 1, 2, and Zx = (d−1

d )(η−η∗d+1)
∑

a|a〉〈a|⊗ΠT
a|x

for x = 3, · · · , d+ 1 it follows directly that Eq. (85) is indeed true, which concludes the proof.
In the case d→ d+ 1, the corresponding bound reads

I⋄(Mη
(1,2,··· ,d+1)) ≤

d

d+ 1
I⋄(Mη

(1,2,··· ,d)) + I⋄(M#(1,2,··· ,d),η
(1,2,··· ,d+1) ), (86)

with I⋄(Mη
(1,2,··· ,d+1)) = (d−1

d )(η − η∗d+1) and I⋄(Mη
(1,2,··· ,d)) = (d−1

d )(η − η∗d). That means we have to check that

I⋄(M#(1,2,··· ,d),η
(1,2,··· ,d+1) ) ≤

(d− 1

d

)

(η − η∗d+1)−
( d

d+ 1

)(d− 1

d

)

(η − η∗d), (87)

is true. Using Fa|x = η∗d+1Πa|x + (1 − η∗d+1)
1

d and Zx = d−1
d (η∗d − η∗d+1)

∑

a|a〉〈a| ⊗ ΠT
a|x for x = 1, 2, · · · , d, and

Zx = d−1
d (η − η∗d+1)

∑

a|a〉〈a| ⊗ΠT
a|x for x = d+ 1 this can be verified, just as in the above cases.

D. Additional insights on Eq. (18)

In this subsection, we give additional insights to Eq. (18) from the main text. That is, we analyse the incompatibility
decomposition

I⋄(M(1,2,3)) ≤ I⋄
gen(M(1,2,3)) + I⋄

pair(M(1,2,3)) + I⋄
hol(M(1,2,3)), (88)

for an arbitrary assemblage M(1,2,3). Note that we defined here I⋄
gen(M) := D⋄(M(1,2,3),Mconv) to be the

genuine triplewise incompatibility of M(1,2,3), i.e., its distance to the closest assemblage Mconv ∈ JMconv :=

Conv(JM(1,2), JM(1,3), JM(2,3)). Furthermore, I⋄
pair(M) := D⋄(Mconv,Mpair), is the pairwise incompatibility, where

Mpair ∈ JMpair := JM(1,2) ∩ JM(1,3) ∩ JM(2,3) is the closest assemblage in which all measurements are pairwise-
compatible and I⋄

hol(M) := I⋄(Mpair) is the hollow incompatibility of M(1,2,3). Note that the pairwise and hollow
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incompatibility depend implicitly on M(1,2,3). See also Figure 1 for the different incompatibility structures. Indeed
the incompatibilities defined here, are nothing else but the distances to the next corresponding compatibility structure
in Figure 1 in the main text.

We now show that the bound in Eq. (88) is tight for the three Pauli measurements. For simplicity, we focus on the

noise-free scenario in the following. From the previous discussions, we know that I⋄(M(1,2,3)) =
1

2
(1− η∗3).

For the contribution I⋄
gen(M(1,2,3)) we can useM#(1,2)

(1,2,3) as (possibily sub-optimal) point in JMconv. Therefore, we

obtain the bound

I⋄
gen(M(1,2,3)) ≤ D⋄(M(1,2,3),M#(1,2)

(1,2,3)) =
2
3 I⋄(M(1,2)) =

1
3 (1− η∗2). (89)

For the contribution I⋄
pair(M(1,2,3)) we use as a guess forMpair the depolarized version ofM(1,2,3) where it becomes

pairwise compatible. That is, Mpair is of the form

Mpair
a|x = ηpair3 Πa|x + (1− ηpair3 )

1

d
. (90)

Using the results from previous discussions, we therefore obtain

I⋄
pair(M(1,2,3)) ≤

1

3
(η∗2 − ηpair3 ) +

1

6
(1− ηpair3 ), (91)

by bounding the distance D⋄(M#(1,2)
(1,2,3),Mpair) through the SDP for the diamond norm, i.e., we examine the SDP in

Eq. (32) with F =Mpair.

Finally, for the contribution I⋄
hol(M(1,2,3)) we use as (possibly sub-optimal) candidate for the closest jointly measur-

able assemblage simply the appropriately depolarized version of M(1,2,3), i.e., we obtain the bound I⋄
hol(M(1,2,3)) ≤

1

2
(ηpair3 − η∗3). Summing all these bounds up, we obtain that

I⋄
gen(M(1,2,3)) + I⋄

pair(M(1,2,3)) + I⋄
hol(M(1,2,3)) ≤

1

3
(1− η∗2) +

1

3
(η∗2 − ηpair3 ) +

1

6
(1− ηpair3 ) +

1

2
(ηpair3 − η∗3) (92)

=
1

2
(1− η∗3),

which equals the value for I⋄(M(1,2,3)) for the noise free Pauli measurements, as calculated in section VIA. Therefore
Eq. (88) is tight. Note that the proof crucially relies on knowing the incompatibility of I⋄(M(1,2,3)), i.e., without
having an analytical expression for this term in higher dimensions d > 2, this way of proving equality will not work
generally. However, we can check numerically, whether the bound in Eq. (88) is tight for higher dimensional MUB.
Indeed, our numerics suggest for up to d = 7 that Eq. (88) is tight for MUB with a deviation of the order 10−9.
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