
Reading Between the Packets
—

Implicit Feedback in
Wireless Multihop Networks

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Björn Scheuermann

aus Mannheim

Oktober 2007

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Martin Mauve
Heinrich-Heine-Universität Düsseldorf

1. Koreferent: Prof. Dr. Stefan Conrad
Heinrich-Heine-Universität Düsseldorf

2. Koreferent: Prof. Dr. Peter Martini
Rheinische Friedrich-Wilhelms-Universität Bonn

Tag der mündlichen Prüfung: 5. Dezember 2007

Abstract

In this thesis, we consider wireless multihop networks with a single channel and omni-
directional antennas. Such networks exhibit some distinctive and interesting properties.
The most central one is that each transmission is a local broadcast, i. e., it can be re-
ceived by all nodes in the vicinity. It is thus not exclusive between the sender and the
intended receiver. This unique environment turned out to be very challenging for exist-
ing communication protocols. Therefore, it has most often been seen—and treated—as
a handicap.

We look at the same properties from a very different angle: they can in fact often provide
the basis for novel and unconventional solution approaches, and many challenges can
be tackled by being aware of their consequences, and by making use of them in tailored
protocol designs. The medium properties can be used to obtain information and to
co-ordinate actions implicitly, i. e., without dedicated information exchange.

As our first major contribution, we introduce a congestion control scheme that bridges
what was traditionally transport layer functionality and medium access scheduling. Im-
plicit hop-by-hop congestion control does not need to exchange any congestion feedback
explicitly. It is based on establishing backpressure with very short queues, by not al-
lowing the transmission of a follow-up packet before further forwarding of the previous
one has been overheard. This avoids excessive packet inflow. The concept is realized
and assessed in the Cooperative Cross-layer Congestion Control (CXCC) protocol.

While CXCC provides congestion control, it does not guarantee TCP-like end-to-end
reliability. We thus extend the concept of implicit feedback further, and design the
Backpressure Reliability (BarRel) transport protocol. BarRel exploits properties of the
congestion control approach to infer successful end-to-end packet delivery. In contrast
to existing TCP-equivalent transport protocols it does therefore not need a continuous
stream of acknowledgments from the destination. Therefore, it largely reduces the
amount of control traffic.

iii

Abstract

Implicit hop-by-hop congestion control can also be extended to a multicast setting. We
do so in the Backpressure Multicast Congestion Control (BMCC) protocol. Based on
implicit feedback and derived from CXCC, it achieves effective source rate adaption at
low latencies and minimal control overhead.

Following the discussion of BMCC, we look at network coding, i. e., the combination of
multiple packets into one (coded) transmission by intermediate routers. Opportunistic
network coding has been proposed to practically increase the capacity of wireless multi-
hop networks, but it depends on the spontaneous emergence of situations in which this
is possible. Here, we introduce Near-Optimal Co-ordinated Coding (noCoCo) for bidi-
rectional wireless multihop data flows. noCoCo demonstrates how—through implicitly
co-ordinated scheduling—the existence of coding opportunities can be guaranteed.

Finally, we show that implicitly obtained information can not only be used in the design
of protocols, but also to overcome other difficulties. In experiments with network pro-
tocols, a common time basis of the nodes’ log files is vital for the evaluation of results.
Exchanging time information—as time synchronization protocols like NTP do—may,
however, interfere with the network traffic generated in the experiment. We thus in-
troduce an alternative in form of a post-facto time synchronization method, which is
based on implicitly obtained information. It takes event log files from the participating
nodes as its input and uses parallel observations of the same events by multiple nodes
to infer the relative deviation of the clocks. This allows to compute globally consistent
timestamps, without a need for dedicated communication during the experiment.

iv

Zusammenfassung

In dieser Arbeit werden drahtlose Multihop-Netzwerke mit einem einzelnen
Übertragungskanal und omnidirektionalen Antennen untersucht. Derartige Netzwerke
weisen viele einzigartige und interessante Eigenschaften auf. Die vielleicht bemerkens-
werteste ist die Tatsache, dass jegliche Übertragungen von allen Netzwerkknoten in
der Umgebung empfangen werden können, also nicht exklusiv zwischen dem Sender und
dem tatsächlich angesprochenen Empfänger ablaufen. Unter anderem aus diesem Grund
stellen drahtlose Multihop-Netzwerke existierende Kommunikationsprotokolle vor große
Schwierigkeiten. Daher wurden die Eigenschaften dieser Netze bislang nahezu ausschließ-
lich als Nachteil gesehen, und auch als solcher behandelt.

Hier werden die besonderen Eigenschaften eines drahtlosen Multihop-Netzwerkes aus ei-
ner anderen Perspektive betrachtet. Wie sich dabei herausstellt, können sie oft als Basis
für neuartige und unkonventionelle Lösungsansätze dienen. Viele der Herausforderun-
gen, die sich aus den Besonderheiten des Netzwerks ergeben, lassen sich bewältigen,
indem man diese Besonderheiten in maßgeschneiderten Protokollen gezielt nutzt. Die
Eigenschaften des Übertragungsmediums lassen sich nutzen, um implizit Information
zu gewinnen oder Vorgänge zu koordinieren, ohne dabei explizit Daten austauschen zu
müssen.

Als erster zentraler Beitrag dieser Arbeit wird ein neuartiger Überlastkontrollmecha-
nismus vorgestellt. Er vereint Funktionen, die traditionell in der Transportschicht und
der Medienzugriffsplanung angesiedelt sind. Die implizite schrittweise Überlastkontrolle
benötigt keine explizite Rückmeldung über die gegenwärtige Lastsituation. Sie basiert
auf dem Aufbau von Rückstau im Netzwerk mittels sehr kurzer Paketwarteschlangen.
Die Übertragung eines Folgepaketes wird verhindert, solange vom Nachfolgeknoten nicht
die Daten aus der vorigen Übertragung weitergeleitet wurden. So wird ein Zufluss von
Daten, der die verfügbare Transportkapazität übersteigt, vermieden. Dieses Konzept
wird im Protokoll Cooperative Cross-layer Congestion Control (CXCC) umgesetzt und
evaluiert.

v

Zusammenfassung

CXCC bietet einen Überlastkontrollmechanismus, nicht jedoch TCP-äquivalente Ende-
zu-Ende-Zuverlässigkeit. Mit dem Protokoll Backpressure Reliability (BarRel) wird des-
halb der Einsatz impliziter Informationsgewinnung weiter ausgedehnt. BarRel nutzt
Wissen über die Funktionsweise der Überlastkontrolle, um implizit auf die erfolgrei-
che Zustellung von Datenpaketen an einen weiter entfernten Zielknoten zu schließen.
Im Gegensatz zu existierenden TCP-äquivalenten Transportprotokollen benötigt Bar-
Rel daher keinen kontinuierlichen Strom von Bestätigungspaketen und reduziert so den
notwendigen Kontrolldatenverkehr stark.

Die implizite schrittweise Überlastkontrolle kann auch auf Multicast-Datenübertragung-
en angewendet werden. Dies wird im Protokoll Backpressure Multicast Congestion Con-
trol (BMCC) umgesetzt. Aufbauend auf impliziten Rückmeldungen und abgeleitet von
CXCC erzielt es eine effektive Regelung der Quelldatenrate bei geringen Paketlaufzeiten
und mit minimalem Kontrolldatenaufkommen.

Im Anschluss an die Diskussion von BMCC wendet sich die Arbeit der Technik des Net-
work Coding zu, also der (codierten) Kombination mehrerer Datenpakete in eine einzelne
Übertragung durch weiterleitende Netzwerkknoten. Opportunistisches Network Coding
ist ein existierender Ansatz, der die Kapazität drahtloser Multihop-Netzwerke erhöhen
kann. Es ist jedoch darauf angewiesen, dass Situationen, in denen eine Kombination
von Paketen erfolgen kann, auch tatsächlich entstehen. Mit Near-Optimal Co-ordinated
Coding (noCoCo) wird eine Technik für bidirektionale Übertragungen in drahtlosen
Multihop-Umgebungen vorgestellt. noCoCo zeigt, wie durch implizite Koordination von
Übertragungen die Möglichkeit zur Kapazitätssteigerung mittels Network Coding ga-
rantiert werden kann.

Um die breite Anwendbarkeit des Prinzips des impliziten Informationsaustauschs zu
unterstreichen, erfolgt abschließend die Diskussion einer Anwendung außerhalb des Ent-
wurfs eines Netzwerkprotokolls. In Experimenten mit Netzwerkprotokollen ist eine ge-
meinsame Zeitbasis der Ereignisprotokolle eine unerlässliche Voraussetzung für die Er-
gebnisauswertung. Diese durch den Austausch von Zeitinformation – etwa mittels NTP
– zu realisieren, kann, wegen des damit verbundenen Netzwerkverkehrs, das Experiment
beeinflussen und Ergebnisse verfälschen. Hier wird ein Mechanismus vorgeschlagen, der
solche Probleme vermeidet. Er identifiziert parallele Beobachtungen der selben Ereignis-
se durch mehrere Knoten in den unsynchronisierten Ereignisprotokollen und verwendet
sie, um die Uhren in Beziehung zueinander zu setzen und schließlich global konsistente
Zeitstempel zu errechnen. Kommunikation, die speziell der Zeitsynchronisation dient,
ist deshalb während des Experimentes nicht notwendig.

vi

Acknowledgments

While this thesis bears only my name on its cover, it has in fact been influenced by,
shaped through, and constructed from the contributions of many. This not only applies
to the innumerable researchers whose previous work laid the foundations for my own
humble contributions, it is also more than true for all the people who supported me
during my work.

The first and foremost person to be mentioned here is my doctoral adviser, Martin
Mauve. His insights and suggestions, his encouragement, and his tremendous support
were invaluable. He has truly been the best mentor one could hope for, in each and
every sense.

I want to thank my other two referees, Stefan Conrad and Peter Martini, for taking the
time to read this thesis, and for finishing their reviews much sooner than I had ever
dared to hope.

I am also deeply indebted to my marvelous colleagues, co-authors, and friends at the
Computer Networks and Communication Systems group in Düsseldorf. The countless
discussions with my fellow doctoral students, especially with Christian Lochert, Wolf-
gang Kiess, Michael Stini, Jedrzej Rybicki, and Tran Thi Minh Chau, were a never
dwindling source of ideas and inspiration. Our many collaboratively authored publica-
tions are designative for the open and creative atmosphere, which I have enjoyed more
than anything else—and they also form the basis of this thesis.

Of course the other co-authors of my papers—from Düsseldorf, Cambridge, and
Mannheim—deserve similar credit. In particular, I would like to thank Florian Jarre
from the mathematics department at the University of Düsseldorf. His mathematical
skills and ideas were of invaluable help.

I owe gratitude to Jon Crowcroft from the University of Cambridge for providing me
with the unique opportunity to visit the Computer Laboratory in Cambridge in spring
2007. It has been a pleasure to work with Wenjun Hu and him during our efforts on
blending network coding and congestion control.

vii

Acknowledgments

Holger Füßler, Matthias Transier, and Marcel Busse from the University of Mannheim
not only did a fantastic job at supervising my diploma thesis, but subsequently also be-
came co-authors of my first international research paper. They must thus be attributed
the first steps of shaping me into a researcher. Holger in particular has, I guess, never
realized how much of a role model he has always been for me. A later collaboration with
Matthias finally resulted in the chapter on multicast congestion control in this thesis.

During my time as a doctoral student in Düsseldorf I have (co-)supervised as many
as 21 students’ theses and 11 master-level student projects—and thus had the great
opportunity of frequently working and exchanging ideas with fresh and “unspoilt” minds.
Many of the ideas emerging from their work finally found their way into this thesis. In
particular this holds for Markus Koegel, Yves Jerschow, and Magnus Roos, whom I
want to acknowledge by name here, representatively for many others.

The student helpers in the projects I have been working on also deserve my deep grat-
itude, for commitment and motivation that exceeded by far what one can reasonably
expect for 8 Euros per hour, but also for insightful discussions and unorthodox perspec-
tives. Many of the implementations and evaluations presented in this thesis carry the
signature of Alfonso Cervantes and—once again—Markus Koegel.

I also want to thank Marga Potthoff, our group’s secretary, for maneuvering me safely
through the pitfalls of university bureaucracy, and Christian Knieling, our system ad-
ministrator, for never complaining about any of my screwy short-term requests.

My parents, Christa and Bernhard Scheuermann, made me to what I am, and they have
always unconditionally supported me—thanks for everything! I also thank “Donde”
Erika Bradner, for affection and steady support, Peter Steinemann and Sebastian Höfle,
for true friendship over many years, and all the other folks back in Mannheim, for always
making me feel home.

Finally, I have to admit that I am lacking the words to thank my fiancée, Michaela
Metzger, appropriately. For more than ten years now, she has given me something to
live for, and supported me in innumerable ways with her love and affection. Thank
you.

viii

Contents

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

2 Implicit Congestion Control: CXCC 5
2.1 Related Work . 8

2.1.1 TCP Improvements . 8
2.1.2 Alternative Approaches . 9

2.2 Algorithmic Idea . 11
2.2.1 Shared Medium Model . 11
2.2.2 Implicit Hop-by-Hop Congestion Control 13
2.2.3 Deadlock Freeness . 15

2.3 Basic CXCC . 16
2.3.1 Dealing with Lost Packets . 16
2.3.2 Queuing in CXCC Nodes . 18
2.3.3 Retransmission Timeouts . 19

2.4 Request for ACK . 20
2.4.1 First Simulation Results with Basic CXCC 20
2.4.2 RFA Mechanism . 21

2.5 Dynamic Routing: Detecting Broken Links 23
2.6 Layer Interfaces . 26
2.7 Simulations . 28

2.7.1 Deterministic Topologies . 29
2.7.2 Random Topologies with Long Connections 33
2.7.3 Random Topologies with Dynamic Traffic Patterns 38

2.8 Real-World Testbed Results . 41
2.9 Chapter Summary . 43

3 Implicit Reliability: BarRel 45
3.1 Related Work . 46
3.2 The BarRel Transport Protocol . 48

3.2.1 Node and Link Failures . 48
3.2.2 Sequence Numbers and Order Preservation 50

ix

Contents

3.2.3 Acknowledging the Last Packets: TACKs and TRFAs 51
3.2.4 CaRe Packets . 53
3.2.5 Other Transport Layer Functions 54

3.3 Evaluation . 55
3.3.1 Methodology . 55
3.3.2 FTP Traffic . 56
3.3.3 HTTP Traffic . 61

3.4 Chapter Summary . 63

4 Implicit Multicast Congestion Control: BMCC 65
4.1 Related Work . 66
4.2 Scalable Position-Based Multicast . 67
4.3 Backpressure Multicast Congestion Control 69

4.3.1 Packet Forwarding with Local Broadcasts 69
4.3.2 Backpressure with Multiple Next Hops 70
4.3.3 Dealing with Unavailable Next Hops 72
4.3.4 Handling Inhomogeneous Receivers: Backpressure Pruning . . . 72

4.4 Evaluation . 75
4.4.1 Delivery Ratio and Throughput 76
4.4.2 Fairness Between Senders . 79
4.4.3 Delay and Protocol Overhead . 80
4.4.4 Backpressure Pruning . 81

4.5 Chapter Summary . 84

5 Co-ordinated Network Coding: noCoCo 85
5.1 Related Work . 87
5.2 Maximizing the Coding Gain . 88

5.2.1 A Centralized Scheduler . 88
5.2.2 Notation . 90
5.2.3 Properties of High Coding Gain Schedules 92

5.3 A Practical Protocol . 95
5.3.1 Basic Protocol Rules and Mechanisms 95
5.3.2 An Upper Bound on the Number of Packets 96
5.3.3 Dealing with Real Wireless Media 98
5.3.4 Handling Finite Bursts of Data 99

5.4 Performance Evaluation . 100
5.4.1 Chain Topology . 101
5.4.2 Cross Topologies . 103
5.4.3 Random Topologies . 106

5.5 Chapter Summary . 110

6 Post-Facto Offline Time Synchronization 111
6.1 Related Work . 113

6.1.1 Online Clock Synchronization . 113
6.1.2 Offline Clock Synchronization . 114

x

Contents

6.2 Model and Terminology . 115
6.2.1 Nodes and Events . 115
6.2.2 Clocks . 116
6.2.3 Timestamping Delay . 117
6.2.4 Connectivity Constraints . 118

6.3 Algorithm . 119
6.4 Solving the Optimization Problem . 123
6.5 Properties of the MLE . 125

6.5.1 Error Bounds . 127
6.5.2 Consistency . 129

6.6 Numerical Evaluation . 130
6.6.1 Methodology . 131
6.6.2 Convergence and Numerical Accuracy 133
6.6.3 Robustness . 135

6.7 Real-World Experiments . 138
6.8 An Alternative Approach Based on Least Squares 141
6.9 Chapter Summary . 143

7 Conclusion 147

A Detailed Overview of MANET Transport Protocols 153
A.1 Dealing with Route Failures . 153
A.2 Coping with Wireless Losses . 160
A.3 Managing a Shared Medium . 163
A.4 Handling ACK Traffic . 168
A.5 Limiting TCP’s Packet Output . 170
A.6 Alternative Protocol Designs . 173

B Error Bounds and Consistency of MLE Time Synchronization 179
B.1 The Simplified Estimator . 180
B.2 Error Bounds . 181
B.3 Consistency . 188

B.3.1 Stochastic Preliminaries . 189
B.3.2 Consistency Proof . 193

Bibliography 203

Index 219

xi

Contents

xii

List of Figures

2.1 Obtained throughput in a bidirectional chain topology. 7
2.2 Basic CXCC protocol operation. 17
2.3 Basic CXCC throughput in a bidirectional chain topology. 21
2.4 Reasons for packet retransmissions in bidirectional chain topology. . . . 22
2.5 Protocol operation with RFA control packets. 24
2.6 CXCC’s position in the protocol stack. 26
2.7 Deterministic simulation topologies. 29
2.8 Throughput in unidirectional chain. 30
2.9 Throughput in bidirectional chain. 31
2.10 Throughput in bidirectional cross. 31
2.11 Packet latency in unidirectional chain. 32
2.12 Packet latency in bidirectional chain. 33
2.13 Overhead in unidirectional chain. 34
2.14 Overhead in bidirectional chain. 34
2.15 Throughput in random topologies with five long-lasting streams. 35
2.16 Per-hop packet latency in random topologies with five long-lasting con-

nections. 36
2.17 Overhead in random topologies with five long-lasting connections. . . . 37
2.18 Throughput in random topologies with five long-lasting streams, weighted

by their hop count. 37
2.19 Times of packet receptions in random topology. 39
2.20 Cumulative distribution functions of stream throughputs in random

topologies with dynamic traffic patterns. 40
2.21 Measured throughput in bidirectional chain topology experiments. . . . 42

3.1 Measuring the forwarding delay. 52
3.2 Mean FTP throughput with varying network load. 57
3.3 Cumulative distribution function of FTP throughputs. 58
3.4 Mean FTP packet latency with varying network load. 59
3.5 Mean FTP throughput with varying node mobility. 59
3.6 Mean FTP packet latency with varying node mobility. 60
3.7 Protocol overhead for FTP traffic. 60
3.8 Average number of link break callbacks per FTP connection. 61
3.9 Mean HTTP request latency with varying network load. 62
3.10 Mean HTTP request latency with varying node mobility. 63
3.11 Cumulative distribution function of HTTP page access times. 64

xiii

List of Figures

4.1 An example for multicast forwarding in SPBM. 68
4.2 Simple scenario with unequal receivers. 73
4.3 Packet delivery ratio with increasing packet generation rate. 77
4.4 Packet delivery ratio in mobile scenarios. 78
4.5 Throughput per sender-receiver pair. 78
4.6 Throughput per sender-receiver pair in mobile scenarios. 79
4.7 Jain’s fairness index for packet distribution over senders. 80
4.8 Data transmitted on physical layer. 81
4.9 End-to-end delay. 82
4.10 Packet delivery ratio for receivers R1 and R2 in a simple static scenario

with congestion at R2. 83
4.11 Data rates of receivers R1 and R2 in a simple static scenario with con-

gestion at R2. 83

5.1 Exchange of two packets over a wireless relay. 86
5.2 Operation of the centralized scheduler in a three-hop environment. . . . 91
5.3 Throughput in chain topology. 102
5.4 Packet latency in chain topology. 103
5.5 Overhead in chain topology. 104
5.6 Throughput in cross topology with increasing offered load. 105
5.7 Packet latency in cross topology with increasing offered load. 105
5.8 Overhead in cross topology with increasing offered load. 106
5.9 Throughput in cross topology with increasing leg length. 107
5.10 Packet latency in cross topology with increasing leg length. 107
5.11 Overhead in cross topology with increasing leg length. 108
5.12 Cumulative distribution function of throughputs in random topologies. . 109
5.13 Per-hop delay in random topologies. 109
5.14 Overhead in random topologies. 110

6.1 Performance comparison of QSopt, SeDuMi, and our own implementation
as time synchronization LP solvers. 126

6.2 Probability density functions of exponential distribution (λ = 1) and
gamma distribution (k = 3, θ = 1/3). 132

6.3 Event time errors depending on the number of events |I| and the average
timestamping delay λ−1. 134

6.4 Rate errors depending on the number of events |I| and the average times-
tamping delay λ−1. 134

6.5 Theoretical and simulated event time estimation errors depending on the
number of receivers |Ri| (λ−1 = 10−4 s, |I| = 10 000). 136

6.6 Event time estimation errors for increasing I if assumptions do not hold. 137
6.7 Unsynchronized timestamp differences in real-world experiments. 140
6.8 Synchronized timestamp differences in real-world experiments. 140
6.9 Synchronized timestamp differences in real-world experiments (zoomed). 141
6.10 Rate estimation errors for exponentially distributed timestamping delays

with least squares and MLE (λ−1 = 10−4 s). 143

xiv

List of Figures

6.11 Rate estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s). 144

6.12 Offset estimation errors for exponentially distributed timestamping de-
lays with least squares and MLE (λ−1 = 10−4 s). 144

6.13 Offset estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s). 145

xv

List of Figures

xvi

List of Tables

6.1 Clock rate estimation error for different clock rate standard deviations
(λ−1 = 10−4 s, |I| = 10 000). 135

6.2 Clock offset estimation error for different clock rate standard deviations
(λ−1 = 10−4 s, |I| = 10 000). 136

xvii

List of Tables

xviii

List of Abbreviations

ACK Acknowledgment

ADTCP Ad-Hoc TCP

ADTFRC Ad-hoc TFRC

AIMD Additive Increase, Multiplicative Decrease

AODV Ad-hoc On-demand Distance Vector routing

ATCP TCP for mobile ad hoc networks

ATP Ad-Hoc Transport Protocol

ATP Application controlled Transport Protocol

BarRel Backpressure Reliability

BDP Bandwidth-Delay Product

BEAD Best-Effort ACK Delivery

BMCC Backpressure Multicast Congestion Control

BP Backpressure Pruning

C3TCP Cross-layer Congestion Control

CAR Congestion Aware Routing

CaRe Capacity Refill

CBR Constant Bit Rate

CODA COngestion Detection and Avoidance

COPAS COntention-based PAth Selection

CPU Central Processing Unit

CTS Clear To Send

CWL Congestion Window Limit

cwnd congestion window

CXCC Cooperative Cross-layer Congestion Control

DACK Delayed ACK

xix

List of Abbreviations

DARPA Defense Advanced Research Projects Agency

DSR Dynamic Source Routing

DTC Distributed TCP Caching

ECN Explicit Congestion Notification

ELFN Explicit Link Failure Notification

ENIC ENhanced Inter-layer Communication and control

EPLN Early Packet Loss Notification

ESB Embedded Sensor Board

EXACT EXplicit rAte-based flow ConTrol

FeW Fractional window increment

FF Fast Forward

FIN Finalize (flag)

FRN Flexible Radio Network

FTP File Transfer Protocol

GPS Global Positioning System

HTTP HyperText Transfer Protocol

i. i. d. independent and identically distributed

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

KAL KeepALive packet

LAD Least Absolute Deviation

LP Linear Program

LRED Link RED

MAC Medium Access Control

MANET Mobile Ad-Hoc Network

MLE Maximum Likelihood Estimator

MMAC Multicast MAC

NACK Non-Acknowledgment

xx

List of Abbreviations

NCTS Negative CTS

noCoCo Near-Optimal Co-ordinated Coding

NRED Neighborhood RED

ns network simulator

NTP Network Time Protocol

ODMRP On-Demand Multicast Routing Protocol

OPET Optimum Packet scheduling for Each Traffic flow

PDA Personal Digital Assistant

QE Quick Exchange

RAM Random Access Memory

RBCC Rate-Based Congestion Control

RCWE Restricted Congestion Window Enlargement

RE TFRC Rate Estimation for TFRC

RED Random Early Detect

RFA Request For Acknowledgment

RFC Request For Comments

RFN Route Failure Notification

RRN Route Re-establishment Notification

RSSI Received Signal Strength Information

RTHC Round-Trip Hop-Count

RTO Retransmission TimeOut

RTS Request To Send

RTT Round Trip Time

rwnd receiver advertised window

RWP Random WayPoint

SACK Selective Acknowledgment

SCA Slow Congestion Avoidance

SNN Sequence Number Notification

SPBM Scalable Position-Based Multicast

SPBM-BC Broadcast SPBM

xxi

List of Abbreviations

ssthresh slow start threshold

SYN Synchronize (flag)

SYNACK Synchronize + Acknowledge

TACK Transport layer ACK

TCP Transmission Control Protocol

TCP-AP TCP with Adaptive Pacing

TCP-BuS TCP with BUffering capability and Sequence information

TCP-DOOR TCP with Detection of Out-of-Order and Response

TCP-F TCP-Feedback

TCP-RC TCP-ReComputation

TFRC TCP-Friendly Rate Control

TPA Transport Protocol for Ad-hoc networks

TRFA Transport layer RFA

TSC Time-Stamp Counter

TTL Time To Live

UDP User Datagram Protocol

WSN Wireless Sensor Network

WXCP Wireless eXplicit Congestion control Protocol

XCP eXplicit Control Protocol

xxii

Chapter 1

Introduction

This thesis is about information exchange—how to obtain information, how to interpret
it, and how to utilize the gained knowledge. It focuses on a specific way of conveying
information, on communicating and co-ordinating implicitly. It looks at how to learn
without asking, how to infer without being told, and how to react without being called
on.

We consider wireless multihop networks, or, more specifically, wireless multihop net-
works with a single channel and omnidirectional antennas. A central, most intriguing
property of such networks is that communication is, in some sense, not exclusive between
the sender and a single receiver: transmissions are always local broadcasts. Further-
more, the medium locally serializes transmissions: within one neighborhood, only one
packet transmission can (successfully) take place at any given point in time. These
facts have most often been perceived as a major handicap. They account for effects
like spatial instead of per-link bandwidth constraints, or frequent packet losses due to
channel variations and radio interference.

Here, we look at the very same properties from a different angle. Often they are, as a
matter of fact, not a handicap at all, but instead can form a basis for novel, different
solution approaches. It turns out that many challenges in wireless multihop communi-
cation can be tackled by seizing the opportunities exactly these networks provide. The
key is to use implicit feedback and implicit co-ordination.

The work presented here follows this direction. The subsequent chapters will introduce
solutions to a number of central challenges in wireless multihop networking. These
solutions have in common that they embrace the media properties, instead of tweaking
traditional approaches as an attempt to circumvent the adversarial effects of unsuitable
abstractions. This idea as such is not entirely new, it occurs in many previous works in

1

Chapter 1 Introduction

varying shades—the probably simplest and most well-known example are the so-called
“passive acknowledgments”, where the success of a packet transmission is confirmed
when its further forwarding is overheard. But passive acknowledgments are by far not
the end of the story, and surprisingly seldom has the concept of availing the medium
properties been pursued in all its consequence.

Many of the solutions introduced here can be labeled “cross-layer protocols”. Such
approaches have often triggered heated discussions: should we really, for the sake of a
limited performance improvement, give up a clean architecture? Yet, at least in the
context of this work, this probably does not hit the nail on the head. The abstractions
made in a network protocol stack, the most widespread specimen today being the Inter-
net protocol stack, are of an intriguing elegance. By generalizing from the peculiarities
of specific communication technologies, but likewise of specific applications, layering
allows for an otherwise unthinkable flexibility and thus supports the imagination and
creativity of technology designers as well as users. This can justly be seen as a major
cause for the amazing speed at which networking technology was able to develop over
the past decades.

However, while this suggest that the highly successful concept of layering in general
should remain unquestioned, it does not mean that the IP stack and its specific layers
and interfaces are the one and only optimal solution for all networks. The Internet
protocol stack has been designed for a specific network architecture, the Internet. Every
protocol designer, regardless how clear the abstractions, makes assumptions on how it
works “beyond” the layer currently under consideration—more or less explicitly. The
Transmission Control Protocol (TCP), for example, presumes that packet losses are due
to congestion, which is clearly a statement on the properties of the underlying network.
Wireless multihop networks, however, are in many regards significantly different from
the Internet, and TCP’s assumption is in fact wrong in this environment. Thus, such
assumptions should be subject to careful reconsideration. This alone often suffices to
overcome what may otherwise be perceived as major hurdles.

Moreover, since wireless multihop networks will often be closed systems with sufficiently
homogeneous devices, strict compatibility of all layers and interfaces to the Internet stack
is not necessarily a vital and unquestioned requirement. So, which traditional arrange-
ments should be carried on is to be deliberated, without opportunistically establishing
complex interactions and feedback channels “crossing” all layers, but including reorga-
nizations of the responsibilities of functional entities. It is evident that, when doing so,

2

one should always strive for a clarity and elegance on par with the Internet stack. This
overall aim in mind, such an approach might also be termed “re-layering”.

The main focus of the work presented here is located on what would be assigned to
the transport and MAC layers of the Internet protocol stack. Their mechanisms for
media access, single-hop reliability, congestion control, and end-to-end reliable trans-
port will be rearranged and reconsidered. The first major contribution, the Cooperative
Cross-layer Congestion Control (CXCC) protocol, is introduced in Chapter 2. CXCC
is based on implicit hop-by-hop congestion control, a novel congestion control paradigm
which achieves congestion control without explicit co-ordination, in particular without
exchanging congestion-related feedback. This is made possible by systematic exploita-
tion of the wireless multihop medium’s properties. In CXCC, backpressure towards
the source node is established by passively observing the medium. A lightweight er-
ror detection and correction mechanism guarantees a fast reaction to changing medium
conditions and low overhead.

CXCC provides what could be called “semi-reliable” packet transport, where packets
may only be lost in case of failing nodes or links, but not due to queue overflows. In
Chapter 3, we will extend the concept of implicit feedback further, to obtain TCP-
equivalent, reliable data stream transport. Transport protocols providing such a service
typically use end-to-end acknowledgments to guarantee reliable delivery of data. At
the same time it is well-known that oncoming control traffic causes serious contention
if a shared wireless multihop medium is used. The introduced Backpressure Reliabil-
ity (BarRel) protocol is the first approach ever to be proposed that does not need a
continuous stream of acknowledgment packets from the destination. The basic idea is
to infer successful end-to-end packet delivery from information obtained locally: due
to properties arising from CXCC, the ability to inject another packet into the network
can implicitly acknowledge earlier packets. We discuss design choices and introduce two
variants of BarRel. The first one requires one single end-to-end acknowledgment at the
end of each packet burst. The second variant operates without any oncoming end-to-end
control traffic at all.

But the implicit hop-by-hop congestion control concept can not only be extended to
reliable unicast communication like in BarRel, it also generalizes to multicast conges-
tion control. We pursue this in Chapter 4, where we introduce Backpressure Multicast
Congestion Control (BMCC). In mobile ad-hoc networks, the multicast paradigm is of
central importance. It can help to save scarce medium bandwidth if packets are to be
delivered to multiple destinations. Founded on the idea of implicit hop-by-hop conges-

3

Chapter 1 Introduction

tion feedback and derived from CXCC, BMCC achieves effective source rate adaption at
very low control overhead and packet latency. We put our focus on how to realize it in
combination with geographic multicast routing in the Scalable Position-Based Multicast
(SPBM) protocol [TFW+07].

Subsequently, in Chapter 5, we will look at an—initially—very different problem in wire-
less multihop networks. Network coding, after originally having been theoretically dis-
cussed primarily for multicast communication in wireline networks, has recently gained
more and more attention in practical applications, in particular also in the wireless mul-
tihop networking area. Opportunistic network coding has been proposed in [KRH+06]
to increase the capacity of the network by combining multiple transmissions in case
an intermediate node happens to have matching packets in its queue. However, the
spontaneous creation of such situations is left at the mercy of higher and lower layers.
We therefore go one step further and study how to create coding opportunities in a
more deterministic, yet still practical way. We show how implicit co-ordination can be
used to obtain guarantees on the existence of coding opportunities for unicast flows
with bidirectional traffic. This leads to a distributed scheduling scheme—Near-Optimal
Co-ordinated Coding (noCoCo)—that complements CXCC to an astonishing extent.

While most evaluations in this thesis—and in wireless multihop networking in general—
are based on simulations, there are also results from a real-world testbed with a CXCC
implementation. However, when evaluating such experimental results in detail, like on
the packet level, a very fundamental problem arises: the crystal oscillator clocks in the
nodes are not very precise, and thus the timestamps in the log files of different nodes are
not consistent. As if to confirm the underlying assumptions of this thesis, a solution to
the problem once again is possible by exploiting the local broadcast medium. Parallel
receptions of the same transmissions can be used to compensate for the deviations of
the clocks, yielding globally consistent traces. Our solution thus again makes use of
information that can be inferred from the data, without having ever been generated or
transmitted explicitly. The proposed method is presented and analyzed in Chapter 6.
It is applied after the experiment is completed, using just the set of local log files
as its input. It leads to a large linear program with a very specific structure. We
exploit the structure to solve the synchronization problem quickly and efficiently, and
present an implementation of a specialized solver. Furthermore, we give analytical and
numerical evaluation results as well as data from real-world experiments, all underlining
the performance and accuracy of the method.

4

Chapter 2

Implicit Congestion Control: CXCC

The first issue in wireless multihop networking we consider here is congestion control.
It has become more and more apparent that wireless multihop networks are much more
prone to overload-related problems than traditional wireline networks like the Internet.
Appropriate congestion control is thus vital to ensure network stability and acceptable
performance.

TCP congestion control is one of the major foundations of today’s Internet. It regulates
the data rate with an additive increase, multiplicative decrease (AIMD) controller, based
on packet loss in the network observed through feedback (or missing feedback) from the
receiver. Packet loss is taken as an indication for network congestion. This approach has
proven to be highly problematic in wireless multihop networks [GTB99, XS01, dOB02,
FML02, FZL+03]. Severe fairness problems, suboptimal throughput and throughput
stability issues have been reported. Such effects have also been observed experimentally
in real wireless multihop networks, e. g. in [PAM+05].

Raghunathan and Kumar have recently shown that TCP can generally not work as well
in those networks as it does in common wired networks, because the rates of multiple
TCP flows do not necessarily converge to a fair sharing of the bandwidth due to the
shared medium [RK06]. They take this result as “a proof of necessity for a cross layer
re-design of TCP+MAC for wireless networks”.

All this is not too surprising, considering that the locally shared medium is very differ-
ent from the full-duplex links that are typical for the Internet. The wireless multihop
medium makes congestion a spatial phenomenon: neither nodes nor links, but geograph-
ical regions of the network are overloaded. The impact of this can be demonstrated by
a very simple simulation experiment. In Figure 2.1(a), ns-2 simulation results of a bidi-
rectional 10-hop chain topology are shown. In the simulation, static routing and the

5

Chapter 2 Implicit Congestion Control: CXCC

IEEE 802.11 MAC protocol are used. UDP constant bitrate traffic is injected with
increasing data rate at both ends of the chain, traveling towards the opposite end. It
can clearly be seen that the obtained total throughput drops rapidly once an optimal
load is exceeded. This is due to an increasing number of collisions, leading to more
and more packet drops. In a wireline network, throughput degrading effects for a too
high UDP load are also well-known; TCP congestion control is able to deal with these
problems very well. However, the problem observed here is of a completely different
nature, which becomes immediately clear if we set up an equivalent wired topology in
ns-2 and measure the throughput in the same scenario, as done in Figure 2.1(b)—due
to the duplex connections used between the routers on the Internet, the two packet
streams do never even share a link or queue, and thus of course maximum throughput
is achieved and maintained.

Note that the observed throughput drop is not a routing effect, since we use static
routing without routing overhead and with no link breaks. Enabling 802.11’s Request
to Send / Clear to Send (RTS/CTS) mechanism does not improve the situation, and
is thus not of help here. It is also not a problem of TCP congestion control, since
TCP is not used. But TCP is also not an appropriate solution to the problem, as
explicated above: TCP-like congestion control doesn’t behave well in wireless multihop
networks. The results of the experiment demonstrate the spatial nature of congestion
in wireless multihop networks. The problem is fundamental, and needs to be taken into
consideration by any wireless multihop network design. Thus, the congestion problem
in wireless multihop networks deserves to be reconsidered, and there is a need to search
for better suited ways to perform congestion control.

In this chapter, we propose a novel congestion control concept for wireless multihop net-
works, and a concrete protocol design realizing this concept. Both the general approach
and the specific protocol also constitute a basis of many of the following results in this
thesis. The central results of this chapter have been published in [SLM08].

Our congestion control mechanism is a hop-by-hop approach. Traditionally, hop-by-
hop congestion control means that local feedback on the sustainable rate for each node
is transmitted to the respective upstream node, in order to establish some kind of
backpressure towards the source. Here, we go one step further and actively exploit
wireless multihop medium properties to solve problems like congestion control in new
ways.

We call the presented approach implicit hop-by-hop congestion control, because its foun-
dations are the hop-by-hop nature and implicit feedback, i. e., information gained by

6

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

(a) Wireless network.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Source data rate (KByte/s / sender)

(b) Wired network.

Figure 2.1: Obtained throughput in a bidirectional chain topology.

7

Chapter 2 Implicit Congestion Control: CXCC

observing the transmissions of other nodes in the neighborhood. Even more central,
the rate regulation at the source also happens implicitly, just by obeying some simple
packet forwarding rules. The protocol design proposed here that realizes the concept
of implicit hop-by-hop congestion control is called Cooperative Cross-layer Congestion
Control (CXCC).

2.1 Related Work

In recent publications several approaches for congestion control in wireless multihop
networks have been proposed. Most of them can be classified based on whether they
seek to improve TCP or propose alternative approaches. Because of the vast amount of
literature especially on TCP modifications for wireless multihop networks, we discuss
only those approaches that are more closely related to our work at this point. A much
more comprehensive overview of congestion control proposals for mobile ad-hoc networks
can be found in Appendix A.

2.1.1 TCP Improvements

Many TCP improvements take the characteristics of wireless multihop networks into
account, some examples are [CRVP98, HV99, WZ02, dOB07, FGML02, EKL05]. In the
following, we discuss two representatives of this class. For both approaches simulator
implementations are publicly available. We use them for comparison purposes in the
evaluation of our own protocols.

Fu et al. present Ad-Hoc TCP (ADTCP) in [FGML02]. ADTCP is motivated by a key
problem of end-to-end transport protocols in mobile ad-hoc networks: the noisiness of
the measurements of indicators for certain network events. To overcome this, different
metrics are used: the inter-arrival time of two successive packets, out-of order packet
arrivals, the current packet loss ratio, and the short-term throughput in the immediate
past. ADTCP combines these metrics in order to obtain a more accurate and robust
estimate of the network situation, which then helps to react more appropriately. In
ADTCP, the receiver detects the most probable current network state and includes this
information into its feedback to the sender.

ElRakabawy et al. propose TCP with Adaptive Pacing (TCP-AP) [EKL05], also an
end-to-end approach. In TCP-AP, the focus is on avoiding large packet bursts. For this
purpose, the packets that are allowed to be sent out by the TCP congestion window are

8

2.1 Related Work

paced adaptively. The authors define the 4-hop propagation delay as the time between
the transmission of a packet by the TCP source node and its reception by the node four
hops downstream. TCP-AP estimates this value from the round-trip time (RTT) of the
packets. In combination with the coefficient of variation of the RTT samples the estimate
is used to establish a minimum time between two successive packet transmissions.

2.1.2 Alternative Approaches

Our own approach to congestion control, CXCC, clearly falls into the category of alter-
native approaches. Therefore, we investigate the work in this area more closely.

The Ad-hoc Transport Protocol (ATP) by Sundaresan et al. [SAHS03] is a rate-based,
network supported transport protocol for mobile ad-hoc networks with end-to-end con-
gestion control. The authors consider TCP’s mechanisms inappropriate for ad-hoc
networks. Thus, ATP is designed as an “antithesis” to TCP. ATP strictly separates
congestion control from reliability mechanisms and requires only limited feedback from
the receiver. The intermediate nodes piggyback the maximum queuing delay along the
route on the packets passing by. This information is then used to determine the appro-
priate rate at the source node. A similar approach to ATP is Explicit Rate-Based Flow
Control (EXACT) by Chen et al. [CNV04]. In EXACT, not delays are transmitted,
but the intermediate nodes calculate sustainable rates for each flow directly; these are
then piggybacked. To accomplish this, EXACT, in contrast to ATP, requires state in-
formation for each flow in the intermediate nodes. Both approaches show that effective
congestion control can be performed in different ways than with TCP, and that it can
be tailored for mobile ad-hoc networks. However, both approaches control the rate only
at the source node, based on feedback from within the network. The time until the
feedback eventually arrives at the source node is relatively long, considering the rapidly
varying medium conditions. By using in-network reaction to congestion, our scheme
guarantees an immediate, localized adaptation to a changing environment.

Yi and Shakkottai [YS07] discuss the usage of hop-by-hop congestion control for wire-
less multihop networks. Their theoretic approach shows the feasibility of hop-by-hop
congestion control in these networks. It provides a good basis for the theoretical under-
standing of the behavior of congestion control feedback schemes. From a more practical
point of view, however, it has to be considered that the assumptions they make are
not fulfilled by today’s common wireless hardware. The proposition that in a wireless
network any two links not sharing a common node are completely independent from

9

Chapter 2 Implicit Congestion Control: CXCC

each other cannot be met. Additionally, their approach uses explicit feedback to the
upstream nodes, and therefore imposes load for the feedback traffic on the network. In
contrast our scheme avoids additional load during congestion situations.

A concept that is in some aspects similar to ours has been used in the DARPA packet
radio network with the “adaptive pacing” protocol [GJ82]. Packet radios using this
protocol wait for a “passive acknowledgment” before the next packet is transmitted
along a link. This is combined with rate throttling based on delay measurements.
For these measurements the protocol requires to maintain state information for each
neighbor of a packet radio, which will quickly become outdated. Thus, we assume that
the central aspect of their work—the measurement and calculation of inter-packet delays
(or rates, accordingly)—cannot be immediately adopted for wireless multihop networks
with IEEE 802.11-like physical layers. Our simulations underline this assumption.

“Passive” or “implicit” acknowledgments obtained by overhearing have been mentioned
in several publications since they have been introduced for packet radio, for instance in
the context of the Dynamic Source Routing (DSR) protocol [JM96]. In our approach, im-
plicit acknowledgments are one central element of the congestion control mechanism.

Zhai at al. propose an approach which they call Optimum Packet scheduling for Each
Traffic flow (OPET) [ZF06]. It consists of four mechanisms to reduce the impact that
wireless medium contention has on throughput and fairness in Mobile Ad-Hoc Net-
works (MANETs). One is a hop-by-hop backpressure scheme, similar to both packet
radio adaptive pacing and our approach. Their mechanism is used in combination with
standard TCP, and the backpressure mechanism is tightly coupled to the RTS/CTS
mechanism in 802.11, using explicit “Negative CTS” packets. While both design de-
cisions are reasonable when compatibility must be preserved, we chose a more radical
approach. We replace TCP altogether and thus avoid any problems of possible feedback
loops between multiple congestion control schemes on different layers of the protocol
stack. Furthermore, our scheme is able to send fewer explicit messages and thus mini-
mizes the load on the network.

Hop-by-hop congestion control has been a basis of several proposals in the context of
wireless sensor networks (WSNs). In WSNs, typical traffic consists of relatively small
packets and is directed to or from a small number of special nodes, the sinks. Thus,
the sensor network approaches have in common that they consider packet flows that
are directed to or from such a sink, whereas we primarily consider unicast traffic among
arbitrary pairs of nodes. A survey on congestion control in sensor networks is provided
in [WSL+06].

10

2.2 Algorithmic Idea

In backpressure-based congestion control approaches for WSNs, congestion feedback is
typically either communicated via dedicated packets like in Wan et al.’s Congestion
Detection and Avoidance (CODA) protocol [WEC03], or piggybacked as for example in
Hull et al.’s scheme named Fusion [HJB04]. A general problem with both approaches is
that it requires packets to be sent in order to inform the neighbors about the congestion
situation. If a node cannot send a packet due to an occupied medium, it will not be
able to signal congestion. This problem does not exist in our scheme.

Implicit acknowledgments have also been used in the WSN context, e. g., by Woo and
Culler [WC01], with the primary purpose of reducing the control packet overhead. Also
in [WC01], an AIMD-based backpressure rate control approach is proposed. The nodes
maintain a probability with which a packet is allowed to be sent out or forwarded, essen-
tially determining the aggressiveness of the medium access. The probability is based on
the observation of the downstream node’s forwarding behavior. This yields congestion
feedback that propagates back towards the sources. In our scheme, no windows, rates
or forwarding probabilities need to be maintained.

Since no dedicated congestion messages are used, schemes like [WC01] and [HJB04] are
also often called “implicit”. Note, however, that our notion of implicit here is slightly
different: in our work, “implicit congestion control” means that the congestion control
works by taking advantage of the medium properties in various ways. In particular, it
is performed without explicitly maintaining window sizes or packet rates, without any
node explicitly deciding whether there currently is congestion or not, and without any
explicit congestion feedback, be it in dedicated packets or piggybacked.

2.2 Algorithmic Idea

2.2.1 Shared Medium Model

To motivate the implicit hop-by-hop congestion control approach we introduce a very
simple model for the effects of the shared medium. It is easy to see that in any part
of a network—wired or wireless—, on a sufficiently long time scale to avoid short-term
effects, the output rate of traffic forwarded through this area (OUT) cannot exceed the
forwarded traffic input rate (IN). We denote this fact by

OUT ≤ IN. (2.1)

11

Chapter 2 Implicit Congestion Control: CXCC

In common wireline networks, there are also separate, independent upper bounds for
the input and output data rates, given by the bandwidth of the respective links. If we
denote the total ingress link bandwidth into the area under consideration by BWIN,
and similarly the total outgoing bandwidth by BWOUT, we have

IN ≤ BWIN (2.2)

OUT ≤ BWOUT. (2.3)

The important point is that, in this constellation, it is not of immediate disadvantage
for the throughput if the input rate exceeds the output rate. Of course this will lead
to dropped packets, but these drops will occur before the bottleneck—in this case the
output—, and maximum throughput will still be obtained.

This is the foundation of any common end-to-end congestion control. TCP, but also,
e. g., the TCP-Friendly Rate Control (TFRC) protocol [FHPW00], utilize packet drops
to determine the bottleneck bandwidth. To accomplish this, drops are actually provoked:
TCP congestion control aims to keep the buffers in the network full, causing strict
inequality in (2.1).

If we consider the situation in a wireless multihop network, the shared medium adds a
new aspect to the above considerations. Instead of independent bounds on the input and
output rate as in (2.2) and (2.3), ingoing and outgoing links within a collision domain
share the available bandwidth. This leads to a constraint of the form

IN + OUT ≤ BW, (2.4)

where BW is the abovementioned shared total bandwidth.

This has an important implication: here, the output rate cannot be optimal in the
case of strict inequality in (2.1). Therefore, the situation for the congestion control is
completely different. Due to (2.4), increasing the input rate beyond the output rate will
result in a suboptimal overall throughput. This is one key reason for TCP’s fundamental
problems in wireless multihop networks.

These observations can also serve as an explanation for the previously described through-
put breakdown in case of network load beyond the optimal point. Excessive network
input will yield a more and more extreme inequality in (2.1), an increasingly dominant
role of the input in (2.4), and consequently leads to decreasing throughput.

12

2.2 Algorithmic Idea

Implicit hop-by-hop congestion control as proposed here is based on a completely differ-
ent feedback paradigm than TCP. Our approach aims to achieve strict equality in (2.1)
even on a short-term time scale. The key observation is that this is actually possible in
wireless multihop networks, by actively exploiting the local broadcast property.

2.2.2 Implicit Hop-by-Hop Congestion Control

We define a flow as a directed pair of communicating nodes, i. e., all the packets traveling
from a node A to another node B belong to the same flow. Other definitions are
possible, but since neither the idea of implicit hop-by-hop congestion control nor the
CXCC protocol necessarily depend on this definition this is, for now, only a matter of
form. With implicit hop-by-hop congestion control, the protocol enforces that the input
rate for a given flow does not exceed the output rate at any intermediate node. This
is accomplished by preventing the transfer of a second packet to a node until this node
has forwarded the previous one. Every node along the route thus queues at most one
packet of a flow, and no further packet is forwarded until the queue space at the next
node is free again. We call a flow blocked in a node when there is no space for the next
packet available at the downstream node.

The mechanism of waiting for the next hop to forward one packet before passing on
the next one leads to a fast and efficient implicit backpressure mechanism towards the
packet source. If a node is not able to forward a packet immediately, it will thereby
implicitly stop the input flow from its predecessor, and so on, until the packet source
itself will not be allowed to send the next packet. The concept ensures that the input rate
cannot exceed the output rate, and it yields a very fast reaction to changing medium
condition. If the forwarding is delayed, the backpressure is established immediately.
Furthermore, such a mechanism works for both TCP-like and UDP-like traffic, whereas
TCP congestion control as well as most other approaches necessarily depend on reliable
transmission and corresponding end-to-end feedback. In our approach, the backpressure
is independent from end-to-end reliability mechanisms.

Another possible interpretation of implicit hop-by-hop congestion control is that a node
is only allowed to transmit if there is a “hole” at the downstream node. Thus, these
holes propagate along the route in reverse direction. Before a network bottleneck, where
backpressure builds up, holes are rare. The nodes there are not allowed to transmit
until a hole has propagated through the bottleneck area; therefore, the input into the
congested area is limited. Behind the bottleneck, the holes dominate, meaning that the
output of the congested area is not constrained.

13

Chapter 2 Implicit Congestion Control: CXCC

For the backpressure mechanism to work, a node has to know whether the downstream
node still has a packet of the same flow in its queue. This information could be sent
explicitly, but such a mechanism would induce additional traffic and thus potentially
aggravate congestion situations. In our approach, the shared nature of the medium
is exploited to gain the necessary information at no additional cost. In most wireless
technologies that are considered as a basis for multihop communication, transmissions
are de-facto broadcasts: the radio waves propagate to all nodes in the vicinity of the
sender, in particular also to the upstream node. Then the forwarding of a packet by the
downstream node can be overheard. Here, we consider this kind of network. The central
rule of implicit hop-by-hop congestion control is then very simple: if the forwarding
of the previously sent packet is overheard, this indicates that the next one may be
transmitted (Figure 2.2(a)).

At the same time this implicit notification about a free queue space can—as a side
effect—serve as an implicit acknowledgment, indicating successful packet delivery to
the next hop. Note that this requires no additional, piggybacked header fields. If it
has a unique ID, the packet is sufficient as-is. Common MAC layer acknowledgments
are therefore no longer required. This is also called “passive acknowledgment” in the
literature.

Due to backpressure or medium contention, the forwarding can be delayed. Thus, the
nodes have to tolerate a significant delay before the implicit acknowledgment. We don’t
see this as a problem; instead, we accept this kind of delay tolerance as a necessity for
robust wireless multihop protocols. This leads to another key concept of our approach,
which we call soft timing. Due to the local broadcast property of the wireless medium
it is very hard to predict when a chance to transmit a packet will arise. Thus, it is
also not unrestrictedly possible to guarantee a collision-free answer from a specific node
within a certain, tight time frame. After all, the medium around this node might be
busy, preventing it from sending. 802.11’s way to deal with this issue is to ignore carrier
sensing when transmitting MAC layer acknowledgments; however, this can cause addi-
tional collisions and therefore wastes bandwidth. We thus advocate to use asynchronous
answers within a comparatively long period of time—potentially only after several other
transmissions have happened.

Obviously, when a packet reaches its final destination node, there will be no further
forwarding. Thus, the packet cannot be implicitly acknowledged. The destination node
therefore needs to send an explicit acknowledgment. By delaying this acknowledgment if
the packet cannot be immediately passed up the protocol stack, an integration with flow

14

2.2 Algorithmic Idea

control is possible—that this is tolerable for the protocol can be seen as a consequent
generalization of the soft timing principle.

It is conceivable to allow a higher number of unacknowledged packets to be transmitted
before a node has to wait for an acknowledgment and backpressure builds up. How-
ever, the medium enforces a serialization of all local transmissions. Note that, as a
consequence of this medium property, one single unacknowledged packet suffices to fully
utilize the available bandwidth. This fact is also confirmed by the simulation results
presented below. Thus, while allowing for more than one unacknowledged packet largely
increases the complexity of the protocol, it does not yield substantial benefits. In fact,
additionally allowed queue spaces for unacknowledged packets would be occupied by
packets primarily before a bottleneck, but not behind the congested area, where packets
can be forwarded away quickly. This increases the backlog in front of the bottleneck,
the queuing delay and, consequentially, the packet latency, and is therefore highly un-
desirable. But it does not allow the packets to be forwarded any more quickly through
the bottleneck.

2.2.3 Deadlock Freeness

In implicit hop-by-hop congestion control, flows are stopped completely when backpres-
sure occurs. Thus, it is crucial to verify that this blocking will eventually be released,
i. e., that no deadlocks can occur where flows are blocked indefinitely—e. g., because
they wait for each other. However, it is easy to see that our scheme will not run into
such a deadlock situation.

When a queue is blocked in a node, then this is because it waits for the next node
downstream to forward another packet of the same flow. This node might in turn
wait for the next node downstream, and so on. Eventually, the queues will, directly or
indirectly, all wait for the destination node of the flow. Thus, as long as the destination
node is accepting packets, the blocking will be released.

In order to formalize and generalize this statement, we define the wait graph of a network.
The wait graph is the directed graph where the vertices are the queue instances in all
nodes, and where a pair of queues (q1, q2) is in the set of edges if and only if q1 is currently
waiting for q2. If the wait graph is loop-free, then there is no deadlock situation: all
queues will eventually wait either for a non-blocked queue or for the destination node.
In our scheme, the wait graph is always loop-free if the routing is loop-free. This holds
because a queue q1 of flow f in node n1 can wait—directly or indirectly—only for

15

Chapter 2 Implicit Congestion Control: CXCC

another queue q2 if q2 also belongs to f and is located at a node n2 such that n2 is
further downstream on f ’s route.

This is the reason why implicit hop-by-hop congestion control works on a per-flow basis.
One could also think of a scheme where a node generally waits for the next node to
forward the previously sent packet before the next one is transmitted, regardless of the
flow it belongs to. In this case, however, the loop-freeness of the wait graph would not
be ensured.

2.3 Basic CXCC

Now that the general concepts of implicit hop-by-hop congestion control have been
reasoned and explained, we focus on how to realize this idealized, abstract idea in a real
network, where packet loss due to collisions and other adversities is common. In order
to do so, we will describe a first, basic version of our CXCC protocol.

2.3.1 Dealing with Lost Packets

In wireless multihop networks it is common that a packet transmission is unsuccessful.
For implicit hop-by-hop congestion control packet loss poses a serious threat: a packet
loss will block the transmission of data for the flow that the lost packet belonged to.
Thus, CXCC needs to be able to recover from packet loss efficiently.

The most basic loss situation is that the next hop node does not receive a data packet
transmission (Figure 2.2(b)). No more packets would then be forwarded: since the next
hop will of course not forward a packet it has never received, no implicit acknowledgment
will arrive. The simple solution to this problem in the basic CXCC protocol is to
repeat the packet transmission if, after a certain timeout, no acknowledgment has been
received.

A data packet transmission is not only used to communicate the data in downstream
direction, but also to acknowledge the reception of the packet at the same time implicitly.
The situation that the upstream node, waiting for the acknowledgment, does not receive
the packet is also possible (Figure 2.2(c)). The upstream node will then stop sending
any further packets because it has missed the implicit ACK. Note that the upstream
node is not able to distinguish this situation from the case above: it cannot tell if the

16

2.3 Basic CXCC

(a) Normal operation.

(b) Loss of data packet.

(c) Loss of implicit ACK.

(d) Early timeout.

Figure 2.2: Basic CXCC protocol operation.

17

Chapter 2 Implicit Congestion Control: CXCC

next hop has not received the packet, or if the implicit acknowledgment has not been
received. It will thus conduct a packet retransmission as described above.

The packet had, however, already been successfully forwarded, so this could lead to
packet duplication. Therefore, the proposed solution has to be augmented by a duplicate
detection mechanism. This is easy to accomplish, since only a duplicate of the most
recently received packet is possible. When a second copy of a packet is received, the
next hop will drop the duplicate and will not forward the packet again. However, then
the previous hop will again not receive an implicit acknowledgment. To overcome this,
we propose the following behavior: a node sends an explicit acknowledgment when it
receives a duplicate of a packet it has already forwarded and for which it has already
received an (implicit or explicit) acknowledgment. If these conditions do not apply
it silently ignores the duplicate. This ensures that an ACK is only sent when there
will definitely be no further chance to acknowledge the packet implicitly. This avoids
unnecessary transmissions.

There is a third situation that can also not be distinguished from the ones above by the
upstream node: the timer of the upstream node could expire before the next hop has
been able to forward the packet. This is depicted in Figure 2.2(d). In this case, the
next hop node will have the packet in its queue and it will ignore the received duplicate.
It will not transmit any explicit information to the upstream node. The reason for
this behavior is twofold: first, an explicit acknowledgment would not be of any direct
use for the upstream node, since its reaction would be the same as if nothing at all is
received: it would wait. Second, if the packet is still in the queue this probably means
that there is network congestion. Thus, if there is a chance to transmit anything at all,
the precious medium time should be used to transmit data—which will also serve as an
implicit acknowledgment—rather than an explicit control packet.

2.3.2 Queuing in CXCC Nodes

The forwarding rules established above define how a basic CXCC node works. An
important implication of these rules is that queuing in each node requires some attention.
For each flow passing through a node a queue has to be maintained. These queues can
be created on-demand when the first packet of a stream arrives. Because of the one-
packet-per-hop constraint the queue has to provide space for at most two packets: one
that has already been forwarded but is not yet acknowledged, and therefore needs to be
cached in order to be retransmitted if necessary. The other one that has been received

18

2.3 Basic CXCC

from the upstream node but must not be forwarded until an acknowledgment for the
preceding packet arrives from the next hop node.

As one node can handle queues for different streams, it is necessary to decide out of
which queue a packet shall be forwarded. Normally, one of the queues that are not empty
and not blocked is chosen randomly. Retransmissions after a timeout are handled just
like the first transmission of the respective packet. If an explicit acknowledgment is
waiting to be sent, it is given priority over data packets. More sophisticated schemes
could be integrated to enforce, e. g., certain quality of service or fairness metrics.

From the discussion above it can be seen that CXCC requires to keep per-flow state
in the intermediate nodes, and that it also implies a certain computational overhead.
There are per-flow queues, and the duplicate detection mechanism needs to remember
the last packet of each queue for some time. However, we do not expect this to be a
problem in practice. For a node in, e. g., a mobile ad-hoc network, one can expect a
relatively high computational power and many resources in relation to the small effective
bandwidth of the shared multihop medium. Because of this small bandwidth the number
of flows crossing one node is also quite limited, compared to, for example, typical Internet
routers.

Furthermore, the information does not need to be kept for a long time. When no more
packets of a stream are queued in a node, the corresponding queue can be removed
immediately. The information that is needed for the detection of duplicates can also be
removed quickly, since it can reasonably be expected that a duplicate can only occur
within a relatively short time. So, the small additional overhead is perfectly reasonable
and does not significantly limit the scalability of our approach.

2.3.3 Retransmission Timeouts

The choice of an appropriate retransmission timeout is a crucial factor for CXCC to
work properly. In CXCC, the timeout TO before a packet retransmission is scheduled
depends on the packet’s size and thus the medium time needed for the transmission of
a packet. The packet transmission time TP can be easily calculated in the case of a
constant medium bandwidth B, since the packet size sP is known:

TP =
sP

B
. (2.5)

19

Chapter 2 Implicit Congestion Control: CXCC

Here, we use an exponentially increasing timeout between consecutive unanswered trans-
missions. It is calculated in the following way:

TO = αr ·D · j · TP , (2.6)

where the exponential base α will typically be between 1 and 2 (we use α = 1.2 here).
r increases by one with each retransmission without feedback, and is reset to zero
after the reception of an ACK. D is a constant (here, we use D = 3), and j is a
random factor that adds some jitter to the transmissions (we choose j randomly in the
interval [0.975, 1.025] here). Simulation experiments indicate that CXCC is quite robust
regarding the exact values of the parameters; varying them has only limited impact on
the performance.

Generally, the timeouts resulting from the above formula might seem like a very short
time. But an elapsing packet retransmission timeout does not imply an immediate
retransmission. It just allows the retransmission of the packet. It still has to wait
until the medium is free and a packet can actually be sent, and until the respective
queue is chosen out of potentially several alternatives. Thus, the actual delay until
a retransmission is performed depends largely on the network conditions and current
media utilization; the retransmission timeout just establishes a lower bound on this
time. Therefore, the scheme exhibits some inherent adaptivity. Note in particular that
it also remains possible for a packet to be acknowledged after the timeout has elapsed,
while it is waiting for its retransmission.

2.4 Request for ACK

2.4.1 First Simulation Results with Basic CXCC

As shown in Figure 2.1 the throughput of an 802.11-based wireless multihop network
goes up with increasing data rates, but beyond some optimal point it cannot main-
tain this throughput. Instead, due to collisions and retransmissions, the throughput
decreases rapidly. Basic CXCC in the same topology on the other hand exhibits one
important characteristic: it is able to stabilize the throughput at a reasonable level if
too high input data rates are offered. Figure 2.3 shows this trait of CXCC.

These results are on the one hand very promising, as the basic CXCC protocol is able
to handle the congestion situation and to guarantee stable throughput over multiple

20

2.4 Request for ACK

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC

Figure 2.3: Basic CXCC throughput in a bidirectional chain topology.

hops. However, the achieved throughput level is significantly lower than the maximum
achieved by UDP at the optimal input data rate. In the following, we will introduce an
improved version of the CXCC protocol that addresses this problem of the simple basic
CXCC scheme.

The reason for the suboptimal performance lies in the packet retransmissions as they are
performed in basic CXCC. Whenever a node does not receive an acknowledgment and
a timeout expires, the whole data packet is retransmitted. However, if only the implicit
acknowledgment has been lost, or if the next hop node has simply not yet been able to
forward the packet due to contention or backpressure, it is unnecessary to retransmit
the whole packet: it has already been successfully transmitted before, the payload has
already arrived at the next node.

2.4.2 RFA Mechanism

In Section 2.3.1, three situations have been distinguished where basic CXCC performs
a packet retransmission. It has also been reasoned that the retransmitting node is not
able to tell these situations apart. But only in one situation it is actually necessary to
retransmit the payload. Therefore, a strategy is missing that helps to avoid unnecessary
transmissions. For the development of such a strategy it is important to know which
of the three loss situations is the dominating one. We conducted simulations to obtain
this information. Figure 2.4 shows which of the three loss situations causes how many
retransmissions in each of the nodes of a simulated bidirectional 10-hop chain.

21

Chapter 2 Implicit Congestion Control: CXCC

 0

 1000

 2000

 3000

 4000

 0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

is
s
io

n
s

Node ID

early timeout
loss of acknowledgment

loss of data

Figure 2.4: Reasons for packet retransmissions in bidirectional chain topology.

From this figure it becomes clear that, at least in this topology, the cases where a
payload retransmission is unnecessarily performed—when an acknowledgment is lost or
when an early timeout occurs—clearly outnumber the situations where a data packet
has been lost and a retransmission is thus needed. Results from other topologies and
the performance figures presented later on point in the same direction. One possible
interpretation of the distribution of the three retransmission reasons is that the timeouts
introduced in the previous section are too short, resulting in too many or too fast
retransmissions. However, our simulations also show that longer retransmission timeouts
do not improve the performance of basic CXCC, because then the recovery from true
loss situations happens with a too long delay. Therefrom arises the necessity for a
scheme that is able to recover fast enough from a real loss situation, but at the same
time avoids the large number of unnecessary packet retransmissions in the case of delay
through backpressure.

Our solution to this problem is to not retransmit the whole data packet after an expired
timeout, but instead just a small control packet. We call these control packets Request
For Acknowledgment (RFA). An RFA contains all the important header information
from the data packet, but not the payload. It thus provides the downstream node with
all the information that is necessary to react appropriately.

We now look at the reaction of the downstream node upon reception of an RFA packet.
The simplest case is when the transmission of the data packet had not reached the next
hop, i. e., the RFA refers to an unknown packet. Then, a retransmission including the

22

2.5 Dynamic Routing: Detecting Broken Links

payload is necessary, and should happen as soon as possible. If the downstream node
detects this situation, it thus tells the upstream node to retransmit the full packet by
sending an explicit negative acknowledgment (NACK) frame. This is depicted in Fig-
ure 2.5(b). Because of the additional RFA-NACK-handshake the overhead in this case
is actually higher than with basic CXCC. However, as the previously stated simulations
indicate, this occurs rather seldom. In the other two cases, a retransmission of the data
packet is not necessary, and thus a lot of otherwise unnecessarily occupied medium time
can be saved with the RFA scheme.

When just the implicit acknowledgment has been lost although the packet had actu-
ally been correctly forwarded, the downstream node sends an explicit acknowledgment
if the packet has been forwarded further and acknowledged by its downstream node,
as explicated above. This behavior, shown in Figure 2.5(c), is the same as for basic
CXCC.

In case of an early timeout, the reaction is also identical to that of basic CXCC: no
action is performed, as shown in Figure 2.5(d). Therefore, the only significant difference
in this as well as in the previous case is that the payload has not been retransmitted
and thereby medium time has been saved.

It should be noted that for an upstream node an overheard RFA packet can serve as an
implicit acknowledgment for the packet it refers to.

2.5 Dynamic Routing: Detecting Broken Links

So far we have considered situations with stable routes. In particular, we have assumed
that each next hop node—even though single transmissions to it may fail—is gener-
ally reachable. In a mobile environment, where nodes move and the topology changes
continuously, it is, however, necessary to be able to detect when this is no longer the
case.

Different ways have been put forward how a wireless multihop routing protocol can de-
tect that a neighbor is no longer reachable. One way to accomplish this is via periodic
beacon packets. A node is reachable as long as the exchange of beacons is successful.
This is common in proactive routing approaches, and had, e. g., been followed in the
original Ad-hoc On-demand Distance Vector (AODV) routing paper [PR99]. Beacons,
however, constitute additional network traffic, and due to the limited beaconing fre-
quency such an approach reacts rather slowly. A different way to tell when links are

23

Chapter 2 Implicit Congestion Control: CXCC

(a) Normal operation.

(b) Loss of data packet.

(c) Loss of implicit ACK.

(d) Early timeout.

Figure 2.5: Protocol operation with RFA control packets.

24

2.5 Dynamic Routing: Detecting Broken Links

no longer working is thus commonly used especially in IEEE 802.11-based settings. In
802.11, there is a limit on the number of retransmissions of a frame. If this limit is
exceeded and still no link layer acknowledgment is received, a link error is reported to
the routing protocol.

In a CXCC-based network, the point of departure is slightly different, since there are
no 802.11-like link layer acknowledgments. Transferring the idea is thus not straight-
forward. If RFAs are used as introduced, reporting a link break after a fixed number of
unanswered RFAs is surely not wise. Then a route might wrongly be considered broken
in case of heavy backpressure: as seen before, the next hop node ignores RFAs if the
packet has arrived, but could not yet be forwarded.

To overcome this, we extend the CXCC protocol again. Note that this extension is only
necessary in case the discussed kind of link status feedback is desired or needed.

In the variant of CXCC with link status feedback, a node may send a keepalive (KAL)
packet, when it receives an RFA for a packet that is held back due to backpressure.
Thereby, it signals that the link is working, without releasing the backpressure. After
receiving such a KAL packet, a node will continue to send RFAs—potentially again
answered by KALs—in order to verify that the link stays up. To save bandwidth, this
can happen at a lower frequency. After all, if a KAL is received, there is backpressure;
thus, a congestion situation is likely, and bandwidth is a scarce resource. When we use
KALs in this work, we accomplish the slowdown of the RFAs by increasing the constant
D in the timeout (2.6) from 3 to 5 after the reception of a KAL. By using KALs, a
link may safely be considered broken if too many consecutive RFAs without any answer
occur. We will use a threshold of seven consecutive unanswered RFAs here, resembling
the seven unsuccessful RTS retransmissions typically used in 802.11.

Many researchers have already observed that always assuming a link failure in case of an
802.11 transmission error callback can lead to a large number of spurious route breaks;
see, e. g., [EKL05, DB04, PPW+07]. Our results suggest that a main reason is the
aggressive retry behavior of 802.11, which performs RTS or data retransmissions after
a very short delay and expects an immediate reply. The soft timing principle in CXCC
and the exponentially increasing timeouts between consecutive RFAs turn out to have
very beneficial effects here. CXCC’s RFAs are sent at longer intervals than standard
802.11 RTS frames, and answers may arrive with significant delay. Consequently, there is
much more opportunity for the destination node to reply, especially if, e. g., the medium
around it is currently busy. This largely reduces the number of spurious route errors,
and thereby also the amount of unnecessary routing traffic in the network.

25

Chapter 2 Implicit Congestion Control: CXCC

CXCC

Medium Access

Routing

Transport

Figure 2.6: CXCC’s position in the protocol stack.

2.6 Layer Interfaces

While the previous sections dealt with the CXCC protocol itself and its functions, we
now discuss how it can be integrated into a protocol stack. It uses modified interfaces
in particular to the MAC and routing layers. We are aware that such a design requires
significant control over the network participants’ protocol stack. However, our point is
that the cost of preserving an unmodified Internet protocol stack is too high. Since wire-
less multihop networks can often be expected to be homogeneous, and potentially even
tailored for one specific application, we consider the required modifications feasible.

An overview of the position of CXCC in the protocol stack is shown in Figure 2.6.
The congestion control function is moved from its traditional position in the transport
layer down to the CXCC module. Therefore, the transport layer protocol can focus on
its main tasks: providing process-to-process communication (i.e., ports), and, option-
ally, byte-stream-based, connection-oriented communication primitives, preservation of
packet ordering and/or reliability. Note that this does not necessarily mean a different
interface to the application: a TCP/UDP-compatible socket interface to the applica-
tion layer can be provided if CXCC is used, meaning that existing applications do not
need to be changed. A transport protocol design that fits very well with CXCC will be
presented in the next chapter.

CXCC does not interfere with the core functionality of the routing layer. This is impor-
tant in order to stay independent from a specific routing approach. CXCC essentially
encapsulates the routing protocol. This is necessary since CXCC components need to
reside both above and below the routing protocol. In a practical implementation CXCC
can take over the responsibility for packet queuing completely. This simplifies the main-
tenance of the per-flow queues, and the routing protocol can concentrate on its most
basic functionality: providing information on the next hop towards a given destination

26

2.6 Layer Interfaces

node. This implementation aspect is, however, not mandatory, and it is independent
from CXCC’s congestion control functionality.

Finally, the MAC layer is also reduced to its core responsibility: observing the medium
and deciding when a transmission is allowed to take place. There is no need for link layer
retransmissions if CXCC is used. Such mechanisms have been introduced in wireless
MAC protocols to overcome the inherent unreliability of the medium. However, CXCC
is aware of the medium properties and does not need this support. Retransmissions
and acknowledgments are handled by CXCC itself in a very efficient manner. Likewise,
CXCC does not use the RTS/CTS mechanism for virtual carrier sensing. Our simu-
lation results show clearly that RTS/CTS has in fact a mostly negative performance
impact in wireless multihop networks. This observation is in accordance with many
previous results, e. g., in [XS01, XGB02]. RTS/CTS has been designed for single-hop
wireless networks, and does not fully solve the hidden terminal problem in a multihop
environment, but instead causes new problems, like false blocking due to overheard, but
failed RTS/CTS handshakes [RS07].

One additional difference between the protocol stack of a CXCC node and an Internet
node is a changed interface to the MAC layer: there exists no interface queue between
CXCC and the MAC. Instead, the queuing is handled by CXCC. The MAC provides
feedback on when a packet may be sent. The reason why we remove the common in-
terface to the MAC layer is easy to see: with an interface queue, it would be possible
that a packet is enqueued, but can not be sent immediately. It thus might happen that
before the transmission can be started, other messages are received that redundantize
the waiting transmission—like an acknowledgment for this packet. In this case an un-
necessary transmission would be performed, even though the transmitting node actually
has the knowledge that it is of no benefit. Our design avoids such effects. Another ap-
proach would have been to provide means of altering the interface queue upon demand.
However, this would require a much more complex interface, and thus contradicts our
intention of keeping the functional separation clean.

Due to the MAC modifications CXCC can not immediately be used with most commod-
ity wireless hardware available today. This is because typically significant parts of the
MAC implementation are located in the firmware and cannot easily be changed. How-
ever, the firmware modifications that are necessary in order to allow using CXCC on
existing hardware are limited. And, as our results show, the possible gain is significant.
More importantly, many, if not most, wireless multihop networks will be application-
specific, and will often be based on tailored hardware.

27

Chapter 2 Implicit Congestion Control: CXCC

2.7 Simulations

In order to examine the performance of CXCC we have performed an extensive sim-
ulation study, using the network simulator ns-2 [ns2a]. The evaluation is based on
different scenarios. First, we compare the behavior of CXCC and that of UDP traffic
over IEEE 802.11 in three different topologies, where packets are produced by constant
bit rate (CBR) traffic sources with increasing frequency. This provides us with some
general insights on how well CXCC is able to adjust a source’s rate in order to utilize
the capacity of the network. Thereafter, we compare CXCC to three other congestion
control protocols: TCP Newreno [FHG04], ADTCP [FGML02], and TCP-AP [EKL05].
TCP Newreno is the most commonly used TCP variant today; we use the implementa-
tion from standard ns-2. ADTCP and TCP-AP are end-to-end approaches that aim to
improve TCP performance in mobile ad-hoc networks. For our comparisons, we use the
respective protocol implementations that have been made available by the authors.

In all simulations presented here the packet payload size is set to 512 bytes. We have
also performed simulation runs with smaller and larger packets. Although the absolute
results were of course different, the overall outcome remained the same. The network
bandwidth for all simulations is fixed to one megabit per second. The two-ray ground
radio propagation model is used with the common settings of 250 meters radio range
and 550 meters carrier sense radius. Further results on CXCC’s performance, including,
e. g., simulations with a different radio propagation model and evaluations of CXCC’s
resilience to bit errors on the wireless medium, can be found in [SLM08].1

We use static routing with optimal routes (with regard to the hop count), in order to
remove any influence of a routing protocol and to focus solely on the inherent challenges
of congestion control in a wireless multihop network. In a static setting, route breaks do
not occur, and CXCC’s retransmissions and RFAs can guarantee single-hop reliability.
Therefore, end-to-end reliability is ensured in our CXCC simulations, without additional
measures. Results with implicit hop-by-hop congestion control in conjunction with
dynamic routing protocols will be presented in subsequent chapters.

1The results presented in [SLM08] and here exhibit the same overall picture, but differ slightly in
details. This is due to a different parametrization of the protocols and the simulated topologies.
In particular, the node spacing in the deterministic topology simulations and details of the timeout
mechanism in CXCC differ.

28

2.7 Simulations

(a) Chain. (b) Bidirectional chain. (c) Bidirectional cross.

Figure 2.7: Deterministic simulation topologies.

2.7.1 Deterministic Topologies

In our simulations with deterministic topologies and fixed packet streams we consider the
three different scenarios shown in Figure 2.7. All of them are based on 10-hop equidis-
tant chains, with neighbored nodes placed 150 meters apart. We have also performed
simulations with different chain lengths and obtained very similar results.

The first and second topology are based on one of these chains. Along this chain, we
use one single connection from the first to the last node in the chain as our first scenario
(“chain”). In the second scenario, we added a second stream of packets to the same
topology, running from the last towards the first node, that is, in the opposite direction
(“bidirectional chain”). The third scenario is based on two chains, one in x, the other one
in y direction of a plane. They cross each other in the middle of the chains, where they
share one common node. “Bidirectional cross” has four data streams altogether, one
starting at each chain end, with their destinations at the opposite end of the respective
chain.

Like in the bidirectional chain simulations described before in the introduction to this
chapter and in Section 2.4.1, the CBR sources at the end of the chains were configured
to produce packets at a fixed data rate, which we varied in a broad range. Here,
we give results for these topologies with UDP traffic over IEEE 802.11 with RTS/CTS
enabled and disabled, and for the CXCC protocol in the variants with and without RFA.
Since we can adjust the amount of data that is injected in the network freely for UDP,
this allows us to draw conclusions on the performance that some arbitrary 802.11-based
protocol would achieve, if it chose to adjust its output to a certain rate. The comparison
with CXCC then shows how the rather different way of packet forwarding with implicit
congestion control deals with the same data rate being generated by the application.

29

Chapter 2 Implicit Congestion Control: CXCC

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.8: Throughput in unidirectional chain.

Figures 2.8–2.10 show how for each of these four protocol variants the obtained through-
put develops with increasing source data rate. It can be seen that the UDP traffic is able
to sustain good throughput for the chain topology with only one data source. There,
802.11-like packet forwarding seems to be self-regulating. However, as discussed before,
for bidirectional traffic the throughput suffers substantially if the input data rate exceeds
a very small range. This is visible in both the bidirectional chain and the bidirectional
cross topologies. It implies that a congestion control approach on top of 802.11 needs
to adjust its output rate quite exactly.

CXCC with the RFA extension is able to achieve and maintain good throughput in all
three scenarios. While basic CXCC without RFA suffers from a large number of spurious
packet retransmissions, the RFA mechanism allows the protocol to use network resources
well and provides effective rate feedback to the sources. By comparing the number of
packets delivered for each single connection in the topologies with more than one sender-
receiver-pair we found that at least in these simple, symmetric topologies all protocols
considered here share the bandwidth fair among the flows.

The optima of the performance of UDP over 802.11 also mark the optimal throughput
that can be achieved by any protocol using the common protocol stack. An ideal protocol
would be able to find the optimal sending rate for UDP without inducing additional
traffic. Thus, it can be seen that CXCC with RFA performs very well in comparison
to any possible 802.11-based protocol, at least in those simple scenarios, by achieving a
throughput close to the optimum and maintaining it for any higher source rate.

30

2.7 Simulations

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.9: Throughput in bidirectional chain.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.10: Throughput in bidirectional cross.

31

Chapter 2 Implicit Congestion Control: CXCC

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 (

s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.11: Packet latency in unidirectional chain.

The good performance of CXCC is further confirmed by other metrics obtained from
the same simulations. We show only the results for the chain and the bidirectional chain
topologies here, since the bidirectional cross is generally very similar to the bidirectional
chain.

Figures 2.11 and 2.12 show the average packet latency for these two topologies. We
define it as the time between the start of the MAC layer transmission of the packet at
its source node and the completion of its reception at the destination node. It can be
seen that, for UDP over 802.11, the performance deteriorates rapidly with regard to
packet latency once the sender’s rate exceeds the optimum. The degradation is eminent
in all four topologies. In the unidirectional topology, CXCC’s packet delay with and
without RFA are almost identical. The very good results—in the bidirectional case
especially with RFA—again demonstrate its stabilizing properties.

A last evaluation of the performance in the deterministic topology simulations deals with
the induced overhead of the protocol. Here we use an overhead metric that quantifies the
average amount of data transmitted on the wireless medium in order to bring one byte
of payload one hop further. It is computed by summing up the bytes from all packets
transmitted on the MAC layer, divided by the product of the amount of application
data successfully delivered and the hop distance between source and destination. Note
that all transmissions are included, including control traffic and retransmissions of data
packets. A protocol without any control overhead, headers, and retransmissions would
result in a value of one here. Since wireless communication, especially transmitting, is

32

2.7 Simulations

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 (

s
)

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.12: Packet latency in bidirectional chain.

rather expensive in terms of energy consumption, this metric also reflects the energy
efficiency of the protocol.

Figures 2.13 and 2.14 show the results of this evaluation. It can be seen that again
CXCC with RFA outperforms standard 802.11 packet forwarding with UDP largely.
The reason is that it ensures that only packets may enter the network which will be
able to reach their destination. It therefore does not waste resources on packets that
are dropped later on. In the unidirectional topology, a higher number of unnecessary
payload data retransmissions heavily increases basic CXCC’s overhead. In the variant
with RFA there are no unnecessary retransmissions of complete data packets, but at
most small RFA packets. This yields an extremely low overhead in comparison to any of
the simulated alternatives, which underlines the appropriateness of our design to avoid
unnecessary transmissions.

2.7.2 Random Topologies with Long Connections

In the next set of simulations, we examine the steady-state throughput of CXCC in com-
parison to the three TCP variants in more realistic topologies. The simulated networks
cover an area of 1500×1500 square meters, where 150 nodes are placed randomly. Five
random connections are set up in each scenario. They continuously try to deliver as
much data as possible. The same scenarios are simulated with all considered protocols.
Since the large benefits of the RFA extension to CXCC have already become clear, we
focus on CXCC with RFA from now on.

33

Chapter 2 Implicit Congestion Control: CXCC

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.13: Overhead in unidirectional chain.

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Offered load per source (KByte/s / sender)

UDP/802.11 without RTS/CTS
UDP/802.11 with RTS/CTS

basic CXCC
CXCC with RFA

Figure 2.14: Overhead in bidirectional chain.

34

2.7 Simulations

 0

 20

 40

 60

 80

 100

 120

 140

 160

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

T
h
ro

u
g
h
p
u
t
(K

B
y
te

/s
)

Topology 3Topology 2Topology 1

Figure 2.15: Throughput in random topologies with five long-lasting streams.

The throughput of each connection with each of the protocols is measured after an
equilibrium has been reached. Figure 2.15 shows the results of these measurements. In
the charts, each segment of a bar stands for the throughput of one stream. Within each
topology, an identical fill pattern indicates that the respective segment belongs to the
same pair of communicating nodes. The chosen representation thus allows not only a
comparison of the total throughput, but also of its distribution to the five streams.

As can be seen, some connections are starved completely or almost completely by TCP
Newreno. This problem is aggravated further by RTS/CTS. Severe fairness problems
with TCP have been reported many times in the literature, and have been traced back to
medium capture problems. A primary motivation of TCP modifications and alternatives
for wireless multihop networks has always been fairness improvement. While ADTCP
and in particular TCP-AP are able to improve the fairness, this comes at the cost of
throughput. This is interrelated, because TCP often starves in particular those flows
that traverse many hops. A higher throughput for these long flows comes at a high cost,
since more medium capacity is necessary to deliver a packet, compared to a flow with
few hops. CXCC exhibits better fairness than TCP, without a loss in throughput.

A look at the packet latencies exposes further interesting aspects. In Figure 2.16, we
show the average per-hop latency of the packets, i. e., the time from the packet leaving
the source node until its arrival at the destination, divided by the hop distance. It
is evident that CXCC as well as the TCP modifications achieve a, sometimes very
significantly, lower packet latency. While for the TCP variants this comes, as seen before,
at the cost of throughput, CXCC combines both low latency and high throughput. The

35

Chapter 2 Implicit Congestion Control: CXCC

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

P
e

r-
h

o
p

 d
e

la
y
 (

s
)

Figure 2.16: Per-hop packet latency in random topologies with five long-lasting connec-
tions.

main reasons for the low latency of CXCC are the—by design—extremely short queues,
and the resulting short queuing delays. Interestingly, while RTS/CTS generally seems
to have a negative impact on throughput and fairness, it can considerably decrease the
latency for TCP. This might stem from the lower media utilization with RTS/CTS,
resulting in a lower contention level.

An evaluation of the protocol overhead should also take the differences in terms of hop
count into account. We calculate the number of transmitted bytes on the medium per
payload byte and hop, i. e., how many bytes need on average to be transmitted on the
medium in order to bring one byte of payload one hop further. Figure 2.17 shows the
results of this evaluation. The significantly higher overhead of all TCP variants results
from a higher number of retransmissions. CXCC’s RFA mechanism reduces the number
of retransmissions of packets with payload to the absolutely necessary minimum.

The hop-count weighted approach also leads to a different throughput measure: TCP’s
unfairness mainly comes at the cost of streams with a higher number of hops. But, as
already mentioned, a high throughput for a stream with few hops can be achieved at
a lower media utilization. Thus, in Figure 2.18, we provide the same results as before
in Figure 2.15, but with each connection’s throughput weighted by the number of hops
along its route. It shows that CXCC is in fact able to utilize the network best, since
long connections gain more throughput and thus the per-hop throughput is higher.

36

2.7 Simulations

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
PAP

TC
PAP-R

TS

C
XC

C

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Figure 2.17: Overhead in random topologies with five long-lasting connections.

 0

 50

 100

 150

 200

 250

 300

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

TC
P

TC
P-R

TS

AD
TC

P

AD
TC

P-R
TS

TC
P-AP

TC
P-AP-R

TS

C
XC

C

H
o
p
-w

e
ig

h
te

d
 t
h
ro

u
g
h
p
u
t

(h
o
p
s

K

B
y
te

/s
)

Topology 3Topology 2Topology 1

Figure 2.18: Throughput in random topologies with five long-lasting streams, weighted
by their hop count.

37

Chapter 2 Implicit Congestion Control: CXCC

2.7.3 Random Topologies with Dynamic Traffic Patterns

Through the last type of simulation that we have performed we examine how well CXCC
behaves in a more realistic and dynamic scenario. We consider random topologies of
the same dimensions and node counts as above. Now, 120 short data transmissions
are scheduled between random pairs of nodes, each starting at a random time between
0 and 120 simulation seconds. Each of these transmissions has a random, uniformly
distributed amount of data in the range between 5 and 50 kilobytes to deliver.

Again, we have performed all simulations of all TCP variants with and without
RTS/CTS enabled. Like for most aspects before, the performance with RTS/CTS en-
abled is generally worse. Therefore, for space and readability reasons, we show only the
results without RTS/CTS here.

Figure 2.19 depicts the packet reception times of some randomly selected streams in
one of the simulation runs for the two-ray ground model and for the shadowing model
respectively. Each point denotes one packet reception. The y-coordinate of each point
denotes the stream that it belongs to, while on the x-axis the packet arrival time is
shown. The dashed horizontal bars show, for each single connection, the time span from
when the connection starts to the delivery of the last data segment. All four sub-figures
are based on the same streams from the same scenario, and thus the node positions and
communication partners are identical, equal amounts of data are to be transmitted and
the transmissions start at the same times. To avoid misinterpretations, only the first
successful reception of a segment by the receiver is shown upon duplicate deliveries.

It is visible that, for the vast majority of transmissions, CXCC not only delivers the last
segment much earlier than all TCP variants, but it is also able to sustain a smoother
rate. We attribute this to a faster, since implicit and thus practically immediate, ad-
justment to the optimal rate in case of changing network conditions. Our interpretation
of the bad results for all TCP versions is that the feedback path is too long to yield
accurate information on the network state if the traffic pattern is as dynamic as in these
simulations. During some of the transmissions, multiple losses of data segments and
acknowledgments and the resulting long retransmission timeouts cause long periods of
inactivity. Therefore, a number of transmissions that in fact start quite early are not
able to complete for a long time, even when the network is idle.

38

2.7 Simulations

 0 20 40 60 80 100 120 140 160 180 200

C
o
n
n
e
c
ti
o
n

Simulation time (s)

(a) TCP.

 0 20 40 60 80 100 120 140 160 180 200

C
o
n
n
e
c
ti
o
n

Simulation time (s)

(b) ADTCP.

 0 20 40 60 80 100 120 140 160 180 200

C
o
n
n
e
c
ti
o
n

Simulation time (s)

(c) TCP-AP.

 0 20 40 60 80 100 120 140 160 180 200

C
o
n
n
e
c
ti
o
n

Simulation time (s)

(d) CXCC.

Figure 2.19: Times of packet receptions in random topology.

39

Chapter 2 Implicit Congestion Control: CXCC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Throughput (KByte/s, logarithmic)

TCP Newreno
ADTCP
TCP-AP

CXCC

Figure 2.20: Cumulative distribution functions of stream throughputs in random topolo-
gies with dynamic traffic patterns.

Finally, we now consider the per-stream throughput and the fairness of the different pro-
tocols under rapidly changing traffic patterns. To examine this aspect, we performed
more simulations in different random topologies, all with their key parameters chosen
as described above. Figure 2.20 shows the cumulative distribution functions of the
throughputs of all the streams. Note the logarithmic x-axis. We calculate the through-
put by dividing the amount of data by the transmission duration. The transmission
duration is defined as the time between the start of the transmission, when the packets
are enqueued at the source node, and the point in time when each segment has been
received at least once by the destination node.

Apart from a general trend to higher throughputs, a significantly better fairness of
CXCC is evident: while for the TCP variants many streams have a low or very low
throughput, the CXCC connections all obtain at least some minimum share of the
bandwidth. This can be seen from CXCC’s curve, which starts increasing comparatively
late, implying that very few connection achieve a low or very low throughput. The key
reason for the better fairness of CXCC is that the nodes refrain from capturing the
medium for a long time. After a packet transmission a node is forced to stop sending
more data from the same stream. It has to wait for the reception of an implicit or
explicit acknowledgment, or until the retransmission timeout elapses. This gives other
nodes the opportunity to start or continue transmissions.

40

2.8 Real-World Testbed Results

2.8 Real-World Testbed Results

In the previous section we have presented simulation results, indicating that our implicit
approach of performing congestion control is in fact able to provide an efficient way of
protecting the network from overload. However, simulations are not able to model all
factors that might influence a protocol in the real world. Therefore, we complement
them with some measurement results from an implementation of CXCC with RFA in a
real hardware testbed.

As stated before, CXCC cannot be implemented on today’s commodity 802.11 wire-
less hardware. There, a large part of the MAC functionality is realized very close to
the hardware, in the (proprietary) firmware, which is not accessible for modifications.
When looking for a way to overcome these difficulties we came across the Embedded
Sensor Boards (ESB). These relatively inexpensive devices were developed at the Freie
Universität Berlin as part of the ScatterWeb project [Fre]. They are intended to serve
as a testbed platform for wireless sensor networks. ESB nodes are battery-powered and
equipped with a collection of sensors and a wireless interface. For our purposes, how-
ever, their main advantage is the open firmware, which allows modifications to every
part of the software, down to the manipulation of each single bit transmitted on the
wireless medium. Here, they are used as devices in a wireless multihop testbed instead
of their original purpose of being used in sensor networks.

Of course the non-802.11-compatible physical layer of the ESB nodes, operating at only
19.2KBit/s in the 868MHz band, does not allow for a direct performance comparison to
802.11-based networks. But our main intention is to show that the concepts of CXCC
work in practice and exhibit a behavior similar to that in the simulations.

Since on the ESB nodes there is not as much software “infrastructure” available as it
can taken for granted on, e. g., PDAs or a PC, it was not sufficient to implement only
the CXCC protocol. We also created the rest of the necessary testbed infrastructure.
This comprises, for example, a logging facility that is able to log a large enough number
of MAC layer events in the limited storage space available (64 KB in each node), a
static routing module, and traffic generators. Additionally, some convenience tools for
routing table generation and distribution, for the verification of the topology and for the
collection of log data have been created. More details on this experimental framework
can be found in [JSLM06b].

In addition it was necessary to make modifications to the standard ESB firmware’s
MAC and link layer to resemble 802.11 more closely. For example, the number of packet

41

Chapter 2 Implicit Congestion Control: CXCC

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
a

c
k
e

ts
 d

e
liv

e
re

d

Source data rate (Packets/s / sender)

CXCC with RFA
UDP/802.11-like forwarding

Figure 2.21: Measured throughput in bidirectional chain topology experiments.

retransmission attempts has been set to seven for those experiments where CXCC was
not used. Also the ESB nodes are—due to their very limited hardware resources—not
able to handle packets of the size that is common for IEEE 802.11. Since there are
only 2KB of RAM available in total, there is not enough space for queues containing
long packets. In order to be able to use a reasonable data packet size, we prepended
additional 200 bytes to the data packets, as some kind of additional preamble. We used
32 bytes of payload per packet in our experiments, a size that is easily feasible with the
ESB nodes. With the prepended 200 bytes, a 32 byte data packet transmission results
in the same medium occupancy as a “real” 232 byte packet would. Control packets such
as ACKs or RFA packets are transmitted without the artificially increased preamble, so
they occupy the medium with their regular size.

In our experiments we used six ESB nodes, set up in a bidirectional chain topology.
Each node was placed in a different room. This was sufficient to prevent a reliable
direct communication between nodes that are not neighbors. In each of three separate
experiment runs we slowly increased the offered load at the nodes for both CXCC with
RFA and 802.11-like packet queuing and forwarding. At each examined data rate, traffic
was generated for two minutes. Then the successfully delivered packets were counted.
Figure 2.21 shows the outcome of our throughput measurements, averaged over the three
experimental runs.

The results show clearly that the real-world behavior of both protocols matches the
simulations very closely. Of course the absolute values are very different—but this

42

2.9 Chapter Summary

is hardly surprising given the vastly different physical layers. However, much more
importantly, on a qualitative level, the 802.11-like approach’s performance drops after
some optimal input rate is exceeded, while CXCC’s throughput remains stable at a
comparably high level. We take this as a confirmation that the throughput-stabilizing
properties of CXCC are also present in real networks.

In the course of conducting and analyzing the experiments and debugging the protocol
implementation we have encountered a central problem of experimental research in
wireless multihop networking. The analysis of events in the network nodes and their
direct and indirect effects depends on the log files written by the network nodes during
the experiment. The clocks in these nodes are, however, typically not very accurate.
Therefore, the event timestamps in the log files deviate—a fact that heavily impedes the
reconstruction of event sequences and the identification of temporal correlations. Later
in this thesis, in Chapter 6, we will introduce a novel way to overcome this problem.

2.9 Chapter Summary

We have proposed a novel way of accomplishing congestion control in wireless multihop
networks: implicit hop-by-hop congestion control. It is based on the insight that an
input rate exceeding the optimal output rate of a node or network area even on a
short-term will be detrimental for the performance of a wireless multihop network.
Our mechanism exploits the wireless broadcast medium in order to gain the necessary
information for a backpressure mechanism that reliably limits the number of packets
to one per flow and hop, and thereby implicitly avoids network congestion. We have
presented a protocol, CXCC, that builds upon the idea of implicit hop-by-hop congestion
control. An improvement of the CXCC protocol, the Request For Acknowledgment
(RFA) mechanism, avoids unnecessary data packet retransmissions.

Our simulation results demonstrate that in simple and deterministic scenarios as well
as in more realistic, random ones CXCC is able to effectively adjust the packet sources’
rates and to utilize the network capacity well. In comparison to TCP and two other
transport protocols for mobile ad-hoc networks, good fairness properties and a very com-
petitive throughput can be observed. All this shows that implicit hop-by-hop congestion
control as a new congestion control paradigm not just works well, but also exhibits some
remarkable advantages over common transport layer end-to-end mechanisms. In par-
ticular these are the ability deal with UDP- as well as with TCP-like traffic, very fast
reaction times, a low packet delay, very good energy efficiency, and a simple protocol

43

Chapter 2 Implicit Congestion Control: CXCC

design. The latter greatly eases the adaption of the protocol to new usage scenarios
and environments. Since wireless multihop network applications span a broad range of
traffic types, we consider this a very central benefit.

The simulation results are accompanied by measurements from an implementation on
real hardware. We have shown that the behavior of CXCC in a real network matches
the expectations from the simulations. The chosen hardware platform allowed us to
do such an implementation by avoiding the constraints imposed by commodity 802.11
hardware.

44

Chapter 3

Implicit Reliability: BarRel

In the previous chapter, we have introduced a novel way to perform congestion control
in wireless multihop networks, as an alternative to TCP-like observation of and inference
from packet losses. One major benefit of the devised protocol, CXCC, is that it does
not require explicit feedback messages to the source, neither from the destination nor
from within the network. In particular, this also makes end-to-end acknowledgments
unnecessary for congestion control purposes.

But in TCP—and likewise in many other transport protocols—these acknowledgments
serve a dual purpose: they are not only used to obtain congestion feedback, but also
for end-to-end reliability provisioning. It seems to be a common assumption that such
acknowledgments are indispensable for end-to-end reliable unicast communication with
TCP service semantics [Git76]. But it has been observed that these acknowledgments
are a major source of performance degradation in wireless multihop networks. ACK
packets typically travel through the same network regions as the data packets, in reverse
direction. Since all transmissions within the same area share the medium, the ACKs
cause significant additional network load and increase medium contention. Therefore,
end-to-end acknowledgments are often considered a problem in wireless multihop net-
works [dOB07, AJ03, dMCDA02].

In the context of our work, the question arises whether not only congestion control,
but also end-to-end reliability can be realized in an implicit way, i. e., without explicit
reliability feedback from the destination back to the source. And indeed it turns out
that this is possible. Our approach heavily relies on the characteristics of CXCC and
on the ability of the routing protocol to accurately determine the distance towards a
destination. We do thus not claim that the approach shown here may be applied to all
networks. Rather, our core contribution is to demonstrate that end-to-end reliability

45

Chapter 3 Implicit Reliability: BarRel

can be ensured without using end-to-end acknowledgments, and that such an approach
can exhibit significant benefits.

The core idea of the Backpressure Reliability (BarRel) transport protocol presented here
is as follows. Assume that a congestion control approach limits the number of packets
that are underway in parallel in the network by a function f of the route length n, and
that this route length is known. Both prerequisites can be fulfilled if CXCC is used for
congestion control and AODV [PR99] is employed as a routing protocol. The ability
to inject a packet into the network may then provide information about the reception
of preceding packets. For example, if it is possible to transmit packet f(n) + 1 then
one of the f(n) preceding packets must have reached the destination—otherwise the
congestion control approach would not have allowed the transmission. Of course there
are some subtleties involved, in particular regarding route failures. We will demonstrate
that it is nevertheless possible to build a practically usable protocol based on this key
idea.

In the following discussion of BarRel, we first describe the basic variant of the protocol
to convey the general idea. It uses one explicit end-to-end acknowledgment at the end
of each (arbitrarily long) packet burst. We then present a modified variant that allows
for reliable transmission without any oncoming multihop traffic at all. These protocol
variants, their design, and their properties are also the topic of a paper that is currently
under review [SKLM].

3.1 Related Work

Congestion control and reliability are traditionally tightly intertwined issues, so most
proposals deal with both at once. A general survey of transport layer concepts, tech-
niques, and protocols can be found in [IAC99]. Many approaches that are related
to implicit hop-by-hop congestion control and CXCC have already been discussed in
Section 2.1. In the following, we concentrate on the reliability aspect over a wireless
multihop medium: how do other protocols achieve end-to-end reliability?

To alleviate the problem of acknowledgment traffic in MANETs, it has been proposed
to reduce the number of acknowledgments, either by using the standardized TCP de-
layed ACK (DACK) mechanism [Bra89] as it has been done, e. g., in [SM01, DB01],
or through improved variants of it, like those by de Oliveira and Braun [dOB07] and
by Altman and Jiménez [AJ03]. All these approaches, however, reduce the number of

46

3.1 Related Work

acknowledgments at most by some small, constant factor—standard DACK combines
up to two acknowledgments into one, [dOB07] and [AJ03] up to four. For continuous
data transmission, a continuous stream of acknowledgments remains necessary.

In their Contention-based Path Selection (COPAS) scheme, Cordeiro et al. [dMCDA02]
use different paths for forward and reverse traffic, to reduce intra-flow contention be-
tween data and ACK packets. It remains, however, inevitable that forward and reverse
traffic share the medium at least around sender and receiver. Moreover, the probability
of a route break increases if different routes are used, because both forward and reverse
path need to stay intact for the data flow not to be interrupted.

Split TCP by Kopparty et al. [KKFT02] uses TCP as a basis, but separates congestion
control and reliability. It establishes so-called proxies in intermediate nodes along the
route. The proxies buffer packets and transmit them either to the next proxy or to
the final destination over a small number of hops. The standard TCP acknowledgment
scheme is employed between the proxies. In addition to these acknowledgments, end-
to-end ACKs are used to detect and overcome possible proxy failures. Thus, in total,
Split TCP even increases the amount of acknowledgment traffic.

The MANET-specific transport protocols ATP [SAHS03] and EXACT [CNV04] both
rely on the nodes within the network to provide piggybacked feedback on the congestion
state, which is then transmitted back to the senders. So, these protocols still require
continuous end-to-end feedback for both congestion control and reliability provisioning.
OPET [ZF06] is used with TCP on top for reliable service. Therefore, this approach
does also not avoid end-to-end ACK traffic.

The Transport Protocol for Ad-hoc Networks (TPA) by Anastasi et al. [AACP05] is in-
spired by TCP, but the protocol is designed to minimize the number of end-to-end packet
retransmissions. TPA also uses end-to-end acknowledgments. Packets are grouped into
blocks, and no data from the following block is allowed to be transmitted before all
packets from a block are acknowledged.

In wireless sensor networks, reliable unicast data streams are not the predominant
traffic pattern. So, sensor network transport mechanisms are typically not general-
purpose, transparent TCP replacements. Where, like with Distributed TCP Caching
(DTC) [DAVR04], fully TCP-equivalent service is provided, acknowledgment packets
are used.

47

Chapter 3 Implicit Reliability: BarRel

3.2 The BarRel Transport Protocol

The key idea of BarRel is founded on properties of the network that arise if a backpres-
sure mechanism like that of CXCC is used: such a network allows a maximum of one
(untransmitted) packet to be queued in each node along the route. This establishes an
upper bound on the number of sent packets that have not yet arrived at the destination:
for a connection that runs over n hops, at most n packets may be underway in the
network at any given point in time. The tightly limited queue length also implies that
packets are never lost in the network unless simultaneously a route break occurs: there
are no queue overflows, so packets are only dropped if at the same time a broken link is
detected.

Let us, just for the moment and for the purpose of discussion, disregard the existence of
route breaks. Under these constraints, the fact that further packets may be sent implies
that earlier packets must have successfully arrived. In a network without route breaks,
explicit end-to-end ACKs are thus unnecessary for a continuous data flow: being allowed
to send out the i-th packet by itself constitutes an acknowledgment for packet i−n. We
formalize and prove this with the following theorem.

Theorem 3.1. Let N0, . . . , Nn be the nodes on the n-hop route from source N0 to
destination Nn, and let pi denote the i-th packet. When N0 is allowed to send pi, i > n,
then Nn has successfully received and (single-hop) acknowledged pi−n.

Proof This can be shown by a simple induction proof. The one-hop case, n = 1, is
trivial.

For the induction step n → n + 1, the route consists of the nodes N0, . . . , Nn+1. If N0

sends pi, Nn has acknowledged pi−n by the induction hypothesis. But Nn may only
have sent (and thereby acknowledged) pi−n if Nn+1 has acknowledged pi−(n+1). The
assertion follows.

Knowledge of n is obviously necessary to exploit this property. Most topology-aware
routing approaches, however, can supply this value easily. For the purposes of discussion
and evaluation, we will use the AODV routing protocol [PR99].

3.2.1 Node and Link Failures

Since the only possible reason of packet losses are broken links, a packet loss implies
a route break. As long as the route remains stable and all intermediate nodes can

48

3.2 The BarRel Transport Protocol

eventually forward the data packets, the basic BarRel mechanism as discussed so far
hence allows for reliable, completely ACK-free data transport. The sender will, n packet
transmissions later, implicitly learn about the safe delivery of a segment. But especially
in a mobile environment, routes will not remain stable over arbitrary long timespans,
and intermediate nodes are not unlikely to fail during the lifetime of a connection. The
protocol needs to be able to deal with these circumstances.

When a route change occurs, the source can not know for sure whether the packets
that have been in the network at that time have been delivered or not. However, at
most n packets can possibly be in the network at once. After a route change, the
source may thus simply repeat the last n packets. By appropriate interaction with the
routing protocol, we ensure that i) a source node eventually learns about every route
change, including information on a possibly different new route length n, and ii) until
this notification has arrived, packet forwarding along the old route does not proceed,
i. e., no further implicit or explicit ACKs may occur. Then, the number of packets that
may be lost never exceeds one per node, and their total number is limited by the (old)
route length. Combined with the backpressure reliability mechanism discussed so far
this is sufficient to ensure full end-to-end reliability.

While similar solutions seem possible for other routing protocols we discuss in the follow-
ing how these two criteria can be guaranteed for one specific routing protocol, AODV.
With standard AODV, they are not always met. For example, it may happen that two
connections share parts of a route, and a broken route is repaired by one of them—
potentially resulting in a different route length, and without the other connection being
aware of that fact.

A small extension to standard AODV is sufficient to guarantee the notification of each
source about every route change, and to maintain backpressure also in case of route
errors, thus satisfying both criteria. We build upon the destination sequence numbers
in the AODV routing tables. Observe that routing entries are only updated if either a
new route with a higher destination sequence number is discovered, or one with the same
sequence number, but a lower hop count. Hence, as long as both destination sequence
number and hop count remain stable in all nodes along the route, the route itself also
does not change. We exploit this trait, by ensuring that the pair of destination sequence
number and hop count distance is consistent along the whole route. In the end, this is
nothing else than making sure that the source node’s view of the route is up-to-date.

We piggyback the source node’s current values of destination sequence number and
hop distance onto each packet. The intermediate nodes may then check whether their

49

Chapter 3 Implicit Reliability: BarRel

current values are consistent with the piggybacked ones in an incoming packet. If not,
the routing between this node and the destination has possibly changed. In that case,
the forwarding is rejected; instead the upstream nodes’ routing tables are updated. For
the latter purpose, a Sequence Number Notification (SNN) packet is sent. It contains
the up-to-date sequence number and hop distance, which are thereby propagated back
towards the source. In a certain sense, an SNN can be seen as a combination of route
error notification and follow-up route reply: it invalidates the previously existing routing
entry, but at the same time establishes a new route. An SNN that arrives at the source
node indicates a changed route and thus triggers a retransmission of the last n packets.

If, after a route failure, no routing entry exists in an intermediate node that receives a
packet, a route error message must have been lost. The packet reception is thus answered
with a respective notification. In essence, this “revives” lost route error messages, when
upstream nodes continue to use the route.

Since the forwarding is rejected if the routing information in the packet is not up-to-
date, no further forwarding and thus no implicit ACKs will happen until the information
arrives at the source. Backpressure is thus maintained. As a result, the proposed
mechanism can guarantee that the sufficient criteria for notifying the sources about
route changes are met.

In most cases, SNNs are not necessary. Typically, a source node will already learn
about route changes by receiving a route error message, and subsequently initiate a
new route discovery. But SNNs guarantee that the vital semantics for BarRel are also
maintained in all other cases—including, for instance, a lost route error notification and
the use of local repair mechanisms. One might argue that propagating this information
back towards the source and repeating n packets whenever packets might not have been
delivered is not always the most efficient option. While this is surely true, this procedure
allows to keep the complexity of the mechanism very low. Moreover, the performance
figures presented later on strongly underline that potential small losses in the rare cases
where SNNs and unnecessary retransmissions actually occur are more than compensated
by the huge gains obtained while the routes are stable.

3.2.2 Sequence Numbers and Order Preservation

Due to retransmissions, multiple copies of some packets might arrive at the destination.
These duplicates need to be identified and filtered. To accomplish this a sequence
number is assigned to each segment. They closely resemble TCP sequence numbers,

50

3.2 The BarRel Transport Protocol

in that they are kept constant for retransmissions. They can also be used for order
preservation at the receiver. In this context, there is an interesting property of the
protocol, which largely eases the processing in the destination node. When a segment
arrives at the receiver, all previous segments must have arrived, too. “Gaps” caused by
missing packets or packet reordering cannot occur. Thus, a simple duplicate suppression
mechanism is sufficient, packet ordering is then automatically preserved.

3.2.3 Acknowledging the Last Packets: TACKs and TRFAs

So far, we have only considered continuously sending sources. In that case, BarRel,
as described up to this point, achieves reliable data delivery without end-to-end ac-
knowledgments. Let us now look at the situation where less than n packets remain to
be transmitted, either temporarily at the end of a packet burst, or at the end of the
connection. How can the reliable delivery of these last n packets be accomplished?

We propose two mechanisms to deal with the last packets of a burst. The first one is
rather straightforward: if some packet is the last one in a burst of packets generated by
the source, the sender requests by a flag in the packet header (the LAST flag) that an
explicit end-to-end transport layer ACK (TACK) shall be sent.

When the source sets the LAST flag, it schedules a timer. If no corresponding TACK has
arrived when this timer expires, two situations are possible: either everything is fine, but
the TACK is delayed, or a route failure has prevented either some of the data packets or
the TACK from getting through. To deal with a TACK timeout, the source generates
a transport layer RFA (TRFA) packet. It is an end-to-end request, intended to find out
about the fate of the packets. Indeed it is quite similar to CXCC’s single-hop RFAs.
TRFAs are subject to the congestion control’s backpressure. Note that therefore, when
the destination receives a TRFA, it must also have received the corresponding last data
packet. A node thus always responds to a TRFA by repeating the respective TACK.

Sending out a short TRFA that requests for an end-to-end acknowledgment is always
superior to retransmitting the much larger data packet. This is because the TRFA can
never possibly arrive if the previous data transmission did not arrive. If the last data
packet has not arrived, this can only be due to a route failure. Then the TRFA will
encounter the same problem, and, if necessary, trigger an SNN; in some sense, the central
purpose of the TRFA is to “check” the route for route failures, where the notification
did for some reason not make it to the source node.

51

Chapter 3 Implicit Reliability: BarRel

Figure 3.1: Measuring the forwarding delay.

To set the TACK timeout appropriately, we use an adaption of Jacobson’s variance
supported retransmission timeout (RTO) algorithm for TCP [Jac88]. If TACKs for
the connection have already occurred recently, they can of course be used as samples.
This will, however, not always be the case. So, we need to obtain an estimate in a
different way. We do so by observing the forwarding delay of the first forwarder. This
forwarding delay, denoted by d, is the time between receiving the packet and starting
the transmission forwarding it further on, as it is shown in Figure 3.1. It includes the
delay due to queuing and backpressure, and possibly also medium access backoff times.
d can be observed by the source node of the stream: the times ts when the packet
transmission at the source node starts and tr when the implicit ACK is overheard are
known, as well as the packet size and the used medium bandwidth.

The delay at the first forwarder also conveys information about the situation further
downstream: it may not forward packets at a higher frequency than its successors. It
may well be that nodes further downstream can transmit packets more quickly—consider
a route first leading through a tight bottleneck in a network region with heavy load,
and then through an area of low network traffic, where packets flow freely. Due to
the backpressure mechanism, the opposite situation is, however, not possible once an
equilibrium has been reached and the route is “filled” with packets. So d as measured
at the first hop is an upper bound estimate for the forwarding delay at any node along
the route. If n is the route length in hops, n − 1 forwarding delays will occur during
the transport of the data packet to the destination node, and n forwarding delays for
delivering the acknowledgment back to the source. We can thus obtain an estimate for
an upper bound of the total forwarding delay:

D = (2n− 1) · d. (3.1)

52

3.2 The BarRel Transport Protocol

We use these forwarding delay samples as the input for Jacobson’s algorithm, the time-
out is based on its output. Note that D and consequently also the output of the RTO
algorithm do not include any transmission times, so they are independent from the
packet size. We add the transmission times for n data packet and n TACK transmis-
sions to obtain what we use as our TACK timeout.

We want to stress here that the timeouts are much less critical for BarRel than they
are for TCP. In BarRel, timeouts are used only at the end of packet bursts, and they
do not trigger retransmissions of data segments, but only (small) TRFA packets. Thus,
in particular, a too optimistic round trip time estimate will have only very limited
negative impact, since it does not, as for TCP, cause many unnecessary data packet
transmissions.

3.2.4 CaRe Packets

The TACK/TRFA mechanism has the important advantage of a very low control packet
overhead, and it eliminates almost all oncoming ACK traffic: TACKs are only necessary
at the end of transmission bursts. Although the problem of acknowledging the last
packet is solved, the mechanism obviously stands in sharp contrast to our otherwise
consistently implicit approach. Besides that, choosing an appropriate TACK timeout
involves much effort. Therefore, it is worth thinking about alternatives.

Let us turn back and look again at the initial point of our considerations. TACKs
were introduced because there were no data packets left to confirm the delivery. But
instead of requesting explicit end-to-end feedback, a source may also just generate the
requested n additional packets: it may send n empty placeholder packets succeeding the
last data segment, in some sense “refilling” the send buffer of the source node according
to the route’s “packet capacity”. If all these Capacity Refill (CaRe) packets have left
the source node, all preceding data packets must have successfully arrived.

As a further optimization, CaRe packets do not need to travel the entire n hops to
witness the forwarding of the preceding packets. They may be dropped once it is sure
that the last data packet has reached the destination. This can easily be accomplished
by limiting the TTL of the j-th CaRe packet to n− j + 1 hops.

There are many positive features of the CaRe approach. First of all, it is far less complex
than the timeout-based TRFA mechanism. It makes use of the backpressure concept
of BarRel and CXCC, avoids any oncoming traffic, and therefore seems well-suited for
networks with a shared broadcast medium. Moreover, it also guarantees a very fast

53

Chapter 3 Implicit Reliability: BarRel

notification about successful arrival or loss, since no phases of passive waiting for an
ACK or a timeout are required.

On the other hand, however, the amount of control packets is higher for CaRe packets.
For TRFA/TACK, in the best case, acknowledging the end of the packet burst by a
TACK requires n single-hop control packet transmissions, to deliver the TACK triggered
by the LAST flag. Up to n TRFAs may have to be transmitted—so the worst case effort
for the TRFA/TACK scheme is O(n2) single-hop control packet transmissions. For CaRe
packets, the effort is always quadratic in the route length, not only in the worst case.
Thus, CaRe packets may be a bad choice if many short data packet bursts are sent and
the route is long. But note that it is possible to use both TRFAs and CaRe packets
in the same network, or even within the same connection: at the end of each burst, a
sender may decide to use either the LAST flag and TRFAs, or to send CaRe packets,
based on, e. g., the application’s preferences, observations of the traffic pattern, or the
route length.

3.2.5 Other Transport Layer Functions

For a complete transport protocol, not only congestion control and reliability provision-
ing are necessary. Order preservation has already been discussed above; flow control, a
way to establish and close connections, and port addressing are also provided by BarRel.
It is therefore possible to implement BarRel with a TCP-compatible socket interface,
hence not necessitating any changes to existing applications.

For short-term flow control, if the buffer at the destination node runs full, it will send
KALs instead of explicit CXCC ACKs. Consequently, backpressure will build up, pre-
venting the source node from injecting more data packets into the network.

BarRel adopts TCP’s mechanisms for connection establishment and termination. To set
up a connection, a TCP-like SYN–SYNACK–ACK handshake is used, where, of course,
the ACKs can again be implicitly obtained. Likewise, to close a connection, a FIN-flag
in the BarRel header is used, where the delivery of the packet with the FIN flag set may
be acknowledged by one of the mechanisms discussed above.

54

3.3 Evaluation

3.3 Evaluation

To examine the performance of the proposed protocol, we have performed simulations
with the ns-2 network simulator [ns2a]. We focus on the aspects that are particularly
relevant with regard to the presented reliability mechanisms. We thus concentrate on
dynamic and mobile scenarios, where route breaks and corresponding packet losses are
common. In more simple, static scenarios with few, long-lived flows, BarRel does not
add significant additional overhead to CXCC. Then, the performance is dominated by
CXCC’s congestion control mechanism. Detailed examinations of CXCC’s performance
can be found in the previous chapter and in [SLM08].

Here, we compare the BarRel/CXCC protocol stack to standard TCP Newreno [FHG04],
TCP-AP [EKL05], and ADTCP [FGML02] over IEEE 802.11.

3.3.1 Methodology

We use packets with 512 bytes of payload. 200 nodes move on a square area of
1500× 1500 m according to the random waypoint (RWP) mobility model. It is the
most widely used model in the context of this work. To overcome its well-known limi-
tations [YLN03], we use a minimum node speed of 10 % of the maximum speed in the
respective simulation, and choose the initial positions and speeds according to the sta-
tionary distribution of the RWP model as described in [NC04]. We do not use pause
times. As mentioned above, AODV [PR99] is used for wireless multihop routing. The
results presented here have again been obtained with the RTS/CTS mechanism of 802.11
disabled, for the same reasons as discussed before.

A problem with the evaluation of random topology simulations with many connections
is that both throughput and packet latency are not directly comparable between con-
nections over largely different hop count distances and in different scenarios. Therefore
the arithmetic mean of, for instance, the throughputs of all connections in the simulated
topologies is not a suitable performance metric. In particular, it overemphasizes connec-
tions with high throughputs. The resources that need to be spent in order to deliver one
packet vastly differ between connections of different hop counts. Thus, the throughput
of a connection over a very short distance can be increased largely if connections over
more hops are assigned a smaller share of the bandwidth. Consider a situation where
one connection with high throughput increases its throughput again by, say, 10 %, but

55

Chapter 3 Implicit Reliability: BarRel

this comes at the cost of starving some low-throughput connections almost completely.
The arithmetic mean may nevertheless increase.

Normalizing throughput and latency with respect to the hop count is also not appro-
priate: with dynamic routing, this value may often change during a connection, and
because of unforeseeable interactions between transport, routing, and MAC layer it is
also not guaranteed that identical routes or even just routes with the same hop count
will be used when different transport protocols are simulated.

To overcome this problem at least partially, we use the geometric mean for through-
put and packet latencies over connections with different hop counts. This guarantees
that, in a certain sense, each connection has the same impact on the overall metric,
regardless of its absolute value: if, e. g., the throughput of one connection doubles,
while the throughput of some other connection is cut in half, the geometric mean of the
throughputs remains unchanged.

We show 95 % confidence interval error bars in our graphs. They are based on the as-
sumptions that the samples are i. i. d. and normal or—for geometric means—lognormal
distributed.

3.3.2 FTP Traffic

The first set of scenarios uses FTP-like traffic between a varying number of randomly
chosen node pairs. For each connection a pair of nodes and a file size in the range between
5 and 50 KB are randomly chosen. Each connection is initiated at a random point in
time between 0 and 120 simulation seconds. Then, the source node transfers a “file”
of the chosen size to the destination. The simulations run until all data is successfully
delivered. We simulate all considered protocols in the same set of topologies, with
identical mobility patterns, node pairs, file sizes, and start times, thus confronting each
protocol with exactly the same task.

In Figure 3.2, we keep the maximum node speed fixed at 6 m/s and vary the number
of connections between 10 and 70, thereby gradually increasing the network load. We
then measure the mean throughput of the connections by dividing their respective file
size by the time from initiating the connection at the source node until the successful
arrival of the last data segment at the destination.

56

3.3 Evaluation

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70

M
e

a
n

 t
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Connection count

TCP Newreno
ADTCP

TCP-AP
BarRel TRFA
BarRel CaRe

Figure 3.2: Mean FTP throughput with varying network load.

It is evident that the BarRel/CXCC protocol stack substantially outperforms standard
TCP as well as the modified TCP variants for MANETs. The mean throughput is
substantially higher with BarRel than with any of the TCP variants.

There is no significant difference between BarRel with TRFAs for acknowledging the
end of a packet burst and the entirely end-to-end ACK-free variant with CaRe packets.
This is not too surprising, since CaRe packets or TACKs and TRFAs both occur only at
the end of packet bursts, and there is only one single burst per connection in the FTP
simulations. Thus, here, the specifics of these mechanisms can have only very limited
impact on the overall performance.

Note that the single absolute values that go into the mean values shown in the plot
are vastly different—there are connections with less than 1 KB/s and others in the
order of 100 KB/s. We visualize the distribution of the throughputs in Figure 3.3. It
shows the cumulative distribution function of the single streams’ throughputs for the
case of a maximum node speed of 6 m/s and 40 connections (note the logarithmic x-
axis). The two BarRel variants on the right hand side are so close together that their
lines are hard to distinguish. Their significantly higher throughput is again evident.
Connections with low throughput seem to profit most. Consequently, the fairness with
BarRel is substantially better than with any of the TCP variants: there are much fewer
connections with low or very low throughput.

But not only the throughput with the BarRel variants is substantially higher, other
metrics also confirm the positive picture. In Figure 3.4, we analyze the mean packet

57

Chapter 3 Implicit Reliability: BarRel

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Throughput (KByte/s, logarithmic)

TCP Newreno
ADTCP
TCP-AP

BarRel TRFA
BarRel CaRe

Figure 3.3: Cumulative distribution function of FTP throughputs.

latency, i. e., the time it takes an average packet from leaving the source node until
arriving at the destination. The again substantial benefit of BarRel can be traced back
to the short queues of the underlying CXCC congestion control mechanism: the low
number of packets in intermediate nodes avoids long waiting times in forwarding queues
along the route. Only TCP-AP is able to achieve even slightly lower latencies—however,
as seen before, at the cost of a lower throughput.

Figures 3.5 and 3.6 show the impact of varying node mobility on the considered pro-
tocols. They are the counterparts of Figures 3.2 and 3.4. We keep the number of
connections fixed at 40 and instead vary the maximum node speed in the simulations.
It can be seen that node mobility has only limited impact on the performance of all
considered protocols.

Another central metric for the performance of a wireless multihop communication pro-
tocol is its protocol overhead. We measure it as before by looking at the number of
bytes transmitted on the wireless medium per byte of delivered payload, including all
headers, control messages, and retransmissions. We show the overhead in Figure 3.7.
It is evident that TCP as well as all considered TCP variants waste a lot of medium
capacity, in particular for retransmissions.

One reason for the good performance of BarRel is that the BarRel/CXCC protocol stack
avoids unnecessary re-routing. The soft timing principle in CXCC—allowing feedback
to arrive with significant delay—largely reduces the number of route errors, and thereby
also the amount of spurious routing traffic in the network. To substantiate this claim,

58

3.3 Evaluation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 20 30 40 50 60 70

M
e

a
n

 p
a

c
k
e

t
la

te
n

c
y
 (

s
)

Connection count

TCP Newreno
ADTCP

TCP-AP
BarRel TRFA
BarRel CaRe

Figure 3.4: Mean FTP packet latency with varying network load.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

M
e

a
n

 t
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Maximum node speed (m/s)

TCP Newreno
ADTCP
TCP-AP

BarRel TRFA
BarRel CaRe

Figure 3.5: Mean FTP throughput with varying node mobility.

59

Chapter 3 Implicit Reliability: BarRel

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2 4 6 8 10 12

M
e

a
n

 p
a

c
k
e

t
la

te
n

c
y
 (

s
)

Maximum node speed (m/s)

TCP Newreno
ADTCP

TCP-AP
BarRel TRFA
BarRel CaRe

Figure 3.6: Mean FTP packet latency with varying node mobility.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

d
e

liv
e

re
d

 p
a

y
lo

a
d

 b
y
te

Connection count

TCP Newreno
ADTCP

TCP-AP
BarRel TRFA
BarRel CaRe

Figure 3.7: Protocol overhead for FTP traffic.

60

3.3 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 30 40 50 60 70

L
in

k
 b

re
a

k
s
 p

e
r

c
o

n
n

e
c
ti
o

n

Connection count

TCP Newreno
ADTCP
TCP-AP

BarRel TRFA
BarRel CaRe

Figure 3.8: Average number of link break callbacks per FTP connection.

we show the number of link break callbacks per stream that occurred in our simulations
in Figure 3.8, again for 6m/s maximum node speed and a varying network load. For an
increasing number of connections, their number steeply increases for the TCP/802.11-
based protocol stacks, while it is at a much lower level for the BarRel/CXCC protocol
stack.

3.3.3 HTTP Traffic

It has already been mentioned that the FTP connections in the simulation results pre-
sented so far consist only of one single burst of data. BarRel’s reliability mechanisms,
however, are particularly critical in the case of many short data transmissions. We
therefore complement our simulation results with measurements from a different traffic
pattern. In these HTTP traffic simulations, up to five nodes are designated as HTTP
servers and each server is assigned three nodes as clients. These clients request “pages”
from their respective servers.

We simulate non-pipelined, persistent HTTP 1.1. This yields an interactive traffic
pattern where short bursts of data are alternately transferred in both directions between
client and server. Each client requests five pages from its server, at randomly chosen
points in time, again between 0 and 120 simulation seconds. A page consists of between
one and ten “objects”, each object has a random size of up to 10 KB. These objects
are fetched sequentially, one after the other. As a performance metric, we measure the
time from initiating a page request at the client until the last object of the page is

61

Chapter 3 Implicit Reliability: BarRel

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5

M
e

a
n

 p
a

g
e

 a
c
c
e

s
s
 t

im
e

 (
s
)

Server count

TCP Newreno
BarRel CaRe
BarRel TRFA

Figure 3.9: Mean HTTP request latency with varying network load.

downloaded completely. Again, we use the geometric mean of these page access times
to obtain global performance figures.

Bidirectional, interactive TCP traffic in ns-2 requires the use of an alternative TCP
implementation (called “FullTCP”). The ns-2 implementations of ADTCP and TCP-
AP are based on the standard (unidirectional) TCP implementation, and are therefore
not able to support HTTP traffic. We can thus give HTTP results only for TCP Newreno
and the two BarRel variants.

In Figure 3.9, we increase the number of servers from one up to five. Since each server
has three clients, this also increases the network load. The maximum node speed in
all these simulations is 6 m/s. As expected, for both TCP and BarRel the mean page
access time increases with an increasing server count. Both variants of BarRel exhibit a
substantially lower page access time. Moreover, the degradation with increasing network
load is more severe for TCP than for BarRel, particularly for the TRFA variant.

The traffic situation with many small requests and small data object transmissions is
the worst case for the CaRe variant of BarRel. For a high load—particularly in the case
of five servers—the overhead of the CaRe packets becomes visible. Nevertheless, despite
the effort for the CaRe packets the performance is still substantially better than that of
TCP.

In Figure 3.10, we show similar evaluation results, but now for a number of servers
fixed at three and an increasing maximum node speed. Albeit a certain degradation
with increasing node speed is visible, these results underline our finding from the FTP

62

3.4 Chapter Summary

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

M
e

a
n

 p
a

g
e

 a
c
c
e

s
s
 t

im
e

 (
s
)

Maximum node speed (m/s)

TCP Newreno
BarRel CaRe
BarRel TRFA

Figure 3.10: Mean HTTP request latency with varying node mobility.

simulations that node mobility has only limited impact on the performance of either
protocol. Network load is the more critical factor.

Figure 3.11 is, like above Figure 3.3, a cumulative distribution function, here of the page
access times for a maximum node speed of 6m/s and three servers. The significant dif-
ference particularly at the tail of the distribution is evident: while virtually all requests
are completed within ten seconds for the BarRel variants, more than 15 % of the TCP
requests exceed this threshold.

3.4 Chapter Summary

In this chapter, we have introduced a transport protocol, BarRel, that builds upon
CXCC. BarRel’s fundamental design with respect to reliability provisioning—founded
on implicit feedback—is vastly different from existing solutions. In particular, it is able
to provide TCP-equivalent service, while avoiding oncoming control traffic. It therefore
demonstrates new, previously unexplored options in the design space of protocols for
wireless multihop networks.

We have introduced two mechanisms for BarRel to acknowledge the successful reception
of the end of a packet burst. The first mechanism uses one single end-to-end ACK at
the end of a packet burst, and TRFA packets to recover from packet losses at the end of
a burst. The second mechanism uses CaRe packets to achieve reliable wireless multihop
communication without any end-to-end acknowledgment traffic from the sink back to

63

Chapter 3 Implicit Reliability: BarRel

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Page access time (s, logarithmic)

TCP Newreno
BarRel TRFA
BarRel CaRe

Figure 3.11: Cumulative distribution function of HTTP page access times.

the source. Since the number of CaRe packets that need to be added at the end of
each burst increases with the route length, this latter mechanism implies a somewhat
higher overhead. It has, however, other benefits; in particular, it is very straightfor-
ward, and unlike the TRFA-based mechanism it does not require choosing timeouts. In
our simulation study its performance has been shown to be comparable to that of the
TACK/TRFA-based approach.

Our simulations also generally underlined the superiority of the BarRel/CXCC protocol
stack over TCP/802.11-based solutions in a wireless multihop environment. We have an-
alyzed the performance for both unidirectional FTP-like data transfers and interactive,
HTTP-like traffic, and have demonstrated the benefits of our approach with regard to
many different performance metrics. These results support our claim that for the design
of future wireless multihop networks alternatives to the common Internet protocol stack
should be considered, particularly in those cases where application-specific networks are
designed.

64

Chapter 4

Implicit Multicast Congestion Control:

BMCC

Because of the shared medium and the resulting tight capacity limits for each node,
multicast communication is of particular interest in wireless multihop networks: it helps
saving resources when delivering data to multiple destinations. This is further strength-
ened by the fact that group communication is an inherent feature of many proposed
applications for wireless multihop networks. But a shared broadcast medium is, as seen
before, also much more prone to network congestion than, for example, traditional wire-
line networks. Reducing the number of transmissions required to deliver the data to
all receivers is therefore only half the battle. It is, especially in wireless multihop net-
works, also absolutely vital to perform efficient congestion control, to avoid a congestion
collapse.

We therefore now extend the concept of implicit hop-by-hop congestion control to the
case of multicast communication. We propose a novel congestion control scheme for
multicast in mobile ad-hoc networks. While generally exhibiting very competitive per-
formance, it focuses particularly on the most demanding class of applications: those
which depend on very low packet latencies in combination with high packet delivery ra-
tios. We call this scheme Backpressure Multicast Congestion Control (BMCC). BMCC
and the central results of this chapter are also covered in [STL+07].

We focus on an implementation of BMCC in combination with Scalable Position-Based
Multicast (SPBM) [TFW+07], a geographic multicast routing protocol. Implementing
congestion control over such a scheme is particularly challenging: the source node has
neither information on the continuously changing topology of the multicast tree nor on
the number of group members. BMCC can be used whenever forwarders know their set
of next hop nodes in the multicast distribution tree. This holds for SPBM, but also for

65

Chapter 4 Implicit Multicast Congestion Control: BMCC

a large variety of other multicast routing approaches. Therefore, the ideas and concepts
introduced here are not specific to SPBM.

In our evaluation, we assess the performance obtained with BMCC using ns-2 simu-
lations. We compare it to plain SPBM, to a modified version of SPBM, and to the
On-Demand Multicast Routing Protocol (ODMRP) [LGC99], a well-known topology-
based multicast protocol for MANETs. The results of the simulations underline the
very good performance of our approach.

4.1 Related Work

While multicast routing for mobile ad-hoc networks has received some attention over the
last years, congestion control for this type of traffic in a wireless multihop environment
has only been studied sporadically.

In [TG03] the MANET multicast protocol ODMRP is evaluated with a different MAC
protocol than IEEE 802.11. In this approach congestion control is performed in an
end-to-end fashion. Explicit notifications inform the sender about the average load on
the used links. The authors argue that a backpressure mechanism would react too
slowly. Our protocol, however, proves the opposite, reacting virtually immediately if
the forwarding of a packet is delayed.

Similar to the above approach, Tang et al. [TOLG02a, TOLG02b, TOLG03] introduce an
end-to-end congestion control protocol for multicast traffic. The authors propose to use
negative acknowledgments to infer congestion. The sender reacts by reducing its rate un-
til one affected receiver acknowledges a reception explicitly. Rajendran et al. [ROY+04]
also use end-to-end rate adaption. In addition, they anticipate upcoming congestion by
a local repair strategy, reducing the amount of explicit congestion notifications. Both
approaches, however, depend on feedback from the group members, causing a substan-
tial amount of feedback traffic. Our protocol builds up backpressure immediately and
locally, and avoids explicit feedback.

In [BZK04, Bau05], Baumung et al. propose a congestion controlled multicast overlay
for MANETs. Hierarchical aggregation of acknowledgments provides feedback on the
progress of the worst receiver to the source. This feedback is then leveraged for con-
gestion control. This approach is well-suited for overlay multicast abstracting from the
underlying network. However, detecting packet loss at the receivers and propagating the
aggregated feedback may require significant time. This is avoided by our approach.

66

4.2 Scalable Position-Based Multicast

Peng and Sikdar propose a congestion control scheme for layered multicast in
MANETs [PS03]. In their protocol, multicast layers are blocked and released in interme-
diate nodes, based on the observation of per-link output queue lengths and throughput
measurements. Adjustments finer than a whole layer are thus not possible. The scheme
also does not take all aspects of the shared medium into account: links are consid-
ered heterogeneous and lossy, but independent in terms of capacity. The packets of a
blocked layer are still delivered to the blocking intermediate node, and dropped there.
This wastes valuable shared medium capacity in the bottleneck area. These problems
do not exist in our protocol.

There is substantial existing work in the area of MAC layer multicast in wireless envi-
ronments. These do not deal with congestion control for multihop multicast traffic, but
with delivering a packet to multiple (local) receivers. As one amongst other aspects, our
scheme also has to deal with this question. A typical example is the Multicast MAC
(MMAC) protocol [GNAA04]. In MMAC, the receivers of a transmission are listed in
the packet header. Each of them explicitly acknowledges the successful reception, in
the order given by their index position in the header. In [JD06], a scheme is introduced
which transmits a data packet to up to four receivers at once, and collects acknowl-
edgments from them; for more than four addressees, clusters of at most four nodes
are formed, and the packet is transmitted to each cluster separately. This paper also
provides a broader overview of the area. We consider single-hop delivery to multiple
addressees in a larger context, conjointly with multihop backpressure. This allows for a
different view of the problem. All previously proposed approaches result in significant
control overhead like, e. g., round-robin polling of all destinations, or many additional
feedback fields. This is not necessary in our approach.

4.2 Scalable Position-Based Multicast

Scalable Position-Based Multicast (SPBM) by Transier et al. [TFW+07] is a position-
based multicast routing protocol for mobile ad-hoc networks. It consists of two main
components: a group management protocol and a multicast forwarding protocol. Both
use a subdivision of the network area according to a hierarchical quadtree, as shown in
Figure 4.1. The whole area is divided into four sub-squares, which are in turn again
subdivided, and so on. This is continued until the resulting so-called level-0 squares are
small enough so that each node is able to communicate with all the other nodes within
the same level-0 square directly, i. e., they are in a one-hop distance.

67

Chapter 4 Implicit Multicast Congestion Control: BMCC

12

3
4142

43
441

443 444
Sender

Receiver

Figure 4.1: An example for multicast forwarding in SPBM.

The group management provides every node in the ad-hoc network with aggregated
group membership information. For each of the three neighboring squares on each
hierarchy level, a node knows the list of groups of which at least one member resides
in the group. For example, a node located in square ‘442’ in Figure 4.1 has knowledge
about the aggregated membership information of squares ‘441’, ‘443’, ‘444’, ‘41’, ‘42’,
‘43’, ‘1’, ‘2’, and ‘3’. How this information is actually provided is described in detail
in [TFW+07].

The forwarding decision is based on information about neighboring nodes. Each node
maintains a table of nodes in its transmission range. This is accomplished by overhearing
data messages and periodic update messages issued by the membership management
service, which contain the ID and position of the sending node.

A packet that is to be forwarded includes a list of destination squares, and a group
address indicating the group to which the packet is being sent. Again in the example
in Figure 4.1, the source node in square ‘442’ would address a packet to the one shown
member in ‘442’ directly (because it is located in the same level-0 square and is thus
explicitly known), and to the squares ‘41’ and ‘2’ (because the membership management
knows that group members reside there). Upon reception of a forwarded packet, a node
checks whether it has more detailed information on the destinations. This will happen as
soon as a packet enters its destination square. The respective entry is then disaggregated
by the forwarder. For example, when the packet with destination ‘41’ in Figure 4.1 enters
square ‘41’, the destination will be replaced by entries for squares ‘411’ and ‘414’: the
forwarder, itself located within ‘41’, knows that these are the sub-squares where the
group members reside.

68

4.3 Backpressure Multicast Congestion Control

The packet is then handed over to the forwarding algorithm, where the best-suited
neighbor to forward the packet to each of these destinations is identified. This is accom-
plished similar to position-based unicast routing (see [MWH01]): the source compares
the geographic progress for each of the neighbors with respect to the destination and
picks the neighbor with the greatest progress. After identifying the next hop for each
destination, the forwarding algorithm sends a copy of the packet to each of these next
hops, addressed to the respective destination field(s) that shall be reached. The for-
warding uses a sequence of unicast transmissions. This increases the reliability, since
there will be MAC layer acknowledgments. It comes, however, at the cost of multiple
messages. In the following, we describe the adaptations we made to this transmission
scheme in order to implement our congestion control algorithm.

4.3 Backpressure Multicast Congestion Control

The central difference between unicast and multicast from the perspective of packet
forwarding is that for unicast each forwarder has exactly one next hop node, while with
multicast there may be more than one. Essentially, each packet is forwarded along
a tree of nodes, originated at the source node. Therefore, in order to apply implicit
hop-by-hop congestion control to multicast traffic, we need to generalize the implicit
feedback concepts appropriately to that situation. This generalization forms the core of
BMCC.

4.3.1 Packet Forwarding with Local Broadcasts

Implicit hop-by-hop congestion control embraces the local broadcast property of the
wireless multihop medium by not using explicit feedback, but instead gathering infor-
mation through overhearing. Transmitting the payload of a packet directed to multiple
next hops only once is thus a natural approach, and it is followed here just like in many
previous proposals.

As a first step, we use a modified version of SPBM, called Broadcast SPBM (SPBM-
BC). In SPBM-BC, the group management and the selection of the next hops are done
as described in Section 4.2. But instead of a separate unicast transmission for each next
hop, a single broadcast transmission is used for all of them. The forwarding node adds
all designated next hops to the packet header, including a list of destination squares
for each of them. When the packet is sent via MAC layer broadcast, all neighbors

69

Chapter 4 Implicit Multicast Congestion Control: BMCC

receive it and check whether they are contained in the list of designated next hops—if
not, they will discard the packet. This is complemented by implicit acknowledgments:
if the original sender does not overhear the retransmission of a packet from all of the
designated next hops, it will rebroadcast the packet after removing all next hops that
already successfully acknowledged the packet.

SPBM-BC is the basis for SPBM with Backpressure Multicast Congestion Control, but
it will also serve as a benchmark: SPBM-BC will show us the performance that can
be obtained by using local broadcasts and implicit acknowledgments without BMCC’s
backpressure mechanism.

To avoid parallel medium access attempts by multiple addressees, each attempting to
forward the packet, a node waits for a random backoff before it transmits. Multiple next
hop nodes may not all be within mutual communication range, but it is reasonable to
assume that they are often within carrier sense range. In combination with carrier sens-
ing and medium access backoff the jittering desynchronizes the answers, thus avoiding
the synchronization problem. This pragmatic solution matches the soft timing principle
of CXCC very well, avoids complex co-ordination, and saves significant overhead.

4.3.2 Backpressure with Multiple Next Hops

By not allowing the transmission of a subsequent packet before its predecessor has
been forwarded by the next hop CXCC builds up backpressure. This guarantees that
a downstream bottleneck rapidly propagates backwards along the route towards the
source. In BMCC, we apply the same concept, but along a tree structure. We strive
for high packet delivery ratios to all receivers in this tree, i. e., towards all leaves. As
a consequence, we need to adjust the source data rate to the tightest bottleneck in the
forwarding tree. In other words, we need to ensure that the data inflow into any branch
does not exceed the bottleneck capacity within that branch.

In this form, the scheme will be susceptible to the well-known “crying baby prob-
lem” [HSC95]. If one group member has a particularly bad connection, its mere ex-
istence will result in a deterioration of service quality for the other group members. We
will devise a way to deal with this effect later. For now we concentrate on a backpressure
protocol that adjusts the source data rate to the tightest point in the multicast tree.

BMCC achieves the desired congestion controlling behavior by generalizing the CXCC
backpressure rule in the following way: the next packet may only be forwarded if all
the next hop nodes for that packet have forwarded the previous one. Similar to the

70

4.3 Backpressure Multicast Congestion Control

backpressure building up backwards along the route with CXCC, this rule in BMCC
results in backpressure along the tree. Thereby, packets that are not able to traverse
the network will not be allowed to leave the source node. This implicitly regulates the
source data rate, and it keeps the queues in the intermediate nodes extremely short.
Each forwarder can queue at most one untransmitted packet. The source node can
also communicate the backpressure to the application. This allows to adapt the packet
generation to the medium situation, for example by adjusting the bit rate dynamically.

Since transmissions in BMCC are directed to a set of next hop nodes, the situation is
significantly more complex than in the single next hop case of unicast forwarding. Each
single next hop node may have received the transmission correctly or not. If the packet
has been received correctly, each of the next hops may already have forwarded it again or
might still hold it back due to backpressure. Finally, for each successor having forwarded
the packet, the implicit acknowledgment may have been overheard or not. The central
challenge in BMCC is to deal with this additional complexity efficiently while adhering
to the principles of implicit feedback and soft timing, and avoiding unnecessary control
traffic.

To tackle this challenge, a forwarding node in BMCC keeps track of the list of next
hop nodes from which an acknowledgment is still missing. After transmitting a packet
addressed to a set of one or more next hops, this list is initialized to contain all these
next hops. If an implicit (or explicit) acknowledgment from one of them is detected, the
respective node is removed from the list. The transmission of the subsequent packet is
allowed once the last entry has been removed from the list.

If acknowledgments are missing for a too long time, a generalization of CXCC’s RFAs
is used. Just like data packets, RFAs in BMCC are directed to a whole set of next
hop nodes: they address all the next hop nodes from which an acknowledgment is still
missing. All thereby challenged forwarders can decide individually whether they should
react with an explicit ACK or NACK.

A number of optimizations is possible to exploit the information contained in these
handshakes most effectively. Since a single next hop node that has not received the data
packet already necessitates a retransmission, it is not necessary to wait for feedback
from all nodes if a NACK is received. In this case, an immediate retransmission of
the data packet is triggered, addressed to the nodes from which acknowledgments are
missing. Ideally, this makes the transmission of further NACKs by other next hop nodes
unnecessary. Furthermore, such a retransmission may also fulfill the purpose of an RFA
for nodes that had already received and forwarded the packet. If their forwarding

71

Chapter 4 Implicit Multicast Congestion Control: BMCC

has not been overheard by their predecessor, they will be in the list of addressees of
the retransmission. They can easily detect this situation and repeat the lost feedback
through an explicit ACK.

Like for the packet transmissions themselves, a possible synchronization of the answers
to an RFA needs to be considered. If multiple addressees all access the medium im-
mediately after receiving the RFA this will cause severe collisions. For this reason,
such reactions by forwarders are, just like forwarded data packets, sent with substantial
jitter.

4.3.3 Dealing with Unavailable Next Hops

In order to perform effective congestion control, backpressure should be maintained as
long as the downstream nodes are not able to forward the previous packet. It must, how-
ever, be avoided to wait indefinitely for an implicit acknowledgment from a downstream
node which is no longer reachable. Such a node will obviously not react to RFAs. But
since this also applies to a node keeping a packet back due to backpressure, a lightweight
mechanism is needed which helps to distinguish these two cases.

A basic solution to this problem is already provided by SPBM: if no more update beacons
from a neighbor are received over some time, it is considered unavailable. But due to
the relatively low beaconing frequency, this reacts rather slowly. We thus also adopt the
KAL packet mechanism of CXCC for the detection of broken links, thereby speeding up
the detection of no longer available next hop nodes.

Recall that a KAL packet is sent if an RFA is received for a packet which has arrived,
but is currently held back due to backpressure. It may also be issued when a new packet
is received from the previous hop, while an acknowledgment for the preceding one has
not yet been received. It indicates that its sender is reachable, but it does not release
the backpressure. With this extension, the link to a next hop node may be considered
broken if the number of consecutive unanswered RFAs exceeds some threshold.

4.3.4 Handling Inhomogeneous Receivers: Backpressure Pruning

One earlier mentioned issue still deserves attention: BMCC will adjust the data rate
to the tightest bottleneck in the multicast tree, i. e., according to the slowest receiver.
While this is necessary in order to achieve high delivery ratios at all receivers—and
might thus well be desirable in certain usage scenarios—, it is susceptible to the crying

72

4.3 Backpressure Multicast Congestion Control

Sender

Receiver 1

Receiver 2

Figure 4.2: Simple scenario with unequal receivers.

baby problem. If there is one group member with a particularly bad reachability, this
will thwart a higher data rate to all other receivers. It is thus of interest to see whether
a variant of BMCC can be built that exhibits a different behavior in this regard: is it
possible to modify the algorithm to adjust the inflow into each branch of the multicast
tree to the highest rate sustainable by at least one receiver in that branch, thus maxi-
mizing the throughput to each individual receiver? Depending on the application, the
original version or such a variant may be favorable.

However, due to the shared broadcast medium the rates to the receivers cannot be
individually and independently maximized. For clarification, let us consider two simple
examples in a scenario like in Figure 4.2. There is one sender and two receivers. While
receiver 1 is directly reachable from the source, receiver 2 is further away. In the first
example, there is no additional traffic in the network. Transmissions from the source
to receiver 1 are affected by transmissions made by at least the first two forwarders
towards receiver 2, because of the shared medium and carrier sensing at the source
node. BMCC aims at high packet delivery ratios to all receivers. The backpressure rule
as presented above will achieve the following: it will always allow to forward a packet
towards receiver 2 before the next packet enters the network—even though this reduces
the throughput to receiver 1. When striving for fairness between multiple receivers and
high packet delivery ratios this is generally the desired behavior. Ideally, receiver 1
should not receive data at a higher rate, if this comes at the cost of receiver 2’s rate.1

As a second example, let us consider a situation in which the medium around receiver 2
is severely congested. Then, backpressure towards the source will build up, and for-
warding of packets along the route to receiver 2 may be substantially delayed—this is
inevitable if it is not possible to forward packets towards receiver 2 at a higher rate.

1This is actually related to the notion of max-min-fairness, which states that a resource allocation
is max-min-fair if increasing the share of any component is only possible at the cost of decreasing
the share of an already lower component (for an in-depth discussion in the networking context see,
e. g., [RL02]). We do not claim that the variant of BMCC to be introduced now will guarantee max-
min-fair bandwidth allocations—due to the complexity and stochastic nature of a wireless multihop
environment such a guarantee is hardly possible. But we aim for a heuristic that follows this general
idea.

73

Chapter 4 Implicit Multicast Congestion Control: BMCC

But this behavior can result in substantial underutilization of the medium around the
source and receiver 1. Depending on the application, it may be desirable to use such
otherwise unused medium bandwidth for the forwarding of additional packets to better
reachable receivers. Nonetheless only those packets should enter the network for which
the bandwidth towards at least one receiver suffices.

We will now present a modification of the backpressure rule of BMCC that is able
to yield just these effects. We call it BMCC with backpressure pruning (BMCC-BP).
The backpressure pruning mechanism allows for branches to be cut off if backpressure
exists in them. It makes use of the keepalive packets introduced above for the purpose
of improved unavailable forwarder detection. A KAL packet occurs in backpressure
situations, when the forwarding of packets is delayed. Thus, the reception of a KAL
from one next hop node indicates that the respective subtree is currently a bottleneck.

In standard BMCC, a node must wait for all next hop nodes to acknowledge the packet
(neglecting, for simplicity of discussion, possible unavailable next hop nodes). BMCC-
BP replaces this with a slightly more complex rule set, as follows. A node may stop
further attempts to deliver a packet to the remaining next hop nodes if

1. at least one next hop node has acknowledged the packet,

2. a KAL has been received from all other next hops, and

3. a subsequent packet is already available for forwarding.

At the source node, the latter criterion is fulfilled if the application has already generated
a subsequent packet which is waiting in the queue. In intermediate nodes, it holds as
soon as a follow-up packet has been received from the upstream node. This may happen
when the upstream node, in turn, has received at least one implicit or explicit ACK and
KALs from all its remaining next hops.

The first backpressure pruning criterion guarantees that each packet will eventually
arrive at at least one receiver: if one next hop node has acknowledged the packet, this
implies that it has been forwarded into at least one branch. Packets will thus still not
enter the network at a rate higher than what can be sustained by the “best” group
members. The second criterion antagonizes the “stealing” of bandwidth from other
branches, by providing each next hop with a chance to access the medium and thus at
least with an opportunity to forward a packet.

Backpressure pruning may result in situations where a node receives a follow-up packet
before it has attempted to forward the previous one. In this case, it should drop the

74

4.4 Evaluation

previously known packet (for which it had sent a KAL), and instead enqueue the newly
received one.

Summarizing so far, BMCC, as originally introduced, is designed to result in an adjust-
ment of the source data rate to the tightest bottleneck in the network. This ensures
high delivery ratios whenever possible. BMCC-BP is in some sense complementary: it
is built to deliver the maximum individually sustainable rate to each receiver, as long as
this does not come at the cost of other branches of the tree. Both adjust the rates of the
source and of intermediate nodes without explicit rate feedback and without multihop
control packets, by using implicit backpressure.

4.4 Evaluation

For the evaluation we implemented SPBM with BMCC in ns-2 [ns2a], based on Transier
et al.’s SPBM implementation from [TFW+07]. As a comparison, we used the plain
(unicast) version of SPBM as outlined in Section 4.2, the broadcast version described in
Section 4.3.1, and an implementation of ODMRP [LGC99] that was originally obtained
from [ns2b], ported to ns-2.30, and optimized as described in [TFW+07]. To obtain the
results presented below, we used parameters similar to the ones in the previous chapter,
with a network area of size 1500× 1500 meters and a total of 200 nodes.

One multicast group was defined, with two senders and ten receivers; thus, two indepen-
dent multicast trees were used in parallel. Other combinations of sender and receiver
counts yield similar results. We consider scenarios with and without node mobility. The
source applications generate data packets with 64 bytes of payload at an increasing rate
between 1 and 50 packets per second, or the highest frequency at which packets are able
to leave the source node, whichever is lower. While BMCC can provide fine-grained
feedback to the application about when packets may be sent, the other protocols used
here are not able to generate such feedback. By accounting only for packets that are
able to leave the source, we thus avoid distortions of the results for the other protocols
and keep the comparison fair.

Again the error bars in our figures show 95 % confidence intervals, based on (log)normal
and i. i. d. sample assumptions. While, for the reasons discussed before, we use geometric
means in our packet latency figures, we resort to the arithmetic mean for packet delivery
ratio and throughput. The reason is that for both samples with value zero are possible
(and do, for some protocols, actually occur). A throughput of zero was not possible

75

Chapter 4 Implicit Multicast Congestion Control: BMCC

in our BarRel simulations described in Section 3.3, where all connections had a given
amount of data to transmit with no time limit imposed.

4.4.1 Delivery Ratio and Throughput

In Figure 4.3, the packet delivery ratio achieved by the different protocols is shown, in a
static setting without mobility. A value of one means that all packets that had left the
source nodes arrived successfully at each receiver. Adjusting the source rate in order to
allow for high packet delivery ratios was a main design goal of BMCC. The results show
that it has been achieved. At packet generation rates below 20 packets per second the
delivery ratios of unicast SPBM and ODMRP are very similar, with slight advantages
for SPBM. For higher rates, ODMRP delivers a greater fraction of the packets. However,
the fact that the delivery ratio is continuously decreasing for all three shows that more
and more packets are able to leave the sources, but then do not make it to the receivers.
Interestingly, the broadcast version of SPBM with implicit acknowledgments does not
reach the performance of unicast SPBM—although it theoretically needs fewer packet
transmissions. If the forwarding of a packet in one of the next hop nodes is delayed, no
explicit acknowledgment will arrive, which causes SPBM-BC to unnecessarily retransmit
the packet. This wastes substantial medium bandwidth. Obviously, it is not enough to
use implicit acknowledgments at the network layer. It is the backpressure mechanism
in BMCC that turns the balance. It is able to outperform all others and reach delivery
ratios very close to 100 % at all sending rates. This shows that the congestion control
mechanism is successful in regulating the source rate. The sending nodes only put on
air as many packets as the network is able to handle. Thus, the protocol is able to retain
high delivery ratios even for high packet generation rates.

In Figure 4.3, there is only a very limited difference between the results with standard
BMCC and BMCC-BP. This will likewise be the case in all our other random topology
simulations. As we will soon demonstrate, the reason is not that the protocols do
generally behave identically. This effect is rather caused by the relative homogeneity of
the receivers and therefore the load distribution in these networks. There seems to be
virtually no free medium capacity that could be used to deliver data faster to certain
receivers, without at the same time negatively affecting others.

Figure 4.4 shows how the packet delivery ratio develops in the presence of mobility.
In the mobile scenario simulations, the nodes move according to the random waypoint
mobility model, with a maximum speed of 5 meters per second, a minimum speed

76

4.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.3: Packet delivery ratio with increasing packet generation rate.

of 0.5 meters per second, and no pause times. Initial node positions and speeds are
sampled according to the mobility model’s stationary distribution [NC04]. Data is again
generated by the source applications at varying rates. It can be seen that the relative
performance of the protocols remains largely unchanged, all deal reasonably well with
mobility. Rapid topology changes cause inconsistencies in SPBM’s routing tables, and
thus also affect SPBM with BMCC.

A high packet delivery ratio could of course be achieved relatively easily if the total
number of packets in the network was kept at a low level. Figure 4.3 does only show that
almost all out of a so far unknown number of packets leaving the source do arrive with
BMCC. We therefore have to consider these results in conjunction with the obtained
data rate. Figure 4.5 presents the data rate achieved by an average sender-receiver
pair. For packet generation rates of up to 10 to 15 packets per second, all examined
protocols are able to deliver all the data produced by the applications. Since each data
packet carries 64 bytes of payload, the resulting optimal data rate is 640 Byte/s at 10
packets per second. The simple broadcast version of SPBM breaks first. Starting from
10 packets per second, its goodput increases much less than the data generation rate.
Plain SPBM and BMCC show similar trends at different levels: the goodput grows up to
a certain saturation and stays at this level for higher packet generation rates. ODMRP
delivers higher data rates starting from 30 packets per second. This, however, comes
at a high cost: ODMRP then loses, as seen before, at least 20 % of the packets. As we
will soon demonstrate, it also allocates resources unfairly, preferring close-by receivers,
burdens the network with a heavy traffic load, and suffers from high delays.

77

Chapter 4 Implicit Multicast Congestion Control: BMCC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.4: Packet delivery ratio in mobile scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.5: Throughput per sender-receiver pair.

78

4.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.6: Throughput per sender-receiver pair in mobile scenarios.

Figure 4.6 shows the average receiver data for mobile scenarios. Again, BMCC achieves
a perfectly shaped throughput curve. As can be seen, ODMRP is barely affected by
mobility. The variants of SPBM, including BMCC, achieve lower rates in the presence of
mobility. Starting from the point where ODMRP achieves higher data rates, it also—
as described above—exhibits decreasing packet delivery ratios. In [TFW+07], it has
already been shown that SPBM suffers from mobility, because of its group management.
Nevertheless, with BMCC it is able to keep up high delivery ratios.

4.4.2 Fairness Between Senders

The previous evaluation raises the question why BMCC does not achieve the somewhat
higher data rates obtained with ODMRP, if the network is seemingly able to support
them. The key to understand this property lies in the vastly different effort that is
required to deliver a packet to different receivers, depending on their distance from the
source. It is much more resource intensive to bring a packet to a far away receiver than
to a close-by one. A high data rate might simply be obtained by preferring transmissions
over shorter distances. This issue is closely related to the fairness between senders: do
receivers preferably receive packets from closer source nodes?

In order to analyze this aspect, we look at the distribution of packet sources amongst the
packets arriving at the receivers, with an increasing number of senders in a multicast
group. To quantify the fairness of this distribution, we use Jain’s fairness index as
introduced in [JCH84]. This index establishes a measure for the fairness of resource

79

Chapter 4 Implicit Multicast Congestion Control: BMCC

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5

J
a

in
’s

 f
a

ir
n

e
s
s
 i
n

d
e

x

Number of senders

ODMRP

SPBM

SPBM-BC

BMCC

BMCC-BP

Figure 4.7: Jain’s fairness index for packet distribution over senders.

allocation in a multi-user system. It yields a value between zero and one, where one
means perfect fairness and zero is approached if one out of more and more participants
is assigned all resources. The fairness index is defined as

(
∑n

i=1 xi)
2

n ·
∑n

i=1 x2
i

,

where xi is the resource share assigned to the i-th participant.

Here, we apply Jain’s fairness index to the packet counts received from each source,
giving us a fairness value for each receiver. I. e., in our case xi is the number of packets
received from the i-th source. In Figure 4.7, the average of the resulting index values for
all receivers is shown, for an increasing number of senders. ODMRP achieves a better
fairness than plain unicast SPBM. Broadcast SPBM does not meet the performance of
the unicast version in this metric either. But BMCC again clearly outperforms ODMRP.
Here lies the reason why BMCC does not allow for higher data rates: these seem possible
only at the cost of an increased unfairness.

4.4.3 Delay and Protocol Overhead

Figure 4.8 shows the average total amount of data that has been transmitted on the phys-
ical layer during one simulation run, as a measure of the protocol overhead. ODMRP
has the highest resource requirements. The reasons lie within the structure of the pro-
tocol: ODMRP floods data packets through the whole network on a regular basis, and

80

4.4 Evaluation

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

D
a

ta
 t

ra
n

s
m

it
te

d
 (

M
B

)

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.8: Data transmitted on physical layer.

it uses redundant paths in a mesh structure, both of which result in a higher number of
transmissions. The broadcast and unicast version of SPBM produce similar amounts of
data on the physical layer. If local broadcasts are used with SPBM without employing
BMCC’s backpressure mechanism, it needs even somewhat more bandwidth, instead of
saving it. This results from a high number of retransmissions performed by this ap-
proach. The backpressure mechanism of BMCC, because of its effective ways to avoid
unnecessary retransmissions, is once again able to turn this into the opposite, avoiding
unnecessary control traffic and retransmissions.

Finally, we look at the end-to-end delay. Figure 4.9 depicts the geometric mean of the
end-to-end delay of all delivered data packets, from the time the packet leaves the source
node until it arrives at the receiver. Again, up to a packet generation rate of 15 packets
per second in each source, all protocols deliver the packets at sufficiently low delays. For
higher data generation rates, only BMCC is able to maintain short packet latencies. The
other protocols delay packets for up to several seconds, which is definitely unacceptable.
This problem stems from long queues building up in the intermediate nodes, a problem
being avoided in BMCC by the very design of the protocol, which implies very short
queues.

4.4.4 Backpressure Pruning

So far, it seemed that backpressure pruning does not have any substantial effect. This
is, however, not true. The impression is a result of the relative homogeneity of the so

81

Chapter 4 Implicit Multicast Congestion Control: BMCC

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

M
e

a
n

 p
a

c
k
e

t
d

e
la

y
 (

s
)

Packet generation rate (packets/s)

ODMRP
SPBM

SPBM-BC
BMCC

BMCC-BP

Figure 4.9: End-to-end delay.

far considered settings. To analyze the behavior of BMCC-BP in a scenario in which
a difference must clearly appear, we use a simple static topology similar to the one
depicted in Figure 4.2. Based on an equidistant chain topology, the nodes are set up
such that the source is a direct neighbor to one receiver, R1, while a second one, R2 is
seven hops away. An additional interfering data stream transmits packets continuously
in the neighborhood of this second receiver. The source node again generates data
packets at an increasing rate.

We analyze the packet delivery ratio as well as the data rate for both receivers separately.
This allows for a detailed analysis of the operation of BMCC-BP. The respective results
are depicted in Figures 4.10 and 4.11. There are six curves, describing the results with
ODMRP and the two BMCC variants. For improved readability of the charts we leave
out the results with SPBM. Not surprisingly, all protocols are able to transmit packets
with a high delivery ratio to the first receiver. BMCC, aiming at the maximum possible
fairness, notices the congested area via its implicit backpressure mechanism and thus
maintains a high delivery ratio also towards the second receiver—which is only possible
at a limited rate for both receivers. ODMRP, without a mechanism to deal with such a
congestion situation, results in a high number of lost packets on the path to the second
receiver; the first destination receives packets at a high data rate, while the second
receiver is mostly cut off. The backpressure pruning mechanism in BMCC-BP handles
the congestion situation correctly. It reduces the data rate to the second receiver (and
thus the packet delivery ratio) without affecting the ability of the non-congested receiver
to receive more packets.

82

4.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

Packet generation rate (packets/s)

ODMRP R1
ODMRP R2

BMCC R1
BMCC R2

BMCC-BP R1
BMCC-BP R2

Figure 4.10: Packet delivery ratio for receivers R1 and R2 in a simple static scenario
with congestion at R2.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Packet generation rate (packets/s)

ODMRP R1
ODMRP R2

BMCC R1
BMCC R2

BMCC-BP R1
BMCC-BP R2

Figure 4.11: Data rates of receivers R1 and R2 in a simple static scenario with congestion
at R2.

83

Chapter 4 Implicit Multicast Congestion Control: BMCC

4.5 Chapter Summary

In this chapter, we have proposed a novel way to perform effective congestion control
for multicast traffic in wireless multihop networks. Our scheme is based on implicit
feedback, establishing multihop backpressure through simple packet forwarding rules.
It solves single hop reliability and implicit multihop backpressure congestion control
conjointly, thereby avoiding many unnecessary control messages and packet retransmis-
sions.

A simulator implementation of the approach in combination with the geographic mul-
ticast routing protocol SPBM exhibits convincing performance in a simulation study,
demonstrating the effectiveness of the source rate limitation. Our scheme yields com-
petitive throughput and superior fairness while maintaining very high packet delivery
ratios for all receivers, combining these traits with very low end-to-end packet delays
and a low protocol overhead.

84

Chapter 5

Co-ordinated Network Coding: noCoCo

With network coding, a router transmits multiple packets within a single “coded” packet,
and can thereby make more efficient use of the available bandwidth. The recent work
COPE by Katti et al. [KRH+06] applies this technique to wireless multihop networks.
Considering a simple three-node, two-hop setting outlined in [WCK05], the basic princi-
ple of network coding is easy to understand: if node A sends a packet pA to C via B, and
C sends a packet pC to A, also via B, then B may send the XOR of pA and pC , pA⊕pC ,
instead of transmitting them separately. Since A and C know pA and pC respectively,
they can extract the data intended for them with another XOR operation: pA⊕(pA⊕pC)
to retrieve pC , and similarly pC ⊕ (pA⊕ pC) to retrieve pA. This is schematically shown
in Figure 5.1: while without network coding, as in Figure 5.1(a), four transmissions are
necessary, three suffice if network coding is used as in Figure 5.1(b). The concept can be
transferred to more complex scenarios; COPE generalizes it to using overheard packets
to decode.

In COPE, coding is performed when opportunities arise spontaneously. Such an op-
portunistic approach may work very well if, in the above example, indeed both A and
C make their transmissions before B accesses the medium. Then, B has packets pA

directed to C and pC directed to A in its queue. It also is aware that A knows pA and
C knows pC , because these are the nodes from which the respective packet has been
received. B can thus seize the opportunity to reduce the number of required transmis-
sions by transmitting pA⊕ pC , knowing that both receivers will be able to extract their
respective packets.

Not always, however, will things work out that well. If A transmits first and B forwards
the packet further on immediately, no coding will be performed. Consequently, the
order of transmissions can significantly impact the availability of coding opportunities,
and hence the coding benefits.

85

Chapter 5 Co-ordinated Network Coding: noCoCo

(a) Without network coding. (b) With network coding.

Figure 5.1: Exchange of two packets over a wireless relay.

86

5.1 Related Work

This prompts us to investigate more deterministic alternative approaches to coding.
Network coding in the way performed by COPE builds upon the local broadcast property
of the wireless multihop medium. It is therefore tailored to the same environment as
CXCC, BarRel, or BMCC, and it likewise explicitly takes advantage of the network’s
characteristics. Hence, the question arises whether implicit feedback and co-ordination
along the lines of the approaches pursued here can be applied to increase the number
of coding opportunities, and thereby the efficiency of the medium use.

In the following, we start by analyzing packet flows in two-way data traffic, and conclude
that it is possible to guarantee coding opportunities through carefully co-ordinating
packets transmission. We introduce a centrally scheduled coding scheme and derive
general properties of schedules that can maximize the coding gain in two-way traffic
flows. After studying the theoretical limits, we translate the understanding into a prac-
tical protocol proposal, Near-Optimal Co-ordinated Coding (noCoCo). noCoCo is built
around a few simple rules for packet forwarding that—even though they are designed
for and motivated by a very different purpose—can be seen as an extension of CXCC.
noCoCo guarantees achieving the maximum possible coding gain for each single bidirec-
tional connection in isolation. It can be further combined with opportunistic schemes to
identify and exploit additional coding opportunities with, e. g., cross-traffic or unidirec-
tional traffic components. The results of this chapter are also the topic of [SHC07].

5.1 Related Work

Network coding was initially proposed by Ahlswede et al. in a theoretical work on
multicast communications in wireline networks [ACLY00]. In this context, it was shown
to substantially increase the network capacity. Network coding for unicast flows has
subsequently been studied, also mostly from a theoretical and modelling perspective.
Few of these works, though, consider a wireless context. Examples are [LL04, WCK05,
HCH06]. Here, we implement network coding for two-way unicast flows in a distributed
protocol for wireless multihop networks.

Wu et al. [WCK05] studied bidirectional traffic crossing a single relay. They introduced
the concept to combine packets that traverse a relay in opposite directions by XOR.
Katti et al. [KRH+06] generalized that and applied it in a practical, distributed protocol
named COPE. It is implemented as a coding shim between the MAC and routing/IP
layers. COPE may be considered the previous work most relevant to ours.

87

Chapter 5 Co-ordinated Network Coding: noCoCo

Beyond combining packets that traverse the same relay in opposite directions, COPE
uses overheard packets for additional coding opportunities. For a coded transmission
to be successful, all intended nexthop receivers must be able to decode it. This re-
quires a receiver to have all other component packets except the one directed to itself.
Consequently, the task of identifying coding opportunities boils down to obtaining in-
formation about which packets are known by which neighboring node. COPE employs
three mechanisms. First, a node knows all packets it has sent out. Therefore the node
from which a packet has been received will know that packet—this is the case discussed
previously. Secondly, COPE nodes piggyback “reception reports” onto their transmis-
sions, to explicitly notify neighbors of the packets received/overheard. Finally, COPE
also “guesses” coding opportunities: based on the link quality information from the
routing protocol, a node estimates the overhearing probabilities of coding candidates at
specific neighbors. This yields the probabilities of successful decoding on all addressees
for a particular combination of packets. If this success probability is above a threshold,
the packets are combined into one packet—at the risk of occasional failed decoding on
some neighbor.

Generally, the coding gain that can be achieved depends on the combinations of pack-
ets that meet in intermediate nodes, and thus on the routes chosen for the flows in
the network. Some recent efforts considered cross-layer approaches in the context of
coding-aware routing [SRB07]. Chaporkar and Proutiere also studied the issue of joint
scheduling and COPE-like coding, focusing on characterizing the capacity region of a
simplified coding scheme [CP07]. Here, we assume that oppositely directed traffic uses
the same route. The substantial benefits that will be shown for our co-ordinated coding
approach in fact motivate coding-aware routing that aims to achieve this property.

5.2 Maximizing the Coding Gain

5.2.1 A Centralized Scheduler

We concentrate on the non-opportunistic coding of packets belonging to the same bidi-
rectional connection, consisting of the two flows from endpoint A to B, and from end-
point B to A. For our discussion, we consider a single bidirectional connection in
isolation. We term the two endpoints A and B the “left hand side node” and the “right
hand side node”. In practice, and in our noCoCo implementation introduced later on,

88

5.2 Maximizing the Coding Gain

opportunistic coding is used to exploit additional coding opportunities between different
connections.

Note that two-way traffic is the prototypical situation for possible continuous coding
gain. Such traffic exists in many applications, including many forms of real-time com-
munications. It has even been argued that symmetry of outgoing and incoming packets
counts should be a design criterion for good protocols [KWC+05].

To obtain a maximum number of coding opportunities, we look at the scheduling of
transmissions: in which order should which nodes transmit which data packets in which
coded combinations? The first question that arises in this context is what the maximum
coding gain is, after all. The follow-up question whether it can be achieved is intimately
related: is there a schedule that can always guarantee maximum coding gain, over an
arbitrarily long timespan? In the following, we will first show that optimal scheduling
of two-way traffic is indeed possible, by explicitly giving a centrally scheduled solution.
We then point out some interesting properties that any schedule with maximum coding
gain will necessarily possess.

We first observe that the initial transmission of a packet, when it leaves the source node,
can not be coded. This is because no other node in the network knows this packet, and
would thus be able to undo the coding. In the ideal case, all other transmissions combine
two oppositely directed packets. One such transmission will then yield two single-hop
packet deliveries. At most two (oppositely directed) packets from the same connection
can be combined. Therefore, if we manage to combine two packets in each transmission
of an intermediate node, we obtain the maximum coding gain.

A close look soon reveals that for a connection over more than two hops, a coding partner
for each transmission cannot possibly be available from the beginning. The intermediate
nodes first need to have packets in both directions available. Let us thus consider the
situation after some initialization has taken place. Enumerate all intermediate nodes
along the route, starting at one. Assume that the initialization manages to place exactly
one packet for either direction in each intermediate node with an odd index. If the total
number of hops is odd, thus giving an even number of intermediate nodes, it places
an additional left-directed packet in the rightmost intermediate node. Any other nodes
with even indices hold no packets. Now further assume that we have a global, centralized
scheduler available. We may thus arbitrarily decide on the occurring transmissions and
their order. Let the scheduler work as follows:

89

Chapter 5 Co-ordinated Network Coding: noCoCo

1. First, all intermediate nodes with odd indices makes one coded transmission each,
thereby forwarding one packet in each direction. These transmissions may happen
in an arbitrary order.

2. If one or both of the end nodes have received a packet during Step 1, they “answer”
by injecting a new packet into the network.

3. Then, all intermediate nodes with even indices will have a packet in each direction
available, and may now make coded transmissions.

4. Again, the end nodes reply to received packets by injecting a new packet.

5. Repeat this sequence of transmissions from Step 1.

For the case of a four-node, three-hop scenario, this is schematically visualized in Fig-
ure 5.2.

This scheme can be run indefinitely. All transmissions by intermediate nodes will always
forward one packet in either direction, thus realizing optimal coding gain. This demon-
strates that optimal coding gain is possible, though for now we do not know whether
and how it can be achieved in a distributed way.

5.2.2 Notation

Before further examining the general properties of scheduling schemes that can guar-
antee successful network coding, we introduce a notation for the state of the network.
The state of the queue is denoted in a node as x/y, where x is the number of queued
packets directed to the node’s left neighbor, and y the number of packets directed to
the right neighbor. x, y are non-negative integers. We neglect all packets that do not
belong to the connection under consideration.

To denote sets of possible states, we will use three placeholders. “∗” means that
at the respective position there may be any arbitrary non-negative integer, i. e.,
∗/y = {x/y | x ∈ N}. “+” stands for a positive integer, so +/y denotes the set of states
{x/y | x ∈ N+}. Finally, “?” means either 0 or 1, so ?/y = {x/y | x ∈ {0, 1}}.

If we look at a set of consecutive nodes along the route, we may write their joint queue
state as x1/y1, x2/y2, x3/y3, Transmissions can then be expressed as transforma-
tions of the joint queue state. For example, a right-directed transmission of a single
packet is

xk/yk, xk+1/yk+1 → xk/yk − 1, xk+1/yk+1 + 1. (5.1)

90

5.2 Maximizing the Coding Gain

Figure 5.2: Operation of the centralized scheduler in a three-hop environment.

91

Chapter 5 Co-ordinated Network Coding: noCoCo

Such a transmission can take place if the transmitting node’s queue state is in ∗/+.

Likewise, a coded transmission of two packets by node k would be

xk−1/yk−1, xk/yk, xk+1/yk+1

→ xk−1 + 1/yk−1, xk − 1/yk − 1, xk+1/yk+1 + 1.
(5.2)

The necessary precondition here is that the sending node’s state xk/yk is in +/+.

5.2.3 Properties of High Coding Gain Schedules

Ideally, we want all transmissions of intermediate nodes to be coded, so we allow only
transmissions as in (5.2) in the intermediate nodes. As mentioned earlier, no coded
transmission can take place at the end nodes. Additional packets are thus inserted via
uncoded transmissions. This yields state transitions of the following form at the leftmost
intermediate node of the route:

x/y → x/y + 1, (5.3)

and equivalent ones at the rightmost intermediate node.

Packets leave the network by coded transmissions. For the leftmost pair of intermediate
nodes, the corresponding transition is

x1/y1, x2/y2 → x1 − 1/y1 − 1, x2/y2 + 1, (5.4)

with precondition x1/y1 ∈ +/+.

The availability of coding partners is likely if there are many packets in both directions
available in the intermediate nodes. Conversely, coding opportunities will be rare if
“too few” packets are on their way. However, as our results with CXCC, BarRel, and
BMCC have demonstrated, it is desirable to keep the queues in a wireless multihop
network short. Therefore, a suitable scheme needs to strike a balance between coding
opportunities, throughput, and packet delay. We thus now determine how many packets
are necessary in order to obtain high coding gains.

As a step in this direction, consider the allowable transitions (5.2), (5.3), and (5.4)
and how they can be applied to “navigate” the global joint queue state space. We
assume the use of some arbitrary scheduling scheme that maximizes the number of
coding opportunities, and derive some properties that such a scheme must exhibit. It

92

5.2 Maximizing the Coding Gain

turns out that there is a subset of the state space which can never be left, should any
of these states ever be entered. The following lemma points out this “state trap”.

Lemma 5.1. The subset of global joint queue states where the joint queue state of two
consecutive nodes is in 0/∗, ∗/0 can never be left.

Proof Consider the case where the joint queue state of a pair A,B of consecutive
intermediate nodes is in 0/∗, ∗/0. Then, neither A nor B can make a coded transmission.
A, however, can increase its number of left-directed packets only if a packet is received
from B, and vice versa. Hence, this set of states can never be left by coded transmissions
only.

Once such a state has been reached, it is impossible to maintain network coding with
maximum gain—the affected nodes cannot continue to forward data with purely coded
transmissions. This permits the reversal conclusion that a state as in Lemma 5.1 will
never be reached by any scheme that maintains optimal coding gain.

If the joint queue state of each pair of neighbored intermediate nodes will never be in
0/∗, ∗/0, there always has to be at least one packet in one of the queues of each such
node pair. The following theorem uses this to establish a lower bound on the number
of packets in transit.

Theorem 5.2. In any n consecutive intermediate nodes there are at least n− 1 queued
packets at any point in time.

Proof Let the joint queue state of the n nodes be x1/y1, . . . , xn/yn. For each pair of
consecutive nodes with states xi/yi, xi+1/yi+1, 1 ≤ i < n, there is, as a consequence of
Lemma 5.1, either xi > 0 or yi+1 > 0. Therefore ∀i, 1 ≤ i < n : xi + yi+1 > 0. For the
total number of queued packets we obtain

n∑
i=1

(xi + yi) = y1 +
n−1∑
i=1

(xi + yi+1) + xn

≥
n−1∑
i=1

(xi + yi+1)

≥ n− 1.

(5.5)

93

Chapter 5 Co-ordinated Network Coding: noCoCo

This result can now immediately be used to obtain a lower limit on the total number of
packets on the route, as follows.

Corollary 5.3. For a bidirectional connection over h hops, there are at least h − 2
packets in the network at any point in time. This number must be exceeded temporarily.

Proof The first assertion follows immediately from the previous theorem, since there
are h− 1 intermediate nodes.

For the second part, consider (5.5) in the proof above in a situation just before a packet
leaves the network. For this to happen, one of the outmost intermediate nodes must
be in a state in +/+. Therefore, y1 > 0 or xn > 0. Then, the first inequality in (5.5)
becomes strict, and thus the total number of packets is at least h− 1.

Let us see how close the centralized scheduler approaches this lower bound. For a route
over h hops, it will, after the initialization, start with h packets in the network. Since
a new packet is only injected after another one has left, this number is never exceeded.
Therefore, the number of packets will always stay within the range [h−2, h], and is thus
nearly optimal.

It is worth mentioning that the bound in Corollary 5.3 is rather optimistic, and some-
times h packets are needed. Consider a two-hop connection over three nodes, i. e., the
case h = 2. In order to perform a coded transmission, the middle node must have two
packets available. Therefore, the number of packets in the network must be up to h in
this situation.

In summary, it is indeed possible to schedule the transmissions in a bidirectional con-
nection in a way that allows for the highest possible coding gain. There are global joint
queue states which do not allow the intermediate nodes to proceed with only coded
transmissions. Thus, an optimal schedule will have to avoid these states. This sug-
gests that, when the number of packets being queued along the route is below a certain
threshold, the coding cannot be optimal. Since a large number of queued packets in
the network will increase packet delivery latency, there is a potential tradeoff between
achieving the maximum possible coding gain and maintaining a low number of packets
and thus short queues in the network.

94

5.3 A Practical Protocol

5.3 A Practical Protocol

5.3.1 Basic Protocol Rules and Mechanisms

We will now refine the centralized approach from the previous section to obtain a prac-
tical and distributed scheduling scheme for network coding with success guarantees. We
call this scheme Near-Optimal Co-ordinated Coding (noCoCo). The key idea is to ap-
proximate the centrally enforced ordering of the transmissions in a decentralized way,
based on implicit feeback. We generate a similar pattern of alternating transmissions of
nodes with odd and even positions, while keeping the number of packets in the network
as low as possible.

First, however, we need to initialize the network to a a valid starting state. Obviously,
we need to begin with transmitting single packets as in (5.1). In our scheme, a node is
allowed to forward single packets until it has “seen” packets going in both directions.
Thereafter, only transmissions as in (5.2) and, at the outmost intermediate nodes, (5.3)
and (5.4) are permitted.

The number of packets forwarded without coding should clearly be as low as possible.
This motivates a backpressure rule similar to the one on which implicit hop-by-hop
congestion control is based: a packet may only be transmitted to a node which has
currently no packet for the same direction in its queue. This prevents an excessive
number of packets from entering the network.

With the addition of the backpressure rule, the allowable state transitions can be refined
in the following way. For uncoded transmissions by nodes that have not yet encountered
packets in both directions, replacing (5.1), we get

xk/1, xk+1/0 → xk/0, xk+1/1 (5.6)

for a right-directed transmission by such a node. A coded transmission may only take
place if the target queues in the neighboring nodes are free. Thus (5.2) becomes

0/yk−1, 1/1, xk+1/0 → 1/yk−1, 0/0, xk+1/1. (5.7)

For packets entering and leaving the network, e. g., at the left end of the route, we get

x/0 → x/1 (5.8)

95

Chapter 5 Co-ordinated Network Coding: noCoCo

and
1/1, x2/0 → 0/0, x2/1, (5.9)

as refinements of (5.3) and (5.4), respectively.

By overhearing the forwarding of the downstream node, it can be verified that the packet
has left the queue of the successor. Essentially, this results in CXCC-like forwarding
during the initialization phase. Once packets in both directions have been heard by a
node, the situation is even simpler: then, only coded packet transmissions are allowed.
Thus, the previously transmitted packet has left the neighboring node if and only if the
next packet from this node has been received.

In the beginning, packets from both sources will travel into the network. At most one
packet from each source may be queued in each intermediate node. Eventually, there
will be one node which is the first to hold packets in both directions. Let k be the index
of this node. When such a node has emerged, the joint queue state of all intermediate
nodes is in

0/?, . . . , 0/?, 1/1︸︷︷︸
node k

, ?/0, . . . , ?/0. (5.10)

The uncoded transmissions according to (5.6) allow each position with the placeholder
? in (5.10) to hold a packet. Taking this into account, as well as the fact that node k is
allowed to perform a coded transmission, the state will eventually reach

0/?, . . . , 0/?, 1/1, 0/0︸︷︷︸
node k

, 1/1, ?/0, . . . , ?/0. (5.11)

Iterating this, it is easy to see that a situation will emerge, in which each node is allowed
to transmit exactly once whenever both its neighbors have performed a transmission.
This also holds for the end nodes. Hence, the emerging scheme is in fact very similar to
the centrally scheduled scheme discussed before.

5.3.2 An Upper Bound on the Number of Packets

We will now look at the number of packets in transit for the proposed protocol. Note
that this analysis shows a very interesting symmetry to the derivation of the respective
general properties in Section 5.2.3.

96

5.3 A Practical Protocol

Lemma 5.4. With the proposed protocol, a state where the joint queue state of two
consecutive nodes is in +/∗, ∗/+ will never be reached.

Proof For some node A with queue state xA/yA, due to the backpressure rule, it
always holds that xA, yA ≤ 1. Consequently, after A has performed a transmission,
xA = yA = 0. The latter is true both during the initialization phase and during normal
operation.

Assume the joint queue state xA/yA, xB/yB of a pair A,B of consecutive intermediate
nodes is in +/∗, ∗/+. Then, xA > 0 and yB > 0. xA > 0 means that B’s last transmis-
sion must have been more recent than A’s last transmission. yB > 0, however, requires
the opposite, that A has transmitted more recently than B. This is a contradiction,
hence the assertion holds.

This lemma can, very similar to what we did above in Section 5.2.3, be used to derive
a limit for the number of packets in a connected subset of the intermediate nodes. This
time we obtain an upper bound.

Theorem 5.5. In any n consecutive intermediate nodes using our protocol, there are
never more than n + 1 queued packets.

Proof Let the joint queue state of the n nodes be denoted by x1/y1, . . . , xn/yn. For
each pair of consecutive nodes with states xi/yi, xi+1/yi+1, 1 ≤ i < n, there is, by
the previous lemma, either xi = 0 or yi+1 = 0. Furthermore, from the backpressure
rule, we know that for all i with 1 ≤ i ≤ n, both xi ≤ 1 and yi ≤ 1 hold. Therefore,
∀i, 1 ≤ i < n : xi + yi+1 ≤ 1. For the total number of packets it thus holds that

n∑
i=1

(xi + yi) = y1 +
n−1∑
i=1

(xi + yi+1) + xn

≤ 2 +
n−1∑
i=1

(xi + yi+1)

≤ 2 + n− 1

= n + 1.

(5.12)

Again, this can be used to obtain a bound on the total number of packets along the
route.

97

Chapter 5 Co-ordinated Network Coding: noCoCo

Corollary 5.6. For a bidirectional connection over h hops using out protocol, there
are at most h packets in the network at any point in time. The number is temporarily
undercut.

Proof The first assertion follows directly from the previous theorem. The second part
is rather obvious: when a packet leaves the network, the number of packets decreases,
until a new packet is inserted.

This demonstrates that the proposed distributed algorithm stays within the same
bounds on the number of packets in the network as the centralized scheduler.

5.3.3 Dealing with Real Wireless Media

The astute reader will surely have noticed that, so far, we have assumed that all trans-
missions are always successful. In a real wireless network this is for sure not the case.
Wireless interference can make practically every transmission fail. For a coded trans-
mission, this may mean that one or both of the intended receivers cannot decode the
message. Thus, we now look at how it is possible to recover from such a situation
without sacrificing the desirable properties we have pointed out so far.

Since CXCC uses a similar backpressure rule as the one introduced above, integrating
these approaches and adopting CXCC’s single-hop reliability mechanism becomes a nat-
ural solution. It turns out that only one significant modification to CXCC is necessary
to yield the desired behavior: adding the rule that only coded pairs of oppositely di-
rected packets may be transmitted by intermediate nodes after leaving the initialization
state.

One more aspect, however, also deserves attention. In noCoCo, when a node has made
a transmission, it has to wait for feedback from both its neighbors before the next
transmission is allowed. When a transmission fails, additional protocol handshakes are
required for recovery. It is important to design these in a way that always ensures a
consistent view of a neighbor’s queue state. For example, it must not happen that a
node A learns that its neighbor B has forwarded the previously sent packet (through an
implicit or explicit ACK), without at the same time obtaining the information that it had
been combined with a transmission in the opposite direction. This is particularly crucial
during the initialization phase: otherwise the backpressure at A is released through the
ACK, allowing A to forward another (uncoded) packet to B. It should, however, have

98

5.3 A Practical Protocol

sent a coded combination with the oppositely directed packet. Therefore, we need to
make sure that we both allow recovery from packet losses and ensure consistent state
updates at the neighboring nodes.

Fortunately, this is relatively simple to achieve. Data packets are coded and thus always
carry information on both forwarding directions, from which the queue states can be
inferred. Control packets can be tailored to contain information on a node’s left- and
right-directed queue states. In particular, a packet in one direction must never be
acknowledged without also communicating the queue state of the opposite direction at
the same time. This is achieved by also sending the respective control messages in pairs,
one for each direction. In effect, each correctly received packet conveys information on
both directions. The resulting protocol is able to effectively recover from packet losses,
while retaining all the desirable properties shown previously.

5.3.4 Handling Finite Bursts of Data

As the final step to a practically usable protocol, we need to take into account that
practical data transmissions are of finite length. In the protocol described so far, there
is no way to return to a state where an intermediate node is allowed to continue with
unidirectional transmissions, if the packet stream from one of the end nodes has ended,
temporarily or permanently. Therefore, a mechanism is needed to allow for the comple-
tion of a transmission, in one or in both directions.

A viable solution is in fact pretty simple: when the source node sends the last packet of
a burst, it may set a special flag in this packet. An intermediate node, after forwarding a
packet with this end-of-burst flag set, will resume the initialization state. Unidirectional
transmissions in the opposite direction are then allowed again at this node.

Just like with BarRel’s actually quite similar LAST flag, the end of a burst may be
indicated by the source application itself, if such a tight integration is desired and
possible. Otherwise, a source node may simply set the flag if it sends out the last packet
in its queue, i. e., if no further packets have so far been generated by the application.

In practice, this approach yields a smooth, load-dependent transition between oppor-
tunistic and enforced coding: if both sources produce packets at a rate that fills up the
capacity of the route, maximum coding gain will be enforced. If at least one direction
does currently not produce packets at a rate that suffices to build up backpressure, the
scheme falls back to opportunistic coding. For unidirectional traffic, noCoCo reduces to

99

Chapter 5 Co-ordinated Network Coding: noCoCo

plain CXCC, and therefore provides efficient congestion control for the unidirectional
flow.

5.4 Performance Evaluation

In order to assess the performance of co-ordinated coding against a purely opportunistic
approach, we have performed simulations using the network simulator ns-2.30 [ns2a].
For performance comparison, we have implemented three protocols:

• COPE, as described in [KRH+06]; just as UDP/TCP over 802.11 and CXCC, it
serves as a reference. A simulator implementation of COPE was previously not
available.

• A straightforward combination of CXCC and COPE-style opportunistic network
coding; this protocol performs CXCC-style packet forwarding, implicit acknowl-
edgments, etc., but combines multiple packets via XOR into one transmission if
coding opportunities arise. The existence of such coding opportunities is, however,
not guaranteed.

• The co-ordinated network coding scheme we introduce.

In all but our most simple simulation scenarios there will be more than one connection,
and thus additional coding opportunities may arise. The COPE-based protocols depend
on recognizing these. Our noCoCo implementation also makes use of coding opportuni-
ties beyond the current two-way connection, where they arise and can be identified.

However, COPE’s reception report and guessing mechanisms both incur substantial
complexity and add variance to the protocol performance. Given our focus is on the
different performance due to co-ordinated versus opportunistic coding, we establish
upper and lower bounds on what any mechanism for identifying coding opportunities
can possibly achieve, instead of following the above mechanisms.

For this purpose, we derive two variants for each coding scheme, termed “conservative
coding” and “omniscient coding”. Conservative coding combines packets only if decod-
ing is guaranteed successful, without exchanging any additional information. In effect,
overheard packets are not used for coding. Conservative coding thus represents a lower
bound of what can be achieved by any scheme for identifying coding opportunities. Om-
niscient coding, on the other hand, employs a central component to provide each node
with immediate and exact information on the packets known by other nodes. While

100

5.4 Performance Evaluation

this can be implemented in a simulator, it is obviously not possible on real devices.
Omniscient coding allows for perfect coding decisions, without the delay or overhead of
reception reports or the risk of guessing wrong. This gives an upper bound on what an
ideal scheme may achieve for identifying coding opportunities. We will show later that
the lines representing either bound often overlap for noCoCo in the plots.

We use the same general simulation parameters that we have also employed before. This
includes a physical layer bit rate of 1 MBit/s, the two-ray ground propagation model,
250 m radio range and 550 m carrier sense radius. Data packets carry 512 bytes of pay-
load. We use static, hop-count minimal routes to avoid possible side-effects introduced
by a specific routing approach. The RTS/CTS mechanism of 802.11 was again switched
off in all our simulations. In the following, we first investigate the protocols’ perfor-
mance in simple chain and cross topologies like the ones we have used for CXCC in
Chapter 2, and then consider random scenarios with dynamic traffic patterns.

5.4.1 Chain Topology

For our first set of simulations, we use a chain topology with ten hops. The distance
between neighboring nodes is 150m. We set up bidirectional UDP traffic, originating
from both ends of the chain, and being directed to the respective opposite end. The
offered load at the sources is gradually increased.

All intermediate nodes can encode at most two packets together at a time, one from
each direction. In such an environment, there is no difference between the coding op-
portunities that can be identified with conservative coding and with omniscient coding.
Therefore we do not need to distinguish between these two.

Figure 5.3 shows how the total application-layer throughput varies with increasing of-
fered load. Opportunistic network coding alone barely alleviates the rapid performance
deterioration of bidirectional UDP traffic once the optimal load is exceeded. But co-
ordinated network coding with noCoCo achieves superior throughput. One reason is
the implicit backpressure property of the congestion control mechanism, which is also
present in CXCC. But noCoCo achieves a substantially higher throughput than CXCC,
and this throughput gain far exceeds the one obtained with opportunistic coding in
CXCC+COPE. The main reason for the smaller gain with the opportunistic approach
is that coding opportunities do not reliably arise. Nodes often have only one packet in
the transmission queue, and many transmissions are uncoded.

101

Chapter 5 Co-ordinated Network Coding: noCoCo

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

plain 802.11
COPE
CXCC

CXCC+COPE
noCoCo

Figure 5.3: Throughput in chain topology.

Figure 5.4 shows the average packet delay, measured from when a packet leaves the
source node to its successful reception at the destination. The delay increases very
quickly with increasing offered load for plain 802.11 as well as for COPE, because long
queues are building up, especially in the nodes close to the ends of the chain. A packet
has to wait for a potentially long time in these queues, before being forwarded. Since the
backpressure rules in noCoCo and CXCC result in very short queues in the intermediate
nodes, the delays are substantially shorter. As a consequence of even better medium
utilization, noCoCo’s delays are smaller than those of opportunistic coding schemes.

The efficiency of the medium utilization is also closely related to the protocol overhead.
We again use the overhead metric that quantifies the average amount of data transmitted
on the wireless medium in order to bring one byte of payload one hop further. Figure 5.5
presents the results of this evaluation in the chain topology simulations. Apart from
generally confirming the picture gained from the previous metrics, the noCoCo plot
impressively demonstrates the benefits of network coding. Around an offered load of
10 KB/s at each source the source data rate approaches the network capacity. At this
point, the transition from opportunistic forwarding of single packets to enforced coding
happens for noCoCo.

Without network coding, the optimal value of our overhead metric is one: it is clearly
not possible to forward one byte of payload while transmitting less. Once network
coding at each hop is guaranteed, noCoCo underruns the value of one for the overhead
metric: on average it transmits about 0.79 bytes to forward one byte of payload over

102

5.4 Performance Evaluation

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 (

s
)

Offered load per source (KByte/s / sender)

plain 802.11
COPE
CXCC

CXCC+COPE
noCoCo

Figure 5.4: Packet latency in chain topology.

one hop. COPE does not achieve this, again due to the lack of spontaneous coding
opportunities.

5.4.2 Cross Topologies

We now turn to cross topologies, consisting of two orthogonally aligned chains, sharing
one node in the middle. UDP traffic flows from the end of either leg of the cross to the
end of the opposite leg. We first increase the offered load in a cross with five hops in
each leg, similar to what we did in the above chain simulations. Subsequently we will
look at the effects of varying leg lengths.

Due to the node spacing of 150m and the communication radius of 250m, the nodes
adjacent to the center node are able to overhear the transmissions of their two counter-
parts in the other chain. Thus, it is generally possible to combine up to four packets
into one transmission at the middle node. While omniscient coding can make optimal
use of this, conservative coding will not. We therefore distinguish between these two
strategies in our figures, denoting conservative coding by “(c)” and omniscient coding
by “(o)”.

Figures 5.6, 5.7, and 5.8 show throughput, packet delay, and overhead respectively for
the cross with a leg length of five hops. The occurring effects are generally quite sim-
ilar to those already observed in the chain topology. Remarkably, there is generally
very small difference between conservative coding and omniscient coding. This suggests

103

Chapter 5 Co-ordinated Network Coding: noCoCo

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Offered load per source (KByte/s / sender)

plain 802.11
COPE
CXCC

CXCC+COPE
noCoCo

Figure 5.5: Overhead in chain topology.

that the benefit from additional coding opportunities is quite limited. For noCoCo in
particular, the differences between the simulations with conservative coding and with
omniscient coding are so small that the respective lines in the plots are barely distin-
guishable.

One might argue that these small differences stem mainly from having only 1 out of
a total of 21 nodes that is able to make use of the additional opportunities. We thus
complement the results with plots showing the effects of varying leg lengths of the cross.
In Figures 5.9, 5.10, and 5.11 we use a saturated offered load and gradually increase
the size of the cross. From these results, it becomes clear that the previously discussed
overall picture of relative performance sets in very quickly, and generally holds for a leg
length of two hops already.

The only significant differences occur for the situation where each leg is only one hop
long, i. e., where the source/sink nodes are directly adjacent to the center node. In
this case, the differences between conservative and omniscient coding are indeed signif-
icant, particularly for COPE. The effect of a high gain of COPE versus plain 802.11
in this specific setting has been observed and explained as the “coding+MAC gain”
in [KRH+06]. Without coding the intermediate node needs to transmit four times as
often as the other nodes, but the 802.11 MAC does only assign it 1/5 of the medium
time. With omniscient coding, this limitation is no longer a bottleneck. The central
node will not be able to access the medium more often, but it can transmit up to four
packets with one medium access.

104

5.4 Performance Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Offered load per source (KByte/s / sender)

plain 802.11
COPE (c)
COPE (o)

CXCC

CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.6: Throughput in cross topology with increasing offered load.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 (

s
)

Offered load per source (KByte/s / sender)

plain 802.11
COPE (c)
COPE (o)

CXCC
CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.7: Packet latency in cross topology with increasing offered load.

105

Chapter 5 Co-ordinated Network Coding: noCoCo

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Offered load per source (KByte/s / sender)

plain 802.11
COPE (c)
COPE (o)

CXCC
CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.8: Overhead in cross topology with increasing offered load.

The backpressure rules in noCoCo and the CXCC-based schemes make the source nodes
refrain from further transmissions until the central node has forwarded the previous one.
These protocols therefore inherently avoid the problem of inappropriate assignment of
medium access opportunities.

5.4.3 Random Topologies

Finally, we study gains obtainable with noCoCo versus opportunistic schemes in more
practical settings, and consider random topologies. We intentionally set them up in a
way that yields rapidly changing traffic patterns. With few, long-lived connections the
availability of coding opportunities essentially depends on the routes of these connections
and whether they share many intermediate nodes, whereas many short-lived will result
in a large variation in the packets that meet.

Each simulation scenario uses 150 nodes at uniformly random positions on a
1500× 1500 m square area. A total of 40 bidirectional connections start at random
times between 0 and 120 seconds. Each connection is assigned a random amount of
data between 5 and 50 KB, which is to be transmitted in both directions. In the ab-
sence of route breaks the single-hop reliability mechanism of CXCC will result in reliable
end-to-end delivery; the same holds for noCoCo, which adopts CXCC’s respective mech-
anisms. It does not hold for plain 802.11 and COPE. Thus, in order to ensure reliable
delivery of the data we use TCP Newreno as a reliable transport protocol. Of course, the
problems of TCP congestion control over wireless multihop networks have to be taken

106

5.4 Performance Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(K

B
y
te

/s
)

Leg length

plain 802.11
COPE (c)
COPE (o)

CXCC
CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.9: Throughput in cross topology with increasing leg length.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 (

s
)

Leg length

plain 802.11
COPE (c)
COPE (o)

CXCC
CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.10: Packet latency in cross topology with increasing leg length.

107

Chapter 5 Co-ordinated Network Coding: noCoCo

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

B
y
te

s
 t

ra
n

s
m

it
te

d
 p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Leg length

plain 802.11
COPE (c)
COPE (o)

CXCC
CXCC+COPE (c)
CXCC+COPE (o)

noCoCo (c)
noCoCo (o)

Figure 5.11: Overhead in cross topology with increasing leg length.

into account when comparing the results here. However, since we are more interested
in the relative improvements with opportunistic and co-ordinated network coding, this
is only of secondary relevance.

We simulate all protocols using the same set of topologies and traffic patterns. We
calculate the throughput of each single connection, by dividing the amount of data
delivered by the time it took from initiating the connection to the successful delivery of
the last data segment. In Figure 5.12 we show the cumulative distribution functions of
these per-flow throughputs. For example, about 25 % of all connections with noCoCo
achieve a throughput below 10 KByte/s, whereas the same applies to about 40 % of the
connections with CXCC, and to about 70 % of those with TCP Newreno over IEEE
802.11.

The results with conservative coding and omniscient coding are generally close together.
To maintain readability of the figure, we only show the results with omniscient coding
for COPE and CXCC+COPE (as an upper bound of these protocols’ performance), and
with conservative coding for noCoCo (as a lower bound).

The random topology simulations confirm that our findings from the deterministic topol-
ogy simulations above hold in a similar way also in more complex environments. It was
pointed out in [KRH+06] that the interaction between COPE and TCP is complex, due
to TCP’s congestion avoidance rules, timing issues and potential packet reordering. We
also make this observation here. Even though the traffic is bidirectional—and coding
opportunities of similarly sized packets can thus generally exist at each single intermedi-

108

5.4 Performance Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Throughput (KByte/s, logarithmic)

plain 802.11
COPE (o)

CXCC
CXCC+COPE (o)

noCoCo (c)

Figure 5.12: Cumulative distribution function of throughputs in random topologies.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

plain 802.11

C
O
PE (c)

C
O
PE (o)

C
XC

C

C
XC

C
+C

O
PE (c)

C
XC

C
+C

O
PE (o)

noC
oC

o (c)

noC
oC

o (o)

A
v
e

ra
g

e
 p

e
r-

h
o

p
 d

e
la

y
 (

s
)

Figure 5.13: Per-hop delay in random topologies.

ate hop—COPE barely improves the throughput. For the protocols with a backpressure
rule, the relative performance matches the picture from the previous simulations, with
opportunistic coding noticeably improving upon the performance of non-coding CXCC,
but in turn being clearly outperformed by co-ordinated network coding.

The average per-hop delay of the connections is shown in Figure 5.13. The relative
ordering of the protocols remains the one observed above, though the absolute differences
are generally not as grave as those of, e. g., the throughput.

In Figure 5.14 we have evaluated the overhead in the random topology simulations, and
again the overall picture seems familiar. In the presence of a complex traffic pattern and
with TCP being used, COPE actually exhibits a minimally higher overhead than plain

109

Chapter 5 Co-ordinated Network Coding: noCoCo

 0

 0.5

 1

 1.5

 2

 2.5

 3

plain 802.11

C
O
PE (c)

C
O
PE (o)

C
XC

C

C
XC

C
+C

O
PE (c)

C
XC

C
+C

O
PE (o)

noC
oC

o (c)

noC
oC

o (o)

B
y
te

s
 t

ra
n

s
m

it
te

d
p

e
r

b
y
te

 f
o

rw
a

rd
e

d

Figure 5.14: Overhead in random topologies.

802.11. This can be traced back to a higher number of packet retransmissions. Unlike in
the chain and cross topologies above, noCoCo does not underrun the non-coding limit
of an overhead of one in these simulations, but it comes very close to this value.

5.5 Chapter Summary

In this chapter, we have introduced a deterministic scheme for network coding within
two-way traffic flows in wireless multihop networks. We have derived some general prop-
erties of scheduling schemes that achieve maximum coding gain, and we have introduced
a centralized scheduling approach with favorable performance. Developing this further
into a practical and distributed protocol, we have proposed Near-Optimal Co-ordinated
Coding (noCoCo). It is based on implicit co-ordination and implicit backpressure, us-
ing rules that can be understood as an extension of CXCC. noCoCo has been shown to
approach the theoretical limits established with the centralized scheduling approach.

Our evaluation demonstrates the potential of a co-ordinated approach for network cod-
ing, in terms of throughput, packet delay, and protocol efficiency. The results also reveal
some interesting insights regarding opportunistic coding schemes. Without appropriate
medium allocation, network coding alone may also be at its wit’s end for achieving good
performance. It is also interesting to notice the small differences between conservative
coding and omniscient coding. This suggests that the benefits from identifying addi-
tional coding opportunities are limited in this context, which could be used to simplify
coding protocols adopting similar scheduling principles.

110

Chapter 6

Post-Facto Offline Time Synchronization

In the preceding chapters of this thesis, we have considered alternative protocol designs
for wireless multihop networks. The introduced approaches CXCC, BarRel, BMCC,
and noCoCo make use of the medium’s specific properties, while the network is in oper-
ation. For example, the local broadcast property allowed for implicit acknowledgments
and backpressure. The fact that transmissions are locally serialized made very short
queues possible, and, as a consequence, implicit end-to-end reliability practicable. In
this chapter, we will now demonstrate that the concept reaches beyond applications in
network protocols: well-directed use of implicitly obtained information can also help to
overcome other difficulties.

A fundamental problem with interpreting results from real-world experiments in com-
puter networks is that each system uses its own local clock to timestamp events. These
clocks do not run perfectly synchronous, they can deviate. At the end of the experi-
ment, the result is a set of log files where the timestamps are based on the clocks of the
individual systems. This is generally insufficient for the investigation of timing issues
and the correlation of events. It is thus highly desirable to obtain an event log where
all timestamps refer to a single reference clock instead of multiple local clocks.

The obvious attempt to reach this goal is to synchronize the clocks of the involved
systems with a time synchronization protocol like NTP [Mil94, Mil92]. Unfortunately,
there are two key reasons why this approach may be inappropriate. First, running a time
synchronization protocol will cause additional network traffic and may thus interfere
with the experiment. Second, even if the clocks were perfectly synchronized, it takes
some system dependent (and potentially non-deterministic) time from the occurrence of
an event until it is actually timestamped and recorded. We call this the timestamping
delay. The drawback of additional network traffic can be eliminated by providing each
system with a very accurate clock, e. g., controlled by a GPS receiver. Aside from

111

Chapter 6 Post-Facto Offline Time Synchronization

the fact that this is quite expensive, this approach does not solve the problem of the
timestamping delay. While it may also be possible to use customized hard- and software
to bound the timestamping delay, such a solution cannot be employed for the off-the-
shelf systems often used in network experiments.

In order to avoid these problems we propose to correct the timestamps of the individual
log files after an experiment is completed instead of synchronizing clocks during the
experiment. To do so, we again exploit the local broadcast property: a transmission
is often observed by multiple nodes at the same time. If the same event has at the
same time instant been observed and locally timestamped by more than one system, it
can be used as an anchor point for a post-experiment synchronization of the log files.
These anchor points can be extracted from the set of locally written log files after the
experiment. Thus, our scheme utilizes the communication that occurs anyway during
the experiment, and does not require exchanging any further data between the nodes.
Therefore, such an approach to time synchronization is a prime example for the use of
implicitly obtained knowledge.

In essence we employ a model for the clocks and the timestamping delays. We then use
the anchor points to estimate the parameters of this model and thus the clock deviations.
This results in estimates for the timestamps of all events on a common time basis. A
maximum likelihood estimator is used. It leads to a large linear program with a very
specific structure. We exploit this structure to solve the linear problem efficiently in
spite of its huge size. The solution then yields a synchronized log file where all entries
are recorded with a common time basis.

Analytical and numerical results show that the solution converges quickly to a good
estimate for increasing input data sizes, and that it is robust if the assumptions made
for its derivation are not perfectly fulfilled. Thus, in practice, a very reasonable amount
of log data is typically sufficient to identify and eliminate clock deviations to a very large
extent. It thus allows for an in-depth analysis of the events in an experiment. Beyond the
extraction of timing relations from the experimental data, it could, for instance, also
support the fine-grained visualization of experiments, as our tool Huginn—presented
in [SFT+05a, SFT+05b, Sch07]—did for wireless multihop network simulations.

The presented time synchronization approach is not only applicable to wireless multihop
networks, but also to other networks with local broadcast characteristics. It just requires
that the clocks of any two nodes in the network can be—directly or indirectly—set into
relation by anchor points. In particular this includes experiments in wireless ad-hoc,
sensor, and mesh networks, as well as local area networks with multiple stations in each

112

6.1 Related Work

collision domain and satellite networks. A paper covering the central results from this
chapter is currently under review [SKR+b].

6.1 Related Work

The relevant literature in the area of clock synchronization can be divided into online
and offline clock synchronization protocols. The aim of online clock synchronization
protocols, like the well-known Network Time Protocol (NTP) [Mil94, Mil92], is to keep
the clocks of the participating nodes synchronized while the network is up and running.
In contrast to that, offline clock synchronization approaches correct timestamps that
have been provided by unsynchronized clocks after the experiment is finished. Our own
approach clearly falls into the second category.

6.1.1 Online Clock Synchronization

As discussed in the introduction, online approaches typically use explicit messages for
clock synchronization. They are also constrained by the fact that they need to work
in a distributed fashion and may consume only very limited computational resources.
Moreover, online synchronization can only exploit past information, whereas offline ap-
proaches can make use of all—previous as well as later occurring—events for the time
estimates. For these reasons, online synchronization protocols are not an optimal solu-
tion for the synchronization of distributed log files. Nevertheless, some of them use the
idea of events that are observed by multiple systems. In the following, we summarize
those approaches. A broader overview of the topic, with a focus on wireless sensor
networks, can be found in [RBM05].

A number of online synchronization protocols [VRC97, MFNT00, EGE02] relies on the
parallel reception of broadcasted packets by multiple systems. A broadcasted packet is
received by all systems nearly at the same instant, the only uncertainty in timestamping
such packets is the signal propagation time and the timestamping delay. To synchronize
the clocks, the recipients of a given broadcast communicate to exchange their respective
reception times. By comparing these reception times, two nodes are able to compare and
adjust their clocks. In [EGE02], for example, the clock skew is estimated using linear
least squares regression. A complete network can then be synchronized by synchronizing
adjacent nodes pairwise along a tree structure, yielding, however, the disadvantage of
accumulating the pairwise errors.

113

Chapter 6 Post-Facto Offline Time Synchronization

In [KEPS04], the pairwise synchronization of [EGE02] is extended to a global one. The
authors present an online synchronization approach for sensor networks that is based
on a global unbiased minimum variance estimator. They first introduce a version that
considers only clock offsets, and then complement it with an idea on how to deal with
clock rate differences. Their approach is, however, not able to handle offsets and rate
deviations conjointly, but must rely on separate estimates on different time scales. This
is feasible and appropriate in the considered context of online time synchronization for
continuously running sensor networks, but is not optimal for the offline synchronization
of the logs of time-limited experiments. In addition to avoiding the general drawbacks
of using online approaches for the synchronization of log files, our approach estimates
offsets and rates in one single step, and can thus exploit all the available information to
find the global optimum for both.

6.1.2 Offline Clock Synchronization

The first offline clock synchronization algorithm has been proposed by Duda et
al. [DHHB87] for generic distributed systems. The send and receive timestamps of
messages between nodes A and B are taken as coordinates of a point, the x-axis being
the timestamp of A and the y-axis being the timestamp of B for the same packet. Due
to the network delay, two point-clouds emerge with an empty corridor in between. Each
point is either above the corridor (when sent from A to B) or below (when sent from B

to A). The authors present two methods to fit a line in this corridor, thereby estimating
the difference in clock speed and offset between A and B. The first method computes
the separating line with linear regression, the other uses a convex hull approach. They
also sketch a maximum likelihood approach but are not able to use it due to a lack of
knowledge about the message delay from sender to receiver, which would be needed.

Duda’s linear regression and convex hull approaches have been extended in [Ash95]. The
author corrects the timestamps using experimental knowledge about the smallest round
trip delays. This knowledge is incorporated in an algorithm that selects the two best
points to estimate the skew and offset between the nodes. In [MST99], linear program-
ming is used to compensate for clock skew that influences one-way delay measurements
between two nodes over the Internet. A convex hull based approach able to cope with
clock resets is presented in [ZLX02].

All of the presented offline synchronization algorithms can compensate linear clock de-
viations between two nodes without requiring additional network traffic. In contrast to

114

6.2 Model and Terminology

our approach, which exploits the broadcast nature of the medium, they can be used for
all kinds of communication systems. However, this benefit is also their main drawback:
all of them consider the comparison of send and receive timestamps. Thus, the network
delay cannot be completely eliminated, as it is the case in our approach. Likewise, they
cannot separate and handle the timestamping delay. Finally, while we use all the avail-
able data to compute globally consistent estimates for an arbitrary number of nodes in
parallel, all these algorithms synchronize only two clocks directly. In order to synchro-
nize more clocks, a successive synchronization of node pairs is necessary, a process in
which errors can accumulate.

6.2 Model and Terminology

6.2.1 Nodes and Events

In our terminology, an event is an incident that has been observed by one or more nodes
and is recorded in their local log files. Of particular interest for us are packet reception
events, since they can be observed by multiple nodes almost at the same time. Broadcast
packets can generally be received by all nearby nodes, for unicast transmissions a similar
effect can be achieved by logging receptions in promiscuous mode. In this mode, a
node records all receptions that could be decoded by its network interface, regardless of
whether the node is the intended destination of the transmission or not. We assume that
parallel receptions of the same transmission can be identified as such. In the following,
we concentrate primarily on events that have occurred in more than one node, since
they can serve as anchor points for the synchronization.

We denote the set of nodes participating in an experiment by J and the set of events
that occur during the experiment by I. Each event i ∈ I occurs at some “true” time
Ti. The same event i can be observed by multiple nodes. In this case each of the nodes
records its own timestamp for the event, according to its local clock, i. e., event i is
recorded by some of the nodes j ∈ J with local timestamps ti,j .

The recorded times define a relation R ⊆ I × J in the sense that (i, j) ∈ R if and only
if event i is recorded by node j. The subset of nodes that receive a certain event i ∈ I

is denoted by Ri, i. e., j ∈ Ri if and only if (i, j) ∈ R. Similarly, Rj stands for the set of
events observed by node j.

115

Chapter 6 Post-Facto Offline Time Synchronization

6.2.2 Clocks

We model clocks as twice differentiable functions, mapping some (virtual) global, abso-
lute time to the view of the respective clock. This model matches those commonly used
in literature related to clocks and time synchronization [Mil92, MST99, EGE02], and is
justified since only the limited timespan of a single experiment needs to be considered.
For the same reason and for the sake of simplicity we do not account for clock resets,
although our approach could be extended to such a scenario.

The true clock CT is a clock which is correct by definition: ∀t : CT (t) = t. Our
aim is to approximate this clock as closely as possible by the calculated global event
timestamps.

We use the common terminology to describe the properties of clocks. The offset of a
clock C at time t is the difference C(t) − CT (t) between C and the true clock CT . If
we use the term offset without referring to a certain point in time we refer to C(0), the
offset at time t = 0. C ′(t) is called the rate or frequency of C at time t. The difference
between a clock’s rate and the true clock’s rate C ′(t)−C ′

T (t) = C ′(t)− 1 is called skew.
Finally, the second derivative C ′′(t) is called the drift of C.

Let E ⊂ R be the interval denoting the “real” timespan of an experiment. The main
reason for clock drift are changes in the environmental conditions, mostly temperature
changes, influencing the quartz oscillator of the clock. In [KM07], the MANET ex-
periments described in the literature are analyzed; there, it has been pointed out that
typically the duration of an experimental run does not exceed 1000 seconds. This coin-
cides with previous work on clock stability, which shows that the clock drift is negligible
over time spans up to 1000 seconds [VBP04]. It can thus reasonably be expected that
the clocks’ drift during E is negligible.

Consequently, our model assumes that, in E, the local clocks in the nodes can be closely
approximated by a linear function. We denote the rate of the local clock Cj of a node
j by rj > 0 and its offset at time t = 0 by oj . Thus we have

∀t ∈ E : Cj(t) = rjt + oj . (6.1)

For longer experiments, if the assumptions are not fulfilled, the accuracy of the re-
sults may deteriorate. Note, however, that it is easily possible to synchronize longer
logs interval-wise, such that the linearity assumption holds reasonably well within each
interval.

116

6.2 Model and Terminology

In practice, time in computer systems does not run continuously, but progresses in dis-
crete steps. While the resolution of the timer-interrupt driven system clock is typically
relatively coarse—in the order of milliseconds—, more fine-grained time sources are of-
ten available and used. On the x86 platform, for example, the CPU’s TSC register
progresses with every CPU clock cycle. Thus, its granularity is very fine. It serves for
generating the timestamps, for example, when using a Linux kernel and the widespread
packet tracing library libpcap. Thus, we can assume that the error introduced by the
clock resolution is small in comparison to other sources of error. Our approach does not
amplify such errors.

When performing experiments, it must be taken care that the linearity assumption is
not thwarted by processes running on the nodes. In particular, no online time synchro-
nization should be running in parallel. If online synchronization must be used—e. g.,
because it is part of the experiment—then it should record all the modifications it made
to the local clock, so that the effects of these changes can be eliminated from the log
files of the respective nodes prior to synchronizing them.

6.2.3 Timestamping Delay

When sending a message, a number of different delays occur from the moment the source
application generates the message until the receiver timestamps it. As our approach uses
these timestamps as synchronization anchors, we are interested in the delay differences
experienced by distinct nodes. The deterministic components are not an issue in our
context: if all timestamps in a node are recorded late by some fixed time, then this is
the same as if they were recorded immediately with a correspondingly increased offset.
So, the fixed delay components are equivalent to an additional clock offset.

The experienced delay can be decomposed into four components according to [KO87]:
the time needed to compose the message and to assemble the packet, the time to access
the medium, the propagation delay on the medium, and finally, after the transmission
arrives at the receiver, the receive time, i. e., the delay for checking the message and
recording the arrival timestamp. Obviously, the time until the packet leaves the sender
is the same for all receivers and thus does not need to be considered.

The propagation delay depends on the distance between sender and receiver, and the
propagation delay differences depend on the different distances between sender and
receivers. As long as these differences are in the order of a few hundred meters, the
propagation delay difference is in the order of at most microseconds and is therefore

117

Chapter 6 Post-Facto Offline Time Synchronization

negligible1. The receive time occurs as the recording of the timestamps in the nodes
does not happen immediately upon reception, but is delayed. It can be decomposed
further into a fixed component (which equals the minimum path delay of the processing
necessary at the receiver), and an additional, variable time that occurs because the
timestamping is performed by the node’s CPU, which may be busy with other tasks
before the event is processed. The latter we call timestamping delay.

Note that the delay of an event is also “measured” by the recording node’s clock, and
thus is scaled with the rate of this clock. A delay di,j thus leads to a timestamp

ti,j = Cj(Ti + di,j) = rj(Ti + di,j) + oj . (6.2)

The timestamping delay is, like all delays, obviously nonnegative. Furthermore, it seems
reasonable to assume that most timestamps are recorded with small latency and few are
set after a longer time. We model the timestamping delays as exponentially distributed,
pairwise independent random variables. Moreover, we assume that the exponential
distributions of all delays share the same parameter λ. The latter is reasonable if
the nodes participating in the experiment use comparable hard- and software for the
timestamp generation, which will often be the case in a testbed.

In a real-world application our assumptions about the timestamping delay just like
that about the clocks’ linearity will of course not perfectly hold. In fact, depending
on the hard- and software of the devices, reality might look very different. We use the
mentioned assumptions for the motivation and derivation of our method. It will later
become clear that the resulting approach yields good results also under non-conformant
circumstances.

6.2.4 Connectivity Constraints

As approach relies on anchor points to set the clocks of nodes into relation, it depends
on the availability of such anchor points, and on them setting all clocks in the network
into relation. Observe that synchronization on the basis of anchor points is impossible
otherwise: if there is no common event between two groups of nodes, it would be
impossible to tell if all the clocks in one of the groups are, for example, early by one
hour. Thus, a common time basis cannot be established. Such a situation is in fact not

1If nodes are really far apart and the propagation delay is long, then it is often the case that the
distances and thus also the delays are approximately known. This applies, e. g., to satellite systems.
In this case it is possible to eliminate the delay prior to synchronization.

118

6.3 Algorithm

different from two completely unrelated experiments. However, it of course still remains
possible to synchronize the clocks within each group.

Note that the availability of anchor points does not imply that all pairs of nodes must
share common events—clocks may also be related indirectly, over intermediate nodes. It
also does not necessitate that the network is “connected” in the commonly used sense.
For example, if there are two almost independent groups of nodes, one single node
sharing events with both groups suffices. These shared events need not occur during
the same time intervals, and thus there is no need for network connectivity at even just
one single point in time, as long as nodes move between partitions.

Hence, the existence of anchor points is not a very hard constraint in practice, and
anchor point-based synchronization will be possible in the vast majority of experimental
setups. Otherwise, it is still possible to apply our scheme, if artificial anchor points are
generated, e. g., by broadcasting “anchor packets”. Doing so during the experiment
brings one of the drawbacks of online synchronization with it—possible interference
with the experiment itself. Anchor points may, however, also be generated before and
after an experimental run.

6.3 Algorithm

The previous section has introduced a model of the network and the timestamping
delays. Now, we will formalize the problem and propose an approach for its solution via
a maximum likelihood estimator (MLE). Given the recorded local timestamps, we wish
to maximize the likelihood that our estimates of the true event times are correct.

Due to the exponentially distributed delays, the conditional probability density for mea-
suring a timestamp ti,j for event i at node j given Cj and Ti is

f(ti,j | Cj , Ti) = f(di,j) = λe−λdi,j . (6.3)

Because of the independence of the delays the probability density for the whole set of
measurements in our experiment can be written as

f((ti,j)(i,j)∈R | (Cj)j∈J , (Ti)i∈I) =
∏

(i,j)∈R

λe−λdi,j . (6.4)

119

Chapter 6 Post-Facto Offline Time Synchronization

We can now express our problem as an optimization problem. Under a uniform prior,
we want to find the optimal estimates T̂i of Ti for all i ∈ I, and, in parallel, the optimal
estimates Ĉj of Cj for all j ∈ J such that the likelihood function L defined in the
following way is maximized:

L = L((Ĉj)j∈J , (T̂i)i∈I | (ti,j)(i,j)∈R)

= f((ti,j)(i,j)∈R | (Ĉj)j∈J , (T̂i)i∈I).
(6.5)

From (6.2) we can see that

∀(i, j) ∈ R : di,j =
ti,j − oj

rj
− Ti. (6.6)

This relation must also hold for the estimates of Ti and Cj . Let r̂j , ôj , and d̂i,j denote
the estimates for rj , oj , and di,j , respectively. Then, in analogy to the above we have

∀(i, j) ∈ R : d̂i,j =
ti,j − ôj

r̂j
− T̂i. (6.7)

Therefore, L can be expressed as

L =
∏

(i,j)∈R

λe−λ bdi,j

=
∏

(i,j)∈R

λe
−λ

„
ti,j−bojbrj

−bTi

«
,

(6.8)

eliminating the estimates d̂i,j for the unknown quantities di,j .

Since all the delays are non-negative, the maximization of L is subject to the con-
straints

∀(i, j) ∈ R :
ti,j − ôj

r̂j
− T̂i ≥ 0. (6.9)

Now we apply a standard technique in maximum likelihood estimation: maximizing L

120

6.3 Algorithm

is equivalent to maximizing lnL, because L > 0 for all valid parametrizations.

lnL = ln
∏

(i,j)∈R

λe
−λ

„
ti,j−bojbrj

−bTi

«

=
∑

(i,j)∈R

(
lnλ + ln e

−λ

„
ti,j−bojbrj

−bTi

«)

= |R| lnλ−
∑

(i,j)∈R

λ

(
ti,j − ôj

r̂j
− T̂i

)
.

(6.10)

Optimizing this expression with regard to λ and all the T̂i and Ĉj is a difficult nonlinear
optimization problem. However, we are not primarily interested in the parameter λ.
Fortunately it turns out that the optimal T̂i and Ĉj are independent of the value of λ.
Let for the moment

k(x) := − lnx− |R| lnλ

λ
. (6.11)

k is strictly monotonically decreasing for any λ > 0 and |R|. Thus, it is easy to see that
L is maximal if and only if k(L) is minimal:

k(L) = − lnL− |R| lnλ

λ
=

∑
(i,j)∈R

(
ti,j − ôj

r̂j
− T̂i

)
. (6.12)

Therefore, instead of maximizing L, we minimize k(L). We have thus eliminated the
variable λ > 0. The constraints of the resulting optimization problem are still of the
form (6.9).

From the clock model we know that the rates of the clocks are strictly positive. We
exploit this fact and define

r̄j := r̂−1
j (6.13)

ōj :=
ôj

r̂j
. (6.14)

Equivalently, we have r̂j = r̄−1
j and ôj = ōj r̂j = ōj

r̄j
. Expressing k(L) in terms of the

variables ōj and r̄j leads to

k(L) =
∑

(i,j)∈R

(
ti,j r̄j − ōj − T̂i

)
. (6.15)

121

Chapter 6 Post-Facto Offline Time Synchronization

Similarly, the constraints (6.9) can be simplified to

∀(i, j) ∈ R : ti,j r̄j − ōj − T̂i ≥ 0. (6.16)

This is a linear objective function with linear constraints, which can be solved using
standard linear program (LP) solvers like, e. g., the simplex method.

For exponentially distributed errors, the maximum likelihood estimator is known to be
nearly optimal. In our case, however, a different interpretation of the resulting approach
is also possible. When comparing (6.12) and (6.7), we observe that

k(L) =
∑

(i,j)∈R

d̂i,j . (6.17)

The optimal solution minimizes the sum of the estimated delays. Therefore, the result-
ing approach may also be understood as a form of constrained Least Absolute Deviation
(LAD) regression. Since this interpretation is completely independent from the assump-
tion of exponentially distributed delays, it supports the expectation that the derived
estimator is also well-suited for delays with other distributions.

Note that the optimization problem (6.15) and (6.16) has the trivial solution ∀j ∈ J :
ōj = r̄j = 0 and ∀i ∈ I : T̂i = 0. This is because, from the information contained in
the log files, it is not possible to estimate all the absolute rates, but only the relative
deviation between clocks. We call this the rate ambiguity. To overcome the rate ambi-
guity, we add a normalizing constraint

∑
j∈J r̄j = |J |; in the average, the inverse clock

rates are assumed to be accurate. This assumption, however, is not crucial at all: if the
average takes some other value, the solutions are simply scaled accordingly.

Similar to the rate ambiguity, there is also an offset ambiguity in the log files. The right
hand sides of (6.15) and (6.16) do not change when all ōj are replaced with ōj + τ and
all T̂i are replaced with T̂i − τ , where τ ∈ R is a given constant term. Thus, like above
for the rates, it is not possible to estimate absolute, but only relative event times and
clock offsets (even ignoring the fact that there is, of course, no “absolute time”). We
may set, without loss of generality, ō1 = 0.

If a reference clock is available—e. g., because at least one node has a connection to
an external time source like a GPS receiver and records appropriate data—absolute
synchronization to this reference is possible. More specifically, if the correct, global
time of one event occurrence in one single node is known, then the offset ambiguity
can be overcome. If the global times of any two events, or, alternatively, the time of

122

6.4 Solving the Optimization Problem

one event and the rate of one node are known, then the rate ambiguity can likewise be
eliminated. This is possible either by adapting the constraints for rates and offset, or
by a respective transformation of the synchronization result.

The resulting linear program can be written in the form

minimize bTy subject to ATy ≤ c, (6.18)

where y is the vector of the unknowns T̂i for i ∈ I, followed by the vectors ō ∈ R|J | and
r̄ ∈ R|J | of the ōj and r̄j for j ∈ J , i. e.,

y =

T̂

ō

r̄

 . (6.19)

The matrix AT represents the inequality constraints (6.16) and the normalizing con-
straints.

Events that have only been observed by one single node do not contribute information
for the synchronization. Therefore, to keep the size of the linear program as small as
possible, they should not be included in the optimization. Corrected timestamps for
such events can, however, easily be generated based on the rate and offset estimates.

6.4 Solving the Optimization Problem

In (6.18), (6.19) the maximum likelihood estimator is defined as the solution of a linear
program with |I|+2 · |J | variables and |R| linear inequality constraints. Due to the size
of the linear program a straightforward application of the simplex method may result in
a significant effort in terms of computational power and memory. When solving (6.18)
with a standard simplex solver like QSopt [ACDM] the program takes hours to terminate
even for relatively small problems. Therefore, we will now focus on the special structure
of the linear program (6.18) and how it can be exploited to allow for a fast numerical
solution. Below we outline the ideas behind our implementation of the synchronization
approach. It is able to solve the linear program for data sets with |J | ≈ 100, |I| ≈ 105,
and |R| ≈ 106 on a standard PC within a few seconds.

Each row of AT corresponding to a constraint (6.16) has exactly three non-zero entries
and A is thus very sparse. The matrix AT is closely related to the matrices arising

123

Chapter 6 Post-Facto Offline Time Synchronization

in network optimization problems. In particular, it does not have full column rank.
In the previous section the offset ambiguity has been introduced. Since we set ō1 to
zero, the corresponding column of AT can be eliminated prior to the optimization. Our
implementation checks for further redundancies that depend on the particular instance
R and eliminates additional linearly dependent columns of AT if existent.

We use a modern interior-point algorithm for our solver, a variant of Mehrotra’s predic-
tor corrector algorithm [Meh92] that is particularly well suited to handle the structure of
(6.18). The primary advantage of interior-point algorithms versus the simplex method
is that interior-point methods do not suffer from degeneracy of the problem. Practical
implementations very rarely take more than 70 to 100 iterations to solve a linear pro-
gram. In our case, the particular structure of (6.18) can be exploited making a single
iteration very cheap. The concept of the algorithm as implemented here is based on
Algorithm 14.3 in [NW99].

Apart from minor adjustments of the parameters proposed in [NW99] the main modi-
fication in our implementation concerns the storage format for the matrix A. Storing
A directly would be extremely inefficient in terms of memory requirements as well as
from a computational perspective. Our implementation comprises a specialized storage
format for A, tailored to both the problem structure and the specific operations that
appear in the interior-point algorithm. For matrices A arising from problem (6.18) this
is a superior alternative to general purpose sparse matrix formats, as they are readily
provided, e. g., by Matlab.

The main computational effort at each iteration of an interior-point algorithm is the
computation and the Cholesky factorization of the matrix product H = ADAT. Here,
D is a positive definite diagonal matrix that changes at each iteration. Due to our choice
of setting up the variable y by first including T̂ and then ō, r̄, the leading |I|×|I|-block
of H is a positive definite diagonal matrix, only the trailing 2 · |J | rows and columns
of H do have fill-in. This sparsity structure is also inherited by the Cholesky factor L

of H. The leading |I|×|I|-block of L can thus be computed in linear time. Given that
typically |I| � 2 · |J |, the computation of L and thus the solution of the overall problem
is very cheap.

To demonstrate the huge gain in performance that is possible by using the tailored
solver, we compare the runtime of our implementation with that of QSopt [ACDM]
and SeDuMi [SRP]. QSopt is, as mentioned before, a solver that uses the simplex
method. SeDuMi on the other hand is a Matlab interior-point code that, like our own
solver, benefits from the special structure of H, but uses a more general—and therefore

124

6.5 Properties of the MLE

somewhat slower—storage format of the sparse matrix AT, and a more general sparse
Cholesky factorization.

Figure 6.1 shows the computation times for calculating the solutions of optimizations
with 20 nodes and with 100 nodes, for different numbers of shared events. All mea-
surements have been made on an AMD Athlon X2 BE-2300 CPU with 1900 MHz and
1 GB of main memory. From the figure it can be seen that our implementation actually
works very well. The tailored solver brings a large performance gain—it reduces the
computation time by typically at least a factor of 10–15.

Note that SeDuMi expects readily preprocessed input data in Matlab’s sparse matrix
format. The time needed for converting the data to this format is not included in the
SeDuMi results in Figure 6.1. Especially for the larger problems, it can, however, be
substantially higher than the time needed for solving the problem. The processing times
shown for our own solver do include the time for reading the input data and preparing
the optimization problem. For our specialized matrix format this step can be performed
very efficiently; it accounts only for a negligible fraction of the total processing time.

In particular the results with QSopt underline that an off-the-shelf simplex solver is in
fact highly unsuitable for the specific type of linear optimization problem that we deal
with. Not only does the computation time grow rapidly with an increasing problem size,
but also do the memory requirements. In contrast to that, our tailored implementation
with its specific sparse matrix format is very memory efficient, and its observed runtime
increases approximately linearly with the number of events |I|.

6.5 Properties of the MLE

Now that we have seen that it is in fact possible to calculate a solution of the linear
program and thus the maximum likelihood estimator within reasonable time, we are
interested in the quality of this solution. In this section we will thus tackle the question
how good the synchronization result is.

With an increasing number of network packets that have been received by multiple
network nodes the available amount of data to estimate the clock deviations increases.
Thus, intuitively, one could expect that the quality of the estimate improves with the
availability of more experimental data. Similarly, it sounds reasonable that it is very
unlikely that the result of the time synchronization process is grossly wrong if the input
data is very accurate. In this section, we confine ourselves to a simplified variant of

125

Chapter 6 Post-Facto Offline Time Synchronization

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000

R
u

n
ti
m

e
 (

s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

QSopt
SeDuMi

Our solver

(a) |J | = 20.

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

R
u

n
ti
m

e
 (

s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

QSopt
SeDuMi

Our solver

(b) |J | = 100.

Figure 6.1: Performance comparison of QSopt, SeDuMi, and our own implementation
as time synchronization LP solvers.

126

6.5 Properties of the MLE

our estimator. For this simplified variant we can prove that these intuitive expectations
are actually true. Since the complete proofs of these properties are quite complex and
technical despite this simplification, we have not included them here. Instead they can
be found in Appendix B. Below we will discuss the results and their implications, and we
give a rough sketch of the proofs’ ideas. Our numerical results presented later underline
that the results also hold for the fully featured estimator with clock rate estimates.

The simplified estimator does not take clock rate deviations into account, i. e., it assumes
that for each node the clock rate rj is (approximately) 1 and thus correct with respect
to the “true clock”. Under this assumption the recorded time for a node-event pair
(i, j) ∈ R becomes Ti + di,j + oj . Thus, the simplified maximum likelihood estimator,
in analogy to the fully featured version, is the solution to the following problem:

maximize L =
∏

(i,j)∈R

λe−λ(ti,j−boj−bTi)

subject to ∀(i, j) ∈ R : d̂i,j = ti,j − ôj − T̂i ≥ 0.

(6.20)

The optimum is again independent of λ and the above is equivalent to

minimize k(L) =
∑

(i,j)∈R

(
ti,j − ôj − T̂i

)
=

∑
(i,j)∈R

d̂i,j (6.21)

under the same constraints.

Here we will point out two desirable properties for this version of the estimator. First,
we give tight error bounds on the estimation error that hold under the assumption of
a bounded timestamping delay. In particular this means that the algorithm does not
amplify errors. Furthermore, we show that the estimator is consistent, i. e., for increasing
data set sizes the estimate converges (in probability) to the true values of the estimated
features. It thus supports the intuition that the estimate improves for a larger amount
of observed and logged events in the nodes.

6.5.1 Error Bounds

In order to be able to give a bound for the estimation error we need to make two
additional assumptions. While the first one guarantees network connectivity, the second
one establishes an upper bound on the timestamping delay. Note that an upper bound
for the timestamping delay does not constrain the practical applicability of the results

127

Chapter 6 Post-Facto Offline Time Synchronization

presented here: for any practical experiment there is a finite number of receptions, and
thus also a maximum timestamping delay.

The existence of the offset ambiguity as introduced in Section 6.3 prohibits that the
absolute event times and clock offsets are determined from the log files. This also holds
for the simplified estimator considered here. From the offset ambiguity, it is easy to see
that there is also no way to estimate the relative time between two separate partitions
within the same experiment. If there are no anchor points between two sets of nodes,
there will be an ambiguity of the offset between these partitions. Thus, in order to get
a bounded maximum estimation error, we need to assume network connectivity in the
sense of anchor points: the network nodes do not fall into disjoint partitions, between
which no events are shared.

Under such an assumption we can prove that

∀j1, j2 ∈ J : |(oj1 − oj2)− (ôj1 − ôj2)| ≤ (|J | − 1) ·D (6.22)

if D ∈ R+ is an upper bound for the delays, i. e.,

∀(i, j) ∈ R : di,j ≤ D. (6.23)

Note that the bound is on the difference between two estimation errors because of the
offset ambiguity.

The basic idea of the proof is the following. Consider two nodes j1 and j2. Then
it can be shown that there always exists a sequence of unique nodes s1, ..., sn, 2 ≤
n ≤ |J |, s1 = j1, sn = j2, with a special property. In this sequence, for each pair
of subsequent nodes sq and sq+1, there is an event observed by both sq and sq+1,
for which the estimated timestamping delay in sq is zero. This, together with the
nonnegativity of the timestamping delays, allows for the construction of an upper bound
for (oj1 − oj2) − (ôj1 − ôj2). Since j1 and j2 can be chosen arbitrarily, the same bound
also holds with j1 and j2 interchanged. This yields a corresponding lower bound for j1

and j2 and thus constrains the absolute value in the way given above.

We are also able to show that under the mentioned assumptions the bound is the best
possible, i. e., that no estimator can exist that achieves a smaller worst-case error. This
proof is based on two explicitly constructed worst-case scenarios that result in identical
log files. The point is that although the resulting local log files are identical for the
two scenarios, the clock offsets differ so much that no estimate can be better than the
worst-case bound given above in both cases.

128

6.5 Properties of the MLE

From the bound on the clock offset estimation error it is then quite easy to come to a
similar bound on the event time estimates:

∀i1, i2 ∈ I : |(Ti1 − Ti2)− (T̂i1 − T̂i2)| ≤ |J | ·D. (6.24)

No part of the proof exploits the exponential distribution of the delays. Thus, inde-
pendent of the derivation of the estimator, it shows that if there is an upper bound
for the timestamping delays the estimates are close to the real values, regardless of the
distribution of the delays within [0, D].

6.5.2 Consistency

Differing from the results presented so far we will now no longer assume an upper bound
on the timestamping delays. Instead we exploit their assumed exponential distribution.
Under these premises, consistency of the simplified estimator can be established, which
means convergence in probability to the correct offset values for an increasing number
of observed events:

∀j ∈ J : plim
|I|→∞

ôj = oj + x, (6.25)

where x ∈ R again comes from the offset ambiguity.

Similar to the previous results it is clear that such a result cannot hold if the network
is not connected. We show the consistency of the simplified MLE under an additional
regularity condition, defined as follows. We say that this regularity condition is fulfilled
if there exists an undirected, connected graph G = (J, V) and some positive constant β

such that
∀{j1, j2} ∈ V : E

[∣∣{i ∈ I|{j1, j2} ⊆ Ri}
∣∣] ≥ β · |I|. (6.26)

This precondition can be seen as a somewhat stronger variant of the connectivity as-
sumption used above. It is stronger in the sense that it requires an (in expectancy)
ever-growing number of independent connections between all parts of the network with
an increasing total number of observed events.

In order to prove the consistency result we show that the probability of the likelihood
function having its optimum in an arbitrarily small environment around the correct clock
offset estimates is arbitrarily high for a sufficing number of observed events. The key
idea is to introduce a per-event decomposition of the objective function k(L). Certain
properties of these event-wise objective function terms form the basis of our proof. We

129

Chapter 6 Post-Facto Offline Time Synchronization

have seen before that k(L) is simply the sum of the d̂i,j for all (i, j) in R. Then a
decomposition of k(L) into event-wise components fi is trivial:

fi :=
∑
j∈Ri

d̂i,j k(L) =
∑
i∈I

fi. (6.27)

We then switch our point of view. We regard the fi no longer as functions of the esti-
mated latencies, but as functions of the estimation error. It is then quite straightforward
to show that all the fi are convex and that they are all Lipschitz continuous with a com-
mon Lipschitz constant. Furthermore, we show that the expectancy for each fi—as a
function of the estimation error—has a global minimum for the correct estimate, and we
give a non-negative lower bound for the difference between this expectancy in case of a
non-zero estimation error and the minimum value. All these results in conjunction with
the law of large numbers can then be used to establish the consistency of the estimator:
for a given δ > 0 there is a number of events N such that for |I| > N the probability
that the estimation error is greater than δ becomes arbitrarily small.

From the consistency result for the clock offset estimate it is easy to obtain a result on
the quality of the event time estimates in the same asymptotic setting. If the estimation
error of the clock offsets is close to zero (neglecting the offset ambiguity), the remaining
event time error for an event i is minj∈Ri di,j . This minimum of the independent,
exponentially distributed di,j is itself exponentially distributed with parameter |Ri| · λ.
In particular this means that the expected estimation error decreases with the number
of nodes observing the same event.

6.6 Numerical Evaluation

While the previous section assessed the performance of the proposed time synchro-
nization method analytically, we will now focus on numerical experiments with the
algorithm. In particular, we will show that the asymptotic properties that have been
proven for the simplified estimator hold also for the fully featured version with clock
rate estimates. Moreover, it will become clear that the convergence is quick enough
to yield accurate estimates even for small event counts. Finally, we will show that the
algorithm is robust if the assumptions—in particular the exponential distribution of the
timestamping delays and the negligibility of clock drift—do not hold.

130

6.6 Numerical Evaluation

6.6.1 Methodology

Although desirable, using log files from a real testbed for an evaluation that rigorously
quantifies the numerical quality of the calculations and the convergence speed is not
possible: for real hardware, the correct values for the rates, offsets, and event times
cannot be determined—this is why we need post-experiment time synchronization in
the first place. Therefore, we use a two-step simulation in which the correct values are
known. In the first step, the network is simulated to obtain globally consistent event
times and a receiver relation R. Then, subsequently, we simulate the timestamping of
the events in each node. Random clock rates, offsets, and timestamping delays are used
to transform the correct timestamps, yielding a set of per-node log files. Like after a
real experiment, our algorithm is then given these log files as input. The quality of the
solution can be determined by comparing the results to the correct times, rates, and
offsets.

Since our focus here is on supplying the numerical algorithm evaluation with an event
set I, event times T , and a receiver relation R, rather than a rigorous performance
evaluation of some protocol, we constrain ourselves to a basic simulation scenario. We
use the network simulator ns-2 [ns2a], which has been extended to support promiscuous
mode-like packet tracing: if a data packet could be successfully decoded by a node’s
simulated wireless interface, the packet is timestamped and logged, regardless of whether
the node was the intended destination or just able to overhear the transmission.

In our simulations, |J | = 100 nodes move on an area of 1200 × 1200 meters according
to the random waypoint mobility model. AODV [PR99] is used as a multihop rout-
ing protocol. Five pairs of nodes communicate continuously over a simulation time of
10 minutes, performing FTP data transfers over TCP connections. The IEEE 802.11
MAC protocol is used at a fixed network bandwidth of 1 MBit/s. The radio range is set
to 250 meters, the carrier sense radius to 550 meters.

For the generation of the local node log files, the clock offset and rate of every node
were chosen randomly. The choice of the offset is not at all critical: our implementation
actually exploits the offset ambiguity to achieve improved numerical stability and, as
its first step, shifts all processed log files to start at time zero. Consequently, whichever
offset is chosen for a node, the performed calculations and thus the accuracy of the
estimates are virtually identical. In our experiments, we sample the simulated offsets
from a normal distribution with mean zero and standard deviation five seconds. For the

131

Chapter 6 Post-Facto Offline Time Synchronization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

Exponential (λ = 1)
Gamma (k = 3, θ = 1/3)

Figure 6.2: Probability density functions of exponential distribution (λ = 1) and gamma
distribution (k = 3, θ = 1/3).

clock rates, we used a gamma distribution2 with mean one and different standard devia-
tions. The gamma distribution has the advantages of yielding only positive rate values,
and being concentrated around the expectancy. The probability density function of a
gamma distribution is depicted in Figure 6.2. Unless otherwise stated, the parameters
have been chosen to yield a standard deviation of 100 parts per million (ppm), which is
rather pessimistic, meaning that on average a clock is wrong by more than eight seconds
per day.

To be able to compare the synchronization results directly with the correct values from
the simulation trace file, the rate and offset ambiguities need to be overcome. As stated
in Section 6.3, the normalization constraints lead to scaled and shifted results if the
average inverse clock rate is different from 1, and if the offset of node 1 is different from
0. This scaling and shifting can easily be removed by a linear-affine transformation
after the optimization, based on the simulated average inverse clock rate and the offset
chosen for the first node.

In the simulation, the arrival times of the same packet at different nodes actually differ

2The gamma distribution is given by the probability density function

f(x; k, θ) = xk−1 e−x/θ

θk · Γ(k)
for x > 0,

where Γ is the gamma function. The gamma distribution has two parameters, called the shape
parameter k and the scale parameter θ. It has mean k · θ and variance k · θ2.

132

6.6 Numerical Evaluation

slightly, because ns-2 simulates the radio propagation delay. For calculating the event
time errors, we compare the estimated event time to the average ns-2 reception time.
The differences are in the order of 10−7 seconds, and therefore significantly below the
other errors that we are dealing with here.

6.6.2 Convergence and Numerical Accuracy

In our first set of experiments, we simulated the timestamping delays according to our
assumptions, i. e., exponentially distributed. We varied the expected timestamping de-
lay λ−1 between 10−3 and 10−5 seconds, and increased the number of events used for
the synchronization. One central result in the previous section was that—at least for
the simplified estimator—we can expect the quality of the estimates to improve if an
increasing number of events is available for synchronization. In a practical implemen-
tation, numerical effects of, e. g., a limited floating point precision may influence the
results. The primary purpose of the following simulations is to verify that this prop-
erty also holds for our implementation of the full estimator, and to give an idea of the
convergence speed.

Figure 6.3 shows the resulting average event time error with 95-percentile error bars.
For better readability of the chart, only the upper part of the error bars is shown. The
x-axis denotes the number of events that have been used for the synchronization. These
have been chosen randomly from all transmissions with more than one receiver. Note
that at the left hand side of the chart, for 100 events, there is only one sent packet
per node on average. The randomly chosen clock errors are quite significant. Still,
the synchronization eliminates them to an extent that allows for accurate event time
estimates. If more events are available for the synchronization, the estimates improve
further quickly, and the average event time errors are one order of magnitude below the
timestamping delays. The convergence is so quick that for 1000 available anchor point
events and more, only tiny fluctuations are left.

While the accuracy of the event time estimates is limited by the remaining part of the
timestamping delay, this is not the case for the rate and offset estimates. Figure 6.4
shows how the average rate error develops in the same setting. The quick convergence
for increasing |I| is evident. The corresponding results for the offset estimates show the
same behavior. For very small delays with λ−1 = 10−5 seconds and a high number of
available anchor points it can be seen that the accuracy does no longer improve linearly;
then, the implementation approaches its numerical accuracy limits.

133

Chapter 6 Post-Facto Offline Time Synchronization

10
-7

10
-6

10
-5

10
-4

10
-3

 100 1000 10000 100000

T
im

e
s
ta

m
p

 e
rr

o
r

(s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

λ
-1

 = 10
-3

 s
λ

-1
 = 10

-4
 s

λ
-1

 = 10
-5

 s

Figure 6.3: Event time errors depending on the number of events |I| and the average
timestamping delay λ−1.

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

 100 1000 10000 100000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

λ
-1

 = 10
-3

 s
λ

-1
 = 10

-4
 s

λ
-1

 = 10
-5

 s

Figure 6.4: Rate errors depending on the number of events |I| and the average times-
tamping delay λ−1.

134

6.6 Numerical Evaluation

It also turns out that the estimation errors of rate and offset are largely independent from
the true values of these parameters and their spread. For the offsets, this is relatively
clear from the problem structure. For the rates, however, this trait is not immediately
obvious. Tables 6.1 and 6.2 show the accuracy of the estimation results. The small
deviations in estimation accuracy are remaining statistical fluctuations.

Another theoretical result from the previous section is that the event time estimation
accuracy for an event i increases with |Ri|. More specifically, the result said that for
correct rate and offset estimates, the remaining expected event time error is exponen-
tially distributed with parameter |Ri| · λ, and thus is λ−1/|Ri| on average. Figure 6.5
shows simulation results from log files with λ−1 = 10−4 seconds and |I| = 10 000. They
exhibit exactly the predicted behavior. The chart shows the average event time error
and again the 95-percentile upper error bar, where the events are broken down along
the x-axis according to the number of nodes |Ri| that observed them. The chart shows
also the theoretical average error given by the function x 7→ λ−1/x, and it is evident
that the results match the theoretical expectations very closely.

We may thus conclude that the convergence of the estimate is very quick, and a reason-
able synchronization quality can be expected even if only a limited number of anchor
points is available. The results also underline that the numerical performance of our
implementation will not be the limiting factor for the accuracy in practical usage.

6.6.3 Robustness

So far, our simulations have used clocks and timestamping delays that match the as-
sumptions made for the derivation of the approach. Now we assess how robust the
estimator is if these assumptions do not hold. We thus use the very same estimator as
before, but generate simulation data that intentionally contradicts the assumptions in
different ways.

Table 6.1: Clock rate estimation error for different clock rate standard deviations (λ−1 =
10−4 s, |I| = 10 000).

std. dev. of rates avg. rate error 95-perc. max rate error
10 ppm 0.0035202 ppm 0.0093509 ppm

100 ppm 0.0035785 ppm 0.0094587 ppm
1000 ppm 0.0035472 ppm 0.0092708 ppm

135

Chapter 6 Post-Facto Offline Time Synchronization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16 18 20 22 24 26

T
im

e
s
ta

m
p

 e
rr

o
r

(µ
s
)

Number of receivers |R
i
|

Simulation
Theoretical (λ

-1
/|R

i
|)

Figure 6.5: Theoretical and simulated event time estimation errors depending on the
number of receivers |Ri| (λ−1 = 10−4 s, |I| = 10 000).

The timestamp estimation errors occurring in these experiments are all shown in Fig-
ure 6.6. As a “baseline” for comparison it shows the results from the previous simu-
lations, where all our assumptions hold, for λ−1 = 10−4 s (labeled “exponential”). As
could be expected, this achieves slightly better estimation results than all the cases
where the assumptions do not hold.

First, we varied the distribution from which the timestamping delays were sampled.
The result labeled “gamma” shows the estimation error for delays drawn from a gamma
distribution with shape parameter k = 3. The scale parameter θ has been set to 1/(k ·λ).
This yields a mean of λ−1 and therefore allows for a direct comparison to the results with
exponentially distributed delays with the same mean. The probability density functions
of these two distributions are shown in Figure 6.2, both adjusted to mean 1.

In the “multi-modal” simulations we assess the robustness to outliers in the timestamp-
ing delays. The majority of timestamping delays follows an exponential distribution

Table 6.2: Clock offset estimation error for different clock rate standard deviations
(λ−1 = 10−4 s, |I| = 10 000).

std. dev. of rates avg. offset error 95-perc. max offset error
10 ppm 1.566 µs 3.844µs

100 ppm 1.503 µs 3.809µs
1000 ppm 1.500 µs 3.958µs

136

6.6 Numerical Evaluation

10
-5

10
-4

10
-3

 100 1000 10000 100000

T
im

e
s
ta

m
p

 e
rr

o
r

(s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

exponential
gamma

multi-modal
two groups

lim. resol.
clock drift
combined

Figure 6.6: Event time estimation errors for increasing I if assumptions do not hold.

with λ−1 = 10−4 seconds. 10 %, however, are instead drawn from a gamma distribution
with k = 10 and a ten times higher mean. 1 % are “heavy outliers”, sampled from a
gamma distribution with a 50 times higher mean and k = 100. From these results, it
can in particular be seen that our proposed method is very robust against outliers.

Inhomogeneous hardware with different timestamping delay characteristics is simulated
in the “two groups” setup. The simulated network nodes are divided into two groups
of 50 nodes each. The delays are exponentially distributed here, but the values of λ−1

differ by one order of magnitude: one half of the nodes uses λ−1 = 10−4.5 seconds, the
other half uses λ−1 = 10−3.5 seconds.

We have also simulated the effects of a bad clock accuracy. As stated earlier, clocks
in computer systems sometimes have a rather coarse resolution. In the simulations
labeled “lim. resol.”, the timestamping delays are again exponentially distributed with
λ−1 = 10−4 seconds, but the timestamps’ resolution has been reduced to 0.1 milliseconds
prior to performing the time synchronization. The estimator again deals very well with
this effect. It is particularly remarkable that the availability of measurements from
multiple nodes with different offsets allows for an estimation of the event times that is
more accurate than the resolution of a single node’s clock.

The “clock drift” simulations show the effect that randomly drifting clocks have on
the accuracy of the estimates. Instead of linear clock functions, we use second order
polynomials. Clock drifts are chosen independently from a Gaussian distribution with
mean zero and standard deviation 3 ·10−9. For our simulations, which cover a time span

137

Chapter 6 Post-Facto Offline Time Synchronization

of ten minutes, this results in typical time stamp differences in the order of milliseconds
to an otherwise equivalent clock with zero drift; the speed change of a typical clock sums
up to several ppm during a ten-minute simulation. Nevertheless, as our results show,
the effect on the synchronization accuracy is very limited.

Finally, the “combined” simulations incorporate all of the above sources of inaccuracies.
In this data set, the timestamps are delayed according to the outlier-prone “multi-
modal” distribution, there are two groups of nodes with different expected timestamping
delays like in the “two groups” simulations, the simulated clocks drift as described
above, and the timestamps’ resolution is again limited to 0.1 ms. Even this combination
of effects—all of which heavily contradict the foundations on which we have initially
built our method—results in a degradation of the estimation quality by substantially
less than one order of magnitude.

In summary, we conclude that the estimator is very robust and yields sensible results
also if the various assumptions made for its derivation do not exactly hold. Although
the quality of the estimates, as could be expected, degrades to a certain extent, they are
still very good, and the estimator converges quickly to a high accuracy in all cases.

6.7 Real-World Experiments

The previously presented robustness assessment has shown that our proposed time syn-
chronization method is able to deal well with a whole range of adversarial effects in the
log data. Still, however, these evaluations were based on artificially generated simulation
data. We will thus now complement them with an application of our method to real-
world experimental data. While this, due to the unknown true values, does not allow
to rigorously determine the remaining errors, it nevertheless provides a good intuitive
understanding and shows how well the method can handle real data.

Our experimental setup consist of five PCs with rather heterogeneous hardware both in
terms of CPU/memory and the wireless interface card. One of these nodes periodically
broadcasts one packet per second, over a total of twenty minutes. The other four
record and timestamp the received packets. Initially, the offsets have been reduced by
approximately setting the clocks by hand.

In our figures, we use one of the receivers as a reference, and plot the differences in the
recorded timestamps between this receiver and the other three. Figure 6.7 shows how—
for unsynchronized clocks—this difference develops during the experiment. The almost

138

6.7 Real-World Experiments

exactly linear relative clock errors are clearly visible, as well as some timestamping delay
outliers for nodes 1 and 2. The heterogeneity of the used hardware manifests itself in
the fact that node 3 as well as the reference node do not produce that heavy outliers.
(Exceptionally long timestamping delays in the reference node would result in parallel
downward peaks.)

We have used our time synchronization algorithm on the data from the above exper-
iment. This yields estimates r̂j and ôj for the rates and offsets of the four receivers.
We use those to eliminate the estimated linear clock deviations from Figure 6.7, by
computing

ti,j − ôj

r̂j
≈ Ti + di,j (6.28)

for each timestamp. In Figure 6.8, we show the results of this correction. Again we
plot the timestamp differences to the reference node, the y-axis uses the same scale as
in Figure 6.7.

The approximation in (6.28) is exact if the estimates r̂j and ôj of rj and oj are exact.
Remaining clock deviations or estimation errors would therefore be visible in Figure 6.8:
they would result in remaining timestamp differences to the reference node.

That such errors are in fact virtually non-existent becomes clear if we zoom the y-axis
further in, as we do in Figure 6.9. It can be seen that the timestamping differences
are typically in the order of some ten microseconds, with occasional outliers of up to
1–2 milliseconds. There is, however, no sign for a systematical (i. e., rate or offset
estimation) error, like clocks drifting apart over time. This indicates that the rate and
offset estimates are indeed correct.

Note that eliminating the estimated linear clock deviations according to (6.28) leaves the
timestamping delays in the data. In a practical application, our approach would have
been able to also eliminate long timestamping delays with very high probability. Recall
that given exact rate and error estimates, it removes all but the shortest timestamping
delay that occurred for events with multiple observers. Since we do not know the
true times of the packet receptions in the experiment, we cannot tell how large exactly
the then remaining deviations are. It seems, however, reasonable to assume that the
smallest timestamping delay for a packet is within the same order of magnitude as the
minimal timestamp difference to the reference node3. Considering (6.28), this difference
is simply the difference of two timestamping delays. In the discussed experiment, the

3This does of course not hold when the minimum path delay is included in the timestamping delay.
This, however, is not a problem here: recall from Section 6.2.3 that the minimum path delay in a
node is equivalent to an additional clock offset, and may thus be eliminated.

139

Chapter 6 Post-Facto Offline Time Synchronization

-140

-120

-100

-80

-60

-40

-20

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 (
m

s
)

Packet ID

Node 1
Node 2
Node 3

Figure 6.7: Unsynchronized timestamp differences in real-world experiments.

-60

-40

-20

 0

 20

 40

 60

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 (
m

s
)

Packet ID

Node 1
Node 2
Node 3

Figure 6.8: Synchronized timestamp differences in real-world experiments.

140

6.8 An Alternative Approach Based on Least Squares

-0.5

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 (
m

s
)

Packet ID

Node 1
Node 2
Node 3

Figure 6.9: Synchronized timestamp differences in real-world experiments (zoomed).

average of the per-packet minimum timestamp difference is 19 microseconds, for 95 %
of the packets it is below 49 microseconds.

6.8 An Alternative Approach Based on Least Squares

Instead of using a maximum likelihood estimator, it is also possible to perform anchor
point based offline time synchronization based on least squares regression. This avoids
the necessity to assume a specific distribution for the timestamping delays. We only
outline this approach here, the details can be found in [JKM+].

The basic idea of the least squares scheme is as follows. For an event i ∈ I and k, l ∈ Ri

it follows from (6.2) that

rlti,k = rkrl(Ti + di,k) + rlok

rkti,l = rkrl(Ti + di,l) + rkol.
(6.29)

Subtracting the second from the first equation yields

rlti,k − rkti,l = rkrl(di,k − di,l) + rlok − rkol. (6.30)

In (6.30), the unknown value Ti is eliminated. Adding up these equations from all events
shared by a pair k, l of nodes for which the set of shared anchor points Rk,l := Rk ∩Rl

141

Chapter 6 Post-Facto Offline Time Synchronization

is non-empty yields

t̄l,kr̄k − t̄k,lr̄l + |Rk,l|ōl − |Rk,l|ōk = ∆dk,l, (6.31)

where

t̄l,k :=
∑

i∈Rk,l

ti,k

t̄k,l :=
∑

i∈Rk,l

ti,l

∆̄dk,l :=
∑

i∈Rk,l

(di,k − di,l).

(6.32)

For all pairs of nodes in the network that share common events, these equations are
summarized in the matrix equation

M

(
ō

r̄

)
= ∆d, (6.33)

where ō and r̄ denote the vectors of the ōj and r̄j , respectively.

By attaching respective rows, normalization constraints to overcome rate and offset
ambiguity just like the ones used above are added to the matrix. By a normal equations
approach, the resulting equation system can then efficiently be solved in a least squares
sense. This yields estimates for the rates and offsets of all nodes, from which, in turn,
estimates for the event times can then easily be obtained. Because of the non-negativity
of the delays, we may use the earliest resulting event timestamp after rate and offset
correction have been applied:

T̂i = min
j∈Ri

ti,j − oj

rj
= min

j∈Ri

(r̄jti,j − ōj). (6.34)

Convergence to the correct values for the rates and offsets—under appropriate con-
nectivity assumptions similar to the ones used in Section 6.5—can be proven for the
full least squares algorithm with rate estimates, with known error bounds. This is a
significantly stronger result than what we have for the MLE approach.

It seems difficult to provide similar bounds analytically for the MLE. We may, however,
numerically compare the results from the two estimators. For this purpose, we apply the
same methodology as in Section 6.6. In Figures 6.10 and 6.11, rate estimation results for

142

6.9 Chapter Summary

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

 100 1000 10000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 6.10: Rate estimation errors for exponentially distributed timestamping delays
with least squares and MLE (λ−1 = 10−4 s).

exponentially and gamma distributed timestamping delays are shown. The MLE yields
better estimates for both these distributions. The differences are even more pronounced
for the offset estimates. These are shown in Figures 6.12 and 6.13.

These results again underline that the MLE generally performs very well. It turns out
that it produces more accurate estimates than the least squares approach even if the
underlying assumptions are not satisfied. For the least squares approach, error bounds
that do not depend on these assumptions can be proven. These theoretical bounds
for the least squares estimator may thus be regarded as an indirect justification of the
MLE.

6.9 Chapter Summary

In this chapter we have considered offline time synchronization for networks with local
broadcast media. We have proposed a method to combine separate event log files from
nodes in such a network into one single log file with a common time basis, in spite of
deviating local clocks and latencies that occur when the timestamps for the events are
generated. This is useful, for example, for the evaluation of experimental results. The
key issue is how the deviations of the clocks and the latencies can be addressed without
the necessity of additional communication between the network nodes.

143

Chapter 6 Post-Facto Offline Time Synchronization

10
-9

10
-8

10
-7

10
-6

10
-5

 100 1000 10000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 6.11: Rate estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 100 1000 10000

O
ff

s
e

t
e

rr
o

r
(s

,
lo

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 6.12: Offset estimation errors for exponentially distributed timestamping delays
with least squares and MLE (λ−1 = 10−4 s).

144

6.9 Chapter Summary

10
-6

10
-5

10
-4

10
-3

10
-2

 100 1000 10000

O
ff

s
e

t
e

rr
o

r
(s

,
lo

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 6.13: Offset estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s).

Our algorithm utilizes transmissions that have been received by multiple nodes as an-
chor points. Such events allow for setting the clock readings of multiple clocks implicitly
into relation, without exchanging any specifically time-related information. It has been
shown how the synchronization can be formulated as an optimization problem, and how
this problem can be expressed as a linear program. The special structure of this linear
program can then be exploited by an efficient solution algorithm. We have presented an
implementation of a specialized solver, and comparisons to other LP solvers underline
the performance of the employed solution techniques. Furthermore, we have presented
analytical results on the quality of the synchronization for a simplified variant of the
estimator. In particular, these results include a bound on the maximum possible syn-
chronization error, depending on the maximum timestamping delay, and a consistency
proof. A subsequent numerical evaluation has shown that the convergence to accurate
estimates is quick, and that the solver is robust even if the underlying assumptions on
the distribution of the timestamping delays do not hold. The application of our method
to real-world data and a numerical comparison to an alternative scheme that is based
on weaker assumptions further underlined its performance.

We consider the presented approach generally applicable whenever event data is dis-
tributed over multiple sources, and common events can be used as anchor points for a
maximum likelihood time synchronization. Apart from supporting the interpretation
of experimental results in networks with local broadcast media that we have primarily
considered, we envision adaptations of the proposed technique for example in the field

145

Chapter 6 Post-Facto Offline Time Synchronization

of network forensics, where data of, e. g., multiple intrusion detection systems (IDS) or
firewall logs is combined. There, too, certain events will often have been observed in
parallel by multiple systems.

146

Chapter 7

Conclusion

In this work, we have discussed the application of implicit feedback and coordination
in wireless multihop networks. We have devised solutions to a number of challenging
questions in such environments, all making use of information that has not explicitly
been transferred or requested: exploiting the very properties of the local broadcast
medium can turn difficulties into opportunities.

The first application of implicit feedback, presented in Chapter 2, was the implicit hop-
by-hop congestion control principle, with its realization in the CXCC protocol. CXCC
establishes hop-by-hop backpressure towards the source of a packet stream by tightly
limiting the number of packets queued in each intermediate node. This is achieved by
overhearing the forwarding of the next hop node to implicitly determine its queue state,
and by a set of simple, localized packet forwarding rules. The protocol does not require
to maintain any rates, window sizes, or similar parameters, neither at forwarders nor at
the source. The RFA mechanism has been introduced as a light-weight mechanism to
achieve single-hop reliability with very low overhead. It avoids any unnecessary packet
payload retransmissions.

Using CXCC as a basis, we have subsequently extended the application of implicit feed-
back in three directions. The first one, end-to-end unicast reliability, was pursued in
Chapter 3, in the BarRel transport protocol. It exploits a known limit on the number
of packets in transit to infer successful end-to-end packet delivery. The combination of
BarRel and CXCC can provide TCP-equivalent service without multihop feedback from
the sink to the source. It obtains information on the end-to-end arrival of information
implicitly, and hence refutes the widespread intuitive belief that end-to-end acknowl-
edgments are indispensable for end-to-end communication with TCP-like reliability.

In the BMCC protocol, which has been discussed in Chapter 4, implicit hop-by-hop con-
gestion control has been generalized to the multicast communication pattern. BMCC

147

Chapter 7 Conclusion

has been implemented in combination with the geographic multicast routing protocol
SPBM. Because SPBM provides only heavily aggregated information on the receivers
in both source and forwarders, congestion control is particularly difficult to perform in
such a context. The two central challenges were the generalization of the RFA/(N)ACK
handshake to multiple local receivers on the one hand, and the relaxation of the back-
pressure mechanism to overcome the crying baby problem on the other hand. The
backpressure pruning mechanism was introduced to solve the latter issue. It combines
overheard information on packet forwarding with link status feedback in KAL packets
to identify branches of the multicast tree with heavy load indirectly, then building up
backpressure in a selective manner.

The last application of implicit feedback and co-ordination to a network protocol was
noCoCo, introduced in Chapter 5. noCoCo is a scheme for the local co-ordination of
the packet transmission order which maximizes the number of opportunities for net-
work coding within bidirectional data flows. It goes beyond pre-existing network coding
schemes for the wireless domain in that it jointly encompasses coding and scheduling
decisions. It therefore does not need to rely on coding opportunities arising sponta-
neously. Nevertheless, it also does not need any explicit co-ordination between endpoints
or intermediate nodes. Instead, it is based on overhearing transmissions performed by
neighboring nodes, and on the basic packet forwarding rules that had already proven
their suitability in CXCC and BMCC. In fact, noCoCo can be seen as a coding-aware
extension of CXCC.

The last contribution of this thesis, the post-facto offline time synchronization algorithm
presented in Chapter 6, exploits information that can be obtained from a set of log files
resulting from experiments performed with nodes in a network with local broadcast
characteristics. The parallel reception of the same transmission by multiple receivers
yields information on the relation of their clock readings at the time of reception. Such
“anchor points” can be used to overcome the problem of deviating clocks in the evalu-
ation of experimental results. In that chapter, implicit feedback was thus not used in
the design of a protocol. Instead, implicitly obtained information formed a basis for the
inference of unknown parameters that can neither be directly observed, nor measured
online in the network without necessitating additional traffic.

In summary, each chapter considered the application of knowledge about the specific
properties of a wireless multihop medium. This knowledge has been used to derive
information, the explicit transmission of which would otherwise have been costly. Some
of the addressed issues were previously known, and there were pre-existing solution

148

approaches, others have been pointed out and tackled for the first time. The resulting
approaches have demonstrated that making use of the information that is available
anyway can lead to novel and sometimes unconventional, yet highly effective solutions.

We are convinced that the concept of implicit feedback has potential far beyond the
applications shown here. Hence, we hope that our discussion will motivate other re-
searchers to recognize the possibilities offered, and not only the difficulties caused by
a given environment—open your protocols’ eyes and let them “read between the pack-
ets”.

149

Chapter 7 Conclusion

150

Appendix

151

Appendix A

Detailed Overview of MANET Transport

Protocols

Many unicast transport protocols have been proposed for wireless multihop networks.
Only those sharing some similarities with the congestion control and reliability protocols
introduced here have been discussed in Chapters 2 and 3. In this appendix, which has
in similar form also been published as a journal article [LSM07b], we give a broader
overview.

We introduce a structure on the proposed solutions, grouping them in categories based
on the key problem they focus on. Section A.1 describes approaches that deal primarily
with problems due to mobility-induced route failures. Random wireless losses are the
main concern of the proposals in Section A.2. In Section A.3 approaches are discussed
that deal with the special properties of a shared medium. Self contention between data-
and ACK-traffic is the main concern of the approaches in Section A.4. In Section A.5
we describe proposals that artificially limit the packet output of TCP in order to adapt
TCP to MANETs. Finally, there are a number of approaches specifically tailored to the
properties of MANETs. These are not based on TCP. They are discussed in Section A.6.
Some approaches can be assigned to multiple sections, since they address more than one
key problem. In these cases we present them in the section where they provide the most
significant contribution.

A.1 Dealing with Route Failures

In a typical mobile ad-hoc network route failures occur frequently. The amount of
time required for discovering a new route has a negative impact on the standard TCP

153

Appendix A Detailed Overview of MANET Transport Protocols

congestion control mechanism. For a long time no packets are delivered and no acknowl-
edgments are received, causing the TCP sender to reduce its window size dramatically,
even though in fact no real congestion situation might exist. The approaches described
in this section primarily tackle this problem.

One of the very first approaches to deal with the congestion control problem in MANETs
at all is called TCP-Feedback (TCP-F). It has been proposed by Chandran et al. in
1998 [CRVP98], and has become the basis for a lot of subsequent work in this area.

The authors of TCP-F propose to disable the TCP congestion control mechanisms
in case of network-induced, non-congestion related losses or timeout events caused by
route failures. The TCP sender is notified explicitly when routing failures occur (RFN,
Route Failure Notification) and when a new route has been discovered (RRN, Route
Re-establishment Notification). When a route to the destination node is currently not
available, i. e., after receiving an RFN message, the TCP-F sender enters a “snooze”
state. In this state it freezes its TCP state values such as timers and window sizes.

An intermediate node generates an RFN message when it detects a link failure on the
route. Once a node previously generating or forwarding an RFN learns about a new
route to the destination node, it generates an RRN message and sends it to the source
node. When the source node receives an RRN, it resumes the TCP session with the
previously frozen state values. To prevent a TCP-F session from remaining in snooze
state indefinitely in case an RRN message gets lost, an additional timeout is used as a
fallback.

Holland and Vaidya analyze the impact of Explicit Link Failure Notification

(ELFN) techniques on TCP performance [HV99]. ELFN means feedback from lower
layers to notify TCP explicitly about link or routing failures. In case of such a failure,
the sender enters standby mode, which is the equivalent to TCP-F’s snooze state.

In contrast to the TCP-F proposal no explicit notification in case of a re-established
route is used. Instead, a TCP-ELFN sender sends probe packets in regular intervals
when in standby mode. A probe packet is not a special control packet. Instead the first
data packet in the send queue is used for that purpose. Standby mode is left as soon as
a probe packet is acknowledged by the destination node.

Likewise, for route failure notifications no special control packet is introduced in ELFN.
The authors propose to either piggyback the notification message onto a route failure
message sent by the routing protocol (as used, for example, in DSR), or to use an ICMP
host unreachable message for that purpose.

154

A.1 Dealing with Route Failures

ELFN has become very well-known and has served as a basis for many later ap-
proaches.

Monks at al. showed in [MSB00] that although ELFN can indeed improve the perfor-
mance of TCP, there are situations where a severe performance degradation is possible.
This is particularly true for scenarios with many active connections. The reason is that
an ELFN-like mechanism makes TCP behave more aggressively, i. e., a higher number
of packets is present in the network. Therefore the MAC layer contention is generally
higher. This in turn leads to more collisions, a higher packet loss rate on the MAC layer
and eventually to false broken link detections; therefore wrong route failure notifications
are sent and unnecessary route discoveries are performed. This observation is quite fun-
damental and should generally be taken into account in mobile ad-hoc networks. It does
not only apply to ELFN or TCP-F, but also to many of the following approaches.

In TCP with BUffering capability and Sequence information (TCP-BuS) by
Kim, Toh and Choi [KTC00], the idea of explicit notifications from the routing layer is
extended. Additional measures are proposed to improve TCP performance.

In TCP-BuS, intermediate nodes buffer packets in case of a route failure instead of
dropping them; the intention is to not having to retransmit all these packets. To avoid
timeouts at the source when buffered packets are delivered after the route is recon-
structed, the timeouts for these packets are extended. Selective retransmission requests
by the destination node allow a fast recovery from lost buffered packets without the
need to wait for these extended timeouts to expire. A scheme for avoiding unnecessary
retransmission requests is proposed.

In order to ensure the delivery of control messages like route failure notifications, a
reliable delivery scheme is suggested for these messages. To detect a re-established
route both explicit notifications and probe packets, i. e., both the TCP-F and the ELFN
way of detecting the new route, are examined.

In [DB01] Dyer and Boppana compare the performance of different TCP variants over
three MANET routing protocols. Based on their finding that an exponentially growing
retransmission timeout (RTO) is problematic in MANETs because of the route failures,
they propose to keep the RTO fixed after the first retransmission. Their Fixed RTO

scheme thus leads to a periodic sending of packets. Essentially this has the same effect
as ELFN’s probe packets. However, their scheme is much simpler because it does not
interact with the routing layer, and due to the dependency of the RTO on the measured
round trip time it is inherently adaptive

155

Appendix A Detailed Overview of MANET Transport Protocols

They compare this mechanism with the use of TCP’s selective acknowledgment (SACK)
and delayed acknowledgment (DACK) extensions. The results of their ns-2 simulations
show that the delayed and selective acknowledgment mechanisms of TCP yield only
minor improvements, but with fixed RTO a performance increase similar to that of
ELFN is possible.

In the ENhanced Inter-layer Communication and control (ENIC) scheme pro-
posed by Sun and Man [SM01], too, ELFN-like route failure handling and the TCP
SACK and DACK mechanisms are combined. In comparison to TCP-BuS, ENIC re-
quires less assistance from the intermediate nodes. Like in ELFN, no separate notifica-
tion messages in case of a route failure or a recovered route are transmitted. Instead
the reuse of notifications inherent to the routing protocol is proposed. A buffering of
packets at the intermediate nodes is not suggested, queued packets are dropped when a
route breaks.

Not only the sender, but also the receiver is notified of route failures in ENIC. Like the
sender it freezes its state, particularly that of the DACK mechanism. With a broken
route, acknowledgment packets would not be able to reach the source node, anyway.

In ENIC, a new retransmission timeout value (Temporary RTO) is calculated after a
route change in a heuristic fashion. It is based on the hop counts of the old and the
new route. Thus of the approaches described here ENIC is the first one taking potential
changes of route characteristics after a route reestablishment into account.

Zhou et al. in [ZSZ03] focus especially on the problem of changing route properties
after a route reestablishment. As an extension to the ELFN mechanism they propose
to recalculate TCP’s congestion window size (cwnd) and slow start threshold (ssthresh)
parameters based on the properties of the new route. They call their approach TCP-

ReComputation (TCP-RC).

In TCP-RC, the route length and the round trip time—both relative to their previous
values—are used to determine new values for cwnd and ssthresh. In ns-2 simulations
they compare TCP-RC to plain TCP Reno and find performance improvements; how-
ever, it is not clear how much of this improvement is due to the ELFN mechanism alone,
since this variant is not examined.

With TCP for mobile ad hoc networks (ATCP) Liu et al. [LS01] present a so-
lution to several TCP problems in MANETs. ATCP not only handles route failures,

156

A.1 Dealing with Route Failures

but it is also intended to correctly handle longer periods of disconnection and to distin-
guish congestion-related from other losses. For the latter explicit congestion notification
(ECN) messages are used.

Instead of invoking standard TCP congestion control in the case of non-congestion losses
ATCP uses a TCP state freezing mechanism with an TCP-ELFN-like probe packet
mechanism. A loss is considered to be non-congestion related if no ECN message is
received.

An important point for the authors is to preserve standard TCP compatibility as far
as possible. Therefore ATCP is implemented in an additional layer below the transport
layer, reducing the interaction with TCP to a minimum.

A problem with explicit link failure notification schemes observed by Yu in [Yu04] is
that still a number of data packets and ACKs may get lost before the state is frozen.
This has negative effects after the state is restored: missing packets or missing ACKs
will then cause timeouts or duplicate acknowledgments. Yu’s cross-layer informa-

tion awareness scheme overcomes this by extensively using cached route information
from the DSR routing protocol. Two mechanisms are introduced, Early Packet Loss
Notification (EPLN) and Best-Effort ACK Delivery (BEAD).

EPLN notifies TCP senders of the sequence numbers of lost packets that could not
be salvaged. The sender can then disable the retransmission timer and retransmit the
respective packets upon route reestablishment. BEAD generates ACK loss notifications
at intermediate nodes and sends them towards the TCP receiver. This prevents ACKs
from being permanently lost. A node forwarding such a loss notification may send an
ACK with the highest affected sequence number to the TCP sender if it is able to do so.
Otherwise the TCP receiver will retransmit an ACK with the highest sequence number
when a new route is present.

Wang and Zhang—in contrast to most of the previously described approaches—propose
a pure end-to-end mechanism. It is called TCP with Detection of Out-of-Order

and Response (TCP-DOOR) [WZ02]. They regard the deployment and maintenance
of cross-layer solutions as too intricate in many scenarios.

In TCP-DOOR, data packets and/or ACKs delivered out-of-order are utilized as an
indication of changed routing without the need of explicit feedback. While the receiving
node can notify the sender about detected out-of-order data packets, the sender itself
may notice ACKs arriving out-of-order.

157

Appendix A Detailed Overview of MANET Transport Protocols

Two mechanisms are suggested as a reaction to the occurrence of out-of-order events.
When out-of-order packets are detected, the sender may temporarily disable TCP’s
congestion control mechanisms by keeping its state variables constant. Additionally, it
may fall back to a somewhat older state. Thereby it reverts effects of congestion control
mechanisms that might already have occurred. This last mechanism is called Instant
Recovery. The expected effect is similar to that of freezing: after the reset “wrong”
changes to TCP’s parameters are reverted, and the connection continues to operate as
if no route change had occurred.

Through simulation studies the authors have found that it is perfectly sufficient to
detect out-of-order events either at the sender or at the receiver. A combination of both
detection mechanisms does not yield significantly better results. The best performance
is achieved by a combination of both possible reactions, that is, by temporarily disabling
congestion control and performing Instant Recovery.

The authors recommend their approach primarily for mixed ad-hoc and wired network
scenarios, where it would be particularly hard to adopt a feedback-based approach.
Where possible, they suggest to use some feedback-supported method instead.

In [GAGPK03] Goff et al. propose an early detection scheme for route failures. The
idea of preemptive routing is to foresee route failures before they actually occur,
and to initiate a new path discovery early. This is intended to avoid or at least to
reduce disconnection times. Especially for TCP—with the negative effects that the
disconnection periods have on its performance—significant improvements are expected
by the authors.

Upon reception of a packet each node along a route looks at the received signal strength.
If it is below a given threshold, a warning is sent to the source node of the route. To
mitigate short-term effects like small-scale fading, the use of an exponential average or
of a verification of the measurement by sending some small ping-pong packets along
the respective link are proposed. In simulations they evaluate their scheme and find a
largely improved TCP performance when preemptive routing is used.

In [APSS04] Anantharaman et al. perform an analysis of TCP behavior in mobile ad-hoc
networks, studying the factors that influence the protocol’s behavior. They conclude
that the schemes proposed so far, in particular the ELFN scheme, are only able to deal
with part of the problems TCP is facing due to breaking links and route failures. They
propose a set of three mechanisms with a somewhat broader scope, designed specifically

158

A.1 Dealing with Route Failures

for the DSR routing protocol [JM96]. They call the combination of these mechanisms
the Atra framework.

The main aims of Atra are the minimization of route failures, their prediction and a
fast notification of the source in case of a route failure. The mechanisms used to achieve
these goals are called Symmetric Route Pinning, Route Failure Prediction, and Proactive
Route Errors. Symmetric Route Pinning forces TCP acknowledgment packets to use the
same route as the corresponding data packets. Usually, different routes could be used
in DSR. The authors’ reasoning is that using different routes increases the probability
of a route failure—there are two routes that may fail.

The Route Failure Prediction mechanism in Atra works like the preemptive routing
scheme: each node along the route estimates the trend of received signal strength values.
In case the Route Failure Prediction doesn’t work, the third mechanism, Proactive Route
Failures, notifies the sources of all connections that use the broken link. This is different
from standard ELFN mechanisms, where only the source of the packet that could not be
transmitted on the MAC layer is notified of the problem, meaning that every connection
sharing the broken link has to detect the problem separately.

Another approach anticipating route failures is the signal strength based link man-

agement by Klemm et al. [KYKT05]. They point out that the 802.11 MAC cannot
identify link breaks correctly in case of congestion. The situations when two nodes
move out of transmission range and when a congested area does not allow a successful
RTS transmission cannot immediately be distinguished. The authors aim to distinguish
these cases better and to provide appropriate reactions in conjunction with the AODV
routing protocol [PBRD03].

The first key idea is the same as that of preemptive routing: a history of node distances,
estimated by received signal strength information (RSSI), is kept for the neighbors.
If a used link is about to break the routing protocol is informed and a new route to
the destination can be searched early. In addition to the signal strength based link
management it adds mechanisms to ease the salvaging by temporarily increasing the
transmission power. In case congestion prevents the transmission of data, the number
of RTS/CTS retries before a is packet dropped is increased.

The main difference between route failure anticipation schemes and the approaches
discussed before is that these schemes try to avoid performance degrading effects from
occurring in the first place, instead of alleviating their effect. This concept is also the
key idea in the multipath TCP scheme by Lim et al. [LXG03]. They use existing

159

Appendix A Detailed Overview of MANET Transport Protocols

multipath routing protocols to study the effects that these approaches have on the TCP
performance. They compare two modes how the additional routes provided by the
routing layer can be used: distributing the TCP packets to multiple routes in parallel
and maintaining additional routes just as a backup in case of a route failure.

By simulation with Fixed RTO TCP (see above) as a transport protocol they find
that it is not beneficial to use multiple paths in parallel. Using different paths—with
different round trip times—makes TCP’s RTT measurements unreliable. Additionally,
out-of-order delivery effects produce many duplicate ACKs and thus trigger unnecessary
congestion control reactions.

In contrast to that, maintaining one additional route as a fallback has a positive effect.
In case of a route error the transmission can be continued quickly. The authors call this
scheme backup path multipath routing. In some sense, it can be seen as a consequent
variant of the route failure prediction schemes: instead of establishing an alternative
path when a route failure is about to occur, it is maintained from the beginning, in
order to be always quickly available.

A.2 Coping with Wireless Losses

A wireless link per se is much more prone to more or less random packet losses than a
wire-line connection. Such losses are detrimental for a transport protocol’s performance
if they are misinterpreted as congestion-induced packet drops.

This problem is not a central issue when 802.11-like MAC protocols are used, where the
link layer provides single-hop reliability. In this case packets are dropped by the link
layer only after a number of failed transmission attempts or failed RTS/CTS handshakes.
This in turn usually happens when either a link is lost or when a lot of packet collisions
occur. The latter means that there probably is a lot of traffic in the area around the
currently forwarding node and thus congestion. Therefore although the packet loss
has not been caused by a queue overflow in a router it can still be a valid congestion
indicator.

However, it can well be argued that there might be networks without single hop reliabil-
ity. In such a case the proposals presented in this section show how end-to-end transport
protocols—designed to rely on missing packets as congestion indicators—can learn to
deal with random losses. Some work in the area of distinguishing wireless losses from

160

A.2 Coping with Wireless Losses

congestion losses has also been done in the area of wired-cum-wireless networks, see for
example [BV05]. Here, we only focus on the approaches for mobile ad-hoc networks.

Güneş and Vlahovic propose to introduce three states in TCP senders [GV02]. This
approach is called TCP with Restricted Congestion Window Enlargement

(TCP/RCWE). It is based on the Explicit Link Failure Notification mechanism.

In TCP/RCWE, link breaks and thus the corresponding losses are handled by ELFN.
In addition, RCWE aims to deal well with random losses. To this end, the authors
propose a mechanism based on a heuristic observing the value of the Retransmission
Timeout (RTO). If the RTO increases the congestion window size is not increased. If the
RTO decreases or remains constant the congestion window size is increased according
to TCP’s rules.

In ns-2 simulations, RCWE is found to cause a much smaller congestion window, leading
to higher goodput and less packet losses. But it is compared only to standard TCP
without ELFN, so it is not clear how much of the performance gain is due to ELFN
alone. Since seemingly IEEE 802.11 with link layer reliability is used in the simulations,
the observed performance gain might also occur only because cwnd is increased less
often and thus is smaller on average. In this case, the observed effect would be the same
as the one discovered later by Fu et al. in [FZL+03], leading to the congestion window
size limitation schemes described in Section A.5.

To improve the reliability of bit error loss detection, Fu et al. in [FGML02] combine mul-
tiple metrics instead of relying just on a single one. They call their approach ADTCP.
They state that the main problem of end-to-end transport protocols in mobile ad-hoc
networks is the noisiness of the measurements of indicators for certain network events.

Two metrics are proposed to detect network congestion. The inter-packet delay differ-
ence at the receiver, defined as the time elapsing between two successive packet arrivals,
increases when congestion occurs. Additionally, the short-term throughput, describing
the throughput in a certain time interval in the immediate past, decreases in case of
congestion. These two metrics are combined to gain a more robust congestion indicator.
In a similar way, out-of-order packet arrivals and the packet loss ratio are used to detect
route changes and channel errors.

In ADTCP, the receiver detects the most probable current network state and includes
this information into its feedback to the sender. Both sender and receiver behavior
are altered appropriately, but at the same time remain compatible with standard TCP.

161

Appendix A Detailed Overview of MANET Transport Protocols

An ADTCP sender can talk to a standard TCP receiver and vice versa. ADTCP also
behaves TCP-friendly.

Especially because of these last properties ADTCP might be an interesting option for
scenarios with different protocols in the same MANET, with mixed wired and wireless
infrastructure, or with existing TCP-based applications.

For mobile multimedia communication Fu et al. also propose an adaption of TFRC called
ADTFRC [FML03]. TFRC is a rate-based transport protocol originally developed
as a TCP-friendly transport protocol for wired networks with smooth rate adaption
properties [FHPW00].

ADTFRC applies the same ideas to TFRC that ADTCP applies to TCP. An identical
combination of metrics and general mechanism are used to distinguish loss types and
to provide receiver-based feedback. ADTFRC shares most of the benefits of ADTCP,
especially the possibility of incremental deployment—ADTFRC, too, is compatible to
standard TFRC communication partners.

De Oliveira et al. propose to use the measured round trip times to distinguish between
congestion and medium losses [dOBH03]. In their edge-based approach the TCP
congestion control reaction is circumvented if a medium loss is detected. Also, route
failures are detected when a timeout occurs and no packets at all have been received for
a longer period of time. In this case TCP enters an ELFN-like “probe mode”, in which
packets are transmitted at regular intervals in order to be able to detect a re-established
route.

The specific mechanism to distinguish congestion from medium related losses is pre-
sented in [dOB04]. It is based on fuzzy logic [Zad65, Zad68]. The authors use ns-2
simulations with a single observed flow and some background traffic to examine the per-
formance of their approach, and find a good detection accuracy, although the amount
of samples needed can be high, causing the algorithm to be too slow for highly dynamic
scenarios. The authors name some techniques that could be used to improve the fuzzy
logic engine in this regard.

Given the approaches described in this section, the results presented in [CXN03,
FZL+03] are of particular interest. The authors show that the assumption that more
knowledge on the cause of packet losses solves the problems of TCP in MANETs may
not be true. On the contrary, the resulting, more aggressive TCP behavior might lead
to an even higher load on the network and thus more congestion problems.

162

A.3 Managing a Shared Medium

A.3 Managing a Shared Medium

In a wireless network the medium is shared by all nodes in a certain area. Dealing with
this property is a big challenge when one wants to perform congestion control in such
networks: it makes congestion a spatial phenomenon, happening no longer in a node,
but rather in an area. Several mechanisms paying attention to these special limitations
have been proposed. They are presented here.

In a frequently cited work by Fu et al. [FZL+03] the authors show that for a given
topology and traffic pattern there exists an optimal TCP window size, but TCP is unable
to find it. Instead it uses larger windows, leading to dropped packets caused by link-layer
contention. This observation has influenced research in wireless multihop congestion
control significantly. Given this background the authors propose two mechanisms to
improve TCP by earlier reaction to link overload—a distributed Link RED (LRED)

and an adaptive pacing strategy.

The Random Early Detect (RED) mechanism in wired networks [FJ93] drops packets
in router queues at random with a probability that increases linearly with the queue
length. This makes TCP flows passing through the router regulate their bandwidth
requirements before severe congestion occurs. LRED’s intention is to make the TCP
flows regulate their window size closer to the optimal region for MANETs. In LRED,
the probability for a drop is based on the observation of the number of transmission
attempts needed on the MAC layer. The mechanism is enabled once a certain threshold
is exceeded. With more frequent retries the probability to drop a packet is increased,
because this situation is interpreted as a sign for local congestion.

The other technique—adaptive pacing—is also enabled once the LRED retransmission
count threshold is reached. When active, the mechanism adds an additional packet
transmission time to the sender’s MAC backoff timer. Therefore the medium can be
expected to be free also at the next node downstream, avoiding the so-called exposed
receiver problem. This leads to a two hop co-ordination mechanism as the sender waits
long enough that a packet can be forwarded from the receiver one hop further.

Xu et al. in [XGQS05] focus especially on TCP unfairness problems caused by the lo-
cally shared medium. Their proposal to improve TCP fairness, Neighborhood RED

(NRED), is like the previously discussed Link RED based on Random Early Detec-
tion.

163

Appendix A Detailed Overview of MANET Transport Protocols

In NRED, every node estimates the number of packets queued in its neighborhood in
total, i. e., in all nodes in the vicinity. All these packets form a virtual, distributed
neighborhood queue. If the length of this queue exceeds a threshold, packets start
getting dropped with increasing probability.

NRED consists of three steps. The neighborhood queue size estimation is performed
by analyzing the channel utilization. Therefore the transmissions of the neighbors are
overheard. If the utilization exceeds a threshold the neighborhood is presumed to be in
an early congested state. A drop probability is calculated and is sent explicitly to all
neighbors to inform them. Each node calculates its own drop probability based on the
received notifications. Incoming packets are dropped with this local probability, in total
leading to RED-like packet dropping in the virtual neighborhood queue.

The authors of COntention-based PAth Selection (COPAS), de Cordeiro et
al. [dMCDA02], focus on a problem of TCP in MANETs called the capture problem.
Nodes can capture the medium unfairly and gain an advantage in comparison to oth-
ers.

COPAS is an extension for reactive routing protocols. During route discovery all routes
between a source and destination node are gathered. Then two disjoint routes are used to
forward upstream TCP traffic and downstream acknowledgments respectively, in order
to avoid effects where one of the two directions captures the medium. The decision which
routes are chosen is based on congestion measurements performed during the discovery
process. The measurements are based upon the backoff times for which the node had to
wait before the medium became free. They are updated continuously during operation,
and a route that becomes too congested is substituted by a better one.

Interestingly, the fact that two disjoint routes are used for forward and backward traffic is
perfectly opposed to the Symmetric Route Pinning technique from the Atra Framework
(see Section A.1), where special care is taken to use the same route.

Ye et al. in [YKT04] propose to extend the routing in order to separate flows spa-
tially on the basis of distributed congestion information in their Congestion Aware

Routing (CAR) approach. In contrast to most previous work in the congestion-aware
routing area they focus on TCP flows and the interaction with the congestion control
mechanism.

First, they evaluate the theoretical benefit for spatial separation by simulating a cen-
tralized approach (Centralized CAR, CCAR). They assume that every node has total
knowledge about source, destination, and route of every single TCP flow.

164

A.3 Managing a Shared Medium

A decentralized approach (Distributed CAR, DCAR) is then described as a more realistic
scenario. Every node locally calculates a congestion weight representing its local load
situation and broadcasts it to its neighbors. The AODV routing protocol is used in
an adapted form. Route discovery messages are collected for some time until they are
forwarded, and routes are chosen based on the path’s aggregated weight. The destination
node uses the path with the minimal weight to send the route reply message.

The performance analysis shows that both approaches outperform shortest path rout-
ing protocols for long paths in terms of throughput. The centralized approach clearly
outperforms the distributed mechanism and is also favorable for short paths where the
distributed approach fails. However, for obvious reasons it is not feasible in practice.
As the main reason for the inferior performance of DCAR in comparison to CCAR the
overhead for broadcasting the—potentially already outdated—congestion information
has been identified by the authors.

Spatial separation of flows as in COPAS or CAR might actually be an effective means
of reducing contention-related negative effects in MANETs. However, problems could
arise in such an environment due to possible interactions between congestion control and
routing. In particular feedback-loop oscillations can occur if congestion induces route
changes, thus create network load in different areas of the network, and eventually force
other streams to change their routes.

A completely different approach to solve TCP’s problems in MANETs has been proposed
by Kopparty et al. in [KKFT02]. In Split TCP, congestion control and end-to-end
reliability mechanisms are separated.

In intermediate nodes on the path between sender and receiver so-called TCP proxies
are automatically established. The proxies subdivide the path into several independent
segments. Each proxy buffers packets and transmits them either to the next proxy or
to the final destination. Local acknowledgments are used to acknowledge packets within
one segment. In addition to local acknowledgments end-to-end ACKs—potentially
cumulative—are used to ensure reliability in case of a proxy failure.

Split TCP intends to alleviate mobility related effects by keeping other path segments
functioning if a link breaks in one segment. Capture effects are expected to be less
severe, since the transportation of data occurs in shorter stages and thus the size of the
captured region is reduced.

Unlike most previously described approaches, Split TCP does not try to modify TCP
behavior to introduce “knowledge” about specific properties of MANETs into the mech-

165

Appendix A Detailed Overview of MANET Transport Protocols

anisms. Instead, the long way for feedback from the sink back to the source is identified
as a major problem and alleviated by shortening the feedback path.

The focus of Berger et al.’s scheme for alleviating self-contention [BYS+04] is on
contention between packets belonging to the same transport layer flow. This can happen
for both packets going into the same and packets traveling in the opposite direction.

The authors propose two mechanisms to make bidirectional data communication more
reliable. Quick Exchange (QE) helps packets traveling in opposite directions, Fast For-
ward (FF) tries to reduce self-contention for packets with the same direction. Both are
extensions to 802.11’s RTS/CTS mechanism.

QE allows to exchange two packets in opposite directions by using only one exchange of
RTS/CTS information. By adding an extra duration header to the first data transmis-
sion the network allocation vector of all other nodes in range is extended appropriately.
A packet in the opposite direction with a piggybacked ACK can then be sent directly,
i. e. without a second RTS/CTS. After both transmissions the original sender completes
the procedure with an additional ACK.

FF speeds up the forwarding of a packet in the downstream direction. Like QE there
is only one exchange of RTS/CTS information. But here the ACK is piggybacked
with a new RTS packet for forwarding. This way, packets are forwarded faster over
multiple hops to avoid self contention with other packets of the same flow. The use of
this technique is restricted probabilistically because too frequent usage can lead to flow
unfairness.

In simulation studies, the authors see a performance gain with their techniques, but
also some problems in the interaction of FF with TCP: FF causes a high RTT variance,
leading to suboptimal TCP performance.

Against the background of shared medium effects Zhai at al. in [ZF06] propose four
mechanisms to reduce the impact that inter-flow and intra-flow contention have on the
throughput and fairness in MANETs. They call their approach Optimum Packet

scheduling for Each Traffic flow (OPET). For reliable end-to-end communication
they combine the proposed mechanisms with standard TCP.

The authors propose to assign a higher priority for the medium access to a node that
has just received a packet. This is to give “downstream” packet transmissions a higher
priority and thus to alleviate intra-flow contention. This has a similar background as the
previously described Fast Forwarding mechanism. In addition, a hop-by-hop backward-
pressure scheme keeps upstream nodes from sending further packets until the previous

166

A.3 Managing a Shared Medium

ones have been forwarded. This mechanism is tightly coupled to the 802.11 RTS/CTS
mechanism, allowing the receiving node to send a “negative CTS” (NCTS) in order to
signal that it is not willing to receive another packet of a certain flow. The upstream
node then has to wait until its next hop explicitly gives the permission to continue.

The third mechanism limits the number of packets that source nodes can inject into their
local queues, in order to prevent the sources from consuming too much local bandwidth
for themselves. Finally, a flow-based round-robin scheme keeps, e. g., a single hop flow
from occupying the medium excessively.

Like Fu et al. had done before with ADTFRC (see section A.2), Li et al. propose an
adaption of TFRC to MANET requirements called RE TFRC [LLA+04]. RE TFRC
is intended to alleviate negative MAC layer influences on the TFRC rate control mech-
anism. The authors show that unmodified TFRC produces a high load, beyond the
MAC’s saturation point. They introduce a rate estimation (RE) algorithm into TFRC.
It uses a model for the round trip time to derive the loss rate equivalent to the load
saturating the MAC layer capacity. The rate estimation algorithm is used to constrain
the rate of TFRC.

The authors regard RTS/CTS-induced congestion as a major reason for the performance
drop in an overload situation. Their rate estimation algorithm is based on a wireless
multihop network model that is essentially equivalent to a collection of independent
single hop wireless networks. This model is used to derive the optimal round trip time
upon MAC saturation, which in turn serves as a basis for constraining the TFRC rate
below this point.

RE TFRC’s approach to tackle the problems of transport protocols in wireless multi-
hop networks by refining the modeling seems promising. However, the question arises
whether the approach will work in more complex scenarios than evaluated by the au-
thors, e. g., when interactions between multiple flows occur. It is also interesting to
compare the findings in this paper to those of Chen and Nahrstedt in [CN04]. They
show fundamental problems of equation-based congestion control in MANETs. Whereas
in RE TFRC it is observed that the offered load is beyond the MAC’s saturation point,
Chen and Nahrstedt report a too conservative behavior of TFRC.

167

Appendix A Detailed Overview of MANET Transport Protocols

A.4 Handling ACK Traffic

Because of the shared medium, packets using the same route—or spatially close routes—
in opposite directions severely affect each other. A very prominent example for this
situation is the end-to-end acknowledgment traffic generated by transport protocols,
causing intra-flow contention between data packets and acknowledgment packets trav-
eling in opposite directions.

The question arises how the amount of ACK traffic or at least its negative impact on
the performance of the forward channel can be minimized. This is closely related to
the effects caused by the shared medium in general. Consequently there is some overlap
with the previous section, and some of the approaches described there also consider the
interplay between oppositely-directed data and ACK traffic. The work described in this
section focuses solely on the acknowledgment traffic.

Altman and Jiménez in their dynamic delayed ACK approach follow this direction
in [AJ03]. Using delayed acknowledgments (DACK) in MANETs has been proposed
before, e. g., in [DB01, SM01]. Here, the authors extend the idea beyond standard
DACK’s combination of only two consecutive ACKs (see RFC 1122 [Bra89]). In the
Dynamic Delayed ACK scheme, only after a given number d of segments or after a
certain, fixed timeout an acknowledgment packet is sent.

For d = 2 the authors observe significant performance improvements in their ns-2
simulations, which increase further for higher values of d of 3 or 4. However, these
values might be problematic when TCP operates at a small window size. Therefore the
authors propose to use a dynamic delayed ACK with d growing with an increasing packet
sequence number, up to d = 4. Once this limit is reached, d is never decremented again.
They state that a value of d depending on the current window size would probably lead
to better results, but they do not want to introduce the additional changes required in
order to make this information available at the receiver. Simulations demonstrate the
performance gains possible with this approach, but are performed only with single flows
in static networks.

De Oliveira and Braun in [dOB07] identify some drawbacks in Altman and Jiménez’
scheme. They criticize the lack of adaptability to changing medium conditions. They
design a new scheme called dynamic adaptive acknowledgment by applying con-
cepts proposed in RFC 2581 (TCP Congestion Control) [APS99] to TCP in MANETs,
and by a dynamic ACK timeout which is calculated based on the packet inter-arrival
times at the receiver.

168

A.4 Handling ACK Traffic

The concepts from RFC 2581 comprise an immediate acknowledgment upon out-of-order
packets or packets filling a gap at the receiver. For the timeout a sliding average over
the packet inter-arrival times is maintained. The authors argue that it is reasonable to
wait at least for the time until the second next packet should arrive before a timeout
occurs. If this packet is in-order and just delayed, everything is fine. Otherwise, if a
packet is missing, the next packet will be out-of-order and will thus trigger an immediate
acknowledgment.

In addition to these mechanisms, the parameter d is also changed dynamically. It grows
additively up to a maximum value of 4. On out-of-order or gap-filling packets it is
reduced to the Delayed ACK standard value of 2. Additionally, the congestion window
is limited to a maximum of 4 segments.

The positive results obtained with delayed acknowledgment schemes in general are very
interesting, because these techniques can be combined with many other approaches
quite well, and are a promising way of reducing the number of packets and thus the con-
tention for the shared medium. It could also be considered to use similar techniques for
aggregating the feedback from the receiver to the sender in other transport protocols.

An in-network method for dealing better with acknowledgment traffic, the preferred

ACK retransmission, is proposed in [SM03] by Sugano et al. As a basis for their
system, they suggest to combine two well-known approaches from the literature, namely
ELFN messages and the DACK option for TCP on the Flexible Radio Network (FRN).
FRN is a commercially available MANET system by Fuji Electric. It is not based on the
IEEE 802.11 standard and uses fixed time slots on the medium. On this foundation, they
put forward an additional improvement, intended to avoid repeated collisions of ACKs
with data packets from the same stream. Their idea is to give acknowledgment packets
a higher priority on the medium, by assigning them a shorter MAC retransmission
interval.

Also tailored for the FRN is a technique proposed by Yuki et al. in [YYS+04]. They use
a mechanism in intermediate nodes for combining oppositely-directed TCP data

and ACK packets into one common frame.

Their main idea is to avoid using a whole FRN time slot for a very short ACK frame
and at the same time to reduce the probability of packet collisions by combining a data
and an ACK packet into a common frame if the transmitting node has packets of both
kinds in its queue. This frame has two destination addresses, one for each of the two

169

Appendix A Detailed Overview of MANET Transport Protocols

parts. One of the two next hop nodes delays forwarding the packet for one time slot, in
order to avoid a collision when both parts are forwarded further.

The authors also discuss the applicability of their mechanism to generic ad-hoc networks.
Although no results for other network systems than FRN are given, they consider the
technique also useful in other environments, given that the composition and decompo-
sition of frames containing multiple packets is feasible.

A.5 Limiting TCP’s Packet Output

Fu et al. showed in [FZL+03] that a small TCP congestion window can have beneficial
effects on the performance in mobile ad-hoc networks (see section A.3). Following that, a
number of approaches have been proposed that exploit more or less directly this effect.

In [CXN03] Chen et al. take up Fu et al.’s observation. On this basis they establish
a dynamic congestion window limit based on the broadcast characteristics of the
wireless medium.

They argue that the congestion window limit (CWL) depends on the bandwidth-delay
product (BDP) of the connection, and they show that the BDP cannot exceed the
round-trip hop-count (RTHC) in a wireless multihop network. For the IEEE 802.11
MAC they give an even tighter bound of RTHC

5 .

They use DSR as a path-aware routing protocol to get information about the path
length at the source node. This allows for setting the CWL dynamically depending on
the path length of the connection.

To demonstrate the performance gain of their scheme ns-2 simulations have been con-
ducted to compare it to TCP Reno with an unbounded congestion window. However, it
should be noted that they also changed the maximum retransmission timeout of TCP
in their simulations, setting it to 2 s as opposed to the 240 s given in RFC 1122 [Bra89].
This might affect the simulation results.

This modification of the maximum retransmission timer is criticized by Papanastasiou
and Ould-Khaoua in [POK04]. They also propose their own scheme, called Slow Con-

gestion Avoidance (SCA). Their approach is to limit TCP’s window growth rate
to a level below the standard of one segment per RTT. This is intended to reduce the
number of packets in the network without putting hard constraints on the maximum
window size like in the dynamic CWL scheme.

170

A.5 Limiting TCP’s Packet Output

The SCA modification of the TCP window increment mechanism increases the window
size by one segment after a given number of round trip times with successful acknowl-
edgment receptions.

SCA seems to be an interesting approach, showing ways to deal with a MANET’s shared
channel properties without the need to use cross-layer information in the transport
protocol. Further investigation could be necessary in order to examine the properties of
SCA, especially under different traffic loads.

An adaption of the TCP behavior to mobile ad-hoc networks by Nahm et al. [NHK05] is
similar to the ideas realized in SCA. They also propose to reduce the rate of the conges-
tion window growth of TCP. They call their scheme fractional window increment

(FeW).

The reasoning for the growth rate limitation in FeW is the observation that TCP gener-
ally operates at a high loss rate in networks with a low bandwidth-delay product. But
because losses in congested wireless networks are usually link layer losses rather than
queue overflows, these losses also influence routing—the routing protocol will often as-
sume a lost link. The FeW approach is to change TCP’s operational range, in order to
achieve a generally lower loss rate.

A mathematical analysis based on the TCP-friendly steady state throughput equation is
used to deduce that such a shift of the operational range can be achieved by incrementing
TCP’s congestion window slower than in standard TCP. In practice this leads to a
scheme with a non-integer increment in the window size per RTT. It is equivalent to
SCA’s window size increment only every n round trip times.

The promising results of SCA and FeW should definitely be taken into account by other
researchers working on modified TCP variants for MANETs. However, it is not yet clear
to which extent short connections with only relatively small amounts of data might suffer
from the slower congestion window growth and the resulting slower convergence.

Yang et al. looked at MANETs that are connected to a wired backbone network. There,
unmodified TCP exhibits severe unfairness. But in [YSY03] they also point out that
simply reducing the congestion window size will severely degrade the performance in
such a setup: the small window size only allows for a small number of packets present
in the network in parallel, and this affects the wired part of the network, too. As a
remedy they propose a non-work-conserving scheduling mechanism for the wireless
interfaces.

171

Appendix A Detailed Overview of MANET Transport Protocols

In their scheme, after transmitting a data packet on the wireless medium a timer is
set. Before this timer expires no other data packet is allowed to be sent by the same
node. The run time of the timer increases with a higher output data rate of the queue
in the recent past. Therefore more aggressive nodes’ queues are slowed down more. The
authors observe greatly improved fairness in their simulations, but at the same time a
significant throughput deterioration.

While the approaches described so far directly modify TCP’s congestion window size,
the non-work-conserving scheduling reduces the rate at which packets are allowed to be
forwarded. This happens at every intermediate node and per interface queue. There
are also proposals which add an additional rate based control mechanism to the output
of the transport layer only in the source nodes.

In general the impact of those approaches is similar to the window size limitation
schemes—the number of packets per time unit and per TCP sender is limited. How-
ever, rate-based mechanisms might be able to achieve additional benefits by reducing
the inherent burstiness of TCP traffic and distributing packet transmissions more evenly.
This might significantly reduce intra-flow contention. On the other hand, because mul-
tiple, stacked rate limitation and congestion control mechanisms are used the question
of possible feedback-loop effects arises.

The Rate-Based Congestion Control (RBCC) mechanism proposed by Zhai et al.
in [ZCF05] adds a leaky bucket mechanism beyond TCP’s window-based rate control.
In RBCC, a feedback field is added to the header, which is used by all intermediate
nodes to provide feedback on the allowed maximum rate of the flow.

Each node on the route observes its local channel busyness ratio, defined as the fraction
of time the medium is locally non-idle. It is used to modify the feedback field in the
packets passing by, in order to inform the source about the sustainable rate. The
intermediate nodes aim to distribute the capacity fair between the flows. For that
reason, state describing the flows passing through the local node is maintained, and an
AIMD mechanism is used to converge to fairness.

Kliazovich et al. measure in Cross-layer congestion control (C3TCP) [KG06] the
bandwidth and delay within an end-to-end link by cumulating intermediate hops’ mea-
surements. Like in RBCC a feedback field is added to the link layer header. The
measurements are gathered hop by hop from the intermediate nodes and stored in the
feedback field. When an ACK is generated at the destination node the feedback in-
cluded in the corresponding data packet is repeated and thus transmitted back to the

172

A.6 Alternative Protocol Designs

sender. There it is used by an additional module—located beyond TCP in the protocol
stack—to modify the receiver advertised window (rwnd) field in the ACK. In this field
the receiver can limit the sender’s window size. Its normal purpose is flow control, in
C3TCP it is used to limit the window size of the sender dynamically based on the mea-
surements. In order to keep the TCP implementation unmodified, all C3TCP logic is
contained within the additional protocol module.

While RBCC and C3TCP rely on the participation of intermediate nodes, ElRakabawy
et al. propose a pure end-to-end approach [EKL05]. They suggest to pace the packets
allowed to be sent out by the congestion window adaptively. Their approach is called
TCP with Adaptive Pacing (TCP-AP). Like RBCC, TCP-AP is a hybrid between
a window-based and a rate-based approach, adding rate-based mechanisms to TCP in
order to avoid large bursts of packets.

As a metric to be evaluated in order to configure the pacing the 4-hop propagation delay
is defined. It describes the time between the transmission of a packet by the TCP source
node and its reception by the node four hops downstream. Since TCP-AP is a pure end-
to-end protocol, the 4-hop propagation delay cannot be measured directly. Instead, it
is estimated using the RTT of the packets. The 4-hop propagation delay is chosen by
the authors because a transmission currently in progress is assumed to interfere within
a range of four hops, a number matching the common modeling assumptions as used,
e. g., in the ns-2 simulator.

In addition to the 4-hop propagation delay, the coefficient of variation of RTT samples is
proposed as a metric. Its purpose is to measure the degree of contention along the path.
In combination with the 4-hop propagation delay it is used to establish a minimum time
between two successive packet transmissions.

A.6 Alternative Protocol Designs

A variety of wireless peculiarities have been shown to be detrimental to TCP’s end-to-
end way of performing congestion control in mobile ad-hoc networks up to now. Con-
sequently some researchers do not just try to trim TCP to perform better by adjusting
the protocol’s behavior. Instead they develop new reliable transmission protocols that
are specifically tailored to cope with the characteristics of MANETs. While the au-
thors of these approaches report to have obtain a broad range of improvements, in these
approaches this necessarily comes at the cost of TCP compatibility. Moreover, most

173

Appendix A Detailed Overview of MANET Transport Protocols

approaches are also limited to “clean” environments where no other transport protocols
are used.

However, since MANETs can often be expected to be rather small, closed environments,
such constraints can be perfectly reasonable. Additionally, it seems that it will be
absolutely necessary to rely on completely different queuing and congestion control
paradigms than those used by TCP in networks with media properties like those of
wireless multihop networks. At least there are results that show very fundamental
problems of TCP-like mechanisms in the presence of wireless interference [RK06].

The first representative of the alternative protocol category is the EXACT protocol
by Chen et al. [CN02, CNV04]. EXACT is rate based and is supported by the network
itself, i. e., by the intermediate nodes. These nodes have dedicated state variables for
all flows passing through them. All nodes determine their current bandwidth to their
neighbors and calculate local fair bandwidth shares for all flows.

Explicit rate information is inserted into all passing packets by the intermediate nodes
to transmit the minimum bandwidth at the bottleneck to the receiver of the flow. Each
node checks whether the rate it can supply for the flow of a packet it processes is lower
than the rate currently specified in the packet header. In this case the lower rate is
written into the header before the packet is forwarded. Thus the bottleneck rate is
reported in the end.

This mechanism is used twice, i. e. on two different header fields. One field contains the
current rate of the sender and another one the rate requested by the sending application.
On the one hand with this procedure it is possible for the intermediate routers not to
give a flow more bandwidth than it needs, and on the other hand the sender is notified
when it is allowed to increase its rate above the current level.

A safety window prevents the sender from overloading the network in case of a route
failure. A sender is not allowed to have more unacknowledged packets underway than
the size of the safety window.

EXACT may be used reliably (TCP-EXACT) or unreliably (UDP-EXACT). There are
no retransmission timers, instead a SACK scheme with strictly monotonous increasing
sequence numbers is used: when a segment not acknowledged by the receiver is too far
apart (in terms of this sequence number) from the highest acknowledged segment, it is
retransmitted.

Some limitations on EXACT’s practical usage and scalability might be imposed by the
fact that it requires explicit state information for each flow in each intermediate node.

174

A.6 Alternative Protocol Designs

Another protocol offers some similar properties to those of EXACT. It is also rate based
and network supported. Sundaresan et al. tailored it to the specific needs in MANETs
and called it Ad-hoc Transport Protocol (ATP) [SAHS03]. It does not use retrans-
mission timeouts, strictly separates congestion control and reliability mechanisms and
requires only limited feedback from the receiver. In contrast to EXACT, ATP does not
require any flow-specific state variables in the intermediate nodes. All nodes calculate
an exponential average of the delay of all packets passing through them. This delay
consists of the time a packet had to wait in the node’s local queue and of the time to
wait for a free medium before it could be transmitted. These values are independent of
the flows the packets belongs to.

Like the rate information in EXACT, the current delay value is piggybacked onto for-
warded data packets if it is worse than the information currently in the packet’s header.
This way, the maximum delay over the packet’s path is communicated to the receiver.
The receiver aggregates this information and sends it back to the sender. Based on this
information the sender can adapt its rate.

To find a good rate at the start of a new connection a probe packet is sent along the
route collecting information from the intermediate nodes about the current state of the
network. For the acknowledgments of data packets a selective ACK scheme is employed
in ATP. It uses large SACK blocks and therefore requires only few feedback packets.

A second approach which is also called ATP, the Application controlled Transport

Protocol by Liu and Singh [LS99], is based on the observation that TCP’s throughput
in MANETs is very low, while UDP achieves reasonable throughput, but suffers from a
high packet loss rate. ATP is meant to be somewhere in between TCP and UDP—UDP
with optional packet delivery status feedback.

The protocol supports packet acknowledgments, feedback is given to the application
whether an acknowledgment for a given packet has arrived or not. An application using
ATP is expected to do retransmissions on its own, if they are necessary.

Leaving the decision upon whether retransmissions are necessary or not to the appli-
cations is an interesting approach to reducing the number of retransmitted packets.
However, no other transport layer components are implemented, especially congestion
control would have to be provided by the application itself. Therefore ATP’s approach
alone can probably not be sufficient to save a MANET from severe congestion prob-
lems.

175

Appendix A Detailed Overview of MANET Transport Protocols

Not a complete redesign, but a variation of the eXplicit Control Protocol (XCP) [KHR02]
for wired networks with high bandwidth-delay product is the Wireless eXplicit Con-

gestion control Protocol (WXCP) by Su and Gross [SG05]. Although it shares some
fundamental concepts with TCP, XCP is not compatible with standard TCP. WXCP
uses explicit feedback from within the network and multiple congestion metrics. These
are evaluated at the intermediate nodes, in order to avoid the necessity of probing for
the highest available bandwidth.

The metrics used in each WXCP-enabled network node are the locally available band-
width, the length of the local interface queue and the average number of required link
layer retransmissions. The latter is specifically meant to help detecting self-interference
within a flow, that is, packets belonging to the same flow contending for medium access
in the same collision domain. The aggregate feedback is a function of the three metrics,
weighting their relative influence.

Congestion and fairness control decisions are made separately in WXCP. The fairness
controller tries to achieve time fairness instead of throughput fairness among flows, since
throughputs of different links may not be the same in wireless networks. Time fairness,
guaranteeing all flows equal medium access time as opposed to equal throughputs, is
thus regarded as a better fairness metric by the authors.

WXCP is a window-based approach with some rate-based elements in it. The sender
may switch from the window-based default to a slow rate-based control mechanism, if
otherwise no further packets were allowed to be transmitted—due to a small congestion
window and missing ACKs or duplicate ACKs. This is called the discovery state. It
allows the sender to continuously examine the current packet loss pattern.

Additionally a pacing mechanism introduces rate-based ideas into WXCP. If the number
of packets allowed to be sent out by the window mechanism exceeds a certain limit, the
packets are paced to be evenly distributed over an RTT interval.

A transport protocol for mobile ad-hoc networks developed from scratch by Anastasi
et al. is TPA [AACP05]. Its congestion control mechanism is inspired by TCP, but
designed to minimize the number of required packet retransmissions.

Packets are transmitted in blocks using a window-based scheme. A fixed number of
packets is grouped into a block and transmitted reliably to the destination before any
packet of the next block is transmitted. Packet retransmissions are not performed before
every packet of a block has been transmitted once—thus a block is transmitted in several
rounds: first every packet is transmitted once, then not yet acknowledged packets of

176

A.6 Alternative Protocol Designs

this block are retransmitted until every packet of the block has been delivered and
acknowledged.

If an ELFN mechanism is available, TPA can make use of it and enters a freeze state
upon route failures, decreasing the window size to one. If ELFN is not available, TPA
detects route failures by a number of consecutive timeouts. Like TCP it uses an estimate
of the RTT to set the retransmission timeout. In case of route changes, new RTT values
are given a greater weight in the sliding average in order to speed up the convergence
against a correct new RTT measure.

For congestion control TPA uses a window mechanism with a tightly limited maximum
window size. Actually, only two different cwnd values are used: a “large” window of 2
or 3 segments during normal operation and the minimum value of 1 when congestion is
detected.

TPA shows that even a quite simple end-to-end protocol without additional intelligence
in the intermediate nodes has the potential to increase throughput in comparison to
TCP. However, it is not yet clear if these benefits can be maintained in more com-
plex, dynamic scenarios. Additionally, for time critical applications the higher latency
introduced by the protocol might be a problem.

177

Appendix A Detailed Overview of MANET Transport Protocols

178

Appendix B

Error Bounds and Consistency of MLE

Time Synchronization

In Chapter 6 we have proposed a solution to the problem of generating a time-consistent
global log file out of a set of local log files from a number of network nodes. The local
clocks of these nodes are inaccurate and thus introduce errors in the local timestamps.
In our approach we consider a network with a local broadcast medium, i. e., one where
all or parts of the nodes observe certain events at the same time instant. These common
events are used as a kind of anchor points for a maximum likelihood estimation of the
clock error and of additional delays occurring in each node upon logging the events. The
latter are called the timestamping delays. This maximum likelihood estimator leads to
a big linear program (LP).

Our proposed approach is able to estimate and compensate linear-affine clock deviations.
Here we consider a simplified variant that ignores deviations of the clocks’ rates, such
that the only deviations of the clocks are constant offsets. We prove two desirable
properties for this version of the estimator. First, we show that tight error bounds
on the estimation error hold under the assumption of a bounded timestamping delay.
In particular this means that the algorithm does not amplify errors. Furthermore, we
show that our estimator is consistent. This means that for increasing data set sizes the
estimate converges (in probability) to the true values of the estimated features. It thus
supports the intuition that the estimate improves for a larger amount of observed and
logged events in the nodes.

179

Appendix B Error Bounds and Consistency of MLE Time Synchronization

B.1 The Simplified Estimator

For the most part we adopt the notation from Chapter 6 here. The set of nodes is
denoted by J and the set of events by I. R is the relation of node-event pairs for which
a timestamp has been recorded, i. e., (i, j) ∈ R ⊆ I×J if and only if i has been observed
and timestamped by j.

The employed clock model assumes that for each node j there is an offset oj and a
rate rj such that j’s clock maps the real time t to the local time Cj(t) = rjt + oj . In
addition to the clock deviations there are timestamping errors which are assumed to
be independent and exponentially distributed with parameter λ. This means that for
the full-featured maximum likelihood estimator the time recorded for event i at “real”
time Ti by node j is rj(Ti + di,j) + oj where di,j is a random variable modelling the
timestamping delay.

Here we consider a simplified version of the above. We assume that the clocks run
(approximately) at the correct rate, i. e., we set ∀j ∈ J : rj = 1. Under this assumption
the recorded time for a node-event pair (i, j) ∈ R becomes Ti + di,j + oj . Thus the
simplified maximum likelihood estimator, in analogy to the full-featured version, is the
solution to the following problem:

minimize L =
∏

(i,j)∈R

λe−λ(ti,j−boj−bTi)

subject to ∀(i, j) ∈ R : d̂i,j = ti,j − ôj − T̂i ≥ 0.

Here, ti,j denotes the local time when node j has recoded event i. ôj and T̂i are the
estimates of oj and Ti, respectively.

As shown in Chapter 6, the optimal solution is independent of λ and equivalent to
solving

minimize k(L) =
∑

(i,j)∈R

(
ti,j − ôj − T̂i

)
=

∑
(i,j)∈R

d̂i,j

under the same constraints as above.

Let an optimal solution of this LP, consisting of the estimates T̂i, ôj and d̂i,j , be denoted
by S.

180

B.2 Error Bounds

To simplify the following, we use notations for the set of all nodes observing a certain
event and for all the events observed by a given node:

∀i ∈ I :Ri := {j ∈ J |(i, j) ∈ R}

∀j ∈ J :Rj := {i ∈ I|(i, j) ∈ R}

B.2 Error Bounds

Our intention in this section is to establish an upper bound on the error of the maximum
likelihood estimator, i. e., the maximum difference between estimated and real event
times. In order to do so we make two additional assumptions. The first one guarantees
network connectivity, the second one establishes an upper bound on the timestamping
delay.

Before we introduce the assumptions it is necessary to recall one important fact from
Chapter 6, which we call the offset ambiguity : for any offset τ ∈ R, the estimates T̂i, ôj

and the estimates T̂ ′i , ô′j with

∀i ∈ I : T̂ ′i = T̂i + τ ∀j ∈ J : ô′j = ôj − τ

fit the same set of measurements equally well.

From the offset ambiguity it is easy to see that there is also no way to estimate all the
relative times within an experiment if the network is partitioned. If there are no anchor
points between two sets of nodes, there will be an ambiguity of the offset between these
partitions within the experiment. Thus, in order to get a bounded maximum estimation
error we need to assume network connectivity. The connectivity assumption says that
the network nodes do not fall into disjoint partitions, between which no anchor points
at all exist. Formally this is

∀P1, P2 ⊆ J, P1, P2 6= ∅ :

(P1 ∪ P2 = J ∧ P1 ∩ P2 = ∅ =⇒ ∃j1 ∈ P1, j2 ∈ P2 : Rj1 ∩Rj2 6= ∅).

Under this assumption we will prove that

∀j1, j2 ∈ J : |(oj1 − oj2)− (ôj1 − ôj2)| ≤ (|J | − 1) ·D

181

Appendix B Error Bounds and Consistency of MLE Time Synchronization

and
∀i1, i2 ∈ I :

∣∣∣(Ti1 − Ti2)−
(
T̂i1 − T̂i2

)∣∣∣ ≤ |J | ·D

if D ∈ R+ is an upper bound for the delays, i. e.,

∀(i, j) ∈ R : di,j ≤ D.

Note that the bounds are on the difference between two estimation errors because of
the offset ambiguity.

The following proof does not exploit the exponential distribution of the delays. Thus,
independent of the derivation of the estimator, the proof shows that if there is an upper
bound for the timestamping delays the estimates are close to the real values, regardless
of the real distribution of the delays within [0, D]. Note that assuming the existence of
such an upper bound does not limit the practical applicability of the results given here:
for any given experiment, the set of observations R is finite, and thus there will always
be a maximum delay.

For the proof we introduce some additional terminology.

Definition Let j, j′ ∈ J, i ∈ I. We call i a common event of j and j′ iff {(i, j1), (i, j2)} ⊆
R, and we call i a connecting event from j to j′ iff i is a common event of j and j′ and
the timestamping delay of i in j is estimated as zero, i. e., d̂i,j = 0.

As will soon become clear, a significant part of the timestamping delay estimates are
zero. We now construct a directed graph G := (J,E) with

E :=
{
(j, j′) ∈ J2 | ∃i ∈ I : i is a connecting event from j to j′

}
.

The graph G plays a central role in our proof. In the following two lemmas we point
out some properties of G.

Lemma B.1. Let jA, jB ∈ J . Then there exists a directed path (jA, . . . , jB) in G.

Proof The set of nodes J can be divided into two disjoint subsets:

J1 := {j ∈ J | there exists no directed path (j, . . . , jB) in G}

J2 := J \ J1.

182

B.2 Error Bounds

In the following, we will show that J1 is empty. Let Ī be the events occurring in both
J1 and J2:

Ī := {i ∈ I | ∃j1 ∈ J1, j2 ∈ J2 : {(i, j1), (i, j2)} ⊆ R} .

Let j1 ∈ J1, j2 ∈ J2. Then there is no connecting event from j1 to j2. Otherwise a path
from j1 to jB could be constructed by concatenation of (j1, j2) and (j2, . . . , jB), which
is a contradiction to j1 ∈ J1. Thus, we have

∃ε > 0 : ∀(i, j) ∈ R ∩ (Ī × J1) : d̂i,j ≥ ε.

Let now

I1 := {i ∈ I | @j ∈ J2 : (i, j) ∈ R}

I2 := {i ∈ I | @j ∈ J1 : (i, j) ∈ R} .

With these definitions I = I1 ∪ I2 ∪ Ī holds, and I1, I2, Ī are pairwise disjoint. Now a
new solution S ′ of the LP can be constructed:

T̂ ′i := T̂i −

ε if i ∈ I1

0 otherwise

ô′j := ôj +

ε if j ∈ J1

0 otherwise

d̂′i,j := d̂i,j −

ε if i ∈ Ī ∧ j ∈ J1

0 otherwise.

It can easily be verified that all the LP constraints hold for S ′ since they hold for S.
For S ′ we have ∑

(i,j)∈R

d̂′i,j =
∑

(i,j)∈R

d̂i,j −
∣∣R ∩ (Ī × J1)

∣∣ · ε.
Since S is optimal and ε > 0 we have

∣∣R ∩ (Ī × J1)
∣∣ = 0. Therefore, Ī = ∅ or J1 = ∅,

due to the definitions of J1 and Ī above.

Ī is not empty if J1 is not empty due to the connectivity assumption. Therefore, J1 = ∅
and jA ∈ J2. Thus, there exists a directed path (jA, . . . , jB) in G.

183

Appendix B Error Bounds and Consistency of MLE Time Synchronization

Lemma B.2. Let (j0, . . . , jn) ∈ Jn+1 be a directed path in G. Then

(oj0 − ojn)− (ôj0 − ôjn) ≤ nD.

Proof We prove this by induction.

Let n = 1. Let i be a connecting event from j0 to j1. Such an event exists due to the
construction of G. From the LP we have

Ti + oj0 + di,j0 = T̂i + ôj0 + d̂i,j0 (B.1)

Ti + oj1 + di,j1 = T̂i + ôj1 + d̂i,j1 . (B.2)

The difference between (B.1) and (B.2) yields

(oj0 − oj1) + (di,j0 − di,j1) = (ôj0 − ôj1) + (d̂i,j0 − d̂i,j1)

⇐⇒ (oj0 − oj1)− (ôj0 − ôj1) = (d̂i,j0︸︷︷︸
=0

− d̂i,j1︸︷︷︸
≥0

)

︸ ︷︷ ︸
≤0

− (di,j0︸︷︷︸
∈[0,D]

− di,j1︸︷︷︸
∈[0,D]

)

︸ ︷︷ ︸
∈[−D,D]

⇐⇒ (oj0 − oj1)− (ôj0 − ôj1) ≤ D.

For the induction step we have:

(oj0 − ojn−1)− (ôj0 − ôjn−1) ≤ (n− 1)D (B.3)

(ojn−1 − ojn)− (ôjn−1 − ôjn) ≤ D. (B.4)

(B.4) can be constructed like above. Addition of (B.3) and (B.4) gives us

(oj0 − ojn−1)− (ôj0 − ôjn−1) + (ojn−1 − ojn)− (ôjn−1 − ôjn) ≤ (n− 1)D + D

⇐⇒ (oj0 − ojn)− (ôj0 − ôjn) ≤ nD.

Now that we know that G is connected and that an upper error bound holds for any
path in G, we only need to put together these pieces in order to get a bounded error
of the offsets for any pair of nodes. While Lemma B.2 establishes only an upper bound
for the differences of two offset estimation errors, the fact that G is connected and thus

184

B.2 Error Bounds

paths in both directions exist can be exploited to bound this difference from below,
too.

Theorem B.3. Let j1, j2 ∈ J . Then the following bound holds

|(oj1 − oj2)− (ôj1 − ôj2)| ≤ (|J | − 1) D.

Proof According to Lemma B.1 there exists a path from j1 to j2 in G. Likewise, there
exists a path from j2 to j1 in G. Since the number of nodes in G is |J |, the maximum
length of each of these paths is |J | − 1. Thus, we have from Lemma B.2:

(oj1 − oj2)− (ôj1 − ôj2) ≤ (|J | − 1) D

(oj2 − oj1)− (ôj2 − ôj1) = − ((oj1 − oj2)− (ôj1 − ôj2)) ≤ (|J | − 1) D.

This immediately gives us the desired result.

We now have an error bound for the offset estimates. From here, it is only a small
step to a similar bound for the error in the estimation of the event times. However, in
order to give a good bound we need an additional property of the estimator that will
be established in the following lemma.

Lemma B.4. Let ī ∈ I. Then there exists j̄ ∈ J : d̂ī,j̄ = 0.

Proof We prove this by contradiction. Assume that there is no such j̄. Then

∃ε > 0 : ∀(i, j) ∈ R : i = ī ⇒ di,j ≥ ε.

Now we construct an new solution S ′ to the LP:

T̂ ′i := T̂i +

ε if i = ī

0 otherwise

ô′j := ôj

d̂′i,j := d̂i,j −

ε if i = ī

0 otherwise.

This solution is valid and better than S. Since S is optimal this is a contradiction.

185

Appendix B Error Bounds and Consistency of MLE Time Synchronization

We can exploit the fact that for any event i a node j exists where di,j is estimated as
zero in the following theorem. The result is the desired error bound for the event time
estimates.

Theorem B.5. Let i1, i2 ∈ I. Then the following bound holds∣∣∣(Ti1 − Ti2)− (T̂i1 − T̂i2)
∣∣∣ ≤ |J | ·D.

Proof From Lemma B.4 we have

∀k ∈ {1, 2} : ∃jk ∈ J : (ik, jk) ∈ R ∧ d̂ik,jk
= 0.

With these j1, j2 we have

Ti1 + oj1 + di1,j1 = T̂i1 + ôj1 (B.5)

Ti2 + oj2 + di2,j2 = T̂i2 + ôj2 . (B.6)

Calculating the difference between (B.5) and (B.6) and some reordering yields

(Ti1 − Ti2)− (T̂i1 − T̂i2) = (ôj1 − ôj2)− (oj1 − oj2)︸ ︷︷ ︸
∈[−(|J |−1)D, (|J |−1)D]

− (di1,j1 − di2,j2)︸ ︷︷ ︸
∈[−D,D]

.

The bounds for (ôj1 − ôj2)− (oj1 − oj2) come from theorem B.3.

This result gives us∣∣∣(Ti1 − Ti2)− (T̂i1 − T̂i2)
∣∣∣ ≤ (|J | − 1)D + D = |J | ·D,

which is the desired bound.

Now we have bounds on the relative offsets and event time estimates. It remains open
whether these bounds are good. To address this question we introduce some additional
terms. We then use these to point out an important property of any local broadcast
network where distributed log files are recorded. This property in turn will then be
used to prove that not only the error bounds are tight, but also that no estimator with
better error bounds is possible.

Definition A receive trace set Q = (I,R, (ti,j)(i,j)∈R) for a set of nodes J consists of a
set of events I, a relation R ⊆ I×J and the local timestamps ti,j recorded by the nodes
in J for the events they have observed.

186

B.2 Error Bounds

For a given set of nodes J , a scenario S = (I,R, (oj)j∈J , (Ti)i∈I , (di,j)(i,j)∈R) consists of
a set of events I, a relation R ⊆ I × J , and corresponding offsets oj for all nodes, event
times Ti for all events and delays di,j for each event reception.

From the above definition it is clear that there is exactly one receive trace set for any
given scenario. There can, however, well be many possible scenarios for a given receive
trace set. The offset ambiguity mentioned at the beginning of this section is a special
case of this situation. Note that this is an inherent property of the time synchronization
problem as it is considered here, and not specific to our approach.

Definition Two scenarios S = (I,R, (oj)j∈J , (Ti)i∈I , (di,j)(i,j)∈R) and S′ =
(I,R, (o′j)j∈J , (T ′i)i∈I , (d′i,j)(i,j)∈R) are called indistinguishable if they share a common
set of events I and the same relation R and they result in the same receive trace set,
i. e.,

∀(i, j) ∈ R : oj + Ti + di,j = ti,j = o′j + T ′i + d′i,j .

Theorem B.6. For any set of nodes J , |J | ≥ 1 there exist two indistinguishable scenar-
ios S = (I,R, (oj)j∈J , (Ti)i∈I , (di,j)(i,j)∈R) and S′ = (I,R, (o′j)j∈J , (T ′i)i∈I , (d′i,j)(i,j)∈R)
and j2, j2 ∈ J such that R fulfills the connectivity assumption and

(o′j1 − o′j2)− (oj1 − oj2) = 2(|J | − 1)D.

Proof Our proof for this theorem is constructive. Let, for the sake of simplicity and
without loss of generality, J = {1, . . . , n}. Assume these nodes form a chain-like topol-
ogy. A total of n − 1 events are recorded by the nodes, I = {1, . . . , n − 1}. Now we
define R as follows

(i, j) ∈ R ⇐⇒ i ∈ {j − 1, j}.

It is easy to see that the connectivity assumption holds for R.

Now let S and S′ be defined by

∀i ∈ I : Ti := (n− i) ·D T ′i := i ·D

∀j ∈ J : oj := j ·D o′j := (n− j + 1) ·D

∀(i, j) ∈ R : di,j :=

0 if i = j − 1

D if i = j
d′i,j :=

D if i = j − 1

0 if i = j.

187

Appendix B Error Bounds and Consistency of MLE Time Synchronization

With these definitions it is easy to verify that S and S′ are indistinguishable:

∀(i, j) ∈ R : Ti + oj + di,j = T ′i + o′j + d′i,j .

And it also holds that

(o′1 − o′n)− (o1 − on) = 2(n− 1)D.

Let us now assume that we have two scenarios S and S′ like in the above theorem.
Assume now we have estimates ô1 and ôn of o1 and on that are better than the worst-
case result of our maximum likelihood estimator for scenario S. This means that the
relative offset estimation error is less than (|J |−1)D, which is the bound of our approach
according to Theorem B.3. Then in particular

(o1 − on)− (ô1 − ôn) > −(|J | − 1)D.

But we know that
(o′1 − o′n)− (o1 − on) = 2(n− 1)D.

By simple addition we get

(o′1 − o′n)− (ô1 − ôn) > (|J | − 1)D.

This is worse than the maximum error of our MLE estimator. Since S and S′ are
indistinguishable, this proves that there cannot be an estimator with lower maximum
offset estimation errors: if the estimate is better in case of a receive trace set that
resulted from S, it is necessarily worse in case the same receive trace set came from S′

and vice versa. Similar results hold for the event time error bounds.

B.3 Consistency

In the last section error bounds for our time synchronization approach have been estab-
lished. They do not exploit the exponential distribution of the timestamping delay, but
rely on an upper bound for the timestamping delay. In this section we will not assume
such an upper bound, but we will exploit the exponential distribution of the delays.

188

B.3 Consistency

Under these premises consistency of the clock offset estimator will be established, which
means convergence in probability to the correct offset values for an increasing number
of observed events:

∀j ∈ J : plim
|I|→∞

ôj = oj + x,

where x ∈ R again comes from the offset ambiguity discussed in the previous section.

We will show the consistency of the simplified MLE under an additional regularity
condition, defined as follows.

Definition We say that the regularity condition is fulfilled if there exists an undirected,
connected graph G = (J, V) and some positive constant β such that

∀{j1, j2} ∈ V : E
[∣∣{i ∈ I|{j1, j2} ⊆ Ri}

∣∣] ≥ β · |I|.

It is valid to assume that G is a tree.

This condition can be seen as a somewhat stronger variant of the connectivity assump-
tion used in the previous section. It is stronger in the sense that it requires an ever-
growing number of independent connections between all parts of the network with an
increasing total number of observed events, although only probabilistically with respect
to the expectancy of their number.

B.3.1 Stochastic Preliminaries

Before we can tackle the main proof some preliminary results from elementary proba-
bility theory are necessary. They will be established in the following lemmas.

Lemma B.7. Let X1, X2 be independent, exponentially distributed random variables
with parameters λ1, λ2. Then min {X1, X2} is exponentially distributed with parameter
λ1 + λ2.

189

Appendix B Error Bounds and Consistency of MLE Time Synchronization

Proof

P (min{X1, X2} ≤ x) = P (X1 ≤ x or X2 ≤ x)

= 1− P (X1 > x and X2 > x)

= 1− P (X1 > x) · P (X2 > x)

= 1−
(∫ ∞

x
λ1e

−λ1tdt

)(∫ ∞

x
λ2e

−λ2tdt

)
= 1−

(
e−λ1x

)(
e−λ2x

)
= 1− e−(λ1+λ2)x.

Thus, the minimum of X1 and X2 is exponentially distributed with parameter λ1 +
λ2.

Lemma B.8. Let X be a random variable with real values and expected value E[X] ∈ R.
Let t ∈ R such that E[X|X < t] and E[X|X ≥ t] exist. Then

E[X] = P (X < t) · E[X|X < t] + P (X ≥ t) · E[X|X ≥ t].

Proof Assume X is continuous with probability density f .

E[X] =
∫ ∞

−∞
x · f(x) dx

=
∫ t

−∞
x · f(x) dx +

∫ ∞

t
x · f(x) dx

=
∫ t

−∞
x · f(x|X < t) · P (X < t) dx

+
∫ ∞

t
x · f(x|X ≥ t) · P (X ≥ t) dx

= P (X < t) · E[X|X < t] + P (X ≥ t) · E[X|X ≥ t].

For more general X the proof is analogous.

Lemma B.9. Let d be an exponentially distributed random variable with parameter λ.
Let t ∈ R+. Then

E[d|d < t] =
1
λ
− te−λt

1− e−λt
.

190

B.3 Consistency

Proof From Lemma B.8 and with the memorylessness of the exponential distribution
it follows that

E[d|d < t] =
E[d]− P (d ≥ t) · E[d|d ≥ t]

P (d < t)

=
1
λ − e−λt

(
1
λ + t

)
1− e−λt

=
(1− e−λt) 1

λ − te−λt

1− e−λt

=
1
λ
− te−λt

1− e−λt
.

Lemma B.10. Let d1, . . . , dn be independent, exponentially distributed random variables
with parameters λ1, . . . , λn. Let ∆1, . . . ,∆n ∈ R be given such that ∀i, 1 ≤ i < n :
∆i+1 ≥ ∆i.

With

∀i, 1 ≤ i ≤ n : Li :=
i∑

j=1

λj

the following equality holds:

E

[
min

1≤i≤n
(di + ∆i)

]
=

n−1∑
j=1

(
j−1∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−Lj(∆j+1−∆j)

) 1
Lj

+

(
n−1∏
k=1

e−Lk(∆k+1−∆k)

)
1

Ln
+ ∆1.

Proof First observe that if there exists i, 1 ≤ i < n such that ∆i+1 = ∆i, then,
with Lemma B.7, this is equivalent to the case where di and di+1 are replaced by a
single exponentially distributed random variable with parameter λi + λi+1, and the
same ∆i appearing only once. We may thus without loss of generality assume that
∀i, 1 ≤ i < n : ∆i+1 > ∆i.

To simplify the notation of the following, we define

χ [(∆1, λ1), . . . , (∆n, λn)] := E

[
min

1≤j≤n
(dj + ∆j)

]
.

191

Appendix B Error Bounds and Consistency of MLE Time Synchronization

This can be generalized for the conditional expected value, i. e., for a condition A, let

χ[(∆1, λ1), . . . , (∆n, λn)|A] := E

[
min

1≤j≤n
(dj + ∆j)

∣∣∣∣A] .

We will now show the assertion by induction over n. The base case n = 1 holds:

χ[(∆1, λ1)] = ∆1 +
1
λ1

.

For the induction step, we will use the following implication of Lemma B.7:

χ[(∆2, λ1),(∆2, λ2), (∆3, λ3), . . . , (∆n, λn)]

= E [min{d1 + ∆2, d2 + ∆2, d3 + ∆3, . . . , dn + ∆n}]

= E [min{min{d1 + ∆2, d2 + ∆2}, d3 + ∆3, . . . , dn + ∆n}]

= χ[(∆2, λ1 + λ2), (∆3, λ3), . . . , (∆n, λn)].

With ∆1 ≤ ∆2, Lemma B.8 at (a), the memorylessness of the exponential distribution
at (b), Lemma B.9 at (c) and the induction hypothesis (with an index shift) at (d), the
following holds:

χ[(∆1, λ1), . . . , (∆n+1, λn+1)]

= E [min{d1 + ∆1, . . . , dn+1 + ∆n+1}]
(a)
= P (d1 + ∆1 < ∆2) · E [min{d1 + ∆1, . . . , dn+1 + ∆n+1} | d1 + ∆1 < ∆2]

+ P (d1 + ∆1 ≥ ∆2) · E [min{d1 + ∆1, . . . , dn+1 + ∆n+1} | d1 + ∆1 ≥ ∆2]
(b)
= P (d1 + ∆1 < ∆2) · E [d1 + ∆1 | d1 + ∆1 < ∆2]

+ P (d1 + ∆1 ≥ ∆2) · E [min{d1 + ∆2, d2 + ∆2, . . . , dn+1 + ∆n+1}]

=
(
1− e−λ1(∆2−∆1)

)
(E[d1 | d1 < ∆2 −∆1] + ∆1)

+ e−λ1(∆2−∆1) · χ[(∆2, λ1), (∆2, λ2), . . . , (∆n+1, λn+1)]

(c)
=

(
1− e−λ1(∆2−∆1)

)(1
λ1
− e−λ1(∆2−∆1)(∆2 −∆1)

1− e−λ1(∆2−∆1)
+ ∆1

)
+ e−λ1(∆2−∆1) · χ[(∆2, λ1 + λ2), (∆3, λ3), . . . , (∆n+1, λn+1)]

192

B.3 Consistency

(d)
=

(
1− e−λ1(∆2−∆1)

)(1
λ1

+ ∆1

)
− e−λ1(∆2−∆1)(∆2 −∆1)

+ e−λ1(∆2−∆1)

(
n∑

j=2

(
j−1∏
k=2

e−Lk(∆k+1−∆k)

)(
1− e−Lj(∆j+1−∆j)

) 1
Lj

+

(
n∏

k=2

e−Lk(∆k+1−∆k)

)
1

Ln+1
+ ∆2

)

=
(
1− e−L1(∆2−∆1)

)(1
L1

+ ∆1

)
− e−L1(∆2−∆1)(∆2 −∆1)

+ e−L1(∆2−∆1)

(
n∑

j=2

(
j−1∏
k=2

e−Lk(∆k+1−∆k)

)(
1− e−Lj(∆j+1−∆j)

) 1
Lj

+

(
n∏

k=2

e−Lk(∆k+1−∆k)

)
1

Ln+1
+ ∆2

)

= ∆1 +
(
1− e−L1(∆2−∆1)

) 1
L1

+
n∑

j=2

(
j−1∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−Lj(∆j+1−∆j)

) 1
Lj

+

(
n∏

k=1

e−Lk(∆k+1−∆k)

)
1

Ln+1

= ∆1 +
n∑

j=1

(
j−1∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−Lj(∆j+1−∆j)

) 1
Lj

+

(
n∏

k=1

e−Lk(∆k+1−∆k)

)
1

Ln+1
.

B.3.2 Consistency Proof

We will now give the main consistency proof of the simplified maximum likelihood time
synchronization estimator. In order to do so, we first formalize the notion of the clock
offset estimation error. This definition is actually very trivial; we denote the estimation
error by a vector ∆ = (∆1, . . . ,∆|J |)T ∈ R|J | in the following way.

Definition Let ∀j ∈ J : ∆j := oj − ôj .

In the following, we regard a certain scenario (according to the definition in Section B.2)
as given, thus the Ti, oj and di,j are fixed. We then consider the estimation error vector

193

Appendix B Error Bounds and Consistency of MLE Time Synchronization

∆ as variable and have a look at the properties of the likelihood function upon a varying
estimation error. Our goal is to show that the probability that the likelihood function
(regarded as a function of ∆) has its optimum in an arbitrarily small environment around
the correct clock offset estimates is arbitrarily high for a sufficing number of observed
events.

On our way towards this goal we now introduce a per-event decomposition of the ob-
jective function k(L). Certain properties of these event-wise objective function terms
form the basis of our proof.

Definition For each event i ∈ I let fi be the term added to the objective function k(L)
by i for some estimation error vector ∆:

fi(∆) :=
∑
j∈Ri

d̂i,j .

The constraints of the LP in our approach are of the form

∀(i, j) ∈ R : d̂i,j + ôj + T̂i = ti,j = di,j + oj + Ti.

Thus, the estimated timestamping delays can be expressed as

d̂i,j = di,j + oj − ôj + Ti − T̂i

= di,j + ∆j + (Ti − T̂i).

Considering that the di,j and the Ti are given by the scenario it is easy to see that the
∆j determine the value of the event time estimates T̂i chosen by the estimator: all the
estimated delays d̂i,j need to be non-negative and at the same time the sum of all these
delay estimates is minimized. Thus, the optimal choice is

T̂i = Ti + min
k∈Ri

(di,k + ∆k).

This also follows from the nonnegativity constraints for the d̂i,j and Lemma B.4.

We can now express the objective function terms fi in the following way:

fi(∆) =
∑
j∈Ri

(
di,j + ∆j − min

k∈Ri

(di,k + ∆k)
)

.

194

B.3 Consistency

This is the formulation that we are going to use throughout the proof. Now we will
point out some properties of the objective function terms.

Lemma B.11. The objective function terms fi(∆) are convex.

Proof It is well-known that the minimum of concave functions is concave (see,
e. g., [HUL91]). Hence, mink∈Ri

(di,k+∆k) is concave and −mink∈Ri
(di,k+∆k) is convex.

As the sum of convex functions is convex the assertion follows.

The next property that we are going to prove is a little more tricky. For simplicity, we
will assume that J = {1, . . . , |J |} from now on.

Lemma B.12. There exists a strictly monotonically increasing function α : R+
0 → R+

0

such that for each event i ∈ I and each ∆ ∈ R|J | the following holds:

E[fi(∆)] ≥ E[fi(0)] + α(max
(j1,j2)∈Ri×Ri

@k∈Ri:∆j1
<∆k<∆j2

(∆j2 −∆j1)).

Proof Let n := |Ri|. By the linearity of the expected value, E[fi(∆)] can be rewritten
in the following way:

E[fi(∆)] =E

∑
j∈Ri

(
di,j + ∆j − min

k∈Ri

(di,k + ∆k)
)

=E

∑
j∈Ri

di,j

+ E

∑
j∈Ri

∆j

− n · E
[
min
j∈Ri

(di,j + ∆j)
]

=
n

λ
+
∑
j∈Ri

∆j − n · E
[
min
j∈Ri

(di,j + ∆j)
]

.

Assume without loss of generality that Ri = {1, . . . , n} and that the nodes are ordered
such that ∀j, 1 ≤ j < n : ∆j+1 ≥ ∆j . The exponential distributions if the di,j all share
the same parameter λ, thus with Lemma B.10 we have

E[fi(∆)] =
n

λ
+

n∑
j=1

∆j − n∆1

− n ·
n−1∑
j=1

(
j−1∏
k=1

e−kλ(∆k+1−∆k)

)(
1− e−jλ(∆j+1−∆j)

) 1
jλ

− n ·

(
n−1∏
k=1

e−kλ(∆k+1−∆k)

)
1

nλ
.

195

Appendix B Error Bounds and Consistency of MLE Time Synchronization

We now define ∀j, 1 ≤ j < n : δj := ∆j+1 − ∆j and δ := (δ1, . . . , δn−1)T . Then
∀j, 1 ≤ j < n : δj ≥ 0. (Note that δ has dimension zero for n = 1.) With the given
definition of δ the following reformulation of E[fi(∆)] is possible:

E[fi(∆)] =
n

λ
+

n−1∑
j=1

(n− j)δj

−
n−1∑
j=1

(
j−1∏
k=1

e−kλδk

)(
1− e−jλδj

) n

jλ
−

(
n−1∏
k=1

e−kλδk

)
1
λ

.

We generalize this to a function K of arbitrary vectors θ with non-negative elements
and dimension m := dim θ, i. e.

K(m, θ) :=
m + 1

λ
+

m∑
j=1

(m− j + 1)θj

−
m∑

j=1

(
j−1∏
k=1

e−kλθk

)(
1− e−jλθj

) m + 1
jλ

−

(
m∏

k=1

e−kλθk

)
1
λ

.

Note that
E[fi(∆)] = K(n− 1, δ).

Now we construct α. Let ed
k be the k-th unit vector of dimension d and set

α(t) := min
1≤d<|J |
1≤k≤d

(
K(d, t · ed

k)−K(d, 0)
)

.

For n = 1 the assertion is true since for n = 1

max
(j1,j2)∈Ri×Ri

@k∈Ri:∆j1
<∆k<∆j2

(∆j2 −∆j1) = 0

and α(0) = 0.

We thus focus on the case n > 1 now. Note that in this case

max
(j1,j2)∈Ri×Ri

@k∈Ri:∆j1
<∆k<∆j2

(∆j2 −∆j1) = ||δ||∞.

196

B.3 Consistency

For each m, K is differentiable in δ. We will now show that for all m ≥ 1 and all p with
1 ≤ p ≤ m

∂K(m, θ)
∂θp

> 0

for θp > 0. Calculating the partial derivative explicitly yields

∂K(θ)
∂θp

= (m− p + 1) + p

m∑
j=p+1

(
j−1∏
k=1

e−kλθk

)(
1− e−jλθj

) m + 1
j

−

(
p∏

k=1

e−kλθk

)
(m + 1) + p

(
m∏

k=1

e−kλθk

)
= m− p + 1

+ p

(
p∏

k=1

e−kλθk

)(
m∑

j=p+1

 j−1∏
k=p+1

e−kλθk

(1− e−jλθj

) m + 1
j

− m + 1
p

+

 m∏
k=p+1

e−kλθk

).

Since m+1
j > 1 for 1 ≤ j ≤ m and

m∑
j=p+1

 j−1∏
k=p+1

e−kλθk

(1− e−jλθj

)
+

 m∏
k=p+1

e−kλθk

 = 1

the following holds:

∂K(θ)
∂θp

≥ m− p + 1 + p

(
p∏

k=1

e−kλθk

)
︸ ︷︷ ︸

≤1

(
1− m + 1

p

)
︸ ︷︷ ︸

<0

≥ m− p + 1 + p

(
1− m + 1

p

)
= 0.

Here, the first inequality is strict if there is a j > p such that θj > 0, and the second
inequality is strict if there is a j ≤ p such that θj > 0.

197

Appendix B Error Bounds and Consistency of MLE Time Synchronization

Now the inequality from the assertion is easily verified. Let r (1 ≤ r < n) be an index
for which δr = ||δ||∞. Such an r exists by the definition of || · ||∞. Then

E[fi(∆)]− E[fi(0)]

= K(|Ri|, δ)−K(|Ri|, 0)

≥ K(|Ri|, ||δ||∞ · e|Ri|
r)−K(|Ri|, 0)

≥ min
1≤k≤|Ri|

(
K(|Ri|, ||δ||∞ · e|Ri|

k)−K(|Ri|, 0)
)

≥ α(||δ||∞).

The first inequality stems from the fact that all entries of the Jacobian of K are non-
negative and δ is component-wise greater than ||δ||∞ · e|Ri|

r .

It remains to show that α(||δ||∞) > 0 is strictly monotonically increasing. This, however,
is easy to see. From the above calculations we know that the entries of the Jacobian of
K(m, θ) are strictly positive if there is some k such that θk > 0. α(t) is the minimum of

K(d, t · ed
k)−K(d, 0)

for a finite number of combinations of d and k. For each of these combinations and for
any t1 > t2 ≥ 0, though, (K(d, t1 ·ed

k)−K(d, 0)) > (K(d, t2 ·ed
k)−K(d, 0)), since the k-th

component of t1 · ed
k is strictly greater than the respective component of t2 · ed

k, whereas
all other components are equal. Thus, α(t1) > α(t2) and the assertion holds.

Lemma B.13. There is some L ∈ R such that

1
|I|

· k(L) =
1
|I|

∑
(i,j)∈R

d̂i,j

is Lipschitz continuous in ∆ with Lipschitz constant L. L does not depend on |I|.

Proof From the closed form of fi given above it can be seen that fi is continuous in
∆ for each event i ∈ I. It is also easy to see that the partial derivatives of fi(∆) exist
almost everywhere and are, where they exist, bounded above by 1 and below by −|Ri|,
and thus also by −|J | . Thus, all fi are Lipschitz continuous with a common Lipschitz
constant L.

198

B.3 Consistency

Since
k(L) =

∑
i∈I

fi(∆)

we can conclude that k(L) is Lipschitz continuous with Lipschitz constant |I| ·L. There-
fore, L is also a Lipschitz constant for 1

|I| · k(L).

From the definition of fi above it can be seen that fi(∆) = fi(∆ + (t, . . . , t)T) for any
t ∈ R. This is again the offset ambiguity. Thus, from now on we can assume without
loss of generality that the estimation error for the |J |-th node is zero. Therefore, we
will ignore this node in the following and reduce ∆ to a vector of dimension |J | − 1.
Consistency of the MLE is then equivalent to

plim
|I|→∞

||∆|| = 0.

In the following theorem we will use infinity norm spheres. Our notation for them is as
follows.

Definition

∀m ∈ Rn, r ∈ R :S∞(m, r) :=
{
x
∣∣ ||x−m||∞ < r

}
∀m ∈ Rn, r ∈ R :S̄∞(m, r) :=

{
x
∣∣ ||x−m||∞ = r

}
Theorem B.14. If the regularity condition is fulfilled, then for all ε, δ > 0 there exists
an N ∈ N such that from |I| ≥ N it follows that for

∆̃ := argmin
∆∈Rj

∑
i∈I

fi(∆)

the following holds
P (||∆̃||∞ > δ) < ε

i. e.,
plim
|I|→∞

||∆|| = 0.

Thus, the simplified MLE is consistent.

199

Appendix B Error Bounds and Consistency of MLE Time Synchronization

Proof Let

r :=
β · α

(
δ

(|J |−1)2

)
3 · L

with β from the regularity condition, α from Lemma B.12 and L from Lemma B.13.

Let M ⊂ S̄∞(0, δ) ⊂ R|J |−1 be a finite set of points such that

S̄∞(0, δ) ⊂
⋃

m∈M

S∞ (m, r) .

Such a set of points exists since S̄∞(0, δ) is compact and r > 0. Let m be one of the
points in M . Then there exists p ∈ J such that mp = δ. Let G = (J, V) be the graph
from the regularity condition. Then there is a path from p to the node with ID |J | with
a length of at most |J | − 1. The estimation error of the |J |-th node is 0 by assumption.
Thus, there exists {j1, j2} ∈ V such that |mj1 −mj2 | ≥ δ

|J |−1 .

Let i be an event for which {j1, j2} ⊆ Ri. Since the total number of nodes is |J |, there are
at most |J | nodes in Ri, and for two of them, j1 and j2, it holds that |mj1−mj2 | ≥ δ

|J |−1 .
Thus,

max
(j′1,j′2)∈Ri×Ri

@k∈Ri:mj′1
<mk<mj′2

(mj′2
−mj′1

) ≥ δ

(|J | − 1)2
.

We define
I+ := {i ∈ I|{j1, j2} ⊆ Ri}.

From the regularity condition we know that

E[|I+|] ≥ β · |I|.

This yields

E

[
1
|I|
∑
i∈I

fi(m)

]

=
1
|I|

E

 ∑
i∈I\I+

fi(m)

+ E

∑
i∈I+

fi(m)


≥ 1

|I|

E

 ∑
i∈I\I+

fi(0)

+ E

∑
i∈I+

(
fi(0) + α

(
δ

(|J | − 1)2

))

200

B.3 Consistency

=
1
|I|

E

 ∑
i∈I\I+

fi(0)

+ E

∑
i∈I+

fi(0) + |I+| · α
(

δ

(|J | − 1)2

)
=

1
|I|

E

∑
i∈I+

fi(0)

+ E

 ∑
i∈I\I+

fi(0)

+ E[|I+|] · α
(

δ

(|J | − 1)2

)
≥ 1

|I|

(
E

[∑
i∈I

fi(0)

]
+ β · |I| · α

(
δ

(|J | − 1)2

))

= E

[
1
|I|
∑
i∈I

fi(0)

]
+ β · α

(
δ

(|J | − 1)2

)
.

From the Lipschitz condition established in Lemma B.13 and the definition of r above
we get that for all m′ ∈ R|J |−1 with ||m′ −m|| < r the following holds:∣∣∣∣∣ 1

|I|
∑
i∈I

fi(m)− 1
|I|
∑
i∈I

fi(m′)

∣∣∣∣∣ < r · L =
1
3
· β · α

(
δ

(|J | − 1)2

)
.

Thus, we can conclude that if

1
|I|
∑
i∈I

fi(m) > E

[
1
|I|
∑
i∈I

fi(0)

]
+

2
3
· β · α

(
δ

(|J | − 1)2

)
(B.7)

holds for m, then for all m′ ∈ S∞(m, r)

1
|I|
∑
i∈I

fi(m′) > E

[
1
|I|
∑
i∈I

fi(0)

]
+

1
3
· β · α

(
δ

(|J | − 1)2

)
. (B.8)

By the law of large numbers there is some Nm ∈ N for m where for |I| ≥ Nm it follows
that

P

(
1
|I|
∑
i∈I

fi(m) > E

[
1
|I|
∑
i∈I

fi(0)

]
+

2
3
· β · α

(
δ

(|J | − 1)2

))
≥ 1− ε

|M |+ 1
.

We call the condition in the probability above the superiority condition for m. Similar
to the superiority conditions, there is an inferiority condition: there exists some N0 ∈ N
such that for |I| ≥ N0

P

(
1
|I|
∑
i∈I

fi(0) < E

[
1
|I|
∑
i∈I

fi(0)

]
+

1
3
· β · α

(
δ

(|J | − 1)2

))
≥ 1− ε

|M |+ 1
.

201

Appendix B Error Bounds and Consistency of MLE Time Synchronization

Because |M | is finite, there is some N∗ = max({N0} ∪ {Nm|m ∈ M}) fulfilling the
superiority conditions for all m ∈ M as well as the inferiority condition, each with a
probability of at least 1 − ε

|M |+1 . Thus, for |I| ≥ N∗ the probability that all |M | + 1
conditions are fulfilled is at least

1− (|M |+ 1) · ε

|M |+ 1
= 1− ε.

Since the spheres S∞(m, r) around all m ∈ M cover S̄∞(0, δ), (B.8) holds for all m′ ∈
S̄∞(0, δ) if (B.7) holds for all m ∈ M . Hence, with probability of at least 1− ε, it holds
that

∀m′ ∈ S̄∞(0, δ) :
1
|I|
∑
i∈I

fi(m′) >
1
|I|
∑
i∈I

fi(0).

Therefore, we know that 1
|I|
∑

i∈I fi has a local optimum in S∞(0, δ). Since fi is convex
for each i by Lemma B.11, 1

|I|
∑

i∈I fi is also convex. Thus, the local optimum is also a
global optimum. A global optimum of 1

|I|
∑

i∈I fi is also a global optimum of
∑

i∈I fi.
Therefore, for the vector ∆̃ from the optimal LP solution we have

P (∆̃ ∈ S∞(0, δ)) = P (||∆̃|| ≤ δ) ≥ 1− ε.

This is the assertion.

From the consistency result regarding the clock offsets it is easy to obtain a result on the
quality of the event time estimates in the same asymptotic scenario. It has been stated
before that the estimates of the event times are given by T̂i = Ti + mink∈Ri

(di,k + ∆k).
Thus, if ∆ is close to zero (neglecting the offset ambiguity), the estimate for event
i will be wrong by mink∈Ri

di,k. From Lemma B.7 it then follows that the error is
exponentially distributed with parameter |Ri| · λ. In particular this means that—as
could be expected—the expected estimation error decreases with the number of nodes
observing the same event.

202

Bibliography

Own Publications

[ASM] Nasir Ali, Björn Scheuermann, and Martin Mauve. A witness system for
vehicular ad hoc networks. Submitted for publication.

[CBSM07] Murat Caliskan, Andreas Barthels, Björn Scheuermann, and Martin
Mauve. Predicting parking lot occupancy in vehicular ad hoc networks.
In VTC ’07-Spring: Proceedings of the 65th IEEE Vehicular Technology
Conference, pages 277–281, April 2007.

[JKM+] Florian Jarre, Wolfgang Kiess, Martin Mauve, Magnus Roos, and Björn
Scheuermann. Least squares timestamp synchronization for local broad-
cast networks. Submitted for publication.

[JSLM06a] Yves Igor Jerschow, Björn Scheuermann, Christian Lochert, and Mar-
tin Mauve. A cross-layer protocol evaluation framework on ESB nodes
(demo). In REALMAN ’06: Proceedings of the 2nd International Work-
shop on Multi-hop Ad Hoc Networks: from Theory to Reality, pages 104–
106, May 2006.

[JSLM06b] Yves Igor Jerschow, Björn Scheuermann, Christian Lochert, and Martin
Mauve. A real-world framework to evaluate cross-layer protocols for wire-
less multihop networks. In REALMAN ’06: Proceedings of the 2nd In-
ternational Workshop on Multi-hop Ad Hoc Networks: from Theory to
Reality, pages 1–6, May 2006.

[LSC+05] Christian Lochert, Björn Scheuermann, Murat Caliskan, Andreas Barthels,
Alfonso Cervantes, and Martin Mauve. Multiple simulator interlinking en-
vironment for IVC. In VANET ’05: Proceedings of the 2nd ACM Interna-
tional Workshop on Vehicular Ad Hoc Networks, pages 87–88, September
2005.

[LSCM07] Christian Lochert, Björn Scheuermann, Murat Caliskan, and Martin
Mauve. The feasibility of information dissemination in vehicular ad-hoc
networks. In WONS ’07: Proceedings of the 4th Annual Conference on
Wireless On-demand Network Systems and Services, pages 92–99, January
2007.

203

Bibliography

[LSM07a] Christian Lochert, Björn Scheuermann, and Martin Mauve. Probabilistic
aggregation for data dissemination in VANETs. In VANET ’07: Pro-
ceedings of the 4th ACM International Workshop on Vehicular Ad Hoc
Networks, pages 1–8, September 2007.

[LSM07b] Christian Lochert, Björn Scheuermann, and Martin Mauve. A survey on
congestion control for mobile ad-hoc networks. Wiley Wireless Communi-
cations and Mobile Computing, 7(5):655–676, June 2007.

[LSSM07] Peter Lieven, Björn Scheuermann, Michael Stini, and Martin Mauve. Fil-
tering spam email based on retry patterns. In ICC ’07: Proceedings of
the IEEE International Conference on Communications, pages 1515–1520,
June 2007.

[RSK+07] Jedrzej Rybicki, Björn Scheuermann, Wolfgang Kiess, Christian Lochert,
Pezhman Fallahi, and Martin Mauve. Challenge: Peers on wheels—a
road to new traffic information systems. In MobiCom ’07: Proceedings
of the 13th Annual ACM International Conference on Mobile Computing
and Networking, pages 215–221, September 2007.

[Sch07] Björn Scheuermann. Visualisierung von MANET-Simulationen – Analyse
von ns-2-Tracefiles mit Huginn. VDM Verlag Dr. Müller, Saarbrücken,
Germany, 2007. In German language.

[SFT+05a] Björn Scheuermann, Holger Füßler, Matthias Transier, Marcel Busse, Mar-
tin Mauve, and Wolfgang Effelsberg. Huginn: A 3D visualizer for wireless
ns-2 traces. In MSWiM ’05: Proceedings of the 8th ACM International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pages 143–150, October 2005.

[SFT+05b] Björn Scheuermann, Holger Füßler, Matthias Transier, Martin Mauve, and
Wolfgang Effelsberg. Visualizing wireless ns-2 traces in 3D. In Mo-
biCom ’05: The 11th Annual ACM International Conference on Mobile
Computing and Networking, Demo Session, September 2005.

[SHC07] Björn Scheuermann, Wenjun Hu, and Jon Crowcroft. Near-optimal co-
ordinated network coding in wireless multihop networks. In CoNEXT ’07:
Proceedings of the 3rd International Conference on Emerging Networking
Experiments and Technologies, December 2007.

[SKLM] Björn Scheuermann, Markus Koegel, Christian Lochert, and Martin
Mauve. Reliable wireless multihop communication without end-to-end
acknowledgments. Submitted for publication.

[SKR+a] Björn Scheuermann, Wolfgang Kiess, Magnus Roos, Florian Jarre, and
Martin Mauve. Error bounds and consistency in maximum likelihood
time synchronization. Technical report, Department of Computer Science,
Heinrich Heine University Düsseldorf, Germany. To appear.

204

Bibliography

[SKR+b] Björn Scheuermann, Wolfgang Kiess, Magnus Roos, Florian Jarre, and
Martin Mauve. On the time synchronization of distributed logfiles in
networks with local broadcast media. Submitted for publication.

[SLM08] Björn Scheuermann, Christian Lochert, and Martin Mauve. Implicit hop-
by-hop congestion control in wireless multihop networks. Elsevier Ad Hoc
Networks, 6(2):260–286, April 2008.

[SM07] Björn Scheuermann and Martin Mauve. Near-optimal compression of
Flajolet-Martin sketches. In Dial M-POMC ’07: Proceedings of the 4th
ACM SIGACT-SIGOPS International Workshop on Foundations of Mo-
bile Computing, August 2007.

[STL+07] Björn Scheuermann, Matthias Transier, Christian Lochert, Martin Mauve,
and Wolfgang Effelsberg. Backpressure multicast congestion control in
mobile ad-hoc networks. In CoNEXT ’07: Proceedings of the 3rd Interna-
tional Conference on Emerging Networking Experiments and Technologies,
December 2007.

[TSM07] Thi Minh Chau Tran, Björn Scheuermann, and Martin Mauve. Detecting
the presence of nodes in MANETs. In CHANTS ’07: Proceedings of
the 3rd ACM MobiCom Workshop on Challenged Networks, pages 43–50,
September 2007.

Other References

[AACP05] Guiseppe Anastasi, Emilio Ancillotti, Marco Conti, and Andrea Passarella.
TPA: A transport protocol for ad hoc networks. In ISCC ’05: Proceedings
of the 10th IEEE International Symposium on Computers and Communi-
cation, pages 51–56, June 2005.

[ACDM] David Applegate, William Cook, Sanjeeb Dash, and Monika Mevenkamp.
QSopt linear programming solver. Version 1.01. http://www2.isye.-
gatech.edu/∼wcook/qsopt/.

[ACLY00] Rudolf Ahlswede, Ning Cai, Shuo-Yen Li, and Raymond Yeung. Network
information flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000.

[AJ03] Eitan Altman and Tania Jiménez. Novel delayed ACK techniques for
improving TCP performance in multihop wireless networks. In PWC ’03:
Proceedings of the IFIP-TC6 8th International Conference on Personal
Wireless Communications, pages 237–250, September 2003.

205

http://www2.isye.gatech.edu/~wcook/qsopt/
http://www2.isye.gatech.edu/~wcook/qsopt/

Bibliography

[APS99] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP congestion
control. RFC 2581 (Proposed Standard), April 1999. Updated by RFC
3390.

[APSS04] Vaidyanathan Anantharaman, Seung-Jong Park, Karthikeyan Sundaresan,
and Raghupathy Sivakumar. TCP performance over mobile ad-hoc net-
works: a quantitative study. Wiley Wireless Communications and Mobile
Computing, 4(2):203–222, 2004.

[Ash95] Paul Ashton. Algorithms for off-line clock synchronization. Technical
Report TR COSC 12/95, Department of Computer Science, University of
Canterbury, December 1995.

[Bau05] Peter Baumung. Stable, congestion-controlled application-layer multicas-
ting in pedestrian ad-hoc networks. In WoWMoM ’05: Proceedings of the
6th IEEE International Symposium on a World of Wireless Mobile and
Multimedia Networks, pages 57–64, June 2005.

[Bra89] Robert Braden. Requirements for Internet hosts – communication layers.
RFC 1122 (Standard), October 1989. Updated by RFCs 1349, 4379.

[BV05] Saâd Biaz and Nitin H. Vaidya. “De-randomizing” congestion losses to im-
prove TCP performance over wired-wireless networks. IEEE/ACM Trans-
actions on Networking, 13(3):596–608, June 2005.

[BYS+04] Dan Berger, Zhenqiang Ye, Prasun Sinha, Srikanth Krishnamurthy,
Michaelis Faloutsos, and Satish K. Tripathi. TCP-friendly medium ac-
cess control for ad-hoc wireless networks: Alleviating self-contention. In
MASS ’04: Proceedings of the 1st International Conference on Mobile Ad
hoc and Sensor Systems, pages 214–223, October 2004.

[BZK04] Peter Baumung, Martina Zitterbart, and Kendy Kutzner. Improving de-
livery ratios for application layer multicast in mobile ad-hoc networks. In
ASWN ’04: Proceedings of the 4th Workshop on Applications and Services
in Wireless Networks, pages 132–141, August 2004.

[CN02] Kai Chen and Klara Nahrstedt. EXACT: An explicit rate-based flow
control framework in MANET (extended version). Technical Report
UIUCDCS-R-2002-2286/UILU-ENG-2002-1730, Department of Computer
Science, University of Illinois at Urbana-Champaign, July 2002.

[CN04] Kai Chen and Klara Nahrstedt. Limitations of equation-based conges-
tion control in mobile ad hoc networks. In ICDCSW ’04: Proceedings
of the 24th International Conference on Distributed Computing Systems
Workshops - W7: EC, pages 756–761, 2004.

[CNV04] Kai Chen, Klara Nahrstedt, and Nitin H. Vaidya. The utility of explicit
rate-based flow control in mobile ad hoc networks. In WCNC ’04: Proceed-
ings of the IEEE Wireless Communications and Networking Conference,
volume 3, pages 1921–1926, March 2004.

206

Bibliography

[CP07] Prasanna Chaporkar and Alexandre Proutiere. Adaptive network coding
and scheduling for maximizing throughput in wireless networks. In Mobi-
Com ’07: Proceedings of the 13th Annual ACM International Conference
on Mobile Computing and Networking, pages 135–146, September 2007.

[CRVP98] Kartik Chandran, Sudarshan Raghunathan, Subbarayan Venkatesan, and
Ravi Prakash. A feedback based scheme for improving TCP performance
in ad-hoc wireless networks. In ICDCS ’98: Proceedings of the 18th In-
ternational Conference on Distributed Computing Systems, pages 472–479,
May 1998.

[CXN03] Kai Chen, Yuan Xue, and Klara Nahrstedt. On setting TCP’s congestion
window limit in mobile ad hoc networks. In ICC ’03: Proceedings of
the IEEE International Conference on Communications, volume 2, pages
1080–1084, May 2003.

[DAVR04] Adam Dunkels, Juan Alonso, Thiemo Voigt, and Hartmut Ritter. Dis-
tributed TCP caching for wireless sensor networks. In MedHocNet ’04:
Proceedings of the 3rd Annual Mediterranean Ad Hoc Networking Work-
shop, June 2004.

[DB01] Thomas D. Dyer and Rajendra V. Boppana. A comparison of TCP per-
formance over three routing protocols for mobile ad hoc networks. In
MobiHoc ’01: Proceedings of the 2nd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 56–66, June 2001.

[DB04] Saman Desilva and Rajendra V. Boppana. On the impact of noise sen-
sitivity on performance in 802.11 based ad hoc networks. In ICC ’04:
Proceedings of the IEEE International Conference on Communications,
volume 7, pages 4372–4376, June 2004.

[DHHB87] Andrzej Duda, Gilbert Harrus, Yoram Haddad, and Guy Bernard. Esti-
mating global time in distributed systems. In ICDCS ’87: Proceedings of
the 7th International Conference on Distributed Computing Systems, pages
299–306, September 1987.

[dMCDA02] Carlos de M. Cordeiro, Samir R. Das, and Dharma P. Agrawal. COPAS:
Dynamic contention-balancing to enhance the performance of TCP over
multi-hop wireless networks. In ICCCN ’02: Proceedings of the 11th Inter-
national Conference on Computer Communications and Networks, pages
382–387, October 2002.

[dOB02] Ruy de Oliveira and Torsten Braun. TCP in wireless mobile ad hoc
networks. Technical Report IAM-02-003, Institute of Computer Science
and Applied Mathematics, University of Berne, July 2002.

[dOB04] Ruy de Oliveira and Torsten Braun. A delay-based approach using fuzzy
logic to improve TCP error detection in ad hoc networks. In WCNC ’04:

207

Bibliography

Proceedings of the IEEE Wireless Communications and Networking Con-
ference, volume 3, pages 1666–1671, March 2004.

[dOB07] Ruy de Oliveira and Torsten Braun. A smart TCP acknowledgment ap-
proach for multihop wireless networks. IEEE Transactions on Mobile
Computing, 6(2):192–205, February 2007.

[dOBH03] Ruy de Oliveira, Torsten Braun, and Marc Heissenbüttel. An edge-based
approach for improving TCP in wireless mobile ad hoc networks. In
DADS ’03: Proceedings of the Conference on Design, Analysis and Simu-
lation of Distributed Systems, March 2003.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. In OSDI ’02: Fifth
USENIX Symposium on Operating Systems Design and Implementation,
pages 147–163, December 2002.

[EKL05] Sherif M. ElRakabawy, Alexander Klemm, and Christoph Lindemann.
TCP with adaptive pacing for multihop wireless networks. In MobiHoc ’05:
Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 288–299, May 2005.

[FGML02] Zhenghua Fu, Benjamin Greenstein, Xiaoqiao Meng, and Songwu Lu. De-
sign and implementation of a TCP-friendly transport protocol for ad hoc
wireless networks. In ICNP ’02: Proceedings of the 10th IEEE Interna-
tional Conference on Network Protocols, pages 216–225, November 2002.

[FHG04] Sally Floyd, Tom Henderson, and Andrei Gurtov. The newreno modifica-
tion to TCP’s fast recovery algorithm. RFC 3782 (Proposed Standard),
April 2004.

[FHPW00] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-
based congestion control for unicast applications. In SIGCOMM ’00: Pro-
ceedings of the 2000 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, pages 43–56, August
2000.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–
413, August 1993.

[FML02] Zhenghua Fu, Xiaoqiao Meng, and Songwu Lu. How bad TCP can perform
in mobile ad hoc networks. In ISCC ’02: Proceedings of the 7th IEEE
International Symposium on Computers and Communication, pages 298–
303, July 2002.

[FML03] Zhenghua Fu, Xiaoqiao Meng, and Songwu Lu. A transport protocol for
supporting multimedia streaming in mobile ad-hoc networks. IEEE Jour-
nal on Selected Areas in Communications, 21(10):1615–1626, December
2003.

208

Bibliography

[Fre] Freie Universität Berlin, Computer Systems Telematics. ScatterWeb
project. http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb net.

[FZL+03] Zhenghua Fu, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, and
Mario Gerla. The impact of multihop wireless channel on TCP throughput
and loss. In INFOCOM ’03: Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies, volume 3,
pages 1744–1753, March 2003.

[GAGPK03] Tom Goff, Nael B. Abu-Ghazaleh, Dhananjay S. Phatak, and Ridvan
Kahvecioglu. Preemptive routing in ad hoc networks. Elsevier Paral-
lel and Distributed Computing, 63(2):123–140, February 2003.

[Git76] Israel Gitman. Comparison of hop-by-hop and end-to-end acknowledgment
schemes in computer communication networks. IEEE Transactions on
Communications, 24(11):1258–1262, November 1976.

[GJ82] Neil Gower and John Jubin. Congestion control using pacing in a packet
radio network. In MILCOM ’82: Proceedings of the IEEE Military Com-
munications Conference ’Progress in Spread Spectrum Communications’,
pages 23.1.1–23.1.6, October 1982.

[GNAA04] Hrishikesh Gossain, Nagesh Nandiraju, Kumar Anand, and Dharma P.
Agrawal. Supporting MAC layer multicast in IEEE 802.11 based
MANETs: Issues and solutions. In LCN ’04: Proceedings of the 29th An-
nual IEEE International Conference on Local Computer Networks, pages
172–179, November 2004.

[GTB99] Mario Gerla, Ken Tang, and Rajive Bagrodia. TCP performance in wire-
less multi-hop networks. In WMCSA ’99: Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and Applications, page 41, Febru-
ary 1999.

[GV02] Mesut Güneş and Donald Vlahovic. The performance of the TCP/RCWE
enhancement for ad-hoc networks. In ISCC ’02: Proceedings of the 7th
IEEE International Symposium on Computers and Communication, pages
43–48, July 2002.

[HCH06] Tracey Ho, Yu-Han Chang, and Keesook Han. On constructive network
coding for multiple unicasts. In Proceedings of 44th Allerton Conference
on Communication, Control and Computing, 2006.

[HJB04] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating conges-
tion in wireless sensor networks. In SenSys ’04: Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, pages
134–147, November 2004.

209

http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net

Bibliography

[HSC95] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton. Log-
based receiver-reliable multicast for distributed interactive simulation. In
SIGCOMM ’95: Proceedings of the 1995 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
pages 328–341, August 1995.

[HUL91] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis
and Minimization Algorithms I. Springer, Berlin–Heidelberg–New York,
1991.

[HV99] Gavin Holland and Nitin H. Vaidya. Analysis of TCP performance over
mobile ad hoc networks. In MobiCom ’99: Proceedings of the 5th An-
nual ACM International Conference on Mobile Computing and Network-
ing, pages 219–230, July 1999.

[IAC99] Sami Iren, Paul D. Amer, and Phillip T. Conrad. The transport layer:
Tutorial and survey. ACM Computing Surveys, 31(4):360–405, December
1999.

[Jac88] Van Jacobson. Congestion avoidance and control. In SIGCOMM ’88:
Proceedings of the 1988 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, pages 314–329, Au-
gust 1988.

[JCH84] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quantita-
tive measure and discrimination for resource allocation in shared computer
systems. Technical Report DEC-TR-301, Digital Equipment Corporation,
Eastern Research Lab, September 1984.

[JD06] Shweta Jain and Samir R. Das. MAC layer multicast in wireless multi-
hop networks. In COMSWARE ’06: Proceedings of the 1st International
Conference on Communication System Software and Middleware, January
2006.

[JM96] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc
wireless networks. In Thomasz Imielinski and Hank Korth, editors, Mo-
bile Computing, volume 353, chapter 5, pages 153–181. Kluwer Academic
Publishers, Norwell, MA, USA, 1996.

[KEPS04] Richard M. Karp, Jeremy Elson, Christos H. Papadimitriou, and Scott
Shenker. Global synchronization in sensornets. In LATIN ’04: Proceedings
of the 6th Latin American Symposium on Theoretical Informatics, pages
609–624, April 2004.

[KG06] Dzmitry Kliazovich and Fabrizio Granelli. Cross-layer congestion control
in ad hoc wireless networks. Elsevier Ad Hoc Networks, 4(6):687–708,
November 2006.

210

Bibliography

[KHR02] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for
high bandwidth-delay product networks. In SIGCOMM ’02: Proceedings
of the 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 89–102, August 2002.

[KKFT02] Swastik Kopparty, Srikanth V. Krishnamurthy, Michaelis Faloutsos, and
Satish K. Tripathi. Split-TCP for mobile ad hoc networks. In GLOBE-
COM ’02: Proceedings of the IEEE Global Telecommunications Confer-
ence, volume 1, pages 138–142, November 2002.

[KM07] Wolfgang Kiess and Martin Mauve. Real-world evaluation of mobile ad-
hoc networks. In Marco Conti, Jon Crowcroft, and Andrea Passarella,
editors, Multi-hop Ad hoc Networks from Theory to Reality, pages 1–22.
Nova Science Publishers, Hauppauge, NY, USA, 2007.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in
distributed real-time systems. IEEE Transactions on Communications,
36(8):933–940, 1987.

[KRH+06] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Medard,
and Jon Crowcroft. XORs in the air: Practical wireless network coding.
In SIGCOMM ’06: Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
pages 243–254, September 2006.

[KTC00] Dongkyun Kim, Chai-Keong Toh, and Yanghee Choi. TCP-BuS: Improv-
ing TCP performance in wireless ad-hoc networks. In ICC ’00: Proceed-
ings of the IEEE International Conference on Communications, volume 3,
pages 1707–1713, June 2000.

[KWC+05] Christian Kreibich, Andrew Warfield, Jon Crowcroft, Steven Hand, and
Ian Pratt. Using packet symmetry to curtail malicious traffic. In Hot-
Nets ’05: Proceedings of the 4th Workshop on Hot Topics in Networks,
November 2005.

[KYKT05] Fabius Klemm, Zhenqiang Ye, Srikanth V. Krishnamurthy, and Satish K.
Tripathi. Improving TCP performance in ad hoc networks using signal
strength based link management. Elsevier Ad Hoc Networks, 3(2):175–191,
March 2005.

[LGC99] Sung-Ju Lee, Mario Gerla, and Ching-Chuan Chiang. On-demand multi-
cast routing protocol. In WCNC ’99: Proceedings of the IEEE Wireless
Communications and Networking Conference, volume 3, pages 1298–1302,
September 1999.

[LL04] Zongpeng Li and Baochun Li. Network coding: The case for multiple
unicast sessions. In Allerton ’04: Proceedings of the 42nd Annual Allerton
Conference, September 2004.

211

Bibliography

[LLA+04] Mingzhe Li, Choong-Soo Lee, Emmanuel Agu, Mark Claypool, and Robert
Kinicki. Performance enhancement of TFRC in wireless ad hoc networks.
In DMS ’04: Proceedings of the 10th International Conference on Dis-
tributed Multimedia Systems, September 2004.

[LS99] Jian Liu and Suresh Singh. ATP: Application controlled transport protocol
for mobile ad hoc networks. In WCNC ’99: Proceedings of the IEEE
Wireless Communications and Networking Conference, volume 3, pages
1318–1322, September 1999.

[LS01] Jian Liu and Suresh Singh. ATCP: TCP for mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications, 19(7):1300–1315, July 2001.

[LXG03] Haejung Lim, Kaixin Xu, and Mario Gerla. TCP performance over mul-
tipath routing in mobile ad hoc networks. In ICC ’03: Proceedings of
the IEEE International Conference on Communications, volume 2, pages
1064–1068, May 2003.

[Meh92] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, 1992.

[MFNT00] Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis. Continu-
ous clock synchronization in wireless real-time applications. In SRDS ’00:
Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems,
pages 125–132, October 2000.

[Mil92] David L. Mills. Network time protocol (version 3) specification, imple-
mentation and analysis. RFC 1305 (Draft Standard), March 1992.

[Mil94] David L. Mills. Internet time synchronization: The network time protocol.
In Zhonghua Yang and T. Anthony Marsland, editors, Global States and
Time in Distributed Systems. IEEE Computer Society Press, 1994.

[MSB00] Jeffrey P. Monks, Prasun Sinha, and Vaduvur Bharghavan. Limitations
of TCP-ELFN for ad hoc networks. In MoMuC ’00: Proceedings of the
7th IEEE International Workshop on Mobile Multimedia Communications,
October 2000.

[MST99] Sue B. Moon, Paul Skelly, and Donald F. Towsley. Estimation and re-
moval of clock skew from network delay measurements. In INFOCOM ’99:
Proceedings of the 18th Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 227–234, March 1999.

[MWH01] Martin Mauve, Jörg Widmer, and Hannes Hartenstein. A survey on
position-based routing in mobile ad-hoc networks. IEEE Network,
15(6):30–39, November 2001.

[NC04] William Navidi and Tracy Camp. Stationary distributions for the ran-
dom waypoint mobility model. IEEE Transactions on Mobile Computing,
3(1):99–108, January 2004.

212

Bibliography

[NHK05] Kitae Nahm, Ahmed Helmy, and C.-C. Jay Kuo. TCP over multihop
802.11 networks: Issues and performance enhancement. In MobiHoc ’05:
Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 277–287, May 2005.

[ns2a] The ns-2 network simulator. http://www.isi.edu/nsnam/ns. version 2.30.

[ns2b] Wireless multicast extensions for ns-2.1b8. http://www.monarch.cs.rice.-
edu/multicast extensions.html.

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
Berlin, 1999.

[PAM+05] Thierry Plesse, Cedric Adjih, Pascale Minet, Anis Laouiti, Adokoé Plakoo,
Marc Badel, Paul Mühlethaler, Philippe Jacquet, and Jérôme Lecomte.
OLSR performance measurement in a military mobile ad hoc network.
Elsevier Ad Hoc Networks, 3(5):575–588, September 2005.

[PBRD03] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad
hoc on-demand distance vector (AODV) routing. RFC 3561 (Experimen-
tal), July 2003.

[POK04] Stylianos Papanastasiou and Mohamed Ould-Khaoua. TCP congestion
window evolution and spatial reuse in MANETs. Wiley Wireless Commu-
nications and Mobile Computing, 4(6):669–682, September 2004.

[PPW+07] Manoj Pandey, Roger Pack, Lei Wang, Quiyi Duan, and Daniel Zappala.
To repair or not to repair: Helping routing protocols to distinguish mobility
from congestion. In INFOCOM ’07 Mini Symposia, May 2007.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. In WMCSA ’99: Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages 90–100, February
1999.

[PS03] Jun Peng and Biplab Sikdar. A multicast congestion control scheme
for mobile ad-hoc networks. In GLOBECOM ’03: Proceedings of the
IEEE Global Telecommunications Conference, volume 5, pages 2860–2864,
December 2003.

[RBM05] Kay Römer, Philipp Blum, and Lennart Meier. Time synchronization
and calibration in wireless sensor networks. In Ivan Stojmenovic, editor,
Handbook of Sensor Networks: Algorithms and Architectures, pages 199–
237. John Wiley & Sons, September 2005.

[RK06] Vivek Raghunathan and Panganamala R. Kumar. A counterexample in
congestion control of wireless networks. Elsevier Performance Evaluation,
64:399–418, June 2006.

213

http://www.isi.edu/nsnam/ns
http://www.monarch.cs.rice.edu/multicast_extensions.html
http://www.monarch.cs.rice.edu/multicast_extensions.html

Bibliography

[RL02] Božidar Radunović and Jean-Yves Le Boudec. A unified framework for
max-min and min-max fairness with applications. In Allerton ’02: Pro-
ceedings of the 40th Annual Allerton Conference, October 2002.

[ROY+04] Venkatesh Rajendran, Katia Obraczka, Yunjung Yi, Sung-Ju Lee, Ken
Tang, and Mario Gerla. Combining source- and localized recovery to
achieve reliable multicast in multi-hop ad hoc networks. In NETWORK-
ING ’04: Proceedings of the 3rd International IFIP-TC6 Networking Con-
ference, pages 112–124, May 2004.

[RS07] Saikat Ray and David Starobinski. On false blocking in RTS/CTS-based
multi-hop wireless networks. IEEE Transactions on Vehicular Technology,
56(2):849–862, March 2007.

[SAHS03] Karthikeyan Sundaresan, Vaidyanathan Anantharaman, Hung-Yun Hsieh,
and Raghupathy Sivakumar. ATP: A reliable transport protocol for ad-
hoc networks. In MobiHoc ’03: Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 64–75,
June 2003.

[SG05] Yang Su and Thomas Gross. WXCP: Explicit congestion control for
wireless multi-hop networks. In IWQoS ’05: Proceedings of the 12th In-
ternational Workshop on Quality of Service, June 2005.

[SM01] Dong Sun and Hong Man. ENIC – an improved reliable transport scheme
for mobile ad hoc networks. In GLOBECOM ’01: Proceedings of the
IEEE Global Telecommunications Conference, volume 5, pages 2852–2856,
November 2001.

[SM03] Masashi Sugano and Masayuki Murata. Performance improvement of TCP
on a wireless ad hoc network. In VTC ’03-Spring: Proceedings of the 57th
IEEE Vehicular Technology Conference, volume 4, pages 2276–2280, April
2003.

[SRB07] Sudipta Sengupta, Shravan Rayanchu, and Suman Banerjee. An analy-
sis of wireless network coding for unicast sessions: The case for coding-
aware routing. In INFOCOM ’07: Proceedings of the 26th Annual Joint
Conference of the IEEE Computer and Communications Societies, pages
1028–1036, May 2007.

[SRP] Jos F. Sturm, Oleksandr Romanko, and Imre Pólik. SeDuMi. Version
1.1R2. http://sedumi.mcmaster.ca/.

[TFW+07] Matthias Transier, Holger Füßler, Jörg Widmer, Martin Mauve, and Wolf-
gang Effelsberg. A hierarchical approach to position-based multicast for
mobile ad-hoc networks. Springer Wireless Networks, 13(4), August 2007.

[TG03] Ken Tang and Mario Gerla. Congestion control multicast in wireless ad hoc
networks. Elsevier Computer Communications, 26(3):278–288, February
2003.

214

http://sedumi.mcmaster.ca/

Bibliography

[TOLG02a] Ken Tang, Katia Obraczka, Sung-Ju Lee, and Mario Gerla. Congestion
controlled adaptive lightweight multicast in wireless mobile ad hoc net-
works. In ISCC ’02: Proceedings of the 7th IEEE International Symposium
on Computers and Communication, pages 967–972, July 2002.

[TOLG02b] Ken Tang, Katia Obraczka, Sung-Ju Lee, and Mario Gerla. A reliable,
congestion-controlled multicast transport protocol in multimedia multi-
hop networks. In WPMC ’02: Proceedings of the 5th International Sym-
posium on Wireless Personal Multimedia Communications, October 2002.

[TOLG03] Ken Tang, Katia Obraczka, Sung-Ju Lee, and Mario Gerla. Reliable
adaptive lightweight multicast protocol. In ICC ’03: Proceedings of
the IEEE International Conference on Communications, pages 1054–1058,
May 2003.

[VBP04] Darryl Veitch, Satish Babu, and Attila Pàsztor. Robust synchronization
of software clocks across the Internet. In IMC ’04: Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, pages 219–232,
October 2004.

[VRC97] Paulo Veŕıssimo, Lúıs Rodrigues, and Antonio Casimiro. Cesiumspray: a
precise and accurate global time service for large-scale systems. Real-Time
Systems, 12(3):243–294, 1997.

[WC01] Alec Woo and David E. Culler. A transmission control scheme for me-
dia access in sensor networks. In MobiCom ’01: Proceedings of the 7th
Annual ACM International Conference on Mobile Computing and Net-
working, pages 221–235, July 2001.

[WCK05] Yunnan Wu, Philip A. Chou, and Sun-Yuan Kung. Information exchange
in wireless networks with network coding and physical-layer broadcasts.
In CISS ’05: Proceedings of the 39th Annual Conference on Information
Sciences and Systems, March 2005.

[WEC03] Chieh-Yih Wan, Shane B. Eisenman, and Andrew T. Campbell. CODA:
Congestion detection and avoidance in sensor networks. In SenSys ’03:
Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, pages 266–279, November 2003.

[WSL+06] Chonggang Wang, Kazem Sohraby, Bo Li, Mahmoud Daneshmand, and
Yueming Hu. A survey of transport protocols for wireless sensor networks.
IEEE Network, 20(3):34–40, May 2006.

[WZ02] Feng Wang and Yongguang Zhang. Improving TCP performance over
mobile ad-hoc networks with out-of-order detection and response. In
MobiHoc ’02: Proceedings of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pages 217–225, June 2002.

215

Bibliography

[XGB02] Kaixin Xu, Mario Gerla, and Sang Bae. How effective is the IEEE 802.11
RTS/CTS handshake in ad hoc networks? In GLOBECOM ’02: Pro-
ceedings of the IEEE Global Telecommunications Conference, pages 72–76,
November 2002.

[XGQS05] Kaixin Xu, Mario Gerla, Lantao Qi, and Yantai Shu. TCP unfairness
in ad hoc wireless networks and a neighborhood RED solution. Springer
Wireless Networks, 11(4):383–399, July 2005.

[XS01] Shugong Xu and Tarek Saadawi. Does the IEEE 802.11 MAC protocol
work well in multihop wireless ad hoc networks? IEEE Communications
Magazine, 39(6):130–137, June 2001.

[YKT04] Zhenqiang Ye, Srikanth Krishnamurthy, and Satish Tripathi. Use of
congestion-aware routing to spatially separate TCP connections in wire-
less ad hoc networks. In MASS ’04: Proceedings of the 1st International
Conference on Mobile Ad hoc and Sensor Systems, pages 389–397, October
2004.

[YLN03] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Random waypoint con-
sidered harmful. In INFOCOM ’03: Proceedings of the 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies,
volume 2, pages 1312–1321, March 2003.

[YS07] Yung Yi and Sanjay Shakkottai. Hop-by-hop congestion control over a
wireless multi-hop network. IEEE/ACM Transactions on Networking,
15:133–144, February 2007.

[YSY03] Luqing Yang, Winston K. G. Seah, and Qinghe Yin. Improving fairness
among TCP flows crossing wireless ad hoc and wired networks. In Mobi-
Hoc ’03: Proceedings of the 4th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, pages 57–63, June 2003.

[Yu04] Xin Yu. Improving TCP performance over mobile ad hoc networks by ex-
ploiting cross-layer information awareness. In MobiCom ’04: Proceedings
of the 10th Annual ACM International Conference on Mobile Computing
and Networking, pages 231–244, September 2004.

[YYS+04] Taichi Yuki, Takayuki Yamamoto, Masashi Sugano, Masayuki Murata,
Hideo Miyahara, and Takaaki Hatauchi. Improvement of TCP throughput
by combination of data and ACK packets in ad hoc networks. IEICE
Transactions on Communications, 87(9):2493–2499, September 2004.

[Zad65] Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[Zad68] Lofti A. Zadeh. Fuzzy algorithms. Information and Control, 12:94–102,
1968.

216

Bibliography

[ZCF05] Hongqiang Zhai, Xiang Chen, and Yuguang Fang. Rate-based transport
control for mobile ad hoc networks. In WCNC ’05: Proceedings of the
IEEE Wireless Communications and Networking Conference, volume 4,
pages 2264–2269, March 2005.

[ZF06] Hongquiang Zhai and Yuguang Fang. Distributed flow control and medium
access in multihop ad hoc networks. IEEE Transactions on Mobile Com-
puting, 5(11):1503–1514, November 2006.

[ZLX02] Li Zhang, Zhen Liu, and Cathy Honghui Xia. Clock synchronization algo-
rithms for network measurements. In INFOCOM ’02: Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Communications
Societies, pages 160–169, June 2002.

[ZSZ03] JianXin Zhou, BingXin Shi, and Ling Zou. Improve TCP performance
in ad hoc network by TCP-RC. In PIMRC ’03: Proceedings of the 14th
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, volume 1, pages 216–220, September 2003.

217

Bibliography

218

Index

Symbols

4-hop propagation delay 8, 173
802.11 see IEEE 802.11

A

ACK
cumulative . 165
delayed 46, 155 f, 168 f
duplicate.157, 160
dynamic adaptive 168
dynamic delayed 168
end-to-end 45, 48, 51, 165
explicit 14, 18, 71
implicit 10, 14, 49 f, 69, 72
local . 165
negative . 22, 71
passive 1, 10, 14
selective 155 f, 174 f
transport layer 51

adaptive pacing 8, 10, 163, 173
ADTCP 8, 28, 55, 161 f
ADTFRC . 162, 167
AIMD . 5, 11
anchor points.115, 118, 145
AODV.23, 46, 49, 55, 131, 159, 164
asynchronous feedback 14
ATCP . 156
ATP. 9, 47, 174 f
Atra framework 158, 164

B

backpressure pruning 74, 81
backpressure rule 13, 70, 95
backup path multipath routing 160
bandwidth delay product.170

BarRel .3, 45, 99
basic CXCC. .16
beacon . 23, 72
BEAD . 157
bit error resilience 28, 161
blocking . 13, 15
BMCC . 3, 65
BMCC-BP . 74, 81
bottleneck bandwidth 12

C

C3TCP . 172
capture problem.35, 164 f
CaRe packets . 53
carrier sensing 14, 70, 73
channel busyness ratio 172
Cholesky factorization 124
clocks . 111

model . 116
resets . 116
resolution 116, 137
stability . 116

CODA . 10
coding gain . 89
coding+MAC gain 104
coding-aware routing 88
congestion window . . 156, 161, 163, 170,

177
congestion window limit 163, 170
congestion-aware routing 164
connectivity 118, 181, 189
conservative coding 100
consistency.129, 188
convergence speed.133
convex hull . 114
COPAS . 47, 164 f

219

Index

COPE . 85, 87, 100
cross-layer . 2, 5
cross-layer information awareness . . 157
crying baby problem 70, 72, 81
CXCC.3, 5, 46, 48, 70, 96, 98

basic . 16

D

DACK 46, 155 f, 168 f
DARPA. 10
deadlocks . 15
destination sequence number 49
disaggregation . 68
drift . 116, 130, 137
DSR. 10, 154, 158, 170
DTC. 47
duplicate ACK 157, 160
duplicate detection 18 f, 50
dynamic congestion window limit . . 170

E

early timeout . 18
ECN. 156
ELFN 154 – 158, 161, 169, 177
end-of-burst flag . 99
ENIC . 156
EPLN . 157
ESB . 41
event . 115
EXACT . 9, 47, 174
explicit acknowledgment 14, 18, 71
exposed receiver problem.163

F

fairness 5, 19, 35, 40, 73, 79
fairness index . 80
fast forward . 166
FIN . 54
firewall. .145
fixed RTO . 155, 160
flexible radio network 169
flow control . 54, 172
forwarding delay . 51

forwarding tree 65, 70
fractional window increment 171
frequency, clock- 116
FTP . 56, 131
Fusion . 10
fuzzy logic . 162

G

gamma distribution 131, 136
geographic routing 69
GPS . 111, 122
group management 67

H

hop-by-hop congestion control 9
hop-weighted throughput36
HTTP . 61
Huginn . 112

I

ICMP. .154
IEEE 802.11 5, 23, 28, 41, 55, 131,

159 ff, 166, 170
implicit acknowledgment 10, 14, 49 f, 72
implicit congestion control . . 3, 6, 11, 13
instant recovery . 157
inter-packet delay difference 161
interior-point method 124
intra-flow contention . . 47, 166, 168, 172
intrusion detection systems.145
IP. .2

J

Jain’s fairness index 80
jitter . 19, 70, 72
joint queue state . 90

K

KAL . 25, 54, 72, 74

L

LAD regression . 122

220

Index

LAST flag . 51, 99
layered multicast . 66
leaky bucket . 172
least squares regression.113 f, 141
libpcap . 116
linear programming 112, 122 f
link failure see route break
link RED . 163
Linux kernel . 116
local acknowledgment 165
local repair . 50, 66
logging . 41

M

MAC layer multicast 67
Matlab. .124
max-min-fairness . 73
maximum likelihood estimation 112,

114, 119, 123, 142
Mehrotra predictor-corrector 124
minimum variance estimation 113
MMAC . 67
multicast . 3, 65

layered. .66
MAC layer . 67
overlay. .66

multipath routing 159
multipath TCP . 159

N

NACK . 22, 71
negative CTS 10, 166
neighborhood RED 163
network coding 4, 85
noCoCo. .4, 85, 95
non-work-conserving scheduling 171
normalization constraints122, 132
ns-2 5, 28, 55, 75, 100, 131, 173
NTP . 111, 113

O

ODMRP . 66, 75
offline time synchronization . . . 112, 114

offset ambiguity 122, 181
offset, clock- . 116 f
omniscient coding 100
one-packet-per-hop constraint . . . 13, 15,

18, 48, 70, 96
online time synchronization 113
OPET . 10, 47, 166
opportunistic coding 4, 85
optimal throughput 30
out-of-order packets 8, 157, 161, 168
outliers. .136, 138
overlay multicast . 66

P

packet burst . 51, 99
packet loss 16, 21, 48, 98, 160
packet radio. .10
passive acknowledgment.1, 10, 14
PDA . 41
per-flow state . 19
physical layer .10, 41
position-based routing.69
preamble . 41
preemptive routing.158 f
preferred ACK retransmission 169
proactive route errors 159
probe mode . 162
probe packet 154, 175
promiscuous mode 115, 131
propagation delay 117, 132

Q

QSopt. .123 ff
quadtree . 67
quality of service . 19
queue state . 90
queue state consistency.98
quick exchange . 166

R

random early detect163
random waypoint mobility . . 55, 76, 131
rate ambiguity . 122

221

Index

rate estimation. .167
rate, clock-. .116
RBCC . 172 f
RE TFRC . 167
re-establishment notification 154
re-layering . 2
receiver advertised window 172
reception report 87, 100
reference broadcast 113
reference clock . 122
regularity condition 189
reliability . 3, 28, 69

end-to-end . 45
retransmission timeout . 19, 51, 155, 161
RFA . 21, 51, 71
round trip time . 8, 114, 155 f, 162, 166 f
round-trip hop-count 170
route break 23, 48, 72, 153
route failure notification 154
route failure prediction 159
route length . 48, 156
routing

AODV 23, 46, 49, 55, 131, 159, 164
coding-aware . 88
congestion-aware 164
DSR.10, 154, 158, 170
geographic . 69
multicast . 65
multipath . 159
position-based 69

routing tables . 41
RSSI. .159
RTS threshold . 23
RTS/CTS 6, 10, 38, 55, 159 f, 166 f

S

SACK . 155 f, 174 f
safety window. .174
satellite networks 117
ScatterWeb . 41
SeDuMi. .124 f
self-contention . 166
sensor networks 10, 41, 47, 113
shared medium1, 5, 11, 65, 73, 163, 168

short-term throughput 161
signal strength based link management

159
simplex method 122 f
skew . 116
slow congestion avoidance 170
slow start threshold 156
small-scale fading 158
SNN . 49, 51
snooze state. .154
socket interface 26, 54
soft timing.14, 25, 70 f
sparse matrix storage 124 f
SPBM. .65, 67
SPBM-BC . 69
Split TCP. 47, 165
spurious route breaks 25
standby mode . 154
starved flows . 35
symmetric route pinning 159, 164
SYN . 54

T

TACK. .51, 54
TCP . 2, 5, 45, 153

Newreno . 28, 55
Reno. .156, 170

TCP proxies . 165
TCP-AP 8, 28, 55, 173
TCP-BuS . 155
TCP-DOOR . 157
TCP-EXACT . 174
TCP-F . 154 f
TCP-friendly . 161
TCP-RC . 156
TCP/RCWE. .161
temporary RTO.156
testbed . 41, 138
TFRC . 12, 162, 167
time synchronization 4, 43, 111
timeout 19, 25, 51, 53
timestamping delay.111, 114, 117
topology discovery 41
TPA . 47, 176

222

Index

transmission scheduling 89
TRFA . 51, 54
true clock . 116
TSC register . 116
TTL . 53

U

UDP. 5, 28, 101, 175
UDP-EXACT. 174

V

visualization . 112

W

wait graph . 15
wired-cum-wireless 160
wireless sensor networks see sensor

networks
worst-case error 128, 188
WSN see sensor networks
WXCP . 175

X

XCP . 175

223

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Implicit Congestion Control: CXCC
	Related Work
	TCP Improvements
	Alternative Approaches

	Algorithmic Idea
	Shared Medium Model
	Implicit Hop-by-Hop Congestion Control
	Deadlock Freeness

	Basic CXCC
	Dealing with Lost Packets
	Queuing in CXCC Nodes
	Retransmission Timeouts

	Request for ACK
	First Simulation Results with Basic CXCC
	RFA Mechanism

	Dynamic Routing: Detecting Broken Links
	Layer Interfaces
	Simulations
	Deterministic Topologies
	Random Topologies with Long Connections
	Random Topologies with Dynamic Traffic Patterns

	Real-World Testbed Results
	Chapter Summary

	Implicit Reliability: BarRel
	Related Work
	The BarRel Transport Protocol
	Node and Link Failures
	Sequence Numbers and Order Preservation
	Acknowledging the Last Packets: TACKs and TRFAs
	CaRe Packets
	Other Transport Layer Functions

	Evaluation
	Methodology
	FTP Traffic
	HTTP Traffic

	Chapter Summary

	Implicit Multicast Congestion Control: BMCC
	Related Work
	Scalable Position-Based Multicast
	Backpressure Multicast Congestion Control
	Packet Forwarding with Local Broadcasts
	Backpressure with Multiple Next Hops
	Dealing with Unavailable Next Hops
	Handling Inhomogeneous Receivers: Backpressure Pruning

	Evaluation
	Delivery Ratio and Throughput
	Fairness Between Senders
	Delay and Protocol Overhead
	Backpressure Pruning

	Chapter Summary

	Co-ordinated Network Coding: noCoCo
	Related Work
	Maximizing the Coding Gain
	A Centralized Scheduler
	Notation
	Properties of High Coding Gain Schedules

	A Practical Protocol
	Basic Protocol Rules and Mechanisms
	An Upper Bound on the Number of Packets
	Dealing with Real Wireless Media
	Handling Finite Bursts of Data

	Performance Evaluation
	Chain Topology
	Cross Topologies
	Random Topologies

	Chapter Summary

	Post-Facto Offline Time Synchronization
	Related Work
	Online Clock Synchronization
	Offline Clock Synchronization

	Model and Terminology
	Nodes and Events
	Clocks
	Timestamping Delay
	Connectivity Constraints

	Algorithm
	Solving the Optimization Problem
	Properties of the MLE
	Error Bounds
	Consistency

	Numerical Evaluation
	Methodology
	Convergence and Numerical Accuracy
	Robustness

	Real-World Experiments
	An Alternative Approach Based on Least Squares
	Chapter Summary

	Conclusion
	Detailed Overview of MANET Transport Protocols
	Dealing with Route Failures
	Coping with Wireless Losses
	Managing a Shared Medium
	Handling ACK Traffic
	Limiting TCP's Packet Output
	Alternative Protocol Designs

	Error Bounds and Consistency of MLE Time Synchronization
	The Simplified Estimator
	Error Bounds
	Consistency
	Stochastic Preliminaries
	Consistency Proof

	Bibliography
	Index

