
Nerve Fiber Modeling and 3D-PLI Simulations of a Tilting
Polarization Microscope

Felix Matuschke

July 2022

Nerve Fiber Modeling and 3D-PLI
Simulations of a Tilting
Polarization Microscope

Inaugural-Dissertation

zur Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Felix Matuschke
aus Meschede

Düsseldorf, Juli 2022

Heinrich-Heine-Universität Düsseldorf
Math.-Nat. Fakultät
Universitätsstraße 1
40225 Düsseldorf

Forschungszentrum Jülich
Institut für Neurowissenschaften und Medizin
Strukturelle und funktionelle Organisation des
Gehirns (INM-1)
Faserbahnarchitektur
Wilhelm-Johnen-Straße
52428 Jülich

Gedruckt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

1. Berichterstatter Prof. Dr. Gunnar Schröder
Forschungszentrum Jülich
IBI-7

2. Berichterstatter Prof. Dr. Katrin Amunts
Forschungszentrum Jülich
INM-1

Tag der mündlichen Prüfung: 06.02.2023

Abstract

In the Fiber Architecture group of the Institute of Neuroscience and Medicine, Structural
and Functional Organization of the Brain (INM-1), 3D Polarized Light Imaging (3D-PLI)
microscopy is used to measure the orientation of nerve fibers in unstained brain sections.
Interpretation of the measurement can be challenging for certain regions, for example
where fibers cross or are oriented perpendicular to the sectioning plane. To understand
the behavior of the measured signal of such structures without further external influences,
such as non-ideal optics, simulations are used where each parameter is known. In order
to perform simulations, virtual tissue models are needed and a virtual 3D-PLI microscope,
being capable of simulating the influence of the tissue on the light.
In order to design realistic models of dense nerve fiber tissue, it must be ensured that
individual nerve fibers do not overlap. This is especially difficult to design in advance
for interwoven structures, as is occurs in nerve fiber crossings. Therefore, a nerve fiber
modeling specialized algorithm was designed in this thesis. The algorithm will check
a given volume for overlaps of single nerve fibers, and then slowly push them apart at
the affected locations. Thus, a collision-free tissue model is created over time. The
pre-existing simulation algorithm of the 3D PLI microscope was completely redesigned as
part of this work. The algorithm is now able to run in parallel on multiple CPU cores as
well as computational clusters. Thus, a large number of simulations can be performed,
allowing for greater statistics in the analyses. These two algorithms were published in
the software package fiber architecture simulation toolbox of 3D-PLI (fastPLI).
Finally, in this thesis, nerve fiber models consisting of two nerve fiber populations,
i. e. two densely packed crossing nerve fiber bundles, were created and subsequently
simulated. The results show, that the orientation of the nerve fiber population, which
has a higher proportion in the volume, can be determined. With the current resolution of
the microscopes used, it is not possible to determine both fiber population orientations
individual. The measured orientation seems to follow the circular mean as a function
on the proportional volume fraction of the nerve fiber populations, taking into account
the decrease of the measured signal due to the increasing tilt angle. In summary, the
development of the algorithm for modeling nerve fibers together with the simulation in
a toolbox has proven to be a suitable tool to be able to investigate questions quickly
through simulations.

v

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof. Dr. Markus Axer. Without
his support and dedicated involvement every step of the way throughout the process,
this thesis would never have come to fruition. He has given me wonderful support
throughout all these years. I could always count on him no matter what the issues were.
Furthermore, I would like to thank my examiners, Prof. Dr. Gunnar Schröder and Prof.
Dr. Katrin Amunts. I have always enjoyed our insightful discussions and am glad to
have been guided through this work by you.
I would also like to thank Prof. Katrin Amunts in her role as Institute Director of the
INM-1 and Scientific Director of the Human Brain Project. I am glad that she gave me
the opportunity to participate in both the institute and the HBP.
My special thanks go to my parents and my brother. I would especially like to thank my
father for giving me and my brother the curiosity for nature and thus for science. My
parents have always supported my brother and me in everything, and we could always
rely on them. I would like to thank my brother for always helping me from a very young
age, even though it was not always easy for him. Without him, I probably would never
have dared to tackle a science degree. As a family, we have had to make very difficult
decisions in recent years. These decisions are anything but easy to make, but I am very
grateful that we were able to make them together as a family and that we support each
other.
I would like to thank all my colleagues at INM-1 at the Forschungszentrum Jülich. I
felt very welcome from the beginning, and I still enjoy working with each one of you.
My particular thanks go to my dear colleague Miriam Menzel. Without her scientific
discussions, I would not have come as far as I have. Unfortunately, she is leaving our
working group, but she can continue to count on me, as I have always been able to
count on her. My further thanks go to Andrea Brandstetter. She is a true friend and
always there when I needed someone to talk to.
Last but not least, I want to thank all of my friends. I appreciate the various board
game sessions and the hikes together. Being with you guys is always a delight and a
welcome diversion from my work when I need to unwind.

vii

Funding

The project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 720270 (HBP SGA1) and Grant
Agreement No. 785907 (HBP SGA2).

Colophon

This thesis was typeset with LATEX 2𝜀. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from
Apple Inc.

The graphics in this thesis were generated by the Tikz and PGF Packages developed by
Till Tantau and the Pgfplots package developed by Christian Feuersänger.

Contents

1. Introduction 5

I. Basics 9

2. Neuroanatomy 11
2.1. Introduction . 11
2.2. Brain Architecture . 11
2.3. Nerve Fiber Architecture . 12
2.4. Axon Dimensions . 14

3. Modeling of Light 15
3.1. Introduction . 15
3.2. Electromagnetic Waves . 15

3.2.1. Light in vacuum . 16
3.2.2. Solving Maxwell’s equations in vacuum 17
3.2.3. Polarization . 17
3.2.4. Absorption . 19
3.2.5. Refraction . 19
3.2.6. Birefringence . 20
3.2.7. Jones calculus . 21
3.2.8. Müller-Stokes calculus . 21

4. 3D Polarized Light Imaging 25
4.1. Introduction . 25
4.2. Brain Tissue Preparation and Sectioning 25
4.3. Experimental Setup . 25
4.4. Intensity Signal . 27
4.5. Tilting Analysis . 28
4.6. Optical Resolution . 30

ix

II. Software Implementation 33

5. Dense Nerve Fiber Modeling 37
5.1. Nerve Fiber Representation . 38
5.2. Sandbox . 39

5.2.1. Seeding fiber bundles . 40
5.2.2. Populating fiber bundles . 40
5.2.3. Cube models . 42
5.2.4. Cylindrical models . 42

5.3. Solving Fiber Collisions . 43
5.3.1. Solver main function . 44
5.3.2. Collision detection . 45
5.3.3. Octree . 47
5.3.4. Separation phase . 49

5.4. Shape Control . 50
5.4.1. Mean segment length . 50
5.4.2. Bending radius . 51
5.4.3. Movement phase . 52
5.4.4. Optimization and parallelization 52

5.5. Visualization . 53
5.5.1. Transparent objects and cells 53

5.6. Sphered Nerve and Cell Modeling . 54
5.6.1. Algorithm . 55

6. 3D-PLI Simulation 59
6.1. Discrete Volume Generator . 60

6.1.1. Nerve fiber layers . 60
6.1.2. Discretization of a nerve fiber model 61
6.1.3. voxel_size . 62
6.1.4. Code optimizations . 63

6.2. Light Matter Simulation . 64
6.2.1. Light ray path . 64
6.2.2. Tissue voxel interpolation . 66
6.2.3. Simulation of light matter interaction 67
6.2.4. Optical system and signal analysis 68

6.3. Speedup Strategies . 68
6.3.1. Code design . 68
6.3.2. MPI parallelization . 68

7. fastPLI 71
7.1. Introduction . 71
7.2. fastPLI Toolbox . 71

7.2.1. Dependencies . 72
7.2.2. Installation . 73
7.2.3. Tests, verification and issue tracking 73

7.3. Modules . 74
7.3.1. fastpli.analysis . 74
7.3.2. fastpli.io . 74
7.3.3. fastpli.model.sandbox . 75
7.3.4. fastpli.model.solver . 75
7.3.5. fastpli.objects . 76
7.3.6. fastpli.simulation . 77
7.3.7. fastpli.tools . 77

7.4. Computational Speedup Techniques 77
7.5. Documentation . 79

III. Software Application and Evaluation 83

8. Dense Nerve Fiber Modeling 87
8.1. Introduction . 87
8.2. Designing Fiber Populations . 88

8.2.1. Orientation and proportion . 88
8.2.2. Fiber placement . 90

8.3. Software Parameters Characterization 91
8.3.1. Results . 92
8.3.2. Discussion . 97

8.4. Nerve Fiber Model Library for 3D-PLI Simulations 99
8.4.1. Results . 99
8.4.2. Discussion . 102

8.5. Multicore CPU Acceleration . 103
8.5.1. Results . 104
8.5.2. Discussion . 104

9. 3D-PLI Simulation 105
9.1. Introduction . 105
9.2. Parameter Characterization . 105

9.2.1. Tissue . 105
9.2.2. Optical resolution . 106

9.2.3. Sensor gain and signal noise 107
9.2.4. voxel_size vs . 108

9.3. Simulation . 110
9.3.1. Setup . 110
9.3.2. Single fiber population . 112
9.3.3. Flat crossing fiber populations 115
9.3.4. Inclined crossing fibers population 120
9.3.5. Free crossing fiber populations 125

9.4. Discussion . 136
9.5. Speedup . 142

9.5.1. Results . 142
9.5.2. Discussion . 144

IV. Closing Remarks 147

10.What is Next? 149

11.Conclusion 153

Bibliography 159

V. Appendices 173

A. Modeling 175

B. Simulation 187

„Inside you is the potential to make yourself
better ... and that is what it is to be human.
To make yourself more than you are.

— Jean-Luc Picard
Captain USS Enterprise NCC-1701-E

Contents 3

Introduction
1

One of the biggest unsolved questions in science today is how the brain, especially the
human brain, functions. An important role plays the connectivity of neurons among
each other. They may be connected via nerve fibers over a relatively short distance to
neighboring neurons or to more distant regions of the brain. Understanding the brain’s
connectome, the interconnection of brain cells, will allow us to explore and harness the
origins of cognitive abilities such as object recognition and memory. Since the brain is
such a large and complex structure relative to the size of its individual building blocks,
neuroscientists are joining forces in collaborative projects such as the Human Brain
Project to solve this problem together [Mar06; She+12; Amu+13; Amu+16].

Techniques in machine learning [Mur13; Goo+16], especially deep learning, profit from
a better understanding of the brain. Different types of neural networks are able to solve
difficult problems that are almost impossible to solve with a classical algorithm. A better
understanding of the neural network as a subset of the connectome can therefore help
to design artificial neural networks to efficiently solve tasks like image recognition, and
vice versa.

The only technique currently able to measure the human connectome in vivo (i. e., the
living brain) is by using diffusion Magnetic Resonance Imaging (dMRI). dMRI provides
a rather low resolution of about one millimeter relative to the structural configuration
of nerve fiber bundles of several micrometers in vivo. This imaging resolution at
the mm-scale can lead to misleading results due to the models and resolution limits
involved, in particular in regions of fiber crossings or fiber “kissing” [Mai+17; Sch+21].
Therefore, a higher resolution of fiber pathways and the comprising individual fibers
is required. Post mortem, the resolution of dMRI reaches up to the order of 100 µm
[Bea+19]. Microscopic imaging techniques on the other side can reach up to the order
of micrometer to hundreds of nanometer. The challenge at such low scales is not only
to measure a portion of the brain (not to mention an entire human brain), but also to
be able to process this massive amount of data. Such datasets will help to learn from
and improve the models applied to the lower resolution datasets, which will help with
e. g. diagnostics [Yen+21].

5

3D-Polarized Light Imaging (3D-PLI) is a microscopic imaging technique that allows
the measurement of the orientation of nerve fibers inside a brain section [Axe+11a;
Axe+11b; Axe+16]. A nerve fiber is the extension of a nerve cell. The nerve fiber
consists of an axon, which transmits the electrical signal from the nerve cell. Depending
on the nerve fiber, the axon may be surrounded by a myelin sheath, which primarily serves
to transport the signal very rapidly. The myelin sheaths generate an optical property
called birefringence. Birefringence is the presence of a refractive index that depends
on the polarization and propagation direction of light. By analyzing this behavior, the
underlying optic axis and thus the orientation of the nerve fiber can be determined.
The brain sections are 60 µm thick and the image resolution is in the order of a few
micrometers, i. e., at axonal scales. However, due to the fact that the brain needs to
be sectioned, the tissue becomes quite fragile which leads to movements of the tissue
and can also lead to fractions. These movements have to be later reversed in a process
called image registration, allowing to build up an entire 3D dataset from the individual
sections. Another challenge comes in steep nerve fiber regions and nerve fiber crossings.
Because the signal from an image pixel originates from a volume that contains multiple
nerve fiber orientations, the interpretation can be challenging. Steep fibers are e. g.
orientated along the propagation direction of the light. Therefore, there is no change
for the polarization state of the light. Crossing nerve fibers on the other hand are a
mixture of multiple light waves. Since however, only the sum of all light waves reaching
the same sensor pixel is measured, the individual information is lost.

To improve the understanding of the underlying architecture including the nerve fiber
orientations and its effect on the measured polarization signal, simulations play therefore
an important role. Due to the involved spatial sizes and the multitude of possible
orientations of nerve fibers and further cells, no phantom currently exists, allowing
to investigate all necessary possibilities. Complementary imaging techniques, such as
two-photon microscopy, allow the tissue to be examined at higher resolution and lower
deformations, but this has the disadvantage of longer measurement time [Cos+20;
Cos+21].

For this reason, simulations are used. Simulations make studies of physical effects
possible which cannot be easily addressed by experimental setups [Cal+19; Men+20].
Clear benefits of simulations are the repeatability of experiments and the possibility
to generate relevant statistics (i. e., large data sets) to meet e. g. the requirements of
machine learning [Gin+18; Gin19]. Therefore, the simulation and generation of such
datasets should be done as fast as possible to obtain a large training dataset.

This dissertation provides a novel open-source software package, the fiber architecture
simulation toolbox for 3D-PLI (fastPLI), whose main purpose is to provide a method for

6 Chapter 1 Introduction

modeling dense, non-colliding 3D nerve fiber models [Mat+19; Mat+21; Reu+19]. These
models are then used to simulate them in a virtual 3D-PLI experiment by calculating
the effect of birefringence on polarized light using the Müller-Stokes calculus.

An important issue is the use of supercomputer architectures with efficiently developed
algorithms to enable simulations of larger models and volumes. The usefulness will be
investigated and limitations will be demonstrated.

7

Part I

Basics

2. Neuroanatomy 11

2.1. Introduction . 11

2.2. Brain Architecture . 11

2.3. Nerve Fiber Architecture . 12

2.4. Axon Dimensions . 14

3. Modeling of Light 15

3.1. Introduction . 15

3.2. Electromagnetic Waves . 15

3.2.1. Light in vacuum . 16

3.2.2. Solving Maxwell’s equations in vacuum 17

3.2.3. Polarization . 17

3.2.4. Absorption . 19

3.2.5. Refraction . 19

3.2.6. Birefringence . 20

3.2.7. Jones calculus . 21

3.2.8. Müller-Stokes calculus . 21

4. 3D Polarized Light Imaging 25

4.1. Introduction . 25

4.2. Brain Tissue Preparation and Sectioning 25

4.3. Experimental Setup . 25

4.4. Intensity Signal . 27

4.5. Tilting Analysis . 28

4.6. Optical Resolution . 30

Neuroanatomy
2

2.1 Introduction

Neuroanatomy is the study of the structure of the brain. It describes the regions and
structure of the nervous system in humans and animals. Techniques such as diffusion
Magnetic Resonance Imaging (dMRI), fluorescence microscopy, microscopy on stained
tissue, autoradiography (to name a few), have been able to study more and more
structures from different perspectives in the brain with different resolutions, modalities
and contrasts on different species.

This chapter gives a general overview of the structure of the brain with its most important
regions as well as the nerve fiber architecture.

2.2 Brain Architecture

The mammal brain consists of three main parts: the brainstem, the cerebellum and the
cerebrum (see fig. 2.1). The brainstem performs various tasks such as controlling the
cardiovascular system. It also serves as a connection between the various brain areas
and the spinal cord in the lower part of the brain. It can be further subdivided into the
midbrain, the pons and the medulla oblongata. The cerebellum is located at the lower
rear of the brain. Its most important function is motor control. It is highly folded and
therefore has a particularly large surface area. The cerebrum is the largest part of the
human brain. As the cerebellum its surface is folded as well. The cerebrum is split into
a left and right hemisphere. In addition, the cerebrum can be divided into the following
parts: the frontal, parietal, temporal, occipital and insular lobes (see fig. 2.1a). The
frontal lobe is responsible for voluntary movements of specific body parts as well as the
human personality. The parietal lobe’s main functionalities are the processing of the
sensory information. The primary function of the occipital lobe is signal processing of the
visual system. The temporal lobe contains auditory functions and language perception
in addition to visual memories. Beneath the brain surface there are other structures
such as the basal ganglia or the thalamus.

11

Lobus frontalis Lobus parietalis

Lobus occipitalis

Lobus temporalis Cerebellum
Sulcus lateralis

Sulcus centralis

(a) Sagittal view of the human brain with its lobes:
frontal, parietal, temporal and occipital lobe.
The cerebellum and the brainstem are located
at the bottom of the brain. 1

Corpus callosumCorpus callosum

WMWM

GM

(b) Coronal section stained for cell bodies. The
gray matter (GM) is dark while the white
matter (WM) is bright. The left and right
hemisphere is connected via the corpus callo-
sum. 2

Fig. 2.1.: Illustration of the human brain and a cell body stained coronal section.

The cerebellum and cerebrum contain a gray matter (GM) structure at the brain
surface. This structure is filled with neurons. These cells have the task of processing
the information of all signals coming from inside and outside the brain. Such cells
are arranged in cortical layers that have different thicknesses, cell types, and densities
specific to a brain area. These cells have a relatively high density and are not only
locally interconnected with each other, but also connect with different brain areas.
Therefore, the folding of the brain is particularly important to increase the surface
and therefore the number of cells. In the human brain, there are several billions of
nerve cells. There are many types of cells, e. g. granule or pyramidal cells. The highly
interconnected structure and arrangement of the various cells is the source of its high
number of different functionalities. It is important to investigate the human brain to
gain a better understanding of the brain’s function and an improved understanding of
pathophysiological processes that may lead to improved medical treatment of brain
diseases.

2.3 Nerve Fiber Architecture

A typical nerve cell (see fig. 2.2) comprises a cell body, called a soma, that processes
incoming information. The information arrives via dendrites, which are star-shaped
branches. The axon, or nerve fiber, is the cell’s information output. It travels through
the brain often associated with nerve fiber bundles to its destination, where it connects
with the axon terminal to other neurons.

1Drawing of the side view showing the B06 brain collection of the INM-1.
2Coronal stained section 4050 from the BigBrain Project [Amu+13].

12 Chapter 2 Neuroanatomy

Oligodendrocyte

Cell Body

Axon

Myelin Node of RanvierNucleus

Dendrites

Fig. 2.2.: Illustration of a neuron with axon and oligodendrocytes. The oligodendrocyte build
up a layered lipid structure, surrounding the axon. The myelin layers are separated
along the axon by nodes of Ranvier.

The axon is surrounded by a myelin sheath, a lipid layered structure generated by nearby
oligodendrides (see fig. 2.2). The myelin electrically insulates the axon and improves the
speed of propagation of the electrical action potential along the axon and also its signal
strength. The diameter of the myelin ranges from about 0.5 µm to several micrometers
(see table 2.1). There are many types of axons. Some contain a very thick myelin layer,
while others have none. The high density of axons and myelin makes the brain appear
white and is therefore called white matter (WM), whereas the outer cell bodies appear
darker and is called gray matter (GM). This color difference is clearly visible in a Nissl
stained histological sections (see fig. 2.1b).

To enhance the contrast of the nerve fibers with respect to the background, staining
like Nissl is used to darken the myelin (see fig. 2.3a). This allows to follow small nerve
fibers down to individual nerves depending on their myelination degree. Larger nerve
fiber bundles are so dark that mostly no orientation can be extracted.

Figure 2.3a shows a Nissl stained brain section. Between neurons, individual nerve fibers
form complex reticular structures. Several nerve fiber bundles traverse the thalamus
and can be seen as dark structures. A closer look with an electron microscope into a
nerve fiber bundle of the corpus callosum of a rodent is shown in fig. 2.3b. The nerve
fibers of the 100 nm thin section are densely packed together. Axon diameter and myelin
thickness vary from nerve fiber to nerve fiber.

2.3 Nerve Fiber Architecture 13

50 µm

(a) Myelin staining of the human thalamus, sagit-
tal section. Nerve fiber bundle structures are
visible as elliptical dark shape. In between
net-like structures are formed from individual
nerve fibers. http://brainmaps.org/HBP3/
h.sapiens/sag/h5thal-myelin/17a

1 µm

(b) Electron microscope image of a 100 nm thin
section of rodent corpus callosum [Wal+14].
The myelin is visible as dark surroundings
around the inner axon.

2.4 Axon Dimensions

Table 2.1 lists diameters of the nerve fibers in the human brain. The diameter and their
standard deviation are region-specific. The 𝑔ratio describes the fraction of the axon to
the entire nerve fiber diameter. From studies with dMRI and electron microscopy the
𝑔ratio is in the range of 0.6 to 0.9, depending on the region (see table 2.2).

area mean std

sup. longitudinal fasc. 0.8 µm 0.2 µm
inferior occipital fasc. 0.51 µm 0.05 µm

corpus callosum 0.69 µm 0.04 µm
Tab. 2.1.: Nerve fiber diameter distribution of the human brain. Mean values over three human

brains [Lie+14].

study reference 𝑔ratio
Stikov et al., 2015 [Sti+15] 0.7
Dean et al., 2016 [Dea+16] 0.71-0.9
Mohammadi et al., 2015 [Moh+15] 0.55-0.75
Cercignani et al., 2017 [Cer+17] 0.65-0.8
Berman et al., 2017 [Ber+18] 0.69
Jung et al., 2018 [Jun+18] 0.7-0.8

Tab. 2.2.: human 𝑔ratio from in vivo mri studies.

14 Chapter 2 Neuroanatomy

http://brainmaps.org/HBP3/h.sapiens/sag/h5thal-myelin/17a
http://brainmaps.org/HBP3/h.sapiens/sag/h5thal-myelin/17a

Modeling of Light
3

3.1 Introduction

The following chapter lists the physical theory needed to describe the mathematics
behind 3D-Polarized Light Imaging (3D-PLI). These include the basic properties of
light, such as its polarization state, the optical properties of nerve fibers tissue, the
mathematical description of the 3D-PLI experimental setup and its signal analysis. The
chapter drew inspiration from the work presented in [Dem06; Fli12].

3.2 Electromagnetic Waves

Light is an electromagnetic wave. The theory of electromagnetism was first fully
described by James Clerk Maxwell, who formulated Maxwell’s equations (see eqs. 3.1),
generalized from the previous work of Johann Carl Friedrich Gauß, Michael Faraday and
André-Marie Ampère and others:

∇ ⋅E = 𝜌
𝜀0

∇ ⋅B = 0

∇ ×E = −𝜕B
𝜕𝑡

∇ ×B = 𝜇0 (j+ 𝜀0
𝜕E
𝜕𝑡

)

(3.1)

where the nabla operator ∇ ≔ (𝜕
𝜕𝑥 , 𝜕

𝜕𝑦 , 𝜕
𝜕𝑧) denotes the three-dimensional gradient

operator, E is the electric field, 𝜌 the electric charge density, 𝜀0 the permittivity of free
space, B the magnetic field, 𝜇0 the permeability of free space and j the electric current
density. The first equation states that no electric field can be generated without an
electric charge (conservation of charge). The second equation states that there are
no magnetic monopoles and the basic unit of a magnetic field is a dipole. The third
and fourth equations show the relationship between the electric and magnetic fields
in space and time. A change in the electric field results in a magnetic field and vice

15

versa. Equation four also shows a magnetic field’s generation from an electric current j.
Maxwell’s equations satisfy the continuity equation div 𝑗 + 𝜕𝜌

𝜕𝑡 = 0, which means that
neither an electric field nor a magnetic field can be generated without an electric current
or a change in electric potential occurring.

3.2.1 Light in vacuum

In vacuum, eqs. 3.1 simplify with 𝜌 = 0 and j = 0 to:

∇ ⋅E = 0

∇ ⋅B = 0

∇ ×E = −𝜕B
𝜕𝑡

∇ ×B = 𝜇0𝜀0
𝜕E
𝜕𝑡

(3.2)

with

∇ × ∇ ×E = −∇ × 𝜕B
𝜕𝑡

= − 𝜕
𝜕𝑡

(∇ ×B)

= −𝜀0 ⋅ 𝜇0
𝜕2E
𝜕𝑡2 ,

(3.3)

the identity ∇ × (∇ ×A) = ∇(∇ ⋅A) − ∇2A, 𝜇0𝜀0 = 1
𝑐2 and 𝑐 as the speed of light1,

further simplifies to:

1
𝑐2

𝜕2E
𝜕𝑡2 − ∇2E = 0

1
𝑐2

𝜕2B
𝜕𝑡2 − ∇2B = 0

(3.4)

which shows that 𝑐2 𝜕𝐵
𝜕𝑧 = 𝜕𝐸

𝜕𝑡 ⇒ E ⋅B = 0 and thus the electric and magnetic field
components are perpendicular to each other. Furthermore, this implies that space and
time are linked, and that light propagates in vacuum with the speed of light 𝑐.

1can be derived from Maxwell’s equations and Lorentz force in a vacuum.

16 Chapter 3 Modeling of Light

3.2.2 Solving Maxwell's equations in vacuum

Eqs. 3.4 have the form of a wave equation and therefore, it can be solved by

E(r, 𝑡) = 𝑔(𝜙(r, 𝑡)) = 𝑔(𝜔𝑡 − k ⋅ r+ 𝜑)

B(r, 𝑡) = 𝑔(𝜙(r, 𝑡)) = 𝑔(𝜔𝑡 − k ⋅ r+ 𝜑)
(3.5)

where 𝑔 is any well-behaved function (continuous and differentiable) and therefore also
its superposition, 𝜔 the circular frequency, 𝑡 the time, k the wave vector, r the spacial
position and 𝜑 the phase. With the help of

𝑘 = |k| = 𝜔
𝑐

= 2𝜋
𝜆

(3.6)

a planar wave can be described by

E(r) = E0 ⋅ 𝑒−𝑖k⋅r

B(r) = B0 ⋅ 𝑒−𝑖k⋅r
(3.7)

with k as wave vector pointing in the direction of the propagation of the light wave (see
fig. 3.1).

3.2.3 Polarization

Since the light wave propagates in one direction and the electric field and magnetic field
are perpendicular to k and to each other, the orientation of the plane of oscillation is
a fundamental property of light called polarization (see fig. 3.1). Without additional
information, the polarization orientation is conventionally in the direction of the electric
field component. A superposition of x- and y-wave with z-axis equal to the propagation
direction gives the general form:

E(𝑧, 𝑡) =
⎛⎜⎜⎜
⎝

𝐸0𝑥 ⋅ 𝑒−𝑖𝜙𝑥

𝐸0𝑦 ⋅ 𝑒−𝑖𝜙𝑦

0

⎞⎟⎟⎟
⎠

𝑒−𝑖(𝑘𝑧−𝜔𝑡) (3.8)

Figure 3.2 shows an additional representation of the polarization state of a light wave.
It shows the component perpendicular to the propagation direction. Thus, the time
evolution of the electric field can be represented in the 𝑥𝑦-plane. In addition, the states
can be described by the Jones or Stokes calculus, which is described in sections 3.2.7
and 3.2.8.

3.2 Electromagnetic Waves 17

z

y
x

unpolarizedx

z

y
x

zz

𝐸𝑥

𝐸𝑦 Lin
ea

r Pola
riz

er

linearly polarized

Qua
rte

r-W
av

e Plat
e

k

circularly polarized

Fig. 3.1.: Illustration of the polarization state of light. Unpolarized light passes through a linear
polarizer, polarizing the light in one direction. It then passes through a quarter-wave
retarder that converts linearly polarized light (of a specific wavelength) into circularly
polarized light, where 𝐸𝑥 and 𝐸𝑦 are 𝜋/2 in phase.

𝐸𝑥

𝐸𝑦

(1 0)

(1 1 0 0)

(a) linear, horizontal

𝐸𝑥

𝐸𝑦

(0 1)

(1 −1 0 0)

(b) linear, vertical

𝐸𝑥

𝐸𝑦

(1 1)

(1 0 1 0)

Jones

Stokes

(c) linear, 𝜋/4

𝐸𝑥

𝐸𝑦

(1 𝑖)

(1 0 0 −1)

(d) left circular

𝐸𝑥

𝐸𝑦

(1 −𝑖)

(1 0 0 1)

(e) right circular

𝐸𝑥

𝐸𝑦

(1 0 0 0)

Jones

Stokes

(f) unpolarized

Fig. 3.2.: Polarization states in Jones and Stokes convention.

18 Chapter 3 Modeling of Light

Light in a medium The general Maxwell’s equations eqs. 3.1 can be solved similar
to section 3.2.2, which yields a special behavior, e. g. the magnetic and electric field
component get out of phase. In this work, only the two decisive properties absorption
and refraction are described.

3.2.4 Absorption

Absorption is the property of reducing the intensity or energy of an electromagnetic wave
passing through a medium. It is described by the Beer–Lambert law of absorption

𝐼 = 𝐼0 exp(−𝜇𝑥) (3.9)

with 𝜇 = 4𝜋𝜅
𝜆 as absorption coefficient, with 𝜆 is the wavelength and 𝜅 is the imaginary

part of the complex refractive index of the medium (see section 3.2.5). If the complex
number is inserted into the wave equation, the intensity is reduced exponentially along
the path (see eq. (3.9)).

3.2.5 Refraction

Refraction is the change of direction of light as it passes from one medium to another.
Refraction can be explained by using the full Maxwell’s equations for non-conductive
materials, i. e., the differential equation consists of a primary wave with secondary waves
induced by the atomic medium, resulting in a decrease in the velocity of the resulting
wave. Mathematically, this can be described by a complex number 𝑛 = 𝑐′/𝑐. Using this
relationship at a boundary surface between two media, one can show that the incident
light beam splits into a reflecting and transmitting light wave. The reflecting light wave
has the same angle as the incident light beam relative to the surface normal. However,
the transmitting light beam, due to the reduction of the velocity, changes its direction
described by the Snell’s law (see fig. 3.3):

𝑛𝛼 sin𝛼 = 𝑛𝛽 sin𝛽 (3.10)

The refractive index 𝑛 can also be described as complex refractive index, where the
imaginary part describes the absorption of light along the material (see section 3.2.4):

𝑛 = 𝑛 + 𝑖𝜅 (3.11)

3.2 Electromagnetic Waves 19

bo
rd

er

𝑛𝛼 𝑛𝛽

𝛼

𝛽

Fig. 3.3.: Illustration of refraction by Snell’s law.

x

y
z

Polarized Light
y

x

y E 𝜆/4 Retardation

𝑛𝑦

𝑛𝑧

Left Circular

Fig. 3.4.: Illustration of retardation. The linear 45° polarized light wave is decomposed into
the 𝑥 and 𝑦 components in the birefringent medium. The 𝑦 component travels faster
than the 𝑥 component. Therefore, a phase shift 𝜙 between both components occur.
This leads in the case of a 𝜆/4 retarder to a circular polarized light wave.

3.2.6 Birefringence

A translucent material can have a different refractive index depending on the relative
orientation and polarization of the light beam. This property is called birefringence. The
refractive index can be described by the ordinary refractive index 𝑛𝑜 and the extraordinary
refractive index 𝑛𝑒, which are perpendicular to each other (see fig. 3.4). Therefore,
the light ray can be split into the same perpendicular parts and each can be described
by itself. These two light rays can have a different direction due to refraction. If the
separation is relatively small, the two light beams (or multiple light beams) can be
modeled as they would recombine when leaving the material. The phase change is called
birefringence and the physical property is described by:

Δ𝑛 = 𝑛𝑒 − 𝑛𝑜 . (3.12)

20 Chapter 3 Modeling of Light

3.2.7 Jones calculus

The Jones calculus, introduced by Robert Clark Jones in 1941 [Jon41], describes the
polarization state of a light beam by a complex vector 𝐽 (see fig. 3.2):

J = (
𝐸𝑥 exp(𝑖𝜑𝑥)
𝐸𝑦 exp(𝑖𝜑𝑦)

) (3.13)

The amplitude of the perpendicular components are 𝐸𝑥 and 𝐸𝑦 with their phase 𝜑𝑥

and 𝜑𝑦. Optical elements that change the polarization state, such as polarization filters
and retarders, can be described by a matrix:

Linear polarizer

𝓟𝑥 = (
1 0
0 0

) , 𝓟𝑦 = (
0 0
0 1

) (3.14)

Retarder (fast axis x-axis)

𝓜 = (
𝑒𝑖𝛿𝑥 0
0 𝑒𝑖𝛿𝑦

) , Λ1/4 = 𝑒 𝑖𝜋
4 (

1 0
0 −𝑖

) (3.15)

with 𝛿 as retardation and Λ1/4 as quarter-wave retarder.

Rotation matrix A rotation of an optical element 𝓔 can be achieved by a 2D rotation
matrix 𝓡:

𝓐(𝜃) = 𝓡(𝜃) ⋅ 𝓐 ⋅ 𝓡(−𝜃), 𝓡(𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) (3.16)

3.2.8 Müller-Stokes calculus

In analogy to section 3.2.7, the Müller-Stokes formalism, described by George Gabriel
Stokes in 1852 [Sto52] and Hans Müller in 1943 [Mue43], also describes the polarization
state of a light beam. However, it does not use the absolute electric components, but
the relative polarization between both components (see fig. 3.2):

3.2 Electromagnetic Waves 21

𝑆1

𝑆2

𝑆3

𝐼𝑝

2Ψ

2𝜒

Fig. 3.5.: Poincaré sphere illustrating Stokes component.

Stokes vector

S =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑆0

𝑆1

𝑆2

𝑆3

⎞⎟⎟⎟⎟⎟⎟
⎠

,

𝑆0 = 𝐼

𝑆1 = 𝐼𝑝 cos 2𝜓 cos 2𝜒

𝑆2 = 𝐼𝑝 sin 2𝜓 cos 2𝜒

𝑆3 = 𝐼𝑝 sin 2𝜒

= 2𝐸𝑥𝐸𝑦 cos 𝛿

= 2𝐸𝑥𝐸𝑦 sin 𝛿

(3.17)

where 𝐼 is the intensity, 𝑝 the polarization state, Ψ and 𝛿 the relative phases between
the 𝐸𝑥 and 𝐸𝑦 components, which can also be described by the two angles Ψ and 𝜒
and visualized on the Poincaré sphere (see fig. 3.5). With this description, the phase can
no longer be described as in the Jones calculus. However, the relative phase information
is stored and can be used to describe unpolarized light or partial polarized light as
well as the polarization states of polarization filters, which the Jones calculus cannot
describe. Analogous to the Jones calculus, one can formulate the matrices for the optical
components:

Linear polarizer

𝓟𝑥 = 1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝓟𝑦 = 1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(3.18)

22 Chapter 3 Modeling of Light

Retarder (fast axis: x)

𝓜 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 cos 𝛿 sin 𝛿
0 0 − sin 𝛿 cos 𝛿

⎞⎟⎟⎟⎟⎟⎟
⎠

, Λ1/4 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(3.19)

with 𝛿 as retardation and Λ1/4 as quarter-wave retarder.

Rotation matrix Analogous to eq. (3.16) rotations of an optical element 𝓔 are applied
by

𝓡(𝜃) =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 cos (2𝜃) − sin (2𝜃) 0
0 sin (2𝜃) cos (2𝜃) 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

𝓐(𝜃) = 𝓡(𝜃) ⋅ 𝓐 ⋅ 𝓡(−𝜃)

(3.20)

3.2 Electromagnetic Waves 23

3D Polarized Light Imaging
4

4.1 Introduction

This chapter gives an overview of 3D-PLI. First, the necessary preparation of the brain
tissue is described, including its cutting process and the subsequent mounting. The
second part describes the 3D-PLI microscopic technique, which allows measuring the
orientation of the optic axis that corresponds to the orientation of the myelinated
nerve fibers. The foundation of the measured 3D-PLI signal and the optical limits in
microscopy are described as a basis for the simulation in the following chapters.

4.2 Brain Tissue Preparation and Sectioning

After the organism death, the brain is removed from the skull within 24 h. In order
to prevent the further degeneration of the brain tissue, it is immersed in a solution of
4 % formaldehyde and 20 % glycerin for several days. Then it is frozen at −80 °C as
preparation for sectioning. The tissue is fixated with liquid glue on a plate, which allows
placing it within a microtome. The microtome consists of a chamber cooled at about
−70 °C. A vibrating knife is used to cut the brain into 60 µm sections (see fig. 4.1a).
After each cut, each section is manually placed onto a glass specimen, surrounded by
glycerin and covered with a thin optical glass (see fig. 4.1b). To preserve the sections
for the microscopic measurement, they are placed in a freezer at approximately −70 °C.
The 3D-PLI measurement takes place at room temperature. [Axe+11b]

4.3 Experimental Setup

In INM-1, there exist three microscopic setups based on identical physical principles
[Axe+11b] (see fig. 4.2). Polarized light with a wavelength of about 525 nm is irradiated
through the tissue section. 1 A rotatable polarizer is mounted in front of the tissue

1The exact wavelength depends on the microscope.

25

(a) Illustration of the sectioning process. The
brain is fixed with glue to stabilize it for the
cutting process. A microtome is used to cut
the tissue by using a vibrating diamond blade
over which the tissue block is moved.

(b) A section is placed on a glass specimen, to
protect it from environmental influences. It
is covered with a second, thinner glass plate,
which is sealed with nail polish.

Fig. 4.1.: Brain sectioning and sealing illustration.

in the beam path, and a fixed circular polarizer is mounted behind the tissue. By
rotating the polarizer, the change in intensity is measured with a charge-coupled device
(CCD)-sensor.

The first experimental setup is called large-area polarimeter (LAP).2 It is used to measure
an entire brain section at a resolution of 60 µm. 3

The large metripol (LMP) microscope allows measuring a tile of 2048 × 2048 pixels
with a pixel size of 1.3 µm. By measuring the tissue with multiple overlapping images,
the overlapping tiles can be combined into an overall image with a stitching algorithm.
This setup is not able to change the light path. The 3D information can be estimated
by analyzing the distribution of retardation and transmittance, however, the inclination
sign cannot be detected due to the ambiguity of the signal.

The third setup is the large metripol 3D (LMP3D) microscope [Wie16]. By using a
conical light path and a slit, only light of a particular angle can pass and therefore
through the tissue. By changing the position of the slit, different light paths can be
applied with a maximal tilt angle of 3.9°.

The tilted light beam in the LAP and the LMP3D are measured at four perpendicular
orientations: North, East, South and West.

2This setup has a slightly different configuration of the optical elements. However, the measurement
is the same.

3It is also possible to acquire images with different pixel sizes e. g. by changing the focal length,
since the setup is not fixed.

26 Chapter 4 3D Polarized Light Imaging

LED
Pan

el

Pola
riz

er

rotation

Bra
in

Spec
im

en

Qua
rte

r W
av

e Plat
e

Pola
riz

er

CCD

Circular Polarizer

Fig. 4.2.: Illustration of 3D-PLI setup.

The final image is captured by a camera that uses a CCD sensor, consisting of an array
of metal oxide semiconductor (MOS) capacitors. Each capacitor stores an electric charge
that is released by incident photons using the photoelectric effect. After a readout
process, which also includes electrical amplification, the resulting values can be stored
as an image. Its value, as long as the capacitors are not saturated or the amplification
does not exceed its limits, is linearly correlated with the number of photons. The
signal, however, is affected by noise which comes mainly from two parts. First is the
thermal noise that can lead to electrical charges in the MOS capacitors. Second, the
amplification of the signal underlies a noise usually from a non-ideal direct current and
non-ideal electric components like transistors, which is needed for the amplification
process. These noise sources combine to produce a Poisson-like distribution due to the
nature of digital positive values produced by the analog-to-digital converter. A normal
distribution can model the intensity values ≫ 0.

4.4 Intensity Signal

From the Müller-Stokes matrices (section 3.2.8), the intensity signal, which is the first
component of the Stokes vector, follows a sinusoidal curve [Men14; Men18]:

𝐼(𝜌, 𝜑, 𝛼, 𝑑) = 𝐼0
2

[1 + sin (2𝜌 − 2𝜑) ⋅ sin(2𝜋𝑑Δ𝑛
𝜆

cos2 (𝛼))]

with 𝛿 ≔ 2𝜋𝑑Δ𝑛
𝜆

cos2 (𝛼) and 𝑡rel ≔ 4𝑑Δ𝑛
𝜆

(4.1)

4.4 Intensity Signal 27

Eqs. 4.1 describes a sinusoidal signal. For a discrete, equidistant measurement of the
rotation angles 𝜌, one can use the Fourier series with the first three coefficients to
describe the signal:

𝜌 = [0, 𝜋
𝑁 + 1

, 2𝜋
𝑁 + 1

, ..., 𝑁𝜋
𝑁 + 1

]

𝑎0 = 1
𝑁

𝑁
∑

𝑖
𝐼𝑖

𝑎1 = 2
𝑁

𝑁
∑

𝑖
𝐼𝑖 ⋅ sin(2𝜌𝑖)

𝑏1 = 2
𝑁

𝑁
∑

𝑖
𝐼𝑖 ⋅ cos(2𝜌𝑖)

(4.2)

The current routine measurements take 𝑁 = 9 images. These are used to calculate the
final 3D-PLI modalities (see fig. 4.3):

transmittance ≔ 2 ⋅ 𝑎0

direction ≔ 0.5 ⋅ atan2(−𝑏1/𝑎1)

retardation ≔
√𝑎2

1 + 𝑏2
1

𝑎0

=̂ 𝐼0/2

=̂ 𝜑

=̂ | sin(𝛿)|

(4.3)

The transmittance describes the tissue light transmittance, i. e., how much light passes
through the tissue. The direction describes the signal phase, corresponding to the
direction of the macroscopic optic axis and therefore the direction of the nerve fibers.
The retardation corresponds to the amplitude of the signal, i. e., the strength of the
retardation.

4.5 Tilting Analysis

To analyze the optic axis inclination 𝛼, one has to distinguish the relative strength of
the birefringence from the term cos2(𝛼). For this purpose, the tissue is tilted allowing
the light signal to be measured through the tissue at a different angle of incidence
[Axe+11b; Wie16] (see section 4.3). Therefore, the tissue and its underlying nerve fibers
change their orientation due to the tilt angles 𝜃 and 𝜑. In addition, the distance the
light travels through the tissue increases by 1/ cos(𝜃) (see fig. 6.6).

Depending on the pixel_size, light passes through the same volume but with a
different orientation. Therefore, multiple light paths can be measured, and the resulting
signals can be used to analyze the inclination 𝛼 and relative birefringence tissue thickness

28 Chapter 4 3D Polarized Light Imaging

0 𝐼max/2 0° 90° 180°
(a) transmittance (b) direction

0 0.2 0.4 0.6 0.8

(c) retardation (d) fiber orientation map (FOM)

Fig. 4.3.: 3D-PLI modalities for a coronal section of a Vervet monkey brain.

𝑡rel . The angle of incidence of the light changes the path of the light by Snell’s law
eq. (3.10). Which results in a perspective shift that a registration process must correct.
However, this effect can be neglected in the simulation, since it only adds a parallel
offset.

An algorithm was developed under the name robust orientation fitting via least squares
(ROFL) to analyze the tilting signal [Wie16; Sch+18b]. The idea is to fit the measured
signals of all light paths simultaneously. Since the change in the signal is proportional to
cos(𝛼), for steep fibers, both the changes of 𝜕

𝜕𝛼 cos(𝛼) and the amplitude of the signal
are very small, which leads to the problem of increasing uncertainty while the inclination
angle increases.

Another difficulty is that for a smaller pixel_size, the light path can no longer be
neglected. For the LMP3D-system (with a tilt angle of 3.9° and a tissue thickness

4.5 Tilting Analysis 29

of 60 µm), the tilted light path is measured about 4 px away from the non-tilting
measurement. This means that other parts of the tissue affect the light from the
different tilt views. This effect can be neglected for homogeneous tissue regions, such
as parts in the dense WM. However, for single fiber paths, such as visible in the GM
or complicated paths like in crossing the effect on the inclination analysis is an open
question.

4.6 Optical Resolution

The optical resolution of an imaging system describes the minimum size of an object that
can still be resolved. This property is limited by aberration and diffraction. Aberration
causes blurring of the image, while diffraction can lead to superimposed diffraction
patterns. If diffraction is caused by many small objects in relation to the resolution, this
also looks like blurring.

Ernst Abbe was one of the first to describe that the resolution correlates with the light
wave 𝜆:

𝑑 = 𝜆
2𝑛 sin 𝜃

= 𝜆
2NA

(4.4)

𝑑 is the minimum resolvable distance, 𝑛 the refractive index, 𝜃 the angle of a light spot,
which can be combined to the better known numerical aperture NA. A more common
definition is the Rayleigh limit given by

𝑑 = 1.22 𝜆
2NA

, (4.5)

where 𝑑 is the distance between two light spots, where the first intensity maxima of
the first slit is on the first minima of the second slit (see dashed line fig. 4.4). The
wavelength used in 3D-PLI is 𝜆 = 525 nm and a numerical aperture of NA ≈ 0.15,
which results in a limit of about 2.1 µm [Men18]. In addition, three effects are being
applied to the simulated measurement.

30 Chapter 4 3D Polarized Light Imaging

Fig. 4.4.: Rayleigh’s criteria. The maxima of the first function is at the the position of the
seconds function minima.

Blurring To account for the blurring or out of focus image, the light ray’s intensity
must be blurred on the CCD-array. This is done via a 2D Gaussian convolution 𝑔 of the
image 𝑓:

(𝑓 ∗ 𝑔)(𝑥, 𝑦) = ∬ 𝑓(𝜏, 𝜐) ⋅ 𝑔(𝑥 − 𝜏, 𝑦 − 𝜐)𝑑𝜏 𝑑𝜐

𝑔(𝑥, 𝑦) = 1
2𝜋𝜎2 exp(−𝑥2 + 𝑦2

2𝜎2)
(4.6)

Sampling Since the number and final position of the light rays correspond to the voxels
(see section 6.2), all intensities of an image pixel must be combined. Here, this is done
via a mean value scan:

̂𝐼(𝑛, 𝑚) = 1
𝑁𝑥 ⋅ 𝑁𝑦

(𝑛+1)⋅𝑁𝑥−1

∑
𝑖=𝑛⋅𝑁𝑥

(𝑚+1)⋅𝑁𝑦−1

∑
𝑗=𝑚⋅𝑁𝑦

𝐼(𝑖, 𝑗) (4.7)

Unlike resizing, this does not interpolate the image.

Noise The final step is to recreate the noise of the image composition. To account for
this, a noise model must be applied to each image pixel. [Wie16] showed that this can
be modeled via a normal distribution:

𝐼 = normal(𝜎 = √𝐼 ⋅ 𝑔𝑎𝑖𝑛, 𝜇 = 𝐼) (4.8)

All three effects must be characterized for the system being simulated.

4.6 Optical Resolution 31

Part II

Software Implementation

5. Dense Nerve Fiber Modeling 37

5.1. Nerve Fiber Representation . 38

5.2. Sandbox . 39

5.2.1. Seeding fiber bundles . 40

5.2.2. Populating fiber bundles . 40

5.2.3. Cube models . 42

5.2.4. Cylindrical models . 42

5.3. Solving Fiber Collisions . 43

5.3.1. Solver main function . 44

5.3.2. Collision detection . 45

5.3.3. Octree . 47

5.3.4. Separation phase . 49

5.4. Shape Control . 50

5.4.1. Mean segment length . 50

5.4.2. Bending radius . 51

5.4.3. Movement phase . 52

5.4.4. Optimization and parallelization 52

5.5. Visualization . 53

5.5.1. Transparent objects and cells 53

5.6. Sphered Nerve and Cell Modeling . 54

5.6.1. Algorithm . 55

6. 3D-PLI Simulation 59

6.1. Discrete Volume Generator . 60

6.1.1. Nerve fiber layers . 60

6.1.2. Discretization of a nerve fiber model 61

6.1.3. voxel_size . 62

6.1.4. Code optimizations . 63

6.2. Light Matter Simulation . 64

6.2.1. Light ray path . 64

6.2.2. Tissue voxel interpolation . 66

6.2.3. Simulation of light matter interaction 67

6.2.4. Optical system and signal analysis 68

6.3. Speedup Strategies . 68

6.3.1. Code design . 68

6.3.2. MPI parallelization . 68

7. fastPLI 71

7.1. Introduction . 71

7.2. fastPLI Toolbox . 71

7.2.1. Dependencies . 72

7.2.2. Installation . 73

7.2.3. Tests, verification and issue tracking 73

7.3. Modules . 74

7.3.1. fastpli.analysis . 74

7.3.2. fastpli.io . 74

7.3.3. fastpli.model.sandbox . 75

7.3.4. fastpli.model.solver . 75

7.3.5. fastpli.objects . 76

7.3.6. fastpli.simulation . 77

7.3.7. fastpli.tools . 77

7.4. Computational Speedup Techniques 77

7.5. Documentation . 79

TABLE OF CONTENTS 35

Dense Nerve Fiber Modeling
5

In chapter 2 the structure of nerve fibers and the macroscopic structure of white
matter (WM) were described. The question is how to represent such a structure in
a computer algorithm? For simple fiber configurations, e. g. parallel, linear nerve
fibers, this is relatively straightforward. However, it has been shown that irregular,
non-symmetric nerve fiber configurations are necessary to obtain a realistic result for
microscopy simulations based on the wave nature of the light [Men18]. Therefore, one
ideally needs a representation, which allows building any kind of geometry.

Many representations of fiber structures are already available, which are commonly used
in graphical visualizations. For example, a rope is represented by a tube object, that
is defined by a path with a radius. A surrounding mesh is generated with n-polygonal
vertices. For visualization, the mesh is used to apply textures onto the surface. Such
meshes are e. g. used in Monte Carlo simulations of diffusion Magnetic Resonance
Imaging (dMRI) [Gin+19; Gin19]. Using meshes helps to calculate whether a water
molecule travels through the surface of a nerve fiber, i. e., the surface of the mesh.
However, this representation is computationally very intensive since the number of
triangular faces that must be present in the mesh is quite high.

When creating complex nerve fiber structures, it is important that the nerve fibers do
not overlap. To achieve non overlapping fibers, either the user must define such a
structure in advance, or a computer algorithm must build such structures automatically.
Considering the immense number of configuration possibilities that nerve fibers can have
even in a small volume, the task is almost impossible.

The solution found in this work is to initially allow the placement of nerve fibers in
any trajectory and without restrictions. The overlap of the fibers will be removed in a
secondary step, by checking all fibers for collisions with each other. If a collision occurs,
the algorithm tries to remove it by moving the colliding parts slightly away from each
other. This step is repeated until the volume has no collisions.

The nerve fibers simulation and all its necessary prerequisites is described in detail in this
chapter. First, the representation of a nerve fiber is defined considering the performance
for collision optimization. Then, additional building functions are designed to help the

37

user define a volume with nerve fibers quickly. Finally, the algorithm for resolving the
collisions with the parallelization components is explained in detail. In this chapter,
another tissue modeling method developed in collaboration with Neurospin Alternative
Energies and Atomic Energy Commission (CEA) is presented, in which neurons such as
astrocytes or oligodendrocytes are placed in a volume containing fibers that are relevant
for simulations in dMRI.

The algorithms are part of the toolbox fastPLI [Mat+19; Mat+21], which is described
in detail in chapter 7. The original idea of a collision solving algorithm was initially
published in [Mat+19].

5.1 Nerve Fiber Representation

Nerve fibers are tube-like structures surrounded by an electrically insulating lipid layer
of myelin (see section 2.3). Both the diameter of the axon and the thickness of the
myelin can vary from fiber to fiber (see section 2.4 and table 2.2), which means that
the representation of nerve fiber models should account for such variations.

As described in section 2.3, WM consists of nerve fibers packed tightly together in nerve
fiber bundles (see fig. 2.3b). These bundles can join with other bundles and traverse
the brain to connect one region to another. The bundles can cross each other, either by
crossing the individual nerve fibers or bypassing the fiber bundles, forming interwoven
structures. 1 Such structures are essential to increase the understanding of 3D-PLI.
Therefore, the simulation models must create such configurations without overlapping
individual fibers.

To represent individual nerve fibers, a function f(𝑡) describing a path in 3D space, i. e.,
a parametrized curve (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), is used. In addition, a fourth element describes
the radius (𝑟(𝑡)) of the fiber at the same point:

f(𝑡) → (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡)) | 𝑡 ∈ ℝ (5.1)

However, a continuous representation does not allow simple subsequent changes, such as
resolving collisions. For this purpose, individual elements are more manageable, allowing
movement or deformation. The fiber is then described by a list of 4D points (𝑥, 𝑦, 𝑧, 𝑟),
which can be interpreted as a chain of cylindrical fiber segments (see fig. 5.1):

1The terminology “crossing” is relative to the resolution and voxel size.

38 Chapter 5 Dense Nerve Fiber Modeling

traj p𝑖, 𝑟𝑖

fiber

- myelin layer 3
- myelin layer 2
- myelin layer 1
- axon

Fig. 5.1.: Representation of a nerve fiber from a list of spheres.

d
𝑟0

𝑟1

Fig. 5.2.: Schematic of a fiber segment represented by a distance d and two radii 𝑟0 and 𝑟1
which describes a conical capsule (CC).

fiber ≔ {p𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑟𝑖 ∣ 𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑟 ∈ ℝ+, 𝑖 ∈ {0, 1, ..., 𝑁points − 1}}

fiber segment𝑖 ≔ (p𝑖,p𝑖+1, 𝑟𝑖, 𝑟𝑖+1), 𝑖 ∈ {0, 1, ..., 𝑁points − 2} .
(5.2)

Since the fiber radius can change from one point to an adjacent point, the segment
can be conical. Therefore, the fiber segments describe a conical capsule (CC) (see
fig. 5.2).

This representation has the advantage that much fewer data is needed than a surface’s
mesh representation, which increases the computational speed for the collision solving
algorithm.

5.2 Sandbox

To build dense WM models, one needs to fill a volume with individual nerve fibers.
To allow the user to build such volumes, the module fastpli.model.sandbox was
developed. The user can define a nerve fiber bundle geometry and fill it with a fiber
pattern, creating nerve fiber bundles from cylindrical or cubic shapes.

The module fastpli.model.sandbox is divided into two submodules. The first module
handles the seeding process, while the second part builds up a nerve fiber bundle or
volume filled with individual fibers from seed points.

5.2 Sandbox 39

(a) Equilateral triangle grid. (b) Random grid. (c) Populated fiber bundles.

Fig. 5.3.: Populating fiber bundles with 2D seed points.

5.2.1 Seeding fiber bundles

Seed points are stored as a list of 2D points:

seeds ≔ {p𝑖 = (𝑥𝑖, 𝑦𝑖) ∣ 𝑥, 𝑦 ∈ ℝ, 𝑖 ∈ {0, 1, ..., 𝑁seed points − 1}} . (5.3)

To form particularly dense fiber bundles, a method for generating an equilateral triangular
grid is implemented (see 5.3a). Mathematically, this yields the most densely packed
pattern for circles with equal radius in a 2D area. However, a regular symmetric grid can
lead to unrealistic results (e. g. diffraction pattern in light wave simulation [Men18]). It
should, therefore, only be used as an initial configuration. Since the initial configurations
are often unknown, it is probably best to choose a random distribution (see fig. 5.3b).
For a circular boundary with radius 𝑅, this can be sampled from a uniform distribution:

𝜑 = uniform(0, 2𝜋)

𝑟 = 𝑅√uniform(0, 1)
⇒

𝑥 = 𝑟 cos(𝜑)

𝑦 = 𝑟 sin(𝜑)
(5.4)

5.2.2 Populating fiber bundles

To populate a fiber bundle (see fig. 5.3c), the plane containing the seed points is placed
at each fiber bundle point fb𝑖 along the trajectory. Essentially, for each resulting fiber𝑗,
this means:

fiber𝑗 = {𝓡 ⋅ (𝑥𝑗, 𝑦𝑗, 0) + fb𝑖 | 𝑖 ∈ {0, 1, ..., 𝑁seed points − 1}} (5.5)

Since a trajectory is only a 2D object, i. e., a line, no unique normal vector can be
defined. Theoretically, any torsion can be applied to any 2D curve in space. However,
these do not occur in principle in the tissue.

40 Chapter 5 Dense Nerve Fiber Modeling

Fig. 5.4.: Left: Plane of seed points. Right: The plane is rotated and placed along the path.
At the end, the plane has the same normal vector as the starting plane, but due to
the principle of minimum rotation, the plane is rotated along the normal vector.

A more reasonable solution is to perform a rotation such that the rotation along the
fiber bundle trajectory is minimal, which can be achieved by computing the rotation
matrix that rotates the current tangent vector t(𝑖) to that of the next point t(𝑖 + 1)
(see fig. 5.4). The rotation matrix 𝓡(a,b) for between two nonparallel vectors a ∦ b
is

a = a/|a|

b = b/|b|

v = a× b

𝑐 = a ⋅ b

𝓤 =
⎛⎜⎜⎜
⎝

0 v𝑧 −v𝑦

−v𝑧 0 v𝑥

v𝑦 −v𝑥 0

⎞⎟⎟⎟
⎠

𝓡 = 𝟙 + 𝓤 + (𝓤 ⋅ 𝓤) ⋅ (1 − 𝑐)/|v|2

(5.6)

In the case of a ∥ b no rotation is necessary.

The presented formulation allows generating a filled nerve fiber bundle. First, the seed
point plane is placed at the first fiber bundle point fb0 and rotated by 𝓡(̂e𝑧, t0). Then,
for each step, the plane is rotated at its origin by 𝓡(t𝑖, t𝑖+1) and placed on fb𝑖+1. To
smooth the transition, the tangential vector t at step 𝑖 is the average of the neighboring
points:

t = 1
2
fb𝑖−1 + fb𝑖+1
|fb𝑖−1 + fb𝑖+1|

(5.7)

Finally, all points belonging to a fiber are stored in a fiber bundle object as (𝑛×4)-array.

5.2 Sandbox 41

v

Fig. 5.5.: Populating a cuboid with straight fibers initialized by seed points along the direction
v.

5.2.3 Cube models

So Long, and Thanks for All the Fish

3D-PLI simulations calculate all light vectors inside a cubical volume (see chapter 6).
Therefore, a method exists to fill a cube with a fiber population of orientation v (see
fig. 5.5). The individual fibers are initialized with a seed point plane. This plane is
placed virtually in front of and behind the cubic volume, with a user-defined orientation.
The coordinate origins of the cube and the two seed point planes are on a line. To
fill the volume with nerve fibers the seed points are connected. When a line hits the
volume, the entry and exit points are calculated and stored as fibers of the returned
fiber bundle.

5.2.4 Cylindrical models

The last method allows populating a cylindrical volume with fibers. Since a cylinder
has three symmetries, radial, angular and height, those three symmetries have been
implemented to provide a way to populate the volume.

The cylinder has an outer radius 𝑟out and an inner radius 𝑟in . The height ℎ is aligned
along the z-axis and starts at (0, 0, 0). In addition, the cylinder can be cut radially
between the directional angles 𝛼 and 𝛽 to fill only a portion of it. The angles correspond
to the cylindrical coordinate system.

The following applies to all cylindrical methods used: If the seed point plane leaves the
cross-section plane to be filled, the seed points lying outside are ignored.

42 Chapter 5 Dense Nerve Fiber Modeling

𝑥
𝑦

𝑧

(a) Circular population.

𝑥 𝑦
𝑧

𝑦𝑜
𝑥𝑜

𝑧𝑜

𝛼
2𝜋 − 𝛽

(b) Radial population.

𝑦
𝑥

𝑧

(c) Parallel population.

Fig. 5.6.: Populating of cylindrical objects. The green area shows the area corresponding to the
seed point plane. The coordinate system indicates the coordinate origin corresponding
to the seed points origin. The origin of the coordinate system 𝑂 of the resulting
fibers is at the bottom center as shown in fig. 5.6b. Two angles 𝛼 and 𝛽 can be used
to limit the angular range of the cylinder.

a) circular Mimics a radial path of the cylinder (see fig. 5.6a). The seed points are
placed along the surface of the cross-section of the first 𝛼 direction angle. The origin
of the seed point plane is placed on the origin of the cylinder. From there, the fiber is
bent circular until the second direction angle 𝛽. The step size of the circular path can
be customized.

b) radial The seed point plane is placed at the inner wall with the origin at the bottom
corner of the first angle 𝛼 (see fig. 5.6b). The fibers then are generated radially until
they meet the outer wall of the cylinder. Thus, the density of the fibers decreases along
their path.

c) parallel The fibers are aligned along the cylinder (see fig. 5.6c). The seed points
are placed on the lower plane, with identical coordinate origins and orientations (see
fig. 5.6c).

Only seed points that are in contact with the cylinder are considered in all methods.

5.3 Solving Fiber Collisions

The following algorithm allows the user to define any fiber path, which allows a wide
range of freedom in the initialization process. Since the user initialization will probably
produce colliding fibers, the collisions have to be found and solved by moving the affected
fiber segments so that a collision-free volume is created by minimal displacement. This
allows the user to specify complex interwoven structures such as nerve fiber crossings in

5.3 Solving Fiber Collisions 43

1 def step():
2 # Reset Parameter
3 SetSpeed(objects, 0)
4
5 # Building Octree
6 octree = Octree(objects)
7
8 # Collision Detection
9 for leaf in octree:

10 colliding_objs = CheckLeaf(leaf.fiber_list)
11 colliding_list.insert(colliding_objs)
12
13 # Separation Process
14 MoveObject(colliding_list)
15
16 # Shape Control
17 SegmentLength(colliding_list , target_length)
18 BendingRadius(colliding_list , target_curvature)
19
20 return colliding_list.is_empty()

Alg. 1: Main structure in a single step of the collision checking and shape controlling algorithm.

any configuration. The algorithm allows the user to specify boundary conditions like the
mean fiber segment length or minimal bending radius.

A stand-alone algorithm is published in [Mat+19]. The solving algorithm is publicly
available as a module of fastPLI [Mat+21], fastpli.model.solver.Solver. An
essential feature is the visualization of the displacement process. This allows the user to
see the movement and intervene as early as possible if necessary. This is very important
because the solution process can take a lot of time, depending on the volume and the
number of objects.

5.3.1 Solver main function

The main function is composed of the following sequential parts (see alg. 1):

• ordering the objects in an octree
• checking each branch of the octree for colliding objects
• separating the colliding objects
• checking the shape of the fibers, i. e., their length and bending radius

After a step the user is allowed to interact if necessary. The function returns a boolean
value indicating if no more colliding objects were found. Therefore, a simple while

44 Chapter 5 Dense Nerve Fiber Modeling

1 def aabb_collide(aabb_0, aabb_1):
2 for i in dim(aabb):
3 if aabb_0[i].min > aabb_1[i].max:
4 return false
5 if aabb_0[i].max < aabb_1[i].min:
6 return false
7 return true

Alg. 2: Calculation if a collision between AABBs exists.

𝑎𝑎𝑏𝑏𝑐𝑜𝑛𝑒

𝑎𝑎𝑏𝑏0

𝑎𝑎𝑏𝑏1p𝑖

p𝑖+1

𝑟𝑖

𝑟𝑖+1

𝑎𝑎𝑏𝑏𝑐𝑎𝑝𝑠𝑢𝑙𝑒

Fig. 5.7.: Fiber segment representations with the AABBs: CC, capsule, bounding box.

loop can be used to iterate the collision algorithm until a non colliding configuration is
found.

5.3.2 Collision detection

As described in section 5.1, nerve fibers are represented as a chain of spheres, with
two adjacent spheres representing a fiber segment that forms a conical capsule (CC)
(see fig. 5.7). A collision between two CC involves a few calculations (see alg. 3). To
reduce the runtime axis aligned bounding boxes (AABBs) are first checked for collision.
This check is fast to calculate (see alg. 2). If a collision occurs between the two
AABBs, the actual collision calculation is performed. However, this is a non-trivial task
and computationally very intensive. Therefore, it was decided to change the object
representation for the collision detection from a CC to a capsule (see fig. 5.7), with a
radius equal to the maximum of the two original spheres 𝑟capsule = max(𝑟0, 𝑟1). This
enables the computational effort to be reduced, although some volume is lost. This is
of minor consequence, since the change in radius is expected to be relatively small.

5.3 Solving Fiber Collisions 45

1 def MinDistance(cone_a, cone_b):
2 # from https://www.john.geek.nz
3
4 u = cone_a.p1 - cone_a.p0
5 v = cone_b.p1 - cone_b.p0
6 w = cone_a.p0 - cone_b.p0
7
8 a = np.dot(u, u)
9 b = np.dot(u, v)

10 c = np.dot(v, v)
11 d = np.dot(u, w)
12 e = np.dot(v, w)
13 f = a * c - b * b
14
15 if f < 1e-5:
16 sN = 0.0
17 sD = 1.0
18 tN = e
19 tD = c
20 else:
21 sN = b * e - c * d
22 tN = a * e - b * d
23 if sN < 0.0:
24 sN = 0.0
25 tN = e
26 tD = c
27 elif sN > sD:
28 sN = sD
29 tN = e + b
30 tD = c
31
32 if tN < 0.0:

35 tN = 0.0
36
37 if -d < 0.0:
38 sN = 0.0
39 elif -d > a:
40 sN = sD
41 else
42 sN = -d
43 sD = a
44 elif tN > tD:
45 tN = tD
46 if (-d + b) < 0.0:
47 sN = 0
48 elif (-d + b) > a:
49 sN = sD
50 else
51 sN = (-d + b)
52 sD = a
53
54 if np.abs(sN) < 1e-5:
55 sc = 0.0
56 else:
57 sc = sN / sD
58 if np.abs(tN) < 1e-5:
59 tc = 0.0
60 else:
61 tc = tN / tD
62
63 P = cone_a.p0 + u * sc
64 Q = cone_b.p0 + v * tc
65 length = np.linalg.norm(P, Q)
66 return length, P, Q

Alg. 3: Collision detection between two capsule objects. A collision occurs
if the distance is less than cone_a.r + cone_b.r > d. Original:
https://www.john.geek.nz/2009/03/code-shortest-distance-between-any-two-
line-segments/.

The algorithm for detecting collisions between two capsules is described in alg. 3. It
works on the principle that it calculates the shortest distance between two line segments.
Three cases can occur. First, the shortest distance is a line perpendicular to the two line
segments (see fig. 5.8). Second, only one line segment is perpendicular to the shortest
distance line. The other has an anchor point either at the beginning or at the end of
the second line segment. Third, the shortest distance is a connection between one of
the points of the line segments. For cones, a collision occurs when the distance is less
than the sum of the two radii.

The calculation of the collision check is the most complex function. Therefore, the
amount of collision checks needs to be reduced as much as possible. A collision check
compares each object to all other objects, which leads to a computational cost of 𝒪(𝑛2),
which is not acceptable for large n. Therefore, an octree based strategy was selected to
reduce the number of computations.

46 Chapter 5 Dense Nerve Fiber Modeling

https://www.john.geek.nz/2009/03/code-shortest-distance-between-any-two-line-segments/
https://www.john.geek.nz/2009/03/code-shortest-distance-between-any-two-line-segments/

d
short p𝑎

p𝑏

Fig. 5.8.: Shortest distance between two capsule objects. The line must be either perpendicular
to the line segments or at least in one of the points of each object.

1 def octree(volume, objects):
2 if num(objects) > threshold:
3 sub_volumes , sub_objects = split(volume, objects)
4 leaves = [octree(v,o) for v,o in zip(sub_volumes , sub_objects)]
5 else:
6 leaves = [objects]
7 return leaves

Alg. 4: Recursive generation of an octree.

5.3.3 Octree

A tree is a data structure consisting of a collection of interconnected nodes. A node is
connected to a single parent node, and multiple children via branches. The first parent
node is called root. The final nodes at the end of a branch are called leaves containing
the data. Traversing a uniformly distributed tree has the advantage that the cost of
traversal is 𝒪(log(𝑛)).

An octree is a special tree where each node contains eight children, allowing a cubic
volume to be divided into eight subvolumes. An example is shown in fig. 5.9a. The
length of the subvolumes shrinks exponentially by (1/2)level . In this algorithm a recursion
function generates the tree structure (see alg. 4).

First, all objects must be sorted into the eight branches of the initial node (if the number
of objects is not too small). This means that each object must be checked whether there
is a collision with one or more of the eight subvolumes. To reduce the computational

5.3 Solving Fiber Collisions 47

le
ve

l=
0

le
ve

l=
1

le
ve

l=
2

(a) Exemplary octree subdivi-
sion of a cube.

obj1

obj2

obj3

(0, 0) (1, 0)

(0, 1)

(10, 10) (11, 10)

(10, 11) (11, 11)

(b) Exemplary collision in 2d. The boxes corresponds to the AABBs.

Fig. 5.9.: Exemplary tree subdivision.

costs, as before, the AABBs of the objects are used for the collision check (see fig. 5.9b).
Once all objects are sorted into their respective subvolumes, recursion can begin.

Since a branch can be considered a node, the same algorithm can be executed until a
desired boundary or property is reached, e. g. maximum number of branches. To speed
up the algorithm, the objects for each subvolume are stored in memory linearly. The
conditions under which the recursion is to be stopped cannot be defined unambiguously.
This depends on the algorithm implemented and the number and position of the objects.
The usual approach is to impose the following two constraints:

Maximum number of levels In the case of nerve fibers, it can be assumed that the size
of the objects is approximately in the same order of magnitude. Therefore, the largest
object in a volume can be used as the lower bound for the smallest volume in the octree.
A difference in a higher order of magnitude consequently increases the computational
cost to the point where each object must be retested with each object.2

Minimal number of objects Once a leaf is created, all objects contained in it must be
checked for collisions. As mentioned above, this is a task of 𝑂(𝑛2). However, there is

2There are other, more suitable algorithms for this case. However, since this case is not expected,
they are not implemented.

48 Chapter 5 Dense Nerve Fiber Modeling

also an upper bound of a number of objects for which it is faster to calculate whether
they collide than to partition the volume further. This number must be checked at
runtime, since it depends on many factors, e. g. central processing unit (CPU) cache size.
In the development phase of this algorithm, a value of ≈ 20 for the involved computer
architectures was determined.

The collision checking algorithm is executed on each leaf (see section 5.3.2) and all
colliding objects are identified.

5.3.4 Separation phase

To resolve a collision between two objects, each point p𝑖 and p𝑖+1 of the two objects is
moved. To effectively move the objects apart with a small effort, the fiber objects are
translated and rotated away from the other colliding object. The translation is parallel to
the shortest distance vector of the collision. For the rotation, the direction of motion is
weighted by the distance of each point from the intersection with the smallest distance
line (see fig. 5.8 and alg. 5).

1
2 def push_obj_apart(obj_a, obj_b):
3 P, Q = min_distance_points(obj_a, obj_b)
4
5 delta = P - Q
6 norm = length(P - Q)
7
8 if norm < 1e-8:
9 return random_direction()

10
11 speed = 0.05 * min(r0, min(r1, min(obj.r0, obj.r1)))
12
13 v_obj_a_0 = delta / norm * speed * length(P - p1) /
14 length(p1 - p0)
15 v_obj_a_1 = delta / norm * speed * length(P - p0) /
16 length(p1 - p0)
17
18 v_obj_b_0 = -delta / norm * speed * length(Q - obj.p1) /
19 length(obj.p1 - obj.p0)
20 v_obj_b_1 = -delta / norm * speed * length(Q - obj.p0) /
21 length(obj.p1 - obj.p0)
22
23 return v_obj_a_0 , v_obj_a_1 , v_obj_b_0 , v_obj_b_1

Alg. 5: Velocity calculation of colliding objects.

The velocity is stored in an array for each fiber corresponding to the fibers points. All
velocities for a single point is summed up.

5.3 Solving Fiber Collisions 49

seg𝐿 = 1 ̅rf

seg𝐿 = 2 ̅rf

seg𝐿 = 4 ̅rf

Fig. 5.10.: Different fiber segment lengths as factor of the mean fiber radius ̅𝑟𝑓.

A special case is the movement of the first and last point of a fiber. These may only
move perpendicular to the first/last segment line, which prevents the fibers from growing
to infinity.

5.4 Shape Control

The movement of single points can lead to a distorted fiber model, e. g. two points
move very far apart. Therefore, boundary conditions are specified. It was decided to
use the following two properties, the mean segment length and the minimum bending
radius, as parameters for the shape control. Each parameter can be set to 0 to disable
the boundary condition.

5.4.1 Mean segment length

The average segment length is the distance between the two points of a fiber segment
(see fig. 5.10). When the segment length becomes too small/large, the points within a
fiber corresponding to the object are merged/separated, and one less point/one new
point is removed/added (see fig. 5.11). The segment is allowed to have a length inside
[2
3𝑑, 4

3𝑑]. Thus, the mean value of the object is:

𝑑min + 𝑑max
2

= 𝑑 (5.8)

If a new point is created when exceeding the maximum limit, the new point p𝑛𝑒𝑤 with
a radius 𝑟𝑛𝑒𝑤 and velocity v𝑛𝑒𝑤 are calculated by linear interpolation:

p𝑛𝑒𝑤 =
p𝑖 + p𝑖+1

2
, 𝑟𝑛𝑒𝑤 =

𝑟𝑖 + 𝑟𝑖+1
2

, v𝑛𝑒𝑤 =
v𝑖 + v𝑖+1

2
(5.9)

50 Chapter 5 Dense Nerve Fiber Modeling

𝑝0

𝑝1

𝑝2

𝑝3
𝑝4

𝑝5

𝑝′
0

𝑝′
1

𝑝′
2

𝑝′
3

𝑝0
𝑝1

𝑝2
𝑝3

𝑝′
0 𝑝′

1 𝑝′
2

𝑝′
3

𝑝′
4

𝑝′
5

(a) merge (b) split

Fig. 5.11.: Length control for the 𝑓 and 𝑓 ′ fibers. Illustrated is the merging and splitting of
points, if necessary. The first and last point are never removed.

𝑟
bending

𝜂

Fig. 5.12.: A fiber along its path can be characterized by circles from three adjacent points.
A minimal radius for these circles is applied as boundary condition. Additionally
the inner angle has to be 𝜂 ≥ 60°. If a condition is not fulfilled, a force (arrows) is
applied to smoothen the curvature at these points.

5.4.2 Bending radius

The bending radius matches the radius of the circle defined by three adjacent points
p𝑖−1,p𝑖,p𝑖+1 (see fig. 5.12). To limit the bending radius of the fiber, a minimal allowed
radius 𝑟min is defined. Additionally, three adjacent points are not allowed to have an
enclosing angle 𝜂 ≥ 60°. If any point p𝑖 in a fiber fails these boundary conditions, the
three points p𝑖−1,p𝑖 and p𝑖+1 will be moved parallel to reduce curvature (see fig. 5.12).

5.4 Shape Control 51

5.4.3 Movement phase

All movements are stored additive in a velocity array before the total movement is
executed. The maximum velocity is limited by 𝑣max = 0.1 × min(rf).3 This is a
necessary constraint due to two required properties: First, an object should not be
allowed passing through another object, i. e., the velocity should always be < 𝑚𝑖𝑛(𝑟𝑓).
Second, it smooths the motion and thus the maximum achievable density of the resulting
models.

After limiting the velocity, the movement of all points is executed. A resistance value is
applied to reduce the velocity by the appropriate factor after each step. This can help
to reach a collision free volume faster, but the density will be reduced. Its default value
is set to 0 so that the velocity is reset to 0 after each step.

5.4.4 Optimization and parallelization

The computational architecture to optimize the octree (see section 5.3.3) for solving
the fiber collision is presented in this section. The optimization requires millions of
objects to be checked for collisions. By using memory alignment and multiprocessing,
the computation cost was reduced from 𝑂(𝑛2) to 𝑂(𝑛 log(𝑛)).

Memory alignment All algorithms use in-memory aligned data types, e. g. std::vec-
tor, as appropriate, allowing the use of the CPU’s prefetcher. During the development
process of the octree, it was found that creating a memory-aligned copy of the subset of
the objects improves the performance compared to referring to the objects by reference
in the different branches. Each optimization was tested for improvements for different
volumes and number of objects. The focus is on larger volumes, and a more signifi-
cant number of objects, since smaller volumes or a smaller number of objects require
significantly less computing time.

OpenMP To use multiple CPUs, the Open Multi-Processing (OpenMP) library is used.
A structure like an octree suggests the parallelization of 8 cores. Each leaf can be
traversed in parallel. In addition, other functions that are thread-safe are parallelized
with OpenMP, e. g. moving the points.

3This value has proven to be appropriate during the testing phase of this algorithm. Speedup may
still be possible by changing this value without significantly changing the results.

52 Chapter 5 Dense Nerve Fiber Modeling

time

Fig. 5.13.: Exemplary visualization in the collision solving process. The red color indicates that
a collision is detected in the fiber segment.

5.5 Visualization

A visualization tool is available to visualize the nerve fiber configuration (see fig. 5.13).
This allows the user to get direct feedback, e. g. after each step, to adjust the initial
fiber configuration or boundary conditions. It is written in C++ and Open Graphics
Library (OpenGL) v2 [@Fou20; @Wik18]. This implementation uses gluCylinder to
represent a nerve fiber segment. Although not optimal, the visualization is sufficient
compared to a single step of the collision solving algorithm.

A further advanced interactive tool is also available as open source, the Fiber Architecture
Constructor (FAConstructor), which was developed by Jan Reuter as part of his bachelor
thesis [Reu+19]. It provides additional interactive methods for creating nerve fiber
models and was written in OpenGL v3.

5.5.1 Transparent objects and cells

In section 5.6 the need of transparent objects is necessary. Not only the outer hull of
the myelin, but also the inner axon needs to be seen in the visualization. Additionally,
cells, e. g. astrocytes, have to be visualized. For this purpose, the former algorithm was
rewritten. For the transparent effects, the algorithm needs to know the order in which
the objects or triangular surfaces needs to be rendered. This means, that the triangular
surfaces have to be sorted in z-direction, i. e., the view direction. To order the triangular
surfaces, they first have to be calculated. The fiber segments are no longer represented
as a cylinder, but as CC which consist out of a hexagonal grid (see fig. 5.14).

This is a huge amount of computational resources. It is not yet included in the fastPLI
package. The resulting visualization is shown in section 5.6.1.

5.5 Visualization 53

Fig. 5.14.: Generate a mesh for visualization. A mesh perpendicular to the fiber trajectory is
calculated from n points. Triangles defined by these points are used as surfaces
for the visualization of the object. Normal vectors can be used to smooth the
visualization, and flash effects contribute to a more natural representation.

5.6 Sphered Nerve and Cell Modeling

The proposed algorithm for generating dense WM fiber models can also be applied in
dMRI. In dMRI, the motion and interaction of water molecules with the fiber models is
simulated. When the water molecules collide with the surface of a fiber segment, the
molecular behavior, like diffusion through the surface, must be considered. This applies
not only to nerve fibers but also to other cell types. Since the WM consists of axons
and other cells such as glial cells, astrocytes, and oligodendrocytes, these also change
the dMRI signal.

Therefore, an additional algorithm was developed in collaboration with Kevin Ginsburger
and Cyril Poupon (Neurospin, CEA). This algorithm called Microstructure Environ-
ment Designer with Unified Sphere Atoms (MEDUSA) [Gin+19] works similarly to
the algorithm described in section 5.3, but models the 3D objects as spheres rather
than pipe segments. Such formulation has the advantage that the objects are simpler,
which leads to faster collision checking calculations. Additionally, the spheres are also
used to represent other types of cells. The overall cell volume is represented by the
sum of all spheres corresponding to the cell (see fig. 5.15). In this way, any shape is
possible. MEDUSA additionally produces oligodendrocytes and astrocytes to generate
more realistic WM brain tissue.

Another goal of the MEDUSA algorithm is to be able to generate a volume from statistical
parameters such as density and angular dispersion [Gin+19; Gin19]. Analogous to the

54 Chapter 5 Dense Nerve Fiber Modeling

section 5.3 algorithm, the collisions of the objects are checked and slowly pushed apart
until no more collisions can be detected. The usage of the statistical parameters allows
generating a general purpose library of volumes filled with nerve fibers and cells (see
section 5.6.1).

The disadvantage of the spheres is that many more spheres and thus objects for collision
control are needed for the representation of tubular objects. Therefore, the algorithm
was implemented on the graphics processing unit (GPU) with an axis aligned bounding
box search algorithm [Kar12].

5.6.1 Algorithm

Since all objects are represented as a collection of spheres (see fig. 5.15)

𝒮 = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑟𝑖) ∶ 𝑖 ∈ {0, 1, ..., 𝑛objects − 1}} (5.10)

a collision occurs when

𝑑 < 𝑟𝑖 + 𝑟𝑗 with 𝑑 = |p𝑖 − p𝑗| (5.11)

However, since adjacent spheres in a fiber collide when the fiber is densely populated,
they must be excluded if the length of the partial trajectory is smaller than the sum of
the radii of the two spheres:

ignore if
𝑗−1

∑
𝑛=𝑖

|p𝑛 − p𝑛+1| ≤ 𝑟𝑖 + 𝑟𝑗 (5.12)

Spheres inside cell bodies are not checked for collisions because their volume is approxi-
mately equal to the volume of the cell.

The calculation of the collisions is performed using the GPU architecture. For this
first implementation, the algorithm AxisAligedSortedSearch [Kar12] is used. It sorts
the spheres along an axis and for each sphere 𝑖 searches for the first and last possible
collision on that axis. This results in a list of spheres 𝒞𝑖 to be tested:

𝒞𝑖 = {𝑠 ∈ 𝒮 ∣ |𝑠𝑖.𝑥 − 𝑠𝑗.𝑥| < 𝑟𝑖 + 𝑟𝑗} (5.13)

The algorithm (see alg. 6) described above is currently used for volumes of about 200 µm
for different fiber populations and other properties (see section 5.6.1). For this volume
size, the algorithm is fast enough for current use. However, there are more advanced

5.6 Sphered Nerve and Cell Modeling 55

(a) Modified from [Gin+19]. Outer blue spheres myelin, inner red spheres
axon.

(b) Cell aproximation by overlapping spheres.

Fig. 5.15.: MEDUSA sphere approximation.

algorithms that can be used here. One promising technique is the use of a Bounding
Box Hierarchy [Kar12].

56 Chapter 5 Dense Nerve Fiber Modeling

1 __global__ void computeRepulsionForces(const Sphere *spheres,
2 float3 *forces,
3 const int spheresCount ,
4 const float max_sphere_radius)
5 {
6 int i = blockDim.x * blockIdx.x + threadIdx.x;
7
8 if (i < spheresCount) {
9 const Sphere sphere = spheres[i];

10
11 // find first sorted sphere to check
12 int s = i;
13 while (((sphere.pos.x - max_sphere_radius) <
14 (spheres[s].pos.x + max_sphere_radius)) &&
15 (s > 0)) {
16 s--;
17 }
18 int s_min = s;
19
20 // find last sphere to check
21 s = i;
22 while (((sphere.pos.x + max_sphere_radius) >
23 (spheres[s].pos.x - max_sphere_radius)) &&
24 (s < spheresCount - 1)) {
25 s++;
26 }
27 int s_max = s;
28
29 // check all spheres for collison
30 for (int s = s_min; s <= s_max; ++s)
31 if (sphere.id != spheres[s].id)
32 forces[i] += = computeRepulsionForce(sphere, spheres[s]);
33 }
34 }

Alg. 6: MEDUSA’s collision checking.

5.6 Sphered Nerve and Cell Modeling 57

(a) Cubic volumes with different number of fiber populations and volume
fractions (VF) are generated.

(b) Exemplary visualization of a volume filled with a single fiber population
and astrocytes.

Fig. 5.16.: Original images from [Gin+19].

58 Chapter 5 Dense Nerve Fiber Modeling

3D-PLI Simulation
6

Simulations of 3D-PLI have been used to study multiple effects of the microscopic
technique involved with brain sections [Doh+15; Men+15; Men+16; Men+20; Men+21;
Men14; Men18]. The algorithm presented here for designing new collision-free fiber
models allowed to simulate the effect of scattered light in simulations based on a finite-
difference time-domain algorithm without superimposed interference signals. These
simulations enabled the understanding of scattering effects due to fiber bundle and
crossing configurations as well as the transmission change for tilted fiber configurations
[Men18; Men+20; Men+21].

The current formulation allows reproducing linear optics simulations coherent with the
experimental results of [Doh+15; Men+15; Men+16]. In contrast to [Doh+15; Men+15;
Men+16], whose algorithm is computationally and memory intensive due to the pre-
computations for discretized tissue volume, this work proposes using the foundations
for more efficient parallel computing within a supercomputer architecture presented in
[Luc16]. The simulation algorithm was redesigned, considering computational efficiency
and the manufacturing design of the new large metripol 3D (LMP3D) microscope.
Additionally, the linear optics simulation uses the Müller-Stokes calculus also to take the
polarization effects of filters into account.

The 3D-PLI simulation is divided into two sequential parts: the discrete volume generator
and the light matter simulation. The discrete volume generator discretizes the virtual
nerve fiber models onto a Cartesian grid. Then, the discretized model is used to compute
the light matter interaction in the second step. A parallelization technique with Message
Passing Interface (MPI) allows the volume to be partitioned among different CPUs or
compute nodes. Due to the tilting approach, the light vector in such a parallelized
volume must be able to leave the current volume of a single CPU and traverse to the
next volume/process. The computationally intensive algorithms are written in C++ with
an additionally user-friendly designed wrapper function in Python3.

59

vmin

vmax

vs

Fig. 6.1.: Discretized tissue volume with a voxel size vs. The volume is defined by a AABB,
which itself is defined by two points vmin and vmax .

6.1 Discrete Volume Generator

The first part of the 3D-PLI simulation is the calculation of a discretized tissue volume.
It represents a discrete, voxel model of the tissue. This helps to drastically speed up the
light matter interaction of the next step (see section 6.2), at the cost of a large memory
requirement.

The discretized tissue volume represents a cuboid divided into smaller cubes of equal size,
called voxels, i. e., 3D pixels (see fig. 6.1). Each voxel contains the physical properties of
absorption, birefringence and optic axis orientation of the tissue at its current position.
The total volume is bounded by a volume of interest (VOI) defined by a minimum
and maximum value: voi = [(𝑥min , 𝑦min , 𝑧min), (𝑥max , 𝑦max , 𝑧max)]. Additionally, the
parameter voxel_size vs is set to a floating point number and defines the edge length
of the equilateral voxels. In case the division is not integer, the number of voxel of the
affected axis is rounded up.

6.1.1 Nerve fiber layers

As described in section 2.3, nerve fibers are axons wrapped by multiple turns of myelin
(see fig. 6.2a). Especially for light wave simulations, the myelin windings are an important
feature [Men18].

The windings are represented as individual layers (see fig. 6.2b). Which dramatically
simplifies the creation process. A layer is defined by a factor between 0 and 1 that scales
with the radius of the nerve fiber. For example, 0.75 means that from 0 ≤ 𝑟 < 0.75 of
the radii is interpreted as the first layer (see fig. 6.2b).

60 Chapter 6 3D-PLI Simulation

(a) Schematic representation
of a nerve fiber with axon
and myelin sheath.

𝑟4

𝑟
3

𝑟 2
𝑟 1

𝑟0

(b) Cross section through a
nerve fiber with layered
structure defined by 𝑛
radii.

𝑟min
𝑟 max q

(c) Cross section of a dis-
cretized nerve fiber with re-
sulting optic axis vectors.

Fig. 6.2.: Discretization of nerve fibers with layered structure.

Each layer requires a number of physical properties in addition to its radius:

• birefringence value: Δ𝑛
• absorption coefficient: 𝜇
• optical axis model: 𝑝 = parallel, 𝑟 = radial, 𝑏 = background

The properties are specified as a list of tuples within the algorithm (see alg. 7). Sub-
sequently, the discretized volume generator returns the arrays tissue, optical_axis
and property_list for used in the light matter simulation.

1 fbs_properties = [[(r, dn, mu, 'p'), (second layer), ...],
2 [(first layer of second bundle), ...],
3 [...]]

Alg. 7: Definition of the properties of fiber bundles.

6.1.2 Discretization of a nerve fiber model

In order to discretize nerve fiber models, nerve fiber segments are discretized individually.
Since fibers are a chain of consecutive segments, each voxel inside a fiber segment must
be labeled as a tissue with the physical properties at the voxel center position q (see
fig. 6.2). The discretized mesh represents an array, where an element at position [𝑖, 𝑗, 𝑘]
occupies the space from (𝑖, 𝑗, 𝑘) to (𝑖 + 1, 𝑗 + 1, 𝑘 + 1) in the unit of 1 vs. To identify
all voxels inside a volume, all voxels inside the fiber segments are checked if they are
inside the fiber segment. Therefore, a loop over all voxels is performed.

6.1 Discrete Volume Generator 61

1 for fiber_segment in fiber_bundle:
2 for i,j,k in fiber_segment.aabb().voxels():
3 min_dist, min_point = calculate_min_distance((i,j,k), cc)
4 if min_dist < cc.radius:
5 if min_dist < current_distance[i,j,k]:
6 optic_axis[i,j,k,:] = get_axis_orientation(
7 (i,j,k), min_dist ,
8 min_point)
9 tissue[i,j,k] = get_layer_id(min_dist)

10 current_distance[i,j,k] = min_dist

Alg. 8: Pseudocode for filling the discretized volume.

To determine if a voxel is inside the nerve fiber segment, a computation analogously to
the collision between two nerve fiber segments is calculated (see alg. 3). The distance
vector d is used to check whether the voxel is inside the fiber segment, and if so, in
which layer of the fiber segment it is located, and to calculate the orientation of the
birefringence axis.

Two values are stored in the case of a voxel occupied by a fiber segment. The first one
is an index within an array tissue which will be used later to retrieve the properties from
a list with the same index order. The second information is the orientation of the optic
axis within the current layer, stored in the array optic_axis. The orientation can be
parallel to the fiber segment in the case of the macroscopic model or radial in the case
of the microscopic model. A layer can also be marked as “background”, allowing the
user to specify an area without any birefringence.

Two consecutive fiber segments occupy the same space because they have a common
point. This is an issue because the processed second fiber segment overwrites the values
of the first. This is solved by using an additional array that stores the smallest distance
calculated when filling the voxels space. The values are only overwritten when a new
distance is calculated that is smaller than the one already stored. This also solves the
problem that in a radial optic axis model, the optic axis is star-shaped at the end points
of each fiber segment inside the fiber. The first and last point of a fiber, however, are
not affected by this.

The algorithm for the discretization loop is shown in alg. 8.

6.1.3 voxel_size

The parameter voxel_size is an essential property of the light matter simulation.
It determines how accurate the volume is represented (see fig. 6.3). Additionally, in

62 Chapter 6 3D-PLI Simulation

(a) (b) (c) (d)

Fig. 6.3.: Discretization error. Cross-section through a single fiber with a myelin layer in the
discretized tissue volume. The colored pattern shows the resulting voxels corresponding
to the fiber. The smaller the voxel_size, the smaller the discretization error.

the light matter simulation one light ray is cast from each voxel of the bottom plane
(see section 6.2.1). Therefore, it is also responsible for the sampling of the resulting
intensities.

6.1.4 Code optimizations

All arrays are implemented as contiguous c-arrays, accessible externally as NumPy-arrays
without copying the data. Since these arrays grow with 𝒪(1

vs
3), the ownership of the

data is movable in both the C++ libraries and Python3 code. The memory order of the
arrays is in the 𝑥-𝑦-𝑧 direction, so the largest memory shift is in 𝑥 and the smallest in
𝑧. Thus, when the light moves along the 𝑧-direction, the information can be read out
linearly from the memory, and the acpCPU cache prefetcher can be used effectively.

Two methods are used to parallelize the algorithm on the CPU. The first uses OpenMP to
parallelize the filling of the AABB volume of each object. The second uses MPI to allow
distribution across multiple CPU cores without sharing memory (detailed description in
section 6.3.2).

Parallelizing the filling process of the voxels of the discretized volume leads to a race
condition when multiple threads want to write or read to the same memory address, i. e.,
the same coordinate in the volume. A solution with a lock would be suboptimal and
since many of the voxels do not need to be overwritten, most of the locks would be
unnecessary. To share the work, thread 𝑛 processes only the memory for the first index
𝑖 (or volume dimension 𝑥) if:

𝑖 mod 𝑁Threads == threadid (6.1)

Instead of dividing the volume into 𝑛 subvolumes, each thread loops over every
𝑁num_threads slice of the volume (see fig. 6.4) to distribute the work if the volume

6.1 Discrete Volume Generator 63

thr
ea

d 0

thr
ea

d 0

thr
ea

d 0

thr
ea

d 1

thr
ea

d 1

thr
ea

d 2

thr
ea

d 2

Fig. 6.4.: Discretization volume parallelization with OpenMP. Each thread processes every 𝑛-th
𝑦𝑧-section. This ensures both thread safety and a more balanced workload.

is not filled homogeneously with fibers. This procedure leads to a thread-safe writable
operation. One disadvantage of this algorithm is that all threads have to check if the
AABB of all fiber segments is inside the current VOI.

6.2 Light Matter Simulation

The light matter simulation algorithm performs the Müller-Stokes calculus (see sec-
tion 3.2.8) on the previously calculated discrete volume (see section 6.1) for the light
rays along their paths. Since no scattering or refraction effects are considered in this
simulation, each light path follows a straight line. Initially, the light vector is multiplied
by the first polarizer of the optical system (see section 4.3). The path inside the tissue is
discretized into steps. The interaction between the light ray and the tissue is calculated
after each step according to S′ = ∏𝑖 (𝓡𝑖𝓜𝑖𝓡−1

𝑖) ⋅ S (see section 3.2.8).

6.2.1 Light ray path

The light matter simulation allows for a tilted light beam. For this purpose, the large-area
polarimeter (LAP) uses a tilting stage to which the tissue sections are attached (see
fig. 6.5). The LMP3D, on the other hand, has a tilted light beam. This is achieved
by a conical light path, from which an aperture is then used to sample the desired
light direction [Wie16]. Both methods can be mathematically represented by the same
procedure.

64 Chapter 6 3D-PLI Simulation

rot
ati

on

𝜑

(a) camera view

rotation

(b) perspective view

Fig. 6.5.: 3D tilting: around 𝑥𝑦-axis, top, middle, bottom, original, axis of rotation.

𝔖𝑡𝑜𝑝

𝔖𝑏𝑜𝑡𝑡𝑜𝑚

(a) normal

𝔖
𝑡𝑜𝑝

𝔖
𝑏𝑜𝑡𝑡𝑜𝑚

l0

l1

𝜗

Δ

(b) tilted

Fig. 6.6.: Light ray path for a normal (a) and a tilted (b) case. In the tilted case, the light
beam l1 is tilted within the tissue and thus experiences an optical shift Δ.

An additional effect changing the light path is the refraction at the tissue-air boundary,
which is described by Snell’s law for isotropic media (see eq. (3.10)). Since this only
adds a parallel shift, simulation is only necessary when the effects of the resampling
process and image registration is investigated.

The initial position of the light beam is calculated by traversing the light path backwards
(see fig. 6.6). This has the advantage that each index inside the charge-coupled device
(CCD) always receives exactly one light beam. From the CCD array, the light path can
be shifted back to the top plane of the tissue 𝔖𝑡𝑜𝑝. Subsequently, the light beam l1 is
traced back through the tissue to the bottom plane 𝔖𝑏𝑜𝑡𝑡𝑜𝑚. The point on the lower
tissue plane corresponds to the initial position of the light beam. This light path change

6.2 Light Matter Simulation 65

(a) translation (b) scaling (c) shears (d) rotation

Fig. 6.7.: Examples of affine transformations.

results in a shift 𝛿 along the same direction of the tilting. In the light matter simulation,
only light rays are considered, which will go at least partially through the volume. All
remaining CCD elements are left with a NaN value.

The tilting of the tissue leads to a distortion of the image (see fig. 6.5). This distortion
can be described by an affine transformation (see fig. 6.7):

𝑓(x) = 𝓐 ⋅ x+ t (6.2)

where x is the coordinate input, 𝓐 and t are the transformation values, and 𝑓(x) is the
transformed coordinate.

The light matter simulation with the light paths sampling as described above takes this
distorted view into account and removes it. The simulation can also sample the light
rays so that distortion occurs. Thus, the resulting images have to be registered onto
each other by an affine transformation which is also available in the algorithm.

6.2.2 Tissue voxel interpolation

If the step_size of the light ray is not equal to the voxel_size or if the light path
is tilted, the light ray position after a step no longer matches the center of the voxel.
In order to correctly recreate the physical properties, interpolation is required (see
fig. 6.8). Currently, three interpolation methods are implemented: nearest neighbor,
linear interpolation and spherical interpolation. The voxels considered for interpolation
are the adjacent eight neighboring voxels, i. e., array indices (⌊𝑥±0.5⌋, ⌊𝑦±0.5⌋, ⌊𝑦±0.5⌋).
The nearest neighbor and linear interpolation are still present from the development
phase. However, they should not be used because they are prone to errors, given that the
data represent orientations in the space. Thus, the use of spherical interpolation considers
the relationship existing in the data components, and it is highly recommended.

66 Chapter 6 3D-PLI Simulation

𝐶000

𝐶001

𝐶010

𝐶011

𝐶100

𝐶101

𝐶110

𝐶111

𝐶00

𝐶01

𝐶10

𝐶11

𝐶0

𝐶1

𝐶

(a) trilinear interpolation

𝑠

𝜑linear
spherical

(b) spherical interpolation

Fig. 6.8.: Interpolation techniques: Trilinear interpolation can be represented as an axial step
interpolation. The difference between linear and spherical interpolation is that
linear interpolation has a constant distance 𝑠 between each point, while spherical
interpolation has a constant angle 𝜑 between two steps.

1 light_beams = calculate_light_starting_positions()
2 for light in light_beams:
3 light = optical_elements_start * light
4 while light.pos in volume:
5 properties = get_properties(light.pos)
6 light.intensity *= exp(-step_size * properties.absorbtion)
7 light = matrix(properties) * light
8 light.pos += step_size
9

10 light = optical_elements_end * light
11 ccd_array[light.ccd_pos] = light.intensity

Alg. 9: Loop over the light vectors for the light-tissue interaction. Their intensity value is stored
inside the CCD array.

6.2.3 Simulation of light matter interaction

After the initial light positions are calculated, each light beam is traversed within the
tissue. To calculate the light-tissue interaction, the change of the Stokes vector is
calculated after each light beam step. The step size is a user defined value, with a
default value of the voxel_size vs. To simulate the light beam hitting the volume’s
boundary, the light beam is multiplied by the matrix of the remaining optical elements of
the microscope and the intensity is stored in the CCD-array. The pseudocode is shown
in alg. 9. To resample the array to the final size of the CCD sensor and apply the noise
model, there are Python3 functions outside the simulation software available.

6.2 Light Matter Simulation 67

6.2.4 Optical system and signal analysis

The image sensor, as described in section 4.3, is a CCD-sensor. The resampling and noise
modeling, are implemented according to section 4.6. These calculations are performed
on the Python3 side of the algorithm (fastpli.simulation.Simpli) and can be
executed with the multiprocessing library of Python3 to use multiple CPU cores.
Therefore, when using MPI (see section 6.3.2), the intensity image must be reduced to
a single process. Since the resulting image is only 2D, there is no need to further speed
up the process with MPI.

To analyze the signal, the same algorithms are implemented as in the 3D-PLI routine
pipeline (see sections 4.4 and 4.5). These include the modalities analysis transmittance,
direction and retardation and the tilt analysis performed by robust orientation fitting
via least squares (ROFL). The tilt analysis is a fork of the existing routine analysis
developed in python. To parallelize the execution, the native multiprocessing library
of Python3 can be used.

6.3 Speedup Strategies

6.3.1 Code design

The following key optimizations are used in the pipeline:

• The order of the tissues stored in memory is along the z-axis (as described in
section 6.1.4) so that the light ray traverses along the aligned memory.

• The for-loop for the light beams (see alg. 9) is parallelized with OpenMP. These
threads are completely separated and there are no race conditions.

• Vector and matrix calculations are optimized for their small sizes by the compiler
with the help of tools like Compiler Explorer1 and C++ Insight2.

6.3.2 MPI parallelization

The algorithms for discrete volume generation and light matter simulation can additionally
use a parallelization technique. The computation must be split among multiple physical
CPUs and nodes for large volumes larger than the local memory size. For this purpose,
Message Passing Interface (MPI) is used. A method is implemented to automatically

1https://godbolt.org/
2https://cppinsights.io/

68 Chapter 6 3D-PLI Simulation

https://godbolt.org/
https://cppinsights.io/

comm

Fig. 6.9.: This example uses six MPI ranks to split the entire volume into six subvolumes. To
calculate the value at a given point a eight-neighborhood is necessary. Therefore a
halo area (coloured voxels) with the same information shared by neighboring MPI
process is necessary.

partition the volume along the 𝑥-axis and the 𝑦-axis into blocks with the minimal surface
area along both axis (see fig. 6.9).

Each CPU can perform the discrete volume generation without the knowledge of each
other. The exception is the light matter simulation for tilted light beams. Here, when a
light ray leaves the local volume, it must be transmitted to the adjacent volume. MPI
provides several methods to send information to another rank. Since the subvolumes
are split along a Cartesian grid, the Cartesian implementations of MPI are used (e. g.
MPI_Cart_create). A problem is the calculation at the edge of the volume, since the
light beam needs the information of the surrounding eight voxels for the interpolation. If
this voxel information were to be transmitted to the neighboring rank, this would mean
a large amount of communication, which is much slower compared to the local CPU or
random access memory (RAM) instructions. To solve this communication problem, the
algorithm uses a halo. This is a commonly used concept where the boundaries (in this
case the volume) are increased by a certain size so that the same information about the
shared regions is available everywhere (see fig. 6.9). Such approach reduces the number
of necessary communications between different ranks (see fig. 6.9).

To further speed up the communication process, all outgoing light beams are first
stored locally in a communication buffer, and only after all local light beams have been
processed the buffer is passed to the neighbors. This ensures minimal communication
overhead. The main loop of the light beam algorithm is then restarted on all MPI ranks
for the communicated light beams. This is repeated until no more communication is
required.

Each MPI process can additionally use OpenMP to allow multiple cores to benefit from
shared memory.

6.3 Speedup Strategies 69

fastPLI
7

7.1 Introduction

The previous chapters described the algorithms for creating dense WM fiber models
(see chapter 5) and light matter simulation of 3D-PLI (see chapter 6). Both algorithms
operate independently, simplifying the use of the algorithms for other domains. For
example, the fiber models can be used in dMRI as well ([Gin+19; Gin19]). These
implemented algorithms were developed with a focus on computational efficiency and
usability. Therefore, an application programming interface (API) is available to provide
a friendly user interface. Furthermore, the implementation provides a high level of
abstraction within an easily installable framework.

In order to accomplish the usability goals, the Python3 programming language was
chosen as the user interface. Meanwhile, to boost the performance of the optimization
steps and heavy computation C++ was used as described in sections 5.4.4 and 6.3 to
ensure efficiency and parallelization.

7.2 fastPLI Toolbox

The here designed Python3 package is called fiber architecture simulation toolbox for
3D-PLI (fastPLI). Its source code is publicly available and reviewed in the Journal
of Open Source Software (JOSS) [@Mat21; Mat+21]. The software package includes
functionalities for analysis and visualization of nerve fiber models as well as for evaluation
of simulation analogous to current routine experimental measurements, e. g. tilt analysis
(see fig. 7.1).

71

fastpli

modeling

• sandbox
• build
• solver

simulation

• generate tissue
• simulate

analysis

• inclination
• fom generation
• orientation

objects

• fiber object
• fiber layer

IO

• fiber_bundles

tools

• helper functions

Fig. 7.1.: fastPLI package structure.

7.2.1 Dependencies

Python:

NumPy: Base N-dimensional array package [@Vir+19]
https://numpy.org/

scipy: Fundamental library for scientific computing [@Vir+19]
https://www.scipy.org/

numba: Acceleration of Python Functions [@Lam+15]
https://numba.pydata.org/

mpi4py: MPI for Python [@Dal+05; @Dal+08; @Dal+11]
https://bitbucket.org/mpi4py/mpi4py/src/master/

h5py: HDF5 for Python [@Col13; @The97]
https://www.h5py.org/

72 Chapter 7 fastPLI

https://numpy.org/
https://www.scipy.org/
https://numba.pydata.org/
https://bitbucket.org/mpi4py/mpi4py/src/master/
https://www.h5py.org/

C++:

MPI: Message Passing Interface [@For15]
https://www.mpi-forum.org/

OpenMP: Open Multi-Processing, API for multi-platform shared memory multiprocess-
ing programming [@Dag+98]
https://www.openmp.org/

OpenGL: Open Graphics Library [@Wik18]
www.opengl.org

Pybind11: Seamless operability between C++11 and Python [@Jak+17]
https://github.com/pybind/pybind11

7.2.2 Installation

The installation instructions are scripted in a Makefile. It first starts a CMake routine,
which searches for all the required libraries and programs. Then the C++ code is compiled
and the resulting shared object libraries are stored in the Python3 routines. Finally,
the provided code setup.py allows the user to install the compiled package in his
environment:

1 git clone --recursive https://github.com/3d-pli/fastpli.git
2 cd fastpli
3 make fastpli
4 pip3 install .

Alg. 10: Installation instructions.

7.2.3 Tests, verification and issue tracking

In order to ensure the continuous integration and continuous deployment of the fastPLI
project, the CI/CD actions were set up within the Github repository. The action runs
the two latest Ubuntu Long Term Support versions (currently 18.04 LTS and 20.04
LTS) and the most commonly used Python3 versions (currently 3.6 and 3.8) to provide
a wide range of standard supported versions.

7.2 fastPLI Toolbox 73

https://www.mpi-forum.org/
https://www.openmp.org/
www.opengl.org
https://github.com/pybind/pybind11

In addition, the Github actions run all test scripts, check tutorial files, check code format
and linting for consistency, and publish the latest documentation after a successfully
tested release.

Github allows tracking issues. This feature is originally used to document software bugs.
However, it is also used to discuss ideas and new features. As part of the open-source
release, it was also used to communicate with the reviewers, allowing the development
process tracking. 1

7.3 Modules

The following section describes the different modules that comprise the fig. 7.1 Python3
package. The modules are listed alphabetically.

7.3.1 fastpli.analysis

This module contains all functionalities to analyze the 3D-PLI simulations analogous
to the routine measurements, which includes the analysis of the signal to the three
image modalities transmission, direction and retardation. Furthermore, it provides the
tilt analysis ROFL [Sch+18b]. In addition, other helper functions exist that provide
methods to convert the direction and tilt results into a fiber orientation map (FOM).

For fiber model analysis, the module provides a few simple helper functions. For example,
it allows the user to generate a histogram of the orientations of the fiber segments, like
the ones shown in this thesis.

7.3.2 fastpli.io

This method provides the read-write routines that allow users to load and save fiber
models (i. e., fiber_bundles) to or from disk. There are two formats available. The
first is a text file with the extension .dat (see alg. 11). Here, each (𝑥, 𝑦, 𝑧, 𝑟) tuple of
a fiber point is stored as a single line in the file. Two fibers are separated by one blank
line, while two blank lines separate two fiber bundles. This data format is provided to
allow a straightforward format for manipulating, exchanging and reading the files into
other programs.

1https://github.com/openjournals/joss-reviews/issues/3042

74 Chapter 7 fastPLI

https://github.com/openjournals/joss-reviews/issues/3042

1 -6.55 -18.93 -64.98 3.75 # x y z r
2 -5.73 -14.89 -63.37 3.4
3 -4.42 -13.66 -58.95 3.05
4 # empty line indicates new fiber
5 -1.96 -10.07 -52.5 2.92
6 -1.03 -9.4 -48.62 2.93
7 # two empty lines indicates new fiber bundle
8 3.4 -4.02 -44.76 3.11
9 6.22 -1.04 -42.45 3.26

Alg. 11: Exemplary .dat file format.

The second format uses Hierarchical Data Format v5 (HDF5) [@The97], a binary data
format. HDF5 stores the data as datasets in groups, analogous to a file in an operating
system stored in folders. The HDF5-groups are used to store the fiber in fiber_-
bundle and fiber_bundles. The (𝑥, 𝑦, 𝑧, 𝑟) information of each fiber is stored as a
2d-array (see alg. 12).

7.3.3 fastpli.model.sandbox

The sandbox module provides all the functions described in section 5.2. The module
is divided into two submodules: fastpli.sandbox.build and fastpli.sandbox
.seeds.

fastpli.sandbox.seeds contain all the methods for populating a 2d-plane, as de-
scribed in section 5.2.1. The sandbox .build module provides the methods to populate
the fiber from the seeds, which includes all the described functions from section 5.2.2.

7.3.4 fastpli.model.solver

The module fastpli.model.solver contains the compiled solver algorithm, explained
in detail in sections 5.3 to 5.4.4. The solver algorithm is wrapped in the fastpli.model
.solver.Solver class. This wrapper class provides a higher level of abstraction (see
section 7.1). All variables are read and writable by attributes, e. g. Solver.obj_mean_-
length. Each attribute checks if the user input is valid and returns an appropriate
warning or error message if necessary. This class also includes a Solver.get_dict()
method that returns a Python3 dictionary containing all variables and their values for
reproducibility. It is also possible to store the state of the class with the current state of
the fiber_bundles as an HDF5 object. Finally, this class also provides the possibility
to use a simple visualization of the solver process (see section 5.5).

7.3 Modules 75

1 GROUP "/" { # fiber_bundles path
2 GROUP "0" { # id of fiber_bundle
3 DATASET "0" { # id of fiber
4 DATATYPE H5T_IEEE_F64LE
5 DATASPACE SIMPLE { (3, 4) / (3, 4) }
6 DATA {
7 (0,0): -6.55, -18.93, -64.98, 3.75,
8 (1,0): -5.73, -14.89, -63.37, 3.4,
9 (2,0): -4.42, -13.66, -58.95, 3.05,

10 }
11 }
12 DATASET "1" { # id of fiber
13 DATATYPE H5T_IEEE_F64LE
14 DATASPACE SIMPLE { (2, 4) / (2, 4) }
15 DATA {
16 (0,0): -1.96, -10.07, -52.5, 2.92,
17 (1,0): -1.03, -9.4, -48.62, 2.93,
18 }
19 }
20 }
21 GROUP "1" { # id of fiber_bundle
22 DATASET "0" { # id of fiber
23 DATATYPE H5T_IEEE_F64LE
24 DATASPACE SIMPLE { (2, 4) / (2, 4) }
25 DATA {
26 (0,0): 3.4, -4.02, -44.76, 3.11,
27 (1,0): 6.22, -1.04, -42.45, 3.26,
28 }
29 }
30 }
31 }

Alg. 12: Example structure of the fiber format in HDF5. This output is generated with the
official h5dump tool.

7.3.5 fastpli.objects

This module provides a wrapper class for fastpli.objects.fibers and fastpli
.objects.layers. Layers storing the information about the nerve fiber bundles
myelin sheet. 2 Essentially, layers are a list of layer, which are a tuple of the four
attributes absorption, birefringence, model, and scale (see section 6.1). This
wrapper class contains attributes that allow users to access these values by name.

The class fastpli.objects.Fiber stores the 4D points of a nerve fiber as numpy
.ndarray. Multiple nerve fibers can be grouped into a list represented by the class
fastpli.objects.FiberBundle. Similarly, a fiber bundle is represented by a list of
fastpli.objects.FiberBundle in the class fastpli.objects.Fiber.

2Myelin does not consist of individual layers, but of a single one that wraps the axon several times.
However, the layered structure allows the structure to be defined in a simple way, with fewer parameters.

76 Chapter 7 fastPLI

Each class provides member functions to translate, rotate, scale, and cut the
model. This allows users to manipulate and place the objects in space.

7.3.6 fastpli.simulation

The fastpli.simulation module provides a wrapper for the simulation called fastpli
.simulation.Simpli, based on the original algorithm [Doh+15; Luc16]. It contains
the two algorithms generator and simulation described in sections 6.1 and 6.2. These
two algorithms operate separately, but they coexist within the class since they share
several parameters. As in the fastpli.model.solver.Solver class, all necessary
attributes are available and checked for input errors. Since analysis is always performed
on the resulting simulations, they are also available in this class and are performed with
the same defined parameters as in the simulation. Methods for saving the variables as
dict or HDF5 files are available as well.

The simulation is performed with the same procedure used with the real measurements,
using four tilt directions and analyzing the simulated data. Pipeline methods exist
(see alg. 13), which provide a high level of abstraction to simplify the execution for the
users.

7.3.7 fastpli.tools

The last module contains a set of helper functions. They provide access to the current
version and to the git hash so that all calculations can be reproduced. For fiber modeling,
rotation matrices are provided to allow the use of linear algebra.

7.4 Computational Speedup Techniques

Among other specific techniques described in chapters 5 and 6, two essential techniques
are used to speed up the calculations.

The computationally intensive code is written in C++. There, the std::vector has
the advantage that the data in memory is linear. The data must be prepared and sent
from the RAM to the cache of the CPUs. This takes a relatively long time for a single
CPU instruction. The main advantage of the cache is that it is very fast, however its
capacities are usually a few MB and quite limited. It is built inside the CPU. The CPU
cache prefetcher is a sophisticated directive that requests the element at address 𝑖 in

7.4 Computational Speedup Techniques 77

1 import numpy as np
2 import h5py
3
4 import fastpli.simulation
5 import fastpli.io
6
7 # Setup Simpli for Tissue Generation
8 simpli = fastpli.simulation.Simpli()
9 simpli.omp_num_threads = 2

10
11 # define model
12 simpli.voxel_size = 2.0 # in micrometer
13 simpli.set_voi([-100, -100, -25], [2350, 550, 25]) # in micrometer
14 simpli.fiber_bundles = fastpli.io.fiber_bundles.load('model.dat')
15
16 # define layers (e.g. axon, myelin)
17 simpli.fiber_bundles_properties = [[(1.0, -0.001, 10, 'p')]]
18 # (_0, _1, _2, _3)
19 # _0: layer_scale times radius
20 # _1: strength of birefringence
21 # _2: absorption coefficient I = I*exp(-mu*x)
22 # _3: model: 'p'-parallel , 'r'-radial or 'b'-background
23
24 # define pli setup
25 simpli.filter_rotations = np.deg2rad([0, 30, 60, 90, 120, 150]) # in deg
26 simpli.light_intensity = 26000 # a.u.
27 simpli.interpolate = "Slerp"
28 simpli.wavelength = 525 # in nanometer
29 simpli.pixel_size = 10 # in micrometer
30 simpli.tilts = np.deg2rad(
31 np.array([(0, 0), (5.5, 0), (5.5, 90),
32 (5.5, 180), (5.5, 270)])) # in deg
33 simpli.optical_sigma = 0.75 # in pixel size
34 simpli.noise_model =
35 lambda x: np.random.negative_binomial(x / (3 - 1), 1 / 3)
36
37 with h5py.File('output.h5', 'w') as h5f:
38 with open(os.path.abspath(__file__), 'r') as script:
39 tissue, simulation , rofl, fom = simpli.run_pipeline(h5f=h5f,
40 script=script.read(),
41 save=['all'],
42 crop_tilt=True,
43 mp_pool=pool)

Alg. 13: Simulation pipeline simpli.run_pipeline.

memory and the elements next to it (𝑖 + 1 or 𝑖 − 1, depending on the algorithm). Since
many algorithms traverse arrays, the next element to be computed is typically the next
(or previous) element. Therefore, the total time to copy the data from the memory to
the cache is reduced. For linear operations on memory, the cache prefetcher reduces the
time so much that it behaves as if the CPU had an infinite cache.

Another technique is to use modern compilers such as Clang v113 or G++ v104. They
use built-in algorithms to optimize the code for the machine’s architecture and much
more sophisticated methods. For example, if the number of iterations is known at
compile time, a for loop can be unrolled to speed up the computations since it no longer
needs to check if the conditions are met at the end of each loop cycle. To review these

3https://clang.llvm.org/
4https://gcc.gnu.org/

78 Chapter 7 fastPLI

https://clang.llvm.org/
https://gcc.gnu.org/

Fig. 7.2.: Documentation wiki page of the Github repository https://github.com/3d-pli/
fastpli/wiki.

optimizations, the time critical code was tested with tools like Compiler Explorer5 and
C++ Insight6.

7.5 Documentation

All methods contain documentation strings (docstrings) which modern editors auto-
matically display during programming. These docstrings are also used for an automatic
release of the API documentation and wiki pages(see fig. 7.2). 7 The wiki is an essential
part of the review process for release in JOSS [Mat+21], and it is structured as a guide
that walks through the aspects of designing nerve fiber models, applying the collision
solver algorithm, visualizing nerve fibers, an introduction in 3D-PLI, and finally applying
the models in the simulation.

5https://godbolt.org/
6https://cppinsights.io/
7https://3d-pli.github.io/fastpli/

7.5 Documentation 79

https://github.com/3d-pli/fastpli/wiki
https://github.com/3d-pli/fastpli/wiki
https://godbolt.org/
https://cppinsights.io/
https://3d-pli.github.io/fastpli/

Both executable Python3 scripts and Jupyter notebooks are provided examples for a
friendly user familiarization with the tool. A nerve fiber crossing is presented as a general
example using all presented methods. The example is based on the optic chiasm’s
anatomy, which is the nerve fiber pathway from the eyes to the occipital lobe.

80 Chapter 7 fastPLI

Part III

Software Application and Evaluation

8. Dense Nerve Fiber Modeling 87

8.1. Introduction . 87

8.2. Designing Fiber Populations . 88

8.2.1. Orientation and proportion 88

8.2.2. Fiber placement . 90

8.3. Software Parameters Characterization 91

8.3.1. Results . 92

8.3.2. Discussion . 97

8.4. Nerve Fiber Model Library for 3D-PLI Simulations 99

8.4.1. Results . 99

8.4.2. Discussion . 102

8.5. Multicore CPU Acceleration . 103

8.5.1. Results . 104

8.5.2. Discussion . 104

9. 3D-PLI Simulation 105

9.1. Introduction . 105

9.2. Parameter Characterization . 105

9.2.1. Tissue . 105

9.2.2. Optical resolution . 106

9.2.3. Sensor gain and signal noise 107

9.2.4. voxel_size vs . 108

9.3. Simulation . 110

9.3.1. Setup . 110

9.3.2. Single fiber population . 112

9.3.3. Flat crossing fiber populations 115

9.3.4. Inclined crossing fibers population 120

9.3.5. Free crossing fiber populations 125

9.4. Discussion . 136

9.5. Speedup . 142

9.5.1. Results . 142

9.5.2. Discussion . 144

TABLE OF CONTENTS 85

Dense Nerve Fiber Modeling
8

8.1 Introduction

In the previous chapter chapter 5, the module fastpli.model was described for creating
non-colliding nerve fiber models. An important question is how the software parameters
affect the resulting models.

Three conditions are required for the software to be applicable. First, it must be possible
to create a dense volume. This, of course, depends on the original fiber configuration.
For example, the density is lower for configurations such as crossings. The second
requirement is the runtime. The lower the runtime, the more objects and larger volumes
the user can create in the same time. The last requirement is that the original fiber
orientations remain intact. Because of the motion phase in the collision solver algorithm,
the orientations will change. The question is how much they change and whether the
results still meet the user’s expectations and anatomical constraints.

To study the behavior of the software, a general data set with simplistic model parameters
is needed. These parameters should be able to define a fiber configuration in a volume
without having to describe each individual fiber. This description could then be used
for both the study of the solver parameters and the subsequent study of the 3D-PLI
simulation.

The first part of this chapter is the presentation of the parameterization used to
describe the fiber populations. This is followed by an investigation of the collision solver
parameters on the behavior of the resulting collision-free nerve fiber models. On this
basis, a set of software parameters is determined to create a library of nerve fiber models
for 3D-PLI simulations. In the last part, the orientation distribution of the generated
models is investigated.

87

8.2 Designing Fiber Populations

For the 3D-PLI simulation, a volume of size 65 µm × 65 µm × 60 µm is required (see
chapter 9). 1 In this work, up to two fiber populations are studied. A fiber population
is a fiber bundle with a specific orientation, density, and radius distribution. These
parameters of a fiber population have the advantage of being anatomically motivated
and describe a nerve fiber volume based on statistical properties. This is for example also
used in diffusion Magnetic Resonance Imaging (dMRI) simulations [Gin+18; Gin+19;
Gin19]. The number of fiber populations is limited to two to reduce the degrees of
freedom within the models.

8.2.1 Orientation and proportion

For the study of a single fiber population, only one model is needed, since the model
can be rotated to any 3D orientation. For two fiber populations, the crossing angle 𝜃
between the two fiber population orientations is relevant (see fig. 8.1a). By introducing
a rotation 𝑅ℱ1

along the first fiber population, the orientation of the second fiber
population can be changed (see fig. 8.1b). If the first fiber population is tilted by an
angle 𝛼ℱ0

, an arbitrary fiber configuration with two fiber populations can be described
(see fig. 8.1c).

A further parameter is the first population proportion:

Ψℱ0
= 𝑁0

𝑁0 + 𝑁1
(8.1)

This can range between 0 and 1. Since only dense white matter (WM) phantoms are
generated in this study, a lower overall density of 1 is not investigated.

To reduce the number of models required, the parameters are sampled. Ideally, the
surface of a sphere is equidistantly sampled. However, this is impossible. There are
fairly good approximations, but one would still have to create a model for each sampled
point. For simplicity, the intersection angle 𝜃 is sampled instead. By rotating the model
with 𝑅ℱ1

along the first fiber population axis for all sampled crossing angles 𝜃, one can
sample the entire sphere.

165 µm is divisible by 1.3 µm, the pixel size of the microscope under study.

88 Chapter 8 Dense Nerve Fiber Modeling

x

y

z

𝐹0

𝐹1𝜃

(a) Initial orientation for two fiber populations ℱ0 and ℱ1. The angle between the two populations is
𝜃. The remaining degrees of freedom are accounted for by rotating the entire volume.

x

y

z

𝑅 ℱ
1

𝐹0

𝐹1𝜃

(b) The first fiber population is stationary. The
second fiber population is described by the
opening angle 𝜃 and a rotation 𝑅ℱ1

around
the first fiber population.

x

y

z

𝑅 ℱ
1

𝐹0

𝐹1

𝜃

𝛼ℱ0

(c) The inclination of the first fiber population
is modified by 𝛼ℱ0

.

Fig. 8.1.: Parameterization of two mutually relatively oriented fiber populations for the creation
of a library.

Therefore, the following parameter samples are chosen:

𝜃 = {10°, 20°, ..., 90°}

Ψℱ0
= {10 %, 20 %, ..., 90 %}

(8.2)

In the case of 𝜃 = 0°, Ψℱ0
= 0 or Ψℱ0

= 1, no second unique orientation exists, so
the single fiber population model can be applied. This results in a total number of 82
models that are required.

8.2 Designing Fiber Populations 89

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

2

4

6

𝑥

𝑓(
𝑥,

𝜇,
𝜎)

𝑓(𝑥, 𝜇, 𝜎) = 1
𝜎𝑥

√
2𝜋 exp(− (ln(𝑥)−𝜇)2

2𝜎2)

𝜇 = 0.0, 𝜎 = 0.05
𝜇 = 0.0, 𝜎 = 0.1

Fig. 8.2.: Probability density function of a multiplicative log normal distribution. 𝜎 = 0.1 is
used for the initial variation of each fiber radius. 𝜎 = 0.05 for the variation along the
fiber for each fiber point.

8.2.2 Fiber placement

To design the individual fiber configurations for each fiber population, the methods
described in section 5.2 are used, i. e., the generation of fiber bundles with seed points.
Seed points on a 2D plane are generated with a uniform distribution:

𝑝𝑖 = (Uniform(−1
2
L, 1

2
L),Uniform(−1

2
L, 1

2
L)) (8.3)

Since the simulation volumes are cubic and the model is rotated, a spherical boundary
with diameter 𝑑sphere =

√
3 ⋅ L is picked, where L = 65 µm is the length of the largest

edge length of the cube. To ensure that objects exist outside the simulation volume that
can build up pressure on the interior, L is increased by two fiber diameters. This also
prevents edge effects in the simulation. The number of seed points is set to a value of

𝑁0,seeds = round(Ψℱ0

𝐴�

𝜋 ⋅ ̅𝑟𝑓
) (8.4)

𝑁1,seeds = round((1 − Ψℱ0
) 𝐴�

𝜋 ⋅ ̅𝑟𝑓
) (8.5)

with 𝐴� = 𝐿2 as the area of the seed point plane. Thus, also with respect to the fiber
radius distribution introduced next, there are enough fibers to fill the 2D plane.

These seed points are then used to place straight, parallel fibers within a cubic volume
with edge length 𝐿. To add a random distribution of fiber radii, the target mean fiber

90 Chapter 8 Dense Nerve Fiber Modeling

radius ̅𝑟𝑓 is multiplied by a random value of the LogNormal distribution (see fig. 8.2) to
ensure that the mean value is preserved:

𝑟𝑓 = ̅𝑟𝑓 ⋅ sample (LogNormal(𝜇 = 0, 𝜎 = 0.1)) (8.6)

To achieve a random distribution of positions and radii along the fibers, they must
initially be divided into fiber segments. The function Solver.apply_boundaries is
used for exactly such a case. It applies the fiber segment length seg𝐿 to the fiber
configuration, which in this case divides the fiber along its trajectory into fiber segments
of equal length (except for the last segment). The fiber points thus generated are
then randomly shifted in all three dimensions with a normal distribution. The standard
deviation of the normal distribution is set to a factor of the average fiber radii ̅𝑟𝑓. In
addition, the radius is changed with a random multiplicative factor from a LogNormal
distribution:

𝑝𝑖 = 𝑝𝑖 +Normal(𝜇 = 0, 𝜎 = 0.05 ⋅ ̅𝑟𝑓)

𝑟𝑖 = 𝑟𝑖 ⋅ LogNormal(𝜇 = 0, 𝜎 = 0.05)
(8.7)

8.3 Software Parameters Characterization

The shape control mechanisms used in the algorithm of the collision solver fastpli
.model.solver (see chapter 5) must be characterized. These are the mean segment
length seg𝐿 and the minimum allowed radius of curvature seg𝑅. It must be ensured
that a set of parameters is identified ensuring that the configurations entered by the
user remain the same i. e., the orientation distributions remain intact with respect to
the fact that the fiber segments must move. In addition, the achievable fiber density for
this parameter set should remain high. Finally, it must also be ensured that a parameter
set can be chosen that has an acceptable runtime. The runtime should be minimized if
possible, since it is usually a limited resource.

To investigate the behavior of seg𝐿 and seg𝑅, the two relative factor variables 𝜈𝑙 and
𝜈𝑟 are defined:

seg𝐿 = 𝜈𝑙 ⋅ ̅𝑟𝑓

seg𝑅 = 𝜈𝑟 ⋅ ̅𝑟𝑓
(8.8)

This allows the investigation of the model characterization independent of the fiber
radius. The parameter ranges selected to study the effects are listed in table 8.1. To
be able to check the results statistically, the generation of the models with different

8.3 Software Parameters Characterization 91

seed points is repeated 𝑛repeat = 24 times. 2 For characterization, the pairs Ψℱ0
/𝜃

with (||) = 1.0/0° and (×) = 0.5/90° are considered since they are edge cases. The
number of steps is limited to 𝑛max = 100 000 to constrain the computation.3 A cubic
volume of 60 µm × 60 µm × 60 µm is picked. Every 50 steps, the fiber model is cut into
a 60 µm + 4 ⋅ ̅𝑟𝑓 cube to delete unnecessary fibers and reduce the number of objects and
therefore the runtime. To measure the volume fraction, the discretized volume from
the simulation is generated by the simulation module. There, the individual label IDs
are counted and divided by the total number of voxels to calculate the volume fraction.
To examine the final orientation of the model, the volume is reduced to 60 µm. The
CPU architecture used to generate the models is an Intel(R) Xeon(R) CPU E5-4657L
v2 @ 2.4 GHz, L1d cache: 1.5 MB, L1i cache: 1.5 MB, L2 cache: 12 MB, L3 cache:
120 MB.

8.3.1 Results

Development over time The results of the time measurement for the parameter set
table 8.2 are shown in fig. 8.3 for the single fiber population (||) and in fig. 8.4 for the
crossing fiber population (×). They include the number of steps #𝑠𝑡𝑒𝑝𝑠, the number
of colliding fiber segments #𝑜𝑏𝑗𝑐𝑜𝑙, the overlap fraction of colliding fiber segments
#𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐, the number of objects #𝑜𝑏𝑗, and the current step time Δ𝑡. The overlap
fraction of colliding fiber segments is defined as the average of the minimum distance
between two colliding fiber segments divided by the sum of their radii. The results of
the additional fiber radii are available in appendix A.

The single fiber populations (||) show a strong linear correlation between the runtime
and the number of steps for all parameters. The number of steps increases significantly
with decreasing 𝜈𝑙. A change in the running time when changing the fiber bending radius
𝜈𝑟 is not visible in the logarithmic plot. The total number of steps increases slightly
with an increase in the fiber segment length factor 𝜈𝑙. The total runtime increases

name variable values

mean fiber radius ̅𝑟𝑓 (0.5, 1, 2, 5, 10) µm
mean segment length factor 𝜈𝑙 1, 2, 4, 8
min segment bending radius factor 𝜈𝑟 1, 2, 4, 8
fiber bundle fraction/crossing Ψℱ0

/𝜃 1.0/0°, 0.5/90°
Tab. 8.1.: Parameter sets for the characterization of the software parameters 𝜈𝑙 and 𝜈𝑟.

2The chosen central processing unit (CPU) architecture has 24 cores.
3In hindsight, this should have been limited by the runtime.

92 Chapter 8 Dense Nerve Fiber Modeling

Single fiber population (||)

101 102 103 104 105

102

103

104

105
1 min 1 h 24 h

𝑡/𝑠

#
𝑠𝑡

𝑒𝑝
𝑠

101 102 103 104 105
100

103

106 1 min 1 h 24 h

𝑡/𝑠

#
𝑐𝑜

𝑙𝑜
𝑏𝑗

101 102 103 104 10510−4

10−3

10−2

10−1 1 min 1 h 24 h

𝑡/𝑠𝑜𝑣
𝑒𝑟

𝑙𝑎
𝑝𝑓

𝑟𝑎
𝑐

101 102 103 104 105

105

106
1 min 1 h 24 h

𝑡/𝑠

#
𝑜𝑏

𝑗

102 103 104 105100

101

102

1 s

10 s

1 min

𝑠𝑡𝑒𝑝𝑠

Δ
𝑡/

s

𝜈𝑟 = 1, 𝜈𝑙 = 1 𝜈𝑟 = 1, 𝜈𝑙 = 2 𝜈𝑟 = 1, 𝜈𝑙 = 4 𝜈𝑟 = 1, 𝜈𝑙 = 8
𝜈𝑟 = 2 𝜈𝑟 = 2 𝜈𝑟 = 2 𝜈𝑟 = 2
𝜈𝑟 = 4 𝜈𝑟 = 4 𝜈𝑟 = 4 𝜈𝑟 = 4
𝜈𝑟 = 8 𝜈𝑟 = 8 𝜈𝑟 = 8 𝜈𝑟 = 8

Fig. 8.3.: Time evolution of the model building process of parallel fiber populations. Error bars
indicate 25 % and 75 % quantiles.

8.3 Software Parameters Characterization 93

Crossing fiber population (×)

101 102 103 104 105

102

103

104

105
1 min 1 h 24 h

𝑡/𝑠

#
𝑠𝑡

𝑒𝑝
𝑠

101 102 103 104 105

101

104

107
1 min 1 h 24 h

𝑡/𝑠

#
𝑐𝑜

𝑙𝑜
𝑏𝑗

101 102 103 104 10510−4

10−3

10−2

10−1 1 min 1 h 24 h

𝑡/𝑠𝑜𝑣
𝑒𝑟

𝑙𝑎
𝑝𝑓

𝑟𝑎
𝑐

101 102 103 104 105

105

106
1 min 1 h 24 h

𝑡/𝑠

#
𝑜𝑏

𝑗

102 103 104 105100

101

102

1 s

10 s

1 min

𝑠𝑡𝑒𝑝𝑠

Δ
𝑡/

s

𝜈𝑟 = 1, 𝜈𝑙 = 1 𝜈𝑟 = 1, 𝜈𝑙 = 2 𝜈𝑟 = 1, 𝜈𝑙 = 4 𝜈𝑟 = 1, 𝜈𝑙 = 8
𝜈𝑟 = 2 𝜈𝑟 = 2 𝜈𝑟 = 2 𝜈𝑟 = 2
𝜈𝑟 = 4 𝜈𝑟 = 4 𝜈𝑟 = 4 𝜈𝑟 = 4
𝜈𝑟 = 8 𝜈𝑟 = 8 𝜈𝑟 = 8 𝜈𝑟 = 8

Fig. 8.4.: Time evolution of the model building process of crossing fiber populations. Error
bars indicate 25 % and 75 % quantiles.

94 Chapter 8 Dense Nerve Fiber Modeling

significantly with a decrease in 𝜈𝑙. All models of all parameter sets were able to solve
the collisions in the maximum number of steps.

The number of colliding fiber segments in the second plot of fig. 8.3 shows a strongly
increasing decrease for all parameters with increasing runtime. The total number
increases with decreasing 𝜈𝑙. The 𝜈𝑟 also has no significant effect here.

The overlap fraction for all parameters is about 5 % at the beginning, and decreases
with time to about 1 %. The decrease is approximately linear after the initial phase. At
the end of the collision solver process, the variance increases significantly. The curve
behavior between the different 𝜈𝑙 is about the same, except of course for an offset in
the total runtime. A difference when changing the 𝜈𝑟 is again not visible.

The number of objects decreases slightly over time. A significant increase can be seen
by a decreasing value of 𝜈𝑙. The 𝜈𝑟 is negligible except in the case of 𝜈𝑙 = 1 where the
number of objects is increased.

The last diagram shows the average time Δ𝑡 needed for a single step. The relative
length factor 𝜈𝑙 has the biggest influence on the results. A change with 𝜈𝑟 is almost not
visible. The step time slowly decreases to about half the time required for the first step.
The variance increases as the step size increases and can reach about half an order of
magnitude in the case of 𝜈𝑙.

The total runtime, i. e., the last data point in the graph, increases with 𝜈𝑙. The other
parameters seem to have almost no effect. The runtime ranges from 1000 s to 10 000 s.

The crossing fiber population (×) in fig. 8.4 shows an equally linear behavior for all
parameter sets for the number of steps as in the case of the single fiber population.
The total runtime is significantly increased compared to the models with a single fiber
population. Further, the runtime increases with a decrease in 𝜈𝑙 and decreases with
a decrease in 𝜈𝑟. In the case of 𝜈𝑙 = 1 and 𝜈𝑙 = 2, the maximum number of steps is
reached. For 𝜈𝑙 = 1 this has happened after 24 h.

The number of colliding fiber segments shows the same decreasing behavior in the case
of the smallest 𝜈𝑟 as in the case of the single fiber population. The key difference is that
this behavior changes significantly with an increase in the minimum fiber bending radius
factor 𝜈𝑟. The curves appear to split at a critical number of steps and progressively
drop linearly towards higher 𝜈𝑟 and smaller 𝜈𝑙.

The overlap fraction shows a significant difference for the smaller fiber segment length
factor 𝜈𝑙 compared to the single fiber population (||) case. For high 𝜈𝑙 values, the
curve almost follows the same path as in the single fiber population case, ending in the
collision free state. However, for lower values and depending on the fiber segment radius

8.3 Software Parameters Characterization 95

0.5

0.6

0.7

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

𝜈𝑟 = 1.0, || 𝜈𝑟 = 2.0, || 𝜈𝑟 = 4.0, || 𝜈𝑟 = 8.0, ||
𝜈𝑟 = 1.0, × 𝜈𝑟 = 2.0, × 𝜈𝑟 = 4.0, × 𝜈𝑟 = 8.0, ×

Fig. 8.5.: Volume fractions 𝑉𝑓/𝑉0 for parallel (||) and crossing (×) fiber populations of different
relative fiber segment lengths 𝜈𝑙 and relative fiber bending radii 𝜈𝑟.

seg𝑅, the curve continues at about 1 % overlap. In the case of 𝜈𝑙 = 1 and 𝜈𝑟 = 8, it
starts to grow slightly again at the end of its lifetime.

The number of objects shows the same behavior as in the case of the single fiber
population. There is a slight decrease in the number and a significant increase with a
decreasing value of the fiber segment length factor 𝜈𝑙. The splitting of the curves for the
𝜈𝑟 is also visible, but not as prominent as in the case of the number of colliding objects.
In the case of 𝜈𝑙 = 1 and 𝜈𝑟 = 8, an increase in the number of objects is observed in
the last phase of the collision solver algorithm.

The time per step decreases for all parameters over the number of steps until it reaches
a constant value for each 𝜈𝑙. The 𝜈𝑟 does not seem to play a significant role. For 𝜈𝑙 = 8,
the variance increases again at the end of the runtime, as in the case of the single fiber
population, but not as much. In the case of 𝜈𝑙 = 1 and 𝜈𝑟 = 8, one can observe an
increase in the step time at the end of the runtime.

The total runtime is influenced by both the fiber segment length factor 𝜈𝑙 and the fiber
segment radius factor 𝜈𝑟. The splitting behavior visible in the graph of the number of
colliding objects shows the significant difference in runtime for the 𝜈𝑟. Increasing 𝜈𝑟

results in an increase in runtime for this parameter by up to an order of magnitude. The
differences between 𝜈𝑙 are comparable to the single fiber case.

The other fiber radii show very similar behavior. The strongest difference is a very
significant decrease in runtime with an increase in ̅𝑟𝑓 (see appendix A).

96 Chapter 8 Dense Nerve Fiber Modeling

Volume fraction Figure 8.5 shows the resulting volume fraction 𝑉𝑓/𝑉0 for the parameter
series.

The populations with a single fiber orientation (||) have volume fractions greater than
0.74. For constant 𝜈𝑙, there is no significant change with respect to the fiber bending
radius factor 𝜈𝑟. In the case of 𝜈𝑙 = 1, there is a small decrease in volume fraction with
increasing bend radius. There is a significant small decrease in the volume fraction when
the fiber segment length factor 𝜈𝑙 is increased.

In contrast, the volume fraction of the crossing fiber population (×) is significantly
reduced. For 𝜈𝑙 = 1 and 𝜈𝑙 = 2, the volume fraction decreases sharply between 𝜈𝑟 = 2
and 𝜈𝑟 = 4. The values become more similar for 𝜈𝑙 = 2. For 𝜈𝑙 = 8 the change with 𝜈𝑟

disappears, and the volume fraction reaches only a value around 0.57.

For a mean fiber radius ̅𝑟𝑓 = (1, 2) µm the behavior is very similar (see fig. A.6). The
variance increases and the median decreases significantly for ̅𝑟𝑓 ≥ 5 µm. The effect of
the parameter is not changed otherwise. For mean fiber radii ̅𝑟𝑓 ≥ 5 µm, the volume
fraction does not decrease significantly.

8.3.2 Discussion

For parallel fibers, the collision solving process is always faster than for crossing bundles.
This is visible in the plot of the overlap fraction figs. 8.3 and 8.4. The overlap is
significantly higher for the crossing fibers than for the single fibers. Not only does
this mean that the fiber segments that need to be moved out of the way are longer,
but also that in higher octree levels the segments cannot be separated anymore and
therefore exists in multiple leafs. As a result, the runtime for solving the volume increases
significantly.

The segment length factor 𝜈𝑙 is the most important parameter to reduce the runtime
for constant mean fiber radii ̅𝑟𝑓 because the number of objects is smaller. However, as
expected, larger 𝜈𝑙 leads to a lower volume fraction, especially for crossing fibers. For a
single fiber population (||), it makes sense that the volume fraction does not change,
since the direction of motion is radially symmetric along their main orientation axis for
all fiber segments to avoid overlap.

The fiber segment bending radius factor 𝜈𝑟 restricts the bending radius, it is to be
expected and visible in the results that the volume fraction is strongly influenced since
the volume can no longer be filled optimally. As before, changing the 𝜈𝑟 in the case of
a single fiber bundle should not lead to any difference. However, crossing fibers will be
strongly affected. This is especially evident in the number of colliding objects, where

8.3 Software Parameters Characterization 97

the 𝜈𝑟 splits the data into individual branches over time. Smaller values of 𝜈𝑟 allow
more curved geometries here. However, this can lead to unnatural results in terms of
anatomical structure. As a result, a large part of the volume would be filled with fibers or
rather fiber segments, but the actual number of fibers would be smaller. A non-intuitive
effect for smaller 𝜈𝑙 and higher 𝜈𝑟 is visible. The number of colliding objects increases
again, as does the total number of objects. Therefore, larger 𝜈𝑟 should be avoided,
as this effect also occurs when 𝜈𝑙 = 2 and 𝜈𝑟 ≥ 4. Since such a large radius factor
represents an unnatural stiffness for a nerve fiber, this is not a major concern for this
type of models.

To narrow down the selection of a parameter set, the crossover fiber population (×) is
the most important data set. The most essential parameter is the length factor 𝜈𝑙. From
the results of the volume fraction, it can be concluded that 𝜈𝑙 should be as small as
possible. However, since the difference between 𝜈𝑙 = 1 and 𝜈𝑙 = 2 is small, and a large
jump is visible for 𝜈𝑙 = 4, 𝜈𝑙 = 2 can be used to significantly reduce the runtime.

The choice of the fiber bending radius factor 𝜈𝑟 is an anatomical decision. To counteract
excessive deformation, a value of at least 𝜈𝑟 = 2 should be chosen. A larger value of 𝜈𝑟

would significantly increase the runtime and add unnatural stiffness. 𝜈𝑙 should be as
small as possible to achieve the highest accuracy. However, the runtime would increase
too much for very small values. Therefore, a value of 𝜈𝑙 = 2 was selected, since higher
values already have a significant impact on the volume fraction.

In summary, the following parameters are selected:

Tab. 8.2.: Selection of parameters for the creation of the 3D-PLI simulation model.

name variable value

mean fiber radius ̅𝑟𝑓 0.5 µm
mean segment length factor 𝜈𝑙 2
min segment bending radius factor 𝜈𝑟 2

For fiber radii ̅𝑟𝑓 > 0.5 µm, the most important effect is the shortening of the runtime
at constant volume. In addition, boundary effects become apparent due to the limited
volume. For example, the mean volume fraction for each configuration decreases
significantly and the variance increases. This is the effect of being able to place only a
few fibers into a 60 µm thick volume. If they are then randomly arranged and deformed,
as in this case, the volume fraction must decrease. If the volume were infinite, there
would be no difference between the results, since all parameters are independent of the
radii. Therefore, an increase in the fiber radii should be considered if the volume to be

98 Chapter 8 Dense Nerve Fiber Modeling

calculated is larger or the runtime is finite. It should then be verified that the simulation
does not cause significant changes in the results.

Another way to shorten the runtime is to not solve the model completely. Looking at
the overlap fraction, a value of < 1 % might be feasible. It should be noted that this
is only the fraction of the fiber segment that still overlaps. The number of colliding
fiber segments decreases steadily for the chosen parameters. This potentially saves an
order of magnitude in runtime. Here, the influence on the simulation must also be
investigated in advance.

8.4 Nerve Fiber Model Library for 3D-PLI Simulations

With the model parameters selected above (see section 8.3), the simulation models
are generated. As described in section 8.2.1, only fibers with 𝜃 = (10 to 90)° and
Ψℱ0

= (0.1 to 0.9) are generated with the addition of 𝜃 = 0°, Ψℱ0
= 1.0. The volume

for the simulation is scaled up to a sphere with a diameter of 135 µm so that a simulated
volume can be generated from the sphere in any orientation.

8.4.1 Results

Figure 8.6 shows the orientation distribution of the fiber segments as a polar histogram.
The full dataset is available in fig. A.7. The orientation distributions show that the
individual fiber segments statistically follow the orientation of the fiber population. The
density reflects the population fraction Ψℱ0

of the fiber populations.

Figure 8.7 shows the distributions of direction 𝜑, inclination 𝛼ℱ0
, and opening angle Ω,

which is the relative angle to the mean fiber population orientation. Since the inclination
depends on the direction, the opening angle is also analyzed. The full dataset is available
at fig. A.8. The individual measurements of the opening angle distributions are available
in table A.1.

The direction and inclination angles are around 0° for the first fiber population ℱ0 for
all parameter combinations. The variance decreases with increasing population fraction
Ψℱ0

of the second fiber population. The crossing angle 𝜃 does not seem to have any
influence. The opening angle Ω has its mean value between about 10° and 20° for
all parameter configurations. The variance decreases with increasing fiber population
fraction Ψℱ0

. The crossing angle 𝜃 does not seem to have any influence.

8.4 Nerve Fiber Model Library for 3D-PLI Simulations 99

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 30.0%

θ
=

3
0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 60.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 90.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

6
0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

90
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0 log(pdf + 1)

Fig. 8.6.: Density distribution of fiber segment orientation in the simulation models. The
value of the segments is weighted according to the area on a spherical surface and
normalized so that the integral over one hemisphere is 1. The dashed white line
indicates the orientation of the two fiber populations.

The mean direction 𝜑 follows the initial crossing angle 𝜃. The fiber population fraction
Ψℱ0

does not seem to have a significant influence. The inclination 𝛼ℱ0
is stable around

0° for all parameters. The parameters do not seem to have a significant effect on their
distribution. The opening angle Ω is between 15° and 20° for the second fiber population.
For smaller crossing angles, the mean values almost do not change. For large crossing
angles, the mean value of the opening angle increases with increasing Ψℱ0

.

Figure 8.8 shows the visualization of the fiber models. The visualization shows the inner
10 µm × 10 µm × 10 µm cube, so more details are visible. Depending on the population

100 Chapter 8 Dense Nerve Fiber Modeling

−90°

0°

90°

180°

30° 60° 90° 𝜃

𝜑 0

ℱ0

−90°

0°

90°

180°

30° 60° 90° 𝜃

𝜑 1

ℱ1

−90°

−45°

0°

45°

90°

30° 60° 90° 𝜃

𝛼 0

−90°

−45°

0°

45°

90°

30° 60° 90° 𝜃

𝛼 1

0°

30°

60°

90°

30° 60° 90° 𝜃

Ω
0

0°

30°

60°

90°

30° 60° 90° 𝜃

Ω
1

Ψℱ0
= 30 % Ψℱ0

= 60 % Ψℱ0
= 90 %

Fig. 8.7.: Direction 𝜑, inclination 𝛼 and opening angle Ω distribution of the model library.

Ψℱ0
, more or less layered distinct structures are visibly parallel to the intersection plane.

The full dataset is available at fig. A.9.

8.4 Nerve Fiber Model Library for 3D-PLI Simulations 101

Ω
=

3
0
°

Ψ = 30% Ψ = 60% Ψ = 90%

Ω
=

6
0
°

Ω
=

90
°

Fig. 8.8.: 3D visualization of the simulation model library 3D-PLI. The inner 10 µm × 10 µm ×
10 µm of the volumes are shown.

8.4.2 Discussion

These models have the advantage of producing a naturally inspired angular distribution,
which should result in a more realistic distribution. The orientation distribution of
the simulation model library is stable at all crossing angles. However, the distribution
variance is lower for the fiber population with higher population fraction and vice versa.
This is plausible because the main fiber bundle exerts more radial pressure on the
orientation, resulting in a more stable configuration for cylindrical objects. This probably
has little effect on the simulation results. The stiff models lead to a volume fraction that
depends on the crossing angle. Whether this is also true for anatomical tissue remains
to be explored. However, since real nerve fibers are not stiff and also not perfectly
cylindrical, it can be expected to be higher. Also, the orientation distribution may
differ slightly from real tissue due to the stiffness of the model. The layered structure

102 Chapter 8 Dense Nerve Fiber Modeling

2

4

6

8

ideal

1 2 3 4 5 6 7 8 16 24 32 40 48

speedup

#cores

∆steps = 0, || ∆steps = 100, || ∆steps = 1000, || ∆steps = 10000, ||
∆steps = 0,× ∆steps = 100,× ∆steps = 1000,× ∆steps = 10000,×

Fig. 8.9.: model.Sovler speedup. Time measurements are performed after Δsteps for the next
25 steps for parallel (||) and crossing (×) fiber configurations.

can be understood as a randomly introduced pattern. Real fabric will also have a
different pattern, e. g. interwoven fiber bundles instead of interwoven single fibers. In
linear 3D-PLI simulations, this has no effect because the retardation matrices for the
intensity signal are commutative. Or more generally, the order of the tissue matrices is
commutative for the intensity signal. In other fields, such as dMRI, additional models
are probably required in this regard.

8.5 Multicore CPU Acceleration

As described in section 5.4.4, Open Multi-Processing (OpenMP) is used to accelerate
for loops in the algorithm. This means that it is currently not possible to use multiple
compute nodes.

To investigate the speedup, the runtime for the parameters from table 8.2 is measured
for parallel and crossing fibers. The volume used is 60 µm × 60 µm × 60 µm. Speedup is
calculated for an average of 100 consecutive steps. To measure whether the speedup
changes with time, the measurements are started after a certain number of steps
Δsteps = (0, 100, 1000, 10 000) steps. The calculation is repeated for each case 𝑛 = 24
times. For the measurements, the cores were bound to physical CPU cores.

8.5 Multicore CPU Acceleration 103

8.5.1 Results

Figure 8.9 shows the speedup for different starting positions Δsteps for the parallel (||)
and crossing (×) fiber bundles. Up to 4 cores, the speedup increases linearly to a speedup
of 3. From 4 cores, the speedup increases more slowly until a significant increase to a
speedup of about 5 is observed for 8 cores.

Overall, no significant change is visible for parallel or crossing fibers. Also, for different
starting points Δsteps, no change in acceleration is visible. The speedup increases up to
8.

8.5.2 Discussion

Up to 4 cores the speedup is expected with 3. The slower increase and jump for 8 cores
can be explained by the structure of the octree. Since for 8 cores the parallel alignment
on a octree (can) be optimal, the speedup increases. More cores are not feasible.

Nevertheless, the data suggests that using a multicore system shortens the runtime
considerably. However, for small volumes or low-fiber objects, one should use only one
or two cores and prefer to run multiple models in parallel. The results also show that an
optimized algorithm is needed, especially when the volume or the number of objects
increases. Here, the graphics processing unit (GPU) seems to be the hardware of choice
with a more advanced algorithm [Kar12] (see chapter 10).

104 Chapter 8 Dense Nerve Fiber Modeling

3D-PLI Simulation
9

9.1 Introduction

This chapter covers with the simulation of 3D-PLI using the generated nerve fiber
library. The first part focuses on the determination of all necessary physical parameters
of the tissue and the microscope, as well as on the characterization of the simulation
parameters. Then, the simulation of the previously generated nerve fiber models is
created and analyzed. The orientation of the simulations is calculated using the routine
algorithms implemented in fiber architecture simulation toolbox for 3D-PLI (fastPLI).
The focus of the evaluation is on the accuracy of the tilt analysis for different orientations
and crossing configurations.

9.2 Parameter Characterization

9.2.1 Tissue

The absorption coefficient 𝜇 and the birefringence coefficient Δ𝑛 have to be estimated
from a measured section for the simulation. To measure the values, it is important to
analyze a homogeneous region filled with flat, dense fibers. In a coronal section, the
corpus callosum is suitable for this purpose. It is the main fiber connection between the
two cerebral hemispheres (see fig. 2.1b).

Figure 9.1 shows transmittance and retardation maps of the coronal section of a Vervet
monkey (Brain id: PE-2012-00102-V, section: 550). Two region of interests (ROIs) are
manually selected at high retardants regions of the corpus callosum (i. e. mostly in-plane
parallel fibers). ROI (A) contains 1 064 629 px and ROI (B) sums up to 1 125 858 px.
The entire section and the analysis for a human and a rodent section are described in
the appendix (see figs. B.1 and B.2).

105

B
A

0 1,450 2,900 4,350 5,800

a.
u. 1,000 2,000 3,000 4,000 5,000

transmittance / a.u.

re
l.

co
un

t

A B

(a) transmittance map (b) transmittance histogram

B
A

0 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1

retardation
re

l.
co

un
t

A B

(c) retardation map (d) retardation histogram

Fig. 9.1.: Transmittance and retardation map of coronal section of a Vervet monkey (Brain
id: PE-2012-00102-V, section: 550). The absorption coefficient and birefringence is
estimated from the measurements in the corpus callosum. Two homogeneous regions
are labeled for this purpose. (A) includes 1 064 629 px, (B) 1 125 858 px.

Evaluation To calculate the absorption coefficient from the brain section, the volume
fraction of the tissue, i. e., density of the cells, must be considered. For the models
̅𝑟𝑓 = 0.5 µm, the volume fraction is about 75 %. The average transmittance in the

foreground is about 1000 a.u. and in the background it is about 4500 a.u..1 This leads
to an absorption coefficient of 𝜇 = 30 mm−1. To approximate the birefringence, the
g-ratio, i. e., the myelin density, must also be taken into consideration. The g-ratio of
75 % results in a birefringence of about 0.008 for the radial model when using a median
value of the retardation of 0.8.

9.2.2 Optical resolution

The optical resolution depends, among other things, on aberration and diffraction (see
section 4.6). They are modeled as described in section 6.2.4. Therefore, the model
parameters must be determined for each microscope to be simulated.

1The relative transmittance can be changed by adjusting the exposure time of the microscope.

106 Chapter 9 3D-PLI Simulation

To measure the optical resolution of the microscope, measurements and analyses are
repeated [Men14]. For this purpose, the 1951 United States Air Force (USAF) resolution
test chart2 is used. It consists of several patterns that have three slots with specific
spacing and width (see fig. 9.2a). They are arranged in fields of three vertical and
horizontal lines. The fields are arranged in a spiral that shrinks from group to group by
a factor 0.5. To determine the line width, the fields are numerically ordered according
to a main group 𝑖 and a subgroup 𝑗. To determine the resolution of the microscope, it
is necessary to determine if the neighboring slits can still be differentiated according to
the Rayleigh criterion (see fig. 4.4). For this purpose, the intensity profiles perpendicular
to the three vertical and horizontal slits were analyzed.

Evaluation Figure 9.2b shows a section of the USAF resolution test chart taken with
the large metripol (LMP) microscope. The highlighted areas show the analyzed groups
7-6 to 8-2. The area of group 7-6 has a line width of 2.19 µm, group 8-1 of
1.95 µm and group 8-2 of 1.74 µm. The intensity line profiles for the vertical and
horizontal cases are shown in figs. 9.2c and 9.2d. The Rayleigh criterion can be used
to determine the resolution in the second group, which is thus in the range of 1.95 µm.
This reproduces the measurements in [Men14]. Therefore, the convolution parameter is
set to 𝜎optic = 0.75 px in the simulation (see section 4.6).

9.2.3 Sensor gain and signal noise

As described in section 6.2.4, the optical noise is modeled with a Gaussian model. The
gain factor of a charge-coupled device (CCD) camera describes the linearity between
a measured electrical signal and the output signal. This can also be used to calculate
the image noise, since it correlates with

√
𝐼 ⋅ 𝑔 [Wie16]. To measure the noise, different

intensity values are measured. For this purpose, the sample stage is covered with a fully
absorbing cover so that half of the image is dark (see fig. 9.3a). In addition, the focal
length is changed so that the light is distributed over the entire image sensor under
the cover (see fig. 9.3b). By measuring 𝑁 = 500 images, the variance for the different
intensity values is determined.

2U.S. Air Force MIL-STD-150A standard of 1951.
3https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart

9.2 Parameter Characterization 107

https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart

USAF-1951

-2 -1

-2
1

2

3

 4
5
6

2

3
4
5
6

1

1

2

3
4
5
6

2

3
4
5
6

1
1 0

0

8-2

8-1 7-6

(a) USAF chart from group -2 to 1.3 (b) Microscopic image with highlighted groups
7-6 to 8-2.

−4 −2 2 40

pixel pos

intensity/a.u.

8-2 8-1 7-6
−4 −2 2 40

pixel pos

intensity/a.u.

8-2 8-1 7-6

(c) Centered line plots horizontal slits. (d) Centered line plots vertical slits.

Fig. 9.2.: Group 8-1 of the USAF chart with a line width of 1.95 µm corresponds to the Raileigh
criterium. Therefore an optical convolution of 𝜎optic = 0.75 px will be applied in the
simulation.

Evaluation The results are shown in fig. 9.3c and show a gain factor of 𝑔LMP =
0.1175(7). This gain factor is used to model the integer noise with

𝑓(𝑥) = ⌊normal(𝜇 = 𝑥, 𝜎 = √𝑔𝑥) + 0.5⌋ (9.1)

for intensities 𝐼 > 0 and 𝐼 ≫
√

𝑔𝐼.

9.2.4 voxel_size vs

The parameter voxel_size vs is the most important parameter for simulation accuracy,
as it determines by how many voxels the models are discretized and how many light

108 Chapter 9 3D-PLI Simulation

absorber
0

𝐼max

(a) Scheme of unfocused microscopic image. (b) Microscopic image.

500 1,000 1,500

100

200

intensity / a.u.

va
ria

nc
e

/
a.

u.

1

1e6

1e12

100 1,000

1 %

2 %

3 %

4 %
Human

Vervet

Rodent

intensity / a.u.

re
l𝜎

(c) Histogram of intensity vs variance with linear
regression. The gain factor results in 𝑔LMP =
0.1175(7).

(d) Expected noise range for human, Vervet mon-
key and rodent. The noise correlates linearly
with the light intensity.

Fig. 9.3.: LMP camera noise measurements.

rays are modeled. However, the voxel size cannot be arbitrarily small because the
number of calculations and memory consumption increase by 𝑂(𝑛3

voxel). Therefore, it is
recommended to set the voxel size as large as possible without introducing significant
errors due to discretization.

To investigate the influence of the voxel size, a simulation with several voxel sizes in
the range of vs = (0.01 to 1.3) µm is performed. The smallest voxel size 0.01 µm is
used as a reference. Since this voxel size is relatively small, the simulated volume is
3 ⋅ 1.3 µm × 3 ⋅ 1.3 µm × 60 µm without tilts to limit the memory consumption. During
the simulation, the previously determined tissue and noise parameters are used. The
models to be simulated are parallel models without inclination ((||), 𝛼ℱ0

= 0°), inclined
parallel fiber models ((||), 𝛼ℱ0

= 90°), flat crossing fiber models ((×), 𝛼ℱ0
= 0°), and

crossing inclined fiber models ((×), 𝛼ℱ0
= 90°) with a fraction of Ψℱ0

= 0.5, since

9.2 Parameter Characterization 109

10−2

10−1

(||), αF0
= 0° (||), αF0

= 90° (×), αF0
= 0° (×), αF0

= 90°

mean(|I − Iref|/Iref)

vs = 0.025 µm vs = 0.1 µm vs = 0.65 µm
vs = 0.05 µm vs = 0.26 µm vs = 1.3 µm

Fig. 9.4.: Comparison of the simulation results with different voxel sizes vs and fiber configura-
tions.

these configurations represent the extreme for two fiber populations. For statistics, the
simulations are repeated 25 times with the volumes center at

𝑥 = 𝑖 % 5
5

⋅ 60 µm − 30 µm 𝑦 = ⌊𝑖/5⌋
5

⋅ 60 µm − 30 µm (9.2)

with 𝑖 from 0 to 24.

Evaluation The results in fig. 9.4 show that the relative difference to the smallest
voxel size increases statically significantly from a value of 0.1 µm. The variance of the
relative difference increases with increasing voxel size from this value. For a voxel size
smaller than 0.1 µm, the difference from the reference simulation does not increase.
Therefore, the voxel size vs = 0.1 µm is a good compromise between runtime and
accuracy. However, such assumption is only valid for a pixel size of 1.3 µm and fiber
radii of 0.5 µm. Additional parameters are available in fig. B.3.

9.3 Simulation

9.3.1 Setup

As described in chapter 7, fastPLI contains a pipeline implementation of the simulation
with automatic analysis. This implementation is used to compute the simulation of the
signal for the flat and tilted measurements and to apply the optical noise and tilt analysis
to the resulting signal using the robust orientation fitting via least squares (ROFL)

110 Chapter 9 3D-PLI Simulation

algorithm. The input of the simulation is the previously created model library (see
section 8.4). The models were rotated according to the previously specified discretization
(see section 8.2.1).

Three types of nerve fiber models are simulated. First, a single fiber population. Since
there is only a single fiber population, only the inclination of the model is changed. In
the second step, simulations are performed with two fiber population orientations: a)
flat crossing and b) inclined crossing. The first fiber population is fixed along the x-axis
in these models, while the crossing angle of the second fiber population is increased.
The last simulation contains two fiber populations where the inclination of the first
fiber population is increased and the second fiber population is rotated around it as the
crossing angle increases (see fig. 8.1).

Table 9.1 lists the parameters of the simulation in the notation of fastPLI. With a
pixel size of 1.3 µm and a volume of 65 µm × 65 µm × 60 µm, 2500 px are available per
simulation for statistical analysis.

To analyze the simulation results the 3D-PLI analysis pipeline, containing the Fourier
analysis (see eqs. 4.1) and the tilt analysis (see section 4.5), are performed. From
the Fourier analysis, the modalities transmittance and retardation are shown. The

Tab. 9.1.: Simulation parameters.

variable value

simpli.voxel_size 0.1 µm
simpli.pixel_size 1.3 µm
simpli.voi [[−35 µm, −35 µm, −30 µm], [35 µm, 35 µm, 30 µm]]
simpli.filter_rotations (0, 20, 40, 60, 80, 100, 120, 140, 160)°
simpli.interpolate "Slerp"
simpli.wavelength 525 nm
simpli.optical_sigma 0.75 px
tilt angle 3.9°
simpli.light_intensity 8000 a.u.
gain 0.1175
simpli.noise_model lambda x: np.floor(np.random.normal(x,

np.sqrt(gain * x))+0.5).astype(
np.uint16)

fiber absorption Vervet: 30 mm−1

fiber birefringence model ’r’
fiber birefringence 0.008
fiber radii scale factor axon: 0.75, myelin: 1
model inclination step Δ𝛼ℱ0

one f. pop.: 5°, two f. pop.: 30°
model rotation step Δ𝑅ℱ1

15°

9.3 Simulation 111

tilt analysis estimates the orientation of each pixel, i. e., direction and inclination, the
effective birefringent thickness 𝑡rel and the R-value of the fitting model:

𝑅 = mean |𝐼𝑖 − 𝐹𝑖| (9.3)

where 𝐼 is the signal intensity and 𝐹 the best solution found by the model. Finally,
the opening angle Ω and angular correlation coefficient acc-value between the nerve
fiber models orientation and simulation resulting orientation are calculated from the
orientations. The acc-value is the angular correlation coefficient, which measures
the similarity between two orientation distribution functions (ODFs). The ODFs are
calculated by an analytical function from the individual orientations [Ali+20]. The
acc-value is then be calculated by:

𝑎𝑐𝑐 =
∑𝑖 sh0,𝑖 ⋅ sh1,𝑖

√∑𝑖 sh
2
0,𝑖 ⋅ √∑𝑖 sh

2
1,𝑖

(9.4)

where sh𝑖 is the 𝑖−th spherical coefficient of the orientations ODF [Sch+18a].

To visualize the distribution of the data boxplots are used. The distribution of the
angular parameters requires caution, since the values are periodic. To overcome this
problem, the values are centered around the circular mean value in the range of
[circmean(𝜉) − 90°, circmean(𝜉) + 90°), where 𝜉 is the angular parameter. The circular
mean value is calculated via:

circmean(𝑥) = atan2(∑ sin(𝑥𝑖)
∑ cos(𝑥𝑖)

) (9.5)

This contributes to the interpretability of the angular results with variances ≪ 90°.
Additionally, for the angular parameters the distribution of the underlying fiber models
are plotted for the individual fiber populations ℱ0 and ℱ1. The area corresponds to
the 25 % to 75 % quantile and will be referred to as 𝜎75 %

25 % variance.

9.3.2 Single fiber population

Figure 9.5 shows the orientation distribution of a single population of fibers with
increasing inclination angle 𝛼ℱ0

. The distributions of the orientations of the model
segments are shown on the left, those of the tilt analysis on the right. The results of
the tilt analysis show the same mean orientation as the models with a slightly lower
variance in comparison.

112 Chapter 9 3D-PLI Simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 90°model simulation

single fiber pop.

0 log(pdf + 1)

Fig. 9.5.: Single fiber population orientation histograms of the initial fiber model and the
simulation results.

Figure 9.6 shows the results of the simulation on the single fiber population with different
inclinations.

The transmittance is constant with increasing inclination angle up to a value of 𝛼ℱ0
< 75°.

For 𝛼ℱ0
≥ 75° the transmittance increases. The variance of the transmittance increases

slightly with increasing inclination angle 𝛼ℱ0
.

The retardation plot shows the Fourier analysis results as well as a theoretical curve that
follows (cos(𝛼ℱ0

) + 1)/2 ⋅mean (ret(0°)). The curve is normalized by mean (ret(0°))
for comparison purposes. The retardation of the simulation signal follows the theoretical
line. However, at the intermediate inclination angles, the measured retardation is slightly
higher than the theoretical line. The variance remains constant for all fiber inclination
angles 𝛼ℱ0

with the exception for very steep fibers, where the distribution is shifted
towards values > 0.

The next graph shows the measured direction from the tilt analysis. For inclination
angles 𝛼ℱ0

< 75° the variance is about a few degrees and remains constant. For larger
values, the variance increases. 4 In the background the statistic 𝜎75 %

25 % variance of the

4It should be noted that the boxplot does not take into account that the values are periodic.
Therefore, especially for 𝛼ℱ0

= 90°, the values from the (−90 to 90)° are uniformly distributed.

9.3 Simulation 113

0° 30° 60° 90°
950

1,000

1,050

αF0

transmittance / a.u.

0° 30° 60° 90°
0

0.2

0.4

0.6

0.8

αF0

retardation

0° 30° 60° 90°
−100°

−50°

0°

50°

100°

αF0

direction ϕ

0° 30° 60° 90°

0°

50°

100°

150°

αF0

inclination α

0° 30° 60° 90°
0

2

4

6

αF0

trel

0° 30° 60° 90°

1

2

3
·10−2

αF0

R

0° 30° 60° 90°
0°

50°

αF0

Ω

0° 30° 60° 90°
0.96

0.98

1

αF0

acc

single fiber pop.

pop orientation theoretical model median F0 σ75%
25%

Fig. 9.6.: Single fiber population. Results of the simulation analysis with comparison of the
fiber models orientations.

114 Chapter 9 3D-PLI Simulation

fiber models is plotted. The measured directions are in agreement with the models
variance.

The inclination shows the results of the tilt analysis. The median follows the theoretical
curve. For inclinations 80° and 85°, the variance increases. For 𝛼ℱ0

= 90° the variance is
similar to the flat results. The models 𝜎75 %

25 % variance is constant and with an exception
of 𝛼ℱ0

= 75° higher than the tilt analysis results.

The mean value of the relative birefringence thickness 𝑡rel is stable for values up to
𝛼ℱ0

< 60°. The variance increases slightly with increasing inclination angle 𝛼ℱ0
. From

there on the 𝑡rel value decreasing up to an inclination angle of 𝛼ℱ0
= 85° and increases

significant for 𝛼ℱ0
= 90°. The variance for (85, 90)° is significantly increased and

contains values as outliers ≫ 1.

The R-value remains constant for inclination angles 𝛼ℱ0
< 80°. In the case of

𝛼ℱ0
= (80 to 90)° the values are slightly increased. Its variance remains stable for

all inclinations.

The opening angle Ω is constant up to an inclination angle of 𝛼ℱ0
≤ 70°. For higher

inclination angles, both the median and the variance increase significantly. In the case
of 𝛼ℱ0

= 90° the median as well as the variance is very low. In comparison, the fiber
models opening angle Ω shows a significant higher median and higher 𝜎75 %

25 % variance,
except for 𝛼ℱ0

= 85°.

The acc-value remains close to 1 and starts to decrease significantly at an inclination
angle of about 60°. It reaches a minimum at an inclination angle of 80°, from it increases
again. At an inclination angle of 90° the maximum acc-value is reached.

Additional data is available in fig. B.4.

9.3.3 Flat crossing fiber populations

This simulation focuses on two flat crossing fiber populations, i. e., in the 𝑥-𝑦-plane.
Figures 9.7 and 9.8 shows the distribution of orientations for the model fiber segments
and the resulting tilt analysis orientations for Ψℱ0

= 30 % and Ψℱ0
= 50 %. The

additional fiber population fractions are available in figs. B.6 to B.10.

The results show that the measured orientation follows the dominant fiber population.
Depending on the fiber population fraction Ψℱ0

, the resulting orientation is closer
or further away from one of the fiber populations. In the case of Ψℱ0

= 50 %, the
measured orientation lies between the two fiber populations, except for a crossing angle

9.3 Simulation 115

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 30%

0 log(pdf + 1)

Fig. 9.7.: Flat crossing fiber population: Ψℱ0
= 30 %.

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 50%

0 log(pdf + 1)

Fig. 9.8.: Flat crossing fiber population: Ψℱ0
= 50 %.

116 Chapter 9 3D-PLI Simulation

of 𝜃 = 90°, where the measured orientations are randomly distributed around steep
orientations.

Figures 9.9 and 9.10 show the results of the 3D-PLI modalities, the tilt analysis, opening
angle Ω and acc-value in detail.

The transmittance increases with increasing crossing angle 𝜃. However, the rate of
increase becomes flatter with increasing crossing angle. In the case of Ψℱ0

= 30 %,
the transmittance increases about 9 % whereas the increase for Ψℱ0

= 50 % is about
10 %.

The retardation is negatively linearly correlated with increasing crossing angle. The
retardation starts at 0.8 and drops in the case of For Ψℱ0

= 30 % to about 0.3. In
the case of Ψℱ0

= 50 % it drops close to 0. The variance of the retardation is slightly
increased for fiber population fractions close to 10 % and 90 % around 𝜃 = 45°.

The direction analysis for all simulated fiber population fractions Ψℱ0
follows the

theoretical circmean function. In the case for Ψℱ0
< 50 % the median is slightly higher

than the theoretical prediction and in the case for Ψℱ0
> 50 % slightly lower. Depending

on the fiber population fraction, the variance increases with the crossing angle. In the
case of Ψℱ0

= 50 % and a crossing angle of 𝑅ℱ1
= 90°, the directions are uniformly

distributed (−90 to 90)°. The distribution of the individual nerve fiber populations show
the separation of the orientation with increasing crossing angle 𝜃. The models 𝜎75 %

25 %
variance for both populations remains constant. The dominant fiber population has a
slightly lower variance than its counterpart.

The inclination median is about 0° for all simulated parameters. The variance increases
with increasing crossing angle 𝜃 and slightly for fiber population fractions close to
Ψℱ0

= 50 %. The models 𝜎75 %
25 % variance of both fiber models increases with increasing

crossing angle and is slightly larger for the dominant fiber population. Compared to the
simulation results the 𝜎75 %

25 % variance is significantly higher.

The relative birefringence thickness 𝑡rel decreases with increasing crossing angle 𝜃. The
shape of the curve correlates negatively with an increasing crossing angle. The 𝑡rel values
start at about 0.6 and decrease to 𝑡rel = 0.2 for Ψℱ0

= 30 % and to nearly 𝑡rel = 0
for Ψℱ0

= 50 % depending on the fiber population fraction. For both fiber population
fractions, the variance increases slightly. For Ψℱ0

= 50 % and 𝜃 = 90°, the variance of
𝑡rel increases significantly and outliers occur reaching 𝑡rel values > 1.

The R-value is nearly constant for all crossing angles 𝜃 and fiber population fractions
Ψℱ0

. The variance shows no significant change.

9.3 Simulation 117

0° 30° 60° 90°

1,000

1,050

1,100

θ

transmittance / a.u.

0° 30° 60° 90°
0.2

0.4

0.6

0.8

θ

retardation

0° 30° 60° 90°

0°

50°

100°

θ

direction ϕ

0° 30° 60° 90°

−20°

0°

20°

θ

inclination α

0° 30° 60° 90°

0.2

0.4

0.6

θ

trel

0° 30° 60° 90°
0.5

1

1.5

2

·10−2

θ

R

0° 30° 60° 90°
0°

10°

20°

30°

θ

Ω

0° 30° 60° 90°

0.7

0.8

0.9

1

θ

acc

flat crossing fiber pop., ΨF0
= 30%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. 9.9.: Flat crossing fiber population: Ψℱ0
= 30 %. Results of the simulation analysis with

comparison of the fiber models orientations.

118 Chapter 9 3D-PLI Simulation

0° 30° 60° 90°

1,000

1,050

1,100

1,150

θ

transmittance / a.u.

0° 30° 60° 90°
0

0.2

0.4

0.6

0.8

θ

retardation

0° 30° 60° 90°
−50°

0°

50°

100°

150°

θ

direction ϕ

0° 30° 60° 90°
−100°

−50°

0°

50°

100°

θ

inclination α

0° 30° 60° 90°
0

1

2

θ

trel

0° 30° 60° 90°
0.5

1

1.5

2

·10−2

θ

R

0° 30° 60° 90°
0°

50°

θ

Ω

0° 30° 60° 90°

0

0.5

1

θ

acc

flat crossing fiber pop., ΨF0
= 50%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. 9.10.: Flat crossing fiber population: Ψℱ0
= 50 %. Results of the simulation analysis with

comparison of the fiber models orientations.

9.3 Simulation 119

The opening angle Ω is similar for all fiber population fractions up to a crossing angle of
𝜃 = 50°. For higher crossing angles and fiber population fractions closer to Ψℱ0

= 50 %,
the median and variance of the opening angle increase significantly. The fiber models
median Ω is significantly higher than the results from the tilting analysis. The dominant
fiber population has a lower median and 𝜎75 %

25 % variance than its counterpart.

The acc-value starts close to a value of 1 and decreases up to a crossing angle of about
𝜃 ≈ 60° depending on the fiber population fraction Ψℱ0

. After the minimum is reached
it starts to increase significantly and with the exception for a fiber population fraction
of Ψℱ0

= 50 % reaching a value closer to 1 again.

Additional data is available in figs. B.5 to B.10.

9.3.4 Inclined crossing fibers population

In this model configuration, the first fiber population ℱ0 is placed along the x-axis and
the second fiber population is inclined along the x-z axis. The second’s fiber population
inclination angle 𝛼ℱ1

will be identical with the crossing angle 𝜃 between both fiber
populations.

The orientation histograms of the inclined models and their simulation results are shown
in figs. 9.11 and 9.12 and the remaining results are available in fig. B.11. The orientation
of the tilt analysis of the simulation follows the inclination of the models, with the
exception for an inclination angle 𝛼ℱ1

= 90°. The orientation is shifted towards the
more dominant fiber population. The fiber models orientations show a higher variance
as the tilt analysis results.

Figures 9.13 and 9.14 show the results of 3D-PLI modalities, the tilt analysis, the opening
angle and the acc-value in detail for a fiber population of (30, 50) %.The remaining fiber
population fraction are listed in figs. B.12 to B.16.

The transmittance increases with increasing inclination angle 𝛼ℱ1
. Fiber population

fraction close to 50 % tend to have a higher transmittance value. The increase of the
transmittance slows down for higher inclination angles 𝛼ℱ1

.

The retardation is negatively linearly correlated with increasing inclination angle 𝛼ℱ1
.

The slope of the negative correlation is higher with increasing fiber population fraction
Ψℱ0

. The variance increases as the inclination angle increases and increasing fiber
population fraction.

The direction value is centered around 0°. The variance of the direction increases with
increasing inclination angle 𝛼ℱ1

. The fiber population fraction has no significant effect

120 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 30%

0 log(pdf + 1)

Fig. 9.11.: Inclined crossing fiber population: Ψℱ0
= 30 %.

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 50%

0 log(pdf + 1)

Fig. 9.12.: Inclined crossing fiber population: Ψℱ0
= 50 %.

9.3 Simulation 121

0° 30° 60° 90°

1,000

1,050

1,100

1,150

θ

transmittance / a.u.

0° 30° 60° 90°
0

0.2

0.4

0.6

0.8

θ

retardation

0° 30° 60° 90°
−20°

−10°

0°

10°

θ

direction ϕ

0° 30° 60° 90°
−50°

0°

50°

θ

inclination α

0° 30° 60° 90°
0

0.2

0.4

0.6

θ

trel

0° 30° 60° 90°

2

4

·10−2

θ

R

0° 30° 60° 90°
0°

20°

40°

θ

Ω

0° 30° 60° 90°
0

0.5

1

θ

acc

inclined crossing fiber pop., ΨF0
= 30%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. 9.13.: Population of inclined crossing fibers: Ψℱ0
= 30 %. Results of the simulation

analysis with comparison of the fiber models orientations.

122 Chapter 9 3D-PLI Simulation

0° 30° 60° 90°

1,000

1,050

1,100

1,150

θ

transmittance / a.u.

0° 30° 60° 90°

0.2

0.4

0.6

0.8

θ

retardation

0° 30° 60° 90°

−10°

0°

10°

θ

direction ϕ

0° 30° 60° 90°

−20°

0°

20°

40°

θ

inclination α

0° 30° 60° 90°

0.2

0.4

0.6

θ

trel

0° 30° 60° 90°

2

4

6
·10−2

θ

R

0° 30° 60° 90°
0°

10°

20°

30°

θ

Ω

0° 30° 60° 90°
0.2

0.4

0.6

0.8

1

θ

acc

inclined crossing fiber pop., ΨF0
= 50%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. 9.14.: Population of inclined crossing fibers: Ψℱ0
= 50 %. Results of the simulation

analysis with comparison of the fiber models orientations.

9.3 Simulation 123

except for a value of Ψℱ0
= 10 % and an inclination angle of 𝛼ℱ1

= 90 %. The models
𝜎75 %

25 % variance of the first (flat) fiber population ℱ0 is always smaller than the 𝜎75 %
25 %

variance of the second fiber population ℱ1. The 𝜎75 %
25 % variance for ℱ0 increases up to

an inclination angle of about 𝛼ℱ1
= 50° and remains constant for higher inclination

angles, whereas the 𝜎75 %
25 % variance of the second fiber bundle increases further.

The inclination results have the shape of a convex curve, starting and ending at a
value of 𝛼 = 0°. Depending on the fiber population fraction Ψℱ0

the maximum of the
curve is shifted towards an inclination angle of 90° for a low Ψℱ0

and towards 45° for
a high Ψℱ0

. The 𝜎75 %
25 % of the individual nerve fiber populations remain constant for

inclination angles ≥ 10°. For lower fiber population fractions Ψℱ0
and higher inclination

angles 𝛼ℱ1
the variance of the simulation results is higher than the 𝜎75 %

25 % of the models.
Otherwise, the simulation’s inclination variance is significantly lower.

The relative thickness 𝑡rel decreases linearly with increasing inclination angle 𝛼ℱ1
. The

𝑡rel value start at about 0.6 and drops depending on the fiber population fraction
Ψℱ0

to 0.45 for Ψℱ0
= 90 % to almost 0 for Ψℱ0

= 10 %. The variance of the 𝑡rel
value is increased at about 𝛼ℱ1

= 45° for lower fiber population fractions and towards
𝛼ℱ1

= 90° for high fiber population fractions.

The R-value shows no significant effect for low fiber population fraction. Higher fiber
population fractions have an increased R-value. With increasing inclination angle 𝛼ℱ1

the R-value and its variance increases slightly for lower fiber population fractions and
more strongly for higher fiber population fractions.

The measured mean value of the opening angle Ω and its variance increases slightly with
increasing inclination angle. For lower fiber population fractions and a crossing angle
𝛼ℱ1

≥ 80° the increase is significantly more. The fiber model opening angles are with
the median as well as the 𝜎75 %

25 % variance significantly higher than the simulation results
for both fiber population fractions. The median and 𝜎75 %

25 % variance of the opening angle
of the dominant fiber population is higher than its counterpart.

The acc-value shows a decrease with increasing inclination angle to a minimum value
and from there the acc-value raises again. The position of the minimum strongly
depends on the fiber population fraction. For lower Ψℱ0

the minimum is close to
higher inclination angles and for higher Ψℱ0

the minimum moves to an inclination angle
of about 𝛼ℱ1

≈ 45°. The value of the acc-value is closer to zero for median fiber
population fractions and closer to one for Ψℱ0

at 10 % and 90 %.

Additional data is available in figs. B.11 to B.16.

124 Chapter 9 3D-PLI Simulation

x

y

z

𝐹0𝐹1

(a) The spheres surface is sampled around the
first fiber population axis ℱ0 of inclination
𝛼ℱ0

with a crossing angle 𝜃 and a rotation
𝑅ℱ1

.

ℱ0
0

45

90

135

180

225

270

315

3060

(b) A polar diagram is used to illustrate the scalar
results of a fixed orientation of the first fiber
population ℱ0 and a variable orientation of
the fiber population ℱ1. The orientation
ℱ0 is marked with a thick black circle. The
second orientation is indicated by dashed cir-
cles. For visualization, the scalar values are
interpolated according to a spherical k-nearest
neighbor interpolator algorithm.

Fig. 9.15.: Visualization of results for a fixed first fiber population ℱ0.

9.3.5 Free crossing fiber populations

In this section, two nerve fiber populations ℱ0 and ℱ1 are simulated with sampled
orientations on a sphere (see fig. 9.15a and table 9.1). A polar plot visualization is
used to visualize the results from the 3D-PLI analysis pipeline (see fig. 9.15b). The
spherical plots in figs. 9.16 to 9.21 and 9.23 are designed so that the thick black circle
shows the orientation of the first fiber population ℱ0 and the thin dashed circles show
the orientation of the second fiber population ℱ1. At the position of the second fiber
population, the resulting average value is visualized. A spherical k-nearest neighbor
interpolator is used to visualize values between the sampled orientations for nonangular
data [Tre19].

Transmittance The average transmission value is visualized in fig. 9.16. The first
fiber population fraction Ψℱ0

= 10 % is almost identical for all inclination angles 𝛼ℱ0
.

The transmittance is lowest for models with a crossing angle of 𝜃 = 0° and for flat
configurations.

For a fiber population fraction of Ψℱ0
= 30 %, the transmittance increases. The same

behavior holds for Ψℱ0
= (50, 70) %. Ψℱ0

= 50 % achieves the highest transmittance
for fiber models with crossings.

9.3 Simulation 125

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°

Ψ
F

0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

1,000 1,010 1,020 1,030 1,040 1,050 1,060 1,070 1,080 1,090 1,100 1,110
a.u.

Fig. 9.16.: Mean transmittance value.

126 Chapter 9 3D-PLI Simulation

The average transmittance for the last fiber population fraction Ψℱ0
= 90 % is re-

duced similar to Ψℱ0
= 10 %. Fiber configurations with no crossing have the lowest

transmittance for all inclinations 𝛼ℱ0
.

Retardation Retardation results are shown in fig. 9.17. For a fiber population fraction
of Ψℱ0

= 10 %, the lowest retardation values are present for secondary fiber populations
with an inclination of 90°. The retardation for configurations with a high crossing angle
𝜃 are slightly reduced. Flat fiber configurations retain a relative high retardation value.

The same behavior is also visible for fiber population fraction Ψℱ0
= (30, 50, 70) %, but

the retardation values are significantly reduced, especially for high first fiber population
inclinations 𝛼ℱ0

. The reduction in retardation at high crossing angles 𝜃 is also more
pronounced, especially for Ψℱ0

= 50 %. For fiber population fractions Ψℱ0
≥ 50 % and

first fiber population inclinations 𝛼ℱ0
≥ 60°, the retardation is overall very low.

For Ψℱ0
= 90 %, no reduction of retardation is visible for any secondary fiber orientation.

The retardation decreases significantly with increasing inclination 𝛼ℱ0
until it is close to

0 for 𝛼ℱ0
= 90°.

Direction 𝜑 and inclination 𝛼 The results of the circular mean of direction are shown in
fig. 9.18 and the circular mean of the inclination in fig. 9.19. An interpolation method
is not used for the angular values because the required interpolation on a hemispherical
manifold can not be easily accomplished. The k-nearest neighbor interpolator used
above would lead to incorrect results.

Both angles show a value pattern following the dominant fiber population. For steep
fibers with a 𝛼ℱ0

= 90°, the orientation results follow the second fiber population
orientation, regardless of the fiber population fraction Ψℱ0

. For fiber population
fractions close to 50 %, the resulting orientations behave according to an averaging
of the two individual orientations with respect to the fiber population fraction. From
the direction it can be seen that for models with Ψℱ0

= 90° and 𝛼ℱ0
≤ 60° as well

as Ψℱ0
= 70° and 𝛼ℱ0

≤ 30° the second fiber population has no or only a very small
influence on the measured direction. The same is true for inclinations for a 𝛼ℱ0

= 0°
and Ψℱ0

≥ 50 %.

Effective birefringence thickness 𝑡rel The results of 𝑡rel are shown in fig. 9.20. The
𝑡rel value for the first fiber population fraction Ψℱ0

= 10 % is nearly constant for all
fiber configurations. The exceptions are 𝛼ℱ0

= (60, 90)° with secondary fiber population
inclinations of 𝛼1 = 90°.

9.3 Simulation 127

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°

Ψ
F

0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 9.17.: Mean retardation values.

128 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 0°

Ψ
F

0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

αF0
= 30°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 60°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0
= 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0 20 40 60 80 100 120 140 160 180

Fig. 9.18.: Circmean direction 𝜑 from tilt analysis.

9.3 Simulation 129

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°

Ψ
F

0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

−80 −60 −40 −20 0 20 40 60 80

Fig. 9.19.: Circmean inclination 𝛼 from tilt analysis. Because the direction is defined in the
range of [0°, 180°) and the inclination [−90°, 90°) sign of the inclination value flips
for the lower quadrants in the polar plots.

130 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°
Ψ

F
0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1≥ 1

Fig. 9.20.: Mean 𝑡rel from tilt analysis.

9.3 Simulation 131

Areas of reduced 𝑡rel become visible for Ψℱ0
= 30 %. For 𝛼ℱ0

= 0° this is located at
a secondary fiber inclination of 𝛼1 = 90°. For 𝛼ℱ0

= (30, 60)° the reduction of 𝑡rel is
slightly towards the negative x-axis next to the z-axis. For 𝛼ℱ0

= 90° the 𝑡rel value
remains constant with the exception for both fiber populations orientated along the
z-axis, where 𝑡rel ≥ 1.

For a fiber population fraction of Ψℱ0
= 50 % a band of reduction in the 𝑡rel value is

visible for a crossing angle of 𝜃 = 90°. This “band” shaped area of reduced 𝑡rel values is
moved towards the negative x-axis for 𝛼ℱ0

= (30, 60)°. Additionally for 𝛼ℱ0
= 60° two

significantly increased 𝑡rel values ≥ 1 are visible at 𝜑 = (90, 270)° and 𝛼 = 60°. For
𝛼ℱ0

= 90° the 𝑡rel value remains constant, but more decreased than before, with the
exception for both fiber populations orientated along the z-axis, where the 𝑡rel value is
≥ 1.

Ψℱ0
= 70 % shows the same behavior as for the Ψℱ0

= 50 % case. However, the
reduction is not as strong as in the previous case. The exception is for very steep primary
fibers, where the 𝑡rel values are significantly reduced. Again, the 𝑡rel value along the
z-axis, and its four closest neighbors are ≥ 1.

The last line shows the results for the fiber population fraction Ψℱ0
= 90 %. All models

and configurations remain at a stable 𝑡rel value. The exception is the fiber configurations
with 𝛼ℱ0

= 90°, where the 𝑡rel values along the z-axis with inclinations 𝛼1 ≥ 45° are
≥ 1.

R-value The R-value of the tilt analysis fitting model is shown in fig. 9.21. It describes
the mean absolute difference between the data and the fitted data from the tilt analysis
(see eq. (9.3)).

For a fiber population fraction of Ψℱ0
= 10 % and a primary inclination angle 𝛼ℱ0

≤ 30°
the orientation of the second fiber population does not change the R-value of the tilt
analysis. For 𝛼ℱ0

= 60° the R-value starts increasing for secondary fiber orientations
towards the xy-plane, i. e., secondary flat fiber orientations. The R-value increases even
more significantly in the case of 𝛼ℱ0

= 90° in this area.

For fiber population fractions Ψℱ0
= 30 % and 𝛼ℱ0

= 0°, the R-value remains low for
flat crossing fiber configurations. Along the z-axis the R-value is slightly increased. For
𝛼ℱ0

= 30° a slightly increased bend shape becomes visible close to the y-axis slightly
towards the negative x-axis, i. e., 𝜃 ≈ 90°. Inclination angles of (60, 90)° show the same
behavior as for the Ψℱ0

= 10 % case, however the R-value does not increase as much.

132 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°
Ψ

F
0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

1.2 1.4 1.6 1.8 2 2.2 2.4
·10−2

Fig. 9.21.: Mean R-value from tilt analysis.

9.3 Simulation 133

Fiber population fractions Ψℱ0
= 50 % and inclinations of 𝛼ℱ0

= 0°, have an increased
R-value for inclined secondary fiber configurations along the y-axis. For 𝛼ℱ0

= 0°,
the increased area along the y-axis is curved in the direction of 180°. 𝛼ℱ0

= 60°
leaves a low R-value along the x-axis and an area around the first fiber population
orientation. The other secondary orientations are slightly increased. The steep first
fiber population inclinations of 𝛼ℱ0

= 90° again has an increased R-value to the flat
secondary orientations. The R-value relative to the lower first fiber population fractions
is further reduced.

Ψℱ0
= 70 % and 𝛼ℱ0

= 0° have only an increased R-value for the secondary fiber
configuration along the z-axis. The points along the x-axis are slightly more increased
than along the y-axis. For 𝛼ℱ0

= 30°, the curved shape from the previous result almost
disappears. Only the secondary fiber configurations along the z-axis remain increased.
𝛼ℱ0

= 60° remains a low R-value along the x-axis. Only the crossings for flat directions
of (110, 250)° are increased. The final inclination angle of 𝛼ℱ0

= 90° is again similar to
the previous fiber population fraction, but the R-value is again lower for the increased
areas.

The final fiber population fraction Ψℱ0
= 90 % has an increased R-value on the z-axis

for inclination angles of 𝛼ℱ0
= (0, 30)°. 𝛼ℱ0

= (60, 90)° remains a low R-value for all
configurations.

Opening angle Ω The opening angle Ω is shown in fig. 9.22.

Overall the opening angle Ω shows relatively low values for most fiber population
fractions Ψℱ0

and inclination angles 𝛼ℱ0
. For lower fiber population fractions than

Ψℱ0
< 50 % the opening angles are reduced when the secondary fiber population is

orientated along the z-axis.

A fiber population fraction of Ψℱ0
= 50 % with an inclination of 𝛼ℱ0

= 0° has
significantly increased opening angles for flat crossings. For a primary inclination of
𝛼ℱ0

= 30° an increased opening angle is visible for a crossing angle of 𝜃 = 90°. 𝛼ℱ0
= 60°

shows an area of increased opening angles close to the z-axis towards the negative x-axis.
𝛼ℱ0

= 90° shows no increased values. For a fiber population fraction of Ψℱ0
= 70 %

the inclination angle of 𝛼ℱ0
= 60° shows an increase in the opening angle along flat

crossings along the y-axis. 𝛼ℱ0
= 90° shows an overall slightly increased value of the

opening angle Ω.

For the last shown fiber population fraction Ψℱ0
= 90°, the opening angle values are

very small with the exception for the inclination angle of 𝛼ℱ0
= 90° where for secondary

fiber orientations towards the x-y-plane the opening angle significantly increases.

134 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°
Ψ

F
0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

5 10 15 20 25 30 35 40 45

Fig. 9.22.: Mean opening angle Ω from tilt analysis.

9.3 Simulation 135

ACC value Figure 9.23 shows the angular correlation coefficient (ACC), i. e., how well
the coefficients of the ODF basis function are matched [Sch+18a].

The fiber population fraction Ψℱ0
= 10 % shows no decrease in the acc-value for the

first fiber model inclination 𝛼ℱ0
. For Ψℱ0

= 30 %, a reduction of the acc-value for the
lower inclined models of the first fiber population is visible. The reduction is found in
the region of the steep secondary fiber populations. For 𝛼ℱ0

= (30, 60)°, the reduction
shifts in a direction along 180°. The effective area of the reduction decreases with
increasing 𝛼ℱ0

until no area effect is visible for an inclination of 𝛼ℱ0
= 90°. However,

the acc-value for this last plot is still reduced compared to Ψℱ0
= 10 %. For 𝛼ℱ0

< 90°,
a slight increase in the acc-value is visible for flat fiber crossings with a crossing angle
of 𝜃 = 90°.

For the equally proportional fiber population Ψℱ0
= 50°, the acc-value reaches values

close to 0 for 𝛼ℱ0
= (0, 30)° and a crossing angle of 𝜃 = 90°. Inclined secondary

fiber populations achieve a higher acc-value. The 𝛼ℱ0
= 90° configuration reaches its

maximum acc-value at a crossing angle of 𝜃 = 0° and lower stable values for all other
configurations.

The first two fiber inclinations 𝛼ℱ0
= (0, 30)° for Ψℱ0

= 70 % show a similar distribution
of the acc-value. Small reductions are visible. For 𝛼ℱ0

= 60°, the acc-value is highest
at low crossing angles 𝜃, i. e., near the first fiber population. The acc-value decreases
significantly at higher crossing angles. In the case of 𝛼ℱ0

= 90° this is also visible, but
the minimum for the acc-value is higher than in the previous case 𝛼ℱ0

= 60°.

The last case Ψℱ0
= 90 % shows high values for the acc-value parameter for the first

three inclinations 𝛼ℱ0
= (0, 30, 60) %. The last inclination 𝛼ℱ0

= 90° shows a slight
decrease of acc-value for higher crossing angles 𝜃.

9.4 Discussion

Single fiber population Section 9.3.2 shows the results for the case of a single fiber
population with inclined configurations. The transmittance values show an increase for
the last free inclination values. This is to be expected since the 3D model configurations
are aligned in parallel along an axis with some randomness. When this axis is aligned
along the z-axis, i. e., 𝛼ℱ0

= 90°, the light rays, which also travel along the z-axis,
statistically strike less tissue, so the transmittance must increase. Since the density of
the tissue is quite high, the effect is only a few percent. In reality, however, one must
take into account that additional effects such as light scattering also have a significant

136 Chapter 9 3D-PLI Simulation

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 0°
Ψ

F
0
=

1
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

3
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

5
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

7
0
%

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

Ψ
F

0
=

9
0
%

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

αF0 = 30°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 60°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

αF0 = 90°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°
270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9.23.: Mean acc-value between model and tilt analysis orientations.

9.4 Discussion 137

effect on the transmittance [Men+21]. The variance of the transmittance corresponds
to the variance of the noise model.

The retardation behaves similarly to the theoretical curve for a single retardation signal
(see eqs. 4.1). However, the analyzed retardation is slightly higher. The theoretical signal
is calculated by normalizing cos(𝛼ℱ0

)2 with the analyzed retardation for the flat case,
i. e., 𝛼ℱ0

= 0°. This could explain the reduced values of the theoretical line compared
to the simulation results for the mid-range inclinations.

The direction values have a very small variance, which increases strongly for high
inclination values. Since the direction value is coupled to the inclination angle, this
is to be expected: for an 90° inclined orientation, there is no direction or retardation.
Therefore, the noise affects the signal, and generates a random phase of the sine. The
variance of the tilting analysis is expected to be smaller than the actual distribution of
the individual nerve fiber segments because the signal results from the overall interaction
from the light with all segments on its path.

The same behavior can be observed for the inclination curve. However, here the variance
for the last angle is lower. It is possible that this is an effect that for exactly 𝛼ℱ0

= 90°
the change of the tilted light beam statistically ends in four opposite phases in the
sinusoidal signal. This might be more detectable for the tilt analysis than a slightly less
inclined fiber configuration where only the amplitude changes. It is interesting to note
that the variance is quite small and constant up to a range of about (70 to 75)°. This
demonstrates that the slope analysis for a single fiber population is relatively accurate
with respect to the dimension used here.

The relative thickness 𝑡rel should theoretically be constant, since the volume fraction
remains the same for different inclination angles. Due to the reduction in retardation, a
higher variance is expected with increasing inclination angle. However, at an inclination
angle of about 𝛼ℱ0

= 65°, the mean value begins to decrease. For 𝛼ℱ0
= (85, 90)°, the

variance then increases significantly and for 𝛼ℱ0
= 90°, the mean is > 1. This indicates

that the tilt analysis is unable to find a local minimum for 𝑡rel values < 1. This may
be one of the following three reasons. First, there is no local minimum with 𝑡rel < 1.
Second, there is a local minimum, but the optimizer is not able to find it with the initial
values. Finally, there is a local minimum, but the solution found with a 𝑡rel value > 1 is
a better choice, i. e., has a lower 𝑅2 value. Which of these is true cannot be said from
this data, and remains an interesting investigation for the future. However, up to this
point, the 𝑡rel value can be used to indicate that these values cannot be trusted, i. e.,
the resulting orientation is not trustworthy.

The R-value reflects the noise on the signal for all inclination angles and stays constant.

138 Chapter 9 3D-PLI Simulation

The opening angle shows the combined information from the direction results and the
inclination results. This value can possibly serve as additional uncertainty for further
calculations like in a tractography. The median value is expected to be lower than the
actual fiber models opening angle for the same reason as for a lower 𝜎75 %

25 % variance in
the direction and inclination angle.

The acc-value for fiber inclinations 𝛼ℱ0
≤ 75° is very high. For an inclination angle of

about 𝛼ℱ0
= 80°, a minimum is visible because for higher inclination angles the tilting

analysis accuracy increases. Therefore, the ODF similarity has to also increase again.

The information about orientation, i. e., direction and inclination, is visible in the
histogram (see fig. 9.5). However, the statistical limits are not quite as easy to see, e. g.
median or quantiles. Nevertheless, it is a good and fast way to give visual feedback
to the user, especially because the information about direction and inclination is not
decoupled.

In summary, for the case of a single fiber population, the resulting tilt analysis shows
good agreement with the individual orientations of the model, except for very steeply
inclined configurations (≳ 70°).

Flat crossing fiber population Section 9.3.3 describes the results of the flat crossing
configurations. The transmittance value changes significantly with increasing 𝜃, which
is to be expected since non overlapping crossing models require more space. Therefore,
fewer fibers can absorb light and the transmittance value must increase. This effect is
also responsible for the transmittance to reach a maximum at a fiber population fraction
of Ψℱ0

= 50 %, since it is more complicated to find a collision-free state.

The retardation decreases almost linearly with increasing crossing angle. Theoretically,
with a crossing angle of 𝜃 = 90° and a fiber population fraction of Ψℱ0

= 30 %, only
the remaining 40 % fibers affect retardation. However, the measured retardation of
about 0.36 is larger than the expected 0.8 ⋅ 0.4 = 0.32. An explanation of this could be
the noise on the data. It effects the distribution of the retardation for low amplitudes
towards higher values. The reason for this is, that the retardation and the individual
light intensities cannot be lower than 0.

The direction for the flat fiber crossings follows the expected theoretical curve of the
circular mean. For the case Ψℱ0

= 50 % and 𝜃 = 90°, the direction values are uniformly
distributed since there is no unique direction in the sinusoidal. This is the effect of
retardation cancellation and signal noise. For the here investigated distribution of fiber
radii at microscopes resolution and pixel size individual fiber population for an interwoven
dense fiber bundle cannot be distinguished. However, the tilt analysis used here uses

9.4 Discussion 139

only a single fiber orientation, or more generally, a single optic axis. In the future, more
comprehensive models may be able to reveal the difference.

The variance of the inclination angle increases with increasing 𝜃, which is to be expected
as the retardation decreases, making the model more uncertain. In the case of a uniformly
distributed fiber crossing, the inclination can reach any value as in the case for the
direction value.

The same effect as for retardation and inclination is also observed for the decreasing
value of 𝑡rel . Since there is only one optic axis in the tilt analysis model, the 𝑡rel value
must follow the retardation for flat crossing fiber models. In the case of Ψℱ0

= 90°, the
tilt analysis also reaches values of 𝑡rel > 1. As mentioned for the single fiber population,
this is an effect of the solution algorithm of the tilt analysis. It can be used as an
indication that the resulting values are not to be trusted and the current model does
not fit the data.

The R-value is constant overall for all crossing angles. This agrees with theory as long as
the tilt analysis is able to find the minimum of the cost function, the R-value2, because
then the remaining difference comes only from the noise.

The measured opening angle Ω, does not agree with the underlying distributions of the
orientation of the fiber segments. However, this is to be expected since in a single voxel,
i. e., has a volume of 1.3 µm × 1.3 µm × 60 µm, there are many fiber segments with
which the light, i. e., all light rays, incident on the same CCD pixel can interact. This
means that an average signal is measured and analyzed. Average value for an aperture
angle means, of course, a decrease of its value. The fact that the measured aperture
angles increase with increasing crossing angle is also to be expected. The main effect
of an increasing crossing angle is that the amplitude of the sinusoidal signal, i.e. the
retardation, decreases. Therefore, the estimation from the tilt analysis is more difficult
and the result error increases.

The acc-value value has a local minimum that depends on the crossing angle 𝜃. The
minimum is higher for Ψℱ0

near 0 or 1. The curve is explained by the fact that with the
currently used tilt analysis only the main fiber orientation, more precisely the circular
mean, can be determined from the measured signal. Therefore, the acc-value must
shrink. However, beyond a certain point, the delay is reduced to such an extent that
the uncertainty increases to such an extent that the measured orientations become
more and more random. Therefore, the ODF of the measured signal becomes more and
more spherical, which after a certain point, i. e., the minima, is closer to the ODF of
the model than an ODF that predicts only one main orientation, i. e., a cigar shape.
This also explains why the position of the minimum is closer to 90° for fiber population

140 Chapter 9 3D-PLI Simulation

proportions closer to 50 %, because the intersection of the ODF of fiber segments is
more pronounced.

Inclined crossing The eight investigated parameters can be explained by the same
arguments as for the previous flat fiber crossing, except for the inclination parameter.
Here, the inclination follows the circle mean only for smaller crossing angles and reaches
a maximum value as a function of the fiber population fraction Ψℱ0

until it decreases
to 0° for 𝜃 = 90°. This behavior can be explained by the fact that as the inclination
increases, the light rays are no longer affected by the birefringence of the optic axis of
the fibers. Therefore, the only remaining effect comes from the flat fiber population.

Free crossing fiber population The free crossing fiber population results can be inter-
preted as a summary of the previous results.

The transmittance shows the expected behavior, that the lowest values are reached for
non-crossing fiber population. Here, the fiber density is the highest and therefore as well
the absorption of the light intensity. For orientations with increasing crossing angles,
transmittance increases as the fibers require more space to be collision free. This effect
is further increased for fiber population fractions closer to 50 %.

The highest retardation values are reached for flat and non-crossing fiber populations.
Here no extinction effect of the 3D-PLI signal is present. The retardation value shows a
map of which orientations from two fiber population fractions the tilting analysis will
lead to a result with high certainty. This, however, does not mean that the resulting
orientation is the orientation of the underlying fibers, as it can be seen in the results of
the direction and inclination. As in the previous results of the single flat crossing and
oblique crossing fiber population(s), the analyzed angle corresponds to the circular value
for flat fibers and the inclination is strongly influenced by the inclination angle.

From the results of 𝑡rel , the statement that 𝑡rel values greater than > 1 indicates an
untrustworthy result is still true. However, the number of fiber configurations where
this is the case is relatively small. In combination with retardation, though, both low
𝑡rel values and low retardation values indicate considerably more untrustworthy results.
This results in the distribution of the acc-value. The reduced acc-value are the fiber
configurations one has to focus on improving the tilt analysis in the future. The acc-value
can potentially be a good tool to use as a cost function in machine learning techniques,
for example.

9.4 Discussion 141

1 2 3 4 5 6 7 8 16 24 32 40 48
1

2

3

4

5

id
ea

l

#cores

speedup

(a) OpenMP speedup discrete tissue generation.

1 2 3 4 5 6 7 8 16 24 32 40 48

10

20

ideal

#cores

speedup

(b) MPI speedup discrete tissue generation.

Fig. 9.24.: Discrete tissue generation speedup.

9.5 Speedup

This section shows the results of speedup measurements for discretized tissue volume
generation (see section 6.1) and light matter interaction simulation (see section 6.2) for
the implemented parallelization with OpenMP and Message Passing Interface (MPI).
Simulations were performed using a single compute node with CPU architecture 2x
Intel(R) Xeon(R) CPU E5-4657L v2. To measure the speedup, each algorithm is
executed 𝑁 = 10 times. To calculate the speedup value, the average measured time for
𝑛cpu = 1 was then divided by the measured time for each value 𝑛cpu . The volume used
is the Ψℱ0

= 0 %/𝛼ℱ0
= 0° from the section 9.3.1 parameterization.

9.5.1 Results

Figure 9.24a shows the speedup results for the parallelization of OpenMP of the discrete
tissue generation algorithm. The speedup increases linearly from 1 core to 8 cores up to
a speedup of about 3. For (16, 24, 32, 40, 48) cores the speedup is increased further,
but is still in the range of (4 to 5).

Figure 9.24b shows the speedup for the MPI implementation. Here, the speedup up to
8 cores is again linear and reaches about 6.8. The speedup from 16 cores to 48 cores is
also linear, but the inclination decreases. For 48 cores, a speedup of about 28 is obtained.
The variance is significantly lower compared to the OpenMP implementation.

The results of the speedup measurements for the light matter interaction are then pre-
sented. All tilt directions (flat, east, north, west, and south) are simulated. Figure 9.25a

142 Chapter 9 3D-PLI Simulation

0

20

40

ide
al

1 2 3 4 5 6 7 8 16 24 32 40 48

speedup

#cores

C N S
E W

(a) OpenMP speedup simulation for 5 tilt direction.

0

20

40

ide
al

1 2 3 4 5 6 7 8 16 24 32 40 48

speedup

#cores

C N S
E W

(b) MPI speedup simulation including all five tilt direction.

Fig. 9.25.: 3D-PLI simulation speedup measurements.

shows the speedup for the OpenMP implementation. The results show ideal speedup up
to 8 cores. As the CPU count is further increased up to 48 cores, the speedup is slightly
lower than the ideal line with a speedup of 42 for 48 cores. No significant difference in
acceleration for different tilt directions is apparent.

Figure 9.25b shows the speedup for the MPI implementation. Again, the speedup is
ideal up to 8 cores. For CPU numbers in the range of (16 to 48) cores, the speedup is
again lower than the ideal line with a speedup of about 35 for 48 cores. Compared to
the previous OpenMP implementation, the speedup is further reduced. A significant
difference in the measurement is visible for different tilt directions. The flat measurement
has the highest speedup.

9.5 Speedup 143

9.5.2 Discussion

The speedup for the discrete tissue generator in the case of OpenMP is appropriate up
to 4 cores with a speedup of slightly above 2. Above 4 cores, especially ≥ 16 cores is
not recommended to use. This behavior is most likely due to the fact that the CPUs
read from the same memory address. However, since the different writing instructions
do not use the same memory address and there are no race conditions, a higher speedup
was expected.

The speedup for the MPI implementation, on the other hand, is almost optimal up to
8 cores. Above that, the speedup is reduced compared to the ideal case, but still quite
good. Since the CPUs (cores) run independently in this case, no communication is
required. However, on a single-node system, as in this case, the allocation of memory is
a race condition and slows down the algorithm. This is not expected on a multi-node
system. An additional reduction in computation time results from the fact that all cores
must traverse all fiber coordinates. Pre-filtering could shorten this process. For example,
a global axis aligned bounding box (AABB) can be computed for each fiber.

The speedups for the 3D-PLI simulation are quite similar and very high for both
implementations. The OpenMP implementation is slightly better, which is to be
expected since the parallelization is done along a std::vector of Stokes vectors. The
MPI implementation on the other hand still needs to communicate with each other
in case of transferring the Stokes vectors. Also, the discretized volumes are already
present in memory, so memory allocation does not slow down the runtime compared to
the volume discretizer. For the MPI implementation, the communication effect is also
visible for flat and tilted simulations. In the case of a flat simulation, no communication
and thus no barriers are required, so the speedup is higher. A difference in North-South
and East-West tilt could be explained for different number of cores by the fact that the
volume has to be divided into subvolumes. This is done within the algorithm so that the
surface area is minimized. The splitting process produces subvolumes with a tendency
to have longitudinal quartiles along the x-axis. This may explain why the North-South
tilt has a slightly higher speedup.

In summary, the MPI implementation should be used to speed up the simulation.

144 Chapter 9 3D-PLI Simulation

Part IV

Closing Remarks

What is Next?
10

Nerve fiber modeling software The collision-free nerve fiber modeling algorithm can
generate densely packed fiber models, which are suitable for 3D-Polarized Light Imaging
(3D-PLI) simulations. However, for larger volumes, the algorithm is limited in terms
of computation time or, more precisely, the number of objects in the volume to be
solved.

However, there are optimization options available to improve performance. First, the
models created by the sandbox can be improved so that the initial fiber configurations
have less overlap. This means that for a given volume, the number of objects and thus
the runtime are reduced. Additionally, it was discovered that most collisions can be
solved in the first ≈ 10 % of the runtime, and the remaining time is required for the
remaining minimal overlaps (see section 8.3.1).

A second strategy is to design the algorithm in such a way that the number of calculation
steps is reduced. For example, one could increase the motion that a fiber segment is
allowed to perform. This strategy would probably lead to less densely packed models,
since without an external force or attraction between the nerve fibers, they can only
move apart. 1

Another possibility is to speed up the runtime per step. This can be done, for example, by
choosing a simpler calculation. In the Microstructure Environment Designer with Unified
Sphere Atoms (MEDUSA) algorithm, this is already been realized by using spheres
instead of fiber segments. The collision of spheres is only be calculated by the Euclidean
distance with respect to the sum of the spheres radii. However, the use of spheres is
associated with a disadvantage. The number of objects increases dramatically, as many
spheres are needed to approximate the surface of a single conical fiber segment.

A current limitation of the algorithm is the parallelization on a multicore system. For
shared memory parallelization, atomic operations must be introduced, which takes a lot
of time. For an algorithm without shared memory, the required data must be exchanged
between the individual CPUs, which takes also quite some time. Therefore, one needs to
redesign the algorithm to limit the necessary locks or data exchange. Common solutions

1With an external or attracting force, one would introduce oscillations.

149

are to divide the volume into subvolumes (as in the case of 3D-PLI simulation), where
each volume can be computed separately. The boundaries of such subvolumes contain
then the objects from neighboring volumes (halo). Therefore, only the information of
the halo needs to be exchanged.

At this point, the most promising optimization is to use the architecture of the graphics
processing unit (GPU) as e. g. in the MEDUSA algorithm. An algorithm exists, which
operates on axis aligned bounding box (AABB) of the objects and uses a z-ordered
tree instead of an octree [Kar12]. This algorithm also has the advantage that not only
the collision checking computation is executed in parallel on the GPU, but also the
generation of the z-ordered tree. The entire algorithm runs on the GPU and therefore
does not need to communicate with the central processing unit (CPU) or random access
memory (RAM) as long as the complete information fits on the GPU memory. This
will drastically increase the speed of the collision checking. The remaining steps of the
modeling algorithm, such as the movement of the fiber segments, can also be easily
performed in parallel on the GPU.

3D-PLI software As part of this work, two proof-of-concept projects were conducted to
develop a parallel GPU implementation for 3D-PLI simulations. The first was a seminar
project to implement a parallel discrete tissue volume computation algorithm for the
3D-PLI simulation on the GPU architecture [Kob20a]. It was shown that the speedup of
the discrete volume computation was very high, but the large memory requirements of
the discretized volume negated this speedup overall, as GPUs are relatively limited here.
In addition, the need to transfer the data back to RAM was too much of an overhead.
Therefore, the second project was to implement a ray tracing algorithm that computes
a light matter collision and matrix computation without pre-computing the discretized
volume [Kob20b; @Ale20]. A light particle only computes the Müller-Stokes calculus
only if it collides with a fiber object. This means, that a collision algorithm needs to
be used. As a first implementation of a collision detection algorithm on the GPU, an
uniaxial aligned collision search algorithm [Kar12] was implemented. The results showed
that the acceleration possibilities on the GPU are enormous. However, due to the rather
simple collision checking algorithm, the runtime was slightly longer, but still in the same
order of magnitude as the CPU version. As with fiber generation, implementing the
z-order algorithm mentioned above [Kar12] would be a vast improvement and solve the
runtime issue.

This second work also implemented the algorithm is such a way, that the light rays can
have any direction in space. This allows for the future an implementation of directional
change such as it would be necessary for light scattering simulations.

150 Chapter 10 What is Next?

Nerve fiber modeling and 3D-PLI simulation As a first achievement, the number
of models was limited to a reasonable number. The next study can increase the
number of nerve fiber models and simulations should be increased. Since two models
are independent, all models can be generated in parallel using the entire computer
architecture. In addition, the essential parameters for the models and simulations should
be further investigated so that the number of required models can be reduced. Modern
machine learning algorithms are a suitable tool for this purpose.

Another important task is the study of larger nerve fiber radii. This would include the
larger nerve fiber radii that are anatomically present in the brain. In addition, larger
nerve fiber radii could also be an approximation for a nerve fiber bundle consisting of
multiple nerve fibers in the 3D-PLI simulation. They should then be simulated with a
macroscopic birefringence model [Men+15]. If this is possible, one could significantly
reduce the number of objects for model generation, which means that one could have
either very small runtimes or larger volumes.

A further study should investigate if nerve fiber models can be used for 3D-PLI simulation,
which are not fully collision free. Since about 90 % of the runtime is used on the last small
remaining colliding objects, this would reduce the runtime by an order of magnitude.

Another interesting study is to investigate more complex models, e. g. three fiber
populations or boundary regions consisting of neighboring nerve fiber tracts. This can
be very interesting since this could improve the understanding of how the signal changes
when the light beam is tilted and therefore improve the tilt analysis further. For more
complex models, machine learning can possibly be used to identify the underlying fiber
structure within a voxel using the 3D-PLI signals. In diffusion Magnetic Resonance
Imaging (dMRI), nerve fiber models and their simulations, as well as the use of deep
learning, have already shown that the underlying fiber structure can be identified from
the original signals [Gin19]. This can potentially be applied to 3D-PLI similarly.

By publishing the code as open access software, other researchers could already use the
fiber modeling software to generate non colliding fiber models and use them as skeletal
muscle fiber models [Ji+21].

151

Conclusion
11

In this work, two algorithms were presented within the software package fiber architecture
simulation toolbox for 3D-PLI (fastPLI). The first algorithm is capable of designing
non-colliding nerve fiber models in a 3D volume. These models can then be used in the
second algorithm, which simulates the interaction of polarized light with the modeled
nerve fibers in a virtual 3D-PLI microscopic setup.

Nerve fiber modeling software The algorithm for developing non-colliding nerve fiber
models takes as input a list of 4D points for each nerve fiber, where the first three values
are the 𝑥, 𝑦, 𝑧 coordinate in space and the fourth value is the radius of the nerve fiber at
that point. Therefore, a nerve fiber is represented as a cylindrical conical segments that
can change its radius along the path. For each fiber segment containing two adjacent
points, a test is performed to determine if there is a collision with another fiber segment.
If this is the case, both fiber segments are moved slightly away from each other. This
is done for all fiber segments in the volume as long as a collision is detected. Both
the length of a fiber segment and the bending radius of a nerve fiber are controlled by
the user-defined software parameters. These parameters change the discretization and
stiffness of the fiber models.

To speed up model generation, an octree is used in the algorithm to divide the volume into
subvolumes. This octree can be executed in parallel on multiple CPUs. A visualization
is provided to display the volume, allowing the user to interact with the algorithm after
each computation step.

An additional project called MEDUSA was developed in collaboration with Neurospin
at Alternative Energies and Atomic Energy Commission (CEA), which allows designing
non-colliding nerve fiber models with cells such as astrocytes or oligodendrocytes that
connect to myelin-enveloped axons.

Simulation software The simulation software for 3D-PLI takes a configuration of nerve
fibers as input and simulates the light matter interaction within a 3D-PLI setup. The
simulation is divided into two consistent parts. The first part generates a discretized

153

3D volume. This volume is used by the second part, which calculates the resulting
light intensity using the Müller-calculus calculation and the simulation of several light
vectors through the volume. The final light intensity is stored in a 2D array, which
can be modeled as a charge-coupled device (CCD) array with a specified resolution
and noise model. The simulation is capable of simulating multiple tilted light beams,
allowing multiple views of the same subvolume that the light is traversing. In addition,
the analysis algorithms are implemented into the software package, allowing the nerve
fiber orientation to be calculated using the tilt analysis robust orientation fitting via
least squares (ROFL).

The simulation is capable of using multiple cores as well as a system with multiple
nodes communicating via Message Passing Interface (MPI). This allows the simulation
of a large volume of nerve fibers, which takes up a large amount of memory due to the
discretized volume required.

Software package fastPLI All algorithms are written as modules in Python3 within
the software package fastPLI. The software package is published as an open source
software package so that users can share, ask, and further develop the software to ensure
high interchangeability. The software has been tested by several users and published in
Journal of Open Source Software (JOSS).

Nerve fiber modeling results The nerve fiber modeling algorithm controls the necessary
movement of the fibers to solve the collisions via the length of the fiber segments and
the bending radius of the fibers. Both parameters were characterized in terms of the
resulting orientations and computational speed. To reduce the dimensionality of the
possible configurations, a set of parameters was designed to describe the model. This
set consists of a relative angle between the two fiber populations, an inclination angle of
the first fiber population, a rotation angle of the second fiber population around the
first one and a population fraction parameter. The set allows nerve fiber models with
up to two nerve fiber populations with arbitrary crossing angles to be examined in 3D
without describing each fiber separately.

Based on these parameters, the properties of the modeling parameters were first charac-
terized. A set of values suitable to generate non-colliding nerve fiber models without
introducing significant distortion to the initial configuration was identified. In addition,
these parameter values are suitable to reduce the runtime to a reasonable extent without
losing configuration characteristics or distorting the resulting models. To reduce the
runtime even further, it was found that about an order of magnitude of computation

154 Chapter 11 Conclusion

time can be reduced by not solving the models completely. However, the impact of a
non-collision-free model remains to be investigated in an additional study.

With the model software parameters found, a library of up to two nerve fiber models
described by the four model parameters was created for the 3D-PLI simulation. The
orientation distribution was analyzed to be used as a comparison for the orientation
analysis of the simulation.

3D-PLI simulation results Analogous to the nerve fiber modeling software, the param-
eters of the simulation software were first characterized and measured. The optical
resolution of the microscope used was reproduced with previous results, as was the optical
noise of the system. Tissue properties were derived from tissue samples measured in
3D-PLI so that the simulation could reproduce the results with its limitations. The most
important characteristic of the simulation, the accuracy and runtime, was characterized
by studying multiple voxel_size. It was possible to identify a lower bound that must
be used for a given nerve fiber radius.

Using the identified software parameters and the prepared nerve fiber models, simulations
were performed and analyzed with the tilt analysis. The models were divided into four
groups: a single, a flat crossing, an oblique crossing, and a free crossing nerve fiber
population. This allowed to focus on a specific behavior.

In the case of a single nerve fiber population, only the inclination of the models was
a variable. With the simulation results, it was shown that in the case of a single fiber
population, the orientation can be correctly identified, with an increased uncertainty for
very steep fibers. Statistically, the mean can be measured correctly when measuring a
homogenous volume with multiple image pixel. For very steep nerve fibers, the relative
effective tissue thickness becomes unstable in the tilt analysis. This behavior can be
used as an indication of how uncertain the results are.

The flat crossing nerve fiber population results in a single value for the tilt analysis
that appears to follow the circular mean value of the individual orientations. With
this behavior, the predominant nerve fiber population is mostly visible, with a slight
systematic error due to the orientation to the second nerve fiber direction. With the nerve
fiber radius distribution and image resolution chosen here, the underlying orientation of
the individual nerve fiber population could not be resolved.

The population of inclined crossing nerve fibers has similar characteristics to the popu-
lation of flat crossing nerve fibers. The inclination also appears to follow the circular
mean value of each population, but due to the fact that inclined nerve fibers result in
less change in the polarization of the light, the resulting orientation is biased toward the

155

less inclined fiber population. At this resolution, the current tilt analysis cannot identify
the individual nerve fiber populations.

The last models examined were unrestricted nerve fiber populations, so any configuration
describable by the four model parameters was possible. As a comparison an orientation
distribution function (ODF) metric was used to determine the orientations of the models
for which the tilt analysis of the 3D-PLI signal was error-prone and which were highly
reliable. In addition, the individual parameters were discussed and the underlying behavior
leading to the erroneous orientations was determined.

An analysis of the simulation speed has shown that the simulation software can be
parallelized very well with the capabilities of MPI and can use a multi-node system that
allows large volumes to be simulated without loss of computation time. However, the
tissue generation process is slightly less efficient. Nevertheless, since multiple 3D-PLI
simulations with tilted light beams are run on the same discretized tissue, this is not a
critical issue.

Many possible further optimizations of the algorithm could be identified. The general
advice is to increase the computational power by using parallel computing architectures
like a GPU. Existing algorithms suitable for this type of computation for both the nerve
fiber modeling and 3D-PLI simulations could be identified and should be implemented
in the future.

Overall, this thesis presents a software package able to generate complex non colliding
nerve fiber models which can be simulated inside a virtual 3D-PLI microscope setup. The
algorithms are highly parallelized and able to run on current supercomputing facilities.
Additionally, the software package was designed with ease of use in mind. For the future,
possible improvements were presented that further reduce the runtime. During the
development phase of this software package, several publications with a release of the
final software code in the JOSS were created. Simulation showed the behavior of the
3D-PLI signal for multiple fiber populations for the first time.

156 Chapter 11 Conclusion

Bibliography

Literature

[Ali+20] Abib Alimi, Samuel Deslauriers-Gauthier, Felix Matuschke, et al. “Analytical and
fast Fiber Orientation Distribution reconstruction in 3D-Polarized Light Imaging”.
In: Medical Image Analysis 65 (Oct. 2020), p. 101760. URL: https://doi.org/
10.1016/j.media.2020.101760 (cit. on p. 112).

[Amu+13] K. Amunts, C. Lepage, L. Borgeat, et al. “BigBrain: An Ultrahigh-Resolution 3D
Human Brain Model”. In: Science 340.6139 (June 2013), pp. 1472–1475. URL:
https://doi.org/10.1126/science.1235381 (cit. on pp. 5, 12).

[Amu+16] Katrin Amunts, Christoph Ebell, Jeff Muller, et al. “The Human Brain Project:
Creating a European Research Infrastructure to Decode the Human Brain”. In:
Neuron 92.3 (Nov. 2016), pp. 574–581. URL: https://doi.org/10.1016/j.
neuron.2016.10.046 (cit. on p. 5).

[Axe+11a] Markus Axer, Katrin Amunts, David Grässel, et al. “A novel approach to the
human connectome: Ultra-high resolution mapping of fiber tracts in the brain”.
In: NeuroImage 54.2 (Jan. 2011), pp. 1091–1101. URL: https://doi.org/10.
1016/j.neuroimage.2010.08.075 (cit. on p. 6).

[Axe+11b] Markus Axer, David Grässel, Melanie Kleiner, et al. “High-Resolution Fiber Tract
Reconstruction in the Human Brain by Means of Three-Dimensional Polarized
Light Imaging”. In: Frontiers in Neuroinformatics 5 (2011). URL: https://doi.
org/10.3389/fninf.2011.00034 (cit. on pp. 6, 25, 28).

[Axe+16] Markus Axer, Sven Strohmer, David Gräßel, et al. “Estimating Fiber Orientation Dis-
tribution Functions in 3D-Polarized Light Imaging”. In: Frontiers in Neuroanatomy
10 (Apr. 2016). URL: https://doi.org/10.3389/fnana.2016.00040 (cit. on
p. 6).

[Bea+19] Justine Beaujoin, Alexandros Popov, Raïssa Yebga Hot, et al. “CHENONCEAU:
towards a novel mesoscopic (100/200𝜇m) post-mortem human brain MRI atlas at
11.7T”. In: OHBM (Organization for Human Brain Mapping). Rome, Italy, 2019.
URL: https://hal.archives-ouvertes.fr/hal-02876136 (cit. on p. 5).

[Ber+18] Shai Berman, Kathryn L. West, Mark D. Does, Jason D. Yeatman, and Aviv
A. Mezer. “Evaluating g-ratio weighted changes in the corpus callosum as a
function of age and sex”. In: NeuroImage 182 (Nov. 2018), pp. 304–313. URL:
https://doi.org/10.1016/j.neuroimage.2017.06.076 (cit. on p. 14).

159

https://doi.org/10.1016/j.media.2020.101760
https://doi.org/10.1016/j.media.2020.101760
https://doi.org/10.1126/science.1235381
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1016/j.neuroimage.2010.08.075
https://doi.org/10.1016/j.neuroimage.2010.08.075
https://doi.org/10.3389/fninf.2011.00034
https://doi.org/10.3389/fninf.2011.00034
https://doi.org/10.3389/fnana.2016.00040
https://hal.archives-ouvertes.fr/hal-02876136
https://doi.org/10.1016/j.neuroimage.2017.06.076

[Cal+19] Ross Callaghan, Daniel C. Alexander, Hui Zhang, and Marco Palombo. “Contextual
Fibre Growth to Generate Realistic Axonal Packing for Diffusion MRI Simulation”.
In: Lecture Notes in Computer Science. Springer International Publishing, 2019,
pp. 429–440. URL: https://doi.org/10.1007/978-3-030-20351-1_33
(cit. on p. 6).

[Cer+17] Mara Cercignani, Giovanni Giulietti, Nick G. Dowell, et al. “Characterizing axonal
myelination within the healthy population: a tract-by-tract mapping of effects of age
and gender on the fiber g-ratio”. In: Neurobiology of Aging 49 (Jan. 2017), pp. 109–
118. URL: https://doi.org/10.1016/j.neurobiolaging.2016.09.016 (cit.
on p. 14).

[Cos+21] Irene Costantini, Enrico Baria, Michele Sorelli, et al. “Autofluorescence enhancement
for label-free imaging of myelinated fibers in mammalian brains”. In: Scientific
Reports 11.1 (Apr. 2021). URL: https://doi.org/10.1038/s41598-021-
86092-7 (cit. on p. 6).

[Cos+20] Irene Costantini, Enrico Baria, Michele Sorelli, et al. “MAGIC: A label-free fluores-
cence method for 3D high-resolution reconstruction of myelinated fibers in large vol-
umes”. In: (July 2020). URL: https://doi.org/10.1101/2020.07.28.225011
(cit. on p. 6).

[Dea+16] Douglas C. Dean, Jonathan O’Muircheartaigh, Holly Dirks, et al. “Mapping an index
of the myelin g-ratio in infants using magnetic resonance imaging”. In: NeuroImage
132 (May 2016), pp. 225–237. URL: https://doi.org/10.1016/j.neuroimage.
2016.02.040 (cit. on p. 14).

[Dem06] Wolfgang Demtröder. Experimentalphysik. Berlin u.a: Springer, 2006 (cit. on p. 15).

[Doh+15] Melanie Dohmen, Miriam Menzel, Hendrik Wiese, et al. “Understanding fiber
mixture by simulation in 3D Polarized Light Imaging”. In: NeuroImage 111 (May
2015), pp. 464–475. URL: https://doi.org/10.1016/j.neuroimage.2015.
02.020 (cit. on pp. 59, 77).

[Fli12] Torsten Fließbach. Elektrodynamik. Spektrum Akademischer Verlag, 2012. URL:
https://doi.org/10.1007/978-3-8274-3036-6 (cit. on p. 15).

[Gin19] Kévin Ginsburger. Modeling and simulation of the diffusion MRI signal from human
brain white matter to decode its microstructure and produce an anatomic atlas
at high fields (3T). Aug. 2019. URL: https://www.theses.fr/2019SACLS158
(cit. on pp. 6, 37, 54, 71, 88, 151).

[Gin+19] Kévin Ginsburger, Felix Matuschke, Fabrice Poupon, et al. “MEDUSA: A GPU-
based tool to create realistic phantoms of the brain microstructure using tiny
spheres”. In: NeuroImage 193 (June 2019), pp. 10–24. URL: https://doi.org/
10.1016/j.neuroimage.2019.02.055 (cit. on pp. 37, 54, 56, 58, 71, 88).

[Gin+18] Kévin Ginsburger, Fabrice Poupon, Justine Beaujoin, et al. “Improving the Realism
of White Matter Numerical Phantoms: A Step toward a Better Understanding of
the Influence of Structural Disorders in Diffusion MRI”. In: Frontiers in Physics
6 (Feb. 2018). URL: https://doi.org/10.3389/fphy.2018.00012 (cit. on
pp. 6, 88).

160 Chapter 11 Bibliography

https://doi.org/10.1007/978-3-030-20351-1_33
https://doi.org/10.1016/j.neurobiolaging.2016.09.016
https://doi.org/10.1038/s41598-021-86092-7
https://doi.org/10.1038/s41598-021-86092-7
https://doi.org/10.1101/2020.07.28.225011
https://doi.org/10.1016/j.neuroimage.2016.02.040
https://doi.org/10.1016/j.neuroimage.2016.02.040
https://doi.org/10.1016/j.neuroimage.2015.02.020
https://doi.org/10.1016/j.neuroimage.2015.02.020
https://doi.org/10.1007/978-3-8274-3036-6
https://www.theses.fr/2019SACLS158
https://doi.org/10.1016/j.neuroimage.2019.02.055
https://doi.org/10.1016/j.neuroimage.2019.02.055
https://doi.org/10.3389/fphy.2018.00012

[Goo+16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. URL: http://www.deeplearningbook.org (cit. on p. 5).

[Ji+21] Fengting Ji, Manik Bansal, Bingrui Wang, Yi Hua, and Ian A Sigal. “Mechanical
properties of scleral collagen fibers obtained using a new fiber-based specimen-
specific model of sclera microstructure.” In: Investigative Ophthalmology & Visual
Science 62 (8 June 2021). URL: https://iovs.arvojournals.org/article.
aspx?articleid=2773519 (cit. on p. 151).

[Jon41] R. Clark Jones. “A New Calculus for the Treatment of Optical SystemsI Description
and Discussion of the Calculus”. In: Journal of the Optical Society of America
31.7 (July 1941), p. 488. URL: https://doi.org/10.1364/josa.31.000488
(cit. on p. 21).

[Jun+18] Woojin Jung, Jingu Lee, Hyeong-Geol Shin, et al. “Whole brain g-ratio mapping
using myelin water imaging (MWI) and neurite orientation dispersion and density
imaging (NODDI)”. In: NeuroImage 182 (Nov. 2018), pp. 379–388. URL: https:
//doi.org/10.1016/j.neuroimage.2017.09.053 (cit. on p. 14).

[Kar12] Tero Karras. Maximizing Parallelism in the Construction of BVHs, Octrees, and
k-d Trees. eng. 2012. URL: http://diglib.eg.org/handle/10.2312/EGGH.
HPG12.033-037 (cit. on pp. 55, 56, 104, 150).

[Kob20a] Alexander Kobusch. “Parallele Implementierung einer Polarisationsmikroskopie-
Simulation zur Licht-Hirngewebe-Wechselwirkung auf der GPU”. Seminararbeit,
FH Aachen, 2020. Seminararbeit. FH Aachen, 2020, p. 23 (cit. on p. 150).

[Kob20b] Alexander Kobusch. “Simulation von 3D-Polarized Light Imaging mit GPU basiertem
Ray Tracing”. Bachelorarbeit, FH Aachen, 2020. Bachelorarbeit. FH Aachen, 2020,
p. 46. URL: https://juser.fz-juelich.de/record/887783 (cit. on p. 150).

[Lie+14] Daniel Liewald, Robert Miller, Nikos Logothetis, Hans-Joachim Wagner, and
Almut Schüz. “Distribution of axon diameters in cortical white matter: an electron-
microscopic study on three human brains and a macaque”. In: Biological Cybernetics
108.5 (Aug. 2014), pp. 541–557. URL: https://doi.org/10.1007/s00422-
014-0626-2 (cit. on p. 14).

[Luc16] Sonja Lucksch. Optimierung und Parallelisierung der Software simPLI zur Simulation
von 3D-Polarized-Light-Imaging Messungen. 2016. URL: http://juser.fz-
juelich.de/record/819319 (cit. on pp. 59, 77).

[Mai+17] Klaus H. Maier-Hein, Peter F. Neher, Jean-Christophe Houde, et al. “The challenge
of mapping the human connectome based on diffusion tractography”. In: Nature
Communications 8.1 (Nov. 2017). URL: https://doi.org/10.1038/s41467-
017-01285-x (cit. on p. 5).

[Mar06] Henry Markram. “The Blue Brain Project”. In: Nature Reviews Neuroscience 7.2
(Feb. 2006), pp. 153–160. URL: https://doi.org/10.1038/nrn1848 (cit. on
p. 5).

Literature 161

http://www.deeplearningbook.org
https://iovs.arvojournals.org/article.aspx?articleid=2773519
https://iovs.arvojournals.org/article.aspx?articleid=2773519
https://doi.org/10.1364/josa.31.000488
https://doi.org/10.1016/j.neuroimage.2017.09.053
https://doi.org/10.1016/j.neuroimage.2017.09.053
http://diglib.eg.org/handle/10.2312/EGGH.HPG12.033-037
http://diglib.eg.org/handle/10.2312/EGGH.HPG12.033-037
https://juser.fz-juelich.de/record/887783
https://doi.org/10.1007/s00422-014-0626-2
https://doi.org/10.1007/s00422-014-0626-2
http://juser.fz-juelich.de/record/819319
http://juser.fz-juelich.de/record/819319
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1038/nrn1848

[Mat+21] Felix Matuschke, Katrin Amunts, and Markus Axer. “fastPLI: A Fiber Architecture
Simulation Toolbox for 3D-PLI”. In: Journal of Open Source Software 6.61 (May
2021), p. 3042. URL: https://doi.org/10.21105/joss.03042 (cit. on pp. 7,
38, 44, 71, 79).

[Mat+19] Felix Matuschke, Kévin Ginsburger, Cyril Poupon, Katrin Amunts, and Markus Axer.
“Dense Fiber Modeling for 3D-Polarized Light Imaging Simulations”. In: Advances
in Parallel Computing 34.Future Trends of HPC in a Disruptive Scenario (2019),
pp. 240–253. URL: https://doi.org/10.3233/APC190017 (cit. on pp. 7, 38,
44).

[Men+15] M. Menzel, K. Michielsen, H. De Raedt, et al. “A Jones matrix formalism for
simulating three-dimensional polarized light imaging of brain tissue”. In: Journal
of The Royal Society Interface 12.111 (Oct. 2015), p. 20150734. URL: https:
//doi.org/10.1098/rsif.2015.0734 (cit. on pp. 59, 151).

[Men18] Miriam Menzel. Finite-Differenzen-Simulationen im Zeitbereich zur verbesserten
Rekonstruktion der Nervenfaserarchitektur des Gehirns durch 3D-Bildgebung mit
polarisiertem Licht. en. Vol. RWTH Aachen University. RWTH Aachen University,
2018, p. 2018. URL: http://publications.rwth-aachen.de/record/750948
(cit. on pp. 27, 30, 37, 40, 59, 60).

[Men14] Miriam Menzel. Simulation and Modeling for the Reconstruction of Nerve Fibers in
the Brain by 3D Polarized Light Imaging. RWTH Aachen, Masterarbeit, 2014. 2014,
pp. v, 165. URL: https://juser.fz-juelich.de/record/155964 (cit. on
pp. 27, 59, 107).

[Men+16] Miriam Menzel, Markus Axer, Hans De Raedt, and Kristel Michielsen. “Finite-
Difference Time-Domain Simulation for Three-Dimensional Polarized Light Imaging”.
In: Brain-Inspired Computing. Ed. by Katrin Amunts, Lucio Grandinetti, Thomas
Lippert, and Nicolai Petkov. Cham: Springer International Publishing, 2016, pp. 73–
85 (cit. on p. 59).

[Men+20] Miriam Menzel, Markus Axer, Hans De Raedt, et al. “Toward a High-Resolution
Reconstruction of 3D Nerve Fiber Architectures and Crossings in the Brain Using
Light Scattering Measurements and Finite-Difference Time-Domain Simulations”.
In: Physical Review X 10.2 (Apr. 2020). URL: https://doi.org/10.1103/
physrevx.10.021002 (cit. on pp. 6, 59).

[Men+21] Miriam Menzel, Jan André Reuter, David Gräßel, et al. “Scattered Light Imaging:
Resolving the substructure of nerve fiber crossings in whole brain sections with
micrometer resolution”. In: NeuroImage 233 (June 2021), p. 117952. URL: https:
//doi.org/10.1016/j.neuroimage.2021.117952 (cit. on pp. 59, 138).

[Moh+15] Siawoosh Mohammadi, Daniel Carey, Fred Dick, et al. “Whole-Brain In-vivo Mea-
surements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers”. In: Frontiers
in Neuroscience 9 (Nov. 2015). URL: https://doi.org/10.3389/fnins.2015.
00441 (cit. on p. 14).

[Mue43] Hans Mueller. “Memorandum on the polarization optics of the photoelastic shutter”.
In: Report of the OSRD project OEMsr-576 2 (1943) (cit. on p. 21).

162 Chapter 11 Bibliography

https://doi.org/10.21105/joss.03042
https://doi.org/10.3233/APC190017
https://doi.org/10.1098/rsif.2015.0734
https://doi.org/10.1098/rsif.2015.0734
http://publications.rwth-aachen.de/record/750948
https://juser.fz-juelich.de/record/155964
https://doi.org/10.1103/physrevx.10.021002
https://doi.org/10.1103/physrevx.10.021002
https://doi.org/10.1016/j.neuroimage.2021.117952
https://doi.org/10.1016/j.neuroimage.2021.117952
https://doi.org/10.3389/fnins.2015.00441
https://doi.org/10.3389/fnins.2015.00441

[Mur13] Kevin P. Murphy. Machine learning : a probabilistic perspective. MIT Press, 2013.
URL: https://mitpress.mit.edu/books/machine-learning-1 (cit. on p. 5).

[Reu+19] Jan André Reuter, Felix Matuschke, Miriam Menzel, et al. “FAConstructor: an
interactive tool for geometric modeling of nerve fiber architectures in the brain”.
In: International Journal of Computer Assisted Radiology and Surgery 14.11 (Aug.
2019), pp. 1881–1889. URL: https://doi.org/10.1007/s11548-019-02053-6
(cit. on pp. 7, 53).

[Sch+18a] Kurt G. Schilling, Vaibhav Janve, Yurui Gao, et al. “Histological validation of
diffusion MRI fiber orientation distributions and dispersion”. In: NeuroImage 165
(Jan. 2018), pp. 200–221. URL: https://doi.org/10.1016/j.neuroimage.
2017.10.046 (cit. on pp. 112, 136).

[Sch+21] Kurt G. Schilling, François Rheault, Laurent Petit, et al. “Tractography dissection
variability: What happens when 42 groups dissect 14 white matter bundles on
the same dataset?” In: NeuroImage 243 (Nov. 2021), p. 118502. URL: https:
//doi.org/10.1016/j.neuroimage.2021.118502 (cit. on p. 5).

[Sch+18b] Daniel Schmitz, Sascha E. A. Muenzing, Martin Schober, et al. “Derivation of
Fiber Orientations From Oblique Views Through Human Brain Sections in 3D-
Polarized Light Imaging”. In: Frontiers in Neuroanatomy 12 (Sept. 2018). URL:
https://doi.org/10.3389/fnana.2018.00075 (cit. on pp. 29, 74).

[She+12] Elaine H. Shen, Caroline C. Overly, and Allan R. Jones. “The Allen Human Brain
Atlas”. In: Trends in Neurosciences 35.12 (Dec. 2012), pp. 711–714. URL: https:
//doi.org/10.1016/j.tins.2012.09.005 (cit. on p. 5).

[Sti+15] Nikola Stikov, Jennifer S.W. Campbell, Thomas Stroh, et al. “In vivo histology of the
myelin g-ratio with magnetic resonance imaging”. In: NeuroImage 118 (Sept. 2015),
pp. 397–405. URL: https://doi.org/10.1016/j.neuroimage.2015.05.023
(cit. on p. 14).

[Sto52] G.G. Stokes. On the Composition and Resolution of Streams of Polarized Light
from Different Sources. Proceedings of the Cambridge Philosophical Society :
Mathematical and physical sciences. Printed at the Pitt Press by John W. Parker,
1852. URL: https://books.google.de/books?id=41VFGwAACAAJ (cit. on
p. 21).

[Tre19] Philippe Trempe. “Spherical k-Nearest Neighbors Interpolation”. In: CoRR abs/1910.00704
(2019). arXiv: 1910.00704. URL: http://arxiv.org/abs/1910.00704 (cit. on
p. 125).

[Wal+14] K.B. Walhovd, H. Johansen-Berg, and R.T. Káradóttir. “Unraveling the secrets
of white matter – Bridging the gap between cellular, animal and human imag-
ing studies”. In: Neuroscience 276 (2014). Secrets of the CNS White Matter,
pp. 2–13. URL: https://www.sciencedirect.com/science/article/pii/
S0306452214005430 (cit. on p. 14).

Literature 163

https://mitpress.mit.edu/books/machine-learning-1
https://doi.org/10.1007/s11548-019-02053-6
https://doi.org/10.1016/j.neuroimage.2017.10.046
https://doi.org/10.1016/j.neuroimage.2017.10.046
https://doi.org/10.1016/j.neuroimage.2021.118502
https://doi.org/10.1016/j.neuroimage.2021.118502
https://doi.org/10.3389/fnana.2018.00075
https://doi.org/10.1016/j.tins.2012.09.005
https://doi.org/10.1016/j.tins.2012.09.005
https://doi.org/10.1016/j.neuroimage.2015.05.023
https://books.google.de/books?id=41VFGwAACAAJ
https://arxiv.org/abs/1910.00704
http://arxiv.org/abs/1910.00704
https://www.sciencedirect.com/science/article/pii/S0306452214005430
https://www.sciencedirect.com/science/article/pii/S0306452214005430

[Wie16] Hendrik Wiese. “Enhancing the signal interpretation and microscopical hardware
concept of 3D Polarized Light Imaging”. Dissertation, Bergische Universität Wup-
pertal, 2016. Dissertation. Bergische Universität Wuppertal, 2016, 145 p. URL:
https://juser.fz-juelich.de/record/887678 (cit. on pp. 26, 28, 29, 31,
64, 107).

[Yen+21] Anastasia Yendiki, Manisha Aggarwal, Markus Axer, et al. “Post mortem mapping
of connectional anatomy for the validation of diffusion MRI”. In: (Apr. 2021). URL:
https://doi.org/10.1101/2021.04.16.440223 (cit. on p. 5).

Software

[@Ale20] Felix Matuschke Alexander Kobusch. fastPLI – Fiber Architecture Simulation
Toolbox for PLI with GPU acceleration. Version 1.0. https://jugit.fz-juelich.
de/a.kobusch/fastpli. 2019-2020 (cit. on p. 150).

[@Col13] Andrew Collette. Python and HDF5. O’Reilly, 2013 (cit. on p. 72).

[@Dag+98] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for
shared-memory programming”. In: Computational Science & Engineering, IEEE 5.1
(1998), pp. 46–55 (cit. on p. 73).

[@Dal+11] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. “Parallel
distributed computing using Python”. In: Advances in Water Resources 34.9 (Sept.
2011), pp. 1124–1139. URL: https://doi.org/10.1016/j.advwatres.2011.
04.013 (cit. on p. 72).

[@Dal+05] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. “MPI for Python”. In: Journal
of Parallel and Distributed Computing 65.9 (Sept. 2005), pp. 1108–1115. URL:
https://doi.org/10.1016/j.jpdc.2005.03.010 (cit. on p. 72).

[@Dal+08] Lisandro Dalcín, Rodrigo Paz, Mario Storti, and Jorge D’Elía. “MPI for Python:
Performance improvements and MPI-2 extensions”. In: Journal of Parallel and
Distributed Computing 68.5 (May 2008), pp. 655–662. URL: https://doi.org/
10.1016/j.jpdc.2007.09.005 (cit. on p. 72).

[@For15] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Ver-
sion 3.1 ; June 4, 2015. High-Performance Computing Center Stuttgart, University
of Stuttgart, 2015. URL: https://books.google.de/books?id=uv1ajwEACAAJ
(cit. on p. 73).

[@Fou20] Standard C++ Foundation. Standard C++ on the web — news, status and
discussion about the C++ standard on all compilers and platforms. 2020. URL:
https://isocpp.org/ (cit. on p. 53).

[@Jak+17] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – Seamless oper-
ability between C++11 and Python. https://github.com/pybind/pybind11.
2017 (cit. on p. 73).

164 Chapter 11 Bibliography

https://juser.fz-juelich.de/record/887678
https://doi.org/10.1101/2021.04.16.440223
https://jugit.fz-juelich.de/a.kobusch/fastpli
https://jugit.fz-juelich.de/a.kobusch/fastpli
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://books.google.de/books?id=uv1ajwEACAAJ
https://isocpp.org/
https://github.com/pybind/pybind11

[@Lam+15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba”. In: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC - LLVM ’15.
ACM Press, 2015. URL: https://doi.org/10.1145/2833157.2833162 (cit. on
p. 72).

[@Mat21] Felix Matuschke. fastPLI – Fiber Architecture Simulation Toolbox for PLI. Ver-
sion 1.1. https://github.com/3d-pli/fastpli. 2016-2021 (cit. on p. 71).

[@The97] The HDF Group. Hierarchical Data Format, version 5. http://www.hdfgroup.
org/HDF5/. 1997 (cit. on pp. 72, 75).

[@Vir+19] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, et al. “SciPy 1.0 – Fundamental
Algorithms for Scientific Computing in Python”. In: arXiv e-prints (July 2019).
arXiv: 1907.10121 [cs.MS] (cit. on p. 72).

[@Wik18] OpenGL Wiki. Main Page — OpenGL Wiki. [Online; accessed 8-January-2020].
2018. URL: http://www.khronos.org/opengl/wiki_opengl/index.php?
title=Main_Page&oldid=14430 (cit. on pp. 53, 73).

Software 165

https://doi.org/10.1145/2833157.2833162
https://github.com/3d-pli/fastpli
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://arxiv.org/abs/1907.10121
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Main_Page&oldid=14430
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Main_Page&oldid=14430

Abbreviations

3D-PLI 3D-Polarized Light Imaging5 f., 15, 25, 28, 30, 34, 38, 41, 59 f., 62, 64, 66, 68,
71, 74, 79, 84, 87, 99, 101, 105 f., 108, 110 ff., 114, 116 ff., 120, 122, 124, 126,
128, 130, 132, 134, 136, 138, 140 ff., 144, 149 ff., 153, 155 f.

AABB axis aligned bounding box 45, 47, 63, 144, 150

ACC angular correlation coefficient . 134

API application programming interface . 71, 79

CC conical capsule . 39, 45, 53

CCD charge-coupled device 25 f., 30, 65 ff., 107, 140, 153

CEA Alternative Energies and Atomic Energy Commission 37, 54, 153

CPU central processing unit 48, 52, 59, 63, 67 ff., 77, 91, 141–144, 150, 153

dMRI diffusion Magnetic Resonance Imaging . . 5, 11, 13, 37, 53, 71, 87, 101, 151

FAConstructor Fiber Architecture Constructor 53

fastPLI fiber architecture simulation toolbox for 3D-PLI 6, 35, 38, 44, 53, 71–74, 76,
78, 80, 105, 110 f., 153 f.

FOM fiber orientation map . 74

GM gray matter . 11 f., 29

GPU graphics processing unit 55, 104, 150, 156

HDF5 Hierarchical Data Format v5 . 74 f., 77

INM-1 Institute of Neuroscience and Medicine for structural and functional organisation
of the brain . 11, 25

JOSS Journal of Open Source Software 71, 79, 154, 156

LAP large-area polarimeter . 26, 64

167

LMP large metripol . 26, 107

LMP3D large metripol 3D . 26, 29, 59, 64

MEDUSA Microstructure Environment Designer with Unified Sphere Atoms54, 149 f.,
153

MOS metal oxide semiconductor . 26

MPI Message Passing Interface 59, 63, 67 ff., 141–144, 154, 156

ODF orientation distribution function 112, 134, 139 f., 156

OpenGL Open Graphics Library . 52

OpenMP Open Multi-Processing 52, 63, 68 f., 103, 141–144

RAM random access memory . 69, 77, 150

ROFL robust orientation fitting via least squares 29, 68, 74, 110, 153

ROI region of interest . 105

VOI volume of interest . 60, 63

WM white matter . 12, 29, 37 ff., 53 f., 71, 88

168 Chapter 11

Nomenclature

𝜇 absorption coefficient

acc-value angular correlation coefficient value

Δ𝑛 birefringence strength

ℱ0 first fiber population

ℱ1 second fiber population

(×) crossing fiber populations

(||) parallel fiber populations

𝜆 wavelength of the light

𝐼 light intensity

𝜃 crossing angle between the two nerve fiber populations ∡ℱ0, ℱ1

𝛼ℱ0
inclination of first nerve fiber population

Ψℱ0
model proportion fraction between ℱ0 and ℱ0 + ℱ1

𝑅ℱ1
rotation of second nerve fiber population around the first nerve fiber population

Ω opening angle of angular distributions

𝑔 gain factor of CCD-sensor

𝜎optic mathematical convolution parameter for applying camera resolution to the simu-
lated image

ps size of a pixel in µm

𝑟𝑓 Nerve fiber radius

𝜇𝑟𝑓
𝜇-value inside gaussian distribution to generate random nerve fiber radii

̅𝑟𝑓 mean nerve fiber radius along the fiber

169

𝜎𝑟𝑓
𝜎-value inside gaussian distribution to generate random nerve fiber radii

𝜑 direction

𝛼 inclination

R-value R-value of the ROFL fit result

seg𝐿 mean segment length for nerve fibers in modeling process

𝜈𝑙 relative segment length factor

seg𝑅 minimal segment bending radius for nerve fibers in modeling process

𝜈𝑟 relative minimal segment bending radius factor

ss length of light step in vx

𝑡rel effecive birefringence thickness

vs size of voxel in µm

170 Chapter 11

Part V

Appendices

Modeling
A

175

10
2

10
3

10
2

10
3

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠
̅𝑟𝑓 =

0.5µm
,Ψ

ℱ
0

=
1.0

10
2

10
3

10
0

10
3

10
6

𝑡/𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
2

10
3

10
−

2

𝑡/𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
2

10
3

10
5

10
5.5

𝑡/𝑠

#𝑜𝑏𝑗

10
2

10
3

10
1

10
2

10
s

1
m

in

𝑠𝑡𝑒𝑝𝑠

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟𝑓 =
0.5µm

,Ψ
ℱ

0
=

0.5

10
2

10
3

10
4

10
5

10
1

10
4

10
7

𝑡/𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
2

10
3

10
4

10
5

10
−

2

10
−

1

𝑡/𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
2

10
3

10
4

10
5

10
5

10
5.5

𝑡/𝑠

#𝑜𝑏𝑗

10
2

10
3

10
4

10
5

10
1

10
2

10
s

1
m

in

𝑠𝑡𝑒𝑝𝑠

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

Fig.A
.1.:

Tim
e

evolution
ofthe

m
odelbuilding

process
ofparalleland

crossing
fiberpopulations

with
̅𝑟𝑓 =

0.5µm
.

Errorbars
indicate

25%
and

75%
quantiles

(see
section

8.3.1).

176 Appendix A Modeling

10
1

10
2

10
2

10
3

𝑡/
𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟 𝑓
=

1.
0µ

m
,Ψ

ℱ
0

=
1.

0

10
1

10
2

10
0

10
3

10
6

𝑡/
𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
1

10
2

10
−

3

10
−

2

𝑡/
𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
1

10
2

10
4

10
4.

5

𝑡/
𝑠

#𝑜𝑏𝑗

10
2

10
3

10
0

10
1

1
s

10
s

𝑠𝑡
𝑒𝑝

𝑠

Δ𝑡/s

𝜈 𝑟
=

1,
𝜈 𝑙

=
1

𝜈 𝑟
=

1,
𝜈 𝑙

=
2

𝜈 𝑟
=

1,
𝜈 𝑙

=
4

𝜈 𝑟
=

1,
𝜈 𝑙

=
8

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

8
𝜈 𝑟

=
8

𝜈 𝑟
=

8
𝜈 𝑟

=
8

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

𝑡/
𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟 𝑓
=

1.
0µ

m
,Ψ

ℱ
0

=
0.

5

10
1

10
2

10
3

10
4

10
0

10
3

10
6

𝑡/
𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
1

10
2

10
3

10
4

10
−

2

10
−

1

𝑡/
𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
1

10
2

10
3

10
4

10
4

10
5

𝑡/
𝑠

#𝑜𝑏𝑗

10
2

10
3

10
4

10
5

10
0

10
1

1
s

10
s

𝑠𝑡
𝑒𝑝

𝑠

Δ𝑡/s
𝜈 𝑟

=
1,

𝜈 𝑙
=

1
𝜈 𝑟

=
1,

𝜈 𝑙
=

2
𝜈 𝑟

=
1,

𝜈 𝑙
=

4
𝜈 𝑟

=
1,

𝜈 𝑙
=

8
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
8

𝜈 𝑟
=

8
𝜈 𝑟

=
8

𝜈 𝑟
=

8

Fi
g.

A
.2

.:
Ti

m
e

ev
ol

ut
io

n
of

th
e

m
od

el
bu

ild
in

g
pr

oc
es

s
of

pa
ra

lle
la

nd
cr

os
sin

g
fib

er
po

pu
la

tio
ns

wi
th

̅𝑟 𝑓
=

1.
0µ

m
.

Er
ro

rb
ar

s
in

di
ca

te
25

%
an

d
75

%
qu

an
til

es
(s

ee
se

ct
io

n
8.

3.
1)

.

177

10
0

10
1

10
2

10
2.5

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠
̅𝑟𝑓 =

2.0µm
,Ψ

ℱ
0

=
1.0

10
−

0.8
10

−
0.6

10
−

0.4
10

−
0.2

10
0

10
0.2

10
0.4

10
0.6

10
0.8

10
0

10
2

10
4

𝑡/𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
−

0.8
10

−
0.6

10
−

0.4
10

−
0.2

10
0

10
0.2

10
0.4

10
0.6

10
0.8

10
−

2

𝑡/𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
0

10
1

10
3

10
4

𝑡/𝑠

#𝑜𝑏𝑗

10
1.7

10
1.8

10
1.9

10
2

10
2.1

10
2.2

10
2.3

10
2.4

10
2.5

10
2.6

10
−

1

10
0

1
s

𝑠𝑡𝑒𝑝𝑠

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

10
−

1
10

0
10

1
10

2
10

3

10
2

10
3

10
4

10
5

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟𝑓 =
2.0µm

,Ψ
ℱ

0
=

0.5

10
−

1
10

0
10

1
10

2
10

3

10
0

10
2

10
4

𝑡/𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
−

1
10

0
10

1
10

2
10

3

10
−

4

10
−

2

𝑡/𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
−

1
10

0
10

1
10

2
10

3

10
3

10
4

𝑡/𝑠

#𝑜𝑏𝑗

10
2

10
3

10
4

10
5

10
−

1

10
0

1
s

𝑠𝑡𝑒𝑝𝑠

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

Fig.A
.3.:

Tim
e

evolution
ofthe

m
odelbuilding

process
ofparalleland

crossing
fiberpopulations

with
̅𝑟𝑓 =

2.0µm
.

Errorbars
indicate

25%
and

75%
quantiles

(see
section

8.3.1).

178 Appendix A Modeling

10
−

2
10

−
1

10
1.

6

10
1.

8

𝑡/
𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟 𝑓
=

5.
0µ

m
,Ψ

ℱ
0

=
1.

0

10
−

2.
3

10
−

2.
2

10
−

2.
1

10
−

2
10

−
1.

9
10

−
1.

8

10
0

10
1

𝑡/
𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
−

2.
3

10
−

2.
2

10
−

2.
1

10
−

2
10

−
1.

9
10

−
1.

8

10
−

2.
5

10
−

2

𝑡/
𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
−

2
10

−
1

10
2

10
2.

5

𝑡/
𝑠

#𝑜𝑏𝑗

10
1.

58
10

1.
6

10
1.

62
10

1.
64

10
1.

66
10

1.
68

10
1.

7

10
−

2

𝑠𝑡
𝑒𝑝

𝑠

Δ𝑡/s

𝜈 𝑟
=

1,
𝜈 𝑙

=
1

𝜈 𝑟
=

1,
𝜈 𝑙

=
2

𝜈 𝑟
=

1,
𝜈 𝑙

=
4

𝜈 𝑟
=

1,
𝜈 𝑙

=
8

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

8
𝜈 𝑟

=
8

𝜈 𝑟
=

8
𝜈 𝑟

=
8

10
−

2
10

−
1

10
0

10
1

10
2

10
2

10
3

10
4

10
5

𝑡/
𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟 𝑓
=

5.
0µ

m
,Ψ

ℱ
0

=
0.

5

10
−

2
10

−
1

10
0

10
1

10
2

10
0

10
1

10
2

𝑡/
𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
−

2
10

−
1

10
0

10
1

10
2

10
−

4

10
−

2

𝑡/
𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
−

2
10

−
1

10
0

10
1

10
2

10
2

10
2.

5

𝑡/
𝑠

#𝑜𝑏𝑗

10
2

10
3

10
4

10
5

10
−

2

10
−

1

𝑠𝑡
𝑒𝑝

𝑠

Δ𝑡/s
𝜈 𝑟

=
1,

𝜈 𝑙
=

1
𝜈 𝑟

=
1,

𝜈 𝑙
=

2
𝜈 𝑟

=
1,

𝜈 𝑙
=

4
𝜈 𝑟

=
1,

𝜈 𝑙
=

8
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
2

𝜈 𝑟
=

2
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
4

𝜈 𝑟
=

4
𝜈 𝑟

=
8

𝜈 𝑟
=

8
𝜈 𝑟

=
8

𝜈 𝑟
=

8

Fi
g.

A
.4

.:
Ti

m
e

ev
ol

ut
io

n
of

th
e

m
od

el
bu

ild
in

g
pr

oc
es

s
of

pa
ra

lle
la

nd
cr

os
sin

g
fib

er
po

pu
la

tio
ns

wi
th

̅𝑟 𝑓
=

5.
0µ

m
.

Er
ro

rb
ar

s
in

di
ca

te
25

%
an

d
75

%
qu

an
til

es
(s

ee
se

ct
io

n
8.

3.
1)

.

179

10
−

3.1
10

−
3

10
−

2.9
10

−
2.8

10
−

2.7
10

−
2.6

10
−

2.5
10

−
2.4

10
−

2.3

10
1

10
1.2

10
1.4

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠
̅𝑟𝑓 =

10.0µm
,Ψ

ℱ
0

=
1.0

10
0

10
0.05

10
0.1

10
0.15

10
0.2

10
0.25

10
0.3

10
0.35

10
0.4

10
0.45

10
0

10
0.2

10
0.4

#𝑐𝑜𝑙𝑜𝑏𝑗

10
0

10
0.05

10
0.1

10
0.15

10
0.2

10
0.25

10
0.3

10
0.35

10
0.4

10
0.45

10
0

10
0.2

10
0.4

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
−

3.1
10

−
3

10
−

2.9
10

−
2.8

10
−

2.7
10

−
2.6

10
−

2.5
10

−
2.4

10
−

2.3
10

1

10
1.5

𝑡/𝑠

#𝑜𝑏𝑗

10
0

10
0.05

10
0.1

10
0.15

10
0.2

10
0.25

10
0.3

10
0.35

10
0.4

10
0.45

10
0

10
0.2

10
0.4

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

10
−

3
10

−
2

10
−

1
10

0

10
2

10
3

10
4

𝑡/𝑠

#𝑠𝑡𝑒𝑝𝑠

̅𝑟𝑓 =
10.0µm

,Ψ
ℱ

0
=

0.5

10
−

3
10

−
2

10
−

1

10
0

10
1

𝑡/𝑠

#𝑐𝑜𝑙𝑜𝑏𝑗

10
−

3
10

−
2

10
−

1

10
−

4

10
−

2

𝑡/𝑠

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑓𝑟𝑎𝑐

10
−

3
10

−
2

10
−

1
10

0
10

1

10
2

𝑡/𝑠

#𝑜𝑏𝑗

10
2

10
3

10
−

2.5

10
−

2

𝑠𝑡𝑒𝑝𝑠

Δ𝑡/s

𝜈
𝑟

=
1,𝜈

𝑙 =
1

𝜈
𝑟

=
1,𝜈

𝑙 =
2

𝜈
𝑟

=
1,𝜈

𝑙 =
4

𝜈
𝑟

=
1,𝜈

𝑙 =
8

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
2

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
4

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

𝜈
𝑟

=
8

Fig.A
.5.:

Tim
e

evolution
ofthe

m
odelbuilding

process
ofparalleland

crossing
fiberpopulations

with
̅𝑟𝑓 =

10.0µm
.

Errorbars
indicate

25%
and

75%
quantiles

(see
section

8.3.1).

180 Appendix A Modeling

0.4

0.6

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

̅𝑟 𝑓
=

0.
5µ

m

0.4

0.6

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

̅𝑟 𝑓
=

1.
0µ

m

0.4

0.6

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

̅𝑟 𝑓
=

2.
0µ

m

0.4

0.6

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

̅𝑟 𝑓
=

5.
0µ

m

0.4

0.6

0.8

1 2 4 8 𝜈𝑙

𝑉𝑓/𝑉0

̅𝑟 𝑓
=

10
.0

µm

𝜈𝑟 = 1.0, || 𝜈𝑟 = 2.0, || 𝜈𝑟 = 4.0, || 𝜈𝑟 = 8.0, ||
𝜈𝑟 = 1.0, × 𝜈𝑟 = 2.0, × 𝜈𝑟 = 4.0, × 𝜈𝑟 = 8.0, ×

Fig. A.6.: Volume fractions 𝑉𝑓/𝑉0 for parallel (||) and crossing (×) fiber populations of different
relative fiber segment lengths 𝜈𝑙 and relative fiber bending radii 𝜈𝑟 and multiple
mean fiber radii ̅𝑟𝑓. (see section 8.3.1).

181

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 10.0%

θ
=

0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 20.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 30.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 40.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 50.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 60.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 70.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 80.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

ΨF0
= 90.0%

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

1
0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

2
0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

3
0
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

40
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

50
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

60
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

70
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

80
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

θ
=

90
.0

°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0
°

270°

30°60°

45°135°

225° 315°

0 log(pdf + 1)

Fig. A.7.: Density distribution of fiber segment orientation in the simulation models. The
value of the segments is weighted according to the area on a spherical surface and
normalized so that the integral over one hemisphere is 1. The dashed white line
indicates the orientation of the two fiber populations. (see section 8.4.1).

182 Appendix A Modeling

−90°

0°

90°

180°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

𝜑 0
ℱ0

−90°

0°

90°

180°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

𝜑 1

ℱ1

−90°

0°

90°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

𝛼 0

−90°

0°

90°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

𝛼 1

0°

30°

60°

90°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

Ω
0

0°

30°

60°

90°

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 𝜃

Ω
1

Ψℱ0
= 10 % Ψℱ0

= 30 % Ψℱ0
= 50 % Ψℱ0

= 70 % Ψℱ0
= 90 %

Ψℱ0
= 20 % Ψℱ0

= 40 % Ψℱ0
= 60 % Ψℱ0

= 80 %

Fig. A.8.: Direction 𝜑, inclination 𝛼 and opening angle Ω distribution of the model library (see
section 8.4.1).

183

Ω
=

0
°

Ψ = 10% Ψ = 20% Ψ = 30% Ψ = 40% Ψ = 50% Ψ = 60% Ψ = 70% Ψ = 80% Ψ = 90%

Ω
=

10
°

Ω
=

20
°

Ω
=

30
°

Ω
=

40
°

Ω
=

50
°

Ω
=

60
°

Ω
=

70
°

Ω
=

80
°

Ω
=

9
0
°

Fig. A.9.: D: Simulation model library. The inner 10 µm × 10 µm × 10 µm of the volume is
shown (see section 8.4.1).

184 Appendix A Modeling

Tab. A.1.: Orientation statistic of simulation model library (see section 8.4.1).

Ω Ψ pop. < 𝛼 > 𝜎(𝛼) 25(𝛼) 50(𝛼) 75(𝛼) < 𝜑 > 𝜎(𝜑) 25(𝜑) 50(𝜑) 75(𝜑) < Ω > 𝜎(Ω) 25(Ω) 50(Ω) 75(Ω)
° % ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

30 30 0 0 16 −10 0 10 −1 16 −11 −1 9 20 11 11 18 26
30 30 1 0 15 −9 0 9 30 13 22 31 38 17 11 9 15 23
30 60 0 0 16 −10 0 10 0 14 −9 −1 8 18 11 10 16 24
30 60 1 0 16 −10 0 10 31 16 21 31 40 19 11 11 17 26
30 90 0 0 12 −6 0 6 0 11 −6 0 6 13 9 6 10 17
30 90 1 0 15 −9 0 9 32 18 20 31 42 20 12 11 18 27
60 30 0 0 18 −11 0 11 −1 16 −9 −1 7 20 13 11 17 27
60 30 1 0 17 −10 0 9 60 13 53 60 67 18 13 9 15 24
60 60 0 0 18 −10 0 10 0 14 −8 −1 7 18 13 9 15 24
60 60 1 0 19 −11 0 11 60 16 53 61 69 20 13 10 17 27
60 90 0 0 14 −7 0 7 0 11 −6 0 5 14 11 7 11 18
60 90 1 0 18 −12 0 12 61 18 52 62 72 21 13 12 19 29
90 30 0 0 19 −12 0 12 0 16 −8 0 8 20 14 10 17 27
90 30 1 0 18 −10 0 10 90 13 84 90 96 18 13 8 14 24
90 60 0 0 19 −10 0 10 0 14 −7 0 7 18 14 9 15 25
90 60 1 0 19 −11 0 11 90 16 82 90 98 20 14 10 17 27
90 90 0 0 16 −8 0 8 0 10 −5 0 5 14 11 6 11 19
90 90 1 0 19 −12 0 12 90 19 81 90 100 22 14 12 19 29

185

Simulation
B

187

0 2,125 4,250

a.
u. 1,000 2,000 3,000 4,000 5,000

transmittance / a.u.

re
l.

co
un

t

(a) Transmittance. (b) Transmittance histogram.

0 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1

retardation

re
l.

co
un

t

(c) Retardation. (d) Retardation histogram.

Fig. B.1.: Transmittance and retardation map of coronal section of a mouse (Brain id: PE-2020-
00660-M, section: 127). The absorption coefficient and birefringence is estimated
from the measurements in the corpus callosum (see section 9.2.1).

188 Appendix B Simulation

0 1,300 2,600 3,900 5,200

a.
u. 200 400 600 800 1,000

transmittance / a.u.
re

l.
co

un
t

(a) Transmittance. (b) Transmittance histogram.

0 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1

retardation

re
l.

co
un

t

(c) Retardation. (d) Retardation histogram.

Fig. B.2.: Transmittance and retardation map of coronal section of the right hemisphere human
coronal brain section (Brain id: PE-2011-00181-H, section 1006). The absorption
coefficient and birefringence is estimated from the measurements in the corpus
callosum (see section 9.2.1).

189

10−2

10−1

(||), αF0
= 0°

0.5 1 2 5 10 < rf >

m
ea
n
(|I

−
I r

ef
|/
I r

ef
)

10−2

10−1

(||), αF0
= 90°

0.5 1 2 5 10 < rf >

m
ea
n
(|I

−
I r

ef
|/
I r

ef
)

10−2

10−1

(×), αF0
= 0°

0.5 1 2 5 10 < rf >

m
ea
n
(|I

−
I r

ef
|/
I r

ef
)

10−2

10−1

(×), αF0
= 90°

0.5 1 2 5 10 < rf >

m
ea
n
(|I

−
I r

ef
|/
I r

ef
)

vs = 0.025 µm vs = 0.1 µm vs = 0.65 µm
vs = 0.05 µm vs = 0.26 µm vs = 1.3 µm

Fig. B.3.: Comparison of the simulation results with different mean fiber radii ̅𝑟𝑓, voxel sizes vs
and fiber configurations. (see section 9.2.4).

190 Appendix B Simulation

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

0
°

m
od

el
si

m
ul

at
io

n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

5
°

m
od

el
si

m
ul

at
io

n

0°

9
0

°
180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°
2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

1
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

1
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

2
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°
2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

2
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

3
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°
2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

3
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

4
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

4
5

°
m

od
el

si
m

ul
at

io
n

si
ng

le
fib

er
po

p.

0
lo
g
(p
d
f
+

1
)

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

5
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

5
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

6
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

6
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

7
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

7
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

8
0

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

8
5

°
m

od
el

si
m

ul
at

io
n

0°

9
0

°

180°
2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

0°

9
0

°

180°

2
7
0

°

3
0

°
6
0

°

4
5

°
1
3
5

°

2
2
5

°
3
1
5

°

α
F
0
=

9
0

°
m

od
el

si
m

ul
at

io
n

si
ng

le
fib

er
po

p.

0
lo
g
(p
d
f
+

1
)

Fig. B.4.: Single fiber population orientation histograms of the initial fiber model and the
simulation results (see section 9.3.2).

191

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 10%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 20%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 30%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 40%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 50%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 60%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 70%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 80%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 90%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

flat crossing fiber pop., ΨF0 = 10%

0 log(pdf + 1)

Fig. B.5.: Flat crossing fiber population (see section 9.3.3).

192 Appendix B Simulation

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0
.6

0
.7

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

0
°

5
0
°

1
0
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
1
0
°

0
°

1
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0
.4

0
.5

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

1

1
.52

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

5
°

1
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.9
6

0
.9
7

0
.9
8

0
.9
91

θ

ac
c

fla
t

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

10
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

0
°

5
0
°

1
0
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
2
0
°

0
°

2
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0
.3

0
.4

0
.5

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

0
.51

1
.52

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

1
0
°

2
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.8
5

0
.9

0
.9
51

θ

ac
c

fla
t

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

20
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fi
g.

B
.6

.:
Fl

at
cr

os
sin

g
fib

er
po

pu
la

tio
n.

Re
su

lts
of

th
e

sim
ul

at
io

n
an

al
ys

is
wi

th
co

m
pa

ris
on

of
th

e
fib

er
m

od
els

or
ien

ta
tio

ns
(s

ee
se

ct
io

n
9.

3.
3)

.

193

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

0°

5
0°

1
0
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
2
0° 0°

2
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

0
.5 1

1
.5 2

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

1
0°

2
0°

3
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.7

0
.8

0
.9 1

θ

acc

flat
crossing

fiber
pop.,

Ψ
F

0
=

30
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0°
3
0°

6
0°

9
0°

9
5
0

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

0°

5
0°

1
0
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
5
0° 0°

5
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

0
.5 1

1
.5 2

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

2
0°

4
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.4

0
.6

0
.8 1

θ

acc

flat
crossing

fiber
pop.,

Ψ
F

0
=

4
0
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fig.B
.7.:

Flat
crossing

fiberpopulation.
Results

ofthe
sim

ulation
analysis

with
com

parison
ofthe

fiberm
odels

orientations
(see

section
9.3.3).

194 Appendix B Simulation

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

−
5
0
°

0
°

5
0
°

1
0
0
°

1
5
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
1
0
0
°

−
5
0
°

0
°

5
0
°

1
0
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

012

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

0
.51

1
.52

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

5
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0

0
.51

θ

ac
c

fla
t

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

50
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0
°

3
0
°

6
0
°

9
0
°

9
5
0

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

0
°

2
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
5
0
°

0
°

5
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

0
.51

1
.52

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

2
0
°

4
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.4

0
.6

0
.81

θ

ac
c

fla
t

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

60
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fi
g.

B
.8

.:
Fl

at
cr

os
sin

g
fib

er
po

pu
la

tio
n.

Re
su

lts
of

th
e

sim
ul

at
io

n
an

al
ys

is
wi

th
co

m
pa

ris
on

of
th

e
fib

er
m

od
els

or
ien

ta
tio

ns
(s

ee
se

ct
io

n
9.

3.
3)

.

195

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

−
1
0° 0°

1
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
2
0° 0°

2
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

1

1
.5 2

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

1
0°

2
0°

3
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.7

0
.8

0
.9 1

θ

acc

flat
crossing

fiber
pop.,

Ψ
F

0
=

70
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0°
3
0°

6
0°

9
0°

9
5
0

1
,0
0
0

1
,0
5
0

1
,1
0
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

0° 5°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
2
0°

−
1
0° 0°

1
0°

2
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.3

0
.4

0
.5

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

0
.5 1

1
.5 2

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0° 5°

1
0°

1
5°

2
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.9

0
.9
5 1

θ

acc

flat
crossing

fiber
pop.,

Ψ
F

0
=

80
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fig.B
.9.:

Flat
crossing

fiberpopulation.
Results

ofthe
sim

ulation
analysis

with
com

parison
ofthe

fiberm
odels

orientations
(see

section
9.3.3).

196 Appendix B Simulation

0° 30° 60° 90°

1,000

1,050

1,100

θ

transmittance / a.u.

0° 30° 60° 90°

0.6

0.7

0.8

θ

retardation

0° 30° 60° 90°

0°

5°

θ

direction ϕ

0° 30° 60° 90°

−10°

0°

10°

θ

inclination α

0° 30° 60° 90°
0.4

0.5

0.6

θ

trel

0° 30° 60° 90°
0.5

1

1.5

2

·10−2

θ

R

0° 30° 60° 90°
0°

5°

10°

θ

Ω

0° 30° 60° 90°
0.96

0.97

0.98

0.99

1

θ

acc

flat crossing fiber pop., ΨF0 = 90%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. B.10.: Flat crossing fiber population. Results of the simulation analysis with comparison
of the fiber models orientations (see section 9.3.3).

197

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 10%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 20%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 30%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 40%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°
90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation
0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 50%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 60%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 70%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°
1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 80%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 90%

0 log(pdf + 1)

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 0°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 30°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 60°model simulation

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

0°

90°

1
8
0

°

270°

30°60°

45°135°

225° 315°

θ = 90°model simulation

inclined crossing fiber pop., ΨF0 = 10%

0 log(pdf + 1)

Fig. B.11.: Inclined crossing fiber population (see section 9.3.4).

198 Appendix B Simulation

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

−
1
0
0
°

−
5
0
°

0
°

5
0
°

1
0
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
1
0
0
°

−
5
0
°

0
°

5
0
°

1
0
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

01234

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

12

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

5
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.7

0
.8

0
.91

θ

ac
c

in
cl

in
ed

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

10
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

−
2
0
°

−
1
0
°

0
°

1
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
5
0
°

0
°

5
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0

0
.2

0
.4

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

123

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

2
0
°

4
0
°

6
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0

0
.51

θ

ac
c

in
cl

in
ed

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

20
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fi
g.

B
.1

2.
:

Po
pu

la
tio

n
of

in
cli

ne
d

cr
os

sin
g

fib
er

s.
Re

su
lts

of
th

e
sim

ul
at

io
n

an
al

ys
is

wi
th

co
m

pa
ris

on
of

th
e

fib
er

m
od

els
or

ien
ta

tio
ns

(s
ee

se
ct

io
n

9.
3.

4)
.

199

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

−
2
0°

−
1
0° 0°

1
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
5
0° 0°

5
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

2 4

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

2
0°

4
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0

0
.5 1

θ

acc

inclined
crossing

fiber
pop.,

Ψ
F

0
=

30
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

−
1
0° 0°

1
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
5
0° 0°

5
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

2 4

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

2
0°

4
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.5 1

θ

acc

inclined
crossing

fiber
pop.,

Ψ
F

0
=

40
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fig.B
.13.:

Population
ofinclined

crossing
fibers.

Results
ofthe

sim
ulation

analysis
with

com
parison

ofthe
fiberm

odels
orientations

(see
section

9.3.4).

200 Appendix B Simulation

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

−
1
0
°

0
°

1
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
2
0
°

0
°

2
0
°

4
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

246
·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

1
0
°

2
0
°

3
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

0
.81

θ

ac
c

in
cl

in
ed

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

50
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0
°

3
0
°

6
0
°

9
0
°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

tr
an

sm
itt

an
ce

/
a.
u
.

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

0
.8

θ

re
ta

rd
at

io
n

0
°

3
0
°

6
0
°

9
0
°

−
1
0
°

0
°

1
0
°

θ

di
re

ct
io

n
ϕ

0
°

3
0
°

6
0
°

9
0
°

−
2
0
°

0
°

2
0
°

4
0
°

θ

in
cl

in
at

io
n
α

0
°

3
0
°

6
0
°

9
0
°

0
.2

0
.4

0
.6

θ

t r
e
l

0
°

3
0
°

6
0
°

9
0
°

24

·1
0
−
2

θ

R

0
°

3
0
°

6
0
°

9
0
°

0
°

1
0
°

2
0
°

θ

Ω

0
°

3
0
°

6
0
°

9
0
°

0
.6

0
.81

θ

ac
c

in
cl

in
ed

cr
os

sin
g

fib
er

po
p.

,Ψ
F

0
=

60
%

po
p

or
ie

nt
at

io
n

th
eo

re
tic

al
m

od
el

m
ed

ia
n

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fi
g.

B
.1

4.
:

Po
pu

la
tio

n
of

in
cli

ne
d

cr
os

sin
g

fib
er

s.
Re

su
lts

of
th

e
sim

ul
at

io
n

an
al

ys
is

wi
th

co
m

pa
ris

on
of

th
e

fib
er

m
od

els
or

ien
ta

tio
ns

(s
ee

se
ct

io
n

9.
3.

4)
.

201

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

−
1
0° 0°

1
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
2
0° 0°

2
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

2 4

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

1
0°

2
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.7

0
.8

0
.9 1

θ

acc

inclined
crossing

fiber
pop.,

Ψ
F

0
=

70
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

0°
3
0°

6
0°

9
0°

1
,0
0
0

1
,0
5
0

1
,1
0
0

1
,1
5
0

θ

transm
ittance

/
a.u

.

0°
3
0°

6
0°

9
0°

0
.4

0
.6

0
.8

θ

retardation

0°
3
0°

6
0°

9
0°

−
1
0° 0°

1
0°

θ

direction
ϕ

0°
3
0°

6
0°

9
0°

−
2
0° 0°

2
0°

θ

inclination
α

0°
3
0°

6
0°

9
0°

0
.2

0
.4

0
.6

θ

t
re
l

0°
3
0°

6
0°

9
0°

2 4 6

·1
0
−
2

θ

R

0°
3
0°

6
0°

9
0°

0°

1
0°

2
0°

3
0°

θ

Ω

0°
3
0°

6
0°

9
0°

0
.9

0
.9
5 1

θ

acc

inclined
crossing

fiber
pop.,

Ψ
F

0
=

80
%

pop
orientation

theoretical
m

odelm
edian

F
0
σ
7
5
%

2
5
%

F
1
σ
7
5
%

2
5
%

Fig.B
.15.:

Population
ofinclined

crossing
fibers.

Results
ofthe

sim
ulation

analysis
with

com
parison

ofthe
fiberm

odels
orientations

(see
section

9.3.4).

202 Appendix B Simulation

0° 30° 60° 90°

1,000

1,050

1,100

1,150

θ

transmittance / a.u.

0° 30° 60° 90°

0.4

0.6

0.8

θ

retardation

0° 30° 60° 90°

−10°

0°

10°

θ

direction ϕ

0° 30° 60° 90°

−20°

0°

20°

θ

inclination α

0° 30° 60° 90°

0.3

0.4

0.5

0.6

θ

trel

0° 30° 60° 90°

2

4

6

·10−2

θ

R

0° 30° 60° 90°
0°

10°

20°

θ

Ω

0° 30° 60° 90°

0.96

0.98

1

θ

acc

inclined crossing fiber pop., ΨF0
= 90%

pop orientation theoretical model median F0 σ75%
25% F1 σ75%

25%

Fig. B.16.: Population of inclined crossing fibers. Results of the simulation analysis with
comparison of the fiber models orientations (see section 9.3.4).

203

Declaration

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzuläs-
sige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher
Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.

Ort, Datum Felix Matuschke

206 Appendix B

	Cover
	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	I Basics
	2 Neuroanatomy
	2.1 Introduction
	2.2 Brain Architecture
	2.3 Nerve Fiber Architecture
	2.4 Axon Dimensions

	3 Modeling of Light
	3.1 Introduction
	3.2 Electromagnetic Waves
	3.2.1 Light in vacuum
	3.2.2 Solving Maxwell's equations in vacuum
	3.2.3 Polarization
	3.2.4 Absorption
	3.2.5 Refraction
	3.2.6 Birefringence
	3.2.7 Jones calculus
	3.2.8 Müller-Stokes calculus

	4 3D Polarized Light Imaging
	4.1 Introduction
	4.2 Brain Tissue Preparation and Sectioning
	4.3 Experimental Setup
	4.4 Intensity Signal
	4.5 Tilting Analysis
	4.6 Optical Resolution

	II Software Implementation
	5 Dense Nerve Fiber Modeling
	5.1 Nerve Fiber Representation
	5.2 Sandbox
	5.2.1 Seeding fiber bundles
	5.2.2 Populating fiber bundles
	5.2.3 Cube models
	5.2.4 Cylindrical models

	5.3 Solving Fiber Collisions
	5.3.1 Solver main function
	5.3.2 Collision detection
	5.3.3 Octree
	5.3.4 Separation phase

	5.4 Shape Control
	5.4.1 Mean segment length
	5.4.2 Bending radius
	5.4.3 Movement phase
	5.4.4 Optimization and parallelization

	5.5 Visualization
	5.5.1 Transparent objects and cells

	5.6 Sphered Nerve and Cell Modeling
	5.6.1 Algorithm

	6 3D-PLI Simulation
	6.1 Discrete Volume Generator
	6.1.1 Nerve fiber layers
	6.1.2 Discretization of a nerve fiber model
	6.1.3 voxel_size
	6.1.4 Code optimizations

	6.2 Light Matter Simulation
	6.2.1 Light ray path
	6.2.2 Tissue voxel interpolation
	6.2.3 Simulation of light matter interaction
	6.2.4 Optical system and signal analysis

	6.3 Speedup Strategies
	6.3.1 Code design
	6.3.2 MPI parallelization

	7 fastPLI
	7.1 Introduction
	7.2 fastPLI Toolbox
	7.2.1 Dependencies
	7.2.2 Installation
	7.2.3 Tests, verification and issue tracking

	7.3 Modules
	7.3.1 fastpli.analysis
	7.3.2 fastpli.io
	7.3.3 fastpli.model.sandbox
	7.3.4 fastpli.model.solver
	7.3.5 fastpli.objects
	7.3.6 fastpli.simulation
	7.3.7 fastpli.tools

	7.4 Computational Speedup Techniques
	7.5 Documentation

	III Software Application and Evaluation
	8 Dense Nerve Fiber Modeling
	8.1 Introduction
	8.2 Designing Fiber Populations
	8.2.1 Orientation and proportion
	8.2.2 Fiber placement

	8.3 Software Parameters Characterization
	8.3.1 Results
	8.3.2 Discussion

	8.4 Nerve Fiber Model Library for 3D-PLI Simulations
	8.4.1 Results
	8.4.2 Discussion

	8.5 Multicore CPU Acceleration
	8.5.1 Results
	8.5.2 Discussion

	9 3D-PLI Simulation
	9.1 Introduction
	9.2 Parameter Characterization
	9.2.1 Tissue
	9.2.2 Optical resolution
	9.2.3 Sensor gain and signal noise
	9.2.4 voxel_size

	9.3 Simulation
	9.3.1 Setup
	9.3.2 Single fiber population
	9.3.3 Flat crossing fiber populations
	9.3.4 Inclined crossing fibers population
	9.3.5 Free crossing fiber populations

	9.4 Discussion
	9.5 Speedup
	9.5.1 Results
	9.5.2 Discussion

	IV Closing Remarks
	10 What is Next?
	11 Conclusion
	Bibliography

	V Appendices
	A Modeling
	B Simulation

