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0 | Abstract

A biological system is a group of relevant components on different scales, such as genes,
cells, or body organs that work together to fulfill a particular task. The components of
a biological system are connected through complex interactions and exhibit a collective
behavior that belongs to the system and not to each component on its own. Understanding the
function of such a complex system is a great challenge and requires advanced experiments
and computations. There are two approaches to analyzing a biological system. The first
one is the reductionist view, which explains the whole system by studying each component
separately. One of the significant drawbacks of reductionism is that it misses the interactions
between the components and therefore, is not able to explain the collective behavior that
belongs to the whole system and not each component. On the other hand, a second approach
is a system approach, which considers a biological system as an integrated system and
studies how the components interact and work together. Such an integrated system can be
considered as a network of interacting individual components. On this basis, systems biology
aims to infer and model the underlying network. Therefore, understanding a biological
system requires complete sets of experiments to uncover the underlying relations between
the components, and for a highly complex system such as the human body, it is not possible
to examine each component.

This thesis takes the systems approach. Chapter 2 explains how the complex structure of a
biological system together with insufficient experiments limit the inference of the biological
network. Chapter 3,4 simplify the human body and represent it as compartments to describe
the kinetics of two anticoagulation drugs in the body.

Overall, the present study suggests that, before the start of the modeling, based on the
complexity level of the problem and the available data, an optimal scale should be chosen.
This means, in the case of a highly complex system and lack of enough information, a useful
and informative approach is reducing unnecessary details and decomposing the system into
simpler subsystems (compartments), and seeing how these subsystems work together.
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“Every object that biology studies is
a system of systems.”

Francois Jacob (1974)

1 | Introduction

1.1 General Introduction

A biological system consists of several biologically relevant components that are connected
through numerous ways of complex interactions and comprise a unified whole. Examples
of biological systems span a wide range of scales from large scale such as human body
and body organs to small scale such as organelle and gene regulatory pathways. These
biological systems exhibit a unique behavior that belongs to the whole system and is not
shared by the individual components on their own. For example, the heart is made up of
cells that don’t have the property of pumping. Therefore, a biological system or a natural
system is considered to be an integrated system. Understanding such a complex natural
system represents the greatest intellectual and experimental challenge that biologists are
facing. Recently mathematical and computational models are increasingly applied to interpret
experimental observations as well as describe and model the behavior of the system under
study.

There are two views to modeling a natural process. The first one is reductionism, identified
by René Descartes, the founder of Cartesian physics. He formulated the notion that complex
situations can be analyzed by reducing them to manageable pieces, examining each in turn,
and reassembling the whole from the behavior of the pieces [1].

For a biological system, the reduction is the idea that the system is studied at the lowest
possible level, and the experimental studies should be aimed at uncovering molecular and
biochemical causes [2]. Nevertheless, it has been argued that the reductionist approach
cannot explain the collective behavior and emergent properties, which belong to the whole
system and not to the individual members [3]. The reductionist view dominated science in
the past, but now it is accepted that new approaches are required to better understand how
parts came together to give rise to something greater than parts [4]. In the other words, life at
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any level � from cell functioning to human behavior � is defined by dynamical interactions
between its components, not by the properties of each component in isolation [5].

The second approach to analyzing and modeling a natural process is a system approach,
which is opposite to the reductionist view. A system is defined as a set of components and
relations among them [6]. Therefore, a biological system is an integrated system where
its components interact with each other, to fulfill a specific function. Such an integrated
system has a distinct quality called an organization and can be considered to be a network of
interacting individual components.

System approach and integration of biological systems have long been of interest to eminent
scientists. Among them, one can refer to the great contribution of Paul A. Weise and
Ludwig von Bertalanffy who made the system concept applicable in biology in the early 20th
century. Bertalanffy is widely known as the father of general systems theory (GST) and has a
significant role in the advancement of theoretical biology [7–9].

Furthermore, it is notable to mention the work of Robert Rosen in the 1960s, whose life-long
quest for the secrets of life is well-known [10]. Rosen applied relational models by neglecting
structural details of components and focusing on the relationship between organizations
(components) of biological systems. To that end, Rosen used category theory, which is the
extension of graph theory to represent the relations between the components of the system.
He explicitly referred to the components as black boxes without making any assumptions
about the internal structure of these boxes [11, 12].

In the last two decades, Networks Science is widely used as a relational approach in biology
to represent the structure and function of various biological systems [13, 14]. The most
recent effort was to describe different network topologies mathematically. In 1998 Watts and
Strogatz explored the models of small-world networks [15]. By analogy with the popular
notation of “six degrees of separation”, in human social network with the property of small-
world, where any two people in the network can reach each other through a short sequence
of the path. In 1999 Barabáshi and Albert developed the dynamical model of scale-free
networks [16]. A network with the property of being scale-free contains components with
many connections (hub). A scale-free network grows to some extent that the ratio in the
number of connections versus all other components is constant.
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1.1 General Introduction

Network diagrams are used as an abstract representation of biological systems that illustrate
the interactions between any biological components in different biological organization levels
1 such as genes, proteins, metabolites, drugs, body organs or humans (Figure 1.1)

Fig. 1.1 Biological systems at different organization levels

To uncover and model the underlying interacting network, experimental data, such as high-
throughput data generated by omics technologies or clinical data, along with advanced
computational methods are required. However, due to the high complexity of the biological
systems and limitations of available experimental data, it is hard to precisely assess the
interacting pattern and consequently model the function of the system.

The complexity of the biological systems could mainly be the result of a large number
of interacting components as well as the complicated underlying network. For example,
for a highly connected network, a large number of empirical experiments are required to
uncover all interactions. Conducting such extensive experiments is often time-consuming

1Levels of the organization are structures in nature, usually defined by part-whole relationships, with things
at higher levels being composed of things at the next lower level [17].
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and always affected by measurement errors. Therefore, available experimental datasets are
often incomplete and noisy.

Now the question is that, according to the mentioned limitations, what is an appropriate
approach to develop a mathematical model that could simulate the function of a biological
system in silico and in particular could predict outcomes in different circumstances?

One strategy is discovering the design principles of a biological system [18]. One example
of design principles is the network motifs, which are small repeated patterns of connectiv-
ity, found in different regulatory networks [14]. The discovery of network motifs requires
the reduction of large biological networks into collections of small and separable subsys-
tems.

Network motifs are applied as templates for more detailed models that represent the structures
of the biological networks and describe their functions. In fact, network motifs are considered
simple building blocks of complex networks. For example, the Feed-Forward Loop (FFL)
structure is understood as persistence detector for noisy input signals in metabolic regulation
in E. coli [14]. Figure 1.5 represent a coherent type 1 FFL motif (see section 1.2.8).

The functionality of network motifs is expected to be modular which requires that these motifs
always perform a similar function in different biological contexts [19, 20]. However, many
network motifs can perform several different functions depending on different biological
conditions [21]. One example is the role of positive feedback on the stripe pattern of gene
expression in early embryogenesis. The feed-forward motifs are the minimal networks that
are capable of stipe patterning. Positive feedback within genes has been hypothesized that
enhances the sharpness and the precision of gene expression borders. Munteanu et al. have
shown that the addition of positive feedback can have different effects on two different
designs of feed-forward motif [22].

Furthermore, searching for network motifs or specific biological pathways of a biological
network requires decomposition and localization of the component parts. Such approaches
are successful at the cellular level in the sense that they make the investigation of cellular
processes traceable. Nevertheless, they could limit the understanding of the overall function
of parts of more complex systems. For example diseases such as cancer can rarely be
explained by studying just single pathways [23].

As a complement approach, another strategy is the decomposition of a complex biological
system into relatively independent and simpler modules (subsystems). Then appropriate
experimental and computational approaches can be designed to discover the function of each

6



1.1 General Introduction

module and see how they are related to each other. From a mathematical point of view, this
approach is desired because some modules can be considered as functions whose inputs are
determined by the rest of the network.

Such strategies of abstraction are useful because first, they simplify the identification of the
biological mechanisms ,and second, they explain the system-level patterns of organization
[24]. This is similar to a good road map that omits unnecessary details while representing
only the essential features for purpose of navigation [23].

One example of the abstraction approach is compartmental modeling, which is applied to
describe the transport of materials or energies throughout a system. Compartment models
are composed of sets of interconnected mixing chambers, which are homogeneous with
uniform concentration. For example, in pharmacokinetics (PK) 2 , compartmental models are
widely used to describe the time course of the concentration of a drug in a body fluid after
administration. This is applied for effective therapeutic management of drugs in an individual
patient, such as defining the optimum dosage regime of the drug [25]. In PK modeling, the
body is represented as a single or series of compartments, where one compartment is a group
of tissues with similar blood flow and drug affinity. Compartments are considered as black
boxes without exact internal structures, with inputs and outputs defined as flow fluxes and
change of concentrations expressed as rate equations. Compartmental models are descriptive
models that do not explain the mechanism, rather they explain the kinetics of a drug in the
body (see section 1.3.2).

The following sections will introduce the basic principles of the biological networks and
compartmental modeling which are related to the results of the manuscripts of the later
chapters.

2Pharmacokinetics is a branch of pharmacology that studies the dynamic movement of chemical material
throughout the body of a biological system.
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1.2 Complex Network

This section presents the bases of the complex networks. First, complex systems are defined
and then networks are introduced as a map to represent the complex systems. Afterward,
the basic concepts of networks are characterized, such as network types, network measures,
and network models. And finally, gene regulatory networks, as one of the most important
examples of biological systems are mathematically described.

1.2.1 What is a Complex System

A complex system are systems with many interacting components. Examples of complex
systems are the communication systems, human brain, a living cell, an organism, human
social networks, ants society, migrating birds, and many other examples. Instead of focusing
on the components themselves, a complex system can be understood by focusing on how the
components within a system are related to one another. Therefore, the differences between
systems are due to the differences in how these parts depend on and how affect one another.
For example, steam and ice are made of water molecules but, because of differences in
interactions between the molecules, they have very different properties. In this example,
the behavior that distinguishes between gas and solid is called the emergence property. The
emergence property is a collective behavior that cannot be understood from systems parts
individually, rather it can be understood through the relationship between parts. In addition
to the emergence property which is the most striking property of the complex systems, they
have some other properties in common; The interactions between system components are
nonlinear. Complex systems are open and share information with their environment and can
coordinate their internal structure and pattern to adapt to the external condition. This property
is self-organizing that arises not from an external or internal control but rather autonomously
from cooperative interactions between the components of the system. Self-organization
makes a complex system robust and resistant to perturbations. In addition, based on evidence,
various range of complex systems follow universal laws. It means that different complex
systems can have similar behavioral and structural properties. For example, all gas-liquid
phase transition common behavior despite different component molecules [26, 27].
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1.2 Complex Network

1.2.2 What is a network?

A network is, in simplest form, a collection of points joined together in pairs by lines. The
points are referred to as nodes or vertices and lines are referred to as links or edges. This set
of nodes and links represents the relationships among the components of a system. In other
words, a network is a map showing how components of a system interact with each other.
There are many systems of interest to scientists that are composed of individual parts or
components that are linked together by some means. One example is the internet which is
the collection of computers linked by data connections. This network representation offers a
common language to study systems that may differ greatly in nature, appearance, or scope.
In the scientific literature the term network and graph are used interchangeably; The combi-
nation of the {network, node, link} often refers to real systems. For example, the WWW is a
network web documents linked by URLs. The metabolic network represents all chemical
reactions between metabolites and the enzymes to catalyze a metabolic reaction in a cell. On
the other hand, the combination of {graph, vertex, edge} are used to represent these networks
mathematically [28, 13].

1.2.3 Why networks are important?

In order to facilitate the analysis of complex systems, they can be represented as networks
where systems components are abstracted by nodes and their interaction by links. For
this reason, network science aims to build models that reproduce the properties of the real
complex system.

Many systems of interest are composed of components linked together in some way. Exam-
ples include the Internet, a collection of computers linked by data connections, or Biological
Networks consisting of molecules such as DNA, RNA, protein, and metabolites linked
by interactions between these molecules. Gene Regulatory Networks (GRNs) are specific
examples of biological networks which consist of molecular species and their regulatory
interactions to control gene expression in the cell.

Every network can be represented in the form of an adjacency matrix A. If we denote an
edge between node i and j by (i , j), the adjacency matrix A of a simple network is the matrix
with elements of Ai j such that:

9
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Ai j =

8
<

:
1 if there is a link between nodes i and j ,

0 otherwise.

1.2.4 Types of Network Links

Different types can be considered for the links of networks depending on their nature and
function. Links can be:

Undirected links if there is a single connection between node i and node j .

Directed links if a link between nodes i and j is represented by an arrow, thus indicating a
direction from node i to node j or vice versa.

Weighted links if link between node i and j has an associated weight. The weighted network
can be represented by giving the elements of the adjacency matrix values equal to the
weight (Figure 1.2).

Undirected links Directed links Weighted links 

1

2 3 2 3

1

2 3

1

<latexit sha1_base64="vEo6kYo+MKcmHUaXPyx8Wyof9U0="></latexit>

A =

2

4
0 1 1
1 0 0
1 0 0

3

5

<latexit sha1_base64="WMbwEiIX/a0alW4P0LrXe7lBm3Q="></latexit>

A =

2

4
0 1 1
0 0 0
0 0 0

3

5

<latexit sha1_base64="oNBTOQT9mL2B4E5Cek59Z8+sxu8="></latexit>

A =

2

4
0 2.1 0.5

2.1 0 0
0.5 0 0

3

5

Fig. 1.2 Types of network links and network adjacency matrix

1.2.5 General Network Measures

Here are the most basic network measures to compare and characterize different complex
networks:
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1.2 Complex Network

Path

A path in a network is any sequence of nodes such that any successive pair of nodes in the
sequence is connected by a link in the network.
The length of a path in a network, is the number of links transversed along the path. The
shortest path, is a path between two nodes such that no shorter path exists [28].

Degree

The degree (or connectivity) of a node in a network is the number of links connected to it.
The degree of node i is denoted by ki. For an undirected network of N nodes, the degree of
node i can be written in terms of the elements of the adjacency matrix:

ki =
N

Â
j=1

Ai j (1.1)

For an undirected network, the total number of the links is equal to the half of the summation
of all node degrees:

m =
1
2

N

Â
i=1

ki =
1
2 Â

i j
Ai j (1.2)

The mean degree, < k >, of an undirected network is

< k >=
1
N

N

Â
j=1

ki (1.3)

In directed networks node i has two deferent degrees: in-degree, kin
i , which is the number of

incoming links connected to node i, and an out-degree, kout
i , which is the number of outgoing

links from node i. By assuming Ai j = 1, representing a connection from node i to node j, in-
and out-degree can be written

kin
i = ÂN

j=1 A ji, kout
j = ÂN

j=1 Ai j (1.4)

Each link going out from a node enters another node. Therefore, the total number of links, m
in a directed network equals the total to the number of outgoing links, or equivalently the
total number of the incoming links:
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m =
N

Â
i=1

kin
i =

N

Â
i=1

kout
i = Â

i j
Ai j (1.5)

Thus the mean in-degree, < kin > and the mean out-degree, < kout >, of every directed
network are equal:

< kin >=
1
N

N

Â
i=1

kin
i =

1
N

N

Â
i=1

kout
i =< kout > (1.6)

Degree Distribution

Degree distribution P(k) is the probability distribution of the fraction of nodes with a given
degree, or equivalently is the probability that a random node has a given degree.

1.2.6 Random Network Models

Erdös-Rényi Random Network

One of the simplest, well-studied, and famous random models, is Erdös-Rényi random
network (ER random network). According to this model, each possible link appears indepen-
dently and with identical probability (p) [29]. The degree distribution of a random network
is given by a binomial distribution (See figure 1.3). Therefore, the probability of a node to
have degree k, P(k) is:

P(k) =

 
N �1

k

!
pk(1� p)(N�1�k) (1.7)

where N is total number of nodes in the network.

As the number of nodes becomes large, the degree distribution converges to a Poisson
distribution:

P(k) ⇡ e�<k>< k >k

k!
(1.8)
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1.2 Complex Network

Fig. 1.3 Degree distribution of a random where size of the network, N, is 10,000 and each
two nodes are connected with the probability of 0.01.

How to construct an ER random network?

To construct a random network with the size of N, where nodes are connected with the
probability of p, three steps are needed:

1 Start with N isolated nodes.

2 Select a pair of nodes, i, and j. Then select a random number between 0 and 1. If
the number is smaller than p, connect node i and node j, otherwise leave them
disconnected.

3 Repeat step 2 for each N(N�1)
2 node pairs.

Scale-Free Network

Despite ER random networks that follow Poisson degree distribution, a scale-free network is
a network whose degree distribution follows a power law [16]:

P(k) ⇠ k�g (1.9)

where g denotes degree exponent and determines many properties of the systems (Figure 1.4
).
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Fig. 1.4 Degree distribution of a scale-free network where network size, N, is 100,000 and m
is 3, generated by Barabàshi-Albert model (see section 1.2.7).

For a directed scale free network characterized by in- and out-degree, the probability that a
randomly chosen node had kin or kout degree, can be approximated by a power law degree
distribution:

P(kin) ⇠ k�gin , P(kout) ⇠ k�gout (1.10)

where gin and gout are the degree exponent for the in- and out-degree, respectively.

As examples of scale-free networks one can refer to a few network projections of metabolic
chemical reactions that belong to the class of scale-free networks [30, 31]. Another example
of scale-free networks is the gene regulatory network of yeast obtained from the microarray
data from 273 different yeast gene deletions [32].

The main difference between a random network and a scale-free network is the tail of the
degree distribution. Scale-free networks are characterized by high-degree nodes called
hubs. In a network with a power-law degree distribution, nodes with low degrees appear
more frequently. These numerous small nodes are held together by a few highly connected
hubs. Therefore, aimed removal of high degrees nodes can affect the network’s topology
significantly. The smaller the value of g , the more important the role of the hubs is in the
network.
For a scale-free network, the degree of the biggest hub, kmax, called natural cutoff of the
degree distribution[13]
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1.2 Complex Network

kmax = kminN
1

g�1 (1.11)

where kmin is the degree of the smallest node.

Equation 1.11 indicates that the larger the network, the larger is the size of the biggest
hub.

How do the properties of a scale-free network change with g?

Many properties of a scale-free network depend on the value of the degree exponent,g:

Anomalous Regime (g 6 2) for g < 2 the exponent in 1.11 is larger than one. Therefore for
sufficiently large size of the network, N, the degree of the largest hub exceeds the total
number of the network N. In the other words, kmax grows faster than the size of the
network, N. Similarly, the average degree, < k > diverges in the N ! • limit.

Scale-Free Regime 2 < g < 3 Based on equation 1.11, kmax grows with the size of the net-
work with exponent 1

g�1 which is smaller than 1. In this regime hubs link to a large
number of small-degree nodes, creating short distances between them [33]. This
regime is also called ultra-small world.

Random Network Regime (g > 3) for large g the degree distribution, P(k) decays signif-
icantly fast which makes the size of the hubs small and less numerous. Under this
condition, the scale-free network is indistinguishable from a random network.

1.2.7 How to construct a scale-free network?

The Barabàshi-Albert model or BA model, is the best known generative networks model
describing scale-free networks [16]. In this model, nodes are connected one by one to
a suitably preferentially chosen set of previously existing nodes. Assume at time = 0, a
network consists of n0 nodes which are linked together arbitrarily and each node has at least
one link. The network develops following two steps:

15



Introduction

(A) Growth: At each time step, t, a new node with n links (n 6 n0) connects to the m nodes
that already exist in the network (m is the degree of the new node, n).

(B) Preferential attachment: The probability ’(k) that a link of the new node connects to
node i depends on the degree ki as.

P(links to node i) = ’(ki) =
ki

Â j k j
(1.12)

After t time steps the Barabàshi-Albert model generate a network with N = t + n0 nodes
and m0 + mt links. The achieved network has a power-law degree distribution, which is
characterized by degree exponent g ⇠ 3 [13] (Figure 1.4).

1.2.8 Network Motifs

Network motifs are simple building blocks of a complex network. Network motifs are defined
as patterns of interconnections (or subgraphs) occurring in complex networks at numbers
significantly higher than those in randomized networks [34]. For example one of the known
motifs of transcriptional regulation networks of Escherichia coli , is "Feed-Forward Loop"
(FFL) defined by a transcription factor X that regulates a second transcription factor Y, such
that both X and Y jointly regulate an operon Z.

Y Z

X

Fig. 1.5 Example of Feed-Forward Loop (FFL) motif

1.2.9 Gene Regulatory Networks

A Gene Regulatory Network or a genetic regulatory network (GRN) is a collection of DNA
segments in a cell, which interact with each other(indirectly through their RNA and protein
expression products) and with the other substances in the cell, therefore governing the rate
at which genes are transcribed into mRNA, to control many cellular processes such as cell
cycle, cellular differentiation, and apoptosis [35].
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1.2 Complex Network

From a mathematical point of view, GRNs can be represented, as a directed network, where
nodes denote genes and links denote their regulatory interactions. Nevertheless, revealing
the architecture of a GRN is one of the key tasks in computational biology. In this regard,
computational biology seeks a comprehensive model to represent the overall structure of the
network and describe the full range of behaviors that these systems exhibit under different
conditions.

1.2.10 Inference of Gene Regulatory Networks

There are several experimental techniques to reveal an unknown gene regulatory network.
Gene perturbation experiment is one of the examples which includes gene knockout, gene
over-expression, RNA interference (RNAi), or drug treatment, to record the response of the
perturbation on the other genes. This experimental data is called gene expression data or
node activity data. Reconstruction of gene regulatory network from node activity data called
reverse engineering or netwtork inference.

1.2.11 Mathematical Modeling of Gene Regulatory Networks

Ordinary differential equations (ODEs) are popular tools to model the dynamical system of
the GRNs. They represent the concentration of gene products by continuous time-dependent
variables. More precisely, for a system of GRN consisting of n interacting genes (nodes),
gene expression level over time is modeled through the following differential equation:

dx(t)
dt

= f(x,q ,u) (1.13)

where, x = [x1, ...,xn]T and xi 2 x is the expression level of gene i. q = [q1, ...,qn]T , and qi 2 q
is sets of parameters quantifying interactions between gene i and the rest of regulator genes.
u = [u1, ...,un]T and ui 2 u is external perturbation on gene i. f = [ f1, ..., fn]T fi : Rn

>0 ! R
is a function representing nonlinear regulatory interaction between gene i and the rest of
regulator genes.

Although gene regulations are often nonlinear, nonlinear models become quite difficult to
treat mathematically, due to the complex structure of the involving network and the sparsity
of experimental data. For this reason, most of the existing approaches for GRN inference
apply linear or additive models [36]. In fact, linear models are the first-order terms of the
Taylor expansion of f function near the steady-state. Surprisingly, linear models can capture
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the main features of the network and can provide a good starting point for further modeling
and analysis.

The linear form of equation 1.13 is:

dx(t)
dt

= Jx(t)+u(t) (1.14)

where, J 2 RN⇥N and Ji j = ∂ f (xi)
∂x j

is Jacobian matrix or connectivity matrix, representing the
effect of gene i on gene j.

In steady state condition equation 1.14 can be written as:

x = �J�1u (1.15)

where x is gene expression level and the observed gene expression (node activity) is

y = x+ e (1.16)

where e is measurement noise.

In fact, y is the gene expression data obtained from experiment and here an appropriate
network inference method should be applied to estimate connectivity matrix, J, which reveals
the structure of the regulatory network.

1.2.12 Linear Stability Analysis for ODEs

Biological systems always face different unpredictable disturbances such as fluctuations
in molecular concentrations, environmental noise, and ... . Therefore, Robustness is one
important property allowing a system to maintain its function despite internal and external
perturbations [37]. For this reason, the analysis of local and global behavior of the system in
equilibrium is the most concern in computational biology.

ODEs sets of equation 1.13, can be written in a more abstract form of

ẋ = f(x) (1.17)
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1.2 Complex Network

suppose that x⇤ is an equilibrium point. By definition, f(x) = 0. A small perturbation of
such a system could be written in form of Taylor expansion of the right-hand side of the
differential equation:

ẋ = f(x⇤)+
∂ f
∂x

|x⇤(x�x⇤)+ ... (1.18)

The partial derivative in the above equation is Jacobian matrix:

J =

2

66664

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn...

... . . . ...
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

3

77775
(1.19)

If dx = x�x⇤ is defined as small deviation from equilibrium, then d ẋ = x, which can be
written as d ẋ = J⇤dx. The matrix J⇤ is Jocobian matrix at equilibrium point.

Theorem An equilibrium point x⇤ of differential equation 1.17 is stable if all the eigenvalues
of J⇤ , the Jocobian evaluated at x⇤, have negative real parts. The equilibrium is unstable if
at least one of the eigenvalues has a positive real part. [38].

This theorem is called Linear stability analysis because the linear term of equation 1.18
is kept. This theorem does not mention what happens if some eigenvalues have zero real
parts while the others are all negative. To answer this question, the non-linear terms must
be kept as well in order to determine the stability. Dealing with this case requires nonlinear
theory.
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1.3 Pharmacokinetics

This section describes the movement of a drug into, through, and out of a living organism body
under the title of Pharmacokinetics. First of all, the compartmental models are introduced to
formulate the kinetics of a drug in the body. Then, types of Pharmacokinetics models and the
fundamental concepts to develop a proper model are introduced.

1.3.1 Use of Drug

The use of a drug to treat disease goes back to the old history. Since drugs have compounds
that are foreign to the body, they have the potential to harm rather than healing, especially
when they are applied in the wrong dose for the individual patients being treated [39].
Therefore, the determination of the proper dose which is therapeutic but not toxic in an
individual patient is required.

In addition to the correct use of an existing drug, scientific researchers are engaged in the
process of discovering new drugs that are safe and effective for the treatment or prevention
of disease. The following steps are involved in the drug development process:

1. The pharmacologically active molecule must be synthesized, isolated, or extract from
various possible sources.

2. The formulation of the dosage form (i.e. tablet, capsules, etc) that will deliver a recom-
mended dose to the "site of action" or a tissue target.

3. The establishment of a dosage regimen to provide an effective concentration of a drug in
the body.

Only a successful integration of these aspects will result in successful drug therapy. To this
end, a good knowledge of rate process (kinetics), chemistry, physiology, and pharmacology
is essential to understand the dynamics of the substances administered to a living organism
as a therapeutic agent. Pharmacokinetics which is the study of the movement of drugs, into,
through, and out of the body, is the result of such a successful integration of Multidisciplinary
knowledge.

What is Pharmcokinetics?

Pharmacokinetics (PK), derived from the Greek words pharmakon (drug) and kinetikos
(movement), is used to describe the time course of drug absorption, distribution, metabolism,
and excretion (ADME) of a compound in humans and animals [40]. Pharmacokinetics
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1.3 Pharmacokinetics

describes how the concentration of a dosed drug and its metabolites in body fluids and
tissues changes with time. It analyzes chemical metabolism to discover the fate of a drug
from the moment that it is administrated up to the point at which it is eliminated from the
body. Receptor sites of drugs are generally inaccessible to our observations or are widely
distributed in the body, and therefore a direct measurement of drug concentrations at these
sites is not practical. However, we can measure drug concentration in the blood or plasma,
urine, saliva, and other easily sampled fluids. Normally PK models describe the time course
of drugs’ concentration in various areas of the body, e.g. plasma, kidney, receptors, as a
function of time.

1.3.2 Compartmental Models - Simplification of a Physiologic Sys-
tem

The handling of a drug by the body is very complex. To predict the concentration of the
administrated drug in the body, simplifications of the body structure are necessary. Therefore,
a model of the body must be selected. Generally, the body as a physiological system is
described by decomposition into numbers of interacting subsystems, called compartments.
The compartments represent a group of similar organs or tissues. In the compartmental
model, each compartment may exchange the drug with other compartments with a specific
transfer rate constant. Figure 1.6 shows one example of the compartment model, where the
body is divided into four compartments. After administration of a chemical substance, it can
transfer between compartments with specific transport rates.

1.3.3 PK Modeling

PK modeling aims to describe the concentration of the drug in different areas of the body.
Compartment models are the basic type of models which are used in pharmacokinetics.
Compartmental models are categorized by the number of compartments needed to describe
the behavior of the drug in the body. There are several types of compartmental models:

• one compartment model

• two compartment model

• multi-compartment model

The selection of a compartment model entirely depends upon the distribution characteristics
of a drug after administration. Organs and tissues in which drug distribution is similar are
grouped into one compartment. In other words, since the heart pumps blood constantly, it can
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X1 X2 X3 

X4 

K12 

K42 

K32 

K23 

K21 

K24 

D 

K40 

Fig. 1.6 Example of compartment model, where the body is divided into four homogeneous
compartments and each arrow shows the transfer of the drug across the compartments with
specific transfer rates. Kmn is transfer rate of the drug from compartment m to compartment
n and D is the administration dosage.

be assumed that the concentration of the drug is the same within the bloodstream at a given
time. Therefore, the highly perfused organs, such as the heart, liver, and kidneys often have
similar drug distribution patterns, so these organs may be considered as one compartment,
which usually is referred to as central compartment. The other compartment that includes fat
tissue, muscle tissue, and cerebrospinal fluid is referred to as the peripheral compartment,
which is less well perfused than the central compartment. This type of organ grouping for
central and peripheral compartments is shown in Figure 1.7.

1.3.4 One Compartment Model

In a one-compartment model, the body is assumed as a kinetically homogeneous unit, in
which after drug administration, the drug distributes throughout the body and equilibrates
between tissues instantaneously. Therefore, all body organs and tissues are considered as
a compartment and referred to as central compartment. The model can be depicted as
Figure 1.8, where X0 is intravenous bolus dosage, X1 is the amount of drug in the central
compartment and k10 is the elimination constant rate.
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Central		
Compartment	

Heart	
	

Liver	
	

Lung	
	

Kidney	
	

Blood	

Peripheral		
Compartment	

Fat	Tissue	
	

Muscle	
Tissue	

	
Cerebrospinal	

Fluid	

Fig. 1.7 Typical organ groups for central and peripheral compartments

Central	
Compartment	

X0	 K10	
X	

Central	
Compartment	

X0	 K12	

K21	

Peripheral	
Compartment	

Xc	 Xp	

K10	

Fig. 1.8 One Compartment Model: Representation of the body as one homogenous unit
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The mathematical differential equation that describes the relationship between the rate of
elimination and the amount of the drug in the central compartment, in case the drug is
administrated as an intravenous bolus dose, is:

dX1

dt
= �k10X1 (1.20)

where the elimination rate k10is constant.

Equation 1.20 results in:

X(t) = X0e�k10t (1.21)

The following section defines fundamental PK parameters following the intravenous bolus
administration of a drug. These parameters can be generalized and applied in the two-
compartment model.

1.3.5 Fundamental Concepts

Volume of Distribution

The volume of distribution (Vd) has no direct physiological meaning; it is not a real volume
and is usually referred to as the apparent volume of distribution. It is defined as that volume
of plasma in which the total amount of drug in the body would be required to be dissolved to
reflect the drug concentration attained in plasma: [41]

Vd =
Xt

(Cp)t
=

X0

(Cp)0
(1.22)

where Xt is the amount of the drug at any time t, (Cp)t is the concentration of drug at any
time t, X0 amount of drug at t = 0 (initial dosage), and (Cp)0 is the plasma concentration of
drug at t = 0.

Concentration

Drug concentration is defined as the amount of drug in a given volume of plasma (or
serum):
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1.3 Pharmacokinetics

Cp =
X
V

(1.23)

where Cp is drug plasma concentration, X is the amount of drug in the body and V is the
volume in which drug is distributed.

Dividing equation 1.21, by volume of distribution, results in drug plasma concentration as
follows:

Cp(t) = Cp0e�k10t (1.24)

where Cp is the plasma concentration of the drug at any time t and Cp0 is the plasma
concentration of the drug at time= 0.

Elimination Half Life

The time required to reduce the plasma concentration to one-half its initial value is defined
as the half-life (t1/2) [41]. From equation 1.21 the half of the initial plasma concentration is
defined as follows:

Cp0

2
= Cp0e�k10t (1.25)

Therefore, the elimination half-life (T1
2
) is:

T1
2
= � ln(0.5)

k10
=

0.693
k10

(1.26)

Clearance

Drug clearance (CL) is the volume of blood or plasma or mass of an organ effectively cleared
of a substance by elimination (metabolism and excretion) per unit of time. A drug can be
cleared by renal excretion or by metabolism or both. Clearance is additive and, total body
clearance (CLT ) is the sum of all individual organ clearances that contribute to the overall
elimination of drugs. Therefore, the total clearance is the sum of renal clearance. CLr and
non-renal clearance CLnr:
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CLT = CLr +CLnr (1.27)

and based on definition, clearance has the following mathematical relation with elimination
rate constant, k10, and the volume of distribution, Vd:

CLT = k10Vd (1.28)

1.3.6 Two Compartment Model

As mentioned before, the Two-compartment PK model divides the body into central and
peripheral compartments. The central compartment (compartment 1) consists of the plasma
and tissues where the distribution of the drug is practically instantaneous (such as blood,
heart, kidney, and liver). The peripheral compartment (compartment 2) consists of tissues
where the distribution of the drug is slower (generally, muscle, lean tissues, and fat). Figure
1.9 represents schematically the two-compartment model, in which X0 is the dose of the
intravenously injected drug, X1 is the amount of drug in the central compartment, X2 is the
amount of drug in the peripheral compartment, k12 and k21 are transferred rate constants
from central compartment to peripheral compartment and conversely, k10 is elimination rate
constant from the central compartment.

Central	
Compartment	

X0	 K10	
X	

Central	
Compartment	

X0	 K12	

K21	

Peripheral	
Compartment	

Xc	 Xp	

K10	

Fig. 1.9 Two-Compartment Model: Representation of the body as two homogenous parts
where the drug distributes differently

Differential equation describing the change of drug mass during distribution and post-
distribution phase is as following:
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dX1

dt
= k21X2 � k12X1 � k10X1 (1.29)

dX2

dt
= k12X1 � k21X2 (1.30)

Integrating equation 1.29 yields an equation for the amount of drug in the central compartment
(X1) as a function of time after a single IV bolus dose (X0):

X1 =
X0(a � k21)

(a �b )
e�at +

X0(k21 �b )

(a �b )
e�b t (1.31)

where

a +b = k12 + k21 + k10 (1.32)

ab = k21k10 (1.33)

and a is distribution rate constant and b is disposition or elimination (post-distribution)
constant.

Dividing equation 1.31 by the volume of distribution of the central compartment, Vc, results in
the time profile of the plasma concentration of the drug in the central compartment, Cp:

Cp(t) =
X0(a � k21)

Vc(a �b )
e�at +

X0(k21 �b )

Vc(a �b )
e�b t (1.34)

Equation 1.34 can be simplified to:

Cp(t) = Ae�at +Be�b t (1.35)

where
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A =
X0(a � k21)

Vc(a �b )
(1.36)

B =
X0(k21 �b )

Vc(a �b )
(1.37)

In equation 1.35 A and B are empirical constant with units of concentration (e.g. µgmL�1)
[39].

According to equation 1.35, after intravenous administration of the drug, the resulting de-
crease of the drug’s plasma concentration follows a biphasic pattern (see Figure 1.10).

• Distributive phase ( or a phase): This phase is an initial phase of rapid decrease in
plasma concentration. The decrease accounts for the drug distribution from the central
compartment into the peripheral compartments. This phase ends when a pseudo-
equilibrium of drug concentration is established between the central and peripheral
compartments.

• Post-distributive phase (or b phase): This is a phase of a gradual decrease in plasma
concentration starting after the distributive. The decrease is primarily attributed to drug
elimination, which is, metabolism and excretion [42].

Method of residuals

The method of residual is a curve-fitting approach that is applied when the plasma concentra-
tion of a drug follows the two-compartment model. Based on this method, the biexponential
plot of plasma concentration against time is separated into monoexponential segments [41].
This method is applied to determine the distribution and elimination rates. For an intravenous
bolus injection of the drug, the first term of equation 1.35, Ae�at , approaches zero faster than
Be�b t . The reason is that the slope of the a phase is greater than the slope of the b phase
(Figure 1.10 ). Therefore at later times, the contribution of the first term of equation 1.35 is
negligible and the plasma concentration of the drug approximates to:

Cp(t) ⇠= Be�b t (1.38)

According to equation 1.38, B and b can be estimated by extrapolation of a fitted line passing
through the concentration-time points of the elimination phase. The y-intercept and the slope
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Fig. 1.10 Log of plasma concentration of drug in two-compartment model follows a biphasic
pattern

of the extrapolated line are equal to the coefficient lnB and the elimination rate constant b
respectively. The difference between the concentration-time points of the observed data and
the values of Be�b t , obtained from the extrapolated line, is called residuals. A and a of the
absorption phase are estimated according to the semi-logarithmic plot of the residuals.

The method of the residuals can be summarized by the following steps (Figure 1.11)
[43]

• concentration-time points data is plotted in a semi-logarithmic scale.

• a line is fitted to the elimination time points and the slope b and the intercept lnB of
the line are estimated.

• for each time point the residuals, C(t)�Be�b t , are calculated and plotted in a semi-
logarithmic scale.

• a fitted line to the residuals estimates the A and a of the absorption phase.
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Slope=	-	β	

Slope=	-	α	

Residual	point	

Fig. 1.11 Estimation of B, b , A, a by applying the method of residuals, the blue points refer
to elimination phase and red points are residuals referring to absorption phase.
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2 | The Structural Complexity of
Network Inference

2.1 Summary

Inference of a biological network such as a gene regulatory network (GRN) is identifying the
interaction of the genes using experimental data. To obtain the experimental data, typically
one node is perturbed and the response of the rest of the network is measured and recorded.
For a GRN, a perturbation could be gene knock-out, gene knock-down, or drug treatment.
The recorded experimental data is called node activity data (Figure 2.1).

The ability of the computational network inference approaches is limited by two fundamental
factors: a) presence of measurement noise which leads to an inference of the false positive
interactions, b) an insufficient number of perturbed nodes which makes the complete infer-
ence of the network almost impossible.

An Inference method unbiased toward measurement noise is introduced and based on that the
fundamental limits of network inference such as insufficient perturbation data, in the absence
of noise, and in the stationary condition is quantified analytically.

To investigate the effect of the insufficient perturbation experiments, the average number of
inferable links is calculated. Inferable links are the maximum possible average number of
links that can be inferred when not all but only a fraction of nodes are perturbed. Under such
conditions, the impact of the structure of the network on the number of inferable links is
studied. The most influencing structural feature is the size of the network (N), the average
degree of the network(< k >), and the degree exponent (g) in the case of a scale-free net-
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work. For this purpose, three classes of random networks with different average degrees are
studied: random network, scale-free networks with incoming hubs, and scale-free network
with outgoing hubs and random networks. To quantify the influence of different network
structures on network inference, the area under the curve of the inference plot is defined as
inferability. For example, Figure 2.2 illustrates the inference plot of a scale-free network
with incoming links, in which the area under the curve is inferability.

In addition to the mentioned three classes of random networks, the inferability of two types
of real networks, social and biological networks, are investigated. For these real networks
the relation between inferability and average degree is shown (Table 2.1). The data of the
real networks are taken from SNAP database (2015 download)[44].
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2.1 Summary

Perturbation 
Experiment

Node Activity 
Data Record

Computational 
Method

Network Inference

? 
? 

? 

? 

? 

? 

Fig. 2.1 Reconstruction of a biological network from experimental data

Network Inferability, IF 
 =  

Area Under the Curve 

Fig. 2.2 The inference plot represents the number of inferable links relative to the number of
perturbed nodes for a scale-free network with incoming hubs. Inferability is defined as the
area under the curve of the inference plot, shown in gray
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Table 2.1 Real network specifications

List of Real Networks
Type Name Size Average De-

gree
Inferability

Internet peer-to-peer networks
Gnutella05 8846 3.5993 0.1562
Gnutella06 8717 3.6165 0.1551
Gnutella08 6301 3.2974 0.1554

Social Networks
wiki-vote 7115 14.5733 0.1206
Slashdot 77360 10.7053 0.1299
Epinion 75879 6.7059 0.1423
ego.twitter 81306 21.7467 0.1118

Communication Networks
email-EuAll 265214 1.5797 0.2787

World wide web
Web-NotreDame 325729 4.5120 0.1400
Web-Standford 281903 8.2032 0.1539
Web-Google 875713 5.8296 0.1645
Web- Brek-Stan 685230 11.0920 0.1364

Nueral Network
Brain white matter 360 18.3389 0.1148

Human Protein-Protein Inter-
action Network

Human 01 2239 2.8816 0.1218
Human 02 1706 3.6172 0.2016

Interactom Network
Yeast01 1278 0.2840 0.3285
Yeast02 813 0.9360 0.3454
Yeast03 2018 1.3404 0.3031

Transcription Network
Yeast-TC 688 1.5683 0.1575
eColi TC02 1821 2.2015 0.1218

Metabolic Network
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2.2 Publication: Experimental noise cutoff boosts infer-
ability of transcriptional networks in large-scale gene-
deletion studies
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• developed the counting procedure for inferable links and the Inferability measure

• developed the analytical formula of inferability

• generates scale-free and random networks with different average degrees and g expo-
nents

• analyze the inferability of random, scale-free and real networks with different sizes,
average degrees, and gamma exponents

• wrote Supplementary Note 1.

• designed Figures 1 and 2

• contributed to the development of the computer code for the inference algorithm
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Generating a comprehensive map of molecular interactions in living cells is difficult and great

efforts are undertaken to infer molecular interactions from large-scale perturbation experi-

ments. Here, we develop the analytical and numerical tools to quantify the fundamental limits

for inferring transcriptional networks from gene knockout screens and introduce a network

inference method that is unbiased with respect to measurement noise and scalable to large

network sizes. We show that network asymmetry, knockout coverage and measurement

noise are central determinants that limit prediction accuracy, whereas the knowledge about

gene-specific variability among biological replicates can be used to eliminate noise-sensitive

nodes and thereby boost the performance of network inference algorithms.
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The functionality of a living cell is determined by the
interplay of multiple molecular components that interact
with each other. Generating a global map of these mole-

cular interactions is an essential step to advance our under-
standing of the molecular mechanisms behind disease,
development and the reprogramming of organisms for bio-
technological applications1. The current advances in gene-editing
methods2 have scaled up the size of genome-wide single and
double knockout libraries, ranging from microbes3, 4 to higher
eukaryotes5 and open up a much more informative data source
than inferring gene-regulatory networks from unspecific pertur-
bations, such as stress or changes in growth conditions6. How-
ever, the detection of direct interactions between two genes from
association measures–for example, the covariance between tran-
script levels–remains a highly non-trivial task, given the sig-
nificant variation among biological replicates, the frequent case
where the number of parameters exceeds the number of inde-
pendent data points, and the high dimensionality of the inference
problem. In addition, direct interactions inferred from tran-
scriptome data typically oversimplify the molecular complexity
behind gene regulation, which frequently involves
protein–protein interactions and modifications on protein or
DNA level. Consequently, gene interaction networks inferred
from transcriptome studies should in general not be interpreted
as or compared with gene-regulatory networks. In this work we
first investigate the causes that affect network inferability by
introducing a simple network inferability measure and subse-
quently use the gained insight to design an unbiased, scalable
network inference algorithm.

Results
Network inferability. The existence of a direct interaction
between gene A as source of regulation (source node) and gene B
as target of regulation (target node) can be detected if a significant
part of the transcriptional activity of B can be explained by the
transcriptional activity of A but not by the transcriptonal activ-
ities of the remaining genes in the network. Thus, a necessary
condition for identifiability or inferability of links is the knowl-
edge about the information that can be transmitted by alternative
routes in the network, which can be obtained by targeted, external
perturbations of node activities7. As most gene perturbation

screens are incomplete—for example, owing to the fact that
essential genes cannot be knocked out—we have in general the
situation that a significant amount of interactions within an N-
gene network are non-inferable, regardless of the amount of
experimental replicates and the strength of perturbations.

Limits of network inferability. To estimate the upper bound of
links that can be inferred from knockout screens, we consider a
directed but not necessarily acyclic network of N nodes, with
node activities as observables and a predefined subset of nodes
that are perturbed independently by external forces. The per-
turbed nodes are randomly distributed within the network and we
denote by q the fraction of nodes that are perturbed. We assume
that an arbitrarily large set of perturbation experiments can be
generated, with the freedom to tune the perturbation strength for
each node independently. We further assume that other pertur-
bative sources and measurement noise are absent. Calculation of
the expected fraction of inferable links, F(q), can be carried out by
a simple counting procedure (Figs 1a and 2a), assuming that links
can be represented by noiseless, linear functions with non-zero
slope. Under these conditions, a directed link between source and
target node is inferable–or equivalently its link strength is
identifiable–if it is not possible to fully reconstruct the activity
state of the source node from the node activities of the remaining
network. Consequently, a link is inferable if a part of the variation
of the target node can be only explained by the source node, given
that a link between them exists, and implies non-zero partial
correlation between source and target node. To allow detection of
arbitrarily small partial correlations, we make sure that there
exists a finite fraction of experiments for each target node, where
the target node is not perturbed (Online Methods and Supple-
mentary Note 1). If, for example, only one node in the network is
perturbed that targets multiple other nodes, its node activity can
be fully reconstructed by any of its targets, resulting in zero
partial correlation coefficients, which implies that none of the
directed links can be inferred (Fig. 1a, right network). In contrast,
if two out of three nodes are perturbed, all links targeting the
unperturbed node are inferable (Fig. 1a, left network). In addi-
tion, nodes that have been identified as targets of the current
target node can be removed prior to inference. This is because an
existing link from the actual target node excludes them from
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transmitting information back to it, as we exclude bidirectional
links from our analysis. This makes the network (Fig. 1a, left
network) fully inferable, as the link between the remaining two
perturbed nodes can be inferred by collecting experiments for
which the target node is unperturbed. We emphasise that our
approach to network inferability does not account for a priori
known restrictions on the network topology, as in the case of
directed acyclic graphs. Such constraints can strongly increase the
inferability of directed links8.

As F(q) is an upper bound for the expected number of directed
links that can be inferred from stationary node activities in the
absence of noise and other constraints on the network structure,
we now ask how this bound is related to the structural properties
of the network. To compare different network architectures, it is

useful to define the network inferability, IF, as the area under the
F(q)-curve, IF :¼

R 1
0FðqÞdq. Comparison of IF between two

general classes of network structures with node degrees either
power law or Poisson distributed shows that networks that are
enriched with nodes of high outdegree are the most difficult ones
to infer (Figs 1b and 2b). The reason is that whenever hubs with
high outdegree are perturbed there is a high chance that they
target more than one of the unperturbed nodes and without
additional perturbations it is impossible to detect which of the
targets are affected directly and which indirectly. Differences in
inferability due to network structure are most predominant for
networks with low mean degree and become less predominant
with high mean degree (Fig. 2c). As our measure of inferablity, IF,
is essentially determined by the outdegree distribution, the curve
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starts saturating for scale-free exponents γ> 3, as in this regime
the variance of the number of links per node is essentially
constant for increasing γ and fixed mean degree9 (Fig. 2d). The
network inferability, IF, is asymptotically independent of network
size (Fig. 2e). We further investigated the inferability of causal
interactions in biological and social networks as a function of the
mean degree (Fig. 2f). The decreasing trend can be explained by
the higher number of alternative routes that come with a more
strongly connected network. The low inferability of gene-
regulatory networks can be attributed to master regulators that
regulate a large fraction of the genome (hubs with high
outdegree), whereas the comparatively high inferability of protein
interaction networks is a consequence of the low number of
different binding domains per protein and that only a fraction of
the existing interactions have been identified due to limitations of
experimental methods10. If we assume that the conditional
probability P(k, l, m|k→ l) of finding two connected nodes in the
directed network, where the source node has k ≥ 1 outgoing links,
the target node has l ≥ 0 outgoing links, and both share m nodes
as common targets of their outgoing links, can be factorised, the
resulting inferability measure, I$F , is simply a function of the
outdegree distributions, P(k) and P(l). We observed that I$F % IF
for all networks investigated in this work (Fig. 2f, inset). This
result shows that for a large variety of networks structures the
outdegree is the dominating factor that determines network
inferability. Consequently, if the perturbed nodes are not selected
at random but are biased towards higher outdegree, inferability is
further reduced.

Network inference concepts. From our analyses of network
inferability we gained the insight that the number of potential
alternative routes how a source node can affect a target node
correlates positively with the outdegree of the source node and
inversely with the expected inferability of the directed link
between source and target, given that perturbed nodes are uni-
formly distributed in the network. Consequently, network infer-
ence algorithms should strongly benefit from an a priori
reduction in the number of alternative routes. In the following we
present an unbiased network inference algorithm that eliminates
alternative routes with low signal-to-noise ratio as a preproces-
sing step. Inference of transcriptional networks on genome scale
is best realised by methods that are (i) asymptotically unbiased,
(ii) scalable to large network sizes, (iii) sensitive to feed-forward
loops11 and (iv) can handle data sets with and without knowledge
about which nodes are targeted by experimentally induced
perturbations7, 12–16 (Supplementary Note 2). Inference methods
for directed networks typically require individual perturbation of
all nodes7 or many perturbations of different strengths to com-
pute conditional association measures6, 17 or conditional prob-
abilities18. Generation of time course data seems to be the most
natural way to infer directed networks by simply analysing the
temporal ordering of the transcriptional activities19, 20. However,
this approach precludes the use of knockout experiments and
requires fast acting perturbations in combination with monitor-
ing node activities over time, which is experimentally demanding,
especially if nodes respond on very different time scales21.

Experimental variability and technical noise. Inference is fur-
ther complicated by the fact that transcriptome data contain a
significant amount of stochastic variation between biological
replicates despite pooling over millions of cells (Fig. 3a). It is
interesting to see that the variation across biological replicates for
baker’s yeast3 is close to a normal distribution and follows almost
exactly a t-distribution with 11 degrees of freedom over five
standard deviations (Fig. 3a, inset). The same data set also shows

that variability among biological replicates is much larger than
technical noise (Fig. 3b) for this experimental setup. As variability
among biological replicates may arise from subtle differences in
growth conditions that induce changes in gene regulation, we
expected to see significant cross-correlations among genes
(Fig. 3c), whose magnitude is much larger than expected by
chance (Fig. 3c, inset). These cross-correlations can be exploited
for inferring the structure of undirected networks12, if the driving
noise is independent and identically distributed for all nodes
(Supplementary Note 2). In contrast, technical noise not only
reduces the statistical significance for detecting true interactions
but can also induce a significant fraction of false positive inter-
actions, especially if the interaction network under investigation
is sparse. Such noise induced misclassification of links can be
illustrated by a simple linear network A→ B→ C for which stan-
dard inference methods—such as partial correlations–interpret
the information that A has about C erroneously as a direct link
between A and C if the state of B is corrupted by measurement
noise (Fig. 3d). The reason is that a part of the correlation
between A and C cannot be explained by B.

Algorithm for large-scale and unbiased network inference. To
make use of the rapidly growing amount of single-gene knockout
screens for which transcriptome data are3 or may become
available22, 23, we developed a method to infer directed networks
on a genome scale, where the number of genetic perturbations is
typically below the number of nodes or genes in the network
(Online Methods). In brief, our method uses the concept of
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02489-x

4 NATURE COMMUNICATIONS | �(2018)�9:133� |DOI: 10.1038/s41467-017-02489-x |www.nature.com/naturecommunications



probabilistic principle component analysis24 to compute partial
response coefficients (PRC) that are asymptotically unbiased with
respect to Gaussian measurement noise. In addition, the algo-
rithm provides a feature to identify non-inferable links, which are
removed before statistical analysis. In the absence of noise, our
numerical method correctly predicts the fraction of links that are
inferable, F(q) (Supplementary Note 1), for a network with links
represented by linear functions of slope one. To evaluate the
performance of our method we generated two synthetic knockout
data sets that closely resemble the gene-regulatory network
structure of baker’s yeast, using the GeneNetWeaver software25

that uses a hierarchical network structure and our own generative
model that uses a scale-free network structure (Supplementary
Note 3). We added Gaussian measurement noise to the synthetic
data with a standard deviation of 10% the log2 fold-change in
expression level for each perturbation for each gene. Residual
bootstrapping among replicates was used to quantify the statis-
tical significance of the inferred link strengths. In comparison
with standard inference methods, such as partial correlations12–
14, 26, 27, our method shows a significantly higher performance in
the absence of any penalties that enforce sparse network struc-
tures (Fig. 4b, left panel). The improved performance of our

approach can be assigned to the fact that the method is unbiased
with respect to measurement noise (Online Methods).

To further improve the predictive power of our method we
included the prior knowledge that transcriptional networks are
highly sparse. Sparsity constraints are typically realised by
penalising either the existence of links or the link strengths by
adding appropriate cost functions, such as L1-norm regularised
regression (Lasso)28. Adding a cost function to the main objective
comes with the problem to trade-off the log-likelihood against the
number of links in the network whose strength is allowed to be
non-zero. In the absence of experimentally verified interactions
there is no obvious way how to determine a suitable regularisa-
tion parameter that weights the likelihood against the cost
function, which is one of the great weaknesses of such methods.

In our approach we reduce network complexity by assuming
that functionally relevant information in molecular networks can
only pass through nodes whose response to perturbations is
significantly above the base line that is given by the variability
among biological replicates. The individual noise levels can be
estimated from natural variations among wild-type experimental
replicates (Fig. 3a). The significance level that removes nodes
from the network with low signal-to-noise ratio can be set to a
desired false discovery rate. It can be shown that removal of noisy
nodes imposes a sparsity constraint on the inference problem
(Online Methods). The different steps required to arrive at a list
of significant links are illustrated in Fig. 4a. In the first step, genes
are grouped in clusters that are co-expressed under all
perturbations. These clusters are treated as single network nodes
in the subsequent steps. In the second step, only those samples
are extracted from the data set that correspond to a perturbation
of a chosen gene—the source node—with no other genes
perturbed (node 5 in Fig. 4a). From this reduced data set, we
identify all nodes in the network that change expression above a
given significance level upon perturbing the source node. These
significantly responding nodes define a subnetwork for each
source node, which is typically much smaller in size than the
complete network. In the third step, we collect all perturbation
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Fig. 4 Performance of our method. a Flow-chart showing the algorithmic
steps for network inference as explained in the main text. b Receiver
Operating Characteristic (ROC) curves for 300-node scale-free networks
with additive Gaussian measurement noise of 10% of the expression level
and 25% of the nodes perturbed. Data were generated using
GeneNetWeaver (left and middle panel) as well as using scale-free network
structure with mean degree of 〈k〉= 2 and scaling exponent γ= 2.5 (right
panel, Supplementary Note 3). Here, the true positive rate is computed with
respect to the inferable links39. Performance of inference methods without
sparsity constraints (left panel): PRC (red), partial correlations/linear
regression (turquoise) and conditional mutual information (orange).
Performance of inference methods with sparsity constraints (middle and
right panel): PRC with subnetwork method (green) and Lasso (black) both
applied to a subset of significantly responding nodes that were selected
with 1% false discovery rate, Lasso regression applied to all 300 nodes
(blue), and PRC from left panel (red) for comparison. c True positives for
the same scale-free network of b, with 2, 4 and 8 experimental replicates
with 5% false discovery rate for both significantly responding nodes and
link strength: PRC (red), PRC with subnetwork method (green), PRC with
subnetwork and clustering method (blue), and F(q) (black line). d The S.
cerevisiae GAL network as an example for a gene-regulatory network where
phosphorylated Mig1 sets the basal expression levels of Gal4 and one of its
many regulatory targets, Gal3. Gal4 protein can activate Gal3 expression
but is inactivated upon binding of Gal80 protein. The transcriptome data
set contains knockout mutants for GAL80 and MIG1 but not for the
remaining GAL genes. A schematic representation of the key molecular
mechanisms (left) and links inferred from transcriptome data3 (right)
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data from the complete data set for all nodes that are part of the
subnetwork. Before inferring a direct interaction that points from
the source node to a given target node in the subnetwork (green
arrows in Fig. 4a), we remove all experiments from the data set
where the target node is perturbed. The second and third steps
essentially realise the counting procedure of inferable links as
illustrated in Fig. 2a, with the difference that significant links are
identified by PRCs in combination with residual bootstrapping
over replicates (Online Methods, Supplementary Note 3). In the
fourth step, we collect all clusters of co-expressed genes that
contain exactly two nodes, with one of the nodes perturbed and
check statistical significance of the directed link between them. In
the fifth step, all significant links are collected in an edge list. We
refer to these five steps as the clustering method. If we remove all
links from the edge list that have more than one node in a source
cluster or more than one node in a target cluster, we obtain an
edge list that corresponds to links between single genes. This
reduced edge list would also arise by skipping the clustering step
and we refer to the remaining inference steps that compute links
between single genes as subnetwork method.

Performance of the proposed inference algorithm. The Lasso
method in combination with bootstrapping has been bench-
marked as one of the highest performing network inference
methods for in silico generated expression data29. The receiver
operating characteristic (ROC) curve of the subnetwork method
shows better performance than the Lasso method (Fig. 4b, middle
and right panel) after adjusting the regularisation parameter of
the Lasso method such that the area under the ROC curve is
maximised. However, a significant performance boost for the
Lasso method can be achieved by applying the second step of our
method that removes noisy nodes, resulting in comparable per-
formance of Lasso with the subnetwork method for the case that
validation data exist such that the regularisation parameter can be
determined (Fig. 4b, middle and right panel).

To get insight into the optimal experimental design for
generating data for network inference, we computed the fraction
of correctly inferred links and compared them against the fraction
of independently perturbed nodes for different numbers of
experimental replicates. We compared three different variants of
our approach: PRC, PRC together with subnetwork method and
PRC together with clustering method (Fig. 4c). As all variants
share PRC as underlying inference method (Online Methods), the
observed strong increase in performance can be assigned to the
sparsity constraint that comes with the subnetwork method or the
clustering method. Owing to this constraint, both the subnetwork
method and the clustering method can have higher accuracy than
the noise-free analytical solution, as the latter does not enforce
sparse network structures. The results show that in the presence
of 10% measurement noise the amount of available replicates
limits the true positive rate, even if 100% of nodes are perturbed.
Inference of >80% of the network can only be achieved if the
number of replicates is sufficiently high.

To benchmark the performance of our algorithms in
comparison to others, we applied our method to the DREAM3

in silico network inference challenge30. The provided data set of
this challenge has the advantage that full information about the
identity of perturbed nodes is given. We ignored the transient
information from time series and used the stationary state of time
course data to estimate the variation in expression between
biological replicates. To identify the significantly responding
nodes, we used a Bonferroni corrected significance level of α =
0.05/N, where the number of alternative hypotheses—or the
number of possible incoming links for a given target node in our
case–are bounded by number of possible source nodes in the
network, N − 1. To make sure that we correctly implemented the
published performance evaluation method that is based on curve
fitting a sampled null hypothesis31, we followed the proposed
curve fitting procedure suggested by the organisers of the
challenge by using different exponential family distributions for
each tail, and alternatively by using a single t-distribution to fit
AUROC null hypothesis samples. The results are shown in
Table 1 and Supplementary Data 4. The overall second place
among the other 29 inference methods should be interpreted in
the light that the better performing algorithm uses extensive
hyperparameter tuning, makes use of transient data, and does not
scale well with network size32. Furthermore, our approach seems
to be robust with respect to the chosen significance level as
changing α by one order of magnitude did not affect the ranking.
However, we emphasise that for ‘large p small n’ problems, where
the number of parameters exceeds the number of independent
data points, preprocessing often has a larger effect on perfor-
mance than the inference method itself 30. For our algorithm the
performance boost is a consequence of generating subnetworks as
preprocessing step.

Application to yeast genome knockout data. To evaluate the
performance of our approach on real data, we use one of the
largest publicly available transcriptome data sets3, comprising of
transcriptomes that cover 6170 genes for 1441 single-gene
knockouts that can be utilised for network inference using PRC.
We use the galactose utilisation network as a gene-regulatory
example, which is one of the best characterised gene-regulatory
modules in yeast33. The regulatory mechanism of the GAL4 gene
as a key regulator is shown in Fig. 4d, left panel. As information
about phosphorylation and protein interaction is absent in
expression data, the inferred network structure from tran-
scriptome data with GAL4 and GAL80 perturbed is different
from the known gene regulation but can identify major regulators
and their targets. Whether the gene AIM32—which is not known
to be part of the GAL network—is co-regulated with GAL80 or
an artefact of the knockout screen is difficult to judge. Both
options are possible as AIM32 is located in close vicinity to
GAL80 on the genome. By sorting genes with respect to their
number of statistically significant outgoing links, we can identify
potential key regulators. Besides transcription factors, the reg-
ulators with highest statistical significance are factors involved in
chromatin remodelling, signalling kinases, and genes involved in
ubiquitination (Supplementary Data 1–3). This result—although
expected for eukaryotes—is inaccessible for inference methods

Table 1 Ranking and overall scores (in parantheses) among the original participants of the DREAM3 in silico network inference
challenge

10 nodes α= 0.05/10 50 nodes α= 0.05/50 100 nodes α= 0.05/100

Original scoring method 2nd (4.64) 2nd (31.43) 2nd/1st (55.98)
AUROC background fitted with t-distribution 2nd (4.14) 3rd (30.10) 2nd/1st (50.06)

Scores were obtained with the original scoring method and a scoring method in which the AUROC background distribution was fitted with a t-distribution. Here, α denotes the significance level for the
identification of nodes that are significantly affected by perturbations
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that a priori fix known transcription factors as regulatory sources.
However, as the number of deleted genes in this data set comprise
just 23% of the genes for which transcript levels have been
measured, we can estimate from our simulations that we have
inferred <10% of the direct interactions in the transcriptional
network of yeast.

Discussion
We have developed an unbiased network inference method for
perturbation experiments that target individual nodes in the
network. Consequently, node activity data that result from
unspecific perturbations cannot be exploited by this algorithm in
its present form. As individual gene knockout or knockdowns
dominate many large-scale experimental studies of node activities
in biological networks3, 23 and their genome-wide coverage is
constantly improving22, 34, we expect that the biological data sets
to which the algorithm can be applied will rapidly increase in the
near future. However, currently most of the large-scale knockout
or knockdown screens lack complete coverage of mutants and
often come with low number of experimental replicates, if any. In
this work we have shown that insufficient coverage of perturbed
nodes in transciptome data fundamentally limit the amount of
links that can be inferred, independently of the employed infer-
ence algorithm and that high statistical power requires a sig-
nificant amount of replicates to drive down effects of
experimental variability and measurement noise. We therefore
introduced a network inference approach that is able to detect
significant links for the case that only a fraction of nodes are
perturbed, removes nodes with low signal-to-noise ratio from the
network, and makes use of an inference algorithm that is insen-
sitive to measurement noise. Including prior knowledge about
network complexity and reducing the effects of noise is crucial for
network inference problems, where the number of parameters,
e.g., link strengths, scale quadratically with network size and often
exceed the number of measured data points. Good scaling
behaviour and the absence of time-consuming hyperparameter
tuning make our approach an easily applicable network inference
tool that shows competitive performance with state-of-the-art
methods. However, even when complete coverage of single-gene
perturbations together with a high number of experimental
replicates of transcriptome data are available, the inferred tran-
scriptional network cannot be directly translated into a model
that reflects the biochemical reality of gene regulation. The reason
is that gene regulation can involve complex molecular interac-
tions on DNA, RNA, protein and small molecule level that result
in direct interactions between mRNA levels. An example of such
complex interactions is the observed regulation by the human
oncogene IDH1—a metabolic enzyme involved in the citric acid
cycle. Mutational loss of normal enzymatic function of IDH1 and
production of the metabolite 2-hydroxyglutarate can affect the
activity of an epigenetic regulator, which promotes tumorgenesis
by reprogramming transcriptional activity on genome scale35.
Inference of such complex molecular interactions would require a
combination of different high-throughput technologies, with the
challenge that different methods typically show large differences
in sensitivity and coverage36.

Methods
PRC. We aim at inferring direct interactions between N observable molecular
components, such as transcripts or proteins, by measuring their concentrations.
We define by y 2 RN an N dimensional vector that represents the logarithm of
these concentrations, which is the natural scale where experimental data are
reported. We assume that the available data set has been generated from P per-
turbation experiments, fykg

P
k¼1, which may also include experimental replicates.

We further assume that the molecular targets of the perturbations are known, as it
is the case for gene knockout or knockdown experiments. The elements of the
interaction matrix A 2 RN ´N define the strengths of the directed interactions

among the molecular components, for example, Aij quantifies the direct impact of
component j on component i. Given the available experimental data, our aim is to
correctly classify the off-diagonal elements of A as zero or non-zero to obtain the
structural organisation of the interaction network. We assume that the observed
component abundance on log-scale, yobs, differs from the true value, y, by additive
measurement noise, ϵ, which is characterised by zero mean, E½ϵ' ¼ 0, and variance,
E ϵϵT½ ' ¼ σ2IN , with IN the N dimensional identity matrix. We assume that the
observed data can by described to sufficient accuracy by a linear stationary model

0¼ A y ( yref
! "

þ Bu

yobs ¼ y þ ϵ;
ð1Þ

with A negative definite to ensure stability. Equations of this type typically arise
from linear expansion of a non-linear model around a reference state, yref. Linear
models are usually preferred for network inference a on larger scale, as the amount
of data often limit model complexity and the fact that linear models can give
surprisingly good resuits for non-linear cases. The perturbation vector u reflects
perturbations that persist long enough to propagate through the network, such as
mutations that affect gene activity. Here, u is defined such that for u = 0 the system
approaches the reference state y = yref. Note that the reference state, yref is not
necessarily the unperturbed state but could be also defined as the average over
perturbed and unperturbed states. We assume that the perturbation forces are
sampled from a standard normal distribution, with mean E½u' ¼ 0 and covariance
matrix E uuT½ ' ¼ IN . The identity matrix is a consequence of the fact that we can
absorb the associated standard deviations of the perturbative forces, u, in the
matrix B 2 RN ´N . We introduce normal distributed perturbations for mathema-
tical convenience, as this implies that also y is normal distributed and the resulting
maximum likelihood approach is analytically solvable. In general, only the posi-
tions of the non-zero elements of B are known from the experimental setup but
their actual values are unknown. Using a linear model that operates on log-scale of
physical quantities implies that only perturbations can be modelled that act mul-
tiplicatively on molecular concentrations. Fortunately, most enzymatic reactions
typically fall into this class, such as sequestration and inhibition by other com-
ponents and also knockout and knockdown experiments can be described on
multiplicative level. From Eq. (1) we can derive a relation between the interaction
matrix A and the covariance matrix of observed component abundances

C :¼ E yobs ( yref
! "

yobs ( yref
! "Th i

¼ A(1BBTA(T þ σ2IN
ð2Þ

We exploit Eq. (2) to infer directed networks from correlation data. Here, we
assume that component abundances are obtained from averaging over a large
number of cells. In this case, fast fluctuating perturbations that arise from thermal
noise and can be observed only on single-cell level average out. To infer the
interaction matrix, A, we start with singular value decomposition of the matrix
product A−1B

UΣVT :¼ A(1B ) B ¼ AUΣVT ð3Þ

with U and V orthogonal matrices and Σ a diagonal matrix containing the singular
values. The negative definite matrix A has full rank and hence is invertible. In the
following, we show that it is possible to infer the strength of a directed link between
a sender node j and a receiver node i, if all direct perturbations on receiver node i
are removed from the data set and if a significant partial correlation between i and j
exists. Removing the perturbation data for node i implies that the matrix B has at
least one zero entry. As a consequence, N0 ≥ 1 singular values are zero–as in general
not all nodes are perturbed–and the corresponding rows of U span the left null-
space of A−1B. In the absence of fast fluctuating perturbations, γ = 0, we can rewrite
the covariance matrix as

C ¼ A(1BBTA(T þ σ2IN ð4Þ

¼ U Σ2 þ σ2INð ÞUT : ð5Þ

Assuming that the observed node activities follow a multivariate normal
distribution, we can find estimates for the unknown orthogonal matrix U, the
singular values Σ, and the observational noise σ by maximising the log-likelihood
function L under the constraint UT

l Uk ¼ δlk , with Uk the k-th column vector of U
and δlk the Kronecker delta. It fact, it suffices to constrain the norm of the vectors,
Ukk k, as the corresponding maximum likelihood solution leads to an eigenvalue

problem with Uk as eigenvectors, which can always be made orthogonal. We can
therefore define the likelihood function by

L :¼ ln
QP

n¼1
N yobsn jyref ;C
! "

þ
PN

k¼1
λk UT

kUk ( 1
! "

ð6Þ

¼ ( P
2 M ln2π þ ln Cj jþ tr C(1Sð Þf gþ

PN

k¼1
λk UT

kUk ( 1
! "

ð7Þ
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Here, S :¼ 1
P

PP
n¼1 yobsn ( yref

! "
yobsn ( yref
! "T

and yref :¼ 1
P

PP
n¼1 y

obs
n denote

maximum likelihood estimates of the covariance matrix37. From this definition of
yref follows that the initially introduced perturbation vector, u, must satisfy,
1
P

PP
n¼1 un ¼ 0. We further defined with λk a Lagrange multiplier and denoted by

tr(.) the trace of a matrix. In the following calculations, we substitute S by the
unbiased sample covariance matrix, S→ P(P − 1)−1S. Note that V must disappear in
the likelihood function as the covariance matrix of u is invariant under any
orthogonal transformation u→VTu.

The maximum of the log-likelihood function is determined by the conditions
dL=dUk ¼ 0, dL=dΣkk ¼ 0, and dL=dσ2 ¼ 0, which results in

SÛk ¼ ΛkÛk with Λ1 * Λ2 * ¼ * ΛN ð8Þ

σ̂2 ¼ 1
N0

XN0

k¼1

Λk ð9Þ

Σ̂kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λk ( σ2

p
for k>N0

0 for k * N0

(
ð10Þ

showing that maximum likelihood estimates of Û , σ̂2, and Σ̂ are determined by the
sample covariance matrix S. If N0> 1 and the full-rank sample covariance matrix is
significantly different from a block-diagonal form—e.g., the network is not
separable in subnetworks–the orientations of the corresponding N0 eigenvectors
are determined by sampling noise in the space orthogonal to remaining N −N0
eigenvectors. In case that we have less data points than nodes in the network—e.g.,
the number of perturbed nodes times their replicates is smaller than the network
size—some of the N0 smallest eigenvalues become exactly zero and as a
consequence the noise level, σ̂, is underestimated. Although a maximum likelihood
solution exists in this case, it is necessary to regularise the covariance matrix,
S ! 1( ϵð ÞSþ ϵIN , with ϵ a regularisation parameter37, as a correct estimate of
the noise level is essential for statistical analysis. Note that the derivation of the
maximum likelihood solution is mathematically equivalent to the derivation of
principle component analysis from a probabilistic perspective24.

Solving the matrix equation, Eq. (3), for A gives

A ¼ BVΣþ þWΣ0! "
UT ð11Þ

with Σ+ the pseudoinverse of Σ. As the matrix A has full rank, we complement Σ+

with an unknown diagonal matrix Σ0 that has non-zero values where Σ+ has zero
values and vice versa and complement BV with an unknown orthogonal matrix W.
Note that by construction, Σ+UT and Σ+UT map from complementary subspaces
and thereby ensure that A has full rank. The fact that V, W and Σ0 cannot be
determined from S shows that A cannot be computed from a single covariance
matrix. A more general case arises when measurement noise is independent but not
isotropic, σ2I→ σ2D, with D = diag(r1, r2, …, rN) a diagonal matrix with known
positive elements that contains scaled noise variances, ri :¼ σ2i =σ

2, resulting in

C ¼ A(1BBTA(T þ σ2D ð12Þ

A transformation to isotropic noise is possible by multiplying both sides of Eq. (12)
by D(1

2, which changes the result Eq. (11) to

A ¼ BVΣþ þWΣ0! "
UTD(1

2 ð13Þ

with U the eigenvectors of D(1
2SD(1

2.

Case N0= 1. We assume that the i-th node is the only unperturbed node in the
network and hence set Bil = 0 for all l. From Eq. (11) we obtain a unique solution
for the i-th row of A relative to the diagonal element, Aii,

Aij

Aii
¼

PN
k;l¼1 BilVlkΣkk þ

PN
k¼1 WikΣ0

kkU
T
kjPN

k;l¼1 BilVlkΣkk þ
PN

k¼1 WikΣ0
kkU

T
ki

¼
UT
kj

UT
ki

$$$$$
k¼1

¼
Uj1

Ui1
ð14Þ

with Uj1 the j-th element of the eigenvector that has the smallest eigenvalue. Note
that the first term in the brackets vanishes as Bil = 0 and Σ0

11 is the only non-zero
element of Σ0. The important point is that any dependency on σ–which affects
eigenvalues but not eigenfunctions–has dropped out, making this method
asymptotically unbiased with respect to measurement noise. The fact that we can
determine the elements of the i-th row of A only relative to a reference value, Aii, is
rooted in fact that we have to determine the N parameters {Ai1, …, Aii, …, AiN}
from N − 1 perturbations. As a consequence, the strengths of the links onto the
target nodes cannot be compared directly if their restoring forces or degradation
rates, Aii, are different. Generally, only relative values of A can be determined, as
the average perturbation strength on node i cannot be disentangled from its
restoring force Aii–a problem that is typically circumvented by defining Aii :¼ (1
for all i7, 13, 15. For the case that all nodes in the network are perturbed one-by-one,
we can cycle through the network and remove the perturbations that act on the
current receiver node, whereas keeping the perturbations on the remaining nodes.

By computing the N corresponding covariance matrices and their eigenvectors, we
can infer the complete network structure from Eq. (14) if the data quality is
sufficiently high. Note that the method makes use of the fact that multi-node
perturbations can be realised by superposition of single-node perturbations, which
is a special property of linear models.

Case N0> 1. If more than one node are not perturbed we get from Eq. (11)

Aij

Aii
¼

PN0
k¼1 WikΣ0

kkU
T
kjPN0

k¼1 WikΣ0
kkU

T
ki

ð15Þ

Non-unique solutions of Eq. (15) can arise if a given fraction of the variance of the
receiver node i can be explained by more than one sender node, for example, when
a perturbed node j targets two nodes with index i and l. In this case it is unclear
from the node activity data whether i is affected directly by j or indirectly through l,
or by a combination of both routes. If node l is not perturbed or only weakly
perturbed, a statistical criterion is needed to decide about inferability or identify-
ability of the link j→ i, which can be computed numerically as follows: To find out
whether j transmits a significant amount of information to i that is not passing
through l, we first remove node j from the observable nodes of the network but
keep its perturbative effect on other nodes in the data set. We then determine the
link strengths A′ for the remaining network of size N − 1. To construct a possible
realisation of A′ we set in Eq. (15) the non-zero values of Σ0 to unity and useW =U
to arrive at the expression

A′il
A′ii

¼
PN0

k¼1 U ′ikU ′lkPN0
k¼1 U ′ikU ′ik

ð16Þ

with U′ determined from the sample covariance matrix with the j-th column and j-
th row removed. Fixing W and Σ0 to seemingly arbitrary values does not affect the
result we are after. If l is the only unperturbed node besides i, then in the A′ system
l can now be treated as perturbed—as it may receive perturbations from the
unobserved node j—and thus Eq. (14) applies. If l is part of many unperturbed
nodes that are affected by j, then the knowledge how much each of these nodes
contributes to the variance of the target node i (which is determined by W and Σ0)
is irrelevant as we are only interested in the total effect of the alternative routes on
node i. Using the inferred link strength from Eq. (16) we can rewrite Eq. (2) as a
two-node residual inference problem between j and i, where we obtain a lower
bound for link strength from node j to i by using the variation of i that could not be
explained by A′. This concept is similar to computing partial correlations. Defining
by ~A, ~B and ~D the 2 × 2 analogues to the full problem we obtain

~C ¼ ~A
(1
BBT ~A

(1 þ σ2 ~D ð17Þ

with ~C the covariance matrix of the vector ~yobs ¼

yobsj ; yobsi þ
P

l≠fi;jg A′il A′iið Þ(1yobsl

% &T
and ~D11 ¼ rj , ~D22 ¼ ri þ

P
l≠fi;jg A′

2
ilA′

(2
ii rl ,

using the scaled variances ri ¼ σ2i =σ
2. Note that Aii< 0 for all i as these elements

represent sufficiently strong restoring forces that ensure negative definiteness of A
and that we have 0 ¼ A′iiyobsi þ

P
l≠i A′ily

obs
l from Eq. (1) in the stationary case. An

estimate for the minimum relative link strength from node j to node i can be
calculated from Eq. (13) and is given by

~A12

~A11
¼

~U21 ~D
(1=2
22

~U11 ~D
(1=2
11

ð18Þ

Eq. (18) can be considered as an asymptotically unbiased response coefficient
between node 1 as target node and node 2 as source node, as again any dependency
on σ2 has dropped out. An estimate for the maximum relative link strength from
node j to node i follows from Eq. (18) with the off-diagonal elements of A′ set to
zero. We classify a link as non-inferable if there exists (i) a significant difference
between the minimum und maximum estimated link strength and (ii) a minimum
link strength that is not significantly different from noise.

Computational complexity of PRC. The computational cost for computing PRCs
scales as O N3

sub

! "
, with Nsub the size of the subnetwork under consideration.

However, as we infer directed networks, we first have to remove the perturbations
on each target node before its incoming links can be inferred. The cycling through
up to Nsub − 1 perturbed target nodes increases the computational complexity to
O N4

sub

! "
in the worst case. As we have generated a subnetwork for perturbed node

and used residual bootstrapping to infer statistically significant links, the total
computational complexity is given by O NbootNper N4

sub

' (! "
, where 〈.〉 denotes

averaging over all subnetworks, Nper the number of perturbed nodes, and Nboot the
number of bootstrap samples. If the travelling distance of perturbations (correla-
tion length) in the network is significantly shorter than the network diameter, such
that Nsub/N→ 0 in the limit of large networks, N→ ∞, the computational complexity
scales linearly with network size. In contrast, using Lasso to infer directed links
requires O NbootN4

sig

% &
operations, as the more efficient Graphical Lasso method38

is only applicable to undirected networks. Whether our method is computationally
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more efficient than Lasso depends on the inference problem. However, for the
networks investigated in this work our method required significantly lesscompu-
tational time than inference via Lasso using parallel computing.

Fraction of inferable links. Inferability of a directed link between source and
target node requires that the remaining network may not contain the same
information that is transmitted between them. A sufficient condition is that all
information that the remaining network receives from the source node is destroyed
by sufficiently strong perturbations. If the target node is not perturbed, information
from the source node may reach the remaining network through the target node. In
this case also the targets of the target node must be perturbed (Fig. 2a). Counting
network motifs that satisfy these conditions gives the number of inferable links. If
the network size, N, is significantly larger than the number of outgoing links for
both the source and target nodes, we can approximate the fraction of inferable
links, F(q), by the expression (Supplementary Note 1)

FðqÞ %
X

k¼1

X

l¼0

Xminðk(1;lÞ

m¼0

qkþ1 þ 1( qð Þqz
) *

P k; l;mjk ! lð Þ

Here, P(k, l, m|k→ l) is the conditional probability of finding two connected nodes
in the directed network, where the source node has k ≥ 1 outgoing links, the target
node has l ≥ 0 outgoing links, and both share m nodes as common targets of their
outgoing links. The first term in the brackets corresponds to the case that inde-
pendent perturbation data for node B exists (Fig. 2a, left panel) and the second
term to the case where independent perturbation data for node B are absent
(Fig. 2a, right panel). In the calculation of F(q) we assumed that the links in the
network are represented by noiseless, linear functions with non-zero slope and that
ensure that information of source nodes is neither destroyed nor absorbed in the
process of transmission.

Data preparation. Kemmeren et al.3 provided a transcriptome data set of a Sac-
charomyces cerevisiae genome-wide knockout library (with mutant strains isogenic
to S288c). This data set comprises transcript levels of 6170 genes for 1484 deletion
mutants. The data are presented as the logarithm of the fluorescence intensity
ratios (M-values) of transcripts relative to their average abundance across a large
number of wild-type replicates, resulting in logarithmic fold changes of mutant/
wild-type gene expression levels compared with a wild-type reference level. Kem-
meren et al. also used a dye swap setup for several experiments to average out the
effect of a possible dye bias. Their chip design measures most of the genes twice per
biological sample, thus allowing to estimate the technical variance. The pre-
processing of the data is described in Kemmeren et al.3, Supplementary
Information.

Residual bootstrapping. We make use of the 748 measured wild-type experi-
mental replicates to determine the natural variation among biological replicates,
δin :¼ log2 rinð Þ ( log2 rinð Þ

' (
n , with rin :¼ xin=x

pool
i , xin the expression of gene i in

wild-type replicate n, xpooli the expression level of gene i measured after pooling
over wild-type replicates, and 〈.〉n denoting the average over replicates. To generate
the bootstrap samples we randomly select 200 different δin from the replicates for
each gene i, and add these values to the log fold changes of the perturbed
expression levels, log2 rpertin

! "' (
n , with rpertin :¼ xpertin =xpooli and the average is taken

over the two replicates for each knockout.

Sparsity constraints by removing noisy nodes. As network inference typically
comes with an insufficient amount of independent perturbations and experimental
replicates we run into the problem of overfitting the data. In this case, noisy
information from many network nodes is collected to explain the response of a
given target node. L1-norm regularised regression (Lasso) systematically removes
many links, where each link explains only a small part of the variation of the target
node, in favour of few links, where each link contributes significantly. In our
approach we remove noisy nodes and thus their potential outgoing links, where the
critical noise level is determined by the variability among biological replicates. In
the presence of noise, our algorithm removes weakly responding nodes from the
network. We thereby assume that the existence of many indirect interactions
between source and target node by first distributing the signal of the source node
among many weakly responding nodes and then collecting these weak signals to
generate a significantly responding target node is much less likely than the exis-
tence of a single direct interaction. However, in the noise-free case we run into the
same problem as Lasso to determine the right cutoff (regularisation parameter).

Synthetic data. Synthetic data were generated using our own model and Gene-
NetWeaver25—an open access software that has been designed for benchmarking
network inference methods. With GeneNetWeaver, networks were generated from
a model that closely resembles the structure of the yeast regulatory network25, and
steady state levels of node activities were computed using ordinary differential
equations. In our data generating model, we first generated scale-free networks
with an exponent of 2.5 and an average degree of 2. Then, we solved a system of

ordinary differential equations with non-linear regulatory interactions between
nodes to obtain steady state values of node activities, e.g., transcript levels. For both
models, logarithmic fold changes of node activities were calculated (transcriptional
levels upon perturbation relative to wild levels), and gaussian noise was added.

Code availability. MATLAB and Python codes for the network inference algo-
rithm and the data preprocessing steps are available on request.

Data availability. The data sets analysed during the current study are described in
ref.3 and are available from Gene Expression Omnibus https://www.ncbi.nlm.nih.
gov/geo/ under the accession numbers GSE42527, GSE42526, GSE42215,
GSE42217, GSE42241 and GSE42240.
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Supplementary Note 11

Counting the number of inferable links as a function of2

perturbed nodes3

The expected fraction of inferable links can be calculated analytically if (i) the4

Np externally perturbed nodes are uniformly distributed throughout the network,5

(ii) measurement noise is absent, (iii) additional perturbations – such as internal6

perturbations arising from thermal noise – are absent, (iv) links are assumed to be7

represented by noiseless, linear functions with non-zero slope, and (v) an arbitrary8

large set of perturbation experiments can be generated, with the freedom to tune9

the perturbation strength for each node independently. Throughout this work we10

do not assume that networks belong to the class of directed acyclic graphs (DAG),11

which is often a necessary prerequisite for approaches based on Bayesian networks12

[1] and structural equations models [2]. The assumption that perturbed nodes13

are uniformly distributed throughout the network is done for mathematical conve-14

nience and can be generalised to other distributions. However, if the distribution15

of perturbed nodes correlates with features that a↵ect inferability, such as the16

outdegree, the maximum fraction of inferable links can change significantly. We17

assume links to be represented by linear functions as otherwise inferability would18

depend on the functional realisation of each link due to fact that any saturating19

behaviour by sigmoidal functions can limit the information that can be transmit-20

ted, which in turn can a↵ect the fraction of inferable links. Moreover, a linear21

network model has the important property that independent single-node pertur-22

bation experiments can be linearly combined to compute the expected responses23

of multi-node perturbation experiments.24

25

To count the number of inferable links under the conditions (i)-(v) we assume that26

for a given subnetwork a perturbed node (A) targets a node (B), given that the27

outdegree of node A is k, the outdegree of node B is l, and A and B have c nodes28

as common targets (Supplementary Figure 1). We denote a directed link from29

source node (A) to target node (B) as inferable if there exits a detectable amount30

of mutual information between A and B that cannot be transmitted by any alter-31

native route through the network. This requires that at least one node of each32

alternative route is perturbed and thereby part of the transmitted information is33

destroyed. It is important to recognise that it is necessary and su�cient to perturb34

only the shortest alternative routes that pass through the outgoing nodes of A or35

B, as we assume that all possible network structures – and thus also the shortest36

ones – occur with the same prior probability and information about A spreading37

through the network must pass through the outgoing nodes of A or B. To meet38



2

A 

B 

A 

B 

Supplementary Figure 1: Example of a directed subnetwork. We would like to infer
the link from node A to node B (shown in bold), where A
has outdegree 4, B has outdegree 3, and A and B share 1
common target.

this requirement, either one of the following conditions must be fulfilled (Fig. 2a,39

main text):40

41

1. All nodes that are targeted by A are perturbed, including node B.42

2. Except B, all nodes that are targeted by A and B are perturbed.43

By collecting all subnetworks that fulfil conditions 1 or 2 we can calculate the44

average fraction of inferable links, F (Np), usingN 0 := N�k�1 andN 0
p
:= Np�k�145

F (Np) =
X

k

✓
N 0

N 0
p

◆

✓
N
Np

◆P (k|A ! B) +
X

k,l,c

✓
N 0 � l + c

N 0
p
� l + c+ 1

◆

✓
N
Np

◆ P (k, l, c|A ! B) (1)

Here, N is network size, Np is number of perturbed nodes, k is the outdegree of46

the source node (A), l is the outdegree of the target node (B), c is the number47

of common nodes targeted by A and B. We further defined by P (k|A ! B) the48

conditional probability that for any two connected nodes, source node (A) has49
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outdegree k and P (k, l, c|A ! B) is conditional probability that for any two con-50

nected nodes, source node (A) has outdegree k , target node (B) has outdegree51

l, and A and B target c common nodes. The first term in the numerator counts52

motifs that fulfil condition 1, and the second term in the numerator counts motifs53

that fulfil condition 2. The term in the denominator counts all possible network54

motifs, when Np nodes of the network are perturbed.55

56

Assuming that the network size, N , and the number of perturbed nodes, Np, are57

much larger than the outdegrees, N,Np � k, l, we can apply Stirling’s approxi-58

mation and simplify Eq. (1)59

F (q) ⇡
X

k,l,c

⇥
qk+1 + (1� q)qk+l�c

⇤
P (k, l, c|A ! B) (2)

where q denotes fraction of perturbed nodes, q = Np/N .60

61

Network’s Inferability62

According to Eq. (2), networks with di↵erent structural features have di↵erent63

F (q) curves (Fig. 1b, main text). We therefore define an inferability measure, IF ,64

as the area under the curve of F(q) that reflects how di�cult it is to infer links for65

a given network structure66

IF =

Z 1

0

F (q)dq

=
X

k,l,c


1

k + 2
+

1

k + l � c+ 1
� 1

k + l � c+ 2

�
P (k, l, c|A ! B) (3)

Note that IF is independent of network size. For su�ciently large networks N � 167

and when feed forward loops are rare, we can approximate the joint probability by68

IF ⇡ I⇤
F

:=
X

k,l,c


1

k + 2
+

1

k + l + 1
� 1

k + l + 2

�
P (k|A ! B)P (l|A ! B) (4)

According to Eqs. (3) and (4), inferability mainly depends on the outdegree of69

nodes. Consequently, networks consisting of nodes with high outdegree have low70

inferability (IF ) and are the most di�cult ones to infer.71
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Comparison of F (Np) with the inference algorithm72

We compared the fraction of inferable links determined by the analytical formula,73

F (Np), and the average number of inferable links classified by our inference al-74

gorithm in the limit of low measurement noise. In order to calculate the average75

number of inferable links from the inference algorithm, we focus on scale-free and76

random networks. For each number of perturbed nodes, Np, we first randomly77

select the nodes that will be perturbed and subsequently generate node activity78

data for single-node perturbations. For each random sample of Np nodes, we cal-79

culate the fraction of inferable links and finally average over all configurations80

of perturbed nodes. We compared the results of the analytical and numerical81

approaches for three di↵erent types of networks (Supplementary Figure 2). We82

considered a scale-free network where hubs are targets of links (Supplementary83

Figure 2-a), a scale-free network where hubs are sources of links (Supplementary84

Figure 2-b), and a random network (Supplementary Figure 2-c). For all three net-85

work types, the network sizes are N = 100 and averaging runs over 300 di↵erent86

configurations of Np randomly selected nodes that are perturbed individually by87

knockouts.88

89
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Supplementary Figure 2: Comparison of the analytical formula, Eq. (1) and the
inference algorithm by calculating the number of inferable
links with respect to the number of perturbed nodes, Np.





3 | Pharmocokinetics Modeling of
Cangrelor

3.1 Summary

Cangrelor is a high-affinity, reversible antagonist of the P2Y12 receptor that inhibits ADP-
induced platelet aggregate completely. Cangrelor has a short half-life of 2.6 to 3.3 minutes
and reaches steady-state rapidly [45]. Cangrelor is approved for patients with Coronary
artery disease (CAD) undergoing percutaneous coronary intervention (PCI). Due to the short
half-life of Cangrelor, it should be administered as a bolus of 30 µg/kg followed by an
immediate infusion of 4 µg/kg/min for at least 2 hours [46]. However, in clinical routine,
several deviations from the correct administration of the drug, such as delay in the start of
the infusion after bolus administration or interruptions during infusion, may occur.

By applying a one-compartment model, the kinetics of Cangrelor is studied. Based on the
model, the impact of different deviations of correct administration of the drug is investigated;
such as different delay times, and different durations of interruption. For this purpose, for
each duration of delay and interruption, the change of plasma concentration of the drug is
considered. Furthermore, an optimum second bolus dosage is suggested to reconstruct to
steady-state condition, in such a way that the drug concentration achieves an effective but
not excessive Cangrelor serum concentration.

51



a) b) 

Fig. 3.1 a) Chemical structure of Cangrelor. b) Inhibition of ADP-induced platelet aggregate
by Congrelor.

3.2 Publication: Pharmacosimulation of interruptions and
its solution in intravenous administration of cangrelor
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Contribution of Nadia Heramvand:

• developed predictive pharmacokinetics (PK) of Congrelor

• simulated clinical complications, i.e, delay, and interruption of the drug infusion
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Pharmacosimulation of interruptions
and its solution in intravenous
administration of cangrelor
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Abstract.
BACKGROUND: Cangrelor is an intravenous adenosine diphosphate (ADP) P2Y12 receptor antagonist, which has to be
administered as a bolus followed by immediate infusion. Nevertheless, in clinical routine deviations from the correct practice,
such as delayed infusion onset or interruptions during infusion, may occur.
OBJECTIVE: The objective of the present study was to investigate the impact of administration delays on cangrelor
concentration in a pharmacological simulation setting and to give possible solutions for the clinical practice.
METHODS: We simulated the effects of different delays in administration of cangrelor in a model based on known
pharmacokinetic parameters. Additionally, we calculated the optimal dosage of a second bolus.
RESULTS: We demonstrate that already a short delay between the bolus and begin of infusion as well as short infusion
interruptions considerably affect the serum concentration of cangrelor. Additionally, we estimate the dosage of a possible
second bolus which highly depends on the duration of the delay.
CONCLUSIONS: Our results emphasize that continuous administration of cangrelor is crucial to avoid the critical time
frame of increased thrombosis risk. We suggest a strategy for dealing with interruptions by demonstrating that a second bolus
allows to reach rapidly an effective but not excessive cangrelor serum concentration.

Keywords: Cangrelor, P2Y12 inhibitor, pharmacokinetics, pharmacosimulation

1. Introduction

Percutaneous coronary intervention (PCI) with stent implantation is the treatment of choice in
patients with acute coronary syndrome [1]. It has been established that the use of adjunctive antiplatelet
therapy during and after PCI is crucial in preventing thrombotic complications [2]. In the last two
decades, unfractionated heparin, aspirin and P2Y12 inhibitors evolved the standard antithrombotic
therapy in patients undergoing PCI [3]. Although the oral P2Y12 antagonists, such as clopidogrel,
ticagrelor and prasugrel, are potent agents in reducing ischemic events, in particular stent thrombosis,
several limitations of these drugs are known. Thus, the irreversibility of the action of clopidogrel and

∗Corresponding author: Maryna Masyuk, M.D., Division of Cardiology, Pulmonary Diseases, Vascular Medicine,
University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany. Tel.: +49 211 8115897; Fax: +49 211 8115493;
E-mail: maryna.masyuk@med.uni-duesseldorf.de.

1386-0291/17/$35.00 © 2017 – IOS Press and the authors. All rights reserved



Cor
re

cte
d P

ro
of

2 M. Masyuk et al. / Pharmacosimulation of interruptions of cangrelor

prasugrel is associated with increased bleeding risk if urgent surgery is required [4]. Another problem
is the bioavailability in acute settings, in which the patients might be sedated or present nausea,
vomiting or a shock state [5, 6]. Recently, novel antiplatelet drugs have been developed. Among
these, cangrelor is the only potent intravenous direct and specific adenosine diphosphate (ADP) P2Y12

receptor antagonist. It is characterized by a fast onset of action as well as fast reversibility, making
it a reliable antiplatelet therapeutic in acute clinical setting [7]. To prevent thrombotic complications,
it is essential to rapidly achieve the therapeutic serum concentration and to maintain it continuously.
Due to its short half-life (approximately 3 to 6 minutes), cangrelor has to be administered as a bolus
(30 !g/kg) followed by immediate infusion (4 !g/kg/min) [8, 9]. However, in clinical routine several
deviations from the correct practice, such as belated onset of the infusion after bolus administration or
interruptions during infusion, may occur.

Thus, the purpose of the present study was to demonstrate the impact of different alterations from
the correct administration mode on cangrelor serum concentration in order to estimate the kinetics
of underdosage and to give suggestions for delay management in clinical practice. Therefore, we
simulated multiple bolus-infusion delays and infusion interruptions using mathematical modeling
based on known pharmacokinetic parameters of cangrelor.

2. Methods

Simulations were performed using ode45 ordinary differential equation solver for MATLAB Soft-
ware (R2015a, MathWorks, Natick, MA, USA). The starting point for all the simulations was the
recommended application mode consisting of an administration of a 30 !g/kg bolus followed by con-
tinuous infusion at a concentration rate of 4 !g/kg/min. All simulations were performed based on
pharmacokinetic parameters published in literature [8, 10]. Briefly, cangrelor activity was assumed
to follow a one-compartment model, as after intravenous application it is rapidly distributed in the
blood plasma showing a plasma protein binding rate of 97 to 98% and metabolized in the circulation
independently of hepatic or renal function [10]. It has been shown to have linear pharmacokinetics
in the range of the tested concentrations, in both healthy volunteers and patients. After intravenous
administration of the bolus, cangrelor reaches its maximum plasma concentration within 2 minutes
achieving the steady-state concentration of 488 ng/ml after approximately 10 minutes. Finally, can-
grelor is metabolized by dephosphorylation to its primary metabolite, a nucleoside with a negligible
anti-platelet activity. Cangrelor metabolites are excreted to approximately two third via urine and one
third via feces. Further pharmacokinetic parameters used for the simulations were volume of dis-
tribution of 0.05 l/kg and elimination half-life of 3.5 minutes [10, 11]. On this basis, mathematical
simulations were performed to evaluate effects of different delays between the bolus and initiation of
the infusion as well as interruptions of continuous infusion of length. Subsequently, the dosage of a
second bolus was calculated in a manner, allowing to rapidly reachieve an effective but not excessive
cangrelor serum concentration. Each simulation was performed ten times to prevent possible errors.

3. Results

Using the known pharmacokinetic parameters of cangrelor, we mathematically simulated the effects
of different delays and interruptions in application on the drug serum concentration. Here we demon-
strated that already a short delay between the bolus and the beginning of infusion of only 4 minutes
considerably affects the serum concentration of cangrelor. Longer delays of 10 or 15 minutes even
lead to drastic decreases to 26% or 10% of the target drug concentration (Fig. 1A-C). Furthermore,
we showed that already interruptions of continuous infusion of only 1 minute decreased the cangrelor
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Fig. 1. Effects of bolus-to-infusion delays on serum cangrelor concentration. Delays: A: 4 minutes, B. 10 minutes, C. 15
minutes. The solid line in each plot shows the regular pharmacokinetics of cangrelor administered in accordance with
recommendations. The dashed lines show the rapid decrease in cangrelor serum levels beneath the target concentration after
the delays between the bolus and initiation of infusion. The dotted lines show the effectiveness of the second bolus to rapidly
reachieve the steady-state concentration of cangrelor.

serum concentration rapidly beneath the steady-state level. Longer interruptions of 5 or 10 minutes
lead to substantial decreases in drug concentration (Fig. 2A-C). Additionally, we estimated the dosage
of a possible second bolus, which highly depends on the duration of the delay. Figure 1D shows the
calculated optimal dosages of the second bolus according to the duration of delay. Thus, after 4 minutes
of delay between the first bolus and the infusion initiation a dosage of 4 !g/kg is sufficient to quickly
reachieve the steady-state concentration of cangrelor, whereas longer delays require higher drug con-
centrations, e.g. 13 !g/kg after a delay of 10 minutes. For interruptions of the continuous infusion an
analogous temporal dependence of the second bolus dosage can be observed (Fig. 2D).

4. Discussion

Several studies have shown cangrelor to be a potent and safe antiplatelet agent, which can be effec-
tively used in acute settings due to its intravenous application mode, its fast action onset while being
no prodrug, and total reversibility. The use of cangrelor in patients undergoing PCI has been stud-
ied in two clinical studies, the Cangrelor versus Standard Therapy to Achieve Optimal Management
of Platelet Inhibition (CHAMPION) PCI and CHAMPION PLATFORM studies. Here, it has been
reported that cangrelor application during PCI was associated with reductions of prespecified sec-
ondary end points, such as stent thrombosis and death of any cause as compared to placebo during PCI
group. At the same time there was no significant difference in bleeding events requiring blood trans-
fusion between the cangrelor and standard therapy groups [12, 13]. The CHAMPION PHOENIX trial
designed to evaluate whether cangrelor reduces ischemic events after PCI revealed a significant reduc-
tion in ischemic events including stent thrombosis and myocardial reinfarction within 48 hours post-PCI
in patients receiving cangrelor as compared to the group receiving a loading dose clopidogrel [14].
Its pharmacokinetic properties, such as short half-life, not only make cangrelor an optimal antiplatelet
drug during emergency situations, but also imply the necessity of strict administration standards.
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Fig. 2. Effects of infusion interruptions on serum cangrelor concentration. Duration of interruptions: A: 1 minute, B. 5
minutes, C. 10 minutes. The solid line in each plot shows the regular pharmacokinetics of cangrelor administered as a
continuous infusion. The dashed lines show the rapid decrease in cangrelor serum levels beneath the target concentration
after infusion interruptions. The dotted lines show the effectiveness of the second bolus to rapidly reachieve the steady-state
concentration of cangrelor.

In a substudy of the CHAMPION trial concerning the pharmacodynamic effects of cangrelor on the
platelet function, Angiolillo and colleagues observed that the average platelet reactivity after discon-
tinuation of cangrelor infusion was not significantly different between the patients treated initially with
cangrelor or loading dosis clopidogrel. This supports the assumption of a rapid platelet recovery upon
termination of administration of cangrelor [9]. These results strengthen our hypothesis that mainte-
nance of a constant serum concentration of cangrelor is crucial for a sufficient antithrombotic effect. In
the present study, we demonstrate that already short delays or interruptions in cangrelor administration
lead to a rapid and substantial decrease of drug serum concentrations.

Our results highly suggest avoiding bolus-infusion delays or infusion interruptions. If the deviation
from the proper administration mode has already occurred, an appropriate approach from the pharma-
cokinetic prospective would be the application of a second bolus. Here, we estimated the dosage of
the second bolus according to the duration of the delay or interruption required to achieve effective
concentration of cangrelor without causing overdosage. However, it must be taken into account that the
present study is based on a simulated model. In this setting, it can be only assumed that the decrease of
concentration affects the antiplatelet effect of cangrelor. It cannot be proven that the simulated delays
and interruptions have a relevant effect on the platelet aggregation. This represents the major limitation
of our study. Nevertheless, pharmacosimulation studies serve as a valuable tool to provide an initial
assessment of concentration alterations after incorrect use of a drug.

5. Conclusion

Here, we give first insights in management of interruptions of cangrelor administration after PCI in
clinical practice. While evidently further clinical safety and efficacy trials are necessary for final
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recommendations in the future, we strongly recommend avoiding bolus-infusion delays and to
administer the bolus only when the infusion is prepared.
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4 | Pharmocokinetics Modeling of
Tirofiban

4.1 Summary

Tirofiban is a non-peptide reversible antagonist of the platelet-fibrinogen glycoprotein (GP)
IIb/IIIa receptor and inhibits platelet aggregation (Fig 4.1). It prevents the blood from clotting
during episodes of chest pain or a heart attack, or while the patient is undergoing a procedure
to treat a blocked coronary artery [47].

There are differences in recommended dosage in EU and USA labels, which require different
adjustment dosages for patients with normal renal function and severe renal impairment (
Table 4.1 [48] , [49]).

This study aims to apply pharmacokinetic modeling to investigate the difference between
American and European Tirofiban recommended dosage for three groups of patients:

• Group 1: Healthy volunteers (CrCl >90 mL/min),

• Group 2: Subjects with moderate (CrCl 30-59 mL/min) renal impairment

• Group 3: Subjects with severe (CrCl <30 mL/min) renal impairment

By applying a two-compartment model and using patient data, first of all, PK parameters of
Tirofiban for each goup of patients is calculated. Second the dynamical behavior of the drug
under EU and USA recommended dosages is studied. Then the effect of infusion delay and
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infusion interruption is investigated. Moreover, an effective second bolus dosage is calculated
to reconstitute plasma concentration as quickly, but not excessively, as possible.
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Table 4.1 EU and US recommended dosage of Tirofiban

EU US

Dosing 0.4 µg/kg/min for 30 minutes,
followed by 0.1 µg/kg/min infusion

25 µ g/kg within 5 minutes,
followed by 0.15 µ/kg/min
infusion for up to 18 hours

Renal Dose
adjustment

For patients with creatinine
clearance < 30mL/min: both the

loading and maintenance
infusion are reduced by 50%

For patients with creatinine
clearance < 60 mL/min: bolus
is unchanged at 25 µg/kg/min,

maintenance infusion is
reduceed by 50% to

0.075 µg/kg/min

a) b) 

Fig. 4.1 a) Chemical structure of Tirofiban. b) Tirofiban blocks platelet accumulation by
inhibiting the binding of fibrinogen to GP IIb/IIIa receptors
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4.2 Publication: Pharmacosimulation of delays and inter-
ruptions during administration of tirofiban: a system-
atic comparison between EU and US dosage regimens

Authors: Nadia Heramvand, Maryna Masyuk, Johanna M. Muessig, Amir M. Nia, Athana-
sios Karathanos1, Amin Polzin, Marco Valgimigli, Paul A. Gurbel, Udaya S. Tantry, Malte
Kelm, Christian Jung
This article is published in Journal of Thrombosis and Thrombolysis, 2022.

Contribution of Nadia Heramvand:

• estimated PK parameters of Tirofiban

• developed predictive pharmacokinetics (PK) of Tirofiban

• compared The US and EU recommendation dosages

• simulated clinical complications, i.e, delay, and interruption of the drug infusion

• generated the figures

• wrote the method section
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Abstract
Tirofiban is a glycoproteine (GP) IIb/IIIa receptor antagonist, which inhibits platelet-platelet aggregation and is a potential 
adjunctive antithrombotic treatment in patients with acute coronary syndromes (ACS) or high-risk percutaneous coronary 
interventions (PCI). It is administered intravenously as a bolus followed by continuous infusion. However, the dosage rec-
ommendations in the United States (US) and European Union (EU) differ considerably. Furthermore, in routine clinical 
practice, deviations from the recommendations may occur. The objective of the present study was to investigate the impact 
of different alterations on tirofiban plasma concentrations in US and EU administration regimens and to give suggestions for 
delay management in clinical practice. We therefore mathematically simulated the effects of different bolus-infusion delays 
and infusion interruptions in different scenarios according to the renal function. Here, we provide a systematic assessment of 
concentration patterns of tirofiban in the US versus EU dosage regimens. We show that differences between the two regimens 
have important effects on plasma drug levels. Furthermore, we demonstrate that deviations from the proper administration 
mode affect the concentration of tirofiban. Additionally, we calculated the optimal dosage of a second bolus to rapidly restore 
the initial concentration without causing overdosage. In conclusion, differences in tirofiban dosing regimens between the 
U.S and EU and potential infusion interruptions have important effects on drug levels that may impact on degrees of platelet 
inhibition and thus antithrombotic effects. Thus, the findings of our modelling studies may help to explain differences in 
clinical outcomes observed in previous clinical trials on tirofiban.

Keywords Tirofiban · GP IIb/IIIa inhibitor · Pharmacokinetics · Pharmacosimulation

Highlights

• Tirofiban is a potential adjunctive antithrombotic treat-
ment in patients with ACS or high-risk PCI.

• Maintenance of a proper plasma concentration is crucial 
for sufficient antithrombotic effect and a better clinical 
outcome.

• The dosage recommendations for normal or impaired 
renal function differ significantly between U.S. and EU, 
which has important effects on plasma drug levels.

• Here, we provide first suggestions for management of 
delays or interruptions in daily clinical practice, which 
should be investigated in future studies.
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Introduction

Platelet-fibrinogen interaction is a crucial pathway in platelet 
aggregation and the pathogenesis of coronary artery throm-
bosis [1]. By binding to glycoprotein (GP) IIb/IIIa receptors, 
fibrinogen ensures platelet-platelet aggregation and thrombus 
formation at the site of vascular injury [2]. Thus, blockade 
of GP IIb/IIIa receptor is a potential additional antithrom-
botic treatment strategy [3, 4]. Tirofiban is an intravenous 
non-peptide reversible GP IIb/IIIa receptor antagonist [5, 6]. 
Several large randomized controlled trials (RCTs) have shown 
the antithrombotic benefits of tirofiban use in patients with 
acute coronary syndromes (ACS) and in high-risk percutane-
ous coronary interventions (PCI) [6–9]. A PCI is considered 
as a high-risk procedure when several characteristics, includ-
ing complex coronary artery disease (multivessel or left main 
disease and anatomically complex coronary lesions), hemody-
namic compromise (shock or severely depressed LV function), 
and clinical comorbidities such as advanced age, diabetes mel-
litus, peripheral vascular disease, heart failure, acute coronary 
syndromes, or previous cardiac surgery, apply [10]. A meta-
analysis including 6 large RCTs with 29,570 non ST-elevation 
ACS patients has confirmed a significant reduction of 30-day 
mortality or non-fatal myocardial infarction (MI) in patients 
receiving GP IIb/IIIa inhibitors [11]. However, bleeding events 
remain a major concern [6]. Thus, current European Society of 
Cardiology (ESC) and American Heart Association/American 
College of Cardiology (AHA/ACC) guidelines recommend 
the use of GP IIb/IIIa inhibitors in ACS patients treated inva-
sively with dual antiplatelet therapy (DAPT) with a Class IIb 
for bailout situations or thrombotic complications during PCI 
[12, 13]. Tirofiban is administered intravenously as a bolus fol-
lowed immediately by continuous infusion. The current dosage 
regimens are regulated and approved by the United States (US) 
Food and Drug Administration (FDA) and European Medi-
cines Agency (EMA). However, the dosage recommendations 
of the two regulatory bodies differ considerably [14, 15].

In routine clinical practice, several deviations from the 
recommendations, such as delay between the bolus and the 
infusion or infusion interruptions may occur. The purpose of 
the present study was to investigate, by mathematical model-
ling, the impact of various deviations from the recommended 
tirofiban administration regimen on plasma concentrations 
for both US and EU tirofiban on-label regimens and pro-
vide practical suggestions for their optimal pharmacological 
management.

Methods

Simulations were performed using the Python™ program-
ming language. First, a two-compartment pharmacoki-
netic (PK) model of tirofiban has been applied, as after a 
single intravenous bolus, the plasma concentration–time 
of tirofiban passes through distribution and disposition 
phases (Supplementary Fig. 1 a). Therefore, the plasma 
concentration–time of tirofiban could be described through 
Cp(t) = Ae − αt + Be–βt equation, where Cp(t) is the plasma 
concentration at any time (t), A and B are empirical con-
stants, α and β are distribution and disposition rate con-
stants, respectively. This biphasic behaviour of plasma 
concentration could be also explained as tirofiban is not 
strongly bound to plasma protein with an unbound frac-
tion in human plasma of 35%[14]. In the next step, A, B, α 
and β were estimated by applying the method of residuals 
[16] and based on real-world concentration measurements 
at different time points in patients with normal or impaired 
renal function, obtained during product development (Sup-
plementary Table 1). Briefly, patients were treated with a 
25 μg/kg tirofiban bolus. The patients were subdivided into 
three groups according to the renal function: patients with 
normal function (creatinine clearance; CrCl > 90 ml/min; 
n = 8), moderate (CrCl 30–59 ml/min; n = 8) and severe renal 
impairment (CrCl < 30 ml/min; n = 7). Patients with mild 
renal impairment (CrCl 90–60 ml/min) were not included in 
the dataset. Plasma concentrations of tirofiban were meas-
ured after 0.25, 0.50, 0.75, 1, 2, 3, 4, and 6 h in all patients 
and additionally after 8, 10, and 12 h in patients with renal 
impairment. Supplementary Table 2 presents the estimated 
PK parameters.

The elimination of tirofiban occurs by renal and biliary 
excretion, as it has been shown by experiments with radio-
actively labelled tirofiban administered to healthy individu-
als. Here, 66% of radioactivity was recovered in the urine 
and 23% in the feces, with a total recovery of radioactivity 
of 91%. The half-life of tirofiban is approximately 1.5 h. 
In clinical studies, patients with decreased renal function 
showed a reduced plasma clearance of tirofiban. Thus, in 
patients with creatinine clearance < 30 ml/min, the plasma 
clearance is reduced over 50%. [15]. The second term of 
the previous equation, Be–βt, reflects the elimination of the 
tirofiban from the body. For renally impaired subjects, Be–βt 
declines slower, indicating that the elimination half-life of 
tirofiban is greater, which results in a higher concentration of 
the drug, compared with subjects with a normal renal func-
tion. Then, to simulate the time profile of plasma concentra-
tions of tirofiban for different scenarios, a two-compartment 
ordinary differential equation (ODEs) was applied:

dXc
dt

= I(t) + k21Xp � k12Xc � k10Xc

dXc
dt

= k12XC � k21Xp

,
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where.
I(t) is the rate of drug administration and has units of 

mass.time−1, Xc is the amount of drug in the central com-
partment and has units of mass, Xp is the amount of drug in 
the peripheral compartment and has units of mass, k12 is the 
first-order transfer rate constant from the central compart-
ment to the peripheral compartment and has units of  time−1, 
k21 is the first-order transfer rate constant from the peripheral 
compartment to the central compartment and has units of 
 time−1, k10 is the first-order elimination rate constant from 
the central compartment and has units of  time−1.

Here the estimated α, β, A and B were used to calculate 
the ODEs parameters [16].The ODE set was integrated using 
the “solve_ivp” function from the SciPy package (version 
1.1.0). By solving the two sets of ODEs with different con-
ditions, the effect of different delays and interruptions was 
evaluated. Finally, the dosage of a second bolus was esti-
mated allowing a rapid recovery of tirofiban plasma levels 
within the anticipated therapeutic window. This optimization 
was performed using “Nelder-Mead” method of the “mini-
mize” function from the SciPy package (version 1.1.0).

Results

Patient characteristics

The real-world cohort during the product development 
consisted of overall 23 patients (normal renal function: 
n = 8, moderate impairment: n = 8, severe impairment: 
n = 7). Patients were of a mean age of 60.4 years (range 
31–82 years). Patients in the normal renal function group 
had a slightly higher weight (90.9 vs. 82.0 kg) and BMI 
(31.46 vs. 28.60 kg/m2) compared to those in the moder-
ate and severe renal function groups. Patients were almost 
equally split between male and female (11 male vs. 12 
female) with more White patients (17 patients) enrolled 
compared to Black/African American (6 patients). There 
were no patients of Hispanic/Latino ethnicity or of Asian 
descent. None of the patients had acute coronary syndrome.

Parameter estimation and model verification

PK parameters of tirofiban for the three groups of patients 
according to renal function have been estimated as described 
above (Supplementary Table 2). Calculated PK parameter 
estimates were used to develop a dynamic model to simu-
late the plasma concentration–time profile of tirofiban. Here, 
we demonstrate a good fit between modelled and real-world 
patient data, thus confirming our model to be suitable for 
further simulations (Supplementary Fig. 1b–d).

Comparison between EU and US dosage regimens

Based on calculated PK parameters, simulations were car-
ried out by applying EU and US dosage recommendations, 
as described above. Briefly, EU recommendations impli-
cate both a lower loading and maintenance doses (loading 
concentration of 0.4 µg/kg/min over 30 min, followed by 
0.1 µg/kg/min infusion) than US recommendations (25 μg/
kg within 5 min followed by infusion at a rate of 0.15 μg/kg/
min for up to 18 h) in patients with normal renal function. 
Furthermore, renal dose adjustment is recommended only 
for patients with severe renal impairment (CrCl < 30 ml/
min) in EU but start with moderately impaired function 
(CrCl ≤ 60 ml/min) in the US However, while EU recom-
mends reduction of both, bolus and infusion rate, US rec-
ommendations include an unchanged bolus dose followed 
by a reduced maintenance infusion rate [14, 15]. Figure 1 
shows plasma concentration–time curves of tirofiban for 
three groups of patients according to renal function. In all 
scenarios, in the US regimen, the initial plasma concentra-
tion following bolus administration is considerably higher 
and the steady-state concentration is achieved faster than in 
the EU regimen. In case of normal renal function as well as 
severe renal impairment, where the dosage reduction occurs 
in both regimens, the steady-state plasma concentration is 
lower in the EU than in the US regimen. However, in severe 
renal impairment, the steady-state concentration in the EU 
regimen is reached even more slowly than in normal func-
tion. For moderate renal function, the steady-state concentra-
tion is higher in the EU than in the US regimen.

Effects of delays and interruptions in EU and US 
dosage regimens

In the next step, we mathematically simulated the effect 
of different delays and interruptions of administration on 
plasma drug concentration. Here, we demonstrate that short 
delays between the bolus and initiation of continuous infu-
sion do not result in significant changes in the drug con-
centrations in either EU or US regimens regardless of renal 
function (Fig. 2). However, a longer than 30-min delay leads 
to considerable decrease in plasma concentrations in the EU 
dosing regimen in all three groups (Fig. 2b, d, f). Notably, 
in the US regimen, the concentration decrease after delays 
of more than 30 min is lower than in EU dosing. Further-
more, in moderate or severe renal dysfunction group, the 
influence of delay is less pronounced than in normal renal 
function in US regimen (Fig. 2a, c, e). Similarly, we show 
that interruptions of continuous infusion over 30 min lead 
to considerable decrease in tirofiban plasma concentrations 
(Fig. 3). This effect is even more pronounced in the EU regi-
men (Fig. 3 b, d, f). According to the US dosage recommen-
dations, the decrease in concentrations after interruption are 
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less pronounced in renal dysfunction group than in case of 
normal renal function group (Fig. 3a, c, e).

Additionally, we estimated the dosage of a possible sec-
ond bolus to compensate for the delays or interruptions in 
intravenous tirofiban application in both EU and US regi-
mens (Table 1 and 2; Supplementary Fig. 2 and 3).

Discussion

Several studies have investigated the effect of the GP IIb/
IIIa inhibitor tirofiban in patients with ACS or in patients 
undergoing high-risk PCI. The PRISM-PLUS trial showed 
a reduction in major adverse cardiac events (MACE) at 
30 days with GP IIb/IIIa inhibitor plus unfractionated hepa-
rin as compared to unfractionated heparin alone [7]. In the 
Randomized Efficacy Study of Tirofiban for Outcomes and 
Restenosis (RESTORE) trial, the administration of tirofiban 
was not associated with a significant reduction in MACE [8]. 
A study by Steinhubl et al. including 501 patients treated 
with abciximab, tirofiban and eptifibatide, demonstrated that 
the levels of platelet function inhibition are independently 
associated with the rate of MACE after PCI [17]. Moreo-
ver, it has been demonstrated that normal myocardial perfu-
sion after fibrinolytic therapy for ST-elevation myocardial 

infarction (STEMI) and after PCI for ACS is associated with 
higher GPI receptor occupancy in the setting of eptifiba-
tide therapy [18–20]. Thus, higher doses of tirofiban would 
similarly be expected, in turn, to provide greater receptor 
occupancy to provide sufficient platelet inhibition to trans-
late into a beneficial clinical effect. In 2004, the ADVANCE 
trial demonstrated a significant reduction of ischemic events 
using tirofiban in the setting of high-risk PCI when admin-
istered at a high dose bolus of 25 μg/kg followed by infu-
sion of 0.15 μg/kg/min for 24–48 h [9]. A systematic pooled 
meta-analysis of RCTs investigating tirofiban versus placebo 
or abciximab including over 20,000 patients confirmed a 
reduction of death or combined endpoint of death and MI 
with the use of tirofiban. [21].

All these studies strengthen our hypothesis that mainte-
nance of a proper plasma concentration of tirofiban is cru-
cial for sufficient antithrombotic effect and a better clinical 
outcome. Interestingly, the dosage recommendations for 
tirofiban differ between EU and US In the present study, we 
systematically compare two dosing regimens and simulated 
different deviations from the recommended administration 
mode using a mathematical model. USUSOur simulations 
of tirofiban plasma concentration in normal renal function, 
using the US dosing regimen, demonstrated a faster increase 
in plasma concentration to almost double steady-state level 

Fig. 1  Plasma concentration–time curves of tirofiban according to renal function in US (a, c, e) and EU (b, d, f) dosing regimens
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followed by a drop to a still high level of plasma tirofiban 
concentration of over 100 ng/ml. In the EU dosing regi-
men, the bolus is administered at a lower dose over a longer 
timeframe followed by continuous infusion. This leads to 
almost constant plasma tirofiban levels during the entire 
administration period, which is, however, considerably 
lower than in the US regimen. By contrast, in case of mod-
erate renal impairment, the steady-state concentration in the 
EU regimen is higher than in the US regimen as there is 
no dosage adjustment in the EU recommendation. In our 
model of severe renal insufficiency, we have demonstrated a 
lower steady-state tirofiban concentration, which is reached 
more slowly in the EU than in the US regimen. This can 
be explained by the fact that in the EU regimen, both the 
loading as well as maintenance doses are reduced, while the 
bolus dose remains unchanged in the US recommendations. 
Furthermore, we show here that deviations from the proper 
administration mode affect the concentration of tirofiban. 
However, shorter delays or interruptions do not have a major 
impact on plasma drug levels, whereas deviations of over 
30 min show considerable effects. This finding is consistent 
with the elimination half-life of tirofiban of approximately 
2 h [6]. Of note, regardless of renal function, the changes 
in plasma levels are less pronounced using the US regimen 
compared to the EU regimen. This is most likely due to a 

higher dose of initial bolus in the US regimen, which is not 
reduced even in case of severe renal impairment.

In the context of clinical studies, the EU regimen in 
patients with normal renal function is comparable to 
the dosage used in the PRISM-PLUS trial [7], whereas 
the US dosing regimen was used in the ADVANCE trial 
[9], both showing a beneficial antithrombotic effect of 
tirofiban. By contrast, in the RESTORE trial which failed 
to demonstrate a MACE reduction by use of GP IIb/IIIa 
inhibitors, a lower bolus dose has been applied (10 μg/
kg bolus followed by infusion at a rate of 0.15 μg/kg/
min). Therefore, one could speculate that both EU and 
US regimens are equal in terms of their antithrombotic 
effect. Despite the higher steady-state drug level in the 
US dosing regimen, the ADVANCE study did not reveal a 
higher rate of adverse events such as major bleedings [9]. 
Nonetheless, it is important to note that the present study 
is based on a simulated mathematical model. Even though 
we demonstrated that the changes in drug concentration 
following delays or interruptions in the US regimen are 
less pronounced than in the EU regimen, it is not clear 
what concentration is required to induce adequate effect on 
platelet aggregation. This represents the main limitation of 
our study as we only provide a pharmacokinetics simula-
tion without taking into account the pharmacodynamics 

Fig. 2  Effects of different delays between bolus and initiation of continuous infusion of tirofiban on plasma drug concentration in different popu-
lations according to renal function. Comparison between US (a, c, e) and EU (b, d, f) dosing regimens
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of the drug. Another pharmacokinetic modelling study 
published by Lakings et al. in 2012 used the simulation 
approach to identify an appropriate dosage in patients with 
severely impaired renal function which would lead to a 
similar tirofiban time-concentration profile as reached by 
the US regimen dosage in patients with normal renal func-
tion [22]. When comparing the real-life and modeled con-
centration–time profiles in this study and our study at the 
same dosing regimens, it is notable that in our study the 

steady-state plasma levels are considerably higher in both 
normal and severely impaired renal function. Even more 
pronounced is the concentration difference in patients with 
severe renal impairment after the recommended dosing 
rate adjustment. This is surprising as the reduced renal 
elimination would expectedly lead to higher plasma con-
centrations, as it is the case in our simulations. However, 
the differences in the estimated PK parameters in both 
studies are most likely due to a relatively low number of 

Fig. 3  Effects of different interruptions of continuous infusion of tirofiban on plasma drug concentration in different populations according to 
renal function. Comparison between US (a, c, e) and EU (b, d, f) dosing regimens

Table 1  Dosage of the 2nd 
bolus after different delays 
between bolus administration 
and initiation of infusion of 
tirofiban in patients with normal 
renal function

Delay (min) 5 10 20 30 40 50 60 70

US Dosage of 2nd bolus (µg/kg) – – – 1.5 2.84 4.05 5.15 6.16
in % of 1st bolus – – – 6% 11% 16% 21% 25%

EU Dosage of 2nd bolus (µg/kg) 0.58 0.64 0.76 0.86 0.95 1.04 1.11 1.19
in % of 1st bolus 5% 5% 6% 7% 8% 9% 9% 10%

Table 2  Dosage of the 2nd 
bolus after different infusion 
interruptions of tirofiban in 
patients with normal renal 
function

Interruption (min) 5 10 20 30 40 50 60 70

US Dosage of 2nd bolus (µg/kg) 0.48 1.18 2.5 3.7 4.82 5.86 6.83 7.73
in % of 1st bolus 2% 5% 10% 15% 19% 23% 27% 31%

EU Dosage of 2nd bolus (µg/kg) 0.16 0.24 0.37 0.5 0.61 0.72 0.82 0.92
in % of 1st bolus 1% 2% 3% 4% 5% 6% 7% 8%
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measurements, on which the estimated parameters are 
based. This is another limitation of the present study.

In conclusion, differences in tirofiban dosing regimens 
between the US and EU and potential infusion inter-
ruptions have important effects on drug levels that may 
impact, in turn, on degrees of platelet inhibition. The total-
ity of evidence supports that high levels of receptor occu-
pancy by GPIs are required to reduce clinical thrombotic 
events. Thus, the findings of our modelling studies may 
help to explain differences in clinical outcomes observed 
in trials of tirofiban for the treatment of high-risk coronary 
artery disease. Our data indicates towards equality of both 
regimens in terms of clinical outcomes and possible higher 
probability of side effects due to a higher steady-state con-
centration in US regimen. However, this study remains 
a mathematical model and evidently future clinical trials 
are required for a real-world comparison between the two 
regimens in different clinical settings.
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5 | Conclusion

This thesis aimed to explore the optimal strategies for modeling biological systems. The
high-level complexity of the biological systems hinders the ability to investigate them as a
whole. The complexity may lie both in the high number of interacting components as well as
their complicated underlying relationships. Recently available high-throughput empirical
techniques that are mainly employed to decipher these complexities are a blessing, yet
inadequate due to the high level of noise and cost. Intrinsic plasticity and noise of the
biological systems add another level of twist. As a result, available experimental datasets are
often incomplete and noisy. To overcome these shortcomings, advanced modeling strategies
are needed.

The biological network inference problem can represent all these challenges. For example,
in gene-knockout studies investigating gene regulatory networks, the available empirical
data are huge, noisy, and incomplete. Inferablity was introduced in this thesis, as a measure
to quantify the number of interactions that can be inferred from a set of experimental data
for a specific network. It was shown that inferablity is highly dependent on the underlying
structure of the network as well as the number of data points.

It was demonstrated that compartmentalizing the system is a suitable approach to tackle
the mentioned challenges. Compartmentalizing means decomposing a complex system
into simpler subsystems (compartments) to declutter the model from unnecessary details
and see how these subsystems work together. Besides network inference problems, multi-
compartment pharmacokinetic modeling is a good example of such coarse-grained models.
They are simple but inclusive tools in the process of drug development.

In general, this thesis aimed to convey this message that before modeling a biological system,
it is highly important to anticipate the level of model complexity needed to answer the
questions of the study. Not too complex as the unnecessary details cause inconvenience and
not too simple as the biology of the system gets lost.
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