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SUMMARY 
The RAS GTPases superfamily manifests several roles in diverse cellular processes such 
as proliferation, differentiation, trafficking, adhesion, and migration. RAS GTPases cycle 
between being GDP bound (inactive state) and GTP bound (active state), which is regulated 
by two classes of proteins – GAPs and GEFs – which accelerate the slow intrinsic GTP 
hydrolysis and promote the slow intrinsic nucleotide exchange rates, respectively. Activated 
RAS GTPases associate with their downstream effectors to wind up their cellular functions, 
and perturbation in their functions is often reported in cancer and developmental disorders, 
so-called RASopathies. Novel mutations in ARF3 GTPases were identified in patients 
suffering from different levels of neurodegeneration. Our structural-functional analyses of 
ARF3 variants indicated that their nucleotide exchange rates had increased drastically. We 
were able to prove that the discovered variants are located in the nucleotide-binding pocket, 
which interferes with the protein functions by stabilizing the protein in GTP-bound form, and 
subsequently disturbs the Golgi integrity. The HRAS germline mutations, in particular 
Gly12Ser substitution, lead to the constitutively active forms of HRAS and are associated 
with Costello syndrome, a complex developmental disorder. It was already known that 
active HRAS interacts with RIN1 and enhances the RAB5 GTPases activation, as well as 
ABL1/2 tyrosine kinases, which are signaling modulators in endosomal sorting and 
cytoskeletal dynamics processes. In our study, we discovered that HRAS Gly12Ser 
elevates the RIN1-dependent RAB5A activation, and subsequently disturbs the integrins 
concentration and localization in keratinocytes, which underly the molecular pathogenesis 
for dermatological findings in Costello syndrome. RHO GTPases, a family of RAS GTPases, 
have extra regulators, so-called RHOGDIs, which bind to their isoprenoid moiety and 
sequester them away from the membrane and establish a cytosol pool of RHO GTPases. 
We inspected the RHOGDI specificity of several RHO GTPases through a structure-function 
assessment. We discovered that the RHOGDI association with RHO GTPases relies on the 
positively charged residues and their proximity in the polybasic region and two distinct 
negatively charged clusters in RHOGDI, which create an electrostatic force to extract RHO 
GTPases from the membrane. IQGAPs are scaffold proteins, which tether several proteins 
into specific complexes and safeguard the strength, efficiency, and specificity of signal 
transduction. Characterization of IQGAP1 and 2 interaction networks with various RHO 
GTPases showed that both IQGAPs bind CDC42 and RAC1-like proteins, but not the other 
RHO GTPases due to several residues outside the switch regions. In-depth mutational 
analyses clarified that the RGCT domain of IQGAPs is responsible for high-affinity binding 
to the switch region of CDC42. Our studies proved that the GRD domain of IQGAPs is in 
direct contact with the insert helix of CDC42 and binds to CDC42 in a nucleotide-
independent manner. 
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ZUSAMMENFASSUNG 

Die Superfamilie der RAS-GTPasen spielt bei verschiedenen zellulären Prozessen wie 
Proliferation, Differenzierung, Trafficking, Adhäsion und Migration eine wichtige Rolle. RAS-
GTPasen wechseln zwischen GDP-Bindung (inaktiver Zustand) und GTP-Bindung (aktiver 
Zustand), was durch zwei Klassen von Proteinen - GAPs und GEFs - reguliert wird, die die 
langsame intrinsische GTP-Hydrolyse beschleunigen bzw. die langsamen intrinsischen 
Nukleotidaustauschraten fördern. Aktivierte RAS-GTPasen arbeiten mit ihren 
nachgeschalteten Effektoren zusammen, um ihre zellulären Funktionen zu erfüllen, und 
eine Störung ihrer Funktionen wird häufig bei Krebs und Entwicklungsstörungen, den so 
genannten RASopathien, beobachtet. Neuartige Mutationen in ARF3-GTPasen wurden bei 
Patienten mit verschiedenen Stufen der Neurodegeneration identifiziert. Unsere strukturell-
funktionellen Analysen der ARF3-Varianten zeigten, dass ihre Nukleotidaustauschraten 
drastisch erhöht waren. Wir konnten nachweisen, dass die entdeckten Varianten in der 
Nukleotidbindungstasche lokalisiert sind, was die Proteinfunktionen beeinträchtigt, indem 
sie das Protein in GTP-gebundener Form stabilisiert und anschließend die Golgi-Integrität 
stört. Die HRAS-Keimbahnmutationen, insbesondere die Gly12Ser-Substitution, führen zu 
den konstitutiv aktiven Formen von HRAS und werden mit dem Costello-Syndrom, einer 
komplexen Entwicklungsstörung, in Verbindung gebracht. Es ist bereits bekannt, dass 
aktives HRAS mit RIN1 interagiert und die Aktivierung der RAB5-GTPasen sowie der 
ABL1/2-Tyrosinkinasen verstärkt, die Signalmodulatoren bei endosomalen Sortier- und 
Zytoskelettdynamikprozessen sind. In unserer Studie entdeckten wir, dass HRAS Gly12Ser 
die RIN1-abhängige RAB5A-Aktivierung erhöht und in der Folge die Konzentration und 
Lokalisierung von Integrinen in Keratinozyten stört, was die molekulare Pathogenese der 
dermatologischen Befunde beim Costello-Syndrom erklärt. RHO-GTPasen, eine Familie 
von RAS-GTPasen, verfügen über zusätzliche Regulatoren, so genannte RHOGDIs, die an 
ihren Isoprenoid-Anteil binden, sie von der Membran absondern und einen Zytosol-Pool 
von RHO-GTPasen bilden. Wir untersuchten die RHOGDI-Spezifität mehrerer RHO-
GTPasen durch eine Struktur-Funktions-Bewertung. Wir entdeckten, dass die RHOGDI-
Assoziation mit RHO-GTPasen auf positiv geladenen Resten und deren Nähe in der 
polybasischen Region und zwei verschiedenen negativ geladenen Clustern in RHOGDI 
beruht, die eine elektrostatische Kraft erzeugen, um RHO-GTPasen aus der Membran zu 
ziehen. IQGAPs sind Gerüstproteine, die mehrere Proteine zu spezifischen Komplexen 
zusammenbinden und die Stärke, Effizienz und Spezifität der Signaltransduktion 
sicherstellen. Die Charakterisierung der Interaktionsnetzwerke von IQGAP1 und 2 mit 
verschiedenen RHO-GTPasen zeigte, dass beide IQGAPs CDC42 und RAC1-ähnliche 
Proteine binden, nicht aber die anderen RHO-GTPasen, was an mehreren Resten 
außerhalb der Schalterregionen liegt. Eingehende Mutationsanalysen ergaben, dass die 
RGCT-Domäne der IQGAPs für die hochaffine Bindung an die Schalterregion von CDC42 
verantwortlich ist. Unsere Studien haben gezeigt, dass die GRD-Domäne von IQGAPs in 
direktem Kontakt mit der Insertionshelix von CDC42 steht und auf nukleotidunabhängige 
Weise an CDC42 bindet. 
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1. INTRODUCTION 

1.1 RAS GTPASES SUPERFAMILY 

The RAS (Rat sarcoma) superfamily of small guanosine triphosphatases (GTPases) is 
composed of over 150 members in humans and governs a variety of fundamental cellular 
processes [1]. RAS GTPases usually act as molecular switches (Figure 1B) and cycle 
between a GDP (guanosine-diphosphate) bound and GTP (guanosine-triphosphate) bound 
state [2]. The RAS superfamily constitutes several subfamilies such as RAS, RHO (RAS 
homolog), RAB (RAS related in the brain), RAN (RAS related nuclear), and ARF (ADP 
ribosylation factor) (Figure 1A), which share similar sequence elements, and display an 
overall three dimensional structure [3]. In the RAS family, HRAS, KRAS, and NRAS are the 
most extensively studied members. The majority of RAS GTPases share a set of conserved 
G motifs (GDP/GTP-binding domain) that start from the N-terminus and are identified as; 
G1, GXXXXGKS/T or P-loop; G2, containing a conserved T; G3, DXXGQ/H/T; G4, N/TKXD; 
and G5, C/SAK/L/T [4]. All these ensemble motifs build up a 20kDa G domain, which has a 
conserved structure among all the RAS superfamily proteins [1]. The G2 motif, together with 
the G3 motif, creates flexible regions called switch I (SWI) and II (SWII) respectively, which 
change their conformation upon binding to GDP or GTP nucleotides [5,6]. Their switch 
mechanism between GDP and GTP nucleotides is tightly regulated by 1) Guanine-
nucleotide exchange factors (GEFs) that accelerate the exchange of bound GDP 
nucleotides for GTP, and 2) GTPase activating proteins (GAPs) that stimulate the slow 
intrinsic GTP hydrolysis by offering an essential catalytic arginine [7]. Membrane 
association is a very crucial step that allows RAS proteins to initiate signal transduction [8]. 
As a first step they are targeted to the plasma membrane by posttranslational modification 
of the C-terminal CAAX motif, where C is a Cys, A is mainly an aliphatic amino acid, and 
the X residue determines which type of prenylation should occur to these proteins [9,10]. 
Once X is Ser, Met, Ala, or Gln, the RAS protein acquires a farnesyl (F) moiety, while the 
presence of Leu alters the modification by Geranylgeranyl (GG) moiety [9]. This prenylation 
facilitates the targeting and binding of the RAS protein to the membrane, where it engages 
with other proteins in order to transduce the signal, which was initiated by extracellular 
stimuli [11]. 

GTP-bound RAS proteins execute their function through binding to their effector proteins, 
such as the well-known proteins RAF (Rapidly growing fibrosarcoma), RAL-GDS (RAL 
guanine nucleotide dissociation stimulator), and RGL (RAL GDP dissociation stimulator 
like), and RIN (RAS and RAB interactor) [12–15]. RIN1 interacts with RAS directly, and it 
has been reported that RIN1 can compete with RAF1 to associate with RAS [16,17]. 

RAS proteins govern many signal transduction cascades including RAF/MEK (Mitogen-
activated protein kinase)/ERK (Extracellular signal-regulated kinases) and PI3K 
(Phosphoinositide 3-kinases)/AKT (protein kinase B) pathways, that play a fundamental role 
in these pathways in different cellular processes including proliferation, differentiation, 
apoptosis, and survival (Figure 1) [18–24]. The phosphoinositide kinases (PIK) 
phosphorylate the inositol ring of phosphatidylinositol (PtdnIns), which is a component of 
the eukaryotic cell membrane and is important in various cellular events, including survival, 
proliferation, and cytoskeleton organization [25]. The PIKs constitute three general families 
and are termed as PI3Ks, PI4Ks, and PIPSKs [26]. PI3K can be activated through growth 
factors, and generates PIP3 (Phosphatidylinositol-3,4,5-triphosphate), which recruits the 
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protein kinase AKT to the plasma membrane [27]. AKT is fully activated by double 
phosphorylation on Thr308 and Ser473 through PDK1 (Phosphoinositide-dependent 
protein kinase 1) and mTORC2 complex (mammalian target of rapamycin complex 2), 
respectively [27–29]. The PI3K-AKT and mTOR signaling cascades regulate cancer 
hallmarks including cell cycle, survival, motility, metabolism, and genomic instability 
[25,30,31]. The mTORC1 and mTORC2 complexes play a crucial role in diverse cellular 
processes in response to a variety of intracellular and extracellular stimuli [32]. Aberrations 
in the RAS signaling pathway are associated with a set of clinically related developmental 
disorders distinguished by facial dysmorphism, cardiac diseases, abnormal growth, 
irregular cognitive deficits, and ectodermal and musculoskeletal anomalies, categorized as 
RASopathies [33–35].  

 
 

Figure 1. RAS superfamily of small GTPases. (A) The core G domain is comprised of 5 motifs, that 
are engaged in GDP/GTP binding and hydrolysis. The membrane targeting motif of the RAS 
superfamily is encrypted in HVR. (B) The active/inactive states of RAS superfamily members are 
tightly controlled by GAPs and GEFs regulators. (C) Schematic RAS signaling pathway displaying 
the downstream effectors, as well as upstream activators. Growth factors (GF) bind to receptor 
tyrosine kinase (RTK) and initiate the activation of RAS, which leads to the activation of the RAF-
MEK-ERK cascade. Activated RAF-MEK-ERK results in various cellular functions, including 
proliferation, survival, and growth. PI3K generates PIP3 and provides a docking site for PDK1 and 
mTORC2. PDK1 and mTORC2 phosphorylate AKT at Thr308 and Ser473, respectively. 

1.2 ARF GTPASES 

ARF GTPases are distinguished by possessing a unique N-terminal extension that folds as 
an amphipathic helix, and an N-terminal myristoyl group, which play a key role in membrane 
association and dissociation [36,37]. 
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ARF GTPases are ubiquitously expressed and mediate crucial functions, like bidirectional 
membrane trafficking, namely endocytosis, and exocytosis, as well as the recruitment and 
activation of enzymes, namely phosphatidylinositol (PtdIns) kinases (PIK) that can modify 
the membrane lipid composition [38–40]. The lipid modification of ARF GTPases is a 
myristoylation process on a Gly residue of the N-terminus, which directs them to the 
membrane [40,41]. 

ARF1 and ARF3 are localized mainly at the Golgi apparatus, particularly at the cis and trans 
Golgi networks, respectively [42]. They execute their function in the secretory membrane 
transport systems by interacting with their effectors such as adaptor proteins, Golgi-
localized γ-adaptin ear-containing proteins (GGAs), or coat proteins [38,40]. ARF GTPases 
can tether non-coat Golgi apparatus specific proteins such as golgin-160, which determine 
Golgi apparatus integrity [43]. ARF GTPases fine-tune several indispensable processes 
through the regulation of the Golgi apparatus structure and function, cargo sorting, and 
membrane trafficking. This highlights their central role in the normal development and 
homeostasis of organelles. 

      

Figure 2. ARF GTPases localization and function at the Golgi apparatus. ARF1 localizes at cis Golgi 
and ARF3 localizes at the trans Golgi network. ARF1 activates PI4K and subsequently regulates lipid 
production and transport, and ARF3 influences exocytosis and membrane trafficking through 
association with GGAs. 

1.3 RHO FAMILY 

The RHO families are comprised of 20 canonical members, that are divided into six 
subfamilies according to their sequence homology: RHO (RHOA, RHOB, and RHOC); RAC 
(Ras-related C3 botulinum toxin substrate) (RAC1, RAC1B, RAC2, RAC3, and RHOG); 
CDC42 (Cell division control protein 42 homolog) (CDC42, G25K, TC10, TCL, WRCH1, and 
WRCH2); RHOD (RHOD, RIF); RND (RND1, RND2, and RND3); and RHOH [44]. 

Activated RHO GTPases participate in essential cellular processes and biochemical 
functions including actin cytoskeleton reorganization, microtubule dynamics, gene 
expression, and the regulation of enzymatic activities [45,46]. In the context of 
mechanotransduction, the majority of studies target RHOA, CDC42, and RAC1 proteins to 
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grasp their impact on the actin cytoskeleton. These three proteins are the most studied and 
best-characterized members of the RHO GTPases [46–50]. 

A major structural component that makes RHO GTPases different from other RAS 
GTPases, is the presence of an insert helix, located between residues 122 and 135 (CDC42 
numbering) [51]. An insert helix is a surface-exposed and dynamic region and is highly 
variable among different members of RHO GTPases [52]. The latest studies implied the 
significance of the insert region for RHO GTPases in interaction with effectors, which is 
important for downstream signaling and exerting effector function [53–55]. 

RHO proteins are post-translationally modified at the C-terminus by prenylation or 
palmitoylation, which affects their subcellular localization and their association with specific 
membranes [56]. In addition, RHO GTPases can be phosphorylated or ubiquitylated, which 
affects their downstream signaling or their turnover (Table 1) [57]. 

Table 1. Overview of post-translational modifications of RHO, RAC, and CDC42 GTPases. These 
modifications affect RHO GTPases membrane localization, and in some cases modulate the GDP-
GTP exchange. 

  Prenylation Palmitoylation Ubiquitination Phosphorylation 

RHOA GG - K6-7 
K51 

S188 
T127 

RHOB GG/F + K6 
K 7 S185 

RHOC GG - - S73 

RAC1 GG - T108, Y64, 
S71 

K147 
K166 

RAC2 GG - - - 
RAC3 GG - K166 - 
RHOG GG - - - 

CDC42 GG - - Y64 
S185 

TC10 GG + - T197 
TCL GG + - - 

WRCH1 - + K177, K248 Y254 

WRCH2 - + - - 

 

1.3.1 RHO 

RHOA, RHOB, and RHOC are highly homologous and their amino acid sequences are 88% 
identical [58,59]. However, the C-termini of these three proteins, particularly the HVR, are 
quite different and this dissimilarity is reflected in their localization [60]. RHOA and RHOC 
are localized mainly at the plasma membrane or cytosol, while RHOB stays predominantly 
at late endosomes and lysosomes [61].  

Different stimuli comprising growth factors, cytokines, and UV irradiation can upregulate 
RHOB protein levels [62]. Previous reports indicated how the downregulation of RHOA or 
RHOC enhances RHOB expression [63,64]. Aligned with other studies, these findings 
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emphasize that RHOB turnover is fast and, unlike the other RHO GTPases, which are 
relatively stable, RHOB has a shorter half-life [62,65]. Previous reports implied that RHOB 
is required for the initiation of apoptosis in transformed cells upon DNA damage [66]. RHOB 
has an impact on the proliferation and adhesion of transformed cells [67]. Due to similar 
effector binding regions, RHOA and RHOB can share several potential effectors such as 
mDIA, NF-κB, and protein kinase C-related kinase (PKC) [65,68]. 

RHOC interacts with RHOA effectors, in particular ROCK (RHO-associated protein kinase) 
and Citron kinase, with an even higher affinity [69,70]. Studies have shown that the 
constitutively active RHOC (G14V) binds ROCK1 better than RHOA (G14V), which may 
indicate different contributions of RHOA and RHOC to cell motility [58,70]. 

Activated RHOA results in the assembly of contractile actin-myosin filaments called stress 
fibers, which are required for intercellular tension, and focal adhesion complexes which are 
hotspots for mechanotransduction (Figure 3) [48]. 

 

                   

Figure 3. Signal transduction pathways involved in the formation of filopodia, lamellipodia, and stress 
fibers, mediated by CDC42, RAC1, and RHOA respectively. RHOA, CDC42, and RAC1 can 
modulate the signaling pathway that links membrane receptors to the cytoskeleton by assembling 
focal adhesions. 

 

The crystal structures of RHOA in complex with GTPase binding domains (GBDs) of ROCK 
or PKN (RHO associated protein kinase) have been dissolved and it has been shown that 
these domains form α-helical coiled-coils, which are positioned in a parallel and anti-parallel 
manner, respectively [71,72]. GTP-bound RHOA activates PKN through its C-terminus and 
prompts actin-myosin II contractility in neuronal cells [73]. To generate stress fibers and 
focal adhesions, RHOA required at least ROCKs and DIA (Diaphanous-related formin) in 
its downstream path [47,74]. ROCKs are Ser/Thr kinases and regulate the induction of 
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stress fiber, through their substrates like MLC (Myosin light chain) and MBS (Myosin binding 
substrate) of MLC phosphatase [75]. Inhibition of MLC phosphatase takes place by 
phosphorylation and results in an increase in MLC phosphorylation and subsequently 
induces the actin filament cross-linking activity of myosin II [45,75,76]. It has been shown 
that ROCK function alone is not adequate as it stands for RHO-induced stress fiber 
assembly [77]. It has been shown that the presence of ROCK combined with DIA, a member 
of the formin-homology (FH) family, is essential for stress fiber formation [47,78,79]. DIA 
interacts with a profiling-actin complex on the growing ends of actin filaments and promotes 
the linear elongation of actin networks [45,80]. 

Although several proteins are described as potential downstream effectors for RHOA, and 
their cellular implications have been examined, only a few investigations have been 
undertaken to understand their activation mechanism. 

1.3.2 RAC 

Even though mammalian RAC1, RAC2, and RAC3 are encoded by different genes, they 
share around 90% identity in their respective amino acid sequences [81,82]. Unlike these 
three paralogs, RHOG, another member of the RAC family, is more divergent and it is about 
70% identical to RAC1 [56]. RAC1b is an alternatively spliced isoform of RAC1, which is 
distinguished by a 19 amino acid in-frame insertion directly after the switch II region, and 
was identified in the skin and epithelial tissues from the intestinal tract and breast cancer 
[83–85]. It has been revealed that the 19 amino acid insertion induces an open conformation 
in the switch I region, in which the switch I region obtains a distance of 6.5 A° to the 
nucleotide-binding site, and this results in an accelerated GEF-independent GDP/GTP 
exchange and a deficient GTP hydrolysis [85,86].  

RAC2 is mainly expressed in hematopoietic cells, and it has been proposed that it is 
responsible for the regulation of the oxidative burst in these cells together with RAC1 [87]. 
Any downregulation or inactivation of RAC2 is linked to several neutrophilic, phagocytic, 
and lymphocytic defects which might stem from RAC2-specific activation of NADPH 
(Nicotinamide adenine dinucleotide phosphate) oxidase [88–92]. Both RAC1 and RAC3 are 
ubiquitously expressed and therefore regulate a broad range of cellular processes [82]. 

All the RAC proteins induce the formation of lamellipodia and membrane ruffles (Figure 3), 
probably through interaction with the WAVE (WASP family verprolin homologous protein) 
regulatory complex (WRC) which is a five-subunit protein complex [93,94]. The WAVE 
complex interacts with and activates the ARP2/3 (Actin-related protein) complex via its C-
terminal acidic domain, and the activation of the heptameric ARP2/3 complex leads to the 
initiation of branched filaments at the end of existing actin filaments [95–97]. It has been 
proposed that RAC1 can localize the WAVE complex to the periphery to promote actin 
nucleation through ARP2/3 [45,47,98]. 

Since actin cytoskeletal dynamics regulate vesicular trafficking, the role of RAC1 in the 
generation of actin-rich membrane protrusion during endocytosis has been studied 
numerous times [99,100]. Moreover, RAC1 activity is recognized as indispensable for the 
activation of NADPH oxidase in phagocytic cells during phagocytosis [101,102]. 

As in other proteins, a counterbalance between synthesis and degradation regulates the 
expression of RHO GTPases. Ubiquitination governs the degradation process of RAC1 and 
other RHO GTPases (Table 1) [103]. RAC1 ubiquitination became a focus of studies with 
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the discovery of HACE1 (HECT domain and ankyrin repeat containing E3 ubiquitin protein 
ligase) ubiquitin ligase as a tumor suppressor [103,104]. It appeared that the loss of HACE1 
was correlated with breast cancer progression due to increased RAC1 activity levels and 
as a result of enhanced levels of reactive oxygen species and cell migration [104,105]. 

Besides the plasma membrane and cytosol, RAC1 can localize to the nuclear envelope and 
nucleoplasm [106,107]. Lanning et al. discovered that the polybasic sequence of RAC1 
HVR is the nuclear localization signal (NLS) motif, and described that the difference in NLS 
sequence alters the nuclear accumulation of different GTPases [106,108,109]. 

Together with CDC42 and RHO, RAC1 regulates the formation and maintenance of 
adherens junctions in epithelial cells [110,111]. IQGAPs (IQ motifs containing GTPase 
activating protein) are scaffolding proteins and play a significant role in protein complex 
assembly and signaling networks [112–117]. IQGAP1 overexpression results in decreased 
E-cadherin mediated cell-cell adhesion and leads to weak adhesion [118]. IQGAP1 interacts 
with β-catenin and dissociates the α-catenin from the cadherin-catenin complex in epithelial 
cells [115,118]. GTP-bound RAC1 and CDC42 interact with IQGAP1 and hinder its 
association with β-catenin and accordingly maintain E-cadherin mediated cell-cell adhesion 
[115,119]. 

Given the essential roles of RACs, it is not surprising how deficient RAC activity is 
associated with various diseases including cancer. 

1.3.3 CDC42 

CDC42 stands out as playing a crucial role in establishing cell polarity, migration, cell cycle, 
and proliferation in all eukaryotic cells, regardless of the biological context [120–122]. 
CDC42 induces the formation of filopodia and microspikes (Figure 3) through its association 
with members of the Wiskott-Aldrich syndrome family of proteins (WASPs), like N-WASP or 
WASP [123–125]. WRCH1 is the only member of the CDC42 subfamily that does not induce 
filopodia formation and interacts with neither WASP nor N-WASP [56,126]. 

Distinct pools of CDC42 have been discovered in various subcellular membrane 
compartments including the plasma membrane, the Golgi complex, and the endoplasmic 
reticulum [127–129]. CDC42’s role in the Golgi pool has been studied several times and the 
majority of findings suggest that the Golgi pool acts as a reservoir for particular 
circumstances [127,130]. 

Many CDC42 and RAC effectors contain a conserved 18 amino acid binding motif that has 
been termed CRIB (CDC42/RAC-interactive binding), comprises eight conserved residues 
within a stretch of 16 to 18 amino acids, and constructs the consensus region of the larger 
G-protein binding domain (GBD) [131,132]. The CRIB motif exists in ACK (Activated CDC42 
kinase), WASP, and PAKs (p21 activated kinase), and it appears to take the Asp38 in the 
switch I region as the recognition residue for RAC/CDC42 from RHO [47,133]. 

In the switch II region of RHO GTPases, there are Leu69 and Leu72, which form critical 
hydrophobic contacts with a majority of effectors, and it has been suggested that they are 
crucial for the CRIB-containing effectors [134,135]. The electrostatic steering regions and 
GBDs of CRIB-containing effectors can also keep the intramolecular interactions under 
control [125,132]. 
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IQGAPs, which are recognized as RAC and CDC42 binding proteins, are found in three 
paralogs; IQGAP1, IQGAP2, and IQGAP3 with similar domains expressed in mammalians 
[117,136–139]. IQGAP1 is the most studied member of this family and is ubiquitously 
expressed [140]. IQGAPs possess several domains which interact with numerous proteins 
in multiple functions to shield the strength, efficiency, and specificity of signal transduction 
[115,138,141–143]. IQGAPs consist of an N-terminal calponin homology domain (CHD), a 
coiled-coil repeat region (CC), a tryptophan-containing proline-rich motif-binding region 
(WW), 4 isoleucine/glutamine-containing motifs (IQ), a RASGAP-related domain (GRD), a 
RASGAP C-terminal domain (RGCT), and a very C-terminal domain (CT) 
[115,116,140,144]. 

The crystal structure of a GRD fragment in complex with the constitutively active form of 
CDC42 has been published and it has been demonstrated that GRD adopts a RASGAP-
like structure [145]. However, the IQGAP GRD domain is considered an inactive RASGAP 
due to the absence of crucial catalytic and structural features of a functional GAP [145,146]. 

It has been reported that the C-terminal region of IQGAP1 is involved in CDC42 and RAC1 
interaction [136,147,148]. Although studies indicated that IQGAP1 binds to both GTP/GDP 
CDC42, it associates only with RAC in a GTP-bound form [144,148]. It has been shown that 
IQGAP1 mutants defective in CDC42 binding resulted in aberrant multipolar morphology 
and altered polarization and migration [149]. These findings endorse the significance of 
IQGAP-CDC42 interaction in cell polarity and migration [150]. 

Heterozygous mutations in CDC42 have been discovered to cause neurodevelopmental 
phenotypes, comprising facial dysmorphism, intellectual disability, cardiac effects, and 
hematological and immunological abnormalities [22,151]. The collection of these 
phenotypes is representative of Noonan syndrome, which is classified as a RASopathy, and 
here in the case of CDC42, their upregulated function leads to a disturbance in the RAS 
signal flow [22]. Overexpression of CDC42 and the other RHO GTPases is reported in 
several cancers, and due to their central roles in cell architecture and motility, they become 
potential targets in therapeutic strategies [152–154]. 

1.3.4 REGULATION OF RHO GTPASES 

The GDP/GTP cycle of RHO GTPases is regulated by three structurally distinct and 
functionally unrelated classes of proteins (Figure 4): 1) GEFs accelerate the slow intrinsic 
exchange of GDP to GTP and switch on the signal transduction in stimulated cells; 2) GAPs 
promote the slow intrinsic GTP hydrolysis activity and switch off the signal transduction; 3) 
GDIs sequester RHO GTPases farther from the membrane by interacting with their 
isoprenoid moiety and constitute an inactivated cytosolic reservoir [44,155–157]. 
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Figure 4. Summary of RHO GTPases regulation through GEF, GAP, and GDI. In resting cells, GDIs 
bind to RHO GTPases lipid moiety and displace them from the membrane. GEFs associate with RHO 
GTPases in stimulated cells and accelerate the GDP/GTP exchange. GAPs promote the slow 
intrinsic GTP hydrolysis activity of RHO GTPases and switch off signal transduction. 

1.3.4.1 GUANINE NUCLEOTIDE EXCHANGE FACTORS (GEFS) 

GEFs are classified into two families based on their structural differences: DBL homology 
(DH) containing proteins, and dedicator of cytokinesis (DOCK) proteins [155,156]. In 
general, GEFs bind to their respective RHO GTPases selectively and diminish their affinity 
for GDP, resulting in GDP displacement and eventual GTP association [158,159].      

The nucleotide exchange reaction takes place in several steps: first a low-affinity docking 
complex forms between GEF and the GDP-bound RHO GTPase [160]. Then GDP 
dissociates from the primary complex, forming a binary complex of GEF and nucleotide-
free RHO GTPase [159,161]. This intermediate complex does not last or accumulate in the 
cell, as it dissociates due to the high intracellular concentration of GTP, resulting in the 
formation of GTP-bound RHO GTPases [158,162]. Dominant negative variants of RHO 
proteins (Thr17 in CDC42 is substituted with asparagine) create a tight complex with their 
cognate GEFs and hamper the activation of endogenous RHO GTPases [163].  

The DBL protein, a prototype of the DBL GEF family, was isolated as an oncogenic product 
from diffuse B-cell lymphoma cells during an oncogene screening [164]. The unique DH 
domain in the DBL family is considered a very efficient catalytic machine, which can promote 
the nucleotide exchange of RHO GTPases 107-fold [155]. The X-ray and NMR analyses 
showed that the DH domain consists of a unique extended bundle of alpha helices which is 
composed of three conserved regions (CR), namely CR1, CR2, and CR3 [165]. The CR1 
and CR3 regions are solvent-exposed until they form a complex with RHO GTPases [166]. 
Often, the DH domain is followed by a pleckstrin homology (PH) domain, which aids the 
DBL GEFs anchoring to the membrane through phosphoinositides and directs them towards 
the relevant RHO GTPases, which are already at the membrane [155]. The PH domain can 
bind to the DH domain and hamper the catalytic activity of the DH domain and rule as a 
regulatory domain [44,167].  
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Out of 74 DBL proteins, nine of them lack the C-terminal tandem PH domain, three of them 
contain a membrane-bending domain, and around seven of 20 studied DBL proteins did not 
manifest any GEF activity [166]. Besides the DH-PH tandem motif, the DBL family is 
comprised of several other domains, which serve in: interaction with other proteins, 
association with membrane lipids, autoregulation, and subcellular localization [57,168,169]. 
74 DBL proteins have been reported in humans, which can be monospecific, bispecific, or 
oligospecific for a wide range of RHO GTPases [166]. 

The DOCK family is classified into four subfamilies: DOCK-A, DOCK-B, DOCK-C, and 
DOCK-D, which are comprised of a total of eleven members and encompass two DOCK 
homology regions (DHRs) [170,171]. DHR-1 binds to certain phospholipids like 
PtdIns(3,4,5)P3 and mediates the membrane association, while DHR-2 is the catalytic 
domain of DOCK GEF [172,173]. DOCK-A and DOCK-B exclusively mediate GEF activity 
for RAC, while DOCK-C and DOCK-D mainly activate CDC42 [174]. The DOCK family 
arranges fundamental cellular processes that are dependent or independent of their GEF 
activity, such as brain development, cell migration, phagocytosis, and cardiovascular 
development [174–176]. 

1.3.4.2 GTPASE-ACTIVATING PROTEINS (GAPS) 

The RHOGAP family is determined by the presence of a conserved catalytic GAP domain, 
which is solely adequate to interact with RHO GTPases and accelerate the GTP hydrolysis 
reaction by several orders of magnitude [3,177,178]. 190 amino acids constitute the GAP 
domain of the RHOGAP family and there is a high sequence homology within the family 
[179]. Since RHOGAPs and RASGAPs look almost equivalent in their tertiary structure, it 
has been proposed that their GAP domains are evolutionarily related [179–181]. 

A conserved arginine residue, known as arginine finger, from the GAP domain is inserted 
into the GTP-binding pocket of a cognate RHO GTPase and stabilizes the partial negative 
charges that develop at the transition state [157]. Then it positions the conserved glutamine 
from the switch II region (Glu61 in CDC42) to activate a water molecule for a nucleophilic 
attack on the γ-phosphate of GTP [157,180,182]. Crystallographic analyses revealed that 
switch I, switch II, and P-loop of RHO GTPases are part of the contacted surfaces with 
RHOGAP [2,135]. 

In the very first studies, the crystal structure of the GAP domain of p50-RHOGAP in a 
complex with RHOA•GDP•ALF4 was solved [183]. BCR, p50RHOGAP, and p190 were the 
very first to be identified and are also the most studied members of this family [184–186]. 

The majority of the RHOGAP family members embody several functional domains and 
motifs other than the GAP domain, which are involved in membrane targeting or 
autoregulation [157,187]. Masking the arginine finger is an elegant way to hinder GAP 
activity [188]. The best example is ARHGAP1, which contains phospholipid binding domain 
sec14, which can either bind to the GAP domain and block its activity or direct ARHGAP1 
to endosomes [189]. The other prevalent domains are CC, P, SRC homology 3, PH, and 
BAR/F-BAR [44,178,190]. 

The catalytic activity and substrate selectivity depend upon several mechanisms including 
phosphorylation, lipid binding, subcellular distribution, and protein-protein interaction 
[188,191–193]. 
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RHOGAPs are extensively expressed, and according to database searches, 66 distinct 
RHOGAP domain-containing proteins have been identified. Among the discovered GAP 
domain-containing proteins, some proteins are incapable of promoting GTP hydrolysis, due 
to a lack of the arginine finger [44,178]. These catalytically inactive RHOGAPs include 
OCRL1, INPP5P, FAM13B, ARHGAP36, CNTD1, and DEP1/2 which are incapable of 
terminating the RHO GTPases signaling by stimulating the GTP hydrolysis [44,178]. 
However, studying the GAP activity of several RHOGAPs for RHO GTPases suggested that 
the RHOGAPs do not show a definite selectivity towards particular RHO GTPases [178]. 

RHOGAPs are primarily considered tumor suppressors, as a dysfunctional RHOGAP can 
result in uncontrolled RHO GTPase signaling and subsequently elevated transformation 
and cancer progression [194–196]. Therefore, targeting RHOGAPs becomes interesting in 
the case of cancers with downregulated or inactivated RHOGAPs [196]. It has been 
proposed, that targeting the C1 domain of β2-chimerin might regenerate the GAP activity of 
β2-chimerin to deactivate RAC1 in cancer cells [196,197]. Nevertheless, proposing this 
solution to restore the GAP activity and tumor suppressor function demands a more 
physiologically relevant environment to provide more evidence for targeting these proteins. 

1.3.4.3 GUANINE NUCLEOTIDE DISSOCIATION INHIBITORS (GDIS) 

Unlike the other regulators, only three genes encode RHOGDI in mammals [198]. 
RHOGDI1 (or RHOGDIα) is the most studied member of the family; it is ubiquitously 
expressed and can interact with several RHO GTPases [199]. RHOGDI2 (or RHOGDIβ, or 
LY-GDI) is predominantly expressed in hematopoietic cells and it interacts with several 
RHO GTPases with a lower affinity than RHOGDI1 [200]. RHOGDI3 (GDIγ) is mainly 
expressed in the brain, lungs, pancreas, kidneys, and testes [201]. The unique N-terminal 
extension of RHOGDI3 anchors it to the Golgi complex and other cellular membranes [202].  
Despite the prenylation of RHO GTPases, a considerable proportion of these proteins 
remain in the cytosol, and several proofs consider RHOGDI as the reason [203,204]. This 
leads to a faster localization and activation of RHO GTPases at any membrane in the cell 
in reply to certain stimuli [203,204]. It has been shown that in the absence of RHOGDI, the 
RHO GTPases reservoir would not last and would be degraded by proteasomes [203]. 
Therefore, the stability of RHO GTPases in the cytosol is owed to their interaction with 
RHOGDI. 
A multi-step binding mechanism has been described for RHOGDI-RAC1 association: 1) 
RHOGDI associates with highly conserved switch regions of RAC1 through its switch 
binding domain; 2) the polybasic region of RAC1 is attracted to both the N-terminal of 
RHOGDI and Geranylgeranyl binding domain; 3) both the N-terminal domain and 
Geranylgeranyl binding domain of RHOGDI create intermolecular charge forces towards 
the positively charged HVR of RAC1, and 4) the Geranylgeranyl moiety of RAC1 is 
positioned towards the hydrophobic cavity of RHOGDI which is located between the 
Geranylgeranyl binding domain and C-terminal of RHOGDI. Subsequently, the 
Geranylgeranyl moiety is pulled out of the membrane and the RHO GTPases dissociate 
from the membrane [205,206]. 
Previous studies showed that particular protein-protein interactions induce RHOGDI-RHO 
GTPases dissociation. It has been reported that ezrin-radixin-moesin (ERM) proteins, RHO 
GEFs, and the p75 neurotrophin receptor can separate RHO GTPases from RHOGDI by 
competing to interact with RHOGDIs [207–210]. Moreover, phosphorylation of RHOGDIs 
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reduces their affinity for RHO GTPases and results in the release of RHO GTPases and 
their subsequent activation [206,207]. 
Alterations in RHOGDI’s expression level have been implicated in several cancers, 
including hepatocellular carcinoma, pancreatic cancers, and Hodgkin’s lymphoma cell lines 
[211–213].  
A recent comprehensive study led to the determination of a pseudo-natural product called 
Rhonin, which hinders RHOGDI activity and enhances the GTP-bound RHO GTPases 
[214].  
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2 THESIS AIMS 

Structural-functional studies have revealed the significance of RAS GTPases in the 
regulation of numerous cellular processes. Their dysfunction is frequently reported in cancer 
as well as developmental and neurological disorders. Several missense variants of ARF3 
GTPases were identified in patients suffering from different levels of neurodegeneration. 
Constitutive HRAS activation results in Costello syndrome, a rare developmental disorder, 
identified by distinct facial dysmorphism, cardiac malfunction, and cutaneous 
manifestations. The discovery of mutations in ARF3 GTPases and HRAS raises questions 
about their role in the pathogenesis of neurological disorders and Costello syndrome, 
respectively. This thesis aimed to characterize the ARF3 and HRAS mutations biophysically 
to decipher the molecular mechanisms behind the pathogenesis of the reported disorders.  

RHOGDIs represent a special class of regulatory proteins for RHO GTPases, which 
regulate the spatiotemporal localization of RHO GTPases. However, the exact mechanism 
of selective RHO GTPases extraction from the membrane by RHOGDI stayed obscure. 
Therefore, we aimed to determine the structural parameters, which define the GDI function 
and puzzle out the mechanistic details of RHO GTPases regulation by RHOGDI. 

IQGAPs are multidomain proteins and are considered special effectors for RHO GTPases. 
Until now, the selectivity criteria of these interactions has been a subject of controversial 
debate. Moreover, the relevance of the interaction of IQGAP distinct domains remains 
unknown. Hence, another aim of this thesis was to investigate structural differences in RHO 
GTPases, which define the selectivity of IQGAPs and characterize the binding properties of 
the GRD domain of IQGAPs and the GRD contacting surface on the CDC42 GTPase. 
Addressing these questions will advance our knowledge about the structural-functional 
relationship in the integrity of signal transduction and uncover molecular details of 
dysregulated signaling pathways.  
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3 DISCUSSION 

RAS GTPases are molecular switches and cycle between active GTP-bound and inactive 
GDP-bound states [215]. In their active state, RAS GTPases associate with a multitude of 
effector proteins to induce a network of nuclear and cytoplasmic signaling pathways [44]. 
The RAS superfamily regulates various cellular processes, including proliferation, 
differentiation, migration, and apoptosis, in response to different extracellular stimuli [216]. 
The RAS/MAPK pathway is one of the most studied signaling cascades due to its essential 
role in many cellular functions, which are critical for normal development [217]. Mutations 
in genes that encode components of the RAS/MAPK pathway have been implicated in 
cancer and RASopathies [218]. We succeeded in biochemically characterizing ARF3 
GTPases variants, as well as a HRAS mutant, that was linked with neurodegeneration 
disorders and Costello syndrome, respectively, to understand explicitly the molecular 
mechanisms underlying these disorders. 

Decades of research on RHO GTPases have revealed outstanding characteristics such as 
diversity in their regulators, a wide range of their cellular targets, and substantial cross-talk 
and harmony, that lie beneath GTPases signal transduction pathways [219]. We were able 
to evaluate RHOGDI specificity for different RHO GTPases and proposed a detailed sketch 
for the GDI-RAC interaction and RAC displacement from the membrane. 

The selectivity criteria of IQGAP1/2 proteins as downstream effectors for certain RHO 
GTPases were investigated using structural, mutational, and biochemical analyses. 
Furthermore, we investigated the other domains of IQGAPs in their interactions with 
CDC42, to unveil more about the scaffolding function of these multi-domain proteins, as 
well as molecular details of dysregulated signaling pathways. 

3.1 ELECTROSTATIC FORCES MEDIATE THE SPECIFICITY OF RHO GTPASE-GDI INTERACTION 

Previously, it has been shown that RHO GTPases are released from the membrane by GDI, 
and create a reservoir of inactivated RHO GTPases in the cytosol [206,220,221]. In addition, 
it has been demonstrated that non-prenylated RAC1 is incapable of binding GDI1, and GDI1 
binds prenylated RAC1 and RHOA with a significantly higher affinity compared to non-
prenylated RAC1 and RHOA [222,223]. 

Our study disclosed that the specific mode of GDI function only applies to a distinct subset 
of RHO GTPases, and we added additional details to the multi-step mechanism that 
promotes membrane extraction and the inhibition of RAC1 activation. We observed that 
both prenylated and non-prenylated RAC1 bind GDI1 in principally the same manner, and 
this is due to the specificity of GDIs for certain RHO GTPases, according to the data we 
obtained. 

Our protein-protein interaction studies revealed that all three GDIs activities are nearly the 
same, and the slight difference in their affinity stems from variations in their cell-type specific 
expression patterns. GDI2 displayed a six-fold faster association rate constant for RAC2 in 
comparison to RAC1 and RAC3, and even in comparison to GDI1 and GDI3, GDI2 interacts 
with RAC2 slightly stronger. Under the same experimental conditions, we observed that all 
three GDIs demonstrated explicit specificity for RAC1, RAC2, RAC3, and RHOG, as well 
as RHOA. Several studies demonstrated that the mechanism of RHOGDI selective 
interaction with RHO GTPases is regulated by the interaction with certain receptors or post-
translational modifications like SUMoylation, and phosphorylation [206,210,224,225]. 
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However, our cell-free analyses indicate that there were potential gaps in the understanding 
of the selectivity of GDIs for RHO GTPases. 

Analysis of sequence-structure-function relationships of RHO GTPase-RHOGDI interaction 
indicated that the C-terminal hypervariable region (HVR) of the RHO GTPases is an 
essential component that defines the specificity of GDIs activity. It has been shown that 
RAC1 with more positively charged residues (R/K) in its HVR is predominantly localized at 
the plasma membrane, however, CDC42 and RAC2 with a less positively charged HVR 
remain in the endomembrane [107]. The crystal structure of RAC1 and GDI uncovered that 
these positively charged residues in the HVR of RAC1 are positioned towards negatively 
charged residues in both the N-terminal arm and C-terminal Geranylgeranyl-binding domain 
of GDI1 [226]. Data from our kinetic analyses indicated that mutating the positively charged 
amino acids in RAC1 HVR to negatively charged residues results in the repulsion of the 
proteins and the hampering of the RAC1 and GDI1 interaction, as well as shifting the 
localization of RAC1 to the perinuclear structure. Considering RHOC with more positive 
charged residues and as a RHOGDI non-binder clarified that, in addition to the number of 
positive charges, the position of these basic residues in the C-terminal can change the fate 
of RHO GTPases interaction with RHOGDI. 

Moreover, the substitution of negative charges for lysines or the deletion of N-terminal and 
C-terminal amino acids in GDI1 impeded the GDI1 interaction with both prenylated and non-
prenylated RAC1. These findings confirm that the C-terminal Geranylgeranyl-binding 
domain and the N-terminal arm of GDI create an electrostatic pincer that grabs the RAC1 
HVR and extracts the Geranylgeranyl moiety from the membrane.  

Overall, we hypothesize that the GDI1 switch binding domain recognizes and interacts with 
switch regions of RAC1, then both the C-terminal Geranylgeranyl-binding domain and N-
terminal arm of GDI1 initiate an electrostatic attraction towards the RAC1 hypervariable 
region and grab the RAC1 and steer it out of the membrane by locking the Geranylgeranyl 
moiety of RAC1 in the hydrophobic cavity of the Geranylgeranyl-binding domain of GDI1. 

Deciphering the molecular basis underpinning RAC1 spatio-temporal regulation will help us 
to understand several diseases with the implication of RAC1 dysregulation and dysfunction, 
like cancer and neurodegeneration. Several pieces of evidence demonstrate that RHOGDIs 
is over-expressed in human cancers through dysregulation of RHO GTPases, and result in 
aggressive phenotypes, for instance, invasion and metastasis [227–229]. It is necessary to 
consider the cross-talk between RHOGDIs and several factors, such as phospholipids and 
other interacting proteins in a combined manner, to fully understand the molecular basis 
behind the disrupted RHOGDI-RHO GTPases interaction in the development of cancer. 

In chapter V, we demonstrated our analyses on a generated pseudo-natural product called 
Rhonin, which is described as the first molecule ligand of RHOGDI1. We observed that 
Rhonin inhibits RHOGDI-mediated RAC1 extraction from liposomes. Moreover, Rhonin 
hindered RHOGDI-RAC1 Geranylgeranylated complex formation, by binding to RHOGDI. 
The wound healing assay demonstrated that Rhonin treatment changes the RHO GTPases 
localization from the plasma membrane to the endoplasmic membrane and inhibits cell 
migration.  

Our findings provide a more complete picture to better understand the RAC1 extraction from 
the membrane promoted by GDI1 and highlight the effect of the RAC1 C-terminal region on 
its regulation and function.  
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3.2 SELECTIVITY DETERMINANTS OF RHO GTPASE BINDING TO IQGAPS 

IQGAPs are scaffold proteins, which are assigned to various subcellular sites and involved 
in multitudes of functions to guarantee the protein complex formation of several signaling 
molecules and ensure the specificity and efficiency of signal transduction [143]. RHO 
GTPases, in particular, CDC42 and RAC1 bind to IQGAP1 and assist IQGAP1 in its 
activities including intracellular adhesion [144,230]. However, the specificity of different 
IQGAP paralogs for various RHO GTPases remained unclear. In this study, we aimed to 
understand more accurately what criteria in RHO GTPases are crucial for IQGAP 
interaction. 

We carried out a comprehensive interaction study for 14 RHO GTPases with the C-terminal 
794 amino acids of IQGAP1 (IQGAP1 C794) and the C-terminal 795 amino acids of IQGAP2 
(IQGAP2C795) to clarify the selectivity determinants. The protein-protein interaction studies 
indicated that IQGAP1 and IQGAP2 bind selectively to CDC42 and RAC-like proteins. 
Although the switch regions have been described as the main binding sites, additional 
contact sites outside the switch regions are imperative for IQGAP binding. The switch 
regions are highly conserved in RHO GTPases, which are necessary but not sufficient for 
effector binding selectivity [135]. We compared the amino acid sequence of IQGAP binders 
versus IQGAP non-binders, and discovered four different hotspots, residues 25/26, 45/52, 
74, and 85/88 are highly conserved and almost identical among IQGAP binders, yet vary in 
non-binders. These residues are enclosed to switch regions, positioned on the surface of 
the corresponding proteins, and are exposed for interaction. We checked the electrostatic 
properties of the selected hotspots and found out that they contain more negative net 
charges in IQGAP non-binders. The kinetic measurements showed that the mutation of 
these residues in CDC42 and RAC1-like proteins to equivalent residues to IQGAP non-
binders like RHOA diminishes their binding affinity between 7- and 17-fold. These findings 
refer to the significance of these hotspots in RAC1 and CDC42 proteins binding to IQGAP. 

To understand the located contacting regions between IQGAP1 and RAC1, we conducted 
a competitive binding assay, in which we analyzed the association of IQGAP1 with RAC1 
in the presence and absence of an excess amount of RAC1 binding partners. Our 
competition assays revealed that IQGAP1 competes with DOCK2, p50GAP, and PAK1 to 
bind RAC1, which suggests that these proteins share an overlapping binding surface. 

Overall, our study showed that additional distinct residues, besides those in switch regions, 
are required for RHO GTPases to enable them to associate with IQGAPs. Our study showed 
that the kinetic properties of IQGAP1 interaction with CDC42 and RAC1 are slightly 
different, and further analyses are needed to illuminate the correlation of these differences 
to their functional outcomes. IQGAPs modulate a broad spectrum of biological processes 
and they have become a drug target due to their regulatory role in cancer development. 

Recently presented data from single molecule showed that IQGAP1 stabilizes the actin 
filaments, regulates the actin filament spatial organization, and also that the C-terminal half 
of IQGAP1 is required for full inhibition of actin filament growth [231]. Yet, the mechanistic 
framework for IQGAP interaction with CDC42 and RAC1 and the implication of these 
interactions in actin dynamics at the leading edge and cell migration requires further 
investigations. 
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3.3 CDC42-IQGAP INTERACTIONS SCRUTINIZED: NEW INSIGHTS INTO THE BINDING PROPERTIES 

OF THE GAP-RELATED DOMAIN 

Like other multidomain proteins, IQGAPs use different domains to assemble various protein 
complexes at distinct cellular compartments [112,117]. For example, IQGAP1 interacts with 
actin filaments through its N-terminal CDH domain and IQ motifs interact with calmodulin 
[114,117,232]. It became widely accepted that the switch regions of CDC42 and RAC1 are 
associated with IQGAP1 GRD [54,145,233]. The published crystal structure of constitutively 
active CDC42 Q61L in complex with IQGAP2 GRD suggests that CDC42-IQGAP2 GRD 
binding is in a 4:2 stoichiometry [54]. That means two CDC42 proteins bind in a RASGAP 
interaction mode and the other two CDC42 proteins bind to extra domain sequences of 
GRDs [54]. However, different studies also showed that IQGAP RGCT mediates the high-
affinity binding to switch regions of CDC42 and CDC42 can still bind to IQGAP1-ΔGRD 
[144,148,234]. To clarify this discrepancy in the CDC42-IQGAP interaction mode, we 
studied GRD interaction with CDC42 in detail through structural-functional analyses. 

Our kinetic and equilibrium measurements demonstrated that both IQGAP1C794 and 
IQGAP2C795 (encompassing GRD, RGCT, and CT domain of IQGAP1 and 2, respectively) 
bind CDC42 mGDP- and mGppNHp-bound, yet with a higher affinity for mGppNHp-bound 
CDC42. Similar measurements indicated that IQGAP1 GRD and IQGAP2 GRD bind CDC42 
with low affinity but in a nucleotide-independent manner. This data suggests that the RGCT 
domain associated directly with the switch regions of CDC42. To extend these findings, we 
evaluated the association of endogenous IQGAP1 full-length with purified CDC42 and 
RAC1 proteins. The pull-down analyses showed that IQGAP1 full-length binds both these 
GTPases, though binds weaker with the GDP-bound RAC1 and CDC42, than their 
GppNHp-bound forms. 

Our equilibrium measurement data did not show a significant affinity loss for CDC42 
variants carrying different mutations in switch I and II regions in interaction with GRD 
domains of IQGAP1 and 2. These findings propose that the association of CDC42 with 
IQGAP GRD is through other regions than switch regions. 

Later, we tried to reveal the CDC42 contacting sites on IQGAP GRD by considering the 
CDC42 insert helix as its potential effector binding region. The kinetic data manifested that 
a mutation in the CDC42 insert helix results in a diminished GRD1 and CDC42 interaction, 
regardless of the nucleotide-bound states of CDC42 insert helix variants. Moreover, the 
pull-down results confirm that mutations in the CDC42 insert helix hinder IQGAP1 full-length 
binding. A recent study by Haspel et al. showed that the insert helix of CDC42 shows much 
larger conformational flexibility in GDP-bound CDC42 than in the GTP-bound form, and 
differences in conformational flexibility of GDP- and GTP-bound CDC42 Q61L are smaller 
[235]. Hence, we can consider the insert helix of CDC42 as a highly dynamic region, which 
even in its GDP-bound form does not lose its ability to bind to effectors. 

Several previous studies suggested that CDC42 interaction is through the switch regions of 
this protein with the GRD domain of IQGAP [54,145]. One credible argument against these 
findings is using the constitutively active CDC42 variant Q61L, rather than using the CDC42 
wild type. Therefore, we assessed IQGAP1 GRD binding to CDC42 Q61L in comparison to 
CDC42 wild type through equilibrium measurements and size exclusion chromatography 
(SEC). Our results confirmed that CDC42 Q61L binds IQGAP1 GRD and IQGAP2 GRD 50-
fold stronger than the CDC42 wild type. In addition, the SEC analyses indicated that CDC42 
Q61L and IQGAP1 GRD form a 2:1 stoichiometry, which is compatible with the previous 
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study for IQGAP2 GRD with CDC42 Q61L. However, our SEC data showed that the CDC42 
wild type and IQGAP1 GRD form a 2:2 stoichiometry. The stoichiometric ratio for the wild-
type form of a protein provides insights into the nature of protein interactions, which exist in 
a normal physiological state. It became clear that L61 is in direct contact with the GRD 
domain of IQGAP, since, unlike Q61, it is not involved in hydrogen bonding with a catalytic 
water molecule and is positioned toward the protein surface. Hence, CDC42 Q61L cannot 
be considered the best analog of CDC42 wild type, particularly in understanding the 
interaction network of downstream effectors. 

The GRD domain of IQGAP does not show any RASGAP activity, even though there are 
structural similarities between the GRD and GAP domains of RASGAPs like GAP-334 and 
neurofibromin [145]. It would not be frugal for nature to create a GAP domain that acts only 
as an effector module and has a different mode of interaction than those true GAPs with 
GTP hydrolysis activity.  

Overall, our findings verified 1st the role of IQGAP RGCT in mediating high-affinity binding 
to GTP-bound CDC42, and 2nd proposed the insert helix of CDC42 as the possible 
contacting site in interaction with the GRD domain of IQGAP. Further studies are needed 
to explain the significance of IQGAP GRD interaction with CDC42 in signal transduction 
and cellular processes. 

3.4 CUTANEOUS MANIFESTATIONS IN COSTELLO SYNDROME: HRAS P. GLY12SER AFFECTS 

RIN1-MEDIATED INTEGRIN TRAFFICKING IN IMMORTALIZED EPIDERMAL KERATINOCYTES 

It was already known that GTP-bound HRAS binds RIN1 and enhances the activation of 
RAB5A GTPases and ABL1/2 tyrosine kinases, which are the two main signaling axes 
responsible for endosomal sorting and cytoskeletal dynamics [236–238]. To understand the 
molecular pathophysiology for dermatological findings in Costello syndrome, we examined 
the role of the HRAS-RIN1 signaling node, in the presence of constitutively active HRAS 
variants. 

In the presence of HRAS wildtype, RIN1 as a GEF showed a 34-fold increase in its 
nucleotide exchange rate for RAB5A. The RIN1 nucleotide exchange rate for RAB5A was 
even significantly higher in the presence of HRAS G12S or HRAS G13E. Our findings imply 
that HRAS activity is critical for the RIN1-RAB5 signaling pathway. Given that GTP is far 
more abundant in cells than GDP, we conclude that RAB5A is most likely in an active GTP-
bound form in the presence of HRAS G12S or HRAS G13E, in comparison with HRAS 
wildtype. Our data also indicated that HRAS G12S perturb the β1 integrin pools balance 
within the cell and cell surface. Since alterations in HRAS-RIN1 signaling lead to 
perturbation in integrin equilibrium, we conclude that this signaling pathway is accountable 
for the pathogenesis of epidermal findings in Costello syndrome. 

3.5 DOMINANTLY ACTING VARIANTS IN ARF3 HAVE DISRUPTIVE CONSEQUENCES ON GOLGI 

INTEGRITY AND CAUSE MICROCEPHALY RECAPITULATED IN ZEBRAFISH. 

A trio-based exome sequencing of individuals suffering from neurodegeneration diseases 
led to the identification of de novo mutations in ARF3. All amino acid substitutions including 
L12V, D67V, T32N, D93N, and K127E were conserved among ARF3 paralogs and 
orthologs, and three of them including D67V and K127E were also conserved in other RAS 
GTPases. The discovered variants altered residues that were previously linked to human 
diseases were driven by corresponding variants of the RAS superfamily.  
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To gain structural insights into the pathogenic mechanism of identified variants, we 
compared them with the published crystal structure of other RAS GTPases carrying the 
corresponding amino acid substitutions. Our findings indicated that all residues are 
clustered within or in the vicinity of the GTP/GDP binding pocket. For instance, D67 
coordinates with Mg2+ ion through hydrogen bonds with a water molecule, which is required 
for GDP/GTP binding, and its substitution for Valine would significantly disrupt GDP/GTP 
binding. Similarly, K127 is part of the NKXD motif, which is located near the guanine moiety 
of GDP/GTP, and its substitution for glutamic acid perturbs the affinity for nucleotide 
binding. 

The intrinsic and GEF stimulated-nucleotide exchange rates of all variants were evaluated 
using fluorescence polarization. It was striking that the intrinsic nucleotide exchange rates 
of D93N, as well as K127E variants, were considerably higher than for the wild type. These 
two variants showed a 15- to 18-fold higher intrinsic nucleotide exchange rate and reflected 
that no GEF is required to promote the nucleotide exchange reaction. 

To establish a more detailed biochemical consequence of these mutations in ARF3 protein, 
we inspected the intrinsic GTP hydrolysis activity. Except for the D93N variant which 
showed a slight increase in GTP hydrolysis, the rest of the ARF3 variants indicated quite 
similar GTP hydrolysis rates compared to the ARF3 wild type. 

Collectively, we revealed that discovered ARF3 variants are most likely accumulated in their 
GTP-bound state, which is very critical for their function, to maintain the Golgi integrity and 
subsequently affect normal brain development. 
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