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Abstract

A detailed characterization of the noise affecting quantum devices is fundamental for

their design, particularly for quantum error correction (QEC). Unfortunately, many

characterization protocols are experimentally costly and require many measurements.

Thus, it is an important task to obtain as much information as possible from easily

available data, for example by tailoring protocols to specific applications.

Specifically in the context of QEC, a natural idea is to estimate the noise affecting

a device from syndrome measurements that are performed anyway during stan-

dard error correction schemes. The main goal is to reduce the required effort for

characterization by extracting additional information from already available data.

Furthermore, this approach promises several other advantages. All components are

characterized holistically in the context of the target application, which improves the

detection of cross-talk. Furthermore, the resulting error models can be directly used

with common decoders. Finally, since syndrome measurements preserve the encoded

state, they allow for the online-characterization of a device during operation.

Unfortunately, efficient schemes for such estimation are currently only known

for very specific error correction codes and noise models. Furthermore, there is a

fundamental concern about identifiability. Since the class of syndrome measurements

is necessarily quite limited, it is not clear under which conditions they are sufficient

to uniquely estimate the parameters of a channel.

In this thesis, we address these problems and develop a general framework for

the estimation of Pauli channels from syndrome data. Using this framework, we

give comprehensive conditions under which a full characterization of the noise is

possible. Furthermore, we consider the estimation of noise up to logical equivalence,

i.e. focusing only on the information actually necessary for QEC. Here, we prove

that the situation is as good as one could hope: estimation is possible as long as

error correction itself is possible. We complement our fundamental results with

efficient estimation protocols, which apply to arbitrary stabilizer codes. In contrast

to previous proposals, these schemes neither require the computation of intractable

likelihood functions, nor do they make heuristic assumptions about vanishing error

rates. We quantify the performance of these estimators, both by providing a rigorous

sample complexity bound and using simulations. The results suggest that noise

estimation from syndrome data is a simple way to boost the performance of QEC

schemes.
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Zusammenfassung

Eine detaillierte Charakterisierung des Rauschens auf Quantengeräten ist von

grundlegender Bedeutung für ihre Entwicklung, insbesondere für Quantenfehlerko-

rrektur. Viele Charakterisierungsprotokolle sind jedoch experimentell aufwändig

und erfordern eine große Anzahl Messungen. Es ist daher eine wichtige Aufgabe,

so viele Informationen wie möglich aus leicht verfügbaren Daten zu gewinnen,

zum Beispiel durch die Anpassung von Charakterisierungsprotokollen an spezifische

Anwendungen.

Speziell im Kontext von Quantenfehlerkorrektur ist es eine naheliegende Idee,

das Rauschen auf einem Gerät anhand von Syndrommessungen zu schätzen, die

ohnehin im Verlauf von Standard-Fehlerkorrekturverfahren durchgeführt werden.

Das Hauptziel besteht darin, den für die Charakterisierung erforderlichen Aufwand

zu verringern, indem zusätzliche Informationen aus bereits verfügbaren Daten ex-

trahiert werden. Darüber hinaus verspricht dieser Ansatz einige weitere Vorteile.

Alle Komponenten werden ganzheitlich im Kontext der Zielandwendung charak-

terisiert, was die Erkennung von cross-talk verbessert. Weiterhin sind die resul-

tierenden Fehlermodellen direkt mit gängigen Decodern kompatibel. Da Syn-

drommessungen den kodierten Zustand erhalten, ermöglichen sie zudem die Online-

Charakterisierung eines Geräts während des Betriebs.

Leider sind effiziente Verfahren für eine solche Schätzung derzeit nur für sehr spez-

ifische Fehlerkorrekturcodes und Rauschmodelle bekannt. Darüber hinaus besteht

ein grundsätzliche Frage der Identifizierbarkeit. Da die Klasse der Syndrommessun-

gen notwendigerweise sehr begrenzt ist, ist es nicht klar, unter welchen Bedingungen

sie ausreichend für eine eindeutige Schätzung der Parameter eines Kanals sind.

In dieser Dissertation behandeln wir diese Probleme und entwickeln ein allge-

meines Framework für die Schätzung von Pauli-Kanälen aus Syndromdaten. Mit

Hilfe dieses Frameworks geben wir umfassende Bedingungen an, unter denen

eine vollständige Charakterisierung des Rauschens möglich ist. Darüber hinaus

betrachten wir die Schätzung des Rauschens bis auf logische Äquivalenz, d.h. wir

konzentrieren uns nur auf die Informationen, die für Quantenfehlerkorrektur tatsäch-

lich erforderlich sind. Hier beweisen wir, dass die Situation so gut ist, wie man nur

hoffen kann: eine Schätzung ist möglich, solange die Fehlerkorrektur selbst möglich

ist. Wir ergänzen unsere grundlegenden Ergebnisse mit praktischen und effizienten

Schätzprotokollen, die für beliebige Stabilizer-Codes anwendbar sind. Im Gegensatz
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zu früheren Vorschlägen erfordern diese Verfahren weder die aufwändige Berech-

nung von Likelihood-Funktionen, noch machen sie heuristische Annahmen über

verschwindende Fehlerraten. Wir quantifizieren die Leistung dieser Schätzer, sowohl

mit einer rigorosen Sample-Complexity Schranke als auch durch Simulationen. Die

Ergebnisse legen nahe, dass die Schätzung des Rauschens aus Syndromdaten eine

einfache Möglichkeit ist, die Effektivität von Quantenfehlerkorrekturverfahren zu

steigern.
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Introduction 1
Quantum computation promises to solve many problems more efficiently than

any classical computer. After Feynman’s idea of a “quantum simulator” [Fey82],

Shor’s famous factoring algorithm [Sho94] demonstrated the potential of quantum

computers to solve problems which are believed to be classically intractable. Since

then, many other quantum algorithms have been developed that outperform our best

known classical algorithms, such as Grover’s search algorithm [Gro96], the Harrow-

Hassidim-Lloyd algorithm for linear systems [HHL09], and the quantum counting

algorithm [BHT98]. Consequently, quantum computing has been of great interest,

both scientific and commercial, in areas such as quantum chemistry [Cao+19].

Unfortunately, quantum algorithms rely on fragile resources, such as entanglement,

in the underlying quantum systems. Consequently, they are very susceptible to noise

caused by unwanted interactions with the environment. This problem is much more

pronounced for quantum computers than for modern classical computers, whose

hardware is very reliable. Thus, there has historically been much scepticism whether

large quantum computation could possibly be realized. Fortunately, the development

of quantum error correction (QEC) and fault-tolerant quantum computation provides

a potential path to implementing quantum algorithms even on noisy hardware. The

famous threshold theorem [AB99a] states that, if the physical noise can be reduced

below a certain threshold, then arbitrarily large quantum computation can be

realized accurately and with only poly-logarithmic overhead. However, in practice,

this required overhead is still too much for current quantum hardware. To alleviate

this problem, the QEC community has been developing more and more efficient

codes, decoders and fault-tolerant gates [BE21; CTV17].

This progress in QEC is complemented by progress in the field of quantum charac-

terization and benchmarking [Eis+20; KR21]. Characterization and benchmarking

is used to verify the success of existing noise reduction techniques, and to com-

pare different protocols in a fair way. Characterization can also play a significant

role for error correction itself. At least on current hardware, noise levels can vary

strongly both in time [Etx+21] and between different qubits [TQ19]. A detailed

understanding of the noise affecting a device is very beneficial for both hardware

and software calibration. In particular, it is possible to tailor both QEC codes and

the corresponding correction algorithms to the noise at hand. Thus, many char-

acterization protocols have been developed, with gate set tomography [Blu+17]

1



and randomized benchmarking [Kni+08; Hel+22] being among the most popular

ones. Unfortunately, these protocols are often resource-intensive, requiring many

experimental runs of a device. Characterizing noise on a quantum device based on

easily available information is thus an important topic. One approach is to move

beyond general-purpose methods and instead consider protocols adapted to specific

applications.

1.1 Motivation and Previous Work

In this thesis, we develop quantum characterization protocols tailored to the context

of QEC. Standard error correction already relies on many so-called syndrome

measurements, which are used to detect and correct errors affecting a device. Thus,

there is rich set of data measured during QEC. In standard error correction, this data

is used to compute corrections based on an already established noise model. Usually,

these noise models are obtained by characterizing the device before operation.

Going beyond both standard QEC and traditional characterization, it seems like

a natural idea to use the syndrome measurements themselves to obtain additional

information about the underlying noise processes. This suggest an approach which

is complementary to the traditional characterization before operation. The main

motivation is to extract more information from easily available data that is measured

anyway during QEC. Furthermore, such an approach has the additional advantage

of characterizing all components holistically in the context of the target application,

which can make it easier to detect crosstalk. It also provides a way to obtain error

rates information that is directly applicable to current decoding schemes. Finally,

one could also imagine the online adaptation of QEC to time-varying noise, since

the noise information can be updated during operation. Such a scheme is illustrated

in Figure 1.1. In fact, the syndrome measurements are the only measurements that

can be used in online-estimation, since they are the only measurements that can be

performed without destroying the encoded state.

For general codes and noise however, it is not a priori clear that an estimation of

error rates just from syndrome data should be possible at all. Since the syndrome

measurements preserve the encoded logical information, they necessarily contain

limited information. This manifests in the fact that there are generally exponentially

many errors with the same syndrome, which we therefore cannot distinguish. Fur-

thermore, even if the estimation should be possible in principle, there are practical

concerns. The probability of a syndrome is an exponentially large sum of different

error rates, and solving such a system for the error rates appears difficult at best.
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Figure 1.1.: Combined error correction and noise estimation using syndrome data.

Thus, there are two important questions about this novel estimation approach

that need to be addressed. The first is the question of identifiability: Under which

conditions is it possible (in principle) to uniquely estimate the parameters of a noise

model from syndrome data? The second is how to design practical algorithms to

actually perform the estimation.

The existing literature on this topic focuses mainly on the second question, treating

the first as a bit of an afterthought, and offers approaches that fall into three broad

categories:

The first category is minimum-weight methods [Fow+14; HL17; Woo20]. The key

idea is that, if the error rates are small enough, only the smallest error matching each

syndrome needs to be considered. All the other errors compatible with the syndrome

can be ignored, since they are very unlikely. This results in a straightforward

scheme to estimate error rates, simply by counting how often each different error

occurred. However, this approach can only work in the limit of vanishing error

rates, since otherwise high-weight errors can not be ignored. In Chapter 5, we

demonstrate that “minimum-weight estimation” is clearly sub-optimal outside of

this limit. Furthermore, if the error rates are small enough for the minimum-weight

1.1 Motivation and Previous Work 3



approach to estimation to be successful, one might also expect simple minimum-

weight decoding to perform very well, which requires no error rates information.

The second category is likelihood-based methods [FB16; Fuj14a; Com+14]. Here,

the probability of each possible syndrome is explicitly expressed as a function of the

parameters of our noise model, to obtain the likelihood of the observed data. Then,

an estimate of the parameters can be computed via maximum-likelihood estimation.

While this is a very general approach, there is a major drawback. As mentioned

above, the probability of a syndrome is expressed as a sum over exponentially many

compatible errors. Thus, the likelihood functions quickly become intractable, unless

some simplifying assumptions are made. The most common assumption in this

context is that the errors are independent between qubits, and the error rates of all

qubits are equal. This greatly limits the applicability of such schemes.

Finally, for some specific codes, an analytical expression for the error rates in

terms of the syndrome statistics has been developed by Spitz et al. [Spi+18]. This

results in an efficient estimator, and also answers the question of identifiability. This

scheme was used in experiments for decoder calibration in [Kri+22] and cross-talk

analysis in [Che+21]. However, the applicability is limited to simple codes such

as the surface and the repetition code. For example, the [4,1,2]-code considered

experimentally in [Che+22] is not covered, and only approximate estimators were

employed there. Furthermore, the scheme only applies to essentially classical noise

models and independent errors, instead of more general models such as correlated

Pauli noise.

1.2 Overview of Results

In this thesis, we develop a general framework for the estimation of error channels

from the syndromes of a QEC code. This framework can be seen as a far-reaching

generalization of the analytical expression developed by Spitz et al. [Spi+18],

encompassing general codes and correlated noise. We use this framework both to

answer the question of identifiability and to develop efficient estimation algorithms

for arbitrary stabilizer, subsystem and data-syndrome codes. The estimator we

propose has several desirable features. In particular, it

1. can be efficiently implemented,

2. applies to very general classes of codes,

3. does not rely on the assumption of vanishing error rates,

4. applies to Pauli noise, instead of just bit-flips,

5. and applies even to correlated errors.
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As a specific application, we provide a scheme for decoder calibration from syndrome

data for arbitrary stabilizer codes (Appendix A.1), generalizing the method of Spitz

et al. [Spi+18] for the surface code. This provides an analytical solution for example

for the calibration task considered in [Che+22], for which so far only approximate

solutions were known. Furthermore, we show that even if the full channel is not

identifiable, it is often still possible to extract all information that is relevant for QEC.

More precisely, there are many errors that are logically equivalent, which means that

they act in the same way on the encoded state. Such errors need not be distinguished

for QEC. We consider the estimation of channels up to logical equivalence, and show

that it is possible in many settings where the full channel can not be estimated.

The focus of our work is on the estimation of Pauli channels. One motivation for

this is mathematical convenience. In contrast to general quantum channels, Pauli

channels are much more analytically tractable, and we are able to prove rigorous

results. This can be viewed as a first step to the study of more complex noise

models. Another reason is that Pauli channels are commonly used in QEC. Most

decoding schemes are designed for Pauli noise, and can incorporate Pauli error rates

to improve their decoding. Finally, it is possible to map arbitrary quantum noise

onto a Pauli channel via randomized compiling [WE16], implying that Pauli noise

is more than a mere toy model. This has also been demonstrated experimentally

[War+21]. For reasons similar to ours, the estimation of Pauli channels has recently

received considerable attention, using a variety of approaches [FW20; FO21; HFW20;

HYF21].

In addition to our main results about noise estimation from syndromes, we also

contributed to a work about entanglement in grid states [Ghi+22]. This work is

listed in Appendix E.

1.3 Structure of the Thesis

The content of this thesis is organized as follows. We start with three preliminary

chapters, introducing the main concepts that we use in this work.

• In Chapter 2 we give some useful mathematical background, mainly on group

characters and the related Fourier transform. This provides a useful language

for the concepts of QEC, and our main results rely on these tools. We also give

an overview over our notation here.

• We give a brief introduction to QEC in Chapter 3. We describe the most

important classes of quantum codes, and also show how they can be viewed

in a unified framework. For this purpose, we stress the connection to group

characters, which is so far mostly implicit in the literature on QEC. We
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explain the decoding of quantum codes, with focus on the importance of noise

information for this task. Finally, we discuss common noise models that are

used in QEC and their limitations, which also informs what kind of model we

can ultimately estimate from syndrome data.

• In Chapter 4, we give some background on probabilistic graphical models

(PGMs). PGMs are a useful tool from machine learning, and many of our

results can be viewed through the perspective of PGMs. Particularly important

are the concepts of factor graphs and Bayesian networks.

Then, we give an overview over the main results of our doctoral research.

• In Chapter 5, we discuss the estimation of Pauli channels from syndrome data

for concatenated quantum codes. We introduce an algorithm based on tools

from the learning of PGMs, and show simulations verifying its effectiveness.

This algorithm has the advantage that it can be integrated with optimal decod-

ing algorithms for concatenated codes. This is based on our published work

[Wag+21].

• In Chapter 6, we present our general framework for the estimation of Pauli

channels from syndrome data. We give comprehensive conditions under which

the channels are identifiable, and develop an efficient estimation algorithm.

We furthermore consider the estimation of channels up to logical equivalence,

and show that it is possible under minimal conditions. This is based on our

published works [Wag+22a] and [Wag+22b].

6 Chapter 1 Introduction



Mathematical Preliminaries 2
„The greatest challenge to any thinker is stating

the problem in a way that will allow a solution

— Bertrand Russell

In this section, we collect some mathematical preliminaries, mainly about group

characters and the Fourier transform on finite Abelian groups. We will see in

Chapter 3 that the language of group characters is very convenient to express the

concepts of QEC. In particular, it allows for a unified description of many classes of

quantum codes, and avoids the somewhat cumbersome Pauli-to-binary isomorphism

that is often used in the description of QEC. Many fundamental facts in QEC directly

correspond to facts about group characters. Fourier analysis is the basis of our

framework developed in Chapter 6. We introduce the basic definitions and the most

important results for our purposes in an abstract setting, mostly following Mao

and Kschischang [MK05], with some notation from Kalachev and Sadov [KS22].

Later, we are mostly concerned with the group F2 and the effective Pauli group P.

Further information is available in the books by Fulton and Harris [FH13], and

Terras [Ter99]. All proofs omitted in this section can also be found in the above

sources.

2.1 Notation

We denote as [n] := {1, . . . , n} the set of the first n positive integers. The field with

two elements is denoted F2. For a statement Q, we denote with [Q] the Iverson

bracket of Q, which takes the value 1 if Q is true and 0 if Q is false. The powerset

of a set A is the set of all subsets of A, including the empty set, and it is denoted

as 2A. We denote the four Pauli matrices as I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and

Z =
(

1 0
0 −1

)
. We also use I for the generic identity matrix, or a generic identity

element of a group. For an element a = (a1, . . . , an) of a group A =
∏n

i=1Ai, we

denote its weight with |a| = |{i ∈ [n] : ai 6= I}|. The Pauli group Pn on n qubits its

the group of Pauli strings generates by the Pauli operators {I,X, Y, Z} with phases,

Pn = {ǫ
n⊗

i=1

ei : ǫ ∈ {±1,±i}, ei ∈ {I,X, Y, Z}, i ∈ [n]} . (2.1)

7



Often however, it is possible to ignore the phases, and work in the effective Pauli

group P
n = P/{±1,±i}. A Pauli channel ΛP is quantum channel that acts on the

density matrix ρ of a quantum state as

ΛP (ρ) =
∑

e∈Pn

P (e)eρe . (2.2)

Here, P : P
n → [0, 1] is a probability distribution over Pauli errors. Since the channel

is fully described by this distribution, we sometimes use “Pauli channel” also as a

shorthand when referring to the distribution P . We do however reserve the symbol

Λ for the actual channels, and denote the distributions as P . Furthermore, the

following notation is used throughout:

Notation 1. For a group A and a subgroup B ⊆ A, the indicator function of B is

given by

ΦB(a) = [a ∈ B] , (2.3)

and the scaled indicator function, or uniform probability distribution, UB over B is

given by

UB =
1

|B|ΦB . (2.4)

2.2 Characters of Finite Abelian Groups

A group character of a finite Abelian group A is a group homomorphism

χ : A → S1 , (2.5)

where S1 := {c ∈ C : |c| = 1} is the unit circle. The group characters of A form a

group Â under point-wise multiplication, which is called the dual group of A. In

other words, Â = Hom(A,S1). This is similar to the notion of a dual vector space.

So called Pontryagin duality guarantees that for any finite Abelian group A, its

double dual
̂̂
A is canonically isomorphic to A. Furthermore for finite Abelian groups,

Â is isomorphic to A, but not canonically so. This is again similar to the situation

for vector spaces.

For χ ∈ Â and b ∈ A, we also use the notation 〈χ, b〉 := χ(b). This is similar to the

well known bracket-notation of quantum mechanics. Furthermore, we often want to

identify A ∼= Â, such that χ is replaced by an element of A. This leads to the notion

of a bicharacter [KS22], which is a convenient way to express a fixed ismorphism

A ∼= Â.
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Definition 2. A bicharacter of a finite Abelian group A is a map

〈 · , · 〉 : A×A → S1 , (2.6)

such that the map a 7→ 〈a, · 〉 is an isomorphism of A and Â.

A bicharacter behaves very similar to a scalar product from linear algebra, where

the value 0 for a scalar product is replaced with +1 for a bicharacter, since we map

into a multiplicative group. Therefore, we also extend the bicharacter notation to

matrices, which is useful in the context of QEC:

Notation 3. For a matrix H =

(
h1

...
hn

)
∈ An×m and an element a ∈ Am we write

〈H, a〉 =




〈h1, a〉
...

〈hn, a〉


 (2.7)

Note that if 〈·, ·〉 is an ordinary scalar product, then this is just ordinary matrix

multiplication.

Furthermore, we can define a notion of “orthogonal complement”:

Definition 4. Let A be a finite Abelian group and B ⊆ A a subgroup. The annihilator

B⊥ of B is

B⊥ =
{
χ ∈ Â : χ(b) = 1 ∀ b ∈ B

}
. (2.8)

While properly the annihilator is defined as a subgroup of Â, we usually make

implicit use of the isomorphism A ∼= Â and view B⊥ as a subgroup of A:

B⊥ = {a ∈ A : 〈a, b〉 = +1 ∀ b ∈ B} . (2.9)

A key difference between a bicharacter and a scalar product is that we often

have 〈a, a〉 = 1, i.e. it is not positive-definite in the linear algebra sense. Thus, it is

possible that B ⊆ B⊥. However, we always have (B⊥)⊥ = B. Furthermore, taking

the annihilator reverses the order of inclusions. That is, for any two subgroups

B,C ⊆ A, if B ⊆ C, then C⊥ ⊆ B⊥. Finally, the following property of the

annihilator is useful later in Section 3.2. A proof can also be found e.g. in [Ter99,

Chapter 12, Lemma 1].

Lemma 5. For any finite Abelian group A and any subgroup B ⊆ A,

B⊥ ∼= A/B . (2.10)
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Proof. Let q : A → A/B be the quotient map. Then, we can check that the dual map

q̂ : Â/B → B⊥

χ 7→ χ ◦ q
(2.11)

is an isomorphism. The fact that a finite Abelian group is isomorphic to its dual

group completes the proof.

2.2.1 The Fourier Transform

Using group characters, it is possible to define the Fourier transform for any finite

Abelian group. In fact, this theory can be developed even more generally for locally

compact Abelian groups [Rud90], but we are not concerned with this generalization.

Definition 6. Let A be a finite Abelian group. The Fourier transform of a complex

valued function f : A → C is the function F [f ] : Â → C given by

F [f ](χ) =
∑

b∈A

〈χ, b〉f(b) . (2.12)

Usually, we identify A and Â and view F [f ] as a function on A. The most

important lemma connected to the Fourier transform is the following:

Lemma 7. If B is a subgroup of a finite Abelian group A and χ is a character of A,

then ∑

b∈B

〈χ, b〉 = |B|ΦB⊥(χ) . (2.13)

A proof can be found e.g. in [MK05, Lemma 1]. In particular, setting B = A and

identifiying Â and A, one obtains for any a ∈ A,

∑

b∈A

〈a, b〉 = |A|[a = I] . (2.14)

Using this lemma, one can directly verify that the Fourier transform is an invertible

function, with inverse given by

F
−1[g](a) =

1

|A|
∑

χ∈Â

〈χ, a−1〉g(χ) , (2.15)

for g : Â → C.

Another important property of the Fourier transform is related to convolutions.
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Definition 8. The convolution of two complex valued functions f, g, : A → C of a

finite Abelian group A is given by

(f ∗ g)(a) =
∑

b∈A

f(b)g(ab−1) (2.16)

Thus, the convolution evaluated at a ∈ A is defined by summing over all possible

ways to obtain the element a as a product of two other elements in the group. In

particular, for two random variables b, c taking values in A and distributed according

to Pb, Pc, their product is distributed according to Pa ∗Pb. Analogously to the

standard Fourier transform for functions on the real line, the Fourier transform maps

convolutions to products.

Lemma 9. For any two complex valued functions f, g : A → C over a finite Abelian

group A we have,

F [f ∗ g] = F [f ] · F [g] , (2.17)

and inversly,

F [f · g] =
1

|A|F [f ] ∗ F [g] . (2.18)

This is a standard result, found e.g. in [Ter99, Chapter 10, Theorem 2].

2.2.2 Averaging/Subsampling Duality

We now explore the behavior of the Fourier transform for functions defined on

subgroups B of a finite Abelian group A, following [MK05]. In the next section, we

then focus specifically on groups with a product structure.

In this context, the most important corollary to Lemma 7 is the behavior of

indicator functions under Fourier transform. For a proof, see e.g. [MK05, Theorem

7].

Lemma 10. Let A be a finite Abelian group and B ⊆ A a subgroup. Then,

F [UB] = ΦB⊥ , F [ΦB] = |A|UB⊥ . (2.19)

There is two natural classes of functions in relation to a subgroup B ⊆ A. A

function f : A → C is called B-impulsive if f(a) = 0 for all a 6∈ B. It is called

B-periodic if f(a) = f(a+ b) for all b ∈ B. These notions are closely related to the

operations of averaging and sampling. The B-averaging of a function f : A → C is

f ∗UB, explicitly

(f ∗UB)(a) =
1

|B|
∑

b∈B

f(ab) . (2.20)
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The averaging acts similar to a projection in that f ∗UB ∗UB = f ∗UB, and the

B-averaged function is always B-periodic. The B-sampling of a function is f · ΦB,

and this similarly behaves as a projection. The B-sampling of a function is always

B-impulsive.

Furthermore, these two notions are dual to each other under Fourier transform,

which directly follows from Lemma 10.

Lemma 11 (Averaging/Subsampling Duality). For any complex valued function

f : A → C on a finite Abelian group A and any subgroup B ⊆ A:

F [f · ΦB] = F [f ] ∗UB⊥ , (2.21)

and

F [f ∗UH ] = F [f ] · ΦB⊥ . (2.22)

2.2.3 Local Functions and their Duality Properties

Often, we are concerned with groups that have a direct product structure, i.e.

A =
∏n

i=1Ai. In this case, Â ∼= ∏n
i=1 Âi. Thus, a bicharacter on A can be constructed

from the bicharacters 〈·, ·〉Ai
of the groups Ai, as

〈a, b〉 =
n∏

i=1

〈ai, bi〉Ai
. (2.23)

We sometimes refer to this as product bicharacter.

Furthermore, we are often concerned with locally defined functions on such groups,

i.e. functions defined only on some factors of A =
∏n

i=1Ai. We now collect some

useful notation and basic facts related to direct products, local functions and their

duality properties. This material closely follows [MK05], with some sections taken

from [Wag+22b].

The support of an element a ∈ A is the set

{i ∈ [n] : ai 6= I} . (2.24)

We say that a is supported on a region R ⊆ [n] if supp(a) ⊆ R. The subgroup

corresponding to a region R ⊆ [n] is denoted AR :=
∏

i∈R Ai, which we view

as embedded in A. Similarly, we denote as aR the projection of a ∈ A onto

that subgroup. For example, the projection of a = (a1, a2, . . . , an) onto A{1,2} is

a{1,2} = (a1, a2, 0, . . . , 0). The complement of a region R ⊆ [n] is Rc = [n] \R. Under

the product bicharacter, and using the identification A ∼= Â, we can write A⊥
R = ARc .

12 Chapter 2 Mathematical Preliminaries



A local function fR : AR → C can be extended to a function f on A in two

different ways: The impulsive extension is given by f(a) = fR(a) if a ∈ AR and

f(a) = 0 otherwise. The periodic extension is given by f(a) = fR(aR). For ex-

ample, the periodic extension f of a function f{1,2} : A{1,2} → R to A fulfills

f(a1, a2, a3, . . . , an) := f{1,2}(a1, a2) for any a3, . . . , an. As the names suggest, the

impulsive extension is AR-impulsive, while the periodic extension is ARc-periodic.

As a direct corollary to the averaging/subsampling duality (Lemma 11), these two

options are dual to each other under Fourier transform. A proof can be found e.g. in

[MK05, Theorem 9].

Lemma 12. Let R ⊆ [n] and A =
∏n

i=1Ai a finite Abelian group, equipped with

the product bicharacter. Let fR : AR → C be a locally defined function with Fourier

transform g = F [f ] : AR → C on AR. Let fi and fp respectively be the impulsive

and periodic extension of f to A, and similarly gi and gp the impulsive and periodic

extension of g to A. Then,

F [fi] = gp F [fp] = |ARc |gi (2.25)

2.3 Important Groups

A very important group in the context of QEC is the Pauli group. The Pauli group Pn

on n qubits its the group of Pauli strings generates by the Pauli operators {I,X, Y, Z}
with phases,

Pn = {ǫ
n⊗

i=1

ei : ǫ ∈ {±1,±i}, ei ∈ {I,X, Y, Z}, i ∈ [n]} . (2.26)

Often however, it is possible to ignore the phases, and work in the effective Pauli group

P
n = P/{±1,±i}. Another important group for QEC is the group of of bit-strings

Fn
2 .

Since all elements of Fn
2 and P

n have order two, the corresponding bicharacters

only take values in {+1,−1}. For the group Fn
2 , we use the bicharacter that is related

to the usual scalar product on Fn
2 ,

〈a, b〉 = (−1)a·b =
n∏

i=1

(−1)aibi . (2.27)
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For the effective Pauli group P
n, the bicharacter encodes commutation relations

between the corresponding elements of Pn,

〈a, b〉 =





+1, a and b commmute in Pn

−1, a and b anti-commmute in Pn
. (2.28)

Thus, although P
n is an abelian group, we still retain the relevant information about

commutation relations in a natural way. This also implies that the annihilator of a

subgroup B ⊆ P
n corresponds to the centralizer of B in Pn, i.e. to the subgroup of

all elements of Pn that commute with all elements of B. The bicharacter (2.28) is

also known as “scalar commutator” in the literature.
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Quantum Error Correction 3
In this chapter, we describe the basics of quantum error correction (QEC), starting

from the the fundamental idea of redundant encoding in a classical setting. We

describe several important classes of quantum codes and summarize them in a unified

framework, using the language of group characters. Basic ideas from character and

representation theory also allow us to prove fundamental facts about quantum codes

in ways which are arguably conceptually simpler than the standard proofs in the

literature. Focusing on the role of noise information in QEC, we describe common

decoding procedures. We also describe common error models that are used in QEC

and their limitations. Namely, we will distinguish between simple phenomenological

noise models and more fine-grained circuit-noise models. The content of this section

is mostly inspired by the books by Nielsen and Chuang [NC11], and Lidar and Brun

[LB13], and the tutorial by Gottesman [Got09]. An overview over our notation

can be found in Section 2.1. Our discussion will be mostly abstract in terms of

groups and characters. However, we do assume familiarity with the fundamentals of

quantum information, such as state vectors and quantum channels, as found e.g. in

[NC11].

3.1 Classical Linear Codes

Before we turn to the problems of QEC, let us give a brief description of some classical

error correction codes. Later, we see how quantum codes can be constructed in a

similar manner, but also what additional challenges arise in the quantum setting.

The simplest example of a classical code is the repetition code. To protect a logical

bit from errors, we encode it into d physical bits by simple repetition:

0 7→ 00 . . . 0 , 1 7→ 11 . . . 1 . (3.1)

When we transmit the physical bits through some noisy channel, some of them could

be flipped. Then, we can recover the logical information by a simple majority vote,

which will be successful if at most ⌊d−1
2 ⌋ physical bits are erroneous. The parameter

d is also called the distance of the code.

More generally, a classical linear code encoding k logical bits into n physical bits is

a k-dimensional subspace C ⊂ Fn
2 . A code can be represented by a generator matrix
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G, whose rows are k basis vectors of C. Often however, a code is instead represented

in terms of parity relations, which correspond to the dual code. The dual code C⊥ is

the annihilator of C under the bicharacter 〈·, ·〉 of Fn
2 . This means that 〈a, c〉 = +1

for any c ∈ C and a ∈ C⊥, i.e. the dual code describes parity relations that are

fulfilled by all codewords. The code C is fully defined by these parity restrictions.

For example, for the repetition code the parity of any two adjacent bits is equal,

and a basis of the dual code is (1, 1, 0, 0, . . . ), (0, 1, 1, 0, . . . ) and so on. Generally,

one chooses a basis of C⊥ and calls the elements of this basis the parity-checks. The

parity-checks can be collated into the rows of a matrix H, called parity-check matrix.

This leads to a convenient description of the error correction process. Let us start

with some codeword c ∈ C, and assume is corrupted by an error e ∈ Fn
2 , resulting

in the received word f = c + e (where addition is in Fn
2 ). Then we can apply the

parity-check matrix to obtain the syndrome S,

S = 〈H, f〉 = 〈H, c〉〈H, e〉 = 〈H, e〉 , (3.2)

which just depends on the error since the codewords have by definition a trivial

syndrome. Here, we used Notation 3. The task of a decoder is to find for each

possible syndrome a choice of recovery r that is most likely to match the actual error

e. We defer discussion on how to construct such a decoder to Section 3.2, where we

consider the decoding task in the context of quantum codes.

3.2 Stabilizer Codes

The most popular class of quantum codes are stabilizer codes [Got97; NC11], which

are in many ways similar to classical linear codes. A stabilizer code with n qubits

is defined by an Abelian subgroup S ⊆ Pn such that −I 6∈ S , called the stabilizer

group. The elements of this group are called stabilizers of the code. The stabilizers

play a similar role for quantum codes as the parity-checks for classical codes. How-

ever, all stabilizers must commute, which is a strong restriction that has no analogue

for classical linear codes. This makes the construction of quantum codes much more

challenging [Bab+15].

Let us briefly discuss the description of a stabilizer code in terms of quantum

states. The codespace of a stabilizer code is the simultaneous +1-eigenspace of all

stabilizers,

C =
{

|ψ〉 ∈ C2n

: s|ψ〉 = +1|ψ〉 ∀ s ∈ S

}
. (3.3)

The elements of the codespace are the codewords that we use to encode our infor-

mation. If the codespace C ⊆ C2n
has dimension 2k, we say that the code encodes
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k logical qubits into n physical qubits. That is, each possible state |φ〉 ∈ C2k
of k

qubits is encoded as an element of C. The error correction capabilities of a code

arise from the fact that we only use a small part of the total Hilbert space to encode

information, which adds a lot of redundancy. If errors occur, the state will usually be

mapped to a state outside of C, which can be detected. We then try to recover by

mapping back to the correct state in the codespace. The following theorem relates

the number of stabilizers to the number of encoded qubits. The standard proof can

be found e.g. in [NC11, Proposition 10.5].

Theorem 13. If r is the number of independent generators of S , then k = n− r.

Proof. This is essentially a simple fact from representation theory, e.g. found in

[FH13, Chapter 2.2]: If S has r generators, it has 2r elements since all Pauli

matrices square to the identity. We can check that the projector onto the codespace

C is given by ΠC = 1
|S |

∑
s∈S s. Since all Pauli matrices except the identity are

traceless, we have

2k = dim(C) = Tr (ΠC) =
1

|S |
∑

s∈S

Tr (s) =
Tr (I)

|S | =
2n

|S | , (3.4)

and thus 2r = |S | = 2n

2k .

In QEC, errors are often described as Pauli errors, i.e. elements of Pn, and a

common noise model is that of a Pauli channel [NC11]. Since the phases are not

relevant for QEC, we often describe stabilizers and errors instead as elements of the

effective Pauli group P
n (Section 2.3). A Pauli channel ΛP is quantum channel that

acts on the density matrix ρ of a quantum state as

ΛP (ρ) =
∑

e∈Pn

P (e)eρe . (3.5)

Here, P : P
n → [0, 1] is a probability distribution over Pauli errors. The action of

a Pauli channel corresponds to randomly applying Pauli operators according to P .

Since the channel is fully described by this distribution, we will sometimes use the

term “Pauli channel” also as a shorthand when referring to the distribution P . We do

however reserve the symbol Λ for the actual channels, and denote the distributions

as P . Pauli channels are a commonly used noise model, but certainly not the most

general model possible. Further discussion of this can be found in Section 3.4.

Let us now describe the error correction process using stabilizer codes, focusing on

the correction of Pauli noise (compare e.g. [NC11, Chapter 10.5.5]). Each round of

standard error correction follows a 3-step scheme. First, a chosen set of generators of

S is measured. Since all stabilizers commute, they can be measured simultaneously.
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Each measurement results in a ±1 outcome, and the collection of these outcomes is

called the syndrome. If no errors are present, the outcomes of all measurements is

+1, since the codespace is the +1-eigenstate of all stabilizers. Now assume a Pauli

error e ∈ P
n is present on the data qubits, i.e. the encoded state |ψ〉 ∈ C is mapped

to e|ψ〉. Then, it can be shown that the outcomes of all stabilizer measurements that

anti-commute with this error are flipped. Thus, the outcome of the measurement of

s ∈ S is exactly given by the bicharacter defined in Eq. (2.28), as 〈s, e〉 = ±1. Note

that the measurement of the stabilizers does not destroy the logical information,

since the codespace is an eigenspace of all stabilizers. Next, based on the syndrome,

a correction is applied. The correction r is always chosen in such a way that the

state is returned to the codespace, i.e. the syndrome of r has to match the measured

syndrome of e. Of course, there are still many possible choices of r. If the combined

error er is equal to a stabilizer, the correction is successful since the logical state is

preserved. Otherwise, the correction has failed and the logical state is corrupted.

The process of choosing the correction r based on the measured syndrome S is called

decoding. It should also be noted that often the correction r need not physically

be applied to the code, and can instead be tracked in classical memory. This trick

should be used as often as possible, since the process of applying the correction can

itself introduce more errors in the state if it is implemented using noisy gates.

Logical Operators

Not every Pauli operator has to map states in C to states outside of C. Pauli operators

that leave the codespace invariant, mapping codewords to codewords, are called

logical operators. Such Pauli operators can be seen as transforming the encoded

information, since they map valid codewords to different but valid codewords. It

is not hard to see from the definition of the codespace that an operator l ∈ Pn is a

logical operator if and only if it commutes with all elements of the stabilizer group

(see e.g. [LB13, Chapter 2.9.4]). Thus, logical operators cannot be detected by the

stabilizer measurements. Expressed in the language of group characters, the logical

operators L are exactly the annihilator of S when viewed as a subgroup of P
n,

L = S
⊥ . (3.6)

Here, we should note that different errors or logical operators must not necessarily

act on the code in a different way. In fact, any two errors that differ only by a

stabilizer transform the logical state in the same way, and are hence called logically

equivalent. This is fundamentally a quantum property. The existence of logically

equivalent errors has no analogue in classical coding. This property is also referred

to as degeneracy. It has far reaching implications for the decoding of quantum codes.
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Since logically equivalent errors affect the code in the same way, it makes sense to

consider the quotient group L /S . The group L /S describes the action of the

different classes of logical operators on the codespace. In the literature, L and

L /S are not always strictly distinguished and both are called logical operators.

We can also view the logical operators as the Pauli group of the encoded logical

qubits. This is justified by the following theorem.

Theorem 14. For a stabilizer code with stabilizer group S encoding k logical qubits

into n physical qubits, we have

|L /S | = 4k . (3.7)

Proof. Lemma 5 with A = P
n and B = L implies

|L | = |Pn/S | , (3.8)

and thus |L | = |Pn/S | = 4n/2r = 22n−r. Therefore, we have |L /S | = 22n−r/2r =

4n−r = 4k, where the last equality follows from Theorem 13.

Since two Abelian groups are isomorphic if they have the same number of elements

of each order, this actually implies L /S ∼= P
k. More explicitly, we can choose a

basis of L that fulfills the commutation relations of the Pauli group (compare e.g.

[Got09][section 3.4]), i.e. L is generated by the stabilizers and elements {X̄i}i=1,...,k

, {Z̄i}i=1,...,k such that

〈X̄i, Z̄j〉 = (−1)[i=j]

〈X̄i, X̄j〉 = +1

〈Z̄i, Z̄j〉 = +1 .

These are the logical X- and Z- operators of the code. A choice of these operators

also implicitly defines a basis for the codespace. For example, the logical |0〉 state is

the +1-eigenstate of all logical Z-operators.

Furthermore, this implies a natural decomposition of any error e ∈ P
n (e.g. [LB13,

Section 11.2.3]). We can choose for each possible syndrome a pure error t ∈ P
n

matching this syndrome. Once these choices are fixed, each element e ∈ P
n uniquely

decomposes as

e = t(e)s(e)l(e) (3.9)

where t(e) is the pure error matching the syndrome of e, l(e) is one of the basis

logical operators chosen above, and s(e) is a stabilizer.
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A rough measure of the error correction capabilities of a code is its distance. The

distance d is defined as the minimal weight of an undetectable error that transforms

the logical state. Therefore,

d = min
e∈L \S

|e| . (3.10)

A code with distance d can correct all Pauli errors with weight up to ⌊d−1
2 ⌋.

We can also define the pure distance dp of a code, which is the minimal weight of

any undetectable error, including logically trivial ones. Explicitly,

dp = min
e∈L \{I}

|e| . (3.11)

This measures up to which weight errors can necessarily be distinguished by their

syndrome, independent of how they affect the logical information. It is immediate

from the definitions that the pure distance dp is always smaller or equal to the

distance d. The pure distance is not an interesting quantity in the context of QEC,

but we make use of it in the context of noise estimation in Chapter 6. We also

note that for classical codes, since there are no logically trivial errors, there is no

distinction between distance and pure distance.

Decoding

Choosing a good recovery for each syndrome is a difficult problem. Since the

syndrome does not contain information about the logical state, some assumptions

about the underlying noise process are necessary. The simplest assumption that

underlies virtually every error correction strategy, is that high-weight errors are

less probable than lower-weight errors. Then, it seems reasonable to return as a

correction the lowest-weight error consistent with a syndrome. More generally, if

the noise in each round is described by some known probability distribution P over

Pauli errors, one should return as a correction r the most likely error consistent with

the observed syndrome S,

r = argmaxe∈Pn P (e|S) , (3.12)

where P (e|S) is the conditional probability of the error e ∈ P
n given the syndrome

S. This strategy is called maximum-likelihood decoding. It should be noted that

maximum-likelihood decoding for general codes is an NP-hard problem, even in the

classical case [BMv78].

While maximum-likelihood decoding is optimal for classical codes, it does not take

into account the degeneracy of quantum errors. Since logically equivalent errors

act on the code in exactly the same way, one should find the most likely class of
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logically equivalent errors, instead of the error that is individually most likely. This

decoding strategy, called degenerate maximum-likelihood decoding, can be written as

r = argmaxe∈Pn

∑

s∈S

P (es|S) . (3.13)

Note that this procedure does not depend on the physical error channel P , but only

on the logical channel PL which describes the probabilities of different equivalence

classes of errors,

PL(e) =
1

|S |
∑

s∈S

P (es) . (3.14)

Thus, in principle only knowledge of the logical channel is necessary for opti-

mal decoding. Since each equivalence class contains exponentially many errors

whose probabilities need to be summed, degenerate maximum-likelihood decod-

ing is computationally intractable. Indeed it has been shown that degenerate

maximum-likelihood decoding is a #P -hard problem [IP15]. Therefore, in practice

only approximate decoders are available.

To better understand the concept of degenerate maximum-likelihood decoding,

it is useful to view it as purely operating on the logical information. Consider the

decomposition given in Eq. (3.9). After some error e ∈ P
n occurred, we can always

return to the codespace by applying the pure error t(e) matching the syndrome.

This will usually not map to the correct codeword, and thus the logical state is

transformed by some logical operator. The task of degenerate maximum-likelihood

decoding is then to predict the most likely logical transformation of the data. This

corresponds to finding the most likely equivalence class of logical operators given

the syndrome.

Examples of Decoders

In the following, we describe some common decoding approaches. Of course, this

list is not exhaustive. Besides giving a general overview of common decoding

techniques, this list is meant to illustrate how knowledge of the physical noise is

useful to improve error correction. Thus, we highlight how Pauli error rates can be

incorporated into the decoding algorithms in order to improve their performance.

The main focus is on the case of independent single-qubit Pauli errors, with possibly

different rates for each qubit, since this is the setting for which most decoders are

designed.

One popular class of decoders is based on minimum-weight matchings [Den+02;

Hig21]. One tries to find the lowest-weight error consistent with the measured

syndrome, which is an instance of maximum-likelihood decoding. While this does
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not take into account degeneracy, it can still lead to very good logical error rates.

However, for general stabilizer codes no efficient algorithm is available to construct

the minimum-weight error. (In fact this is a hard problem already for general classical

codes [BMv78].) The main exception is the surface code [Fow+12; Den+02], where

each singleX- or Z-error only affects one or two syndrome bits. One can then decode

X- and Z- errors separately. For each error type, the problem can be translated into

a decoding graph where vertices correspond to the −1-outcomes in the measured

syndrome, and edges correspond to errors that affect the adjacent syndrome bits.

The task is then to construct a minimum-weight matching in this graph, which

can be done in polynomial time using the “Blossom” algorithm [Edm65]. The

fact that errors affect at most two syndrome bits is important, since otherwise the

problem would correspond to a hypergraph where no efficient matching algorithms

are available. Error rates information can be incorporated into this decoder by

weighting the edges based on the error probabilities of the corresponding qubits.

The algorithm can also be adapted to the fault-tolerant setting where the components

of the syndrome measurement circuits are themselves noisy, see e.g. [Hig21; HB21].

An adjacent method, first proposed in the context of surface codes as well, is

union-find decoding [DN21]. This decoding algorithm is mainly designed to match

the clock speed of first generation quantum processors, trading of some accuracy

compared to minimum-weight matching for improved speed. The core idea is that

the correction of errors is much easier if we know which qubits were affected by

noise, while knowing that all other qubits are error free. This corresponds to the

correction of so called erasure errors, where some qubits are lost and their state

needs to be recovered based on the remaining qubits. For standard stochastic Pauli

noise, however, such a support of the error is not known. The approach of the

of the union-find algorithm is to first find a set of qubits which is guaranteed to

cover the actual error. This is accomplished by growing clusters of erasures around

each flipped syndrome bit, merging colliding clusters, until all clusters contain an

even number of flipped syndrome bits. As long as the actual error is smaller than

half the code distance, these clusters fully cover the actual error. Furthermore, the

clusters are then themselves smaller than the code distance, and cannot support a

logical operator. In this case, we can use an efficient peeling decoder for erasure

errors [DZ20], and the correction will match the actual error up to stabilizers. While

the original version of the decoder does not use any error rates information, it has

been shown that the performance can be improved by weighting the growth in the

directions of more likely errors, as shown in [HNB20]. In this work, the authors also

show how union-find can be adapted to the effect of noisy measurement circuit.

A very general way of decoding stabilizer codes is based on the belief-propagation

(BP) algorithm (see e.g. [Bab+15] for a review, and compare Section 4.3). For
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this, first the so-called Tanner graph of the code is constructed. It consists of two

types of nodes: factor nodes, which correspond to stabilizer generators, and qubit

nodes. A qubit node is adjacent to a factor node if the corresponding stabilizer acts

non-trivially on this qubit. The goal is to compute for each qubit i the marginal

probability Pi(e|S) that it is affected by an error e ∈ P
1 given the observed syndrome

S. To accomplish this, certain messages are iteratively passed between factor and

qubit nodes. In the end, the decoding is done by predicting for each qubit i the error

ê = argmaxe∈P1 Pi(e|S), and checking of the total error obtained by this procedure

is consistent with the observed syndrome. If it is not, either more iterations can

be done or the decoding can be declared unsuccessful. Error rates information is

required, since the messages from qubits to factors should be initialized based on

the Pauli error rates of the qubits. While this algorithm is very successful for classical

codes, it has proven difficult to adapt it to the quantum setting. The Tanner graphs

of quantum codes naturally exhibit short loops, which are known to degrade the

performance of this algorithm [PC08]. Still, it is possibly to decode concatenated

codes exactly using a variant of this algorithm [Pou06], and there is a growing

literature of ways to improve the performance for general stabilizer codes [Bab+15;

LP19; Rof+20]. Belief-propagation can also be used as an initial step to reduce the

number of errors, and then the remaining errors are handled by a fast decoder such

as union-find.

Finally, there is the class of tensor network decoders [Chu21; DP18]. These

map the decoding problem onto a tensor network contraction. Knowledge of the

physical noise is naturally incorporated into these decoders, since very general

noise models can be expressed in terms of tensor networks. This includes Pauli

noise with correlated errors, and even non-Pauli noise models. Furthermore, in

contrast to minimum-weight matching or union-find, these algorithms approximate

degenerate maximum-likelihood decoding. However, tensor network contraction is

computationally expensive. Thus, tensor network decoders might be more suited

to probing the ultimate performance limits of a code, rather than practical error

correction.

3.3 Subsystem Codes

A useful generalization of stabilizer codes is given by subsystem codes [Pou05;

LB13]. These can be viewed as a stabilizer code where some of the logical qubits are

not used to store information. These unused logical qubits are called gauge qubits.

Since they do not store information, the corresponding logical operators can be
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considered logically trivial, similar to stabilizers. Unlike stabilizers however, these

logical operators do not necessarily commute.

Since the logical operators of gauge qubits can be measured without destroying

the encoded information, they can sometimes be used to simplify stabilizer measure-

ments. This is the case if a stabilizer can be written as the product of lower-weight

logical operators and stabilizers. For example, in [Bra+13] the authors introduce a

subsystem surface code which only requires three-qubit measurements, instead of

the four-qubit measurements of the usual surface code. Furthermore, some prop-

erties of quantum codes are best expressed in the framework of subsystem codes.

For example, fault-tolerant transformations between different codes (code switch-

ing) and related topological techniques such as lattice surgery can be conveniently

expressed in this framework [Vui+19]. The effect of circuit-noise (see Section 3.4)

can also be expressed in the language of subsystem codes [Pry20; CF21; Bac+17].

A good overview over the basic framework of subsystem codes is given in [Vui+19].

Formally, a subsystem code is defined by a gauge group G ⊆ P
n. Unlike the stabilizer

group, we do not require G ⊆ G ⊥, i.e. gauge operators do not have to commute

in Pn. Instead, the associated stabilizer group is S = G ⊥ ∩ G , and these are the

operators that we ultimately measure. Any operator mapping the codespace to itself

is called a dressed logical operator. Consequently, the dressed logical operators are

Ld = S ⊥. A dressed logical operator acts logically non-trivial if it is not an element

of the gauge group, and thus it makes sense to consider the quotient group Ld/G .

We can always modify dressed logical operators such that they act trivially on the

gauge qubits, resulting in bare logical operators. The set of all bare logical operators

is Lb = G ⊥. Finally, analogous to stabilizer codes, the distance of a subsystem code

is the minimal weight of a non-trivial logical operator. Thus, d = minl∈Ld\G |l|.

3.4 Error Models

So far, we have described quantum codes focusing on Pauli errors on the data qubits.

In particular, we have considered a discrete set of possible errors, corresponding

to Pauli operators. Of course, in principle, one would not expect that quantum

noise is discrete. Instead it should be described by general CPTP maps acting on the

state space. Therefore, the question arises how far the focus on Pauli noise can be

justified.

One justification is given by the discretization of errors. It can be shown that if

a code with a given decoder corrects a set of errors {E}, corresponding to Kraus-

operators of a CPTP map, then it will also correct any errors that are linear combi-

nations of the errors {E} [NC11, Theorem 10.2]. Since the Pauli operators are a
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basis for the space of linear operators, in a sense it suffices to correct Pauli errors.

For example, a stabilizer code with distance d will correct all Pauli errors of weight

at most ⌊d−1
2 ⌋, and thus all errors affecting at most ⌊d−1

2 ⌋ qubits.

However, this result does not tell us about the logical error rate of the code for

a given physical noise channel, which depends on the probability of encountering

uncorrectable errors in this channel. In principle, it is not sufficient to benchmark

codes on Pauli channels, and furthermore decoders designed for Pauli channels

are generally not optimal for other quantum channels. For example, an arbitrary

quantum channel can be mapped to a Pauli channel by removing the off-diagonal

elements in the Pauli basis, which is called Pauli twirl approximation. However,

the logical error rate under the twirled channel can underestimate the logical error

rate under the original channel [Mag+13], and furthermore a decoder designed

for the twirled channel might be sub-optimal for the actual channel. Still, it is

very common to benchmark codes on Pauli channels, since they can be efficiently

simulated [Mar+20]. Furthermore, most decoders are designed with Pauli errors in

mind. In some settings, it has been demonstrated that considering Pauli errors will

not underestimate the logical error rate of the code [KG15]. There are also honest

mappings from general noise to Pauli noise that can only overestimate, but never

underestimate, the logical error rates [Mag+13].

Especially in the context of this thesis, which is not concerned with decoding for a

given channel but rather with estimation of the channel itself, another important

justification for considering Pauli channels arises from a method called randomized

compiling [WE16]. The core idea is to insert random Pauli gates into the quantum

circuit executed by the device. This has the effect of twirling the noise channels,

thus mapping it to a Pauli channel. Pauli channels can indeed be a realistic model

for the actual noise on a quantum device, provided randomized compiling is used.

Let us now describe two important classes of Pauli noise models that are used in

QEC. The first are phenomenological noise models, which are essentially the models

we have considered so far. More precisely, we consider the error correction process

in discrete rounds. Before each round, a Pauli error e ∈ P
n occurs according to some

distribution P : P
n → [0, 1]. Then, a measurement of the stabilizer generators is

performed. In the simplest setting, the measurements are perfect and each return

the correct syndrome bit, but we can also consider noisy measurements that return

the wrong outcome with some probability (or even correlated measurement errors).

This is described in more detail in Section 3.5. After each round of measurements, a

correction is performed, and then the next round begins.

The above phenomenological noise model is sometimes used to benchmark codes,

but it does not fully take into account all effects of the noisy hardware. In particular,

the circuits used to implement the stabilizer measurements are themselves noisy and
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can introduce new errors in the middle of the measurement process. Furthermore,

errors propagate through these circuits and thus single errors can spread onto

many qubits. This motivates the more realistic circuit-noise model, where each gate

used in the measurement process introduces new Pauli errors, and these errors are

propagated through the circuits (e.g. [DRS22]). In such a setting, one generally

needs multiple rounds of syndrome measurements before a good correction can be

identified. Designing good decoders for these settings is also much more challenging

than for the simple phenomenological noise models, and not all decoders can be

adapted in an obvious way. However, a common approach is to consider a decoding

graph, or more generally a hypergraph, similar to that used by the minimum-weight

decoder, see e.g. [Hig21; Spi+18]. Single circuit faults are grouped depending on

their syndrome, and faults with different syndromes are considered independent.

This essentially results in a phenomenological noise model on the decoding graph.

While this is a very rough approximation of actual circuit-noise, this technique seems

to perform reasonably well in practice [WFH11; HB21].

3.5 Quantum Data-Syndrome Codes

Often, the syndrome measurements used in QEC are noisy themselves and can

return the wrong outcome. A simple way to deal with such errors is to repeat the

syndrome measurements multiple times before decoding. Then one can try to correct

measurement errors before decoding the data errors, or more generally decode the

data errors based on all the repeated syndrome measurements simultaneously.

A generalization of this concept is given by quantum data-syndrome codes [Fuj14b;

ALB20]. Instead of simply repeating the syndrome measurements, we encode the

syndrome itself in a classical error correction code. This corresponds to redundant

stabilizer measurements based on combinations of the stabilizer generators, where

the combinations are specified by the classical code. We mainly use quantum data-

syndrome codes as a unified language to treat both data and measurement errors

at once, and are thus not too concerned with the details of their construction. As

presented here, the framework applies only to phenomenological noise models,

although there has been some work on extending data-syndrome codes to deal with

circuit-noise [DRS22].

To define a quantum data-syndrome code, we first pick an underlying stabilizer

code with stabilizer group S ⊆ Pn. Then, we choose a set of possibly redundant

stabilizer generators g1, . . . , gm that is measured in each round. An error is described

by a combination of a data error ed ∈ P
n and a measurement error em ∈ Fm

2 , as

e = (ed, em). Here, em[i] = 1 indicates that the outcome of the i-th generator
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measurement is flipped, and em[i] = 0 indicates that it is correct. Thus, errors

are described as elements of the group G
n,m = P

n × Fm
2 . We want to describe the

corresponding measurements of the code also as elements of G
n,m, such that the

measurement outcomes are given by the product bicharacter on G
n,m:

〈(ad, am), (ed, em)〉 = 〈ad, ed〉〈am, em〉 . (3.15)

This allows us to treat data-syndrome codes in the same language as regular stabilizer

codes. This is accomplished by the extended parity-check matrix

H =
[
G Im

]
, (3.16)

where the rows of G are the stabilizers g1, . . . , gm. More precisely, each generator

gi is extended to an element fi = (gi, î) ∈ P
n × Fm

2 , where î is the i-th standard

basis vector. It is easy to see that the outcome of i-th generator measurement if an

error e ∈ G
n,m occurred is then given by 〈fi, e〉. By taking products of the outcomes

of the generator measurements, we obtain the group M = 〈f1, . . . , fm〉 ⊆ G
n,m of

possible measurements. Note that since only the generators are physically measured,

the measurements of composed stabilizers are affected by multiple measurement

errors, reflected in multiple non-zero entries in the F2 part. Since measurement

outcomes are described by a bicharacter, the set of undetectable errors is given

by the annihilator U = M ⊥. These do not necessarily map the codespace of the

underlying codes into itself, since measurement errors can be present.

Logical equivalence of errors is still described by the stabilizer group S of the

underlying code. Thus, similar to subsystem codes, the available measurements

and the operators describing logical equivalence do not coincide. The distance of a

quantum data-syndrome code is defined as usual as the smallest weight of a logically

non-trivial undetectable error, i.e.

d = min
l∈U \S

|l| . (3.17)

3.6 A Unified Description of Codes

So far, we have encountered four different kinds of codes: classical codes, stabilizer

codes, subsystem codes and quantum data-syndrome codes. For our purposes, all

of these can be captured by the same mathematical structure, resulting in a unified

description. This description is used in Chapter 6 to prove universal results, and

might also capture settings other than QEC.
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Figure 3.1.: An overview over the abstract setting, described by four groups. The main
ingredients are a group of measurements M and a gauge group G . The gauge
group describes which errors are considered logically trivial. The annihilator
of M is the group of undetectable errors U = M ⊥, and the annihilator of G

is the group of logical operators L = G ⊥. The groups fulfill the dual
inclusions G ⊆ U and M ⊆ L . Figure from [Wag+22b].

On a basic level, we always consider a finite Abelian group A =
∏n

i=1Ai with a

product structure, where each Ai is either P
1 or F2. This group comes equipped with

the product bicharacter, which only takes the real values ±1 because of the form of

the Ai. We consider a phenomenological noise model where errors are described as

elements of A, and occur before each round of measurements. A code is described

by the following four subgroups of A.

First is the group of measurements M , which describes what kind of measurement

outcomes we obtain in each round. Usually, only a set of generators is physically

measured, and all other outcomes are obtained as products of generator outcomes,

justifying the group structure. Measurements outcomes are given by the product

bicharacter of A. Explicitly, the outcome of the measurement of a ∈ M when an

error e ∈ A occurred is given by 〈a, e〉. Some care needs to be taken in a standard

error correction setting since in principle one measures the accumulated error and

not the new error in each round, but this is solved by considering differences of

syndromes, see e.g. [Wag+22b] and Section 6.2.

Second is the gauge group G , which describes logical equivalence. All elements of

the gauge group are considered logically trivial, and errors that differ by elements

of the gauge group are logically equivalent.

Finally, we have two additional groups which are dual to the first two. The group

of undetectable errors is U := M ⊥. These are exactly the errors resulting in a trivial

measurement outcome. On the other hand, we have the logical operators L := G ⊥.

These operators transform the logical information of the code and map codewords

to codewords.

We still have to describe some relation between these different groups. To establish

such a connection, we require that the inclusion G ⊆ U is fulfilled. This means that

logically trivial operations must also be undetectable. By taking annihilators, we see

that this is equivalent to the dual inclusion M ⊆ L . An overview over this abstract

description is given in Figure 3.1 (taken from [Wag+22b]).
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Fundamental definitions from QEC directly transfer to the abstract setting. For

example, the distance d of a code is the smallest weight of a logically non-trivial

undetectable error,

d = min
l∈U \G

|l| , (3.18)

while the pure distance is the smallest weight of any undetectable error,

dp = min
l∈U \{I}

|l| . (3.19)

Furthermore, if the physical errors are described by some distribution P : A → [0, 1],

the logical channel PL can be defined by averaging over the gauge group,

PL(e) =
1

|G |
∑

b∈G

P (eb) . (3.20)

In the previous sections, the four groups describing a code have appeared under

slightly different names, following the conventions used in the literature for these

specific classes of codes. We now give an overview over the relations to the abstract

setting.

For stabilizer codes (Section 3.2), the measurements and the gauge group coincide

and are both equal to the stabilizer group S of the code. Consequently, the logical

operators and undetectable errors also coincide. In the language of stabilizer codes,

the abstract inclusion G ⊆ U takes the form S ⊆ L , which is fulfilled since the

stabilizers commute.

For subsystem codes (Section 3.3), the group of measurements is the stabilizer

group S and the abstract gauge group is the gauge group of the subsystem code.

The abstract undetectable errors are then the dressed logical operators, while the

abstract logical operators are the bare logical operators. Since for subsystem codes

S = G ⊥ ∩ G , we have in particular S ⊆ G ⊥, which we recognize as the abstract

inclusion M ⊆ L .

For quantum data-syndrome codes , the abstract group of measurements is defined

as explained in Section 3.5, and the gauge group is the stabilizer group S of the

underlying code. The undetectable errors and logical operators are then also as

defined in Section 3.5. In particular, since the stabilizers only act on the data qubits,

we have that L = S ⊥ = Ld × Fm
2 , where Ld is some group of logical operators

acting on the data qubits that in particular contains the stabilizers itself. Then, by the

definition of M , we get M ⊆ L , fulfilling the abstract inclusion imposed above.
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Probabilistic Graphical

Models

4

Many of the results presented in this thesis can be interpreted in the language

of graphical models. Probabilistic graphical models (PGMs) are, at their core, a

compact way to describe probability distributions as graphs. By using a graphical

description, the independence structure of a class of distributions can be expressed

in an intuitive and convenient way. Furthermore, it turns out that describing the

independence structure of a distribution is, under mild assumptions, equivalent to

describing a factorization of the distribution. This results in two equivalent ways of

viewing PGMs. PGMs lend themselves naturally to the context of QEC, since they

are concerned with the locality of probability distributions, which is also important

for QEC.

PGMs have appeared in many different fields under different names. In classical

error correction, PGMs can be used as a graphical description of parity-check codes,

called Tanner graph. One of the most successful decoding algorithms is based on

inference on this graph via the BP algorithm [RU08]. In statistical physics, coupled

physical systems such as the Ising model are studied., which can often also be

interpreted as PGMs [Pel05]. More recently, PGMs have become a widely used

tool in machine learning. They appear for example in diagnostic systems or image

processing problems such as segmentation or denoising, or in language problems in

the form of hidden Markov models. An overview over some applications is given in

[KF09] and [WJ08].

There are three main tasks associated with PGMs [KF09]. The first is repre-

sentation: finding compact ways to represent probability distributions and their

independence structure. The second is inference: efficiently computing marginal

and conditional distributions of some variables in a model with known parameters.

Finally, there is learning: finding the structure or parameters of the model from data.

In the context of (quantum) error correction, the first two tasks are commonly

considered. Representation is usually done in the form of factor graphs (called

Tanner graphs in this context), which provide a convenient way to describe error

correction codes. Inference is used for decoding, leading to one of the most successful

classical decoding algorithms. The learning task, however, is not part of standard

error correction. Indeed, many contributions of this thesis can be interpreted as
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transferring ideas from the learning of PGMs to quantum error correction, although

not all of our results have originally been derived from this perspective. In Chapter 5,

we see how BP and expectation-maximization (EM) can be applied to learning error

channels in quantum error correction. Our results in Chapter 6 also have some

connection to the field of graphical models, specifically to factor graph learning.

In this chapter, we give an overview over the most important tools from the field

of graphical models for our purposes. The content of this chapter is mainly inspired

by [KF09], [Bis06], [RU08], [AKN06] and [MK05].

4.1 Factor Graphs

We have already encountered local functions in Section 2.2.3. A factor graph is

a graphical description of the factorization of a function over many variables into

local functions. It is represented by a bipartite graph, with two sets of nodes: A set

V of variable nodes and a set F of factor nodes. We identify each variable node

v ∈ V with a variable taking values in a set Av. We denote as A =
∏

v Av the set of

configurations of all variables, where
∏

denotes the Cartesian product of sets. Often,

Av and A are groups, but this is not necessary. Each factor node f ∈ F is identified

with a real valued function f of the neighboring variables,

f :
∏

v∈supp(f)

Av → R . (4.1)

Here, supp(f) denotes the set of variable nodes neighboring f , which is also called

the scope or support of the factor f . The function f can be extended periodically to a

function

f : A → R (4.2)

of all variables, simply by ignoring all variables not in the scope of f . With this

convention, the factor graph represents the function

g : A → R

g =
∏

f∈F

f . (4.3)

For example, the factor graph in Figure 4.1 represents the function

g(v1, v2, v3) = f1(v1, v2, v3)f2(v1, v2)f3(v3) . (4.4)

Usually, the function represented by a factor graph is interpreted as an unnormal-

ized probability distribution, in which case the variable nodes correspond to random
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Figure 4.1.: An example of a factor graph.

variables. The normalization factor generally depends on the parameters and is

called partition function. Computing the partition function is usually intractable,

which is one of the major difficulties in treating PGMs. If all factors are strictly

positive, i.e. each f ∈ F only takes positive value, the distribution is often called

a Gibbs distribution. In this case, the factor graph encodes certain independence

properties of the variables. For example, the Markov blanket of a variable v ∈ V is

the set of variables connected to v by a factor, e.g.

MB(v) = {w ∈ V : ∃f ∈ F such that w ∈ supp(f) and v ∈ supp(f)} . (4.5)

Each variable is conditionally independent of all other variables given its Markov

blanket. Even stronger statements are possible, but we do not make much use of

these independence properties here.

4.2 The Canonical Factorization

The mapping from factor graphs to probability distributions is not one to one. In

general, there are many different factor graphs that represent the same distribution.

It can even be the case that different parameter choices on the same graph structure

result in the same distribution. If different factors overlap, some of their “weight”

can be traded off without changing the overall distribution. In particular, we can

arbitrarily introduce new factors which are subsets of existing factors, and get a

continuum of parametrization.

For factor graphs representing a Gibbs distribution, there is a special choice of

representation called the canonical factorization. This was originally introduced as

part of the famous Hammersley-Clifford theorem for Markov-random fields [HC71;

Gri73], but an extension to factor graphs was constructed by Abbeel et al. [AKN06].

It is in a sense the finest possible factorization. Intuitively, one should not use
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large factors to describe properties that can already be captured by smaller sub-

factors. Thus, for a given factor graph, the canonical factorization is obtained by

introducing all possible subsets of the existing factors as new factors. The functions

represented by these canonical factors are then designed in such a way that they only

capture properties that cannot be described by smaller factors. This is achieved via

the inclusion-exclusion principle of combinatorics. Details of this construction are

described in [AKN06]. We will introduce a closely related technique in Section 6.2.3,

which we call canonical moments.

4.3 Belief-Propagation

An important task in the context of PGMs is marginalization. For models with

many variables, computing the marginal distribution over some subset of variables

can be very difficult. Naively, computing the marginal distribution of a variable v

requires summing over all possible configurations of all other variables, resulting

in an exponentially large sum. For distributions represented by factor graphs

however, much more efficient methods are available. One such method is called

belief-propagation or sum-product algorithm. It exploits the local structure of the

distribution, such that we only need to perform local sums over all configurations of

variables in a factor. Thus, the computational effort scales exponentially only in the

size of the largest factor, but is linear in the number of factors.

For a detailed description of BP see e.g. [Bis06] or [KF09]. We only give an

informal overview here. BP iteratively passes messages between factor and variable

nodes. Intuitively, the messages from a factor f to a variable v present the belief

about the value of this variable, based on the factor f and its neighborhood. It is

essentially obtained by a “local marginalization”, i.e. summing over all configurations

of all neighbors of f except v. In return, the messages from a variable v to a factor

f pass on the current belief about the distribution of v, based on all neighboring

factors except f . Messages are passed iteratively between factors and variables

until they converge. After convergence, the marginal distribution of a variable is

computed as the product of the messages from all neighboring factors.

If the factor graph is a tree, it can be shown that BP converges to the true marginals

in a finite number of steps. Otherwise, BP is only an approximate algorithm. It

generally performs well if the corresponding Tanner Graph does not have short

loops, but can perform poorly if such short loops are present [KF09]. As explained

in Section 3.2, BP can be used to construct efficient decoders for classical error

correction codes. However, the presence of short loops has proven to be a problem
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when applying BP to quantum codes [Bab+15]. We use BP in Chapter 5 as both a

decoder and a subroutine of our estimator for concatenated quantum codes.

4.4 Expectation-Maximization

We now turn to the task of learning the parameters of a PGM from a set of obser-

vations of the variables. In Chapter 5, we use the ideas described in this section to

develop an estimation algorithm for Pauli channels from syndrome data.

We are interested in learning the parameters, i.e. the function f associated with

each factor, for a model with known graph structure. Furthermore, we are interested

in algorithms that can learn the parameters in the presence of hidden variables,

since in the context of QEC, we can only observe the syndrome information, while

the states of the qubits are hidden.

For general factor graphs, even learning with fully observed data is a difficult

problem. For now, we consider the problem for a simpler class of models, which

are called Bayesian network. A Bayesian network describes the factorization of a

probability distribution into a series of conditional probabilities.

We can view a Bayesian network as a factor graph where the links between

variables and factors are directed, and there are no directed cycles. Each variable

may have multiple child factors, but only one parent factor. Thus, each variable has

a unique set of parent variables, to which it is connected via one parent factor. The

parent factor encodes the (normalized) conditional distribution of the child variable

given the parent variables. Since all probabilities are normalized, no problem

arises from computing the partition function. The collection of all these conditional

probabilities for each factor are the parameters of the network, which we denote as θ.

An example of a Bayesian network is given in Figure 4.2. It encodes the probability

distribution

P (v1, · · · , v6) = f1(v1)f2(v2)f3(v3|v1, v2)f4(v4|v1, v2)f5(v5)f6(v6|v3, v4, v5) , (4.6)

where each factor fi is a normalized (conditional) probability distribution. Note

that usually, Bayesian networks are defined without explicit factor nodes simply

by connections between the variables, since the scope of each factor is uniquely

specified by the parents of each variable. Here, we made the factor nodes explicit to

highlight the connection to factor graphs.

Let us consider a Bayesian network where the variables are partitioned into a

set H of hidden variables and a set O of observed variables. We want to learn the

parameters of the network from a data set D, where each data point is a sample

only of the observed variables. In this setting, we can learn the parameters using
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Figure 4.2.: An example of a Bayesian newtork.

an algorithm known as expectation-maximization (EM) [DLR77]. Let us provide

some intuition, following the discussion in [KF09]. First, note that if we could

observe values for all variables, the learning task would be straightforward. We

could estimate the conditional probability distribution for each variable given its

parents simply by counting how often the corresponding configuration of values

appears in the data set. This leads to the idea of filling in some values for the hidden

variables in each data point, but it is not clear what values to choose. If on the

other hand we already knew the parameters of the network, we could compute the

conditional probability of each hidden variable given the observed variables in the

data and use this information to fill in the values.

The EM algorithm combines these two observations into an iterative method. We

start from some guess θ(0) of the parameters of the network. For each variable in the

network and each data point in our data set, we compute the conditional probability

distribution of this variable given the observed data point and the parameters θ(0).

For many models, this can be done efficiently for example using the BP algorithm. We

then obtain a new estimate for the parameters by computing conditional probabilities

over the data set. More precisely, the estimate in the (i+ 1)-th iteration is obtained
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by first computing the expected sufficient statistics M (i+1) for each possible value

x of each variable v ∈ V and each possible value y of its parents Pa(v) using the

parameters θ(i),

M (i+1)[v, x, Pa(v), y] =
∑

d∈D

P (v = x, Pa(v) = y|d, θ(i)) , (4.7)

The name expected sufficient statistics derives from the fact that this can be seen as

an expectation over all possible assignments to the hidden variables, see [KF09] for

more information. To obtain the next estimate θ(i+1), we normalize the expected

sufficient statistics to obtain conditional probability distributions.

The above procedure is iterated for a fixed number of steps or until convergence.

It can be shown that each iteration is guaranteed to increase the likelihood of

the data under the model [KF09; NH98]. Thus, EM is a form of approximate

maximum-likelihood estimation.

Note that the EM algorithm uses the conditional probabilities of the hidden

variables given the data for the new estimate. Alternatively, one could make a hard

decision by computing for each data point the most probable configuration of the

hidden variables given the observed variables, and estimating the new parameters

only based on this most probable configuration. This variant of EM is called hard-

assignment expectation-maximization (HEM). By making a “hard” decision, only

taking into account one configuration of the hidden variables and ignoring all other

possibilities, it usually updates the parameters faster, but also throws away useful

information. It is thus more prone to getting stuck on bad estimates.
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Noise Estimation for

Concatenated Codes

5

In this chapter, we develop an estimation algorithm for Pauli channels from syn-

drome data, based on combining belief-propagation with expectation-maximization.

The algorithm is specific to the class of concatenated quantum codes, but has the ad-

vantage that it naturally allows for joint decoding and estimation. This summarizes

our published work [Wag+21], which is listed in Appendix B.

First, we discuss some necessary prerequisites: The structure of concatenated

codes and their maximum-likelihood decoding. Then, we describe how Pauli chan-

nels can be learned from the syndrome measurements of a concatenated code,

using an approach based on PGMs. We demonstrate that this approach outperforms

previous proposals, since it incorporates soft information instead of using hard

decisions.

In our work [Wag+21], we also prove identifiability results for a class of codes

called perfect codes. We do not discuss these here, since our subsequent works

[Wag+22a] and [Wag+22b] contain strictly stronger results. These are explained

in Chapter 6. Some of our technical lemmas about perfect codes might still be of

independent interest.

5.1 Concatenated Codes and their Decoding

A concatenated code is created by encoding each qubit of one error correction code

in another error correction code. In the simplest case, each of the n qubits of a code

is encoded again in the same code. This concatenation procedure can be repeated

r times, resulting in a code with nr physical qubits. We can think of the physical

qubits as being divided into blocks of n qubits, each corresponding to one instance

of the base code. Each of these blocks encodes one logical qubit. These logical qubits

can be viewed as the “physical” qubits of the next concatenation layer, and each

block of n logical qubits again encodes one logical qubit on the next concatenation

layer. Thus, the concatenated code defines a hierarchy of logical qubits, which can

be illustrated as a tree structure. An example for a base code with 5 qubits is given

in Figure 5.1. The 5 blocks of physical qubits at the bottom encode one logical qubit
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1 each, and these 5 logical qubits ultimately encode one logical qubit L1

2 on

the top layer.

This picture also suggest a natural view on the decoding of concatenated codes.

An error e ∈ P
nr

on the physical qubits determines the logical error for each of

the logical qubits in the next layer (relative to a fixed set of pure errors, see the

decomposition (3.9)). These in turn determine logical errors for the next layer, and

so on. The task of degenerate maximum-likelihood decoding (Section 3.2) is thus

to find the most likely logical error at the root. It seems natural to implement this

decoding layer-wise. First, each block of physical qubits is decoded to determining a

guess of the logical error for this block. This results is an error for each of the logical

qubits in the next layer, and these can be decoded in the same way. By working

up the tree one obtains the logical error at the root. However, due to the hard

decision on one logical error for each block, information is lost in each step. This

can be avoided by instead computing the probability of each logical error given the

syndrome, and propagating information about this distribution up the tree. Only at

the end, the hard decision on the most likely logical error at the root is made.

This improved decoding was proposed by Poulin [Pou06], and is in fact optimal.

It corresponds exactly to the BP algorithm introduced in Section 4.3. To understand

the connection, we can view the tree structure illustrated in Figure 5.1 as a factor

graph. Each code-block is connected to the corresponding logical qubit with a factor

node. The function associated with this factor node is an indicator function enforcing

two constraints: The error on the qubits n the block has to match both the logical

error on the corresponding logical qubit and the observed syndrome of this block.

(Thus, technically, we have a separate factor graph for each observed syndrome.)

The indicator function is 1 if the constraints are fulfilled, and 0 otherwise. By adding

an additional factor to each physical qubit, we can also encode the physical error

probabilities of the qubits. All in all, the factor graph represents the (unnormalized)

probability distribution over both physical and logical errors given the observed

syndrome. Finding the most likely logical error corresponds to finding the marginal

probability distribution of the root node, which can be accomplished using BP. Since

the factor graph is a tree, BP is exact, and the marginal of the root node can be

obtained after a single upwards-pass of the messages.

5.2 Learning Pauli channels for Concatenated Codes

Now, we turn to the problem of learning the noise affecting the code from the

syndrome measurements. For simplicity, we assume that each qubit is affected by an

independent Pauli channel. In principle our method is also applicable to correlated
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Figure 5.1.: Factor graph representation of a concatenated code. Figure from [Wag+21].

errors as long as correlations are only present within each block of the concatenated

codes, but not between blocks.

The estimation problem is the following: We are given a data set D of observed

syndromes, and we are trying to find the Pauli error rates of each qubit. We assume

that the error rate is constant over time, and that errors are not correlated between

error correction rounds. In this case, the syndrome measurements correspond to an

independent and identically distributed sample. One approach to this estimation

problem is to decode each observed syndrome to decide on a corresponding physical

error, and then estimate the error rate of each qubit based on these errors. In

the literature, the decoding suggested in this context is usually minimum-weight

decoding [HL17; Woo20; Fow+14], but if the error rates between qubits differ

substantially this might be problematic. More generally, one could start with some

guess of the error rates, use maximum-likelihood decoding to obtain a guess for the

physical errors, and estimate a new guess of the error rates from these. We call this

the hard-assignment method, since we decide on one concrete physical error for each

syndrome.

Starting from the factor graph perspective on concatenate codes on the other

hand, applying methods from the learning of PGMs seems like a natural approach.

Indeed, we use the EM algorithm described in Section 4.4. Note that only the factors

corresponding to the physical error rates contain learnable parameters, while other

factors are fixed constraints. That is, we have one parameter θ[i, e] for each qubit i

and error e ∈ P
1, corresponding to the probability that the error ei on the i-th qubit

is e,

θ[i, e] = P (ei = e) . (5.1)

In the context of concatenated codes, the EM algorithm then takes the following

simple form: First, collect a set D of syndrome measurements. Initialize the current

value estimate of the physical Pauli error rates to some guess θ(0). Then, repeat the

following two steps:
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1. For each syndrome S ∈ D and all physical qubits i, compute the marginal

probability distribution P (ei|S, θ(k)) of errors on qubit i given the syndrome

S using BP. This computation is based on the current estimate θ(k) of the

physical error rates. Then, compute the expected sufficient statistics M , which

are given by

M [i, e] =
∑

S∈D

P (ei = e|S, θ(k)) (5.2)

2. Compute a new estimate θ(k+1) of the physical error rates by normalizing,

θ(k+1)[i, e] =
M [i, e]∑

e′∈P1 M [i, e′]
(5.3)

Viewing concatenated codes as factor graphs also gives a new perspective on the

hard-assignment method. Instead of just decoding once to obtain one new estimate,

we could iterate the procedure similar to EM. In fact, the resulting method is exactly

HEM, as described in Section 4.4. In our setting, it takes the following form:

First, collect a set D of syndrome measurements. Initialize the current value

estimate of the physical Pauli error rates to some guess θ(0). Then, repeat the

following two steps:

1. For each syndrome S ∈ D compute the most likely error emap(S) ∈ P
nr

based

on the current estimate θ(k) of the physical error rates. This can be done using

the max-sum algorithm, which works similar to BP [Bis06].

2. Compute a new estimate of the physical error rates by counting,

θ(k+1)[i, e] =

∑
S∈D[emap(S)i = e]

|D| . (5.4)

5.3 Numerical Results

In the previous section, we presented the EM algorithm as a method of learning

Pauli error rates for concatenated codes, and as an alternative to the previously

suggested HEM. We now compare the performance of these two methods, by giving

an overview over the simulation results in [Wag+21].

To assess the performance, we simulate the 5-qubit code [Laf+96] concatenated

with itself, subject to independent Pauli errors on each qubit. One simulation run

consists of the following steps. First, for each qubit, random Pauli error rates are

drawn from a Dirichlet distribution. Then, a data set of syndromes is sampled by

repeatedly drawing errors from the true distribution and computing their syndrome.

We then estimate the Pauli error rates of each qubit using either EM or HEM with a
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using the estimate from HEM performs much worse, and the difference increases for

higher concatenation levels where more error rates need to be estimated accurately.
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A General Framework for the

Estimation of Pauli Channels

from Syndrome Data

6

In this section, we give an overview over our theoretical framework for the estimation

of Pauli channels from syndrome data. This framework is applicable to arbitrary

stabilizer, subsystem, and data-syndrome codes, subject to very general Pauli noise.

It is based on a novel combination of tools from Fourier analysis, the theory of error

correction codes, and combinatorics. Using this framework, we prove two main

results: The first is that the information contained in the syndrome measurements of

a code is sufficient to estimate the physical Pauli channel affecting the code, provided

that the channel is local in a well-defined sense. The second is that these locality

conditions can be significantly relaxed if there is no need to distinguish between

logically equivalent errors, as is for example the case in decoding. Furthermore, we

develop an efficient estimation algorithm, which neither requires the assumption of

vanishing error rates, nor the computation of intractable likelihood functions. We

study the sample complexity of this algorithm, and support the theoretical results

with first simulations. This section is based mostly on our works [Wag+22a] and

[Wag+22b], listed in Appendix C and Appendix D, while the sample complexity

bound and the simulations are new results.

6.1 Example: Toric Code

Before developing the general theory, let us start with a simple example. Consider

the toric code subject to independently distributed Pauli-X errors on each qubit.

For this scenario, an analytical formula for the error rates based on the syndrome

statistics was given by Spitz et al. [Spi+18]. We give a much simpler derivation of

this formula by rephrasing the problem in terms of moments instead of probabilities.

Consider a region of the toric code as depicted in Figure 6.1. We are given the

probability distribution of the syndrome measurements, and our task is to find the

error rate p4, which is the probability of a Pauli-X error on qubit 4. We see that

equivalently, we could estimate the expectation value E(Z4) = 1−2p4, where Z4 is a

random variable that takes the value +1 if there is no error on qubit 4 and −1 if there
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6.2 The General Framework

We now give an overview of our theoretical framework and our main results in the

general setting. This section closely follows our published works [Wag+22a] and

[Wag+22b]. These works also contain all details and proofs that are omitted here.

We phrase our results in the unified language of Section 3.6: we describe errors

and measurements as elements of a finite Abelian group A =
∏n

i=1Ai, where each

Ai is P
1 or F2. This group is equipped with the product bicharacter (2.23). A code

is described by four subgroups of A. First, we have the group of measurements

M and the gauge group G . Elements of the gauge group are considered logically

trivial. The annihilator of the measurement and the gauge group respectively are

the group of undetectable errors U := M ⊥ and the group of logical operators

L := G ⊥. We require that logically trivial errors are also undetectable, i.e. G ⊆ U .

Dual to this, we have the inclusion M ⊆ L . An overview over these groups is

given in Figure 3.1. Finally, measurements are described by the product bicharacter

of A. Measuring a ∈ M after the error e ∈ A occurred results in the outcome

〈a, e〉 = ±1. We consider a phenomenological noise model where, before each round

of measurements, an error e ∈ A occurs. This error occurs according to a fixed

channel ΛP with error distribution P : A → [0, 1]. Our task is to estimate P , using

only the syndrome measurements of the code.

Note that, depending on how exactly QEC is implemented, we are actually mea-

suring the syndrome of the error that has accumulated over all previous rounds.

This accumulated error is not distributed according to P . We can easily fix this by

always considering the difference to the syndrome of the previous round, instead of

the raw syndrome. In this way, we obtain a syndrome measurements only describing

the new error in each round. (One has to be a bit more careful in the presence of

measurement errors, i.e. for data-syndrome codes, for details see [Wag+22b]).

We first focus on the problem of identifiability, and ask whether the distribution P

can be obtained (uniquely) from only syndrome data at all. Thus, we assume that

we have access to the exact syndrome statistics. In other words, we consider the

infinite sample limit first. We return to the issue of practical estimation with a finite

amount of samples in Section 6.3.

6.2.1 Moments

The data we are given consists of the probability of each syndrome under the

error distribution P . Unfortunately, the probability of observing a given syndrome

is described by a sum over all errors compatible with this syndrome, which is

an exponentially large sum. Therefore, we want to avoid dealing directly with
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syndrome probabilities. Instead, we describe the problem in Fourier space, which is

a description in terms of moments instead of probabilities. Formally, we define the

moments as the Fourier transform of the probabilities,

E := F [P ] . (6.2)

Explicitly, this means that for each a ∈ A,

E(a) =
∑

e∈A

〈a, e〉P (e) . (6.3)

Since the Fourier transform is invertible, knowing E(a) for all a ∈ A is equivalent

to knowing the full distribution P . Furthermore, we see that for a measurement

s ∈ M , E(s) is exactly the expectation of the measurement of s over many rounds.

This motivates the name “moments”. More importantly, it means that, for s ∈ M ,

we can compute E(s) from the measured syndrome statistics. For general a ∈ A,

however, Eq. (6.3) is just a formal definition, and we cannot measure E(a). All in

all, we see that the estimation task can be formulated as follows:

Given the momentsEM = (E(s))s∈M , compute all other momentsE = (E(a))a∈A.

6.2.2 Local Noise

Unfortunately, we cannot expect this task to be solvable for a completely arbitrary

channel P . The syndrome measurement do not tell us anything about the transfor-

mation of the encoded information, and thus cannot fully characterize the channel.

More generally, the moments E are independent from each other, and thus measur-

ing the moments EM will not give us any information about the remaining moments.

This situation changes if we restrict attention to specific classes of channels, where

relations between the moments might exist. Our goal is thus to characterize for

which classes of channels estimation is possible, and for which it is not. Specifically,

we focus on local channels, i.e. channels that do not have correlations across a large

number of qubits. In the context of QEC, locality of the noise is a fundamental

assumption. It implies that high-weight errors can only occur as a combination of

several independent smaller errors. This is the setting where error correction has

a chance to be successful. We will see that locality of the noise is also a necessary

assumption for its estimation from syndromes.

We formalize our locality assumption in the following way. We describe the full

channel by a set of supports Γ ⊆ 2[n]. Explicitly, each γ ∈ Γ is a region γ ⊆ [n] of

the code. These regions are allowed to overlap, and they need not be geometrically

local. We assume that on each region γ ∈ Γ, there acts an independent channel ΛPγ
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with error distribution Pγ : Aγ → [0, 1]. The total error in each round is obtained

by combining the small errors occurring on each region γ. In other words, the total

channel ΛP factors into a concatenation of locally supported channels, as

ΛP = ◦γ∈ΓΛPγ . (6.4)

Since concatenating channels corresponds to convolving their distributions, the

complete distribution P factors as a convolution. We summarize this discussion in a

definition:

Definition 15 (Local channel). A channel with distribution P : A → [0, 1] is local if

P can be written in the form

P = ∗γ∈Γ Pγ , (6.5)

for a set Γ ⊆ 2[n] of local regions γ ⊆ [n], and locally supported distributions Pγ :

Aγ → [0, 1].

In Eq. (6.5), the individual distributions Pγ are extended impulsively from Aγ to

A (Chapter 2), i.e. Pγ(e) = 0 if e 6∈ Aγ . Physically, the factorization (6.5) means that

there are many independent error mechanisms that each only affect a limited region.

Formally, Eq. (6.5) is a description of the error distribution P as a factor graph

(Section 4.1), replacing the product for standard factor graphs with a convolution.

Such convolutional factor graphs were studied in [MK05]. The idea of describing

Pauli noise as factor graphs has also been used in [FW20], however using product

instead of convolutional factor graphs.

The simplest example of local noise is independent single-qubit noise, where

each region γ contains only a single qubit. On the other hand, any channel can

be factorized in the form (6.5) if we allow the regions γ to be arbitrarily large, for

example by using a single region of size n. Thus, we will describe conditions on the

size of these regions that must be fulfilled for unique estimation of the channel to be

possible. For the estimation of physical Pauli channels, these conditions are related

to the pure distance of the code. If one is only interested in estimating noise up to

logical equivalence the conditions are relaxed, and related to the regular distance of

the code.

By Fourier transforming Eq. (6.5), we obtain a description of the moments as a

product factor graph,

E =
∏

γ∈Γ

Eγ , (6.6)

where we denote Eγ = F [Pγ ]. The local functions Eγ : Aγ → [−1,+1] are extended

periodically from Aγ to A, which follows from the duality between impulsive and

periodic extensions (Lemma 12).
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6.2.3 Canonical Moments

Our next goal is to make the locality of the channel obvious in its description in terms

of moments. Intuitively, there are two issues with the moments E. The first is that a

moment E(a) captures correlations not just across the full support of a, but also over

all strict subsets of the support. Consequently, high-weight moments take non-trivial

values even for local channels. The second is that the regions γ can overlap, and

in this case the factorization (6.6) is not unique. For example, a factor E1,2 and

E2,3 both contribute to the moment E(X2), and there is a continuum of choices

for E1,2(X2) and E2,3(X2) leading to the same overall result E(X2). Therefore, we

would like to find a canonical choice of factorization.

To accomplish these goals, we introduce the canonical moments F : A → R.

Intuitively F is obtained as follows: from each moment E(a), we divide out all

correlations that are already captured by lower-weight moments E(b), where b is

a substring of a. Then, only correlations across the whole support of a remain.

However, one has to be careful to avoid double-counting substrings in this process.

We achieve this by employing the Möbius inversion, which is a generalization of the

inclusion-exclusion principle of combinatorics [Aig07]. For this purpose, we consider

the group A =
∏n

i=1Ai as a partially ordered set (poset), ordered by substring

relation:

Definition 16 (Substring relation). We say b ∈ A is a substring of a ∈ A if for all

i ∈ [n] either bi = I or bi = ai. In this case we write b ≤ a.

For example, IXZI is a substring of XXZI, but IZZI and IIIZ are not. Now,

we introduce the Möbius function µ of A. For our purposes, we define µ as the

function fulfilling the following inversion theorem, taken from [Wag+22b]. A more

general definition, additional explanation, and a proof that µ exists for locally finite

posets can be found in [Aig07, Chapter 5.2], see also [Rom06] for the multiplicative

version of the inversion theorem.

Definition 17 (Möbius function and Möbius inversion). Let S be a partially ordered

set. The Möbius function µ of S is the function µ : S × S → R such that for any two

functions f, g : S → R,

f(t) =
∏

s≤t

g(s) , (6.7)

if and only if

g(t) =
∏

s≤t

f(s)µ(s,t) . (6.8)
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In our setting, µ is given explicitly by

µ : A×A → R

µ(b, a) :=





(−1)|a|−|b| , if b ≤ a

0 , otherwise
.

(6.9)

A proof of this can be found e.g. in [Wag+22b]. Finally, we define the canonical

moments F by

F (a) =
∏

b≤a

E(b)µ(b,a) . (6.10)

Unpacking this definition, e.g. for a weight 3 string a ∈ A, we would divide E(a)

by the moments of all the weight 2 substrings, and then multiply the moments of

the weight 1 substrings back in. Mathematically, the canonical moments are closely

related to the canonical factorization of a factor graph (Section 4.2 and [AKN06]).

They have two important properties:

Lemma 18 (Properties of canonical moments).

• The moments E can be expressed by the canonical moments as

E(a) =
∏

b≤a

F (b) . (6.11)

• For any a ∈ A such that supp(a) 6⊆ γ for all γ ∈ Γ, F (a) = 1.

A proof is given in [Wag+22b]. The first statement explains the relation between

canonical moments and moments, and corresponds excactly to the Möbius inversion

theorem (Definition 17). The second statement shows that all canonical moments

that are not supported in a region γ ∈ Γ are trivial. This formalizes the intuition

that canonical moments only capture correlations across their full support, but not

correlations across a strict subset of their support. In particular, all moments beyond

the “correlation length” of the channel are trivial.

All in all, we obtain that the full channel is described by a small set low-weight

canonical moments, given by

Γ′ = {a ∈ A : ∃γ ∈ Γ such that supp(a) ⊆ γ} . (6.12)

From now on, we denote by F the vector of non-trivial canonical moments only. The

description in terms of canonical moments leads to a significant simplification of

the estimation problem. While the number of moments E scales exponentially in n,

since there is one moment E(a) for each a ∈ A =
∏n

i=1Ai, the number of non-trivial
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canonical moments only scales polynomially as long as the size of the regions γ is

bounded by a constant.

6.2.4 Identifiability of Physical Channels

As explained in Section 6.2.1, for any measurement s ∈ M , we can obtain E(s)

from the syndrome statistics. Furthermore, in the previous section we have seen that

the full physical channel is completely described by the set of non-trivial canonical

moments F . Thus the problem of estimating the channel from the syndrome statistics

can be formulated as the task of computing the (non-trivial) canonical moments

F from the measured moments EM . According to Lemma 18, these quantities are

related by the system of equations

E(s) =
∏

b≤s

F (b) , s ∈ M , (6.13)

which we have to solve for the canonical moments F . In particular, the physical

channel is identifiable from the syndrome measurements if and only if this system

has a unique solution.

Let us introduce a more concise notation for such equation systems:

Notation 19. For a vector v ∈ Rn and a matrix M ∈ Rm×n, we write vM for the

m-element vector with entries

(vM )i =
n∏

j=1

v
Mi,j

j . (6.14)

Using this notation, the system (6.13) becomes

EM = FD , (6.15)

where D is a coefficient matrix whose rows are labeled by measurements s ∈ M ,

and whose columns are labeled by canonical moments b ∈ Γ′. The entries of D are

D[s, b] =





1 , b ≤ s

0 , otherwise
. (6.16)

Which conditions have to be imposed on the channel P for the system (6.13)

to have a unique solution? Certainly, if there exist two sources of errors with the

same syndrome, the error rates cannot be identifiable since we cannot distinguish

these errors and can trade off their rates without changing the syndrome statistics.

Furthermore, we have already seen in the toric code example (Section 6.1) that the
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equation system (6.13) can have multiple solutions that differ by signs. Thus, we

need to restrict ourselves to one sector of the solution space. Here, we choose the

sector where all moments are positive, which manifests as an assumption that error

rates should be smaller than 1
2 . We formalize the two necessary requirements above

in the following two definitions.

Definition 20 (Physically correctable region). We say that a region R ⊆ [n] of a

code is physically correctable if it does not support any undetectable errors, i.e. any

undetectable error e ∈ U supported on R is the identity I.

In particular, any region R containing less than ⌊dp−1
2 ⌋ qubits is physically cor-

rectable, where dp is the pure distance of the code. This is an easy way to roughly

measure the error detection capacity of a code. However, physically correctable

regions can be much larger than the pure distance.

Definition 21 (Physically correctable channel). A channel P : A → [0, 1] of the form

(6.5) is said to be physically correctable if the following two conditions are fulfilled:

1. For every choice of two supports γ1, γ2 ∈ Γ, the union γ1 ∪ γ2 is a physically

correctable region.

2. All moments are positive, i.e. E(a) > 0 for all a ∈ A.

The first condition formalizes the discussion above, that there should be no two

sources of errors with the same syndrome. Note that this does not mean that the

total channel P cannot support any undetectable errors. Such errors are allowed

to occur frequently, but they must arise as a combination of smaller independent

errors. The second condition states that error rates should be small enough. It is

fulfilled in particular if P (I) > 1
2 , or if Pγ(I) > 1

2 for all γ ∈ Γ.

Our first main result is that these two conditions are not only necessary, they are

in fact sufficient for noise to be identifiable from syndrome statistics. No further

assumptions on the noise are needed. In this sense, the situation is as good as one

could reasonably hope for.

Theorem 22 (Identifiability of physical channels). A channel P : A → [0, 1] can

be uniquely estimated from the syndrome measurements of a code if and only if it is

physically correctable in the sense of Definition 21.

The proof of this result is quite involved and given in detail in [Wag+22a]. Here,

we only sketch the most important ingredients.

Proof sketch of Theorem 22. We have already explained the “only if” direction above,

so it remains to prove the “if” direction. We start from the system of equations
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(6.15). Since we assume that all moments are positive, this system of equations

can be transformed into a linear system by taking logarithms. It is described by the

coefficient matrix D, whose entries are all 1 or 0 and related to the measurements in

M by Eq. (6.16). Our task is to show that this linear system has a unique solution,

i.e. that D has full rank. Since we do not know the explicit form of the measurements

in M , we do not explicitly know the rows of D. Instead, we consider the matrix

DTD whose rows and columns are labeled by canonical moments, i.e. elements of

Γ′. Direct calculation shows that

DTD[a, b] = |{s ∈ M : a, b ≤ s}| . (6.17)

Crucially, the entries of this matrix can be calculated from global properties of

the group M , without knowing the explicit form of its elements. We compute

the right-hand side of (6.17) by using local randomness properties of the code.

More explicitly, it can be shown that on any physically correctable region R, the

measurements of a code look essentially random, i.e. any substring b ∈ AR appears

equally often in the group M [Del73; Fuj14b]. Since, by the assumption of physical

correctability, the union of the supports of any two canonical moments is a physically

correctable region, we can explicitly compute the entries of DTD based on these

local randomness properties. Once the entries have been computed explicitly, we

can show that DTD has full rank using a (lengthy) argument based on induction

and Schur complements.

All in all, we see that estimation of the channel P can be performed by solving

Eq. (6.13), which is guaranteed to have a unique solution for physically correctable

channels. We have already seen one specific example in Section 6.1. There, we

derived solution for the toric code, which was based on the fact that each single error

only affected two syndrome bits. This can be viewed as a method to estimate the edge

weights in the decoding graph of a standard minimum-weight matching decoder.

Most codes however do not admit a simple minimum-weight matching decoder, since

they require decoding graphs that contain hyperedges. We consider the important

task of estimating the corresponding hyperedge weights in Appendix A.1, which

provides another relatively simple example of our framework.

6.2.5 Identifiability of Logical Channels

In Section 6.2.4, we have shown that a Pauli channel can be estimated from syndrome

measurements if it is physically correctable in the sense of Definition 21. However,

the assumption of physical correctability can be quite restrictive. In particular, we

have seen that it imposes limits on the correlations of the channel which are related
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to the pure distance of the code. Unfortunately, the pure distance is constant in the

code size (and often small) for topological and LDPC codes. Furthermore, some

natural noise models, such as propagation of errors in the measurement circuits, are

not physically correctable since they induce undetectable correlated errors. On the

other hand, these undetectable errors need not be harmful for error correction, since

they are logically trivial if the error correction circuits are designed well.

More generally, not all information about the physical channel is actually useful

or required for error correction. As explained in Section 3.2, for decoding it suffices

to know the induced logical channel. Thus, a natural question is under which

conditions we are able to estimate the logical channel from syndrome data, even if

we may not be able to estimate the physical channel. This question is adressed in

our work [Wag+22b], of which we summarize the main points here.

Consider a local channel P , as defined in Definition 15, described by a set of

supports Γ. Explicitly,

P = ∗γ∈Γ Pγ . (6.18)

For an abstract code as defined in Section 3.6, logical equivalence is described by

the gauge group G . Thus, we define the logical channel PL by averaging over this

group,

PL :=
1

|G |
∑

s∈G

P (es) . (6.19)

We now want to adapt the framework developed in the previous sections to the

logical channel PL instead of the physical channel P . Thus we want to describe the

logical channel in terms of moments. It follows directly from the definitions that we

can express the logical channel as

PL = P ∗UG , (6.20)

where UG is the scaled indicator function (Notation 1) of G . Since G ⊥ = L ,

Lemma 10 then implies

F [PL] = E · ΦL , (6.21)

where ΦL is the (unscaled) indicator function (Notation 1) of L . In other words,

the logical channel is fully described by moments corresponding to logical operators.

Similarly to Section 6.2.1, the estimation task can thus be summarized as follows: We

are given the moments EM = (E(s))s∈M corresponding to the measurements, and

have to compute all moments EL = (E(l))l∈L corresponding to logical operators.

The difference to the estimation of the physical channel is that we only need

to compute a certain subset of moments, not all moments, from the available

information.
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As derived in Section 6.2.3, the regular moments can be described in terms of a set

of canonical moments. These canonical moments capture the locality assumptions

about the channel. The relation between regular and canonical moments is expressed

by a coefficient matrixD, with rows labeled by regular moments and columns labeled

by canonical moments, as in Eq. (6.15). In particular, the moments EL are described

by a sub-matrix DL , and the measurements are expressed by a sub-matrix DM . The

question of identifiability reduces to a question about these coefficient matrices: We

can estimate the logical channel from the available measurements if the rows of DL

linearly depend on the rows of DM .

Of course, this is not the case for arbitrary Pauli channels P , since all moments

are in principle independent. We must again impose some restrictions on the size of

the supports γ ∈ Γ. In analogy to Definition 20 and Definition 21, we define:

Definition 23. (Correctable region) We say that a region R ⊆ [n] of a code is cor-

rectable if all undetectable errors supported in this region are gauge operators, i.e. any

error e ∈ U supported on R is an element of G .

This definition is quite natural in the context of QEC: A region is correctable if it

does not support any errors that can affect the encoded information. Correctable

channels are now defined exactly in the same way as physically correctable channels

(Definition 24), only replacing the requirement of physically correctable regions with

just correctable regions.

Definition 24 (Correctable channel). A channel P : A → [0, 1] of the form (6.5) is

said to be correctable if the following two conditions are fulfilled:

1. For every choice of two supports γ1, γ2 ∈ Γ, the union γ1 ∪ γ2 is a correctable

region.

2. All moments are positive, i.e. E(a) > 0 for all a ∈ A.

Despite the apparent similarity to Definition 23 and Definition 24, these are much

weaker conditions than the analogues for the physical channel. Indeed, any region

containing less qubits than the distance d of a code is correctable. Contrast this with

physically correctable regions, whose size is related to the pure distance. For LDPC

codes, the distance scales with the size, while the pure distance is constant. For

example, the pure distance of the toric code is 4 independent of lattice size, while

the distance is exactly the linear lattice size. The conditions are also more natural

for QEC, since error correction is not concerned with logically trivial (gauge) errors.

It is not hard to see that correctability is a necessary requirement for the logical

channel to be identifiable from syndrome data. If the underlying physical channel

P is not correctable, then there exist two independent sources of errors with the
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same syndrome which are not logically equivalent. In this case, one could trade

off the corresponding error rate, changing the logical channel, without altering the

syndrome statistics. Our main result in this section is that this is, in fact, the only

condition necessary for identifiability of the logical channel. This complements the

analogous result (Theorem 22) for the physical channel.

Theorem 25 (Identifiability of logical channels). The logical channel PL induced by

a channel P : A → [0, 1] can be estimated from the syndrome measurements of a code

if and only if the channel P is correctable in the sense of Definition 24.

Again, we only give a rough sketch of the most important points of the proof.

Details are provided in [Wag+22b].

Proof sketch of Theorem 25. As explained above, the logical channel is identifiable

if the rows of DL are linearly dependent on the rows of DM . Since M ⊆ L ,

DM is a sub-matrix of DL and thus it suffices to show rank(DM ) = rank(DL ).

Similarly to the proof of Theorem 22, we reduce the problem to global properties of

the group of measurements and the group of logical operators by considering the

matrices DT
M
DM and DT

L
DL . Ultimately, to show that rank(DM ) = rank(DL ), we

need to compare the number of logical operators and the number of measurements

supported in any given correctable region. We do this by using the cleaning lemma

of QEC. This lemma states that for a stabilizer code, the stabilizer group and the

group of logical operators look identical on any correctable region [Bra+13]. A

substantially generalized version of the cleaning lemma was recently developed

[KS22], which we employ to obtain the analogous result for the abstract groups of

measurements and the logical operators we consider. Since the structure of these

groups are the same on any correctable region, the number of logical operators

or measurements supported in any given correctable region only differs by global

constants. From this, we can prove the required rank equality.

6.3 Concrete Estimation

So far, we have mainly discussed the question of identifiability, and focused on the

infinite sample limit where the expectation values of the measurements are known

exactly. However, the results presented in the previous sections can also be cast into

a concrete estimator. We now describe this estimator, and consider its accuracy for a

finite amount of data.
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6.3.1 Summary of the Estimation Algorithm

In Section 6.2, we developed the system of equations (6.15), which relates the mea-

sured expectations to the canonical moments describing the channel. By replacing

the exact expectations with empirical expectations in this system, we obtain an

estimator for the channel. Explicitly, estimation consists of the following steps:

1. Perform m syndrome measurements and use them to compute an empirical

estimate ÊM of the expectations EM = (E(s))s∈M .

2. Insert the empirical expectations into Eq. (6.15), and solve the resulting system

of equations for an estimate F̂ of the canonical moments.

3. Insert the estimate F̂ into Eq. (6.11) to obtain an estimate Ê of the moments.

4. Perform the inverse Fourier transform to obtain an estimate P̂ of the error

distribution.

In statistical terms, this is an instance of the method of moments, see e.g. [JC11]. We

express the quantities we want to estimate in terms of the exact moments, and then

insert an empirical estimate for these moments.

One issue is that the system (6.15) will generally be over-determined. Since there

is some error in the empirical expectation values ÊM , inserting them in place of the

exact expectations EM can results in a system that does not have an exact solution.

However, we can still compute a least-squares solution as

F̂ = argminF

1

2
‖ÊM − FD‖2

2 . (6.22)

Usually, this is done using some variant of gradient descent, which requires a choice

of initialization. Fortunately, a good initialization can be easily obtained in our

setting: since the system of equations (6.15) is linear after taking logarithms, we

can start by computing the least-squares estimate of ln(F̂ ). This can be done e.g.

via the pseudo-inverse of the coefficient matrix D, or one of several numerically

stable alternatives. While exponentiating this solution does not result in the actual

least-squares estimate of F̂ , it is generally close. Thus, we can use this as a good

initialization for the minimization (6.22).

Another consideration is that the system (6.15) generally contains an exponential

number of equations. For example, for a stabilizer code with r stabilizer generators,

there are 2r equations. However, it is not necessary to consider all of these. We can

simply select a number of equations proportional to the number of parameters in

the noise model, as long as we are careful to preserve the rank of the coefficient

matrix D. For example, for the toric code with independent single-qubit noise,
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three equations per qubit suffice (Section 6.1). Furthermore, for the toric code,

these equations can be selected by considering local regions of the code. For any

given qubit, only neighboring measurements need to be considered. Thus, the

error rates for each qubit can be estimated separately, each from a small system of

equations. We expect that such an estimator based on local regions also works for

other topological codes.

For the case of independent single-qubit errors, an implementation of the estimator

described in this section is available on Github [Wag]. Furthermore, we sketch in

Appendix A.1 how this estimation scheme can be used to calibrate minimum-weight

decoders for arbitrary stabilizer codes.

6.3.2 Sample Complexity Bound

Next, we want to assess the amount of syndrome measurements we need in order

to achieve good estimates of the channel. More precisely, we want to compute

the sample complexity of our estimator. This is the required amount of samples to

achieve, with a high probability of 1 − δ, a low error of at most ǫ in the estimate. In

this section, we give a rigorous bound on the sample complexity of the estimator

described in Section 6.3.1. We only consider the setting of independent single-qubit

Pauli noise, where the canonical and the regular moments coincide.

We consider a code (or a local region of a code) with n qubits, and denote as

M ⊆ P
n the subset of all measurements that we use for estimation. Since we might

not use all measurements of the code, M is not necessarily a group. We denote the

number of measurements we use in each round as k = |M |.
For independent single-qubit Pauli errors, the noise is fully described by 4 error

rates per qubit. While one of these error rates is technically redundant, we include

it for mathematical convenience when using the Fourier transform. We denote the

vector of all error rates as P , and use Pi for the marginal distribution of errors on

the i-th qubit. Fourier transforming separately on each qubit yields 4 moments per

qubit, which also coincide with the canonical moments. We collect these into a

parameter vector θ, containing four entries per qubit. The actual noise is described

by a parameter vector θ∗. The existence of a “true” parameter vector θ∗ is of course

an idealized assumption, and does not account for a possible “model mismatch”.

For each measurement s ∈ M there is one expectation value E(s), and we use

y = (E(s))s∈M to denote the vector of these expectations. The expectations under

the actual error distribution are denoted as y∗. By measuring a set of m syndromes,

we obtain an empirical estimate ŷ of y∗.

Finally, we will assume that the moments are all bounded from below by some

constant β > 0, in particular y∗[s] > β for all s ∈ M , and also θ∗ > β element-wise.
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This corresponds to an upper bound on the error rates. We discuss this condition in

more detail later.

The actual expectations and parameters are related by the system of equations

(6.15), which in the current notation reads

y∗ = g(θ∗) := (θ∗)D . (6.23)

As described in Section 6.3.1, we obtain an estimate θ̂ of the parameters by a

least-squares minimization,

θ̂ = argminθ∈D
1

2
‖ŷ − g(θ)‖2

2 , (6.24)

where we only need to optimize over the domain

D = {θ ∈ R4n : β ≤ θi ≤ 1 ∀i ∈ [4n]} , (6.25)

because we assumed a lower bound β on the moments.

We are interested in bounding the error in θ̂ as a function of the number of samples

m. We start by bounding the error in the empirical estimate ŷ, using the Hoeffding’s

bound [Hoe63]. Since the outcome of each measurement is ±1, the Hoeffding bound

states that, for each s ∈ M , the probability that the empirical expectation deviates

more than ǫ from the actual expectation y∗ is bounded as

P (|ŷ[s] − y∗[s]| > ǫ) < 2 exp

(
−mǫ2

2

)
. (6.26)

Combining this with a standard union bound over all of the k measurements s ∈ M ,

we obtain that

P (‖ŷ − y∗‖∞ > ǫ) < 2k exp

(
−mǫ2

2

)
. (6.27)

In other words, to guarantee that the error ‖ŷ−y∗‖∞ is smaller than ǫwith probability

at least 1 − δ, we need at least

m ≥ 2

ǫ2
ln

(
2k

δ

)
(6.28)

samples. Since ‖ŷ−y∗‖2 ≤
√
k‖ŷ−y∗‖∞, the required number of samples to control

the 2-norm error is instead

m ≥ 2k

ǫ2
ln

(
2k

δ

)
. (6.29)

We want to translate the bound on the error in y into a bound on the error in θ.

This requires analyzing the stability of the least-squares solution (6.24). A detailed
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analysis, based on basic tools from the pertubation theory of optimization problems

[BS00], can be found in Appendix A.2. The result is the following bound on the

error in θ.

Lemma 26. Assume that both y∗ ≥ β > 0 and θ∗ ≥ β element-wise, and that there

exists a lower bound 0 < β̃ ≤ β − 4‖y∗ − ŷ‖2. Then the error in θ is bounded by the

error in y as

‖θ̂ − θ∗‖2 ≤ 2

β̃2

σmax(D)

σ∗(D)2
‖ŷ − y∗‖2 . (6.30)

Here, σmax(D) denotes the maximal singular value of D, and σ∗(D) denotes the

minimal non-zero singular value of D.

While strictly speaking, this result assumes that D is full-rank, a similar bound

also holds if D is rank-deficient, provided we project onto the part of θ that can

still be uniquely estimated, which is the orthogonal complement of the kernel of

D. This is discussed in detail in Appendix A.2. Furthermore, note that the lower

bound β̃ can be related to the given lower bound β. For a given number of samples,

an estimate of ‖y∗ − ŷ‖2, and thus of β̃, can be obtained from Hoeffding’s bound

(6.26). If the number of samples is large, β̃ ≈ β.

Combining Lemma 26 with Eq. (6.29), we see that the we can obtain an error

‖θ̂ − θ∗‖2 < ǫ with probability at least 1 − δ using

m ≥ 8k

β̃4ǫ2
σmax(D)2

σ∗(D)4
ln

(
2k

δ

)
(6.31)

samples.

Let us consider a scheme where we estimate the error rates of each qubit i

separately from a local region, with measurements Mi and coefficient matrix Di.

In each region, the coefficient matrix is not full rank, but we assume that the

parameters of qubit i can be uniquely determined from region i (see also the

discussion in Appendix A.2). In this case we can apply Eq. (6.31) individually for

the parameters of each qubit. Since the inverse Fourier transform is proportional

to an isometry, we furthermore have ‖P̂i − P ∗
i ‖2 = 1

2‖θ̂i − θ∗
i ‖2, where θi is the

4-component vector of moments for the i-th qubit. Furthermore, standard norm

inequalities give ‖P̂i − P ∗
i ‖1 ≤ 2‖P̂i − P ∗

i ‖2. To bound the probability of the error

being at most ǫ in all regions simultaneously, we can again use a union bound. All in

all, this yields the following result:

Lemma 27. Assume that both y∗ ≥ β > 0 and θ∗ ≥ β element-wise, and that there

exists a lower bound 0 < β̃ ≤ β − 4‖y∗ − ŷ‖2. For independent single-qubit noise, we
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can estimate the marginal error distribution Pi of each qubit i simultaneously with

error ‖P̂i − P ∗
i ‖1 < ǫ with probability 1 − δ from

m ≥ 8k

β̃4ǫ2
σ2

max

σ4
∗

ln

(
2kn

δ

)
(6.32)

syndrome measurements, where k = maxi∈[n]|Mi|, σmax = maxi∈[n] σmax(Di) and

σ∗ = mini∈[n] σ∗(Di).

We see that our algorithm exhibits the essentially optimal scaling O
(

1
ǫ2 log(1

δ
)
)

for estimation with additive error. A proof that this scaling is optimal can e.g. be

found in [AB99b, Lemma 5.1], where it is shown that estimating the bias of a coin

requires at least this many samples, and estimating the bias of a coin can be seen as

a special case of learning Pauli error rates.

The constants in this bound, however, merit some discussion. Notably, the sample

complexity depends on a lower bound β on the relevant moments. This is similar to

the situation in randomized benchmarking for Pauli channels, discussed by Flammia

and Wallman [FW20]. (In their work, the moments are called Pauli fidelities.) If

we assume that the error rate on each qubit is lower bounded as Pi(I) > 1
2 + γ

2 ,

the moments of each qubit are bounded from below by γ. Then, if the errors

between qubits are indeed independent, the moment of a measurement with weight

w scales as γw. Thus, in principle β could scale exponentially in the size of the code.

However, as long as estimation is possible from stabilizers with constant weight, γw

is lower bounded by a constant and does not influence the scaling of the sample

complexity. This is in particular the case if the estimation is possible from regions

of bounded size, which we expect for topological codes. Still, in practice, it will

be advantageous to find a system of equations for each region containing mostly

low-weight measurements.

We further note that the bound given in Lemma 27 is similar to the sample

complexity bound derived for the problem of factor graph learning by Abbeel

et al. [AKN06]. This is not surprising, since we have seen that the estimation

problem we consider is closely related to factor graphs. However, a fundamental

difference is that we consider a convolutional factor graph, not a product factor

graph. This introduces additional complications that are not present in [AKN06]. In

particular, we have to consider how errors propagate through the Fourier transform.

This is relatively easy for independent single-qubit noise, where we can Fourier

transform on each qubit separately, and furthermore canonical and regular moments

coincide. For more complicated noise models, a more detailed analysis of the

interplay between the canonical factorization and the Fourier transform will be

required. In particular, the factorization into canonical moments does not directly

correspond to a factorization into a convolution of probability distributions, since
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naively Fourier transforming individual canonical moments does not result in positive

distributions. Thus, we first have to compute the regular moments, which can

introduce additional error since the Möbius inversion might be ill-conditioned. A

different perspective on the same problem is that the canonical moments are in

principle unbounded, which complicates the error analysis and sample complexity

bounds. Another fundamental difference to [AKN06] is that we cannot measure our

variables directly, and instead only have access to the syndrome measurements. This

manifests as a term
σ2

max

σ4
∗

in our bound (6.32), which is related to the conditioning

of the coefficient matrix. Nevertheless, the strong analogy to factor graph learning

suggests that estimating correlated Pauli noise will likely require an amount of

samples that scales exponentially in the “correlation length”, i.e. in the size of the

largest factor. It furthermore provides an avenue to bound the error also in case of

model mismatch, since it might be possible to transfer bounds from [AKN06] to our

setting.

Finally, while the bound in Lemma 27 tells us which features need to be considered

when designing an estimator or coefficient matrix in practice, no attempt was made

to optimize the constants. It is possible that these could be further improved with a

more detailed analysis.

6.3.3 Simulations

To understand if an advantage in decoding accuracy can be gained from the estima-

tion of error channels using syndrome data, we now present some first simulations

in a simple setting. More details about the procedures and simulation parameters

can be found in Appendix A.3.

We consider a surface code with 2 rough and 2 smooth boundaries encoding 1

logical qubit, as illustrated in Figure 6.2. We subject this code to phenomenological

single-qubit Pauli noise, with possibly different Pauli error rates on each qubit. To

model the variation between qubits, we use random T1- and T2-coherence times,

with distributions roughly based on the data provided by Tannu and Qureshi [TQ19]

for the IBM-Q20. We convert these T1- and T2-times into Pauli channels via the

Pauli-twirl approximation for an amplitude-phase damping channel [Etx+21].

Our goal is to examine the effect of error rate information on the logical error rate

of a decoder. To achieve this, we perform simulations that consist of the following

steps. We first draw a random Pauli channel for each qubit, as described above.

We then sample a dataset of 104 syndromes by randomly sampling Pauli errors and

computing their syndromes. From this, we obtain an estimate of the error rate of

each qubit using a least-squares estimator as described in Section 6.3.1, with some

slight improvements described in Appendix A.3. The estimated error rates are used
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Conclusion 7
„There is room for words on subjects, other than

last words.

— Robert Nozick

Efficient device characterization is of fundamental importance for quantum com-

putation. It is needed both to verify the correct working of a device, as well as for the

calibration of its components. Detailed characterization of noise can be very helpful

for QEC in particular, since both codes and decoders can be tailored accordingly.

In this thesis, we have considered the estimation of quantum noise from the

syndrome measurements of a QEC code. From a characterization perspective, this

efficiently uses already available data to obtain additional information about a device.

From a QEC perspective, it is interesting to exploit information contained in the

syndromes that is neglected in standard correction schemes. A possible application

is the calibration of decoders without destructive measurements, perhaps even in

the presence of time-varying noise.

Previous approaches to this estimation problem [Fow+14; HL17; Woo20; FB16;

Fuj14a; Com+14; Spi+18] suffer from a lack of theoretical underpinning, limited

applicability, and are often intractable for general codes and noise. We provide a

stronger foundation for such schemes by developing a comprehensive theoretical

framework for this estimation task. In particular, we precisely describe under which

conditions syndrome data is sufficient to characterize the noise. Our framework

encompasses both exact estimation of the physical channel, as well as estimation

up to logical equivalence. The main result, given in Theorem 22 and Theorem 25,

is that a channel is identifiable as long as it is correctable by the code. Thus, at

least for phenomenological noise models, the situation is as good as one could

reasonably hope. We complement these fundamental results with an efficient

estimation algorithm. In contrast to many previous approaches, our algorithm

neither relies on the assumption of vanishing error rates, nor does it require dealing

with intractable likelihood-functions. Instead, it is based on a Fourier approach

which greatly simplifies the estimation problem.

We hope that the theory we developed in this thesis can serve as a fundamental

framework for further research. Naturally, there remain many interesting questions

to be explored. First of all, our rigorous results were derived only for phenomeno-
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logical noise models. While this might be a reasonable approximation for quantum

communication or storage scenarios, other scenarios require the study of more real-

istic noise models. Of particular importance are the more fine-grained circuit-noise

models used in the analysis of fault-tolerance. These introduce additional complica-

tions that are not readily dealt with in our framework. In particular, one has to take

into account that the measurement circuits themselves introduce additional errors,

and some of these occur to late to be reliably detected. Perhaps a treatment of such

late errors following the analysis of Delfosse et al. [DRS22] might prove fruitful.

One could also attempt to transfer our results via a mapping from circuit-noise

to effective phenomenologial noise on an enlarged code, such as the ones given

by Pryadko [Pry20] or Chubb and Flammia [CF21]. We note, however, that most

decoders also do not take into account all the details of a full circuit-level model. The

most common approximation is to use a decoding graph, and for these our methods

straightforwardly apply (Appendix A.1). Ultimately, we expect that the applicability

of our framework is coupled to the applicability of decoders, and the development

of decoders using more fine-grained approximations will naturally yield new noise

estimation schemes within these approximations. Whether a full circuit-level model

can be estimated from syndrome data remains an interesting open question. In a

similar vein, it would also be interesting to consider the estimation of more general

quantum channels, beyond stochastic Pauli noise.

Within our existing framework, there are also several possible research directions.

Our estimator is essentially based on convolutional factor graph learning [MK05;

MKF04], which is currently not well understood. In particular, it would be fruit-

ful to better characterize the interplay between the two main components of our

framework, which are the canonical factorization and the Fourier transform. Naively

Fourier transforming the canonical moments does not yield valid probability distri-

butions, which means the canonical moments do not correspond to a factorization

of the original distribution as a convolution. This complicates e.g. the analysis of

error bounds, see also the discussion in Section 6.3.2. It would be interesting to

develop methods that avoid this issue, or an improved canonical factorization into a

proper convolution of probability distributions.

In conclusion, we hope that our results highlight the potential of using syndrome

data for characterization, and provide a basis for the development of new approaches

to both characterization and QEC.
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Glossary

QEC quantum error correction

PGM probabilistic graphical model

BP belief-propagation

EM expectation-maximization

HEM hard-assignment expectation-maximization

MSE mean-squared error

CRB Cramér-Rao bound

poset partially ordered set
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Appendix A
A.1 Example: Estimating Edge Weights for General

Matching Decoders

In Chapter 6, we have developed a very general theory for the estimation of error

rates from syndrome statistics of error correction codes. We now give another

example, which is of practical relevance. It is a very direct generalization of the toric

code case described in Section 6.1.

For the toric or surface code, each error affects at most two syndrome bits. Thus,

the toric admits a standard minimum-weight matching decoder. For this setting,

Spitz et al. [Spi+18] already give an explicit formula to estimate the weights of

the edges from the syndrome statistics. However, for most codes, single errors

affect more than two syndrome bits. In this case, one can consider a more general

matching decoder, replacing the edges in the decoding graph with hyperedges. We

now give a way to estimate these hyperedge weights from syndrome data. This

problem was considered in the context of decoder calibration in [Che+22], but only

approximate solutions were given. To the best of our knowledge, so far no exact

solution for this case has been derived in the literature.

Explicitly, a general matching decoder computes a maximum-likelihood decoding

by considering a simplified error model represented by a hypergraph. For examples

of ordinary matching decoders see e.g. [Hig21; WFH11; HB21], and for a hypergraph

version [Che+22]. Hyperedges represent sets of errors with the same syndrome, and

have a weight that corresponds to the probability that an error from this set occurs.

Vertices represents bits of the measured syndrome, and an error on an hyperedge

flips all vertices contained in the hyperedge. Errors on different hyperedges are

assumed to be independent. Usually, the weight of each hyperedge is obtained by

summing over many fault mechanisms with the same syndrome, using the simplifying

assumption that all these fault mechanisms are independent. We consider the case

where the underlying noise model is unknown and want to instead estimate the

weight of each edge from syndrome data.

To simplify notation, we map this problem on a classical error correction code

with n bits. Each hyperedge corresponds to one bit, and each vertex is a parity-check

acting on the bits associated with the incident hyperedges. We denote the set of
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vertices as H, since it corresponds to a set of parity-checks generating the dual code.

We can now apply the general estimator from Section 6.3.1, in this case to a classical

code. Because we only have single-bit errors, the regular and the canonical moments

coincide.

More explicitly, for each bit i, we introduce a random variables Zi, where Zi = +1

if no error is present on bit i and Zi = −1 if there is an error. Because errors are

independent, we see that the expectation of a measurement s is given by

E(s) =
∏

i∈supp(s)

E(Zi) . (A.1)

Note that this holds for all elements of the dual code, not just for the generators.

This is a specific instance of the general system (6.13).

For this instance, we can give an explicit solution which directly generalized the

solution for the toric code. We construct this solution in terms of the set H of

parity-checks, which generates the dual code. Any subset A ⊆ H defines an element

sA =
∏

g∈A g of the dual code, i.e. a measurement. For a bit i, we denote with N (i)

the set of parity-check generators acting on it,

N (i) = {g ∈ H : gi 6= I} . (A.2)

Equivalently, we can view this as the syndrome of an error on bit i. The core of our

solution is the following lemma.

Lemma 28. For any subset A ⊆ H we have

∏

B⊆A

E(sB)(−1)|B|+1
=

∏

i:A⊆N (i)

E(Zi)
2|A|−1

, (A.3)

Proof. By inserting Eq. (A.1) we obtain

∏

B⊆A

E(sB)(−1)|B|
=
∏

B⊆A

∏

i∈supp(sB)

E(Zi)
(−1)|B|

=
∏

i∈[n]

∏

B⊆A : i∈supp(sB)

E(Zi)
(−1)|B|

=
∏

i∈[n]

E(Zi)

∑
B⊆A : i∈supp(sB)

(−1)|B|

.

For a given i, we can split A into the two disjoint sets Ai = A∩N (i) and Ac
i = A\Ai.

Then, we obtain

∑

B⊆A : i∈supp(sB)

(−1)|B| =
∑

B′⊆Ai : |B′| is odd

(−1)|B|′
∑

C′⊆Ac
i

(−1)|C|′ = −2|Ai|−1
∑

C′⊆Ac
i

(−1)|C|′ .

(A.4)
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Here, the first equality follows because i ∈ N (sB) only if B contains an odd number

of elements from Ai, and the last equality follows by counting the number of odd

subsets of Ai. The remaining sum can be evaluated by splitting the terms by weight,

∑

C′⊆Ac
i

(−1)|C|′ =

|Ac
i |∑

w=0

(−1)w

(
|Ac

i |
w

)
= [|Ac

i | = 0] = [A = Ai] = [A ⊆ N (i)] , (A.5)

where the second equality is a well known property of binomial coefficients and

the last steps are by definition of Ai and Ac
i . Inserting this back into the previous

equations proves the lemma.

The right hand side of Eq. (A.3) is a product over all single-bit errors whose

syndrome includes the given syndrome A. The left hand side is the product of odd

subsets of A divided by the product of even subsets of A. If the right hand side only

contains one term, i.e. there is only one single-bit error whose syndrome includes

A, we directly obtain an equation for this expectation value. If the right hand side

contains multiple terms, we first compute all of them except one, using the other

equations. Then, we solve for the remaining unknown. Thus, we can estimate the

expectations for all bits by repeating the following steps, assuming that the code has

at least distance 3:

1. Find a bit whose neighborhood is not contained in that of any bit whose

expectation value has not yet been calculated. This is always possible, since

otherwise there must exist two bits with the same neighborhood and thus with

the same syndrome, and the code has at most distance 2.

2. Solve for the expectation of this bit using Eq. (A.3).

This is essentially a hierarchy of estimation steps: We start with bits which have

a large neighborhood, and work our way down to bits with small neighborhoods.

The estimation algorithm proposed by Spitz et al. [Spi+18] is a special case of this

method, for the situation where every neighborhood is of size at most 2.

To give a simple example with larger neighborhoods, we can consider the well

known Steane code [Ste96] subject to only Pauli-X errors. This is not a circuit-noise

model, but illustrates the use of Eq. (A.3). The Tanner graph of this code is shown in

figure Figure A.1. It consists of 7 bits and 3 parity-check generators, labeled s1, s2, s3.

If errors on the bits are independent, we have the 7 equations:
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s1 Z6 s2

Z5

s3

Z3Z7

Z1

Z2Z4

Figure A.1.: A representation of the Steane code with one type of errors. The circles
correspond to bits, and the rectangles to parity-checks.

E(s1) = E(Z4)E(Z5)E(Z7)E(Z7)

E(s2) = E(Z2)E(Z3)E(Z6)E(Z7)

E(s3) = E(Z1)E(Z3)E(Z5)E(Z6)

E(s1s2) = E(Z2)E(Z3)E(Z4)E(Z5)

E(s1s3) = E(Z1)E(Z3)E(Z4)E(Z6)

E(s2s3) = E(Z1)E(Z2)E(Z5)E(Z6)

E(s1s2s3) = E(Z1)E(Z2)E(Z4)E(Z7) .

We see that Z7 has the largest syndrome, as it neighbors all 3 generators. We can

explicitly calculate

E(Z4)4 =
E(s1)E(s2)E(s3)E(s1s3s3)

E(s1s2)E(s1s3)E(s2s3)
, (A.6)

which is one instance of Eq. (A.3). Next, we can calculate E(Z3), E(Z5) and E(Z6)

using the result for E(Z4). For example,

E(Z3)2E(Z4)2 =
E(s2)E(s3)

E(s2s3)
. (A.7)

Finally, we can compute the remaining expectations E(Z1), E(Z2) and E(Z4) using

all previous results.
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A.2 Error Propagation

Here, we consider error propagation in the least-squares estimator of Section 6.3.2

and give a proof of Lemma 26. For ease of exposition, we first derive error bounds

under the assumption that the coefficient matrix D is full rank. We then explain how

the arguments can be adapted if D is rank-deficient. Let us quickly mention some

notation: Scalar functions applied to vectors are always to be read element-wise,

and similarly for comparisons between vectors: a > b if ai > bi for all i.

A.2.1 Full Rank Coefficient Matrix

We start by introducing the log-space variables x := ln(θ). In these variables, the

function g(θ) = θD corresponds to f(x) = exp(Dx). For any y ∈ Rk, we can consider

the cost function

Fy =
1

2
‖f(x) − y‖2

2 . (A.8)

As in Section 6.3.2, we denote as y∗ the vector of ideal expectations of the mea-

surements under the actual error distribution, and as ŷ the vector of empirically

measured expectations. Thus, the ideal cost function is Fy∗ , and the cost function

we actually optimize is Fŷ. Since we assume that D has full rank, Fy has a unique

minimizer for any y ∈ Rk. We denote the minimizer of Fy∗ as x∗, and the minimizer

of Fŷ as x̂. Since y∗ corresponds to the ideal equation system, we assume that it

has an exact solution fulfilling f(x∗) = y∗. However, the perturbed system might

not have a solution, and thus f(x̂) 6= ŷ in general. Our goal is to bound the error

‖x̂− x∗‖2 in terms of the error ‖ŷ − y∗‖2. To do this, we will view Fŷ as a perturbed

version of Fy∗ and apply [BS00][Proposition 4.32]. In our setting, the proposition

can be stated as follows.

Lemma 29. Assume the following two conditions are fulfilled:

• There exists a neighborhood N of x∗ and a growth constant α > 0, such that for

all x ∈ N the following second order growth condition holds,

Fy∗(x) ≥ Fy∗(x∗) + α‖x− x∗‖2
2 . (A.9)

• The difference function G = Fŷ − Fy∗ is Lipschitz continous on N with Lipschitz

constant κ.

Then, we have the following error bound for the minimizers x̂ and x∗ of Fŷ and Fy∗ ,

‖x̂− x∗‖2 ≤ κ

α
. (A.10)
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For simplicity we make the somewhat idealized assumption that x̂ minimizes the

cost function excactly, but similar bounds can be derived if x̂ is only an approximate

minimizer [BS00][Proposition 4.32].

To apply Lemma 29, we need to find a suitable neighborhood N and compute

the corresponding growth constant α and the Lipschitz constant κ. Since second

order growth and Lipschitz continuity are related to second and first derivatives

respectively, we first compute all relevant derivatives:

∂fk

∂xi
(x) = Dk,ifk(x) , (A.11)

∂2fk

∂xi∂xj
= Dk,iDk,jfk(x) , (A.12)

∂Fy

∂xi
=
∑

k

(fk(x) − yk)Dk,ifk(x) , (A.13)

∂2Fy

∂xi∂xj
=
∑

k

Dk,iDk,jfk(x)(2fk(x) − yk) . (A.14)

For any vector a ∈ Rn, we introduce the notation a for the n× n matrix with a on

the diagonal and 0 everywhere else. With this notation, we can express the Jacobian

Jx at x and the Hessian Hx at x of the functions more concisely as

Jxf = f(x)D , (A.15)

JxFy = (f(x) − y)T f(x)D , (A.16)

HxFy = DTAy(x)D , (A.17)

where we defined

Ay(x) := f(x)(2f(x) − y) . (A.18)

In particular, note that HxFy is positive-definite if Ay(x) is positive-definite.

Remember from Section 6.3.2 that we assume a lower bound β on all moments,

meaning that y∗ ≥ β and x∗ ≥ ln(β). In particular, it suffices to optimize over the

domain

D = {x ∈ R4n : ln(β) ≤ x ≤ 0)}. (A.19)

We also assume that the error in y∗ is not too large compared to y∗,

‖ŷ − y∗‖2 ≤ β

4
. (A.20)
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We now choose an appropriate region N for Lemma 29. With τ := ‖f(x̂) − y∗‖2,

we define

N := {x ∈ D : ‖f(x) − y∗‖2 ≤ τ} = {x ∈ D : Fy∗(x) ≤ 2τ2} . (A.21)

By definition, N must contain both x∗ and x̂.

Let us first show that N is a convex set. We can bound τ by a simple triangle

inequality,

τ = ‖f(x̂) − y∗‖2 ≤ ‖f(x̂) − ŷ‖2 + ‖ŷ − y∗‖2 . (A.22)

Furthermore, since x̂ minimizes Fŷ, we have

‖f(x̂) − ŷ‖2 ≤ ‖f(x∗) − ŷ‖2 = ‖y∗ − ŷ‖2 . (A.23)

This yields

τ ≤ 2‖ŷ − y∗‖ . (A.24)

By the bounded error assumption Eq. (A.20) and the lower bound y∗ ≥ β, we get

τ ≤ β
2 ≤ mini y∗

i

2 . In particular, f(x) ≥ y∗

2 element-wise for all x ∈ N . Then, the

matrix Ay∗(x) defined in Eq. (A.18) is positive-definite on N , and it follows that

HxFy∗ is also positive-definite on N . Thus Fy∗ is convex on N . On the other hand,

since N = {x ∈ D : Fy∗(x) ≤ 2τ2}, we see that N is a level-set of a convex function

and thus itself convex.

Now, we can calculate the growth constant. We have already seen above that Fy∗

is convex on N . To obtain a lower bound on the growth constant, we need to lower

bound the Hessian, i.e. show strong convexity. We use the following well-known

fact:

Lemma 30. Let g : Rn ⊇ U → R be a function on an open convex set U . If Hxg ≥ cI

for all x ∈ U , and the gradient of g vanishes at x0 ∈ U , then

g(x) ≥ g(x0) +
c

2
‖x− x0‖2

2 . (A.25)

Note that the fact that N is closed, and not open, is not a problem, since it is a ball

and thus we can consider its interior and extend the inequality to the boundary by

continuity. Consequently, the growth constant α is bounded by 1
2 times the smallest

eigenvalue of HxFy∗ on N . From Eq. (A.17), and since Ay∗ is positive-definite

on N , the smallest eigenvalue of HxFy∗(x) is the smallest squared singular value

σ2
min(

√
Ay∗(x)D) of

√
Ay∗(x)D. By the properties of singular values, we can bound

this as

σ2
min(

√
Ay∗(x)D) ≥ σ2

min(
√
Ay∗(x))σ2

min(D) . (A.26)
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Furthermore, by the definition Eq. (A.18) of Ay∗(x),

σ2
min(

√
Ay∗(x)) ≥ min

x∈N
min

i
(2fi(x) − y∗

i )fi(x) . (A.27)

By the definitions Eq. (A.21) of N and Eq. (A.22) of τ , we have fi(x) ≥ y∗
i − τ . Thus

min
x∈N

min
i

(2fi(x) − y∗
i )fi(x)

≥ min
i

(2(y∗
i − τ) − y∗

i )(y∗
i − τ)

= min
i

(y∗
i − 2τ)(y∗

i − τ) ≥ min
i

(y∗
i − 2τ)2 ≥ (β − 2τ)2 ≥ (β − 4‖ŷ − y∗‖2)2 ,

(A.28)

where the last inequality is due to Eq. (A.24). All in all, we obtain the bound

α ≥ (β − 4‖ŷ − y∗‖2)2σ2
min(D)

2
. (A.29)

It remains to bound the Lipschitz constant κ of the difference functionG = Fŷ−Fy∗

on the region N . From Eq. (A.16) we immediately obtain,

JxG = (y∗ − ŷ)T (f(x)D) . (A.30)

Since N is convex, the Lipschitz constant κ of G on N is bounded by the maximal

operator norm of JxG,

κ ≤ max
x∈N

‖JxG‖2 ≤ max
x∈N

‖f(x)‖2‖D‖2‖(y∗ − ŷ)T ‖2 , (A.31)

where we used that the operator norm is sub-multiplicative. The operator norm of

D is its largest singular value σmax(D). Furthermore,

‖f(x)‖2 = maxi|fi(x)| ≤ 1 , (A.32)

where we used the fact that x ≤ 0. For simplicity we use a relatively crude bound

here, but one might be able to improve it slightly by exploiting the definition of N .

Finally, the operator norm of (y∗ − ŷ)T is simply the 2-norm of (y∗ − ŷ). All in all we

obtain,

κ ≤ σmax(D)‖y∗ − ŷ‖2 . (A.33)

Inserting the bounds Eq. (A.29) and Eq. (A.33) into Lemma 29 yields,
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Lemma 31. For β ≤ y∗ ≤ 0 and ln(β) ≤ x∗ ≤ 0, and assuming ‖ŷ − y∗‖2 ≤ β
4 , the

error ‖x̂− x∗‖2 in the minimizers x̂ and x∗ of Fŷ and Fy∗ is bounded as

‖x̂− x∗‖2 ≤ 2

(β − 4‖ŷ − y∗‖2)2

σmax(D)

σmin(D)2
‖ŷ − y∗‖2 . (A.34)

To convert this into a bound on the error in θ = ex, note that since x < 0, we

have θ = ex < 1. Viewing θ as a function of x, we can bound the corresponding

Lipschitz constant by ‖Jxθ‖2 = ‖θ(x)‖2 ≤ 1, where we used that the operator norm

of a diagonal matrix is the absolute value of its largest entry. Thus,

‖θ̂ − θ∗‖2 ≤ ‖x̂− x∗‖2 . (A.35)

If we furthermore assume some absolute lower bound β̃ ≤ β − 4‖ŷ − y∗‖, we obtain

the following lemma:

Lemma 32. Let β > 0, y∗ be a vector with β ≤ y∗
i ≤ 1, and D a coefficient matrix

with entries 1 and 0 and full rank. Assume that the ideal minimization problem,

θ∗ = argminθ : β≤θi≤1‖y∗ − θD‖2 , (A.36)

has an exact solution θ∗ fulfilling y∗ = (θ∗)D. Let 0 < β̃ ≤ β and ŷ be a vector fulfilling

0 < β̃ ≤ β − 4‖ŷ − y∗‖2. Then the solution θ̂ of the perturbed minimization problem,

θ̂ = argminθ : β≤θi≤1‖ŷ − θD‖2 , (A.37)

fulfills

‖θ̂ − θ∗‖2 ≤ 2

β̃2

σmax(D)

σmin(D)2
‖ŷ − y∗‖2 . (A.38)

A.2.2 Rank Deficient Coefficient Matrix

As explained in Section 6.3.1, one might want to consider small regions of a code

at a time, and only estimate some parameters in each region. For example, for

independent single qubit noise one could estimate the channel for each qubit sepa-

rately by considering only neighboring measurements and qubits. In this case, the

coefficient matrix D for a given region is not full rank, but we are only interested

in estimating some of the parameters in this region. The remaining parameters

might not be uniquely determined from the measurements of this region, and are

instead estimated separately. We will call the first kind of parameters the “estimable

parameters” of a region, and the second kind the “non-estimable parameters” of

a region. When computing the least-squares solution, we still need to optimize

over the non-estimable parameters to obtain a proper solution for the estimable
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parameters, but we discard the non-estimable parameters after the optimization

is finished. As before, we want to bound the error in our estimate by the error in

the measured expectations, but this time we only need to consider the error in the

estimable parameters.

From now on, we consider a fixed region with coefficient matrix D. Formally, the

estimable parameters correspond to standard basis vectors in ker(D)⊥, while the

non-estimable parameters correspond to all remaining standard basis vectors. Our

method is to first obtain any solution for the full parameter vector of a region, and

then project onto the estimable parameters. Therefore, we start by bounding the

error in the full parameter vector. As in the previous section, our estimate x̂ of the

log-space parameters x = ln(θ) is obtained as the minimizer of the cost function

Fŷ(x) =
1

2
‖f(x) − ŷ‖2

2 , (A.39)

with f(x) = exp(Dx). We view this as an approximation to the ideal cost function

Fy∗ =
1

2
‖f(x) − y∗‖2

2 . (A.40)

In contrast to the previous section, this problem does not have a unique solution,

even for the ideal cost function defined by y∗. We denote the set of solutions of

the ideal problem as S∗. We still assume that the ideal system f(x) = y∗ admits

exact solutions, i.e. Fy∗(x∗) = 0 for all x∗ ∈ S∗. Similar to the ideal cost function,

the perturbed cost function Fŷ does not have a unique minimizer. We accept any

minimizer x̂ as a solution of the optimization problem. In this notation, our task is

to bound

dist(x̂, S∗) = min
x∗∈S∗

‖x̂− x∗‖2 . (A.41)

Fortunately, we can again use [BS00][Proposition 4.32], but in a slightly more

general version:

Lemma 33. Assume the following two conditions are fulfilled:

• There exists a neighborhood N of S∗ and a growth constant α > 0 such that for

all x ∈ N the following second order growth condition holds,

Fy∗(x) ≥ F ∗ + α dist(x, S∗)2 , (A.42)

where F ∗ is the minimal value of Fy∗ .

• The difference function G = Fŷ − Fy∗ is Lipschitz continous on N with Lipschitz

constant κ.
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Then, we have the following error bound for the minimizers x̂ and x∗ of Fŷ and Fy∗ ,

‖x̂− x∗‖2
2 ≤ κ

α
. (A.43)

As before, we define D = {x ∈ R : ln(β) ≤ x ≤ 0)}, τ := ‖f(x̂) − y∗‖2 and

N := {x ∈ D : Fy∗(x) ≤ 2τ2} . (A.44)

Again N is a convex set.

The calculation of the growth constant α is similar to the previous section, but

requires some conceptual modifications. Since we assume that the ideal problem

can be solved exactly, i.e. we have f(x∗) = y∗ for all x∗ ∈ S∗, the solution set S∗ is

an affine space parallel to ker(D). We can consider the projection operator ΠS∗ onto

S∗. Then, dist(x, S∗) = ‖x − ΠS∗(x)‖2 for any x ∈ N . Since the minimal value of

Fy∗ is 0, the second order growth condition can be written as

Fy∗(x) ≥ α‖x− ΠS∗(x)‖2
2 . (A.45)

For any x, we can define the normal vector h(x) := x−ΠS∗ (x)
‖x−ΠS∗ (x)‖2

. Since S∗ is an affine

space parallel to ker(D), it holds h(x) ⊥ ker(D). To show Eq. (A.45), it is sufficient

to show that the function

Fy∗(t) = Fy∗(ΠS∗(x) + h(x)t) , (A.46)

is strongly convex on the interval (0, ‖x − Πy∗(x)‖2) for any x ∈ N . Note that

derivatives of Fy∗(t) correspond to directional derivatives of Fy∗(x).

From the above discussion, we conclude that in order to show the second order

growth condition, it is sufficient to bound the second order directional derivatives of

Fy∗ in directions h orthogonal to ker(D). The second order directional derivative in

direction h is given by hTHxFy∗h, and we have (Eq. (A.17))

HxFy∗ = DTAy∗(x)D . (A.47)

As in the previous section, we assume the error bound ‖ŷ − y∗‖ ≤ β
4 , which implies

that Ay∗(x) is positive-definite for all x ∈ N . It follows that ker(HxFy∗) = ker(D),

independent of x. Thus, we have to bound the eigenvalues of hTHxFy∗h in directions

h ⊥ ker(HxFy∗). This corresponds to bounding the smallest non-zero eigenvalue,
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which is the square of the smallest non-zero singular value σ∗(
√
Ay∗(x)D), over

x ∈ N . Since σ∗(
√
Ay∗(x)D) ≥ σ∗(

√
Ay∗x)σ∗(D), we obtain

α ≥ σ2
∗(D) min

x∈N
σ2

min

√
Ay∗(x) , (A.48)

where we used the fact that Ay∗(x) is positive-definite to replace σ∗(·) with σmin(·).
The second term was already bounded in Eq. (A.28) in the previous section. This

concludes the calculation of the growth constant α.

The calculation of the Lipschitz constant κ is analogous to the previous section,

and we obtain the same result as before. Thus, all in all, we obtain the same bounds

on the error in the full parameter vector x as in the previous section, but replacing

the minimal singular value with the minimal non-zero singular value. Furthermore,

projecting onto the estimable part of x only decreases the error. We can propagate

the error in the estimable part of x through the exponential, as before, and obtain

a bound on the error in θ. Note that this last step uses the fact that the estimable

part is unique. For the full parameter vector, the exponential will distort the solution

manifold and the closest point in S∗ to a given point x might change after applying

the exponential. All in all, we obtain the following bound:

Lemma 34. Let β > 0, y∗ be a vector with β ≤ y∗ ≤ 1, and D a possibly rank-deficient

coefficient matrix with entries 1 and 0. Assume that the ideal minimization problem,

θ∗ = argminθ : β≤θi≤1‖y∗ − θD‖2 , (A.49)

has an exact solution set S∗ fulfilling y∗ = (θ∗)D for all θ∗ ∈ S∗. Let ŷ be a vector

fulfilling 0 < β̃ ≤ β − 4‖ŷ − y∗‖2. Then any solution θ̂ of the perturbed minimization

problem,

θ̂ = argminθ : 0<θi≤1‖ŷ − θD‖2 , (A.50)

fulfills

‖Πker(D)⊥(θ̂) − Πker(D)⊥(θ∗)‖2 ≤ 2

β̃2

σmax(D)

σ∗(D)2
‖ŷ − y∗‖2 , (A.51)

where Πker(D)⊥ is the projection onto ker(D)⊥.

A.3 Details of Simulations

In this appendix, we provide some more details about the simulations in Sec-

tion 6.3.3.

First, let us describe exactly the distribution of error rates that was used. The

procedure is based on [Etx+21]. For each qubit, times T1 and Tφ were drawn
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from Gaussian distributions truncated at 0. The means were set to µT1 = 80µs and

µTφ
= 57µs, and the standard deviations to σT1 = 35µs and σTφ

= 26µs. These

parameters were inspired by the distributions measured in [TQ19]. From T1 and Tφ,

we calculate a T2 time via
1

T2
=

1

2T1
+

1

Tφ

. (A.52)

Then, the twirled Pauli-channel was computed, with error rates

pI = 1 − pX − pZ − pY ,

pX = pY =
1

4

(
1 − exp(− t

T1
)

)
,

pZ =
1

4

(
1 + exp(− t

T1
− 2 exp(− t

T2
))

)
.

Here, we set t = 5µs.

The estimation procedure is based on the method of moments estimator described

in Section 6.3.1. The theory of the generalized method of moments [JC11] however

suggests a slight improvement, which we describe in the following.

We use the same notation as Appendix A.2: θ denotes the vector of parameters,

i.e. the 3 moments per qubit in a region, y denotes the moments of the stabilizers

in a region, and g(θ) = θD with the coefficient matrix D. We use a hat for the

empirically measured values, and a star for the actual values. For example, if we

have n measurements s1, . . . , sn of a stabilizer s ∈ M , then ŷ[s] = 1
n

∑n
i=1 si. On the

other hand y∗[s] = E(s), where E denotes the expectation under the actual error

distribution.

From [JC11], we see that instead of the cost function

F (θ) =
1

2
‖ŷ − f(θ)‖2

2 , (A.53)

one should optimally consider the weighted cost function

FW (θ) =
1

2
(ŷ − f(θ))TW (ŷ − f(θ)) , (A.54)

where W is a weighting matrix. The asymptotically optimal estimator is obtained by

setting W = V −1 , where V is the true covariance matrix of y∗, i.e. for s, t ∈ M ,

V [s, t] = E((s− E(s))(t− E(t)) = E(st) − E(s)E(t) = y∗[st] − y∗[s]y∗[t] . (A.55)

We do not have direct access to V . Note however that if y∗ were known, all entries

of V could be computed from y∗. We can thus use the following iterative procedure.

Start with the weight matrix W0 = I, and minimize the cost function (A.54) to
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obtain an estimate θ̂0 of the parameters. Use this to compute ŷ0 = g(θ̂0), and from

this compute a new weighting matrix W1 = V −1
1 via Eq. (A.55). Then, minimize

(A.54) with the new weights. In principle, this procedure can be repeated many

times, but we finish after minimizing with W1.

Finally, we also project all estimated moments to be larger than β = 0.5, and all

measured moments to be larger than βw, where w is the stabilizer weight.

After estimation, the decoding was done using the tensor-network decoder pre-

sented in [Chu21]. This decoder has two approximation parameters, χ and τ . We

set χ = 20 and τ = 60.

Our implementation of the estimator can be found on Github [Wag]. The scripts

that were used to start the specific simulations presented here are given in Ap-

pendix A.4.

A.4 Code Listing

Here,we list the Julia scripts that were used for the simulations in Section 6.3.3.

These scripts are to be used with the full code available on Github [Wag]. "Path-to-

main" needs to be replaced with the path to the Main.jl file.

1 include ("Path -to -main ")

2 n_procs = Distributed . nprocs ()

3 Filepath = ARGS [1]

4 n_simulation = parse(Int ,ARGS [2])

5 l = parse(Int ,ARGS [3])

6 project = parse(Bool ,ARGS [4])

7 muT1 = parse(Float64 , ARGS [5])

8 muTphi = parse(Float64 ,ARGS [6])

9 sigmaT1 = parse(Float64 , ARGS [7])

10 sigmaTphi = parse(Float64 , ARGS [8])

11 t = parse(Float64 , ARGS [9])

12 beta=parse(Float64 , ARGS [10])

13 n_step =parse(Int ,ARGS [11])

14 SamplePerSimulation =parse(Bool ,ARGS [12])

15 regularize =parse(Bool ,ARGS [13])

16 fullcovariance =parse(Bool ,ARGS [14])

17

18 n_test =parse(Int ,ARGS [15])

19 χ=parse(Int ,ARGS [16])

20 τ =parse(Int ,ARGS [17])

21 Decode_actual =parse(Bool ,ARGS [18])

22 n_estimate = [parse(Int ,a) for a in ARGS [19: end ]]

23

24 Debug=false

25
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26 @info " Parameters " n_simulation l project muT1 muTphi sigmaT1

sigmaTphi t n_estimate beta n_step SamplePerSimulation

regularize fullcovariance χ τ Decode_actual

27

28 if Debug

29 @everywhere global_logger ( ConsoleLogger (stderr , Logging .Debug))

30 else

31 @everywhere global_logger ( ConsoleLogger (stderr , Logging .Info))

32 end

33

34 Code = qeccgraph_surfacecode_regular (l)

35 LocalEstimator = Estimator_lsq_optim (β=beta , n_step = n_step )

36 ChannelSampler = ChannelSampler_TVAPDTwirled (t=t,µ_T1 = muT1 , µ

_Tphi = muTphi , σ_T1 = sigmaT1 , σ_Tphi = sigmaTphi ,

SamplePerSimulation = SamplePerSimulation )

37 if regularize

38 # Estimate the mean and variance of the moments for given

channel params and use it to regularize , in principle this

could also be computed analytically by averaging the TVAPD(

T1 ,T2) channel over T1 ,T2

39 SampleP = sample_TVAPD_twirled (t,muT1 , sigmaT1 , muTphi ,

sigmaTphi , 10^5)

40 SampleMom = momentsfromrates ( SampleP )[2: end ,:]

41 Mean = dropdims (mean( SampleMom ;dims =2);dims =2)

42 if ! fullcovariance

43 Var = dropdims (var( SampleMom ;dims =2);dims =2) #We could also

estimate the full covariance matrix instead but it will be

singular because it only has 2 parameters

44 Regularizer = TiledRegularizer_L2_Repeating (Mean ,(1 ./ Var))

45 else

46 Cov = cov(SampleMom ’)

47 Regularizer = TiledRegularizer_L2_Repeating (Mean , pinv(Cov)

)

48 end

49 @info " Regularizer Weight " Regularizer .Wt

50 else

51 Regularizer = nothing

52 end

53

54 EstimatorParams = SimulationParameters_estimator (C = Code ,

f_neighborhops = surfacecode_hops , LocalEstimator = LocalEstimator

, ChannelSampler = ChannelSampler , Regularizer = Regularizer ,

n_simulations = n_simulation , n_estimate =n_estimate , project = project

)

55 Params = SimulationParameters_EstimateAndDecode ( EstimatorParams =

EstimatorParams , n_test =n_test ,χ=χ,τ =τ ,Decode_actual =

Decode_actual )

56
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57 estimateanddecode_simulation (Filepath , Params )

Listing A.1: Script used for estimation and decoding

The simulations presented in Section 6.3.3 used the following parameters:

1 nsimulation =80

2 lvalues =(3 5 7 13 11 9)

3 project =1

4 muT1 ="80e -6"

5 muTphi ="57e -6"

6 sigmaT1 ="35e -6"

7 sigmaTphi ="26e -6"

8 t="5e -6"

9 beta ="0.5"

10 nstep =2

11 SamplePerSimulation =1

12 regularize =0

13 fullcovariance =0

14 nestimate =(10000)

15

16 ntest =10000

17 chi =20

18 tau =60

19 decodeactual =1

Listing A.2: Parameters of the Simulations

This script was used to decode with the averaged channel, where the Filepath

should point to the .hdf5 file generated from the estimation and decoding script:

1 include ("Path -to -main ")

2 n_procs = Distributed . nprocs ()

3 Filepath = ARGS [1]

4 Debug=false

5

6 @info " Parameters " n_procs Filepath

7 if Debug

8 @everywhere global_logger ( ConsoleLogger (stderr , Logging .Debug ))

9 else

10 @everywhere global_logger ( ConsoleLogger (stderr , Logging .Info ))

11 end

12

13 decodewithaveragechannel_surfacecode_simulation ( Filepath )

Listing A.3: Script used for decoding with averaged channel
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Quantum error correction allows to actively correct errors occurring in a quantum computation when the

noise is weak enough. To make this error correction competitive information about the specific noise is required.

Traditionally, this information is obtained by benchmarking the device before operation. We address the question

of what can be learned from only the measurements done during decoding. Such estimation of noise models was

proposed for surface codes, exploiting their special structure, and in the limit of low error rates, also for other

codes. However, so far it has been unclear under what general conditions noise models can be estimated from

the syndrome measurements. In this work, we derive a general condition for identifiability of the error rates. For

general stabilizer codes, we prove identifiability under the assumption that the rates are small enough. Without

this assumption, we prove a result for perfect codes. Finally, we propose a practical estimation method with

linear runtime for concatenated codes. We demonstrate that it outperforms other recently proposed methods and

that the estimation is optimal in the sense that it reaches the Cramér-Rao bound. Our method paves the way for

practical calibration of error corrected quantum devices during operation.

DOI: 10.1103/PhysRevResearch.3.013292

I. INTRODUCTION

Quantum error correction is an essential ingredient in

quantum computing schemes. When employing active quan-

tum error correction via stabilizer codes, the decoding can be

significantly improved if information about the error rates of

all qubits is available. In contrast to traditional benchmark-

ing before operation, a new approach is to estimate error

rates online from the syndrome statistics of the code itself

[1–7]. It should be stressed that the syndrome statistics is the

only information that can be measured without destroying the

encoded information. As pointed out by Fowler et al. [2],

this results in a noise model that is directly applicable for

the decoder. Furthermore, it allows for the tracking of time-

varying error rates [3,6]. Experimentally, online optimization

of control parameters in a nine-qubit superconducting quan-

tum processor has been demonstrated in a Google experiment

[8].

However, apart from the work of Spitz et al. [6], there

has been very little theoretical investigation of the estimation

problem, see Sec. IV A for a detailed discussion. For example,

it is not clear for what combinations of noise models and codes

the unknown parameters are identifiable from the syndrome

statistics. Evidently, some restrictions must apply since esti-

mating completely general noise would require measurements

which destroy the logical state. For some codes and noise

*thomas.wagner@uni-duesseldorf.de

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)
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models, including surface codes with independent Pauli noise

on each qubit, the analytical method developed by [6] proves

parameter identifiability. On the other hand, for many other

important codes such as the five-qubit code [9], the Steane

code [10], and more general color codes [11], this method is

not applicable.

In this work, we address this question by deriving a general

condition for parameter identifiability, and using it to explic-

itly prove results for the five-qubit code and the Steane code.

Furthermore, we introduce an explicit error rates estimator,

similar to techniques employed in classical distributed source

coding [12], for concatenated codes and simulate it on the

concatenated five-qubit code. This estimator outperforms pre-

viously proposed methods [2–4] in this setting, because it does

not require the assumption of very low error rates.

Stabilizer codes

Let us introduce our notation while briefly summarizing

stabilizer codes. The Pauli group Pn on n qubits is the group

of Pauli strings generated by the Pauli operators {X,Y, Z, I}

with phases,

Pn =

{

ǫ

n
⊗

i=1

ei | ǫ ∈ {±1,±i}, ei ∈ {I, X,Y, Z}

}

. (1)

The Pauli group modulo phases,

Pn = Pn/{±1,±i}, (2)

is called the effective Pauli group. We denote the ith tensor

factor of e ∈ Pn as ei. The Pauli operator acting as e ∈ P1

on qubit i and as the identity elsewhere is denoted e(i) ∈ Pn.

A stabilizer code encoding k = n − l qubits is defined by a

commutative subgroup S of Pn with generators g1, . . . , gl

2643-1564/2021/3(1)/013292(13) 013292-1 Published by the American Physical Society
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[13]. The code space is the simultaneous +1 eigenspace of the

generators. Phases are generally not important for quantum

error correction, so we consider data errors as elements of

the effective Pauli group. For an error e ∈ Pn, we define the

syndrome S(e) ∈ F
l
2 entrywise by

S(e)i :=

{

0, if gi and e commute in Pn,

1, if gi and e anticommute in Pn.
(3)

To correct an error e ∈ Pn, a recovery r ∈ Pn is applied based

on the measured syndrome. Since errors that only differ by

stabilizers act equivalently on the encoded information, the

recovery is successful if the equivalence class [er] is trivial,

i.e., [er] = [I] ∈ Pn/S .

II. IDENTIFIABILITY CONDITIONS

We consider a stabilizer code with n qubits and l stabilizer

generators. Let us first define identifiability. Given is a param-

eterized noise model, mapping a vector of error rates θ to a

vector (P [E]E∈Pn
) specifying the probability P [E] for each

error E ∈ Pn. This induces the map M : θ �→ (P [S])S∈F l
2
,

mapping a parameter vector to the corresponding syndrome

statistics via

P [S] =
∑

E∈Pn : S(E )=S

P [E], (4)

where P [S] is the induced probability of observing the syn-

drome S ∈ F
l
2. Error rates are identifiable from the syndrome

statistics if the map M is injective. This will usually not be

the case, due to symmetry around error rates of 0.5. However,

we can still hope that the parameters are at least identifiable if

we restrict to some region in the space of parameters θ.

Definition 1 (Local identifiability). We say that error rates

are locally identifiable at θ if there exists ε > 0 such that the

map M is injective on the ball Bε(θ) := {θ′ | ‖θ′ − θ‖2 < ε}.

For ease of exposition, we will focus in this section on

independent single qubit Pauli noise, which is a simple but

widely studied error model. A substantial generalization of

proposition 2 and theorem 3 to much more general error mod-

els, including measurement errors, can be found in Sec. IV B.

For now let us assume that errors on the ith qubit of the code

are modeled by the Pauli channel

ρ �→
(

1 − θ i
X − θ i

Y − θ i
Z

)

ρ + θ i
X XρX + θ i

Y Y ρY + θ i
ZZρZ.

(5)

with θ i
X , θ i

Z , θ i
Y ∈ [0, 1] such that θ i

X + θ i
Z + θ i

Y � 1. The pa-

rameter vector θ for this error model is given by the error rates

(θ i
e)i∈{1,...,n},e∈{X,Y,Z} of all nontrivial single qubit errors. By the

inverse function theorem, local identifiability at θ holds if and

only if the Jacobian matrix J = DθM at θ has full (column)

rank. We will label the rows of the Jacobian by syndromes

S and the columns by parameters θ i
e, and denote entries with

square brackets, e.g. as J[S, θ i
e]. In the limit of low error rates,

it is intuitive that identification of error rates is possible since a

syndrome always arises from the matching single qubit error,

and no combined errors occur. Thus the only requirement is

that the single errors can be identified from the syndromes.

This just means that the code has distance at least 3, i.e.,

only trivial codes are excluded. This leads to the estimators

proposed in Refs. [2–4]. We confirm this intuition by calcu-

lating the Jacobian of M and checking its rank:

Proposition 2 (Identifiability for small error rates). For a

quantum code subject to independent single qubit Pauli noise,

error rates are locally identifiable at θ = 0 if and only if

S(e) �= S(e′) for every choice of two different single qubit

errors e, e′.

A proof is provided in Sec. IV B. Our first central result

is an identifiability condition without the assumption of low

rates. This establishes a connection between local identifiabil-

ity and the posterior distribution of errors for each qubit.

Theorem 3 (General identifiability condition). Consider a

quantum code subject to independent single qubit Pauli noise.

Assume that all error rates are nonzero and that P [S] > 0 for

all syndromes S ∈ F
l
2. Then error rates are locally identifiable

at θ if and only if the matrix J̃ with entries

J̃
[

S, θ i
e

]

=
P [Ei = e|S]

P [Ei = e]
−

P [Ei = I|S]

P [Ei = I]
(6)

has full column rank. Here, P [Ei = e|S] is the conditional

probability that the ith qubit is affected by the error e ∈ P1

given that the observed syndrome is P [S].

The proof is provided in Sec. IV B.

Identifiability for perfect codes

We demonstrate the analytical application of theorem 3 by

considering the class of perfect codes.

Definition 4 (Perfect single error correcting quantum code

[14]). A quantum code C on n qubits is called a perfect

single error correcting code if there is a bijection between the

set of nontrivial single qubit errors and the set of nontrivial

syndromes, i.e., there exists a bijective map

f : {e(i) | e ∈ {X,Y, Z}, i ∈ {1, . . . , n}} → F
l
2 \ {0}. (7)

These codes are called “perfect” because they saturate the

(quantum) Hamming bound. A well known example of such a

code is the five-qubit code [9]. Other families of perfect codes

are cyclic Hamming codes [15] and a class of twisted codes

[16]. The main result of this section is that error rates for such

codes are locally identifiable around the points of equal rates,

even for high error rates. This provides another concrete class

of codes where identification of error rates is possible.

Theorem 5 (Identifiability for perfect codes). Let C be a

perfect single error correcting quantum code on n qubits sub-

ject to independent single qubit Pauli noise. Then the error

rates are locally identifiable around any point θ with equal

error rates, i.e., if there exists p ∈ (0, 1) such that θ i
e = p for

all i and all e ∈ {X,Y, Z}.

Note that the condition on θ above does not mean that we

restrict ourselves to a simple single parameter model. We still

allow all estimated error rates to vary individually, but require

that the actual error rates are close to being equal. In order

to prove theorem 5 via theorem 3, we have to check the rank

of the matrix J̃ given in (6). Using Bayes theorem, we can

express its entries as

J̃
[

S, θ i
e

]

=
P [S | Ei = e] − P [S | Ei = I]

P [S]
. (8)

013292-2



OPTIMAL NOISE ESTIMATION FROM SYNDROME … PHYSICAL REVIEW RESEARCH 3, 013292 (2021)

The key insight, which might be of independent interest, is

that most of the conditional probabilities in this expression

are equal.

Lemma 6. Consider a perfect single error correcting code

on n qubits subject to independent single qubit noise where

all error rates are equal. Let e, e′ ∈ P1. Then for any syn-

drome S ∈ F
l
2 \ {0} and qubit i such that S �= S(e(i)) and S �=

S((e′)(i)), we have

P [S | Ei = e] = P [S | Ei = e′]. (9)

The proof is provided in Sec. IV B. This lemma immedi-

ately implies that if S �= 0 and S �= S(ei ), then J̃[S, θ i
e] = 0.

We can ignore the case S = 0 due to normalization, and in the

case S = S(ei ) we have J̃[S, θ i
e] �= 0. Thus the columns of J̃

are linearly independent unit vectors, i.e., J̃ has full rank. This

proves theorem 5.

The arguments of the proof straightforwardly generalize

to other noise models as long as the perfect code condition

is fulfilled, i.e., there is a bijection between syndromes and

elementary errors. For example one could consider simple

noise models where Pauli X and Pauli Z errors occur indepen-

dently. The rates of such a model are locally identifiable on

the Steane code around points of equal rates, since the Steane

code reduces to the classical Hamming code when only one

type of errors is considered. The Hamming code is known to

be a perfect code. Estimation of such a model on the Steane

code was considered in Ref. [3]. Thus theorem 5 also provides

a theoretical background for the results presented there.

III. NUMERICAL ESTIMATION METHOD

In this section, we complement the previous results with a

practical estimation method, which is based on the combina-

tion of belief propagation (BP) and expectation maximization

(EM). In the limit of low error rates, methods based on “hard

assignments” were proposed independently by [2–4]. They

use either the recovery output by a (“hard”) decoder or the

lowest weight error corresponding to a syndrome. Inspired

by techniques from classical distributed source coding [12],

we instead consider an estimation method that uses the full

information about the distribution of errors given a certain

syndrome, by combining a “soft” decoder [17] with the ex-

pectation maximization algorithm [18,19].

A. Belief propagation

Let us briefly summarize concatenated codes and their

maximum-likelihood decoding [17]. We consider independent

single qubit Pauli errors. A concatenated quantum code is

obtained by encoding each qubit of a quantum code again in

the same code. This defines a tree structure, where the logical

qubit of a code block is a “physical qubit” in the next layer, as

illustrated in Fig. 1 for the five-qubit code. We can view this

as a graphical representation of the probability distribution

over all possible errors given the measured syndrome, called

a factor graph. The root node represents the total logical

error. Maximum-likelihood decoding is done by computing its

marginal distribution to find the most likely logical operator.

Computation of marginal probabilities is efficiently possible

using the BP algorithm (see e.g., Ref. [20]). BP works by

FIG. 1. The factor graph representation of the two times concate-

nated five-qubit code. The circles depict variable nodes representing

(logical) errors, i.e., each variable takes values in P1. The squares

depict factor nodes representing the stabilizer checks.

passing messages along the edges of the graph. To compute

the marginal of the root node it suffices to pass messages

upwards, starting from the leaves. Doing an additional down-

wards pass, we can also calculate the marginals of the leaf

nodes, i.e., the distribution of errors on a qubit given the

measured syndrome. The computational effort of this method

scales linearly in the number of qubits.

B. Expectation maximization

Starting from an initialization θ
(0) of the estimated error

rates and given a set D of measured syndromes, we can calcu-

late a new estimate of the error rates using the EM algorithm,

i.e., iterating the following steps until convergence.

(1) Expectation step. Compute the expected sufficient

statistics

ME (ei|θ
(k)) =

∑

S∈D

P [Ei = e|S, θ(k)],

based on the current estimate θ
(k) of the error rates.

(2) Maximization step. Compute a new estimate θ
(k+1) of

the error rates by normalizing the expected sufficient statistics:

(θ (k+1))i
e =

ME [ei|θ
(k)]

∑

e′∈P1
ME

[

e′
i|θ

(k)
] . (10)

Computationally, the main effort is in calculating the con-

ditional probabilities needed for the expectation step. The key

point is that this can be done efficiently using BP. In an online

estimation setting, the first iteration of EM introduces almost

no overhead, since the marginals calculated during decoding

can be used. Further iterations require redecoding of the syn-

dromes and are thus roughly as expensive as decoding. We

will also compare our estimator with the “hard assignment”

method [2–4], which is the best known scalable method. We

extend this method slightly by allowing for multiple iterations.

It can then be expressed as a variant of EM, called hard

assignment expectation maximization (HEM) (see Ref. [19]).

It consists of iterating the steps:

(1) For each syndrome S ∈ D, compute the most likely

error

Emap(S) = arg max
E∈Pn

(P [E|S, θ(k)]).
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(2) Obtain the new error rates by counting how often each

single qubit error appears:

(θ (k+1))i
e =

∑

S∈D δEmap(S)i,e

|D|
.

Here, δ is the Kronecker-delta.

Instead of the marginals, only the most likely error for each

syndrome is considered. It can be computed efficiently using

the max-sum algorithm which works similar to BP, see e.g.,

Ref. [20].

C. Numerical results

In the following, we present a numerical comparison of our

estimator (EM) and the “hard assignment” estimator (HEM).

In light of our previous identifiability results, we consider

the five-qubit code, concatenated with itself, subject to inde-

pendent depolarizing noise with error rate p on each qubit.

Extending the method to a phenomenological noise model

with measurement errors is straightforward, and some results

are shown in Sec. IV C. We initialize the algorithm randomly

around the actual rates, with a precision controlled by a real

parameter α (higher is more accurate). To be precise, for each

qubit i, we sample error rates θ
i from a Dirichlet distribution

P [θi] =
1

B(α)

∏

e∈P1

(

θ i
e

)αe
, (11)

where αI = (1 − 3p)α, αX = αY = αZ = pα and B(α) is a

normalization constant. Such an initialization could be ob-

tained from previous benchmarking or an educated guess.

We then run the estimator for nit iterations on a data set of

nest syndromes generated from the actual distribution. Using

a fixed initialization and random actual error rates was also

tested for α = 20 and nest = 1000 and did not significantly

change the mean squared error (MSE) of the estimate of the

parameter vector. We chose p = 0.13, which is close to the

threshold of the code [17,21], both because we are interested

in the regime of high error rates and because estimating

logical error rates is difficult in the regime of low rates. A

comparison of logical error rates before and after the estima-

tion, using a relatively bad initialization, is shown in Fig. 2.

We also compare with the “perfect knowledge decoder” that

is given knowledge of the actual error rates. Logical error

rates were estimated by decoding 105–106 random errors,

except for the perfect knowledge decoder where 108 random

errors were used. A clear improvement is observed even after

one iteration, and for five iterations, EM was able to reach

close to optimal error rates, while HEM showed no further

improvement after the first iteration. We also confirmed that

the MSE of the EM estimator is optimal in the sense that

it reaches the Cramér-Rao bound, which lower bounds the

MSE of any unbiased estimator (Fig. 3). The HEM estimator

showed significantly higher MSE. Finally, we note that since

it is a form of maximum-likelihood estimation, we expect

the estimator to be robust in case of model misspecification

[22]—quantifying the robustness is left for future research.

FIG. 2. Logical error rate of the maximum likelihood decoder.

Each point is a box-plot including 100 runs with random initializa-

tions and estimation data, except for the perfect knowledge decoder,

where the error bars indicate a 95% Clopper-Pearson confidence

interval. For each concatenation level, the box-plots are shown from

left to right in the same order as in the legend, while the dot rep-

resents the perfect knowledge decoder. The boxes extend from the

lower to the upper quartile of values, with a line at the median.

The whiskers extend to the last data point within 1.5 interquartile

ranges of the box in each direction. Outliers beyond this are shown

individually as circles. The parameters were p = 0.13, α = 20, and

nest = 103.

IV. DETAILS AND PROOFS

In this section, we provide further details and general-

izations on some topics, as well as all the proofs that were

previously omitted. Furthermore, we present more extensive

numerical tests of our estimator.

A. Analytical solution under a conditional

independence assumption

Spitz et al. [6] have derived an analytical solution of the

estimation problem for certain models. Here, we rederive this

solution in a slightly more general setting and discuss the

FIG. 3. Comparison of the MSE in θ1
X between EM (circles, this

work) and HEM (triangles, previous work). The Cramér-Rao bound

for each concatenation level is indicated by a line in the matching

color. The parameters were p = 0.13, α = 20, and nest = 1000.
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underlying assumptions and limitations by giving examples

of quantum codes that cannot be treated in this way.

The estimation method is considered for a circuit noise

model, where errors can affect each part of the error correction

circuit, including measurements.

Definition 7 (Independent binary circuit noise). Let

{Xq}q=1,...,m denote a collection of (multi-qubit) Pauli errors,

where each error may affect one or multiple sites in the error

detection circuit. Under independent binary circuit noise,

each error occurs independently, and the error Xq occurs with

probability θq.

The errors in {Xq}q=1,...,m will also be referred to as elemen-

tary errors.

In such a model, the errors can be treated as binary vari-

ables, where Xq = 1 with probability θq and Xq = 0 with

probability 1 − θq. Furthermore, the outcomes of the stabilizer

generator measurements can be denoted by binary variables

Si, where Si = 1 if the total error anticommutes with the i′th

generator and Si = 0 otherwise.

Then, the rates of errors that affect multiple stabilizers can

be estimated using the following proposition.

Proposition 8. Consider a stabilizer code subject to inde-

pendent binary circuit noise. Let S1, S2 be two syndrome bits

and X be an elementary error such that the following three

conditions are fulfilled:

(1) P [S1 = S2 | X ] = P [S1 = S2];

(2) P [Si = 1 | X ] = P [Si = 0 | X̄ ] for i = 1, 2;

(3) S1⊥S2|X , i.e., S1 is conditionally independent of S2

given X ,

where X̄ = 1 − X . Then

P [X = 1]P [X = 0] =
E[S1S2] − E[S1]E[S2]

1 − 2E[S1 ⊕ S2]
, (12)

where ⊕ is addition modulo 2 and E[ · ] denotes expectation

values.

The idea is that the correlation between S1 and S2 gives us

the rate of the error X . Note that the first two conditions are

automatically fulfilled for any error X that anticommutes with

both S1 and S2. The third condition however is interesting. It

essentially states that X is the only elementary error in our

noise model that affects both S1 and S2.

Proof of proposition 8. Since the syndromes are binary

variables, we have

E[S1S2] − E[S1]E[S2] = P [S1 = 1, S2 = 1]

− P [S1 = 1]P [S2 = 1].

This can be rewritten using the law of total probability and the

independence of the errors Xi,

E[S1S2] − E[S1]E[S2]

=
∑

X=0,1

P [S1 = 1, S2 = 1 | X ]P [X ]

−
∑

X,X ′=0,1

P [S1 = 1 | X ]P [S2 = 1 | X ′]P [X ]P [X ′].

Now we regroup the second term,

E[S1S2] − E[S1]E[S2]

=
∑

X=0,1

P [S1 = 1, S2 = 1 | X ]P [X ]

−
∑

X, X ′ = 0, 1

X = X ′

P [S1 = 1 | X ]P [S2 = 1 | X ′]P [X ]P [X ′]

−
∑

X, X ′ = 0, 1

X �= X ′

P [S1 = 1 | X ]P [S2 = 1 | X ′]P [X ]P [X ′]

=
∑

X=0,1

P [S1 = 1, S2 = 1 | X ]P [X ]

−
∑

X=0,1

P [S1 = 1 | X ]P [S2 = 1 | X ]P [X ]P [X ]

−
∑

X=0,1

P [S1 = 1 | X ]P [S2 = 1 | X̄ ]P [X ]P [X̄ ].

Finally, we use assumptions 3, 2, and 1 in this order to finish

the calculation,

E[S1S2] − E[S1]E[S2]

= P [X = 1]P [X̄ = 1]

×

(

∑

X=0,1

P [S1 = 1 | X ]P [S2 = 1 | X ]

−
∑

X=0,1

P [S1 = 1 | X ]P [S2 = 1 | X̄ ]

)

= P [X = 1]P [X̄ = 1]

× (P [S1 = S2 | X = 1] − P [S1 �= S2 | X = 1])

= P [X = 1]P [X̄ = 1](1 − 2P [S1 �= S2])

= P [X = 1]P [X̄ = 1](1 − 2E[S1 ⊕ S2]),

where we also used P [X̄ ] = 1 − P [X ]. The derived identity

is equivalent to (12). �

Errors that only affect a single stabilizer can be estimated

once the other rates are known, using the following proposi-

tion.

Proposition 9. Let S be a stabilizer and let {X1, . . . , Xk}

be the set of all elementary errors in our noise model that

anticommute with S. Then,

k
∏

i=1

(1 − 2P [Xi = 1]) = (1 − 2E[S]). (13)

Proof. By assumption, the outcome of measuring S is com-

pletely determined by the errors X1, . . . , Xk . Therefore

(1 − 2E[S]) = 1 − 2P [X1 ⊕ · · · ⊕ Xk = 1].
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Since the elementary errors are independent we can factor out

one of them,

(1 − 2E[S]) = 1 − 2

(

P [X1 = 1]P

[
k

⊕

i=2

Xi = 0

]

+P [X1 = 0]P

[
k

⊕

i=2

Xi = 1

])

.

Using that P [X1 = 0] = 1 − P [X1 = 1], we obtain

(1 − 2E[S])

= 1 − 2

(

P [X1 = 1]

(

1 − P

[
k

⊕

i=2

Xi = 1

])

+ (1 − P [X1 = 1])P

[
k

⊕

i=2

Xi = 1

])

= 1 − 2

(

P [X1 = 1]

(

1 − 2P

[
k

⊕

i=2

Xi = 1

])

+P

[
k

⊕

i=2

Xi = 1

])

= 1 − 2P [X1 = 1]

+ 4P [X1 = 1]P

[
k

⊕

i=2

Xi = 1

]

− 2P

[
k

⊕

i=2

Xi = 1

]

= (1 − 2P [X1 = 1])

(

1 − 2P

[
k

⊕

i=2

Xi = 1

])

.

The claim now follows by induction. �

If e.g. the rates of X2, . . . , Xk are already determined by

using the estimation from the previous section, proposition 9

can be used to estimate X1.

The estimation using propositions 8 and 9 is in closed form,

however there are some limitations. First of all, the assump-

tion of binary noise is relatively restrictive. For example, such

a model does not include the commonly used depolarizing

noise, since the probability of a Pauli Y error is not the product

of the probabilities of X and Z errors. It is possible to work

around this problem to some extent by modeling depolarizing

noise as independent X, Z and Y errors with some effective

rates, which works for low error rates. The second problem

is that one only considers correlations between pairs of stabi-

lizers, but not higher order correlations. This is generally not

sufficient to fully characterize a code. For example, consid-

ering the well known five-qubit code subject to independent

Pauli noise on each qubit, there are 15 parameters to be esti-

mated (the probabilities of each of the three nontrivial Pauli

errors for each of the five qubits), while the two propositions

provide at best (
4

2) + 4 = 10 equations. However, we have

shown that it is possible to estimate error rates of this code at

least in certain parameter regimes (theorem 5). Furthermore,

proposition 8 requires that one can find pairs of stabilizers

that are only correlated by a single elementary error. It is not

always possible to find such pairs. As an example, consider the

FIG. 4. Errors Xi and stabilizers Si for the seven qubit Steane

code with only X errors (only the three relevant stabilizers are

shown). A connection between an error and a stabilizer means that

they anticommute.

seven qubit Steane code subject to only independent Pauli X

errors on each qubit. The stabilizers of this code are illustrated

in Fig. 4.

We see that because of the central error node X7, there are

no two stabilizers that are connected only through a single

elementary error. Therefore we cannot apply proposition 8

here. However, theorem 5 implies that parameters of this

model are identifiable at least in a certain regime. Note that

similar problems occur for color codes, since the Steane code

is the smallest example of a color code [11].

B. Generalized identifiability results

In this section, we provide generalized versions of propo-

sition 2 and theorem 3 as well as their proof. Furthermore, we

provide the proof of theorem 5.

1. Formal definition of error model

We consider a quite general error model that includes in-

dependent single qubit Pauli noise as a special case. There

are two main underlying assumptions. The first is that errors

on the data qubits and syndrome bits are stochastic Pauli

errors and bit flips, which is common in the treatment of

quantum error correction codes. The second is that there is

some independence between different kinds of errors, which is

both of fundamental importance for error correction and often

physically reasonable. The first assumption implies that errors

can be modeled as elements of the group E l
n = Pn × F

l
2, where

the first component represents a Pauli error on the data and

the second component represents a bit flip on the measured

syndrome. The product in this group is thus (e, f ), (e′, f ′) �→

(ee′, f ⊕ f ′) and the identity element is I = (IPn
, 0). The syn-

drome of (e, f ) ∈ E l
n is S(e) ⊕ f .

Definition 10 (decomposable error model). Let

N1, . . . , Nm ⊂ E l
n be disjoint error sets and I /∈ Ni, ∀

i ∈ {1, . . . , m}. For each i ∈ {1, . . . , m}, let θ
i = (θ i

e)e∈Ni∪{I}

be a probability vector over Ni ∪ {I}, and define

θ = (θ i
e)i∈{1,...,m},e∈Ni

by grouping together all these

probability vectors and excluding the rates of trivial
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FIG. 5. Representation of a simple decomposable error model

on the repetition code. The circles represent the three qubits of

the code. The green boxes represent the two stabilizer generators

S1 = Z ⊗ Z ⊗ I and S2 = I ⊗ Z ⊗ Z . The noise model decomposes

into channels that act independently, as illustrated by the red boxes.

For example, the channel N1 applies an X error to the first qubit

with some probability θ1
X⊗I⊗I . N2 applies the error X ⊗ X ⊗ I with

probability θ 2
X⊗X⊗I and the error I ⊗ X ⊗ I with probability θ2

I⊗X⊗I .

N4 flips the outcome of the measurement of S1 with probability θ4
(1,0).

errors. An error model is decomposable with error sets

N1, . . . , Nm and parameters θ if errors from the different sets

occur independently, i.e., the probability of a given error

combination X ∈ ((N1 ∪ {I}) × · · · × (Nm ∪ {I})) is

P [X ] =

m
∏

i=1

∏

e∈Ni

(

θ i
e

)δXi ,e
(

θ i
I

)δXi ,I , (14)

where δ is the Kronecker-delta and θ i
I = 1 −

∑

e∈Ni
θ i

e.

An example of such a model is given in Fig. 5. There,

the error sets would be N1 = {X ⊗ I ⊗ I}, N2 = {X ⊗ X ⊗ I,

I ⊗ X ⊗ I}, N3 = {I ⊗ I ⊗ X }, N4 = {(1, 0)}, N5 = {(0, 1)}.

(Since errors here either only act on data qubits or only

on syndrome bits we omitted the other trivial part of the

errors.) For independent single-qubit Pauli noise the error

sets would be given by Ni = {X (i), Z(i),Y (i)}. We will refer

to the elements of the individual error sets as elementary

errors. Since there can be overlap between the supports of

the different error channels, we often consider the vector

X ∈ ((N1 ∪ {I}) × · · · × (Nm ∪ {I})), containing all the

elementary errors that occurred. The combined error E ∈ Pn

on the qubits and syndrome bits is then the product of

all elementary errors that occurred, i.e., E =
∏

i Xi. For

independent single qubit Pauli noise X and E coincide. The

map M : θ �→ (P [S])S∈F l
2

introduced in Sec. II can now be

written as

P [S] =
∑

X :S(X )=S

P [X ]. (15)

Our identifiability conditions can now be straightforwardly

generalized by considering the elementary errors as the new

“single qubit errors.” We also note that in the presence of mea-

surement errors, it might be appropriate to include redundant

stabilizer measurements such that the length l of a syndrome

is larger than the number of stabilizer generators [23–25]. Our

results also apply to such a scheme.

2. Proof of proposition 2

Explicitly, proposition 2 is generalized as follows.

Proposition 11. Consider a quantum code subject to a

decomposable error model with error sets N1, . . . , Nm and

parameters θ. Then the parameters of the channel are locally

identifiable at θ = 0 if and only if S(e) �= S(e′) for every

choice of two different elementary errors e, e′ ∈
⋃m

i=1 Ni.

Proof. We have to show that the map M defined in

Sec. IV B 1 is locally invertible at 0. The probability of the

error E ∈ E l
n is

P [E] =
∑

X : E(X ) = E

P [X ], (16)

where P [X ] is given in (14). The probability of observing

syndrome S is

P [S] =
∑

E∈E l
n:S(E )=S

P [E]. (17)

Thus the map M decomposes as M = T ◦ g, where

g : θ �→ (P [E])E∈E l
n
, (18)

describes the distribution of total errors, and

T : (P [E])E∈E l
n
�→ (P [S])S∈F l

2
. (19)

describes the probability of each syndrome. Since T is linear,

we have

J := DθM = Dg(θ)T ◦ Dθg

= T ◦ Dθg. (20)

We begin by calculating the derivative of P [X ],

∂P [X ]

∂θ i
e

= δXi,eP [X−i] − δXi,IP [X−i], (21)

where X−i denotes X without the ith component. Since we

consider θ = 0, P [X−i] is zero if X j �= I for any i �= j. Thus

∂P [X ]

∂θ i
e

=

⎧

⎨

⎩

+1, Xi = e and X j = I ∀ j �= i,

−1, Xi = I and X j = I ∀ j �= i,

0, otherwise.
(22)

We then have

D(θ=0)g
[

E, θ i
e

]

=
∂P [E]

∂θ i
e

=
∑

X :E(X )=E

∂P [X ]

∂θ i
e

=

⎧

⎨

⎩

+1, E = e,

−1, E = I,

0, otherwise,
(23)

where the last line follows because there is always at most

one nonzero summand, since the different error sets are by

definition disjoint. Therefore the derivative of g has a very

simple form:

D(θ=0)g =

(

−1 . . . −1

ue1
. . . uek

)

, (24)

where uei
denotes the unit vector associated to the correspond-

ing elementary error ei, and k =
∑m

i=1 |Ni|. Since the error sets

N1, . . . , Nm are disjoint, i.e., there are no duplicate elementary

errors, this matrix has k independent columns and thus full

column rank. As long as no two elementary errors have the

same syndrome, the images of these columns under T are
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again linearly independent. Then D(θ=0)M = T ◦ D(θ=0)g has

full column rank, and the inverse function theorem completes

the proof. �

3. Proof of theorem 3

Our general version of theorem 3 can be stated as follows.

Theorem 12. Consider a quantum code subject to a de-

composable error model with error sets N1, . . . , Nm and

parameters θ. Assume that θ i
e > 0 for all i and all e ∈ Ni, and

that P [S] > 0 for all syndromes S ∈ F
l
2. Then the error rates

are locally identifiable at θ if and only if the matrix J̃ with

entries

J̃
[

S, θ i
e

]

=
P [Xi = e|S]

P [Xi = e]
−

P [Xi = I|S]

P [Xi = I]
(25)

has full column rank.

Proof. We have to show that the map M defined in

Sec. IV B 1 is locally invertible at θ. Since we assume that the

rates of all errors and syndromes are strictly greater than 0, the

M will be locally invertible at θ if and only if the entrywise

logarithm ln(M) is locally invertible at θ. Thus we consider

the derivative of the logarithm-likelihood ln(P [S]) for each

syndrome. Remember that the probability of a syndrome S

can be expressed as

P [S] =
∑

X :S(X )=S

P [X ], (26)

where P [X ] is given in (14). As in the proof of proposition

11, we compute the derivative

∂P [X ]

∂θ i
e

= δXi,eP [X−i] − δXi,IP [X−i]

= δXi,e

P [X ]

θ i
e

− δXi,I

P [X ]

θ i
I

= δXi,e

P [X ]

P [Xi = e]
− δXi,I

P [X ]

P [Xi = I]
.

Using the fact that

P [S] =
∑

X |S(X )=S

P [X ], (27)

we obtain

∂ ln(P [S])

∂θ i
e

=
1

P [S]

∑

X :S(X )=S

(

δXi,e

P [X ]

P [Xi = e]
− δXi,I

P [X ]

P [Xi = I]

)

=
1

P [S]

⎛

⎜
⎝

∑

X :S(X )=S

δXi,eP [X ]

P [Xi = e]
−

∑

X :S(X )=S

δXi,IP [X ]

P [Xi = I]

⎞

⎟
⎠

=
P [Xi = e|S]

P [Xi = e]
−

P [Xi = I|S]

P [Xi = I]
. (28)

By the inverse function theorem, this completes the proof. �

4. Proof of lemma 6

We will now proof lemma 6 in order to finish the proof of

theorem 5. Remember that the ith tensor factor of E ∈ Pn is

denoted Ei. Furthermore, the Pauli acting as e ∈ P1 on qubit i

and as the identity everywhere else is denoted e(i). Finally, for

E ∈ Pn, we use E |i as a shorthand for (Ei)
(i). We define the

weight of a Pauli error in the standard way.

Definition 13 (weight). The weight of a Pauli error E =

E1 ⊗ E2 ⊗ · · · ⊗ En ∈ Pn is defined as

wt(E ) := |{Ei | Ei �= I, i ∈ {1, . . . , n}}|. (29)

In the case of equal error rates p, the probability of an error

is determined by its weight. Let us denote p̄ := 1 − p. We

obtain a convenient expression for P [Ei = e, S]. For e �= I ,

we have

P [Ei = e, S]

=
∑

E ∈ Pn :

S(E ) = S, Ei = e

P [E]

=
∑

E ∈ Pn :

S(E ) = S, Ei = e

pwt(E )( p̄)n−wt(E )

= p
∑

E ∈ Pn :

S(E ) = S, Ei = e

pwt(E−i )( p̄)n−1−wt(E−i ) (30)

and, analogously, for e = I,

P [Ei = e, S]

= p̄
∑

E ∈ Pn :

S(E ) = S, Ei = e

pwt(E−i )( p̄)n−1−wt(E−i ). (31)

By the definition of conditional probability, we obtain

P [S | Ei = e]

=
∑

E ∈ Pn :

S(E ) = S, Ei = e

pwt(E−i )( p̄)n−1−wt(E−i ). (32)

Lemma 6 is thus equivalent to the following lemma.

Lemma 14. Consider a perfect single error correcting code

on n qubits. Let e, e′ ∈ P1. Then for any syndrome S ∈ F
l
2 \

{0}, error rate p ∈ [0, 1] and qubit i such that S �= S(e(i)) and

S �= S((e′)(i)) the following equality holds:

∑

E ∈ Pn :

S(E ) = S, Ei = e

pwt(E−i )( p̄)n−1−wt(E−i )

=
∑

E ∈ Pn :

S(E ) = S, Ei = e′

pwt(E−i )( p̄)n−1−wt(E−i ). (33)

In other words, we have to show that the sums in the

expression do not depend on e except if S = S(e(i)). This is

the case if for all w = 0, . . . , n − 1 and e, e′ ∈ P1 such that
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S �= S(e(i)), S((e′)(i)) we have

|{E | Ei = e, wt(E−i ) = w, S(E ) = S}|

!
= |{E | Ei = e′, wt(E−i ) = w, S(E ) = S}|, (34)

since then the coefficients for each of the exponents appearing

in the expressions will be equal. Therefore, in the following,

we will derive an expression for the “modified” weight distri-

bution given by

kw(e, i, S) := | {E | Ei = e, wt(E−i ) = w, S(E ) = S}
︸ ︷︷ ︸

:=Kw (e,i,S)

|.

(35)

We will show that this distribution is independent of e if

S �= S(e(i)). For the rest of this section, we fix a qubit q̂ ∈

{1, . . . , n}, an error ê ∈ P1 which will act on q̂ and some

syndrome 0 �= S∗ ∈ F
l
2, and we denote kw

:= kw(ê, q̂, S∗) and

Kw
:= Kw(ê, q̂, S∗). For now, we do not assume that S∗ �=

S(ê(q̂)).

Notation 15 (Perfect code property). Since we consider a

perfect single error correcting code, for each syndrome S there

exists a unique single qubit error e(q) with S(e(q)) = S. We

denote this error by S−1(S).

The core idea of the proof is to construct the sets Kw

iteratively. We can use the perfect code property to construct

weight w errors with syndrome S∗ from weight w − 1 errors

with any syndrome S′ by adding the unique single qubit error

S−1(S′ ⊕ S∗). We formalize this as follows.

Definition 16 (S∗ modification and ê(q̂) extension). Let

E ∈ Pn. We say an error E∗ is a S∗ modification of E if

S(E∗) = S∗ and there exists a single qubit error e(q) with

E∗ = Ee(q).

We say E∗ is an ê(q̂) extension of E if E∗ is a S∗ modifica-

tion of E with wt(E∗
−q̂) = wt(E−q̂) + 1 and E∗

q̂ = ê.

Note that this definition does depend on the choice of ê(q)

and S∗, which is fixed for the rest of this section.

It is simple to construct a S∗ modification for each error.

Lemma 17. Each error E ∈ Pn has a unique S∗ modifica-

tion. We denote it E∗.

Proof. Let e(q) = S−1(S∗ ⊕ S(E )). Then Ee(q) is a S∗ mod-

ification of E. Furthermore, for two possible S∗ modifications

Ee(q), E(e′)(q′ ) with S(Ee(q)) = S(E(e′)(q′ )) = S∗, we obtain

S(e(q)) = S((e′)(q′ )) = S∗ ⊕ S(E ). Because we consider a per-

fect code this implies e(q) = (e′)(q′ ). Thus the S∗ modification

is unique. �

However, it is possible that an error E does not have a ê(q̂)

extension. This happens for example if the unique single qubit

error that needs to be added to obtain the S∗ modification is

already in E, or if it is on q̂. We formalize this in the following

corollary.

Corollary 18. Let E ∈ Pn be an error with Eq̂ = ê and

wt(E−q̂) = w. E does not have an ê(q̂) extension if and only

if one of the following mutually exclusive conditions is true:

(i) E∗ = E;

(ii) wt(E∗
−q̂) = w − 1 ∧ E∗

q̂ = ê;

(iii) E∗ �= E ∧ wt(E∗
−q̂) = w ∧ E∗

q̂ = ê;

(iv) E∗
q̂ �= ê.

where as always E∗ is the unique S∗ modification of E. If we

write E∗ = Ee(q), where e(q) is a uniquely determined single

qubit error acting on qubit q, these conditions are equivalent

to

(i′) e = I;

(ii′) Eq = e ∧ q �= q̂ ∧ e �= I;

(iii′) Eq �= e ∧ Eq �= I ∧ q �= q̂ ∧ e �= I;

(iv′) q = q̂ ∧ e �= I.

Proof. By definition E∗ = Ee(q) is an ê(q̂) extension of E

if and only if

E∗
q̂ = ê ∧ wt(E∗

−q̂) = w + 1

⇔ q �= q̂ ∧ Eq = I ∧ e �= I, (36)

where we have used that Eq̂ = ê. Negating this statement and

using that wt(E∗
−q̂) ∈ {w − 1,w,w + 1} leads to the condi-

tions above. �

Since similar reasoning will be used repeatedly through-

out this section, let us illustrate some of the cases in

corollary 18 with an example. Consider the five-qubit per-

fect code with stabilizer generators g1 = X ⊗ Z ⊗ Z ⊗ X ⊗

I , g2 = I ⊗ X ⊗ Z ⊗ Z ⊗ X , g3 = X ⊗ I ⊗ X ⊗ Z ⊗ Z , and

g4 = Z ⊗ X ⊗ I ⊗ X ⊗ Z . For this example, let q̂ = 1, ê = X ,

and S∗ = (1, 0, 0, 1). The error E = X ⊗ X ⊗ X ⊗ I ⊗ I has

the syndrome (0,1,0,1), and thus its S∗ modification is ob-

tained by applying S−1((1, 1, 0, 0)) = X (3), resulting in E∗ =

X ⊗ X ⊗ I ⊗ I ⊗ I . This is not a valid ê(q̂) extension since the

weight was reduced, corresponding to case 18 in corollary 18.

The single qubit error we applied canceled with an existing

error in E. On the other hand, the error E = X ⊗ I ⊗ Z ⊗

Z ⊗ I has the syndrome S(E ) = (1, 0, 1, 0). Thus its S∗ mod-

ification is obtained by adding e = S−1((0, 0, 1, 1)) = X (5),

resulting in E∗ = X ⊗ I ⊗ Z ⊗ Z ⊗ X . This is a valid ê(q̂)

extension. Notice that the additional single qubit error was

applied on qubit 5 where E acts trivially, or equivalently,

E∗
5 = e.

In corollary 18, we categorized errors without a valid ê(q̂)

extension by their S∗ modification. Now we characterize kw in

terms of ê(q̂) extensions.

Lemma 19. For any w > 0,

kw = |{E ∈ Pn | ∃E ′ ∈ Pn : E is a ê(q̂) extension of E ′,

E ′
q̂ = ê, wt(E ′

−q̂) = w − 1}|.

Proof. By definition of kw (35), we have to show that

|{E ∈ Pn | Eq̂ = ê, wt(E−q̂) = w, S(E ) = S∗}| =

|{E ∈ Pn | ∃E ′ ∈ Pn : E is a ê(q̂) extension of E ′,

E ′
q̂ = ê, wt(E ′

−q̂) = w − 1}|.

“⊇”: By definition of ê(q̂) extension.

“⊆”: Let E ∈ Pn be an error such that Eq̂ = ê, wt(E−q̂) =

w and S(E ) = S∗. Chose a qubit q �= q̂ such that Eq �= I . Then

E is an ê(q̂) extension of E ′ := EE |q. Furthermore wt(E ′
−q̂) =

wt(E−q̂) − 1 and E ′
q̂ = ê by definition of E ′. �

While this establishes a connection between the weight

distribution kw and the concept of ê(q̂) extension, it is difficult

to count all errors that are valid ê(q̂) extensions. A number

easier to characterize is

lw := |Lw| (37)
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with

Lw
:= {E ∈ Pn |E has a ê(q̂) extension,

Eq̂ = ê, wt(E−q̂) = w − 1}. (38)

This is similar to the characterization in lemma 19, but lw >

kw because two different errors can have the same ê(q̂) exten-

sion. We have to correct for this “double counting.”

Lemma 20.

kw =
lw

w

. (39)

Proof. By lemma 17 we have a well defined function g :

Pn �→ Pn that maps an error E ∈ Pn to its S∗ modification

E∗ ∈ Pn. By lemma 19 and the definition of Lw, g maps Lw to

Kw, and the restriction g|Lw
: Lw → Kw is surjective. Because

the S∗ modification is unique, the pre-images of two distinct

elements of Kw under g are disjoint. Thus

|Lw| =
∑

E∈Kw

∣
∣g−1

|Lw

(E )
∣
∣. (40)

We want to determine the size of these pre-images. So let

E ∈ Kw. From the definition of Lw and the definition of ê(q̂)

extension, it follows that E ′ ∈ g−1
|Lw

(E ) if and only if there

exists a qubit q �= q̂ such that Eq �= I and E ′ = EE |q. Thus,

since by definition wt(E−q̂) = w, the preimage has w ele-

ments. This concludes the proof. �

Thus we can characterize the weight distribution kw

through the numbers lw, for which we derive a recursive

formula.

Lemma 21. There exists a recursive formula relating kw to

kw−1 and kw−2.

Proof. We prove that

lw = 3w−1

(
n − 1

w − 1

)

− kw−1 − 3(n − w + 1)kw−2

− 2(w − 1)kw−1 −
∑

e′ ∈ P1

ê �= e′

kw−1(e′, q̂, S∗ (41)

for any 2 � w � n. Lemma 20 then gives the corresponding

equation for kw.

The total number of errors E ∈ Pn with wt(E−q̂) = w − 1

and Eq̂ = ê is 3w−1(
n − 1

w − 1) since there are (
n − 1

w − 1) ways to chose

w − 1 positions in n − 1 positions, and three possible Paulis

on each position. Next we count how many of them do not

have an ê(q̂) extension. The different conditions for this are

given in corollary 18, where errors without an ê(q̂) extension

are categorized by their S∗ modification. We count the number

of errors E ∈ Pn with wt(E−q̂) = w − 1 and Eq̂ = ê fulfilling

each of these different conditions. We can group errors with-

out a valid ê(q̂) extension by their S∗ modification, i.e.,

{E ∈ Pn |wt(E−q̂) = w − 1,

Eq̂ = ê, E has no ê(q̂) extension}

=
⋃

E ′ ∈ Pn :

E ′ is not an ê(q̂) extension

{E ∈ Pn | E∗ = E ′, Eq̂ = ê, wt(E−q̂) = w − 1},

(42)

where all the individual sets are disjoint because the S∗

modification is unique. To do this, we have to consider the

following cases, for each of which wt(E−q̂) = w − 1 and

Eq̂ = ê hold.

Case (i): E∗ = E. This condition is equivalent to S∗ =

S(E ). By definition there are kw−1 such errors.

Case (ii): wt(E∗
−q̂) = w − 2 ∧ E∗

q̂ = ê. For each error E

fulfilling this condition, we have that E = E∗e(q) for a Pauli

e ∈ P1 \ {I} and a qubit q �= q̂ with E∗
q = I . For a given error

E ′ with wt(E ′
−q̂) = w − 2, E ′

q̂ = ê and S(E ′) = S∗, there are

n − 1 − (w − 2) = n − w + 1 possibilities to chose a qubit

q �= q̂ with E ′
q = I . For each of these, there are three different

Paulis one could add to this position. Each of these gives a

distinct error E with E∗ = E ′. The total number of errors E ′

with wt(E ′
−q̂) = w − 2, E ′

q̂ = ê and S(E ′) = S∗ is by defini-

tion kw−2, and because the ê(q̂) extension is unique they all

give distinct contributions. Thus

|{E ∈ Pn | wt(E∗
−q̂) = w − 2, E∗

q̂ = ê,

wt(E−q̂) = w − 1, Eq̂ = ê}|

= 3(n − w + 1) |{E ′ ∈ Pn | E ′
q̂ = ê, wt(E ′

−q̂) = w − 2,

S(E ′) = S∗}|

= 3(n − w + 1)kw−2.

Case (iii): E∗ �= E ∧ wt(E∗
−q̂) = w − 1 ∧ E∗

q̂ = ê. For

each such error E it holds E = E∗e(q) for a Pauli e ∈

P1 \ {I, E∗
q } and a qubit q �= q̂ with E∗

q �= I . For a given error

E ′ with wt(E ′
−q̂) = w − 1, there are w − 1 choices for q �= q̂

such that E ′
q �= I , and for each choice of q there are 2 possible

choices of e ∈ P1 \ {I, E ′
q}. The total number of errors E ′ with

wt(E ′
−q̂) = w − 1, E ′

q̂ = ê and S(E ′) = S∗ is by definition

kw−1, and again they give distinct contributions. Thus

|{E ∈ Pn |E∗ �= E, wt(E∗
−q̂) = w − 1,

E∗
q̂ = ê, wt(E−q̂) = w − 1, Eq̂ = ê}|

= 2(w − 1)|{E ′ | E ′
q̂ = ê, wt(E ′

−q̂) = w − 1, S(E ′) = S∗}|

= 2(w − 1)kw−1.

Case (iv): E∗
q̂ �= ê. For each such error E there exists a cor-

responding E ′ = E∗ such that E = E ′e(q̂) for an appropriate

Pauli e ∈ P1 \ {I}. Note that wt(E ′
−q̂) = wt(E−q̂) = w − 1.

The total number of errors E ′ with wt(E ′
−q̂) = w − 1, E ′

q̂ �= ê

and S(E ′) = S∗ is by definition
∑

e′∈P1|ê�=e′ kw−1(e′, q̂, S∗),

and because the S∗ modification is unique the different e′ give

different contributions.

There is no double counting because the union in (42) is

disjoint. Finally we obtain the number of errors that have

a valid ê(q̂) extension by subtracting the number of errors

without a valid ê(q̂) extension from the total number of errors,

which yields the recursion (41). �

With this recursive formula we can easily prove by in-

duction that for a given qubit q, kw(e, q, S) is (almost)

independent of e and S.

Proof of lemma 14. We consider again a fixed qubit q̂ and

syndrome S∗ ∈ F
l
2, and prove that the numbers kw(e, q̂, S∗)

are equal for any e ∈ P1 such that S(e(q̂)) �= S∗. Let ê ∈ P1
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with S((ê)(q̂)) �= S∗. We consider two different cases, corre-

sponding to different initial conditions for lemma 21. The two

cases are given as

(1) S∗ = S((e′)(q̂)) for some e′ �= ê,

(2) S∗ �= S(e(q̂)) for any error e acting on qubit q̂.

Consider case 2 first. For w = 0, we have k0(ê, q̂, S∗) = 0

independent of (ê, S∗) because S∗ �= S(e(q̂)) ∀e ∈ P1. For w =

1, k1(ê, q̂, S∗) = 1 is independent of (ê, S∗) because the only

error e(q) with S(ê(q̂)e(q)) = S∗ is S−1(S(ê(q̂)) ⊕ S∗)) (and this

error does not act on q̂ because S∗ �= S(e(q̂))∀e ∈ P1.). For

w > 1, the claim follows by induction since the right hand

side of the recursive equation in lemma 21 is now independent

of ê and S∗. This concludes the proof for case 2. In case 1,

the initial conditions are k0 = 0, k1 = 0. The rest of the proof

is analogous. The only caveat is that the last term of (41)

now also contains a term kw−1(e′, q̂, S∗) for an error e′ with

S(e(q̂)) = S∗. But this term can be computed using the same

recursive equation, and does not depend on e. �

This finally concludes the proof of lemma 14, and thus

also the proof of theorem 5. As mentioned above, lemma 21

can also be used to calculate the numbers kw(e, q̂, S∗) for the

remaining case S∗ = S(e(q̂)). The correct initial conditions are

k0 = 1, k1 = 0.

C. Additional numerical results

Here, we provide data complementary to the results shown

in Sec. III C. In particular, we consider the mean squared error

(MSE) of the proposed estimator, and we show results with

noisy measurements.

1. MSE of the estimator

First, we demonstrate that the EM estimator achieves the

Cramér-Rao bound (CRB). The MSE of the estimator T of a

parameter θ can expressed by the bias-variance decomposi-

tion

MSE = bias(T )2 + var(T ). (43)

Assume we want to estimate the error rates θ of a code from

m independent syndrome observations. Then the covariance

of any unbiased estimator T of θ is bounded by the CRB

covθ (T ) �
I (θ)−1

m
, (44)

i.e., covθ (T ) −
I (θ)−1

m
is a positive semi-definite matrix; here,

the Fisher information matrix I is defined by

Ii, j = ES

[
∂ ln(P [S|θ])

∂θi

∂ ln(P [S|θ])

∂θ j

]

. (45)

In particular, the variance in the estimate of a single parameter

is bounded by the diagonal entries of the inverse of the Fisher

information. The derivative ∂ ln(P [S|θ]

∂θ i
e

of the log-likelihood

with respect to a parameter θ i
e was already computed in (28)

as

∂ ln(p(S|θ)

∂θ i
e

=
P [Ei = e | S]

P [Ei = e]
−

P [Ei = I | S]

P [Ei = I]
. (46)

FIG. 6. Comparison of the MSE in θ1
X between EM (circles),

HEM (triangles) and regularized EM (crosses) for different amounts

of estimation data nest for a good initialization at the first concatena-

tion level. The parameters were p = 0.13, α = 200, and nconcat = 1.

β = 200 was used for the regularized version.

Since the probabilities P [ei|S] can be computed using BP,

we can numerically evaluate this bound for concrete codes

and noise models and compare our estimator to this bound.

However, for concatenation levels beyond the first, it was

necessary to approximate the expectation value over all syn-

dromes by Monte Carlo sampling. We used 106 samples to

do this. As a side note, it is not sufficient to consider the

CRB for direct observation of the errors (which is much

easier to evaluate). It can be shown that the Fisher information

always decreases when post-processing the data, and thus the

bounds for syndrome observations must necessarily be higher

than for direct measurements of the errors (in our cases the

difference was about a factor 2). Finally, it should be noted

that in our simulations we have access to the actual error

rates which makes it possible to compute the MSE. In a real

experiment, one could, for example, consider the variance

instead. In our tests, the EM estimator exhibited a squared

bias that was very small compared to the variance, such that

the variance coincides with the MSE. However, the HEM

estimator showed significant bias in some settings. In the fol-

lowing, we always consider the MSE in the estimation of θ1
X .

However, plots for the other parameters look similarly. The

MSE was always determined over 103 simulations for each

data point. We consider the MSE of the estimation at error rate

p = 0.13.

For a relatively bad initialization results were already

shown in Fig. 3. Here, we consider the situation where an

accurate initialization is available, demonstrated by using

α = 200. An example comparing the MSE at the first con-

catenation level is shown in Fig. 6. For low data sizes, the

initialization is more accurate than the estimate using the data

set. In this case, HEM outperforms EM and even beats the

CRB (remember that the CRB as it is used here only applies

to unbiased estimators). The reason is that HEM has a strong

bias towards the initial parameters, which did not decrease

with the size of the data sets or the number of iterations in our

simulations. At larger data sizes, this bias is detrimental, and

it can be seen that EM outperforms HEM. Especially for low

numbers of iterations, EM also exhibits some bias towards the
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initialization. This can be desirable in case of a good initial-

ization, since it explains why EM also slightly beats the CRB

at low data sizes. In particular, we see that at nest = 100 and

nest = 1000 EM performs better if a low number of around

three iterations is used. Note that a small bias remains at

higher iterations, which explains why EM also slightly beats

the CRB. Especially interesting is the case nest = 1000, where

EM both improves over the initialization and clearly beats the

CRB at low numbers of iterations. Since we do not know

beforehand after how many iterations the procedure should

be stopped, it is sensible to instead regularize the estimator in

such a setting, such that it does not converge away from the

improved value at low iterations. The regularization is done

by introducing a Dirichlet prior

P [θi] =
1

B(α)

∏

e∈P1

(

θ i
e

)β i
e (47)

over the initialization, representing information on its accu-

racy (see Ref. [20]). Here, β i
e = (1 − (θ (0))i

e)β and the real

hyper-parameter β controls the strength of the regulariza-

tion. The effect of this regularization, using β = 200, is also

demonstrated in Fig. 6 (the cross-shaped markers). It can be

seen that the regularized EM algorithm converges roughly to

the minimum of the unregularized version, which was the

desired effect. For large data sizes, the regularization intro-

duces a minimal increase in the estimation error. We also

tested regularizing the HEM version in the same manner,

but no improvements were obtained. Similar results could be

obtained for higher concatenation levels. The main difference

is that HEM performs worse at higher levels.

2. Estimator with measurement noise

We consider a phenomenological noise model, where Pauli

errors occur independently between qubits and bit flips in-

dependently on each syndrome bit. The error rates can be

different on each data qubit and syndrome bit. The maximum-

likelihood decoder, described in Sec. III A, can be easily

modified to include these measurement errors. This is done

simply by including the measurement errors as additional

nodes, connected to the factor corresponding to the syndrome

bit that they flip. This does not destroy the tree structure, and

thus decoding and determination of marginals can still be done

via BP. Using this adapted maximum-likelihood decoder, we

can estimate error rates in the same way as described in

Sec. III B. It should be noted that we do not consider a

fault-tolerant scheme with repeated measurements here, so

identification of measurement errors is impossible on the first

concatenation level. Similar to the experiments in the main

text, we take the data qubits to be affected by a depolariz-

ing channel with error rate p each, and on each syndrome

bit the outcome is flipped with probability pm. In Fig. 7,

some results are shown. As can be seen in Fig. 7(a), for a

bad initialization HEM is unable to improve much over the

initialization, while EM still reaches optimal error rates even

in the presence of measurement errors, although the amount

of iterations required is larger than in the case without mea-

surement errors. The MSE of the estimation was again close to

the CRB (not shown here). The case of a better initialization is

shown in Fig. 7(b). In this setting, HEM clearly improves over

FIG. 7. Logical error rate of the maximum likelihood decoder

with measurement errors for (a) α = 20 and (b) 200. Also shown are

error rates of the perfect knowledge decoder. The parameters were

p = 0.005, pm = 0.005, and nest = 104.

the initialization, especially at higher concatenation levels.

It is still outperformed by EM, and the difference is more

significant at the second concatenation level. The amount of

iterations before convergence of EM is only about 5, com-

pared to about 30 for the bad initialization case.

V. CONCLUSION

We investigated the estimation of stochastic error models

from the syndrome statistics of a quantum error correction

code, establishing both theoretical results on parameter iden-

tifiability as well as a practical estimation method. The results

do not rely on the limit of low error rates, and our estima-

tor outperforms other recently proposed methods [2–4]. Our

work opens up a number of new research directions. On the

theoretical side, it will be interesting to use our identifiability

condition to prove results beyond perfect codes. It might also

be possible to extend the result on perfect codes beyond the

case of equal rates, since numerical results suggest that this as-

sumption is not crucial. Furthermore, it would be interesting to

consider the Cramér-Rao bound as a function of the code size,

to estimate how the size of the data set must be scaled for large

codes. The proposed estimator could be straightforwardly ap-

plied to quantum low density parity check codes, although the
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problem arises that belief propagation is no longer exact in this

scenario. One could also combine our estimator with methods

from Refs. [3,26] to estimate time-dependent error rates and

avoid the redecoding overhead, or consider its application to

fault-tolerant circuits as was done for the hard assignment

method in Ref. [2].

Our PYTHON implementation of the estimator is available

on GitHub [27].
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Learning logical quantum noise in quantum error correction

Thomas Wagner,∗ Hermann Kampermann, Dagmar Bruß, and Martin Kliesch†

Institute for Theoretical Physics, Heinrich-Heine-University Düsseldorf, Germany

The characterization of quantum devices is crucial for their practical implementation but can
be costly in experimental effort and classical post-processing. Therefore, it is desirable to measure
only the information that is relevant for specific applications and develop protocols that require little
additional effort. In this work, we focus on the characterization of quantum computers in the context
of stabilizer quantum error correction. Our main result is that the logical error channel induced
by Pauli noise can be estimated from syndrome data under minimal conditions. More precisely, we
show that the estimation is possible as long as the code can correct the noise.

For any quantum device, it is desirable to character-
ize both its individual components as well as their inter-
play [1, 2]. For the characterization of single quantum
gates, protocols such as quantum process tomography
(e.g. Ref. [3]) or gate set tomography [4–6] can be used.
To characterize the interplay of multiple components,
randomized benchmarking [7, 8], as well as crosstalk de-
tection [9] and estimation [10, 11] protocols are available.
The general goals are

(i) to build trust in the correct functioning of the de-
vice,

(ii) to be able to reduce the errors on the hardware level
and improve the software calibration, and

(iii) to compare different devices and platforms in a fair
way.

However, such characterization protocols can be quite
resource-intensive, requiring many experimental runs of
the device and such protocols’ output can be challenging
to interpret. Therefore, it has become a pressing issue to
obtain easy-to-use information, such as Pauli error rates
directly [11–15], ideally using only data that is easy to
obtain. The estimation of Pauli noise is also practically
interesting because randomized compiling can be used to
project the actual noise onto Pauli noise [16, 17].

In the context of quantum error correction (QEC), it
has been suggested to reduce the experimental effort of
characterization by extracting information from the syn-
drome data, which is usually collected during error cor-
rection anyway [18–26]. This approach has the additional
advantage of benchmarking all components in the con-
text of the targeted application and making it easier to
detect crosstalk. Indeed, syndrome data has been used
to calibrate decoders and observe signatures of crosstalk
in experiments on the [4,1,2]-code [27] and the repetition
code [28].

For general stabilizer codes, however, the theoretical
foundation of such schemes is currently lacking. Since
the syndrome measurements must preserve the encoded
state, it is not a priori clear that they should even contain
sufficient information about the noise to be useful for
QEC. For example, as shown in our previous work [26],

∗ thomas.wagner@uni-duesseldorf.de
† science@mkliesch.eu

a complete Pauli channel can only be estimated from
syndrome data if it is known that the Pauli errors are
not correlated across too many qubits, quantified by the
pure distance. This limit on correlations can be quite
strict, as can be seen for the toric code, which has a pure
distance of 4 independent of system size. Hence, this
assumption is violated by natural noise processes such as
error propagation in the stabilizer measurements, which
can introduce data errors on all participating qubits.

In this work, we show that the estimation of error rates
is possible under much more practical conditions if one
focuses only on information which is actually relevant for
QEC. It is not necessary to distinguish between logically
equivalent errors. Thus, it suffices to estimate the logical
noise channel instead of the physical one. At least for
phenomenological Pauli noise models, we prove that the
situation is as good as one could reasonably hope: as long
as the noise affecting a stabilizer code can be corrected
by it, one can also estimate the logical noise channel from
the corresponding syndrome measurements.

The proof is based on our general framework [26], but
extended to consider the logical instead of the physical
channel. Similar to randomized benchmarking, we con-
sider the problem in Fourier space [12]. This representa-
tion corresponds to a description of the logical channel in
terms of moments instead of probabilities. Exploiting a
weak assumption of limited correlations, we can further
simplify the description by switching from regular mo-
ments to a set of canonical moments. Both the logical
channel and the syndrome measurements can be repre-
sented by linear equations on a small set of canonical
moments. By considering the ranks of these two linear
systems, we then show that the syndrome measurements
determine the logical channel. Computing the ranks boils
down to counting a specific subset of logical operators of
the code, which we solve by employing a recent general-
ization of the cleaning lemma [29] of QEC.

I. STABILIZER CODES

Let us quickly recap the most important features of
stabilizer codes for our purposes. A more thorough intro-
duction can e.g. be found in the books [30, 31]. A stabi-
lizer code is described by a commuting subgroup S ⊆ Pn
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of the n-qubit Pauli group, called stabilizer group. It
must fulfill −I 6∈ S . The codespace is then the simulta-
neous +1-eigenspace of all the stabilizers. As is usual in
the context of QEC, we disregard phases and view S as a
subgroup of the effective Pauli group P

n := Pn/{±1,±i}.
This is an Abelian group, but the relevant commutation
relations of Pn can be encoded in the bicharacter 〈 · , · 〉
on P

n, given by

〈a, e〉 :=
{
+1, a and e commmute in Pn

−1, a and e anti-commmute in Pn
. (1)

By definition, all elements of S act trivially on the en-
coded states. We can also consider Pauli operators that
map the code space to itself, but do not necessarily act
as the identity. These form the set L ⊆ P

n of logical
operators. It can be shown that L is exactly the set of
Pauli operators that commute with all stabilizers. For-
mally, we can express this as the annihilator S ⊥ of S

in P
n under the above bicharacter, i.e.

L := S
⊥ := {l ∈ P

n : 〈s, l〉 = +1∀s ∈ S } . (2)

In particular, we have S ⊆ L since each stabilizer is
itself a logical operator that implements the logical iden-
tity. If a logical operator (other than a stabilizer) occurs
as an error, this cannot be detected and the encoded state
is corrupted. The distance d of a code is defined as the
minimal weight of an element of L \ S . This measures
the error correction capabilities of the code. We call a set
of qubits R ⊆ {1, . . . , n} correctable if it only supports
trivial logical operators. In particular, if |R| < d, then R
is correctable. This is however generally not an equiva-
lence, and there can be many correctable regions of size
much larger than d. For example, any rectangular region
of side length at most d − 1 on the d × d toric code is
correctable, but contains more than d qubits.

We will focus on phenomenological Pauli noise models,
and do not take into account the details of error propaga-
tion inside the measurement circuits. We can then con-
sider rounds of error correction, and between two rounds
a new Pauli error occurs. These Pauli errors are described
by a channel P , which is given by a probability distribu-
tion over Pauli errors,

P : Pn 7→ [0, 1] . (3)

Later we will also impose some locality assumptions on
this channel.

Standard error correction using a stabilizer code pro-
ceeds as follows: In each round, a set of generators
g1, · · · , gm ∈ S is measured. Ideally, the state lies in the
codespace and thus all measurements return +1. How-
ever, if an error e ∈ P

n occurred beforehand, the outcome
of the measurement of gi is 〈gi, e〉 = ±1. The collection
of measurement outcomes of all generators is called the
syndrome. Based on the syndrome, a decoder tries to
guess the error that occurred, and applies it as a cor-
rection r. Since errors that only differ by stabilizers are

logically equivalent, the ideal decoding strategy is to re-
turn a maximum likelihood estimate of the form

r = argmax
e∈Pn

∑

s∈S

P (es) . (4)

Thus, full knowledge of the physical channel P is not
necessary for optimal decoding. Instead, it is sufficient
to know the logical channel PL, which we define by av-
eraging P over cosets of S

PL : Pn → [0, 1],

PL(e) =
1

|S |
∑

s∈S

P (es) .
(5)

In standard error correction, it is assumed that the logical
channel is known, and the task is to find a good decod-
ing for each syndrome. Here however, we will consider a
“reverse” problem: Given (an estimate of) the syndrome
statistics, can we (uniquely) obtain the logical channel
PL? Perhaps surprisingly, we will show that this is pos-
sible as long as the noise affecting the code is correctable
in a certain sense.

II. MOMENTS

To tackle this estimation problem, we will first switch
our description of P via a Fourier transform. The Fourier
transform F [f ] of a function f : Pn → R is defined as

F [f ] : Pn → R,

F [f ](a) =
∑

e∈Pn

〈a, e〉f(e) . (6)

This is also sometimes called Walsh-Hadmard transform
[12]. From the definition, we see that for any stabilizer
s ∈ S , F [P ](s) is exactly the expectation of s in re-
peated rounds of error correction. It can thus be com-
puted from the measured syndrome statistics. In analogy,
we denote E = F [P ] and call this the set of moments,
i.e. there is one moment E(a) for each a ∈ P. One should
however keep in mind that only the moments correspond-
ing to stabilizers can be measured without destroying the
encoded information. Since the Fourier transform is an
invertible transformation, with inverse given by

F
−1[f ](e) =

1

|Pn|
∑

a∈Pn

〈a, e〉f(a) , (7)

knowing all moments E is equivalent to knowing the com-
plete error distribution P .

Since we are only interested in learning the logical
channel, only a subset of all moments needs to be es-
timated. These are exactly the moments corresponding
to logical operators. To see why this is the case, let us
first introduce the convolution on P

n. For two functions
f, g : Pn → R, their convolution is defined by

(f ∗ g)(e) =
∑

e′∈P

f(e′)g(ee′) . (8)
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As expected, it can be shown that convolutions transform
into products under Fourier transform:

F [f ∗ g] = F [f ] · F [g] . (9)

The logical channel PL, defined in (5), can be written
as the convolution of the physical channel P with the
uniform probability distribution over stabilizers US ,

PL = P ∗US . (10)

It is well known that F [US ] = ΦS ⊥ = ΦL , where ΦL

is the indicator function of L [32]. Therefore the logi-
cal channel can be characterized in Fourier space by the
moments

EL := E · ΦL . (11)

This is a special instance of the averaging/subsampling-
duality explained in [32]. To summarize the above dis-
cussion, the logical channel is fully characterized by the
moments corresponding to logical operators. The esti-
mation problem can then be phrased as follows: Given
the moments ES of all stabilizers, compute the moments
EL of all logical operators.

III. CORRECTABLE NOISE

The above estimation problem cannot be solved for
arbitrary channels P , since in general the moments are
independent of each other. Here, our assumption of lim-
ited correlations becomes important.

To formalize this assumption, consider a set of sup-
ports Γ ⊆ 2{1,...,n}, where 2{1,...,n} denotes the power-
set of {1, . . . , n}. These supports are allowed to overlap
with each other. We assume that on each support γ ∈ Γ,
there acts an independent Pauli channel Pγ : Pγ → [0, 1].
Thus, the noise is correlated across each support, but not
between different supports. If the supports are small, any
high weight error must arise as a combination of inde-
pendent lower weight errors. This is the scenario where
error correction has a chance to improve the fidelity. On
the other hand, if the supports are too large, error cor-
rection usually fails. Thus, we assume that the noise is
correctable in the following sense.

Definition 1 (Correctable noise). A Pauli channel P
described by a set of supports Γ ⊆ 2{1,...,n} is called cor-
rectable if the following two conditions are fulfilled:

• For all γ1, γ2 ∈ Γ, the union γ1∪γ2 is a correctable
region.

• P (I) > 1
2 .

We see from the definition of distance that the first
condition is fulfilled in particular if |γ| ≤ ⌊d−1

2 ⌋ for all
γ ∈ Γ. The second condition simply states that the total
error rate should not be too large. It guarantees that
all moments are positive, i.e. E(a) > 0 for all a ∈ P

n.

Note that it is fulfilled in particular if all the indepen-
dent channels have sufficiently low error rates, namely
Pγ(I) >

1
2 for all γ ∈ Γ.

Since the multiplication of independent Pauli random
variables corresponds to a convolution of their probabil-
ity distributions, the full channel P can be written as a
convolution of the independent local channels,

P = ˚γ∈Γ Pγ . (12)

In this notation, we set Pγ(e) = 0 if supp(e) 6⊆ γ. In order
to better capture this structure in Fourier space, we can
introduce a set of canonical moments F (which we called
“transformed moments” before [26]). For a, b ∈ P

n, let us
write b ≤ a if b is a substring of a. Then we define the
canonical moments as

F : Pn → R ,

F (a) =
∏

b∈Pn:b≤a

E(b)µ(b,a) , (13)

where µ is the Möbius function defined by

µ(b, a) =

{
(−1)|a|−|b|, b ≤ a

0, otherwise
, (14)

which is well known in combinatorics [33]. The Möbius
function is defined in such a way that in eq. (13), we di-
vide out that part of the moment E(a) that is already
described by substrings b ≤ a, without “double counting”
any substring. Essentially, while the regular moments E
also capture correlations across all subsets of their sup-
port, the canonical moments only capture correlations
across their full support. The advantage is that a small
set of canonical moments is sufficient to fully describe
the channel. In particular, the following two facts about
canonical moments are shown in lemma 13 in the ap-
pendix. First of all, we only need to consider the canoni-
cal moments that lie completely inside a channel support
γ, since

F (a) = 1 if supp(a) 6⊆ γ ∀γ ∈ Γ . (15)

The set of such canonical moments is FΓ′ = (F (a))a∈Γ′ ,
where

Γ′ = {a ∈ P : ∃γ ∈ Γ such that supp(a) ⊆ γ} . (16)

Furthermore, the regular moments E are obtained from
the canonical moments F by

E(a) =
∏

b≤a

F (b) . (17)

IV. IDENTIFIABILITY

Since the moments ES can be obtained from the syn-
drome measurements, and the channel is fully described
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by the canonical moments FΓ′ , estimation of the physical
channel boils down to solving the system of equations

E(s) =
∏

a∈Γ′,a⊆s

F (a) . (18)

For correctable noise, all moments are positive. Then,
eq. (18) can be transformed into a system of linear equa-
tions by taking logarithms. This system can be expressed
by the coefficient matrix DS , whose rows are labeled by
stabilizers and whose columns are labeled by elements of
Γ′, with entries

DS [s, a] =

{
1, a ⊆ s

0, otherwise
. (19)

As we have proven before [26], a unique solution exists if
the range of correlations of the error channel P is smaller
than the pure distance of the code. Correctable noise
generally does not fulfill this strict condition. Thus, the
system is underdetermined and the physical channel P
cannot be estimated just from the syndrome measure-
ments.

We are, however, only interested in estimating the log-
ical channel (5), which contains less information. As de-
rived in section II, it suffices to consider the moments
EL . The question is now whether the moments EL

can be computed from the measured moments ES , i.e.
whether the corresponding equations of the form eq. (18)
are linearly dependent after taking logarithms. In other
words, the logical channel can be uniquely estimated from
the syndrome measurements if

rank(DS ) = rank(DL ) . (20)

This condition is equivalent to rank(DT
S
DS ) =

rank(DT
L
DL ). We will prove this by showing the even

stronger statement

DT
SDS ∝ DT

LDL . (21)

First, note that DT
S
DS can be easily computed from

its definition,

DT
SDS [a, b] = |{s ∈ S : a ≤ s and b ≤ s}| . (22)

The analogous statement holds for DL . By rewriting
eq. (21) in terms of individual entries, we see that the
logical channel can be uniquely estimated from the syn-
drome statistics if for all a, b ∈ Γ′,

|{s ∈ S : a ≤ s and b ≤ s}|
= c |{l ∈ S

⊥ : a ≤ l and b ≤ l}| ,
(23)

where c is a constant independent of a, b. This is a count-
ing problem that depends only on global properties of the
stabilizers and logical operators, but not on their specific
form. To solve this counting problem, we will employ
the well known cleaning lemma, which was first stated
by Bravyi and Terhal [34]. Informally, this lemma states
that any correctable region can be cleaned from logical
operators.

Lemma 2 (Cleaning Lemma). Let R be a correctable
region. Then any coset [l] ∈ L /S of logical operators
has a representative l ∈ L that has no support on R, i.e.
supp(l) ∩R = ∅.

Using this lemma, we can prove eq. (23). For all a, b ∈
Γ′ we have,

|{l ∈ L : a ≤ l and b ≤ l}|
=

∑

l∈L

[a ≤ l and b ≤ l]

=
∑

[l]∈(L /S )

∑

s∈S

[a ≤ ls and b ≤ ls]

=
∑

[l]∈(L /S )

∑

s∈S

[a ≤ s and b ≤ s]

= |L /S | · |{s ∈ S : a ≤ s and b ≤ s}| .

In the second equality, we split the total sum into smaller
sums over logically equivalent subsets of logical opera-
tors. Then, the third equality follows from the clean-
ing lemma: since a and b correspond to canonical mo-
ments, they must be fully contained in some supports
γa, γb ∈ Γ. For correctable noise, γa ∪ γb is a correctable
region. Thus, the union of the supports of a and b is fully
contained in γa∪γb, it must also be a correctable region.
By the cleaning lemma, we can choose the representative
l of the coset [l] such that it acts trivially on that region.
Then, a is a substring of ls iff it is a substring of s, and
the same holds for b. This finishes the proof of eq. (23).

We can summarize the discussion of the main text in
the following theorem:

Theorem 3. A Pauli channel P can be estimated up
to logical equivalence from the syndrome measurements
of a stabilizer code if P is correctable in the sense of
definition 1.

Note that while we focused on on stabilizer codes with
perfect measurements for simplicity, several generaliza-
tions of this result are possible. Measurement errors can
be incorporated using the framework of quantum data-
syndrome codes [35]. Furthermore, we can also consider
subsystem codes [36], which generalize stabilizer codes
by allowing for some non-commuting measurements. A
full account of these generalizations, including all proofs
that are omitted in the main text, is given in the ap-
pendix. The main theorem presented there might also
be interesting in contexts other than QEC.

V. CONCLUSION

We have shown that the measurements performed dur-
ing QEC contain enough information to estimate a large
class of phenomenological Pauli noise models up to logical
equivalence. Informally, as long as the code can correct
the noise, it can also be estimated from the syndrome
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measurements. This result opens up new characteriza-
tion possibilities since the previous results have focused
only on estimating physical channels. Our result applies
to data-syndrome codes and general subsystem codes,
which encompass most codes in the literature.

The focus of this work is on phenomenological noise
models. For quantum communication or storage, this
might be a reasonable assumption. In the context of
fault-tolerant quantum computing, however, full circuit
level noise models are more realistic than phenomeno-
logical ones, which introduces additional complications
already for decoding in the first place. A common ap-
proach to this problem is to consider approximate noise
models. For example, a minimum-weight perfect match-
ing decoder maps the actual noise to a simplified graph
with weighted edges [23, 37]. Here, our results apply
directly, and the edge weights can be estimated up to
logical equivalence by solving our equation system (18).

The situation is less clear if one is interested in more
details than such an effective noise model provides. In
this case, one might attempt to transfer our results using
a cut-off for late errors, following Delfosse et al. [38], or
using a mapping from circuit noise to subsystem codes,
as given in Refs. [39–41]. We think that our work can
serve as a basis for many possible research questions on
characterization in the context of QEC.
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APPENDIX

In this appendix, we give a self contained account of
our results in a generalized setting. The core arguments
are similar to the main text. The main difference is
that we distinguish between the set of accessible measure-
ments and the set of stabilizers (or gauge group), which
describes logical equivalence. Consequently, a more gen-
eral version of the cleaning lemma is needed. All proofs
omitted in the main text are also provided in this gener-
alized setting. Finally, we apply the result to the classes
of subsystem codes, which encompasses most quantum-
error correction codes that have been constructed, and
quantum data-syndrome codes, which allows for a treat-
ment of measurement errors.

Notation

We denote as [n] := {1, . . . , n} the set of the first n
positive integers. The field with two elements is denoted
F2. For a statement Q, we denote with [Q] the Iverson
bracket of Q, which takes the value 1 if Q is true and
0 if Q is false. The powerset of a set A is the set of all
subsets of A, including the empty set, and it is denoted
as 2A. We denote the four Pauli matrices as I =

(
1 0
0 1

)
,

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. We also use

I for the generic identity matrix, or a generic identity
element of a group.

1. Mathematical background

For the discussions of stabilizer quantum-error correc-
tion, some background on the Pauli group will be use-
ful. The n-qubit Pauli group Pn is the group generated
by tensor products of Pauli operators and the imaginary
unit, i.e.,

P := {α
n⊗

i=1

ei : ei = {I,X, Z, Y }, α ∈ {±1,±i}} . (24)

Since phases can often be disregarded, we also work with
the effective Pauli group

P
n := P/{±1,±i} . (25)

This in an Abelian group.
In QEC, errors and stabilizer measurements are often

described via an isomorphism P
n → F2n

2 and a scalar
product on F2n

2 . We will not make use of this identifi-
cation, and instead express these concepts using group
characters of finite Abelian groups. We give a short in-
troduction here and collect the most important facts for
our purposes. A more thorough description can be found
for example in Refs. [32, 42].

A group character of a finite Abelian group A is a
group homomorphism

χ : A → S1 , (26)
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where S1 := {c ∈ C : |c| = 1} is the unit circle. Group

characters themselves form a group Â under pointwise
multiplication, called the dual group of A. Pontrya-
gain duality guarantees that for any locally compact and

hence for any finite Abelian group, Â is isomorphic to
A. Thus, we can express group characters by elements
of the original group. This notion can be expressed by a
bicharacter. In the context of QEC, bicharacters express
measurement outcomes of stabilizer measurements.

Definition 4. A bicharacter of a finite Abelian group A
is a map

〈 · , · 〉 : A×A → S1 , (27)

such that the map a 7→ 〈a, · 〉 is an isomorphism of A and

Â.

This is similar to a scalar product, although we often
have 〈a, a〉 = +1. Thus, we also have a notion of “or-
thogonal complement”, which is the annihilator. For a
subgroup B ⊆ A, we define the annihilator of A as

B⊥ = {a ∈ A : 〈a, b〉 = +1∀b ∈ B} . (28)

We always have (B⊥)⊥ = B. Furthermore, taking the
annihilator reverses the order of inclusions. That is, for
any two subgroups B,C ⊆ A, if B ⊆ C, then C⊥ ⊆ B⊥.
In contrast to a scalar product, it is possible that B ⊆
B⊥.

Using the bicharacter 〈 · , · 〉, we can define the Fourier
transform of a map f : A → C as

F [f ] : A → C

F [f ](a) =
∑

b∈A

〈a, b〉f(b) . (29)

This is an invertible transformation with inverse

F
−1[f ] : A → C

F
−1[f ](a) =

1

|A|
∑

b∈A

〈b, a−1〉f(b) . (30)

Furthermore, we will use the convolution of two maps
f, g : A → C, which is defined as

(f ∗ g)(a) =
∑

b∈A

f(b)g(ab−1) . (31)

As expected, convolutions are mapped to products by the
Fourier transform, i.e.

F [f ∗ g] = F [f ] · F [g] . (32)

For any subgroup B ⊆ A, we denote with ΦB the in-
dicator function of B, i.e. ΦB(a) = 1 if a ∈ B and
ΦB(a) = 0 otherwise. Furthermore, we denote the scaled
indicator function as UB := 1

|B|ΦB , which is the uniform

probability distribution on B. It can be shown that the
following duality holds.

Lemma 5 (Ref. [32]). For any subgroup B ⊆ A of an
Abelian group A:

F [UB ] = ΦB⊥ (33)

F [ΦB ] = |A|UB⊥ . (34)

All important groups considered in this work have a
direct product structure, i.e.

A =
n∏

i=1

Ai . (35)

We will then always use the product bicharacter on A,
which is given by the product of bicharacters on the Ai,

〈a, b〉 =
n∏

i=1

〈ai, bi〉 (36)

for any a = (a1, a2, . . . , an) ∈ A and similar b. The
support of an element a ∈ A is

supp(a) = {i ∈ [n] : ai 6= I} . (37)

We will say that a is supported on a region R ⊆ [n] if
supp(a) ⊆ R. The corresponding subgroup to a region R
is denoted as AR :=

∏
i∈R Ai. This is naturally embed-

ded as a subgroup in A. The complement of R ⊆ [n] is
denoted as Rc = [n]\R. If we use the product bicharacter
on A, we have that

A⊥
R = ARc . (38)

Given an element a ∈ A, we denote with aR its restriction
to R, i.e. aR = a on R and aR = 1 on Rc.

Finally, we will be interested in functions with local
support. Given a function fR : AR → C, there are two
important ways to extend it to a function f : A → C. The
first is to set f(a) = 0 if a 6∈ AR. This is called the impul-
sive extension. The second is the to set f(a) = fR(aR),
which is called periodic extension. These two possibilities
transform into each other under Fourier transform.

Lemma 6 (Ref. [32]). Let fR : AR → C and gR : AR →
C be its Fourier transform (on AR). Let f be the impul-
sive extension of fR and g be the periodic extension of
gR. Then F [f ] = g.

We will mainly work with three groups. These are
the effective Pauli group P

n, the group of bit-strings Fm
2 ,

and their direct product G
n,m := P

n × Fm
2 . Since all

elements of these groups have order two, bicharacters of
these groups will only take values ±1.

For P
n, the bicharacter encodes commutation rela-

tions, and is also called scalar commutator,

〈a, e〉 =
{
+1, a and e commmute in Pn

−1, a and e anti-commmute in Pn
. (39)
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Note that this is the product bicharacter when we view
P
n =

∏n
i=1 P

1. On Fm
2 , we use the bicharacter that is

related to the usual scalar product,

〈e, f〉 = (−1)
∑

i
eifi , (40)

and again this coincides with the product bicharacter.
Finally, on G

n,m, we directly use the product bicharacter

〈(a, e), (b, f)〉 = 〈a, b〉 · 〈e, f〉 . (41)

2. Setting and main result

Now, we state and prove our main result in an ab-
stract setting first. For ease of exposition, we still stick
to terminology close to that of QEC.

We consider the group A =
∏n

i=1 Ai, where each Ai

is either P or F2. It comes equipped with the product
bicharacter. Both errors and measurements are described
as element of A.

We are interested in estimating an error channel de-
scribed by a probability distribution P : A → [0, 1].
For this purpose, we assume that we have access to a
group of measurements M ⊆ A. The assumption that
the measurements from a group is relatively weak. In the
context of QEC, we measure a set of generators and all
other outcomes are defined by products of the generator
outcomes. We will perform multiple rounds of measure-
ments, and assume that before each round an indepen-
dent error e ∈ A occurs. The outcome of measurement
s ∈ M is described by 〈s, e〉. We will refer to this as
a phenomenological noise model, since errors are inde-
pendent and identically distributed between rounds and
no new errors arise during the round of measurements.
Errors that give a +1 outcome for every measurement
s ∈ M are called undetectable. The set of undetectable
errors is exactly U = M⊥. Furthermore, we will only
be interested in estimating the channel up to some log-
ical equivalence, described by a subgroup G ⊆ A which
we will call gauge group. An overview of these groups
and their relations is give in fig. 1. Errors differing only
by an element s ∈ G are considered logically equivalent.
More precisely, we are interested in estimating the logical
channel PL which is obtained by averaging over cosets of
G , resulting in

PL : A → [0, 1] ,

PL(e) =
1

|G |
∑

s∈G

P (es) .
(42)

In the setting of stabilizer codes, PL describes the ac-
tion of the noise on the encoded information. The logical
channel can be conveniently expressed as a the convolu-
tion

PL = P ∗UG (43)

of P with the uniform distribution UG . Complementary
to the gauge group, we define L := G ⊥ and call this the

G U

L M

⊥

⊆

⊇

⊥

Figure 1. An overview over the abstract setting, described by
four groups. The main ingredients are a group of measure-
ments M and a gauge group G . The gauge group describes
which errors are considered logically trivial. The annihilator
of M is the group of undetectable errors U = M

⊥, and the
annihilator of G is the group of logical operators L = G

⊥.
The groups fulfill the dual inclusions G ⊆ U and M ⊆ L .

set of logical operators. Finally, we will require that these
sets are related by the dual inclusion relations G ⊆ U

and M ⊆ L (one implies the other by taking annihila-
tors). The condition G ⊆ U means that logically equiv-
alent errors must have the same measurement outcomes.

In this setting, our main result can be stated as follows:

Theorem 7. Let G ,M ⊆ A be a gauge group and mea-
surement group fulfilling G ⊆ M⊥. If the error channel
P is correctable in the sense of definition 9, then the
logical channel PL defined by the gauge group G can be
uniquely estimated from the expectations of the measure-
ments M .

To recover the result for stabilizer codes, as treated
in the main text, we set A = P

n. The set of measure-
ments M and the gauge group G are then identical, both
equal to the stabilizer group of the code. Consequently,
the undetectable errors U and the logical operators L

also coincide, and are both given by the logical operators
of the code. Later, we will also explain how to special-
ize our setting to the more general classes of subsystem
codes (appendix 9) and quantum data-syndrome codes
(appendix 10) with phenomenological noise.

3. Moments

We start the proof of theorem 7 by describing the esti-
mation problem in Fourier space. We define the moments

E = F [P ] . (44)

Since the Fourier transform is invertible, the set of all
moments (E(a))a∈A fully characterizes the channel P .
Furthermore, for an element s ∈ M , E(s) is the expecta-
tion of the measurement of s in repeated rounds. Thus,
the moments corresponding to M can be obtained from
our measurements.

The logical channel can also be fully characterized by
a subset of moments. Applying a Fourier transform to
eq. (43) and using lemma 5 results in

F [PL] = E · ΦL . (45)

Thus, to obtain the logical channel, we have to compute
all the moments corresponding to L , while we can only
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measure moments corresponding to M . We will see that
this is indeed possible, assuming that the error channel is
not correlated over too large regions. These assumptions
on the noise are formalized in the next section.

4. Local noise

To formalize the assumption of limited correlations,
we assume the total error in each round is a product of
many local errors that occur independently. The noise
then factorizes into a set of local channels, characterized
by the corresponding set of local supports Γ ⊆ 2[n]. For
each γ ∈ Γ, there is a local channel Pγ : Aγ 7→ [0, 1]. We
extend the local channels impulsively to A, i.e. we set
Pγ(e) = 0 if e 6∈ Aγ . The total error distribution is then
given by

P = ˚γ∈Γ Pγ . (46)

Denoting Eγ = F [Pγ ], we obtain

E =
∏

γ∈Γ

Eγ . (47)

Here, each Eγ must be extended periodically from Aγ to
A, due to lemma 6. More explicitly, we have Eγ(e) =
Eγ(eγ).

We assume that the individual regions are small
enough to not support logically non-trivial undetectable
errors. To formalize this, we define a notion of correctable
region, which is inspired by the setting of topological
codes [34].

Definition 8. A region R ⊆ [n] is called correctable if
every undetectable error e ∈ U supported on R is logi-
cally trivial, i.e. e ∈ G .

Using this definition, we can state our assumptions on
the noise.

Definition 9. A channel of the form (46) is called cor-
rectable if the following two conditions are fulfilled:

1. For all γ1, γ2 ∈ Γ, γ1 ∪ γ2 is a correctable region.

2. All moments are positive, i.e. E(a) > 0 for all a ∈
A.

The first condition states that correlations can not be
so large that uncorrectable errors occur frequently. In-
stead uncorrectable errors should only be allowed to oc-
cur as a combination of many smaller independent er-
rors. We will later relate this condition to the distance of
a code. The second condition essentially states that the
total error rate is not too large. A sufficient conditions
for this is P (I) > 1

2 , which is guaranteed to be fulfilled if

Pγ(I) >
1
2 for all γ ∈ Γ.

5. Canonical moments

The factorization (47) can be used to find a more com-
pact characterization of the moments E. Intuitively, we
note that the moment E(a) captures correlations across
all substrings of a. In particular, E(a) can be non-trivial
even if a is not contained in a support γ ∈ Γ of our
noise model. We will find an alternative set of moments
F : A → R, called canonical moments, that only capture
correlations across their whole support. In particular, the
canonical moments fulfill F (a) = 1 if a is not contained
in a support. Thus, a small set of low weight canonical
moments is sufficient to fully characterize the channel.

Formally, we define the canonical moments by a
Möbius inversion. Möbius inversion is a generalization
of the inclusion-exclusion principle of combinatorics [33].
Essentially, we divide out correlations on substrings of a
from the moment E(a), while being careful not to dou-
ble count any substrings. This leaves only correlations
across the full support. In order to do this, we consider
A as a partially ordered set (poset), where the ordering
is the substring relation.

Definition 10 (substring ordering). We say a ∈ A is
a substring of b ∈ A if for all i ∈ [n] either ai = I or
ai = bi. In this case we write a ≤ b.

We will need the Möbius function of this poset. For
our purposes, the Möbius function is defined to be the
function fulfilling the following inversion theorem, which
can be found e.g. in Ref. [33, Theorem 5.5] or [43] in case
of the multiplicative version.

Definition 11 (Möbius function and Möbius inversion).
Let S be a partially ordered set. The Möbius function µ
of S is the function µ : S × S 7→ R such that for any two
functions f, g : S 7→ R,

f(t) =
∏

s≤t

g(s) , (48)

if and only if

g(t) =
∏

s≤t

f(a)µ(s,t) . (49)

In our setting, we obtain the following.

Lemma 12. The Möbius function of (A,≤) is given by

µ : A×A → R ,

µ(b, a) =

{
(−1)|a|−|b| if b ≤ a ,

0 otherwise.

(50)

Proof. For any given a ∈ A, the poset {b ∈ A : b ≤ a}
is isomorphic to the poset {s ⊆ supp(a)} ordered by set
inclusion. The Möbius function of this is well known to
be µ(s, t) = (−1)|t|−|s|. Alternatively, one can use [33,
Proposition 5.4] and induction.
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Now, we define the canonical moments as

F (a) :=
∏

b≤a

E(b)µ(b,a) . (51)

This definition essentially corresponds to the canonical
factorization of a factor graph describing the moments,
compare Refs. [44, 45]. The canonical moments have two
important properties.

Lemma 13 (Properties of canonical moments).

1. The moments can be expressed by the canonical mo-
ments as

E(a) =
∏

b≤a

F (b) . (52)

2. For any a ∈ A such that a is not contained in any
support, i.e. supp(a) 6⊆ γ for all γ ∈ Γ, we have
F (a) = 1.

Proof. The first statement is given by the definition 11
of the Möbius function.

Now, we prove the second statement. First, from the
definition (51) of the canonical moments F and the de-
composition (47) we obtain

F (a) =
∏

b≤a

∏

γ∈Γ

Eγ(b)
µ(b,a) =

∏

γ∈Γ

∏

b≤a

Eγ(b)
µ(b,a) . (53)

We can evaluate the second product by splitting it into
products over B = {b ∈ Aγ : b ≤ a} and Bc = {c ∈
Aγc : c ≤ a} as

∏

b≤a

Eγ(b)
µ(b,a) =

∏

b′∈B

∏

c′∈Bc

Eγ(b
′)µ((b

′,c′),a)

=
∏

b′∈B

Eγ(b
′)
∑

c′∈Bc µ((b′,c′),a) ,

where we have used the periodicity Eγ(b) = Eγ(bγ) and
have denoted b = (b′, c′) ∈ A = Aγ × Aγc . From the
explicit expression (50) for the Möbius function we obtain

∑

c′∈Bc

µ((b′, c′), a) = µ(b′, a)
∑

c′∈Bc

(−1)|c
′|

= µ(b′, a)
∑

0≤w≤|γc∩supp(a)|
(−1)|c|

(|γc ∩ supp(a)|
w

)

= µ(b′, a) [|γc ∩ supp(a)| = 0] = µ(b′, a) [supp(a) ⊆ γ] ,

where in the second equality we sorted the elements of
Bc by their weight, and the third equality follows from
the fact that

∑n
i=0(−1)i

(
n
i

)
= [n = 0].

Putting everything together proves lemma 13.

We conclude that E and hence the physical channel P
is characterized by the set of low weight canonical mo-
ments corresponding to

Γ′ := {a ∈ A : ∃γ ∈ Γ such that supp(a) ⊆ γ} . (54)

Indeed, we can express the regular moments by the equa-
tion system

E(a) =
∏

b∈Γ′:b≤a

F (b) . (55)

Since we can measure E(s) for s ∈ M , the estimation
problem can now be phrased in terms of these equations.

6. Rank of the coefficient matrix

Since we assumed that all moments are positive,
eq. (55) corresponds to a linear system after taking log-
arithms. This linear system can be compactly expressed
by a coefficient Matrix D, whose rows are labeled regu-
lar moments and whose columns are labeled by canonical
moments. For a ∈ A and b ∈ Γ′, the corresponding entry
of D is

D[a, b] =

{
1 b ≤ a

0 otherwise
. (56)

In particular, the measurements we can perform are char-
acterized by the submatrix DM , whose rows are labeled
by element of M , and the logical channel is similarly
characterized by the submatrix DL . Note that since
M ⊆ L , DM is a submatrix of DL . The estimation
problem can be solved if the rows of DL are linearly
dependent on the rows of DM .

Based on these considerations, to proof theorem 7, we
need to show

rank(DM ) = rank(DL ) (57)

or equivalently

rank(DT
MDM ) = rank(DT

LDL ) . (58)

To show eq. (58), we first reduce it to a counting prob-
lem. From the definition (56) of D, we obtain that

DT
MDM [a, b] = |{s ∈ M : a ≤ s and b ≤ s}| , (59)

and analogously for DL . The advantage of this formu-
lation is that we only need to consider global properties
of groups M and L , but not the specific form of their
elements. We will prove that DT

M
DM ∝ DT

L
DL , i.e.

that

|{s ∈ M : a ≤ s and b ≤ s}|
= α|{l ∈ L : a ≤ l and b ≤ l}| , (60)

for a constant α independent of a, b.

7. A general cleaning lemma

Our proof of eq. (60) relies on an abstract variant of the
cleaning lemma which was recently derived by Kalachev
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and Sadov [29]. The original cleaning lemma was for-
mulated for stabilizer codes in [34]. It states that any
correctable region can be “cleaned” of logical operators,
i.e. any logical operator has a representative that it is
supported outside of this correctable region. Since all
logical operators arise from their representatives by mul-
tiplication with stabilizers, this means that on each cor-
rectable region, the group of logical operators and the sta-
bilizer group look essentially identical. This then solves
the counting problem (60).

We will derive a similar result in our more general set-
ting, however the specifics are a bit different. For stan-
dard stabilizer codes, the gauge group G and the group
of measurements are both given by the stabilizer group
S . Then S ⊆ S ⊥ = L , and the cleaning lemma is
then a statement about the quotient group L /S . Since
in general, the gauge group and the measurements do
not coincide, the situation is more complicated. Instead
of the inclusion S ⊆ L , we will consider the dual in-
clusions G ⊆ U and M ⊆ L . The cleaning lemma will
then be a statement about L /M . One can also find a
similar statement about U /G .

We start with the abstract version of the cleaning
lemma mentioned above. Translated to our setting, it
states the following.

Lemma 14 (abstract cleaning lemma [29]). For any
three subgroups η, ξ and α of an Abelian group A such
that ξ ⊆ η⊥, we have

|(η⊥ ∩α)/(ξ ∩α)| · |(ξ⊥ ∩α⊥)/(η ∩α⊥)| = |ξ⊥/η| . (61)

Proof. This follows from Theorem 3.10 of [29], using
the following translation. The lattice L is the lattice
of subgroups of A, where the join of two subgroups is
the subgroup generated by their union, and the meet of
two subgroups is their intersection. The grading is the
Q+-grading given by the size of a group. The quasi-
complementation † is the annihilator ⊥. This is similar
to the setting of [29][Section 5.3].

As a corollary, we obtain the following “concrete” clean-
ing lemma.

Lemma 15 (cleaning lemma). Let R ⊆ [n] be a cor-
rectable region. Then every coset [l] ∈ L /M has a repre-
sentative l that has no support on R, i.e. supp(l)∩R = ∅.

In order to prove this statement, we make use of a
simple technical lemma.

Lemma 16. Let η and α be subgroups of an Abelian
group A and ξ ⊆ η. Then there is a canonical embedding

(η ∩ α)/(ξ ∩ α) → η/ξ (62)

Proof. The embedding is defined by mapping the equiv-
alence class [a] ∈ (η ∩ α)/(ξ ∩ α) to [a] ∈ η/ξ. This map
is well-defined: If [a] = [b] in (η ∩α)/(ξ ∩α), then a = bc
with c ∈ (ξ ∩ α) ⊆ ξ, and thus [a] = [b] in η/ξ. Now we
show injectivity. If [a] = 1 in η/ξ, then a ∈ ξ. Since we
also have a ∈ α by definition, it follows a ∈ ξ ∩ α, and
thus [a] = 1 in (η ∩ α)/(ξ ∩ α).

Proof of lemma 15. Since G ⊆ U = M⊥, we can apply
the abstract cleaning lemma 14 with η = M , ξ = G and
α = AR. We obtain

|(U ∩AR)/(G ∩AR)| · |(L ∩ (AR)
⊥)/(M ∩ (AR)

⊥)|
= |L /M | .

Since R is correctable, the first term is 1. Thus,

|(L ∩ (AR)
⊥)/(M ∩ (AR)

⊥)| = |L /M | . (63)

By lemma 16, the group on the left-hand side is embed-
ded in the group on the right hand side. Thus this equa-
tion implies that they are actually equal. Since we use
the product bicharacter on A, (AR)

⊥ = ARc . Thus any
element [l] ∈ L /M has a representative l ∈ L ∩ (ARc),
i.e. a representative that has no support on R.

8. Cleaning up

Using the cleaning lemma 15, we can now finish the
proof of eq. (60), and thus of theorem 7, using similar
arguments to the stabilizer code case.

Proof of theorem 7. Let a, b ∈ Γ′, i.e. a and b correspond
to non-trivial canonical moments. Then we have,

|{l ∈ L : a ≤ l and b ≤ l}|
=

∑

l∈L

[a ≤ l and b ≤ l]

=
∑

[l]∈(L /M )

∑

s∈M

[a ≤ ls and b ≤ ls]

=
∑

[l]∈(L /M )

∑

s∈M

[a ≤ s and b ≤ s]

= |L /M | · |{s ∈ M : a ≤ s and b ≤ s}| ,

(64)

where we have used the following steps. In the second
equality, we split the sum into a sum over cosets [l] of
M , where each coset is described by a representative
l ∈ L . The third equality used the cleaning lemma 15 in
the following way: By the properties of Γ′ from eq. (16),
the support of a and b must be contained in supports
γa, γb ∈ Γ. Then, by the assumption that the noise is
correctable (definition 9), supp(a) ∪ supp(b) must be a
correctable region. Thus, by lemma 15, we can always
choose the representative l such that it has no support
on supp(a)∪supp(b). Then the substring relations a ≤ ls
and b ≤ ls are only determined by s. This finishes the
proof of theorem 7.

We will now discuss some specializations of this the-
orem for different classes of QEC codes. The case of
stabilizer codes was already treated in detail in the main
text. We can in fact treat even more general classes of
codes.
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9. Subsystem codes

Subsystem codes [31, 36] are an important generaliza-
tion of stabilizer codes. We will explain the basic prin-
ciples following [46]. A subsystem code can be viewed
as a stabilizer code where some of the logical qubits
are not used to encode information. The correspond-
ing logical operators can be measured without destroy-
ing the encoded information. The primary advantage is
that this can often lead to stabilizer measurements of
lower weights. Furthermore, some fault-tolerant schemes
are naturally described in the language of subsystem
codes [46]. Finally, the effect of circuit noise can also
be expressed in the language of subsystem codes [39–41].
Thus, there is some hope that the following results can
also be used to treat circuit noise models instead of phe-
nomenological noise models for stabilizer codes.

A subsystem code can be described by a gauge group
G ⊆ P

n, whose elements act trivially on the encoded
information. The gauge group contains the stabilizers as
well as the logical operators that only act on the unused
logical qubits. Unless the code is a standard stabilizer
code, G is not Abelian (when viewed as a subgroup of
Pn). In the effective Pauli group, this can be expressed
as G 6⊆ G ⊥. The stabilizer group is then the center of
the gauge group in Pn. Expressed in the effective Pauli
group:

S := G
⊥ ∩ G . (65)

As for stabilizer codes, error detection is performed by
measuring the stabilizer group in each round, resulting
in a set of ±1 outcomes called the syndrome. This can
be done by either measuring a set of generators of S , or
by splitting the stabilizers into products of possibly non-
commuting gauge operators and measuring these gauge
operators. Since the gauge operators do not affect the
encoded information, the fact that these measurements
do not commute does not affect the encoded information,
and it might allow for measurements with lower weight
than the stabilizer generators.

Operators that affect the encoded information without
being detected are called (dressed) logical operators. The
set of such operators is given by Ld = S ⊥. If the op-
erators act only on the actual logical qubits, but not on
the discarded gauge logical qubits, then they are called
bare logical operators. The group of bare logical opera-
tors is Lb = G ⊥. As usual, the distance of the code is
defined as the smallest weight of an undetectable error
that non-trivially affects the logical information, i.e. as
the minimal weight of an element of Ld \ G .

We consider a subsystem code subject to phenomeno-
logical noise, where before each error correction round
an error e ∈ P

n occurs according to some distribution
P (e). Here, we assume perfect measurements. In each
round, the syndrome of the data error that was accumu-
lated over all previous rounds is measured, and thus the
errors in different rounds are not independent. However,
if we consider the syndromes relative to the syndrome

of the previous round, then we only detect the new er-
rors. The same effect is achieved by tracking the Pauli
frame, or by applying a correction between rounds that
returns the state to the code space. Thus, in each round
we can obtain the measurement outcomes 〈s, e〉 for each
s ∈ S . This means that set of available measurements
M is exactly the stabilizer group S .

To summarize, we can apply theorem 7 to subsystem
codes by setting G = G , M = S , U = Ld and L = Lb.
Note that eq. (65) implies the inclusion M ⊆ G ⊥, as
required by theorem 7. Furthermore, the definition of
distance implies that any region of size at most d − 1 is
correctable in the sense of definition 8. Thus, if the er-
ror distribution factorizes into independent channels Pγ ,

such that each support γ contains no more than ⌊d−1
2 ⌋

qubits, the first part of definition 9 is also fulfilled. If
furthermore Pγ(I) > 1

2 for all γ, then Eγ > 0 for all
γ and thus E =

∏
γ Eγ > 0. Then, the channel P is

correctable in the sense of definition 9. We obtain the
following corollary.

Corollary 17. Phenomenological data noise with error
rates smaller than 1

2 can be estimated up to logical equiv-
alence from the measurements of a subsystem code if the
noise is not correlated over more than half the distance
of the code.

10. Quantum data-syndrome codes

So far, we have only treated data errors and assumed
perfect measurements. Now, we will consider measure-
ment errors in a phenomenological noise model. A sim-
ple framework for this is provided by quantum data-
syndrome codes [35, 47], which allow for a unified treat-
ment of data and measurement errors. It should however
be noted that, while quantum data-syndrome codes cap-
ture a large class of fault-tolerant measurement schemes,
some adaptive schemes such as flag fault-tolerance [48]
are not easily described in this language. Since this sec-
tion is only concerned with phenomenological noise mod-
els, we do not take into account errors that happen dur-
ing the execution of the measurement circuits and error
propagation in these circuits.

To define a quantum data-syndrome code, we first
pick an underlying stabilizer code with stabilizer group
S ⊆ P

n. In each round, instead of just a set of genera-
tors, a larger set of redundant stabilizers g1, · · · , gm ∈ S

is measured. The simplest and most common case is to
simply repeat the measurements of the generators. More
generally, the redundant stabilizers can be chosen accord-
ing to a classical code, as described in [35]. An error can
then be described by a data error ed ∈ P

n and a measure-
ment error em ∈ Fm

2 , i.e. em[i] = 1 if the measurement
of gi returned the wrong outcome and em[i] = 0 oth-
erwise. The measurements of the generators, including
measurement errors, can be described by the extended
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parity check matrix

H =
[
G Im

]
, (66)

where the rows of G are the original stabilizers. That
is, each generator gi ∈ P is extended to an element fi =
(gi, î) ∈ G

n,m, where î is the i-th standard basis vector.
Then, the outcome of the measurement of fi if an error
e = (ed, em) ∈ G

n,m = P
n × Fm

2 occurred is exactly
given by 〈fi, e〉, using the bicharacter of Gn,m := P

n×Fm
2

(eq. (41)). The set of measurements we have access to is
thus the group generated by the extended stabilizers fi,

M := 〈f1, . . . , fm〉 . (67)

As always, the collection of measurement outcomes for
all s ∈ M is called the syndrome, and it can be obtained
by measuring the generators fi of M . The undetectable
errors U = M⊥ are exactly those that result in a trivial
syndrome.

Similarly to subsystem codes, the concepts of mea-
surements and stabilizers do not coincide. In fact, the
measurements do not corresponds to undetectable er-
rors, M 6⊆ U . Since errors differing by elements of M

do not have the same syndrome it follows that, in par-
ticular, they cannot be considered logically equivalent.
Instead, logical equivalence is still described by the sta-
bilizer group S ⊆ P

n of the underlying code, which we
view as a subgroup of Gn,m. The logical operators L are
those operators that map the codespace of the underly-
ing quantum code to itself, i.e. L := S ⊥, where the
annihilator is in G

n,m, not just in P
n. These groups then

fulfill the dual inclusion relations S ⊆ U and M ⊆ L .
Motivated by the discussion above, the distance of a

data-syndrome code is defined as the minimal weight of
an element of U \S [35]. Remember that a region R ⊆
[n+m] is correctable if there is no element of U \S that
is supported on R (definition 8). Thus, as expected, if
|R| < d, R is correctable.

Consider a phenomenological noise model where in
each round a new error e = (ed, em) occurs according to
a distribution P . If we were to always reset to the ground
state of our code between two rounds of measurements,
we could now directly apply theorem 7, setting G = S .
However, in a more realistic setting we want to preserve
the information between rounds and thus our measure-
ments will act on the accumulated data error in each
round and not just on the new error. Similar to the pre-
vious section, we can remedy this by considering the syn-
drome relative to the previous one. However, this will ef-
fectively propagate measurement errors between rounds.
If ad is the accumulated data error in a given round, am
the measurement errors in that round, and e = (ed, em)
is the new error occurring in the next round, then the
product of outcomes for the measurement s ∈ M is given
by

〈s, (ad, am)〉〈s, (ad, 0)(ed, em)〉 = 〈s, (ed, emam)〉 . (68)

Thus, effectively we measure the new data error ed
and the combined measurement error amem from both

rounds. Since the measurement errors are assumed to
be independent between rounds, the distribution P̃ of
(ed, amem) factorizes in the same way as P , but the
strength of measurement errors is increased. Here, it
is important that we divide the measurements into dis-
joint pairs of consecutive rounds such that the measure-
ment errors are also independent between each pair. By
theorem 7, as long as the original noise is correctable,
we can then estimate the adjusted distribution from the
syndrome measurements, up to logical equivalence.

Depending on how exactly error correction is per-
formed, P̃ might be the most relevant distribution. If
we are instead interested in the original error distribu-
tion P , we can also obtain this by post-processing as
follows. Denote as Pm the marginal distribution of P on
the measurement errors, i.e.

Pm(em) =
∑

ed∈Pn

P (ed, em) . (69)

We can write this as Pm = (P ∗ΦPn)·ΦF
m
2

, where we view

P
n and Fm

2 as subgroups of Gn,m. Since (Pn)⊥ = Fm
2 , we

have by lemma 5,

Em := F [Pm] = F [P ∗ΦPn ] ∗F [ΦF
m
2
]

=
(
E · |Gn,m|UF

m
2

)
∗|Gn,m|UPn

=
|Gn,m|2
|Pn||Fm

2 | (E · ΦF
m
2
) ∗ΦPn = |Gn,m|(E · ΦF

m
2
) ∗ΦPn .

Explicitly, this means that Em(ed, em) =
|Gn,m|E(0, em). Since the measurement errors are
independent between rounds, the adjusted distribu-
tion is given by P̃ = P ∗Pm. Thus, the moments of
the adjusted distribution are Ẽ := F [P̃ ] = E · Em.
We can obtain these up to logical equivalence, i.e.
we obtain Ẽ · ΦL , and are interested in the mo-
ments E · ΦL of the original logical channel. Since
G = S ⊆ P

n, we have Fm
2 ⊆ L = G ⊥. Thus, in

particular we have access to the moment Ẽ(0, em) for
any em ∈ Fm

2 , and by the above discussion we have

Ẽ(0, em) = E(0, em)Em(0, em) = 1
|Gn,m|Em(0, em)2.

Thus we can obtain the original moment for each
l = (ld, lm) ∈ L from the adjusted moments as follows:

E(ld, lm) =
Ẽ(ld, lm)

Em(ld, lm)
=

1√
|Gn,m|

Ẽ(ld, lm)√
Ẽ(0, lm)

. (70)

All in all we obtain the following corollary to theo-
rem 7.

Corollary 18. Phenomenological data and measurement
noise with error rates smaller than 1

2 can be estimated
from the measurements of a quantum data-syndrome code
up to logical equivalence if the noise is not correlated over
more than half the distance of the code.
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Using the signed Laplacian matrix, and weighted and hybrid graphs, we present additional ways
to interpret graphs as grid states. Hybrid graphs offer the most general interpretation. Existing
graphical methods that characterize entanglement properties of grid states are adapted to these
interpretations. These additional classes of grid states are shown to exhibit rich entanglement
properties, including bound entanglement. Further, we introduce graphical techniques to construct
bound entangled states in a modular fashion. We also extend the grid states model to hypergraphs.
Our work, on one hand, opens up possibilities for constructing additional families of mixed quantum
states in the grid state model. On the other hand, it can serve as an instrument for investigating
entanglement problems from a graph theory perspective.

I. INTRODUCTION

The realization that quantum entanglement can be
used as a resource [1] has garnered intense interest in the
study and characterization of entanglement. A funda-
mental problem is to determine whether a given quantum
state is entangled or separable – called the separability
problem [2]. It has been proven that determining whether
an arbitrary quantum system is separable is an NP-hard
problem [3, 4]. However, it can still be worthwhile to ex-
plore the problem in the context of some particular family
of quantum states instead of general states. In this pa-
per, we focus on several families of quantum states that
can be represented as combinatorial graphs, and deter-
mine entanglement properties of such states via graph
theoretic methods.

Interest in interpreting so-called graph Laplacians as
density matrices can be traced back to the work of Braun-
stein et at. [5], where it was shown that the normalized
signed Laplacian matrix of a graph can be interpreted as
a density matrix. This idea was refined by Lockhart et.
al. in [6, 7] by imposing a grid structure on graphs, called
grid-labelled graphs. We expand on this concept and pro-
vide additional interpretations of grid-labelled graphs as
quantum states, using various Laplacian matrices.

We first summarize the concept and properties of quan-
tum grid states. Grid states, introduced in [6], are mixed
quantum states described by simple graphs called grid-
labelled graphs. Note that these states are different from
grid states in [8]. The vertices in a grid-labelled graph
are arranged on a grid and are labelled with Cartesian
indices (i, j) row-wise from top-left to bottom-right. An
edge {(i, j), (k, l)} connecting vertices (i, j) and (k, l) is

interpreted as the state 1/
√
2(|ij〉 − |kl〉), called an edge

state. For example, Fig. 1(a) shows the vertex labelling
in a grid-labelled graph with the |φ−〉 = 1√

2
(|00〉 − |11〉)

Bell state. With this convention, the density matrix ρ(G)
of a grid state is defined as the equally weighted mixture
of all projectors onto edge states in the corresponding
grid-labelled graph G.

The (signed) Laplacian matrix of a grid-labelled graph,

(0,0)

(1,0)

(0,1)

(1,1)

(a) (b) (c)

FIG. 1. (a) L-graph of the
∣

∣φ−
〉

Bell state. The pairs of
integers indicate vertex indices. (b) A 3×3 cross-hatch graph,
and (c) its partial transpose.

with a suitable normalization, is identical to its corre-
sponding density matrix. In order to see this, remember
that the signed Laplacian matrix L of a graph on n ver-
tices is the n× n matrix defined as

L = D −A, (1)

whereD is the degree matrix and A the adjacency matrix
[9]. The degree matrix D is an n × n diagonal matrix,
in which each diagonal entry Dαα, where 1 ≤ α ≤ n,
indicates the number of edges connecting to vertex vα –
called the degree of vertex vα. The adjacency matrix A
is an n × n binary matrix such that if vertices vα and
vβ are connected by an edge, the matrix entry Aαβ is 1,
otherwise it is 0 [9].
We call the grid-labelled graphs from [6] L-graphs. The

degree criterion [5, 6] and the graph surgery procedure [6]
characterize entanglement properties of grid states corre-
sponding to L-graphs. The degree criterion is a graphical
method that can be used to verify if the density matrix of
an L-graph is positive under partial transpose. It makes
use of the concept of partial transpose of a graph. The
partial transpose of an L-graph G is another L-graph GΓ

such that an edge {(i, l), (k, j)} exists in GΓ if and only
if the edge {(i, j), (k, l)} exists in G.

Theorem 1 (Degree Criterion for L-graphs from [5, 6]).
The density matrix ρ(G) of an L-graph G is positive un-
der partial transpose if and only if D(G) = D(GΓ).

For example, the cross-hatch graph from [6], shown in
Fig. 1(b), satisfies D(G) = D(GΓ). The corresponding
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(a) G (b) GR
10

(c) GC
10

FIG. 2. (a) An L-graph G. (b) and (c) Graphs GR
10 and

GC
10 produced respectively by row and column surgeries on G

with vertex (1, 0) in orange as the selected isolated vertex. For
row surgery, all edges connected to vertex (1, 1) are removed
in the CUT step. As a result, the vertices (0, 0) and (0, 2)
get disconnected, and then get reconnected in the STITCH
step, which produces graph GR

10 in (b). Likewise, for column
surgery, all edges connected to vertex (0, 0) are removed. This
does not disconnect any path between vertices not in column
0. The STITCH step is therefore not necessary. The graph
GC

10 in (c) is the result.

density matrix is therefore positive under partial trans-
pose.
The graph surgery procedure [6] is a graphical method

that allows to verify entanglement using the range crite-
rion [10]. We restate the corollary of the range criterion
from [6] as it also is the basis for graph surgery proce-
dures presented in this paper.

Corollary 2 ([6]). If a rank r density matrix has less
than r product vectors in its range, then it is entangled.

Graph surgery involves performing a sequence of row
and column surgeries on an L-graph. Row surgery is car-
ried out by first selecting an isolated vertex, say (i, j), in
the L-graph and performing the “CUT” step, in which
all edges connected to vertices in row i are removed. This
is followed by the “STITCH” step, which reconnects the
path between every pair of vertices not in row i, if the
“CUT” step severed the path [6]. In column surgery, the
“CUT” and the “STITCH” steps are performed on the
vertices in column j. The graph produced by a row /
column surgery is denoted as GR

ij / GC
ij , where the super-

script indicates the type of surgery – R for row surgery
and C for column surgery, and the subscript ij denotes
the isolated vertex chosen for the surgery. In effect, row
/ column surgery produces a simpler graph with fewer
edges, unless vertices in the target row / column are all
isolated vertices. Figure 2 shows an example of a row
and a column surgery on an L-graph.
It was shown in [6] that any product vector in the range

of the density matrix ρ(G) of an L-graphG – and thereby
in the range of L(G) – must also be in the range of either
L(GR

ij) or of L(G
C
ij). Since G

R
ij and GC

ij are L-graphs, fur-
ther row / column surgeries can be performed on them,
and on the resulting graphs, and so on. Therefore, if iter-
ated graph surgery on an L-graph G always leads to the
empty graph GE , then any product vector in the range
of L(G) must also be in the range of L(GE), which is the
zero matrix. This is clearly a contradiction, which means
there are no product vectors in the range of L(G). And,
the corresponding density matrix is entangled according
to Corollary 2.

The degree criterion and the graph surgery proce-
dure connect entanglement properties of grid states to
structural properties of L-graphs. Together, they enable
the construction of bound entangled grid states. Fur-
thermore, genuine multipartite entanglement is found in
higher-dimensional grid states [6]. Such rich entangle-
ment properties raise further questions. Are there other
ways to interpret grid-labelled graphs as quantum states?
Would the states also exhibit entanglement properties
such as bound entanglement? Can the degree criterion
and the graph surgery procedure be extended to such
new interpretations of grid-labelled graphs? In this pa-
per, we investigate these questions using additional types
of Laplacian matrices. Specifically, the notion of grid-
states is extended using the signless Laplacian matrix,
and the weighted signed and signless Laplacian matri-
ces. These interpretations lead us to conceive hybrid
graphs, which represent density matrices that are mix-
tures of edge states corresponding to the signed and the
signless Laplacian matrices. For these new states, we
derive the analogous degree criteria and graph surgery
procedures, and use them to construct bound entangled
states. As a proof of concept, we also show that a degree
criterion can be derived for grid-labelled hypergraphs.

We largely follow the nomenclature from [6]. For clar-
ity, we occasionally prefix certain terms with the letter
symbols of corresponding Laplacian matrices. For exam-
ple, we call the grid-labelled graphs from [6] L-graphs.
Further, we make no distinction between Laplacian ma-
trices and density matrices when normalization is irrele-
vant. Similarly, since only bipartite quantum systems are
considered in this paper, the partial transpose of a matrix
M is denoted by MΓ without loss of generality, as it is
only used in relation to the Peres-Horodecki (also PPT)
criterion [11], which does not depend on the transposed
subsystem. We write a graph as G = (V,E), where V
and E are the vertex and the edge sets. Throughout this
paper, we always assume that the density matrices are
normalized. Additionally, depending on the context, we
may use both a boldface letter or the braket notation for
representing vectors. For example, for product vectors,
the braket notation is the clearer notation.

With the following observation it is possible to check
if the degree criterion can be adapted to a new interpre-
tation of grid-labelled graphs.

Observation 3. Let G be a grid-labelled graph on n ver-
tices and ρ(G) be the corresponding density matrix via
any of the interpretations mentioned previously. If a vec-
tor v with all its components equal to ±1 (henceforth
v ∈ {−1, 1}n) exists in the kernel of ρ(GΓ), and if ρ(G)
is separable, then D(G) = D(GΓ).

The observation is proven in Appendix A.
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(a) G1 (b) G2

FIG. 3. (a) Graph G1. (b) Graph G2. Graphs G1 and G2

are partial transposes of each other.

II. Q-GRID STATES

In this section, grid-labelled graphs are interpreted
with the signless Laplacian matrix. The signless Lapla-
cian of a graphG is defined as Q = D+A, whereD and A
are the degree and the adjacency matrices of G. Normal-
ized, the signless Laplacian is a proper density matrix.
We call the quantum states described by the normal-
ized signless Laplacian Q-grid states. The correspond-
ing graphs are called Q-graphs. Graph features such as
grid structure and vertex labelling are unchanged for Q-
graphs, while the interpretation of edges {(i, j), (k, l)}
changes. A Q-edge state has the form 1/

√
2(|ij〉+ |kl〉).

The density matrix of a Q-grid state represented by a
Q-graph G = (V,E) is defined as

ρQ(G) =
1

|E|
∑

e∈E

|e〉〈e| = 1

|E|Q(G), (2)

where {|e〉} are the Q-edges states of edges in E. The
notion of partial transpose of L-graphs in [6] is directly
applicable to Q-graphs because it does not depend on the
sign of the Laplacian matrix.
In the following, we adapt the degree criterion and the

graph surgery procedure to Q-graphs. We use Observa-
tion 3 to identify Q-graphs for which the degree criterion
is applicable. The observation requires that for aQ-graph
G on n vertices the signless Laplacian Q(GΓ) of its par-
tial transpose graph must have a vector v ∈ {−1, 1}n in
its kernel. This is only fulfilled for bipartite graphs (see
Lemma B.5). Therefore, we require this condition on the
partial transpose of the graph. Remember that a graph is
bipartite if its vertex set can be divided into two disjoint
subsets such that no edge in the graph connects vertices
in the same subset.

Theorem 4 (Degree Criterion for Q-graphs). Let G be a
Q-graph. If ρQ(G) is separable and GΓ is bipartite, then
D(G) = D(GΓ).

The proof of Theorem 4 is found in Appendix B. The
degree criterion for Q-graphs, like its counterpart for L-
graphs, is necessary and sufficient for 2 × 2 and 2 × 3
systems, due to the PPT criterion. The bipartite con-
dition for the graph transpose in the degree criterion
for Q-graphs has an important implication. There ex-
ist grid-labelled graphs that, if interpreted as Q-graphs,
are separable, but are entangled if interpreted as L-
graphs. For example, the graphs G1 and G2 in Fig. 3, if
treated as L-graphs, represent entangled states because

(a) G (b) GR
11

(c) GC
11

FIG. 4. Vertices are colored in black and white to show
that the graphs are bipartite. Then vertex chosen for graph
surgery is indicated in orange. Solid and dashed edges indi-
cate Q- and L-edges, respectively. (a) Q-graph G. (b) Graph
GR

11. The CUT step splits the connected component with ver-
tices (0, 0), (0, 1), and (1, 0). Since vertices (0, 0) and (0, 1)
are in the same partition, it is not possible to reconnect them
with a Q-edge. So an L-edge is used. (c) Graph GC

11.

D(G1) 6= D(G2). If instead both are treated asQ-graphs,
G1 still represents an entangled state because G2 is bi-
partite and D(G1) 6= D(G2). On the other hand, the
degree criterion is not applicable to G2 because its par-
tial transpose G1 is not bipartite. It is easily verified that
the density matrix ρQ(G2) is separable.
We now extend the graph surgery procedure to Q-

graphs. We call graph surgery on Q-graphs Q-surgery.
To understand Q-surgery, we need the concept of con-
nected components. A connected component of a graph
is a subgraph that has a path between any two of its
vertices, and no paths between any of its vertices and
the remaining vertices of the original graph. An isolated
vertex trivially satisfies the definition and is considered
a connected component. For example, the graph G1 in
Fig. 3 has two connected components and the graph
G2 has one. Like L-surgery, Q-surgery is a sequence of
row and/or column surgeries. For simplicity, Q-surgery
is only defined for bipartite Q-graphs. Row surgery is
performed as follows:

• CUT: Select an isolated vertex (i, j) and remove all
edges attached to vertices in row i.

• STITCH: If the CUT step splits any connected
component and vertices in the split constituents,
excluding the ones in row i, all belong to the
same partition, reconnect the constituents with
L-edge(s). Otherwise, reconnect the constituents
with Q-edge(s).

Note that in the STICH step, if Q-edge(s) are used for
reconnection, each Q-edge must connect vertices in op-
posing partitions.
Likewise, column surgery is performed on vertices in

column j. The graph resulting from a row/column
surgery on vertex (i, j) is denoted as GR

ij / GC
ij .

An iteration of row/column surgery on an L-graph al-
ways produces an L-graph. In contrast, the analogous
case is not necessarily true for Q-graphs. Suppose a con-
nected component of a Q-graph split in the CUT step is
reconnected in the STITCH step with Q-edge(s), while
another split connected component is reconnected with
L-edge(s). The resulting graph is then not a Q-graph
because it has both L- and Q-edges in it. Nonetheless,
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it still holds for Q-graphs that any product vector in the
range of the density matrix of the original Q-graph must
be in the range of the density matrix of the graph pro-
duced after an iteration of a row and column surgery.
This is formalized in the following observation.

Observation 5. Let G be a bipartite Q-graph on n ver-
tices with an isolated vertex (i, j). If a product vector
|µ ν〉 ∈ R[ρQ(G)], where R denotes the range, then

• |µ ν〉 ∈ R[ρQ(G
R
ij)] or R

[
ρL(G

R
ij)

]
, or

• |µµ〉 ∈ R
[
ρQ(G

C
ij)

]
or R

[
ρL(G

C
ij)

]
, or

• |µ ν〉 ∈ R [ρ(G′)],
where G′ is a hybrid graph (see Section IV).

The proof of Observation 5 is found in Appendix B.
An example of row and column surgeries on a Q-graph
is shown in Fig. 4. With Observation 5, Q-surgery, like
L-surgery, can be used in connection with Corollary 2.
Therefore, if Q-surgery on aQ-graph always produces the
empty graph, the associated density matrix is entangled.
In general, the Q- and L-grid states of the same grid-

labelled graph are not unitarily equivalent. In the follow-
ing observation, we identify a condition when that is the
case.

Observation 6. Let G be a grid-labelled graph. If G is
not bipartite, then ρL(G) and ρQ(G) are not unitarily
equivalent.

A proof of Observation 6 is given in Appendix B.

III. GRID STATES CORRESPONDING TO

WEIGHTED GRAPHS

Weighted graphs generalize the notion of edges in
graphs and allow non-zero, positive weights to be asso-
ciated with each edge in the graph [12]. In this section,
the weighted signed and signless Laplacian matrices are
interpreted as quantum states that correspond to the re-
spective weighted L- and Q-graphs.
Edge states in a weighted L- or a Q-graph have the

same form as in their unweighted counterparts. However,
the density matrix is defined as

ρ(Gw) =
1∑
ewe

∑

e∈E

we |e〉〈e| (3)

where Gw is a weighted grid-labelled graph, {|e〉} are
the edge states of edges in Gw, and {we} the respec-
tive non-zero, positive edge weights. If the edges denote
L-edge states (Q-edge states), the density matrix is the
normalized signed (signless) Laplacian of the weighted
graph. The signed and the signless Laplacian matrices of
weighted graphs are defined as L = D−A andQ = D+A,
respectively. The degree of a vertex in a weighted graph
is the sum of edge weights of all edges that connect to
it, and the degree matrix D is a diagonal matrix with
degrees of vertices as its diagonal entries. Likewise, the
adjacency matrix A also accounts for edge weights. The

matrix entry Aαβ is wαβ if vertices vα and vβ are con-
nected by an edge weighted wαβ , otherwise it is 0 [12].
Notice that in an unweighted graph all edge weights are
implicitly 1.
The edges in the partial transpose graph GΓ of a

weighted grid-labelled graph G carry the weights of the
corresponding edges in G. The degree criteria and the
graph surgery procedures on unweighted L- andQ-graphs
directly apply to weighted graphs. Lemma 7 justifies this
claim.

Lemma 7. If the vertex and the edge sets of two weighted
L-graphs (resp. Q-graphs) are identical, their signed
(resp. signless) Laplacians have identical kernels.

The proof of Lemma 7 is found in Appendix C. With
Lemma 7 and Observation 3, the degree criteria for un-
weighted L- and Q-graphs are also valid for weighted L-
and Q-graphs. Likewise, L- and Q surgeries also directly
apply to weighted graphs. Since Laplacian matrices are
hermitian, Lemma 7 implies that Laplacians of weighted
graphs with identical vertex and edge sets have identical
ranges. This means if graph surgery on an unweighted
L- or Q-graph always yields the empty graph, it must
be that graph surgery on any other weighted graph with
the same vertex and edge sets must also always yield the
empty graph. Therefore, edge weights are irrelevant for
graph surgery and the graph surgery procedures for un-
weighted L- and Q-graphs can be used on weighted L-
and Q-graphs. Edge weights alone also do not determine
if the density matrix corresponding to a weighted L- or
Q-graph is entangled or separable.
Moreover, Observation 6 can be applied to weighted

Q-graphs as formalized in the following corollary.

Corollary 8. Let Gw be a weighted grid-labelled graph.
If Gw is not bipartite, then ρL(Gw) and ρQ(Gw) are not
unitarily equivalent.

The corollary is proved in Appendix C.

IV. GRID STATES WITH HYBRID GRAPHS

In this section, we approach the idea of interpreting
graphs as quantum states from a physical point of view.
A density matrix that is a mixture of both L- and Q-edge
states is not unphysical. Is it then possible to represent
such density matrices using grid-labelled graphs? We
answer this question in the affirmative by introducing the
notion of hybrid graphs and describing analogous degree
criteria and graph surgery procedures for them.
A hybrid graph contains both L- and Q-edges and is

written as G = (V,EL + EQ), where V is the vertex
set, and EL and EQ are the sets of L- and Q-edges,
respectively. Its L- and Q-subgraphs are the graphs
Sl = (V,EL) and Sq = (V,EQ). Hybrid graphs slightly
resemble signed graphs [13], where each edge in a graph
is given either a positive or a negative sign. However,
we do not use the Laplacian matrix in [13] to derive the
density matrix of hybrid graphs. Instead, we treat hybrid
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(a) (b) (c)

FIG. 5. Three types of hybrid graphs. Vertices are colored
in black and white to show that the graphs are bipartite. (a)
An NOI-graph. (b) A COI-graph. (c) A GI graph. Solid and
dashed edges indicate Q- and L-edges, respectively.

graphs as compositions of L and Q-graphs and define the
hybrid Laplacian matrix as L(G) = L(Sl) + Q(Sq). The
normalized hybrid Laplacian is a density matrix that is
the equally weighted mixture of all L- and Q-edge states
in the corresponding graph.
Coexistence of L- and Q-edges limit general results

on entanglement properties, because Observation 3 im-
poses different conditions on L- and Q-graphs. Consider-
ing that, hybrid graphs are divided into three categories
based on their edge-vertex characteristics:

• Non-Overlapping Incidence (NOI): A hybrid graph
with NOI has a bipartite Q-subgraph and no vertex
in it is connected by both a Q-edge and an L-edge.

• Conditionally Overlapping Incidence (COI): A hy-
brid graph with COI has a bipartite Q-subgraph
and every L-edge in it connects vertices that are
both in the same partition.

• General Incidence (GI): Hybrid graphs with GI
have no restrictions on incidences of L- and Q-
edges.

We call a hybrid graph with NOI a NOI-graph, and
likewise for graphs with COI and GI. An example each
of a NOI-, a COI-, and a GI-graph is given in Fig. 5.
Note that a NOI-graph is a special case of a COI graph,
because vertices connected by L-edges in a NOI-graph
can all be put in one of the two vertex partitions.
As before, we adapt the degree criteria and graph

surgery procedures to hybrid graphs. GI-graphs are too
general for Observation 3 to be applicable. Therefore,
only NOI- and COI-graphs are considered.

Theorem 9 (Degree Criterion). If the density matrix
ρ(G) of a hybrid graph G is separable and GΓ is a NOI-
or a COI-graph, then D(G) = D(GΓ).

A proof for Theorem 9 is provided in Appendix D.
Graph surgery on a NOI-graph involves both L- and

Q-surgeries. Any connected component in a NOI-graph
has either all L-edges or all Q-edges. One can thus per-
form L- and Q-surgery independently on the respective
connected components.
Graph surgery on a COI-graph however is not as

straightforward. The non-identical STITCH steps of L-
andQ-surgery are equally valid for any vertex with simul-
taneous incidences of L- and Q-edges. This ambiguity is
resolved by a proxy graph.

(a) COI Graph G. (b) Proxy Graph H.

(c) HR
10

(d) HC
10

FIG. 6. Vertices are colored in black and white to show that
the graphs are bipartite. Solid and dashed edges are Q- and
L-edges, respectively. (a) Graph surgery on a COI-graph G

with vertex (1, 0), colored orange, as the selected isolated
vertex. (b) Graph H , a proxy graph of G, as described in
Section IV. To derive H from G, two L-edges {(0, 0), (1, 2)}
and {(0, 2), (1, 2)} are removed and a Q-edge {(1, 1), (1, 2)}
is added. (c) Graph HR

10. Vertices (0, 0) and (0, 2) cannot
be connected by a Q-edge because they belong to the same
partition. So an L-edge is used. (d) Graph HC

10.

A proxy graph of a COI-graph is a NOI-graph such that
the kernels of their hybrid Laplacians are identical. It is
constructed with a two-step process: first, by removing
L-edges from all vertices on which both L- and Q- edges
are incident; then, by reconnecting split connected com-
ponents, if any, using Q-edges only.

Observation 10. Every COI-graph has a proxy graph.

The proof of Observation 10 is found in Appendix D.
Deriving a proxy graph is akin to graph sparsification,
which removes edges from a dense graph while preserving
certain spectral properties of the Laplacian of the original
graph [14]. In the case of proxy graphs, only L-edges are
removed and the preserved spectral property is the kernel
of the hybrid Laplacian. Given Observation 10, graph
surgeries on a proxy NOI-graph and on the original COI-
graph are equivalent. Therefore, graph surgery on a COI-
graph is performed by first constructing a proxy NOI-
graph and performing graph surgery on it. One iteration
each of row and column surgeries on a COI-graph are
shown in Fig. 6.

The implication of graph surgery on hybrid graphs is
the same as on L- and Q-graphs: If graph surgery on a
hybrid graph always produces the empty graph, then the
corresponding density matrix is entangled.

Hybrid graphs can also have weighted edges. As in
the case of weighted L- and Q-graphs, the degree criteria
and the graph surgery procedures on unweighted hybrid
graphs also apply to weighted hybrid graphs, as justified
by the following lemma.

Lemma 11. If the vertex and the edge sets of two
weighted hybrid graphs are identical, their hybrid Lapla-
cians have identical kernels.

The proof of Lemma 11 is found in Appendix D.
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V. CONSTRUCTION OF BOUND

ENTANGLED STATES

In [6, 7], bound entangled L-grid sates are constructed
using the degree criterion to verify a positive partial
transpose of the density matrix, and the graph surgery
procedure to verify entanglement. This method can be
used to construct new families of bound entangled states
with the grid states presented in this paper.

Observation 12. If a grid-labelled graph G satisfies
D(G) = D(GΓ), the corresponding density matrix has
a positive partial transpose, independent of whether the
graph is interpreted as an L-graph, a Q-graph, a weighted
graph, or a hybrid graph.

A proof of Observation 12 is provided in Appendix E.
According to the observation, the degree criterion verifies
that a grid-state is positive under partial transpose, and
graph surgery verifies that it is entangled. Given that,
bound entangled Q-grid states can be constructed using
the degree criterion and the graph surgery procedure de-
fined in Section II if both the Q-graph and its partial
transpose graph are bipartite. The cross-hatch pattern
from [6] satisfies these conditions. The pattern is in fact
applicable not only to Q-graphs, but also to weighted and
hybrid graphs.

Theorem 13. The density matrix of an m × n cross-
hatch graph with m, n ≥ 3 is bound entangled for all grid
states independent of whether the graph is interpreted as
an L-graph, a Q-graph, a weighted graph, or a hybrid
graph.

Theorem 13 is proved in Appendix E. Moreover, the
cross-hatch pattern can be composed. For example, irre-
spective of the Laplacian matrix used to interpret the re-
sulting graph, a smaller cross-hatch graph can be embed-
ded inside a bigger one as shown in Fig. 7(a) to produce
new bound entangled states. Likewise, the pattern can
be tiled as shown in Fig. 7(b). Both graphs in Fig. 7 sat-
isfy the degree criterion, because the constituent graphs
in each graph individually satisfy the degree criterion.
Therefore, they represent grid-states whose density ma-
trices are positive under partial transpose.

Graph surgery on both graphs is carried out by first
performing graph surgery on one of the constituent
graphs and then on the remaining edges of the other one.
In the tiled composition, the STITCH step adds a diago-
nal edge, which can be treated as a part of another cross-
hatch graph and be removed. In addition, the embedded
and tiled compositions like in Fig. 7 can also be com-
posed to produce more bound entangled states, as long
as the compositions satisfy the respective degree criterion
and are reducible to empty graphs via graph surgery.

(a) Embedded. (b) Tiled.

FIG. 7. Examples of composing cross-hatch graphs. Solid
and dashed edges distinguish constituent graphs. The states
corresponding to both graphs are bound entangled, irrespec-
tive of their interpretation as weighted or unweighted L- or
Q-graphs, or as hybrid graphs.

VI. GRID STATES CORRESPONDING TO

HYPERGRAPHS

With hybrid graphs, we showed that it is possible to
generate density matrices from a mixture of Q- and L-
edge states. By defining a suitable Laplacian matrix, we
derived degree criteria and graph surgery procedures. As
a proof of concept, we follow the same approach to extend
the grid state model to hypergraphs.
Hypergraphs generalize graphs and allow edges to con-

tain more than two vertices [15]. Here, we only con-
sider hypergraphs in which all hyperedges contain exactly
three vertices. In the literature, various approaches to
extend graph matrices to hypergraphs are found, which
range from matrices in [15–17] to tensors in [18]. None
of these previous approaches leads to a density matrix
that can be elegantly represented by a grid-labelled hy-
pergraph. Therefore, we first extend the notion of edge
states and define hyperedge states, from which we define
the density matrix and the hypergraph Laplacian ma-
trix. As such, the hyperedge state is chosen to be of the
form 1/

√
3 (|ij〉+ |kl〉+ |mn〉). The density matrix is the

equal mixture of all hyperedge states in a hypergraph,
and the Laplacian matrix is the unnormalized density
matrix. Split into a diagonal and a non-diagonal matrix,
the Laplacian of a hypergraph H is written as

L(H) = D(H) +A(H), (4)

where the diagonal matrix D(H) and the non-diagonal
matrix A(H) matrix are the degree and adjacency ma-
trices, respectively. The diagonal entries of the degree
matrix are the degrees of vertices in the hypergraph. The
degree of a vertex is the number of hyperedges incident
on the vertex. The adjacency matrix is defined as

Aαβ =

{
adj(vα, vβ), if α 6= β,

0, otherwise,
(5)

where adj(vα, vβ) is the number of hyperedges connecting
vertices vα and vβ .
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A. Weighted Graph Model for hypergraph

A hypergraph can be modeled with a weighted graph,
and its Laplacian matrix can be connected to the signless
Laplacian matrix of the weighted graph.
Consider a hypergraph H with two hyperedges in Figs.

8(a, b). Each hyperedge is turned into a clique as in Figs.
8(c, d). A clique is a subset of vertices of a graph such
that every vertex in the set is connected to every other
vertex in the set [19]. The cliques are combined into a
weighted graph as in Fig. 8(e) such that the edge weight
of an edge connecting a vertex pair is the cumulative
number of edges in all cliques that connect the vertex
pair. In Fig. 8(e), the weights of black edges are all 1
and the orange edge is weighted 2. We call the weighted
graph derived in this fashion the graph of a hypergraph.
Formally, the graph of a hypergraph H is a weighted
graph G such that any vertex pair {vα, vβ} connected
by a hyperedge in H is connected in G by an edge with
weight A(H)αβ .
With this construction, the adjacency matrix of a hy-

pergraph and of its graph are the same matrix. But the
degree matrices are different. Consider a hypergraph H
and its graph G. The degree of a non-isolated vertex
vα in H is D(H)α <

∑
β A(H)αβ . However, in the

graph G the degree of the same vertex by definition is
D(G)α =

∑
β A(G)αβ . The degree matrices of a hyper-

graph and its graph thus are offset by a diagonal non-
negative matrix, which we call the offset matrix and de-
fine it as

O(H) = D(G)−D(H), (6)

where H is a hypergraph, G its graph, and O(H) the
offset matrix. With these observations, the hypergraph
Laplacian of a hypergraph H can be written as

L(H) = Q(G)−O(H), (7)

where Q(·) indicates the signless Laplacian.
With the weighted graph model, we can derive a degree

criterion for hypergraph grid states.

Theorem 14. Let H be a hypergraph and G be its graph.
If ρ(H) is separable and GΓ is bipartite, then D(G) =
D(GΓ).

For the proof of Theorem 14, see Appendix F. Unlike
the degree criteria for grid-labelled graphs, it is not clear
that the hypergraph degree criterion is sufficient for the
positive partial transpose of the hypergraph density ma-
trix. Suppose H is a hypergraph and G is its graph, and
D(G) = D(GΓ). Then,

QΓ(G) = DΓ(GΓ) +AΓ(G)

= D(GΓ) +A(GΓ) = Q(GΓ), (8)

and from Equation (7)

Q(G) = L(H) +O(H).

=⇒ QΓ(G) = LΓ(H) +OΓ(H) = LΓ(H) +O(H), (9)

(a) (b) (c) (d) (e)

FIG. 8. Weighted graph model of a hypergraph. (a) and (b)
Two hyperedges. (c) and (d) Their respective cliques. (e)
Weighted graph derived from the cliques.

from which it follows

LΓ(H) = Q(GΓ)−O(H). (10)

From Equation (10), it is not clear if Q(GΓ) − O(H) is
always positive semidefinite. On the other hand, consider
a 2 × 2 hypergraph H with a single hyperedge shown in
Fig. 8(a). The graph G of the hypergraph is the graph in
Fig. 8(c). It is easily seen that D(G) 6= D(GΓ), and also
verified using the PPT criterion that ρ(H) is entangled.
Graph surgery cannot be extended to hypergraphs via

the weighted graph model. The graph surgery procedure
for weighted Q-graphs requires the graphs to be bipar-
tite. The graph of a hypergraph, although a weighted
Q-graph, is not bipartite, because cliques are inherently
not bipartite.
Even though this interpretation of hypergraph grid

states does not allow graph surgery, it illustrates the flex-
ibility of the grid-state model. We were not only able to
define a hypergraph laplacian matrix in an ad-hoc man-
ner to suit our purpose, but also integrate the weighted
Laplacian to derive a degree criterion for hypergraph grid
states.

VII. CONCLUSION AND OUTLOOK

This paper reveals a rich interplay between graphs and
quantum states. Using a variety of interpretations of
graphs as density matrices, we have identified additional
families of grid states beyond the ones originally sug-
gested in [6] and shown that their entanglement prop-
erties relate to properties of the corresponding graphs.
In particular, we investigated signless Laplacians and
weighted graphs. We introduced the concept of hybrid
graphs, containing two different types of edges, and de-
rived the entanglement properties of the corresponding
grid states. Additionally, we constructed new families
of bound entangled states with these new grid states,
using the method from [6]. We showed that the cross-
hatch pattern is not only bound entangled for the new
families of grid states, but it could also be composed to
construct more bound entangled states. We noted two
additional links between graph theory and grid states –
resemblance between hybrid graphs and signed graphs,
and between proxy graph construction and graph sparsi-
fication. Further work into these links would be interest-
ing. For example, one could investigate if proxy graphs
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can be connected to the concept of local graph isomor-
phism discussed in [7].
We demonstrated with hypergraph grid states that our

approach for hybrid graphs can be applied in other con-
texts. Similar approaches could be used to incorporate
more general edge states, for example, with the normal-
ized Laplacian defined in [20] and with complex Lapla-
cian matrices.
Since genuine multipartite entanglement has been

found in L-grid states [6], for further work, one could in-
vestigate if the same is the case for grid states presented
above. Finally, as the graph surgery procedure is not
possible without isolated vertices, it would be desirable
to improve graph surgery or find alternative procedures
that do not require isolated vertices.
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Appendix A: Additional Graph Theory Concepts

The appendices contain the proofs of results stated in
the main text. The statements are repeated before each
proof. In this section, in addition to the proof of Obser-
vation 3, we present graph concepts used in the proofs.
The unoriented incidence matrix of a graphG = (V, E)

is the |V | × |E| matrix R such that Rij =
√
wj if edge

ej with weight wj is incident on vertex vi, and Rij = 0
otherwise. The oriented incidence matrix B results from
negating one of the two non-zero entries in each column of
the matrix R [12]. The signed and the signless Laplacian
matrices satisfy L = BBT and Q = RRT [9, 21].
For the proof of Observation 3, the following lemma is

needed. Hereafter, K(·) denotes the kernel of a matrix.

Lemma A.1 ([5]). Let M and ∆ be n×n real matrices.
Let M be symmetric and positive semidefinite, and ∆ be
nonzero, diagonal, and traceless. If a vector v ∈ {−1, 1}n
exists in K(M), then M +∆ � 0.

Proof of Lemma A.1 . Given the nature of matrix ∆, at
least one of its diagonal entries, say ∆ii = δ, is positive
and nonzero. Let v ∈ {−1, 1}n be in K(M). Let w :=
v + ax, with a ∈ R, and x be the i-th standard basis
vector. Consider the inner product

I :=〈w, (M +∆)w〉
=〈v,Mv〉 + a〈v,Mx〉 + a〈x,Mv〉+ a2〈x,Mx〉
+〈v,∆v〉 + a〈v,∆x〉 + a〈x,∆v〉 + a2〈x,∆x〉. (A1)

The scalars 〈v,Mv 〉, 〈v,Mx 〉 and 〈x,Mv 〉 are all 0,
becauseMv = 0. And, 〈x,Mx 〉 = Mii and 〈x,∆x〉 = δ.
The remaining terms are

〈v,∆v 〉 =
n∑

j=1

(vj)
2 ∆jj = tr(∆) = 0 (A2)

and

〈v,∆x 〉 = 〈x,∆v 〉 = ±δ, if vi = ±1. (A3)

Equation (A1) thus reduces to

I = a2(δ +Mii)± 2δa, if vi = ±1. (A4)

Notice that all diagonal entries of the matrix M are non-
negative, because M is positive semidefinite. Equation
(A4) therefore always has distinct roots, because Mii +
δ > 0. This implies that there exists a for which I < 0,
meaning M +∆ � 0.

We now prove the observation.

Observation 3. Let G be a grid-labelled graph on n ver-
tices and ρ(G) be the corresponding density matrix via
any of the interpretations mentioned previously. If a vec-
tor v with all its components equal to ±1 (henceforth
v ∈ {−1, 1}n) exists in the kernel of ρ(GΓ), and if ρ(G)
is separable, then D(G) = D(GΓ).

Proof of Observation 3. Let G be a grid-labelled graph
on n vertices, and D(G) and A(G) be the degree and
the adjacency matrices of G, respectively. Let L(G) =
D(G) ± A(G) be a generic Laplacian matrix represen-
tative of the Laplacian matrices used in this paper. Let
the corresponding density matrix ρ(G) be the normalized
L(G). Then

LΓ(G) = DΓ(G)±AΓ(G) = D(G) ±A(GΓ),

which implies

LΓ(G) = D(G) + L(GΓ)−D(GΓ) (A5)

= L(GΓ) + ∆,

where the matrix ∆ = D(G) − D(GΓ) is traceless and
diagonal. If ∆ is nonzero, then since L(GΓ) ≥ 0, Lemma
A.1 implies L(GΓ) + ∆ � 0. But ρ(G) is separable and
the PPT criterion requires ρΓ(G) ≥ 0, meaning LΓ(G) ≥
0. This is a contradiction. Then, it must be that ∆ =
D(G)−D(GΓ) = 0.

Appendix B: Q-Grid States

Proof of results stated in Section II are given here.
Several supporting observations are needed for the proof
of Lemma B.5, which is then used to prove the degree
criterion.
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Observation B.1 ([21]). The least eigenvalue of the
signless Laplacian of a connected graph is equal to 0 if
and only if the graph is bipartite. In this case 0 is a
simple eigenvalue.

Next, we deduce a property of the kernel of the signless
Laplacian matrix of connected bipartite graphs.

Observation B.2. For any connected bipartite graph
G on n vertices there exists a vector v ∈ {−1, 1}n in
K[Q(G)].

Proof of Observation B.2. Let the two vertex partitions
in G be P1 and P2. From Observation B.1, Q(G) has
a non-trivial kernel because G is bipartite. Suppose a
vector v ∈ {−1, 1}n is constructed as follows: if the kth

vertex is in P1 then the component vk = 1, otherwise
vk = −1. Given that the vertices connected by any edge
in G belong to opposite partitions, from the definition of
the incidence matrix R, we see that R(G)Tv = 0. Then
Q(G)v = R(G)R(G)Tv = 0.

Finally, with another result from [21], we derive a
corollary to prove Lemma B.5.

Observation B.3 ([21]). In any graph, the (algebraic)
multiplicity of the eigenvalue 0 of the signless Laplacian
is equal to the number of bipartite (connected) compo-
nents.

Corollary B.4. Each connected component in a bipartite
graph G on n vertices corresponds to a basis vector v ∈
{−1, 0, 1}n of K[Q(G)].

Proof of Corollary B.4. Observation B.4 applies to con-
nected components, because they are connected sub-
graphs. If G is not a connected graph, the vectors from
Observation B.4 are extended by setting vector compo-
nents to 0 for vertices not in the connected component.
Let vk denote the vector associated in this way to the
connected component Ck of G. Then the set of vectors
{vk} is linearly independent, because the vectors have
disjoint support.
Since Q(G) is diagonalizable, the algebraic and ge-

ometric multiplicities of its eigenvalues are equal [22].
From Observation B.3 and the previous statement, the
geometric multiplicity of the 0 eigenvalue of Q(G) is
the number of connected components in G, which is
equal to the cardinality of {vk}. Suppose |{vk}| = m.
Then we have m linearly independent vectors in the m-
dimensional kernel of Q(G). The vectors therefore span
K[Q(G)].

The next lemma allows us to use Observation 3 on Q-
graphs.

Lemma B.5. A vector v ∈ {−1, 1}n exists in the ker-
nel Q(G) of a graph G on n vertices if and only if it is
bipartite.

Proof of Lemma B.5. Let G be a bipartite graph on n
vertices. Let {vk} be vectors derived from connected

components, including isolated vertices, of G as de-
scribed in Corollary B.4. Then, because the vectors
{vk} have disjoint support, the sum

∑
k vk =: v ∈

{−1, 1}n and Q(G)v = 0.
If a vector v ∈ {−1, 1}n is in K[Q(G)], then Q(G)v =

0, meaning RTv = 0. It then follows from Proposition
2.1 in [21] that G is bipartite.

Finally, we prove the degree criterion for Q-graphs.

Theorem 4 (Degree Criterion for Q-graphs). Let G be a
Q-graph. If ρQ(G) is separable and GΓ is bipartite, then
D(G) = D(GΓ).

Proof of Theorem 4. Using Lemma B.5, the proof follows
from applying Observation 3 to Q-graphs.

For the proof of Observation 5, we assign a notion of
vectors to vertices in a grid-labelled graph. The vector
of a vertex is the standard basis vector corresponding
to its index. In a grid-labelled graph, the vertices are
indexed row-wise from top-left to bottom-right. Thus, in
an m×n grid-labelled graph, the vertex (0, 0) is the first
vertex and is assigned the standard basis vector e1. The
vertex (m−1, n−1) is the last vertex and is assigned the
vector em·n. This is convenient because the state vector
of the state |0 0〉 is e1 and of |m− 1, n− 1〉 is emn. With
this convention, we can say vertex (i, j) corresponds to
the state |i j〉.
Observation 5. Let G be a bipartite Q-graph on n ver-
tices with an isolated vertex (i, j). If a product vector
|µ ν〉 ∈ R[ρQ(G)], where R denotes the range, then

• |µ ν〉 ∈ R[ρQ(G
R
ij)] or R

[
ρL(G

R
ij)

]
, or

• |µµ〉 ∈ R
[
ρQ(G

C
ij)

]
or R

[
ρL(G

C
ij)

]
, or

• |µ ν〉 ∈ R [ρ(G′)],
where G′ is a hybrid graph (see Section IV).

Proof of Observation 5. Given vertex (i, j) is an isolated
vertex and thus a connected component, by Corol-
lary B.4, ρQ(G) |i j〉 = 0. Since ρQ(G) is hermitian,
〈µ ν|i j〉 = 0, which implies either 〈i|µ〉 = 0 or 〈j|ν〉 = 0.
We first consider the case 〈i|µ〉 = 0, from which it follows
that the inner product 〈µ ν|i jc〉 = 0 for all c. This means
|µ ν〉 is orthogonal to states corresponding to all vertices
in row i.
Let Ck be a connected component in G and |Ck〉 := vk

be the basis vector from Corollary B.4 ofK[ρQ(G)]. Then
〈µ ν|Ck〉 = 0.
Consider the vector |C′

k〉 := |Ck〉 + |L〉, where |L〉 :=∑
c λc |i jc〉 is a linear combination of vectors of all ver-

tices in row i. A suitable set of scalars {λc} can always be
chosen to make |C′

k〉c = 0 for all c. Using Corollary B.4,
the vector |C′

k〉 can be interpreted as the vector of a con-
nected component C′

k that includes all vertices in Ck ex-
cept the ones in row i. Vertices in C′

k have the same rela-
tive partitioning as in Ck. Further, 〈µ ν|C′

k〉 = 0, because
〈µ ν|L〉 = 0 as 〈µ ν|i jc〉 = 0 for all c, and 〈µ ν|Ck〉 = 0.
Let G′ be a grid-labelled graph with the same vertex

set as G. For every connected component Ck in G, let
the graph G′ have the connected component C′

k derived
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from Ck as described above. Notice that the isolated
vertices {(io, jo)} in G remain isolated in G′, and that
G′ has additional isolated vertices – the vertices in row i.
The graph G′ thus can be produced via row surgery on
G with isolated vertex (i, j). It can therefore be labelled
as GR

ij .

Depending the nature of the vectors {|C′
k〉}, we have

three possibilities:

• If the vectors {|C′
k〉} are all in {1, 0}n, then GR

ij

is an L-graph. The kernel of L(GR
ij) is spanned

by the vectors {|C′
k〉}, {|io jo〉}, and {|i, jc〉} of its

connected components, to all of which |µ ν〉 is or-
thogonal. Thus |µ ν〉 is in the range of L(GR

ij) and

also of ρL(G
R
ij). This case is identical to L-surgery.

• If the vectors {|C′
k〉} are all in {1, 0,−1}n, then by

Corollary B.4 and arguments analogous to above,
the vector |µ ν〉 is in the range of ρQ(G

R
ij).

• Finally, if some vectors in {|C′
k〉} are in {1, 0}n and

others in {1, 0,−1}n, then G′ is a hybrid graph.
Graph surgery on hybrid graphs are presented in
Section IV.

It can be shown with analogous arguments that if in-
stead 〈l|j〉 = 0, then |µ ν〉 is in the range of ρL(G

C
ij) or of

ρQ(G
C
ij) or of the density matrix of an analogous hybrid

graph.

We now show the unitary inequivalence of the L- and
theQ-grid states corresponding to the same non-bipartite
grid-labelled graph.

Observation 6. Let G be a grid-labelled graph. If G is
not bipartite, then ρL(G) and ρQ(G) are not unitarily
equivalent.

Proof of Observation 6. Let G be a non-bipartite grid-
labelled graph. The dimension of K[L(G)] is the number
of connected components in G (see Section 3.13.5 in [23]).
From Corollary B.4, the dimension of K[Q(G)] is the
number of bipartite connected components in G. At least
one connected component in G is not bipartite. This
means the dimensions ofK[L(G)] and ofK[Q(G)] are not
equal. Then from the rank-nullity theorem, the ranks of
L(G) and of Q(G) are not equal. Therefore, ρL(G) and
ρQ(G) cannot be unitarily equivalent.

Appendix C: Weighted Graphs

This section consists of proof of results stated for
weighted grid-labelled graphs in the main text.

Lemma 7. If the vertex and the edge sets of two weighted
L-graphs (resp. Q-graphs) are identical, their signed
(resp. signless) Laplacians have identical kernels.

Proof of Lemma 7. Let G = (V,E) be a weighted graph
and edge weights of edges in G be {w1, . . . wm}, where
m = |E|. If Qv = 0, then

[
RTv

]
i
=

√
wi (vi1 + vi2) = 0, ∀i ∈ {1, . . . ,m}, (C1)

because Q = RRT , where R is the unoriented incidence
matrix. The vector components {vi1,vi2} correspond
to vertices connected by edge ei ∈ E. The solutions
of Equation (C1) are independent of the edge weights.
Therefore, any vector v ∈ K[Q(G)] must also be in the
kernels {K[Q(G′)]} of all graphs {G′} with the same edge
and vertex sets. The same arguments apply to the signed
Laplacian L(G).

Corollary 8. Let Gw be a weighted grid-labelled graph.
If Gw is not bipartite, then ρL(Gw) and ρQ(Gw) are not
unitarily equivalent.

Proof of Corollary 8. LetGw = (V,E) be a non-bipartite
weighted grid-labelled graph and G = (V,E) be its un-
weighted counterpart. From the proof Observation 6, we
know ρL(G) and ρQ(G) are not unitarily equivalent be-
cause their ranks are not equal. According to Lemma
7, K[ρL(G)] = K[ρL(Gw)] and K[ρQ(G)] = K[ρQ(Gw)].
This means that the ranks of ρL(Gw) and ρQ(Gw) are
not equal. Therefore, the density matrices cannot be
unitarily equivalent.

Appendix D: Hybrid Graphs

Here, we prove the results for grid-states derived from
the grid-labelled hybrid graphs. To proceed, we need
a notion of incidence matrix. The incidence matrix of
a hybrid graph G = (V,E) is the |V | × |E| matrix
R = [Bl Rq], where Bl and Rq are the unoriented and
the oriented incident matrices of its L- and Q-subgraphs,
respectively. The hybrid Laplacian satisfies L = RRT .
Like in the case of Q-grid states, we need supporting

lemmas to prove the degree criterion for NOI- and COI-
graphs.

Lemma D.1. Each connected component in a NOI- or a
COI-graph G on n vertices corresponds to a basis vector
v ∈ {−1, 0, 1}n of K[L(G)].

Proof of Lemma D.1. The proof follows for adapting the
arguments in the proof of Corollary B.4 to NOI- and
COI-graphs.

Lemma D.2. For any NOI- or COI-graph G on n ver-
tices there exists a vector v ∈ {−1, 1}n in the kernel of
L(G).

Proof of Lemma D.2. With Lemma D.1, arguments anal-
ogous to the ones given in the proof Lemma B.5 prove
this lemma.
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Theorem 9 (Degree Criterion). If the density matrix
ρ(G) of a hybrid graph G is separable and GΓ is a NOI-
or a COI-graph, then D(G) = D(GΓ).

Proof of Theorem 9. Using Lemma D.2, the proof follows
from applying Observation 3 to a NOI- or a COI-graph.

We now prove the claim that every COI graph has a
proxy graph.

Observation 10. Every COI-graph has a proxy graph.

Proof of Observation 10. Let G be a COI-graph with
two vertex partitions P1 and P2 determined by its Q-
subgraph.
First, note that any connected component that con-

tains a Q-edge must contain at least one vertex in parti-
tion P1, since Q-edges connect vertices in opposite par-
titions. Second, by definition, the pair of vertices con-
nected by any L-edge in G must both be in the same
partition. Using these observations, we can construct
the proxy graph as follows:

• For each connected component that contains a Q-
edge, choose two designated vertices – one in par-
tition P1 and the other is partition P2.

• Then, for all vertices in the graph that have both an
L-edge and a Q-edge incident, remove the L-edge.

• If a vertex belonging to partition P1 (resp. P2)
is isolated from its previous connected component,
reconnect it with a Q-edge to the corresponding
designated vertex in partition P2 (resp. P1).

The above steps not only yield a NOI-graph, say G′,
but also guarantee that the relative vertex partitioning
of the vertices in G and in G′ remain identical, and that
all connected components in G′ have the same vertices
as in their counterpart in G. Therefore, the vectors asso-
ciated to connected components in G and to connected
components in G′ are identical. Then, from Lemma D.1,
it follows that the kernels of L(G) and of L(G′) are iden-
tical.

Finally, we show that in the case of hybrid graphs as
well the edge weights alone do not affect the kernel of the
hybrid laplacian.

Lemma 11. If the vertex and the edge sets of two
weighted hybrid graphs are identical, their hybrid Lapla-
cians have identical kernels.

Proof of Lemma 11. Let G be a weighted hybrid graph
and L be its hybrid Laplacian matrix. Its incidence ma-
trix isR = [Bl Rq], where Bl and Rq are the signed and
the signed Laplacian matrices of its L- and Q-subgraphs,
respectively. Since L = RRT , by the same arguments as
in the proof of Lemma 7, the solutions to the equation
Lv = 0 are independent of the edge weights.

Appendix E: Construction of Bound Entangled

States

The proofs of two results related to construction of
bound entangled states are given here.

Observation 12. If a grid-labelled graph G satisfies
D(G) = D(GΓ), the corresponding density matrix has
a positive partial transpose, independent of whether the
graph is interpreted as an L-graph, a Q-graph, a weighted
graph, or a hybrid graph.

Proof of Observation 12. Normalization is ignored as it
has no effect on the definiteness of a matrix. Let G be a
Q-graph and GΓ be its partial transpose. Given D(G) =
D(GΓ),

D(G) = Q(G)−A(G) = D(GΓ). (E1)

Thus,

Q(G) = D(GΓ) +A(G).

=⇒ QΓ(G) = DΓ(GΓ) +AΓ(G)

= D(GΓ) +A(GΓ)

= Q(GΓ) ≥ 0. (E2)

The same arguments apply to weighted and to hybrid
graphs.

Theorem 13. The density matrix of an m × n cross-
hatch graph with m,n ≥ 3 is bound entangled for all grid
states independent of whether the graph is interpreted as
an L-graph, a Q-graph, a weighted graph, or a hybrid
graph.

Proof of Theorem 13. An m × n cross-hatch L-graph is
entangled for all m,n ≥ 3 [7]. Graph surgery procedures
on Q- and L-graphs only differ in the STITCH step,
which is not required for graph surgery on cross-hatch
graphs, because connected components in cross-hatch
graphs are either isolated vertices or single edges. There-
fore, the proof for L-graphs is sufficient for Q-graphs.
By Lemma 7, weighted cross-hatch L- and Q-graphs

are entangled. Since graph surgery on hybrid graphs is
based on L- and Q-surgeries, hybrid cross-hatch graphs
are entangled. All cross-hatch graphs satisfy the degree
criterion. Thus they are bound entangled.

Appendix F: Hypergraphs

The degree criterion for hypergraph grid-states is
proved below.

Theorem 14. Let H be a hypergraph and G be its graph.
If ρ(H) is separable and GΓ is bipartite, then D(G) =
D(GΓ).



12

Proof of Theorem 14. Let H be a hypergraph on n ver-
tices and G be its graph. From Equation (7)

L(H) = Q(G)−O(H),

where O(H) is the offset matrix. Then

LΓ(H) = QΓ(G) −OΓ(H)

= Q(GΓ) + ∆−O(H), (F1)

where ∆ = D(G) −D(GΓ), and the second equality fol-
lows from applying Equation (A5) to G.

The offset matrix O(H) is positive semidefinite because
it is a real, diagonal matrix with non-negative diagonal
entries. And from the PPT criterion, LΓ(H) ≥ 0, be-
cause H represents a separable state. This means

LΓ(H) +O(H) = Q(GΓ) + ∆ ≥ 0. (F2)

Since GΓ is bipartite, from Lemma B.5 and Lemma 7,
there exists a vector v ∈ {−1, 1}n in K[Q(GΓ)]. The
matrix ∆ is traceless and diagonal matrix. Thus, from
Lemma A.1, the matrix Q(GΓ) + ∆ � 0. This is a con-
tradiction. Therefore, ∆ = D(G) −D(GΓ) = 0.
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