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Abstract

This dissertation consists of three different research projects within group theory and
it is written as a cumulative thesis.

The first project is about automorphisms of local fields and consists of the article [14]:

• With Jakub Byszewski and Gunther Cornelissen; Automata and finite order elements
in the Nottingham group, J. Algebra 602 (2022), 484–554.

This article appears as a self-contained chapter in the thesis. The Nottingham group at a
prime number p consists of power series t+a2t

2+a3t
3+· · · in the variable t with coefficients

ai from the field of p elements, where the group operation is given by composition of power
series. Only a handful of power series of finite order are explicitly known through a formula
for their coefficients. We argue in this article that it is advantageous to describe such series
in closed computational form through automata. We give an explicit automaton-theoretic
description of some series of order 4 and 8; and an embedding of the Klein four-group in
the Nottingham group at 2. Moreover, we study the complexity of the new examples from
the algebro-geometric properties of the equations they satisfy.

The second project concerns the commensurability zeta function, a recent type of zeta
function for groups introduced in 2020 by Bou-Rabee and Studenmund. This zeta function
was defined in analogy to the subgroup zeta function. Two subgroups of an ambient group
are said to be commensurable, if their intersection has finite index in both groups. The
product of these two numbers is the commensurability index. Fixing some subgroup of
the ambient group, we consider all subgroups which are commensurable with this fixed
subgroup and we encode the corresponding commensurability index in a Dirichlet series,
the commensurability zeta function. We compute this zeta function for the free abelian
groups of finite rank and show that it can be expressed as a quotient of zeta functions arising
from counting subgroups of finite index. Moreover, we generalise the commensurability zeta
function to the setting of modules.

The final project contains an investigation into the subject of normal subgroup growth.
The normal subgroup zeta function of a group is a Dirichlet series encoding the number
of normal subgroups of each finite index. By making use of an identity for Lie algebras
of Chevalley type A∗ we derive for a family of groups a general formula for the normal
subgroup zeta function. Together with extensive Lie algebra calculations, we obtain general
properties of the normal subgroup zeta function of SL1

d(O) with O the ring of integers of a
non-Archimedean local field. In some specific cases, i.e. SL1

2(Zp), SL1
3(Zp) and SL1

3(FpJT K),
we obtain an explicit formula for the normal subgroup zeta function.
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Chapter 1

Introduction and general overview

This dissertation consists of three different research projects within group theory and it
is written as a cumulative thesis. The first project is about automorphisms of local fields
and consists of the article:

• With Jakub Byszewski and Gunther Cornelissen; Automata and finite order elements
in the Nottingham group, J. of Algebra 602 (2022), 484–554.

The article appears as a self-contained chapter in the thesis. It is preceded by a two page
summary of my contribution to this article during my time as a PhD student at the HHU
Düsseldorf; see Chapter 3. The second and third project are both about zeta functions
of infinite groups. The second project concerns the commensurability zeta function; see
Chapter 4. The third project is about the normal subgroup zeta function; see Chapter 5.
Chapter 4 and Chapter 5 both start with an introduction into the subject.

The three projects are preceded by the preliminary Chapter 2, where we introduce some
basic notions which will be of use in the later chapters. The references for the introduction,
Chapter 2, Chapter 4, Chapter 5 and the two page explanation of Chapter 3 are collected
at the end. The paper in Chapter 3 has its own bibliography.
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Automorphisms of local fields

All references to theorems, propositions, equations, figures and tables are to the paper
Automata and finite order elements of the Nottingham group (see Chapter 3), all citations
can be found in the bibliography at the end of this thesis.

In Chapter 3 we study finite order elements in the Nottingham group. In very elemen-
tary terms this comes down to the following. Suppose

σ(t) = t+ a2t
2 + a3t

3 + a4t
4 + · · · 6= t (1.1)

is a formal power series in the variable t with coefficients from the field F2 = Z/2Z with
two elements. Since σ(t) = t+O(t2), substituting σ(t) into itself produces a power series

σ◦2(t) = t+ a2(a3 + 1)t4 + · · · ,

and one may iterate this process to arrive at σ◦N(t) = σ(σ(· · · σ(t))) (N -fold composition).
We are interested in the explicit description of σ and N for which σ◦N(t) = t (this is only
possible if N is a power of 2). Our goal is not to compute finitely many coefficients ai of
such σ(t), but rather to give a finite description of the complete series.

For a fixed prime number p, the Nottingham group N (Fp) is the pro-p-Sylow subgroup
of the group of ring automorphisms Aut(FpJtK) of the formal power series ring FpJtK over
the finite field Fp, with composition as multiplication. There is a group isomorphism
Aut(FpJtK) ∼= N (Fp) o F∗p. A ring endomorphism σ of FpJtK is determined uniquely by
the image σ(t) ∈ tFpJtK of t, and N (Fp) is identified with the group of power series
σ(t) ∈ FpJtK with σ(t) = t + O(t2) under composition. The depth of σ = σ(t) ∈ N (Fp)
is d(σ) = ordt(σ(t) − t) − 1 (and d(t) = ∞), so if σ(t) = t + akt

k + O(tk+1) with ak 6= 0,
then d(σ) = k − 1. The lower break sequence of an element σ ∈ N (Fp) of finite order

pn is defined as (d(σ◦p
i
))n−1
i=0 . The lower break sequence of σ ∈ N (Fp) of order pn is a

refined invariant with the property that there are only finitely many conjugacy classes of
elements of fixed order pn with a given break sequence [41]. The method of Lubin [41] can
in principle be used to count that number using results from local class field theory. In the
same article there is an exact characterisation of the possible lower break sequences.

We can rephrase our goal now as follows: give a finite description of the complete series
of finite order elements in N (Fp).

The Nottingham group arises in many areas within mathematics.

• In group theory, every countably based pro-p group embeds into N (Fp) Camina [15];
in particular every finite p-group embeds into N (Fp) (an older unpublished result of
Leedham-Green and Weiss; see [15, Thm. 3]).

2



• In number theory the Nottingham group occurs naturally in the theory of wild ram-
ification (as the group of wild automorphisms of Fp((t)); see Fesenko [25]).

• The previous point also relates to algebraic geometry. Namely: if a group G acts on
a smooth projective curve X over Fp, then the stabiliser Gx of a point x ∈ X acts
on the completion of the local ring OX,x. This completion is isomorphic to FpJtK,
leading to an embedding of the wild ramification group G1

x (the p-Sylow subgroup of
Gx) into N (Fp); one can, for example, study deformations of group actions on curves
through deformations of this group homomorphism, much like deformations of linear
group representations, e.g. of Galois groups, cf. [49].

Klopsch proved that every element of order p in N (Fp) is conjugate to

t/m
√

1−matm = t+ atm+1 + · · · (1.2)

for some positive integer m coprime to p and a ∈ F∗p, and that these series are mutually not
conjugate [35]. In [41, §4] Lubin gave another proof of this result by using local class field
theory. The expression (1.2) may be readily converted into a formula for the coefficients
of the corresponding power series by applying the binomial expansion.

Jean [32] and Lubin [41] indicated how to use formal groups and explicit local class
field theory to describe elements of any order pn in N (Fp), and iterative procedures for
the calculation of the coefficients of such elements were described (compare [31], [34], [6,
§6]). However, the only known formulas for elements of order pn for n > 1 are for pn = 4 in
N (F2), given by Jean in [31, Ch. 7], Chinburg and Symonds [16], and Scherr and Zieve (cf.
[5, Rem. 1.4]). The Chinburg–Symonds example represents the action of an automorphism
of order 4 on the local completed ring at zero of the supersingular elliptic curve over F2;
compare also [5, Sect. 1], where it is argued that this is essentially the only example that
can be constructed by such a method; more precisely, up to conjugation, it is the only
‘almost rational’ example.

A variety of techniques have been used so far in attempts to tackle the problem of
describing the complete series of finite order elements in N (Fp), with various degrees of
success. We argue that it is advantageous to describe such series in closed computational
form through automata. A p-automaton is a finite directed multigraph (allowing loops, as
well as multiple edges between vertices) for which:

• vertices are labelled by elements of Fp;

• one vertex (the so-called start vertex ) is additionally marked ‘Start’;

• each vertex has exactly p outgoing edges, each labelled by a different element of the
set {0, 1, . . . , p− 1};
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Figure 1.1: A 2-automaton representing the element σmin of N (F2) of order 4 with lower
break sequence (1, 3).

• there is a path in the automaton from the start vertex to any vertex;

• an edge with label 0 always connects two (not necessarily different) vertices with the
same label.

In the general theory of automata, this is called a ‘leading zeros invariant p-DFAO (deter-
ministic finite p-automaton with output) with output alphabet Fp and all states accessible’
(vertices are also called ‘states’); see [1, 4.3]. An example of such an automaton is given
in the figure on this page.

A p-automaton produces a so-called p-automatic sequence (ak)k≥0, where ak is the label
carried by the final vertex of the walk that starts at the start vertex and follows the edges
according to the successive digits of k in base p (starting from the least significant digit,
also called the ‘reverse/backwards reading convention’, compare [1, 12.2]). The sequence
(ak)k≥0 gives rise to the corresponding formal power series

∑∞
k=0 akt

k over Fp in the variable
t. The fifth property of a p-automaton means that we can allow the base-p expansion of k
to have any number of leading zeros without affecting the resulting sequence.

For example, the automaton in Figure 1.1 corresponds to the power series

σmin(t) = t+ t2 + t4 + t5 +O(t6).

To illustrate our reading conventions, we compute the coefficient of t13 in the series σmin:
write 13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 in base 2 as 1101; begin at the start vertex and
follow the directed edges with respective labels 1, 0, 1, 1; we end up in a vertex with label
0, so a13 = 0.

The construction of elements of order pn in N (Fp) starts with constructing a cyclic
Galois extension of order pn of the field Fp((z)) of Laurent series through the use of Witt
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vectors [40, p. 107, Thm. 5]. This gives us explicit generators αi, satisfying algebraic
relations over Fp((z)), for the field extension and we get an explicit formula for the action
of a generator σ of the Galois group. By choosing a uniformiser t, given as a rational
function in the αi, for this extension, we get an explicit expression for σ(t) as a rational
function of the αi. With the help of a Groebner basis algorithm we can eliminate the
variables αi, giving an explicit equation F (t,X) = 0 for σ = σ(t) over the field Fp(t). We
can always reduce to the case where F (t,X) is irreducible, in which case it is shown in
Proposition 9.2.1 that degt F = degX F . Since σ is an automorphism of Fp((t)), we have
found an algebraic equation over Fp(t) satisfied by the element σ(t) in N (Fp) of order pn.

This explicit equation F (t,X) = 0 allows us to pass to the realm of automata using
Christol’s theorem. Christol’s theorem says that a power series σ =

∑∞
k=0 akt

k ∈ FpJtK is
algebraic over Fp(t) if and only if the sequence (ak)k≥0 is p-automatic [19, 20]. Hence we
have a theoretical method for constructing automata corresponding to elements of N (Fp)
of order pn for any positive integer n. Once the equation has been fixed the construction
of the automata has been automated. Three methods for constructing automata starting
with an equation are discussed in Section 3, they are based upon spaces of differential
forms [10], equations in Ore form [20, 53] and diagonals of two variable power series [53].
The size of the resulting automaton depends heavily on the choice of extension Fp((z)) and
the chosen uniformiser t. Within a conjugacy class of an element of order pn in N (Fp) the
minimal size of an automaton representing a power series can vary greatly.

Our method is valid for every prime number, but we limit ourselves here to the case
p = 2. For primes p > 2 the automata we computed tended to be so large (e.g. an order 9
automaton with 3634 states), that they were difficult to study, whereas for p = 2 we found
many small and managable automata. The next theorem describes elements of order 4 in
N (F2) with a ‘small’ break sequence up to conjugation in N (F2) in terms of automata.

Theorem 1.0.1 (Cor. 3.1.2 & Props. 3.4.1, 4.2.1, 5.2.1, 5.3.1). The following is a complete
list representing all possible elements of order 4 in N (F2) with break sequence (1,m) for
all admissible values m < 10, up to conjugation in N (F2):

• with break sequence (1, 3): two (previously known) series σCS and σ◦3CS given in Equa-
tions (12) and (13), with the corresponding automata displayed in Table 1. The
series σCS is conjugate in N (F2) to a new series σmin described by the automaton in
Figure 2, which is the unique series of order 4 described by a 2-automaton with at
most 5 states.

• with break sequence (1, 5): a series σ(1,5) corresponding to the 13-state automaton
displayed in Figure 5.

• with break sequence (1, 9): a series σ(1,9) with 110-state automaton described in Ta-
ble 2.
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In Section 4 we present an algorithm for finding, for fixed integers N and n, all minimal
2-automata representing an element of finite order 2n in N (F2) with at most N states [26].
For some of the automata it is possible to extract a manageable closed formula for the
power series. We present five new such formulas for power series of order 4: σ◦3J displayed
in Equations (16) & (17) and σT,1, σT,2, σT,3 and σT,4 in Table 3. In the literature there
are no known explicit descriptions of the complete series of finite order pn > 4 in N (Fp).
The next theorem gives the first descriptions of the complete series of order 8 elements in
terms of automata.

Theorem 1.0.2 (Props. 7.1.1, 7.2.1 & 7.3.1). Up to conjugation in N (F2), there are
precisely 4 elements σ8, σ

◦3
8 , σ8,2, σ

◦3
8,2 of order 8 with ‘minimal’ break sequence (1, 3, 11) in

N (F2), where σ8 corresponds to the 320-state automaton given in Table 7.2 , and σ8,2

corresponds to the 926-state automaton described in 7.3.

Every finite 2-group embeds in N (F2), so one might wonder if it is possible to give a
description in terms of automata for non-cyclic subgroups of N (F2). The next theorem
affirms this for the Klein four-group; see Section 8.3 for more on non-cyclic subgroups of
N (F2).

Theorem 1.0.3 (Props. 8.1.2 & 8.2.1). For every embedding of the Klein four-group V
in the Nottingham group N (F2), some nontrivial element of V has depth at least 5. Fur-
thermore, the series σV,1 and σV,2 corresponding to the automata depicted in Table 6 have
break sequences (1) and (5) and exhibit an explicit embedding of two generators of the Klein
four-group into N (F2).

To try to quantify our goal of giving finite descriptions of the complete series of finite
order elements in N (F2) we studied the notion of sparseness in relation to our finite order
series. A series

∑∞
k=0 akt

k ∈ F2JtK is called sparse if the number of non-zero coefficients up
to N grows like log(N)r for some real r ≥ 0. Cobham showed in [17] a dichotomy for series
in N (F2): either a series is sparse or the number of non-zero coefficients up to N grows

like Nα for some real α > 0. We write S for the set of all sparse series in N (F2) and Ŝ for
the series in N (F2) which are sparse up to multiplication by an element of F2(t). We also

introduce a third set ˆ̂S, which we do not define here. In Theorem 11.2.6 we discuss which

of the series in the article belong to S, Ŝ or ˆ̂S. In some cases, see Proposition 12.2.1, the
automaton of σ ∈ N (F2) can be used to decide if σ /∈ Ŝ.

Our investigation of finite order elements in N (Fp) through the use of automata has
provided us with many more interesting questions. It would be interesting to have exam-
ples of finite order elements in N (Fp) with order pn > 4 that have small automata. In
Theorem 1.0.3 we gave an example of an embedding of a non-cyclic group in N (F2) with
break sequences (1), (1), (5). What are the possible break sequences for embeddings of the
Klein four-group in N (F2), and more generally for arbitrary p-groups into N (Fp). We
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looked at embeddings of finite groups into N (Fp), a challenge would be to study embed-
dings of infinite groups in N (Fp) through automata. For example the free group on two
generators or the Grigorchuk group. An interesting question related to sparseness is, if
every conjugacy class of a finite order element in N (Fp) contains a sparse representative.

Zeta functions of some infinite groups

Commensurability zeta function

In Chapter 4 we study the commensurability zeta function. Let G be a group and let
H,K ≤ G be two subgroups of G. We say that the groups H and K are commensurable
(in the strict sense as subgroups of G), if their commensurability index

c(H,K) = |H : H ∩K| · |K : H ∩K|

is finite. This is a generalisation of the notion of commensurability for real numbers, two
non-zero real numbers are said to be commensurable if their ratio is a rational number.
Clearly, every two subgroups of a finite group are commensurable. Examples of two non-
commensurable subgroups of a group are also easy to be found. For example, take any
infinite group and consider two subgroups, one which is finite and one that is infinite.
Fixing a subgroup K ≤ G, we consider the commensurability function

cG,K : N→ N ∪ {0,∞}, n 7→ cG,Kn ,

where
cG,Kn = |{H ≤ G | c(H,K) = n}|,

i.e. the number of subgroups of G having commensurability index n with K. In case the
commensurability function cG,K : N→ N∪{0,∞} takes on only finite values, we associate
to the pair (G,K) the commensurability zeta function for the pair (G,K), denoted by
ζcomm
G,K (s), which is the (formal) Dirichlet series

ζcomm
G,K (s) =

∞∑
n=1

cG,Kn n−s, s ∈ C.

The abscissa of convergence of the zeta function ζcomm
G,K (s) is related to the growth type of

the commensurability growth function sG,K , which is defined by

sG,K : N→ N, n 7→ sG,Kn =
n∑
k=1

cG,Kk .

In the following we study properties of the commensurability zeta function, for instance
how the algebraic properties of the groups G,K control the analytic properties of ζcomm

G,K (s)
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and vice versa. This is similar to other zeta functions counting other substructures such
as the (normal, subnormal, maximal) finite-index subgroups or the finite dimensional rep-
resentations over C; for some examples see [27, 63]. We do have an additional flexibility,
since we consider a pair (G,K) of groups instead of a single group G.

In [8] the commensurability function is studied for the class of unipotent algebraic Z-
groups; e.g. algebraic group defined over Z, see also [52]. For every unipotent algebraic
Z-group G Bou-Rabee and Studenmund prove that the commensurability function of its
real Lie group G(R), with respect to the arithmetic lattice G(Z), takes only finite values.
Therefore the corresponding commensurability zeta function of the pair (G(R), G(Z)) is
defined. They show that the zeta function ζcomm

G(R),G(Z)(s) admits the formal Euler product

ζcomm
G(R),G(Z)(s) =

∏
p

ζcomm,p
G(R),G(Z)(s),

where p runs over all prime numbers and where the functions

ζcomm,p
G(R),G(Z)(s) =

∞∑
n=0

c
G(R),G(Z)
pn p−ns

are called the local factors. The local factors enumerate the subgroups of G whose com-
mensurability index with K is a power of the prime number p. Using techniques from
model theory and p-adic integration [46], previously succesfully applied to the area of sub-
group growth (see [45, Chapter 15 and Window 12]), they prove that the local factors
ζcomm,p
G(R),G(Z)(s) are rational functions over Q in p−s. Moreover, there are bounds on the de-

gree of the numerator and denominator of these rational functions, that are independent
of the prime number p. This mirrors a similar behaviour of the zeta functions related to
subgroup growth and representation growth; see [27, 30].

The only example, of an explicitly computed commensurability zeta function for a pair
of different groups, known to Bou-Rabee and Studenmund, is the commensurability zeta
function for the pair (R,Z) of abelian groups [8, Prop. 2.1], which they compute as

ζcomm
R,Z (s) =

ζ(s)2

ζ(2s)
=
∞∑
n=1

2ω(n)

ns
,

where ζ(s) =
∑∞

n=1 n
−s is the ordinary Riemann zeta function and ω(n) counts the number

of different prime factors of n. Any subgroup of R, which is commensurable with Z, is
actually a subgroup of Q, so in fact ζcomm

R,Z (s) = ζcomm
Q,Z (s). In [9] Bou-Rabee, Kaletha and

Studenmund compute some asymptotics of the commensurability growth function sG,Γ for
a Chevalley group scheme G defined over Z of rank greater than 1 and an arithmetic lattice
Γ in G(R). They show that the asymptotic behaviour of sG,Γ depends on the subgroup
growth function n 7→

∑n
k=1 ak(Γ) of Γ and a constant depending only on the root system

of G.
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Our contribution to the study of the commensurability function is the explicit com-
putation of the commensurability zeta functions for an infinite family of pairs of groups.
This extends the current list of known examples from a single one to infinitely many. Not
only does this give more examples to test hypotheses on, it also shows an interesting and
unexpected connection to the theory of subgroup growth, as we can express the commen-
surability zeta function completely in terms of a subgroup zeta function.
We compute for any positive integer d ∈ N for the pair (Rd,Zd) of abelian groups the com-
mensurability zeta function ζcomm

Rd,Zd(s) = ζcomm
Qd,Zd(s); see Theorem 1.0.4. In the wording of [8]

this covers the case where G is an abelian unipotent connected algebraic group defined
over Z. Because G is defined over Z, G is Q-isomorphic to a Q-vector group H (see [33,
Appendix A.3]), so that G(R) ∼= H(R) ∼= Rd for some d ∈ N. Under this Q-isomorphism
the image of G(Z) is commensurable with H(Z) [52, Prop. 4.1], which is a lattice of full
rank in H(R). Any two lattices of full rank inside Rd have the same commensurability
zeta function and since any lattice of full rank in Rd which is commensurable with Zd lies
in Qd, we can reduce our computation to the pair (Qd,Zd) of abelian groups.

The next theorem shows that the commensurability zeta function for the pair (Qd,Zd)
is related to the subgroup zeta function of Zd. Actually, this theorem is obtained as a
corollary of a more general statement, see Theorem 4.1.5, which deals with a generalisation
of the commensurability function of pairs of abelian groups to modules.

Theorem 1.0.4. Let d > 0 be an integer. The commensurability zeta function ζcomm
Qd,Zd(s)

for the pair (Qd,Zd) of abelian groups satisfies

ζcomm
Qd,Zd(s) · ζ≤

Zd(2s) = ζ≤
Zd(s)2, (1.3)

where ζ≤
Zd(s) denotes the subgroup zeta function of Zd.

The proof of Theorem 1.0.4 not only shows that the commensurability zeta function
satisfies equation (1.3), but actually explains the connection between the commensurability
zeta function ζcomm

Qd,Zd(s) and the subgroup zeta function ζ≤
Zd(s). Therefore the equation (1.3)

is more than a coincidence of Dirichlet series. Two alternative proofs for Theorem 1.0.4 are
given in the appendix for the cases d ∈ {2, 3}; one proof uses a standard basis for lattices
and the other proof uses the Bruhat-Tits building. It is a well-known result, see [45,
Chapter 15] for multiple proofs, that the subgroup zeta function for Zd is given by

ζ≤
Zd(s) = ζ(s)ζ(s− 1) · · · ζ(s− d+ 1),

where ζ(s) is the ordinary Riemann zeta function. Consequently, by using Theorem 2.0.3,
we have the following corollary of Theorem 1.0.4, describing the commensurability growth.

Corollary 1.0.5. Let d > 0 be an integer. The commensurability zeta function ζcomm
Qd,Zd(s)

for the pair (Qd,Zd) is given by the formula

ζcomm
Qd,Zd(s) =

d−1∏
k=0

ζ(s− k)2

ζ(2s− k)

9



and hence the commensurability growth n 7→ sQ
d,Zd

n of the pair (Qd,Zd) satisfies

sQ
d,Zd

n ∼ C

d
nd log(n) as n→∞,

where the constant C is given by

C =
ζ(2)2ζ(3)2 · · · ζ(d)2

ζ(d+ 1)ζ(d+ 2) · · · ζ(2d)
.

We prove Theorem 1.0.4 not directly. Instead, we formulate the concept of the com-
mensurability function for modules and then prove a general theorem for a specific class
of modules; see Theorem 4.1.5. Theorem 1.0.4 is then obtained as a corollary of Theo-
rem 4.1.5.

Normal subgroup zeta function

In Chapter 5 we study the normal subgroup zeta function of a specific family of groups.
Let G be a group. Define for every positive integer n ∈ N the number aP

n (G) by

aP
n (G) = |{H P G | |G : H| = n}|,

i.e. the number of normal subgroups of G of index n. In case the number aP
n (G) is finite

for every n ∈ N, we define the normal subgroup growth of the group G by

sP(G) : N→ N, m 7→ sP
m(G) =

m∑
n=1

aP
n (G),

i.e. sP
m(G) equals the number of normal subgroups of G of index at most m, and we define

the corresponding normal subgroup zeta function, or in short normal zeta function, of G
by the (formal) Dirichlet series

ζP
G (s) =

∞∑
n=1

aP
n (G)n−s, s ∈ C.

For a prime number p we write

ζP
G,p(s) =

∞∑
n=0

aP
pn(G)p−ns, s ∈ C,

for the local factor of ζP
G (s) at p. When G is a profinite group, we should take into account

the topology of G and we define aP
n (G) to be the number of closed subgroups of G of index

10



n. In case G is a finitely generated profinite group, then a deep result by Nikolov and Segal,
see [50], says that any abstract normal subgroup of G of finite index is open. So for these
groups we do not need to incorporate the condition of being closed. Groups for which the
numbers aP

n (G) are finite for all n ∈ N are, for example, finitely generated groups, because
these groups have finitely many subgroups of every finite index. Many interesting groups
are finitely generated. When G is a profinite group and topologically finitely generated an
analogous statement holds for closed subgroups of G.

In their seminal 1998 paper [27] Grunewald, Segal and Smith introduce, among other
types of zeta functions of groups, the normal subgroup zeta function. For torsion-free
finitely generated nilpotent groups G they show the existence of an Euler product

ζP
G (s) =

∏
p

ζP
G,p(s),

where the product runs over all prime numbers p, rationality of the local factors ζP
G,p(s)

and more. They are interested in what the growth of the function sP(G) can say about
the algebraic properties of the group G and vice versa. For the closely related area of
subgroup growth a clear answer is given for groups of polynomial subgroup growth, which
were characterised as the virtually soluble groups of finite rank in 1993 by Lubotzky, Mann
and Segal [42]. This is one of the greatest achievemenst of the area of subgroup growth.
For normal subgroup growth there is no such result. It is remarked in the introduction
of the article [4] by Barnea and Schlage-Puchta that a slight variation of [45, Prop. 1.3.2
(ii)] yields for groups H ≤ G with |G : H| < ∞ that sP

n (G) ≤ sP
n (H)n|G:H| for all n ∈ N.

And so the difficult problem remains, if a finite index subgroup of a group G can have sub-
stantially more normal subgroups than the group G itself. In contrast to subgroup growth
there are simply too many groups with polynomial normal subgroup growth (including,
for instance, finitely generated infinite simple groups); even if one restricts to residually fi-
nite groups, which seems reasonable, it seems daunting to extract much useful information
solely from the condition of polynomial normal subgroup growth. Typically it is difficult to
compute explicitly the normal zeta functions of groups, even for nicely behaved families of
groups such as compact p-adic analytic groups. Very little is known about the asymptotic
behaviour of sP(G) or the properties of the zeta function ζP

G (s).

In the 2001 article [44] Lubotzky shows for any finitely generated group G and every
n ∈ N that sP

n (G) ≤ ncΩ(n), with c > 0 some constant and where Ω(n) denotes the number
of prime divisors of n with multiplicity. A result of Mann [47] shows that for a non-abelian
free group G we have sP

n (G) > nc log(n) for some c > 0 and infinitely many n ∈ N. This
shows that the normal subgroup growth type of non-abelian free groups is nlog(n); see [4]
for the definition of the type of a function.

For free abelian groups the corresponding normal subgroup zeta function, which coin-
cides with the subgroup zeta function, are well-known. For an integer d > 0 the normal
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zeta function of the free abelian group G = Zd of rank d is given by

ζP
Zd(s) = ζ(s)ζ(s− 1) · · · ζ(s− d+ 1),

with ζ(s) =
∑∞

n=1 n
−s the ordinary Riemann zeta function, see [12, §1] or [45, Ch. 15] for

five different proofs of this identity. Using the analytic properties of ζP
Zd(s) it is possible to

deduce the rate of growth of sP
N(Zd) as a function of N . For torsion-free finitely generated

nilpotent groups G many local factors of ζP
G (s) are computed in [27]. In [62] Voll computes

the normal zeta function of torsion-free finitely generated nilpotent groups of class 2 with
small centres. This applies in particular to the Heisenberg group H(R), which is for a ring
R (commutative with 1) defined as the subgroup

H(R) =


1 a b

1 c
1

 |a, b, c ∈ R


of GL3(R). Specifically we have ζP
H(Z)(s) = ζ(s)ζ(s−1)ζ(3s−2). An important step in [62]

is the use of the Mal’cev correspondence, which associates to a torsion-free finitely gener-
ated nilpotent group G a Q-Lie algebra L(G). In the case where G is of nilpotency class 2,
we have for every prime number p that ζP

G,p(s) = ζP
L(G),p(s), with ζP

L(G),p(s) enumerating the

ideals of L(G) of p-th power index. The local factors ζP
H(O),p(s) of the normal zeta function

ζP
H(O)(s), with O the ring of integers of a number field, have also recieved some considerable

amount of attention. In [54, 55] the local factors ζP
H(O),p(s) have been computed for primes

p which are unramified or non-split in O; see also [22, Sect. 2] for further examples.

In general the computation of the normal zeta function of a group G is hard. However,
sometimes we understand the structure of the group G well enough that we are able to
compute the normal zeta function explicitly. In Chapter 5 we focus on a particular family
of groups for which we can say something concrete about the normal zeta function and in
some cases calculate the normal zeta function explicitly.

For the remainder of the introduction let K be a non-Archimedean local field, write O
for the ring of integers of K, let p be the unique maximal ideal of O and let k = O/p be
the finite residue field of characteristic char k = p. These local fields play a central role in
algebraic number theory; typical examples are the field Qp of p-adic numbers and the field
Fp((T )) of Laurent series over a finite field Fp. Let d > 1 be an integer and consider the
group G0 = SLd(O). For a positive integer n ∈ N the n-th principal congruence subgroup
Gn = SLnd(O) of the group G0 = SLd(O) is defined by

SLnd(O) = ker(SLd(O)→ SLd(O/pn)),

here we consider the reduction of the matrix entries modulo pn. The groups SLnd(O) are
examples of pro-p groups.

12



In case K is the field Qp of p-adic rational numbers or the field Fp((T )) of Laurent
series in T with coefficients in the finite field Fp, the (normal) subgroup zeta functions of
the groups SL1

d(O) have been studied. In [45, Sect. 4.3] bounds for the subgroup growth
of the groups SL1

d(O) with O = FpJT K are obtained. In some cases the normal subgroup
zeta functions of the groups SL1

d(O) have also been studied. In [58] Snopce computes the
normal zeta function for the group SL1

2(FpJT K) for all prime numbers p > 2, showing that

ζP
SL1

2(FpJT K)(s) =
1 + (p2 + p+ 1)(t+ t2 + pt3)

1− t3
, t = p−s,

from which it follows for an integer m ∈ N that

aP
pm(SL1

2(FpJT K)) =

{
p2 + p+ 1 if 3 - m
p3 + p2 + p+ 1 if 3 | m.

For a fixed prime number p > 2 Snopce also shows that the group SL1
2(FpJT K) has the

same normal zeta function as the group Q(s, r), defined by Ershov in [24]. In [21, Cor.
4.10] du Sautoy provides a formula for the normal zeta function of the groups SLn2 (Zp) for
n ∈ N and p > 2 a prime number. In Theorem 1.0.10 we compute the normal zeta function
of SL1

2(Zp) for prime numbers p > 2, which is different from the one presented in [21, Cor.
4.10]. We believe our formula is correct. We are supported in this by the paper [3] by
Barnea and Guralnick, they prove in [3, Thm. 1.3] that the sequence (aP

n (SL1
2(Zp)))n≥1

is eventually periodic. Whereas the formula in [21, Cor. 4.10] suggests that aP
n (SL1

2(Zp))
grows polynomially with n. It was pointed out by Klopsch in [36, p. 57], that there is a
mistake in [21, Lem. 4.6]. This could possibly explain the different formula in [21, Cor.
4.10]. It is also worth mentioning that [3, Thm. 1.4] proves that aP

n (SL1
d(FpJT K)) is not

bounded as a function of n in case p | d in contrast to the case p - d, where it is bounded.

Our investigation into the normal zeta function of the groups SL1
d(O) is motivated by

a yet to be published paper titled Normal subgroups of Chevalley groups by Klopsch and
Snopce [37]; generalising earlier work of Barnea, Guralnick and Snopce [3, 58]. They set out
to prove the following. Let g be a Chevalley Lie algebra over a field F , associated to a root
system of Chevalley type X. Suppose that char F 6= 2, if X is one of A∗, B∗, C∗, D∗, F4, and
that char F 6= 3, if X is G2. Let z be a non-central element of g, then [g, [g, [g, x]]] equals
g. In Theorem 1.0.6 we strengthen their result for the simple Lie algebras of Chevalley
type A∗. The finiteness result discovered and proved by Klopsch and Snopce is very
surprising. Besides its fundamental nature it has very tangible applications, as noted by
Klopsch and Snopce. For instance, their result places severe restrictions on the normal
subgroup structure and describe properties of the normal subgroup zeta functions of the
groups SL1

d(O) of increasing rank. In small cases, one should be able to compute the
corresponding normal zeta functions explicitly. This is also what we do in Chapter 5.

For an overview of our method of computation see the introduction of Chapter 5. We
translate the problem of counting the number of normal subgroups of G = SL1

d(O) to
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a problem solely about Lie algebras. Once we are working with Lie algebras, the next
theorem is crucial. Write sld(k) for the special linear Lie algebra of Chevalley type Ad−1

over the field k with the usual bracket [x, y] = xy − yx for x, y ∈ sld(k); see Section 5.4.1.
For a subspace V ⊆ sld(k) we write [sld(k), V ] for the subspace of sld(k) spanned by all
the commutators [x, y] with x ∈ sld(k) and y ∈ V . Our next theorem extends earlier
unpublished results for simple Lie algebras of Chevalley type A∗, as discussed in [37].

Theorem 1.0.6. Let d > 1 be an integer and let k be a field with char k - 2d. For all
non-zero x ∈ sld(k) we have

[sld(k), [sld(k), x]] = sld(k).

Actually, a slightly stronger result is proven in Theorem 5.6.5 in Section 5.6.1, however
the above theorem is all we need for our discussion. A consequence of the above theorem
is Proposition 5.3.7. It states that any closed normal subgroup {1} 6= N P G satisfies

Gn+2 < N ≤ Gn, N * Gn+1

for some n ∈ N, here Gn = SLnd(O). Ultimately this leads to the next theorem, which
presents a general formula for the normal zeta function of the groups SL1

d(O). We prove
this theorem in Theorem 5.3.14. For convenience we define the number δK ∈ {0, 1} by

δK =

{
1 when K is an unramified extension of Qp;

0 otherwise.

Theorem 1.0.7 (Klopsch, Snopce, T.). Let d > 1 be an integer and let p be a prime
number with p - 2d. Let K be a non-Archimedean local field with ring of integers O and
residue class field k. Write L = sld(k). The normal zeta function ζP

G (s) for the group
G = SL1

d(O) is given by

ζP
G (s) =

1

1− |L|−s
∑

06=V⊆L

|L : V |−s
 ∑
δKV+[V,L]⊆W⊆L

|L : W |−s+dimFp V

 ,

where V,W are Fp-subspaces of L.

The above expression shows that the normal zeta function of SL1
d(O) is a rational func-

tion in p−s and we also recover that the sequence (aP
n (SL1

d(O)))n≥1 is eventually periodic;
this generalises the result in [3, Thm. 1.3]. We see that the formula for the normal zeta
function depends on the residue field k, but except for the occurrence of δK , it does not
depend on the ramification behaviour of the maximal ideal p. We list two important
corollaries.
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Corollary 1.0.8 (Klopsch, Snopce, T.). Let d > 1 be an integer, let p be a prime number
with p - 2d and write f = [k : Fp] for the degree of the field extension k/Fp. Then there
exists a polynomial Q(X, Y ) ∈ Z[X, Y ] with degY Q = 2(d2 − d)f − 1 such that

ζP
SL1

d(O)
(s) =

Q(p, p−s)

1− (p−s)(d2−1)f
.

Corollary 1.0.9. Let d > 1 be an integer and let p be a prime number with p - 2d. Let
K/Qp be an unramified extension with O the ring of integers of K and write f = [k : Fp]
for the degree of the field extension k/Fp. Then the groups SL1

d(O) and SL1
d(Fpf JT K) have

the same normal subgroup zeta function.

Hence the groups SL1
d(O) and SL1

d(Fpf JT K) in the corollary are two examples of normally
isospectral groups.

In order to compute the normal zeta function of the groups SL1
d(O) explicitly, we need

to understand the behaviour of the map

V 7→ δKV + [sld(k), V ]

where V is a subspace of sld(k). We need to know for all integers 1 ≤ m,n ≤ d2 − 1 how
many subspaces V of sld(k) there are satisfying

dimFp V = m and dimk(δKV + [sld(k), V ]) = n.

These computations are done in Section 5.4. Using these computations we derived the
normal zeta function of the groups SL1

2(Zp) (p > 2), SL1
3(FpJT K) and SL1

3(Zp) (p > 3). We
also recover the same normal zeta function for the group SL1

2(FpJT K) as in [58].

Theorem 1.0.10. Let p > 2 be a prime number. The normal zeta function of the group
SL1

2(Zp) is given by

ζP
SL1

2(Zp)
(s) = 1 +

(p2 + p+ 1)t

1− t
, t = p−s

and hence for any m ∈ N we have aP
pm(SL1

2(Zp)) = p2 + p+ 1.

Consequently, the normal subgroup growth of the group SL1
2(Zp) for p > 2 is given by

sP
pn(SL1

2(Zp)) = 1 + n(p2 + p+ 1), n ∈ N.

Theorem 1.0.11. Let p > 3 be a prime number. The normal zeta functions of the groups
Γ0 = SL1

3(FpJT K) and Γ1 = SL1
3(Zp) are of the form

ζP
Γ`

(s) =
1 + a`1(p)t+ . . .+ a`11(p)t11

1− t8

15



where t = p−s, ` ∈ {0, 1} and a`i(X) ∈ Z[X] are polynomials in X with non-negative coef-
ficients. Write a` = (deg a`1(X), . . . , deg a`11(X)) for the list of degrees of the polynomials
a`1, . . . , a

`
11. We then have

a0 = (7, 12, 15, 16, 15, 12, 10, 10, 10, 10, 8)

and
a1 = (7, 12, 15, 16, 15, 12, 9, 8, 9, 9, 7).

The explicit polynomials a`i can be found in Section 5.6.7. The difference between the
two sequences a0, a1 is explained by the fact that the condition V + [L, V ] ⊆ W is more
restrictive than the condition [L, V ] ⊆ W .
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Chapter 2

Preliminaries

In this chapter we recall some well-known definitions and useful results. We need this for
the later chapters.

Global fields and local fields

We give a brief overview of global fields and local fields. Global fields are either number
fields, i.e. finite field extension of the field Q of rational numbers, or function fields in one
variable over a finite field, i.e. a finite extension of Fp(T ) for some prime number p. Local
fields are either Archimedean, in which case they are R or C, the fields of real and complex
numbers, or non-Archimedean, in which case they are finite extensions of the fields Qp or
finite extensions of the fields Fp((T )) for some prime number p. For more on global fields
and local fields see [40, Ch. 25]. We will fix the notation for these fields for the remainder
of this thesis.

For a non-Archimedean local field K let O denote the ring of integers of K. Write p for
the unique maximal ideal of O and q for the cardinality of the finite residue field O/p ∼= Fq.
Moreover, let v = vp : K → Z∪ {∞} be the discrete valuation on K with v(p\p2) = 1 and
write | · |p for the induced absolute value on K satisfying |x|p = q−v(x) for all x ∈ K.

For a global field K let O denote the ring of integers of K. For a maximal ideal p of O
we denote by Kp the completion of the field K with respect to the ideal p. This field Kp

is a non-Archimedean local field. We write Op for the ring of integers of the field Kp and

17



pOp for the unique maximal ideal of Op.

When K is a global field or a non-Archimedean local field, its ring of integers O is a
Dedekind domain. We write |.| for the ordinary absolute value on the fields R or C. For
a non-Archimedean local field K and an integer d ∈ N we extend the discrete valuation v
on K to Matd(K), the d× d-matrices with entries in K, by defining

v(x) = min
1≤i,j≤d

v(xij)

for x = (xij) ∈ Matd(K).

Example 2.0.1. (a) Let p be a prime number and consider the non-Archimedean local
field Qp of p-adic rational numbers. The ring of integers of Qp is the ring of Zp of p-adic
integers and the maximal ideal of Zp is pZp. The residue field is Zp/pZp

∼= Fp. We can
write any non-zero element a ∈ Qp as a = pnb for some integer n ∈ Z and some unit
b ∈ Z∗p, we then have v(pnb) = n and hence the induced absolute value, which we denote
by |.|p, is given by |a|p = p−n.
(b) The ring of integers of the global field Q is Z, the ordinary integers. Let p be a prime
number, then pZ is a maximal ideal of Z. The completion of Q with respect to the ideal
pZ is the field Qp of p-adic rational numbers.

When K is a number field and I a non-zero ideal of the ring of integers O of K, then the
quotient O/I has finite cardinality and we write N(I) = |O : I| for the index. The function
N on non-zero ideals of I is called the (absolute) norm and it is completely multiplicative.
So for non-zero ideals I, J of O we have

N(IJ) = N(I)N(J).

Finitely generated modules over a Dedekind domain

In Chapter 4 we need the structure theorem for finitely generated modules over a Dedekind
domain. Let R be an integral domain. We say R is a Dedekind domain, if the following
three conditions holds: R is a Noetherian ring, R is integrally closed and every non-zero
prime ideal of R is maximal. There are several other, but equivalent, definitions of a
Dedekind domain.

Theorem 2.0.2. [23, p. 484–485] Let R be a Dedekind domain and M a finitely generated
module over R. There exists a unique integer d ≥ 0 and there exist ideals I1, . . . , Ik of R
such that

M ∼= Rd ⊕

(
k⊕
i=1

R/Ii

)
.
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Dirichlet series

To a sequence a = (an)n≥1 of complex numbers we associate the Dirichlet series, which is
a series of the form

ζa(s) =
∞∑
n=1

an
ns
, s ∈ C.

Dirichlet series are a special type of generating series and they occur frequently in different
areas of mathematics, for example in algebraic number theory or in group theory. A
common theme is to relate the algebraic properties of the sequence a to the analytic
properties of ζa(s). Interesting analytic properties are, for example, (absolute) convergence,
the value of the abscissa of convergence, the order and the residue at a pole. The most
famous example of a non-trivial Dirichlet series is the Riemann zeta function ζ(s), defined
by

ζ(s) =
∞∑
n=1

1

ns
, s ∈ C.

Let a = (an)n≥1,b = (bn)n≥1 be two sequences of complex numbers with ζa(s), ζb(s)
respectively their Dirichlet series. When ζa(s), ζb(s) both converge on some common half-
plane H and satisfy ζa(s) = ζb(s) for all s ∈ H, then we have that the sequences a,b are
equal. A well-known property of the Riemann zeta function ζ(s) is the existence of an
Euler product

∞∑
n=1

1

ns
=
∏
p

1

1− p−s
,

where the product is over all prime numbers p, as a formal identity (also both sides converge
for Re(s) > 1). In general, an Euler product for a Dirichlet series is an expansion of the
Dirichlet series into a product of other Dirichlet series indexed by prime numbers or prime
ideals. For instance, for a number field K its Dedekind zeta function, which is an important
analytic function in number theory, is defined by

ζK(s) =
∑

06=I⊆O

N(I)−s, s ∈ C,

where the summation is over all non-zero ideals I of O with N(I) = |O : I| its index, and it
corresponds to the Dirichlet series of the sequence (an)n≥1 with an = |{I P O | N(I) = n}|.
The Dedekind zeta function ζK(s) has the Euler product∑

06=I⊆O

N(I)−s =
∏
p

1

1−N(p)−s
,

where the product runs over all maximal ideals p of O (both sides converge for Re(s) > 1).
The Dedekind zeta function generalises the Riemann zeta function.
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We finish with an interesting theorem. For two functions f, g : R>0 → R>0 we write
f(x) ∼ g(x) for x → ∞, if limx→∞

f(x)
g(x)

= 1. We write Γ for the Gamma function defined
by

Γ(s) =

∫ ∞
0

ts−1e−t dt, s ∈ C with Re(s) > 0,

satisfying Γ(n) = (n− 1)! for all natural numbers n ∈ N. The next theorem describes the
summatory growth of the coefficients of a Dirichlet series in terms of analytic properties of
the series. Its statement is a rewording of [28, Thm. 4.20].

Theorem 2.0.3. [28, Thm. 4.20] Let a = (an)n≥1 be a sequence of non-negative real
numbers such that the corresponding Dirichlet series

ζa(s) =
∞∑
n=1

ann
−s, s ∈ C

converges on the half-plane Re(s) > a for some real number a > 0. Assume that in a
neighbourhood of a we can write

ζa(s) =
f(s)

(s− a)b
+ g(s),

where f(s), g(s) are holomorphic; b > 0 is a positive real number and f(a) 6= 0. Assume
also that ζa(s) can be holomorphically continued to the line Re(s) = a, except for the pole
at s = a. Then we have for the summatory function S(x) =

∑
n≤x an, when x tends to

infinity, that

S(x) ∼ f(a)

aΓ(b)
xa(log x)b−1.

Principal congruence subgroups

In this section we introduce the principal congruence subgroups of two types of groups.
We use these groups in Chapter 4 and Chapter 5. Let R be a ring (commutative with one).
For an integer d > 0 we write

GLd(R) = {x ∈ Matd(R) | det(x) ∈ R∗}

for the group of all invertible d× d-matrices with entries in R and we write

SLd(R) = ker(det : GLd(R)→ R∗)

for the special linear group of degree d over the ring R.
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Let K be a non-Archimedean local field with ring of integers O and let p be the maximal
ideal of O. We write GLd(O) for the subgroup of GLd(K) consisting of the elements in
GLd(K) ∩ Matd(O) whose inverse in GLd(K) also has all its entries in O. The group
SLd(O) is defined as the kernel of the map det : GLd(O)→ O∗. For an integer n ∈ N we
define the n-th principal congruence subgroup GLnd(O) of GLd(O) by

GLnd(O) = ker(GLd(O)→ GLd(O/pn)).

Hence GLnd(O) consists of all matrices in GLd(O) which are congruent to the identity
matrix modulo pn. The reduction map GLd(O) → GLd(O/pn) is surjective and hence we
have an isomorphism

GLd(O)/GLnd(O) ∼= GLd(O/pn).

For an integer n ∈ N we define the n-th principal congruence subgroup SLnd(O) of SLd(O)
by

SLnd(O) = ker(SLd(O)→ SLd(O/pn)).

Similarly, the reduction map SLd(O)→ SLd(O/pn) is surjective, giving the isomorphism

SLd(O)/SLnd(O) ∼= SLd(O/pn).

Gaussian binomial coefficients

Let 0 ≤ k ≤ n be integers and q a variable. The Gaussian binomial coefficient
(
n
k

)
q

is

defined by (
n

k

)
q

=
(1− qn)(1− qn−1) · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
.

It turns out that
(
n
k

)
q

is actually a polynomial in Z[q]. Suppose q is a prime power. Let V

be a vector space of dimension n over Fq, here Fq is the finite field with q elements, then(
n
k

)
q

equals the number of subspaces of dimension k of V .
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Chapter 3

Automorphisms of local fields

3.1 Declaration

The first part of this thesis consists of the article

Automata and finite order elements in the Nottingham group

by Jakub Byszewski, Gunther Cornelissen and myself, published in the Journal of Algebra
Volume 602 (2022), pages 484–554; [14]. A link to an older version of the paper, differing
only slightly from the article, can be found on the arXiv [13]. The paper was written
during my time as a PhD student at the HHU Düsseldorf and originally intended as a
write-up of results found during my master’s thesis, at Utrecht University supervised by
G. Cornelissen (2018), on the same subject [61].

During the process of writing the paper we continued to discover relevant new results
and so we incorporated them into the paper. In the end, the contribution to the research
and preparation of the paper was divided equally among the three authors. Some of the
new results were discovered by myself during my PhD time and therefore this paper is a
part of my PhD thesis. Roughly a quarter of my own contribution to the paper was done
during my master’s, the rest during my PhD time. The paper is a collaboration of the
three authors and consequently many of the results were obtained jointly, moreover any
contribution by one of us has subsequently been edited by the other two authors.

Below is a short summary of my more noteworthy contributions to the paper during
my time as a PhD student.

• Section 3.2b. The analysis of the algorithm of Christol in Section 3.2b was written
by me.
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• Section 4. For this specific section I collaborated with Ragnar Groot Koerkamp, he
is not an author of the paper, but his contribution is credited in Section 4 and in the
acknowledgements. Together we developed an algorithm to produce a list of automata
on at most 5 states representing series of order 2 and 4. The implementation in C++

was done by Groot Koerkamp. This resulted in Proposition 4.2.1, that the series
σmin is the unique series of order 4 on at most 5 states.

• Proposition 5.3.1. The unique, up to conjugation, series σ(1,9) of order 4 with break
sequence (1, 9) = 〈1, 5〉 was found by me.

• Proposition 8.2.1. The explicit example of the embedding of the Klein four-group in
N (F2) with generators σV,1, σV,2 was found by me.

• Proposition 9.2.1. The original proof, that the degree and height of an algebraic
element of the Nottingham are equal, comes from me. The current proof is a simpli-
fication of my original proof.

• Theorem 11.2.6. Showed originally that σJ, σ
◦3
J ∈ ˆ̂S\Ŝ and σK,3, σ(1,5) /∈ ˆ̂S. The

current proof of Theorem 11.2.6 uses different methods.

• Proposition 12.2.1. I developed a criterion, verifiable on automata, for a series to not
be an element of Ŝ.

My co-authors were consulted during the preparation of this statement and they have
seen its final form.

24



Journal of Algebra 602 (2022) 484–554

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Automata and finite order elements in the 

Nottingham group

Jakub Byszewski a, Gunther Cornelissen b,∗, Djurre Tijsma c

a Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, ul. S. Łojasiewicza 
6, Kraków, 30-348, Poland
b Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, Utrecht, 3508 TA, 
The Netherlands
c Mathematisches Institut der Heinrich-Heine-Universität, Universitätsstraße 1, 
Düsseldorf, 40225, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2020
Available online 1 April 2022
Communicated by Kirsten 
Eisenträger

MSC:
11B85
11-04
11G20
11S31
11Y16
20E18
20E45
68Q70

Keywords:
Nottingham group
Power series over finite fields
Automata theory

The Nottingham group at 2 is the group of (formal) power 
series t +a2t2+a3t3+ · · · in the variable t with coefficients ai

from the field with two elements, where the group operation 
is given by composition of power series. The depth of such a 
series is the largest d � 1 for which a2 = · · · = ad = 0.
Only a handful of power series of finite order (forcedly a 
power of 2) are explicitly known through a formula for their 
coefficients. We argue in this paper that it is advantageous 
to describe such series in closed computational form through 
automata, based on effective versions of proofs of Christol’s 
theorem identifying algebraic and automatic series.
Up to conjugation, there are only finitely many series σ
of order 2n with fixed break sequence (i.e. the sequence 
of depths of σ◦2i ). Starting from Witt vector or Carlitz 
module constructions, we give an explicit automaton-theoretic 
description of: (a) representatives up to conjugation for all 
series of order 4 with break sequence (1, m) for m < 10; (b) 
representatives up to conjugation for all series of order 8 with 
minimal break sequence (1, 3, 11); and (c) an embedding of 
the Klein four-group into the Nottingham group at 2.
We study the complexity of the new examples from the 
algebro-geometric properties of the equations they satisfy. For 
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this, we generalise the theory of sparseness of power series to 
a four-step hierarchy of complexity, for which we give both 
Galois-theoretic and combinatorial descriptions. We identify 
where our different series fit into this hierarchy. We construct 
sparse representatives for the conjugacy class of elements of 
order two and depth 2μ ± 1 (μ � 1). Series with small state 
complexity can end up high in the hierarchy. This is true, for 
example, for a new automaton we found, representing a series 
of order 4 with 5 states (the minimal possible number for such 
a series).
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Suppose σ(t) = t + a2t
2 + a3t

3 + a4t
4 + · · · �= t is a formal power series in the variable 

t with coefficients from the field F2 = Z/2Z with two elements. Since σ(t) = t + O(t2), 
substituting σ(t) into itself produces a power series σ◦2(t) = t +a2(a3+1)t4+· · · , and one 
may iterate this process to arrive at σ◦N(t) := σ(σ(· · ·σ(t))). (We will systematically 
write σ◦N (t) for the N -fold composition, and σ(t)N for the N -th power of the power 
series σ(t); so here, for example, σ(t)2 = t2 + a2t

4 + · · · .) Our concern is the explicit 
description of σ and N for which σ◦N (t) = t (this is only possible if N is a power of 
2). Our goal is not to compute finitely many coefficients ai of such σ(t), but rather to 
give a finite description of the complete series. To accomplish this, one might search for 
explicit formulas for the general coefficient ai or for the set

E(σ) := {i ∈ Z�0 : ai �= 0}

of occurring exponents, and this has been done in a few cases. In this paper, we will 
argue that one may push the boundaries of what is currently feasible by describing the 
coefficients of the power series by means of a finite automaton (that such a description is 
possible was already pointed out in [9, Rem. 1.5]). We will construct the automaton using 
symbolic computation, based on Christol’s characterisation of algebraic power series by 
automata [23,24]. We wish to stress that an automaton is a perfectly deterministic finite 
description of the corresponding power series σ(t), but that a very small automaton 
(i.e. with very few states) may correspond to a power series for which an elementary 
description of the set E(σ) is very complex. If one is interested in just the computation 
of the k-th coefficient of the power series σ(t), the automaton can be used to do this in 
time logarithmic in k.

We will first review the mathematical relevance of this problem. Then we describe 
existing results and explain our method. Since the same question makes sense for the 
finite field Fp with p elements (where p is prime, and then forcedly N is a power of p), 
we will consider this more general problem in the theoretical parts of the paper.
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1.1. Connections

Fixing a prime number p, the Nottingham groupN (Fp) is the pro-p-Sylow subgroup of 
the group of ring automorphisms Aut(Fp�t�) of the formal power series ring Fp�t� over 
the finite field Fp, with composition as multiplication. There is a group isomorphism 
Aut(Fp�t�) ∼= N (Fp) �F∗

p. A ring endomorphism σ of Fp�t� is determined uniquely by 
the image σ(t) ∈ tFp�t� of t, and N (Fp) is identified with the group of power series 
σ(t) ∈ Fp�t� with σ(t) = t + O(t2) under composition. We write σ ◦ τ for the result of 
substituting the series τ ∈ N (Fp) for the variable t in σ ∈ N (Fp). The Nottingham 
group arises in many areas:

• In group theory, as Ershov remarked in [32], N (Fp) is ‘an excellent test example 
for many questions or conjectures in profinite group theory that have been settled 
for Chevalley groups’. In that reference, he proved that for p � 5, N (Fp) admits 
no open embedding into a topologically simple group. On the other hand, every 
countably based pro-p group embeds into N (Fp) (Camina [20]; Jennings [44]); in 
particular, every finite p-group embeds into N (Fp) (an older unpublished result of 
Leedham-Green and Weiss; see [20, Thm. 3]).

• In number theory, the Nottingham group occurs naturally in the theory of wild 
ramification (as the group of wild automorphisms of Fp( (t) ); see Fesenko [33]).

• The previous point relates to algebraic geometry, namely: if a group G acts on a 
smooth projective curve X over Fp, then the stabiliser Gx of a point x ∈ X acts 
on the completion of the local ring OX,x. This completion is isomorphic to Fp�t�, 
leading to an embedding of the wild ramification group G1

x (the p-Sylow subgroup 
of Gx) into N (Fp); one can, for example, study deformations of group actions on 
curves through deformations of this group homomorphism, much like deformations 
of linear group representations, e.g. of Galois groups, cf. [56].

The need for explicit representations of finite order elements in N (Fp) has been articu-
lated several times, both in group theory ([21, p. 216], [54, §5.4]), as well as in deformation 
theory, where conclusive results about formal deformation spaces and/or lifting are only 
known when standard forms for the series are available [8,15,28,30,16,36].

Our results are also relevant for the theory of automata (that it relies upon), in par-
ticular, issues of implementation of certain algorithms for solving algebraic equations 
(Section 3, e.g. [14]), the enumeration of automata with specific properties (cf. Section 4), 
and an extension of Cobham’s theory of complexity of automata/regular languages (cf. 
Section 10).

1.2. Review of previous work

Klopsch has proven that every element of order p in N (Fp) is conjugate to

t/m
√
1−matm = t+ atm+1 + · · · (1)
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for some positive integer m coprime to p and a ∈ F∗
p, and that these series are mutually 

not conjugate [48]. The expression (1) may be readily converted into a formula for the 
coefficients of the corresponding power series by applying the binomial expansion (see 
also the discussion in Example 1.3.1).

Jean [43] and Lubin [54] indicated how to use formal groups and explicit local class 
field theory to describe elements of any order pn in N (Fp), and iterative procedures for 
the calculation of the coefficients of such elements were described (compare [42], [47], [10, 
§6]). However, the only known formulas for elements of order pn for n > 1 are for pn = 4
in N (F2), given by Jean in [42, Ch. 7], Chinburg and Symonds [22], and Scherr and 
Zieve (cf. [9, Rem. 1.4]). The Chinburg–Symonds example represents the action of an 
automorphism of order 4 on the local completed ring at zero of the supersingular elliptic 
curve over F2; compare also [9, Sect. 1], where it is argued that this is essentially the only 
example that can be constructed by such a method; more precisely, up to conjugation, it 
is the only ‘almost rational’ example. The final section of [42] contains another (implicit) 
way of describing a solution to the problem, this time by using the method of Mellin [57]
to solve algebraic equations—in this case, a trinomial—using hypergeometric series (the 
historically not entirely accurate reference in [57] is to a monograph by Belardinelli).

The break sequence of σ ∈ N (Fp) of order pn is a refined invariant with the property 
that there are only finitely many conjugacy classes of elements of fixed order pn with a 
given break sequence. The method of Lubin [54] can in principle be used to count that 
number using results from local class field theory. There is an exact characterisation of 
possible break sequences [54, Obs. 5]. We briefly recall the definitions.

Definition 1.2.1. The depth of σ = σ(t) ∈ N (Fp) is d(σ) := ordt(σ(t) − t) − 1 (and 
d(t) = ∞), so if σ(t) = t + akt

k + O(tk+1) with ak �= 0, then d(σ) = k − 1. The lower 
break sequence of an element σ ∈ N (Fp) of finite order pn is defined as

bσ = (bi)n−1
i=0 = (d(σ◦pi

))n−1
i=0 .

The data bσ correspond bijectively to the so-called upper break sequence bσ = 〈b(i)〉n−1
i=0

that we will not define; for our purposes, it suffices to quote from [54, Def. 4] the formula 
that converts between lower and upper break sequences, which in our case of the cyclic 
group generated by σ becomes

b(0) = b0 and b(i) = b(i−1) + p−i(bi − bi−1) for i > 0. (2)

We will always indicate lower sequences by ( )-brackets, and the corresponding upper 
sequences by 〈 〉-brackets, and we will write (bi) = 〈b(i)〉 for corresponding lower and 
upper break sequences.
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1.3. The method of construction

We will use the term p-automaton to describe a finite directed multigraph (allowing 
loops, as well as multiple edges between vertices) for which:

• vertices are labelled by elements of Fp [‘output alphabet Fp’];
• one vertex (the so-called start vertex) is additionally marked ‘Start’;
• each vertex has exactly p outgoing edges, each labelled by a different element of the 

set {0, 1, . . . , p − 1}; [‘input alphabet {0, 1, . . . , p − 1}’]
• there is a path in the automaton from the start vertex to any vertex [‘accessibility’];
• an edge with label 0 always connects two vertices with the same label [‘leading zeros 

invariance’].

In the general theory of automata, this is called a ‘leading zeros invariant p-DFAO 
(deterministic finite p-automaton with output) with output alphabet Fp and all states 
accessible’. Vertices are also called ‘states’. We omit the qualifier p when it is clear from 
the context.

Such an automaton produces the so-called p-automatic sequence (ak)k�0, where ak
is the label carried by the final vertex of the walk that starts at the start vertex and 
follows the edges according to the successive digits of k in base p (starting from the least 
significant digit, also called the ‘reverse/backwards reading convention’, compare [5, 
12.2]). The sequence (ak)k�0 gives rise to the corresponding formal power series 

∑
akt

k

over Fp in the variable t. Note that the ‘leading zeros invariance’ property means that we 
can allow the base-p expansion of k to have any number of leading zeros without affecting 
the resulting sequence. Should an automaton contain inaccessible vertices, they may be 
removed together with all their connecting edges without changing the corresponding 
series.

Example 1.3.1. We consider Klopsch’s series

σK,3 := t/
3
√
1 + t3 =

∑

k�0
a3k+1t

3k+1 = t+ t4 + t13 + · · · ∈ N (F2)

of order 2 with lower break sequence (3). The coefficients of this series can be described 
explicitly: a3k+1 is equal to the binomial coefficient 

(−1/3
k

)
modulo 2. Writing −1/3 as a 

2-adic integer −1/3 =
∑

k�0 4k, we get an infinite product representation

σK,3 = t
∏

k�0
(1 + t3·4

k

),

which shows that ak = 1 if and only if the base-4 expansion of k − 1 contains only the 
digits 0 or 3. An automaton corresponding to this series is depicted in Fig. 1; one way 
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0

0 0

1 1

0

Start

1

1

1

0 0

0

0
1 1

0

0, 1

Fig. 1. A 2-automaton representing Klopsch’s series σK,3 ∈ N (F2) of order 2 with lower break sequence (3).

to construct it is to solve the algebraic equation (t3 + 1)σ3 = t3 with initial coefficients 
σ = t + t4 +O(t5) using one of the algorithms in Section 2 below.

To illustrate our reading conventions, we compute the coefficient a13 of the corre-
sponding power series: write 13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 in base 2 as 1101; 
begin at the start vertex and follow the directed edges with respective labels 1, 0, 1, 1; 
we end up in a vertex with label 1, so a13 = 1. (If one adds leading zeros, e.g. by writing 
13 = 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20, the result is the same even though the final 
vertex might be different.)

Our construction of elements of order pn in N (Fp) proceeds as follows:

(i) Use Witt vectors to construct a cyclic Galois extension of order pn of the field of 
Laurent series Fp( (z) ) with certain ramification behaviour (this is similar to the 
method employed by Leedham-Green and Weiss, see [20, Thm. 3]; for a discussion 
using class field theoretic methods instead, see Remark 2.1.2). This field extension is 
described in terms of a finite set of generators αi satisfying a set of explicit algebraic 
relations over Fp( (z) ) and with explicit formulas for the action of a generator σ of 
the Galois group on the variables αi. Moreover, one can choose this field extension 
in such a way that αi are algebraic over the field of rational functions Fp(z), so all 
computations involve algebraic functions only (cf. Examples 2.2.2 & 2.2.3).

(ii) Choose a rational function in the variables αi that is a uniformiser for the field 
extension, say t. One can consider σ as an automorphism of Fp( (t) ), and one has an 
explicit expression for σ(t) as a rational function of the variables αi. This leads to a 
set of algebraic equations involving σ(t), t and αi (note that ‘algebraic’ is w.r.t. the 
usual addition and multiplication of power series, not composition). By elimination 
of the variables αi from those equations (in general with the help of a Groebner 
basis algorithm), one finds an explicit equation F (t, X) = 0 for σ = σ(t) over the 
field Fp(t).

(iii) Use an algorithmic version of a proof of Christol’s theorem (based on using Ore 
polynomials, Furstenberg’s diagonal method, or differential forms on algebraic 
curves) to find automata whose series correspond to the solutions of the equa-
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tion F (t, X) = 0 in Fp�t�. By Hensel’s Lemma, sufficiently many initial coefficients 
of a solution will determine such a solution uniquely, so different solutions can be 
distinguished by solving iteratively for enough coefficients of a putative power series 
solution.

(iv) The equation found in (iii) might have several solutions, and at least one of these 
solutions is a power series of order pn. Identify the solution(s) that correspond to 
elements of order pn.

We describe the steps in some detail in the next section. In the first two steps, there 
are many possible choices of extensions and uniformisers, and hence there are many 
possible algebraic equations. The size of the resulting automaton depends heavily on the 
choices made in the first two steps of the method, and the minimal size of an automaton 
representing a power series can vary greatly in a conjugacy class (theoretical bounds 
depending on the equations can be found in Bridy [13]).

Once the equation is fixed, the third and fourth step in the construction (which replace 
the naive method of trying to solve the equation recursively for the coefficients of a 
putative power series solution) have been automated by Rowland (see [58] for the source 
code and [59] for the description) and partly in [14]; we have used these implementations 
to produce the automata.

1.4. Results

We start by describing the case of elements of order 4.

Theorem 1.4.1 (Corollary 5.1.2 & Propositions 3.4.1, 4.2.1, 5.2.1, 5.3.1). The following 
is a complete list representing all possible elements of order 4 in N (F2) with break 
sequence (1, m) = 〈1, (m + 1)/2〉 for all admissible values m < 10, up to conjugation in 
N (F2):

• with break sequence (1, 3) = 〈1, 2〉: two (previously known) series σCS and σ◦3
CS given 

in Equations (12) & (13), with the corresponding automata displayed in Table 1. The 
series σCS is conjugate in N (F2) to a new series σmin described by the automaton 
in Fig. 2, which is the unique series of order 4 described by a 2-automaton with at 
most 5 states.

• with break sequence (1, 5) = 〈1, 3〉: a series σ(1,5) corresponding to the 13-state au-
tomaton displayed in Fig. 5.

• with break sequence (1, 9) = 〈1, 5〉: a series σ(1,9) with 110-state automaton described 
in Table 2.

In Section 4 we present an algorithm for finding, for fixed integers N and n, all minimal 
2-automata representing an element of finite order 2n in N (F2) with at most N states.
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For some of the automata it is possible to extract a manageable closed formula for 
the power series. We will present eight such formulas for power series of order 4 with 
minimal break sequence, of which five are new: σ◦3

J displayed in Equations (16) & (17)
and σT,1, σT,2, σT,3 and σT,4 in Table 3. Note that although it is easy to determine 
which of these are mutually conjugate, the conjugating power series itself may be hard 
to describe: as far as we know, it may be transcendental over F2(t), and we are not aware 
of any criteria that guarantee the existence of an algebraic conjugating power series (but 
cf. Remark 10.2.4).

For order 8, we have the following result (for the notion of ‘minimal’ break sequence, 
see Example 2.4.3).

Theorem 1.4.2 (Propositions 7.1.1, 7.2.1 & 7.3.1). Up to conjugation in N (F2), there 
are precisely 4 elements σ8, σ◦3

8 , σ8,2, σ◦3
8,2 of order 8 with ‘minimal’ break sequence 

(1, 3, 11) = 〈1, 2, 4〉 in N (F2), where σ8 corresponds to the 320-state automaton given 
in Table 5, and σ8,2 corresponds to the 926-state automaton described in 7.3.

The automata are also stored in standard Mathematica form in [17].
Since every finite 2-group embeds in N (F2), Klopsch asked for a description of an 

embedding of the Klein four-group V = Z/2Z ×Z/2Z in N (F2). We have the following 
result.

Theorem 1.4.3 (Propositions 8.1.2 & 8.2.1). For every embedding of the Klein four-group 
V in the Nottingham group N (F2), some nontrivial element of V has depth at least 5. 
Furthermore, the series σV,1 and σV,2 corresponding to the automata depicted in Table 6
have break sequences (1) and (5) and exhibit an explicit embedding of two generators of 
the Klein four-group into N (F2).

One notices in the examples that for fixed order and break sequence, some series with 
an explicit ‘easy’ formula are produced by a rather large automaton, while at the same 
time there exist series requiring fewer states for which an ‘easy’ formula does not seem to 
exist. We study this phenomenon in Section 10, generalising the concept of sparseness. 
Recall that a series σ =

∑
ait

i is in the class S of sparse series if the number of nonzero 
coefficients ai with i � N grows like a power of a logarithm of N . Klopsch’s series σK,m

are not sparse, but at least for some values of m their conjugacy class contains a sparse 
series.

Theorem 1.4.4 (Proposition 10.2.1). Any power series of order 2 and depth m = 2μ ± 1, 
μ � 1, is conjugate to a sparse power series σS,m given in Equations (22), (23) & (24), 
the first two of which correspond to the automata displayed in Table 8.

We classify general series into three classes that we consider to have ‘easy formulas’:

S ⊂ Ŝ ⊂ ̂̂S ⊂ F2�t�,
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where Ŝ is the class of series that are sparse up to multiplication with a rational function, 
and ̂̂S is the class of series that are in Ŝ up to composition with an automorphism of 
Fp(t). Whether or not a series is in a certain class can be studied both using Galois 
theory (Section 11) and combinatorics of automata (Section 12). Even for the ‘larger’ 
automata with several hundred states, the combinatorial method can be automated 
relatively easily using the computer algebra representation (cf. Table 11). Among the 
series described above there occur examples at all levels of this hierarchy of complexity.

Theorem 1.4.5 (Theorem 11.2.6 & Table 9). The series σT,1, . . . , σT,4, σ◦3
CS are in S; the 

series σCS, σ◦2
CS are in Ŝ but not in S; the series σJ, σ◦3

J are in ̂̂S but not in Ŝ; the series 
σK,m(m � 3), σV,1, σV,2, σV,3, σmin, σ(1,5), σ(1,9), σ8 are not in ̂̂S.

Finally, in Section 13 we briefly discuss the synchronisation properties of some of our 
automata, in relation to a ‘structured/random’ decomposition of automatic sequences in 
[19].

1.5. Some open problems

• We have provided one example of an embedding of a non-cyclic p-group (the Klein 
four-group V ) into N (Fp) (for p = 2), with the break sequences of the nontrivial ele-
ments of V being (1), (1) and (5). Study the possible break sequences for embeddings 
of V into N (F2), and more generally for embeddings of arbitrary (finite) p-groups 
into N (Fp) (cf. Proposition 8.1.2 and Subsection 8.3 for some explicit challenges).

• Is there a sparse series of order 2 with break sequence (11)? This is equivalent to 
asking whether Klopsch’s series t/ 11

√
1 + t11 ∈ N (F2) is conjugate to a sparse series. 

More generally, is every element of finite order in N (F2) sparse (or in Ŝ or ̂̂S) up 
to conjugation?

• Provide an automaton-theoretic characterisation of series that are sparse up to multi-
plication with a rational function, in a manner analogous to how [63] gives a necessary 
and sufficient condition for a series to be sparse in terms of properties of a corre-
sponding automaton. This appears to be a hard problem, see Remark 12.2.3.

• As the automaton method allows us to extend the catalogue of known elements of 
finite order in N (Fp), one may argue that it is advantageous to manipulate elements 
of finite order in N (Fp) in their automatic form directly, ignoring any explicit form 
for the coefficients of the corresponding power series. Thus, it would make sense to 
study ‘p-automata of finite order’ as a subject of its own. How to characterise an 
automaton that represents a series of finite order?

• If it exists, describe an algorithm that finds all automata on at most N states that 
represent series of finite order. For any given finite order this is easy (see Section 4), 
so an affirmative solution of this problem would most likely require finding a bound 
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on the order of a series in terms of the number of states of an automaton that 
generates it.

Notation. We will use the notation σ and σ(t) for elements of N (Fp) interchangeably, 
and also use σ for the corresponding element of the Galois group of an extension of fields 
of formal Laurent series. We will also write ‘σ(t)’ when σ is considered as an element of 
a Galois group and t is a specified uniformiser.

2. Detailed method: finding an algebraic equation

2.1. Extensions of Laurent series fields and elements of N (Fp)

Let k = Fp( (z) ) be a field of formal Laurent series with corresponding valuation vz, and 
let K/k be a cyclic totally ramified Galois extension of degree pn. Let t be a uniformiser 
for K with corresponding valuation vt, so that K = Fp( (t) ). Any σ ∈ Gal(K/k) is an 
automorphism of Fp( (t) ) fixing Fp( (z) ), and it automatically preserves the valuation. It 
follows that σ(t) = a1t +a2t

2+a3t
3+ · · · for some ai ∈ Fp; since the order of σ is a power 

of p, we have a1 = 1, meaning that σ is an element of N (Fp). In this way, elements of 
order pn in N (Fp) arise from totally ramified cyclic pn-extensions of fields of Laurent 
series.

We first explicitly describe cyclic pn-extensions using Witt vectors and then discuss 
how to detect whether they are totally ramified. By Artin–Schreier theory any abelian 
extension K/k of order pn can be decomposed as a tower of field extensions

k = K0 � K1 � · · · � Kn = K (3)

with Ki+1 = Ki(αi) for 0 � i � n − 1 and Ki+1/Ki an Artin–Schreier extension with 
αp
i − αi ∈ Ki. In the opposite direction Witt vectors allow one to guarantee that such 

an iterative procedure produces a cyclic extension K/k.
Any σ ∈ N (Fp) of order pn arises from such a construction: Harbater [38, §2] proved 

that every such σ describes the action of a generator of the Galois group on the completed 
local ring at a totally ramified point of a global Z/pnZ-Galois cover of P1 having a unique 
ramification point. The choice of a uniformiser at the ramified point (i.e. the choice of an 
isomorphism of the completed local ring with Fp�t�) corresponds to a conjugation of the 
representing power series. It follows that any σ of order pn is conjugate to an algebraic 
power series; note that the conjugating power series is an element of N (Fp), but is not 
necessarily algebraic over Fp(t). The genus of the cover can be computed in terms of the 
break sequence from the (wild) Riemann–Hurwitz formula (compare [9, §3.3 & 3.4]).

Remark 2.1.1. The general theory of Harbater–Katz–Gabber covers ([46, 1.4.1], compare 
[9, §4.3, Cor. 4.10]) implies that any finite subgroup of Aut(Fp�t�) can be conjugated 
into a subgroup consisting of algebraic power series (but, again, the conjugating series 
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itself need not be algebraic). Harbater proved the result for p-groups over perfect fields. 
For a cohomological characterisation of the occurring Galois covers, see [50].

Remark 2.1.2. There exist alternative methods for the explicit construction of equations 
for the Galois extensions. One may use explicit local class field theory, using the theory of 
formal groups/moduli of Lubin and Tate [55]. An essentially equivalent global method is 
to use explicit global class field theory of function fields, employing torsion of the Carlitz 
module [61], and then localising at a totally ramified place. This shows, at least theo-
retically, that the resulting series can be described by recursion relations or automata 
and immediately leads to a recursive algorithm to compute the coefficients of the power 
series. In Remark 5.1.3 and Subsection 7.3, we describe how to find series of order 4 and 
8 in this way. In particular, we use this method to construct a complete set of representa-
tives for all conjugacy classes of order 8 elements with minimal break sequence. We have 
performed more experiments implementing these methods and observed that they tend 
to lead to automata with more states compared to the above method. A possible reason 
is that class field theory methods give Ore-style equations that in algorithms produce 
state spaces of size doubly exponential in the degree of the equation (cf. Subsection 3.3
below).

2.2. Witt vectors and construction of pn-extensions

Let k be a field of characteristic p > 0 and let n � 1 be an integer. Let Wn(k) denote 
the ring of (n-truncated p-typical) Witt vectors over k. As a set Wn(k) is equal to kn, and 
we write its elements as vectors of length n. The zero and identity element of Wn(k) are 
0 = (0, . . . , 0) and 1 = (1, 0, . . . , 0). Addition and multiplication of two elements a, b ∈
Wn(k) are defined by polynomial expressions in the coordinates a0, . . . , an−1, b0, . . . , bn−1
of a and b (see e.g. Example 2.2.2 and 2.2.3 below that we will use later). The ring 
Wn(k) comes with a Frobenius endomorphism Frob: Wn(k) → Wn(k) mapping the 
element (a0, . . . , an−1) to (ap0, . . . , a

p
n−1). The map ℘ := Frob − Id is an endomorphism 

of the underlying abelian group of Wn(k). Writing ksep for a separable closure of k, for 
any given β ∈ Wn(k) there exists some α ∈ Wn(ksep) such that ℘(α) = β. Such α is 
unique up to addition of an element of ker℘ = Wn(Fp) and the extension k(℘−1(β)) :=
k(α0, . . . , αn−1) of k is independent of the choice of α. Note that W1(k) is just the field 
k.

Theorem 2.2.1 (Witt; cf. [52, p. 107, Thm. 5]). Let k denote a field of characteristic 
p > 0, let ksep denote a separable closure of k, and let n denote any positive integer. For 
any field K with k ⊆ K ⊆ ksep, K/k is a cyclic Galois extension of degree pn if and only 
if there exists a β ∈ Wn(k) with β0 /∈ ℘(k) such that K = k(℘−1(β)). If α ∈ Wn(ksep)
satisfies ℘(α) = β, then k(℘−1(β)) = k(α0, . . . , αn−1) and a generator σ of the Galois 
group Gal(K/k) is determined by the equations

σ(αi) = (α+ 1)i, i = 0, . . . , n− 1. (4)
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Example 2.2.2. We consider the ring of Witt vectors W2(k) of length two over a field k
of characteristic 2. For a = (a0, a1), b = (b0, b1) ∈ W2(k) the formulas for addition and 
multiplication are

a+ b = (a0 + b0, a1 + b1 + a0b0) and a · b = (a0b0, a20b1 + a1b
2
0),

and the map ℘ is given by ℘(a) = (a20 + a0, a21 + a1 + a20 + a30). Observe that this implies 
that −(a0, a1) = (a0, a1 + a20). According to Theorem 2.2.1, an extension K/k is a cyclic 
Galois extension of degree 4 if and only if K = k(α0, α1), where α0, α1 satisfy

{
α2
0 + α0 = β0;

α2
1 + α1 = β1 + β0α0

for some β0, β1 ∈ k with β0 not of the form x2 + x for x ∈ k. The Galois group of K/k

is generated by the field automorphism σ defined on the generators α0, α1 by
{

σ(α0) = α0 + 1;
σ(α1) = α1 + α0.

(5)

Example 2.2.3. We consider the ring of Witt vectors W3(k) of length three over a field k
of characteristic 2. For a = (a0, a1, a2), b = (b0, b1, b2) ∈ W3(k) the formula for addition 
is

a+ b = (a0 + b0, a1 + b1 + a0b0, a2 + b2 + a1b1 + a0a1b0 + a0b0b1 + a30b0 + a0b
3
0)

and for multiplication is

a · b = (a0b0, a20b1 + a1b
2
0, a

2
1b

2
1 + a40b2 + a2b

4
0 + a20a1b

2
0b1).

By Theorem 2.2.1, cyclic degree-8 extensions K/k of a field k of characteristic 2 are of 
the form K = k(α0, α1, α2), where

⎧
⎪⎨
⎪⎩

α2
0 + α0 = β0;

α2
1 + α1 = β1 + β0α0;

α2
2 + α2 = β2 + α1β1 + α0α1β0 + α0β0β1 + α3

0β0 + α0β
3
0 ,

(6)

with β0 not of the form x2 + x for x ∈ k. The Galois group of K/k is generated by the 
field automorphism defined on the generators α0, α1, α2 by

⎧
⎪⎨
⎪⎩

σ(α0) = α0 + 1;
σ(α1) = α1 + α0;
σ(α2) = α2 + α0α1 + α3

0 + α0.

(7)
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2.3. Ramification

The ramification in an Artin–Schreier extension of Fp( (z) ) can be described using the 
following easy result (see e.g. [34, III.(2.5)]).

Lemma 2.3.1. Let k = Fp( (z) ) and let K = k(α) be an extension of k with αp−α = γ for 
some γ ∈ k. If vz(γ) is negative and not divisible by p, then K/k is a cyclic extension 
of degree p, and for any uniformiser π of K we have vπ(α) = vz(γ); for x ∈ k we have 
vπ(x) = pvz(x).

If we decompose a general cyclic totally ramified pn-extension as a tower of Artin–
Schreier extensions as in (3) and we write zi for a uniformiser of Ki (so z0 = z and 
zn = t), then vzi+1(αi) = vzi(α

p
i − αi) for i = 0, . . . , n − 1.

The general approach is now to take the following steps:

(i) Write down explicit equations for a cyclic pn-extension in the variables αi arising 
from the Witt construction, or other generators of the field (this may make equa-
tions simpler or help in applying Lemma 2.3.1 to check that the extension is totally 
ramified).

(ii) Choose a unformiser t as an algebraic function of the αi (or the chosen field gener-
ators); using Lemma 2.3.1 allows us to control the valuations of rational functions 
in the field generators.

(iii) Compute the action of a generator σ of the Galois group on the uniformiser t using 
the action in terms of Witt vectors given by Equation (4); this gives an equation 
for σ(t) in terms of the αi (or the chosen field generators).

These three steps lead to a set of algebraic equations from which one should eliminate all 
but t and σ(t), leading to an algebraic equation F (t, X) = 0 with F ∈ Fp[t, X] satisfied 
by X = σ = σ(t). For elimination, one may use a Groebner basis algorithm (we used 
the implementation in Singular [31]; in order to be able to eliminate all the variables 
it might be necessary to first make a primary decomposition of the ideal generated by 
the equations and extract a one-dimensional component).

Example 2.3.2. We start describing what will be our ‘running example’ for the next few 
sections, leading up to a particularly small (as it will turn out, the smallest possible one 
in terms of number of states) automaton for a series of order 4 with ‘minimal’ break 
sequence.

Let k = F2( (z) ), β = (z−1, 0) ∈ W2(k), and write α = (x, y) ∈ W2(ksep) for a solution 
of ℘(α) = β. Since vz(℘(k)) = 2Z ∪ Z�0 we have z−1 /∈ ℘(k), and by Theorem 2.2.1 the 
extension K/k = F2( (z) )(x, y)/F2( (z) ), with x and y satisfying

{
x2 + x = z−1;
y2 + y = xz−1 = x3 + x2,
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is a cyclic Galois extension of degree 4. It is totally ramified; an example of a uniformiser 
t for K is given by

t = (y + 1)/(y + x2).

Indeed, breaking up the extension into Artin–Schreier extensions as in Equation (3), we 
have

k = K0 = F2((z0)) � K1 = K0(x) = F2((z1)) � K2 = K1(y) = F2((z2)) = K

with z0 = z, z1, z2 uniformisers of the fields in the tower of extensions. So vz0(z−1) = −1, 
vz1(x) = −1 and vz1(z) = 2. Hence vz1(x3 + x2) = −3, so K1/K0 is totally ramified. 
Then vz2(y) = −3, vz2(x) = −2 and vz2(z) = 4, so K2/K1 is also totally ramified. Hence 
t is a uniformiser for K since

vz2(t) = vz2(y + 1)− vz2(y + x2) = 1.

Formula (5) shows that a generator σ of the Galois group is determined by the equations

{
σ(x) = x+ 1;
σ(y) = y + x,

the other generator is given by τ = σ◦3. We compute

τ(t) = σ◦3
(

y + 1
y + x2

)
= y + x

y + x2 + x
.

To find an algebraic equation for τ = τ(t) over F2(t), we need to eliminate x and y from 
the three equations

⎧
⎪⎨
⎪⎩

y2 + y = x3 + x2 [equation of extension];
(y + x2)t = y + 1 [definition of uniformiser];
(y + x2 + x)τ(t) = y + x [action of τ on uniformiser],

from which we get that X = τ = τ(t) ∈ F2�t� satisfies the (irreducible) equation

F (t,X) = (t+ 1)3X3 + (t3 + t)X2 + (t3 + t+ 1)X + t3 + t = 0. (8)

This equation has a unique solution of the form t +O(t2), as can be seen, e.g. from the 
corresponding t-adic Newton polygon; its initial coefficients are given by t + t2 + t4 +
t5 +O(t6).
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2.4. Break sequence

By computing the first few coefficients of σ ∈ N (Fp) of order pn (using the algebraic 
equation for σ over Fp(t)), it is easy to determine the lower break sequence of σ. If 
one has an explicit upper bound for the number of inequivalent series with given break 
sequences, we can enumerate all classes of such series by ‘trying’ enough equations, which 
sometimes works in practice. Such bounds are implicit in [54, Theorem 2.2] and have 
been made explicit in a few cases (cf. the discussion in Sections 5 & 7). Alternatively, 
using explicit local class field theory constructions as in [54] we are guaranteed to obtain 
representatives of all the conjugacy classes.

A method of Kanesaka and Sekiguchi directly computes the upper break sequence in 
terms of the Witt vector data for a given extension of k := Fp( (z) ) [45, Thm. 5], which 
we rephrase as follows.

Definition 2.4.1. Fix a positive integer n. Call a vector a = (ai) ∈
⊕

N Wn(Fp) of Witt 
vectors of length n (with finitely many nonzero entries) suitable if ai = 0 for p|i and for 
at least one i we have ai ∈ Wn(Fp)∗ (i.e. the zero component of ai is not zero). If

β = (β0, . . . , βn−1) :=
∑

i�0
ai(z−i, 0, . . . , 0) + ℘(b) ∈ Wn(k) (9)

for a suitable a = (ai) and any b ∈ Wn(k), define

ρn(β) := p−1 max{i · ord(ai) : ai �= 0},

where ord(ai) is the order of ai in the additive group Wn(Fp) (that itself is of exponent 
pn). This is well-defined, since one can show that if a vector β admits such a represen-
tation, then the corresponding suitable vector is uniquely determined (since the vectors 
(z−i, 0, . . . , 0) are independent modulo ℘(Wn(k))). Also note that ρn(β) is independent 
of b ∈ Wn(k).

Define, for m � n, the truncation map �(x0, . . . , xn−1)�m := (x0, . . . , xm−1). The 
truncation of a vector of the form as in Equation (9) in Wn(k) is of that same form in 
Wm(k).

Proposition 2.4.2 ([45]). For k = Fp( (z) ) and a positive integer n, choose β of the 
form as in Equation (9) for a suitable vector a = (ai), some b ∈ Wn(k), and assume 
β0 �= 0. Then the extension k(℘−1(β))/k is a totally ramified cyclic extension of degree 
pn, and the upper break sequence of a generator of the corresponding Galois group is 
〈ρ1(�β�1), . . . , ρn(�β�n)〉.

Although in this paper, we usually use lower break sequences, the above result is most 
naturally formulated in terms of upper break sequences; as remarked before, these can 
be easily changed into each other using Formula (2). The above result allows one to fix 



J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554 499

not just pn, but also the break sequence from the start, by choosing a suitable Witt 
vector β ∈ Wn(k). Note that we get the same extension for every b ∈ Wn(k), but it will 
be convenient to rewrite certain natural choices of β using nonzero b.

Example 2.4.3. We give some examples of constructions with break sequences that we 
will use later.

(a) Choose β = (z−1, 0, . . . , 0) ∈ Wn(Fp( (z) )) of length n, so all ai = 0 for i �= 1 and 
a1 = (1, 0, . . . , 0). Now a1 is of order pn in Wn(Fp) and the break sequence, called 
the minimal one, is

〈
pi
〉n−1
i=0 =

(
p2i+1 + 1
p+ 1

)n−1

i=0
.

(b) For β = (z−1, z−pm) ∈ W2(Fp( (z) )), with m > p coprime to p, rewrite

β = a1(z−1, 0) + am(z−m, 0)

with a1 = (1, 0) and am = (0, 1). Now ord(a1) = p2 and ord(am) = p in W2(Fp), so 
we find the upper break sequence

〈1,m〉 = (1, pm− p+ 1).

(c) For β = (z−1, z−m) ∈ W2(Fp( (z) )) with m > p coprime to p, we get the same break 
sequence as the previous example, since

(z−1, z−m) = (z−1, z−pm)− ℘((0, z−m)).

3. Detailed method: computing p-automata using proofs of Christol’s theorem

3.1. Abstract algorithm

The following theorem of Christol relates algebraic power series to p-automatic se-
quences (see [23,24]):

Theorem 3.1.1 (Christol). A power series σ =
∑

k�0 akt
k ∈ Fp�t� is algebraic over Fp(t)

if and only if the sequence (ak)k�0 is p-automatic.

For our applications it is important that there are constructive proofs of this theo-
rem: given an algebraic equation F (t, X) = 0 with F (t, X) ∈ Fp[t, X], the proofs can 
be turned into algorithms that compute p-automata representing the different solutions 
X = σ ∈ Fp�t�. These algorithms start from a finite Fp-vector space V with a distin-
guished nonzero vector s0 ∈ V and a set Λ of ‘Cartier-style’ operators Λr : V → V for 



500 J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554

r ∈ {0, . . . , p − 1}. From these data, they produce the directed graph structure of an au-
tomaton. A finite computation (using Hensel’s Lemma) then fills in the vertex labels for 
the different solutions. For three such proofs/algorithms, we briefly indicate the triples 
(V, s0, Λ) and point to other sources for proofs of correctness, optimised implementations 
and complexity analysis.

It follows from the proofs that for a given irreducible equation all solutions can be 
represented by automata with the same directed graph structure (including edge labels, 
but excluding vertex labels). Hence the desired algorithm can be broken down into two 
parts: first, the computation of that directed graph, and second, computing the correct 
output labels corresponding to the different solutions.

We will make the following assumptions and use the following notations throughout:

• F (t, X) ∈ Fp[t, X] is irreducible,
� d = degX F ,
� h = degt F ,
� m = ordtResX

(
F (t,X), ∂F

∂X (t,X)
)
denotes the t-valuation of the resultant of F

and its derivative in X, and
� g denotes the geometric genus of the normalisation X of the projective curve 

corresponding to the plane affine curve F (t, X) = 0.
• For 0 � r < p, the Cartier operator Cr acting on formal power series in Fp�x1, . . . , xk�

is defined by

Cr(
∑

ai1,i2,...,ikx
i1
1 · · ·xik

k ) :=
∑

api1+r,pi2+r,...,pik+rx
i1
1 · · ·xik

k .

For the first part—the construction of the directed graph underlying the automaton—
the proofs are based on constructing a graph from the specific set of data (V, s0, Λ), as 
follows:

� Algorithm 3.1.2 (Labeled Directed Graph Structure).

Input A finite Fp-vector space V , s0 ∈ V , and maps Λ = {Λr : V → V for 0 � r < p}.
Output A finite directed graph with edge labels.

Write Γ for the monoid generated by the maps Λr with 0 � r < p. Compute the set of 
vertices S as the orbit of s0 under the action of Γ (by applying the maps Λr until no new 
elements appear), let the vertex s0 be labelled ‘Start’, and put a directed edge between 
s1 and s2 with label r precisely if s2 = Λr(s1). �

The second part can always be dealt with in the following way:
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0 1
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1
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0
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0

0

1

1 1

0

1

0

1

Fig. 2. A 2-automaton representing the element σmin of N (F2) of order 4 with lower break sequence (1, 3), 
corresponding to Equation (8).

� Algorithm 3.1.3 (Vertex Labels).

Input A polynomial F (t, X) ∈ Fp[t, X] and the directed graph structure, including 
edge labels, of automata representing all solutions X = σ ∈ Fp�t� of F (t, X) =
0.

Output A finite list of automata corresponding to all these solutions.

For an integer i, consider the truncated equation

F (t, σ0) = O(ti+1) with σ0 = a0 + a1t+ a2t
2 + · · ·+ ait

i. (10)

(i) Solve the truncated Equation (10) with i = 2m for all the (finitely many) possible 
σ0. Hensel’s Lemma implies that for each such σ0 there is a unique solution X =
σ ∈ Fp�t� of F (t, X) = 0 with σ(t) = σ0(t) +O(tm+1) (see e.g. the introduction of 
[12]).

(ii) For each fixed σ0, run through the automaton following all base-p expansions of 
the integers j = 0, 1, 2, . . . and give the final vertex of the walk corresponding to 
the base-p expansion of j the label aj . For this, it may be necessary to compute 
the coefficients aj of the solution of F (t, X) = 0 corresponding to σ0 for some 
j > 2m, which can be done by solving the truncated equation inductively for 
i = 2m + 1, . . . , j, and use the leading zeros condition. �

As we will indicate below, sometimes the vertex labels can be determined in a more 
efficient way, depending on the method used to compute the directed graph structure.

Example (continued) 3.1.4. Suppose we know that the directed graph structure of the 
solutions for Example 2.3.2 is as given in Fig. 2, but the possible vertex labels are 
still unknown. In this case, we have m = 6, and we are looking for a solution σ with 
σ = t +O(t2) (already known to exist). Substituting a tentative solution, we compute its 
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initial coefficients: σmin = t +t2+t4+t5+t7+O(t8). Using the coefficients of t0, t1, t3, t7, 
the vertex labels are fixed uniquely, except for the label of the vertex reached from the 
start vertex by following the path 01. However, the assumption of leading zeros invariance 
fixes this value to be the same as that of the vertex reached by following the path 1. The 
resulting unique vertex labels are given in Fig. 2.

3.2. Three methods of constructing the input data

What is different in various proofs/algorithms is the construction of V, s0 and Λ used 
as input for the construction of the directed graph. We briefly describe three possible 
approaches to this.

3.2.1. Using spaces of differential forms
This method is based on a proof by David Speyer and Andrew Bridy [13]. The fact 

that the algorithm is correct is explained in [13, §3]. A plug-and-play implementation 
of this algorithm is not available at the current time, but the built-in algorithms for 
function fields in Magma [11] include Kähler differentials and Cartier operators, making 
it relatively easy to implement the computations (but not the visualisations). The file 
[14] contains a description of a Magma routine that produces output that can be easily 
visualised in Mathematica and manipulated using [58].

Let Ω denote the Fp-vector space of Kähler differentials on X and K the function 
field of X . Writing η ∈ Ω as η = (up

0 +up
1t + · · ·+up

p−1t
p−1)dt for unique ui ∈ K, define 

the Cartier operator C : Ω → Ω by the formula C (η) := up−1dt. Set ω := Xdt ∈ Ω and 
define the effective divisor D := (ω)∞+(t)∞, the sum of polar divisors of the differential 
ω and the function t. In this case:

• V = Ω(D) is the Fp-vector space of differential forms on X with divisor � −D (of 
finite dimension � h + 3d + g − 1 over Fp by Riemann–Roch, see [13, proof of Cor. 
3.10]).

• s0 = ω.
• For any r = 0, . . . , p − 1, define Λr as Λr(η) := C (tp−1−rη). The maps Λr map V to 

itself (see [13, proof of Cor. 3.10]).

Example (continued) 3.2.1. Continuing the previous Example 2.3.2, we find (using
Magma) that the curve corresponding to Equation (8) is of genus g = 1, the space 
Ω((Xdt)∞ + (t)∞) is of dimension 8 and the subset S = Γ(Xdt) has 5 elements corre-
sponding to the vertices in the automaton. Representing these by the vectors

S = {(1, 1, 0, 1, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 1, 0),

(1, 1, 0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0)},
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where the third vector is the start vertex, the action of the operators Λ0 and Λ1 is given 
by right multiplication with the following explicit 8 × 8 matrices over F2:

Λ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 1 1 0 1 0 1 1
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
1 1 0 1 0 1 1 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The resulting automaton is the one in Fig. 2.

3.2.2. Using equations in Ore form
This method is based on the proof from [24]. The fact that the algorithm is correct 

follows, e.g. from tracing through the proof of Christol’s theorem in [5, Thm. 12.2.5]
using [5, 12.2.4] for the expression for the corresponding p-kernel and the construction 
of the automaton corresponding to such a kernel as in the proof of the equivalence of 
‘p-automatic’ and ‘finite p-kernel’, see e.g. [5, Thm. 6.6.2]. (The vector space described 
there is slightly larger, but the arguments show that the space defined below also works.) 
An implementation is described in [60, Rem. 4.7] and an actual implementation was done 
by Rowland in [58] (compare [59]).

One first computes a new polynomial G(t, X) ∈ Fp[t, X] in ‘Ore form’, i.e. G(t, X) =∑d
i=0 BiX

pi with Bi ∈ Fp[t], B0 �= 0, whose solution set in X contains the Fp-vector 
space spanned by the solution set of F in X. Then the data are defined as follows:

• V is the set of linear combinations of elements from {X, Xp, . . . , Xpd−1} with coeffi-
cients being elements from Fp[t] of degree at most

N := max(degB0,max{
⌈
degBi + (pi − 2) degB0

p− 1

⌉
− 1 | 1 � i � d}).

• s0 := B0X.
• For 0 � r < p and Dk ∈ Fp[t] of degree at most N , define

Λr

(
d−1∑

k=0
DkX

pk

)
:=

d−1∑

k=1
Cr(Dk −D0BkB

pk−2
0 )Xpk−1 − Cr(D0BdB

pd−2
0 )Xpd−1

.

The bound N on the degrees of Dk is chosen so that s0 belongs to V and the 
operators Λr map V to itself (for this, note that for a polynomial D ∈ Fp[t] we have 
degCr(D) � �degD

p �).
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One may circumvent the use of Algorithm 3.1.3: for the solution σ0 whose truncation 
was fixed in (10) (with � := ordtB0 � 1) we can directly compute the labels of the 
vertices, as follows. Write

σ0
B0

= b1t
−(�−1) + b2t

−(�−2) + · · ·+ b�−1t
−1 + b� +O(t) (11)

with bi ∈ Fp; then the vertex corresponding to 
d−1∑
k=0

DkX
pk ∈ V , where Dk =

∑
j�0[Dk]jtj

with [Dk]j ∈ Fp, has vertex label equal to 
d−1∑
k=0

∑
0�i�N
pk|i

[Dk]i · b�−i/pk .

Example (continued) 3.2.2. The series τ from the previous Example 2.3.2 satisfies the 
following equation in Ore form:

G(t,X) = (t8 +1)X8 +(t8 + t4 + t2 +1)X4 + (t7 + t6 + t5 + t4 + t2)X2 + (t7 + t5)X = 0.

Now dimV = 150 and S consists of the following five elements, resulting in the automa-
ton in Fig. 2:

s0 = (t7 + t5)X,

s1 = (t6 + t3)X + (t14 + t13 + t11 + t10 + t9 + t7)X2

+ (t28 + t27 + t26 + t25 + t20 + t19 + t18 + t17)X4,

s2 = (t7 + t6 + t5)X + (t13 + t11 + t10 + t8)X2 + (t28 + t26 + t20 + t18)X4,

s3 = t2X + (t13 + t8 + t7 + t6)X2 + (t26 + t24 + t18 + t16)X4,

s4 = (t6 + t4)X.

3.2.3. Using diagonals of two-variable power series
This method splits the problem into two cases (‘non-singular’ and ‘general’) and is 

based on a theorem of Furstenberg [35, Prop. 2] in combination with the proof in [23] and 
an observation in [2]. In the special case, the algorithm is described in [60, Algorithms 
1 & 2]. The general algorithm is implemented in [58]. It is somewhat different from the 
preceding two methods: the non-singular case follows the setup considered before, in 
that it produces a triple (V, s0, Λ). The general case, however, might produce a different 
automaton for every solution.

Special case. Suppose G ∈ Fp[t, X] is non-singular, meaning that G(0, 0) = 0 and 
c := ∂G/∂X(0, 0) is nonzero. We search solutions σ ∈ Fp�t� of G(t, σ) = 0 with σ(0) = 0. 
In this case, by Hensel’s lemma, there is a unique such solution σ; Furstenberg’s theorem 
says that
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σ(t) = Δ
(
P (t,X)
Q(t,X)

)
(t) with P (t,X) := c−1X

∂G

∂X
(tX,X) and

Q(t,X) := c−1X−1G(tX,X),

where the diagonal ΔG of a two-variable power series G(t, X) =
∑

ar,st
rXs ∈ Fp�t, X� is 

defined as the one-variable power series (ΔG)(t) :=
∑

ar,rt
r ∈ Fp�t�. To avoid confusion: 

in the definition of P , the derivative is that of G(t, X) w.r.t. X, after which the result 
is evaluated at (tX, X), and the constant c−1 is introduced so that Q(0, 0) = 1. The 
relevant data are:

• V is the space of polynomials in Fp[t, X] of degree at most max(degt P, degt Q) in t
and of degree at most max(degX P, degX Q) in X.

• s0 := P (t, X).
• For 0 � r < p, Λr(s) := Cr(sQp−1).

In this case, Algorithm 3.1.3 may be avoided: v ∈ V is a two-variable polynomial, and 
the corresponding (unique) vertex label is the value of this polynomial at (0, 0).

General case. Following [2, §3.1], compute the finite list of all possible polynomials 
q ∈ Fp[t] of degree � 2m such that F (t, q(t)) = O(t2m+1). For each such q, set s =
m + ordt( ∂F∂X (t, q(t))), G(t, X) = t−sF (t, tmX + q(t)). Now G is non-singular; apply 
the previous case to construct an automaton for the (unique) power series solution τ(t)
of G(t, X) = 0 with τ(0) = 0. Modify the automaton producing τ to an automaton 
producing a power series solution σ = q+tmτ of F (t, X) = 0 using standard constructions 
with automata (see e.g. [5, Thm. 5.4.1 & Cor. 6.8.5], which have constructive proofs).

Example (continued) 3.2.3. For Example 2.3.2, the polynomial is non-singular and we 
have

P (t,X) = t3X6 + t2X5 + (t3 + t)X4 +X3 + tX2 +X,

Q(t,X) = t3X5 +
(
t3 + t2

)
X4 +

(
t3 + t

)
X3 +

(
t3 + t+ 1

)
X2 + tX + t+ 1.

The space V is of dimension 28 and V consists of 6 elements:

s0 = P = t3X6 + t2X5 + (t3 + t)X4 +X3 + tX2 +X,

s1 = Λ0(s0) = t3X5 + (t3 + t)X3 + tX,

s2 = Λ1(s0) = t2X4 + t2X3 + (t+ 1)X2 + tX + 1,

s3 = Λ0(s2) = t2X4 +X2 + 1,

s4 = Λ1(s2) = t2X4 + (t2 + t+ 1)X2 +X,

s5 = Λ1(s4) = t2X4 + (t2 + 1)X2 + 1,

with
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Λ0(s1)= s1, Λ1(s1)= s2, Λ0(s3)= s3, Λ1(s3)= s2, Λ0(s4)= s4, Λ0(s5)= s2, Λ1(s5)= s5.

This leads to an automaton with 6 states, but the states corresponding to s0 and s1 have 
the same outgoing edges and the same output labels, and hence can be merged into one 
state without affecting the automatic sequence produced by the automaton. Doing so 
leads again to the automaton in Fig. 2.

3.3. Bounds on the complexity

The exact complexity of the algorithms does not appear to be known, but upper 
bounds on the number of states #S have been given in terms of d and h. In essen-
tially all the known examples, these are obtained by first bounding the dimension of 
the vector space V , and then using the trivial inequality #S � pdimV . In practice, it is 
often the case that the set S is much smaller than the vector space V (as seen, e.g. in 
Examples 3.2.1–3.2.3). We will show in Proposition 9.2.1 that d = h for series of finite 
compositional order, and then we have the following upper bounds:

• Differential forms: logp #S � 4d + g − 1 � d(d + 2) ≈ d2 ([13, Cor. 3.10] and the 
inequality g � (d − 1)(h − 1) of Castelnuovo–Riemann [62, Cor. 3.11.4]);

• Ore polynomials: logp #S � d3pd(pd − 1)/(p − 1) ≈ d3p2d−1 (using the upper bound 
dhpd for the height of the Ore form equation from [1, Lem. 8.1]);

• Diagonals (non-singular case): logp(#S − 1) � d(d + 1) ≈ d2 (for this bound it is 
shown that all states in S except possibly for s0 lie in a vector subspace of V of 
dimension d(h +1) [60, Rem. 4.7], [3, Thm. 3.1]; the latter reference also contains an 
argument that shows that in the general case, the diagonal method gives a similar 
upper bound asymptotically in d as the differential forms method).

In our running example, #S is 5 or 6, and the respective bounds on #S are 212, 21512
and 212+1. For more information on the exact complexity of our examples (that appear 
to require far fewer states than the theoretical general bounds), we refer to Section 9.

3.4. Our application

Our construction using Witt vectors produces a polynomial F (t, X) ∈ Fp[t, X] of 
which we first check irreducibility (if the polynomial were not irreducible, we would 
factor it and work with the factors). We know the polynomial has at least one solution 
σ(t) = t + O(t2) ∈ Fp�t�, and we search only for such solutions. Most of the time, we 
can prove that there will be a unique solution of this form, and we then know that 
this σ has the desired finite order under composition. In some cases, we find more than 
one solution, but in these cases, we can identify the correct series in a different way. 
For actual computations, we relied on implementations of all three algorithms; see the 
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section ‘How computations and visualisations were done’ at the end of the paper for 
details.

The results obtained in our running Example 2.3.2, 3.1.4, and either one of 3.2.1, 3.2.2
or 3.2.3 may be summarised as follows:

Proposition 3.4.1. The series σmin corresponding to the automaton in Fig. 2 is of order 
4 in N (F2) and has break sequence (1, 3) and initial coefficients σmin = t + t2 + t4 +
t5 +O(t6). �

A given finite order element of the Nottingham group can have in its conjugacy class 
many algebraic power series, which satisfy polynomial equations of various degrees. It 
would be interesting to find a theoretical upper bound on the minimal degree d of such 
a polynomial. This would also give an upper bound on the genus g of the curve X (see 
Subsection 3.3).

4. An enumeration algorithm for automata on at most N states representing finite 
order series

4.1. An abstract algorithm

Before we start applying our construction in concrete cases, we discuss an enumera-
tion algorithm for finding all ‘small’ (in terms of number of states) minimal automata 
representing an element in N (F2) of given finite order. The theoretical algorithm, which 
can readily be generalised to p-automata and order pn elements in N (Fp), consists of 
two parts.

� Algorithm 4.1.1 (Compositional Power Automaton).

Input A 2-automaton A and an integer n � 0.
Output If σ denotes the series corresponding to A, a 2-automaton An corresponding to 

the series σ◦2n .

(i) Find a polynomial F (t, X) ∈ F2[t, X] with F (t, σ) = 0. This can be done by 
following the proof of Christol’s Theorem 3.1.1 (in the direction different from the 
one used in Section 3)—from the automaton, determine the 2-kernel using [5, Thm. 
6.6.2] and then follow the first part of the proof in [5, Thm. 12.2.5].

(ii) Composing with σ(t) on the right gives F (σ(t), σ◦2(t)) = 0. Eliminate Y from 
F (t, Y ) = F (Y, X) = 0 to produce an algebraic equation F1(t, X) = 0 satisfied by 
X = σ◦2. Repeat this procedure to produce an algebraic equation Fn(t, X) = 0 for 
σ◦2n .

(iii) Construct an automaton An for σ◦2n from the equation Fn(t, X) = 0, using the 
methods of Section 3. �
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0 1

0

Start

1 0

0,1

0 1

Fig. 3. Automaton for the power series t.

We will use the well-known fact that to each automaton A corresponds a unique 
minimal deterministic finite automaton Â with the same corresponding series, and that 
Â can be computed from A by an algorithm, see e.g. [51, §2.4]. In particular, one can 
check by an algorithm whether or not two automata A and B correspond to the same 
series—this happens precisely when Â = B̂.

� Algorithm 4.1.2 (Enumeration Bounded Size Automata of Fixed Compositional Order).

Input Integers n � 0 and N � 1.
Output A finite list of all minimal 2-automata on at most N states representing an 

element of finite order 2n in N (F2).

(i) Go over all 2-automata on at most N states and eliminate those for which the 
corresponding power series is not of the form σ = t +O(t2).

(ii) Remove duplicates from the list by comparing their minimal automata.
(iii) For each remaining automaton A use Algorithm 4.1.1 to compute the automaton 

An.
(iv) Compute the minimal automaton Ân corresponding to An and check whether it 

equals the 3-stateminimal automaton generating the series t, depicted in Fig. 3. �

We do not know of an algorithm that lists all automata of size at most N corresponding 
to series of arbitrary but finite compositional order.

4.2. A practical implementation with application

A practical implementation of a more optimal algorithm in C++ was given by Groot 
Koerkamp [37] and produces a list of candidates for automata on at most 5 states rep-
resenting series of order 2 and 4. Running that algorithm, we find a unique candidate 
automaton corresponding to a series of order 4. Since we already know from Proposi-
tion 3.4.1 that σmin is an order-4 series which is represented by an automaton with 5
states, this proves the following.
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Proposition 4.2.1 (Groot Koerkamp, [37]). The unique minimal (leading zeros invariant) 
2-automaton with at most 5 states representing a power series of compositional order 4
is the one corresponding to the series σmin and depicted in Fig. 2. �

5. Construction and classification of some order-4 elements

5.1. Order 4, break sequence (1, 3) = 〈1, 2〉

Below are two known explicit power series with this order and break sequence: the 
one discovered by Chinburg and Symonds [22] and its compositional inverse, computed 
by Scherr and Zieve [9, Remark 1.4]:

σCS := t+ t2 +
∑

k�0

2k−1∑

�=0
t6·2

k+2� = t+ t2 +O(t6); (12)

σ◦3
CS =

∑

k�0

(
t3·2

k−2 + t4·2
k−2
)
= t+ t2 + t4 +O(t6). (13)

An unpublished result of Lubin ([53], see [41, Thm. 2.2] for a proof) implies that there 
are precisely two conjugacy classes of such elements in N (F2). We now present a slightly 
more detailed lemma that allows us to distinguish between these conjugacy classes based 
on the first few coefficients alone.

Lemma 5.1.1. Let σ ∈ N (F2) be an automorphism of order 4 with break sequence (1, 3) =
〈1, 2〉, and write σ =

∑∞
i=1 ait

i with ai ∈ F2. Then a1 = a2 = 1, a3 = 0, and exactly one 
of the following cases holds:

(a) a4 = a5 and σ is conjugate to σCS;
(b) a4 �= a5 and σ is conjugate to σ◦3

CS.

Proof. We have a1 = 1 since σ ∈ N (F2), and a2 = 1, a3 = 0 since σ has lower break 
sequence (1, 3); for the latter statement, compute the power series σ◦2 = t +(1 +a3)t4+
O(t5). The only possibilities for such series up to O(t6) are hence the four truncated 
series σ = t + t2 + a4t

4 + a5t
5 +O(t6) with a4, a5 ∈ F2. Two of these correspond to (12)

and (13), and for the other two, we observe that conjugating by φ : t �→ t + t3 gives

φ−1 ◦ σCS ◦ φ = t+ t2 + t4 + t5 +O(t6);

φ−1 ◦ σ◦3
CS ◦ φ = t+ t2 + t5 +O(t6).

The quoted result of Lubin in [41, Thm. 2.2] implies that there are precisely two conju-
gacy classes of power series with break sequence (1, 3) = 〈1, 2〉. To finish the proof it is 
therefore enough to show that any automorphisms σ, τ ∈ N (F2) with
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σ = t+ t2 +O(t6) and τ = t+ t2 + t4 +O(t6)

are not conjugate in N (F2). Suppose this is the case, and let ψ ∈ N (F2) be such that 
σ ◦ ψ = ψ ◦ τ . This implies that

ψ(t) + ψ(t)2 +O(t6) = ψ(t+ t2 + t4) +O(t6). (14)

Writing ψ(t) = t +
∑∞

i=2 bit
i with bi ∈ F2 and comparing the coefficients of t4 and t5 in 

(14) gives

b22 + b4 = 1 + b2 + b3 + b4 and b5 = b3 + b5,

which gives a contradiction since b2 ∈ F2. �

Corollary 5.1.2. The series σCS and σ◦3
CS form a full set of representatives for the conju-

gacy classes of elements of order 4 with break sequence (1, 3) = 〈1, 2〉 in N (F2). �

The following different power series of order 4 and break sequence (1, 3) was found 
earlier by Jean in [42] as a solution to the equation (t + 1)σ2 + (t2 + 1)σ + t = 0:

σJ :=
∑

k�0

t2
k

(t+ 1)3·2k−1 = t+ t2 + t5 +O(t6). (15)

Lemma 5.1.1 implies that it is conjugate to σ◦3
CS.

Let us show how the power series of Chinburg–Symonds and Jean fit into our con-
struction, and present the corresponding automata, using the same totally ramified cyclic 
extension F2( (z) )(x, y)/F2( (z) ) of degree 4 as in Example 2.3.2, but choosing different uni-
formisers t.

(i) First, let t = yx−2. After elimination, we find the (irreducible) equations

t2X2 +X + t2 + t = 0;

(t2 + 1)X2 +X + t = 0

for σ and τ , respectively. Looking at the valuations of the coefficients, we see that 
these equations have unique solutions of the form t + O(t2). The corresponding 
automata are given in the top right (σ) and the top left (τ) of Table 1. We now 
briefly indicate how these automata can be used to construct explicit formulas for 
σ and τ , showing that σ = σ◦3

CS and τ = σCS.
• Write τ =

∑
i�1 ait

i with ai ∈ F2. We will use the automaton corresponding to 
τ to determine for which i � 1 we have ai = 1. For such i, starting at the start 
vertex and walking through the automaton following the successive digits of i



J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554 511

Table 1
Automata corresponding to series of Chinburg–Symonds and Jean and their inverses.

0

1

0

01

1 0

1

0,1

10

1

0 1 0

00

1

Start

0

1

Automaton for σCS

0

1 0

1 1

0

0

Start

0
1

1

0

0,1

1

01

0
1

0

0,1

Automaton for σ◦3
CS

01 0

1 0

1 0

1 0

Start

1 00

1 11 1

0 0

0 0

0,1 0,111

0

Automaton for σJ

1 01 0

1 1

1 0

0 10

0 01

1

0,1

0,1

0 0

1

10

1 1

0

0 1
10

Start

0

1

Automaton for σ◦3
J

in base 2 (beginning with the least significant digit), we end up in a vertex with 
label 1. Since we can disregard any leading zeros, this vertex has an incoming 
edge with label 1. For τ note that this property holds precisely for those i for 
which the base-2 expansion is either 1, 10 or of the form 11dk · · · d10 for some 
k � 0, d1, . . . , dk ∈ {0, 1}, i.e. for i equal to 1, 2 or such that 6 · 2k � i < 8 · 2k
for some k � 0. It follows that τ is given by the formula in (12).

• For the power series σ =
∑

i�1 bit
i we see that the positive integers i for which 

bi = 1 are precisely those which have a base-2 expansion of the form 1, 100, 
1k10 or 101k10 with k � 0, and these are exactly the base-2 expansions of the 
numbers 1, 4, 4 · 2k − 2 and 12 · 2k − 2. This proves the formula for σ given in 
(13).

The fact that we can find such an explicit expression appears to be quite special. 
This relates to the fact that the automaton is ‘sparse’ in the sense of Section 10
below. The automaton for τ is not sparse, but the base-2 expansion of the occurring 
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powers has an explicit ‘closed’ form. It turns out that this series is sparse up to 
multiplication by a rational function.

(ii) Second, let t = xy−1. Then we find the (irreducible) equations

(t+ 1)X2 + (t2 + 1)X + t = 0;

tX2 + (t2 + 1)X + t2 + t = 0

for σ and τ , respectively. From formula (15) we deduce that σJ satisfies the same 
algebraic equation as σ, and since this equation has a unique solution of the form 
t + O(t2), we have σJ = σ. Solving the equations for σ and τ by automata, we 
find that σ correspond to the bottom left, and τ to the bottom right automaton 
depicted in Table 1. Converting the automata into explicit series as above, we find 
(after some rewriting) that

σJ = σ = t+ (t7 + t2)
∑

k�0
t8k +

∑

k,��0

(
t4·2

k(4�+1)+1 + t4·2
k(4�+3)

)

= t+ t7 + t2

t8 + 1 +
∑

k�2

t3·2
k + t2

k+1

t4·2k + 1
,

and

σ◦3
J = τ = t+ (t11 + t5)

∑

k�0
t16k +

∑

k�1, ��0

(
t2

k(2�+1) + t4·2
k(4�+1)−1 + t4·2

k(4�+3)+1
)

= t+ t11 + t5

t16 + 1 + t2

t2 + 1 +
∑

k�3, ��0

(
t2

k(4�+1)−1 + t2
k(4�+3)+1

)
. (16)

On the other hand, from the algebraic equation for τ (which has a unique solution 
of the form t +O(t2)), we can find directly another explicit form for τ : the series τ̃ :=

t
t2+1 ·τ satisfies τ̃ = t2/(t +1)3+τ̃2, and hence (iteratively) τ̃ =

∑
k�0(t2/(t +1)3)2k , 

leading to the formula

σ◦3
J = τ =

∑

k�0

t2·2
k−1

(t+ 1)3·2k−2 . (17)

The series σ and τ are further closed forms of elements of order 4 in N (F2) with 
break sequence (1, 3) and conjugate to σ◦3

CS and σCS, respectively.

The element σmin in Proposition 3.4.1 is conjugate to σCS.

Remark 5.1.3. We outline a construction of an automaton for such a series of order 4 with 
minimal break sequence using the Carlitz module construction of abelian extensions of 



J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554 513

0

0 1

0 1

1

0

1

1

0,1

Start

0

0

0

1

0

0 1

1

1

0

Fig. 4. Automaton corresponding to σ◦2
CS ∈ N (F2) of order 2 with break sequence (3).

function fields, see e.g. [39] (this is a global class field theory version essentially equivalent 
to the local method based on Lubin–Tate theory used by Jean).

Let ρ : F2[z] → End(Ga) denote the Carlitz module for K := F2(z) defined by 
ρz(X) = zX + X2. Now the extension K(ρ[z3])/K given by adjoining the roots of 
ρz3(X) is Galois with Galois group G =

(
F2[z]/z3

)∗ ∼= Z/4Z, generated by the class of 
z+1 (of order 4), where an element g ∈ G acts on α ∈ K(ρ[z3]) by g(α) := ρg(α). A min-
imal polynomial for the extension is f := ρz3(X)/ρz2(X) = X4 + (z2 + z)X2 + z2X + z, 
its splitting field is a cyclic degree-4 extension in which z is totally ramified (and no 
other place ramifies, cf. [39, Prop. 2.2, Thm. 3.2]), and a root t is a uniformiser for the 
extension locally above z. The action of a generator of the Galois group is given by 
σ(t) = ρz+1(t) = t + zt + t2.

Eliminating z, we find an equation (t + 1)X2 + (t2 + 1)X + t = 0 for σ. This is 
exactly the equation for σJ, previously obtained using Witt vectors, and solved by a 
series corresponding to the automaton in Table 1 with 9 states.

Remark 5.1.4. If τ is an element of order 4 with break sequence (1, 3), then τ◦2 has break 
sequence (3), and hence is conjugate to the Klopsch’s series σK,3 (see Example 1.3.1). 
Taking τ = σCS produces the power series σ := σ◦2

CS = t + t4 + O(t5), which satisfies 
(t2+1)X2+X+ t2+ t = 0. The corresponding automaton is presented in Fig. 4, leading 
to the following explicit formula for an element of order 2 with break sequence (3):

σ◦2
CS = t+

∑

k�0

2k−1∑

�=0
t4·2

k+2� = t+ 1
t2 + 1

∑

k�1
(t2·2

k

+ t3·2
k

).

5.2. Order 4, break sequence (1, 5) = 〈1, 3〉

By Lubin’s result ([53], [41, Thm. 2.2]), there is a unique conjugacy class of such 
power series. No formula for such a series is known, but following our philosophy, we can 
represent the solution by an automaton.
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Proposition 5.2.1. Up to conjugation, every element in N (F2) of order 4 with break 
sequence (1, 5) = 〈1, 3〉 is given by the power series σ(1,5) corresponding to the automaton 
in Fig. 5 with 13 states, with initial coefficients

σ(1,5) = t+ t2 + t3 + t4 + t6 +O(t7).

Proof. Suitable algebraic equations are found from Witt’s theory using Example 2.2.2; 
following Example 2.4.3, we start with the element β := (z−1, z−3) ∈ W2(F2( (z) )), and 
rewrite the resulting equation in terms of the variables x := α0 and y := α1+α3

0+α2
0 as

{
x2 + x = z−1;
y2 + y = x5 + x3.

(18)

(The variable y is used instead of α1 since that choice allows us to use Lemma 2.3.1.) 
Writing z0 = z, z1, z2 for uniformisers of the fields in the tower of extensions

K0 := F2((z)) � K1 = K0(x) = F2((z1)) � K2 = K1(y) = F2((z2)),

we have vz1(x) = vz0(z−1) = −1, so vz1(x5 + x3) = −5, and hence vz2(y) = −5 and 
vz2(x) = −2. Hence the extensions are all totally ramified and we can choose t = x2y−1

as uniformiser for K2 (since vz2(t) = 1). A generator σ for the Galois group of K2/K0 is 
determined by

{
σ(x) = x+ 1;
σ(y) = y + x2 + 1,

and with t = x2y−1 we compute that σ(t) = (x2 +1)/(y+x2 +1). By eliminating x and 
y from these last two equations and the two equations in (18), we find that σ = σ(t)
satisfies the following (irreducible) equation over F2(t):

t2X3 + (t+ 1)3X + t3 + t = 0. (19)

Considering the sum and product of the three solutions, we find that there is a unique 
solution with σ = t + O(t2). The corresponding automaton with initial coefficients t +
t2 + t3 + t4 + t6 + O(t7) and Equation (19) produced by the algorithm is displayed in 
Fig. 5. �

5.3. Order 4, break sequence (1, 9) = 〈1, 5〉

Again by Lubin’s result in [53], there is a unique conjugacy class of such power series. 
A corresponding automaton is found as follows.
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Fig. 5. Automaton representing a power series σ(1,5) of order 4 with break sequence (1, 5) (unique up to 
conjugation).

Proposition 5.3.1. Up to conjugation, every element in N (F2) of order 4 with break 
sequence (1, 9) = 〈1, 5〉 is given by the power series σ(1,9) corresponding to the automaton 
described as follows using the data in Table 2: it has 110 states, corresponding to the 110
triples on the displayed ordered list, where the start vertex is the first triple on the list 
and a triple (�, i, j) occurs on the list precisely if the following three conditions hold: it 
has label �, there is a directed edge with label 0 to the i-th triple on the list and there is 
a directed edge with label 1 to the j-th triple on the list. The initial coefficients of σ(1,9)
are

σ(1,9) = t+ t2 + t3 + t4 + t5 + t6 + t7 + t9 + t11 + t12 + t13 + t17 + t18 +O(t19).

Proof. Following Example 2.4.3(c), we start with β = (z−1, z−10) ∈ W2(F2( (z) )). In the 
resulting equations ℘(α) = β, change variables to x := α0 and y := α1+α10

0 +α9
0+α6

0+
α3
0 + α0 to find

{
x2 + x = z−1;
y2 + y = x9 + x.

Writing z0 = z, z1, z2 for uniformisers of the fields in the tower of extensions

K0 := F2((z)) � K1 = K0(x) = F2((z1)) � K2 = K1(y) = F2((z2)),

we have vz1(x) = −1, so vz1(x9 + x) = −9, and hence vz2(y) = −9, vz2(x) = −2 and 
vz2(z) = 4. Hence all extensions are totally ramified and we can choose t = x−1yz2 as 
uniformiser for K2 (since vz2(t) = 1). A generator σ for the Galois group of K2/K0 is 
determined by
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{
σ(x) = x+ 1;
σ(y) = y + x4 + x2 + x+ 1.

By elimination of variables, we find that σ = σ(t) satisfies the following (irreducible) 
equation over F2(t):

t2σ7 + t3σ6 + (t5 + t4 + t2)X5 + (t5 + t3)X4+

(t7 + t5 + t4 + t3 + t)X3 + t5X2 + (t3 + t+ 1)X + t = 0.

There is a unique solution of the form t +O(t2), and its initial coefficients are as indicated 
in the proposition; the corresponding 2-automaton can be found in Table 2 and in [17]
(the visual representation in Table 2 is more of an illustration but can be manipulated 
directly in [17] using standard graph theory algorithms). �

6. Some new explicit formulas for power series of order 4

The explicit power series σCS and its inverse are a full set of representatives for 
the conjugacy classes of order-4 elements with break sequence (1, 3). The series σJ is 
another power series with a nice closed formula. We did a larger search for automata 
corresponding to such power series and found five more for which we could write down 
reasonably sized closed formulas. One of these is the inverse of Jean’s series displayed in 
Equations (16), (17). We list the other four in Table 3.

We start with the equation from Example 2.3.2, but choose different uniformisers t. 
Recall that we write τ = σ◦3.

(i) First, let t = (1 + x2 + y)/(x2 + xy). Then σ = σT,1 satisfies

t2X4 + (t4 + t2 + t+ 1)X2 + (t3 + t2 + t)X + t3 = 0

and τ = σT,2 satisfies

t2X4 + (t+ 1)X3 + (t4 + t2 + t)X2 + (t2 + t)X + t2 = 0.

Solving these (irreducible) equations by automata, we find that σT,1 and σT,2 cor-
respond to the top left, respectively top right automaton depicted in Table 4. It 
is relatively straightforward to convert the automata into explicit series following 
the method explained after Corollary 5.1.2, and the result is shown in Table 3
(including the initial coefficients).

(ii) Second, let t = xy/(x3 + y). Then σ = σT,3 satisfies

t4X4 + (t2 + 1)X3 + (t3 + t)X2 + t2X + t3 = 0
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Table 2
Representation of the automaton for the power series σ(1,9) of order 4 with break sequence (1, 9). The 
meaning of the representation by a set of triples is found in Proposition 5.3.1: a triple (�, i, j) represents 
a vertex (the first one on the list being the start vertex) with vertex label �, a directed edge with label 0
to the i-th triple, and with label 1 to the j-th triple.

((0, 2, 3), (0, 7, 8), (1, 3, 69), (0, 5, 6), (0, 12, 13), (1, 85, 72), (0, 20, 16), (1, 88, 89), (0, 10, 11), (0, 24, 37),
(1, 84, 74), (0, 24, 40), (1, 104, 76), (0, 15, 16), (0, 20, 37), (1, 8, 72), (0, 18, 19), (0, 30, 13), (1, 73, 74),
(0, 48, 49), (0, 22, 23), (0, 48, 60), (1, 91, 92), (0, 20, 25), (1, 81, 94), (0, 27, 6), (0, 35, 28), (0, 29, 19),
(0, 62, 28), (0, 31, 9), (0, 22, 32), (1, 88, 78), (0, 34, 11), (0, 31, 49), (0, 7, 36), (1, 105, 52), (1, 23, 61),
(0, 7, 39), (1, 106, 14), (1, 95, 17), (0, 42, 36), (0, 20, 40), (0, 22, 36), (0, 45, 46), (0, 31, 60), (1, 40, 55),
(0, 22, 39), (0, 50, 51), (0, 35, 54), (0, 50, 50), (0, 48, 9), (0, 53, 54), (0, 21, 50), (0, 59, 57), (0, 49, 56),
(0, 51, 50), (0, 58, 57), (0, 62, 54), (0, 66, 4), (0, 38, 4), (0, 60, 56), (0, 21, 43), (0, 30, 54), (0, 43, 50),
(0, 21, 51), (0, 21, 7), (0, 65, 4), (0, 47, 9), (1, 8, 98), (1, 70, 71), (1, 100, 92), (1, 75, 76), (1, 97, 98),
(1, 79, 78), (1, 81, 82), (1, 69, 76), (1, 70, 78), (1, 83, 78), (1, 77, 80), (1, 102, 72), (1, 88, 90), (1, 103, 74),
(1, 70, 89), (1, 39, 82), (1, 91, 80), (1, 77, 87), (1, 93, 94), (1, 79, 64), (1, 99, 52), (1, 101, 14), (1, 79, 68),
(1, 36, 61), (1, 106, 68), (1, 107, 63), (1, 91, 96), (1, 108, 17), (1, 106, 41), (1, 16, 55), (1, 77, 92), (1, 70, 90),
(1, 77, 96), (1, 106, 64), (1, 109, 26), (1, 23, 26), (1, 86, 52), (1, 86, 67), (1, 110, 17), (1, 105, 67), (1, 105, 44),
(1, 105, 33))

and τ = σT,4 satisfies the same equation as σ (it turns out that another solution is 
σ◦2
T,3 = σ◦2

T,4). Solving this (irreducible) equation by automata, we find that σ and 
τ correspond to the bottom left and bottom right automaton depicted in Table 4. 
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Table 3
Four explicit power series of order 4 with break sequence (1, 3) (the representation is minimal in the sense 
that no monomial occurs twice in the same formula).

σT,1 = t +
∑

k�2

(
t
2k−2 + t

2·2k−1 + t
4·2k−5

)
+
∑

k,��2
t
2k(2�−3)+1 = t + t

2 + O(t5).

σT,2 = t + t
2 +

∑

k�3

(
t
2k−4 + t

2k−3 + t
2k−1 + t

4·2k−6 + t
4·2k−5 + t

8·2k−22 + t
8·2k−21

)
+

(t + 1)
∑

k,��3
t
2k(2�−6)+2 + (t + 1)

∑

k,�,m�2
t
2k+�(2m−3)+2·2k−2 = t + t

2 + t
4 + t

5 + O(t7).

σT,3 = t + t
8 + t

44 +
∑

k�2

(
t
2k−2 + t

3·2k−2 + t
8·2k−4 + t

8·2k+4 + t
8·2k+20 + t

16·2k+44 + t
24·2k−4

)
+

∑

k,��2

(
t
2k(2�+3)−2 + t

4·2k(2�+2)+4 + t
8·2k(2�+3)−4 + t

8·2k(2�+2)+12
)
+

∑

k,��2,m�1

(
t
2k+�(2m+1)+2k−2 + t

8·2k+�(2m+1)+8·2k−4
)
= t + t2 + t6 + t8 + t10 + O(t13) .

σT,4 = t + t
4 + t

8 + t
20 +

∑

k�2

(
t
2k−2 + t

8·2k−4 + t
8·2k+20 + t

16·2k+12 + t
16·2k+44

)
+

∑

k,��2

(
t
2k(2�+1)−2 + t

8·2k(2�+1)−4 + t
4·2k(2�+2)+4 + t

8·2k(2�+2)+12 + t
2k(2�+3)−2 + t

8·2k(2�+3)−4
)
+

∑

k,��2,m�1

(
t
2k+�(2m+1)+2k−2 + t

8·2k+�(2m+1)+8·2k−4
)
= t + t

2 + t
4 + t

6 + t
8 + O(t13).

Converting the automata into explicit series as before, we find the formulas in 
Table 3 (again including the initial coefficients).

By the criterion in Lemma 5.1.1, we see easily that σT,2, σT,3 and σCS are conjugate, 
and so are σT,1, σT,4 and σ◦3

CS.

7. Construction and classification of some order-8 elements

7.1. Order 8, break sequence (1, 3, 11) = 〈1, 2, 4〉

Up to now, no finite description of any element of N (F2) of order 8 was known. Our 
method produces an example.

Proposition 7.1.1. An element σ8 in N (F2) of order 8 with break sequence (1, 3, 11) =
〈1, 2, 4〉 is given by the automaton described by the data in Table 5: it has 320 states, 
corresponding to the 320 triples on the displayed ordered list, where the start vertex is 
the first triple on the list and a triple (�, i, j) occurs on the list precisely if the following 
three conditions hold: its vertex label is �, there is a directed edge with label 0 to the i-th 
triple on the list and there is a directed edge with label 1 to the j-th triple on the list. 
The initial terms of σ8 are

σ8 = t+ t2 + t5 + t6 + t12 +O(t13).
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Table 4
Automata corresponding to the order 4, break sequence (1, 3) series in Table 3.
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Automaton of σT,4

We refrain from including a pictorial representation, but the automaton is stored in 
standard Mathematica form in [17], making it easy to manipulate.

Proof. We refer to Example 2.2.3 on how to use Witt vectors of length 3 to construct 
cyclic order-8 extensions. We choose β = (z−1, 0, 0) ∈ W3(F2( (z) )) and rewrite the re-
sulting equations in (6) in terms of the variables x := α0, y := α1 and w := α2 + α2

0α1
to find

⎧
⎪⎨
⎪⎩

x2 + x = z−1;
y2 + y = xz−1;
w2 + w = x4y + x3y.

Choosing uniformisers z0 = z, z1, z2, z3 for the intermediate fields in the tower of field 
extensions
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K0 = F2((z)) � K1 = K0(x) = F2((z1)) � K2 = K1(y) = F2((z2)) � K3 = K2(w)

= F2((z3))

and using Lemma 2.3.1 as in Example 2.3.2, we see that the extension K3/K0 is totally 
ramified. We find the relevant valuations (following Lemma 2.3.1):

vz1(x) = −1, vz1(z) = 2;

vz2(y) = −3; vz2(x) = −2, vz2(z) = 4;

vz3(w) = −11, vz3(x) = −4, vz3(y) = −6, vz3(z) = 8.

We choose the uniformiser t as t = (w + y)/(x3 + y). Then indeed vz3(t) = 1, and the 
action of the generator of the Galois group on αi is given by (7), which implies that for 
our choice of variables we have

⎧
⎪⎨
⎪⎩

σ(x) = x+ 1;
σ(y) = y + x;
σ(w) = w + xy + y,

(20)

and so by elimination we find the (irreducible) equation

t6X6 + (t6 + t2)X4 + (t6 + t5 + t4 + t3 + t2 + 1)X2 + (t+ 1)3X + t6 + t5 + t2 + t = 0

for σ = σ8. The initial coefficients are as indicated, and we readily verify the lower break 
sequence (1, 3, 11) from

σ8 = t+ t2 +O(t3), σ◦2
8 = t+ t4 +O(t5), σ◦4

8 = t+ t12 +O(t13). �

7.2. Detecting conjugacy using local class field theory

Proposition 7.2.1. The number of conjugacy classes of elements of order 8 in N (F2)
with ‘minimal’ break sequence (1, 3, 11) = 〈1, 2, 4〉 is 4.

Proof. We follow the method of Lubin [54]. For k � 1, write Uk for the multiplicative 
group of units Uk = 1 +zkF2�z�. By [54, Thm. 2.2] elements of exact order 2n in N (F2)
up to conjugation correspond bijectively to continuous surjective characters η : U1 →
Z/2nZ up to so-called strict equivalence (the bijection arises from the restriction of the 
local reciprocity map to U1). Strict equivalence of characters η and η′ means that there 
exists u ∈ N (F2) with η(u(z)/z) = 0 and η′(x) = η(x ◦ u) for all x ∈ U1. Moreover, the 
upper break sequence 〈b(0), . . . , b(n−1)〉 can be read off from the corresponding character: 
η(Ub(i)) = 2iZ/2nZ and η(Ub(i)+1) = 2i+1Z/2nZ [54, Prop. 3.2].

In our case of order 8 elements with minimal break sequence, this implies that the 
corresponding characters factor through U1/U5 and map U3 to 4Z/8Z. Since we have an 
isomorphism of groups



J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554 521

Z/8Z× Z/2Z → U1/U5

(c, d) �→ (1 + z)c(1 + z3)dU5,

there are eight such characters ηa,b determined by ηa,b(1 + z) = a ∈ (Z/8Z)∗ and 
ηa,b(1 + z3) = 4b with b ∈ Z/2Z. We need to determine which of these are strictly 
equivalent. Write any u ∈ N (F2) in the form u(z) = z(1 + z)α(1 + z3)βu5 with α ∈
{0, . . . , 7}, β ∈ {0, 1} and u5 ∈ U5. We have ηa,b(u(z)/z) = aα + 4bβ mod 8, and hence 
ηa,b(u(z)/z) = 0 if and only if u(z) ≡ z mod z6 or u(z) ≡ z + z4 + bz5 mod z6. Suppose 
then that

ηa′,b′(x) = ηa,b(x ◦ u), (21)

and evaluate both sides for x = 1 + z and x = 1 + z3, respectively. For the first choice of 
u, we immediately find that a′ = a and b′ = b. For the second choice of u, for x = 1 + z, 
the left hand side of (21) evaluates to a′ and the right hand side to ηa,b((1 +z)5U5) = 5a. 
For x = 1 + z3, the left hand side is b′ and the right hand side ηa,b((1 + z3)U5) = b.

We conclude that the strict equivalence class of ηa,b consists of ηa,b and η5a,b, and 
there are indeed four strict equivalence classes in total. �

We state below an analogue of Lemma 5.1.1 that allows us to distinguish between 
these four conjugacy classes based on the first few coefficients of the power series.

Proposition 7.2.2. Let σ ∈ N (F2) be an automorphism of order 8 with break sequence 
given by (1, 3, 11) = 〈1, 2, 4〉, and write σ =

∑∞
i=1 ait

i with ai ∈ F2. Then a1 = a2 = 1, 
a3 = 0, a5 �= a7, and σ is conjugate to a series σ8,(b4,b11) of order 8 that has initial 
coefficients

σ8,(b4,b11) = t+ t2 + b4t
4 + t7 + b11t

11 +O(t12)

for a unique choice of b4, b11 ∈ F2. In particular, the conjugacy class of σ depends only 
on σ mod t12.

The series σ8 is conjugate to σ8,(1,1) and σ◦3
8 is conjugate to σ8,(0,1). These give 

representatives of two of the four conjugacy classes of minimally ramified series of order 
8.

Proof. We will show that any such σ is conjugate to some σ8,(b4,b11) modulo t12, and 
that the series σ8,(b4,b11) are not conjugate modulo t12 for the four different choices of 
(b4, b11). Since we know that there are 4 conjugacy classes of series σ satisfying the 
required assumptions, this shows that actual series σ8,(b4,b11) of order 8 with minimal 
break sequence do exist.

We first note that d(σ) = 1 implies a1 = a2 = 1; computing σ◦2, we get σ◦2 =
t +(1 +a3)t4+O(t5), and d(σ◦2) = 3 gives a3 = 0; finally, σ◦4 = t +(a5+a7)t12+O(t13), 
and since d(σ◦4) = 11, we get a5 �= a7.
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Table 5
Representation of the automaton for the power series σ8 of order 8 with break sequence (1, 3, 11). The 
meaning of the representation by a set of triples is found in Proposition 7.1.1: a triple (�, i, j) represents a 
vertex (the first one on the list being the start vertex) with vertex label �, a directed edge with label 0 to 
the i-th triple, and with label 1 to the j-th triple.
((0, 2, 3), (0, 58, 59), (1, 82, 185), (0, 5, 3), (0, 65, 66), (0, 7, 8), (0, 136, 137), (1, 278, 43), (0, 10, 11), (0, 140, 141),
(1, 281, 43), (0, 13, 8), (0, 147, 38), (0, 15, 11), (0, 151, 152), (0, 17, 18), (0, 76, 77), (1, 279, 117), (0, 20, 18),
(0, 78, 79), (0, 22, 23), (0, 60, 61), (1, 280, 117), (0, 25, 23), (0, 70, 72), (0, 9, 27), (1, 89, 190), (0, 24, 27), (0, 30, 31),
(0, 44, 41), (1, 87, 190), (0, 32, 31), (0, 32, 34), (1, 72, 189), (0, 33, 36), (1, 224, 160), (0, 33, 38), (1, 214, 154),
(0, 40, 41), (0, 51, 109), (1, 84, 185), (0, 43, 3), (0, 115, 116), (0, 96, 101), (0, 46, 3), (0, 80, 68), (0, 35, 48),
(1, 272, 112), (0, 37, 50), (1, 290, 45), (0, 35, 8), (0, 37, 53), (1, 282, 39), (0, 55, 18), (0, 99, 100), (0, 57, 27),
(0, 142, 143), (0, 60, 93), (1, 238, 128), (0, 60, 106), (1, 236, 87), (0, 63, 64), (0, 58, 112), (1, 265, 48), (0, 151, 129),
(1, 242, 66), (0, 65, 68), (1, 260, 59), (0, 70, 71), (0, 151, 179), (1, 293, 305), (1, 231, 97), (0, 74, 75), (0, 95, 199),
(1, 232, 97), (0, 51, 26), (1, 268, 48), (0, 44, 192), (1, 267, 143), (0, 81, 82), (0, 195, 154), (1, 256, 143), (0, 81, 84),
(1, 246, 273), (0, 86, 87), (0, 195, 162), (1, 273, 34), (0, 86, 89), (1, 149, 220), (0, 91, 92), (0, 47, 12), (1, 234, 87),
(0, 94, 89), (0, 111, 107), (0, 96, 97), (0, 125, 123), (1, 23, 34), (0, 99, 79), (0, 125, 128), (1, 251, 273), (1, 222, 220),
(0, 103, 101), (0, 52, 114), (0, 105, 89), (0, 85, 89), (0, 4, 107), (1, 3, 221), (0, 54, 109), (1, 221, 221), (0, 56, 107),
(0, 129, 130), (0, 113, 114), (0, 138, 139), (1, 262, 303), (0, 131, 132), (1, 266, 303), (0, 118, 116), (0, 148, 149),
(0, 120, 114), (0, 150, 50), (0, 62, 68), (0, 73, 123), (1, 264, 59), (0, 90, 123), (0, 126, 127), (0, 126, 75), (1, 296, 305),
(1, 240, 66), (0, 153, 28), (1, 71, 189), (0, 153, 42), (1, 215, 154), (0, 131, 134), (1, 225, 160), (0, 129, 27), (0, 55, 164),
(1, 213, 156), (0, 98, 172), (1, 288, 42), (0, 63, 16), (1, 291, 45), (0, 63, 6), (1, 270, 112), (0, 140, 145), (1, 283, 39),
(0, 142, 11), (0, 52, 122), (0, 193, 187), (1, 212, 156), (0, 49, 104), (0, 148, 194), (1, 289, 42), (0, 58, 124), (0, 155, 121),
(0, 95, 203), (0, 157, 121), (0, 33, 206), (0, 159, 46), (0, 69, 179), (0, 161, 46), (0, 144, 182), (0, 163, 122), (0, 47, 19),
(0, 165, 122), (0, 99, 21), (0, 167, 124), (0, 133, 106), (0, 169, 124), (0, 83, 40), (0, 171, 26), (0, 176, 29), (0, 173, 28),
(0, 65, 46), (0, 175, 26), (0, 184, 26), (0, 44, 189), (0, 178, 32), (0, 142, 168), (0, 86, 32), (0, 181, 29), (0, 210, 192),
(0, 183, 29), (0, 211, 186), (0, 51, 45), (0, 154, 186), (0, 191, 192), (0, 129, 188), (0, 194, 192), (0, 179, 188),
(0, 162, 186), (0, 198, 164), (0, 187, 193), (0, 193, 193), (0, 205, 166), (0, 148, 191), (0, 197, 162), (0, 67, 194),
(0, 98, 177), (0, 200, 164), (0, 37, 180), (0, 202, 162), (0, 146, 208), (0, 204, 166), (0, 126, 108), (0, 49, 110),
(0, 207, 168), (0, 135, 16), (0, 209, 168), (0, 88, 24), (0, 55, 156), (0, 52, 119), (1, 319, 100), (1, 294, 313),
(1, 310, 71), (1, 316, 308), (1, 212, 164), (1, 218, 172), (1, 319, 79), (1, 218, 177), (1, 68, 187), (1, 66, 187),
(1, 223, 158), (1, 318, 36), (1, 311, 145), (1, 304, 284), (1, 227, 203), (1, 297, 97), (1, 227, 199), (1, 230, 192),
(1, 297, 101), (1, 230, 189), (1, 233, 190), (1, 233, 31), (1, 235, 154), (1, 244, 72), (1, 237, 160), (1, 241, 141),
(1, 239, 196), (1, 271, 122), (1, 241, 170), (1, 257, 16), (1, 243, 129), (1, 248, 194), (1, 243, 179), (1, 246, 162),
(1, 248, 191), (1, 246, 154), (1, 249, 187), (1, 249, 193), (1, 216, 199), (1, 252, 201), (1, 258, 42), (1, 217, 172),
(1, 255, 174), (1, 277, 104), (1, 257, 6), (1, 260, 112), (1, 260, 124), (1, 258, 28), (1, 261, 93), (1, 261, 106),
(1, 263, 12), (1, 292, 26), (1, 244, 44), (1, 228, 102), (1, 229, 14), (1, 247, 9), (1, 269, 104), (1, 294, 12), (1, 302, 222),
(1, 317, 53), (1, 312, 134), (1, 271, 119), (1, 275, 119), (1, 218, 286), (1, 277, 110), (1, 317, 50), (1, 309, 84),
(1, 277, 306), (1, 320, 127), (1, 315, 314), (1, 226, 128), (1, 295, 303), (1, 285, 30), (1, 245, 87), (1, 287, 30),
(1, 258, 307), (1, 249, 221), (1, 259, 130), (1, 276, 48), (1, 219, 274), (1, 223, 8), (1, 292, 45), (1, 223, 48),
(1, 294, 19), (1, 297, 39), (1, 280, 123), (1, 299, 112), (1, 252, 132), (1, 301, 43), (1, 247, 82), (1, 242, 68),
(1, 250, 128), (1, 244, 71), (1, 152, 130), (1, 298, 307), (1, 284, 130), (1, 300, 307), (1, 245, 89), (1, 247, 84),
(1, 241, 145), (1, 256, 11), (1, 253, 274), (1, 254, 274), (1, 259, 27), (1, 252, 134), (1, 318, 38), (1, 233, 34),
(1, 280, 128), (1, 320, 75))

We will now prove that σ is conjugate to σ8,(b4,b11) for some b4, b11 ∈ F2. We do this 
by conjugating with selected elements of N (F2) in the following steps (in each step the 
symbols ai denote the coefficients of the ‘new’ power series, obtained by performing the 
conjugations described in the previous steps):

Step I (conjugating with χ3 : t �→ t +t3). We have χ◦−1
3 = t +t3+t5+t9+t11+O(t12), 

yielding

χ3 ◦ σ ◦ χ◦−1
3 = t+ t2 + (1 + a4)t4 + (1 + a5)t5 +O(t6),
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so conjugating if necessary by χ3 we may and do assume that a5 = 0; then a7 = 1, since 
a5 �= a7.

Step II (conjugating with χ5 : t �→ t +t5). We have χ◦−1
5 = t +t5+t9+O(t12), yielding

χ5 ◦ σ ◦ χ◦−1
5 = t+ t2 + a4t

4 + (1 + a6)t6 +O(t7),

so conjugating if necessary by χ5 we may and do assume that a6 = 0.
Step III (conjugating with χ2 : t �→ t + t2). We have χ◦−1

2 = t + t2 + t4 + t8 +O(t12), 
yielding

χ2◦σ◦χ◦−1
2 = t+t2+a4t

4+t7+(1+a8)t8+(1+a9)t9+(a9+a10)t10+(1+a11)t11+O(t12),

so conjugating if necessary by χ2 we may and do assume that a9 = 0.
Step IV (conjugating with χ6 : t �→ t + t6). We have χ◦−1

6 = t + t6 +O(t12), yielding

χ6 ◦ σ ◦ χ◦−1
6 = t+ t2 + a4t

4 + t7 + (1 + a8)t8 + (1 + a10)t10 + a11t
11 +O(t12),

so conjugating if necessary by χ6 we may and do assume that a8 = 0.
Step V (conjugating with χ4 : t �→ t + t4). We have χ◦−1

4 = t + t4 +O(t12), yielding

χ4 ◦ σ ◦ χ◦−1
4 = t+ t2 + a4t

4 + t7 + (1 + a10)t10 + a11t
11 +O(t12),

so conjugating if necessary by χ4 we may and do assume that a10 = 0.
This ends the proof that σ is conjugate to σ8,(b4,b11) for some b4, b11 ∈ F2.
We will now prove that the power series σ8,(b4,b11) and σ8,(c4,c11) are not conjugate 

in N (F2) unless (b4, b11) = (c4, c11). Indeed, suppose that σ8,(b4,b11) and σ8,(c4,c11) are 
conjugate, and let τ ∈ N (F2) be a conjugating power series, so that σ8,(b4,b11) ◦ τ =
τ ◦ σ8,(c4,c11). Write τ = t +

∑∞
i=2 dit

i. Computing σ8,(b4,b11) ◦ τ − τ ◦ σ8,(c4,c11), we get

σ8,(b4,b11) ◦ τ − τ ◦ σ8,(c4,c11)

= (d3 + b4 + c4)t4 + d3t
5 + (d5 + d3c4)t6+

(d2 + d6 + d7 + d2b4 + d2c4 + d3c4 + d5c4)t8 + (d2 + d5 + d7 + d3c4)t9+

(d2 + d4 + d6 + d7 + d9 + d3c4 + d7c4)t10 + (d2 + d2d3 + d7 + b11 + c11)t11 +O(t12).

Considering the coefficients at t5, t6 and t9 gives d3 = d5 = d2 + d7 = 0; looking then at 
the coefficients at t4 and t11 gives b4 = c4 and b11 = c11.

Applying the algorithm from the above proof, we find that σ8 is conjugate to σ8,(1,1)
and σ◦3

8 is conjugate to σ8,(0,1). (This requires computing more coefficients than we have 
specified in Steps I and II, but the computations are easy.) �

Corollary 7.2.3. Let σ ∈ N (F2) be an automorphism of order 8 with break sequence 
(1, 3, 11) = 〈1, 2, 4〉. Then σ and σ◦5 are conjugate in N (F2), while σ and σ◦3 are not.
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Proof. This follows from the proof of Proposition 7.2.1—if an element σ corresponds to 
the character ηa,b, then for k odd the element σ◦k corresponds to kηa,b = ηka,kb = ηka,b. 
Since ηa,b and η5a,b are strictly equivalent, while ηa,b and η3a,b are not, the claim follows.

It is also possible to give a direct proof using the method of Proposition 7.2.2, as 
follows. Denote the relation of being conjugate by ∼. By Proposition 7.2.2, we may 
assume without loss of generality that σ = t + t2 + b4t

4 + t7 + b11t
11 + O(t12) for some 

b4, b11 ∈ F2. Then

σ◦2 = t+ t4 + t8 + t9 + (1 + b4)t10 + t11 +O(t12), σ◦4 = t+O(t12),

and hence σ = σ◦5 +O(t12) and

σ◦3 = t+ t2 + (1 + b4)t4 + t7 + t9 + b4t
10 + (1 + b11)t11 +O(t12).

Following the algorithm of the proof of Proposition 7.2.2 (and using the notation therein), 
we may conjugate σ◦3 in turn by χ2, χ6 and in the case where b4 = 1 also χ4 to arrive 
at

σ◦3 ∼ t+ t2 + (1 + b4)t4 + t7 + b11t
11 +O(t12),

i.e. if σ ∼ σ8,(b4,b11), then σ◦3 ∼ σ8,(b4+1,b11). Applying Proposition 7.2.2 again shows 
that σ ∼ σ◦5 and σ � σ◦3. �

7.3. Finding representatives via explicit class field theory

We have already constructed representatives of two out of four conjugacy classes of 
minimally ramified series of order 8. In order to construct the representatives for the 
remaining conjugacy classes, we will extend the method using the Carlitz module from 
Remark 5.1.3.

Let ρ be the Carlitz module for K = F2(z). We know from [54, Obs. 4 & Sect. 5]
that the characters η : U1 → Z/8Z corresponding to minimally ramified order-8 ele-
ments factor through U5, and the corresponding Galois extensions can be obtained as a 
subextension of K(ρ[z5])/K. The extension K(ρ[z5])/K has Galois group

G =
(
F2[z]/z5

)∗ ∼= Z/8Z× Z/2Z = 〈z + 1 mod z5〉 × 〈z3 + 1 mod z5〉.

The group G has two subgroups with quotient Z/8Z:

H1 = 〈z3 + 1 mod z5〉 and H2 = 〈z4 + z3 + 1 mod z5〉.

The field K(ρ[z5]) is generated by a root α of the degree-16 polynomial ρz5(X)/ρz4(X). 
The fixed fields L1 and L2 of H1 and H2, respectively, are generated by the elements
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β1 := α · ρz3+1(α) and β2 := α · ρz4+z3+1(α).

Recalling that Li/K has Galois group cyclic of order 8 generated by σ acting as σ(α) =
zα+ α+ α2, we can compute σ(βi) and we find that

{
β1 = α9 + (z4 + z2 + z)α5 + (z4 + z3 + z2)α3 + (z3 + 1)α2;
σ(β1) = α10 + (z + 1)α9 + (z4 + z2 + z)α6 + (z5 + z4 + z3 + z)α5+

(z4 + z3 + z2 + 1)α4 + (z5 + z3 + z2)α3 + (z4 + z3 + z2 + z + 1)α2+

(z2 + z)α;

and
{
β2 = α9 + (z4 + z2 + z)α5 + (z4 + z3 + z2)α3 + (z3 + 1)α2 + zα;
σ(β2) = α10 + (z + 1)α9 + (z4 + z2 + z)α6 + (z5 + z4 + z3 + z)α5+

(z4 + z3 + z2 + 1)α4 + (z5 + z3 + z2)α3 + (z4 + z3 + z2 + z + 1)α2+

(z2 + z)α.

Since z is the only ramified place and it is totally ramified in K(ρ[z5]), the same is true 
in Li. We can choose t = βi as a uniformiser for the place above z in Li. Elimination 
of z and α leads to the following equation for the element σ8,1 = σ8,1(t) of order 8 with 
t = β1:

tX6 + (t+ 1)X5 +
(
t5 + t3 + t

)
X4 +

(
t5 + t2 + t

)
X3+

(
t6 + t3 + t

)
X2 + t4X + t6 + t5 + t4 + t3 = 0;

and to the following equation for the element σ8,2 = σ8,2(t) of order 8 with t = β2:

tX6 + (t+ 1)X5 +
(
t5 + t3

)
X4 +

(
t5 + t+ 1

)
X3+

(
t6 + t5 + t4 + t3 + t

)
X2 +

(
t4 + t2

)
X + t4 + t3 = 0.

These equations define algebraic curves of geometric genus 7, solved by the series

σ8,1(t) = t+ t2 + t5 + t11 +O(t13) and σ8,2(t) = t+ t2 + t5 + t9 + t11 +O(t13)

of order 8, which are produced by automata with 668 and 926 states, respectively. Fur-
thermore, σ8,1 is conjugate to σ8,(1,1) and σ8,2 is conjugate to σ8,(1,0) by the method 
from Proposition 7.2.2. We may summarise the above discussion as follows:

Proposition 7.3.1. There are four conjugacy classes of order-8 elements with break se-
quence (1, 3, 11) = 〈1, 2, 4〉 and their representatives are the series σ8,1, σ◦3

8,1 (conjugate 
to σ8 and σ◦3

8 , respectively), σ8,2 and σ◦3
8,2. �
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The automata and series, also for σ8,2, may be found in [17].

Remark 7.3.2. We have constructed order-8 elements by using the Galois extension 
K(ρ[z5])/K with Galois group Z/8Z × Z/2Z, and looking at its subextensions Li/K

with Galois group Z/8Z. We could instead look at an extension K(ρ[z5])/M with Ga-
lois group Z/8Z. This would work, but would produce a non-minimally ramified series 
generated by an automaton with many more states—the automaton corresponding to 
σ(t) = ρ1+z(t) with t = α has 136600 states.

8. Embedding the Klein four-group in N (F2) using automata

Since every p-group embeds in N (Fp), we may ask for a representation for generators 
of a given p-group through automata. We show how to do this for the easiest case, that 
of the Klein four-group V = Z/2Z × Z/2Z for p = 2, by describing two automata 
that correspond to two commuting power series of order two in characteristic two (with 
minimal admissible break sequences), answering a question that Klopsch asked us.

8.1. Embedding with small conductor

For a general field F, define the Nottingham group N (F) to be the group of power 
series σ(t) ∈ F�t� of the form t +O(t2) under composition. The following lemma shows 
that it is easy to embed V into the Nottingham group over any proper field extension F
of F2 such that all nontrivial elements of V have break sequence (1) (i.e. have depth 1), 
but one cannot do so over F2.

Proposition 8.1.1. There is an embedding of the Klein four-group V = Z/2Z × Z/2Z
in the Nottingham group N (F) over a field F of characteristic two with all nontrivial 
elements of V having break sequence (1) if and only if F �= F2.

Note that all nontrivial elements having break sequence (1) means that the corre-
sponding V -extension is weakly ramified, i.e. has trivial second ramification group. A 
much more general statement that implies Lemma 8.1.1 is given in [29, Korollar 3.2], 
but we give a short direct proof.

Proof. Assume F �= F2 and let U be a two-dimensional F2-vector subspace of F. Then 
the power series t/(ut +1) = t +ut2+O(t3) taken over u ∈ U form a subgroup of N (F)
isomorphic to the Klein four-group.

For the converse, assume we have an embedding of V = {id, σ, τ, σ ◦ τ} into N (F2)
with nontrivial elements having break sequence (1). Then σ and τ are of the form t +
t2 +O(t3), implying that σ ◦ τ = t +O(t3), a contradiction. �

There are further restrictions on possible depths of elements of the Klein four-group 
embedded in N (F2). In the next subsection, we will construct an embedding with non-
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trivial elements having depths 1, 1 and 5. The next lemma shows that these are the 
minimal possible values.

Proposition 8.1.2. For every embedding of the Klein four-group V in the Nottingham 
group N (F2) some nontrivial element of V has depth at least 5.

Proof. Suppose the contrary. By Proposition 8.1.1 some nontrivial element has depth 
at least 2. Every element of finite order has odd depth: if σ had even depth, writing 
σ = t + tk+O(tk+1) with k odd, we would find by induction that σ◦2n = t + t2

n(k−1)+1+
O(t2n(k−1)+2) for all n � 1, so σ would not be of finite order. Also note that for every 
k � 1 the elements of depth at least k form a subgroup. Thus, the only possible sequences 
of depths < 5 of series in N (F2) representing nontrivial elements of V are 1, 1, 3 and 
3, 3, 3. The latter is impossible, since the product of two elements of depth k has depth 
at least k + 1.

It remains to treat the case where the depths of the nontrivial elements are 1, 1, 3. By 
Klopsch’s theorem [48] every element of order 2 and depth 1 is conjugate to t/(t +1), so 
without loss of generality we may assume that V = {id, σ, τ, σ ◦ τ} with

σ(t) = t

t+ 1 and τ(t) = t+ t2 +
∑

i�3
ait

i.

We will reach a contradiction by computing up to order O(t9). We have

τ◦2(t) = t+ (1 + a3)t4 + (a3a4 + a5)t6+

(a3 + a3a4 + a4a5 + a6 + a3a6 + a7)t8 +O(t9).

Since τ◦2 = id, this gives a3 = 1, a4 = a5, and a7 = 1. Substituting these values allows 
us to compute

(σ ◦ τ)(t) = t+ (1 + a4)t4 + (1 + a4)t5 + (a4 + a6)t6 + (1 + a4)t7+

(1 + a4 + a6 + a8)t8 +O(t9);

(τ ◦ σ)(t) = t+ (1 + a4)t4 + (1 + a4)t5 + (a4 + a6)t6 + (1 + a4)t7+

(a6 + a8)t8 +O(t9).

Since σ ◦ τ = τ ◦ σ, this gives a4 = 1, and shows that the depth of σ ◦ τ is at least 5. �

8.2. Using automata

We now show how to use automata to embed the Klein four-group V into N (F2). We 
start with the V -extension F2( (z) )(x, y) of F2( (z) ) given by x2+x = z−1 and y2+y = z−3

with two generators σV,1, σV,2 of V acting as
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{
σV,1(x) = x+ 1;
σV,1(y) = y

and
{

σV,2(x) = x;
σV,2(y) = y + 1.

Since σV,1, σV,2 are different, of order two and commute, they generate the group V . 
Set w = y + x3 + x2 + x. We may regard F2( (z) )(x, y) as the extension F2( (z) )(x, y) =
F2( (z) )(x, w) of F2( (z) ) given by

{
x2 + x = z−1;
w2 + w = x5 + x

with the two generators σV,1 and σV,2 acting on x and w as
{

σV,1(x) = x+ 1;
σV,1(w) = w + x2 + x+ 1 and

{
σV,2(x) = x;
σV,2(w) = w + 1.

Writing z0 = z, z1, z2 for uniformisers of the fields in the tower of field extensions

K0 := F2((z)) � K1 = K0(x) = F2((z1)) � K2 = K1(w) = F2((z2)),

we have vz1(x) = −1, vz1(x5 + x) = −5, and hence vz2(w) = −5 and vz2(x) = −2. 
Choosing a uniformiser t = x2w−1 (note that vz2(t) = 1), we find by elimination of the 
variables z, x, w that σV,1 = σV,1(t) and σV,2 = σV,2(t) satisfy, respectively,

t4X4 + t3X3 +X2 + (t+ 1)X + t2 + t = 0;

(t4 + 1)X4 + tX2 + t2X + t4 = 0.

This is solved with respective initial coefficients

σV,1 = t+ t2 +O(t3) and σV,2 = t+ t6 +O(t7).

The corresponding automata have 18 and 14 states, respectively.

Proposition 8.2.1. The series σV,1 and σV,2 have break sequences (1) and (5) and satisfy 
σ◦2
V,1 = σ◦2

V,2 = t and σV,1 ◦ σV,2 = σV,2 ◦ σV,1, and hence exhibit an explicit embedding 
of the Klein four-group Z/2Z × Z/2Z into N (F2). The corresponding automata are 
depicted in Table 6. �

For completeness, writing σV,3 = σV,1 ◦ σV,2 for the third nontrivial element of V , we 
find that σV,3 satisfies

t4X4 + (t+ 1)3X3 + (t3 + t2 + t)X2 + (t+ 1)3X + t3 + t = 0

with initial coefficients σV,3 = t + t2+ t3+O(t5), leading to an automaton with 25 states. 
The automaton is stored in standard Mathematica form in [17].
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Table 6
Automata corresponding to the elements σV,1 and σV,2 that generate a copy of the Klein four-group in 
N (F2).
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0
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1
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1

0

1

0 1
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1
0

0

00, 1
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0
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1
1

1

0
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1
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Automaton of σV,1

0

1

0

0

0

1 1

1

0 1

00

00

Start

0
1

0

1
0

10, 1

0

0
0

1

1
1

1

0

0

11 0

0

0

1

1

1

0

10

Automaton of σV,2

8.3. Other p-groups

In principle, since any finite p-group G can be realised explicitly as the Galois group of 
an extension of F2( (z) ) (this follows from Witt’s work; see, e.g. the proof of [20, Theorem 
3]), the Galois-theoretic method can be used to find equations satisfied by generators of 
an embedding of G into N (Fp) by algebraic power series, and thus to represent them 
explicitly by automata. Recall from Remark 2.1.1 that any embedding of G into N (Fp)
can be conjugated into one in which the elements of G are represented by algebraic power 
series.

The examples in the current paper do not constitute the computational limit of the 
method. For example, we can give an embedding of Z/4Z × Z/2Z into N (F2) with 
two generators being produced by automata with 128 states, the order-4 element be-
ing minimally ramified and the order-2 element having depth 7; we can also obtain an 
order-9 element in N (F3) with break sequence (1, 7) = 〈1, 3〉 produced by an automa-
ton with 3634 states, etc. However, we refrain from further expanding the catalogue of 
examples.

As pointed out by the reviewer, it would be interesting to provide explicit automata 
representing embeddings of generators of other (non-commutative) finite 2-groups in 
N (F2) (or N (F2m) for general m), such as the dihedral or quaternion group of order 8; 
for this, one again needs to explicitly find a Galois realisation of such groups over F2m( (z) ), 
e.g. by constructing a corresponding Katz–Gabber cover of P1. For the dihedral group, 
explicit realisations and a study of possible break sequences can be found in [65, §5, §4], 
at least for sufficiently large m. Also, the quaternion group Q acts by automorphisms 
(defined over F4) on the supersingular elliptic curve in characteristic 2 and stabilises the 
point at infinity. We did not pursue these lines of thought all the way up to an explicit 
automatic representation.
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A challenge of a completely different level is to consider the question of embedding 
infinite groups in N (Fp) using algebraic power series. Recall that Camina has proven 
that every countably based pro-p group embeds as subgroup in N (Fp); thus, for example, 
the free pro-p group and the abstract free group on two generators embed. For the latter 
group, the question is whether we can find two algebraic (i.e. automatic) power series in 
N (F2) that generated a free group. Another example is the (first) Grigorchuk group, 
a 2-group with three generators, but without finite presentation (a countable set of 
relations was given by Lysënok); or other groups given by endomorphic presentations, 
see [6]. In all these cases, the Galois covering methods break down, and we do not 
know whether the Grigorchuk group may be realised inside N (F2) with all elements 
being described solely by algebraic (i.e. automatic) power series, i.e. whether the three 
generators can simultaneously be conjugated into a set of such algebraic power series 
(since it is residually finite, this property is true residually, but it is not clear how or 
whether the property lifts to the entire group).

9. State complexity of automata representing finite order elements in N (Fp)

9.1. General bounds on state complexity

How ‘complex’ is an automaton that computes a power series σ ∈ N (Fp) of given or-
der and break sequence? This is usually measured by ‘state complexity’, i.e. the minimal 
number of states in an automaton that computes the series.

This complexity can be bounded theoretically. The currently best results arise from 
the differential forms method described in Section 2: start with an algebraic equation 
(assumed irreducible) satisfied by σ = σ(t) with coefficients from Fp[t], and consider it 
instead as a two-variable equation F (t, X) = 0 describing a (possibly singular) algebraic 
curve over Fp. Consider the degree

dσ := [Fp(σ, t) : Fp(t)] = degX F

and the height

hσ := [Fp(σ, t) : Fp(σ)] = degt F

(the latter two equalities hold by the irreducibility of F ), and let gσ denote the genus of 
the normalisation X of the projective curve defined by F (t, X) = 0. Bridy has proven 
that the series σ can be realised by an automaton with less than

phσ+3dσ+gσ−1

states (see [13, Cor. 3.10], a result that assumes, like this paper, the leading zeros 
convention, see [13, Remark 2.1]). Concerning the optimality of the upper bound, 
Bridy has shown in [13, Prop. 3.14] for every h � 1, there are power series with 
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Table 7
For each series, we give: its compositional order, lower break sequence, the degree dσ and genus gσ of the 
algebraic equation it satisfies, the theoretical interval [�log2(dσ + 1)�, 24dσ+gσ−1] for the number of states 
of a minimal automaton and the actual number of states (‘?’ means we conjecture this to be the correct 
answer, ‘×’ means we do not know the answer; see Remark 9.2.2).

series order breaks dσ = hσ gσ bounds # of states
σS,1 2 (1) 2 1 [1, 28] 5
σS,m=2μ−1>1 2 m+1

2
m−1

2 [μ − 1, 2
5m+1

2 ] μ + 3
σS,m=2μ+1 2 m − 1 (m−1)(m−2)

2 [μ, 2
m2+5m−8

2 ] 2μ + 3μ?
σK,3 2 (3) 3 1 [2, 212] 6

σK,m 2 (m) m (m−1)(m−2)
2 [�log2(m + 1)�, 2

m(m+5)
2 ] ×

σ◦2
CS 2 (3) 2 1 [1, 28] 7

σV,1 2 (1) 4 2 [2, 217] 18
σV,2 2 (5) 4 2 [2, 217] 14
σV,3 2 (1) 4 2 [2, 217] 25
σmin 4 (1, 3) 3 1 [2, 212] 5
σCS 4 (1, 3) 2 1 [1, 28] 7
σ◦3

CS 4 (1, 3) 2 1 [1, 28] 7
σJ 4 (1, 3) 2 1 [1, 28] 9
σ◦3

J 4 (1, 3) 2 1 [1, 28] 11
σT,1 4 (1, 3) 4 1 [2, 216] 9
σT,2, σT,3, σT,4 4 (1, 3) 4 1 [2, 216] 17
σ(1,5) 4 (1, 5) 3 2 [2, 213] 13
σ(1,9) 4 (1, 9) 7 4 [3, 231] 110
σ8 8 (1, 3, 11) 6 7 [2, 230] 320

dσ = 1, hσ = h, gσ = 0 that require at least � ph states. A lower bound for the minimal 
amount of states required to realise the given power series is given by logp(dσ + 1) [13, 
Prop. 2.13]; this bound appears optimal when running over all algebraic power series 
([13]).

9.2. Degree equals height for series of finite order in N (Fp)

In our situation we have the following extra information.

Proposition 9.2.1. Let σ(t) ∈ Fp( (t) ) be an algebraic power series over Fp(t) of finite 
compositional order. Then dσ = hσ.

Proof. Write n for the compositional order of σ(t). The map σ, regarded as an automor-
phism of Fp( (t) ), restricts to an automorphism of the field

K := Fp(t, σ(t), σ◦2(t), . . . , σ◦(n−1)(t)).

Since σ(t) is algebraic over Fp(t), successive application of the automorphism σ shows 
that Fp(σ◦k(t)) is algebraic over Fp(σ◦(k−1)(t)) for k � 1, and hence the extension 
K/Fp(t) is algebraic. Since the automorphism σ maps Fp(t) onto Fp(σ(t)), we have 
[K : Fp(t)] = [K : Fp(σ(t))], and hence

dσ = [Fp(t, σ(t)) : Fp(t)] =
[K : Fp(t)]

[K : Fp(t, σ(t))]
= [K : Fp(σ(t))]

[K : Fp(t, σ(t))]
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= [Fp(t, σ(t)) : Fp(σ(t))] = hσ. �

In Table 7 we give the state complexity for the automata we constructed (where the 
first two rows refer to series that are considered in the next section), plus the theoretical 
upper and lower bounds (computed using Singular [31] and Magma [11]). We observe 
that the required number of states is much lower than the (generically almost tight, at 
least in the genus zero case) upper bounds. The reader may be convinced of this non-
generic behaviour by perturbing some of the coefficients in the equation for σ8 and using 
[14] to compute the number of states required to solve those perturbed equations (which 
typically also have higher genus).

Remark 9.2.2. Table 7 lacks a general formula for the minimal number of states in a 
2-automaton computing Klopsch’s series σK,m for general m. For m = 1, 3, 5, . . . , 1023
we computed this in [58] and [14] to be 2, 6, 14, 9, 28, 53, 67, 12, 54, 127, . . . , 30. One may 
show that for m = 2μ − 1 such an automaton has 3μ states. We conjecture that for 
m = 2μ + 1 it has 3 · 2μ + 2μ − 2 states. For m = 2μ + 3, we find the sequence 
14, 9, 53, 127, 90, 931, 2675, 770, . . . , which we could not fit into any mould.

10. A hierarchy of complexity of power series based on sparseness

Previously known examples of finite order elements of N (F2) were described as power 
series having as coefficients binomial coefficients modulo 2 (such as Klopsch’s series) or 
by explicit formulas for the location of the nonzero coefficients (such as the Chinburg–
Symonds series σCS and σ◦3

CS). Our automatic description is somewhat different. In this 
section, we discuss the relation between the existence of ‘closed/explicit formulas’ and 
properties of the automaton.

10.1. Sparse power series

We propose a definition of a ‘closed formula’ for a power series based on the notion 
of sparseness (the concept occurs in the literature under various names such as ‘arid’, 
‘poly-slender’, ‘polynomial growth’, and ‘bounded’; compare [18, §3]).

Definition 10.1.1. For a power series σ =
∑

akt
k ∈ F2�t� over F2, let E(σ) denote the 

support of σ, i.e. the set of integers k for which ak = 1. A power series σ (as well as the 
corresponding automaton and automatic sequence, if they exist) is called sparse if

#E(σ) ∩ {0, 1, . . . , N} = O(log(N)r)

for some r � 0. The infimum of such r is called the rank of sparseness of σ. We say that 
σ is r-sparse if the rank of sparseness is at most r. If σ is automatic, then this infimum 
is attained and is an integer (this follows from Proposition 10.1.3 below).
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Note that polynomials are sparse, sums of sparse series are sparse, and products of 
sparse series are sparse. More precisely, if σ is r-sparse and τ is s-sparse, then σ+ τ is at 
most max(r, s)-sparse and στ is at most (r + s)-sparse; this follows from the definition, 
since E(σ + τ) ⊆ E(σ) ∪ E(τ) and E(στ) ⊆ E(σ) + E(τ). For automatic sequences, 
Cobham showed the following dichotomy for the word growth in the associated regular 
language.

Proposition 10.1.2 (Cobham [26]). An automatic sequence σ ∈ F2�t� is either sparse, or 
#E(σ) ∩ {0, 1, . . . , N} � Nα for some real α > 0 and sufficiently large N . �

Define a simple sparse set of rank at most r to be a set of integers whose base-2
expansion is of the form vrw�r

r · · · v1w�1
1 v0 with �i ∈ Z�0 for some fixed binary words 

v0, . . . , vr, w1, . . . , wr.

Proposition 10.1.3 (Szilard, Yu, Zhang and Shallit [63]). A series σ is automatic and 
sparse of rank at most r precisely if E(σ) is a finite union of pairwise disjoint simple 
sparse sets of rank at most r.

Proof. Except for the claim of ‘pairwise disjointness’, this is proven in [63]. The claim 
that the occurring simple sparse sets can be chosen pairwise disjoint is proven in detail 
in [18, Cor. 3.10]. �

Remark 10.1.4. The proof in [18, Cor. 3.10] is a tedious combinatorial verification. Jason 
Bell pointed out to us that a much simpler argument is possible if one uses the structure 
of the corresponding automaton that results from Proposition 12.1.2 below.

Example 10.1.5. The support of σ◦3
CS is E(σ◦3

CS) = {3 ·2k−2 | k � 0} ∪{4 ·2k−2 | k � 0}, 
and consists of the integers whose base-2 expansion is 1, 101�0 or 1�10 for some � ∈ Z�0. 
Similarly, all power series in Table 3 are sparse. On the other hand, the description of 
the support of σK,3 in Example 1.3.1 in terms of the base-4 representation with only 
half the possible digits allowed shows that #E(σK,3) ∩ {1, . . . , N} grows as 

√
Nf(N)

for a function f that is bounded away from both 0 and infinity, and so σK,3 is not 
sparse.

Remark 10.1.6. A sparse automatic series is ‘easy’ in the sense that the full set consist-
ing of the first N terms of the series can be computed in ‘polylogarithmic time’, i.e. 
polynomial time in log(N), given the words vi, wi as in the definition of a simple sparse 
set, which allow one to output the nonzero exponents in the series. In contrast to this, 
computation of the n-th coefficient of a general automatic sequence can be done in time 
O(log(n)) (by base-2 expansion and running through the automaton), so computing all 
first N coefficients would require O(log(N !)) = O(N logN) time.
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Table 8
Automata corresponding to the power series σS,1 (left), σS,2 (middle) and σS,2μ−1(μ � 3)
(right) in Proposition 10.2.1. The dashed arrow replaces a path consisting of μ − 3 vertices 
and μ − 2 edges, all with label zero. The remaining missing edges (in the right automaton) 
all connect to a unique vertex with label 0, which has been omitted in order to simplify the 
graphical representation of the automaton.
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0
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1

1

0

0

1

0 0

0
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Start

1

0

0

1

1

0

0, 1

01

1

0 0

00

0

0, μ − 21

01

Start

0

1

10.2. Conjugating to a sparse representative

One may ask whether every series of finite order in N (F2) can be conjugated to a 
sparse series. We have no general answer to this question, not even for series of order 2, 
which form a unique conjugacy class for every value of the break sequence (m), repre-
sented by Klopsch’s series σK,m = t/ m

√
1 + tm. Klopsch’s series itself is not sparse, since 

its m-th power σm
K,m = tm/(1 + tm) =

∑
k�1 t

km is not. Nevertheless, for special values 
of the break sequence we can find a sparse representative.

Proposition 10.2.1. Let m be an integer of the form m = 2μ ± 1 for μ � 1. Then any 
power series of order 2 and break sequence (m) is conjugate to a sparse power series. 
More precisely, we have the following:
(i) Any power series of order 2 and break sequence (1) is conjugate to the power series

σS,1 = t+
∑

k�2

(
t2

k−2 + t2
k−1
)
, (22)

which is sparse of rank 1. The corresponding automaton is displayed in Table 8.
(ii) If m = 2μ − 1 > 1, then any power series of order 2 and break sequence (m) is 

conjugate to the power series

σS,m = t+
∑

k�1
t
m+1
m−1

(
m·
(
m+1

2
)k−1−1

)
, (23)

which is sparse of rank 1. The set of exponents occurring in σ consists of the integers 
whose base-2 representation is either 1 or 10μ−1(10μ−2)�0 for some � ∈ Z�0. The 
corresponding automata are displayed in Table 8.
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(iii) If m = 2μ+1, then any power series of order 2 and break sequence (m) is conjugate 
to the power series

σS,m =
∑

∅
=J⊆{0,...,μ−1}
k : J→Z�0

t

(
∑
j∈J

2j(m−1)k(j)

)
m−m+1

, (24)

which is sparse of rank μ: the support of σS,m consists precisely of the integers 
m(� − 1) + 1 with � � 1 an integer whose base-2 expansion contains at most μ
occurrences of the digit 1 and all these occurrences are at distinct positions modulo 
μ.

The crucial observation used in the proof is stated in the following lemma.

Lemma 10.2.2. If a polynomial F (t, X) = 0 ∈ F2[t, X] is symmetric in t and X, i.e. 
F (t, X) = F (X, t), and, when regarded as an algebraic equation in X over F2( (t) ), has, 
for some m � 1, a unique solution σ ∈ N (F2) of the form σ = t + tm+1 + O(tm+2), 
then σ is of order 2.

Proof. Composing the equality F (t, σ) = 0 on the right with σ◦−1 gives F (σ◦−1, t) = 0, 
and hence, by symmetry of F , F (t, σ◦−1) = 0. Now note that if σ = t + tm+1+O(tm+2), 
then also σ◦−1 = t + tm+1 + O(tm+2). By uniqueness, it follows that σ◦−1 = σ, so σ is 
of order 2. �

Proof of Proposition 10.2.1. We know that there is a unique conjugacy class of order-2
power series with a given break sequence (m), so it suffices to construct such a sparse 
series. When m = 2μ ± 1, we will construct a sparse representative by exhibiting a 
symmetric algebraic equation F (t, X) = 0 over F2 as in Lemma 10.2.2. Choose the 
polynomial as follows:

⎧
⎪⎪⎨
⎪⎪⎩

F (t,X) = (tX)2 + (tX) +X + t for m = 1;
F (t,X) = (tX)2μ−1 +X + t for m = 2μ − 1 > 1;
F (t,X) = (tX)2μ +X2μ−1 + t2

μ−1 for m = 2μ + 1.

In all cases, Hensel’s Lemma implies the existence and uniqueness of a solution σ =
t +tm+1+O(tm+2), so Lemma 10.2.2 applies. We can find an explicit solution iteratively, 
as follows.

For m = 1 we have

σ = t

t+ 1 + t2

t+ 1σ
2 = t

t+ 1 + t4

(t+ 1)3 + t6

(t+ 1)3σ
4 = · · · = t+ 1

t2

∑

k�1

t3·2
k−1

(t+ 1)2k
.

The latter sum is



536 J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554

∑

k�1

t3·2
k−1

(t+ 1)2k
=
∑

k�1

∑

m�1
t(2m+1)·2k−1

= t

t+ 1 +
∑

k�1
t2

k−1
,

leading to the stated formula for σ = σS,1.
For m = 2μ − 1 > 1, the same procedure leads to

σS,m = t+ t2
μ−1

σ2μ−1
= · · · = t+

∑

k�0
t2

μ−1+22(μ−1)+···+2k(μ−1)+2·2(k+1)(μ−1)
,

which is equivalent to the stated formula.
Finally, for m = 2μ + 1, we let τ = t/σ and q = 2μ = m − 1. Then τ = 1 + O(t)

satisfies

τ = tq+1 + τ q (25)

and hence

τ = 1 +
∑

k�0
tq

k(q+1).

We find

tqσ = 1 + τ q−1 = 1 + τ · τ2 · τ4 · · · τ2μ−1
= 1 +

μ−1∏

j=0

⎛
⎝1 +

∑

kj�0
t(q+1)2jqkj

⎞
⎠ ,

which is equivalent to the stated formula. �

Remark 10.2.3. For odd m � 1 consider the degree-2 extension F2( (z) )(x) of F2( (z) ) with 
x2 + x = z−m. The element t = xz

m+1
2 is a uniformiser, and the generator σ of the 

Galois group acts by σ(t) = (x + 1)zm+1
2 . We can eliminate the variables x and z by 

hand, obtaining the equation (tX)m+1
2 +X + t = 0. This equation always has a unique 

solution in N (F2), which has depth m, but is not sparse unless m + 1 is a power of 2
and m �= 1 (this follows from Proposition 11.1.2 below).

Remark 10.2.4. The power series σS,1 from Proposition 10.2.1(i) is conjugate to Klopsch’s 
series σK,1 := t/(t +1). In this case, the conjugacy can be done using the simple algebraic
power series χ = t/(t2 + 1). Indeed, with ψ :=

∑
k�1 t

2k−1, we have

χ · (ψ ◦ χ) = (t · ψ) ◦ χ = χ2 + χ4 + χ8 + · · · = t2/(t2 + 1),

since the support of t2/(t2 + 1) consists of all even integers, and the support of χ2k

consists of the odd multiples of 2k. Hence χ · (ψ ◦ χ) = χ · t, so χ◦−1 = ψ. We have 
χ ◦ σK,1 = t + t2, and hence
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χ ◦ σK,1 ◦ χ◦−1 = χ◦−1 + (χ◦−1)2 =
∑

k�1
t2

k−1 +
∑

k�1
t2

k+1−2 = σS,1.

Remark 10.2.5. In Table 7, we have used that the genus of the smooth projective curve 
corresponding to F (t, X) = (tX)k +X + t is k − 1. This follows easily by the change of 
variables t = y/xk, X = xk−1/y, leading to the Artin–Schreier equation y2 + y = x2k−1, 
which has genus k− 1 (see e.g. [62, Thm. 6.4.1]). For the case m = 2μ + 1, we also used 
that the genus of the Artin–Schreier curve (25) is 2μ−1(2μ − 1).

Remark 10.2.6. We did not produce the general form of the automaton for m = 2μ + 1. 
Whereas the series for m = 2μ − 1 > 1 requires μ + 3 ≈ log(m) states and the rank of 
sparseness is 1, if m = 2μ +1 an educated guess for the number of states of the minimal 
automaton is 2μ + 3μ ≈ mlog(3)/ log(2) and the rank of sparseness is (provably) μ. This 
looks somewhat similar to what happens with the Klopsch’s series σK,m for such values of 
m, cf. Remark 9.2.2. In all these families, the number of states appears to be logarithmic 
or polynomial in the genus, and never exponential, as is theoretically possibly by Bridy’s 
bound discussed in Section 9.

10.3. Quasi-sparse series

Sparse series form an F2[t]-algebra that we will denote by S. Consider the larger F2[t]-
algebra Ŝ consisting of power series in F2�t� that can be written as products of sparse 
series and rational functions in F2(t). Elements of this algebra can also be regarded as 
having nice ‘closed formulas’. We have the following characterisation:

Proposition 10.3.1. Let σ =
∑

k�0 akt
k ∈ F2�t� be a power series. The following condi-

tions are equivalent:

(i) σ ∈ Ŝ;
(ii) there exists an integer m � 1 such that (tm + 1)σ is sparse;
(iii) there exists an integer m � 1 such that 

∑
k�0(ak + ak+m)tk is sparse;

(iv) there exists an integer m � 1 such that 
∑

k�0(ak + ak+2qm)tk is sparse for all 
integers q � 0.

Proof. Since sparse power series form a ring and include polynomials, σ ∈ Ŝ if and only 
if there exists a nonzero p ∈ F2[t] such that pσ ∈ S. Moreover, we may assume that 
p is not divisible by t since the class of sparse sequences in closed under shifts. The 
equivalence of (i) and (ii) then follows from the fact that every p ∈ F2[t] that is not 
divisible by t divides the polynomial tm + 1 for some m � 1: take m = 2k(2r − 1) with 
r and k chosen so that the splitting field of p is F2r and every root of p has multiplicity 
� 2k. The equivalence of (ii) and (iii), with the same value of m, is easy. Finally, the 
equivalence of (ii) and (iv) follows from the fact that if (tm + 1)σ is sparse, then so is 
(tm + 1)2qσ = (t2qm + 1)σ for all q � 0. �



538 J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554

A final operation that we allow without affecting our sense of ‘admitting a closed 
formula’ is for elements of Ŝ to be twisted by an automorphism of F2(t), as follows. 
There is a unique nontrivial field automorphisms of F2(t) that is also an element of 
N (F2), given by the map

ϕ : t �→ t/(t+ 1).

The order of ϕ is two. It might happen that a power series σ ∈ N (F2) is not in S or Ŝ, 
but that σ ◦ ϕ is. This is equivalent with σ being in the algebra of sparse series in the 
variable t/(t + 1). Note that while composing with ϕ preserves the property of being an 
algebraic power series (if σ is a root of F (t, X), then σ ◦ ϕ is a root of F (ϕ(t), X)), the 
property of being of finite order need not be preserved.

Definition 10.3.2. A series σ = σ(t) ∈ F2�t� is called quasi-sparse if either σ ∈ Ŝ or 
σ ◦ ϕ ∈ Ŝ. We denote the collection of quasi-sparse series by ̂̂S.

This leads to a hierarchy of complexity for power series

S ⊂ Ŝ ⊂ ̂̂S ⊂ F2�t�,

where every inclusion is strict. In the next two sections, we will study whether our series 
σ of finite order are in S, Ŝ or ̂̂S. The next section will employ field-theoretic methods, 
whereas the following one will be based purely on characterisations in terms of automata. 
We believe both methods have their merits.

11. Detecting sparseness properties using field theory

11.1. Field-theoretic characterisation of sparseness

Recently, Albayrak and Bell [4, Thm. 1.1(b)] gave an exact field-theoretic characterisa-
tion of sparseness for generalized (Hahn) power series in arbitrary positive characteristic. 
We will use a special case of one direction of their characterisation, of which we include 
a short, self-contained proof.

The following result will be used without further reference.

Lemma 11.1.1. For any algebraic power series τ ∈F2�t�, the field extension F2(t)(τ)/F2(t)
is separable.

Proof. If the extension is not separable, the minimal polynomial f ∈ F2(t)[X] of τ is 
of the form f =

∑
ci(t)X2i. Since the Cartier operator satisfies Cr(ψτ2) = τCr(ψ), 

applying this to the equation f(τ) = 0, we find that 
∑

Cr(ci(t))τ i = 0. This gives a 
polynomial of strictly smaller degree satisfied by τ and nonzero for at least one value of 
r ∈ {0, 1}. This contradiction shows the result. �



J. Byszewski et al. / Journal of Algebra 602 (2022) 484–554 539

Proposition 11.1.2 (Albayrak–Bell [4], special case). Let σ ∈ N (F2) denote a power 
series that is algebraic over F2(t). Consider the field

F =
⋃

��1,
� odd

F2(t1/�),

where F2 is an algebraic closure of F2. If σ is sparse, then the following conditions hold:

(i) σ is integral over F2[t, t−1];
(ii) the extension F2(t)(σ)/F2(t) is unramified outside of 0, ∞;
(iii) the splitting field of σ over F has degree a power of two.

Proof. The essence of the proof is to show that for sparse power series the combinatorial 
structure of the support E(σ) allows one to construct a tower of Artin–Schreier extensions 
of F that contains σ.

By Proposition 10.1.3 a series σ is sparse precisely if E(σ) is a finite union of pairwise 
disjoint simple sparse sets. Properties (i)–(iii) hold for the sum of several power se-
ries whenever they hold for the individual summands (for unramifiedness, use [62, Cor. 
3.9.3]), and hence it is sufficient to prove that they hold for power series with simple 
sparse support. This will be done by induction on the rank of sparseness r.

Suppose that the support of σ is a simple sparse set, consisting of integers whose 
base-2 expansion is of the form vrw�r

r · · · v1w�1
1 v0 with �i ∈ Z�0 for some fixed binary 

words v0, . . . , vr, and w1, . . . , wr. If r = 0, then σ is a monomial, and properties (i)–(iii)
hold. Suppose that r � 1 so w1 is nontrivial. Let k0 = |v0| and k1 = |w1| be the lengths 
of the words v0 and w1, and let m0 and m1 be the integers whose base-2 expansion 
is v0 and w1. Let τ be the power series whose support consists of the integers with 
base-2 expansion of the form vrw�r

r · · ·w�2
2 v10k0 with �i ∈ Z�0. By induction, we know 

that properties (i)–(iii) hold for τ . The relation between the supports of σ and τ leads 
directly to the formula

σ2k1 − t(2
k1−1)m0−2k0m1σ = t2

k1m0−2k0m1τ. (26)

This allows us to deduce the properties (i)–(iii) for σ from the corresponding properties 
of τ .

First of all, σ is integral over F2[t, t−1][τ ], and hence also over F2[t, t−1].
Secondly, the form of Equation (26) makes it very easy to compute the ramification 

of the extension F2(t)(σ)/F2(t)(τ). If f is the minimal polynomial of σ, then [62, Cor. 
3.5.11] implies that the extension is unramified at all places P for which f is P -integral 
and vP (f ′(σ)) = 0. The same result then holds for any monic (not necessarily minimal) 
polynomial g satisfied by σ, since it is divisible by f . We apply this with g the polynomial 
in σ given in (26), and we find that the extension is unramified at all places P of F2(t)(τ)
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with vP (t) = 0 and vP (τ) � 0, and that for all places P ′ of F2(t)(σ) lying above such P
we have vP ′(σ) � 0. This implies that F2(t)(σ)/F2(t) is unramified outside of 0, ∞.

Finally, multiplying Equation (26) by an appropriate (fractional) power of t leads to 
an equation of the form (tcσ)2k1 − (tcσ) = tdτ for some c and d, which are rational 
numbers with odd denominators (more precisely, c = −m0 + 2k0m1

2k1−1 and d = 2k0m1
2k1−1 ). 

This shows that the extension F (σ)/F (τ) is contained in a tower of Artin–Schreier 
extensions, and hence so is F (σ)/F . Thus, its Galois closure is of degree a power of 
two. �

11.2. Field-theoretic test for membership in the hierarchy

From Proposition 11.1.2, we can deduce a method for establishing that a series is not 
in S or Ŝ. Since the properties (ii) and (iii) depend only on the field F2(t)(σ), and not on 
σ itself, any proof that uses them to show that σ /∈ S will establish the stronger property 
that σ /∈ Ŝ. Actually, the method we will use to show that for a particular σ property 

(iii) does not hold will even show that σ /∈ ̂̂S. On the other hand, the integrality property 
(i) will be used to show that certain series are in Ŝ, but not in S.

The basic ingredient is the following field-theoretic result, restricting possible factori-
sations of polynomials after extension of the base field.

Lemma 11.2.1. Let L/K be a (possibly infinite) Galois extension with Galois group G, 
let f ∈ K[X] be a monic irreducible polynomial, and let g ∈ L[X] be a monic irreducible 
factor of f in L[X]. Denote by H the stabiliser of g in G. Then

f =
∏

φ∈G/H

gφ,

i.e. f is the product of all (pairwise distinct) Galois conjugates gφ for φ running through 
the coset space G/H.

Proof. Let α denote a root of g in an algebraic closure of L; then g is the minimal 
polynomial of α over L. Put f̃ :=

∏
gφ, the product being taken over all φ running 

through the coset space G/H. By construction, f̃ lies in K[X] and has α as a root, 
hence f divides f̃ . Conversely, g divides f in L[X], and hence so does gφ for all φ ∈ G. 
Since the elements gφ are irreducible and pairwise distinct for φ ∈ G/H, the polynomial 
f̃ divides f . Hence, f = f̃ . �

This implies the following valuation-theoretic result that can be used to check whether 
a polynomial stays irreducible under base field extension.

Lemma 11.2.2. Let L/K be a (possibly infinite) Galois extension with Galois group G, 
and let v : L → R∪{∞} be an (additive) valuation that is G-invariant, in the sense that 
v◦φ = v for all φ ∈ G. Let L be an algebraic closure of L, and let ṽ be an extension of the 
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valuation v to L. For a polynomial f ∈ K[X], denote by Vv(f) the multiset of valuations 
ṽ(α) of all the roots α of f in L. If f is irreducible over K, but becomes reducible over 
L, then the multiplicities of the elements of Vv(f) have a nontrivial common divisor.

Elements of the set Vv(f) are minus the slopes of the Newton polygon NP(f) of 
f =

∑n
i=0 aiX

i, where NP(f) is given as the lower convex hull in R2 of the set of points 
(i, v(ai)) for 0 � i � n.

Proof. Since we assume that v◦φ = v, we have NP(gφ) = NP(g). Since the multiset Vv(h)
of a polynomial h is determined by its Newton polygon (and hence by the valuations of 
its coefficients), it follows from the decomposition f =

∏
gφ as in Lemma 11.2.1 that 

Vv(f) is the union of [G : H] > 1 copies of Vv(g) (as multisets). �

Proposition 11.2.3. Let f ∈ F2(t)[X] be a separable irreducible polynomial. If the multi-
plicities of the elements of the multiset Vt(f) for the t-adic valuation have no nontrivial 
common divisor, then f remains irreducible over F .

Proof. The extension F/F2(t) is Galois. The t-adic valuation on F2(t) has a unique 
extension to F (which coincides on each F2(t1/j) with the t1/j-adic valuation v nor-
malised so that v(t1/j) = 1/j). By uniqueness, this extension is Galois invariant. The 
claim follows from Lemma 11.2.2. �

Corollary 11.2.4. Let σ ∈ N (F2) denote a power series that is algebraic over F2(t)
with minimal polynomial F (t, X). Assume that F is of degree not a pure power of two, 
and that the multiplicities of the elements of the multiset Vt(σ) := Vt(F ) for the t-adic 
valuation have no nontrivial common divisor. Then σ /∈ ̂̂S.

Proof. We conclude from Proposition 11.2.3 that F is the minimal polynomial of σ over 
F , and so [F (σ) : F ] is not a pure power of two, contradicting Proposition 11.1.2(iii). 
Hence σ /∈ S. Since the field F (σ) does not change after multiplying σ by a rational 
function, we get that σ /∈ Ŝ.

For the final claim, observe that replacing σ by σ ◦ϕ changes neither the degree of the 
minimal polynomial of σ over F2(t) = F2(t/(t + 1)) nor the set Vt(σ). Hence the same 
reasoning applied to σ ◦ ϕ shows that σ /∈ ̂̂S. �

Corollary 11.2.5. Let σ ∈ N (F2) denote a power series that is algebraic over F2(t) with 
minimal polynomial F (t, X) of degree 4

F (t,X) = a4X
4 + a3X

3 + a2X
2 + a1X + a0

and with cubic resolvent

R3[F ] := a34X
3 + a2a

2
4X

2 + a1a3a4X + a0a
2
3 + a21a4.
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Assume that R3[F ] is irreducible over F2(t) and that the multiplicities of the elements of 
the multisets Vt(F ) and Vt(R3[F ]) for the t-adic valuation have no nontrivial common 

divisor. Then σ /∈ ̂̂S.

Proof. The possible Galois groups of an irreducible separable quartic are S4, A4 D4, 
Z/4Z and Z/2Z × Z/2Z. Only the last three of these are 2-groups, and those occur 
precisely when the cubic resolvent is reducible (see [27, Thm. 3.4]).

Since F is separable, so is its cubic resolvent R3[F ]. From the hypotheses and Proposi-
tion 11.2.3, we conclude that F and R3[F ] are irreducible over F . Therefore, the Galois 
group of σ over F is not a 2-group, and σ /∈ S by Proposition 11.1.2(iii). Since this 
argument uses only the information about the field F (σ), we conclude that σ /∈ Ŝ.

Finally, since changing σ to σ ◦ϕ affects neither the irreducibility of F and R3[F ] nor 
the sets Vt(F ) and Vt(R3[F ]), we find similarly that σ ◦ ϕ /∈ Ŝ, and so σ /∈ ̂̂S. �

Theorem 11.2.6. We have the following membership properties (see also Table 9):

(i) σS,2μ±1(μ � 1), σ◦3
CS, σT,1, . . . , σT,4 ∈ S;

(ii) σ◦2
CS, σCS ∈ Ŝ \ S;

(iii) σJ, σ◦3
J ∈ ̂̂S \ Ŝ;

(iv) σK,m(m � 3), σV,1, σV,2, σV,3, σmin,σ(1,5), σ(1,9), σ8 /∈ ̂̂S.

Proof. The series σS,2μ±1 are sparse by Proposition 10.2.1. The sparseness of the series 
σ◦3
CS, σT,1, . . . , σT,4 follows by representing E(σ) in the same way as was done for E(σ◦3

CS)
in Example 10.1.5, using the closed formulas for the series in Table 3.

The series σ◦2
CS and σCS are not sparse by Proposition 11.1.2 since their minimal 

polynomials are not F2[t, t−1]-integral. To show the series are in Ŝ, we have the following 
explicit relations, obtained from Remark 5.1.4 and Equation (12), with sparse right hand 
side:

(t+ 1)2σ◦2
CS = t+ t3 +

∑

k�1

(
t2·2

k

+ t3·2
k
)

and (t+ 1)2σCS =
∑

k�0

(
t2

k

+ t3·2
k
)
.

If σ is any of the series σJ and σ◦3
J , then it is not in Ŝ. Indeed, from their minimal 

polynomial we can read out that the extension F2(t)(σ)/F2(t) is ramified above t + 1, 
and the conclusion follows from Proposition 11.1.2(ii). To prove the series are in ̂̂S, we 
use the following explicit relations with sparse right hand side:

(t+ 1)σJ(ϕ(t)) = (t+ 1)2σCS(t) and (t2 + t)σ◦3
J (ϕ(t)) =

∑

k�0

(
t3·2

k

+ t2·2
k
)
.

Indeed, for the former equation, one verifies that σCS and σJ(ϕ(t))/(t + 1) are equal, 
since they satisfy the same irreducible algebraic equation (12) having a unique solution 
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t +O(t2). For the latter equation, the left hand side is the unique solution to τ2+τ = t3+t2

of the form t2 +O(t3). But this solution is clearly equal to the right hand side.
To prove that σK,m /∈ Ŝ for any odd m � 3, we use Proposition 11.1.2(iii). To this 

end, it suffices to check that (tm + 1)Xm + tm is irreducible over F , which by [62, 
Prop. 3.7.3] is equivalent to showing that tm/(tm + 1) is not a d-th power in F for 
any d > 1, d|m, or, equivalently, that tmj/(tmj + 1) is not a d-th power in F2(t) for 
any odd j. This holds since tmj + 1 has only simple roots in F2. Similarly, σK,m ◦ ϕ

satisfies (tm+(t +1)m)Xm+ tm = 0, and the polynomial tmj +(t +1)mj has only simple 
roots in F2 (as can be seen from computing its derivative); hence for the same reason 

σK,m ◦ ϕ /∈ Ŝ. We conclude that σK,m /∈ ̂̂S.
The multisets of slopes for the minimal polynomials of σV,1, σV,2 and σV,3 can be 

found in Table 9. The cubic resolvent for the minimal polynomial of σV,1 is t12X3 +
t8X2 + t7(t + 1)X + t4(t4 + t3 + t2 + 1), which is irreducible over F2(t) with vt-slopes 
{−4, (−2)2}. (A convenient way to check irreducibility of the cubic resolvent over F2(t) is 
to consider the vt−1-slopes for the t−1-adic valuation.) Similarly, the minimal polynomial 
for σV,2 has resolvent (t + 1)12X3 + t(t + 1)8X2 + (t + 1)4t4, which is irreducible over 
F2(t) and has vt-slopes {1, (3/2)2}, and the minimal polynomial for σV,3 has resolvent 
t12X3+t9(t2+t +1)X2+t4(t +1)6X+t(t +1)6(t3+t2+1), which is irreducible over F2(t)
and has vt-slopes {(−4)2, −3}. By Corollary 11.2.5 we conclude that σV,1, σV,2, σV,3 /∈ ̂̂S.

For all further series, degF is not a pure power of 2 and Vt(F ) has no nontrivial 
common divisor of multiplicities (listed in Table 9), so we immediately conclude that 
σ /∈ ̂̂S by Corollary 11.2.4. This finishes the proof. �

12. Sparseness and automaton properties

12.1. Combinatorial characterisation of sparseness

We describe automaton-theoretic methods to verify whether a series σ is in S, Ŝ or 
̂̂
S. In [63], it is shown that sparseness may be checked directly using a corresponding 
automaton (recall our convention that all states in the automaton are accessible, which 
is also part of the conditions below).

Definition 12.1.1. Call a vertex v of an automaton tied if the following two properties 
hold:

(a) there exists a (possibly empty) path from v to a vertex with output 1 [‘v is co-
accessible’];

(b) there exist two different walks of the same length from v to itself.

Proposition 12.1.2 ([63], [18, Prop. 3.4]). An automatic series σ is not sparse if and only 
if there exists a tied vertex v in a corresponding automaton. �
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This criterion can be used immediately to verify that the series σS,2μ−1(μ � 1), σ◦3
CS, 

σT,1, . . . , σT,4 are sparse.

Example 12.1.3. The 2-automaton A corresponding to the expansion of the series (1 +
t)−1/m can be succinctly described as follows. Let � denote the multiplicative order of 
2 modulo m and consider the base-2 expansion (2	 − 1)/m =

∑	−1
i=0 xi2i. The set of 

vertices of A is {v0, . . . , v	−1, w}. All vj have vertex label 1, w has vertex label 0, and 
v0 is the start vertex. For any j, vj is connected to vj+1mod	, always by an edge with 
label 0, and by an edge with label 1 exactly if xj = 1. If xj = 0, an edge with label 1
connects vj to w. Finally, w has two self-loops labelled 0 and 1. The automaton A is not 
sparse since any vertex vj with xj = 1 is not tied: 0	 and 0	−11 are two paths that 
satisfy condition (b). (This incidentally provides another proof of the non-sparseness of 
Klopsch’s series σK,m(t) = t/ m

√
1 + tm; however, we do not have a synthetic description 

for an automaton corresponding to σK,m for general m and, in particular, do not have a 
formula for the minimal number of states as a function of m, cf. Table 7.)

A similar description of a minimal p-automaton for (1 +at)−1/m ∈ Fp�t� for any prime 
p, m coprime to p and a ∈ F∗

p is given in [64].

12.2. Combinatorial tests for membership in the hierarchy

We have not been able to find a necessary and sufficient condition for a series to be 
in Ŝ in terms of the automaton alone. We will however give a simple necessary criterion, 
from which one may deduce all statements in Theorem 11.2.6, except the facts that 
σmin /∈ Ŝ and σ(1,9) ◦ ϕ /∈ Ŝ.

In applying the criterion, it is necessary to move the ‘start’ label to other vertices. 
This might produce non-accessible vertices, which should then be removed from the 
automaton; this does not affect the resulting automatic sequence.

Proposition 12.2.1. Let σ(t) =
∑

k�0 akt
k ∈ F2�t� be a power series generated by an 

automaton A. Then σ(t) /∈ Ŝ if there exists a vertex v in A satisfying the following two 
properties:

(i) there exist arbitrarily long walks from the start vertex to v;
(ii) let v0 and v1 denote the vertices reached by following the edge starting at v and 

labelled 0 and 1, respectively, and let Ai be the automaton obtained from A by 
changing the start vertex to vi. Then exactly one of the automata A0 and A1 is 
sparse (and the other one is not sparse).

Remark 12.2.2. Since the automaton is finite, the existence of arbitrarily long walks from 
the start vertex to v is equivalent to the existence of paths w0, w1 and w2 such that w1
is nontrivial and for every integer � � 0 the walk w2w

�
1w0 goes from the start vertex to 

v.
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Table 9
For each series, in column ‘∈ S’ the symbol ‘×’ indicates the series is not sparse and ‘�(r)’ indicates the series is r-sparse; the column ‘∈ Ŝ’ describes the 
property of being sparse up to multiplication with a rational function; the column ‘∈ ̂̂

S’ indicates whether or not the series itself or its composition with 
t → t/(t + 1) is in Ŝ; ‘minimal polynomial F ’ is the minimal polynomial of the series over F2(t); ‘method’ indicates the method of proof, where Vt := Vt(F )
is the multiset of t-adic valuations of the roots of F .

series ∈ S ∈ Ŝ ∈ ̂̂S minimal polynomial F method
σS,1 �(1) � � t2X2 + (t + 1)X + t direct
σS,m=2μ−1>1 �(1) � � (tX)(m+1)/2 + X + t direct
σS,m=2μ+1 �(μ) � � (tX)m−1 + Xm−2 + tm−2 direct
σ◦3
CS �(1) � � t2X2 + X + t2 + t direct

σT,1 �(2) � � t2X4 + (t4 + t2 + t + 1)X2 + (t3 + t2 + t)X + t3 direct
σT,2 �(3) � � t2X4 + (t + 1)X3 + (t4 + t2 + t)X2 + (t2 + t)X + t2 direct
σT,3, σT,4 �(3) � � t4X4 + (t2 + 1)X3 + (t3 + t)X2 + t2X + t3 direct

σ◦2
CS × � � (t + 1)2X2 + X + t2 + t not integral

σCS × � � (t + 1)2X2 + X + t not integral

σJ × × � (t + 1)X2 + (t2 + 1)X + t not unramified
σ◦3
J × × � tX2 + (t2 + 1)X + t2 + t not unramified

σK,m × × × (tm + 1)Xm + tm odd deg & direct
σV,1 × × × t4X4 + t3X3 + X2 + (t + 1)X + t2 + t R3 & Vt = {(−2)2, 0, 1}
σV,2 × × × (t + 1)4X4 + tX2 + t2X + t4 R3 & Vt = {

( 1
2
)2

, 1, 2}
σV,3 × × × t4X4 + (t + 1)3X3 + t(t2 + t + 1)X2 + (t + 1)3X + t(t + 1)2 R3 & Vt = {−4, 02, 1}
σmin × × × (t + 1)3X3 + (t3 + t)X2 + (t3 + t + 1)X + t3 + t odd deg & Vt = {02, 1}
σ(1,5) × × × t2X3 + (t + 1)3X + t3 + t odd deg & Vt = {(−1)2, 1}
σ(1,9) × × × t2X7 + t3X6 + (t5 + t4 + t2)X5 + (t5 + t3)X4+ odd deg &

+(t7 + t5 + t4 + t3 + t)X3 + t5X2 + (t3 + t + 1)X + t Vt = {
(
− 1

3
)6

, 1}
σ8 × × × t6X6 + (t6 + t2)X4 + (t6 + t5 + t4 + t3 + t2 + 1)X2+ deg not a power of 2 &

+(t + 1)3X + t6 + t5 + t2 + t Vt = {(−2)2, (−1)2, 0, 1}
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Proof of Proposition 12.2.1. For the purpose of the proof, we let (n)2 denote the base-2
expansion of an integer n � 0.

Consider a walk from the start vertex to v, say of length �, and let w be the binary 
word given by the concatenation of its labels. Let c be the integer such that (c)2 = w. 
It follows directly from the definition that the automatic sequences produced by A0 and 
A1 are (a2�+1n+c)n�0 and (a2�+1n+2�+c)n�0, respectively. Let i ∈ {0, 1} be such that the 
automaton Ai is not sparse; the automaton A1−i is then sparse.

Let m � 1 be a fixed arbitrary odd integer. Consider integers k of the form k = k(n) =
2�+1n + 2�i + c (where � and i = 0, 1 are fixed while n runs through Z�0). The base-2
expansion of k+2�m is of the form (k+2�m)2 = u(1 − i)w for some binary word u, and 
hence the walk given by it leads from the start vertex to a vertex in A1−i. Since A1−i is 
sparse, the number of n � N such that ak+2�m = 1 grows as O(log(N)r) for some r � 0. 
On the other hand, the base-2 expansion of k is (k)2 = (n)2iw, the automaton Ai is not 
sparse, and hence the number of n � N such that ak = 1 grows faster than log(N)r for 
any r � 0, and so does the number of n such that ak + ak+2�m = 1. It follows that the 
power series

∑

n�0

(
ak(n) + ak(n)+2�m

)
tn

is not sparse, and hence neither is the series
∑

n�0
(an + an+2�m) tn.

Since the integer m � 1 was arbitrary odd, and since the walk from the start vertex to 
v can be chosen with � arbitrarily large, we conclude from Proposition 10.3.1(iv) that σ
is not in Ŝ. �

A heuristics to apply Proposition 12.2.1 is now as follows. To verify that one of the 
automata A0, A1 is non-sparse, we can use Proposition 12.1.2; for this one can use cycle-
finding algorithms. The tricky part is to verify that the other automaton is sparse—to 
this end, we need to exclude the existence of appropriate walks in the graph. To simplify 
this problem one may insist that the sparse of the automata A0, A1 be very simple; 
in fact, in all the examples discussed below it is possible to find such an automaton 
consisting of only one state, with label 0, making the verification obvious. Inverting this 
logic, we can hope to apply the criterion by first finding a vertex w with label 0 and two 
self-loops (a so-called ‘absorbing state’, cf. Section 13 below), and then going through 
all the vertices v admitting an edge from v to w, and checking if any of them satisfies 
the conditions of Proposition 12.2.1.

Sketch of a second proof of (part of) Theorem 11.2.6. The verification that certain se-
ries belong to S, Ŝ or ̂̂S is direct and the same as in the first proof. The verification that 
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Table 10
‘path’ indicates a path from the start vertex to 
a tied vertex; ‘path to vertex with output 1’ in-
dicates a path from the tied vertex to a vertex 
with output 1; p1 and p2 are walks of the same 
length that connect the tied vertex to itself, in-
dicating that the series in non-sparse; ε indicates 
the empty path.
series path path to vertex (p1, p2)

with output 1
σCS 0 1 (101, 100)
σ◦2
CS 0 10 (1101, 1110)

σmin 1 ε (011, 100)

certain series do not belong to S, Ŝ or ̂̂S can be done by studying the corresponding 
automata and using Propositions 12.1.2 and 12.2.1. We have summarised some of the 
combinatorial data for this in Tables 10 & 11. For small automata, these data can be 
easily found just by looking at the graphical representation. This is the case for all the 
series in Tables 10 & 11 except for σ(1,9). To illustrate how one can use a computer 
algebra system to find these data for larger automata, we have written a Mathematica
notebook doing this for the series σ(1,9), generated by an automaton with 110 states, see 
[17].

To verify that a series is not in S, one indicates a path from the start vertex to a tied 
vertex v and two different walks of the same length from v to itself. One also checks that 
v is co-accessible by indicating a path from v to a vertex with output 1. These data are 
gathered in Table 10.

To verify that a series is not in Ŝ one indicates paths w0, w1, w2 such that every walk 
w2w

�
1w0 leads from the start vertex to the same vertex v; a digit i ∈ {0, 1} such that 

the automaton Ai (resp. A1−i) obtained by moving the start vertex to the endpoint vi
of the edge starting at v and labelled i is non-sparse (resp. sparse); a path from vi to a 
tied vertex; a path from that tied vertex to a vertex with output 1; and different walks 
of the same length from the tied vertex to itself, verifying that the automaton Ai is 
non-sparse. In all the cases listed in Table 11 the vertex v1−i has label zero and two 
self-loops, implying that the automaton A1−i is sparse, and providing the final step of 
the verification that the considered series is not in Ŝ.

We have listed the combinatorial data only for some of the series, but a similar proce-
dure can be performed for all the series considered in Table 9 except σmin and σ(1,9) ◦ϕ, 
which are not in Ŝ, but for which the criterion from Proposition 12.2.1 is not satisfied. �

Remark 12.2.3. Since the class Ŝ contains all power series whose coefficients are ulti-
mately periodic, an automaton-theoretic criterion for membership in Ŝ gives a necessary 
criterion for ultimate periodicity. It is known how to test for ultimate periodicity al-
gorithmically, e.g. by work of Honkala [40] (this reference is phrased in a different, 
but equivalent language, where, for series over a binary alphabet, ‘p-automatic’ is ‘p-
recognisable’ and ‘ultimately periodic’ is ‘recognisable’, or p-recognisable for all p, by 
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Table 11
The words wi are the words needed to apply Remark 12.2.2; ‘edge to non-sparse’ has value 
i ∈ {0, 1} if the automaton Ai considered in Proposition 12.2.1 is non-sparse; ‘path’ indicates a 
path from the vertex vi from Proposition 12.2.1 to a tied vertex; ‘path to vertex with output 1’ 
indicates a path from the tied vertex to a vertex with output 1; p1 and p2 are walks of the same 
length that connect the tied vertex to itself, indicating that the series is not in Ŝ; ε indicates 
the empty path.
series (w2, w1, w0) edge to path path to vertex (p1, p2)

non-sparse with output 1
σJ (1, 0, 00) 1 ε ε (0, 1)
σ◦3
J (1, 0, 001) 1 ε ε (0, 1)

σV,1 (1, 0,000) 0 ε 1 (1001, 0100)
σV,2 (1, 0, 1) 0 ε 1 (1001, 0100)
σK,3 (ε, 00, 0) 0 01 ε (00, 11)
σ(1,5) (1, 0, 001) 0 1 ε (11001, 01011)
σ(1,9) (051010, 1, 1303) 1 001 1 (0212051202102101202,

0312021021012041202)

Cobham’s theorem [25].) The algorithm involves constructing another non-deterministic 
automaton and determinising it. It might be that one may find a similar algorithm for 
membership in Ŝ. Nevertheless, this seems to indicate that ‘seeing’ membership in Ŝ
directly from the automaton might be hard.

13. ‘Non-randomness’ of the series and synchronisability of the automata

13.1. Synchronising automata

Recall that an automaton is called synchronising if there is an input string (a ‘syn-
chronising word’ psync), which, when followed from an arbitrary vertex, always leads to 
the same end vertex; this means that the word resets the automaton—if the base-2 ex-
pansion of n contains the word psync, the corresponding coefficient an depends only on 
the part of the expansion that is to the left of the occurrence of psync.

Example 13.1.1. The word 1011 is synchronising for σK,3. Following this word (right to 
left) starting at any state of the automaton leads to the state in the middle of the bottom 
row of Fig. 1.

Synchronisation is particularly easy to check when there is an absorbing state v, mean-
ing that both outgoing edges from v are loops.

Lemma 13.1.2. If an automaton A has an absorbing state v, then A is synchronising if 
and only if for any vertex w in A there is a path from w to v (in particular, A is not 
synchronising if there is more than one absorbing state).

Proof. Since v is mapped to itself by any word, the synchronising word should map any 
vertex to v. In particular, for A to be synchronising, any vertex needs to be connected by 
a path to v. If this holds, choose an input string p for which the number of end vertices 
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of all paths with label p and arbitrary beginning vertex is minimal. If the only such end 
vertex is the absorbing state v, p is a synchronising word. If not, let v1 denote another 
such end vertex and choose a path p1 from v1 to v (which exists by assumption). Now, the 
number of end vertices of paths with label p1p is strictly smaller than for p (since both 
v1 and v are connected to v by a path with label p1), contradicting the minimality. �

As the number N tends to infinity, the fraction of synchronising automata with N
states tends to 1 [7], but the fraction of automata with N states having an absorbing 
state tends to 0. The next lemma shows something very different happens for the class 
of minimal sparse automata.

Lemma 13.1.3. If an automaton A is minimal and sparse, then A has a unique absorbing 
state v, and for any vertex w in A there is a path from w to v.

Proof. Call any maximal subgraph of A that is connected as a directed graph a strongly 
connected component. For example, any absorbing state is a strongly connected compo-
nent.

Let U denote the union of all strongly connected components. For any vertex v of 
A let n(v) be the number of vertices that can be reached from v by following some 
directed path. It is easy to see that if for some vertex w there is a path from v to 
w, then n(w) � n(v), and that equality holds for all such w exactly if v lies in U . 
Choosing w to be a vertex admitting a path from v to w for which the value of n(w) is 
minimal, we see that for any vertex there is a path from that vertex to a vertex in U . 
An argument analogous as in the proof of Lemma 13.1.2 (but with U playing the role of 
the vertex v in that proof) shows that there is an input string p such that for every path 
with label p originating from any vertex, the end vertex lies in some strongly connected 
component.

We now assume that A is sparse, and we claim that then all vertices in U have vertex 
label 0. Indeed, by the combinatorial criterion in Proposition 12.1.2, A has no tied ver-
tices, but any vertex v with label 1 lying in some strongly connected component is tied: 
by strong connectedness, two directed edges starting at v with different labels can each 
be continued to paths p and q leading back to v, and then pq and qp are two different 
paths of the same length connecting v to itself.

Thus, the automaton A′ obtained by replacing every vertex in U with a single absorb-
ing state with vertex label 0 produces the same output as A. We conclude that if A is 
sparse and minimal, it has only one strongly connected component, and this component 
is an absorbing state with label 0. �

13.2. ‘Non-randomness’

A power series corresponding to a synchronising automaton with an absorbing state 
is not ‘random’ at all: if the binary expansion of n contains a synchronising word psync
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leading to an absorbing state, the corresponding coefficient an will always be the same, 
namely the output value of the absorbing state. Since most integers have binary expan-
sions containing psync, it follows that an is constant for ‘almost all’ n, i.e. there is some 
c > 0 such that an takes the same value for all except O(N1−c) values n < N .

So far, we used the convention that our automata were leading-zero invariant, which 
we now drop. In order to produce automatic sequences from automata, we used the 
backwards-reading convention (starting from the least significant digit), and sequences 
obtained in this manner from synchronising automata may be more properly called back-
wards synchronising to distinguish them from the forwards-reading convention (starting 
from the most significant digit), which leads to the notion of a forwards synchronising
automatic sequence. For a given sequence, these two notions are not equivalent (the se-
quence (n mod 2) is forwards synchronising, but not backwards synchronising, and we 
will see below that the sequence of coefficients of the series σmin is backwards synchronis-
ing, but not forwards synchronising). With both of these notions at hand, we may now 
refer to the following precise result about structured versus random sequences. In [19, 
Thm. C] it was shown that any C-valued automatic sequence (such as our sequences with 
the output alphabet F2 lifted to {0, 1} ⊂ C) can be decomposed as a sum of a ‘struc-
tured sequence’, in which the n-th coefficient is a function of the n-th coefficients of a 
periodic sequence and forwards and backwards synchronising sequences, and a ‘random 
sequence’, meaning a highly Gowers uniform sequence. (Since in this sense sequences 
that are 0 almost everywhere are ‘random’, the terminology is somewhat loose.) The 
classical Thue–Morse sequence is an example of a highly Gowers uniform sequence [49]. 
By contrast, it turns out that our sequences are very structured and non-random in 
the sense of this decomposition. As an example, consider the series σCS: it follows from 
Equation (12) that the value of its n-th coefficient for n � 3 depends only on the two 
leading digits and the final digit of the base-2 expansion of n.

Proposition 13.2.1. For all series σ =
∑

ant
n in Table 9 the sequence (an) is structured: 

there exists a backwards synchronising sequence (bn), a forwards synchronising sequence 
(fn) and a function F : F2

2 → F2 such that an = F (bn, fn) for all n.

Proof. All series in Table 9 except σmin, σ◦2
CS, σCS, σJ and σ◦3

J are produced by au-
tomata that admit an absorbing state that is accessible from any other state of the 
automaton, and hence by Lemma 13.1.2, they are (backwards and forwards) synchronis-
ing. Indeed, for small automata, one may inspect the pictures; for the larger automata, 
the verification can be found in [17]; for the series σS,2μ+1, for which we have not given 
a representation of the corresponding automata, one may rely on their sparseness and 
invoke Lemma 13.1.3.

To treat the remaining cases, we observe the following. The minimal automaton 
corresponding (in backwards-reading convention) to σmin is synchronising with synchro-
nising word 13, and so the corresponding sequence is backwards synchronising (using 
[19, Lemma 3.2] it can be proven that it is not forwards synchronising). The automata 
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corresponding to σJ and σ◦3
J have two absorbing states, and every state has a path to 

one of these two states; this is enough to conclude that these sequences are forwards 
synchronising (cf. [19, Lemma 3.2]). Finally, the automata for σ◦2

CS and σCS have two 
subgraphs that are synchronising and the start vertex is connected by an outgoing edge 
to these two subgraphs; it follows that the value an of the corresponding sequence de-
pends on the value of a backwards synchronising sequence (the sequence produced by 
the product automaton for the subgraphs) and on the value of the sequence (n mod 2), 
which is forwards synchronising. �

Synchronisability is not invariant under conjugation of the corresponding power series, 
so one may wonder whether every conjugacy class of elements of finite order in N (F2)
has a synchronising representative.

How computations and visualisations were done

• Equations and uniformisers were computed by hand. Singular or Mathematica
were used for elimination of variables and checking irreducibility of equations.

• Automata were generated in Mathematica by Rowland’s package [58]. Shapes of 
automata were verified using the Magma code in [14]. This code was also used to 
compute the number of states of certain automata that were not computed in further 
detail.

• Automata were redrawn using tikz and Evan Walace’s Finite State Machine De-
sign app (github.com/evanw/fsm), with the exception of the visualisation of the 
automaton for σ(1,9), which was drawn in Mathematica, exported as eps and the 
‘Start’-label was added in Inkskape.

• The genus of the curves in Table 7 were computed using Singular, with the excep-
tion of σ(1,9), which was computed in Magma.

• All claimed automata and explicit series representations were verified in Mathe-
matica to O(t200) at least.

• The file LabelledDirectedGraph.txt in [14] contains the Magma-routine to com-
pute the labelled directed graph structure (without vertex output labels) from Al-
gorithm 3.1.2 using the method of differential forms, in a form that can be parsed 
by Rowland’s Mathematica package [58]. We give two examples of the running 
time using the online calculator for Magma V2.25-5: for σmin the labelled directed 
graph is computed in 0.090 seconds, and the computation of the number of states in 
Remark 7.3 being 668 required 2.74 seconds.

Description of supplementary material

• The file automata-of-finite-order contains, for each of the series occurring in 
this paper, an irreducible algebraic equation that it satisfies, initial coefficients that 
uniquely determine it as a solution to that algebraic equation, and the corresponding 
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automaton, stored in the format of [58] and visualised as a graph. The series occur 
by the name used in the current paper, and are ordered by compositional order, then 
by lexicographical order of the lower break sequence.

• The file verification-of-non-sparseness contains the material needed to verify 
combinatorially that σ(1,9) /∈ Ŝ.

• The file verification-of-synchronisation contains the material needed to verify 
that σV,3, σ(1,9) and σ8 are synchronising.
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Chapter 4

Commensurability zeta function

In this chapter we study a new type of arithmetic function associated to a group, the
commensurability function, introduced recently in 2020 by Bou-Rabee and Studenmund
in [8] for unipotent algebraic Z-groups. For these types of groups the two authors show
that the associated commensurability zeta function admits an Euler product and that the
local factors are rational. Making the commensurability function an interesting object
to study. We expand the list of known commensurability zeta functions by including an
infinite family of abelian groups, for this family we show a connection to the subgroup zeta
function, and we generalise the commensurability function to the setting of modules.

In the first section we give an introduction to the commensurability (zeta) function for
groups and generalise this to the setting of modules. We state the theorems we prove in
this chapter and we also give an outlook to possible further research in this area.

The second section covers some preliminary results such as R-lattices. The third section
is concerned with a proof of the Euler product of the commensurability zeta function for
modules. In the final section we put everything together and provide a proof of the formula
for the commensurability zeta function for a family of abelian groups.

The appendix covers two alternative methods to compute commensurability zeta func-
tions in some low dimensional cases, which are already covered by one of the main the-
orems of this chapter. The first method uses a standard basis for 2 × 2-matrices over a
non-Archimedean local field and the second method makes use of the theory of buildings
of GLd(Qp). These alternative proofs could provide inspiration to compute other commen-
surability zeta functions.
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4.1 Introduction

4.1.1 Commensurability function for groups

Let G be a group and let H,K ≤ G be two subgroups of G. We say that the groups H and
K are commensurable (in the strict sense as subgroups of G), if their commensurability
index

c(H,K) = |H : H ∩K| · |K : H ∩K|

is finite. This is a generalisation of the notion of commensurability for real numbers, two
non-zero real numbers are said to be commensurable if their ratio is a rational number.
Clearly, every two subgroups of a finite group are commensurable. Examples of two non-
commensurable subgroups of a group are also easy to be found. For example, take any
infinite group and consider two subgroups, one which is finite and one that is infinite.
Fixing a subgroup K ≤ G, we consider the commensurability function

cG,K : N→ N ∪ {0,∞}, n 7→ cG,Kn ,

where
cG,Kn = |{H ≤ G | c(H,K) = n}|,

i.e. the number of subgroups of G having commensurability index n with K. In case the
commensurability function cG,K : N→ N∪{0,∞} takes on only finite values, we associate
to the pair (G,K) the commensurability zeta function for the pair (G,K), denoted by
ζcomm
G,K (s), which is the (formal) Dirichlet series

ζcomm
G,K (s) =

∞∑
n=1

cG,Kn n−s, s ∈ C.

The abscissa of convergence of the zeta function ζcomm
G,K (s) is related to the growth type of

the commensurability growth function sG,K , which is defined by

sG,K : N→ N, n 7→ sG,Kn =
n∑
k=1

cG,Kk .

In the following we study properties of the commensurability zeta function, for instance
how the algebraic properties of the groups G,K control the analytic properties of ζcomm

G,K (s)
and vice versa. This is similar to other zeta functions counting other substructures such
as the (normal, subnormal, maximal) finite-index subgroups or the finite dimensional rep-
resentations over C; for some examples see [63]. We do have an additional degree of
flexibility, since we consider a pair (G,K) of groups instead of a single group G.
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Choosing K = G in the definition of the commensurability function, we recover the
well-known function

N→ N ∪ {0,∞}, n 7→ an(G) = |{H ≤ G | |G : H| = n}|,

counting the number of subgroups of finite index in G. This gives rise to the subgroup
growth function n 7→

∑n
k=1 ak(G) and the subgroup zeta function ζcomm

G,G (s) = ζ≤G (s) in
case an(G) is finite for every n ∈ N. In 1949 Hall computed an(Fg) for the free group
Fg on g generators [29], hereby starting the investigation into the subgroup growth of
groups. However, only after the influential 1988 paper [27] by Grunewald, Segal and Smith,
concerning the subgroup growth of nilpotent groups, this area gained significant attention.
One of the greatest achievements is the characterisation of the groups with polynomial
subgroup growth as the virtually solvable groups of finite rank in 1993 by Lubotzky, Mann
and Segal [42].

The commensurability function is a new type of arithmetic function for groups intro-
duced in 2020 by Bou-Rabee and Studenmund [8]. The commensurability growth function
is a generalisation of the subgroup growth function and it is an interesting question, which
results from the area of subgroup growth can be generalised to the setting of the commen-
surability function. In [8] it is shown that there are some parallels between the two worlds.
Besides generalising the subgroup growth function, the commensurability function is also
an upper bound for the subgroup growth function. Namely, for a group G and a subgroup
K ≤ G we have for every n ∈ N that an(K) ≤ cG,Kn . More generally, if |G : K| <∞, then
the subgroups H ≤ G, which are commensurable with K, are precisely the finite index
subgroups of G. The full impact of these relationships is yet to be explored. There are
other cases where we do find something interesting.

In [8] the commensurability function is studied for the class of unipotent algebraic Z-
groups; e.g. algebraic group defined over Z, see also [52]. For every unipotent algebraic
Z-group G Bou-Rabee and Studenmund prove that the commensurability function of its
real Lie group G(R), with respect to the arithmetic lattice G(Z), takes only finite values.
Therefore the corresponding commensurability zeta function of the pair (G(R), G(Z)) is
defined. They show that the zeta function ζcomm

G(R),G(Z)(s) admits the formal Euler product

ζcomm
G(R),G(Z)(s) =

∏
p

ζcomm,p
G(R),G(Z)(s), (4.1)

where p runs over all prime numbers, the functions

ζcomm,p
G(R),G(Z)(s) =

∞∑
n=0

c
G(R),G(Z)
pn p−ns

are called the local factors. The local factors enumerate the subgroups of G whose com-
mensurability index with K is a power p. Using techniques from model theory and p-adic
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integration [46], previously succesfully applied to the area of subgroup growth (see [45,
Chapter 15 and Window 12]), they prove that the local factors ζcomm,p

G(R),G(Z)(s) are rational

functions over Q in p−s. Moreover, there are bounds on the degree of the numerator
and denominator of these rational functions, that are independent of the prime number
p. This mirrors a similar behaviour of the zeta functions related to subgroup growth and
representation growth; see [27, 30].

The only example, of an explicitly computed commensurability zeta function for a pair
of different groups, known to Bou-Rabee and Studenmund, is the commensurability zeta
function for the pair (R,Z) of abelian groups [8, Prop. 2.1], which they compute as

ζcomm
R,Z (s) =

ζ(s)2

ζ(2s)
=
∞∑
n=1

2ω(n)

ns
,

where ζ(s) =
∑∞

n=1 n
−s is the ordinary Riemann zeta function and ω(n) counts the number

of different prime factors of n. Any subgroup of R, which is commensurable with Z, is
actually a subgroup of Q, so in fact ζcomm

R,Z (s) = ζcomm
Q,Z (s). In [9] Bou-Rabee, Kaletha and

Studenmund compute some asymptotics of the commensurability growth function sG,Γ for
a Chevalley group scheme G defined over Z of rank greater than 1 and an arithmetic lattice
Γ in G(R). They show that the asymptotic behaviour of sG,Γ depends on the subgroup
growth function n 7→

∑n
k=1 ak(Γ) of Γ and a constant depending only on the root system

of G.

Our contribution to the study of the commensurability function is the explicit com-
putation of the commensurability zeta functions for an infinite family of pairs of groups.
This extends the current list of known examples from a single one to infinitely many. Not
only does this give more examples to test hypotheses on, it also shows an interesting and
unexpected connection to the theory of subgroup growth, as we can express the commen-
surability zeta function completely in terms of a subgroup zeta function.
We compute for any positive integer d ∈ N for the pair (Rd,Zd) of abelian groups the com-
mensurability zeta function ζcomm

Rd,Zd(s) = ζcomm
Qd,Zd(s); see Theorem 4.1.1. In the wording of [8]

this covers the case where G is an abelian unipotent connected algebraic group defined
over Z. Because G is defined over Z, G is Q-isomorphic to a Q-vector group H (see [33,
Appendix A.3]), so that G(R) ∼= H(R) ∼= Rd for some d ∈ N. Under this Q-isomorphism
the image of G(Z) is commensurable with H(Z) [52, Prop. 4.1], which is a lattice of full
rank in H(R). Any two lattices of full rank inside Rd have the same commensurability
zeta function and since any lattice of full rank in Rd which is commensurable with Zd lies
in Qd, we can reduce our computation to the pair (Qd,Zd) of abelian groups.

The next theorem shows that the commensurability zeta function for the pair (Qd,Zd)
is related to the subgroup zeta function of Zd. Actually, this theorem is obtained as a
corollary of a more general statement, see Theorem 4.1.5, which deals with a generalisation
of the commensurability function of pairs of abelian groups to modules.
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Theorem 4.1.1. Let d > 0 be an integer. The commensurability zeta function ζcomm
Qd,Zd(s)

for the pair (Qd,Zd) of abelian groups satisfies

ζcomm
Qd,Zd(s) · ζ≤

Zd(2s) = ζ≤
Zd(s)2, (4.2)

where ζ≤
Zd(s) denotes the subgroup zeta function of Zd.

The proof of Theorem 4.1.1 not only shows that the commensurability zeta function
satisfies equation (4.2), but actually explains the connection between the commensurability
zeta function ζcomm

Qd,Zd(s) and the subgroup zeta function ζ≤
Zd(s). Therefore the equation (4.2)

is more than a coincidence of Dirichlet series. Two alternative proofs for Theorem 4.1.1 are
given in the appendix for the cases d ∈ {2, 3}; one proof uses a standard basis for lattices
and the other proof makes use of a Bruhat-Tits building. It is a well-known result, see [45,
Chapter 15] for multiple proofs, that the subgroup zeta function for Zd is given by

ζ≤
Zd(s) = ζ(s)ζ(s− 1) · · · ζ(s− d+ 1),

where ζ(s) is the ordinary Riemann zeta function. Consequently, by using Theorem 2.0.3,
we have the following corollary of Theorem 4.1.1, describing the commensurability growth.

Corollary 4.1.2. Let d > 0 be an integer. The commensurability zeta function ζcomm
Qd,Zd(s)

for the pair (Qd,Zd) is given by the formula

ζcomm
Qd,Zd(s) =

d−1∏
k=0

ζ(s− k)2

ζ(2s− k)

and hence the commensurability growth n 7→ sQ
d,Zd

n of the pair (Qd,Zd) satisfies

sQ
d,Zd

n ∼ C

d
nd log(n) as n→∞,

where the constant C is given by

C =
ζ(2)2ζ(3)2 · · · ζ(d)2

ζ(d+ 1)ζ(d+ 2) · · · ζ(2d)
.

4.1.2 Commensurability function for modules

We consider a generalisation of the commensurability zeta function for groups discussed
in the previous section to modules. This is largely analogous with the group-theoretical
version in the previous chapter. Let R be a ring (commutative with 1) and let M be an
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R-module. For two R-submodules Λ,Γ of M we define the commensurability index c(Λ,Γ)
by

c(Λ,Γ) = |Λ : Λ ∩ Γ| · |Γ : Λ ∩ Γ|,

here |− : −| denotes the index of the underlying abelian groups. When c(Λ,Γ) is finite, we
say that Λ and Γ are commensurable (in the strict sense as submodules of M). Fixing an
R-submodule N ⊆ M , the commensurability function cM,N : N → N ∪ {∞}, n 7→ cM,N

n is
defined by

cM,N
n = |{Λ ⊆M | Λ an R-submodule, c(Λ, N) = n}|.

The commensurability zeta function for the pair (M,N) of R-modules is defined by the
(formal) Dirichlet series

ζcomm
M,N (s) =

∞∑
n=1

cM,N
n n−s, s ∈ C.

The submodule zeta function ζsub
N (s), corresponding to the R-module N , is the formal series

ζsub
N (s) =

∑
Λ⊆N

|N : Λ|−s, s ∈ C,

where we sum over all R-submodules Λ ⊆ N of finite index in N . Since Λ ⊆ N we have
c(Λ, N) = |N : Λ|. This zeta function ζsub

N (s) is a generalisation of the subgroup zeta
function or the ideal zeta function to modules; see also [12], [39], [56] and [57].

We will turn our attention to the case (M,N) = (Kd, Rd) with R an integral domain
with field of fractions K and d ∈ N. An R-lattice in Kd is a finitely generated R-submodule
of Kd containing a basis of Kd; see [51, §81] for more on R-lattices. Other names for R-
lattices can be found in the literature, such as full-rank lattice or K-lattice. We write
L(Rd),L(Kd) for the set of all R-lattices in Kd contained in Rd, Kd respectively.

When K is a global field or a non-Archimedean local field (see also Chapter 2) the set
L(Kd) coincides with the set of all R-submodules of Kd which are commensurable with
Rd. This turns out to be very helpful. The next theorem describes necessary and sufficient
conditions on the ring R for this to hold.

Theorem 4.1.3. Let R be an integral domain with fraction field K, let d ∈ N and let
Λ ⊆ Kd be a non-zero R-submodule. The ring R satisfies the two conditions

(1) if d > 1, then R is infinite;

(2) for every non-zero ideal I ⊆ R we have |R : I| <∞,

if and only if we have the equivalence

Λ ∈ L(Kd)⇔ c(Λ, Rd) <∞. (4.3)
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The ring R = Z + 2Z
√

2 is an example of a ring for which condition (2) holds, which
is not the ring of integers of a global field or a non-Archimedean local field.

Every pair (M,N) of R-modules with N ⊆M can also be considered as a pair of abelian
groups by forgetting the R-module structure. One expects that this in general leads to
different commensurability zeta functions. When R = Z the modules M,N are just abelian
groups and hence the commensurability zeta functions, when considered as abstract groups
or as modules, coincide. This applies to the pairs (Qd,Zd) with d ∈ N. Let K be a number
field with d = [K : Q] > 1 and let O the ring of integers of K. We show in Example 4.2.19
that the pair (K,O) as O-modules and the pair (K,O) as abelian groups, i.e. K ∼= Qd

and O ∼= Zd, have different commensurability zeta functions. Because our notation for
the commensurability (zeta) function does not distinguish between groups and modules,
it is important to stress which one is being used. For the remainder of this chapter we
only work with the commensurability zeta function for modules, unless explicitly stated
otherwise.

A key step in the proof of Theorem 4.1.5, the analogue of Theorem 4.1.1 for global fields,
is the reduction to non-Archimedean local fields. This reduction is achieved through the
existence of an Euler product for the commensurability zeta function; this is the content
of the next theorem. Its proof is an adaptation and a generalisation of [8, Prop. 1.2] to the
setting of modules with the Chinese remainder theorem for modules as its key step.

Theorem 4.1.4. Let d > 0 be an integer and let K be a global field with ring of integers O.
The commensurability zeta function ζcomm

Kd,Od(s) for the pair (Kd,Od) of O-modules satisfies

the (formal) Euler product

ζcomm
Kd,Od(s) =

∏
p

ζcomm
Kd

p ,Od
p
(s),

where the product runs over all maximal ideals p of O.

A similar Euler product holds for the submodule zeta function ζsub
Od (s). The main theo-

rem we prove in this chapter is the next theorem, which is a generalisation of Theorem 4.1.1
to modules. The key insights for the proof for non-Archimedean local fields K with ring of
integers O is a counting argument (see Proposition 4.4.2) and averaging over all so-called
‘frames ’ by integrating over the profinite group GLd(O).

Theorem 4.1.5. Let d > 0 be an integer and let K be a global field or a non-Archimedean
local field with ring of integers O. The commensurability zeta function ζcomm

Kd,Od(s) for the

pair (Kd,Od) of O-modules satisfies

ζcomm
Kd,Od(s) · ζsub

Od (2s) = ζsub
Od (s)2.

Similar to Theorem 4.1.1, where we expressed the commensurability zeta function for
the pair (Qd,Zd) of groups in terms of the subgroup zeta function for Zd, the commen-
surability zeta function for the pair (Kd,Od) of O-modules is expressed in terms of the
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submodule zeta function for Od. It is interesting to note that for a non-Archimedean local
field K the commensurability zeta function ζcomm

Kd,Od(s) depends only on the inertia degree
and not on the ramification degree. Together with an explicit formula for the submodule
zeta function of Od, see Proposition 4.2.17, we have the following corollary of Theorem 4.1.5
linking the commensurability zeta function to the Dedekind zeta function ζK of K.

Corollary 4.1.6. Let K be a number field with ring of integers O and write ζK(s) for the
Dedekind zeta function of K. Then ζK(s) equals the submodule zeta function ζsub

O (s) cor-
responding to the O-module O. The commensurability zeta function for the pair (Kd,Od)
of O-modules is given by

ζcomm
Kd,Od(s) =

d−1∏
k=0

ζK(s− k)2

ζK(2s− k)
.

Taking K = Q in the above corollary recovers Theorem 4.1.1.

In the setting of groups our computations cover the case of finitely generated torsion-
free abelian groups. We need new ideas to compute other examples. In the light of the
Euler product in [8, Prop. 1.2] it would be very interesting to know the commensurability
zeta function of a non-abelian unipotent group. For example, the Heisenberg group H(Qp)
with respect to the subgroup H(Zp) (as a subgroup of GL3(Qp)) with p a prime number;
these two groups can be defined by

H(Qp) =

1 Qp Qp

1 Qp

1

 and H(Zp) =

1 Zp Zp

1 Zp

1

 .

A crucial step in the proof of Theorem 4.1.5 is equation (4.22), which, translated to the
group setting, says that any subgroup of Qd commensurable with Zd is isomorphic to Zd.
We do not expect this to be true for the group H(Qp), but it could be interesting to define
a variation on the commensurability zeta function that enumerates only subgroups which
are isomorphic to H(Zp).

Let K be a global field with ring of integers O and let S be a finite set of valuations
of K, containing all Archimedean valuations of K. The ring OS of S-integers in K is
defined by

OS = {x ∈ K | v(x) ≥ 0 for all v ∈ S}.

Our main Theorem 4.1.5 considers pairs of O-modules. What happens if we consider
instead OS-modules? Do we still have an Euler product and a formula for the commensu-
rability zeta function in terms of the submodule zeta function?

Another variation would be to consider rings of higher Krull dimensions as opposed to
the ring of integers of a non-Archimedean local field. For instance local rings that are not
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discrete valuation rings. An example of such a ring is the ring ZpJT K of power series in T
with coefficients from the p-adic integers Zp for some prime number p.

Let p be a prime number. In Section 4.5.2 of the appendix we use the theory of buildings
for GLd(Qp) to compute the commensurability zeta function ζcomm

Qd
p,Z

d
p
(s) for d ∈ {2, 3}.

For other classical groups, like the symplectic group Spd(Qp) ≤ GL2d(Qp), there exist
descriptions of the corresponding building in terms of lattices. The building of Spd(Qp)
is for instance contained in the building of GL2d(Qp). Is it possible to use our approach
in Section 4.5.2 to define an interesting zeta function related to the building of Spd(Qp)?
Another proof for the commensurability zeta function for d = 2 is included in Section 4.5.1,
it relies on choosing a unique basis for each arithmetic lattice. We included these proofs
in the appendix, because they could be a source of inspiration to tackle the computation
of the commensurability zeta function for non-abelian groups.

Before proving the main results, we introduce some important definitions and notions
in Section 4.2. The proof of Theorem 4.1.3, Theorem 4.1.4 and Theorem 4.1.5 can be found
in Section 4.2.2, Section 4.3 and Section 4.4, respectively.

4.2 Preliminaries

In this section we introduce notation for the remainder of this chapter and we prove some
basic results. We introduce O-lattices, followed by the commensurability index and the
commensurability zeta function.

4.2.1 R-lattices

Recall the definition of a lattice. For more on lattices see for instance [51, §81].

Definition 4.2.1. Let R be an integral domain with fraction field K. An R-lattice Λ in
Kd is a finitely generated R-submodule of Kd which contains a basis of Kd. We write
L(Kd) for the set of all R-lattices in Kd, so

L(Kd) = {Λ | Λ is an R-lattice in Kd},

and L(Rd) ⊆ L(Kd) for the set of R-lattices in Kd which are contained in Rd.

In the literature our definition of an R-lattice is sometimes called a full R-lattice. For
our calculations we introduce the notion of a signature matrix, which is not a standard
name.
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Definition 4.2.2. Let K be a non-Archimedean local field with ring of integers O and let
π be a uniformiser for the maximal ideal of O. We call a matrix in GLd(K) a signature
matrix, if it is of the form diag(πe1 , . . . , πed), for some integers ei ∈ Z.

For the remainder of this section we assume that K is a non-Archimedean local field
with ring of integers O. Moreover, we also fix a uniformiser π of the unique maximal ideal
of O. Because the ring of integers O of K is a principal ideal domain and Kd is torsion-free
as an O-module, the theory of modules over principal ideal domain shows that every O-
lattice in L(Kd) is free and has rank d. Let Λ ∈ L(Kd) be an O-lattice, then there exists
a basis {b1, . . . , bd} of Kd such that Λ is spanned by b1, . . . , bd, that is

Λ = Ob1 + . . .+Obd.

Write B for the matrix in Matd(K) whose columns are b1, . . . , bd (actually B ∈ GLd(K)
since b1, . . . , bd form a basis of Kd). Then Λ is also given as the image of the standard
lattice Od under the linear map Kd → Kd induced by the matrix B. We write this as

Λ = BOd.

The O-lattice Λ does not determine B uniquely, consequently there are many possibilities
for B. For B,C ∈ GLd(K) this means that from the equation BOd = COd we cannot
conclude B = C, but only that C = Bh for some matrix h ∈ GLd(O).

Definition 4.2.3. Let Λ ∈ L(Kd) be an O-lattice and let g ∈ GLd(O) be a matrix with
column vectors g1, . . . , gd ∈ Od. We say that the element g is a frame for the O-lattice Λ,
if there exist integers ei ∈ Z for which the set

{πe1g1, . . . , π
edgd}

is a basis of Λ as an O-module. Write D = diag(πe1 , . . . , πed). We say that D is a signature
matrix of Λ with respect to the frame g. Note that g being a frame for Λ is equivalent to
Λ being spanned as an O-module by the columns of the matrix gD, which is equivalent to
writing

Λ = gDOd.
We write F (Λ) for the set of all frames of the O-lattice Λ ∈ L(Kd), i.e.

F (Λ) = {g ∈ GLd(O) | g is a frame for Λ}.

Moreover if (Λ,Γ) ∈ L(Kd) × L(Kd) is a pair of O-lattices in Kd, then we write F (Λ,Γ)
for the set of all simultaneous frames for Λ and Γ, i.e.

F (Λ,Γ) = {g ∈ GLd(O) | g is frame for both Λ and Γ}.

Note that in the above definition we have F (Λ,Od) = F (Λ). The next lemma proves
that the integers ei ∈ Z in Definition 4.2.3 are uniquely determined by g.
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Lemma 4.2.4. Let Λ ∈ L(Kd) be an O-lattice and let g ∈ F (Λ) be a frame with column
vectors g1, . . . , gd ∈ Od. There exist unique integers e1, . . . , ed ∈ Z such that the set

{πe1g1, . . . , π
edgd}

is a basis of Λ.

Proof. Let f1, . . . , fd ∈ Z be another set of d integers such that

{πf1g1, . . . , π
fdgd}

is a basis for the O-module Λ. Then we can write

Λ = g diag(πe1 , . . . , πed)Od = g diag(πf1 , . . . , πfd)Od

and hence there exists an h ∈ GLd(O) such that

g diag(πe1 , . . . , πed) = g diag(πf1 , . . . , πfd)h.

This gives h = diag(πe1−f1 , . . . , πed−fd), forcing ei = fi for all 1 ≤ i ≤ d.

Remark 4.2.5. An O-lattice Λ ∈ L(Kd) can have different signature matrices, but, as
Lemma 4.2.9 will show, any two of these differ by a permutation of the diagonal entries.
Moreover, Lemma 4.2.8 shows that the set F (Λ) for any Λ ∈ L(Kd) is always non-empty,
i.e. every O-lattice in L(Kd) has a frame.

Example 4.2.6. Let Λ ∈ L(Kd) be an O-lattice and let h ∈ GLd(K) be a matrix whose
columns are a basis for Λ. Depending on h we cannot always find integers ei ∈ Z such
that hD with D = diag(πe1 , . . . , πed) is a frame for Λ. This is illustrated by the following
example. Let p be a prime number and K = Qp the field of p-adic rationals with ring of
integers O = Zp and uniformiser π = p. Consider the Zp-lattice Λ in Q2

p given by

Λ = Zp

(
p
1

)
+ Zp

(
0
p2

)
=

(
p 0
1 p2

)
Z2
p.

Suppose that for some integers a, b ∈ Z, we have
(
pa+1 0

pa pb+2

)
∈ GL2(Zp). Then clearly

b ≥ −2 and a ≥ 0. But the resulting matrix has determinant pa+b+3 ≥ p and hence cannot
be an element of GL2(Zp). Multiplying the individual elements of a basis with scalars does
not always produce a frame. An example of a frame for the Zp-lattice Λ is the matrix(

p 1
1 0

)
∈ GL2(Zp).

Then Λ has as signature matrix diag(1, p3) because

Λ =

(
p p3

1 0

)
Z2
p =

(
p 1
1 0

)(
1 0
0 p3

)
Z2
p.
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The next theorem shows that we can decompose any matrix in GLd(K) in a particularly
useful form. This decomposition is known in the literature under the name Cartan decom-
position or KAK decomposition, see for instance [11], Proposition 4.4.3, or [38], Theorem
7.39. This decomposition is valid for a large number of fields, not just for non-Archimedean
local fields. Over a non-Archimedean local field the Cartan decomposition can be proven
in an elementary way, using the Gaussian elimination procedure for matrices. The Cartan
decomposition is related to various other decomposition of classical groups like GLd(K),
for instance the Bruhat decomposition and the Iwasawa decomposition.

Theorem 4.2.7 (Cartan decomposition). Let K be a non-Archimedean local field with
ring of integers O and d > 0 an integer. Any matrix A ∈ GLd(K) can be decomposed as

A = BDC

where B,C ∈ GLd(O) and D ∈ GLd(K) is a diagonal matrix of the form

D = diag(πe1 , . . . , πed)

for some integers ei ∈ Z with π a uniformiser of O. Up to a permutation of the diagonal
entries, the matrix D is unique.

Lemma 4.2.8. For any O-lattice Λ ∈ L(Kd) the set F (Λ) of frames for Λ is non-empty.

Proof. Let A ∈ GLd(K) be a matrix whose columns are a basis of Λ. By Theorem 4.2.7
there exist B,C ∈ GLd(O) and a diagonal matrix D = diag(πe1 , . . . , πed) with ei ∈ Z such
that A = BDC. Because C ∈ GLd(O) the columns of the matrix AC−1 = BD form a
basis of Λ, hence B is a frame for Λ.

Lemma 4.2.9. Let Λ ∈ L(Kd) be an O-lattice. Any two signature matrices of Λ differ by
a permutation of the diagonal entries.

Proof. Let g, h ∈ F (Λ) be two frames for Λ with corresponding signature matrices D,E.
From gDOd = hEOd it follows that gDA = hE for some element A ∈ GLd(O). The claim
follows now immediately from Theorem 4.2.7.

4.2.2 Commensurability index

Let R be a ring (commutative with 1) and M an R-module. For two R-submodules Λ,Γ
of M we define the commensurability index c(Λ,Γ) by

c(Λ,Γ) = |Λ : Λ ∩ Γ| · |Γ : Λ ∩ Γ|,
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here |− : −| denotes the index of the underlying abelian groups. If the commensurability
index c(Λ,Γ) is finite, we say that the R-modules Λ and Γ are commensurable (in the
strict sense as submodules of M). From now on assume that R is an integral domain with
fraction field K and consider the pair (Kd, Rd) of R-modules for some integer d > 0. For
an R-submodule Λ of Kd we abbreviate c(Λ, Rd) by c(Λ). The next proposition gives a
necessary and sufficient condition on the ring R to describe the set L(Kd) in an alternative
way using the commensurability index. Recall that L(Kd) is defined as the set of all
R-submodules of Kd which are finitely generated and contain a basis of Kd.

Theorem 4.2.10. Let R be an integral domain with fraction field K, let d > 0 be an
integer and let Λ ⊆ Kd be a non-zero R-submodule. If the two conditions

(1) R is infinite if d > 1;

(2) for every non-zero ideal I ⊆ R we have |R : I| <∞;

both hold, then we have the equivalence

Λ ∈ L(Kd)⇔ c(Λ, Rd) <∞.

Conversily, if the equivalence in (4.3) holds, then the ring R satisfies the conditions (1)
and (2).

Examples of rings satisfying conditions (1) and (2) are, for example, rings of integers
of global fields and of non-Archimedean local fields.

Proof. Suppose first that the equivalence in (4.3) holds. If d > 1, then the ring R must be
infinite, because otherwise Λ = Rd−1⊕{0} is a counterexample to the implication “⇐” (Λ
does not contain a basis of Kd). This shows that condition (1) is necessary. Let I ⊆ R be
a non-zero finitely generated ideal of R, then clearly Id ∈ L(Kd) and hence

|R : I|d = |Rd : Id| = c(Id, Rd) <∞,

that is |R : I| < ∞. Next let J ⊆ R be an arbitrary non-zero ideal of R and I ⊆ J a
finitely generated ideal of R, then |R : J | ≤ |R : I| <∞. This shows that condition (2) is
necessary.

Next, suppose that conditions (1) and (2) both hold. We first prove the implication
“⇒” in (4.3). Assume that Λ is generated by ` > 0 elements. Because K is the fraction
field of R, we can find a non-zero element a ∈ R such that aΛ ⊆ Rd. We then have

|Λ : Λ ∩Rd| ≤ |Λ : aΛ| ≤ |R : Ra|` <∞,

using condition (2) in the last step. Next, suppose that {b1, . . . , bd} is a basis of Kd

contained in Λ and write B ∈ GLd(K) for the matrix with columns b1, . . . , bd. Multiplying
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with a suitable non-zero element from R if necessary, we may assume without loss of
generality that bi ∈ Rd for i = 1, . . . , d. If ei ∈ Kd is the standard basis vector with
entry 1 in the i-th position and entries zeroes otherwise, then for every i the equation
Bx = det(B)ei has a solution x = xi ∈ Rd, because bi ∈ Rd implies det(B)B−1 = adj(B) ∈
Matd(R), here adj(B) stands for the adjugate of B, and hence xi = adj(B)ei ∈ Rd. This
shows that det(B)Rd ⊆ Λ and therefore we find similarly that

|Rd : Λ ∩Rd| ≤ |Rd : det(B)Rd| = |R : R det(B)|d <∞

using condition (2) in the last step. It follows that c(Λ, Rd) <∞.

Next we show that the implication “⇐” in (4.3) holds under the assumption that
conditions (1) and (2) both hold. Assume that Λ satisfies c(Λ, Rd) <∞ and suppose that
Λ ∩ Rd does not contain a basis of Kd. If d = 1, then any non-zero element of K is a
basis of K, hence we must have Λ ∩R = {0}. This is impossible, because Λ is assumed to
be non-zero and hence, by multiplying with a suitable scalar, Λ must contain a non-zero
element from Λ. For d > 1 we also derive a contradiction. We have K(Λ ∩ Rd) 6= Kd and
hence there exists a non-zero vector x ∈ Rd such that Kx ∩ (Λ ∩ Rd) = {0}. For a, b ∈ R
this gives

ax = bx mod (Λ ∩Rd)⇔ a = b

and since R is infinite, this implies that Rd/(Λ ∩ Rd) is infinite. This contradicts |Rd :
Λ∩Rd| ≤ c(Λ, Rd) <∞. Hence Λ∩Rd, and therefore also Λ, contains a basis of Kd. Under
the assumption that Λ contains a basis of Kd, we find analogously to the first paragraph
that bRd ⊆ Λ for some non-zero element b ∈ R and hence using (2) again

|Λ ∩Rd : bRd| ≤ |Rd : bRd| = |R : Rb|d <∞.

Together with the fact that bRd is finitely generated as an R-module, we find that Λ ∩Rd

is also finitely generated as an R-module.

Let d > 0 be an integer and suppose that K is a non-Archimedean local field with
ring of integers O and residue field of cardinality q. The next lemma shows that the
commensurability index c(Λ,Γ) of two O-lattices Λ,Γ ∈ L(Kd) is a power of q. For
convenience we introduce the integer c̃(Λ,Γ) defined by

qc̃(Λ,Γ) = c(Λ,Γ)

and we use the abbreviation c̃(Λ) = c̃(Λ,Od).

Lemma 4.2.11. Let K be a non-Archimedean local field with ring of integers O. Let
Λ ∈ L(Kd) be an O-lattice and let g ∈ F (Λ) be a frame of Λ with corresponding signature
matrix D = diag(πe1 , . . . , πed) for integers e1, . . . , ed ∈ Z and a uniformiser π ∈ O of the
maximal ideal of O. The commensurability index c̃(Λ) is given by

c̃(Λ) = |e1|+ . . .+ |ed|.
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Proof. The element g is a frame for Od and Λ and hence also of the O-lattice Λ∩Od. The
signature matrix of Λ ∩ Od with respect to the frame g is the matrix diag(πm1 , . . . , πmd),
where mi = max{0, ei}, because πeiO ∩ O = πmiO. Any element h ∈ GLd(K) is an
automorphism of the vector space Kd, so for two O-lattices Γ,Σ ∈ L(Kd) we have

|Γ : Σ| = |hΓ : hΣ|,

where hΓ, hΣ are the images of respectively Γ,Σ under the linear map h. Applying this to
the element h = g−1 we get

|Od : Λ ∩ Od| = |Od :
d⊕
i=1

πmiO| =
d∏
i=1

|O : πmiO| = qm1+...+md

and

|Λ : Λ ∩ Od| = |
d⊕
i=1

πeiOd :
d⊕
i=1

πmiO| =
d∏
i=1

|πeiO : πmiO| = q(m1−e1)+...+(md−ed).

Together with the identity 2mi − ei = |ei| this shows

qc̃(Λ) = qm1+...+md · q(m1−e1)+...+(md−ed) = q|e1|+...+|ed|.

Lemma 4.2.12. Let K be a non-Archimedean local field with ring of integers O. For each
integer n ≥ 0 the set

{Λ ∈ L(Kd) | c̃(Λ) = n}

is finite.

Proof. For a fixed value of n, there are only finitely many tuples (e1, . . . , ed) ∈ Zd satisfying∑d
i=1 |ei| = n, so by Lemma 4.2.9 and Lemma 4.2.11 the number of signature matrices of

a given O-lattice Λ ∈ L(Kd) with c̃(Λ) = n is finite. This reduces the problem to showing,
for a fixed signature matrix D, that the set

{Λ ∈ L(Kd) | D is signature matrix of Λ} (4.4)

is finite. Write G = GLd(O) and consider two elements g, h ∈ G. We have gDOd = hDOd
if and only if D−1h−1gDOd = Od, i.e. D−1h−1gD ∈ G, which is equivalent to h−1g ∈
DGD−1 ∩ G. This shows that the left cosets of DGD−1 ∩ G in G are in an one-to-one
correspondence with the elements of the set in (4.4), the coset g(DGD−1 ∩G) corresponds
to the O-lattice gDOd.

Next we show that for some integer N ≥ 0 the congruence subgroup GN is contained
in DGD−1 ∩ G. We will need the proof of this also for a later reference. Write D =
diag(πe1 , . . . , πed) for some integers ei ∈ Z and let N = maxi 6=j{ei − ej}. If N = 0, then
D = πeI for some integer e ∈ Z, so DGD−1 ∩ G = G clearly has finite index in G. If
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N > 0, then one verifies that D−1GND ≤ G, here GN = GLNd (O) is the N -th principal
congruence subgroup of GLd(O); for a definition see Chapter 2. Hence GN ≤ DGD−1 ∩G
and because GN has finite index in G, so does DGD−1∩G. This shows that there are only
finitely many cosets g(DGD−1 ∩G) and hence the set in (4.4) is finite.

The next lemma gives an explicit description of the group DGD−1 ∩G, which occured
in the proof of Lemma 4.2.12. This description will be useful for Proposition 4.4.3.

Lemma 4.2.13. Let d, ` ≥ 1 be integers, let K be a non-Archimedean local field with ring
of integers O and let π be a uniformiser for the maximal ideal of O. Consider d ordered
integers e1 ≤ . . . ≤ ed and ` pairwise different integers a1, . . . , a` such that {e1, . . . , ed} =
{a1, . . . , a`} and a1 < . . . < a`, we write mi = |{j | ej = ai}|. For the signature matrix
D = diag(πe1 , . . . , πed) define the group H = DGD−1 ∩ G where G = GLd(O). Then H
consists of all matrices of the form

H11 H12 . . . H1`

H21 H22 H2`
...

. . .
...

H`1 H`2 . . . H``


with Hii ∈ GLmi

(O) for 1 ≤ i ≤ `, Hij ∈ πai−ajMatmimj
(O) for 1 ≤ j < i ≤ ` and

Hij ∈ Matmimj
(O) for 1 ≤ i < j ≤ `.

Proof. Use block matrices to write out the effect of conjugating G with D to get a descrip-
tion for DGD−1 in terms of block matrices. Intersecting DGD−1 with G then gives the
desired description.

4.2.3 Commensurability zeta function

In the next two definitions we define the commensurability function, the corresponding
commensurability zeta function and the submodule zeta function.

Definition 4.2.14. Let R be a ring (commutative with 1) and let M be an R-module. Two
R-submodules Λ,Γ of M are said to be commensurable (in the strict sense as submodules
of M) if their commensurability index, c(Λ,Γ), is finite. Fixing an R-submodule N ⊆ M ,
the commensurability function cM,N : N→ N ∪ {∞} : n 7→ cM,N

n is defined by

cM,N
n = |{Λ ⊆M | Λ an R-submodule, c(Λ, N) = n}|.

The commensurability zeta function for the pair (M,N) of R-modules is defined by the
generating function

ζcomm
M,N (s) =

∑
n≥1

cM,N
n n−s, s ∈ C.
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Definition 4.2.15. Let R be a ring (commutative with 1) and let M be an R-module.
The submodule zeta function ζsub

N (s), corresponding to the R-module M , is the generating
function

ζsub
M (s) =

∑
Λ⊆M

|M : Λ|−s, s ∈ C,

where we sum over all R-submodules Λ ⊆M .

Note that in the previous definition we have |M : Λ| = c(Λ,M) because Λ ⊆ M . The
ring of integers of a global field or a non-Archimedean local field satisfies the conditions
of Proposition 4.1.3. Therefore, we can give a different but equivalent definition for the
commensurability zeta function and the submodule zeta function.

Corollary 4.2.16. Let K be a global field or a non-Archimedean local field with ring of
integers O. The commensurability zeta function ζcomm

Kd,Od(s) for the pair (Kd,Od) of O-
modules is also given by the generating function

ζcomm
Kd,Od(s) =

∑
Λ∈L(Kd)

c(Λ,Od)−s, s ∈ C

and the submodule zeta function ζsub
Od (s) of Od is the generating function

ζsub
Od (s) =

∑
Λ∈L(Od)

|Od : Λ|−s, s ∈ C.

In case K is a non-Archimedean local field with residue field of cardinality q, define the
formal series

Zcomm
Kd,Od(t) =

∑
Λ∈L(Kd)

tc̃(Λ,O
d) and Zsub

Od (t) =
∑

Λ∈L(Od)

tc̃(Λ,O
d).

These two series are related to the commensurability and submodule zeta function by

ζcomm
Kd,Od(s) = Zcomm

Kd,Od(q−s) and ζsub
Od (s) = Zsub

Od (q−s).

The next proposition determines the submodule zeta function in case K is a non-
Archimedean local field.

Proposition 4.2.17. [27, Lem. 7.2] Let d > 0 be an integer, K a non-Archimedean local
field with ring of integers O and a residue field of cardinality q. We then have

Zsub
Od (t) =

d−1∏
k=0

1

1− qkt
.
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Remark 4.2.18. In the setting of the above proposition, note that we can write the
statement also in the following two ways

Zsub
Od (t) =

d−1∏
k=0

Zsub
O (qkt) and ζsub

Od (s) =
d−1∏
k=0

ζsub
O (s− k)

with Zsub
O (t) = 1

1−t and ζsub
O (s) = 1

1−q−s .

The next example shows that for a specific pair (K,O) the associated commensurability
zeta function differs depending upon whether we consider K,O as abelian groups or as O-
modules.

Example 4.2.19. Let K be a number field with d = [K : Q] > 1 and let O be the ring
of integers of K. The commensurability zeta function for the pair (K,O) of O-modules is
(see Theorem 4.1.5) given by

ζK(s)2

ζK(2s)
, (4.5)

here ζK(s) is the Dedekind zeta function of the number field K. The underlying abelian
groups of K and O are isomorphic to Qd and Zd respectively. The commensurability zeta
function for the pair (K,O) of abelian groups is (see Corollary 4.1.2) given by

d−1∏
i=0

ζ(s− i)2

ζ(2s− i)
(4.6)

with ζ(s) is the Riemann zeta function. The two zeta functions ζ(s) and ζK(s) have an
Euler product decomposition; see also Chapter 2. The local factors at the prime p are

1

1− T
and

∏
p|p

1

1− T f(p)

respectively, we used here the abbreviation T = p−s and the product runs over all prime
ideals p lying above p with f(p) denoting the inertia degree of p. The local factors of (4.6)
and (4.5) at the prime p are thus

d−1∏
i=0

1− piT 2

(1− piT )2
and

∏
p|p

1− T 2f(p)

(1− T f(p))2
(4.7)

respectively. The rational function in T on the left in (4.7) has a pole at T = p−1 of order
at least one and the rational function in T on the right in (4.7) doesn’t have a pole at
T = p−1. So the two local factors in (4.7) are different and consequently the zeta functions
in (4.5) and (4.6) are different as well.
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4.3 Euler product

In this section we establish the Euler product for the commensurability zeta function for
a global field K. In preparation for this we first need a lemma. Lemma 4.3.1 shows that
O-lattices in Kd, of a fixed commensurability index with Od, are a fixed multiple away
from Od.

Lemma 4.3.1. Let d, n > 0 be integers and let K be a global or a non-Archimedean local
field with ring of integers O. There exists a non-zero element m ∈ O (depending only on
d, n), such that for all O-lattices Λ,Γ ∈ L(Kd) with c(Λ,Γ) | n we have

mΓ ⊆ Λ and mΛ ⊆ Γ. (4.8)

Moreover, if K is a global field, then this element m ∈ O ⊆ K also fulfills the equivalent
of equation (4.8) for any completion of K with respect to a maximal ideal of O.

Proof. By the finiteness of the commensurability index c(Λ,Γ), the quotient Λ/Λ ∩ Γ is a
finite O-module. The structure theorem for finitely generated modules over a Dedekind
domain, see Chapter 2, therefore applies and hence

Λ/Λ ∩ Γ ∼=
k⊕
i=1

O/Ii (4.9)

for some non-zero ideals Ii ⊆ O. Write I = I1 · · · Ik for the product of the ideals Ii. Then I
is non-zero, satisfies |Λ : Λ∩Γ| =

∏k
i=1 |O : Ii| = |O : I| and is contained in the annihilator

of the right hand-side of (4.9) so that in fact IΛ ⊆ Λ ∩ Γ ⊆ Γ. Analogously there exists
a non-zero ideal J ⊆ O satisfying JΓ ⊆ Λ ∩ Γ ⊆ Λ and |Γ : Λ ∩ Γ| = |O : J |. Combining
both inclusions, we find that the ideal P = IJ satisfies c(Λ,Γ) = |O : P | and

PΛ ⊆ Γ and PΓ ⊆ Λ. (4.10)

Let p be a prime ideal of O with P ⊆ pe for some integer e ≥ 1, then

|O : p|e = |O : pe| ≤ |O : P | = c(Λ,Γ) ≤ n.

This shows that both |O : p| and e are bounded from above by n. Write S for the set of
all maximal ideals of O. Because K is a global field or a non-Archimedean local field, the
set {p ∈ S | |O : p| ≤ n} is finite. Therefore the ideal

Q =
∏

p∈S, |O:p|≤n

pn

is a finite product of ideals satisfying Q ⊆ P . Let m ∈ Q be a non-zero element, then
(m) ⊆ Q ⊆ P together with (4.10) implies mΓ ⊆ Λ and mΛ ⊆ Γ.
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Let K be a global field and let p be a maximal ideal of O. Write Kp for the completion
of K with respect to p and write Op for the ring of integers of Kp and q for the cardinality
of O/p. Write Q0, Q1 for the ideal Q defined above in the case of K and Kp respectively. If
|O : p| ≤ n, then pn | Q so that m ∈ Q ⊆ pn ⊆ (pOp)

n = Q1. If |O : p| > n, then the only
pairs (Λ,Γ) of Op-lattices satisfying c(Λ,Γ) | n are those where Λ = Γ, using that c(Λ,Γ)
is a power of q. In this case any such non-zero m ∈ O works.

Remark 4.3.2. The above proof contains a very generous way of producing Q. When
K is a number field we can actually take m = n in Lemma 4.3.1. Because the abelian
group Λ/Λ ∩ Γ has exponent dividing |Λ : Λ ∩ Γ| | c(Λ,Γ) | n, from which it follows that
nΛ ⊆ Λ ∩ Γ ⊆ Γ and analogously nΓ ⊆ Λ.

The next proposition establishes an Euler product for the commensurability zeta func-
tion ζcomm

Kd,Od(s) in the case that K is a global field and also for the submodule zeta function

ζsub
Od (s). This Euler product is analogous to an Euler product we encountered in 4.1, for a

different type of commensurability zeta function.

Proposition 4.3.3. Let d > 0 be an integer and let K be a global field with ring of integers
O. We write S for the set of all maximal ideals of O. The commensurability zeta function
ζcomm
Kd,Od(s) for the pair (Kd,Od) has the formal Euler product

ζcomm
Kd,Od(s) =

∏
p∈S

ζcomm
Kd

p ,Od
p
(s) (4.11)

and the submodule zeta function ζsub
Od (s) has the formal Euler product

ζsub
Od (s) =

∏
p∈S

ζsub
Od

p
(s). (4.12)

Proof. We will only prove the Euler product for the commensurability zeta function. The
proof for the Euler product of the submodule zeta function ζsub

Od (s) can be proven in an
analogous way.
Fix an integer n > 0 and write S for the set of all maximal ideals of O. For p ∈ S write
Kp for the completion of K with respect to p with ring of integers Op. The coefficient of
n−s on the left hand-side of (4.11) equals the cardinality of the set

{Γ ∈ L(Kd) | c(Γ) = n} (4.13)

and the coefficient of n−s in the right hand-side of (4.11) equals the cardinality of the set

{(Γp)p∈S | Γp ∈ L(Kd
p ),
∏
p∈S

c(Γp,Odp) = n}. (4.14)

For a maximal ideal p ∈ S we have c(Γp,Odp) = 1 if and only if Γp = Odp , so an element
(Γp)p∈S of the set defined in (4.14) has Γp = Odp for all but finitely many p ∈ S. Using
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the Chinese remainder theorem, we show below that there is a one-to-one correspondence
between the sets in (4.13) and (4.14). The direction “⇒” of this correspondence is given
by

Λ 7→ (OpΛ)p∈S.

This implies that both sets have the same cardinality and consequently the formal Euler
product holds.

Define the O-module M = 1
m
Od, here m ∈ O is a non-zero element which, by

Lemma 4.3.1, can be chosen such that the inclusions

m2M = mOd ⊆ Λ ⊆ 1
m
Od = M (4.15)

hold for all O-lattices Λ ∈ L(Kd) satisfying c(Λ,Od) | n. In the Dedekind domain O we
can factor the ideal mO as

mO =
∏
p∈T

pep

for some finite subset T ⊆ S with multiplicities ep > 0. For every maximal ideal p ∈ S
define the O-module

Mp = OpM = 1
m
Odp ⊆ Kd

p .

Note that by extension of scalars we can consider Mp also as an Op-module and hence the
same holds for any quotient module of Mp. By the second part of Lemma 4.3.1 the element
m can also be used for all completions Kp of K. This means that for any p ∈ S and any
Op-lattice Λp ∈ L(Kd

p ) satisfying c(Λp,Odp) | n, we have the inclusions

m2Mp = mOdp ⊆ Λp ⊆ 1
m
Odp = Mp.

Note that if p ∈ S\T , then m ∈ O∗p so that Λp = Odp and therefore c(Λp,Odp) = 1. This
shows that the set in (4.14) is in bijection with the set

{(Λp)p∈T | Λp ∈ L(Kd
p ),
∏
p∈T

c(Λp,Odp) = n}. (4.16)

We have mOp = pepOp for p ∈ T and mOp = Op for p ∈ S\T , hence m2Mp = p2epMp for p ∈
T . For p ∈ T we have that O ⊆ Op is dense, so extension and restriction of scalars induce
a bijection between the O-submodules and the Op-submodules of Mp/p

2epMp. Moreover,
for p ∈ T the inclusion Od ⊆ Odp induces an isomorphism M/p2epM ∼= Mp/p

2epMp of
O-modules.

Any O-submodule of M/m2M is of the form Λ/m2M for some O-submodule Λ of
Kd satisfying the inclusions in (4.15). In fact, we have in this case Λ ∈ L(Kd), because
mOd ⊆ Λ shows that Λ contains a basis of Kd and |M : m2M | = |Od : m2Od| < ∞
shows that Λ is finitely generated. Using that c(Λ,Od) = c(Λ/m2M,Od/m2M), we see
that Λ 7→ Λ/m2M induces a bijection between the set in (4.13) and

{O-submodule A ⊆M/m2M | c(A,Od/m2M) = n}. (4.17)
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Similarly, the map (Λp)p∈T 7→ (Λp/m
2Mp)p∈T induces a bijection between the set in (4.16)

and

{O-submodule (Ap)p∈T ⊆ (Mp/m
2Mp)p∈T |

∏
p∈T

c(Ap,Odp/m2Mp) = n}. (4.18)

So it remains to show that there is a bijection between the sets (4.17) and (4.18).

Because different maximal ideals are coprime, the Chinese remainder theorem for mod-
ules gives us the isomorphism of O-modules

M/m2M ∼=
⊕
p∈T

M/p2epM ∼=
⊕
p∈T

Mp/p
2epMp =

⊕
p∈T

Mp/m
2Mp, (4.19)

under which Λ/m2M , for an O-submodule Λ of M with m2M ⊆ Λ, is mapped according
to

Λ/m2M 7→
⊕
p∈T

(Λ + p2epM)/p2epM 7→
⊕
p∈T

OpΛ/p
2epMp =

⊕
p∈T

OpΛ/m
2Mp.

Here we used for the last map that m2M ⊆ Λ implies p2epMp ⊆ OpΛ. The isomorphism
in (4.19) shows, for an O-submodule

⊕
p∈T Ap of the right hand-side of (4.19), that there

exists a corresponding O-submodule A of M/m2M satisfying Ap = OpA for all p ∈ T .
Consider an O-submodule A of M/m2M and write Ap = OpA for p ∈ T , then

c(A,Od/m2M) = c(
⊕
p∈T

Ap,
⊕
p∈T

Odp/m2Mp) =
∏
p∈T

c(Ap,Odp/m2Mp). (4.20)

This gives the desired bijection between (4.17) and (4.18).

4.4 Local commensurability zeta function

Let d > 0 be an integer. Throughout this section we write K for a non-Archimedean local
field with ring of integers O and we let π be a uniformiser of the maximal ideal of O.
Moreover, L is a global field with ring of integers OL. The Euler product, established in
the previous section, reduces the problem of computing the commensurability zeta function
of the pair (Ld,OdL) of OL-modules to computing the commensurability zeta function of
the pair (Kd,Od) of O-modules. In this section we show that the commensurability zeta
function of the pair (Kd,Od) of O-modules can be expressed in terms of the submodule
zeta function for Od as an O-module.

Lemma 4.4.1. Let d > 0 be an integer and let Λ,Γ ∈ L(Od) be two O-lattices and write
Σ = Λ + Γ for their sum, which is also an O-lattice in L(Od). We have the following
relation between the commensurability indices

c̃(Λ) + c̃(Γ) = 2c̃(Σ) + c̃(Λ,Γ).
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Proof. From the isomorphism theorem for modules we get Σ/Λ ∼= Γ/(Λ∩ Γ) and similarly
Σ/Γ ∼= Λ/(Λ ∩ Γ). One then computes

|Od : Λ||Od : Γ| = |Od : Σ||Σ : Λ||Od : Σ||Σ : Γ| = |Od : Σ|2|Σ : Λ||Σ : Γ|
= |Od : Σ|2|Λ : Λ ∩ Γ||Γ : Λ ∩ Γ| = |Od : Σ|2c(Λ,Γ) (4.21)

and so we find
c̃(Λ) + c̃(Γ) = 2c̃(Σ) + c̃(Λ,Γ).

The next proposition establishes a bijection between certain O-lattices in Kd and pairs
of O-lattices in Od. Recall from Section 4.2.1 that an O-lattice is a finitely generated
O-submodule of Kd containing a basis of Kd. If Λ ∈ L(Kd) is such an O-lattice, then we
write F (Λ) for the set of all frames of Λ. A frame g ∈ F (Λ) is an element of GLd(O) such
that we can write Λ = gDOd for some signature matrix D.

Proposition 4.4.2. Let d > 0 be an integer. For an element g ∈ GLd(O) consider the
sets

Ag = {Λ ∈ L(Kd) | g ∈ F (Λ)}
of all O-lattices in L(Kd) having g as a frame and

Bg = {(Γ,Σ) ∈ L(Od)× L(Od) | g ∈ F (Γ) ∩ F (Σ),Γ + Σ = Od}.

There exists a bijection ϕg : Ag → Bg preserving the commensurability index: if ϕg(Λ) =
(Γ,Σ) then

c̃(Λ) = c̃(Γ) + c̃(Σ) = c̃(Γ,Σ).

Proof. Let π be a uniformiser of the maximal ideal of O. For the O-lattice Λ ∈ Ag let
D = diag(πe1 , . . . , πed) with ei ∈ Z be the corresponding signature matrix of g ∈ F (Λ).
Define the two signature matrices D± by

D± = diag(πmax{0,±e1}, . . . , πmax{0,±ed})

and write Λ± = gD±Od ∈ L(Od). These O-lattices Λ−,Λ+ satisfy Λ− + Λ+ = Od since
πmax{0,−ei}O + πmax{0,ei}O = O. Define the map

ϕg : Ag → Bg, ϕg(Λ) = (Λ−,Λ+),

then ϕg is by construction injective (D can be recovered from D± through D = D−1
− D+).

That ϕg preserves the commensurability index follows from Lemma 4.4.1, applied to Λ−,Λ+

and Λ− + Λ+ = Od, and

c̃(Λ) =
d∑
i=1

|ei| =
d∑
i=1

max{0,−ei}+
d∑
i=1

max{0, ei} = c̃(Λ−) + c̃(Λ+)
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by Lemma 4.2.11.

For a pair (Γ,Σ) ∈ Bg there exist by definition unique signature matrices E,F such that
Γ = gEOd and Σ = gFOd. The condition Γ + Σ = Od is equivalent to EOd + FOd = Od.
Write E = diag(πa1 , . . . , πad) and F = diag(πb1 , . . . , πbd) for some integers ai, bi ∈ Z≥0,
then min{ai, bi} = 0 for every i. Define the O-lattice Λ = gE−1FOd. One verifies that
E = (E−1F )−, F = (E−1F )+ and hence ϕ(Λ) = (Γ,Σ). It follows that ϕg is surjective.

Recall that the profinite group GLd(O) can be equipped with a Haar measure µ, which
we conveniently normalise by µ(GLd(O)) = 1. For a subset Ω ⊆ GLd(O) we write 1Ω for
the characteristic function of Ω. When Ω is a µ-measurable set, we have the identity∫

GLd(O)

1Ω(x) dµ = µ(Ω).

The next proposition says that two sets of frames in GLd(O) have the same Haar
measure. This is a key part in the proof of Theorem 4.1.5.

Proposition 4.4.3. Let Λ ∈ L(Kd) be an O-lattice, let g ∈ F (Λ) be a frame for Λ and
write ϕg for the bijection from Proposition 4.4.2. If ϕg(Λ) = (Γ,Σ) for two O-lattices
Λ,Γ ∈ L(Od), then the sets F (Λ) and F (Γ,Σ) are both µ-measurable and moreover

µ(F (Λ)) = µ(F (Γ,Σ)) > 0.

We postpone the proof of Proposition 4.4.3 for now. First we prove Theorem 4.1.5,
under the assumption that Proposition 4.4.3 holds.

Proof of Theorem 4.1.5. Proposition 4.1.4 shows that, in order to calculate the commen-
surability zeta function in the global case, we may reduce to the local setting. By Propo-
sition 4.2.17 we have Zsub

Od (t) ∈ ZJtK. Using Lemma 4.4.1 for the third equality below, we
find

Zsub
Od (t)2 =

∑
Λ,Γ∈L(Od)

tc̃(Λ)+c̃(Γ) =
∑

Σ∈L(Od)

∑
Λ,Γ∈L(Od),

Λ+Γ=Σ

tc̃(Λ)+c̃(Γ)

=
∑

Σ∈L(Od)

∑
Λ,Γ∈L(Od),

Λ+Γ=Σ

t2c̃(Σ)+c̃(Λ,Γ) =
∑

Σ∈L(Od)

t2c̃(Σ)
∑

Λ,Γ∈L(Od),
Λ+Γ=Σ

tc̃(Λ,Γ).

Note that for O-lattices Λ,Γ,Σ, the condition Λ + Γ = Σ implies Λ,Γ ⊆ Σ. Let Σ ∈ L(Od)
be an O-lattice, then there exists an O-module isomorphism ψ : Σ → Od and clearly any
such isomorphism preserves the commensurability index associated to sublattice pairs in
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Σ, i.e. c(Λ,Γ) = c(ψ(Λ), ψ(Γ)) for all O-submodules Λ,Γ ⊆ Σ. Consequently, for any
O-lattice Σ ∈ L(Od) we have the equality∑

Λ,Γ∈L(Od),
Λ+Γ=Σ

tc̃(Λ,Γ) =
∑

Λ,Γ∈L(Od),

Λ+Γ=Od

tc̃(Λ,Γ) (4.22)

and we abbreviate the latter series in ZJtK by

Zrel
Od(t) =

∑
Λ,Γ∈L(Od),

Λ+Γ=Od

tc̃(Λ,Γ).

We call the series Zrel
Od(t) the relative zeta function, because the condition Λ + Γ = Od is

reminiscent of two ideals being relatively prime. This shows that the series Zsub
Od (t)2 can

be rewritten as
Zsub
Od (t)2 = Zrel

Od(t)
∑

Σ∈L(Od)

t2c̃(Σ) = Zrel
Od(t)Zsub

Od (2t).

In order to prove the local formula for the commensurability zeta function, it remains to
show that Zcomm

Kd,Od(t) = Zrel
Od(t).

Let n ≥ 0 be an integer, define the sets

Cn = {Λ ∈ L(Kd) | c̃(Λ) = n}

and
Dn = {(Γ,Σ) ∈ L(Od)× L(Od) | Γ + Σ = Od and c̃(Γ,Σ) = n}.

Then |Cn|, |Dn| are the coefficients of tn in the series Zcomm
Kd,Od(t), Zrel

Od(t) respectively and, in
particular, they are finite.

Let g ∈ GLd(O) be any element and let n ≥ 0 be some integer. The bijection ϕg :
Ag → Bg in Lemma 4.4.2 preserves the commensurability index, so we can restrict ϕg to
O-lattices Λ ∈ L(Od) with c̃(Λ) = n. This gives a bijection between Ag ∩Cn and Bg ∩Dn;
by Lemma 4.2.12 these sets are finite since Cn is a finite set. If ϕg(Λ) = (Γ,Σ), then
µ(F (Λ)) = µ(F (Γ,Σ)) > 0 by Proposition 4.4.3. Together this results in the identity∑

Λ∈Cn

1F (Λ)(g)

µ(F (Λ))
=

∑
Λ∈Cn∩Ag

1

µ(F (Λ))
=

∑
(Γ,Σ)∈Dn∩Bg

1

µ(F (Γ,Σ))
=

∑
(Γ,Σ)∈Dn

1F (Γ,Σ)(g)

µ(F (Γ,Σ))

for any g ∈ GLd(O). Taking the integral of the identity above (as a function of g) over the
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group GLd(O) gives

|Cn| =
∑

Λ∈Cn

∫
GLd(O)

1F (Λ)(g)

µ(F (Λ))
dµ(g)

=

∫
GLd(O)

∑
Λ∈Cn

1F (Λ)(g)

µ(F (Λ))
dµ(g) =

∫
GLd(O)

∑
(Γ,Σ)∈Dn

1F (Γ,Σ)(g)

µ(F (Γ,Σ))
dµ(g)

=
∑

(Γ,Σ)∈Dn

∫
GLd(O)

1F (Γ,Σ)(g)

µ(F (Γ,Σ))
dµ(g) = |Dn|.

Note that interchanging the sum and the integral is allowed, because the sets Cn, Dn are
finite. It follows that Zcomm

Kd (t) = Zrel
Od(t), so

Zsub
Od (t)2 = Zcomm

Kd,Od(t)Zsub
Od (2t)

and hence we conclude that

ζsub
Od (s)2 = ζcomm

Kd,Od(s)ζsub
Od (2s).

Before reading the second part of the proof of Proposition 4.4.3, look at Example 4.4.4
for an illustration of the second part.

Proof of Proposition 4.4.3. Write G = GLd(O) and ϕg(Λ) = (Λ−,Λ+), where the O-
lattices Λ,Λ± have the signature matrices D,D± with respect to the frame g. Furthermore,
denote by P the collection of all signature matrices corresponding to the O-lattice Λ and
by Q the collection of all pairs of signature matrices (with respect to the same frame) cor-
responding to the pair (Λ−,Λ+) of O-lattices. Any element E ∈ P is obtained through a
permutation of the diagonal entries of D and any element (E−, E+) ∈ Q arises as a permu-
tation of the diagonal entries of the pair (D−, D+). From the proof of Proposition 4.4.2 it
follows that there is a bijection between P and Q given by E ↔ (E−, E+) with E = E−1

− E+.
This shows that P and Q are finite sets of the same cardinality.

Define the groups H = DGD−1∩G, H± = D±GD
−1
± ∩G and T = H−∩H+. Let h ∈ G

be another frame for Λ with corresponding signature matrix E, so Λ = hEOd. By a similar
argument as in the the proof of Lemma 4.2.12 (directly after (4.4)) this is equivalent to
h ∈ g(DGE−1 ∩G). Let σE ∈ G be a permutation matrix such that E = σ−1

E DσE, then

g(DGE−1 ∩G) = g(DGD−1 ∩G)σE = gHσE.
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This gives the disjoint decomposition

F (Λ) =
⊔
E∈P

{h ∈ F (Λ) | E sign. matrix of h w.r.t. Λ}

=
⊔
E∈P

g(DGE−1 ∩G) =
⊔
E∈P

gHσE,

of translated copies of the group H. Similarly we find

F (Λ−,Λ+) =
⊔

(E−,E+)∈Q

gTσE−1
− E+

.

A consequence of the proof of Lemma 4.2.12 is that the groups H,H−, H+ have finite
index in G and hence so does T . Therefore the groups H,T are µ-measurable with µ(H) =
|G : H|−1 > 0 and similarly for T . The Haar measure µ is translation invariant, so
µ(H) = µ(gHσE) and µ(T ) = µ(gTσE−1

− E+
). This gives

µ(F (Λ)) = |P | · µ(H) and µ(F (Λ−,Λ+)) = |Q| · µ(T ).

Because we have |P | = |Q|, it remains to show that µ(H) = µ(T ) in order to prove
µ(F (Λ)) = µ(F (Λ−,Λ+)).

We continue with the computation of |G : H|, |G : T |, making use of Lemma 4.2.13
and the notation introduced therein. For i ∈ N we use the abbreviation Gi for the i-th
principal congruence subgroup GLid(O) and we write q for the cardinality of the residue
field of K. The lemma shows that each element of H can be conveniently described in
terms of block matrices: the group H consists precisely of all matrices of the form

H11 H12 . . . H1`

H21 H22 H2`
...

. . .
...

H`1 H`2 . . . H``


with Hii ∈ GLmi

(O) for 1 ≤ i ≤ `, Hij ∈ πai−ajMatmimj
(O) for 1 ≤ j < i ≤ ` and

Hij ∈ Matmimj
(O) for 1 ≤ i < j ≤ `. This in turn shows that the group HG1 consists

precisely of all matrices of the form
A11 A12 . . . A1`

A21 A22 A2`
...

. . .
...

A`1 A`2 . . . A``


with Aii ∈ GLmi

(O) for 1 ≤ i ≤ `, Aij ∈ πMatmimj
(O) for 1 ≤ j < i ≤ ` and Aij ∈

Matmimj
(O) for 1 ≤ i < j ≤ `. It follows that the index |HG1 : H| is given by

|HG1 : H| =
∏

1≤j<i≤`

q(ai−aj−1)mimj . (4.23)
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Moreover, the group HG1/G1 consists precisely of all matrices of the form
B11 B12 . . . B1`

B21 B22 B2`
...

. . .
...

B`1 B`2 . . . B``


with Bii ∈ GLmi

(Fq) for 1 ≤ i ≤ `, Bij = 0 ∈ Matmimj
(Fq) for 1 ≤ j < i ≤ ` and

Bij ∈ Matmimj
(Fq) for 1 ≤ i < j ≤ `. Therefore we have

|G : HG1| = |G/G1 : HG1/G1| = |GLd(Fq)| ·
∏̀
i=1

|GLmi
(Fq)|−1 ·

∏
1≤i<j≤`

q−mimj (4.24)

and combining this with equation (4.23) we get

|G : H| = |G : HG1||HG1 : H|

= |GLd(Fq)|
∏̀
i=1

|GLmi
(Fq)|−1 ·

∏
1≤i<j≤`

q−mimj ·
∏

1≤j<i≤`

q(ai−aj−1)mimj . (4.25)

Let k be the smallest positive integer i such that ai ≥ 0. If no such i exists, we set
k = ` + 1. Write N = a` − a1 ≥ 0, if N = 0 then D = πeI for some e ∈ Z and hence
H = H± = K = G so the lemma is true. Suppose N > 0, in the second part of the proof
of Lemma 4.2.12 we showed that the congruence subgroup GN is contained in the groups
H−, H+ and hence also in the group T = H− ∩H+. We have

|G : T | = |G : GN |
|T : GN |

=
|GLd(Fq)|qd

2(N−1)

|T : GN |
, (4.26)

so in order to compute |G : T |, it suffices to compute the index |T : GN |. Lemma 4.2.13
gives us explicit descriptions of the groups H−, H+ in terms of block matrices; combin-
ing them we get the following description of T in terms of 7 (possibly degenerate) “re-
gions” T0, T1, . . . , T6 (T0 is the diagonal region, T1, T2, T3 are regions above the diagonal
and T4, T5, T6 are regions below the diagonal, the Ti are numbered clockwise).

Region Description Condition
T0 Tii = GLmi

(O) i = j
T1 Tij = πaj−aiMatmimj

(O) i < j < k
T2 Tij = π−aiMatmimj

(O) i < k ≤ j
T3 Tij = Mmimj

(O) k ≤ i < j
T4 Tij = πai−ajMatmimj

(O) k ≤ j < i
T5 Tij = πaiMatmimj

(O) j < k ≤ i
T6 Tij = Matmimj

(O) j < i < k
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. . . 1 2

6
. . .

. . . 3

5 4
. . .


We will compute the contribution of each region Ti to |T : GN |. We first combine the

contributions of the regions T5, T2 modulo GN , namely for j < k ≤ i the blocks Tij and Tji
give a contribution of

(qN−ai)mimj · (qN+aj)mimj = q(N−ai+aj)mimj · qNmimj

and hence the regions T2, T5 together contribute∏
j<k≤i

q(N−ai+aj)mimj · qNmimj .

The regions T1 (consider Tji for j < i < k), T4 contribute∏
j<i<k

q(N−ai+aj)mimj ·
∏
k≤j<i

q(N−ai+aj)mimj

to |T : GN | and hence the four regions T1, T2, T4, T5 together contribute∏
j<i

q(N−ai+aj)mimj ·
∏
j<k≤i

qNmimj .

Lastly the regions T3 (consider Tji for k ≤ j < i), T6 give a contribution of∏
k≤j<i

qNmimj ·
∏
j<i<k

qNmimj

and therefore the total contribution of the regions T1, . . . , T6 is equal to∏
j<i

q(N−ai+aj)mimj ·
∏
j<i

qNmimj .

The region T0 gives the contribution

∏̀
i=1

|GLmi
(Fq)|qm

2
i (N−1)

and hence

|T : GN | =
∏̀
i=1

|GLmi
(Fq)|qm

2
i (N−1) ·

∏
1≤j<i≤`

q(N−ai+aj)mimj ·
∏

1≤j<i≤`

qNmimj . (4.27)
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Combining the equations (4.25), (4.26) and (4.27) together with d2 = (
∑`

i=1 mi)
2 =∑`

i=1 m
2
i + 2

∑
1≤j<i≤`mimj shows that we have |G : H| = |G : T |.

Example 4.4.4. We illustrate with an example the second halve of the above proof of
Theorem 4.4.3. Let p be a prime number and take (K,O) = (Qp,Zp). Write G = GL5(Zp),
G1 = GL1

5(Zp). For the signature matrix D = diag(p−1, p−1, p, p2, p2) we have

D− = diag(p, p, 1, 1, 1) and D+ = diag(1, 1, p, p2, p2).

Moreover we have (e1, . . . , e5) = (−1,−1, 1, 2, 2), (a1, a2, a3) = (−1, 1, 2), (m1,m2,m3) =
(2, 1, 2). The group H = G ∩DGD−1 is given by

H =


GL2(Zp)

Zp

Zp

Zp Zp

Zp Zp

p2Zp p2Zp GL1(Zp) Zp Zp

p3Zp p3Zp

p3Zp p3Zp

pZp

pZp
GL2(Zp)


and the groups H± = G ∩D±GD−1

± by

H− =


GL2(Zp)

pZp pZp pZp

pZp pZp pZp

Zp Zp

Zp Zp

Zp Zp

GL3(Zp)

 and H+ =


GL2(Zp)

Zp

Zp

Zp Zp

Zp Zp

pZp pZp GL1(Zp) Zp Zp

p2Zp p2Zp

p2Zp p2Zp

pZp

pZp
GL2(Zp)

 .

Using the explicit form of H, we see that HG1 and HG1/G1 are given by

HG1 =


GL2(Zp)

Zp

Zp

Zp Zp

Zp Zp

pZp pZp GL1(Zp) Zp Zp

pZp pZp

pZp pZp

pZp

pZp
GL2(Zp)

 ,

and

HG1/G1
∼=


GL2(Fp)

Fp

Fp

Fp Fp

Fp Fp

GL1(Fp) Fp Fp

GL2(Fp)

 ,

hence |HG1 : H| = p10 and |HG1/G1| = |GL2(Fp)|2 · |GL1(Fp)| · p8.
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4.5 Appendix

In this appendix we give two different approaches, as to the one given in Chapter 1,
to compute the commensurability zeta function ζcomm

Qd,Zd(s) for the pair of abelian groups

(Qd,Zd) when d ∈ {2, 3}. Let p be a prime number. Both approaches make use of
the existence of a (formal) Euler product for the commensurability zeta function (see [8,
Proposition 1.2]), of which Theorem 4.1.4 is a generalisation, to reduce the problem to
computing the zeta function ζcomm

Qd
p,Z

d
p
(s) for the pair (Qd

p,Z
d
p) of abelian groups. This latter

zeta function encodes the commensurability index for Zp-lattices of Qd
p of rank d and we

are able to compute it using different techniques. It still remains a challenge to extend
these methods to cover higher values of d.

The first method makes use of the existence of a standard form for bases of Zp-lattices in
L(Q2

p), encoded as an element of Mat2(Qp). The second method uses the affine Bruhat-Tits
building of GLd(Qp) as a guideline for streamlining the computation of the commensura-
bility zeta function. Throughout the whole appendix, p will always denote a prime number
and we will use the notation of Chapter 4, see also Chapter 2. Recall from Chapter 4 that

ζcomm
Q2

p,Z
2
p
(s) = Zcomm

Q2
p,Z

2
p
(t) =

∑
Λ∈L(Q2

p)

tc̃(Λ) with t = p−s

and we write v : Qp → Z ∪ {∞} for the standard valuation on Qp with induced absolute
value |.|p, we set |x|p = p−v(x) for x ∈ Qp.

4.5.1 Standard basis

We give an overview of computation of the commensurability zeta function Zcomm
Qd

p,Z
d
p
(t) for d =

2 using the help of a standard basis. With this standard basis at hand it is a straightforward
exercise to compute the commensurability index. Although applicable for d > 2, we do
not see a way to do this without considering many case distinctions.

An element A ∈ GL2(Zp) can be seen as an automorphism of the additive group Q2
p.

The index |Γ : Γ′| of two Zp-lattices Γ,Γ′ ∈ L(Q2
p) with Γ′ ⊆ Γ therefore does not change

under the linear map induced by A, i.e.

|Γ : Γ′| = |AΓ : AΓ′| (4.28)

where AΓ, AΓ′ stand for the image of Γ,Γ′ under the linear map A. This observation leads
to the following two useful lemmas.
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Lemma 4.5.1. Let A,B ∈ GL2(Qp) be two matrices whose columns span the Zp-lattices
Λ and Λ ∩ Z2

p respectively, then

c(Λ) = | det(AB−2)|p = p2v(det(B))−v(det(A)).

Proof. We make use of the following well-known result: if Γ ⊆ Z2
p is a Zp-lattice and

T ∈ GL2(Qp) a matrix whose columns span Γ, then |Z2
p : Γ| = | det(T )|−1

p = pv(det(B)).
This gives

c(Λ) = |Λ : Λ ∩ Z2
p||Z2

p : Λ ∩ Z2
p| = |AZ2

p : BZ2
p||Z2

p : BZ2
p|

= |Z2
p : A−1BZ2

p||Z2
p : BZ2

p| = pv(det(A−1B)) · pv(det(B))

using that the Zp-lattice A−1BZ2
p is spanned by the columns of A−1B.

Lemma 4.5.2. Let A ∈ GL2(Qp) be an invertible matrix and let Λ,Λ′ be two Zp-lattices
in L(Q2

p) spanned by the columns of A and A−1 respectively. We then have c(Λ) = c(Λ′).

Proof. The lattice Λ is the image of Z2
p under the linear map induced by A, i.e. Λ = AZ2

p

and similar for Λ′. We then have

|Λ′ : Λ′ ∩ Z2
p| = |A−1Z2

p : A−1Z2
p ∩ Z2

p| = |Z2
p : Z2

p ∩ AZ2
p| = |Z2

p : Λ ∩ Z2
p|,

using observation (4.28) in the second equality, similarly |Z2
p : Λ′ ∩ Z2

p| = |Λ : Λ ∩ Z2
p| and

hence c(Λ) = c(Λ′).

Remark 4.5.3. Lemma 4.5.2 follows immediately from Lemma 4.2.11 together with the
remark that the signature matrix of Λ′ is the inverse of the signature matrix of Λ.

To compute the commensurability index c̃(Λ) for every Zp-lattice Λ ∈ L(Q2
p) we intro-

duce a standard form for bases of Zp-lattices in L(Qd
p). For a Zp-lattice Λ ∈ L(Q2

p) let
A ∈ GL2(Qp) be a matrix whose columns are a Zp-basis for Λ, then the set A ·GL2(Zp) =
{AB | B ∈ GL2(Zp)} consists of all matrices whose columns form a Zp-basis of Λ. Mul-
tiplying with an appropriate element from GL2(Zp), we see that the matrix A can be
assumed to be of the form (

pk ap`

0 pm

)
(4.29)

for integers a, k, l,m ∈ Z. If we additionally assume, when a 6= 0, that p - a, ` < k and
0 < a < pk−`, then the matrix in (4.29) is a standard form for Zp-lattices in Q2

p. This means
that the columns of two different matrices in this standard form span different Zp-lattices
and that every Zp-lattices of rank 2 in Q2

p has the columns of a matrix of the form in (4.29)
as a basis. In case a 6= 0 we have for fixed k, ` ∈ Z precisely (p− 1)pk−`−1 possibilities for
a.
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Using this standard form of bases for lattices in L(Q2
p), we can compute the commen-

surability index by making use of a case distinction. For an overview see Table 4.1. Let A
be the matrix in (4.29) and write Λ for the Zp-lattice spanned by the columns of A.

(i) Suppose that a = 0, then A =
(
pk 0
0 pm

)
and hence a basis of Λ ∩ Z2

p is given by the

columns of the matrix
(
pmax{0,k} 0

0 pmax{0,m}

)
. By Lemma 4.5.1 the commensurability

index c(Λ) is given by

c(Λ) = p2(max{0,k}+max{0,m})−(k+m) = p|k|+|m|.

When a 6= 0, we compute A−1 =
(
p−k −ap`−k−m

0 p−m

)
. When −k ≤ `−k−m or equivalently

m ≤ `, we are in the situation of case (i). Write Λ′ for the Zp-lattice spanned by the
columns of A−1.

(ii) Suppose m ≤ `, then a basis for Λ′ is given by the columns of the matrix
(
p−k 0

0 p−m

)
.

Making use of Lemma 4.5.2 we find

c(Λ) = c(Λ′) = p|k|+|m|.

From this point onwards we assume that ` < m. We are going to make a case distinction
which depends on the sign of k and `.

(iii) Suppose k ≥ 0, ` < 0, then a basis for the lattice Λ ∩ Z2
p is given by the columns of

the matrix
(
pk a

0 pm−`

)
. By Lemma 4.5.1 we find

c(Λ) = p2(k+m−`)−(k+m) = pk+m−2`.

(iv) Suppose k, ` ≥ 0, then Λ ⊆ Z2
p and hence

c(Λ) = |Z2
p : Λ| = pk+m.

(v) & (vi) Suppose k < 0. Looking at A−1 we see that, depending on whether ` − k − m is
strictly negative or nonnegative, we can use the cases (iii) and (iv) respectively to
compute c(Λ) with Lemma 4.5.2. This gives

c(Λ) = c(Λ′) =

{
pk+m−2` if `− k −m < 0

p−k−m if `− k −m ≥ 0
.

The case distinction subdivides the computation of the commensurability zeta function
Zcomm

Q2
p,Z

2
p
(t) into 6 different parts. Namely Z

comm, (i)

Q2
p,Z

2
p

(t), . . . , Z
comm, (vi)

Q2
p,Z

2
p

(t), according to the

cases (i)-(vi). In each case we know the formula for the commensurability index, so we only
need to sum over all possible standard forms in every fixed case to compute the contribution
to Zcomm

Q2
p,Z

2
p
(t). A quick look shows that each of these contributions is a combination of

iterated geometric sums and therefore straightforward to compute. As an example we
compute the zeta functions Z

comm,(i)

Q2
p,Z

2
p

(t), Z
comm, (iii)

Q2
p,Z

2
p

(t) and leave the others to the reader.
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Case Conditions c(Λ)

(i) a = 0 p|k|+|m|

(ii) m ≤ ` < k p|k|+|m|

(iii)
k ≥ 0, ` < 0
` < k,m

pk+m−2`

(iv)
k, ` ≥ 0
` < k,m

pk+m

(v)
k < 0, ` < k,m
` < k +m

pk+m−2`

(vi)
k < 0, ` < k,m
` ≥ k +m

p−k−m

Table 4.1: Overview of the case distinction.

• Case (i) gives the contribution

Z
comm, (i)

Q2
p,Z

2
p

(t) =
∑
k,m∈Z

(
p|k|+|m|

)−s
=

(∑
k∈Z

p−|k|s

)2

=

(
1 + 2

∞∑
k=1

p−ks

)2

=
(1 + p−s)2

(1− p−s)2
.

• The case (iii) gives the contribution Z
comm, (iii)

Q2
p,Z

2
p

(t), which equals

∑
k≥0,`<0
`<k,m

(p− 1)pk−`−1
(
pk+m−2`

)−s
=
p− 1

p

(
∞∑
k=0

pk(1−s)

)(∑
`<0

p−(1−2s)`
∑
m>`

p−ms

)

=
p− 1

p
· 1

1− p1−s

(∑
`<0

p−(1−2s)` · p
−(`+1)s

1− p−s

)

=
(p− 1)p−s

p(1− p1−s)(1− p−s)

(∑
`<0

p−(1−s)`

)

=
(p− 1)p−2s

(1− p1−s)(1− p−s)
.

Calculating the contributions of the other cases and addding them up shows that

ζcomm
Q2

p,Z
2
p
(s) =

(1− p−2s)(1− p1−2s)

(1− p−s)2(1− p1−s)2
,

which agrees with the local factor at p of of the zeta function ζcomm
Qd,Zd(s) in Corollary 4.1.2.
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4.5.2 Buildings

Using the (Bruhat-Tits) building of GLd(Qp) for d ∈ {2, 3} we compute the commensura-
bility zeta function Zcomm

Qd
p,Z

d
p
(t). The same method can be used when d > 3, but this becomes

more challenging, because we do not know how to simplify the complicated formulas in a
structured way to end up with a reduced expression for Zcomm

Qd
p,Z

d
p
(t). Already for the case

d = 3 this happens. The computation is not limited to the field Qp, it works for any
non-Archimedean local field K, because the concept of buildings extends to GLd(K) as
well. As this section is only for exposition, we stick to the field Qp.

First we give a short overview of the Bruhat-Tits building of GLd(Qp), followed by an
outline of the computation. We subdivide the computation into several smaller parts and
after solving each of them we put everything together and compute the zeta function.

Building of GLd(Qp)

We give a short overview of the Bruhat-Tits building of the group GLd(Qp), and some
relevant results. For details and proofs, see for example [59], Chapter II §1. Define an
equivalence relation on the set L(Qd

p) of all Zp-lattices of Qd
p of rank d. Two Zp-lattices

Λ,Γ ∈ L(Qd
p) are equivalent, if there exists an integer k ∈ Z such that Γ = pkΛ (i.e. Λ,Γ

are up to homothety the same). We denote the equivalence class of Λ ∈ L(Qd
p) by [Λ].

The building X = X(p, d) of GLd(Qp) is a simplicial complex, whose 0-simplices (vertices)
are the equivalence classes [Λ] for Λ ∈ L(Qd

p). Let 1 ≤ k ≤ d be an integer, the vertices
v0, . . . , vk−1 of X form a (k−1)-simplex, if there exist Zp-lattices Λi ∈ L(Qd

p) with vi = [Λi]
satisfying

pΛ0 ( Λk−1 ( . . . ( Λ1 ( Λ0.

The building X comes with a natural action of the group GLd(Qp). The action of an
element g ∈ GLd(Qp) on a vertex v ∈ X is defined by

g.v = [gΛ],

here Λ ∈ L(Qd
p) is a representative for the equivalence class v. This definition does not

depend on choice of representative Λ. One can show that the action of GLd(Qp) on X is
transitive: for two sets of vertices {v0, . . . , vk−1} and {w0, . . . , wk−1} of X forming (k− 1)-
simplices there exists a g ∈ GLd(Qp) such that g.vi = wi for 0 ≤ i ≤ k − 1. Any subgroup
of GLd(Qp) acts naturally on X through the action of GLd(Qp) on X.

Every vertex v ∈ X has a unique representative Zp-lattice Λv ∈ L(Qd
p) satisfying

Λv ⊆ Zd
p and Λv ( pZd

p. We call Λv the minimal lattice of v. Write Dv = diag(pe1 , . . . , ped),
with ei ∈ Z, for a signature matrix of Λv (see Definition 4.2.3). Without loss of generality
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we may assume that e1 ≤ . . . ≤ ed, in this case we say that (e1, . . . , ed) is the signature of
the vertex v. By definition of Λv we always have e1 = 0.

Example 4.5.4. For d = 2 the description of the building X of GL2(Qp) is surprisingly
simple, which is largely due to the fact that X is a graph (undirected and no loops). The
building X is a connected tree (also called the Bruhat-Tits tree) with each vertex having
exactly p+ 1 neighbours. Two vertices v0, v1 ∈ X are connected by an edge, if there exist
representative Zp-lattices Λ0,Λ1 of respectively v0, v1 satisfying

pΛ0 ( Λ1 ( Λ0.

One can describe the action of the group GL2(Zp) on X as follows. The vertex [Z2
p] is fixed

by GL2(Zp) and GL2(Zp) acts transitive on the vertices of X with a given fixed distance
from [Z2

p]. One could say that GL2(Zp) acts by rotation on X.

For the computation of the commensurability zeta function Zcomm
Qd

p,Z
d
p
(t) for the pair

(Qd
p,Z

d
p) of abelian groups we only need the 0-simplices and the 1-simplices of X, i.e.

the 1-skeleton (or underlying graph) of X.

Outline of the computation

The combinatorial structure of the building X of GLd(Qp) allows us to break up the
computation of Zcomm

Qd
p,Z

d
p
(t) into smaller, more managable parts. From the construction of

the building X we see immediately that

Zcomm
Qd

p,Z
d
p
(t) =

∑
Λ∈L(Qd

p)

tc̃(Λ) =
∑
v∈X

∑
Λ s.t. v=[Λ]

tc̃(Λ),

where in the double summation we first sum over all vertices v of X and then, for a
fixed vertex v, over all Zp-lattices Λ ∈ L(Qd

p) belonging to the equivalence class v. For a
Zp-lattice Λ ∈ L(Qd

p) and g ∈ GLd(Zp) we have

c(gΛ) = |gΛ : gΛ ∩ Zd
p||Zd

p : gΛ ∩ Zd
p|

= |Λ : Λ ∩ g−1Zd
p||g−1Zd

p : Λ ∩ g−1Zd
p| = c(Λ),

where we used for the last equation that g−1Zd
p = Zd

p. This shows that the commensurabil-
ity index is invariant under the left action of GLd(Zp). Two vertices v, w ∈ X lying in the
same orbit of the action of GLd(Zp) give the same contributions to Zcomm

Qd
p,Z

d
p
(t). Grouping

together those vertices belonging to the same orbit of GLd(Zp) gives the formula

Zcomm
Qd

p,Z
d
p
(t) =

∑
GLd(Zp).v∈GLd(Zp)\X

|GLd(Zp).v|
∑

Λ s.t. v=[Λ]

tc̃(Λ),
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here the first summation runs over all orbits GLd(Zp)\X of the action of GLd(Zp) on X
and, for an orbit GLd(Zp).v with a v ∈ X a vertex, we write |GLd(Zp).v| for the size of the
orbit GLd(Zp).v. Answering the following three questions to a sufficient degree, allows us
to compute Zcomm

Qd
p,Z

d
p
(t).

(1) Can we parametrise GLd(Zp)\X?

(2) For a vertex v ∈ X, what is the cardinality of GLd(Zp).v?

(3) For a vertex v ∈ X, can we compute the sum
∑

Λ s.t. v=[Λ] t
c̃(Λ)?

The quotient space GLd(Zp)\X

We make the following observation.

Lemma 4.5.5. Two vertices v, w ∈ X are in the same orbit under the action of GLd(Zp)
on X if and only if v and w have the same signatures.

Proof. Let Dv, Dw be the signature matrices of Λv,Λw and let gv, gw ∈ GLd(Zp) be elements
such that Λv = gvDvZ

d
p and Λw = gwDwZd

p. Suppose there exists an element g ∈ GLd(Zp)
such that g.v = w, then by uniqueness of the minimal lattice we have gΛv = Λw and hence
we can find an element h ∈ GLd(Zp) such that

ggvDv = gwDwh.

The uniqueness part of Theorem 4.2.7 gives Dv = Dw. On the other hand, if the signatures
of v and w are the same, then gwg

−1
v .v = w and hence v, w lie in the same orbit.

It follows from Lemma 4.5.5 that we can paramatrise the orbit space GLd(Zp)\X by

{(e1, . . . , ed) ∈ Zd | 0 = e1 ≤ . . . ≤ ed}

and in particular the equivalence classes of the Zp-lattices diag(pe1 , . . . , ped)Zd
p with 0 =

e1 ≤ . . . ≤ ed form a full set of representatives of the orbit space GLd(Zp)\X. This answers
the first question.

We use the abbreviation G for the group GLd(Zp) and for i ∈ N we write Gi for the
i-th principal congruence subgroup

Gi = ker(GLd(Zp)→ GLd(Z/p
iZ)).

It is a well-known fact that the reduction map to GLd(Zp/p
iZp) is surjective, hence G/Gi

∼=
GLd(Z/p

iZ) and |G : Gi| = |GLd(Z/p
iZ)|. The next lemma determines the sizes of the

orbits of GLd(Zp) on X, it is almost and immediate consequence of Lemma 4.2.12.
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Proposition 4.5.6. Let v ∈ X be a vertex and D = Dv a signature matrix of Λv, then

|G.v| = |G : G ∩DGD−1|.

Proof. By Lemma 4.5.5 the size of the orbit G.v equals the number of lattices in L(Qd
p)

having signature matrix D. By the proof of Lemma 4.2.12 this number equals |G : G ∩
DGD−1|.

It is now an exercise to determine the sizes of the orbits of the action of GLd(Zp) on
X. We do this explicitly for d ∈ {2, 3} using Lemma 4.2.13. Suppose d = 2, then there are
two possibilities for the signature of a vertex v ∈ X: either (0, 0) or (0, `) for some integer
` > 0.

• (0, 0). In this case we have D = I and hence there is just one orbit.

• (0, `). Write D =
(

1
p`

)
, then we have GD = G ∩DGD−1 =

(
Z∗p Zp

p`Zp Z∗p

)
. Since G` is

a subgroup of GD with GD/G`
∼=
(

(Z/p`Z)∗ Z/p`Z

(Z/p`Z)∗

)
, we have

|G.v| = |G : GD| =
|G : G`|
|GD : G`|

=
|GL2(Z/p`Z)|

|GL1(Z/p`Z)|2 · |Z/p`Z|

=
(p2 − 1)(p2 − p)(p`−1)4

(p− 1)2p3`−2
= (p+ 1)p`−1.

Which is also the size of the projective space P1(Zp/p
`Zp) = (Z2

p\p`Z2
p)/Z

∗
p and the

number of vertices in X of distance ` to the vertex [Z2
p]. This is no coincidence,

because there is a bijection between the two sets, given by

P1(Zp/p
`Zp) 3 [λ] 7→ [p`Z2

p + λZp].

For d = 3 there are four possibilities for the signature of a vertex v ∈ X, it equals either
(0, 0, 0), (0, 0, `) with ` > 0, (0, `, `) with ` > 0 or (0, k, `) with 0 < k < `.

• (0, 0, 0). In this case we have D = I and hence there is just one orbit.

• (0, 0, `) and (0, `, `) with ` > 0. The case (0, `, `) goes analogously to (0, 0, `) with
the same result, so we consider only the case (0, 0, `). Write D = diag(1, 1, p`) and
set GD = G ∩GDG−1, one computes

GD =

 GL2(Zp)
Zp

Zp

p`Zp p`Zp Z∗p

 and GD/G`
∼=

GL2(Z/p`Z)
Z/p`Z
Z/p`Z

GL1(Z/p`Z)

 .
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Using the same method as for d = 2, we find

|G.v| = |GL3(Z/p`Z)|
|GL2(Z/p`Z)||GL1(Z/p`Z)||Z/p`Z|2

= (p2 + p+ 1)p2`−2. (4.30)

Which is also the size of the set P2(Zp/p
`Zp).

• (0, k, `) with 0 < k < `. Write D = diag(1, pk, p`) and GD = G ∩ DGD−1, one
computes

GD =

GL1(Zp) Zp Zp

pkZp GL1(Zp) Zp

p`Zp p`−kZp GL1(Zp)


and

GD/G`
∼=

GL1(Z/p`Z) Z/p`Z Z/p`Z
pkZ/p`Z GL1(Z/p`Z) Z/p`Z

p`−kZ/p`Z GL1(Z/p`Z)

 .

Similarly to d = 2 this gives

|G.v| = |GL3(Z/p`Z)|
|GL1(Z/p`Z)|3p4`

= (p2 + p+ 1)(p+ 1)p2`−3. (4.31)

Note that the size of G.v for the signature (0, k, `) only depends on ` and not on the
value of k!

The index c(Λ) for homothetic lattices

We saw that the orbit space GLd(Zp)\X can be parametrised by tuples

{(e1, . . . , ed) ∈ Zd | 0 = e1 ≤ . . . ≤ ed},

where each such tuple (e1, . . . , ed) corresponds to the orbit GLd(Zp).[Λ] for the Zp-lattice
Λ = diag(pe1 , . . . , ped)Zd

p. We will compute for this Zp-lattice Λ the contribution of the
vertex [Λ] to Zcomm

Qd
p,Z

d
p
(t), which is given by∑

m∈Z

tc̃(p
mΛ) =

∑
m∈Z

t|m+e1|+...+|m+ed|, (4.32)

noting that any Zp-lattice in the equivalence class [Λ] is of the form pmΛ for some integer
m ∈ Z and that by Lemma (4.2.11) the commensurability index of pmΛ is

c̃(pmΛ) = |m+ e1|+ . . .+ |m+ ed|.

Therefore we need to understand the function m 7→
∑d

i=1 |m+ ei|. Allowing m to take on
real values, the graph of this function is a piecewise linear graph (i.e. the graph is a finite
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union of line segments) and is, up to a vertical translation, determined by the inflection
points (i.e. points where the slope changes). The m-coordinates of these inflection points
are precisely those contained in the set {−e1, . . . ,−ed}.

The idea to compute the sum in (4.32) is to consider each piecewise linear part of the
graph m 7→

∑d
i=1 |m + ei| separately and then combine each part. We do this explicitly

for the cases d ∈ {2, 3}.

We consider first the case d = 2, then there are two different types of signatures: (0, 0)
or (0, `) with ` > 0.

• (0, 0). We have c̃(pmΛ) = 2|m| and∑
m∈Z

t2|m| = 1 + 2
∑
m≥1

t2m =
1 + t2

1− t2
. (4.33)

• (0, `). The graph m 7→ |m| + |m + `| consists of three lines, from left to right they
have respectively the slopes −2, 0, 2 and the inflection points are (−`, `) and (0, `).
The contribution for m ∈ {−`+ 1, . . . ,−1} (the horizontal line) is given by (`− 1)t`

(zero for ` = 1). For m ≥ 0 and m ≤ −` we get a contribution of respectively

∑
m≥0

t2m+` =
t`

1− t2
and

∑
m≤−`

t−2m−` =
∑
n≥0

t2n+` =
t`

1− t2
.

It follows that ∑
m∈Z

t|m|+|m+`| = (`− 1)t` +
2t`

1− t2
. (4.34)

Next we deal with the case d = 3, then the signatures come in four different types:
(0, 0, 0), (0, 0, `) with ` > 0, (0, `, `) with ` > 0 or (0, k, `) with 0 < k < `.

• (0, 0, 0). We have c̃(pmΛ) = 3|m| and∑
m∈Z

t3|m| = 1 + 2
∑
m≥1

t3m =
1 + t3

1− t3
. (4.35)

• (0, 0, `). The graph m 7→ 2|m| + |m + `| consists of three lines, from left to right
they have respectively the slopes −3,−1, 3 and the inflection points are (−`, 2`) and
(0, `). The contribution for m ∈ {−`+ 1, . . . ,−1} (slope is −1) is given by

t`+1 + . . .+ t2`−1 =
t`+1 − t2`

1− t
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(note that this is zero for ` = 1, as it should be). For m ≥ 0 and m ≤ −` we get a
contribution of respectively∑

m≥0

t3m+` =
t`

1− t3
and

∑
m≤−`

t−3m−` =
∑
n≥0

t3n+2` =
t2`

1− t3
.

So the total contribution is given by∑
m∈Z

t2|m|+|m+`| =
t` + t2`

1− t3
+
t`+1 − t2`

1− t
(4.36)

• (0, `, `). The graph m 7→ |m| + 2|m + `| is up to a reflection in the vertical line
m = −1

2
` the same as the one for (0, 0, `) and hence its contribution is as well.

• (0, k, `) with 0 < k < `. The graph m 7→ |m| + |m + k| + |m + `| consists of
four lines, from left to right they have respectively the slopes −3,−1, 1, 3 and the
inflection points are (−`, 2` − k), (−k, `) and (0, k + `). The contributions for m ∈
{−(k − 1), . . . ,−1} and m ∈ {−(`− 1), . . . ,−k} are given by respectively

t`+1 + . . .+ tk+`−1 =
t`+1 − tk+`

1− t
(4.37)

(for k = 1 this is zero, as it should be) and

t` + . . .+ t2`−k−1 =
t` − t2`−k

1− t
.

For m ≥ 0 and m ≤ −` we get a contribution of∑
m≥0

t3m+k+` =
tk+`

1− t3
and

∑
m≤−`

t−3m−k−` =
∑
n≥0

t3n+2`−k =
t2`−k

1− t3
.

So the total contribution is given by∑
m∈Z

t|m|+|m+k|+|m+`| =
tk+` + t2`−k

1− t3
+
t`+1 − tk+`

1− t
+
t` − t2`−k

1− t
.

The computation of the commensurability zeta function

We are now ready to compute the commensurability zeta function Zcomm
Qd

p,Z
d
p
(t) for d ∈ {2, 3}.

We start with the case d = 2. Let v be a vertex with signature (0, 0) or (0, `) for some ` > 0,
then the size of the orbit GLd(Zp).v is respectively 1 or (p + 1)p`−1 and its contribution
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to the commensurability zeta function is given in equation (4.33) or (4.34) respectively. It
follows that the commensurability zeta function Zcomm

Qd
p,Z

d
p
(t) is given by

Zcomm
Q2

p,Z
2
p
(t) =

1 + t2

1− t2
+
∑
`>0

(p+ 1)p`−1

(
(`− 1)t` +

2t`

1− t2

)
=

1 + t2

1− t2
+ (p+ 1)t

∑
`>0

(`− 1)(pt)`−1 +
2(p+ 1)t

1− t2
∑
`>0

(pt)`−1

=
1 + t2

1− t2
+

(p2 + p)t2

(1− pt)2
+

2(p+ 1)t

(1− t2)(1− pt)
=

(1− t2)(1− pt2)

(1− t2)(1− pt)2
,

using the formal identity
∑

k>0(k − 1)xk−1 = x
(1−x)2

in Q((x)).

For the case d = 3 the computation is more involved. We start by noting the identity∑
k>0

∑
`>k

pa`tb`+ck =
∑
k>0

tck
∑
`>k

(patb)` =
patb

1− patb
∑
k>0

(patb+c)k =
p2at2b+c

(1− patb)(1− patb+c)

for a, b, c ∈ Z and we abbreviate this expression by f(a, b, c). For a fixed ` > 0 the contri-
bution of all vertices of the building of GL3(Qp) with signature (0, 0, `) to the commensu-
rability zeta function can be computed by combining (4.30) and (4.36), this contribution
then equals ∑

`>0

(p2 + p+ 1)p2`−2

(
t` + t2`

1− t3
+
t`+1 − t2`

1− t

)
(4.38)

and, after some rewriting with geometric series, simplifies to

p2 + p+ 1

p2

(
p2t

1− t3

(
1

1− p2t
+

t

1− p2t2

)
+

p4t3

(1− p2t)(1− p2t2)

)
.

For fixed k, ` ∈ Z with 0 < k < ` the contribution of all vertices of the building of
GL3(Qp) with signature (0, k, `) to the commensurability zeta function can be computed
by combining (4.31) and (4.37), this contribution then equals∑

k>0

∑
`>k

(p2 + p+ 1)(p+ 1)p2`−3

(
tk+` + t2`−k

1− t3
+
t`+1 − tk+`

1− t
+
t` − t2`−k

1− t

)
and simplifies to

(p2 + p+ 1)(p+ 1)

p3

∑
k>0

∑
`>k

p2`

(
t2 + t

t3 − 1
(tk+` + t2`−k) +

1 + t

1− t
t`
)
.

Using the expression for f(a, b, c) in (4.38) and noting that f(2, 1, 1) = f(2, 2,−1), we see
that the above sum equals

(p2 + p+ 1)(p+ 1)

p3

(
t2 + t

t3 − 1
(f(2, 1, 1) + f(2, 2,−1)) +

1 + t

1− t
f(2, 1, 0)

)
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and hence evaluates to

(p2 + p+ 1)(p+ 1)

p3

(
t2 + t

t3 − 1
· 2p4t3

(1− p2t)(1− p2t2)
+

1 + t

1− t
· p4t2

(1− p2t)2

)
.

For a vertex with signature (0, 0, 0) its contribution to the commensurability zeta function
is given by (4.35). Combining the above expressions and noting that the contribution of
vertices with signature (0, 0, `) and (0, `, `) are the same, we see that the commensurability
zeta function ZQ3

p,Z
3
p
(t) is given by

ZQ3
p
(t) =

1 + t3

1− t3
+ 2 · p

2 + p+ 1

p2

(
p2t

1− t3

(
1

1− p2t
+

t

1− p2t2

)
+

p4t3

(1− p2t)(1− p2t2)

)
+

(p2 + p+ 1)(p+ 1)

p3

(
t2 + t

t3 − 1
· 2p4t3

(1− p2t)(1− p2t2)
+

1 + t

1− t
· p4t2

(1− p2t)2

)
and after expanding the brackets, simplifying and factoring, the above expression simplifies
to

ZQ3
p,Z

3
p
(t) =

(1 + t)(1 + pt)(1− pt2)

(1− t)(1− pt)(1− p2t)2
=

(1− t2)(1− pt2)(1− p2t2)

(1− t)2(1− pt)2(1− p2t)2

in accordence with Theorem 4.1.5.
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Chapter 5

Normal subgroup zeta function of the
group SL1

d(O)

5.1 Introduction

Let G be a group. Define for every positive integer n ∈ N the number aP
n (G) by

aP
n (G) = |{H P G | |G : H| = n}|,

i.e. the number of normal subgroups of G of index n. In case the number aP
n (G) is finite

for every n ∈ N, we define the normal subgroup growth of the group G by

sP(G) : N→ N, m 7→ sP
m(G) =

m∑
n=1

aP
n (G),

i.e. sP
m(G) equals the number of normal subgroups of G of index at most m, and we define

the corresponding normal subgroup zeta function, or in short normal zeta function, of G
by the (formal) Dirichlet series

ζP
G (s) =

∞∑
n=1

aP
n (G)n−s, s ∈ C.

For a prime number p we write

ζP
G,p(s) =

∞∑
n=0

aP
pn(G)p−ns, s ∈ C,

for the local factor of ζP
G (s) at p. When G is a profinite group, we should take into account

the topology of G and we define aP
n (G) to be the number of closed subgroups of G of index
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n. In case G is a finitely generated profinite group, then a deep result Nikolov and Segal,
see [50], says that any abstract normal subgroup of G of finite index is open. So for these
groups we do not need to incorporate the condition of being closed. Groups for which the
numbers aP

n (G) are finite for all n ∈ N are, for example, finitely generated groups, because
these groups have finitely many subgroups of every finite index. Many interesting groups
are finitely generated. When G is a profinite group and topologically finitely generated an
analogous statement holds for closed subgroups of G.

In their seminal 1998 paper [27] Grunewald, Segal and Smith introduce, among other
types of zeta functions of groups, the normal subgroup zeta function. For torsion-free
finitely generated nilpotent groups G they show the existence of an Euler product

ζP
G (s) =

∏
p

ζP
G,p(s),

where the product runs over all prime numbers p, rationality of the local factors ζP
G,p(s)

and more. They are interested in what the growth of the function sP(G) can say about
the algebraic properties of the group G and vice versa. For the closely related area of
subgroup growth a clear answer is given for groups of polynomial subgroup growth, which
were characterised as the virtually soluble groups of finite rank in 1993 by Lubotzky, Mann
and Segal [42]. This is one of the greatest achievemenst of the area of subgroup growth.
For normal subgroup growth there is no such result. It is remarked in the introduction
of the article [4] by Barnea and Schlage-Puchta that a slight variation of [45, Prop. 1.3.2
(ii)] yields for groups H ≤ G with |G : H| < ∞ that sP

n (G) ≤ sP
n (H)n|G:H| for all n ∈ N.

And so the difficult problem remains, if a finite index subgroup of a group G can have sub-
stantially more normal subgroups than the group G itself. In contrast to subgroup growth
there are simply too many groups with polynomial normal subgroup growth (including,
for instance, finitely generated infinite simple groups); even if one restricts to residually fi-
nite groups, which seems reasonable, it seems daunting to extract much useful information
solely from the condition of polynomial normal subgroup growth. Typically it is difficult to
compute explicitly the normal zeta functions of groups, even for nicely behaved families of
groups such as compact p-adic analytic groups. Very little is known about the asymptotic
behaviour of sP(G) or the properties of the zeta function ζP

G (s).

In the 2001 article [44] Lubotzky shows for any finitely generated group G and every
n ∈ N that sP

n (G) ≤ ncΩ(n), with c > 0 some constant and where Ω(n) denotes the number
of prime divisors of n with multiplicity. A result of Mann [47] shows that for a non-abelian
free group G we have sP

n (G) > nc log(n) for some c > 0 and infinitely many n ∈ N. This
shows that the normal subgroup growth type of non-abelian free groups is nlog(n); see [4]
for the definition of the type of a function.

For free abelian groups the corresponding normal subgroup zeta function, which coin-
cides with the subgroup zeta function, are well-known. For an integer d > 0 the normal
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zeta function of the free abelian group G = Zd of rank d is given by

ζP
Zd(s) = ζ(s)ζ(s− 1) · · · ζ(s− d+ 1),

with ζ(s) =
∑∞

n=1 n
−s the ordinary Riemann zeta function, see [12, §1] or [45, Ch. 15] for

five different proofs of this identity. Using the analytic properties of ζP
Zd(s) it is possible to

deduce the rate of growth of sP
N(Zd) as a function of N . For torsion-free finitely generated

nilpotent groups G many local factors of ζP
G (s) are computed in [27]. In [62] Voll computes

the normal zeta function of torsion-free finitely generated nilpotent groups of class 2 with
small centres. This applies in particular to the Heisenberg group H(R), which is for a ring
(commutative with 1) R defined as the subgroup

H(R) =


1 a b

1 c
1

 |a, b, c ∈ R


of GL3(R). Specifically we have ζP
H(Z)(s) = ζ(s)ζ(s−1)ζ(3s−2). An important step in [62]

is the use of the Mal’cev correspondence, which associates to a torsion-free finitely gener-
ated nilpotent group G a Q-Lie algebra L(G). In the case where G is of nilpotency class 2,
we have for every prime number p that ζP

G,p(s) = ζP
L(G),p(s), with ζP

L(G),p(s) enumerating the

ideals of L(G) of p-th power index. The local factors ζP
H(O),p(s) of the normal zeta function

ζP
H(O)(s), with O the ring of integers of a number field, have also recieved some considerable

amount of attention. In [54, 55] the local factors ζP
H(O),p(s) have been computed for primes

p which are unramified or non-split in O; see also [22, Sect. 2] for further examples.

In general the computation of the normal zeta function of a group G is hard. However,
sometimes we understand the structure of the group G well enough that we are able to
compute the normal zeta function explicitly. In Chapter 5 we focus on a particular family
of groups for which we can say something concrete about the normal zeta function and in
some cases calculate the normal zeta function explicitly.

For the remainder of the introduction let K be a non-Archimedean local field, write O
for the ring of integers of K, let p be the unique maximal ideal of O and let k = O/p be
the finite residue field of characteristic char k = p. These local fields play a central role in
algebraic number theory; typical examples are the field Qp of p-adic numbers and the field
Fp((T )) of Laurent series over a finite field Fp. Let d > 1 be an integer and consider the
group G0 = SLd(O). For a positive integer n ∈ N the n-th principal congruence subgroup
Gn = SLnd(O) of the group G0 = SLd(O) is defined by

SLnd(O) = ker(SLd(O)→ SLd(O/pn)),

here we consider the reduction of the matrix entries modulo pn. The groups SLnd(O) are
examples of pro-p groups.
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In case K is the field Qp of p-adic rational numbers or the field Fp((T )) of Laurent
series in T with coefficients in the finite field Fp, the (normal) subgroup zeta functions of
the groups SL1

d(O) have been studied. In [45, Sect. 4.3] bounds for the subgroup growth
of the groups SL1

d(O) with O = FpJT K are obtained. In some cases the normal subgroup
zeta functions of the groups SL1

d(O) have also been studied. In [58] Snopce computes the
normal zeta function for the group SL1

2(FpJT K) for all prime numbers p > 2, showing that

ζP
SL1

2(FpJT K)(s) =
1 + (p2 + p+ 1)(t+ t2 + pt3)

1− t3
, t = p−s,

from which it follows for an integer m ∈ N that

aP
pm(SL1

2(FpJT K)) =

{
p2 + p+ 1 if 3 - m
p3 + p2 + p+ 1 if 3 | m.

For a fixed prime number p > 2 Snopce also shows that the group SL1
2(FpJT K) has the

same normal zeta function as the group Q(s, r), defined by Ershov in [24]. In [21, Cor.
4.10] du Sautoy provides a formula for the normal zeta function of the groups SLn2 (Zp) for
n ∈ N and p > 2 a prime number. In Theorem 5.1.5 we compute the normal zeta function
of SL1

2(Zp) for prime numbers p > 2, which is different from the one presented in [21, Cor.
4.10]. We believe our formula is correct. We are supported in this by the paper [3] by
Barnea and Guralnick, they prove in [3, Thm. 1.3] that the sequence (aP

n (SL1
2(Zp)))n≥1

is eventually periodic. Whereas the formula in [21, Cor. 4.10] suggests that aP
n (SL1

2(Zp))
grows polynomially with n. It was pointed out by Klopsch in [36, p. 57], that there is a
mistake in [21, Lem. 4.6]. This could possibly explain the different formula in [21, Cor.
4.10]. It is also worth mentioning that [3, Thm. 1.4] proves that aP

n (SL1
d(FpJT K)) is not

bounded as a function of n in case p | d in contrast to the case p - d, where it is bounded.

Our investigation into the normal zeta function of the groups SL1
d(O) is motivated by

a yet to be published paper titled Normal subgroups of Chevalley groups by Klopsch and
Snopce [37]; generalising earlier work of Barnea, Guralnick and Snopce [3, 58]. They set out
to prove the following. Let g be a Chevalley Lie algebra over a field F , associated to a root
system of Chevalley type X. Suppose that char F 6= 2, if X is one of A∗, B∗, C∗, D∗, F4, and
that char F 6= 3, if X is G2. Let z be a non-central element of g, then [g, [g, [g, x]]] equals
g. In Theorem 5.1.1 we strengthen their result for the simple Lie algebras of Chevalley
type A∗. The finiteness result discovered and proved by Klopsch and Snopce is very
surprising. Besides its fundamental nature it has very tangible applications, as noted by
Klopsch and Snopce. For instance, their result places severe restrictions on the normal
subgroup structure and describe properties of the normal subgroup zeta functions of the
groups SL1

d(O) of increasing rank. In small cases, one should be able to compute the
corresponding normal zeta functions explicitly. This is also what we do in Chapter 5.

Before we state our results, we first discuss our method of computation which is similar
to the approach taken in [58] by Snopce. Let d > 1 be an integer and let K be a non-
Archimedean local field with ring of integers O satisfying p = char k - 2d. The first step of
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our computation is to translate our problem of counting normal subgroups of G = SL1
d(O)

to counting Lie ideals in a suitably chosen graded Lie algebra; for more on this construction
see [43]. The subgroups Gn = SLnd(O) of G are the principal congruence subgroups, they
satisfy

⋂∞
n=1 Gn = {1}, (Gm, Gn) ≤ Gm+n and Gp

n ≤ Gn+1 for all m,n ∈ N. We associate
to the group G the graded Lie algebra over Fp given by

L(G) =
∞⊕
n=1

Gn/Gn+1.

For more on this Lie algebra, its bracket and its grading, see Section 5.2 and Section 5.3.
To a closed normal subgroup N P G we associate the Lie ideal L(N) of L(G) defined by

L(N) =
∞⊕
n=1

(N ∩Gn)Gn+1/Gn+1.

The question arises how the Lie ideals of L(G) look like and which Lie ideals of L(G)
are of the form L(N) for some closed normal subgroup N of G. This is answered in
Proposition 5.3.12.

Write sld(k) for the special linear Lie algebra of Chevalley type Ad−1 over the field k
with the usual bracket [x, y] = xy − yx for x, y ∈ sld(k); see Section 5.4.1. For a subspace
V ⊆ sld(k) we write [sld(k), V ] for the subspace of sld(k) spanned by all the commutators
[x, y] with x ∈ sld(k) and y ∈ V . We prove in Lemma 5.3.1 that there is an isomorphism
Gn/Gn+1

∼= sld(k) of abelian groups for all n ∈ N. This results in an isomorphism

ϕ : L(G)→ t · sld(k)[t]

of graded Lie algebras over Fp (see 5.3), here t · sld(k)[t] consists of the polynomials in t
with coefficients from the Lie algebra sld(k) and constant coefficient equal to zero. Under-
standing how Lie ideals of L(G) look like is crucial for computing the normal zeta function
of G. Our next theorem, see also Theorem 5.6.5, extends earlier unpublished results for
simple Lie algebras of Chevalley type A∗, as discussed in [37].

Theorem 5.1.1. Let d > 1 be an integer and let k be a field with char k - 2d. For all
non-zero x ∈ sld(k) we have

[sld(k), [sld(k), x]] = sld(k).

Actually, a slightly stronger result is proven in Theorem 5.6.5 in Section 5.6.1, however
the above theorem is all we need for our discussion. A consequence of the above theorem
is Proposition 5.3.7. It states that any closed normal subgroup {1} 6= N P G satisfies

Gn+2 < N ≤ Gn, N * Gn+1
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for some unique n ∈ N. In particular G is just infinite, i.e. every closed non-trivial closed
normal subgroup of G has finite index (and hence is also open). Consequently every Lie
ideal L(N) in L(G) ∼= t · sld(k)[t] is of the form

V tn ⊕Wtn+1 ⊕ tn+2sld(k)[t] (5.1)

for some non-zero Fp-subspaces V,W ⊆ sld(k). Necessary and sufficient conditions for (5.1)
to be an ideal of L(G) are that the spaces V,W satisfy

[sld(k), V ] ⊆ W.

Define the number δK ∈ {0, 1} by

δK =

{
1 when K is an unramified extension of Qp;

0 otherwise.

The Lie ideals L(N) coming from a closed normal subgroup {1} 6= N P G are of the form
as in (5.1) subject to the condition

δKV + [sld(k), V ] ⊆ W, (5.2)

see also Proposition 5.3.12. The case distinction for K comes from the p-th power map on
G, it enforces an extra condition on Lie ideals coming from closed normal subgroups of G;
see also Lemma 5.3.10 and Proposition 5.3.12. We will encounter this when computing the
normal zeta function of SL1

d(Zp). We show that there are |sld(k) : W |dimFp V closed normal
subgroups of G, whose corresponding ideal in t · sld(k)[t] is given by (5.1) subject to the
condition in (5.2).

The above discussion leads to the next theorem, which presents a general formula for
the normal zeta function of the groups SL1

d(O); see Theorem 5.3.14.

Theorem 5.1.2 (Klopsch, Snopce, T.). Let d > 1 be an integer and let p be a prime
number with p - 2d. Let K be a non-Archimedean local field with ring of integers O and
residue class field k. Write L = sld(k). The normal zeta function ζP

G (s) for the group
G = SL1

d(O) is given by

ζP
G (s) =

1

1− |L|−s
∑

06=V⊆L

|L : V |−s
 ∑
δKV+[V,L]⊆W⊆L

|L : W |−s+dimFp V

 ,

where V,W are Fp-subspaces of L.

The above expression shows that the normal zeta function of SL1
d(O) is a rational

function in p−s and we recover the fact that the sequence (aP
n (SL1

d(O)))n≥1 is eventually
periodic; this generalises the result in [3, Thm. 1.3]. The formula for the normal zeta
function depends on the residue field k, but except for the occurrence of δK , it does not
depend on the ramification behaviour of the maximal ideal p. We list two important
corollaries.
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Corollary 5.1.3 (Klopsch, Snopce, T.). Let d > 1 be an integer, let p be a prime number
with p - 2d and write f = [k : Fp] for the degree of the field extension k/Fp. Then there
exists a polynomial Q(X, Y ) ∈ Z[X, Y ] with degY Q = 2(d2 − d)f − 1 such that

ζP
SL1

d(O)
(s) =

Q(p, p−s)

1− (p−s)(d2−1)f
.

Corollary 5.1.4. Let d > 1 be an integer and let p be a prime number with p - 2d. Let
K/Qp be an unramified extension with O the ring of integers of K and write f = [k : Fp]
for the degree of the field extension k/Fp. Then the groups SL1

d(O) and SL1
d(Fpf JT K) have

the same normal subgroup zeta function.

Hence the groups SL1
d(O) and SL1

d(Fpf JT K) in the corollary are two examples of normally
isospectral groups.

In order to compute the normal zeta function of the groups SL1
d(O) explicitly, we need

to understand the behaviour of the map

V 7→ δKV + [sld(k), V ]

where V is a subspace of sld(k). We need to know for all integers 1 ≤ m,n ≤ d2 − 1 how
many subspaces V of sld(k) there are satisfying

dimFp V = m and dimk(δKV + [sld(k), V ]) = n.

These computations are done in Section 5.4 from which we derive the normal zeta function
of the groups SL1

2(Zp) (p > 2), SL1
3(FpJT K) and SL1

3(Zp) (p > 3). We also recover the
normal zeta function for the group SL1

2(FpJT K) as in [58].

Theorem 5.1.5. Let p > 2 be a prime number. The normal zeta function of the group
SL1

2(Zp) is given by

ζP
SL1

2(Zp)
(s) = 1 +

(p2 + p+ 1)t

1− t
, t = p−s

and hence for any m ∈ N we have aP
pm(SL1

2(Zp)) = p2 + p+ 1.

Consequently, the normal subgroup growth of the group SL1
2(Zp) for p > 2 is given by

sP
pn(SL1

2(Zp)) = 1 + n(p2 + p+ 1), n ∈ N.

Theorem 5.1.6. Let p > 3 be a prime number. The normal zeta functions of the groups
Γ0 = SL1

3(FpJT K) and Γ1 = SL1
3(Zp) are of the form

ζP
Γ`

(s) =
1 + a`1(p)t+ . . .+ a`11(p)t11

1− t8
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where t = p−s, ` ∈ {0, 1} and a`i(X) ∈ Z[X] are polynomials in X with non-negative coef-
ficients. Write a` = (deg a`1(X), . . . , deg a`11(X)) for the list of degrees of the polynomials
a`1, . . . , a

`
11. We then have

a0 = (7, 12, 15, 16, 15, 12, 10, 10, 10, 10, 8)

and
a1 = (7, 12, 15, 16, 15, 12, 9, 8, 9, 9, 7).

The explicit polynomials a`i can be found in Section 5.6.7. The difference between the
two sequences a0, a1 is explained by the fact that the condition V + [L, V ] ⊆ W is more
restrictive than the condition [L, V ] ⊆ W .

It would be interesting to know the explicit normal zeta functions of the groups SL1
2(O)

and SL1
3(O) with O the ring of integers of a non-Archimedean field K which is a finite

extension of Qp or Fp((T )). We can use the formula in Theorem 5.1.2 to do this. The
calculations for the Lie algebra sl3(k) in Section 5.4 are quite extensive and elaborate. It
would be interesting to know, if the same can be done for the Lie algebra sl4(k) to compute
the normal zeta functions of SL1

4(Zp) and SL1
4(FpJT K). The calculations in sl3(k) involve

a careful analysis of the interaction between elements with different Jordan normal form.
Because there are more different Jordan normal forms of elements of sl4(k), we expect
that the calculations for sl4(k) will be significantly harder. Perhaps writing down explicit
polynomials is not the best way to approach the calculations for sld(k) with d ≥ 4. An
alternative could be to try to find a description for the coefficients in the numerator of
ζP

SL1
4(O)

(s) in terms of varieties over k.

In a different direction it would be interesting to see, if we can compute the normal
zeta function of groups like Sp1

4(Zp) or Sp1
4(FpJT K) by making use of the result of Klopsch

and Snopce for the Lie algebra sp4(k). A first step could be to investigate, if one can
improve on their result by showing that [sp4(k), [sp4(k), x]] = sp4(k) holds for all non-zero
x ∈ sp4(k), with a possible restriction on the characteristic of k.

5.2 Lie ring of a group

In this section we introduce methods from Lie theory to study certain questions about
groups. The idea of using Lie theory to study groups was first introduced by Magnus in
[48], one of the applications he proposed was to use it to study the restricted Burnside
problem. We introduce the Lie ring associated to a group and list some properties of it.
For more details see [60].

147



Let G be a group and let

G = G1 ≥ G2 ≥ G3 ≥ . . .

be a descending chain of subgroups of G satisfying

∞⋂
i=1

Gi = {1}

and
(Gi, Gj) ⊆ Gi+j (5.3)

for all i, j ∈ N. Following [58] we call the collection (Gi)i≥1 of groups a filtration of G. A
direct consequence of the condition (5.3) is that for all integers i ∈ N we have Gi P G,
i.e. Gi is a normal subgroup of G. Moreover, for all integers i ∈ N we have the inclusions
(Gi, Gi) ⊆ G2i ⊆ Gi+1 and hence the quotient Gi/Gi+1 is abelian. We associate to G the
abelian group

L(G) =
∞⊕
i=1

Gi/Gi+1.

The rules for adding and taking inverses in Gi/Gi+1, which extend linearly to L(G), are

xGi+1 + yGi+1 = xyGi+1 and x−1Gi+1 = −(xGi+1)

for x, y ∈ Gi. The assumption on the groups Gi in (5.3) can be used to turn the abelian
group L(G) into a graded Lie ring. For this we define a bracket [−,−] on homogeneous
elements by

[xGi+1, yGj+1] = (x, y)Gi+j+1 ∈ Gi+j/Gi+j+1,

where x ∈ Gi, y ∈ Gj and i, j ∈ N, and extend linearly to all of L(G). Here the commu-
tator of x, y ∈ G is defined as (x, y) = x−1y−1xy.

The more we know of the group G and its subgroups Gi, the more we can say about
the Lie ring L(G). One particularly important assumption on the group G is the following.
Let p be a prime number and assume that

Gp
i ≤ Gi+1 (5.4)

for all i ∈ N. Here Gp
i stands for the subgroup of Gi generated by all the p-th powers of

elements of Gi (if G is profinite, then we consider the closed subgroup generated by the
p-th powers). The assumption in (5.4) for all i ∈ N implies that every element of Gi/Gi+1

has additive order dividing p. Therefore L(G) is a vector space over Fp and hence we may
consider L(G) as a graded Lie algebra over Fp.
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To a subgroup H ≤ G (if G is profinite, we assume H to be closed) we associate L(H),
a graded Lie subalgebra over Fp of L(G), defined by

L(H) =
∞⊕
i=1

(H ∩Gi)Gi+1/Gi+1.

Some properties of H can be deduced from the Lie subalgebra L(H). For example, if we
have Gn ≤ H for some integer n ∈ N, then we have the identity

|G : H| = |L(G) : L(H)|, (5.5)

relating the index of the two groups to the index of the corresponding Lie algebras. More-
over, when H P G is a normal subgroup of G, then one can show that L(H) is a Lie ideal
of L(G), meaning that

[L(H), L(G)] ⊆ L(H).

Finally, let G be a profinite group with a filtration (Gn)n≥1 of closed subgroups of G.
For a closed subgroup H ≤ G and n ∈ N we have the equivalence

Gn ≤ H ⇔ L(Gn) ⊆ L(H). (5.6)

5.3 On the Lie algebra L(G) of G = SL1
d(O)

5.3.1 Determination of L(G)

Let d > 1 be an integer and let K be a non-Archimedean local field with ring of integers O.
Write p for the unique maximal ideal of O with π some uniformiser of p and let p be the
characteristic of the residue field k = O/p. In this section we determine the Lie algebra
L(G) for the first principle congruence subgroup G = SL1

d(O) of SLd(O). Recall that the
principle congruence subgroups of SLd(O) are defined by

Gn = ker (SLd(O)→ SLd(O/pn)) , n ∈ N,

for more details see Chapter 2. One can show that the principle congruence subgroups
(Gn)n≥1 form a filtration of G. In fact, this filtration coincides with the lower central
series of G if p > 2. It is a consequence of Lemma 5.3.1 that these subgroups Gn satisfy
Gp
n ≤ Gn+1 for all n ∈ N. Assuming this, we have for the group G the corresponding

graded Lie algebra L(G) over Fp (see Section 5.2), given by

L(G) =
∞⊕
n=1

Gn/Gn+1. (5.7)
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Recall that sld(k) is the special linear Lie algebra over k of Chevalley type Ad−1. To
simplify the notation we often use the abbreviation L = sld(k), when d and k are under-
stood to be known. In Lemma 5.3.1 we show that there is an isomorphism of (abelian)
groups Gn/Gn+1

∼= sld(k) for all integers n ∈ N. Combining these isomorphisms for every
summand of L(G), we get an isomorphism

ϕ : L(G)→ t · L[t] (5.8)

of Fp-vector spaces; here t · L[t] consists of polynomials in the variable t with coefficients
from L and with zero constant term. The restriction of ϕ to Gn/Gn+1 induces an isomor-
phism

Gn/Gn+1
∼= Ltn. (5.9)

To be more precise, let x ∈ Gn be an element and write x = I + Xπn with X ∈ Matd(O)
some matrix, then

ϕ(xGn+1) = Xtn,

where X is to be read modulo p. For more details see Lemma 5.3.1. The reason we
introduced the variable t is that in this way ϕ is also an isomorphism of (graded) Lie
algebras. The bracket on t · L[t] that makes it into a Lie algebra is, for integers i, j ∈ N
and elements a, b ∈ L, given by [ati, btj] = [a, b]ti+j, with [a, b] = ab − ba the ordinary
bracket on L, and extended linearly to the whole of t · L[t]. For integers i, j ∈ N and
elements x ∈ Gi, y ∈ Gj we have

[ϕ(xGi+1), ϕ(yGj+1)] = ϕ([xGi+1, yGj+1]).

Hence ϕ is actually an isomorphism of Lie algebras. For the Lie-ideal L(Gn) we get through
ϕ an isomorphism

L(Gn) ∼= tnL[t].

The next lemma is well-known, it determines the quotients Gn/Gn+1 for n ∈ N.

Lemma 5.3.1. Let n ∈ N be a positive integer and let Gn, Gn+1 be as above, then we have
an isomorphism of abelian groups

Gn/Gn+1
∼= sld(k).

Proof. Let X ∈ Matd(O) be a matrix such that I+Xπn ∈ Gn. By expanding det(I+Xπn)
as a polynomial in the entries of X we get

1 ≡ det(I +Xπn) ≡ 1 + Tr(X)πn mod pn+1

and hence Tr(X) ≡ 0 mod p. Define the map

ϕ : Gn → sld(k), I +Xπn 7→ X mod p
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with X ∈ Matd(O). One verifies that ϕ is a group homomorphism with kernel

kerϕ = {I +Xπn ∈ Gn | X ≡ 0 mod p} = Gn+1.

For 1 ≤ i < j ≤ d and λ ∈ k we have I+λEijπ
n, I+λEjiπ

n ∈ Gn and for 1 ≤ i ≤ d−1 we
have I+λ(Eii−Ei+1,i+1 +Ei,i+1−Ei+1,i)π

n ∈ Gn. For every λ ∈ k the image of ϕ contains
therefore the off-diagonal elements λEij, λEji, 1 ≤ i < j ≤ n and the diagonal elements
λ(Eii − Ei+1,i+1), 1 ≤ i ≤ n − 1. Together these elements generate sld(k) and hence ϕ is
surjective.

Remark 5.3.2. Because the characteristic of k is p, it follows from the above lemma that
for all x ∈ Gn we have ϕ(xpGn+1) = pϕ(xGn+1) = 0 and hence that Gp

n ≤ Gn+1 for all
n ∈ N.

The next lemma deals with the groups Gp
n for integers n ∈ N. Depending on the field

K we can significantly improve on the result Gp
n ≤ Gn+1.

Lemma 5.3.3. Let n ∈ N be a positive integer and let K, p and Gn, Gn+1 be as above.
We assume p > 2. If char K = p, then we have Gp

n ≤ Gpn. If char K = 0 and K is not
an unramified extension of Qp, then we have Gp

n ≤ Gn+2. If char K = 0 and K is an
unramified extension of Qp, then we have Gp

n ≤ Gn+1.

Proof. It follows from Lemma 5.3.1 that in any case we have Gp
n ≤ Gn+1. Let x ∈ Gn be an

element and write x = I +Xπn for some matrix X ∈ Matd(O). Suppose that char K = p,
then we have

xp = I +Xpπpn.

Since v(Xpπpn) ≥ pn we see that xp ∈ Gpn; see Chapter 2 for the definition of the extension
of the valuation to Matd(K). Next, suppose that K is a finite extension of Qp with
ramification index e > 1, then we have by expanding the product

xp = I +

p−1∑
`=1

(
p

`

)
X`π`n +Xpπpn.

For 1 ≤ ` ≤ p− 1 we have p |
(
p
`

)
, so v(

(
p
`

)
X`π`n) ≥ e+ `n and v(Xpπpn) ≥ pn. Using that

p > 2 and e > 1, we see that e+ `n ≥ n+ 2 and pn ≥ n+ 2, showing that xp ∈ Gn+2.

When K has characteristic p, we have Gp
n ≤ Gpn for any n ∈ N. This is connected to

the notion of restricted Lie algebras. We already know by Lemma 5.3.1 that the groups
Gn/Gn+1 and Gn+1/Gn+2 are isomorphic for every integer n ∈ N. In the case of an
unramified extension of Qp the next lemma shows, that the p-th power map on G induces
an isomorphism between Gn/Gn+1 and Gn+1/Gn+2.
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Lemma 5.3.4. Let n ∈ N be a positive integer, let p > 2 be a prime number, let K be an
unramified extension of Qp and let ϕ,Gn, Gn+1, Gn+2 be as above. The map

ψn : Gn/Gn+1 → Gn+1/Gn+2, xGn+1 7→ xpGn+2

is an isomorphism of Fp-vector spaces. Under the isomorphism ϕ : L(G)→ t ·L[t] the map
ψn induces the multiplication by t map between Ltn and Ltn+1.

Proof. Because K is an unramified extension of Qp we take π = p as the uniformiser for p.
For the rest of the proof we let x, y ∈ Gn be two elements and write x = I+Xpn, y = I+Y pn

for some X, Y ∈ Matd(O). Note that the inverse of x in Gn is given by

x−1 = I −Xpn +X2p2n −X3p3n + . . . .

Suppose xGn+1 = yGn+1, then xy−1 ∈ Gn+1. We have

xy−1 ≡ (I +Xpn)(I − Y pn) ≡ I + (X − Y )pn mod pn+1

and so we see that X ≡ Y mod p. Using that xp ≡ I + Xpn+1 mod pn+2, we compute
along similar lines

xpy−p ≡ (I +Xpn+1)(I − Y pn+1) ≡ I + (X − Y )pn+1 ≡ I mod pn+2.

It follows that xpy−p ∈ Gn+2 and hence xpGn+2 = ypGn+2. The above argument can
be reversed to show that xpGn+2 = ypGn+2 implies that xGn+1 = yGn+1, i.e. that ψn is
injective. Together with |Gn : Gn+1| = |Gn+1 : Gn+2| this shows that ψn is a bijection. An
approach similar to the above shows that

y−px−p(xy)p ≡ I mod pn+2,

which is equivalent to

ψn(xGn+2 + yGn+2) = ψn(xGn+1) + ψn(yGn+1).

This shows that ψn is an isomorphism of Fp-vector spaces. For x ∈ Gn we compute

ϕ(ψn(xGn+1)) = ϕ(xpGn+2) = ϕ(xGn) · t,

under the isomorphism ϕ : L(G)→ t ·L[t] the map ψn therefore induces the multiplication
by t map between Ltn and Ltn+1.
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5.3.2 Formula for normal zeta function

In this section we establish the general formula for the normal zeta function of G = SL1
d(O).

For a closed normal subgroup H P G we first investigate how its corresponding Lie ideal
L(H) of L(G) looks like. Secondly, we compute, for a fixed Lie ideal of L(G), the number
of closed normal subgroups of G, which have this fixed Lie ideal as their corresponding Lie
ideal in L(G). We continue to use the same notation as in the previous section.

The next theorem is solely about the Lie algebra L = sld(k). We give a proof of this the-
orem in Section 5.6.1, where we actually prove a slightly stronger result; see Theorem 5.6.5.
This theorem was inspired by an upcoming paper by Klopsch and Snopce [37], in which
they prove a similar result for Chevalley Lie algebras. Theorem 5.3.5 is a strengthening of
their result for the case of a Lie algebra of Chevalley type Ad−1. This theorem is crucial
for the computation of the normal zeta function of the group G = SL1

d(O), as it allows us
to prove Proposition 5.3.7.

Theorem 5.3.5. Let d > 1 be an integer. Let k be any field satisfying char k - 2d and write
L = sld(k) for the special linear Lie algebra of Chevalley type Ad−1. For any 0 6= x ∈ L we
have

[[x, L], L] = L.

Remark 5.3.6. The assumption that char k - 2d is necessary for the statement of the
above theorem to hold. For instance, if char k | d, take x to be the identity matrix I (note
Tr(I) = d = 0, so I ∈ sld(k)), then we see [I, L] = 0. In case char k = 2 there exist
non-zero elements x ∈ L for which [[x, L], L] 6= L; see Theorem 5.6.5.

The next proposition shows that every closed normal subgroup of G is sandwiched
between two principal congruence subgroups Gn, Gn+2 for some n ∈ N. The statement
and the proof of this proposition already appear in [58] as Lemma 3.2 for the case d = 2.
With Theorem 5.3.5 we can generalise it to arbitrary d > 1. The proof is slighlty rewritten
to fit the notation of this chapter.

Proposition 5.3.7. Let d > 1 be an integer, let K be a local field with ring of integers
O and assume that the residue field k of K satisfies char k - 2d. Write G = SL1

d(O) and
let {1} 6= H P G be a closed normal subgroup. Then there exists a unique positive integer
n ∈ N such that the following two conditions hold:

Gn+2 < H ≤ Gn, H * Gn+1.

Proof. Because H 6= {1} there exists a largest integer n ∈ N such that H ≤ Gn and hence
there exists h ∈ H with h /∈ Gn+1. Write ϕ(L(H)) =

⊕∞
i=1 Lit

i, so the Li are Fp-subspaces
of L. Let u ∈ Ln be such that utn = ϕ(hGn+1), since h /∈ Gn+1 we have u 6= 0. Set
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U = [u, L], then by Theorem 5.3.5 we have [U,L] = L. Because H is normal in G, L(H) is
an ideal of L(G) and hence [L(H), L(G)] ⊆ L(H). This implies that for all ∈ N we have

Utm+n = [utn, Ltm] ⊆ Lm+nt
m+n,

so U ⊆ Lm+n and similarly

Ltm+n+1 = [Utm+n, Lt] ⊆ Lm+n+1t
m+n+1,

so that L ⊆ Lm+n+1. It follows that Lm+n+1 = L for all m ∈ N, so ϕ(L(Gn+2)) = tn+2L[t]
and hence L(Gn+2) is contained in L(H). The result follows now from the equivalence
in (5.6).

An immediate corollary of Proposition 5.3.7 is that every non-trivial closed normal
subgroup of G has finite index (and hence is open), i.e. G is just infinite.

For two profinite groups H,G we write H Po G, if H is an open subgroup of G. Let
{1} 6= H Po G be an open normal subgroup, by Proposition 5.3.7 there exists a unique
integer n ∈ N such that Gn+2 < H ≤ Gn and H * Gn+1. The ideal L(H) of L(G) is
therefore of the form

ϕ(L(H)) = Lnt
n ⊕ Ln+1t

n+1 ⊕ tnL[t] (5.10)

for some non-zero Fp-vector spaces Ln, Ln+1 ⊆ L and hence L(H) is completely determined
by the triple (n, Ln, Ln+1). We have Ln 6= 0 because H * Gn+1. Recall that the vector
spaces Ln, Ln+1 are defined by

Ln+1t
n+1 = ϕ(HGn+1/Gn+1) and Ln+1t

n+1 = ϕ((H ∩Gn+1)/Gn+2),

to simplify the first expression we made use of Gn+2 < H ≤ Gn.

Definition 5.3.8. Let K be a non-Archimedean local field. We define the number δK by

δK =

{
1 when K is an unramified extension of Qp;

0 otherwise.

Definition 5.3.9. Let n ∈ N be a positive integer and V,W ⊆ L two Fp-subspaces of L.
We call a triplet (n, V,W ) good with respect to K, if V 6= 0 and δKV + [V, L] ⊆ W .

The following lemma shows that there is a relation between Ln and Ln+1.

Lemma 5.3.10. Let Ln, Ln+1 as in equation (5.10). We then have

δKLn + [Ln, L] ⊆ Ln+1.
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Proof. Let {1} 6= H Po G be an open normal subgroup of G with Gn+2 < H ≤ Gn and
H * Gn. We have Hp ≤ Gn+1 and (H,G) ≤ Gn+1. Since Gn+1/Gn+2 is abelian we find

ϕ(HpGn+2/Gn+2) + ϕ((H,G)Gn+2/Gn+2) = ϕ(Hp(H,G)Gn+2/Gn+2)

and the right-hand side is contained in ϕ((H ∩ Gn+1)/Gn+2) = Ln+1t
n+1. The group

(H,G)Gn+2/Gn+2 is generated by the commutators (h, g)Gn+2 = [hGn+1, gG2] for h ∈ H
and g ∈ G (hGn+1 ∈ Gn/Gn+1, gG2 ∈ G/G2), so we find

[HGn+1/Gn+1, G/G2] = (H,G)Gn+2/Gn+2, (5.11)

using that Gn+1/Gn+2 is abelian. Under the isomorphism ϕ the left-hand side of (5.11)
equals [Lnt

n, Lt] = [Ln, L]tn+1. If δK = 0 we have Hp ≤ Gn+2 by Lemma 5.3.3 and if
δK = 1 we have by Lemma 5.3.4 that ϕ(HpGn+2/Gn+2) = ϕ(HGn+1/Gn+1)t = Lnt

n+1.

Remark 5.3.11. By the bilinearity of the bracket [−,−] we have that [Ln, L] is actually
a k-subspace of L.

Let H be as above, then the previous lemma shows that we have a map

Φ : {H Po G} → {good triples w.r.t. K}, H 7→ Φ(H) = (n, Ln, Ln+1). (5.12)

In the next proposition we show that the map Φ is surjective and we determine the size of
any preimage of any given good triplet under the map Φ. In Group Theory the letter Φ is
often used to denote the Frattini subgroup of a group. Since we do not work with Frattini
subgroups, no confusion should arise.

Proposition 5.3.12. We use the notation of above and we write ` = dimFp Ln. The map
Φ from (5.12) satisfies the following properties:

(i) Φ is surjective;

(ii) for a good triple (n, Ln, Ln+1) with respect to K we have

|Φ−1(n, Ln, Ln+1)| = |L : Ln+1|`; (5.13)

(iii) if H Po G with Φ(H) = (n, Ln, Ln+1), then |G : H| = |L|n−1|L : Ln||L : Ln+1|.

Proof. (i) Let (n, Ln, Ln+1) be a triple as in (5.12), we will construct an open normal
subgroup H Po G such that Φ(H) = (n, Ln, Ln+1). Let a1, . . . , a` ∈ Gn be elements such
that the ϕ(aiGn+1) form a basis of the vector space Lnt

n, moreover let ϕ(a`+1), . . . , ϕ(am) ∈
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Gn+1 be elements such that ϕ(a`+1Gn+1), . . . , ϕ(amGn+1) form a basis of Ln+1t
n+1. Define

the group

H = 〈a1, . . . , am〉
G
,

the normal closure of the closed subgroup generated by {a1, . . . , am}. From the definition
of H we immediately see that H Pc G, Gn+2 < H ≤ Gn and H * Gn+1. Because
Gn+2 ( H, we can write H = 〈a1, . . . , am〉GGn+2. From the way we constructed H we
see that ϕ(HGn+1/Gn+1) = Lnt

n (taking the topological closure doesn’t introduce new
elements modulo the Gi).
It remains to show that ϕ((H∩Gn+1)/Gn+2) = Ln+1t

n+1, the “⊇” follows from the way we
constructed H. For “⊆” we need to show under the map ϕ that a1, . . . , a`, their inverses
and their G-conjugates do not generate an element outside Ln+1t

n+1. For n ∈ N we have

((Gn, Gn), Gn) ≤ (G2n, Gn) ≤ G3n ≤ Gn+2,

so the derived subgroup (Gn, Gn)/Gn+2 is central inGn/Gn+2. Let g ∈ G, then for 1 ≤ i ≤ `
we have agi = ai(ai, g)Gn+2 with (ai, g)Gn+2 ∈ (H,G)/Gn+2 central in Gn/Gn+2. So for
any x ∈ H, which is a product of a1, . . . , a`, their inverses and their conjugates, we have

xGn+2 = z
∏̀
i=1

aeii Gn+2

for some integers e1, . . . , e` ∈ Z and some element z ∈ (H,G) ≤ Gn+1. If additionally
x ∈ Gn+1, then we have p | ei, because the ϕ(aiGn+1) form a basis of Lnt

n. This shows
xGn+2 ∈ Hp(H,G)/Gn+2 and hence

ϕ((H ∩Gn+1)/Gn+2) ⊆ ϕ(Hp(H,G)Gn+2/Gn+2) ⊆ ϕ((H ∩Gn+1)/Gn+2) ⊆ Ln+1t
n+1.

It follows that Φ(H) = (n, Ln, Ln+1).

(ii) By Proposition 5.3.7 any subgroup {1} 6= H Po G with Φ(H) = (n, Ln, Ln+1)
contains the group Gn+2, so lifting elements of Gn/Gn+2 (or equivalently Lnt

n, Ln+1t
n+1)

to Gn as in part (i) produces all open normal subgroups of G corresponding to the triple
(n, Ln, Ln+1).
For the remainder of part (ii) fix a triple (n, Ln, Ln+1) as in (5.12) and fix x1, . . . , x` ∈ Gn

such that ϕ(x1Gn+1), . . . , ϕ(x`Gn+1) form a basis of Lnt
n. Let a = (a1, . . . , a`) ∈ G`

n+1 and
let a`+1, . . . , am ∈ Gn+1 be elements such that ϕ(a`+1Gn+2), . . . , ϕ(amGn+2) form a basis of
Ln+1t

n+1, then the group

H = 〈a1x1, . . . , a`x`, a`+1, . . . , am〉
G

(5.14)

satisfies H Po G and Φ(H) = (n, Ln, Ln+1), see part (i). Conversily, every H Po G
with Φ(H) = (n, Ln, Ln+1) can be written in this way. It doesn’t matter which elements
a`+1Gn+1, . . . , amGn+1 we choose (as long as their images under ϕ form a basis of Ln+1t

n+1)
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to define H in (5.14), because any other choice gives rise to the same group H since
Gn+2 ≤ H. It follows that the group H, defined in (5.14), only depends the tuple a. We
therefore write Ha for H. Define a relation ∼ on G`

n+1 by writing a ∼ b, if

ϕ(aib
−1
i Gn+2) ∈ Ln+1t

n+1, 1 ≤ i ≤ `.

Note that ϕ−1(Ln+1t
n+1) P Gn/Gn+2 because (Gn, Gn+1) ≤ G2n+1 ≤ Gn+2 for n ∈ N. The

relation ∼ is an equivalence relation, being reflexive, symmetric and transitive follows from
Ln+1t

n+1 being a group. We show that a ∼ b if and only if Ha = Hb.

• Suppose Ha = Hb. For 1 ≤ i ≤ ` we have aib
−1
i = (aixi)(bixi)

−1 ∈ Ha and hence
ϕ(aib

−1
i Gn+2) ∈ ϕ((Ha ∩Gn+1)/Gn+2) = Ln+1t

n+1 showing that a ∼ b.

• When a ∼ b we have for 1 ≤ i ≤ ` that

ϕ(aib
−1
i Gn+2) ∈ Ln+1t

n+1 = ϕ((Ha ∩Gn+1)/Gn+2),

so there exists a ci ∈ Ha ∩Gn+1 with aiGn+2 = biciGn+2. Together with Gn+2 ≤ Ha

this shows that bi ∈ Ha for 1 ≤ i ≤ `, that is Hb ≤ Ha. Analogously we find
Ha ≤ Hb and hence Ha = Hb.

So far we have established that the number of elements of Φ−1(n, Ln, Ln+1) equals the
number of equivalence classes of G`

n+1/ ∼. The latter is in bijection with tuples of length
` of cosets of Ln+1t

n+1 in ϕ(Gn+1/Gn+2), therefore we have

|Φ−1(n, Ln, Ln+1)| = |(G`
n+1/ ∼)| = |ϕ(Gn+1/Gn+2) : Ln+1t

n+1|` = |L : Ln+1|`.

(iii) By equation (5.5) we have

|G : H| = |L(G) : L(H)| = | ⊕n+1
i=1 Lt

i : Lnt
n ⊕ Ln+1t

n+1|
= |L|n−1|L : Ln||L : Ln+1|.

The next example illustrates how two different subgroups of SL1
2(O) can have the same

good triple with respect to K.

Example 5.3.13. Let π be a uniformiser for the maximal ideal p of O and write k = O/p
for the residue field. Let L = sl2(k) be the Lie algebra over k of Chevalley type A1 with
the canonical basis

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
.

For the group G = SL1
2(O), we will construct two different subgroups H0, H1 Po G satis-

fying Φ(H0) = Φ(H1). Define the elements a, b, c, d ∈ G by

a =

(
1 π
0 1

)
, b =

(
1 π2

0 1

)
, c =

(
1 + π2 + π4 π2

−π4 1− π2

)
, d =

(
1 0
π2 1

)
,
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then a ∈ G1, b, c, d ∈ G2 and we have

ϕ(aG2) = xt, ϕ(bG3) = xt2, ϕ(cG3) = (h+ x)t2, ϕ(dG3) = yt2.

Define the two groups H0 = 〈a, b, c〉
G

and H1 = 〈da, b, c〉
G

. For i ∈ {0, 1} we compute

(Hi ∩G1)G2/G2 = 〈a〉G2/G2, (Hi ∩G2)G3/G3 = 〈b, c〉G3/G3,

with their images under the isomorphism ϕ are

ϕ((Hi ∩G1)G2/G2) = (Fpx)t, ϕ((Hi ∩G2)G3/G3) = (Fpx+ Fph)t2

and hence we have

ϕ(L(H0)) = ϕ(L(H1)) = (Fpx)t⊕ (Fpx+ Fph)t2 ⊕ t3L[t].

This shows that Φ(H0) = Φ(H1). Suppose H0 = H1, then we have d ∈ H0 and hence
yt2 ∈ (Fpx+ Fph)t2, a contradiction, so H0 6= H1.

The next theorem gives a general formula for the normal zeta function for G in terms
of the field K and the Lie algebra L. We need the assumption p - 2d in the theorem below,
because this whole section is build upon Proposition 5.3.7, which uses Theorem 5.3.5 for
which p - 2d is necessary.

Theorem 5.3.14. Let d > 1 be an integer, let p be a prime number with p - 2d, let K
be a non-Archimedean local field with ring of integers O and residue class field k with
p = char k. The normal zeta function ζP

G (s) for G = SL1
d(O) is given by

ζP
G (s) =

1

1− |L|−s
∑

06=V⊆L

|L : V |−s
 ∑
δKV+[V,L]⊆W⊆L

|L : W |−s+dimFp V

 ,

where V,W are Fp-subspaces of L. Here δK = 1 if K is an unramified extension of Qp and
δK = 0 otherwise.

Proof. We have seen that the non-trivial open normal subgroups of G are precisely the
non-trivial closed normal subgroups of G. To compute the normal zeta function

ζP
G (s) =

∑
16=HPoG

|G : H|−s,

we need, by Proposition 5.3.12, to sum over all good triples with respect to K. If
(n, Ln, Ln+1) is a good triple with respect to K, then by part (ii) of Proposition 5.3.12
there are

|L : Ln+1|dimFp Ln
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subgroups {1} 6= H Po G such that Φ(H) = (n, Ln, Ln+1) and any one of these subgroups
satisfies

|G : H| = |L|n−1|L : Ln||L : Ln+1|

by Proposition 5.3.12 (iii). Write S(K) for the set of all good triples with respect to K,
then

ζP
G (s) =

∑
(n,V,W )∈S(K)

|Φ−1(n, V,W )|
(
|L|n−1|L : V ||L : W |

)−s
=
∞∑
n=1

|L|−(n−1)s
∑

06=V⊆L

|L : V |−s
 ∑
δkV+[V,L]⊆W⊆L

|Φ−1(n, V,W )||L : W |−s


=
1

1− |L|−s
∑

06=V⊆L

|L : V |−s
 ∑
δKV+[V,L]⊆W⊆L

|L : W |−s+dimFp V



5.4 Lie algebra computations

5.4.1 The Lie algebras gld(k) and sld(k)

Let d > 1 be an integer and let k be any field. Write gld(k) for the Lie algebra Matd(k) of
d× d-matrices with entries in k and write sld(k) ⊆ gld(k) for the special linear Lie algebra
of traceless d× d-matrices over k (Chevalley type Ad−1), i.e.

sld(k) = {x ∈ gld(k) | Tr(x) = 0},

both Lie algebras have the usual bracket [x, y] = xy − yx for x, y ∈ gld(k).

Let g be either the Lie algebra gld(k) or sld(k). An element x ∈ g defines the adjoint
endomorphism adx : g→ g, y 7→ [x, y]. The kernel of adx is the centraliser

Cg(x) = {y ∈ g | [x, y] = 0}

of x in g. So Cg(x) consists of all elements in g which commute with x. For a subspace
V ⊆ g the centraliser Cg(V ) of V inside g is defined by

Cg(V ) =
⋂
x∈V

Cg(x) = {y ∈ g | xy = yx for all x ∈ V } (5.15)
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and moreover we define the subspace

[g, V ] =
∑
x∈g

adx(V ) = span{[x, y] | x ∈ g, y ∈ V } (5.16)

of g spanned by the brackets of elements of g with elements of V . Clearly, we may restrict
the intersection in (5.15), respectively the summation in (5.16), to run through a basis of
V without changing the resulting space. In case V is one-dimensional, the space Cg(V )
is just the centraliser in g of any non-zero x ∈ V and we have [g, V ] = adx(g) for any
non-zero x ∈ V . Because [x, y] = −[y, x] for x, y ∈ g, we have [g, V ] = [V, g]. We will write
Cgl(x), Csl(x) instead of Cgld(k)(x), Csld(k)(x) respectively to declutter the notation.

Define on g the k-bilinear form B : g× g→ k as the ordinary trace form, i.e.

B(x, y) = Tr(xy)

for x, y ∈ g. The form B satisfies B(x, [y, z]) = B([x, y], z) for all x, y, z ∈ g. One can
readily check that B is non-degenerate on g, if g = gld(k) for any field k and if g = sld(k) for
any field k satisfying char k - d. For the latter claim the trace form B can be represented,
with respect to the basis Ei,i − Ei+1,i+1 (1 ≤ i ≤ d− 1), Eij, Eji (1 ≤ i < j ≤ d) of sld(k),
by the symmetric matrix 

2 1

1
. . . . . .
. . . . . . 1

1 2
0 1
1 0

. . .

0 1
1 0


.

With a straightforward induction argument (using a cofactor expansion) one can show that

the determinant of the above matrix equals (−1)
d(d−1)

2 d.

We write V ⊥ for the orthogonal complement of a subspace V ⊆ g with respect to B, so

V ⊥ = {x ∈ g | B(x, V ) = 0}.

The orthogonal complement V ⊥ is a subspace of g. In case B is non-degenerate (i.e.
g⊥ = 0), the dimensions of V and V ⊥ are related by

dimV + dimV ⊥ = dim g.

160



One verifies that for two subspaces V,W ⊆ g we have

V ⊆ W ⇔ V ⊥ ⊇ W⊥

and in case B is non-degenerate

(V ⊥)⊥ = V and (V ∩W )⊥ = V ⊥ +W⊥.

5.4.2 Goal of the computation

Let d > 1 be an integer and k a field satisfying char k - 2d (we need this assumption on
the characteristic for technical reasons). The goal of our calculations is to understand the
two maps sld(k)→ sld(k) given by

V 7→ [sld(k), V ] for subspaces V ⊆ sld(k) (5.17)

and
V 7→ V + [sld(k), V ] for subspaces V ⊆ sld(k). (5.18)

We want to know how the dimension of [sld(k), V ] and V + [sld(k), V ] depend upon the
vector space V ⊆ sld(k). We are able to do this for d ∈ {2, 3}. For d ≥ 4 the computations
become too involved, but we do prove some general results for any d > 1. After establishing
some general results, we focus on the case d ∈ {2, 3} and later we specialise to the finite
field k = Fq. Ultimately this leads to the computation of the numbers fq(m,n), gq(m,n),
with 1 ≤ m,n ≤ d2 − 1, which count the number of m-dimensional subspaces V ⊆ sld(k)
satisfying dimk [sld(k), V ] = n, respectively dimk(V + [sld(k), V ]) = n.

5.4.3 Useful results

We start by summarising some useful results, which we will need later in our calculations.
Let d > 1 be an integer and let k be a field. Let g denote either one of the Lie algebras
gld(k) or sld(k) and B the ordinary trace form on g. The first lemma is about the relation
between the centralisers in gld(k) and sld(k) of any given subspace.

Lemma 5.4.1. Let d > 1 be an integer and k a field satisfying char k - d. We have
gld(k) = sld(k)⊕ k · I and for a subspace V ⊆ sld(k) we have the relation

Cgl(V ) = Csl(V )⊕ k · I. (5.19)

Consequently, for x ∈ sld(k) the dimensions of both centralisers are related by

dimCgl(V ) = dimCsl(V ) + 1.
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Proof. The condition char k - d implies I /∈ sld(k) and together with the observation that
I commutes with every element in gld(k) the lemma follows.

We will often work under the assumption char k - d and hence the lemma shows that
we do not loose anything by working with gld(k) instead of sld(k).

The next lemma shows that the spaces Cg(V ) and [g, V ] are related. It provides us
with an easy way to compute [g, V ].

Lemma 5.4.2. Let g and B be as above and assume that B is non-degenerate. For any
subspace V ⊆ g we have

[g, V ] = Cg(V )⊥.

Proof. We first prove the statement for the 1-dimensional case (the zero-dimensional case
is trivial). Let x ∈ g be non-zero, then for c ∈ Cg(x) and all ` ∈ g we have

B([`, x], c) = B(`, [x, c]) = B(`, 0) = 0

so [g, x] ⊆ Cg(x)⊥. The map adx : g→ g is linear and B is non-degenerate, so

dimCg(x)⊥ = dim g− dimCg(x) = dim [g, x]

and hence [g, x] = Cg(x)⊥.

For the general case, let V ⊆ g be an arbitrary non-zero finite dimensional subspace
and let {xi}i∈I be a basis of V , then

Cg(V )⊥ =

(⋂
i∈I

Cg(xi)

)⊥
=
∑
i∈I

Cg(xi)
⊥ =

∑
i∈I

[g, xi] = [g, V ]

using the result for the 1-dimensional case and that (U ∩W )⊥ = U⊥ + W⊥ for subspaces
U,W of g.

Remark 5.4.3. The conclusion of Lemma 5.4.2 still holds, if g is an arbitrary finite dimen-
sional Lie algebra over k with a non-degenerate k-bilinear form B satisfying B(x, [y, z]) =
B([x, y], z) for x, y, z ∈ g. For example this holds when g is a finite dimensional semisimple
Lie algebra over k equipped with the Killing form κ(x, y) = Tr(adx ◦ ady) on g, which is
non-degenerate. In case of the Lie algebra sld(k) we have the relation

κ(x, y) = 2d · Tr(xy) for x, y ∈ sld(k) (5.20)

and hence the Killing form κ is non-degenerate if and only if char k - 2d. Working with the
trace form instead of the Killing form on sld(k) allows us to consider also the case where d
is odd and char k = 2. Note that when char k - 2d the orthogonal complement will be the
same regardless which of the two forms is being used.
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The following theorem concerns the double centraliser of an element of g for an arbitrary
field k.

Theorem 5.4.4 (Double centraliser). Let d > 1 be an integer, k an arbitrary field and let
g be one of the Lie algebras gld(k) or sld(k). For x ∈ g we have

Cg(Cg(x)) = k[x] ∩ g,

here k[x] stands for the subspace of gld(k) generated by the powers of x (including x0 = I).

The idea of the proof of Theorem 5.4.4 is as follows. We establish the result first for
gld(k). By extension of scalars we may assume that k is algebraically closed, then one
shows that the statement is invariant under conjugation by GLd(k). This reduces the
problem to matrices in Jordan normal form. One then needs to show that the statement
can be further reduced to the case of matrices with a single eigenvalue, which, for sake of
simplicity, may be assumed to be zero. This is the most cumbersome part of the proof.
Finally, the result for sld(k) can be deduced from the case gld(k) since gld(k) = kI+sld(k).

Lemma 5.4.2 and Theorem 5.4.4 have some useful corollaries, which we need for later
calculations. We record them here.

Corollary 5.4.5. Let g be as above and assume that char k - d. For x ∈ g we have

[g, Cg(x)]⊥ = k[x] ∩ g

and hence dim [g, Cg(x)] = d2 − degmx with mx the minimal polynomial of x over k.

Proposition 5.4.6. Let g be as above and assume that char k - d. Let x ∈ g, then for any
polynomial p(x) ∈ k[x] we have

[g, p(x)] ⊆ [g, x];

we regard this inclusion as an inclusion inside the Lie algebra gld(k) (the trace of p(x) is
not necessarily zero).

Proof. Consider a polynomial q(x) ∈ k[x] ∩ g. Using Lemma 5.4.2 and the observation
that, if y ∈ g commutes with x, then y also commutes with q(x), we find

[g, q(x)] = Cg(q(x))⊥ ⊆ Cg(x)⊥ = [g, x].

Any polynomial p(x) ∈ k[x] can be written as p(x) = q(x) + cI with q(x) ∈ k[x] ∩ g and
c = 1

d
Tr(p(x)) ∈ k (note char k - d). Therefore

[g, p(x)] = [g, q(x)] + [g, cI] = [g, q(x)]

and the result follows.
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Lemma 5.4.7. Let g be as above and suppose char k - d. Let x, y ∈ g. If we have an
inclusion of centralisers Cg(x) ⊆ Cg(y), then y ∈ k[x] ∩ g.

Proof. From the inclusion Cg(x) ⊆ Cg(y) it follows that y commutes with every element in
Cg(x) and hence y ∈ Cg(Cg(x)) = k[x] ∩ g by Theorem 5.4.4.

Lemma 5.4.8. Consider the Lie algebra sld(k) and assume char k - d. Suppose V ⊆ sld(k)
is a subspace with [sld(k), V ] 6= sld(k), then V ⊆ Csl(x) for some non-zero x ∈ sld(k).

Proof. Let f : sld(k) → k be a linear map with [sld(k), V ] ⊆ ker(f). Since the bilinear
form B is non-degenerate, there exists a non-zero x ∈ sld(k) such that f(y) = B(y, x) for
all y ∈ sld(k). For all ` ∈ sld(k) and all z ∈ V this gives

0 = f([`, z]) = B([`, z], x) = B(`, [z, x]).

Because B is non-degenerate, it follows that [z, x] = 0 for all z ∈ V and hence V ⊆
Csl(x).

5.4.4 Jordan normal form and centraliser dimension

We start by recalling some basic facts and notation in connection with the Jordan normal
form. Let k be an algebraically closed field and d ∈ N a positive integer. A Jordan block
of size d with eigenvalue λ is a d× d-matrix of the form

λ 1

λ
. . .
. . . 1

λ


with entries equal to λ on the diagonal, entries equal to 1 on the upper off-diagonal and
zeroes everywhere else. The characteristic and minimal polynomial of this Jordan block
both equal (T − λ)d ∈ k[T ].

Let x ∈ gld(k) be a matrix. The well-known Jordan normal form theorem states that
every matrix in gld(k) is conjugated to a matrix in Jordan normal form. Essentially in a
unique way as two different Jordan normal forms of a matrix differ only by permutation
of the Jordan blocks. This means that there exist integers d1 ≥ d2 ≥ . . . dp > 0 satisfying
d1 + . . .+ dp = d, and a corresponding tuple (λ1, . . . , λp) ∈ kp of eigenvalues of x such that
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x is conjugated to the matrix
J(d1, λ1)

J(d2, λ2)
. . .

J(dp, λp)

 ,

here J(di, λi) is a Jordan block of size di with eigenvalue λi. We call

(d1, . . . , dp) (5.21)

the type of x and note that this is also a partition of d. Knowing the Jordan normal form of
a matrix allows us to write down the characteristic and minimal polynomial immediately.
The characteristic polynomial charx(T ) of x is the product of the characteristic polynomials
of the J(di, λi), i.e.

charx(T ) =

p∏
i=1

(T − λi)di ∈ k[T ]

and the minimal polynomial minx(T ) of x is given by

minx(T ) = lcm{(T − λi)di | 1 ≤ i ≤ p} ∈ k[T ].

Moreover, knowing the Jordan normal form of x also determines the dimension of the
centraliser Cgl(x) = Cgld(k)(x) of x in gld(k). Let x ∈ gld(k) be an element with a single
eigenvalue and write (d1, . . . , dp) for the type of x. Let (e1, . . . , eq) be the conjugate parti-
tion of (d1, . . . , dp), so ei = |{j | dj ≥ i}| with q = d1 and p = e1. By [18], Theorem 6.1.3
we have

dimCgld(k)(x) =

q∑
j=1

e2
j . (5.22)

When x ∈ gld(k) has different eigenvalues λ1, . . . , λ` with ` ≥ 1, let xi be the direct sum of
all Jordan blocks of x with eigenvalue λi and write ni for the size of xi, i.e. xi ∈ Matni

(k).
We then have

dimCgld(k)(x) =
∑̀
i=1

dimglni (k) C(xi). (5.23)

Let k′ ⊆ k be any field. For x′ ∈ gld(k
′) we have by extension of scalars that

dimk′ Cgld(k′)(x
′) = dimk Cgld(k)(x

′).

Starting from 12 + . . .+ 12 = d, 22 + 12 + . . .+ 12 = d+ 2 and the identity (m+ 1)2 +
(n− 1)2 − (m2 + n2) = 2(m− n) + 2 one can prove the following proposition.

Proposition 5.4.9. Let d ∈ N be a positive integer, let k be any field and let x ∈ gld(k)
be an element which is not a multiple of the identity matrix. Then we have

dimCgl(x) = d+ 2m for some integer 0 ≤ m ≤ 1
2
(d− 1)(d− 2),

moreover all of these values arise as centraliser dimensions of elements of gld(k).
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5.4.5 Regular and toxic elements

We distinguish two important types of elements in gld(k), they are defined in terms of the
sizes of their centralisers.

Definition 5.4.10. Let d ≥ 2 be an integer. An element x ∈ gld(k) is called regular,
if dimCgl(x) = d, the smallest value the dimension of a centraliser can attain. In case
char k - d, we say x ∈ sld(k) is regular, if dimCsl(x) = d − 1. An element x ∈ gld(k) is
toxic, if dimCgl(x) = (d− 1)2 + 1, after d2 the largest value the dimension of a centraliser
can attain. In case char k - d, we say x ∈ sld(k) is toxic, if dimCsl(x) = (d− 1)2.

As opposed to regular, which is a standard terminology in the literature [7], the notion
of toxic is non-standard and was invented by us. Any element in the complement of the
regular elements inside the non-zero elements of gld(k) or sld(k) is called irregular. Some
subsets of these irregular elements go sometimes by other names, like sub-regular (see [7]).
When char k - d we have dimCsl(x) = dimCgl(x)−1 for x ∈ sld(k). Therefore, if x ∈ sld(k),
then x is regular, respectively toxic, in sld(k) if and only if x is regular, respectively toxic,
in gld(k). Clearly, being regular or toxic is invariant under conjugation by GLd(k) and
multiplication by a non-zero scalar.

In the case d = 2, all non-zero elements are regular. When d = 3, an element is either
regular, toxic or zero. The explicit description of the dimension of the centraliser in terms
of the sizes of its Jordan blocks can be used to prove the next lemma.

Lemma 5.4.11. Let d > 1 be an integer and let x ∈ gld(k) be a toxic element. Then the
Jordan normal form of x (up to a permutation of the Jordan blocks) is given by

λ 1
λ

λ
. . .

 or


µ

λ
. . .

λ


with the eigenvalues λ 6= µ lying in some field extension of k.

The next lemma is concerned with toxic elements in sld(k) for d > 2 (for d = 2 there
are no toxic elements).

Lemma 5.4.12. Let d > 2 be an integer and k a field with char k 6= 2.

(a) The Jordan normal form (up to a permutation of the Jordan blocks) of a toxic element
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in sld(k) is 
λ 1

λ
λ

. . .

λ

 or


(1− d)λ

λ
. . .

λ

 (5.24)

with λ ∈ k and λ 6= 0 in the second case. When char k - d we have λ = 0 in the first
case.

(b) A toxic element in sld(k) is of the form λI + x for some unique λ ∈ k and some
unique matrix x ∈ gld(k) of rank 1 satisfying dλ+ Tr(x) = 0.

Proof. Part (a) is almost a direct consequence of Lemma 5.4.11. When x ∈ sld(k) is
conjugate to the first matrix in Lemma 5.4.11, then the minimal polynomial of x is (T −
λ)2 = T 2 − 2λT + λ2 ∈ k[T ]. Because char k 6= 2 we find λ ∈ k. Since Tr(x) = 0 we find
dλ = 0 and when char k - d we get λ = 0.

When x ∈ sld(k) is conjugate to the second matrix in Lemma 5.4.11, then the condition
Tr(x) = 0 gives µ + (d − 1)λ = 0. Clearly λ is non-zero, because the zero matrix is not
toxic. Write p = char k. The minimal and characteristic polynomial of x are

(T − µ)(T − λ), (T − µ)(T − λ)d−1 ∈ k[T ]

respectively. From the minimal polynomial we read off that (d − 2)λ, (d − 1)λ2 ∈ k. If
p - d − 2, then d − 2 is invertible in k and hence λ ∈ k. Suppose p | d − 2, then we get
λ2 ∈ k. The idea is now to show that k contains an odd power of λ, which implies λ ∈ k.
The constant coefficient of the characteristic polynomial gives (d − 1)λd = λd ∈ k, so if d
is odd, then we are done. Assume d is even. Since d > 2 we can write d− 2 = pn ·m with
n ≥ 1, m > 1, p - m and p odd (if m = 1, then p = 2, because d is even, which is not
possible). The minimal and characteristic polynomial are elements of k[T ] and hence so is
their quotient (T − λ)d−2. Expanding this polynomial gives

(T − λ)d−2 = (T p
n − λpn)m = T p

nm −mλpnT pn(m−1) + . . . ,

using that char k = p. This shows mλp
n ∈ k. Since p - m and p is odd, we see that k

contains an odd power of λ.

(b) That any toxic element in sld(k) can be written in this form is clear, when the matrix
is in Jordan normal form. Conjugating with an invertible matrix leaves λI unchanged and
it replaces x with another rank 1 matrix. Hence the statement holds for all toxic elements
in sld(k). The uniqueness of λ, x follows from Corollary 5.5.3.
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Remark 5.4.13. In case the eigenvalues of a toxic element x ∈ sld(k) all lie in some Galois
extension k′ of k, there exists a shorter argument showing that the eigenvalues of x lie in
k. Let σ ∈ Gal(k′/k) be a Galois automorphism of the extension k′/k. If λ is an eigenvalue
of a Jordan block of size m > 0 of x, then σ(λ) is also an eigenvalue of a Jordan block of
size m of σ(x). Since the entries of x are all elements of k, we have σ(x) = x. Using the
description of the Jordan normal form of toxic elements in Lemma 5.4.12(a) it follows that
σ(λ) = λ for all σ ∈ Gal(k′/k) and hence λ ∈ k.

5.4.6 Jordan normal forms for sl3

Let k be a field and consider the Lie algebra sl3(k). In this section we determine all possible
Jordan normal forms for elements of sl3(k).

Proposition 5.4.14. Let k be a field with char k 6= 2, 3 and let k be an algebraic closure
of k. Any matrix of sl3(k) is conjugated by an element of GL3(k) to a matrix in sl3(k) of
the form

i)

0 1 0
0 0 1
0 0 0

 , ii)

λ 1 0
0 λ 0
0 0 −2λ

 or iii)

λ 0 0
0 µ 0
0 0 π

 ,

where in ii) we have λ ∈ k and in iii) we have λ, µ, π ∈ k (not necessarily distinct) with
λ+ µ+ π = 0.
Moreover, any toxic element in sl3(k) is conjugated by an element of GL3(k) to a matrix
in sl3(k) of the form 0 0 1

0 0 0
0 0 0

 or

λ 0 0
0 λ 0
0 0 −2λ


with λ ∈ k non-zero.

Remark 5.4.15. We need to pass to an algebraic closure of k to get a field which contains
all the eigenvalues of all the matrices in sl3(k). Note that in iii) the eigenvalues λ, µ, ν lie
in a quadratic or a cubic extension of k. Hence, if k is the finite field Fq with q elements,
we can replace in the statement of the lemma the algebraic closure of k with Fq6 .

Proof. For gl3(k) the possible Jordan normal forms, up to a permutation of the Jordan
blocks, are:

i)

λ 1 0
0 λ 1
0 0 λ

 , ii)

λ 1 0
0 λ 0
0 0 µ

 and iii)

λ 0 0
0 µ 0
0 0 π

 ,

where the eigenvalues λ, µ, π do not necessarily lie in k. Their respective minimal polyno-
mials are (T − λ)3, lcm((T − λ)2, (T − µ)), lcm((T − λ), (T − µ), (T − π)) ∈ k[T ].
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Passing to sl3(k) we have the extra condition that the trace equals zero. For type i)
this gives λ = 0 (since char k 6= 3), for type ii) we see that µ = −2λ and for type iii) we
get the condition λ + µ + π = 0. The characteristic polynomial of an element of type ii)
equals

T 3 − 3λ2T + 2λ3 ∈ k[T ]. (5.25)

When λ 6= 0 we find that λ = 3
2
· 2λ3

3λ2
∈ k, using that char k 6= 2, 3. This shows that all

eigenvalues of an element of type ii) lie in k.

From the description of the minimal polynomials (see Lemma 5.4.16), we see that type
i) is always regular, type ii) is regular if and only if λ 6= µ and type iii) is regular if and
only if λ, µ, π are pairwise different. If an element of type ii) is toxic, then we must have

λ = µ forcing λ = 0 since char k 6= 3. Conjugating with the matrix
(

1 0 0
0 0 1
0 1 0

)
shows that

the matrices
(

0 1 0
0 0 0
0 0 0

)
and

(
0 0 1
0 0 0
0 0 0

)
are similar. Next, if an element of type iii) is toxic, then

without loss of generality µ = λ and hence π = −2λ. The characteristic polynomial is then
given by the polynomial in (5.25) and hence λ ∈ k.

5.4.7 Number of regular elements in centraliser

Let k be a field, d > 1 an integer and consider the Lie algebra sld(k). We present a lemma,
which provides equivalent statements for being regular in gld(k).

Lemma 5.4.16. For x ∈ gld(k) the following statements are equivalent:

(a) x is regular in gld(k) (dimCgl(x) = d);

(b) different Jordan blocks of x have different eigenvalues;

(c) minx(T ) = charx(T );

(d) Cgl(x) = k[x] = k · I + k · x+ . . .+ k · xd−1.

Proof. (a)⇔(b): Using the formula in (5.22), we have dimCgl(x) = d if and only if in the
Jordan normal form of x two different blocks have different eigenvalues.
(b)⇔(c): Suppose that the Jordan blocks of x have sizes d1, . . . , dm (so d1 + . . .+ dm = d)
with corresponding eigenvalues λ1, . . . , λm in some algebraic closure of k. The minimal
and characteristic polynomial of the Jordan block corresponding to di is (T − λi)di . The
characteristic polynomial of x is given by

∏m
i=1(T − λi)di and the minimal polynomial of x

is equal to
lcm{(T − λ1)d1 , . . . , (T − λm)dm}.

It is now clear that the minimal polynomial of x equals it characteristic polynomial if and
only if for i 6= j we have λi 6= λj.
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(d)⇔(c) Suppose Cgl(x) = k[x]. From the inequalities dimCgl(x) ≥ d and dim k[x] ≤ d
it follows that dimCgl(x) = d and hence the element x is regular which implies that
minx(T ) = charx(T ). On the other hand, if minx(T ) = charx(T ), then the elements
I, x, x2, . . . , xd−1 are linearly independent over k and hence dim k[x] = d by the theorem of
Cayley-Hamilton. Clearly k[x] ⊆ Cgl(x), from the equivalence of part (a) and (c) it follows
that k[x] = Cgl(x).

Lemma 5.4.17. Let k be a field and x ∈ gld(k) a regular element. An element y ∈ Cgl(x)
is regular if and only if y is of the same type (possibly with different eigenvalues, see (5.21))
as x, and if there exists a polynomial f ∈ k[T ] of deg f < d with y = f(x) and

• f(λ) 6= f(µ) for different eigenvalues λ, µ of x;

• f ′(λ) 6= 0 if λ is an eigenvalue of x with a corresponding Jordan block of size strictly
larger than 1.

Proof. From Lemma 5.4.16 (d) it follows immediately that there exists a polynomial f ∈
k[T ] with deg f < d such that y = f(x). For the rest of the proof we can assume without
loss of generality that k is algebraic closed. Conjugation by an element of GLd(k) preserves
the dimension of its centraliser, hence we can also assume that x is in Jordan normal
form. Write x =

⊕p
i=1 J(di, λi) with (d1, . . . , dp) the type of x and a corresponding tuple

(λ1, . . . , λp) of eigenvalues of x. From Lemma 5.4.16 (b) we know that the different Jordan
blocks of x have different eigenvalues, hence the λi are pairwise different. We have

y = f(x) =

p⊕
i=1

f(J(di, λi))

and using Lemma 5.4.16 we get that y is regular if and only if the Jordan normal form of
every matrix f(J(di, λi)) has exactly one Jordan block and that no two matrices f(J(di, λi))
have the same eigenvalue. The first of the two conditions implies that y has the same type
as x. The second condition is equivalent to f(λ) 6= f(µ) for different eigenvalues λ, µ of x,
as f(λi) is the entry on the diagonal of f(J(di, λi)).

It remains to show for di > 1 that the matrix f(J(di, λi)) has exactly one Jordan
block if and only if the derivative of f at λi is non-zero. The Jordan normal form of
f(J(di, λi)) consists of one block if and only if its minimal polynomial equals its charac-
teristic polynomial (T − f(λi))

di . A straightforward computation, using that J(di, 0) is
nilpotent (J(di, 0)di = 0), shows that

(f(J(di, λi))− f(λi)I)di−1 =


0 . . . 0 f ′(λi)

di−1

0
...
0


and hence the minimal and characteristic polynomial coincide if and only if f ′(λi) 6= 0.
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Lemma 5.4.17 gives us a way to compute the number of regular elements in Cgl(x)
when x ∈ gld(k) is regular. In case char k - d the numbers of regular elements in Csl(x)
and Cgl(x) for x ∈ sld(k) are related, as the following lemma shows.

Lemma 5.4.18. Suppose k = Fq, the finite field with q elements, with char k - d. For
every x ∈ sld(k) we have

|{y ∈ Cgl(x) | y is regular in gld(k)}| = q · |{y ∈ Csl(x) | y is regular in sld(k)}|

Proof. Suppose that y ∈ Cgl(x) is regular in gld(k), then for any λ ∈ k the element y + λI
is also regular in gld(k). We have Tr(y+ λI) = Tr(y) + dλ and since char k - d there exists
a unique λ ∈ k such that Tr(y + λI) = 0.

We distinguish five different types of regular elements in gl3(k), with k = Fq, depending
on their type and their eigenvalues. Note that for the extension Fqn/Fq the map α 7→ αq

is a generator of the Galois group Gal(Fqn/Fq).

Type Jordan normal form Eigenvalues

1a

λ µ
π

 λ, µ, π ∈ Fq pairwise distinct

1b

λ λq

µ

 λ ∈ Fq2\Fq and µ ∈ Fq

1c

λ λq

λq
2

 λ ∈ Fq3\Fq

2

λ 1
λ

µ

 λ, µ ∈ Fq different

3

λ 1
λ 1

λ

 λ ∈ Fq

4

λ 1
λ

λ

 λ ∈ Fq

5

λ λ
µ

 λ, µ ∈ Fq different

Table 5.1: List of different types of non-zero elements in gl3(Fq), depending on their Jordan
normal form and their eigenvalues.
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Lemma 5.4.19. Let Fq be the finite field of cardinality q with char Fq 6= 2, 3. Table 5.2
displays for each type of regular element x ∈ sl3(Fq), the number of regular elements in
Csl(x).

Type of x |Csl(x) ∩ {regular}|
1a (q − 1)(q − 2)
1b q2 − q
1c q2 − 1
2 (q − 1)2

3 q2 − q

Table 5.2: For each type of regular element in x ∈ sl3(Fq) we record the number of regular
elements in Csl(x).

Proof. We compute for each type of regular element x ∈ gl3(Fq) the number of regular
elements in Cgl(x), Lemma 5.4.18 then gives the result for sl3(Fq).

For type 1a the centraliser is computed to be{(
a 0 0
0 b 0
0 0 c

)
| a, b, c ∈ Fq

}
.

Any such matrix is regular if and only if it has different elements on the diagonal, hence
there are q(q − 1)(q − 2) such matrices.

For type 1b we use Lemma 5.4.17, so we need to compute the number of quadratic
polynomials f(T ) = aT 2 +bT +c ∈ Fq[T ] such that f(λ), f(λq), f(µ) are pairwise different.
Because α 7→ αq is an element of the Galois group Gal(Fq2/Fq) and µ ∈ Fq is fixed by
any element of Gal(Fq2/Fq), we have f(λ) 6= f(µ) if and only if f(λq) 6= f(µ). Hence
the elements a, b ∈ Fq need to satisfy a(λ + µ) + b, a(λ + λq) + b 6= 0. If a = 0 we get
b 6= 0, giving q(q − 1) polynomials, and if a 6= 0 we find b 6= −a(λ + λq) ∈ Fq, giving
q(q − 1)2 polynomials. In total we find q3 − q2 different polynomials f ∈ Fq[T ] such that
f(λ), f(λq), f(µ) are pairwise different.

For type 1c we use again Lemma 5.4.17, so we need to compute the number of quadratic
polynomials f(T ) = aT 2+bT+c ∈ Fq[T ] such that f(λ), f(λq), f(λq

2
) are pairwise different.

Because α 7→ αq is an element of the Galois group Gal(Fq3/Fq) this is equivalent to

f(λ) 6= f(λq) and that holds if and only if a(λ + λq) + b 6= 0. We have λq
2
/∈ Fq because

λ ∈ Fq3\Fq and hence since λ+ λq + λq
2 ∈ Fq we have λ+ λq /∈ Fq. If a = 0 we get b 6= 0,

giving q(q−1) polynomials, and if a 6= 0 we may choose b, c freely since λ+λq /∈ Fq, giving
q2(q − 1) polynomials. In total we find q3 − q different polynomials f ∈ Fq[T ] such that
f(λ), f(λq), f(λq

2
) are pairwise different.
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For type 2 the centraliser is given by{(
a b 0
0 a 0
0 0 c

)
| a, b, c ∈ Fq

}
.

Clearly we need b 6= 0 and c 6= a, otherwise different Jordan blocks have the same eigen-
value. Under these assumptions the matrix is regular, its minimal polynomial is seen to be
(T −a)2(T −c). It follows that this centraliser contains q(q−1)2 different regular elements.

For type 3 the centraliser is computed to be{(
a b c
0 a b
0 0 a

)
| a, b, c ∈ Fq

}
. (5.26)

Write x for the matrix displayed in (5.26). If b = 0, then the minimal polynomial divides

(T −a)2 and hence x is not regular, and if b 6= 0 we compute (x−aI)2 =
(

0 0 b2
0 0 0
0 0 0

)
, which is

non-zero, so the minimal polynomial doesn’t divide (T − a)2 and hence x is regular. This
shows that this centraliser contains q2(q − 1) different regular elements.

5.5 Properties of rank-1 matrices

Let d > 0 be an integer and k some field. In this section we record some properties of rank 1
matrices in gld(k). We will need them in the next section. For integers m,n > 0 we denote
the transpose of a matrix x ∈ Matmn(k) by xT ∈ Matnm(k) and we write kn = Matn1(k).

Lemma 5.5.1. Let d > 0 be an integer, let k be a field and let x, y ∈ gld(k) be two matrices
of rank 1.

(a) There exist non-zero a, b ∈ kd such that x = abT . Every other non-zero a′, b′ ∈ kd

with x = a′b′T satisfy a′ = λa and b′ = λ−1b for some λ ∈ k∗.

(b) Assume that d ≥ 3. If rank(λI + x) = 1 for some λ ∈ k, then λ = 0.

(c) Assume that d ≥ 3 and let λ, µ ∈ k. If char k - d and λI + x, µI + y ∈ sld(k), then
λI + x, µI + y are linearly dependent in gld(k) if and only if y = cx for some c ∈ k∗.
The latter is equivalent to the row and column spaces of x and y being equal.

(d) If rank(x + y) = 1, then the matrices x and y have the same row space or the same
column space (but not necessarily both).

Proof. For 1 ≤ i ≤ d we write ei ∈ kd for the i-th unit vector.

(a) Let a ∈ kd be an element spanning the 1-dimensional column space of x. For each
1 ≤ i ≤ d let bi ∈ k be the unique scalar such that xei = bia. Define b = (b1, . . . , bd)

T ∈ kd.
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Then we see that x can be written as x = abT . Since x is non-zero so are a, b. Starting
with another a′ ∈ kd, so a′ = λa for some λ ∈ k∗, produces by the formula xei = b′ia

′ an
element b′ = λ−1b.

(b) We have the following inequality,

rank(λI) = rank(λI + x− x) ≤ rank(λI + x) + rank(x) = 2,

and since d ≥ 3 we see that λ = 0.

(c) If λI + x and µI + y are linearly dependent in gld(k), then there exists c ∈ k∗ such
that c(λI + x) = µI + y, i.e. (cλ− µ)I + cx = y. Using part (b), we see that µ = cλ and
hence cx = y. For the other direction, we have dλ+ Tr(x) = dµ+ Tr(y) = 0 and hence

µI + y = −Tr(y)
d
I + y = c(−Tr(x)

d
I + x) = c(λI + x).

(d) Assume that the column spaces of x and y are different. The rank of x + y does not
change under an invertible linear transformation, so after applying an invertible transfor-
mation sending the column spaces of x, y to respectively 〈e1〉 and 〈e2〉, we may assume
that the column spaces of x, y are spanned by respectively e1, e2. By part (a) we can write
x = e1a

T and y = e2b
T for some non-zero a, b ∈ kd. It follows that the row space of x + y

is spanned by aT and bT . Since x+ y has rank 1, the elements a, b are linearly dependent
and hence the row spaces of x and y coincide.

Definition 5.5.2. Let d > 0 be an integer and let k be a field. A rank-1 matrix x ∈ gld(k)
can be written as x = abT for non-zero a, b ∈ kd by Lemma 5.5.1 with uniqueness up to
a multiple by a non-zero scalar. The row space and the column space of x are denoted by
row(x) = 〈a〉, col(x) = 〈b〉 respectively .

Part (b) of Lemma 5.5.1 has the following corollary, which we already saw (under the
assumption char k 6= 2 in Lemma 5.4.12).

Corollary 5.5.3. Let d > 2 be an integer and let k be a field. If λI + x ∈ sld(k) is a toxic
element with λ ∈ k and x a rank-1 matrix, then λ and x are uniquely determined up to a
multiple by a non-zero scalar.

Proof. Suppose λI + x = µI + y with λ, µ ∈ k and x, y ∈ gld(k) two rank 1 matrices, then
(λ − µ)I + x = y and so by part (b) of Lemma 5.5.1 we have λ = µ and consequently
x = y.

174



5.6 Toxic subspaces

Lemma 5.6.1. Let d > 2 be an integer and let k be a field with char k - 2d. The Lie

algebra homomorphism ϕ : gld(k)→ sld(k), x 7→ x− Tr(x)
d
I induces a bijection

{x ∈ gld(k) | rank(x) = 1} 7→ {toxic elements of sld(k)}

x 7→ x− Tr(x)

d
I.

Proof. A straightforward verification shows that ϕ is indeed a Lie algebra homomorphism
with kernel kerϕ = {cI | c ∈ k}. If x ∈ gld(k) has rank 1, then the matrix x satisfies
x2 = Tr(x)x and hence the eigenvalues of x are 0 (with multiplicity at least d − 1) and
Tr(x) (with multiplicity at most 1). Up to conjugation by an element of GLd(k) and up to
multipication by some scalar in k∗ the matrix x is therefore equal to1

0
. . .

 or

0 1
0

. . .

 .

The images of these two matrices under ϕ are of the form as described in Lemma 5.4.12.
Conjugating and multiplying by a non-zero scalar does not change the centraliser dimen-
sion, hence the images are toxic elements in sld(k). Conversely, by part (b) of Lemma 5.4.12
every toxic element in sld(k) is of the form λI + x with λ ∈ k and x ∈ gld(k) a rank 1
matrix. Since dλ + Tr(x) = 0 we see that λI + x = ϕ(x). The injectivity follows from
Corollary 5.5.3.

Definition 5.6.2. Let d > 2 be an integer, let k be a field and let g denote either gld(k) or
sld(k). A non-zero subspace V ⊆ g with every non-zero element being regular (resp. toxic)
is called a regular subspace (resp. toxic subspace) of g.

The next lemma is a key ingredient of Theorem 5.6.4 below.

Lemma 5.6.3. Let d ≥ 3 be an integer, let k be a field with at least three elements and
suppose that char k - d. Write ϕ for the Lie algebra homomorphism of Lemma 5.6.1.
Let V ⊆ sld(k) be a toxic subspace and let x, y ∈ gld(k) be two rank-1 matrices with
ϕ(x), ϕ(y) ∈ V . Then the row spaces of x and y or the column spaces of x and y coincide.

Proof. Assume that the column spaces of x and y are different; without loss of generality
we may assume that they are spanned by e1 and e2 respectively. By Lemma 5.5.1 there
exist a, b ∈ kd such that x = e1a

T and y = e2b
T . For α, β ∈ k we have

ϕ(αx+ βy) = αϕ(x) + βϕ(y) ∈ V.
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Because V is toxic and ϕ induces a bijection between rank-1 matrices and toxic elements
by Lemma 5.6.1, there exists a unique rank-1 matrix z ∈ gld(k) (depending on α, β) such
that ϕ(αx + βy) = ϕ(z) and hence z = tI + αx + βy where t = t(α, β) ∈ k is a scalar
depending also on α, β. Because z has rank 1 all 2× 2-minors of z vanish, in particularly
because d ≥ 3 this gives

t(t+ βb2) = t(t+ αa1) = 0.

If for all α, β 6= 0 we have t 6= 0, then we see that the equation αa1 = βb2 holds for
all α, β 6= 0. Setting α = β = 1 gives a1 = b2 and then α = 1 and β ∈ k\{0, 1} gives
(β − 1)b2 = 0, hence b2 = 0. It follows that t2 = 0 for all α, β 6= 0, a contradiction.
If for some α, β 6= 0 we have t = 0, then z = αx+ βy. By Lemma 5.5.1(d) the row or the
column spaces of αx and of βy coincide and hence, since α, β are non-zero and we assumed
that col(x) 6= col(y), we conclude that the row spaces of x and y are the same.

Theorem 5.6.4. Let d ≥ 3 be an integer, let k be a field with char k - d and let ϕ be the
map from Lemma 5.6.1. For an `-dimensional toxic subspace V ⊆ sld(k) there exist unique
subspaces U,W ⊆ kd with dimU = ` and dimW = 1 such that

V = ϕ(UW T ) or V = ϕ(WUT ),

here ϕ(UW T ) = {uwT | u ∈ U,w ∈ W} and similar for ϕ(WUT ), and consequently we
have ` ≤ d. For 1 ≤ ` ≤ d we have

dim [sld(k), V ] = (d− 1)(`+ 1).

Note that when ` = 1 the second possibility is obsolete, as both spaces U,W have
dimension 1.

Proof. Because dimV = ` there exist by Lemma 5.6.1 ` rank-1 matrices x1, . . . , x` ∈ gld(k)
such that ϕ(x1), . . . , ϕ(x`) form a basis of V . By Lemma 5.6.3 we have for each pair of
integers 1 ≤ i, j ≤ ` with i 6= j that the row spaces or the column spaces of xi and xj
coincide. It follows that x1, . . . , x` all have the same row space or the same column space;
without loss of generality we assume it is the row space.

From Lemma 5.5.1(a) it follows that ` ≤ d. Any element of V is for some ai ∈ k of
the form

∑`
i=1 aiϕ(xi) = ϕ(

∑`
i=1 aixi). Since all xi share the same row space, the rank of∑`

i=1 aixi is at most one. It follows that we must have U =
∑`

i=1 col(xi) and W = row(x1).

Next, we prove the formula for dim[sld(k), V ]. After conjugating with a suitable matrix
from GLd(k) we may assume without loss of generality that V = ϕ(UW T ) where U =
〈e1, . . . , e`〉 ⊆ kd and W = 〈a〉 with a = (a1, . . . , ad) ∈ kd non-zero. Let x = (xij)1≤i,j≤d ∈
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Csl(V ) =
⋂

1≤i≤`Csl(eia
T ) be a matrix with columns c1, . . . , cd ∈ kd. For 1 ≤ i ≤ ` we havea1x1i . . . adx1i

...
...

a1xdi . . . adxdi

 = cia
T = xeia

T = eia
Tx = ei(a

T c1, . . . , a
T cd) =

aT c1 . . . aT cd

 ,

in the matrix on the right we have displayed the i-th row and all other entries of this
matrix are zero. For fixed 1 ≤ i ≤ ` it follows that xmi = 0 for every m 6= i and
ajxii = aT cj for all 1 ≤ j ≤ d. Let j be such that aj 6= 0, then for any 1 ≤ i ≤ ` we have
ajx11 = aT cj = ajxii and hence x11 = xii, showing that x11 = . . . = x``. So x ∈ Csl(V ) is
equivalent to the columns of x satisfying the following conditions: for 1 ≤ i ≤ ` we have
ci = x11ei, for `+ 1 ≤ i ≤ d we have aix11 = aT ci, a non-trivial linear dependency between
x11, x1i, . . . , xdi, and Tr(x) = 0. Consequently, the dimension of Csl(V ) is given by

dimCsl(V ) = 1 + (d− `)(d− 1)− 1 = (d− `)(d− 1)

and therefore by Lemma 5.4.2 we have

dim[sld(k), V ] = dimCsl(V )⊥ = dim sld(k)− dimCsl(V )

= d2 − 1− (d− 1)(d− `) = (d− 1)(`+ 1).

Let 0 6= a = (a1, . . . , ad) ∈ kd, let U ⊆ kd with dimU = ` and W = k · a be subspaces
of sld(k). The space V = ϕ(UW T ) is an example of a toxic `-dimensional space. Namely,
UW T is a subspace of gld(k) in which every element has rank 1, by Lemma 5.6.1 every
non-zero element in ϕ(V ) is toxic.

5.6.1 On the identity [sld(k), [sld(k), x]] = sld(k)

In this section we will prove the following theorem.

Theorem 5.6.5. Let d > 1 be an integer and let k be a field satisfying char k - d. For the
Lie algebra g = sld(k) we have the identity

[g, [g, x]] = g

for all non-zero x ∈ g, except when char k = 2 and x2 = 0 in which case we have

[g, [g, [g, x]]] = g.

Remark 5.6.6. The assumption that char k - d is necessary for the statement of Theo-
rem 5.6.5 to hold for all elements of sld(k). For example, if char k | d, then taking the
identity element I ∈ sld(k) we see that [sld(k), I] = 0 and hence [sld(k), [sld(k), I]] = 0 as
well. In case char k = 2 the statement of Theorem 5.6.5 also holds for almost all elements
of sld(k), see Proposition 5.6.12 for more details. In any case we need to take the bracket
at least twice by Lemma 5.4.2.
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Lemma 5.6.7. Let d > 1 be an integer and let k be a field satisfying char k - d. For any
element x ∈ sld(k) we have [sld(k), [sld(k), x]] = sld(k) if and only if

Cgl(Cgl(x)⊥) = k · I (5.27)

and similarly [sld(k), [sld(k), [sld(k), x]]] = sld(k) if and only if Cgl(Cgl(Cgl(x)⊥)⊥) = k · I.

Proof. Because char k - d, the trace form is non-degenerate on sld(k). Let x ∈ sld(k).
Using Lemma 5.4.2, the identity [sld(k), [sld(k), x]] = sld(k) is equivalent to

Csl(Csl(x)⊥) = 0. (5.28)

We will show that the statements (5.28) and (5.27) are equivalent. The trace form on gld(k)
restricts to a non-degenerate form on sld(k) (because char k - d). Using that Csl(x) =
sld(k) ∩ Cgl(x) for x ∈ sld(k), we see that inside gld(k) the statement (5.28) is equivalent
to

sld(k) ∩ Cgl(sld(k) ∩ (sld(k) ∩ Cgl(x))⊥) = 0. (5.29)

Because char k - d we have for x ∈ sld(k) that

Cgl(x) = k · I ⊕ Csl(x) and (k · I)⊥ = sld(k),

and hence

Cgl(x)⊥ = (k · I ⊕ Csl(x))⊥ = (k · I)⊥ ∩ Csl(x)⊥

= sld(k) ∩ (sld(k) ∩ Cgl(x))⊥.

It follows that (5.29), and hence (5.28), is equivalent to

sld(k) ∩ Cgl(Cgl(x)⊥) = 0. (5.30)

Since I /∈ sld(k) it is clear that (5.27) implies (5.30). Conversely, if (5.30) holds, then
combining this with gld(k) = k · I ⊕ sld(k) and k · I ⊆ Cgl(Cgl(x)⊥), it follows that (5.27)
holds. The second part of Lemma 5.6.7 can be proved in an analogous way.

The next two lemmas contain some well-known results or straightforward verifiable
statements. Consequently, we do not provide a proof. We need the two lemmas for the
proof of Theorem 5.6.5.

Lemma 5.6.8. Let d ∈ N be a positive integer and let k be a field. Write emn ∈ gld(k) for
the elementary matrix with an entry 1 in position (m,n) and all other entries equal to 0.
We have x = (xij) ∈ Cgl(emn) if and only if xn` = 0 for all ` 6= n, x`m = 0 for all ` 6= m
and xmm = xnn.
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Remark 5.6.9. The second part of Lemma 5.6.8 can be rephrased as: all entries in the
n-th row and the m-th column of x, except for the entries on the diagonal, are zero and
the m-th and n-th entry on the diagonal are equal.

Lemma 5.6.10. Let m,n ∈ N be positive integers and let k be a field. Let a ∈ glm(k), b ∈
gln(k) be two Jordan blocks and suppose that x = (xi,j) ∈ Matmn(k) satisfies ax = xb. If

(a) a and b have different eigenvalues, then x = 0;

(b) a and b have the same eigenvalues and m ≥ n, then xi,j = 0 if j < i and xi,j = xi+1,j+1

for i ≤ j with 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.

(c) a and b have the same eigenvalues and m < n, then xi,j = 0 if j ≤ i and xi,j = xi+1,j+1

for i < j with 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.

Remark 5.6.11. The second part of Lemma 5.6.8 (b) can be rephrased as: all entries
below the diagonal of x are zero and on every off diagonal (including the diagonal itself)
the entries are equal.

In the next proposition we prove an identity, from which the statements in Lemma 5.6.7
and hence Theorem 5.6.5 follow.

Proposition 5.6.12. Let d > 1 be an integer and let k be a field with char k - d. For
x ∈ gld(k) with x /∈ k · I the identity

Cgl(Cgl(x)⊥) = k · I (5.31)

holds, except if in the case where x has one eigenvalue λ with (x−λI)2 = 0 and char k = 2.
In the latter case we have Cgl(Cgl(x)⊥) = k · I ⊕ k · x and Cgl(Cgl(Cgl(x)⊥)⊥) = k · I.

Proof. The inclusion “⊇” clearly holds, so it remains to prove the other direction. The
space Cgl(Cgl(x))⊥ is a vector space defined over k, so it is enough to prove the identity
in (5.31) for algebraically closed fields k (the dimension of Cgl(Cgl(x))⊥ doesn’t change,
when extending scalars to a field extension of k). So without loss of generality assume that
k is algebraically closed. For g ∈ GLd(k) we have

Cgl(Cgl(gxg
−1))⊥ = gCgl(Cgl(x))⊥g−1

and hence we may also assume without loss of generality that x is in Jordan normal form.
The proof is now divided into two parts, depending on whether x has one single eigenvalue
or at least two different eigenvalues.

First, assume that x has at least two different eigenvalues. Let a ∈ glm(k), b ∈ gln(k) be
two square matrices in Jordan normal form without a common eigenvalue, write x = ( a O

O b ).
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By Lemma 5.6.10(a) the Jordan blocks (of possible different sizes) with different eigenvalues
do not commute. Therefore

Cgl(x) =
(
Cgl(a) O

O Cgl(b)

)
For a′ ∈ Cgl(a), b′ ∈ Cgl(b) and arbitrary y ∈ Matmn(k), z ∈ Matnm(k), we have

Tr
((

a′ O
O b′

) (
O y
z O

))
= Tr

(
O a′y
b′z O

)
= 0

and hence ( O ∗∗ O ) ⊆ Cgl(x)⊥. This gives Cgl(Cgl(x)⊥) ⊆ Cgl ( O ∗∗ O ) = k · I, the latter equality
follows from applying Lemma 5.6.8.

Next, assume that x has only a single eigenvalue and that the Jordan blocks of x appear
in descending order (the largest Jordan block appears in the upper left corner). Write e
for the size of the largest Jordan block of x and ` for the number of Jordan blocks of x of
size e. Then e > 1 because x is not a scalar multiple of the identity I. Define the sets

T = {1 + e(m− 1) | 1 ≤ m ≤ `} and S = {1, 2. . . . , d}\T.

Let y = (yij) ∈ Cgl(x) be some element in the centraliser of x, then by using Lemma 5.6.10
we find that yi1 = 0 for all i ∈ S, yi−1,i = 0 for all 1 6= i ∈ T , yii = yi+1,i+1 for all i ∈ T and
in case e ≥ 3 we also find yi,i+1 = yi+1,i+2 for all i ∈ T . Consequently, for i ∈ S we have

Tr(ye1i) = 0

and hence, since y was an arbitrary element of Cgl(x), we get that e1i ∈ Cgl(x)⊥ for all
i ∈ S. Analogously we find ei,i−1 ∈ Cgl(x)⊥ for 1 6= i ∈ T . Moreover, for i ∈ T we compute

Tr((eii − ei+1,i+1)y) = yii − yi+1,i+1 = 0

and hence eii − ei+1,i+1 ∈ Cgl(x)⊥, since y ∈ Cgl(x)⊥ was arbitrary. When e ≥ 3 we find in
a similar way that ei+1,i − ei+2,i+1 ∈ Cgl(x)⊥ for all i ∈ T .

Let z = (zij) ∈ Cgl(Cgl(x)⊥) be some element. Because e1i ∈ Cgl(x)⊥ for i ∈ S, the
element z satisfies z11 = zii for all i ∈ S and for each i ∈ S all entries, except for the entry
on the diagonal, in row i of z are zero. Because ei,i−1 ∈ Cgl(x)⊥ for 1 6= i ∈ T , the element
z satisfies zii = zi−1,i−1 for all 1 6= i ∈ T . Since e > 1 we have i − 1 ∈ S if 1 6= i ∈ T , it
follows that all entries on the diagonal of z are equal.

Because eii− ei+1,i+1 ∈ Cgl(x)⊥ for i ∈ T , we have in case char k 6= 2 that all entries in
row i of z, except for the entry on the diagonal, are zero for all i ∈ T . This proves that z is a
multiple of the identity matrix in case char k 6= 2. If char k = 2, then eii−ei+1,i+1 ∈ Cgl(x)⊥

shows that for any i ∈ T we have zij = 0 with j /∈ {i, i+ 1}.

Assume e ≥ 3, we will show that zi,i+1 = 0 for all i ∈ T . We showed above that
ei+1,i − ei+2,i+1 ∈ Cgl(x)⊥ for all i ∈ T , so z satisfies the equation

(ei+1,i − ei+2,i+1)z = z(ei+1,i − ei+2,i+1)
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for i ∈ T . Looking at the (i, i)-th entry on both sides of this equation, we see that 0 = zi,i+1

holds for i ∈ T . This proves that z is a multiple of the identity matrix.

In case char k = 2 and e = 2 it remains to show, that we have Cgl(Cgl(x)⊥) 6= k · I, but
Cgl(Cgl(Cgl(x)⊥)⊥) = k · I. We will do this with an explicit calculation. Recall that ` is
the number of Jordan blocks of size 2 and write m ≥ 0 for the number of Jordan blocks of
size 1. We then have 2` + m = d and hence m is odd, because 2 = char k - d. If λ is the
single eigenvalue of x, then the assumption e = 2 is equivalent to (x− λI)2 = 0. Without
loss of generality we may assume that zero is the only eigenvalue of x. Write J = ( 0 1

0 ) and
C(J) = {( a b0 a ) | a, b ∈ k} , so x = diag(J, . . . , J, 0, . . . , 0) ∈ gld(k) (with J , 0 appearing `,
respectively m times). The centraliser Cgl(x) is given by

Cgl(x) =


C(J) . . . C(J) ∗1m

01m
...

. . .
...

...
C(J) . . . C(J) ∗1m

01m

0m1 ∗m1 . . . 0m1 ∗m1 ∗mm


with 0ij denoting the zero matrix in ∗ij = Matij(k) (∗11 = ∗). Computing Cgl(x)⊥ gives

Cgl(x)⊥ =


C(J) . . . C(J) ∗1m

01m
...

. . .
...

...
C(J) . . . C(J) ∗1m

01m

0m1 ∗m1 . . . 0m1 ∗m1 0mm


and with a bit of effort, we find that Cgl(Cgl(x)⊥) is given by

Cgl(Cgl(x)⊥) = k · I ⊕ k · x
From here onward it is a straightforward computation to see that Cgl(Cgl(Cgl(x)⊥)⊥) = k ·I.
We can also do this without an explicit computation. Note that d > 2, since e = 2 and 2 - d.
Write V = k · I ⊕ k · x, then dimV = 2 and hence dimV ⊥ = dim gld(k)− dimV = d2 − 2.
Because d2 − 2 > (d − 1)2 + 1 for d > 2 we have V ⊥ ( Cgl(w) for all w ∈ gld(k) not a
multiple of the identity. This implies that Cgl(V

⊥) = k · I.

Example 5.6.13. Let k be a field and for some λ ∈ k let x ∈ gl9(k) be the matrix

x =



λ 1
λ 1

λ
λ 1

λ 1
λ

λ 1
λ

λ


.
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The centraliser Cgl(x) is given by all matrices in gl9(k) of the form

c1 c2 c3 c4 c5 c6 c7 c8 c9

c1 c2 c4 c5 c7

c1 c4

c10 c11 c12 c13 c14 c15 c16 c17 c18

c10 c11 c13 c14 c16

c10 c13

c19 c20 c21 c22 c23 c24 c25

c19 c21 c23

c26 c27 c28 c29


with ci ∈ k and all other entries are zero. Consequently, Cgl(x)⊥ is consists of all matrices
in gl9(k) of the form 

a0 ∗ ∗ a3 ∗ ∗ ∗ ∗ ∗
b1 a1 ∗ b2 a4 ∗ b3 ∗ ∗
0 −b1 a2 0 −b2 a5 0 −b3 0
a6 ∗ ∗ a9 ∗ ∗ ∗ ∗ ∗
b4 a7 ∗ b5 a10 ∗ b6 ∗ ∗
0 −b4 a8 0 −b5 a11 0 −b6 0
b7 ∗ ∗ b8 ∗ ∗ b9 ∗ ∗
0 −b7 ∗ 0 −b8 ∗ 0 −b9 0
0 ∗ ∗ 0 ∗ ∗ 0 ∗ 0


with ai, bj ∈ k satisfying a3k + a1+3k + a2+3k = 0 for k ∈ {0, 1, 2, 3} and a “∗” means that
that entry can be chosen independently of all other entries.

5.6.2 On subspaces of sl3(k) containing no regular elements

Theorem 5.6.4 has the following important corollary.

Corollary 5.6.14. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. There

are
(

3
1

)2

q
= (q2 + q + 1)2 1-dimensional toxic subspaces of sl3(Fq).

Proof. Write ϕ for the map gl3(Fq) → sl3(Fq) : x 7→ x − Tr(x)
3
I. For a 1-dimensional

toxic subspace V of sl3(Fq) there exists by Theorem 5.6.4 a unique pair of 1-dimensional
subspaces U,W ⊆ F3

q such that

V = ϕ(UW T ).

The number of 1-dimensional subspaces of F3
q equals

(
3
1

)
q

= q2 + q + 1 and hence the

statement of the corollary follows.
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5.6.3 On subspaces of sl3(k) containing a regular element

Let k be a field with char k /∈ {2, 3}. We continue with our analysis of the behaviour of the
map V 7→ [sl3(k), V ] for non-zero subspaces V ⊆ sl3(k). Theorem 5.6.4 covers the non-zero
subspaces of sl3(k) having no regular elements (i.e. all elements are toxic). We therefore
switch our attention to the case of subspaces of sl3(k) containig a regular element.

Lemma 5.6.15. Let k be a field with char k /∈ {2, 3} and let V ⊆ sl3(k) be a subspace with
dimV ≥ 2 and containing a regular element. We have

dim [sl3(k), V ] = 6

if and only if V = Csl(x) for some regular element x ∈ sl3(k) (and hence dimV = 2).

Proof. Suppose first that dim [sl3(k), V ] = 6, then by Lemma 5.4.2 we have

dimCsl(V ) = dim sl3(k)− dim [sl3(k), V ] = 8− 6 = 2.

Let x ∈ V be regular (i.e. dimCsl(x) = 2). Then Csl(V ) ⊆ Csl(x) implies Csl(V ) = Csl(x).
It follows that x commutes with every element of V , so V ⊆ Csl(x) and since dimV ≥ 2
we find that V = Csl(x), so in fact this forces dim V = 2. For the other direction assume
that V = Csl(x) for some regular element x ∈ sl3(k). Recall from Theorem 5.4.4 that
Csl(Csl(x)) = k[x] ∩ sl3(k) is two-dimensional. Together with Lemma 5.4.2 we find

dim [sl3(k), V ] = dimCsl(V )⊥ = dimCsl(Csl(x))⊥

= dim sl3(k)− dimCsl(Csl(x)) = 8− 2 = 6.

Lemma 5.6.16. Let k be a field with char k /∈ {2, 3} and let V ⊆ sl3(k) be subspace with
dimV ≥ 3. We have dim [sl3(k), V ] ∈ {7, 8}.

Proof. If V does not contain a regular element, then by Theorem 5.6.4 we have that
dimV = 3 and dim [sl3(k), V ] = 8. When V contains a regular element, x ∈ sl3(k)
say, then clearly [sl3(k), x] ⊆ [sl3(k), V ]. Because x is regular we have dim[sl3(k), x] = 6
by Lemma 5.4.2 and hence dim [sl3(k), V ] ≥ 6. Equality cannot hold by Lemma 5.6.15,
because dimV = 3. It follows that dim[sl3(k), V ] ≥ 7.

Lemma 5.6.17. Let k be a field with char k /∈ {2, 3} and let V ⊆ sl3(k) be subspace with
dim [sl3(k), V ] = 7. Then we have V ⊆ Csl(U) for some unique one-dimensional toxic
subspace U ⊆ sl3(k).

In other words, up to multiplication by a non-zero scalar in k there exists a unique
toxic element x ∈ sl3(k) with V ⊆ Csl(x).
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Proof. By Lemma 5.4.8 there exists a non-zero element x ∈ sl3(k) with V ⊆ Csl(x).
If x is regular, then Csl(x) is two dimensional. So V is one-dimensional, in which case
dim [sl3(k), V ] ∈ {4, 6}, or V = Csl(x), in which case dim [sl3(k), V ] = 6 by Lemma 5.6.15.
In either case we get a contradiction with the assumption dim [sl3(k), V ] = 7, it follows
that x must be toxic. Conversely, if V ⊆ Csl(U) for some unique one-dimensional toxic
subspace U = k · x ⊆ sl3(k), then this implies

k · x = k[x] ∩ sl3(k) = Csl(Csl(x)) ⊆ Csl(V ),

using that x is toxic for the first equality and Theorem 5.4.4 for the second equality. From
dim [sl3(k), V ] = 7 it follows by Lemma 5.4.2 that dimCsl(V ) = 1 and hence Csl(V ) =
k · x = U .

5.6.4 Calculations in sl3(Fq)

We record here a few helpful results.

Lemma 5.6.18. Let Fq be the finite field with q elements with char Fq /∈ {2, 3}. The
number of different subspaces of sl3(Fq) of the form Csl(x) with x ∈ sl3(Fq)

• toxic and nilpotent is (q2 + q + 1)(q + 1);

• toxic and non-nilpotent is (q2 + q + 1)q2.

Proof. Let x, y ∈ sl3(Fq) be two toxic elements satisfying Csl(x) = Csl(y). Using Theo-
rem 5.4.4 we see that Fq[x]∩ sl3(Fq) = Fq[y]∩ sl3(Fq). From the (proof of) Lemma 5.4.12
we see that the minimal polynomials of x and y have degree 2. It follows that x and y
span the same subspace of sl3(Fq) because I /∈ sl3(Fq). This shows that

|{Csl(x) | x ∈ sl3(Fq) toxic and nilpotent}| = |{Fq · x | x ∈ sl3(Fq) toxic and nilpotent}|
(5.32)

and similar for case of toxic and non-nilpotent.

By Lemma 5.4.12 any toxic and nilpotent element of sl3(Fq) is GL3(Fq)-conjugate to

n =
(

0 0 1
0 0 0
0 0 0

)
. Hence the right-hand side of equation (5.32) times q−1 equals the size of the

orbit of n under the conjugation action of GL3(Fq) on sl3(Fq). The stabiliser of n under
this action equals {(

a b c
d e
a

)
| a, d ∈ F∗q and b, c, e ∈ Fq

}
.

By the orbit stabiliser theorem we can compute the size of the orbit of n under GL3(Fq),
it is equal to

|GL3(Fq)|
(q − 1)2q3

= (q2 + q + 1)(q2 − 1)
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and hence there are (q2 + q + 1)(q + 1) subspaces of the form Csl(x) with x toxic and
nilpotent.

If x ∈ sl3(Fq) is toxic and non-nilpotent, then by Lemma 5.4.12 the element x is

GL3(Fq)-conjugate to λn′ for some unique λ ∈ F∗q, where n′ =
(
−2 0 0
0 1 0
0 0 1

)
. It follows that

|{Csl(x) | x ∈ sl3(Fq) toxic and non-nilpotent}|

equals the size of the orbit of n′ under the conjugation action of GL3(Fq) on sl3(Fq). The
stabliser of n′ under this action equals(

F∗q
GL2(Fq)

)
.

Using the orbit stabiliser theorem, we conclude that there are

|GL3(Fq)|
(q − 1)|GL2(Fq)|

= (q2 + q + 1)q2

subspaces of the form Csl(x) with x toxic and non-nilpotent.

Remark 5.6.19. As a sanity check the lemma shows that there are (q2 +q+1)2 subspaces
in sl3(Fq) of the form Csl(x) with x toxic. This is also the conclusion of Corollary 5.6.14.

Lemma 5.6.20. Let Fq be the finite field with q elements and satisfying char Fq 6= 3.
The number of elements in sl3(Fq) of type 1 to 5 is displayed in Table 5.3. The number
of one-dimensional subspaces of sl3(Fq) containing an element of a certain type, can be
obtained by dividing the corresponding entry in Table 5.3 by q − 1.

Type |sl3(Fq) ∩ {Type}|
1 q8 − q7 − q6 + q4

2 q2(q3 − 1)(q2 − 1)
3 (q3 − 1)(q3 − q)
4 (q3 − 1)(q + 1)
5 q2(q3 − 1)

Table 5.3: Number of elements in sl3(Fq) of each type.

Proof. Let x ∈ sl3(Fq) be an element of type 2, 3, 4 or 5. Then all eigenvalues of x are
in Fq. So x is conjugate, by an element of G = GL3(Fq), to the Jordan normal form
displayed in Table 5.1. The group GL3(Fq) acts through conjugation on sl3(Fq) and hence
the number of elements in sl3(Fq) with a fixed Jordan normal form z from Table 5.1 equals
the size of the orbit OrbG(z) of z under this action. By the orbit stabiliser theorem the size
of this orbit equals the index of the stabiliser StabG(z) of z in GL3(Fq). Compare to this
table to [2, Ap. B]. This gives us a recipe to compute the size of the orbit. We consider
the cases of type 2, 3, 4 and 5 separately.
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• Type 2. Fix λ ∈ F∗q, then our element z is given by

z =
(
λ 1
λ
−2λ

)
and StabG(z) =

{(
a c
a
b

)
| a, b ∈ F∗q, c ∈ Fq

}
with −2λ 6= λ since char Fq 6= 3. It follows that

|OrbG(z)| = |GL3(Fq)|
|StabG(z)|

=
(q3 − 1)(q3 − q)(q3 − q2)

(q − 1)2q
= q2(q3 − 1)(q + 1)

and consequently, since there are q − 1 choices for λ, there are q2(q3 − 1)(q2 − 1)
elements of type 2.

• Type 3. Since z ∈ sl3(Fq) with char Fq 6= 3 this forces λ = 0, so z is given by

z =
(

0 1
0 1

0

)
and StabG(z) =

{(
a b c
a b
a

)
| a ∈ F∗q, b, c ∈ Fq

}
.

It follows that

|OrbG(z)| = |GL3(Fq)|
|StabG(z)|

=
(q3 − 1)(q3 − q)(q3 − q2)

(q − 1)q2
= (q3 − 1)(q3 − q)

and hence there are (q3 − 1)(q3 − q) elements of type 3.

• Type 4. Since z ∈ sl3(Fq) with char Fq 6= 3 this forces λ = 0, so z is given by

z =
(

0 0 1
0
0

)
and StabG(z) =

{(
a c e
b d
a

)
| a, b ∈ F∗q, c, d, e ∈ Fq

}
.

It follows that

|OrbG(z)| = |GL3(Fq)|
|StabG(z)|

=
(q3 − 1)(q3 − q)(q3 − q2)

(q − 1)2q3
= (q3 − 1)(q + 1)

and hence there are (q3 − 1)(q + 1) elements of type 4.

• Type 5. Fix λ ∈ F∗q, then our element z is given by

z =
(
λ
λ
−2λ

)
and StabG(z) =

(
GL2(Fq)

F∗q

)
with −2λ 6= λ since char Fq 6= 3. It follows that

|OrbG(z)| = |GL3(Fq)|
|StabG(z)|

=
(q3 − 1)(q3 − q)(q3 − q2)

(q2 − 1)(q2 − q)(q − 1)
= q2(q2 + q + 1)

and consequently, since there are q− 1 choices for λ, there are q2(q3− 1) elements of
type 5.
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The number of elements of type 1 is obtained as the difference between q8 − 1 and the
number of elements of type 2, 3, 4 and 5.

Lemma 5.6.21. Let k be a field with char k /∈ {2, 3} and x ∈ sl3(k) a non-zero element.
We have x ∈ [sl3(k), x] if and only if x is of type 3 or 4.

Proof. Assume x ∈ [sl3(k), x] = Csl(x)⊥ then B(x,Csl(x)) = 0 and because x ∈ Csl(x) we
get Tr(x2) = B(x, x) = 0. This is already enough to rule out some types. For type 2
and 5 the eigenvalues of x are λ (multiplicity 2) and −2λ for some λ ∈ k∗. So Tr(x2) =
λ2 + λ2 + (−2λ)2 = 6λ2, which is non-zero because λ 6= 0 and char k /∈ {2, 3}. Hence x is
not of type 2 or 5. Next we show that x is not of type 1 either. Without loss of generality
we may assume that k is algebraically closed. Let x be an element of type 1 and after
conjugation we may assume that x is in diagonal form, then by Lemma 5.4.2

[sl3(k), x] = Csl(x)⊥ =
(
∗
∗
∗

)⊥
=
(

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

)
and hence x /∈ [sl3(k), x]. Finally, we will show that if x ∈ sl3(k) is of type 3 or 4, then
we do have x ∈ [sl3(k), x]. Without loss of generality we may assume that x is in Jordan

normal form. So if x is of type 3, then x =
(

0 1
0 1

0

)
and hence by Lemma 5.4.2 we have

[sl3(k), x] = Csl(x)⊥ =
{(

0 a b
0 a

0

)
| a, b ∈ k

}⊥
=
{( ∗ ∗ ∗

a ∗ ∗
0 −a ∗

)
| a ∈ k

}
∩ sl3(k).

Clearly in this case we have x ∈ [sl3(k), x]. If x is of type 4, then we only need to consider

x =
(

0 0 1
0
0

)
and hence by Lemma 5.4.2 we have

[sl3(k), x] = Csl(x)⊥ =
{(

a ∗ ∗
−2a ∗

a

)
| a ∈ k

}⊥
=
{(

a ∗ ∗
∗
−a

)
| a ∈ k

}
∩ sl3(k),

using that char k - 3. Again it is clear that x ∈ [sl3(k), x].

The case dimV = 1

For δK ∈ {0, 1} and one-dimensional subspaces V ⊆ sld(Fq) we investigate the map

V 7→ δKV + [sl3(Fq), V ].

Lemma 5.6.22. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. Let
V ⊆ sl3(Fq) be a one-dimensional subspace.

(a) We then have

dim [sl3(Fq), V ] ∈ {4, 6} and dimV + [sl3(Fq), V ] ∈ {4, 5, 6, 7}.
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(b) Write ` = dim [sl3(Fq), V ], then if

• ` = 4, we have (q2 + q + 1)2 such subspaces V ;

• ` = 6, we have
(

8
1

)
q
− (q2 + q + 1)2 such subspaces V .

(c) Write ` = dimV + [sl3(Fq), V ]. Then if

• ` = 4, we have (q2 + q + 1)(q + 1) such subspaces V ;

• ` = 5, we have (q2 + q + 1)q2 such subspaces V ;

• ` = 6, we have (q3 − 1)(q2 + q) such subspaces V ;

• ` = 7, we have q7 + q6 − q4 − q3 − q2 such subspaces V .

Proof. Let x ∈ sl3(Fq) be a non-zero element and write V = Fq ·x for the subspace spanned
by x. Recall that dimCsl(x) equals 2 or 4 if and only if x is regular, respectively toxic.
From Lemma 5.4.2 it follows that

dim [sl3(Fq), x] = dim Csl(x)⊥ = 8− dimCsl(x)

and hence dim [sl3(Fq), V ] equals 6, respectively 4 if and only if V contains a regular,
respectively toxic element. If follows from Lemma 5.6.20 that there are (q2 + q + 1)2,
respectively

(
8
1

)
q
− (q2 + q + 1)2 one-dimensional toxic, respectively regular, subspaces of

sl3(Fq). Note that the number of one-dimensional subspaces of sl3(Fq) equals
(

8
1

)
q
, see also

Chapter 2.

Because V is one-dimensional, we have

dimV + [sl3(Fq), V ] = 1 + dim [sl3(Fq), V ]

if V * [sl3(Fq), V ] and

dimV + [sl3(Fq), V ] = dim [sl3(Fq), V ]

if V ⊆ [sl3(Fq), V ]. We know from Lemma 5.6.21 that V ⊆ [sl3(Fq), V ] if and only if x is
of type 3 or 4. Combining the above with Table 5.3 and the fact that x is regular if and
only x is of type 1, 2 or 3, implies part (c). In particular ` = 4 if x is of type 4, ` = 5 if x
is of type 5, ` = 6 if x is of type 3 and ` = 7 if x is of type 1 or 2.

The case dimV = 2

For δK ∈ {0, 1} and two-dimensional subspaces V ⊆ sld(Fq) we investigate the map

V 7→ δKV + [sl3(Fq), V ].

The first lemma deals with the case of a two-dimensional toxic subspace.
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Lemma 5.6.23. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. Let
V ⊆ sl3(Fq) be a two-dimensional toxic subspace.

(a) We then have

dim [sl3(Fq), V ] = 6 and dimV + [sl3(Fq), V ] ∈ {6, 7}.

(b) There are 2(q2 + q + 1)2 such subspaces V with dim [sl3(Fq), V ] = 6.

(c) Write ` = dimV + [sl3(Fq), V ], then if

• ` = 6, we have 2(q2 + q + 1) such subspaces V ;

• ` = 7, we have 2(q2 + q + 1)(q2 + q) such subspaces V .

Proof. The first statement of part (a) follows immediately from Theorem 5.6.4. The same
theorem also shows that V = ϕ(UW T ) or V = ϕ(WUT ) for unique subspaces U,W ⊆ F3

q

with dimU = 2, dimW = 1; here ϕ is the map gl3(Fq) → sl3(Fq), x 7→ x − Tr(x)
3
I. There

are
(

3
2

)
q

=
(

3
1

)
q

= q2 + q + 1 choices for U and W , it follows that there are 2(q2 + q + 1)2

two-dimensional toxic subspaces V satisfying dim [sl3(Fq), V ] = 6.

Without loss of generality we may assume that V = ϕ(UW T ) and, after conjugating
with a suitable element g ∈ GL3(Fq) satisfying gU = 〈e1, e2〉, we may further assume that
U = 〈e1, e2〉 = Fq · e1⊕Fq · e2. Write W = Fq · x for some 0 6= x = (x1, x2, x3)T ∈ F3

q, then
V is given by

V = Fq ·
(

2x1 3x2 3x3
0 −x1 0
0 0 −x1

)
+ Fq ·

( −x2 0 0
3x1 2x2 3x3
0 0 −x2

)
. (5.33)

By calculating the bracket [y, z] explicitly for all basis elements y ∈ sl3(Fq) and the two
matrices in (5.33), we see that [sl3(Fq), V ] is given by

[sl3(Fq), V ] =
(

0 ∗ ∗
∗ 0 ∗
0 0 0

)
+ Fq ·

(
1 0 0
0 −1 0
0 0 0

)
+ Fq ·

( −x3 0 0
0 0 0
x1 x2 x3

)
and hence that

V +[sl3(Fq), V ] =
(

0 ∗ ∗
∗ 0 ∗
0 0 0

)
+Fq ·

(
1 0 0
0 −1 0
0 0 0

)
+Fq ·

( −x3 0 0
0 0 0
x1 x2 x3

)
+Fq ·

(
0 0 0
0 x1 0
0 0 −x1

)
+Fq ·

(
0 0 0
0 x2 0
0 0 −x2

)
.

It follows that

(V + [sl3(Fq), V ]) /[sl3(Fq), V ] ∼= Fq ·
(

0 0 0
0 x1 0
0 0 −x1

)
+ Fq ·

(
0 0 0
0 x2 0
0 0 −x2

)
and hence we have dimV + [sl3(Fq), V ] = 6 if x1 = x2 = 0 and dimV + [sl3(Fq), V ] = 7
otherwise.

The above computation shows, after fixing a two-dimensional space U ⊆ F3
q, that

there exists a unique one-dimensional space W ⊆ F3
q for which the two-dimensional toxic
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subspace V = ϕ(UW T ) satisfies dimV + [sl3(Fq), V ] = 6. A similar statement holds for
V = ϕ(WUT ). There are

(
3
2

)
q

= q2 + q + 1 choices for a subspace U ⊆ F3
q, hence there are

2(q2+q+1) two-dimensional toxic subspaces V ⊆ sl3(Fq) satisfying dimV+[sl3(Fq), V ] = 7.
Consequently, there are 2(q2 + q+ 1)(q2 + q) two-dimensional toxic subspaces V ⊆ sl3(Fq)
satisfying dimV + [sl3(Fq), V ] = 6.

Lemma 5.6.24. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. Let
V ⊆ sl3(Fq) be a two-dimensional subspace containing a regular element and satisfying
dim[sl3(Fq), V ] = 6. Then V = Csl(x) for some regular x ∈ sl3(Fq) (i.e. x is of type 1, 2
or 3).

(a) If x is of type

• 1a, then there are 1
6
(q2 + q + 1)(q + 1)q3 such subspaces V ;

• 1b, then there are 1
2
(q3 − 1)q3 such subspaces V ;

• 1c, then there are 1
3
(q + 1)(q − 1)2q3 such subspaces V ;

• 2, then there are (q2 + q + 1)(q + 1)q2 such subspaces V ;

• 3, then there are (q3 − 1)(q + 1) such subspaces V ;

(b) Write ` = dimV + [sl3(Fq), V ]; then if x is of type

• 3, then ` = 6 and we have (q3 − 1)(q + 1) such subspaces V ;

• 2, then ` = 7 and we have (q2 + q + 1)(q + 1)q2 such subspaces V ;

• 1, then ` = 8.

Proof. That V is of the form Csl(x) for some regular x ∈ sl3(Fq) is the statement of
Lemma 5.6.15. Suppose x has type i, then x gives rise to the centraliser Csl(x). Of course,
there are other elements of type i giving rise to the same centraliser Csl(x). For each i
this number is recorded in Table 5.2. So dividing the total number of elements in sl3(Fq)
of type i by the corresponding entry in Table 5.2 gives the total number of spaces of the
form Csl(x) with x of type i. Table 5.4 lists for each type the number of orbits under the
conjugation action of GL3(Fq) on sl3(Fq) and the size of each orbit. This table is Table
7.1 in [2]. The content of this table can also be derived by the theory established in this
chapter. Doing this explicitly results in part (a).

For part (b) we only need to show that, when x is of type 3, 2 or 1, that ` equals 6, 7
or 8 respectively. The rest follows from part (a). Suppose x is of type 3, then without loss

of generality x =
(

0 1
0 1

0

)
and hence{(

0 a b
0 a

0

)
| a, b ∈ k

}
= Csl(x) ⊆ [sl3(k), Csl(x)] = (Fq · x)⊥ =

{( ∗ ∗ ∗
a ∗ ∗
0 −a ∗

)
| a ∈ k

}
∩ sl3(k).
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This shows that for V = Csl(x) with x of type 3, we have V ⊆ [sl3(Fq), V ]. Suppose next

that x is of type 2, then without loss of generality x =
(
λ 1
λ
−2λ

)
for some λ ∈ Fq. We

then have
Csl(x) = Fq ·

(
0 1 0
0 0 0
0 0 0

)
+ Fq ·

(
1

1
−2

)
and

[sl3(Fq), Csl(x)] =
( ∗ ∗ ∗

0 ∗ ∗
∗ ∗ ∗

)
∩
( ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0

)
∩ sl3(Fq) =

(
0 ∗ ∗
0 0 ∗
∗ ∗ 0

)
+ Fq ·

(
1
−1

0

)
.

Writing V = Csl(x), it follows that

V + [sl3(Fq), V ] =
( ∗ ∗ ∗

0 ∗ ∗
∗ ∗ ∗

)
∩ sl3(Fq),

which is 7 dimensional. Finally, assume x is of type 1. By extension of scalars we may
work with k = Fq, an algebraic closure of Fq, in order to compute the dimension of
V + [sl3(Fq), V ]. Over k, we can assume without loss of generality that x is diagonal, i.e.

x =
(
α
β
γ

)
with α, β, γ ∈ k. In which case we have

Csl(x) =
(
∗
∗
∗

)
and [sl3(k), Csl(x)] =

(
0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

)
and hence, writing V = Csl(x), we have dimk V + [sl3(k), V ] = 8. It follows that we also
have dimFq V + [sl3(Fq), V ] = 8

Type Number of orbits Size of each orbit

1a 1
6
(q − 1)(q − 2) (q2 + q + 1)(q + 1)q3

1b 1
2
(q − 1)q (q3 − 1)q3

1c 1
3
(q2 − 1) (q + 1)(q − 1)2q3

2 q − 1 (q3 − 1)(q + 1)q2

3 1 (q3 − 1)(q2 − 1)q
4 1 (q3 − 1)(q + 1)
5 q − 1 (q2 + q + 1)q2

Table 5.4: Orbits in sl3(Fq) under the conjugation action of GL3(Fq). This is Table 7.1
from [2].

Lemma 5.6.25. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. There are(
4

2

)
q

(q2 + q + 1)2 − (q2 + q + 1)(q4 + 4q3 + 7q2 + 4q + 1)

two-dimensional subspaces V ⊆ sl3(Fq) satisfying dim [sl3(Fq), V ] = 7.
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Proof. Since dim [sl3(Fq), V ] = 7, we have by Lemma 5.6.17 that V ⊆ Csl(x) for some
toxic x ∈ sl3(Fq). On the other hand, if V ′ ⊆ Csl(x) is a two dimensional subspace, then
dim [sl3(Fq), V

′] ∈ {6, 7}. One can see this as follows, if V ′ is toxic, then by Theorem 5.6.4
we have dim [sl3(Fq), V

′] = 6, and if V ′ contains a regular element, then dim [sl3(Fq), V
′] ≥

6, because the image of a regular element under taking the bracket with sl3(Fq) is al-
ready six-dimensional. The inclusion V ⊆ Csl(x) implies that dim [sl3(Fq), V

′] ≤ 7.
As Theorem 5.6.4 and Lemma 5.6.15 show, our understanding of two-dimensional sub-
spaces V ′ ⊆ sl3(Fq) with dim [sl3(Fq), V

′] = 6 is good. Therefore, we will calculate
the number of two-dimensional subspaces V ′ ⊆ Csl(x), for some toxic x ∈ sl3(Fq), sat-
isfying dim [sl3(Fq), V

′] = 6. The number of two-dimensional subspaces V ⊆ Csl(x)
with dim [sl3(Fq), V ] = 7 can then readily be computed, since the total number of two-
dimensional subspaces of Csl(x) is

(
4
2

)
q
.

For our calculations we need to distinguish between the two possible types of x. Recall
first the map ϕ : gl3(Fq)→ sl3(Fq) : x 7→ x− Tr(x)

3
I. Assume x is of type 4, then without

loss of generality x =
(

0 0 1
0
0

)
. In this case we have

Csl(x) =
{(

a ∗ ∗
0 −2a ∗
0 0 a

)
| a ∈ Fq

}
. (5.34)

Two-dimensional subspaces V ′ ⊆ Csl(x) with dim [sl3(Fq), V
′] = 6 come in two flavours: V ′

is a toxic subspace or V ′ contains a regular element. We start by calculating the number
of two-dimensional toxic subspaces of Csl(x).

• Assume V ′ is a two-dimensional toxic subspace of Csl(x). By Theorem 5.6.4 we have
V ′ = ϕ(UW T ) or V ′ = ϕ(WUT ) for unique subspaces U,W ⊆ F3

q with dimU = 2
and dimW = 1. Without loss of generality we assume V ′ = ϕ(UW T ), the calculation
for the other case goes analogously and the end result is the same. Any toxic element
in Csl(x) can be uniquely written as λI + y for some scalar λ ∈ Fq and some matrix
y ∈ gl3(Fq) of rank 1. From the explicit description in (5.34) we deduce that λ = a,
since otherwise the rank of y will never equal 1. Using that char Fq 6= 3, this shows
that

UW T ⊆
(

0 ∗ ∗
0 ∗ ∗
0 0 0

)
and hence forces U = 〈e1, e2〉 and W ⊆ {0}⊕F2

q. This gives
(

2
1

)
q

= q+ 1 possibilities

for W and all of them result in toxic two-dimensional subspaces of Csl(x). This shows
that there are 2(q + 1) possibilities for V ′.

Next we calculate the number of subspaces of Csl(x) which are of the form Csl(z) for
some regular z ∈ sl3(Fq). By the description in (5.34) the eigenvalues of any element of
Csl(x) lie in Fq and one eigenvalue occurs with multiplicity at least two. So any regular
element z ∈ Csl(x) is of type 2 or 3. Note that, if z ∈ Csl(x) is regular, then Csl(z) =
k[z] ⊆ Csl(x).
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• Suppose z =
(
a b d
0 −2a c
0 0 a

)
∈ Csl(x) is a regular element of type 2. The eigenvalues of z

are a,−2a with a 6= 0 and the minimal polynomial of z is given by (T −a)2(T +2a) ∈
Fq[T ]. We already know the eigenvalues of z with multiplicity, so we see that z being
regular of type 2 is equivalent to (z − aI)(z + 2aI) being non-zero. We compute

(z − aI)(z + 2aI) =
(

0 0 3ad+bc
0 0 0
0 0 0

)
and hence z is regular of type 2 if and only if 3ad + bc 6= 0. For a fixed non-zero
element a ∈ Fq we may choose b, c ∈ Fq freely and then d cannot equal − bc

3a
∈ Fq.

Hence there are q2(q − 1)2 regular elements of type 2 contained in Csl(x). Using

Table 5.2, we see that these regular elements correspond to q2(q−1)2

(q−1)2
= q2 subspaces

Csl(z) of Csl(x) with z regular of type 2.

• Suppose z =
(
a b d
0 −2a c
0 0 a

)
∈ Csl(x) is a regular element of type 3. Then the eigenvalues

of z are all zero, hence a = 0, and the minimal polynomial of z is given by T 3 ∈ Fq[T ].
We see that z being regular of type 3 is equivalent to z2 6= 0. We compute

z2 =
(

0 0 bc
0 0 0
0 0 0

)
and hence z is regular of type 3 if and only if bc 6= 0. Since we can choose d freely, this
shows that there are q(q − 1)2 regular elements of type 3 in Csl(x). Using Table 5.2,

we see that these regular elements correspond to q(q−1)2

q(q−1)
= q − 1 subspaces Csl(z) of

Csl(x) with z regular of type 3.

We conclude that Csl(x) contains

2(q + 1) + q2 + (q − 1) = q2 + 3q + 1

two-dimensional subspaces V ′ satisfying dim [sl3(Fq), V
′] = 6. Hence the number of two-

dimensional subspaces V ⊆ Csl(x) with dim [sl3(Fq), V ] = 7 equals(
4

2

)
q

− (q2 + 3q + 1). (5.35)

The second case we need to consider, is when x is of type 5; then without loss of

generality x =
(

1
1
−2

)
. In which case we have

Csl(x) =
(
∗ ∗ 0
∗ ∗ 0
0 0 ∗

)
∩ sl3(Fq). (5.36)

Two-dimensional subspaces V ′ ⊆ Csl(x) with dim [sl3(Fq), V
′] = 6 come in two flavours: V ′

is a toxic subspace or V ′ contains a regular element. We start by calculating the number
of two-dimensional toxic subspaces of Csl(x).
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• Assume V ′ is a two-dimensional toxic subspace of Csl(x). By Theorem 5.6.4 we have
V ′ = ϕ(UW T ) or V ′ = ϕ(WUT ) for unique subspaces U,W ⊆ F3

q with dimU = 2
and dimW = 1. Without loss of generality we assume V ′ = ϕ(UW T ), the calculation
for the other case goes analogously and the end result is the same. Any toxic element
in Csl(x) can be uniquely written as λI + y for some scalar λ ∈ Fq and some matrix
y ∈ gl3(Fq) of rank 1. From the explicit description in (5.36) we deduce that y is
contained in (

∗ ∗ 0
∗ ∗ 0
0 0 0

)
or

(
0 0 0
0 0 0
0 0 ∗

)
. (5.37)

Note that the row, respectively column, space of a non-zero element from the left
space in (5.37) never equals the row, respectively column, space of any non-zero
element from the right space in (5.37). Together with Lemma 5.6.3, the fact that V ′

is two-dimensional and that char Fq 6= 3, we conclude that

UW T ⊆
(
∗ ∗ 0
∗ ∗ 0
0 0 0

)
and hence that U = 〈e1, e2〉 and W ⊆ F2

q ⊕ {0}. This gives
(

2
1

)
q

= q + 1 possibilities

for W and all of them result in toxic two-dimensional subspaces of Csl(x). This shows
that there are 2(q + 1) possibilities for V ′.

Next we calculate the number of subspaces of Csl(x) which are of the form Csl(z) for
some regular element z ∈ sl3(Fq). By the description in (5.36) any element of Csl(x) has
at least one eigenvalue in Fq. So any regular element z ∈ Csl(x) is of type 1a, 1b, 2 or 3.
Note that, if z ∈ Csl(x) is regular, then Csl(z) = k[z] ⊆ Csl(x).

• Suppose z =
(
a b 0
c d 0
0 0 −(a+d)

)
∈ Csl(x) is a regular element of type 1a. The matrix ( a bc d )

is then diagonalisable over GL2(Fq) to
(
λ 0
0 µ

)
for λ, µ ∈ Fq with λ 6= µ. Moreover,

the third eigenvalue of z is −(λ+ µ), which is different from λ and µ because z is of
type 1a. Table 5.5 shows that there are q2 + q different matrices in gl2(Fq) which are
conjugate to

(
λ 0
0 µ

)
. Note that

(
λ 0
0 µ

)
and

(
µ 0
0 λ

)
are GL2(Fq)-conjugate. So the total

number of regular elements of type 1a in Csl(x) equals q2 +q multiplied by half of the
number of tuples (λ, µ,−(λ + µ)) ∈ F3

q with λ, µ,−(λ + µ) pairwise different. The
number of such tuples equals (q − 1)(q − 2), giving 1

2
(q2 + q)(q − 1)(q − 2) different

regular elements of type 1a in Csl(x). Using Table 5.2, we see that these regular

elements correspond to (q2+q)(q−1)(q−2)
2(q−1)(q−2)

= 1
2
(q2 + q) subspaces Csl(z) of Csl(x) with z

regular of type 1a.

• Suppose z =
(
a b 0
c d 0
0 0 −(a+d)

)
∈ Csl(x) is a regular element of type 1b. Then the matrix

( a bc d ) is diagonalisable with eigenvalues in Fq2\Fq. We read off from Table 5.5 that
gl2(Fq) contains 1

2
q2(q− 1)2 diagonalisable matrices whose eigenvalues lie in Fq2\Fq.
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Hence Csl(x) contains 1
2
q2(q − 1)2 regular elements of type 1b. Using Table 5.2, we

see that these regular elements correspond to q2(q−1)2

2q(q−1)
= 1

2
(q2− q) subspaces Csl(z) of

Csl(x) with z regular of type 1b.

• Suppose z =
(
a b 0
c d 0
0 0 −(a+d)

)
∈ Csl(x) is a regular element of type 2. Then the matrix

( a bc d ) is GL2(Fq)-conjugate to a 2 × 2-Jordan block. We read off from Table 5.5
that gl2(Fq) contains (q − 1)(q2 − 1) matrices which are conjugate to a 2× 2-Jordan
block with a non-zero eigenvalue. Hence Csl(x) contains (q − 1)(q2 − 1) regular
elements of type 2. Using Table 5.2, we see that these regular elements correspond

to (q−1)(q2−1)
(q−1)2

= q + 1 subspaces Csl(z) of Csl(x) with z regular of type 2.

• Suppose z =
(
a b 0
c d 0
0 0 −(a+d)

)
∈ Csl(x) is a regular element of type 3. Since type 3 implies

that all eigenvalues are zero, we have a+ d = 0. This shows that the maximum size
of a Jordan block of z is 2, which contradicts the fact that z is of type 3 (i.e. z has
a Jordan block of size 3). So Csl(x) does not contain any regular element of type 3.

We conclude that Csl(x) contains

2(q + 1) + 1
2
(q2 + q) + 1

2
(q2 − q) + q + 1 = q2 + 3q + 3

two-dimensional subspaces V ′ satisfying dim [sl3(Fq), V
′] = 6. Hence the number of two-

dimensional subspaces V ⊆ Csl(x) with dim [sl3(Fq), V ] = 7 equals(
4

2

)
q

− (q2 + 3q + 3). (5.38)

The statement of the lemma now follows from combining (5.35), (5.38) with Lemma 5.6.20.

Lemma 5.6.26. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. There are

(q2 + q + 1)(q + 1)

((
4

2

)
q

− (q2 + 3q + 1)

)
+ (q2 + q + 1)q2

(
3

2

)
q

two-dimensional subspaces V ⊆ sl3(Fq) satisfying the two conditionsdim [sl3(Fq), V ] = 7
and dimV + [sl3(Fq), V ] = 7.

Proof. Let V ⊆ sl3(Fq) be a two-dimensional subspace satisfying dim [sl3(Fq), V ] = 7.
Then by Lemma 5.6.17 we have V ⊆ Csl(x) for some toxic x ∈ sl3(Fq). If additionally
dimV + [sl3(Fq), V ] = 7, then we must have V ⊆ [sl3(Fq), V ]. This gives

V ⊆ [sl3(Fq), V ] ⊆ [sl3(Fq), Csl(x)] = (Fq · x)⊥.
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Type Number of orbits Size of each orbit(
λ 0
0 λ

)
q 1(

λ 1
0 λ

)
q q2 − 1(

λ 0
0 µ

)
, λ 6= µ q(q−1)

2
q2 + q(

λ µα
µ λ

)
, µ 6= 0 q(q−1)

2
q2 − q

Table 5.5: Let q be an odd prime power, λ, µ ∈ Fq and α a generator for F∗q. The group
GL2(Fq) acts by conjugation on gl2(Fq). This table displays for each type of matrix in
gl2(Fq) (i.e. up to conjugation: multiple of the identity, 2× 2 Jordan block, diagonalisable
with different eigenvalues in Fq, respectively Fq2\Fq) the number of different orbits of that
type and the size of each orbit. This is the same table as [2, Table 3.1].

We consider the same case distinction as in the proof of Lemma 5.6.25: x is of type 4 or 5.

Suppose x is of type 4, without loss of generality we may assume that x =
(

0 0 1
0 0 0
0 0 0

)
.

One verifies that

Csl(x) =
{(

a ∗ ∗
0 −2a ∗
0 0 a

)
| a ∈ Fq

}
⊆
( ∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

)
∩ sl3(Fq) = (Fq · x)⊥ = [sl3(Fq), Csl(x)].

Hence for any two-dimensional subspace V ′ ⊆ Csl(x) with dim [sl3(Fq), V
′] = 7 we have

V ′ + [sl3(Fq), V
′] ⊆ Csl(x) + [sl3(Fq), Csl(x)] ⊆ [sl3(Fq), Csl(x)] = (Fq · x)⊥.

Since dim (Fq · x)⊥ = 7 it follows that dim V ′ + [sl3(Fq), V
′] = 7 as well. Together with

Lemma 5.6.20 and (5.35) this gives

(q2 + q + 1)(q + 1)

((
4

2

)
q

− (q2 + 3q + 1)

)
two-dimensional spaces V ⊆ sl3(Fq) satisfying dim[sl3(Fq), V ] = dimV + [sl3(Fq), V ] = 7
and V ⊆ Csl(z) for some toxic element z ∈ sl3(Fq) of type 4.

Assume x is of type 5, then without loss of generality we may assume that x =(
1 0 0
0 1 0
0 0 −2

)
. If V ⊆ Csl(x) is a two-dimensional subspace satisfying dim[sl3(Fq), V ] = dimV +

[sl3(Fq), V ] = 7, then V satisfies

V ⊆ Csl(x) ∩ (Fq · x)⊥ =
(
∗ ∗ 0
∗ ∗ 0
0 0 ∗

)
∩
{(

a ∗ ∗
∗ −a ∗
∗ ∗ 0

)
| a ∈ Fq

}
=
{(

a ∗ 0
∗ −a 0
0 0 0

)
| a ∈ Fq

}
.
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Next we show that any two-dimensional subspace V ′ of the latter space, which we denote
by W , satisfies dim [sl3(Fq), V

′] = dimV ′ + [sl3(Fq), V
′] = 7. We do this by showing that

there are no two-dimensional subspaces V ′ of W which satisfy dim[sl3(Fq), V
′] = 6. We

follow the case distinction of Lemma 5.6.25 in the case of x =
(

1 0 0
0 1 0
0 0 −2

)
.

• Suppose V ′ is a two-dimensional toxic subspace, then by the proof of Lemma 5.6.25
we have V ′ = ϕ(UW T ) or V ′ = ϕ(WUT ) with U = 〈e1, e2〉 and W ⊆ F2

q ⊕ {0} a
one-dimensional subspace. Without loss of generality we may assume V ′ = ϕ(UW T ),
the other case goes analogously. Let (w1, w2, 0) ∈ W be some element, then for all
λ, µ ∈ Fq we have(

λw1 λw2 0
µw1 µw2 0

0 0 0

)
− λw1+µw2

3
I = ϕ

((
λ
µ
0

)
( w1 w2 0 )

)
∈ V ′

and hence λw1 + µw2 = 0. Since λ, µ were arbitrary, it follows that w1 = w2 = 0, a
contradiction. So W does not contain two-dimensional toxic subspaces.

• Suppose z =
(
a b 0
c −a 0
0 0 0

)
∈ V ′ is a regular element with Csl(z) ⊆ W . We compute(

a2+bc 0 0
0 a2+bc 0
0 0 0

)
− 2(a2+bc)

3
I = z2 − Tr(z2)

3
I ∈ W

and by looking at the bottom right entry, we find that a2 + bc = 0. It follows that
z2 = 0, which gives a contradiction with z being regular.

Together with Lemma 5.6.20 this gives

(q2 + q + 1)q2

(
3

2

)
q

two dimensional spaces V ⊆ sl3(Fq) satisfying dim[sl3(Fq), V ] = dimV + [sl3(Fq), V ] = 7
and V ⊆ Csl(z) for some toxic element z ∈ sl3(Fq) of type 5.

The cases dimV ∈ {3, 4}

For δK ∈ {0, 1} and three-dimensional or four-dimensional subspaces V ⊆ sld(Fq) we
investigate the map

V 7→ δKV + [sl3(Fq), V ].

Lemma 5.6.27. Let Fq be the finite field of cardinality q with char Fq /∈ {2, 3}. Let
V ⊆ sl3(Fq) be a subspace of dimension dimV = ` ∈ {3, 4} satisfying dim [sl3(Fq), V ] = 7.
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(a) When

• ` = 3, we have
(

4
3

)
q
· (q2 + q + 1)2 such subspaces V ;

• ` = 4, we have (q2 + q + 1)2 such subspaces V .

(b) When the subspace V satisfies the additionally dimV + [sl3(Fq), V ] = 7, then if

• ` = 3, we have (q2 + q + 1)
(
q2 + (q + 1)

(
4
3

)
q

)
such subspaces V ;

• ` = 4, we have (q2 + q + 1)(q + 1) such subspaces V .

Proof. By Lemma 5.6.17 there exists a unique one-dimensional toxic subspace U such that
V ⊆ Csl(U). Let z ∈ U be a non-zero element; by Lemma 5.4.2 and Theorem 5.4.4 we
have

[sl3(Fq), V ] ⊆ [sl3(Fq), Csl(U)] = Csl(Csl(z))⊥ = (Fq · z)⊥. (5.39)

Because dim (Fq ·z)⊥ = 7, it follows that we have the equality [sl3(Fq), V ] = (Fq ·z)⊥. Con-
versily, if W ⊆ Csl(U) is an `-dimensional subspace, then similarly [sl3(Fq),W ] ⊆ (Fq · z)⊥

and hence dim [sl3(Fq),W ] ≤ 7. Together with Lemma 5.6.16 this shows dim [sl3(Fq),W ] =
7.

The above shows that for every one-dimensional toxic subspaces U ⊆ sl3(Fq) we
have

(
4
`

)
q

subspaces V ⊆ Csl(U) with dimV = ` satisfying dim [sl3(Fq), V ] = 7. From

Lemma 5.6.20 it follows that there are precisely (q2 + q + 1)2 such subspaces U . Part (a)
now follows.

For part (b) note that dim V + [sl3(Fq), V ] = 7 if and only if V ⊆ [sl3(Fq), V ]. We
perform a case distinction depending upon the type of z.

• Assume z =
(

0 0 1
0
0

)
, then we have

Csl(z) =
{(

a ∗ ∗
−2a ∗

a

)
| a ∈ Fq

}
and (Fq · z)⊥ =

( ∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

)
∩ sl3(Fq).

From the observation following (5.39) any subspace W ⊆ Csl(z) with dimW = `
satisfies W ⊆ [sl3(Fq),W ]. Lemma 5.6.20 tells us that there are (q2 + q + 1)(q + 1)
toxic subspaces of sl3(Fq) such that every non-zero element has type 4. This case
gives us

(
4
`

)
q
· (q2 + q + 1)(q + 1) subspaces V ⊆ sl3(Fq) of dimension dimV = `

satisfying dimV + [sl3(Fq), V ] = 7.

• Assume z =
(

1
1
−2

)
; then we have

Csl(z) =
(
∗ ∗
∗ ∗
∗

)
∩ sl3(Fq) and (Fq · z)⊥ =

{(
a ∗ ∗
∗ −a ∗
∗ ∗ 0

)
| a ∈ k

}
.
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Because the subspace V satisfies V ⊆ [sl3(Fq), V ], we have V ⊆ Csl(z) ∩ (Fq · z)⊥.
We compute

V ⊆
(
∗ ∗
∗ ∗
∗

)
∩
{(

a ∗ ∗
∗ −a ∗
∗ ∗ 0

)
| a ∈ Fq

}
=
{(

a ∗
∗ −a

)
| a ∈ Fq

}
.

The latter space is three-dimensional, so dim V = 3 and we have equality. A straight-

forward verification shows that the subspace W =
{(

a ∗
∗ −a

)
| a ∈ Fq

}
indeed satis-

fies W ⊆ Csl(z) and W ⊆ [sl3(Fq),W ]. By Lemma 5.6.20 there are (q2 + q + 1)q2

one-dimensional toxic subspaces with every non-zero element of type 5. Hence this
case gives us (q2 + q+ 1)q2 subspaces V ⊆ sl3(Fq) of dimension dimV = 3 satisfying
dimV + [sl3(Fq), V ] = 7.

5.6.5 Calculations for sl2

Let k be a field with char k 6= 2 and write L = sl2(k). We show for a subspace V ⊆ L how
the dimension of [V, L] depends upon V . Recall that for a non-zero element x ∈ L we have
Csl(x) = 〈x〉.

For V = 0 we have [0, L] = 0. Let x ∈ L be a non-zero element, by Lemma 5.4.2 we
compute for the one-dimensional vector space V = 〈x〉 that

dim [V, L] = dimCsl(V )⊥ = dimL− dimCsl(〈x〉) = 3− 1 = 2.

Moreover, for two linearly independent elements x, y ∈ L we find similarly by Lemma 5.4.2
for the two-dimensional space V = 〈x, y〉 that

dim [V, L] = dimL− dimCsl(〈x, y〉) = 3,

using Csl(〈x, y〉) = Csl(〈x〉) ∩ Csl(〈y〉) = 〈x〉 ∩ 〈y〉 = 0. When V = L we have [V, L] = L,
because V contains a two-dimensional subspace. This shows for a subspace V ⊆ L that
the dimension of [V, L] is completely determined by the dimension of V .

Next we show for a subspace V ⊆ L how the dimension of the vector space V + [L, V ]
depends upon V . From the discussion above we see for a subspace V ⊆ L with dimV ≥ 2
we always have [V, L] = L. Therefore we only need to consider the case where V is one-
dimensional.

Suppose V = 〈x〉 for some non-zero x ∈ L. Since dim[V, L] ≥ 2 and dimL = 3 we have
that dimV + [V, L] = 2 holds if and only if V ⊆ [V, L]. The condition V ⊆ [V, L] is the
same as 〈x〉 ⊆ 〈x〉⊥, which is in turn equivalent to κ(x, x) = 0. Because the characteristic
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of k is not 2, it follows from κ(x, x) = 4Tr(x2) that Tr(x2) = 0. The Cayley-Hamilton
theorem shows that the element x satisfies

x2 − Tr(x)x+ det(x)I = 0

and by taking the trace of this formula we see that Tr(x2)−Tr(x)2 +2 det(x) = 0. Because
Tr(x2) = Tr(x) = 0 this gives det(x) = 0, using again that char k 6= 2. We conclude that
V ⊆ [V, L] holds if and only if det(x) = 0.

Let k = Fq, the field with q elements, and suppose that char k 6= 2. We count the
number of one-dimensional subspaces V ⊆ L satisfying dimV + [V, L] = 2. We can write
any element of L as a matrix ( a b

c −a ) with a, b, c ∈ k. This matrix has determinant zero if
a2 +bc = 0. The number of non-zero triples (a, b, c) ∈ k3 satisfying a2 +bc = 0 equals q2−1.
Namely, if b = 0 then a = 0 and so c is non-zero, giving q−1 possibilities; and if b 6= 0 then
for any choice of a the value of c is determined, giving the remaining (q− 1)q possibilities.
Every one-dimensional subspace of L contains q− 1 different non-zero elements, hence the
number of one-dimensional subspace V ⊆ L satisfying dimV + [V, L] = 2 equals

q2 − 1

q − 1
= q + 1.

As the total number of one-dimensional subspaces of L equals q2 + q+ 1 we see that there
are q2 one-dimensional subspaces V ⊆ L with V + [V, L] = L.

5.6.6 Normal zeta functions for SL2

Using the results from Section 5.6.5 we compute the normal zeta functions of the groups
SL1

2(FpJtK) and SL1
2(Zp) for prime numbers p > 2.

The group SL1
2(FpJtK)

Let p > 2 be a prime number and write G = SL1
2(FpJtK). The Lie algebra we need to

consider is L = sl2(Fp) of size p3. The normal zeta function ζP
G (s) is given by the general

formula from Theorem 5.1.2:

ζP
G (s) =

1

1− p−3s

∑
06=V⊆L

|L : V |−s
 ∑

[V,L]⊆W⊆L

|L : W |−s+dimV

 ,

where V,W are subspaces of L. We first calculate the inner sum according to the dimension
of V .
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Suppose dimV = 1, then [V, L] is two-dimensional and hence W equals either [V, L] or
L in which case |L : W | equals p or 1, respectively. It follows that the inner sum equals

p−s+1 + 1.

Suppose dimV ∈ {2, 3}, then [V, L] = L so that W = L and hence the inner sum equals 1.
The numbers of one-dimensional and two-dimensional subspaces of L both equal p2 +p+1.
Therefore, the normal zeta function for G is given by

ζP
G (s) =

(p2 + p+ 1)p−2s(p−s+1 + 1) + (p2 + p+ 1)p−s + 1

1− p−3s

=
1 + (p2 + p+ 1)(p−s + p−2s + p · p−3s)

1− p−3s
.

The group SL1
2(Zp)

Let p > 2 be a prime number and write G = SL1
2(Zp). The Lie algebra we need to consider

is L = sl2(Fp) of size p3. The normal zeta function ζP
G (s) is given by the formula from

Theorem 5.1.2:

ζP
G (s) =

1

1− p−3s

∑
06=V⊆L

|L : V |−s
 ∑
V+[V,L]⊆W⊆L

|L : W |−s+dimV

 ,

where V,W are subspaces of L. We first calculate the inner sum according to the dimension
of V .

Suppose dimV = 1 and dimV + [V, L] = 2; then W equals either [V, L] or L in which
case |L : W | equals p or 1 respectively. It follows that the inner sum equals

p−s+1 + 1.

Suppose dimV = 1 and dimV + [V, L] = 3 or dimV ∈ {2, 3}, then W = L and hence the
inner sum equals 1. The number of one-dimensional subspaces V ⊆ L with dimV +[V, L] =
2 equals p + 1 and the number of one-dimensional subspaces V ⊆ L with V + [V, L] = L
equals p2. The number of two dimensional subspaces of L equals p2 + p + 1. Therefore,
the normal zeta function for G is given by

ζP
G (s) =

(p+ 1)p−2s(p−s+1 + 1) + p2 · p−2s + (p2 + p+ 1)p−s + 1

1− p−3s

=
1 + (p2 + p+ 1)(p−s + p−2s) + (p2 + p) · p−3s

1− p−3s

=
1 + p · p−s + p2 · p−s

1− p−s
= 1 +

(p2 + p+ 1)p−s

1− p−s
.

201



5.6.7 Normal zeta functions for SL3

For a prime number p > 3 let G be the group SL1
3(FpJT K) or SL1

3(Zp). We compute
the normal zeta function ζP

G (s) of G using Theorem 5.1.2 together with the results from
Section 5.6.4. In Section 5.6.4 we computed for all integers 1 ≤ m,n ≤ 8 the number
g(m,n) of m-dimensional subspaces V of L = sl3(Fp) with n = dimFp(δKV + [L, V ]). For
such a subspace V the inner summation in Theorem 5.1.2 is given by

∑
δKV+[L,V ]⊆W⊆L

|L : W |−s+dimFp V =
8∑
i=n

(
8− n
i− n

)
p

(
p8−i)−s+m .

For integers 1 ≤ m,n ≤ 8 the contribution of all m-dimensional subspaces V of L with
n = dimFp(δKV + [L, V ]) to (1− t8)ζP

G (s), here t = p−s, is therefore

g(m,n)t8−m
8∑
i=n

(
8− n
i− n

)
p

p(8−i)mt8−i. (5.40)

Summing these contributions for all 1 ≤ m,n ≤ 8 lets us compute ζP
G (s) explicitly.

The group SL1
3(FpJT K)

For the group G = SL1
3(FpJT K) we have δK = 0, because K = Fp((T )). If (m,n) is a pair

of integers with 1 ≤ m,n ≤ 8 for which there exists an m-dimensional subspace V of L
satisfying n = dim [L, V ], then

(m,n) ∈ {(1, 4), (1, 6), (2, 6), (2, 7), (3, 7), (4, 7)} ∪ {(m, 8) | 2 ≤ m ≤ 8}.

By Lemma 5.6.22(b) we have

g(1, 4) = (p2 + p+ 1)2 and g(1, 6) =

(
8

1

)
p

− (p2 + p+ 1)2.

From Lemma 5.6.23(b) and Lemma 5.6.24(a) we deduce that

g(2, 6) = 2(p2 + p+ 1)2 + (p6 + p5 + 3p4 + 3p3 + p2 − p− 1).

Lemma 5.6.25 shows that

g(2, 7) = (p2 + p+ 1)(p6 + 2p5 + 3p4 − 3p2 − 2p)

and consequently we have g(2, 8) =
(

8
2

)
p
− g(2, 6)− g(2, 7). Lemma 5.6.27(a) gives

g(3, 7) =

(
4

3

)
p

(p2 + p+ 1)2
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and hence g(3, 8) =
(

8
3

)
p
− g(3, 7). Using Lemma 5.6.27(a) we see that

g(4, 7) = (p2 + p+ 1)2

and hence g(4, 8) =
(

8
4

)
p
− g(4, 7). Finally we have g(m, 8) =

(
8
m

)
p

for 5 ≤ m ≤ 8. This
gives

(1− t8)ζP
G (s) = 1 +

(
8

7

)
p

t+

(
8

6

)
p

t2 +

(
8

5

)
p

t3 +

(
8

4

)
p

t4 +

((
8

3

)
p

+ g(4, 7)p4

)
t5

+

((
8

2

)
p

+ g(3, 7)p3

)
t6 +

((
8

1

)
p

+ g(2, 7)p2 + g(2, 6)p2

(
2

1

)
p

)
t7

+

(
g(2, 6)p4 +

((
8

1

)
p

− g(1, 4)

)
p

(
2

1

)
p

+ g(1, 4)p

(
4

1

)
p

)
t8

+

(((
8

1

)
p

− g(1, 4)

)
p2 + g(1, 4)p2

(
4

2

)
p

)
t9 + g(1, 4)p3

(
4

1

)
p

t10

+ g(1, 4)p4t11

Consequently, the normal zeta function ζP
SL1

3(FpJT K)(s) of the group SL1
3(FpJT K) is of the

form
a0(p) + a1(p)t+ a2(p)t2 + . . .+ a11(p)t11

1− t8
,

where ai(X) ∈ Z[X] for 0 ≤ i ≤ 11 are polynomials, by a routine but somewhat tedious
calculation. Explicitly we have ai(p) =

(
8
i

)
p

for 0 ≤ i ≤ 4 (so a0(p) = 1), a5(p) =(
8
5

)
p

+ (p2 + p+ 1)2p4, a6(p) =
(

8
2

)
p

+ p3(p2 + p+ 1)2
(

4
3

)
p
, a10(p) =

(
4
1

)
p
(p2 + p+ 1)2p3 and

a11(p) = (p2 + p+ 1)2p4. Furthermore we have

a7(p) = p10 + 4p9 + 8p8 + 12p7 + 13p6 + 10p5 + 6p4 + 3p3 + 2p2 + p+ 1

a8(p) = p10 + 2p9 + 8p8 + 12p7 + 14p6 + 10p5 + 6p4 + 3p3 + 2p2 + p

a9(p) = p10 + 4p9 + 8p8 + 11p7 + 12p6 + 9p5 + 5p4 + 2p3 + p2.

The group SL1
3(Zp)

For the group G = SL1
3(Zp) we have δK = 1, because K = Qp. If (m,n) is a pair of integers

with 1 ≤ m,n ≤ 8 for which there exists an m-dimensional subspace V of L satisfying
n = dim [L, V ], then

(m,n) ∈ {(1, 4), (1, 5), (1, 6), (1, 7), (2, 6), (2, 7), (3, 7), (4, 7)} ∪ {(m, 8) | 2 ≤ m ≤ 8}.
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By Lemma 5.6.22(c) we have

g(1, 4) = (p2 + p+ 1)(p+ 1), g(1, 5) = (p2 + p+ 1)p2, g(1, 6) = (p3 − 1)(p2 + p)

and consequently g(1, 7) =
(

8
1

)
p
− g(1, 4) − g(1, 5) − g(1, 6). Using Lemma 5.6.23(c),

Lemma 5.6.24(b) and Lemma 5.6.26 we have

g(2, 6) = 2(p2 + p+ 1) + (p3 − 1)(p+ 1)

and
g(2, 7) = (p2 + p+ 1)(p5 + 3p4 + 4p3 + 3p2),

consequently we have g(2, 8) =
(

8
2

)
p
− g(2, 6) − g(2, 7). It follows from Lemma 5.6.27(b)

that

g(3, 7) = (p2 + p+ 1)

(
p2 + (p+ 1)

(
4

3

)
p

)
and hence g(3, 8) =

(
8
3

)
p
− g(3, 7). Using Lemma 5.6.27(b) we see that

g(4, 7) = (p2 + p+ 1)(p+ 1)

and hence g(4, 8) =
(

8
4

)
p
− g(4, 7). Finally we have g(m, 8) =

(
8
m

)
p

for 5 ≤ m ≤ 8. This
gives

(1− t8)ζP
G (s) = 1 +

(
8

7

)
p

t+

(
8

6

)
p

t2 +

(
8

5

)
p

t3 +

(
8

4

)
p

t4 +

((
8

3

)
p

+ g(4, 7)p4

)
t5

+

((
8

2

)
p

+ g(3, 7)p3

)
t6 +

((
8

1

)
p

+ g(2, 7)p2 + g(2, 6)p2

(
2

1

)
p

)
t7

+

(
g(1, 4)p

(
4

3

)
p

+ g(1, 5)p

(
3

2

)
p

+ g(1, 6)p

(
2

1

)
p

+ g(1, 7)p+ g(2, 6)p4

)
t8

+

(
g(1, 4)p2

(
4

2

)
p

+ g(1, 5)p2

(
3

1

)
p

+ g(1, 6)p2

)
t9

+

(
g(1, 4)p3

(
4

1

)
p

+ g(1, 5)p3

)
t10 + g(1, 4)p4t11

Consequently, the normal zeta function ζP
SL1

3(Zp)
(s) of the group SL1

3(Zp) is of the form

b0(p) + b1(p)t+ b2(p)t2 + . . .+ b11(p)t11

1− t8
,

where bi(X) ∈ Z[X] for 0 ≤ i ≤ 11 are polynomials, by a routine but somewhat tedious
calculation. Explicitly we have bi(p) =

(
8
i

)
p

for 0 ≤ i ≤ 4 (so b0(p) = 1), b5(p) =
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(
8
5

)
p

+ (p2 + p + 1)(p + 1)p4 and b11(p) = (p2 + p + 1)(p + 1)p4. Furthermore we have the

following formulas for the remaining bi(p):

b6(p) =

(
8

2

)
p

+ p3(p2 + p+ 1)3

b7(p) = p9 + 4p8 + 10p7 + 13p6 + 11p5 + 7p4 + 3p3 + 2p2 + p+ 1

b8(p) = 2p8 + 5p7 + 9p6 + 9p5 + 7p4 + 3p3 + 2p2 + p

b9(p) = p2(p2 + p+ 1)(p5 + 3p4 + 5p3 + 4p2 + p+ 1)

b10(p) = p3(p2 + p+ 1)3.
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theses.fr/2008LIMO4011, (accessed 6 Apr 2018), Doctoral Thesis (108 pp.), Uni-
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Basel (2003).

209

https://www.theses.fr/2008LIMO4011
https://www.theses.fr/2008LIMO4011
https://doi.org/10.1093/imrn/rnab345
https://doi.org/10.1093/imrn/rnab345


[46] A. Macintyre; Rationality of p-adic Poincaré series: uniformity in p, Ann. Pure Appl.
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