
Approaches to

Automatic Structural

Interpretation

of Cryo Electron Microscopy Data

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine Universität Düsseldorf

Vorgelegt von

Luisa Schäfer

aus Dormagen

Jülich, Oktober 2022



aus dem Institut für Biologische Informationsprozessierung
des Forschungszentrums Jülich

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Gunnar Schröder

2. Prof. Birgit Strodel

Tag der mündlichen Prüfung: 10.01.2023



Erklärung

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne
unzulässige fremde Hilfe unter Beachtung der ŚGrundsätze zur Sicherung guter wis-
senschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf’ erstellt wor-
den ist. Weiterhin erkläre ich, dass diese Dissertation an keiner anderen Fakultät
eingereicht wurde. Ich habe bislang keine erfolglosen oder erfolgreichen Promoti-
onsversuche unternommen.

i





Abstract

Due to their decisive involvement in physiological processes of living organisms,
elucidation of the three-dimensional structure of proteins is essential for biomedical
research and drug development. Cryogenic Electron Microscopy (cryo-EM) is a
state-of-the-art method to experimentally determine a protein structure. It enables
the reconstruction of a three-dimensional density map, revealing the structure of
a protein with a resolution of up to a few angstrom. However, depending on map
resolution, interpreting the density map in terms of an atomic model of the protein
is often challenging. Computational tools are needed to facilitate this process.

This thesis presents four different methods for automatic structural interpreta-
tion of cryo-EM density maps.

(1) As contribution to the EMDB Model Metrics Challenge 2019, we have de-
veloped a procedure to optimise a given protein structure into a cryo-EM density
map, regarding the conformational heterogeneity embodied in the cryo-EM data.

(2) In some situations a cryo-EM map allows for straight-forward modelling of
the main-chain of the protein, but the assignment of side-chains is often ambigu-
ous. We introduce a method to automatically sample and rank many different
side-chain assignments and apply it to a density map representing the structure of
IAPP Ąbrils.

(3) We present a routine to Ćexibly Ąt fragments from a library of backbone
conformations to a given protein trace. The Ątted fragments offer more detailed
insights into the underlying protein structure than the plain trace. Furthermore,
the fragment Ątting can easily be integrated in larger frameworks for automatic
protein structure modelling.

(4) If only the density map and no other structural information is available, the
Ąrst step is to determine the topology of the protein. We have developed a novel
integrative approach to do so. It combines the information provided by the density
map with information derived from predicted inter-residue distances. We show,
that incorporating distance predictions can correct errors in topology and improve
traces that were built based on density information alone.
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Zusammenfassung

Aufgrund ihrer entscheidenden Beteiligung an physiologischen Prozessen lebender
Organismen ist die Aufklärung der dreidimensionalen Struktur von Proteinen für
die biomedizinische Forschung und die Entwicklung von Arzneimitteln unerlässlich.
Die kryogene Elektronenmikroskopie (Cryo-EM) ist eine Methode zur experimen-
tellen Bestimmung einer Proteinstruktur. Sie ermöglicht die Rekonstruktion einer
dreidimensionalen Dichtekarte, die die Struktur eines Proteins mit einer AuĆösung
von bis zu einigen wenigen Angström darstellt. Je nach AuĆösung der Karte ist die
Interpretation der Dichtekarte im Sinne eines atomaren Modells des Proteins je-
doch oft schwierig. Hier werden computergestützte Methoden benötigt, die diesen
Prozess erleichtern können.

In dieser Arbeit werden vier verschiedene Methoden zur automatischen Struk-
turinterpretation von Cryo-EM Dichtekarten vorgestellt.

(1) Als Beitrag zur EMDB Model Metrics Challenge 2019 haben wir ein Verfah-
ren zur Optimierung einer gegebenen Proteinstruktur an eine Cryo-EM-Dichte-
karte entwickelt. Dieses Verfahren berücksichtigt insbesondere die konformationel-
le Heterogenität, die in der Dichtekate enthalten ist.

(2) In manchen Situationen ermöglicht eine Cryo-EM-Karte zwar eine direkte
Modellierung der Hauptkette des Proteins, aber die Zuordnung der Seitenketten
kann nicht eindeutig erfolgen. Wir stellen eine Methode vor, mit der viele ver-
schiedene Seitenkettenzuordnungen automatisch ausprobiert und in eine Rangliste
eingeordnet werden können. Diese Methode wird dann auf eine Karte angewendet,
die die Struktur von IAPP-Fibrillen darstellt.

(3) Wir präsentieren eine Routine zur Ćexiblen Anpassung von Fragmenten be-
kannter Rückgratkonformationen an eine gegebene Proteintopologie. Die angepas-
sten Fragmente bieten detailliertere Einblicke in die zugrundeliegende Protein-
struktur als die einfache Topologie. Darüber hinaus kann diese Methode leicht in
größere Programme zur automatischen Modellierung von Proteinstrukturen inte-
griert werden.

(4) Wenn nur die Karte und keine anderen Strukturinformationen verfügbar
sind, muss zunächst die Topologie des Proteins bestimmt werden. Wir haben dazu
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einen neuen integrativen Ansatz entwickelt, der die Informationen aus der Dichte-
karte mit Informationen, die aus vorhergesagten Abständen zwischen den Residuen
abgeleitet werden, kombiniert. Wir zeigen, dass die Einbeziehung von Abstands-
vorhersagen Fehler in der Topologie korrigieren und solche Topologien, die allein
auf der Grundlage von Dichteinformationen erstellt wurden, verbessern kann.
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1. Theoretical Background

1.1. Basic Principles of Protein Structure

The functionality of living organisms is carried out through the interactions of
proteins. Different proteins fulĄl a huge variety of different functions, each of
which is determined by the speciĄc three-dimensional fold of the protein. While
there are consequently countless different three-dimensional protein structures,
they all are composed of the same building blocks. There are twenty amino acids
which, when strung together in a row, build up proteins. The number and order
of the amino acids in a protein, the so-called sequence, is speciĄc for each protein.

Figure 1.1 a) shows the fundamental structure of an amino acid. The Cα atom
forms the centre of the amino acid. It is bound to an hydrogen atom, an amino
group (NH2), a carboxyl group (COOH) and a side-chain which is speciĄc for
each of the twenty amino acid types. During protein synthesis amino acids are
strung together by eliminating water and building a so-called peptide bond between
the carboxyl group of one amino acid to the amino group of another amino acid
(Figure 1.1 b)). At the start and the end of the chain the amino group and the
carboxyl group stay intact, forming the N -terminus and the C-terminus of the
protein. [1] Once an amino acid is part of a chain of two or more amino acids it is
referred to as a residue. The conformation of a residue is often described with the
dihedral angles Ψ and Φ. While Ψ denotes the angle around the Cα-C bond, Ψ
measures the angle around the N -Cα bond. Within the chain of all residues, the
atoms building the recurrent motif all residues share (the atoms that are not part
of the side-chain) are called the main-chain or the backbone of the protein. The
various side-chains emerge then from that common backbone (Figure 1.1 c)).[2]
In a Ąrst step of computational modelling (more information about modelling of
protein structures can be found in section 1.3), one simpliĄes the protein chain
often to a Cα-trace, where each residue is represented only by its Cα-atom. This
is illustrated in Figure 1.1 d).

The speciĄc sequence of amino acids forming a protein is considered as the
primary structure. Zooming out to local conformations of the protein chain, sec-
ondary structure elements become visible. In particular, there are two common
dominant motifs on the secondary level of protein structure; the α-helix and the
β-sheet. Both are stabilised by hydrogen bonds between the backbone atoms of
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structure modelling is elucidated in subsection 1.2.3.

1.2.1. General Information

In 2017 the Nobel Prize in Chemistry was awarded to Jacques Dubochet, Joachim
Frank, and Richard Henderson for "developing cryo-electron microscopy (cryo-
EM) for the high-resolution structure determination of bio molecules in solution"
[3Ű5]. This event may have been the strongest hint, that cryo-EM has become the
state-of-the-art method to experimentally determine the three-dimensional struc-
ture of a protein. Common alternative techniques are X-ray Crystallography and
Nuclear-Magnetic-Resonance (NMR-) Spectroscopy. However, both approaches
require large amounts of sample, X-ray Crystallography is only applicable to pro-
teins, which can be crystallised and NMR-Spectroscopy is limited to small proteins.
[6]. Cryo-EM does not only overcome these drawbacks, but also entails structure
determination near native conditions in an aqueous solution. Moreover, it enables
researchers to investigate dynamic and heterogeneous samples [7] as well as to per-
form ex vivo or even in situ [8] studies, where the proteins are directly extracted
from tissue or even imaged within their cellular environment, respectively. For
a long time, though, cryo-EM was outperformed by X-ray crystallography and
NMR spectroscopy in terms of resolution. Yet around 2013, the development of
direct electron detectors as well as novel image processing algorithms initiated the
so-called resolution revolution [9] enabling structure determination at a resolution
that allows direct interpretation of the data in terms of an atomic model [6]. Fi-
nally, a new milestone was achieved in 2020 when Yip et al. [10] and Nakane et
al. [11] published structures of Apoferritin gaining a resolution better than 1.3 Å,
where individual atoms become visible.

The fundamental principle of imaging using cryo-EM is straight forward. In
short, electrons are emitted from an electron gun, focused by electromagnetic
lenses and accelerated by a voltage between 80 keV and 300 keV [12]. When the
electron beam transmits the sample, some electrons are scattered by the Coulomb
potential of the atoms in the sample, while others pass through without interacting
with the sample. Scattered and unscattered electrons interfere, are detected by
the electron detector and form a two dimensional projection image of the sample.
Only elastically scattered electrons contribute to the image formation, inelastically
scattered electrons cause radiation damage and can destroy the sample. [13] Here
comes the Cryo-part of cryo-EM into play. To protect the sample of radiation
damage it is vitiriĄed, i.e. frozen in amorphous ice before being imaged under
cryogenic conditions. To prevent interaction between electrons and air molecules,
the electron microscope has to be vacuumed.
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In general, one can differentiate three different modalities in cryo-EM: Tomo-
graphy, crystallography and single particle analysis. Tomography is usually used
to image whole cells or large molecular complexes. Here, several tilt images are
merged into a three dimensional representation of the structure. If a large amount
of sample is available and the protein can be crystallised, electron crystallography,
also referred to as electron diffraction, can be used to achieve a high resolution
reconstruction by averaging many fairly identical entities of the protein evenly
arranged in a crystal. Lastly, in single particle analysis many projection images
showing the protein in different orientations are aligned, averaged and combined
to reconstruct the three dimensional protein structure. [12] In this thesis, only
data acquired by single particle analysis is relevant. The individual steps of the
workĆow of single particle analysis are described in more detail in the next section.

1.2.2. Workflow of cryo-EM Single Particle Analysis

The typical workĆow to conduct a cryo-EM experiment consists of four major
steps, visualised in Figure 1.2. If not stated otherwise, the following descriptions
are based on [14] and [15].

Sample Prepapration In a very Ąrst step the protein sample has to be puriĄed.
The pure sample is then transferred onto a grid, consisting of a metal frame and
a holey carbon Ąlm. Ideally, the protein sample should be uniformly distributed
within the grid holes and the proteins within the solution should be oriented ran-
domly, revealing many different views of the protein structure. Next, the grid is
frozen in liquid ethane. Performing the freezing process rapidly prevents the form-
ation of ice crystals which would interfere with the electrons in the microscope.
Instead, the ice is in an amorphous, glass-like state. It captures the proteins in
their native conformation, still allowing conformational heterogeneity, and provides
protection against radiation damage. The sample preparation is illustrated in Fig-
ure 1.2 a).

Data Acquisition For data collection, the grid is inserted into the microscope.
After a screening process, grid holes are Ąrst selected based on protein-, or particle-,
concentration as well as ice thickness and then imaged. The recorded images of the
selected holes are called micrographs and contain usually several 2D projections of
the particles (see Figure 1.2 b)). However, due to the radiation sensitivity of the
sample, only very low electron doses, about 20-40 electrons/A2, can be used for
imaging [17]. Thus, the individual micrographs are very noisy and cannot directly
resolve the atomic protein structure, but need further processing.
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Density Map Reconstruction As described above, the micrographs contain sev-
eral projections showing the protein of interest in various orientations. To extract
the structure information from these micrographs, one needs to extract the in-
dividual particle representations from the micrographs by boxing out the corres-
ponding areas in the micrograph. This process is referred to as particle picking
and depicted in Figure 1.2 c) (left). Next, these particle images (usually in the
order of 105) are aligned to each other and classiĄed based on structural features,
so that each class should contain a speciĄc orientation or view of the protein (2D
ClassiĄcation, Figure 1.2 c) centre). Particle images within a class are averaged to
improve the signal-to-noise-ratio. The Fourier-Shell-Theorem states that for each
three-dimensional object, the Fourier transform of a two-dimensional projection
image (of this object) is a central slice through the Fourier transform of the three-
dimensional object [12]. Hence, by determining the relative orientations of the
projection images, one can combine them to a three-dimensional structure (Fig-
ure 1.2 c) right). This is done by an algorithm, called projection matching, where
the projection images are compared to re-projections of a three dimensional initial
model (different approaches to generate an initial model are described in [18Ű20]),
assigned to a best matching orientation, and used to update the 3D model in an
iterative manner [17]. Eventually, the assigned orientations converge and the res-
ultant three-dimensional model can be interpreted as representation of the protein
structure. Although the 3D representation does not reĆect the electron density
but the electrostatic potential of the atoms, it is referred to as density map.

Model Building The purpose of a cryo-EM density map usually is to be inter-
preted in terms of an atomic model as depicted in Figure 1.2 d). In general one
can distinguish two different approaches for density map interpretation: struc-
ture Ątting and de-novo modelling. In the Ąrst case, if the general structure of
the protein of interest is known and the cryo-EM map only represents another
conformation of the protein, the known structure can be reĄned into the map,
such that the Ąt of the structure to the map is maximised. DireX [21, 22] and
Phenix [23] are common software packages to perform this task. In the second
case, if no information about the atomic structure is available, the model has to
be built into the map from scratch. This can be done manually in Coot [24].
However, manual model building is difficult and time-consuming, particularly in
density maps with a resolution worse than 3 Å . Therefore, automatic modelling
tools have been developed to facilitate this process. Some are the subject of this
thesis. More information about existing software for automatic model reĄnement
and model building is given in section 1.3.
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1.2.3. Resolution of cryo-EM Density Maps

Every published cryo-EM map is attributed with a value describing its resolu-
tion, indicating its general quality. However, while most people have an intuitive
understanding of resolution, as Śsharpness’ or the degree to which details can be
differentiated, it is not straight-forward to deĄne resolution for cryo-EM maps.
Usually it is computed with a consistency test between two independent Śhalf
maps’: One splits the data set of picked particle images into two random sets
and reconstructs a map for each data set. Both maps are compared as a function
of spatial frequency by calculating the Fourier Shell Correlation (FSC). [25] The
frequency at which the FSC drops below 0.143 is then interpreted as estimate of
the resolution of the cryo-EM map reconstructed based on all particle images [26,
27]. Estimating the resolution via the FSC criterion indicates that resolution is
an isotropic property of the whole map. However, resolution might vary between
different regions of the map, such that a Ćexible loop is worse resolved than a
static protein core [28, 29].
Resolution has a great impact on model building. Maps obtaining resolutions bet-
ter than 3 Å show clearly distinguishable side-chain densities and an unambiguous
main-chain topology [30]. Thus, model building is straight-forward and can easily
be performed manually. This resolution range will be referred to as high resolu-
tion or atomic resolution in the following. In the medium resolution range (3 Å
to 5 Å) side-chains may not always be visible and even the identiĄcation of the
correct topology may be hampered by branching or breaking. For this situation
computational tools for automatic model building have been developed to support
a modeller in the process of model building (see section 1.3). If the resolution of
a map is worse than 5 Å (low resolution), secondary structure elements may be
still identiĄable [31], but de-novo model building is not possible [30, 32]. Never-
theless, reĄnement methods can still be used to reĄne a known structure into a
low-resolution map.

1.3. Structure Modelling based on cryo-EM Data

The overall goal of a cryo-EM experiment is to determine the three-dimensional
structure of a protein. But, while the computational steps to reconstruct a density
map from the micrographs are usually performed within a single software frame-
work, e.g. Relion [33] or cryoSPARC [34], automatic model building remains a
separate task and Ąeld of research. This section gives an overview about existing
approaches and software packages for automatic model building. As described
above, there is a conceptional difference between tools which specialise on optim-
ising and adapting an existing model into a cryo-EM map and other methods that
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perform the modelling based on the density map alone without knowledge about
a prior determined structure. The choice of which of the two approaches to follow
depends on both the information available and the resolution of the map. [32]
Both classes are elucidated in subsection 1.3.1 and subsection 1.3.2, respectively.
Lastly, subsection 1.3.3 deals with methods to validate or to assess the quality of
a built model.

1.3.1. Fitting and Refinement Methods

Fitting and reĄnement methods optimise an existing model into a cryo-EM map,
such that the Ąt or overlap between the model and the map is maximised. If no
structure of the protein is available, one can fall back to so-called homology mod-
elling [35], or more general, to structure prediction methods, i.e methods which
predict the three dimensional structure of a protein only based on its sequence, to
generate a structure which then can be adapted to the cryo-EM map.

The least complex way of adapting a protein structure to a density map is rigid-
body Ątting. Here, only a translational and rotational search is performed to Ąnd
the best positioning of the structure in the map. A common tool for rigid Ątting
is UCSF Chimera’s Ąt-in-map method [36].

During Ćexible Ątting or reĄnement the model is allowed to slightly deform, bend
or relax, so that it better Ąts into the density map [31]. The real space reĄnement
software DireX is specialised on medium- to low-resolution density maps and
aims to only adapt those degrees of freedom for which the density map actually
provides information and to keep all other degrees of freedom as close to the initial
structure as possible [21]. The geometry based, efficient CONCOORD algorithm
[37] is used to generate a conformational ensemble of structures. This ensemble is
inĆuenced by two forces, a force moving atoms into the density map and a coun-
teracting force, mediated through deformable elastic network (DEN-) restraints,
which prevents overĄtting by biasing the ensemble towards the input structure.
By balancing both forces, the structure is stepwise reĄned into the map. The
Molecular Dynamics Flexible Fitting (MDFF) method [38] combines,
as the name suggests, Molecular Dynamics Simulations with Ćexible Ątting. To
move the structure into the map, but simultaneously ensure the preservation of
secondary structure elements, two external potentials are added to the MD force
Ąeld. While the MD force Ąeld describes the bonded and non-bonded interac-
tions between the atoms in the protein and therefore retains the stereochemical
correctness, the potential derived from the EM data applies forces proportional
to the density gradient and the second external potential acts through harmonic
restraints between dihedral angles in residues participating in a helix or a sheet.
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During the simulation the protein should adapt a stereochemical correct conform-
ation that is in accordance with the cryo-EM data. Another common choice for
reĄnement is the phenix.real_space _reĄne tool [23] of the Phenix Suite [39].
Here the atomic coordinates are minimised against a target function, considering
the cryo-EM data as well as stereochemical restraints, with the L-BFGS algorithm
[40]. To take into account, that at lower resolutions the experimental information
may be insufficient to preserve all geometry characteristics of the structure, not
only standard restraints on bond-length, bond angle and dihedral angles can be
applied, but additional information, like symmetry restraints, Ramachandran plot
restraints or restraints on common side-chain conformations, so-called rotamers,
can be included.

1.3.2. De Novo Modelling Tools

The aim of de novo modelling is to construct a model directly from a density map
without the aid of a structural template [31]. Since this is a challenging task, it
usually requires better resolutions than Ątting methods [30, 31]. Many compu-
tational tools for automatic de novo modelling share a general rough procedure
to interpret a density map: In the Ąrst step some kind of base points, often in-
terpreted as approximate Cα positions, are identiĄed and connected to a trace.
This trace deĄnes the global topology of the protein. The following step is to con-
vert this Cα-trace into a full atom main-chain. Finally, the sequence is assigned
to the backbone and side-chains are added accordingly. Representatives of these
class of modelling tools are for example Pathwalker [41], Mainmast [42], the
phenix.trace_and_build method [43], EMfasa [44] and also the deep learning
based approach Deeptracer [45].
In more detail, Pathwalker seeds as many pseudo atoms in high-density regions
as there are residues in the sequence and connects them with help of a Travelling
Sales Person Problem (TSP) solving algorithm [46, 47], which prefers connections
traversing high density regions. IdentiĄcation of secondary structure elements and
removing non-protein like features help to reĄne the path. Completion to a full
atom structure is not included in the Pathwalker procedure. The Mainmast
approach is based on local dense points, connected by a minimal spanning tree,
minimising their spatial distance. Applying a threading score which considers the
matching of the volume of amino acids to the density at the local dense points
converts the tree structure into a Cα-trace. To build the full-atom structure,
Mainmast employs the software PULCHRA [48]. Furthermore, the Phenix
method Ąrst identiĄes regions of the map representing contiguous fragments of
the protein structure, models the Cα-trace of those fragments and subsequently
completes the fragmented traces to full atom structures and merges them into a
consensus structure. Deeptracer employs convolutional neural networks to pre-
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dict conĄdence maps describing the probability of a certain voxel of the density
map to contain a part of a certain secondary structure element, a part of the back-
bone or a Cα-atom. Those conĄdence maps are then used to build the Cα-trace.
Here too, the sequence is mapped to the trace in a subsequent step to complete the
trace into a full atom structure. Finally, EMfasa Ąrst generates a Cα-trace which
determines the topology of the protein by connecting beads based on a TSP solver.
Then a fragment library, consisting of sequence non-speciĄc fragments, each seven
residues long and embodying a common backbone conformation, is rigidly Ątted
at the Cα positions of the trace. Subsets of nicely Ątting fragments are identiĄed
and then assembled into a consensus backbone. The side-chains are added with
help of a proĄle reĆecting the Ąt of each of the 20 amino acids at each backbone
position. EMfasa will be described in more detail in section 5.1.

Wang et al. [49] follow a slightly different approach and deviate from the pro-
cedure to Ąrst build a Cα-trace and completing it afterwards. Their workĆow is
based on the assumption, that local similarity in sequence is accompanied by local
similarity in structure. Segments of solved protein structures with local similar se-
quences are Ątted in the map and well matching fragments are assembled to form
a complete protein structure. It should be noted that, in contrast to the EMfasa
approach, the fragments used in the Rosetta approach are sequence-speciĄc and
contain side-chains from the beginning.

1.3.3. Model Validation

Once a model is built, it has to be assessed and validated [30]. A validation can
answer several questions: Is the geometry of the model biophysically correct? How
well does the model explain the experimental data? Or, how similar is the mod-
elled structure to a high-resolution crystal structure, which may be considered as
ground truth?

The MolProbity Score [50], originally developed for validation of models de-
rived from X-Ray crystallography data, provides a common way to answer the Ąrst
question. It considers several geometrical features in its analysis. In an all-atom
contact analysis, the structure is checked for clashes, i.e for contacts between un-
bound atoms whose overlap of van-der-Waals radii exceeds 0.4 Å. The clash score
gives the number of clashes per 1000 atoms. Steric hindrance also regulates the
torsion angles of the backbone, such that only certain combinations of Φ and Ψ
angles are allowed [51]. MolProbity compares the torsion angles of the backbone
with a reference distribution of torsion angles from very high resolution struc-
tures. Residues, with an unlikely combination of the backbone torsion angles are
considered as ŚRamachandran outliers’. In a similar manner, unusual side-chain
conformations, so called rotamer outliers are detected. The number of clashes,
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Ramachandran outliers and rotamer outliers are collected in a single MolProb-
ity Score, which reĆects the crystallographic resolution at which those values
would be expected.

Another measure of model quality is, often behaving in some level antagon-
istic to geometric quality, the Ąt of the model to the experimental data. When
validating the agreement of a model to a map, special attention must be paid,
to the problem of overĄtting, i.e the Ątting to noise instead of signal. Only by
using independent data, in other words data that has not been used for the op-
timisation of the model-to-map-Ąt, the concordance of model and map can be
evaluated. [30]. Falkner and Schröder [52] developed a cross validation approach
for cryo-EM based modelling. During cross validation the experimentally data
is split into two independent data sets, one used for optimisation, the other one
for validation. Cross validation approaches has been developed before for X-ray
crystallography data. However, these methods randomly select about 10% of the
spatial frequencies present in the data for validation. In cryo-EM though, ran-
domly chosen spatial frequencies might correlate with each other and the two data
sets would not be independent. Therefore, Falkner and Schröder spilt the spatial
frequencies of the cryo-EM density map into two continuous bands of frequencies:
A continuous band of higher spatial frequencies, the Śfree band’, is used for valida-
tion, the lower frequencies, the Śwork band’ are used for the DireX reĄnement of
the model to the map. The cross correlation Cwork between the frequencies within
the work band of the cryo-EM map and of a density calculated from the model
is optimised during the reĄnement. The Cfree value, though, the cross correlation
between the cryo-EM map and the model map for spatial frequencies in the free
band, is then an independent measure of the model-to-map Ąt. [52]

When developing a new modelling tool, the aim is to show that the tool can
help to build topologically correct and accurate models. This is usually done not
(only) by assessing the model’s geometrical features and its Ąt to the density, but
by comparing it to an already known high-resolution structure of the protein of
interest. In that sense, also structure comparison measures can be employed for
validation. The most common measure of similarity between two structures is the
Root Mean Squared Deviation (RMSD). The RMSD is the average spatial distance
between n pairs of corresponding atoms of two superimposed structures:

RMSD =

√

√

√

√

1

n

n
∑

i=0

d2
i

where di is the distance between the atoms in the ith pair. [53] While the RMSD
is a simple and straight forward metric to assess accuracy of atom placements it
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also has some disadvantages. Firstly, it requires a one-to-one mapping between
atoms of the the two structures to be compared and secondly, it is quite sensitive
to local errors, as they would occur due to conformational variations. For example,
a deviating conformation of a loop region in an otherwise perfectly match between
the structures may be biophysically reasonable and in agreement with the data,
but would result in a signiĄcant increase in the RMSD [53]. The second pitfall
can be circumvented (e.g [45]), by including only pairs of atoms in the calculation
whose distance is beneath a certain threshold (in the context of Cα-atoms this
threshold is often set to around 3 Å). To complete the picture, the so-called struc-
ture overlap then indicates the percentage of atoms included in the calculation. A
comparison more of the overall fold and less of error-free and accurate atom pos-
itioning is provided by the CLICK score [54]. CLICK aligns the two structures
based on local structural similarities, but does not require a global matching or
sequence alignment. Similarity is measured by the RMSD and structure overlap,
here deĄned as fraction of atoms that are within a 3.5 Å to their corresponding
atom, but also by the topology score. The topology score is 1 for topologically
identical structures and 0 for topologically complete dissimilar structures.
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2. Objective and Outline

Knowledge about protein structures is essential for our understanding of the phy-
siological functioning of living organisms, the development of drugs against protein
associated diseases as well as the development of new bio-based materials.

In the last years cryo-EM has become the state-of-the-art method for experi-
mental protein structure determination. It enables capturing proteins near native
conditions, only requires limited amount of sample and is applicable to a wide
variety of different proteins.

However, analysing cryo-EM data is complicated and requires several steps.
After a puriĄed protein sample has been imaged in the microscope, the many
acquired projection images can be used to reconstruct a three-dimensional density
map. This map, though, is a quite complex representation of the protein structure
itself and the interpretation of such a map is, particularly for lower resolutions,
challenging. Computational tools are needed to extract the whole spectrum of
structural information given by a cryo-EM density map, ranging from details in
side chain conformations varying within different conformations of the same protein
to fundamental and essential properties of a protein like the global topology of its
fold.

In this thesis a top-down approach is followed to stepwise deepen the under-
standing of how information about protein structure is encoded in a cryo-EM dens-
ity map. Four different studies are presented, each elucidating a computational
method for structural interpretation of cryo-EM maps, but settled at a different
point of the transformation between density map and optimised atomic model.
Figure 2.1 illustrates the structure of this thesis. It leads against the typical mod-
elling workĆow, but follows the path towards a fundamental understanding of the
relation between model and map from a computational perspective, characterised
by less and less prior information being available.

In the Ąrst study, described in chapter 3, we have high-resolution density maps
and a well Ątting corresponding crystal structure at hand. We will see, how we
can optimise this structure into the maps and how we can regard that a cryo-EM
density map entails not only information about a single structural conformation
but that a whole ensemble of structures contributes to the map.

The fold of the protein examined in the second study, presented in chapter 4,
is part of a special kind of protein folds, so-called amyloid Ąbrils. A map with a
resolution of 4.2 Å is available as well as a model of the backbone. However, the
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3. Structure Optimisation by

Capturing Conformational

Heterogeneity in the EMDB

Model Metrics Challenge

This chapter describes our contribution to the EMDB Model Metrics Challenge
2019. It entails an approach to adapt a crystal structure as accurate as possible
to a series of cryo-EM maps of Apoferritin with resolutions of 1.8 Å, 2.3 Å and
3.1 Å, respectively. Our idea was to not only morph the available structure into
the density map, but to regard the conformational heterogeneity of the ensemble
represented by the cryo-EM map.

The chapter is structured as followed: First, a short introduction is given in
section 3.1, explaining the setting and the motivation of the model challenge. In
the next section (section 3.2) the available material is described and our method
for reĄning the crystal structure into the density map, while regarding the con-
formational heterogeneity embodied in this very map, is explained in detail. The
general results of the model challenge have been published in a research article in
Nature Methods [55]. Section 3.3 summarises the article, but also describes how
well our method has performed in the challenge.

3.1. Motivation

The EMDataResource Project (EMDR) (emdataresource.org) is a global platform
for archiving and retrieval of cryo-EM data, but also for community events, news
and discussions. The goal of the EMDR is to establish data validation and data
deposition standards through community consensus to ensure a reliable quality
of published data. [56] One of the main approaches to set benchmarks are bi-
annual community challenges, where participating community members solve a
modelling task, submit their results and discuss methodologies, problems and fu-
ture prospects. In 2019 the EMDR Model Metrics Challenge took place. This
challenge set the focus on the evaluation of the quality of models generated by
current software tools, but most of all on the comparison of different validation
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3.2.2. Methods

In view of the situation, that Ąrstly, a high-resolution crystal structure was avail-
able and that secondly, the 1.8 Å map in particular revealed not only the general
fold but speciĄc conformational details, we decided to focus on reĄnement and
optimisation of the crystal structure, rather than building a de-novo model.

We followed the same procedure for all three maps: In order to make use of the
symmetric properties of the target we Ąrst zoned the provided map 4 Å around the
asymmetrical subunit and applied the optimisation steps only on one subunit. We
then rigidly aligned the crystal structure to the cropped map using Chimera. For
the reĄnement, we split the data into two sets. Lower spatial frequencies were used
for optimisation, higher spatial frequencies were left for validation. Therefore we
Ąltered the maps to 2.0 Å (EMD-20026), 2.4 Å (EMD-20027) and 3.3 Å, respect-
ively. The crystal structure already had a good Ąt to the density, but originated
from another experiment and hence represented a slightly different conformation.
Other than X-ray crystallography, a cryo-EM experiment mirrors not only one
conformation but an average of an ensemble of differed conformations. To sample
the conformational heterogeneity embodied in the cryo-EM data, we ran a MDFF
simulation for 10 000 ps with default parameters and additional Berendsen pressure
control [61]. For each pico second of the simulation, a frame was extracted, result-
ing in 10000 frames. Using DireX, we evaluated the agreement between model and
map for each frame with the Cfree value, the model-map cross-correlation based on
the higher spatial frequencies not used in the MDFF reĄnement. Only the 1000
frames associated with the best Cfree values were averaged. However, building
an average structure of different conformations, can lead to unlikely geometrical
features in the structure. That is why we performed an subsequent energy minim-
isation of the average structure with CNS [62, 63]. The strength of the position
restraints applied during the minimisation were chosen, such that the MolProb-
ity score was optimised. A measure to quantify conformational heterogeneity or,
from another perspective local resolution, at an atomic level are atomic displace-
ment parameters, so-called B-factors. Atoms with a position that varies among
conformations are associated with a large B-factor, static atoms with a smaller
B-factor. To consider those differences in the submitted model, we performed a
B-factor Ątting with Phenix. Finally, we aligned the optimised structure to the
protomer map containing all subunits.
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3.3. Results and Discussion

3.3.1. Publication 1: Cryo-EM model validation

recommendations based on outcomes of the 2019

EMDataResource challenge

The results and outcomes of the Model Metrics Challenge have been published in
Nature Methods in 2021. The article is summarised below in the Ąrst paragraph
of this section and can be found in full length in Appendix A. As the publication
sets another focus than this thesis, the second paragraph of this section elucidates
the results relevant for the presented method in more detail.

Summary

The 2019 Model Metrics Challenge aimed to Ąnd general recommendations about
new validation standards for cryo-EM model building. Four target maps were
provided, three of them as a resolution series originating from the same experi-
ment and all of them representing the state-of-the-art for cryo-EM single particle
reconstructions at the time of the beginning of the challenge. Thirteen teams
from Europe and the USA submitted 63 models in total, there were no instruc-
tions which software to use. All submitted models were evaluated in four tracks:
model geometry, Ąt-to-map, comparison-to-reference-model as well as comparison-
among-models. Various metrics were applied in each track. In general, most mod-
els yielded high scores in each of the tracks, most times improving the reference
model. Frequent errors related to peptide bond geometry or sequence alignments.
The evaluation of Ąt-to-map metrics revealed a poor correlation between the dif-
ferent metrics. Moreover, map-speciĄc factors or user-chosen parameters as for
example background noise or chosen density threshold, seemed to strongly affect
the score values of many metrics. Metrics validating a models’ geometry were
found to be mostly orthogonal to each other, suggesting the use of multiple scores
to identify all geometry issues in a model. In contrast, comparison-against refer-
ence and comparison-among-models metrics showed a strong correlation to each
other. All Ąndings were summarised in four general recommendations: Firstly,
nearly all Ąt-to-map metrics can be used to monitor progress in the optimisa-
tion of model into a single map. Secondly, when examining local Ąt-to-map one
should use metrics that perform the evaluation per single residue instead of metrics
considering windows of several residues. Thirdly, for an archive-wide ranking of
Ąt-to-map scores a metric which is insensitive to map background noise and not
dependent on estimated input parameters is required. Examples of such metrics
are the map-model FSC [27, 64], the global EM-Ringer Score [65] or the Q-
score [58]. Fourthly and Ąnally, special attention should be given to backbone
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conformation errors, CaBLAM [66] could be exemplary used for that.

Performance of the described modelling method

Our submitted models scored satisfactory in all tracks. Ranked by the combined
Z-score considering all metrics with an equal weight, our model for EMD-20026
took place 13 of 33, the model for EMD-20027 Ąnished in place 9 of 31 and the
model for EMD-20028 came even 5th of 31. [67] These results reveal, that the
chosen method is suitable for the lower resolution in particular.

Improvements can be sought concerning the interfaces between asymmetrical
subunits. Focusing the reĄnement only on one subunit did not take any inter-
actions between subunits into account. This resulted in not accurately modelled
residue-residue contacts between different subunits reĆected in a poor PRO-Q
Score [68]. Instead, reĄnement should be performed on the whole complex (at
the expense of running time, though) or changes in side-chain conformations due
to inter-subunit interactions should be taken care of in an additional step after
reĄnement of the individual subunits.

Contribution

For this study, I participated in the challenge as modeller and contributed to the
method development, preprocessed the cryo-EM maps, ran the MDFF simula-
tions, performed the DireX validation and computed the average structures.
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4. Automatic Side-chain Sampling

for Structure Elucidation of IAPP

Fibrils

The subject of this chapter is a method we developed in the context of a study
about the atomic structure of IAPP Ąbrils. It describes a procedure to com-
putationally sample and rank many different side-chain assignments for a single
backbone. This can be of help in situations where a cryo-EM map allows for a
more or less straight-forward building of the protein main-chain, but the resolution
of the side-chains is not sufficient for an unambiguous sequence assignment. We
present an approach to deal with that situation and describe how to extract as
much structural information from the density map as possible.

The chapter begins with a short presentation of a few theoretical fundamentals
(section 4.1) about amyloid Ąbrils and the prediction of side-chain conformations.
Next, section 4.2 clariĄes the motivation for the study. The methods for the
automatic side-chain sampling are explained in section 4.3. Our Ąndings about the
structure of IAPP Ąbrils have been published in Nature Structural and Molecular
Biology [69]. The Ąrst part of section 4.4.1 summarises the article, which offers a
more biological perspective on the study, while the methodical and computational
perspective on the results is given in the second part of section 4.4.1.

4.1. Theoretical Background

4.1.1. Amyloid Fibrils

A protein chain cannot only fold into its native three-dimensional structure as
determined by its sequence. Instead, there is an alternative fold, the amyloid
fold, where many entities of the same protein chain stack onto each other forming
helical Ąbrils stabilised by well-ordered β-sheets. Each layer consists of mostly two
entities of the same protein chain, or monomeric subunit, interacting with each
other through side-chain interactions within the Ąbril interface. The structural
architecture of an amyloid Ąbril is illustrated in Figure 4.1. While some functional
amyloids have been observed mainly in bacteria, fungi and insects [70], amyloid
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4.1.2. Prediction of Side-chain Conformations with Sqwrl4

Sqwrl4 [78] is a program to predict side-chain conformations given a backbone
and a sequence. Its workĆow is described brieĆy in the following:
First, coordinates of the backbone atoms are read and the dihedral angles Φ and Ψ
are calculated for each residue. Next, a list of possible side-chain conformations,
rotamers, is generated for each residue with help of a backbone dependent rot-
amer library. The library contains frequencies of the rotamers as well as the mean
angles, deĄning the conformation, and their standard deviations over a discrete
Φ/Ψ grid. The resultant coordinates of the side-chain atoms are computed and
each side-chain is associated with a bounding box which determines the interac-
tion radius of the side-chain. Further, each rotamer is attributed with an energy
term considering Ąrstly its self-energy, dependent on its frequency and the inter-
actions to the backbone atoms, and secondly a pair energy term specifying the
interactions between side-chains possibly assigned to different residues. The pair
energy regards van-der-Waals interactions as well as hydrogen bonding. Finding
the optimal set of rotamers associated with the lowest total energy is a com-
plex combinatorial problem. Scwrl4 approaches it by converting the data into
a graph. Residues are represented by vertices, edges indicate possible interactions
between residues. A combination of a dynamic programming algorithm and tree
decomposition methods solves the graph and identiĄes the optimal assignment of
side-chain conformations to the residues. [78]

4.2. Motivation

The human islet amyloid polypeptide (IAPP) is a small protein consisting of only
37 residues. Its physiological function is assumed to be involved in the glucose
metabolism, the control of gastric emptying and the regulation of satiety. However,
Ąbrillar aggregates of IAPP seem to play a decisive role in type II diabetes where
they are associated with dysfunction and death of pancreatic beta-cells. Detailed
knowledge about the structure of IAPP Ąbrils could deepen the understanding
of the mechanism of amyloid formation, but also help to develop Ąbril growth
inhibitors and soluble, non-toxic IAPP analogs. [79]

We applied cryo-EM to elucidate the structure of human IAPP Ąbrils grown at
physiological pH. We identiĄed three different polymorphs in our data set. While
the reconstructed density of the most dominant polymorph, PM1 in the following,
provided sufficient details to manually build an atomic model, the number of im-
ages of the rarest polymorph, PM3, was limited, so that the reconstruction only
yielded a resolution of 8 Å. Thus, model building was not possible here. With the
second polymorph, PM2, the situation was more complex. The nominal resolution
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of 4.2 Å was the same as for PM1, but the assignment of the side-chains was not
clear.

In this study, we present an automatic side-chain sampling and -ranking ap-
proach for the structural interpretation of the density map of PM 2. It is shown,
how computational automatic modelling tools can help to deal with difficult pre-
requisites for model building in the case of ambiguous data. We demonstrate how
they can be used to gain a more profound insight into the underlying model archi-
tecture and how they provide quantiĄable results where manual model building is
not reliable.

4.3. Methods

Model building for PM2 was not straight-forward. The reconstructed density map
of PM2 yielded a resolution of 4.2 Å and displayed the course of the backbone
clearly, but side-chains could not be assigned unambiguously. Therefore, we manu-
ally built the backbone in forward- as well as in backward direction in Coot. The
backbone contained 21 residues, the remaining 16 residues were not resolved in the
density. The complete sequence of 37 residues comprises 17 snippets of a length of
21 residues. Accordingly, we performed 17 sequence assignments for each backbone
using Sqwrl4, resulting in 34 model in total. Each model was energy minimised
with CNS. So far, the information from the density map has not been taken into
account in the construction of the side-chains. Hence, we performed a reĄnement
of all models in DireX. Spatial frequencies in the resolution range of 3.0 Å to
4.0 Å were not used in the reĄnement, but for the estimation of the Ąt-to-map in
means of the real-space map correlation coefficient Cfree (see also section 1.3.3).
The Cfree value then was used to rank the models. The best scoring model was
further reĄned using MDFF, coordinates of the MDFF trajectory were averaged.

4.4. Results and Discussion

4.4.1. Publication II: Cryo-EM structure of islet amyloid

polypeptide fibrils reveals similarities with amyloid-β

fibrils

The Ąndings of our structural investigation of IAPP Ąbrils have been published in
Nature Structural and Molecular Biology in 2020 [69]. The article is summarised
below in the Ąrst paragraph of section 4.4.1 and can be found in full length in
Appendix B. As the publication sets another focus than this thesis, the second
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paragraph of section 4.4.1 additionally elucidates the model building for PM2 in
the context of this thesis.

Summary

We investigated the structure of IAPP Ąbrils using cryo-EM. The Ąbrils were
formed in vitro at a physiological meaningful pH of 6.0. Various polymorphs were
visible in the micrographs, three of them allowed for reconstruction of a three-
dimensional density map.

The most abundant polymorph, PM1, made up for about 90 % of the Ąbrils.
Its reconstructed density map yielded a resolution of 4.2 Å. The atomic model
comprising residues 13 to 37 could be build manually in Coot and shows two
S-shaped monomeric subunits per layer. The N-terminus is Ćexible and could not
be resolved in the density. The interface of the Ąbril is formed by a hydrophobic
cluster including the sequence motif NFGAIL1, which has been found to be crucial
for Ąbrillation of IAPP before [80Ű82]. Superimposing the atomic model of PM1
with Ąbril structures of Amyloid-β revealed striking similarities. These similarities
might be interpreted as a hint for a molecular link between type II diabetes and
Alzheimer’s disease.

The second polymorph accounted for 10 % of the observed Ąbrils and is Ćatter
than PM1 with a longer cross-over distance. We reconstructed a three-dimensional
density map with a resolution of 4.2 Å. However, structural interpretation of the
density was difficult and the assignment of the side-chains was ambiguous. There-
fore, we employed automatic modelling tools to build all 34 eligible models and
ranked them according to their real-space map correlation coefficient Cfree. The
most probable model according to this criterion shares some structural features
with PM1. There are also two monomeric subunits per layer, but here these are
not S-shaped but rather extended. The N-terminus again is Ćexible and cannot
be resolved, which is, though, here also true for the C-terminus. Interestingly, the
NFGAIL motif is again located at the centre of the Ąbril interface.

Lastly, we reconstructed a density map for a quite thick Ąbril, PM3. But the
reconstruction was hampered by the limited amount of corresponding projection
images in the micrographs, as only about 1 % of the Ąbrils could be assigned to
PM3. Hence, only a resolution of 8.1 Å was achieved, so that model building was
not an option. The density indicate a small interface comprising only about 3
residues.

1It is common to abbreviate the names of amino acids with a one letter code. NFGAIL de-
scribes the succession of amino acids asparagine, phenylalanine, glycine, alanine, isoleucine
and lysine.
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motif NFGAIL is not included in model 2. Model 3 and 4 show also some imperfec-
tions in the model-to-map Ąt, such as not Ąlled side-chain densities or side-chains
protruding from the density. Model 4 yielded a high Cwork value during the reĄne-
ment, but the good agreement of map to model could not be conĄrmed to the same
degree by the Cfree value. In conclusion, model 1 seems to be the most probable
model for PM2.

Thus, computational tools for automatic model building have proven helpful in
various ways for the structural interpretation of the density map of PM2. Firstly,
Sqwrl4 made it possible to easily and quickly generate multiple models represent-
ing the various possible sequence assignments. Secondly, energy minimisation with
CNS ensured a comparable geometrical quality of all models and thirdly, maybe
most importantly, calculating the Cfree value, a measure of Ąt-to-map completely
independent of the reĄnement process itself, provided an objective, dispassion-
ate and quantitative ranking of the models. The result is a sound, well-founded
structural interpretation of the density in terms of a very probable, even if not
completely reliable, atomic model. This would not have been possible to the same
level with manual model building.

Contribution

For this study, I performed the model building and reĄnement for PM2. Addition-
ally I was involved in the writing the manuscript.
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5. Flexible Fragment Fitting for

Automatic Backbone Building

In this chapter, we present a procedure for Ćexible fragment Ątting. After having
determined the topology of a protein in form of a rough Cα-trace, the next step in
the modelling pipeline is to convert this trace into a full-atom backbone. This can
be achieved by Ątting fragments of known backbone conformations on the trace.
We show that Ćexible Ątting can outperform rigid Ątting, examine the inĆuence
of fragment library sizes on the Ątting performance and investigate which metrics
are best to assess a fragment placement.

Some theoretical background information about structure modelling with EM-
fasa as well as about the idea of deformable elastic network restraints is given
in section 5.1. The motivation for this study is explained in section 5.2. Section
5.3 gives a detailed description of the methods we used. The results regarding our
Ćexible Ątting procedure are elucidated and discussed in section 5.4.

5.1. Theoretical Background

5.1.1. De-Novo Protein Structure Modelling with EMfasa

EMfasa [44] is a fully automated protocol for de-novo model building in cryo-EM
density maps. It was developed by Tatjana Braun during the course of her PhD
in the group of Gunnar Schröder. Emfasa aims to rapidly interpret a medium
resolution map in terms of a Ąrst atomic model. The model might not be fully
optimised yet but can be reĄned using computationally more expensive software.
The workĆow of EMfasa is illustrated in Figure 5.1 and consists of six steps:

Step 1: Trace Generation The Ąrst step is to determine the topology of the
protein in terms of a rough Cα-trace. To do so, the dxtraces tool which is
part of the DireX Framework is employed. Twice as many beads as there are
residues in the sequence are randomly placed in the map and connected based on
a TSP solver [47] which is set up in way that it prefers connections between beads
traversing high density regions. Then, the number of beads are halved and the
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the next step is to Ąnd a set of mutually compatible fragments. The key concept
of this fragment assembly is a Monte Carlo Simulated Annealing (MCSA) [84]
sampling which identiĄes such a set based on the correlation of the fragments to
the map, the overlap between neighbouring fragments, the occurrence of clashes
between fragments assigned to residues far apart in the sequence and the agreement
of the direction of a fragment with the direction of its neighbouring fragments and
the direction of the trace.

Step 4: Backbone Generation In this step, the DBScan clustering algorithm
[85] is employed to convert a set of mutually compatible fragments into a consensus
backbone. The cluster centres represent Cα positions, the connections between
residues are based on intra-fragment connections. An advantage of the DBScan
algorithm is, that it does not require the number of clusters a priori. This way,
it can be taken into account that it may not have been possible to identify all
the residues. The cluster centres are derived by averaging the atom coordinates of
fragments participating in a cluster. This averaging can lead to unphysical local
geometries. Therefore the backbone is reĄned using the Phenix real-space-reĄne
tool.

Step 5: Automatic Sequence Assignment Assigning side-chains to the back-
bone is performed in two steps. First a proĄle reĆecting the Ąt of each amino acid
to each residues position is generated. Then this proĄle is aligned to the sequence
of the protein using the Needleman-Wunsch algorithm [86Ű88].

Step 6: Full-atom Assembly and Refinement Finally the backbone and the
proĄle-sequence alignment are combined into a full structure using Modeller
[89]. A reĄnement with phenix Ąnalises the modelling process.

5.1.2. Deformable Elastic Network Restraints for Structure

Refinement in DireX

The general principle of structure reĄnement in DireX has been elucidated in
section 1.3. However, the usage of Deformable Elastic Network (DEN) restraints
during the DireX routine is especially important for the following study and is
here explained in more detail.

DireX employs DEN restraints to prevent overĄtting. The general idea of the
DEN approach is to reĄne only those degrees of freedom that are deĄned by the
data and to use prior structural information for those not deĄned by the data [22].
The structural information is integrated in the form of distance restraints between
random pairs of atoms, where the number of restraints usually equals twice the
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number of atoms. In the beginning of the reĄnement the restraints are mediated by
a harmonic potential with the minimum at the distance d0

ij(0) = dij(0) where dij(0)
is the distance between the atoms i and j of the start structure (Figure 5.2). During
the reĄnement the distance between the atoms i and j may change, as two opposing
forces are acting on them: the force mediated through the map potential and the
force applied by the DEN-potential. While the map potential pulls the atoms into
high-density regions of the map, the DEN-potential damps the movement of the
atoms and aims to preserve the geometry of the start structure. At reĄne step
n the distance between atoms i and j is then dij(n). Two parameters regulate
the effect of the DEN-restraints: the strength of the DEN-restraints and the γ
parameter. The strength is deĄned as the pre-factor or amplitude of the harmonic
distance restraints, such that forces mediated through the DEN-restraints increase
linearly with the strength. The γ parameter balances the opposing forces applied
by the DEN-restraints and the map. This is achieved by regulating the adaption
of the DEN-restraints during the reĄnement, i.e the shift of the minimum distance
d0

ij(n). For low values of γ only slow and small changes of d0

ij(n) are performed
and forces retaining the geometry of the start structure have a higher weight than
forces adapting the geometry to the map. In contrast, for high values of γ the
inĆuence of the structural information vanishes and the map potential applies the
dominant force.

For fragment Ątting, γ is set to 0 such that the DEN-potential is not shifted
during the reĄnement. Varying the strength of the DEN-restraints enables the
adjustment of fragment Ćexibility. No or weak DEN-restraints should allow a high
degree of Ćexibility, while strong DEN-restraints force the fragments to stay rigid
and preserve their conformation during the reĄnement.

5.2. Motivation

In 1986 Jones and Thirup [90] discovered that backbone conformations of many
different proteins often are composed of the same repeating subunits and proposed
to use fragments of known protein structures for the model building in X-Ray
Crystallography maps. Such approaches were then presented for example by Holm
and Sander [91], Terwilliger [92] as well as by Pavelcik [93]. While Holm and Sander
as well as Terwilliger make use of rigid fragments, Pavelcik allows conformational
Ćexibility of the fragments. This way, the size of the fragment library can be
reduced signiĄcantly [93].

Fragment-based methods have also been developed for model building in cryo-
EM maps. Wang et al. rigidly Ąt sequence speciĄc 9-mer fragments into the
density map and subsequently assemble them into a full length protein structure.
As described above, the procedure in EMfasa is slightly different. There, sequence
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non-speciĄc all-alanine 7-mer fragments are used in the fragment Ątting step, side-
chains are added later. Comparing the approach of Wang et al. and EMfasa,
it becomes clear that the choice of the size of the fragments seems to be not
trivial. Larger fragments are more speciĄc, but might not be able to resemble all
backbone conĄgurations found in a backbone, such that a bigger library would be
needed. Shorter fragments inherit less structure information but entail a higher
adaptability to rare conformations.

Here we present an optimised fragment Ątting routine to be integrated in the
EMfasa framework. We use shorter fragments of 5 residues and a small fragment
library comprising only ten fragments. Also, we do not perform rigid Ątting of the
fragments, but allow the fragments to Ćexibly morph into the map. We invest-
igate which method is best suitable to assess the quality of fragment placements
and we examine how Ątting accuracy is inĆuenced Ąrstly by the size of the used
fragment library and secondly by the introduction of fragment Ćexibility. Lastly,
we illustrate the application of our method as part of protein structure modelling
with EMfasa using two examples, a high-resolution map of an egg-white lysozyme
acquired by electron crystallography [94] as well as a medium resolution map of
Tobacco Mosaic Virus (TMV) reconstructed with the single particle workĆow [95].

5.3. Material and Methods

5.3.1. Fitting Procedure

We implemented a new fragment Ątting procedure as part of DireX. The workĆow
is illustrated in Figure 5.3.

First, the Cα trace, the density map as well as a fragment library are read as
input. Then, DEN-restraints are initialised for each fragment.

In the next steps, the Ątting is performed in a loop over all beads: For each
bead position-restraints are deĄned, which bias the fragments to be Ątted along
the trace. The principle of the position-restraints is illustrated in Figure 5.4 a).
Two harmonic position-restraints are applied on each fragment. For a fragment
comprising f Cα-atoms (f should be an odd number) and for a bead associated
with a position i in the trace, the Ąrst Cα-atom is restrained to the coordinates
of bead j = i − (f−1

2
). Accordingly the last Cα-atom of the fragment is restrained

to the bead k = i + (f−1

2
). With this set-up 30 independent Ątting circles are

performed: The central Cα of each fragment is placed onto the bead and randomly
rotated (all fragments are Ątted simultaneously and undergo the same rotation).
Next, the fragments are reĄned into the map following the usual DireX routine,
allowing translations, rotations but also slight conformational changes. The DEN-
restraints regulate the degree of the conformational changes, while the position
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restraints bias the fragments towards orientations along the direction of the trace.
After the Ątting, the Ąt-results are assessed (see also sections 5.3.3 and 5.4.1)
and the procedure is repeated for a new rotation of the fragments. When all 30
searches for a bead have been conducted, all Ąt results are normalised, such that
the best fragment placement is associated with a score of 1, and all placements
(for m fragments, there are 30 × m placements per bead) are ranked and stored.

Afterwards the next bead is chosen as Ątting position, new position restraints
are deĄned and 30 searches are carried out. The procedure is repeated for each
bead.

The result is a list of 30 × m ranked fragment placements for each bead.

5.3.2. Benchmark Dataset

We analysed the performance of our Ątting method using three exemplary density
maps.

The Ąrst one is a high-resolution map of human ferritin, determined with X-ray
crystallography with a resolution of 1.9 Å [96]. The corresponding atomic model
is mainly comprised of α-helices and has been deposited with the PDB ID 2FHA.

The second example is a high-resolution map of an egg white lysozyme acquired
by electron crystallography. The resolution of the map is 1.8 Å. The secondary
structure of the lysozyme is quite diverse and comprises α-helices, β-sheets and
extensive loop regions. The structure can be found by its PDB ID 6S2N.

As third example we use a a map of the asymmetrical subunit of TMV which
has been reconstructed with a resolution of 3.4 Å using cryo-EM single particle
analysis. The deposited corresponding atomic structure (PDB 4UDV) comprises
153 residues. The fold of TMV is dominated by α-helices.

5.3.3. Metrics to Assess Placement-Quality

A crucial component of a fragment Ątting procedure is the assessment of the qual-
ity of placement. The evaluation of placement quality is the foundation for the
selection of fragment placements used for further modelling steps and has therefore
direct impact on the quality of the Ąnal model.

While Ąt-to-map metrics like DireX’ Cfree value or Chimera’s model-to-map
correlation seem to be an obvious choice at Ąrst glance, the situation for back-
bone fragment Ątting is in fact more complex. Fit-to-map measures do not dif-
ferentiate between density caused by backbone atoms and side-chain densities. In
consequence, a backbone fragment associated with a good Ąt-to-map does not ne-
cessarily resemble the underlying backbone conformation but may lie partly within
a density region which should be occupied by a side-chain. Having this in mind,
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the average map-value per atom could be an easily accessible and more suitable
measure, as high-density regions usually follow the main-chain of a protein [43].

A good measure of fragment placements associates fragment placements result-
ing in a low RMSD to the ground truth fragment with a good score, and, vice versa,
placements with a high RMSD to the true backbone conformation should get a
worse score. While false negatives, i.e. good placements with a low score, hamper
effectiveness, further modelling can still be successful if other good placements
have been found. On the other hand, false positives, unfavourable placements
with a high score, have direct impact on the quality of the Ąnal model and should
be particularly avoided.

We tested if the average map value per atom (AMVA), the average map value
weighted with its reciprocal standard deviation (AMVA-STD) as well as a score
which we call the i-o score fulĄl this behaviour. The i-o score assumes that the
inner backbone atoms that form the N − C − C chain should be placed in higher
density regions than the outer backbone atoms, i.e the adjacent O and H atoms
(see Figure 5.4 b)). It is deĄned as :

i-o score = (< ρinner > − < ρouter >) ∗ AMVA

where < ρinner > and < ρouter > denote the average mapvalues of the atoms
corresponding to the inner or the outer backbone, respectively.

As test case we performed fragment Ątting on the map of ferritin. The co-
ordinates of the Cα-atoms of the deposited structure served as input trace. A
fragment library of only one fragment was used, no DEN-restraints were applied
to enable fully Ćexible Ątting. For each Ątted fragment, we calculated the AMVA,
the ANVA-STD and the i-o score. Further we calculated for each Ątted fragment
its RMSD to the corresponding fragment in the deposited structure.

5.3.4. Adaption of the Fragment Library

EMFasa uses a sequence non-speciĄc fragment library consisting of 100 7-mers. In
order to increase accuracy, we decided to resort to a library of 150 5-mer fragments
previously generated in the group, analogously to the EMfasa library. We then
employed ClusCo to re-cluster this library into libraries consisting of 100, 50
and 20 and 10 fragments using default parameters. To decide which library size
offers the best compromise between run-time and accuracy, we tested all of them
on two test data sets. Data set 1 consisted of 11 beads in a helix region of the
ferritin map, data set 2 comprised 11 beads in a loop region of this very map.
We performed fragment Ątting on both data sets with all libraries, allowing full
Ćexibility of the fragemnts (DEN strength 0). Finally, we calculated the RMSD
of each Ątted fragment to the corresponding true fragment of the deposited TMV
structure.
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Ątted fragment and its corresponding true fragment. We identiĄed the best Ąt at
each Ątting position or bead as the minimal RMSD between a Ątted fragment and
the true fragment of the deposited structure at that position. To get a general
measure for the whole run, we then averaged those minimal RMSDs over all beads,
resulting in the mean minimal RMSD. For this analysis, we additionally Ąltered
the map of the lysozyme to 3 Å and 5 Å and repeated the Ątting and evaluation.

The effect of fragment Ćexibility on Ątting accuracy may also depend on the
characteristics of the local underlying backbone conformation. We therefore also
had a look on the individual minimal RMSDs at each Ątting position, and sub-
sequently averaged only over beads participating in similar secondary structure
geometries, resulting in three separate measurement series for helical residues,
residues in sheet regions and residues in loop regions.

5.3.6. Integrating Flexible Fragment Fitting into EMfasa

The Ąnal purpose of the here presented fragment Ątting method is to be integ-
rated into the EMfasa framework for automatic structure modelling. Therefore,
we went through the complete EMfasa workĆow to build the structures corres-
ponding to the TMV as well as to the lysozyme map. But, instead of performing
the usual EMfasa fragment Ątting, we employed our new Ćexible Ątting method
with DireX. Also, we needed to change the trace generation, as it was not possible
to build a trace with the correct topology using dXtraces. Alternatively, we used
MAINMAST to determine a rough Cα-trace. A trace built by MAINMAST is
a reĄned minimal spanning tree between many local dense points. In the usual
MAINMAST procedure the sequence is threaded onto this trace to Ąnalise the
structure and to convert the tree into a backbone comprising the correct number
of residues. However, to stay as close as possible to the EMfasa workĆow, we de-
cided to not use sequence information in the tracing step and to skip the sequence
threading. Instead, we directly resampled the minimal spanning tree to the cor-
rect number of beads. All other steps of EMfasa were performed conventionally,
applying default parameters.

5.4. Results and Discussion

5.4.1. Measuring Placement Quality

The overall aim of a fragment Ątting procedure is to provide a selection of fragments
which resemble the underlying backbone conformation as accurate as possible.
Such a selection requires a metric that measures how well a Ątted fragment matches
the true backbone geometry. A promising candidate is the AMVA, or metrics
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there are differences between the metrics. The AMVA is for fragments with a
score worse than ≈ 0.9 no reliable measure of the placement quality, fragments
scoring better have indeed a low RMSD to the ground truth. For the AMVA-STD
this border can be slightly shifted to ≈ 0.8, but other than this the two metrics
behave similar. The correlation between the i-o score and the RMSD appears
more distinct, while there is still a variety of scores associated for fragments with
a similar RMSD, very high scores are only yielded by fragments with a RMSD lower
than about 0.5 Å, a medium i-o score down to 0.5 can be mainly only achieved by
placements with a RMSD of 3.5 Å or better, while worse placed fragments only
get scored up to ≈ 0.4.

As described before, a crucial requirement for a suitable metric is that no poor
placed fragments are identiĄed as good ones. Data points corresponding to these
situations would be located somewhere within the red marked areas in Figure 5.5.
While the AMVA and the AMVA-STD give data points in the Śforbidden’ area
and therefore do not fulĄl the requirement, the i-o score does.

It might be noticed that the i-o score give negative values for some placements.
Although this is unusual for metrics in general, it make sense with regard to the
deĄnition of the i-o score. A negative i-o score means that the outer backbone
atoms are, on average, located in higher density regions than the inner backbone
atoms. This would be a quite unlikely distribution for backbone conformations in
density maps, and therefore a low score for such situations is particularly justiĄed.

Based on the here described observations we implemented the i-o score in our
fragment Ątting procedure for the assessment of placement quality.

5.4.2. Effects of Library Sizes

The size of the fragment library has direct impact on the performance of the frag-
ment Ątting procedure. While larger libraries improve accuracy, they negatively
affect run-time issues. For Ćexible Ątting, though, smaller libraries could achieve
similar accuracy to larger libraries in rigid Ątting.

Therefore, we investigated the accuracy of fragment libraries consisting of 10,
20, 50, 100 and 150 fragments as shown in Figure 5.6. The distribution of RMSDs
between Ątted fragments and corresponding true fragment is illustrated as violin
plot for each library. A violin plot displays the kernel density estimation of the un-
derlying distribution with whiskers marking the minimal and the maximal observed
value. In each violin plot dashed lines depict the quartiles of the distribution.

The performance of the libraries was examined on two independent data sets,
in a helix region (Figure 5.6 left) as well as in a loop region (Figure 5.6 right).
While helix regions should be fairly easy to cover, since all residues in a helix adapt
well-deĄned, nearly identical conformations, loop regions can form a wide variety
of conformations and are therefore more difficult to model. In terms of fragment
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of the larger libraries, but may include fragments that are not part of a larger
library. That is, because all libraries were generated by clustering a large library
of 150 fragments. A smaller library comes from clustering the original library in
fewer, but larger clusters, while a larger library results from more, but smaller
clusters. The fragments in the smaller library are the cluster centres of the few,
large clusters and therefore potentially different than the fragments in a larger
library representing different, namely smaller clusters. Either the library consisting
of only 10 fragments consists of fragments which Ąt particularly well in the map,
but are not found in larger libraries. However, small conformational differences
between fragments should be compensated for by the fragment Ćexibility. Or, the
difference in Ątting performance is random and only due to a too small number of
Ątting repeats. In that case, the analysis should be repeated with a larger number
of Ątting repeats.

In conclusion though, no negative impacts of small libraries on accuracy could
be conĄrmed for our Ćexible Ątting method. This is even true for Ątting in loop
regions. Hence, the library consisting of 10 fragments serves as default library.

5.4.3. Effects of Fragment Flexibility

Fragment Fitting with DireX offers the possibility to tune the Ćexibility of the
fragments via the strength of DEN-restraints. But how exactly does fragment
Ćexibility inĆuence the Ątting procedure?

We Ąrst wanted to understand the relation between the strength of the DEN-
restraints and fragment Ćexibility during the Ątting process. Figure 5.7 a) shows
the dependence of the deformation of the fragments on the DEN strength. If no
DEN-restraints are applied (DEN strength is 0.0) the fragments are deformed by
an RMSD of about 1.7 Å on average during the Ątting. But, with increasing DEN
strength this value decreases rapidly, until it converges to ≈ 0.1 Å for DEN strength
≥ 0.13. So, Ćexibility of fragments can indeed be regulated via DEN-restraints,
enabling Ćexible Ątting as well as nearly rigid Ątting. For low DEN-restraints, the
degree of Ćexibility reacts quite sensitively to changes in DEN strength, but for
higher values variations in DEN strength do not result in signiĄcant changes in
fragment Ćexibility.

The relation between DEN strength and Ątting accuracy measured by the mean
minimal RMSD to the true fragment, is illustrated in Figure 5.7 b). Showing a
mirrored behaviour compared to Figure 5.7 a) the mean minimal RMSD increases
with increasing DEN-strength. The slope of the curve is quite steep in the begin-
ning, and, analogously to Figure 5.7 a) the values converge with DEN strengths
≥ 0.13. While the best Ątted fragment only differs by 0.25 Å from its true frag-
ment, the RMSD between best Ątted fragment and true fragment is ≈ 1 Å for
large DEN-strengths. Interestingly, there is nearly no difference to different map
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resolutions. While it could be expected, that fragment Ćexibility is particularly be-
neĄcial in high-resolution maps, but can cause problems in lower-resolution maps
due to overĄtting, this assumption can not be conĄrmed based on the present data.
On the contrary, full fragment Ćexibility results in maximal Ątting accuracy for all
tested resolutions. Moreover, higher resolution does not yield signiĄcantly higher
accuracy compared to lower resolutions.

Figure 5.7 c) contemplates variations in Ątting accuracy along the protein trace.
For fully Ćexible Ątting (DEN strength 0.0) no distinct pattern in accuracy can be
observed, the RMSD between best Ątted fragment and corresponding true fragment
varies only slightly between ≈ 0.2 Å and 0.5 Å along the backbone with few outliers
in the C-terminal region of the trace. The picture is completely different for higher
DEN strengths. High accuracy, meaning low minimal RMSD, is achieved also for
higher DEN strengths but only in single sections of the trace. In other regions
accuracy is signiĄcantly worse with minimal RMSDs up to 1.2 Å (outliers up to
1.8 Å) for a DEN strengths of 0.1 and even up to 2.5 Å for a DEN strength of 0.2.
Interestingly, the regions of high accuracy seem to overlay with helical regions of
the trace (depicted by blue bars in Figure 5.7 c)). Thus, Ątting in helical regions
seems to be more accurate than Ątting in other regions for higher DEN strengths.
Figure 5.7 d) conĄrms this impression. Averaging the minimal RMSDs over beads
participating in helix-, sheet and loop regions, respectively, shows that accuracy is
signiĄcantly higher in helical regions for higher DEN strengths than in sheet and
loop regions. There is no difference between sheet and loop regions. Considering
that backbone conformations forming β-strands are well deĄned and therefore less
diverse than conformations in loop regions, this is surprising and may indicate that
a suitable fragment is missing in the fragment library. For low DEN strengths there
is no signiĄcant difference in accuracy for different secondary structures, which is
in line with the observations made during the analysis regarding library sizes.

In conclusion, we recommend to perform fragment Ątting without the usage of
DEN-restraints. Allowing full Ćexibility of fragments during the Ątting procedure
improves accuracy signiĄcantly. This is also true for lower map resolutions.

5.4.4. Fragment Fitting as integrated Part of EMfasa

The typical application of a fragment Ątting procedure is to be part of a structure
modelling workĆow. We employed a customised MAINMAST version to build a
Cα trace, performed our Ćexible fragment Ątting, and fed the Ątted fragments into
the EMfasa pipeline, where the fragments were assembled to mutually compatible
subsets and clustered to form a full atom backbone. Side-chains were added with
help of a proĄle sequence alignment and the whole structure was Ąnalised and
reĄned. The results are shown in Figure 5.8.

The Ąnal EMfasa structure for the medium resolution map of TMV yielded a
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Cα RMSD of 2.8 Å. Just over the half of the Cα-atoms of the EMfasa structure
were in a 2 Å neighbourhood of the corresponding Cα-atom of the true structure.
Among these, the RMSD is only 0.7 Å. This shows, that the RMSD is not due to
a total shift in the backbone, but that there are regions of the map which could
be modelled quite accurately, and those where modelling was more challenging.
Roughly speaking, helices have been reconstructed more accurately than loop re-
gions. The structure of TMV has been also modelled in [44]. Compared to the
here presented structure, the structure built with the original version of EMfasa
yielded a Cα RMSD of 2.1 Å and 129 out of 153 matched Cαs. However, it should
be noted at this point that the difference in accuracy already occurs before the
fragment Ątting namely with the trace generation. The Cα-trace in [44] yielded
139 of 153 matched Cαs compared to only 37 aligned Cαs in the Mainmast trace,
which was the basis for the modelling here. So, applying Ćexible fragment Ątting
and the subsequently following EMfasa steps could improve the accuracy, while
in [44] the accuracy of the Calpha trace was higher than the accuracy of the Ą-
nal structure. Consequently, the difference in RMSDs of the Ąnal structures can
not be attributed to a poorer performance of the fragment Ątting but to a more
challenging initial situation.

The density map of the lysozyme has a very high resolution, which facilitates the
model building signiĄcantly. The RMSD between the modelled structure and the
deposited true structure is only 0.7 Å. Only two Cα-atoms were not in a 2 Å radius
of their corresponding Cα-atom in the true structure. Even loop regions could be
modelled accurately. Although the number of tested maps is not sufficient for a
reliable statement, the example of the 1.8 Å map of the egg white lysozyme gives a
hint, that EMfasa with Ćexible fragment Ątting can build highly accurate models
for high-resolution maps.
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6. Protein Topology Tracing Guided

by Predicted Distance Matrices

This chapter presents a method to automatically determine the topology of a
protein based on a cryo-EM map. It represents the very Ąrst step in a modelling
pipeline. The key feature of our method, dXtopology, is the integration of
predicted inter-residue distances to supplement the information provided by the
density map.

As in the previous chapters, some theoretical background information is given
in the beginning (section 6.1), here some fundamentals about prediction of inter-
residue distances are explained. The motivation, methods, results and discussion
are not given in individual sections, but in form of a manuscript. This manuscript
has been also submitted to Structure in October 2022.

A more technical description of the methods as well as a section about trials,
errors and perspectives corresponding to this chapter can be found in appendix C.

6.1. Theoretical Background

6.1.1. Prediction of Inter-Residue Distances

The principal idea of predicting inter-residue distances is based on co-evolutionary
analysis. Proteins, emerging from the same protein family share many structural
features but show variations in sequence. Residues which are in close spatial prox-
imity to each other tend to co-evolve, that means that if one residue is mutated,
the other one will probably undergo a mutation, too. So-called correlated muta-
tions can therefore indicate contacts between residues. [97]
Thus, the common approach nowadays to predict inter-residue distances is to
construct a multiple sequence alignment (MSA) containing evolutionary related
sequences for a target protein and feed the MSA as input to a neural network
which then extracts the geometrical information.

TrRosetta [98, 99] is one representative of such a method. A MSA is generated
and subsequently processed by a deep neural network, which then predicts inter-
residue distances and orientations.

The predicted distances between Cβ-atoms are given in form of a histogram,
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where the distance range between 2 Å and 20 Å is binned into 36 equally spaced
segments, 0.5 Å each, plus one bin indicating that residues are not in contact. For
each pair of residues and each bin, the neural network predicts the probability of
the distance between the pair being in a particular bin.

6.1.2. General Properties of Distance Matrices

Distance distributions in proteins are often arranged in a symmetric distance mat-
rix D, where each residue in the sequence corresponds to a row and a column of
the matrix. The distance between residue i and j is then stored in Dij (and also in
Dji). Consequently, the main diagonal of a distance matrix is always Ąlled with
0s. Also, secondary structure elements can be identiĄed by characteristic patterns
in the distance matrix. α-helices appear as thickenings of the main diagonal, as
a Cβ-atom which is part of helix is in close proximity to the residues surrounding
it in sequence space. In β-sheets, residues which are far away in sequence can
be in close spatial proximity to each other when they are part of neighbouring
strands. In a distance matrix, this conformation forms lines perpendicular to the
main diagonal for anti-parallel strands and lines parallel to the main diagonal for
parallel strands.

6.2. Manuscript I: Predicted Distance Maps Guide

Backbone Topology Tracing in Medium

Resolution Density Maps

6.2.1. Summary

Cryo-electron microscopy in principle can reach atomic resolution, however, in
many cases only medium resolutions between 3 Å to 5 Å are achieved. In this res-
olution range, building atomic models can be difficult and poses a time consuming
challenge. A Ąrst step in map interpretation typically is to determine the trace of
the protein chain through the map. Finding this correct trace, i.e. the topology
of the protein chain, is crucial for all following modelling steps. Here we present
a novel approach, dxTopology, to determine the topology of the protein in me-
dium resolution density maps which is inspired by the recent success of machine
learning based structure prediction programs. dxTopology combines backbone
tracing with inter-residue distances predicted with the program trRosetta. The
aim is to connect pseudo-atoms that were placed into the density map such that
their distance patterns best resemble the predicted inter-residue distances. We
show that using information about inter-residue distances can correct errors in
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the topology and improve traces which were built using the density map alone.
Our tool provides a quick initial representation of the protein backbone including
the sequence assignment. Moreover, the procedure can be easily incorporated into
existing frameworks and serves as a basis for further automatic model building.

6.2.2. Introduction

Over the past few years cryo-electron microscopy (cryo-EM) has become a major
technique for protein structure determination [100Ű102]. The number of high-
resolution structures, gaining a resolution better than 3 Å has increased dramat-
ically. Nevertheless, the majority of density maps deposited to the EMDataBank
still have medium resolutions between 3 Å to 5 Å [103]. Interpretation of medium-
resolution density maps often is not straightforward, though. The limited resol-
ution and the consequently lower signal-to-noise ratio leads to ambiguities in the
density. Those ambiguities, like branches or breaks in the density hamper the
determination of the correct topology of the protein chain and the localisation of
atom positions. In consequence, de novo atomic model building based on medium-
resolution density maps is often difficult, time consuming and highly dependent
on the expertise of the modeller. Computational tools for automatic backbone
tracing have been developed to facilitate the interpretation process. For example,
Chen et al. developed a fully automated program for backbone tracing named
Pathwalker [41]. During the Pathwalker procedure pseudo-atoms are placed
into the density map and connected by solving the Travelling Sales Person Problem
(TSP). Another method for automatic main-chain modelling in the medium resolu-
tion range is MAINMAST [42]. In MAINMAST, the geometry of the backbone
is represented by a tree structure, given by the minimum spanning tree, connecting
local dense points so that their total spatial distance is minimised. The Rosetta
approach [49] assumes that local similarity in sequence implies local similarity in
structure. Segments of solved protein structures with local similar sequences are
Ątted into the density map and well matching fragments are assembled to form
a complete protein structure. Further, the widely used Phenix framework ad-
dresses the backbone tracing problem with the phenix.trace_and_build tool [43].
Besides the methods mentioned above, several deep learning approaches for auto-
matic protein structure modelling have been published recently [45, 104, 105]. One
of them is DeepTracer, which can be used via a web server and builds all-atom
structures of protein complexes. While all of these tools can help to overcome the
difficulties of model building in medium-resolution density maps, there are still
cases where the information gained from the density map is not sufficient to re-
construct the correct topology of the protein chain. Typical examples of topology
errors are a false identiĄcation of termini, cross connections between β-strands in
a β-sheet or an incorrect arrangement of secondary structure elements.
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Beyond experimental data, information about the structure of a protein can
also be predicted from its sequence. Deep Mind’s machine learning based program
AlphaFold [106] has revolutionised the Ąeld of structure prediction and the
question of how to predict the native structure of a protein based on its sequence,
may, at least for single-chain structures, be considered solved [107, 108]. Similar
results to those of AlphaFold can also be produced with RosettaFold [109].
A key feature in both methods are two-dimensional pair representations. These
are Nres × Nres matrices (where Nres is the number of residues), storing in each
entry a measure of distance between the two corresponding residues. In this sense
a pair representation can be understood as a predicted distance matrix.

In this work, we present a novel integrative approach, dxTopology, for the
interpretation of medium-resolution density maps: We combine conventional back-
bone tracing with predicted inter-residue distances to determine the topology of a
protein. More precisely, the aim is to build a backbone trace such that the result-
ing distance matrix best resembles the predicted inter-residue distances produced
by the program trRosetta [98, 99]. In a Ąrst step, pseudo-atoms are placed into
the density map and connected using a TSP solver. The resulting initial trace,
in the following referred to as the conventional trace, might have many correct
subtraces, but potentially a few wrong connections.

We detect those errors by comparing the distance matrix of the conventional
trace with the predicted distance matrix. This comparison leads to an approxim-
ate assignment of where the pseudo-atoms are located along the sequence. The
approximate sequence assignment then allows for reordering the correctly connec-
ted subtraces and yields an integrative trace, based on density information as well
as predicted inter-residue distances.

We show that using predictions of inter-residue distances can correct errors in the
topology and improve conventional traces which were built using the density map
alone. dxTopology gives an initial representation of the backbone including
the sequence assignment. We further show how our tool can be used to check
traces that were built with other tools for potential topology errors. Moreover,
dxTopology can be easily incorporated into existing frameworks and provides a
solid basis for further modelling steps.

6.2.3. Results

Workflow

The workĆow of dxTopology consists of three steps (see Figure 6.1).
Step 1 Trace Initialisation: First, pseudo-atoms, also referred to as "beads",

are placed into high-density regions of the map using the dxbeadgen tool from
the reĄnement software DireX [21, 22]. Hereby, the number of beads, Nbead, is
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chosen to be equal to the number of residues, Nres, in the sequence.

The beads are connected to form a trace by using the Lin-Kernighan heuristic
(LKH) [47] which solves the TSP problem. The cost matrix for the LKH algorithm
was generated with the Pathwalker program, which takes into account that
connections through high-density regions should be preferred. We have modiĄed
the calculation of this cost matrix in Pathwalker to adapt it to our purposes
(see STAR Methods). The obtained trace is referred to as the conventional trace
in the following. This conventional trace often is correct in some parts but may
have a few wrong connections. Even though, these wrong connections may only
occur isolated and locally, they might lead to a completely wrong global topology
and therefore need to be corrected as described in the following steps.

Step 2 Estimation of Initial Assignment Weights: To help Ąnding the
correct topology, additional information is obtained from the structure prediction
tool trRosetta, which predicts the distances between the residues of a protein
from its amino acid sequence. The correct trace can be expected to have inter-
residue distances that are similar to the corresponding predicted distances. To
Ąnd errors and improve the trace, we compare the distances computed from the
conventional trace with the predicted distances. It is important to note that this
comparison requires to know which bead corresponds to which amino acid in the
sequence. However, the conventional trace mainly deĄnes the connectivity but does
not yield a reliable assignment of beads to sequence positions, since small errors
in the connectivity can lead to large errors in the assignment. The bead distance
matrix and the predicted distance matrix are therefore not easily comparable.
To solve this problem we compare only smaller subtraces which have a higher
probability of having the correct connectivity. We assume that the conventional
trace has correct subtraces, but that these subtraces may need to be reordered
and connected differently to eventually obtain the correct topology of the protein,
which is described in the following.

Given Nbead beads in total and a subtrace, consisting of n (n ≤ Nbead) beads, all
distances between these n beads within the subtrace are calculated and arranged
in a distance matrix, which we refer to as the "inner" distance matrix. These
inner distances describe the shape of the subtrace, but not its position within the
protein structure. The position of the subtrace is rather encoded in the distances
between the n beads within the subtrace to the Nbead−n beads that are outside the
subtrace; we refer to these distances as the "outer" distances. However, we cannot
arrange these outer distances in a distance matrix, because we do not know the
global topology and suspect that some connections outside the subtrace might be
wrong. Instead we arrange the outer distances in a distance proĄle, which just
contains the distribution of distances, and is independent of the assignment. The
distance proĄle is a n × (Nbead − n) matrix, where the i-th row contains the sorted
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outer distances of bead i. Analogously, we can associate each subset of adjacent
n residues with a distance matrix and a distance proĄle, given by submatrices of
the predicted distance matrix.

To compare the subtrace with a residue subset, we calculate the root-mean-
square deviation between the distance matrices and between the distance pro-
Ąles. Collecting all best matches of subtraces to residue subsets yields a bead-
to-sequence assignment matrix w (see STAR Methods, appendix C). The entries
wki of the assignment matrix describe the likelihood that bead k corresponds to
residue i.

Beads that are connected correctly in the conventional (initial) trace appear as
diagonal patterns in this matrix. If the subtrace is also at the correct sequence
position within the protein, the diagonal pattern would be on the main diagonal.
Diagonals parallel to the main diagonal are shifted within the sequence, but have
the correct direction. Diagonals orthogonal to the main diagonal represent sub-
traces whose direction is wrong and needs to be reversed.

Step 3 Optimization of Assignment Weights: At this point, there are
possibly still many side-maxima in the assignment. Especially shorter subtraces
might be ambiguously assigned to several sequence positions. Therefore, we im-
plemented a gradient descent optimisation of the weights. The ideal assignment of
beads to sequence position, i.e the ideal arrangement of subtraces, minimises the
difference between the predicted inter-residue distances and the distances between
the beads. Therefore we minimise the following scoring function:

S = −
∑

ijkl

wkiwlj

1 + (dij − Dkl)2

Here wki denotes entries of the assignment matrix, while Dkl are distances between
beads and dij are the predicted inter-residue distances, respectively. Thus, i and
j iterate over positions in the amino acid sequence, while k and l are indices
numbering the beads.

Over the course of the optimisation, the weights converge and the Ąnal assign-
ment is used to reorder the beads into a new trace. Badly placed beads or wrong
assignments may lead to outliers in this trace. There are two types of outliers: 1)
a bead can be considered an outlier in Cartesian space. This case arises if a bead
has an unphysically large distance to its neighbours. 2) A bead can be an outlier
in sequence space. If a single bead is assigned to a sequence position that is far
away from the sequence positions of neighboring beads in the conventional trace,
this assignment is considered unreliable. Both types of outliers are removed from
the trace. The result is an integrative trace, whose estimated atom positions and
local connectivity patterns are derived from the density map, but whose global
topology is based on predicted inter-residue distances.
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Matrix representations of topology

A key feature of dxTopology is the matrix representation of traces and their
topologies. As described above, our approach considers three matrices: the matrix
of distances between the beads, a matrix of predicted distances between residues,
and the bead-to-sequence assignment matrix. An example of those matrix rep-
resentations is shown in Figure 6.2 for the case of the Bordetella bacteriophage
cementing protein (EMD-5764, PDB 3J4U:H) [110]; the interpretation of these
matrices is explained in the following.

There are Nres = 140 residues in the sequence of the cementing protein. Hence,
Nbead = 140 beads were placed into the density map and connected to obtain the
conventional trace, as described above in step 1 of the workĆow. The topology of
this trace is represented by a Nbead × Nbead distance matrix of pairwise distances
between the beads, as shown in Figure 6.2a). The goal of step 2 is to obtain
an initial estimate for the assignment of the beads to the amino acid sequence.
For this, distance patterns in the bead distance matrix are compared to distance
patterns in the predicted distance matrix. The Nres × Nres matrix of the predicted
inter-residue distances as obtained by trRosetta is shown in Figure 6.2b).

The estimated assignment weights obtained from the distance comparison are
stored in a Nbead × Nres assignment matrix (Figure 6.2e) upper panel). Those
weights are optimised by minimising the difference between Figure 6.2a) and Fig-
ure 6.2b) in step 3 of the workĆow. The result is the assignment matrix depicted
in the lower panel of Figure 6.2e). Reordering the beads according to this assign-
ment matrix and removing outliers gives the integrative trace, represented by its
distance matrix in Figure 6.2d). The distance matrix of the deposited PDB struc-
ture 3J4U:H is shown for comparison in Figure 6.2c). The predicted distances, the
PDB structure and the integrative trace share similar global distance patterns.
Examples are the two β-strands, recognisable as two long diagonals perpendicular
to the main diagonal (marked in red in Figure 6.2b),c),d)).

In general both, the predicted distance matrix as well as distance matrix of
the integrative trace encode the same correct global topology as the PDB derived
distance matrix. While the distance matrix of the conventional trace has similar
local features, the global pattern is different and encodes a different global topology.
The errors in the topology can be understood by looking at the weights in the
assignment matrix Figure 6.2e) (lower panel). Subtraces, consisting of correctly
connected beads, appear as diagonals, wrong connections as breaks between the
diagonals. If the conventional trace had the correct topology including correct
N- and C-terminus, the weights would be distributed along the main diagonal.
Here, the conventional trace consists of Ąve correct subtraces, recognisable as Ąve
diagonal lines. Two of the subtraces should be Ćipped, as can be seen from their
orientation perpendicular to the main diagonal. Wrong connections were found
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Protein EMDB ID PDB ID Resolution in Å Nres

Yeast mitochondrial EMD-2566 3J6B:I 3.2 125
large ribosomal subunit
Yeast mitochondrial EMD-2566 3J6B:M 3.2 151
large ribosomal subunit
T20S proteasome β-subunit EMD-5623 3J9I:F 3.3 203
T20S proteasome α-subunit EMD-5623 3J9I:K 3.3 224
Bordetella bacteriophage EMD-5764 3J4U 3.5 140
cementing protein
26S proteasome EMD-3535 5MPA 4.5 229
Caspase-1 CARD EMD-3535 5FNA 4.8 85

Table 6.1.: List of test proteins. The method was applied to seven experimental density
maps with resolutions between 3.2 Å and 4.8 Å. Deposited PDB structures serve for
validation of the reconstructed trace.

be seen in Figure 6.4. The Ąrst column shows an overlay of the conventional
trace and the PDB structure. Wrong connections in the conventional trace are
marked in red. We found wrong connections in all seven examples. However, the
number of false connections varied signiĄcantly. For example, Figure 6.4 a), e) and
g) exhibit only some isolated deviations of the conventional trace from the PDB
structure, but in Figure 6.4d) the conventional trace runs only partially alongside
the corresponding PDB structure. This is also apparent, when looking at the
assignment matrices in the fourth column of Figure 6.4. While there are relatively
long diagonals with only a few breaks in a), e) and g), the pattern of the matrix
in d) appears more scattered. Local false connections lead to errors in the global
topology. This is illustrated in the second column of Figure 6.4, where the same
overlay as in column 1 is shown, but with another colour code. Both traces are
coloured blue to red following the chain from the N-terminus to the C-terminus.
Deviations in topology appear as deviations in colour between two corresponding
strands of the traces. For example for PDB ID 3J9I:F, the upper helix in the
front (column 2 in Figure 6.4c)) is cyan in the PDB structure but yellow in the
conventional trace. This means that the helix should be located closer to the N-
terminus, compared to its assigned position in the conventional trace. Similarly
for PDB ID 5MPA, the lower loop in Figure 6.4f) should be blue, however, it is
green in the conventional trace showing that it has been assigned to a position
that is too close to the C-terminus. The third column shows the corresponding
overlay for the integrated trace. Here, all topology errors of the conventional trace
have been corrected. Consequently, all corresponding parts of the traces appear
in the same colour.

60





parison of the conventional trace to the PDB structure, green bars to the compar-
ison of the integrative trace to the PDB structure. It can be seen that the structure
overlap could be increased for all the traces by including information derived from
predicted inter-residue distances. Six of seven examples have a structure overlap
of higher than 80 % indicating a successful structural alignment and a high struc-
tural similarity. For one case, the T20S proteasome α-subunit, the alignment by
the CLICK algorithm failed, resulting in a low structure overlap for both traces.

The RMSD was calculated based on the correctly matched Cα atoms. The res-
ults are shown in Figure 6.5b). All six examples, for which the alignment was
successful, yield an RMSD below 2.5 Å. Further, in four of the six examples the
integrative trace yielded a lower RMSD to the PDB structure, than the conven-
tional trace. But, for the yeast mitochondrial large ribosomal subunit chain M
(PDB 3J6B:M) as well as for the caspase 1 CARD (PDB 5FNA) the RMSD was
increased in the integrated trace compared to the conventional trace. It should
be noted that the RMSD is calculated over different sets of matched Cα atoms
and are therefore not directly comparable. Considering the concurrent increase in
structure overlap for the integrative trace, the set of atoms used for RMSD calcu-
lation is larger. Therefore, the increase in RMSD is caused by beads that could
not be matched in the conventional trace, but are considered in the RMSD cal-
culation for the integrated trace. For the T20S α-subunit, the RMSD calculation
was unreliable due to the failed structure alignment, as mentioned above.

Figure 6.5c) shows the topology scores of the conventional trace and the integ-
rated trace. The scores show that including information about predicted inter-
residue distances improved the topology score for all properly aligned examples.
Moreover, for all of these six cases, the integrative trace yields a topology score of
1, indicating a perfect matching topology with the corresponding PDB structure.
The topology of the T20S proteasome α-subunit was examined manually and it
could be revealed, that the topology of the integrative trace is identical to the
topology of the PDB structure.

Accuracy of predicted distance matrices

In the presented method predicted inter-residue distances play a key role. In the
context of backbone tracing based on cryo-EM density maps, they provide an addi-
tional source of information for the solution of the problem, which is independent
of map resolution. Therefore, considering predicted inter-residue distances can be
particularly helpful for maps of lower resolution. However, it should be noted, that
predicted inter-residue distances cannot be treated as ground truth information,
but they may contain errors and inaccuracies themselves. To assess the quality
of the distance matrices used in this study we compared the predicted distance
matrix to the distance matrix of the corresponding deposited PDB structure. The
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PDB ID Mean deviation Fraction Mean deviation Maximum deviation
(all distances) of outliers (outliers) (outliers)

3J6B:I (2.6 ± 3.0)Å 9% (5.8 ± 2.9)Å 6.3 Å
3J6B:M (2.6 ± 3.4)Å 11% (6.6 ± 3.7)Å 15.3 Å
3J9I:F (2.3 ± 2.7)Å 4% (5.3 ± 2.6)Å 7.8 Å
3J9I:K (2.3 ± 2.7)Å 5% (5.4 ± 1.6)Å 10.3Å
3J4U (2.6 ± 3.1)Å 8% (6.0 ± 3.0)Å 14.3Å
5MPA (2.3 ± 2.8)Å 5% (5.7 ± 3.0)Å 8.3Å
5FNA (3.1 ± 3.2)Å 14% (5.8 ± 2.9)Å 10.3Å

Table 6.2.: Accuracy of distances predicted by trRosetta.

results are summarised in Table 6.2. Note that for the comparison it was necessary
to match the distribution of distances between Cα atoms of the PDB structures
(in Å) to the predicted distances, which are originally given in dimensionless bins.
The matching of the distribution was done analogously to matching the distribu-
tion of bead distances to the predicted distances as described in Calculation of
inter-bead distances of the STAR Methods.

The quality of the prediction was assessed using different metrics. The mean
deviation provides a general measure of similarity between PDB distances and
predicted distances. A prediction is considered correct, if the difference between
the distances was < 6 bins, which corresponds to 4.75 Å (see STAR Methods).
A distance is considered an outlier, if the deviation ≥ 6 bins and the fraction of
outliers was calculated. Furthermore, Table 6.2 gives the maximum and the mean
deviation including standard deviation of the outliers only. While the quality of
distance matrices varies between the test cases, all predictions were sufficient to
identify and correct topology errors in the traces. For all the tested proteins, more
than 85 % of the predictions were correct, ensuring a sufficient representation of
the folding patterns, so that the remaining deviations could be tolerated.

6.2.4. Discussion

We developed a tool that incorporates information about predicted inter-residue
distances into a backbone tracing routine to correct errors in the global topology.
By comparing the topology of a conventionally built trace with the topology given
by predicted inter-residue distances we can identify correct subtraces as well as false
connections. We interpret the comparison of topologies as an assignment problem
and solve it by minimising the difference between distance matrices of predicted
distances and distances between beads. This eventually enables rearranging of the
correct subtraces and eliminating false connections. Resulting integrated traces
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outperform traces built conventionally regarding structure overlap and topology
score.

Both traces, the conventional and the integrative trace, considered here are Cα

traces and no complete backbones yet. Building the complete backbone structure
based on the Cα trace could be performed by a fragment Ątting procedure similar
to the approach described in [49]. Applying such an approach could mitigate
some deviations in the bead placement and improve the RMSD. A backbone built
this way would proĄt from the topology determined by our method and the atom
placements based on the fragment Ątting. We work currently on such a framework
that combines the topology tracing with a backbone fragment Ątting procedure.

It should be further noted, that, while the global topology can be determined
correctly, not all structural features can necessarily be identiĄed. For example,
the integrative trace of the 26s proteasome (PDB: 5MPA) does not contain the
loop consisting of residues Leu127 to Ser138. In general there are two possible
reasons, why a part of a structure is not included in the integrated trace. The
Ąrst reason is that there are no beads placed in the corresponding density regions.
This may be the case for very Ćexible parts of the protein where density often
is not well resolved. The integrative trace is based on the same beads as the
conventional trace and cannot pass through density regions that are not traversed
by the conventional trace. A second reason may be a cluster of false connections
between the beads located in the density region of interest. The integrative trace
is based on rearranged subtraces. The assignment of beads that are not part of a
subtrace is much more difficult, because they do not get assigned an initial weight
in step 2 of the workĆow. In consequence, a cluster of such isolated beads may
not be assigned correctly and also may not be included in the integrative trace.

The placement of beads is a decisive factor not only for the conventional trace
but also for the integrative trace. Poorly placed beads can be sorted out as outliers
when transforming the assignment weights back into a trace, but, nevertheless,
they can cause problems, if there are too many of them. If there are cliques of
poorly placed beads, it becomes difficult to distribute them along the trace and the
optimisation of the weights gets distorted, because the assignment aims for a one-
to-one matching of beads to residues. The combination of the correct assignment
of the well-placed beads and the assignment of the poorly placed beads to the
remaining residues might not be the minimum of the scoring function anymore.
In that case, the algorithm cannot Ąnd the correct assignment anymore.

Observed Ćuctuations in accuracy of predicted distances did not show strong in-
Ćuences on the Ąnal tracing results. However, it may have been advantageous that
examples with worse quality of predicted distance maps, e.g. 3J6B:M and 5FNA,
are associated with rather small proteins consisting of less than 200 residues. For
those proteins the topology problem is less complex than for bigger proteins. Look-
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medium-resolution density maps by incorporating information from predicted inter-
residue distances. These predictions are in particular helpful to determine the
correct topology of a protein trace. The beneĄt is especially large for challenging
map resolutions, since the informative value of distance predictions is completely
independent of map resolution.

6.2.5. Contribution

For this study, I developed the method under the supervision of Gunnar Schröder,
performed all calculations, made all Ągures and wrote the manuscript.
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7. Conclusion

In this thesis four different approaches for the automatic structural interpretation
of cryo-EM density maps were presented. Each of them focuses on modelling a
different feature of protein structure based on the information provided by the
cryo-EM data. The amount of required prior structural information derived from
the map decreased from study to study:

In chapter 3 a method was introduced that adapts a protein structure, originally
determined with another experiment, to a cryo-EM density map, while regarding
the conformational heterogeneity embodied in the map. Here, the rational is,
that a cryo-EM map is based on not a single conformation of a protein but on a
whole ensemble captured under near-native conditions in an aqueous solution. The
atomic structure associated with such a map, should therefore be an average of all
conformations present in the imaged ensemble. Conformational heterogeneity in
structure space result in varying local resolution in map space. Thus, the averaging
of coordinates is augmented with B-factor Ątting, assigning each residue with an
atomic displacement parameter, describing the variations of the residues position
within different conformations. Our presented method yielded pleasing results in
the model metrics challenge 2019. It can be applied for structural interpretation
of cryo-EM maps when a structure from another experiment is available.

Chapter 4 presented an approach for automatic side-chain sampling. Using the
example of a cryo-EM data set of IAPP Ąbrils it is shown how computational
tools can open up profound insights about side-chain assignments where the dens-
ity map does not allow for reliable manual modelling. Having a manually built
backbone at hand, we automatically performed all possible side-chain assignments
and ranked the resulting models according to their model-to-map Ąt. Compu-
tational approaches outperform manual model building in terms of runtime and
provide insights that are independent of the personal judgement of the modeller.
Our approach is helpful in situations where the data is ambiguous and provides a
quantitative structural analysis of the density map.

Chapter 5 described a procedure for Ćexible fragment Ątting with DireX. Frag-
ment Ątting enables one to interpret a given protein trace in terms of backbone
conformations found in other proteins. Our investigations led to the conclusion,
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that introducing a Ćexible Ątting routine, instead of a rigid Ątting routine allows
to use smaller fragment libraries and beneĄts accuracy. This is particularly true
for loop and sheet regions. In these regions, information derived from the map
seem to be more important than information from known reference conformations.
Further, metrics for assessing fragment placements should reliably detect poor
placements, these requirements seem to be met by the i-o score, but not by the
average map value per atom. In the future, the presented method can be integ-
rated in the modelling framework EMfasa.

Lastly, subject of chapter 6 was a method to automatically determine the to-
pology or the trace of a protein based on a cryo-EM map. Hereby, the tracing is
guided by predicted inter-residue distances. Other prior structural information is
not used. It was shown that integrating information from predicted inter-residue
distances improves traces that were built based on density information alone. The
method provides a quick initial representation of the protein trace including the
sequence assignment. It can also be used to assess traces modelled with other
tools and suggests alternatives were it suspect a connection between atoms to be
wrong. In the future, we would like to provide a Chimera plug-in to assess and,
if necessary, correct connections on the Ćy with a simple GUI. Moreover, the tool
might also be helpful to identify single chains or domains in a multi chain protein
complex, details about the workĆow of such an approach need still to be worked
out.

Together, these four studies cover the whole transformation between map and
model. They contribute to our holistic understanding of how an atomic protein
structure is represented by its density map and how we can extract this informa-
tion using computational tools. Their application helps to solve protein structures
using cryo-EM. Therefore, this work can be of help in the context of biomedical
research, drug development or biotechnology.
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C
ryo-EM has emerged as a key method to visualize and 
model biologically important macromolecules and cellular 
machines. Researchers can now routinely achieve resolutions 

better than 4 Å, yielding new mechanistic insights into cellular pro-
cesses and providing support for drug discovery1.

The recent explosion of cryo-EM structures raises important 
questions. What are the limits of interpretability given the quality of 
maps and resulting models? How can model accuracy and reliabil-
ity be quantified under the simultaneous constraints of map density 
and chemical rules?

The EMDataResource Project (EMDR) (emdataresource.org) 
aims to derive validation methods and standards for cryo-EM 
structures through community consensus2. EMDR has convened 
an EM Validation Task Force3 analogous to those for X-ray crystal-
lography4 and NMR5 and has sponsored challenges, workshops and 
conferences to engage cryo-EM experts, modelers and end-users2,6. 
During this period, cryo-EM has evolved rapidly (Fig. 1).

This paper describes outcomes of EMDR’s most recent chal-
lenge, the 2019 Model ‘Metrics’ Challenge. Map targets representing 

the state-of-the-art in cryo-EM single particle reconstruction were 
selected in the near-atomic resolution regime (1.8–3.1 Å) with a 
twist: three form a resolution series from the same specimen/imag-
ing experiment. Careful evaluation of submitted models by par-
ticipating teams leads us to several specific recommendations for 
validating near-atomic cryo-EM structures, directed toward both 
individual researchers and the Protein Data Bank (PDB) structure 
data archive7.

Results
Challenge design. Challenge targets (Fig. 2) consisted of a 
three-map human heavy-chain apoferritin (APOF) resolution series 
(a 500-kDa octahedral complex of 24 ɑ-helix-rich subunits), with 
maps differing only in the number of particles used in reconstruc-
tion8, plus a single map of horse liver alcohol dehydrogenase (ADH) 
(an 80-kDa ɑ/β homodimer with NAD and Zn ligands)9.

A key criterion for target selection was availability of high-quality, 
experimentally determined model coordinates to serve as references 
(Fig. 3a). A 1.5 Å X-ray structure10 served as the APOF reference 
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since no cryo-EM model was available. The X-ray model provides 
an excellent although not a fully optimized fit to each map, owing 
to method/sample differences. For ADH, the structure deposited by 
the original cryo-EM study authors served as the reference9.

Thirteen teams from the USA and Europe submitted 63 models 
in total, using whatever modeling software they preferred, yielding 
15–17 submissions per target (Fig. 3b and Table 1). Most (51) were 
created ab initio, sometimes supported by additional manual steps, 
while others (12) were optimizations of publicly available models. 
The estimated human effort per model was 7 h on average, with a 
wide range (0–80 h).

Submitted models were evaluated as in the previ-
ous challenge11 with multiple metrics in each of four tracks: 
Fit-to-Map, Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models (Fig. 3c). The metrics include many in 
common use as well as several recently introduced.

Metrics to evaluate global Fit-to-Map included Map-Model 
Fourier shell correlation (FSC)12, FSC average13, Atom Inclusion14, 
EMRinger15, density-based correlation scores from TEMPy16–18, 
Phenix19 and the recently introduced Q-score to assess atom 
resolvability8.

Metrics to evaluate overall Coordinates-only quality included 
Clashscore, Rotamer outliers and Ramachandran outliers from 
MolProbity20, as well as standard geometry measures (for example, 
bond, chirality, planarity) from Phenix21. PDB currently uses all 
of these validation measures based on community recommenda-
tions3–5. New to this challenge round was CaBLAM, which evaluates 
protein backbone conformation using virtual dihedral angles22.

Metrics assessing similarity of model to reference included 
Global Distance Test23, Local Difference Distance Test24, CaRMSD25 
and Contact Area Difference26. Davis-QA was used to measure 
similarity among submitted models27. These measures are widely 
used in critical assessment of protein structure prediction (CASP) 
competitions27.

Several metrics were also evaluated per residue. These were 
Fit-to-Map: EMRinger15, Q-score8, Atom Inclusion14, SMOC18 and 
CCbox19; and for Coordinates-only: Clashes, Ramachandran outli-
ers20 and CaBLAM22.

Evaluated metrics are tabulated with brief definitions in Table 2 
and extended descriptions are provided in Methods.

An evaluation system website with interactive tables, plots and 
tools (Fig. 3d) was established to organize and enable analysis of the 
challenge results and make the results accessible to all participants 
(model-compare.emdataresource.org).

Overall and local quality of models. Most submitted models 
scored well, landing in ‘acceptable’ regions in each of the evalua-
tion tracks, and in many cases performing better than the associated 
reference structure that served as a control (Supplementary Fig. 1). 
Teams that submitted ab initio models reported that additional 
manual adjustment was beneficial, particularly for the two lower 
resolution targets.

Evaluation exposed four fairly frequent issues: mis-assignment of 
peptide-bond geometry, misorientation of peptides, local sequence 
misalignment and failure to model associated ligands. Two-thirds of 
submitted models had one or more peptide-bond geometry errors 
(Extended Data Fig. 1).

At resolutions near 3 Å or in weak local density, the carbonyl O 
protrusion disappears into the tube of backbone density (Fig. 2), 
and trans peptide bonds are more readily modeled in the wrong ori-
entation. If peptide torsion ϕ (C,N,Cα,C), ψ (N,Cα,C,N) values are 
explicitly refined, adjacent sidechains can be pushed further in the 
wrong direction. Such cases are not flagged as Ramachandran outli-
ers but they are recognized by CaBLAM28 (Extended Data Fig. 2).

Sequence misthreadings misplace residues over very large dis-
tances. The misalignment can be recognized by local Fit-to-Map 
criteria, with ends flagged by CaBLAM, bad geometry, cis-nonPro 
peptides and clashes (Extended Data Fig. 3).

ADH contains tightly bound ligands: an NADH cofactor as well 
as two zinc ions per subunit, with one zinc in the active site and the 
other in a spatially separate site coordinated by four cysteine residues9. 
Models lacking these ligands had considerable local modeling errors, 
sometimes even mistracing the backbone (Extended Data Fig. 4).

Although there was evidence for ordered water in higher- 
resolution APOF maps8, only two groups elected to model water. 
Submissions were also split roughly 50/50 for (1) inclusion of pre-
dicted H-atom positions and (2) refinement of isotropic B factors. 
Although near-atomic cryo-EM maps do not have a sufficient level 
of detail to directly identify H-atom positions, inclusion of predicted 
positions can still be useful for identifying steric properties such as 
H-bonds or clashes20. Where provided, refined B factors modestly 
improved Fit-to-Map scores (Extended Data Fig. 5).

Evaluating metrics: Fit-to-Map. Score distributions of Fit-to-Map 
metrics (Table 2) were systematically compared (Fig. 4a–d). For 
APOF, single subunits were evaluated against masked subunit maps, 
whereas for ADH, dimeric models were evaluated against the full 
sharpened cryo-EM map (Fig. 2d). To control for the varied impact 
of H-atom inclusion or isotropic B-factor refinement on different 
metrics, all evaluated scores were produced with H atoms removed 
and all B factors were set to zero.

Score distributions were first evaluated for all 63 models across 
all four challenge targets. A wide diversity in performance was 
observed, with poor correlations between most metrics (Fig. 4a). 
This means that a model that scored well relative to all 62 others 
using one metric may have a much poorer ranking using another. 
Hierarchical analysis identified three distinct clusters of similarly 
performing metrics (Fig. 4a, labels c1–c3).

The unexpected sparse correlations and clustering can be under-
stood by considering per-target score distribution ranges, which 
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differ substantially from each other. The three clusters identify sets 
of metrics that share similar trends (Fig. 4c).

Cluster 1 metrics (Fig. 4c, top row) share the trend of decreas-
ing score values with increasing map resolution. The cluster consists 
of six real-space correlation measures, three from TEMPy16–18 and 
three from Phenix19. Each evaluates a model’s fit in a similar way: 
by correlating calculated model-map density with experimental 
map density. In most cases (five out of six), correlation is performed 
after model-based masking of the experimental map. This observed 
trend is contrary to the expectation that a Fit-to-Map score should 
increase as resolution improves. The trend arises at least in part 
because map resolution is an explicit input parameter for this class 
of metrics. For a fixed map/model pair, changing the input resolu-
tion value will change the score. As map resolution increases, the 
level of detail that a model-map must faithfully replicate to achieve 
a high correlation score must also increase.

Cluster 2 metrics (Fig. 4c, middle row) share the inverse trend: 
score values improve with increasing map target resolution. Cluster 
2 metrics consist of Phenix Map-Model FSC = 0.5 (ref. 19), Q-score8 
and EMRinger15. The observed trend is expected: by definition, 
each metric assesses a model’s fit to the experimental map in a man-
ner that is intrinsically sensitive to map resolution. In contrast with 
cluster 1, cluster 2 metrics do not require map resolution to be sup-
plied as an input parameter.

Cluster 3 metrics (Fig. 4c, bottom row) share a different overall 
trend: score values are substantially lower for ADH relative to APOF 
map targets. These measures include three unmasked correlation 
functions from TEMPy16–18, Refmac FSCavg13, Electron Microscopy 
Data Bank (EMDB) Atom Inclusion14 and TEMPy ENV16. All of these 
measures consider the full experimental map without masking, so can 
be sensitive to background noise, which is substantial in the unmasked 
ADH map and minimal in the masked APOF maps (Fig. 2d).

Score distributions were also evaluated for how similarly they 
performed per target, and in this case most metrics were strongly 

correlated with each other (Fig. 4b). This means that for any single 
target, a model that scored well relative to all others using one met-
ric also fared well using nearly every other metric. This situation 
is illustrated by comparing scores for two different metrics, CCbox 
from cluster 1 and Q-score from cluster 2 (Fig. 4d). The plot’s four 
diagonal lines demonstrate that the scores are tightly correlated 
with each other within each map target. But, as described above, the 
two metrics have different sensitivities to map-specific factors. It is 
these different sensitivities that give rise to the separated, parallel 
spacings of the four diagonal lines, indicating score ranges on dif-
ferent relative scales.

One Fit-to-Map metric showed poor per-target correlation with 
all others: TEMPy ENV (Fig. 4b). ENV evaluates atom positions 
relative to a density threshold that is based on sample molecular 
weight. At near-atomic resolution this threshold is overly generous. 
TEMPy Mutual Information and EMRinger also diverged from oth-
ers (Fig. 4b). Mutual information scores reflected strong influence 
of ADH background noise. In contrast, masked MI_OV correlated 
well with other measures. EMRinger yielded distinct distributions 
owing to its focus on backbone placement15.

Collectively these results reveal that multiple factors such as 
using experimental map resolution as an input parameter, presence 
of background noise and density threshold selection can strongly 
affect Fit-to-Map score values, depending on the chosen met-
ric. These are not desirable features for archive-wide validation of 
deposited cryo-EM structures.

Evaluating metrics: Coordinates-only and versus Reference. 
Metrics to assess model quality based on Coordinates-only (Table 2), as 
well as Comparison-to-Reference and Comparison-among-Models 
(Table 2) were also evaluated and compared (Fig. 4e,f).

Most Coordinates-only metrics were poorly correlated with 
each other (Fig. 4e), with the exception of bond, bond angle and 
chirality root mean squared deviation (r.m.s.d.), which form a 
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small cluster. Ramachandran outliers, widely used to validate 
protein backbone conformation, were poorly correlated with all 
other Coordinates-only measures. More than half (33) of submit-
ted models had zero Ramachandran outliers, while only four had 
zero CaBLAM conformation outliers. Ramachandran statistics are 
increasingly used as restraints29,30, which reduces their use as a vali-
dation metric. These results support the concept of CaBLAM as an 
informative score for validating backbone conformation22.

CaBLAM metrics, while orthogonal to other Coordinates-only 
measures, were unexpectedly found to perform very simi-
larly to Comparison-to-Reference metrics. The similarity likely 
arises because the worst modeling errors in this challenge were 
sequence and backbone conformation mis-assignments. These 
errors were equally flagged by CaBLAM, which compares mod-
els against statistics from high-quality PDB structures, and the 
Comparison-to-Reference metrics, which compare models against a 
high-quality reference. To a lesser extent, modeling errors were also 
flagged by Fit-to-Map metrics (Fig. 4f). Overall, Coordinates-only 
metrics were poorly correlated with Fit-to-Map metrics (Fig. 4f and 
Extended Data Fig. 6a).

Protein sidechain accuracy is specifically assessed by Rotamer 
and GDC-SC, while EMRinger, Q-score, CAD, hydrogen bonds 
in residue pairs (HBPR > 6), GDC and LDDT metrics include 
sidechain atoms. For these eight measures, Rotamer was com-
pletely orthogonal, Q-score was modestly correlated with the 
Comparison-to-Reference metrics, and EMRinger, which measures 
sidechain fit as a function of main chain conformation, was largely 

independent (Fig. 4f). These results suggest a need for multiple 
metrics (for example, Q-score, EMRinger, Rotamer) to assess differ-
ent aspects of sidechain quality.

Evaluating metrics: local scoring. Several residue-level scores were 
calculated in addition to overall scores. Five Fit-to-Map metrics con-
sidered masked density for both map and model around the evalu-
ated residue (CCbox19, SMOC18), density profiles at nonhydrogen 
atom positions (Q-score8), density profiles of nonbranched residue 
Cɣ-atom ring paths (EMRinger15) or density values at non-H-atom 
positions relative to a chosen threshold (Atom Inclusion14). In two 
of these five, residue-level scores were obtained as sliding-window 
averages over multiple contiguous residues (SMOC, nine residues; 
EMRinger, 21 residues).

Residue-level correlation analyses similar to those described 
above (not shown) indicate that local Fit-to-Map scores diverged 
more than their corresponding global scores. Residue-level scor-
ing was most similar across evaluated metrics for high resolu-
tion maps. This observation suggests that the choice of method 
for scoring residue-level fit becomes less critical at higher resolu-
tion, where maps tend to have stronger density/contrast around  
atom positions.

A case study of a local modeling error (Extended Data Fig. 3) 
showed that Atom Inclusion14, CCbox19 and Q-score8 produced 
substantially worse scores within a four-residue ɑ-helical misthread 
relative to correctly assigned flanking residues. In contrast, the 
sliding-window-based metrics were largely insensitive (a new 
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TEMPy version offers single residue (SMOCd) and adjustable win-
dow analysis (SMOCf)31). At near-atomic resolution, single residue 
Fit-to-Map evaluation methods are likely to be more useful.

Residue-level Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models metrics (not shown) were also evalu-
ated for the same modeling error. The MolProbity server20,22 flagged 
the problematic four-residue misthread via CaBLAM, cis-Peptide, 
Clashscore, bond and angle scores, but all Ramachandran scores 
were either favored or allowed. The Comparison-to-Reference 
LDDT and LGA local scores and the Davis-QA model consensus 
score also strongly flagged this error. The example demonstrates 
the value of combining multiple orthogonal measures to identify 
geometry issues, and further highlights the value of CaBLAM as an 
orthogonal measure for backbone conformation.

Group performance. Group performance was examined by model-
ing category and target by combining Z-scores from metrics deter-
mined to be meaningful in the analyses described above (Methods 
and Extended Data Fig. 6). A wide variety of map density features 
and algorithms were used to produce a model, and most were 
successful yet allowing a few mistakes, often in different places 
(Extended Data Figs. 1–4). For practitioners, it might be beneficial 
to combine models from several ab initio methods for subsequent 
refinement.

Discussion
This third EMDR Model Challenge has demonstrated that cryo-EM 
maps with a resolution ≤3 Å and from samples with limited confor-
mational flexibility have excellent information content, and auto-
mated methods are able to generate fairly complete models from 
such maps, needing only small amounts of manual intervention.

Inclusion of maps in a resolution series enabled controlled evalu-
ation of metrics by resolution, with a completely different map pro-
viding a useful additional control. These target selections enabled 
observation of important trends that otherwise could have been 
missed. In a recent evaluation of predicted models in the CASP13 
competition against several roughly 3 Å cryo-EM maps, TEMPy 
and Phenix Fit-to-Map correlation measures performed very simi-
larly31. In this challenge, because the chosen targets covered a wider 
resolution range and had more variability in background noise, the 
same measures were found to have distinctive, map feature-sensitive 
performance profiles.

Most submitted models were overall either equivalent to or bet-
ter than their reference model. This achievement reflects significant 
advances in the development of modeling tools relative to the state 
presented a decade ago in our first model challenge2. However, 
several factors beyond atom positions that become important for 
accurate modeling at near-atomic resolution were not uniformly 
addressed; only half included refinement of atomic displacement 
factors (B factors) and a minority attempted to fit water or bound 
ligands.

Fit-to-Map measures were found to be sensitive to different 
physical properties of the map, including experimental map resolu-
tion and background noise level, as well as input parameters such 
as density threshold. Coordinates-only measures were found to 
be largely orthogonal to each other and also largely orthogonal to 
Fit-to-Map measures, while Comparison-to-Reference measures 
were generally well correlated with each other.

The cryo-EM modeling community as represented by the chal-
lenge participants have introduced a number of metrics to evaluate 
models with sound biophysical basis. Based on our careful analyses 
of these metrics and their relationships, we make four recommen-

Table 1 | Participating modeling teams

Team IDa, name Team members No. of submitted 

models

Effort type(s) Software

10 yu X. yu 4 ab initio+manual Phenix21, buccaneer37, Chimera38, Coot29, 
Pymol

25 Cdmd M. Igaev, A. Vaiana, H. Grubmüller 4 optimization automated CDMD39

27 Kumar D. Kumar 1 ab initio+manual Phenix, rosetta40, buccaneer, ArP/
wArP41, Coot

28 Ccpem S. W. Hoh, K. Cowtan, A. P. 
Joseph, C. Palmer, M. Winn, 
T. burnley, M. Olek, P. bond, e. 
Dodson

4 ab initio+manual CCPeM42, refmac13, buccaneer, Coot, 
TeMPy16–18

35 Phenix P. Afonine, T. Terwilliger, L.-W. 
Hung

4 ab initio+manual Phenix, Coot

38 Fzjuelich G. Schroeder, L. Schaefer 3 optimization automated Phenix, Chimera, DireX43, MDFF44, CNS, 
Gromacs

41 Arpwarp G. Chojnowski 8 ab initio automated, ab 
initio+manual

refmac, ArP/wArP, Coot

54 Kihara D. Kihara, G. Terashi 8 ab initio+manual rosetta, Mainmast45, MDFF, Chimera

60 Deeptracer L. Wang, D. Si, r. Cao, J. Cheng, S. 
A. Moritz, J. Pfab, T. Wu, J. Hou

10 ab initio automated, ab 
initio+manual

Cascaded-CNN46, Chimera

73 Singharoy M. Shekhar, G. Terashi, S. Mittal, 
D. Sarkar, D. Kihara, K. Dill, A. 
Perez, A. Singharoy

5 ab initio+manual, optimization 
automated

reMDFF47, MeLD48, VMD, Chimera, 
Mainmast

82 rosetta F. DiMaio, D. Farrell 8 ab initio automated, ab 
initio+manual

rosetta, Chimera

90 Mbaker M. baker 2 ab initio+manual Pathwalker49, Phenix, Chimera, Coot

91 Chiu G. Pintilie, W. Chiu 2 optimization+manual Phenix, Chimera, Coot

aeach team was assigned a random two-digit ID for blinded identification.
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Table 2 | Evaluated metrics

Metric class Package metric definition

Fit-to-Map

Correlation Coefficient, 
all voxels

Phenix CCbox full grid map versus model-map density correlation coefficient19

TeMPy CCC full grid map versus model-map density correlation coefficient17

Correlation Coefficient, 
selected voxels

Phenix CCmask map versus model-map density, only modeled regions19

Phenix CCpeaks map versus model-map density, only high-density map and model regions19

TeMPy CCC_OV map versus model-map density, overlapping map and model regions18

TeMPy SMOC Segment Manders’ Overlap, map versus model-map density, only modeled regions18

Correlation Coefficient, 
other density function

TeMPy LAP map versus model-map Laplacian filtered density (partial second derivative)16

TeMPy Mutual Information (MI) map versus model-map Mutual Information entropy-based function16

TeMPy MI_OV map versus model-map Mutual Information, only modeled regions18

Correlation Coefficient, 
atom positions

Chimera/MAPQ Q-score map density at each modeled atom versus reference Gaussian density function8

FSC Phenix FSC05 resolution (distance) of Map-Model FSC curve read at point FSC = 0.5 (ref. 19)
CCPeM/refmac FSCavg FSC curve area integrated to map resolution limit13,42

Atom Inclusion eMDb/VisualAnalysis AI all Atom Inclusion, percentage of atoms inside depositor-provided density threshold14

TeMPy ENV Atom Inclusion in envelope corresponding to sample molecular weight; penalizes unmodeled regions16

Sidechain Density Phenix EMRinger evaluates backbone by sampling map density around Cɣ-atom ring paths for nonbranched residues15

Coordinates-only

Configuration Phenix Bond r.m.s.d. of bond lengths21

Phenix Angle r.m.s.d. of bond angles21

Phenix Chiral r.m.s.d. of chiral centers21

Phenix Planar r.m.s.d. of planar group planarity21

Phenix Dihedral r.m.s.d. of dihedral angles21

Clashes MolProbity Clashscore Number of steric overlaps ≥0.4 Å per 1,000 atoms20

Conformation MolProbity Rotamer sidechain conformation outliers20

MolProbity Rama ramachandran ɸ,ψ main chain conformation outliers20

MolProbity CaBLAM outliers CO and Cɑ-based virtual dihedrals22

MolProbity Calpha outliers Cɑ-based virtual dihedrals and Cɑ virtual bond angle22

Versus Reference Model

Atom Superposition Local Global Alignment (LGA) GDT-TS Global Distance Test Total Score, average percentage of model Cɑ that superimpose 
with reference Cɑ, multiple distance cutoffs23

LGA GDC Global Distance Calculation, average percentage of all model atoms that superimpose with reference, multiple 
distance cutoffs23

LGA GDC-SC Global Distance Calculation for sidechain atoms only23

OpenStructure/QS CaRMSD r.m.s.d. of Cɑ atoms25

Interatomic Distances LDDT LDDT Local Difference Distance Test, superposition-free comparison of all-atom distance maps between model and 
reference24

Contact Area CAD CAD Contact Area Difference, superposition-free measure of differences in interatom contacts26

HbPLuS50 HBPR > 6, hydrogen bond precision, nonlocal. fraction of correctly placed hydrogen bonds in residue pairs with >6 
separation in sequence

Comparison among models

Atom Superposition, 
Multiple

DAVIS-QA average of pairwise LGA GDT-TS scores among submitted models27

Fig. 4 | Evaluation of metrics. Model metrics (Table 2) were compared with each other to assess how similarly they performed in scoring the challenge 

models. a–d, Fit-to-Map metrics analyses. a, Pairwise correlations of scores for all models across all map targets (n = 63). b, Average correlation of scores 

per target (average over four correlation coefficients, one for each map target with T1, n = 16; T2, n = 15; T3, n = 15; T4, n = 17). Correlation-based metrics are 

identified by bold labels. In a, table order is based on a hierarchical cluster analysis (Methods). Three red-outlined boxes along the table diagonal correspond 

to identified clusters (no. c1–c3). For ease of comparison, order in b is identical to a. c, representative score distributions are plotted by map target, ordered 

by map target resolution (see legend at bottom; T1, n = 16; T2, n = 15; T4, n = 17; T3, n = 15). each row represents one of the three clusters defined in (a). each 

score distribution is represented in box-and-whisker format (left) along with points for each individual score (right). Lower boxes represent Q1–Q2 (25th–

50th percentile, in target color as shown in legend); upper boxes represent Q2–Q3 (25th–75th percentile, dark gray). boxes do not appear when quartile 

limits are identical. Whiskers span 10th to 90th percentile. To improve visualization of closely clustered scores, individual scores (y values) are plotted against 

slightly dithered x values. d, Scores for one representative pair of metrics are plotted against each other (CCbox from cluster 1 and Q-score from Cluster 2). 

Diagonal lines represent linear fits by map target. e, Coordinates-only metrics comparison. f, Fit-to-Map, Coordinates-only and Comparison-to-reference 

metrics comparison. Correlation levels in a,b,e,f are indicated by shading (see legend at top). See the Methods for additional details.
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dations regarding validation practices for cryo-EM models of pro-
teins determined at near-atomic resolution as studied here between 
3.1 and 1.8 Å, a rising trend for cryo-EM (Fig. 1a).

Recommendation 1. For researchers optimizing a model against 
a single map, nearly any of the evaluated global Fit-to-Map metrics 
(Table 2) can be used to evaluate progress because they are all largely 

equivalent in performance. The exception is TEMPy, ENV is more 
appropriate at lower resolutions (>4 Å).

Recommendation 2. To flag issues with local (per residue) 
Fit-to-Map, metrics that evaluate single residues are more suitable 
than those using sliding-window averages over multiple residues 
(Evaluating metrics: local scoring).
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Recommendation 3. The ideal Fit-to-Map metric for archive-wide 
ranking will be insensitive to map background noise (appropriate 
masking or alternative data processing can help), will not require 
input of estimated parameters that affect score value (for example, 
resolution limit, threshold) and will yield overall better scores for 
maps with trustworthy higher-resolution features. The three cluster 
2 metrics identified in this challenge (Fig. 4a ‘c2’ and Fig. 4c center 
row) meet these criteria.

•	 Map-Model FSC12,19 is already in common use, and can be com-
pared with the experimental map’s independent half-map FSC 
curve.

•	 Global EMRinger score15 can assess nonbranched protein 
sidechains.

•	 Q-score can be used both globally and locally for validating 
nonhydrogen atom x,y,z positions8.

Other Fit-to-Map metrics may be rendered suitable for 
archive-wide comparisons through conversion of raw scores to 
Z-scores over narrow resolution bins, as is currently done by the 
PDB for some X-ray-based metrics4,32.

Recommendation 4. CaBLAM and MolProbity cis-peptide 
detection22 are useful to detect protein backbone conformation 
issues. These are particularly valuable tools for cryo-EM, since maps 
at typical resolutions (2.5–4.0 Å, Fig. 1a) may not resolve backbone 
carbonyl oxygens (Fig. 2).

In this challenge, more time could be devoted to analysis when 
compared with previous rounds because infrastructure for model 
collection, processing and assessment is now established. However, 
several important issues could not be addressed, including evalu-
ation of overfitting using half-map based methods13,33–35, effect of 
map sharpening on Fit-to-Map scores8,36, validation of ligand fit and 
metal ion/water identification and validation at atomic resolution 
including H atoms. EMDR plans to sponsor additional model chal-
lenges to continue promoting development and testing of cryo-EM 
modeling and validation methods.
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ing summaries, source data, extended data, supplementary infor-
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Methods
Challenge process and organization. Informed by previous challenges2,6,11, the 
2019 Model Challenge process was substantially streamlined in this round. In 
March, a panel of advisors with expertise in cryo-EM methods, modeling and/or 
model assessment was recruited. The panel worked with EMDR team members to 
develop the challenge guidelines, identify suitable map targets from EMDB and 
reference models from the PDB and recommend the metrics to be calculated for 
each submitted model.

The challenge rules and guidance were as follows: (1) ab initio modeling is 
encouraged but not required. For optimization studies, any publicly available 
coordinate set can be used as the starting model. (2) Regardless of the modeling 
method used, submitted models should be as complete and as accurate as possible 
(that is, equivalent to publication-ready). (3) For each target, a separate modeling 
process should be used. (4) Fitting to either the unsharpened/unmasked map or 
one of the half-maps is strongly encouraged. (5) Submission in mmCIF format is 
strongly encouraged.

Members of cryo-EM and modeling communities were invited to participate 
in mid-April 2019 and details were posted on the challenges website (challenges.
emdataresource.org). Models were submitted by participant teams between 1 
and 28 May 2019. For APOF targets, coordinate models were submitted as single 
subunits at the position of a provided segmented density consisting of a single 
subunit. ADH models were submitted as dimers. For each submitted model, 
metadata describing the full modeling workflow were collected via a Drupal 
webform, and coordinates were uploaded and converted to PDBx/mmCIF format 
using PDBextract51. Model coordinates were then processed for atom/residue 
ordering and nomenclature consistency using PDB annotation software (Feng Z., 
https://sw-tools.rcsb.org/apps/MAXIT) and additionally checked for sequence 
consistency and correct position relative to the designated target map. Models were 
then evaluated as described below (Model evaluation system).

In early June, models, workflows and initial calculated scores were made 
available to all participants for evaluation, blinded to modeler team identity 
and software used. A 2.5-day workshop was held in mid-June at Stanford/SLAC 
to review the results, with panel members attending in person. All modeling 
participants were invited to attend remotely and present overviews of their 
modeling processes and/or assessment strategies. Recommendations were made 
for additional evaluations of the submitted models as well as for future challenges. 
Modeler teams and software were unblinded at the end of the workshop. In 
September, a virtual follow-up meeting with all participants provided an overview 
of the final evaluation system after implementation of recommended updates.

Coordinate sources and modeling software. Modeling teams created ab initio 
models or optimized previously known models available from the PDB. Models 
optimized against APOF maps used PDB entries 2fha, 5n26 or 3ajo as starting 
models. Models optimized against ADH used PDB entries 1axe, 2jhf or 6nbb. Ab 
initio software included ARP/wARP41, Buccaneer37, Cascaded-CNN46, Mainmast45, 
Pathwalker49 and Rosetta40. Optimization software included CDMD39, CNS52, 
DireX43, Phenix21, REFMAC13, MELD48, MDFF44 and reMDFF47. Participants 
made use of VMD53, Chimera38, COOT29 and PyMol for visual evaluation and/or 
manual model improvement of map-model fit. See Table 1 for software used by 
each modeling team. Modeling software versions/websites are listed in the Nature 
Research Reporting Summary.

Model evaluation system. The evaluation system for 2019 challenge 
(model-compare.emdataresource.org) was built on the basis of the 2016/2017 
Model Challenge system11, updated with several additional evaluation measures 
and analysis tools. Submitted models were evaluated for >70 individual metrics 
in four tracks: Fit-to-Map, Coordinates-only, Comparison-to-Reference and 
Comparison-among-Models. A detailed description of the updated infrastructure 
and each calculated metric is provided as a help document on the model evaluation 
system website. Result data are archived at Zenodo54. Analysis software versions/
websites are listed in the Nature Research Reporting Summary.

For brevity, a representative subset of metrics from the evaluation website are 
discussed in this paper. The selected metrics are listed in Table 2 and are further 
described below. All scores were calculated according to package instructions using 
default parameters.

Fit-to-Map. The evaluated metrics included several ways to measure the correlation 
between map and model density as implemented in TEMPy16–18 v.1.1 (CCC, 
CCC_OV, SMOC, LAP, MI, MI_OV) and the Phenix21 v.1.15.2 map_model_cc 
module19 (CCbox, CCpeaks, CCmask). These methods compare the experimental 
map with a model map produced on the same voxel grid, integrated either over the 
full map or over selected masked regions. The model-derived map is generated to 
a specified resolution limit by inverting Fourier terms calculated from coordinates, 
B factors and atomic scattering factors. Some measures compare density-derived 
functions instead of density (MI, LAP16).

The Q-score (MAPQ v.1.2 (ref. 8) plugin for UCSF Chimera38 v.1.11) uses a 
real-space correlation approach to assess the resolvability of each model atom in 
the map. Experimental map density is compared to a Gaussian placed at each atom 
position, omitting regions that overlap with other atoms. The score is calibrated by 

the reference Gaussian, which is formulated so that a highest score of 1 would be 
given to a well-resolved atom in a map at an approximately 1.5 Å resolution. Lower 
scores (down to −1) are given to atoms as their resolvability and the resolution of 
the map decreases. The overall Q-score is the average value for all model atoms.

Measures based on Map-Model FSC curve, Atom Inclusion and protein 
sidechain rotamers were also compared. Phenix Map-Model FSC is calculated 
using a soft mask and is evaluated at FSC = 0.5 (ref. 19). REFMAC FSCavg13 
(module of CCPEM42) integrates the area under the Map-Model FSC curve to a 
specified resolution limit13. EMDB Atom Inclusion determines the percentage 
of atoms inside the map at a specified density threshold14. TEMPy ENV is also 
threshold-based and penalizes unmodeled regions16. EMRinger (module of Phenix) 
evaluates backbone positioning by measuring the peak positions of unbranched 
protein Cγ atom positions versus map density in ring paths around Cɑ–Cβ bonds15.

Coordinates-only. Standard measures assessed local configuration (bonds, bond 
angles, chirality, planarity, dihedral angles; Phenix model statistics module), 
protein backbone (MolProbity Ramachandran outliers20; Phenix molprobity 
module) and sidechain conformations, and clashes (MolProbity rotamers outliers 
and Clashscore20; Phenix molprobity module).

New in this challenge round is CaBLAM22 (part of MolProbity and as Phenix 
cablam module), which uses two procedures to evaluate protein backbone 
conformation. In both cases, virtual dihedral pairs are evaluated for each 
protein residue i using Cɑ positions i − 2 to i + 2. To define CaBLAM outliers, 
the third virtual dihedral is between the CO groups flanking residue i. To define 
Calpha-geometry outliers, the third parameter is the Cɑ virtual angle at i. The 
residue is then scored according to virtual triplet frequency in a large set of 
high-quality models from PDB22.

Comparison-to-Reference and Comparison-among-Models. Assessing the similarity 
of the model to a reference structure and similarity among submitted models, we 
used metrics based on atom superposition (LGA GDT-TS, GDC and GDC-SC 
scores23 v.04.2019), interatomic distances (LDDT score24 v.1.2), and contact area 
differences (CAD26 v.1646). HBPLUS50 was used to calculate nonlocal hydrogen 
bond precision, defined as the fraction of correctly placed hydrogen bonds with 
more than six separations in sequence (HBPR > 6). DAVIS-QA determines for each 
model the average of pairwise GDT-TS scores among all other models27.

Local (per residue) scores. Residue-level visualization tools for comparing the 
submitted models were also provided for the following metrics: Fit-to-Map, 
Phenix CCbox, TEMPy SMOC, Q-score, EMRinger and EMDB Atom Inclusion; 
Comparison-to-Reference, LGA and LDDT; and Comparison-among-Models, 
DAVIS-QA.

Metric score pairwise correlations and distributions. For pairwise comparisons 
of metrics, Pearson correlation coefficients (P) were calculated for all model scores 
and targets (n = 63). For average per-target pairwise comparisons of metrics, P 
values were determined for each target and then averaged. Metrics were clustered 
according to the similarity score (1 − |P|) using a hierarchical algorithm with 
complete linkage. At the beginning, each metric was placed into a cluster of its 
own. Clusters were then sequentially combined into larger clusters, with the 
optimal number of clusters determined by manual inspection. In the Fit-to-Map 
evaluation track, the procedure was stopped after three divergent score clusters 
were formed for the all-model correlation data (Fig. 4a), and after two divergent 
clusters were formed for the average per-target clustering (Fig. 4b).

Controlling for model systematic differences. As initially calculated, some 
Fit-to-Map scores had unexpected distributions, owing to differences in modeling 
practices among participating teams. For models submitted with all atom 
occupancies set to zero, occupancies were reset to one and rescored. In addition, 
model submissions were split approximately 50/50 for each of the following 
practices: (1) inclusion of hydrogen atom positions and (2) inclusion of refined B 
factors. For affected fit-to-map metrics, modified scores were produced excluding 
hydrogen atoms and/or setting B factors to zero. Both original and modified 
scores are provided at the web interface. Only modified scores were used in the 
comparisons described here.

Evaluation of group performance. Rating of group performance was done using 
the group ranks and model ranks (per target) tools on the challenge evaluation 
website. These tools permit users, either by group or for a specified target and 
for all or a subcategory of models (for example, ab initio), to calculate composite 
Z-scores using any combination of evaluated metrics with any desired relative 
weightings. The Z-scores for each metric are calculated from all submitted models 
for that target (n = 63). The metrics (weights) used to generate composite Z-scores 
were as follows.

Coordinates-only. CaBLAM outliers (0.5), Calpha-geometry outliers (0.3) and 
Clashscore (0.2). CaBLAM outliers and Calpha-geometry outliers had the best 
correlation with Comparison-to-Reference parameters (Fig. 4f), and Clashscore is 
an orthogonal measure. Ramachandran and rotamer criteria were excluded since 
they are often restrained in refinement and are zero for many models.

NATURE METHODS | www.nature.com/naturemethods



ANALYSIS NATURE METHODS

Fit-to-Map. EMRinger (0.3), Q-score (0.3), Atom Inclusion (0.2) and SMOC (0.2). 
EMRinger and Q-score were among the most promising model-to-map metrics, 
and the other two provide distinct measures.

Comparison-to-Reference. LDDT (0.9), GDC_all (0.9) and HBPR >6 (0.2). LDDT 
is superposition-independent and local, while GDC_all requires superposition; 
H-bonding is distinct. Metrics in this category are weighted higher, because 
although the reference models are not perfect, they are a reasonable estimate of the 
right answer.

Composite Z-scores by metric category (Extended Data Fig. 6a) used the 
Group Ranks tool. For ab initio rankings (Extended Data Fig. 6b), Z-scores were 
averaged across each participant group on a given target, and further averaged 
across T1 + T2 and across T3 + T4 to yield overall Z-scores for high and low 
resolutions group 54 models were rated separately because they used different 
methods. Group 73’s second model on target T4 was not rated because the metrics 
are not set up to meaningfully evaluate an ensemble. Other choices of metric 
weighting schemes were tried, with very little effect on clustering.

Molecular graphics. Molecular graphics images were generated using UCSF 
Chimera38 (Fig. 2 and Extended Data Fig. 3) and KiNG55 (Extended Data Figs. 1, 2 
and 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The map targets used in the challenge were downloaded from the EMDB, 
entries EMD-20026 (file emd_20026_additional_1.map.gz), EMD-20027 (file 
emd_20027_additional_2.map.gz), EMD-20028 (file emd_20028_additional_2.
map.gz) and EMD-0406 (file emd_0406.map.gz). Reference models were 
downloaded from the PDB, entries 3ajo and 6nbb. Submitted models, model 
metadata, result logs and compiled data are archived at Zenodo at https://doi.
org/10.5281/zenodo.4148789, and at https://model-compare.emdataresource.org/
data/2019/. Interactive summary tables, graphical views and .csv downloads of 
compiled results are available at https://model-compare.emdataresource.org/2019/
cgi-bin/index.cgi. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Evaluation of peptide bond geometry. All 63 Challenge models were evaluated using MolProbity. APOF and ADH each have one 

cis peptide bond per subunit before a proline residue. (a) Counts of peptide bonds with each of the following conformational properties: cisP: cis peptide 

before proline, twistP: non-planar peptide (>30°) before proline, cis-nonP: cis peptide before non-proline, twist-nonP: non-planar peptide bond before 

non-proline. Incorrect cis-nonP usually occurred where the model was misfit (see extended Data Figs. 2 and 3), while incorrect cis or trans Pro usually 

produced poor geometry. Values inconsistent with reference models are highlighted. Statistically, 1 in 20 proline residues are genuinely cis; only 1 in 3000 

non-proline residues are genuinely cis, and strongly non-planar peptide bonds (>30°) are almost never genuine28. Models are identified by the submitting 

group (Gp #, group id as defined in Table 1), model number (some groups submitted multiple models), and Target (T1-T3: APOF, T4: ADH). Optimized 

models are shaded blue. Only two groups (28, 31) had all peptides correct for all 4 targets. Models illustrated in panels b-d are indicated by labeled boxes. 

(b) Correct cis peptide geometry for Pro A62 in two ADH models. (c) Incorrect trans peptide geometry, with huge clashes up to 1.25 Å overlap (clusters of 

hot pink spikes), 2 CabLAM outliers (magenta CO dihedral lines), and poor density fit. (d) Incorrect trans peptide geometry, with huge 1.9 Å Cβ deviation at 

Leu 61 (magenta ball) because of incorrect hand of Cα, and 2 CabLAM outliers. Molecular graphics were generated using KiNG.
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Extended Data Fig. 2 | Classic CaBLAM outlier with no Ramachandran outlier. a, Mis-modeled peptide (identified by red ball at carbonyl oxgen 

position) is flagged by two successive CabLAM outliers (magenta dihedrals), a bad clash (hot-pink spikes), and a bond-angle outlier (not shown), but no 

ramachandran outlier. b, Correctly modeled peptide, involving a near-180° flip of the central peptide to achieve regular α-helical conformation. Ser 38 of 

T1/APOF model 60_1 is shown in (a); model 35_1 shown in (b). This example illustrates the most easily correctable situations: (1) for a CabLAM outlier 

inside helix or β-sheet, regularize the secondary structure; (2) for two successive CabLAM outliers, try flipping the central peptide. Molecular graphics 

were generated using KiNG. Note that sidechains are truncated by graphics clipping.
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Extended Data Fig. 3 | Evaluation of a short sequence misalignment within a helix. Local Fit-to-Map and Coordinates-only scores are compared for a 

3-residue sequence misalignment inside an ɑ-helix in an ab initio model submitted to the Challenge (APOF 2.3 Å 54_1). a, Model residues 14–42 vs target 

map (blue: correctly placed residues, yellow: mis-threaded residues 25–29, black: APOF reference model, 3ajo). b, Structure-based sequence alignment 

of the ab initio model (top) vs. reference model (bottom). c, Local Fit-to-Map scores (screenshot from Challenge model evaluation website Fit-to-Map 

Local Accuracy tool). Curves are shown for Phenix box_CC (orange), eMDb Atom Inclusion (purple), Q-score (red) eMringer (green), and SMOC (blue). 

The score values for model residue Leu 28 are shown in the box at right. d, residue scores were calculated using the Molprobity server. The mis-threaded 

region is boxed in (b-d). Panels (a) and (b) were generated using uCSF Chimera.
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Extended Data Fig. 4 | Modeling errors around omitted Zinc ligand in ADH. Target 4 (ADH) density map with examples of modeling errors caused by 

omission of Zinc ligand. a, reference structure with Zinc metal ion (gray ball) coordinated by 4 Cysteine residues (blue sidechains). b-e, Submitted models 

missing Zinc (labels indicate the group_model ids). All have geometry and/or conformational violations as flagged by MolProbity CabLAM (magenta 

pseudobonds), cis-nonPro (green parallelograms), ramachandran (green pseudobonds), Cbeta (magenta spheres), and angle (blue and red fans). Model 

(b) has backbone conformation very close to correct, while (b) and (c) both have flags indicating bad geometry of incorrect disulfide bonds. Models (c) 

and (d) have backbone distortions, and (e) is mistraced through the Zn density. Molecular graphics were generated using KiNG.
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Extended Data Fig. 5 | Fit-to-Map Scores with and without refined B-factors (ADP). Two representative metrics are shown: a, CCmask correlation, b, 

FSC05 resolution−1. each plotted point indicates the calculated score for atom positions with b-factors included (horizontal axis) versus the calculated 

score for atom positions alone (vertical axis). Plot symbols identify map targets. Of 63 models total, 33 included refined b-factors. Differing scores +/- 

b-factors contribute off-diagonal points (black dotted lines are reference diagonals).
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Extended Data Fig. 6 | Group performance evaluations. a, Group composite Z-scores plotted by metric category. The nine teams with highest 

Coordinate-only composite Z-score rankings are shown, sorted left to right. The plot illustrates that by group/method, Coordinate-only scores 

are poorly corelated with Fit-to-Map and Comparison-to-reference scores. In contrast, a modest correlation is observed between Fit-to-Map and 

Comparison-to-reference scores. b, Averaged model composite Z-scores plotted for ab initio modeling groups at higher resolution (T1 at 1.8 Å, T2 at 

2.3 Å) and lower resolution (T3 at 3.1 Å, T4 at 2.9 Å). In each case 6 groups produced very good models (Z ≥ 0.3; green pins), though not the same set. 

runner-up clusters (−0.3 ≤ Z < 0.3) are shown with gold pins. Individual scores and order shift with alternate choices of evaluation metrics and weights, 

but the clusters at each resolution level are stable. Composite Z-scores were calculated as described in Methods.
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P
ancreatic islet amyloid deposits are a hallmark of T2D. Islet 
amyloid, first reported almost 120 years ago as islet hyaline1, 
is found in >90% of individuals with T2D2,3. The main con-

stituents of islet amyloid are fibrillar aggregates of the 37-residue 
polypeptide hormone IAPP, also called amylin. IAPP is detected 
in many organs, including the brain, but is mainly localized in 
the beta-cells of pancreatic islets, where it is co-synthesized and 
co-secreted with insulin3,4. IAPP is involved in glucose homeostasis 
and metabolism, with putative functions as a regulator of insulin 
and glucagon secretion, satiety and gastric emptying3,5. Formation 
of toxic IAPP amyloid aggregates has been associated with dysfunc-
tion and death of beta-cells, placing T2D in the group of protein 
misfolding disorders2,3,5–8. However, the nature of the toxic IAPP 
species and the mechanisms of beta-cell death are not well deter-
mined9. Potential toxic effects of IAPP amyloid include induction 
of apoptosis10, chronic inflammation11, defects in autophagy12,13, 
endoplasmic reticulum stress14,15 and membrane disruption16. Apart 
from its association with T2D, IAPP amyloid might also play a role 
in type 1 diabetes10,17.

IAPP interacts with amyloidogenic proteins that trigger other 
protein misfolding disorders18–20. Of particular interest is its relation 
to the Aβ peptide, the main component of senile plaques found in 
the brain tissue of patients with AD. IAPP and Aβ are infamous not 
only for their strong aggregation propensity and the insolubility of 
their aggregates3, but also for their primary sequence similarity21. 
IAPP and Aβ colocalize in Aβ deposits in the brain tissue of patients 
with AD19. Mutual cross-seeding of IAPP and Aβ aggregation 
observed in transgenic mice further supports a role of the IAPP–Aβ 
interaction in pathogenesis19,20.

Structural information on IAPP amyloid is fundamental for 
improving understanding of the mechanism of amyloid formation,  

for defining toxic IAPP species and for elucidating IAPP–Aβ 
cross-seeding5,7. Furthermore, high-resolution IAPP fibril struc-
tures can inform the design of fibril growth inhibitors and sup-
port the development of soluble, nontoxic IAPP analogs for 
co-formulation with insulin and leptin for treatment of type 1 dia-
betes and obesity, respectively5. Current structural models of IAPP 
fibrils at physiological pH based on, for example, solid-state NMR 
(ssNMR) of full-length IAPP and X-ray crystallography of IAPP 
fragments consistently place the majority of the 37 amino acid 
residues into the fibril core, while the N terminus is located at the 
periphery22–27. Conversely, the available models also exhibit substan-
tial differences, which could be either a consequence of the limited, 
distinct restraints obtained by the different techniques applied or a 
reflection of IAPP fibril polymorphism5,28. Here, we have applied 
cryo-EM to determine the structure of IAPP amyloid fibrils grown 
at physiologically relevant pH. We provide a structural analysis of 
three dominant polymorphs, including an atomic model of the 
main polymorph comprising residues 13–37 in a density map of 
4.2-Å resolution.

Results
Polymorphism of IAPP fibrils. For this work, amyloid fibrils were 
prepared from synthetic human IAPP including the amidated C 
terminus. Islet amyloid in T2D is typically extracellular, but IAPP 
aggregation is supposedly initiated intracellularly, possibly in the 
secretory granules at a pH of 5.0–6.0 (refs. 3,29); therefore, IAPP 
fibrils were prepared at a pH of 6.0. Long, well-ordered fibrils were 
obtained, as shown by atomic force microscopy (AFM) imaging 
(Extended Data Figs. 1 and 2). We could differentiate at least five 
different polymorphs in the AFM images and in subsequently per-
formed cryo-EM experiments. Of these five polymorphs, three were 
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present in sufficient amounts for further analysis (Fig. 1, Table 1, 
and Extended Data Figs. 1 and 2). The main polymorph, polymorph 
1 (PM1), makes up ~90% of all fibrils, while polymorph 2 (PM2) 
and polymorph 3 (PM3) represent up to ~10% and ~1%, respec-
tively, of the total number of fibrils in the dataset.

PM1 has a right-handed helical symmetry with a pitch of 48 nm 
and a width of 2.5–4.5 nm (Figs. 1a and 2a). Three-dimensional 
(3D) reconstruction of 1,161 individual fibril images using a helical 
pseudo-21 symmetry led to 4.2-Å resolution, which was sufficient 
to unambiguously build an atomic model with helical parameters 
of 2.35 Å (helical rise) and 178.23° (helical twist). The fibril consists 
of two stacks of S-shaped IAPP monomers winding around each 
other. Further details of the structure and molecular characteristics 
of PM1 are described later.

PM2 also consists of two protofilaments and exhibits pseudo-21 
symmetry (Fig. 1b). With a maximum and minimum width of 52 Å 
and 17 Å, respectively, PM2 shows a more pronounced twist in the 
projection images (Fig. 1b) and is remarkably flatter than PM1 
(Fig. 1a). The helical pitch is 94 nm, and AFM experiments suggest 
a left-handed twist. In contrast to the S-shaped PM1, the density 
map indicates an extended conformation of two IAPP monomers in 
PM2. The protofilament interface consists of a continuous sequence 
region of at least 18 amino acids. The density map with approxi-
mately 4.2-Å resolution would in principle allow for model building 
of 21 amino acid residues, but the sequence assignment is ambigu-
ous. Therefore, we modeled all 17 possible sequence assignments 
in both forward and backward backbone trace directions, lead-
ing to 17 × 2 = 34 different models. All 34 models were refined in 
DireX30 using cross-validation in the resolution range of 3.0–4.0 Å 
for calculation of the Cfree value31. Results were ranked by Cfree value 
(Extended Data Fig. 3). According to this criterion, the most prob-
able model for PM2, which also exhibits the highest Cwork value, 
shares important features with the PM1 model, as discussed below.

Compared to the other polymorphs, PM3 was not well repre-
sented in the micrographs. The overall features of PM3, namely the 
broad width (110 Å) and pronounced twist (159-nm pitch), lead 
to a dumbbell shape (Fig. 1c). From the 4,591 particles extracted, 
we could reconstruct a density with 8.1-Å resolution. Because the 

resolution was rather low, we were not able to build an atomic 
model but only hypothesize a possible Cα backbone trace (Fig. 1c). 
Nonetheless, the density also clearly indicates two symmetric pro-
tofilaments and reveals that the 10-Å-wide protofilament interface 
of PM3, presumably consisting of three residues, is very small com-
pared to those of PM1 and PM2 (Fig. 1).

Fibril architectures of PM1 and PM2. In PM1, each monomer 
exhibits an overall S-fold that comprises residues Ala13–Tyr37 
(Fig. 2). Up to residue 12, the N-terminal part including the disul-
fide bond between Cys2 and Cys7 is largely disordered and, there-
fore, does not reveal clear density (Fig. 1a). The side view of PM1 
shows the typical cross-β pattern of amyloid fibril structures with a 
spacing of 4.7 Å between the layers (Fig. 2c). The cross-β layers are 
well resolved in the density, as shown in Fig. 2d. On the secondary 
structure level, we observed three β-sheets: residues 14–20, 26–32 
and 35–37. Figure 3b shows the comparison of our model with for-
mer secondary structure predictions based on sequence analysis22, 
NMR23,26,27, electron paramagnetic resonance (EPR)25 and X-ray 
crystallography experiments24.

The cross-section of the PM1 fibril displays two monomeric 
S-folds related by approximate 21 symmetry (Fig. 2b). The double-S 
shape is stabilized by both hydrophobic and polar interactions. The 
central part of the protofilament interface contains a hydropho-
bic cluster comprising residues Phe23, Gly24, Ala25 and Leu27 as 
well as Phe23′, Gly24′, Ala25′ and Leu27′ (Fig. 2b and Extended 
Data Fig. 4). Additionally, the backbone of Phe23 and Ala25 forms 
hydrogen bonds at the center of the fibril, thereby connecting one 
subunit with two neighboring subunits above and below in the 
opposing protofilament (Fig. 3c). More precisely, there is a hydro-
gen bond between the carbonyl group of Phe23 of chain i and the 
amide group of Ala25 of chain i + 1 and another hydrogen bond 
between the amide group of Ala25 of chain i and the carbonyl 
group of Phe23 of chain i – 1. The backbone around Gly24 does not 
maintain the cross-β hydrogen-bonding pattern along the fibril. 
The aforementioned interactions are formed by residues located in 
the sequence motif (N)NFGAIL, shown earlier to be important for 
fibrillization of IAPP5,32–34. This motif is located in the central part 

PM1 PM2 PM3a b c

PM3

~1%

PM2

~10%

PM1

~90%

Fig. 1 | Comparison of reconstructed IaPP polymorphs. a–c, PM1 (a), PM2 (b) and PM3 (c). For each polymorph, three panels are shown: a slice of a 3D 

reconstruction superimposed on the respective Cα chain for one monomer (black; scale bars, 2 nm); a micrograph displaying the respective polymorph 

(gray); and 3D density (red/yellow, PM1 (a); green/yellow, PM2 (b); blue/yellow, PM3 (c)). The pie chart visualizes the fraction of each polymorph in  

the dataset.

NaTURE STRUCTURaL & MoLECULaR BIoLoGY | VOL 27 | JULY 2020 | 660–667 | www.nature.com/nsmb 661



ARTICLES NATURE STRUCTURAL & MOLECULAR BIOLOGY

of the structure, in the turn between the first two β-sheets (Figs. 
2b and 3a,b). Within this turn, the kink around Phe23 and Asn21 
is stabilized by hydrogen bonds between Asn22 and Ser19, as well 
as between Asn22 and Gly24 (Figs. 2b and 3c). Additionally, Ile26 
might support this turn by hydrophobic interactions with Val17. 
In the second turn, between β-sheets 2 and 3, Asn31 together with 
Ser29, Asn35 and Tyr37 creates a hydrophilic cluster at the C termi-
nus of IAPP with possible interactions between Asn31 and Ser29, 
as well as Asn31 and Asn35. In addition, Tyr37 might interact with 
both Asn35 and Ser29 (Fig. 2b). Moreover, the amidated C terminus 
itself forms a polar ladder (Fig. 3d). This ladder is further connected 
to Asn21′ of the opposite protofilament with slightly longer and, 
therefore, weaker hydrogen bonds. The overall cross-β arrangement 
is further stabilized by Asn14, Asn21 and Asn31, which form polar 
ladders alongside the fibril axis. Asn22 does not form a polar ladder, 
but instead its Nδ2 atom forms a hydrogen bond with the carbonyl 
group of Gly24 within the same monomer (Fig. 3c). It should be 
noted that the detailed analysis of the hydrogen-bonding network 
is derived from the atomic model, which is an interpretation of the 
experimental density map.

IAPP contains an unusually large number of the polar residues 
asparagine, serine and threonine5. We found that these residues 
form polar streaks within the fibril core of PM1 (Extended Data 
Fig. 4). The polar streaks are characterized by extensive networks 
of hydrogen bonds, as discussed earlier. The segregation of polar 
and apolar residues into distinct clusters within the fibril core likely 
contributes to the high stability of IAPP amyloid. In IAPP, this seg-
regation is facilitated by the preorganization of amino acid residues 
in polar and apolar clusters within the primary structure, in the 
fashion of a block copolymer with polar blocks 19-SSNN-22 and 
28-SSTN-31 and apolar block 23-FGAIL-27.

All-atom molecular dynamic (MD) simulations were performed 
to evaluate the overall stability of the model. In two independent 
250-ns simulations, the model remained stable (Extended Data Fig. 
5) with an all-atom r.m.s. deviation (r.m.s.d.) of a single subunit 
from the deposited model of ~2 Å and an r.m.s. fluctuation (r.m.s.f.) 
of residues 16–37 of 0.8 Å. The N-terminal part including Phe15 
was already substantially more mobile (Extended Data Fig. 5a,b,e). 
Notably, we observed ladder formation for Asn22 in the MD simu-
lation, which was not supported by the density map.

Table 1 | Cryo-EM data collection, refinement and validation statistics

PM1 (EMD-10669, PDB 6Y1a) PM2 (EMD-10670) PM3 (EMD-10671)

Data collection and processing

Magnification 110,000 110,000 110,000

Voltage (kV) 200 200 200

Dose rate (e– Å–2 s–1) 0.9 0.9 0.9

Exposure time (s) 46 46 46

Movie frames (no.) 1,800 1,800 1,800

Defocus range (μm) −1.0 to −2.2 −1.0 to −2.2 −1.0 to −2.2

Pixel size (Å) 0.935 0.935 0.935

Symmetry imposed helical, pseudo 21 helical, pseudo 21 helical, pseudo 21

Helical rise (Å) 2.351 2.352 2.323

Helical twist (°) 178.23 179.10 179.47

Helical pitch (Å) 479.5 940 1590

Final fibril images (no.) 1,161 1,480 99

Final particle images (no.) 37,120 24,011 4,591

Map resolution (Å) 4.2 4.2 8.1

 FSC threshold 0.143 0.143 0.143

Refinement

Initial density model used Noise-filled cylinder Noise-filled cylinder Noise-filled cylinder

Model composition

 Non-hydrogen atoms 2,975

 Protein residues 416

R.m.s. deviations

 Bond lengths (Å) 0.0039

 Bond angles (°) 0.60

Validation

MolProbity score 1.99

Clashscore 15.2

Poor rotamers (%) 0

Ramachandran plot

 Favored (%) 95.7

 Allowed (%) 4.3

 Disallowed (%) 0
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For earlier structures of amyloid fibrils, we discussed the need for 
a minimal fibril unit, which is the smallest fibril structure fragment 
in which the capping subunits at both ends would have established 
the same full contact interface with other constituting monomers 
as the capping subunits of an extended fibril35,36. Here, the minimal 
fibril unit consists of only three monomers, which is the smallest 
possible unit. One subunit is in contact exclusively with its neighbor-
ing monomers above and below and with its opposing monomers 
through protofilament interface contacts (Fig. 2c). Indeed, we did 
not observe any interlocking of different cross-β layers, which was 
postulated to have a stabilizing effect on other amyloid fibrils35,36.

The IAPP folds in PM1 and PM2 are clearly distinct, yet the most 
probable model for PM2 shares important features with the PM1 
model (Extended Data Fig. 3). First, the NFGAIL motif forms the 
center of the fibril interface. Second, the N terminus is rather flex-
ible and thus not resolved in the density map. The first visible resi-
due in the density of the PM2 model is Phe15. In contrast to PM1, 
not only the N terminus but also the two C-terminal residues Thr36 
and Tyr37 are not clearly resolved and are potentially mobile. In 
between the two protofilaments is a relatively large cavity lined by 
hydrophobic residues Phe23, Ala25 and Ile26. It is not clear whether 
this gap is water filled.

Similar S-folds in IAPP and Aβ fibrils. Colocalization of IAPP and 
Aβ has been observed in patients with T2D and AD19. The epide-
miological link between diabetes and dementia might be explained 
by cross-seeding of IAPP and Aβ aggregation19,20,37,38. Different sites 
on amyloid fibrils are relevant for cross-seeding: cross-elongation 
(that is, the elongation of a fibril with a heterologous protein) occurs 
at the fibril end, while cross-nucleation (that is, the fibril-catalyzed 
formation of a heterologous fibril nucleus) may occur both at the 
fibril end and along the fibril surface. Like IAPP, Aβ forms different 
fibril polymorphs, according to ssNMR and cryo-EM studies35,39–43. 
Comparing IAPP PM1 to multiple Aβ1–42 polymorphs containing 
S-shaped folds35,40,44, we found that the backbones superimpose (Fig. 
4b,c). The structural similarity of the backbones is highest when 
superimposing the models in an antiparallel arrangement (Fig. 4c). 
The similarity between IAPP and Aβ1–42 fibril folds regarding topol-
ogy and size might promote cross-seeding at the fibril end, which 
could further be supported by the sequence similarity of IAPP  
and Aβ21. The sequence similarity is highest around the Gly-Ala-Ile 
segment at positions 24–26 of IAPP and positions 29–31 of Aβ. In 
both IAPP and Aβ, this segment is located in the solvent-excluded 
center of the S-fold (Fig. 4d). A further segment that can be super-
imposed in parallel arrangement is the N-terminal strand of the 
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S-fold in IAPP PM1 and in the LS-shaped Aβ1–42 polymorph, corre-
sponding to 14-NFLVHSSNN-22 of IAPP and 16-KLVFFAEDV-24 
of Aβ (Fig. 4d).

A serine-to-glycine substitution at position 20 (Ser20Gly), the 
only known IAPP genetic polymorphism in humans, is associated 
with early onset of T2D45,46. The Ser20Gly substitution enhances 
aggregation and toxicity of IAPP and leads to increased beta-cell 
apoptosis47–50. Substitution of serine with glycine has been suggested 
to promote turn formation at residue 20, favoring the amyloid fibril 
conformation51,52. In line with this notion, Ser20 is located at the edge 
of the turn comprising residues 20–25 in PM1. Interestingly, when 
comparing the S-fold of IAPP with the LS-fold of Aβ35 (Fig. 4c,d), 
the Ser20Gly substitution in IAPP and the Arctic mutation (encod-
ing a Glu22Gly substitution) of Aβ53, which causes early-onset AD, 
are located at corresponding positions (Fig. 4d). This suggests that 
these two replacements with glycine might have analogous confor-
mational consequences.

Discussion
The IAPP fibril samples investigated here displayed fibril polymor-
phism. While all three main polymorphs consist of two (pseudo)
symmetric, helically intertwined protofilaments, they exhibit sub-
stantial differences in the protein fold (Fig. 1). PM1 consists of a com-
pact S-shaped fold, PM2 features an extended IAPP conformation 
and the PM3 cross-section shows two compact motifs connected  

by an extended bridge. Marked differences are also observed 
between the protofilament interfaces: in PM1, the interface consists 
of one of the turns and the C-terminal end of the S-fold; in PM2, 
the entire extended IAPP segment that constitutes the fibril core 
is involved in the protofilament interface; and in PM3, a very nar-
row interface of probably only three residues is observed. Despite 
these differences, certain IAPP sequence segments might contribute 
similarly to distinct fibril polymorphs—in both PM1 and the most 
probable PM2 model, residues 22-NFGAIL-27 form the central 
fibril core.

In an early report28 of IAPP fibril polymorphism, the most com-
mon polymorph consisted of two protofilaments coiled around 
each other with a helical pitch of 50 nm, while another polymorph 
showed a helical pitch of 100 nm. These values are in good agree-
ment with PM1 (48 nm) and PM2 (94 nm). Despite these similari-
ties, when comparing the cryo-EM results with previous structural 
data, it must be considered that variations may arise from differ-
ences between both the applied techniques and the polymorphs 
present in the samples. In line with previous studies22–27, we found 
that the IAPP N terminus including the disulfide bond between 
Cys2 and Cys7 is not part of the fibril core, neither in PM1 (Fig. 3b)  
nor in the most probable model of PM2 (Extended Data Fig. 3). 
While well-defined density starts from residue 13 in the cryo-EM 
data, some studies reported the fibril core to begin around residue 8  
(Fig. 3b). However, HX-NMR data indicated that residues 8–14 
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were less protected than those in the central fibril core26. In agree-
ment with previous data, residues 13–37 are largely in β-sheet con-
formation in PM1, although variation exists with respect to the 
precise location of β-strands (Fig. 3b). A common feature of the 
PM1 cryo-EM structure and previous models is a turn in segment 
20-SNNFG-24 (refs. 23–27). A second turn is formed in PM1 in seg-
ment 32-VGS-34 and was also supported by ssNMR and HX-NMR 
studies26,27. Both turns establish an S-shaped fold of IAPP in PM1. 
Consequently, the tyrosyl ring of the C-terminal Tyr37 packs 
against Phe23′ in the adjacent protofilament, which is in line with 
distance restraints for IAPP fibrils obtained by fluorescence reso-
nance energy transfer54. In addition, these energy-transfer experi-
ments proposed a maximum distance of 11 Å between Tyr37 and 
a second phenylalanine, coinciding with the Tyr37–Phe15 distance 
in the PM1 model54. The C-terminal amide stabilizes the S-shaped 
fibril structure by forming a polar ladder and a hydrogen bond with 
Asn21 in the adjacent protofilament (Fig. 3d), in line with enhanced 
amyloid formation upon C-terminal amidation of IAPP55,56.

The sequence region at positions 20–29 is particularly important 
for the amyloidogenicity of IAPP5,32,33. This can be rationalized with 
the PM1 fibril structure. First, residues 22-NFGAILSS-29 constitute 
the solvent-excluded central core of PM1 fibrils (Fig. 2b). Second, 
residues 21-NNFGAIL-27 form, together with Tyr37 and the ami-
dated C terminus, the protofilament interface. In previous structural 
models of IAPP fibrils, the region encompassing residues 20–29 was 
associated with formation of a partially ordered loop rather than 
a β-structure, which was surprising considering the sensitivity of 
IAPP amyloid formation to mutations mapping to this region7. 
The PM1 fibril structure shows that residues 20–25 indeed form 
a turn, albeit one that is an integral part of the fibril core, featur-
ing an extensive hydrogen-bonding network (Fig. 3c,d). Residues 
26–29, on the other hand, are part of the central β-sheet of IAPP 
PM1 fibrils. Remarkably, the structure of the 21-NNFGAIL-27 seg-
ment in PM1 is highly similar in atomic detail to a crystal structure 

of the NNFGAIL peptide24 (Fig. 4a). This applies both to the fold 
of the individual polypeptide molecules and to the peptide–pro-
tofilament interface, which displays extensive main chain–main 
chain interactions between the 23-FGA-25 segments. The similarity  
of the NNFGAIL structure between the peptide crystal and the 
PM1 fibril indicates that the 21-NNFGAIL-27 segment drives IAPP  
amyloid formation.

In contrast to the human protein, IAPP proteins from sev-
eral other species were found to be non-amyloidogenic5. The 
non-amyloidogenic rat and mouse IAPP contain six amino acids 
that are different from the human sequence33. Five of these are 
located in the sequence region encompassing residues 23–29, which 
is part of the central core of PM1 fibrils, as discussed above. The 
differing amino acids include three prolines in rat and mouse IAPP 
at positions 25, 28 and 29. As proline disrupts secondary structures, 
these proline residues are incompatible with the PM1 structure, 
consistent with the low amyloidogenicity of rat and mouse IAPP. 
The insights gained from the rat and mouse IAPP sequences were 
exploited in the design of pramlintide, a non-amyloidogenic IAPP 
analog carrying proline substitutions at positions 25, 28 and 29  
(ref. 57). Pramlintide is co-administered with insulin in type 1 diabetes  
to improve glucose level regulation. Similarly, the combination of a 
non-amyloidogenic IAPP analog and leptin could be a promising 
treatment option for obesity58. However, these drugs would benefit 
from increased solubility59. The structural data on IAPP fibrils pre-
sented here may aid in the design of non-amyloidogenic, soluble 
IAPP analogs by suggesting potential sites for chemical modifica-
tions of IAPP that counteract fibril formation.

This study presents the 4.2-Å-resolution structure of an IAPP 
fibril polymorph consisting of two S-shaped protofilaments but 
also highlights the polymorphism of IAPP fibrils. The dominant 
S-shaped PM1 can rationalize many of the characteristics of IAPP 
fibrils described by various groups, suggesting that PM1 is a com-
mon polymorph or that it at least represents general features of 
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prevalent IAPP polymorphs. The study provides detailed insight 
into the link between the IAPP amino acid sequence and fibril 
structure; furthermore, it reveals similarities between IAPP and Aβ 
fibril structures, which are particularly striking in consideration 
of the link between diabetes and AD. The structural information 
gained may serve as a basis to define the mechanisms of amyloid 
formation and toxicity of IAPP. Moreover, the PM1 fibril may be 
used as a target structure to design imaging probes for IAPP fibrils 
and inhibitors of IAPP fibril growth.
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Methods
Sample preparation. Human IAPP (H-KCNTATCATQRLANFLVHSSNNFGA 
ILSSTNVGSNTY-NH2; molecular mass 3903.4 Da) with an amidated C terminus 
and a disulfide bond between Cys2 and Cys7 was custom synthesized (Pepscan, 
Lelystad). Identity and purity (93.1%) were confirmed by reverse-phase HPLC 
(RP-HPLC) and mass spectroscopy. RP-HPLC of a reduced sample confirmed that 
the disulfide bond between Cys2 and Cys7 was fully established in the non-reduced 
sample. To ensure monomeric starting material, the peptide was dissolved at 
2 mg ml−1 in 1,1,1,3,3,3-hexafluoro-2-propanol at room temperature for 1 h and 
lyophilized. Afterward, 1 mg peptide powder was dissolved in 0.5 ml aqueous 
6 M guanidine hydrochloride solution, and size-exclusion chromatography was 
performed on a Superdex 75 Increase 10/300 column (GE Healthcare) equilibrated 
with 10 mM 2-(N-morpholino)ethanesulfonic acid (MES)/NaOH buffer at a pH of 
6.0 using an ÄKTA Purifier system (GE Healthcare). The monomeric peak fraction 
was collected, aliquotted, flash frozen in liquid nitrogen and stored at −80 °C for 
further use. The purity of the IAPP monomer fraction was 93.8% according to 
RP-HPLC. IAPP fibrils were prepared from the stock solution by diluting to a final 
concentration of 100 µM peptide with 10 mM MES/NaOH buffer (pH 6.0, 6 mM 
NaN3). Fibrillation occurred by incubation within 7 d at room temperature under 
quiescent conditions in 1.5-ml Protein LoBind tubes (Eppendorf). As a control, 
we also prepared fibrils from an IAPP monomer sample of increased purity (96.9% 
after size-exclusion chromatography) due to an additional preparative RP-HPLC 
purification step preceding monomerization. All three dominant polymorphs 
were recovered in this sample, indicating that increasing peptide purity does 
not affect aggregation kinetics or thermodynamics in a way that would result in 
monomorphic fibrillation.

Atomic force microscopy. IAPP fibrils in 10 mM MES/NaOH buffer (pH 
6.0, 6 mM NaN3) were diluted to a peptide concentration of 10 µM monomer 
equivalent. Afterward, 5 μl of the fibril solution was applied to freshly cleaved 
muscovite mica and incubated under a humid atmosphere for 10 min. After three 
washing steps with 100 µl ddH2O, the samples were dried with a stream of N2 
gas. Imaging was performed in intermittent contact mode (AC mode) in a Nano 
Wizard 3 atomic force microscope (JPK, Berlin) using a silicon cantilever and 
tip (OMCL-AC160TS-R3, Olympus) with a typical tip radius of 9 ± 2 nm, a force 
constant of 26 N m−1 and a resonance frequency of approximately 300 kHz. The 
images were processed using JPK data processing software (version spm-5.0.84). 
For the height profiles presented, a polynomial fit was subtracted from each scan 
line, first independently and then using limited data range.

Cryo-electron microscopy image acquisition. Cryo-EM sample preparation 
was performed on glow-discharged holey carbon films (Quantifoil R 1.2/1.3, 300 
mesh). A 2.5-µl sample containing 100 µM IAPP in 10 mM MES/NaOH buffer 
(pH 6.0, 6 mM NaN3) was applied to the carbon grid and incubated for 1 min. 
Subsequently, the sample was blotted for 5 s (blotting force 5) before cryo-plunging 
using a Vitrobot (FEI). With 110,000-fold nominal magnification, 1,330 
micrographs were recorded on a Tecnai Arctica electron microscope operating at 
200 kV with a field emission gun using a Falcon III (FEI) direct electron detector 
in electron counting mode directed by EPU data collection software (version 
1.5). Each movie was composed of 50 fractions, and each fraction contained 36 
frames, resulting in a total of 1,800 frames recorded per micrograph. The sample 
was exposed to an integrated flux of 0.9 e− Aring;–2 s–1 for 46.33 s. Applied defocus 
values ranged from −1 to −2.2 µm. The pixel size was calibrated to 0.935 Å as 
described previously36. Details of data acquisition are summarized in Table 1.

Cryo-electron microscopy image processing and helical reconstruction. For 
all polymorphs, MotionCor2 (ref. 60) was used for movie correction, and contrast 
transfer function parameters were fitted with CTFFIND4 (ref. 61). Fibrils were 
manually picked, and segments were extracted with an inter-box distance of 10% of 
the box sizes. Box sizes were chosen as 220 Å, 200 Å and 220 Å for PM1, PM2 and 
PM3, respectively. Further image processing, including 3D reconstructions, was 
performed with RELION 3.0.5 (refs. 62,63).

For all polymorphs (PM1, PM2 and PM3), we used a noise-filled cylinder as 
an initial density model. Initial rounds of density refinement used the relion_refine 
command without the auto_refine option (K = 1) and a T value of 20. Final 
refinements were conducted with a T value of 200. Gold-standard refinements 
were performed as described previously35 by selecting entire fibrils and splitting the 
dataset accordingly into an even and an odd set. Fourier shell correlation curves 
were computed between two half maps. According to the 0.143 criterion, the 
obtained resolutions were 4.2 Å (PM1), 4.2 Å (PM2) and 8.1 Å (PM3) (Extended 
Data Figs. 6–8). Image processing and reconstruction details for all polymorphs are 
presented in Table 1.

Model building and refinement of PM1. For PM1, a single-chain atomic model 
was built with Coot64,65 by placing a polyalanine model de novo into the density. 
The density was clearly resolved and unambiguously defined the backbone trace. 
After manual optimization of the protein backbone, side chains were added and 
rotamers were manually refined with respect to Ramachandran outliers and 
potential clashes. Five copies of the final single-chain model were placed into the 

EM density map. The final model, containing six symmetry-related monomers 
of IAPP PM1, was used for real-space refinement in PHENIX66 with manually 
assigned β-sheets. Subsequently, the model was refined by multiple rounds of 
optimization in Coot, PHENIX and MDFF67,68. MDFF was performed using an 
explicit solvent. The structure was embedded in a box of water, and ions were 
added to the system (concentration, 1.5 M). Secondary structure, cis-peptide and 
chirality restraints were applied. The scaling factor of the map potential was set 
to g = 0.3, and a time period of 10 ns was simulated. The final model of PM1 was 
obtained by averaging the coordinates of the MDFF trajectory and a final energy 
minimization with the non-crystallographic symmetry restraints and position 
restraints using CNS69,70, including hydrogen atoms. B factors were assigned based 
on r.m.s.f. values calculated from the MDFF trajectory. After model evaluation 
using MolProbity71, molecular graphics and further analyses were performed  
using Chimera72 and ChimeraX73. The final statistics of the refinement are shown 
in Table 1.

Model building and refinement of PM2. Because of the difficulties in assigning 
residues to the density of PM2, two polyalanine backbones, each containing 21 
residues, were built in both forward and backward trace directions in Coot64,65. 
A total of 17 possible assignments of segments from the IAPP sequence to the 
21 residues were visible in the density. Accordingly, we performed 17 side chain 
assignments for each backbone using Scwrl4 (ref. 74). The resulting 34 models were 
energy minimized with CNS69 and refined into the density map using DireX30.  
The Cfree value31 is the real-space map correlation coefficient computed from the 
density map filtered with a bandpass of 3.0- to 4.0-Å resolution and served as a 
criterion to rank the models (Extended Data Fig. 3). The model that scored best 
according to this ranking was further refined using MDFF67,68 with the same 
settings as those for PM1. Refinement was finalized by averaging the coordinates  
of the MDFF trajectory.

Molecular dynamics simulation. MD simulations were performed to test the 
stability of the PM1 model. The starting structure for the simulation was built 
using CHARMM-GUI solution builder75,76 by inserting the cryo-EM structure of 
PM1 into a cubic water box containing 38,907 water molecules and further adding 
10 chloride ions to neutralize the system. We carried out two independent all-atom 
simulations using GROMACS77 (version 2019.3) and CHARMM36 force fields for 
protein78, water79 and ions80. The systems were first minimized using the steepest 
descent algorithm in 5,000 steps to remove bad contacts, followed by 500 ps (time 
step, 1 fs) of equilibration in an ensemble with constant volume and temperature. 
Later, two production runs of 250 ns were conducted under conditions of constant 
pressure and temperature, with a time step of 2 fs, by applying LINCS constraints 
to the bonds containing hydrogen atoms81. The temperature of the systems was 
maintained at 300 K using a Nosé-Hoover thermostat82,83, and the pressure was 
maintained at 1 bar with a Parrinello–Rahman barostat84. Short-range electrostatic 
and van der Waals interactions were computed up to a cutoff of 12 Å using 
potential-shift and force-switch methods, respectively. Long-range electrostatic 
interactions beyond the 12 Å cutoff were computed using the particle-mesh  
Ewald algorithm85.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The structure of IAPP PM1 has been deposited in the Protein Data Bank under 
accession code PDB 6Y1A. The cryo-EM density maps have been deposited in the 
Electron Microscopy Data Bank under accession codes EMD-10669 (PM1), EMD-
10670 (PM2) and EMD-10671 (PM3).
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Extended Data Fig. 1 | Comparison of described IaPP polymorphs. a, Single fibril cut-outs of polymorphs PM1, PM2 and PM3 from AFM images (top 

row) and cryo-EM micrographs (bottom row); single box size is 100 × 250 nm. b, Height profiles of individual fibrils extracted from AFM images. c, Height 

distribution histogram, showing the highest number of counts for the plane background surface around 0 nm and a distinct peak around 2.2 nm. The peak 

around 2.2 nm includes both PM1 and PM2 which are non-distinguishable in sense of height distribution. Moreover, a pronounced shoulder on the right 

corresponds to the presence of lower amounts of PM3 as well as the overlaps of single PM1/PM2 fibrils. For the height distribution analysis, histograms 

from six height images of 5 × 5 µm size and a resolution of 1024 × 1024 pixels were obtained, binned and presented in one graph. An example of the image 

used can be seen in Supplementary Figure 2.
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Extended Data Fig. 2 | overview of IaPP polymorphs. a, Typical height profile AFM image used for polymorph distribution analysis. b, Cryo-EM 

micrographs showing 370 × 370 nm areas. c, AFM overview images showing 1 × 1 µm areas. Arrows indicate the presence of PM1 (red), PM2 (green) and 

PM3 (blue).
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Extended Data Fig. 3 | DireX analysis of polymorph 2 (PM2). The table contains the Cwork and Cfree values from DireX fitting of 21-residue-long sequence 

snippets (black box) of IAPP in both possible Cα-chain directions into a density layer of PM2 together with the respective amino acid sequence. The 

results are ranked according to their Cfree values. Highlighted (green box) is the most favorable sequence fit. Atomic models of the four most favorable 

sequence snippets are shown at the bottom. Note that some models, for example model 2, can be excluded since they are incompatible with the disulfide 

bond between residues Cys2 and Cys7.

NaTURE STRUCTURaL & MoLECULaR BIoLoGY | www.nature.com/nsmb



ARTICLESNATURE STRUCTURAL & MOLECULAR BIOLOGY

Extended Data Fig. 4 | Hydrophobicity plot of the fibril displayed as top view. Hydrophobicity levels of the IAPP polymorph 1 (PM1) fibril are colored 

according to Kyte-Doolittle in the hydrophobicity score range −4.5 (white) to 4.5 (gold). One hydrophobic cluster spans the entire diagonal of the fibril 

cross-section. This hydrophobic streak is surrounded by highly ordered polar clusters.

NaTURE STRUCTURaL & MoLECULaR BIoLoGY | www.nature.com/nsmb



ARTICLES NATURE STRUCTURAL & MOLECULAR BIOLOGY

Extended Data Fig. 5 | Results of molecular dynamics simulations of IaPP polymorph 1 (PM1). Superimposed snapshots from a 250 ns simulation 

displaying only the backbone (a) or all atoms (except for solvent and hydrogen) (b). c, Showing the RMSD from the deposited structure of PM1 (PDB ID 

6Y1A) for two 250 ns simulations (black and grey lines, respectively). d, Showing the RMSD of a single chain from the deposited structure during the two 

250 ns simulations. e, Showing the atomic root mean square fluctuations (RMSF) for each residue calculated over each 250 ns simulation.
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Extended Data Fig. 6 | FSC analysis of polymorph 1 (PM1). FSC curves from the even/odd test (solid black) from the gold-standard refinement yields a 

resolution of 4.2 Å (using the 0.143 criterion). The even/odd FSC curve is fitted (red) with the model function 1/(1+exp((x-A)/B)) (with A = 0.1947 and 

B = 0.026) to obtain a more robust resolution estimate.
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Extended Data Fig. 7 | FSC analysis of polymorph 2 (PM2). FSC curves from the even/odd test (solid black) from the gold-standard refinement yields a 

resolution of 4.2 Å (using the 0.143 criterion). The even/odd FSC curve is fitted (green) with the model function 1/(1+exp((x-A)/B))) (with A = 0.194789 

and B = 0.02427) to obtain a more robust resolution estimate.
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Extended Data Fig. 8 | FSC analysis of Polymorph 3 (PM3). FSC curves from the even/odd test (solid black) from the gold-standard refinement yields a 

resolution of 8.1 Å (using the 0.143 criterion). The even/odd FSC curve is fitted (light blue) with the model function 1/(1+exp((x-A)/B)) (with A = 0.0772 

and B = 0.0256) to obtain a more robust resolution estimate.
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C. Supplementary Material for

Topology Tracing

C.1. STAR Methods

C.1.1. Step 1 Trace Initialisation

Map preparation The density map is segmented around the single-chain protein
using Chimera. The segmented density map is normalized and Ąltered to 5 Å
using Eman [115]. For bead placement, an additional skeletonised version of the
Ąltered map is generated using Chimera.

Bead placement We use the DireX tool dxbeadgen to place beads into the
skeletonised density map. The number of beads are chosen equal to the number of
residues in the sequence. Afterwards, DireX is used to reĄne the beads into the
Ąltered map applying repelling forces between the beads to avoid too close beads
and to ensure a more homogeneous distribution of beads in the map.

Tracing The beads are connected by solving the TSP problem using the Lin-
Kernighan algorithm. The LKH program requires a cost matrix, which describes
the cost for each connection. To prepare the cost matrix we use a customised
Pathwalker program, which assigns a lower cost to connections through high
density regions and vice versa. We generate ten temporary traces using the –noise
0.1 option in Pathwalker and build a histogram of connections by counting how
often a certain connection appeared in the temporary traces. Based on this histo-
gram a second cost matrix is generated, by assigning a connection cost of (number
of traces)*100/(connection count). Using this histogram-based cost matrix, LKH
generates a consensus trace. Finally, the trace is reĄned using DireX. During
the reĄnement distance restraints of 3.8 Å and 6 Å are applied between 1-2 and
1-3 bead pairs, respectively to impose a realistic Cα-trace geometry. The resulting
trace is referred to as the conventional trace. The beads are indexed according to
their order in this conventional trace.
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C.1.2. Step 2 Weights Estimation

The output of step 1 is a trace that typically contains several correct subtraces
but a few connections may be wrong, so that the global topology of the protein
chain might be disrupted. The goal of step 2 is to obtain an initial estimate of
where the correct subtraces are and in which order they need to be connected. For
this, we compare the distance matrix of the conventional trace from step 1 with
the distance matrix deĄned by predicted inter-residue distances. This comparison
will lead to an estimate of the bead-to-sequence assignment.

Prediction of inter-residue distances We use trRosetta to predict the inter-
residue distances. No templates were used for the prediction. The output of
trRosetta is given in the following format: The distance range between 2 Å and
20 Å is subdivided into 36 bins of 0.5 Å width. For each residue pair a probability
distribution is given where the value in each bin corresponds to the predicted
probability that the distance between the two residues is in the corresponding
distance range of that bin. We convert this distribution into a real-valued distance
by only regarding the bin with the highest probability, which yields the predicted
distance matrix, dres.

Calculation of inter-bead distances We calculate the distance matrix, Dbead,
for the conventional trace and adapt the values of these distances to match the
values of the predicted distances, which are given in bins as described above. This
is achieved by ranking the entries of both distance matrices by size and replacing
the ranked values of the bead distance matrix with the corresponding ranked values
from the predicted distance matrix.

Subdividing distance maps into matrix representations of subtraces The con-
ventional trace is subdivided into subtraces; odd subtrace lengths in the range of
n = 3 beads to n = 0.9 · Nres of the full trace are considered. For all subtraces of
length n, we compute a n×n distance matrix D̂bead and a n× (Nbead −n) distance
proĄle P̂bead. The distance proĄle stores for each bead in the subtrace the distri-
bution of distances to all beads that are not part of the subtrace. Analogously in
sequence space, we extract the n × n distance matrix, d̂res, and the corresponding
n × (Nres − n) distance proĄle, p̂res, from the predicted distances for all subsets of
n adjacent residues. Similarly, the distance proĄle stores for each residue in the
subset the distribution of predicted distances to all residues that are not part of
the subset.

Comparing distance patterns Having matrix representations for subtraces of
beads and subsets of residues at hand, we compare both by calculating a similarity
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score between them:

Sforward
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= 0.5

√

∑

(D̂bead − d̂res)2 + 0.5

√

∑
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2

Sbackward

sim
= 0.5

√

∑

(D̂
rev

bead
− d̂res)2 + 0.5

√

∑

(P̂
rev

bead
− p̂res)

2

Ssim = min(Sforward

sim
, Sbackward

sim
)

Since the correct direction of a subtrace is not known, we need to consider both
directions for the comparison. For this, the similarity score is computed for the
forward (Sforward

sim
) and backward (Sbackward

sim
) direction. The distance matrix and

distance proĄle for the backward direction is denoted drev and prev, respectively.
The smaller of the two values Sforward

sim
and Sbackward

sim
is taken as the similarity score.

For each subtrace associated with its central bead bc, the best match to a subset of
adjacent residues associated with the central residue rc is identiĄed by Ąnding the
minimal similarity score Ssim. Note that for each central bead, there are multiple
subtraces of different lengths, as described above. We deĄne the bead-to-sequence
assignment matrix w and set all entries to zero at the beginning. While testing all
possible assignments of a subtrace to all subsets, the corresponding weight wbc,rc

for the best match is increased by 1. An entry wki of the assignment matrix then
describes the likelihood that bead k is assigned to amino acid sequence position i.

C.1.3. Step 3 Weights Optimisation

Given the assignment matrix, w, from step 2, the goal of step 3 is to optimise
the weights such that beads are assigned to residues in a way that the difference
between the predicted distance matrix and the distance matrix of the resulting
trace is minimised.

Score Minimization The entrys of the Nbead × Nres assignment matrix w is Ąrst
normalized within each row and the again normalized within each column. The
following scoring function is then minimised with respect to the weights, wki, via
a gradient descent:

S = −
∑

ijkl

wkiwlj

1 + (dij − Dkl)2

Here wki denotes entries of the assignment matrix while Dkl and dij describe dis-
tances between beads k and l and predicted distances between residue i and j,
respectively.
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Postprocessing of the trace After optimisation, beads are assigned to residues
according to their maximal weight. The resulting trace is further processed by
removing outliers. A bead is considered an outlier if its distance to one of its
neighbours within the trace is larger than 10 Å. A bead is also considered an
outlier if it is not part of a subtrace. A subtrace is deĄned as a group of beads
that were assigned to adjacent residues and that have an index difference not larger
than 10; this means a subtrace appears as a (fuzzy) diagonal in the assignment
matrix.

Runtime As the scoring function is based on an entry-wise comparison of two
distance matrices, the optimisation scales with (Nres)

4. For proteins with more
than about 300 residues, the minimum is not found within a reasonable time using
the current implementation. Runtime, using ten nodes with 24 Intel Xeon 2.1GHz
cores each, for the smallest with 85 residues and largest test case with 229 residues
was 9 minutes and 4 hours and 43 minutes, respectively.

C.2. Trials, Errors and Perspectives

It was a long journey to develop the presented method for backbone topology
tracing guided by predicted inter-residue distances. Many ideas and approaches
were tested during the development, but did not make it into the Ąnal version due
to insufficient performance and unsatisfactory results. Some of them are sketched
in the following chapter.

C.2.1. Guiding the Assignment

During the development of the method several approaches were tested which could
guide the assignment of beads to residues. The idea was, that integrating more
prior information into the assignment could facilitate the score minimisation and
improve runtime as well as accuracy. However, none of the presented ideas showed
the desired effect and are therefore not included in the manuscript.

Confidence of predicted distances TrRosetta predicts not a single distance
for a pair of residues, but a probability distribution describing the probability
that the distance between the residue pair falls in one of 36 different bins. We
reduce those distributions to their maximum value, i.e. the bin with the highest
probability. However, this simpliĄcation might be misleading for residue pairs as-
sociated with a rather Ćat probability distribution. For those distances the reduced
single value prediction is not as reliable as for pairs with a distinct maximum in
the predicted probability distribution. During the score minimisation distances
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with lower reliability should have less impact on the assignment than distances
with higher reliability. Therefore, we weighted each distance prediction with its
associated probability.

Information about Secondary Structure Secondary structure elements are some-
how cornerstones of protein topology. Identifying α helices and β sheets in the
sequence as well as in the map can offer helpful restraints to guide the assignment.
We performed secondary structure prediction on the sequence level with PsiPred
[116] and used Haruspex [117] for secondary structure identiĄcation in the dens-
ity map. In the context of assigning beads to residues, information derived from
secondary structure predictions can then be included as the rational that beads
in a map region identiĄed as possible helical region or β-sheet region are more
likely to correspond to a residue with high probability to be in a helix or in a
sheet. Therefore, we weighted combinations of beads and residues with matching
secondary structure predictions higher than other combinations.

Direct Neighbour Relations One key idea behind the presented method is, that
the problem of Ąnding the correct path or trace of the main-chain through the
density map, the tracing problem, has the same solution as the problem of assigning
beads to residues. Solving one, immediately solves the second. One can even
interpret the tracing problem as assignment problem where each bead is assigned
to its direct neighbour that precedes it in the trace. In that sense, relations between
direct neighbours may also play a key role in the assignment of beads to residues.

There are several aspects to consider:
If two beads are assigned to neighbouring residues, there should be density along

that connection. While connections traversing high-density regions are preferred in
the generation of the conventional trace, they are not in the assignment. However,
we tested to do that, by associating combinations where a pair of beads, which
are in spatial proximity to each other and connected by high-density regions, were
assigned to a pair of neighbouring residues with a higher weight in the assignment
score.

Further, if a bead is assigned to a certain residue with high probability, the
likelihood that beads in close spatial proximity should be assigned to neighbouring
residues increases. We implemented this situation by smoothing weights of spatial
neighbouring beads once the probability of the assignment of one bead was higher
than a threshold.

The distance between two neighbouring Cα atoms is well deĄned and should be
approximately 3.8 Å, residue i and i + 2 should have a distance of ≈ 5.6 Å. In
the method described in the manuscript, we adapt the predicted distance matrix
of residues and the calculated distance matrix of beads by transferring values
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(given in bins) of the predicted matrix to the bead matrix. To consider the well-
deĄned distances between direct neighbours in the assignment, we tested also to
act the other way round, and to transfer values from the bead distances (in Å) to
the predicted inter-residue distances, but used the well-deĄned distance values of
3.8 Å and 5.6 Å for neighbouring residues.

We also tried to include the idea of tracing as assigning neighbours on a more
fundamental level and implemented a three-dimensional assignment, where each
bead is assigned to a residue and a neighbouring bead with the help of Google’s
OR-tools.

Number of Beads In the presented method we place as many beads in the
density as there are residues in the sequence. However, some of the beads may
be located unfavourable such that the corresponding Cα positions may not be
represented with sufficient accuracy. To increase the probability to place a bead
at each Cα position, we increased the number of beads up to 5nseq where nseq is
the number of residues in the sequence. The assignment of beads to residues is
then not a one-to-one matching, but there are many beads that are not assigned
to any residue. The assignment weights then no longer add up to 1 in bead
direction (but still in the residue direction). The size of the distance matrix of
beads increases and with it the run-time. Moreover, the comparison of subtraces
of beads with geometric patterns found in the predicted distances is not straight-
forward anymore, such that the estimation of start weights is difficult. Due to
these conditions, the assignment did not converge in a reasonable time.

Iterative Weight Adaption Another idea was to perform the LKH tracing and
the estimation of the assignment weights in an iterative manner. So, we built the
conventional trace using LKH, performed the assignment from beads to residues,
transformed the assignment weights to connection weights, and fed the connection
weights into the LKH solver to perform the tracing again.

C.2.2. Optimising Runtime

A short runtime is always desirable. Particularly for larger proteins runtime can
become a problem, such that no satisfactory solution can be found in a reasonable
time. We tested several methods to improve runtime, to Ąrstly make the usage
of our program more comfortable and secondly to enable the processing of larger
proteins.

ADAM optimiser We implemented a gradient descent method to optimise our
score and Ąnd the best assignment of beads to residues. A more efficient gradient
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based minimisation method, which is also broadly used in the context of machine
learning is the ADAM optimiser [118]. Adam is a stochastic gradient descent
method which applies adaptive learning rates. In the hope to improve runtime
we implemented the Adam algorithm instead of the conventional gradient descent.
However, we did not yield satisfactory results.

Sparse Matrices During the score minimisation we iterate over the distances
between beads and the predicted inter-residue distances. Therefore, the runtime
of the minimisation scales with n2, where n is the number of beads and residues.
However, not all distances offer the same amount of topology information. Many
entries of the distance maps have the value (bin index) 37 indicating that two
residues or beads are not in contact. Because of their number they are not very
speciĄc for a bead or residue and therefore less valuable to identify a bead and
residue pair with matching distance patterns than smaller distances. Hence, we
tested to regard only distances < 37 for the assignment. However, the win in
runtime was less than expected and the quality of results suffered.

C.2.3. Applying Topology Tracing

Besides more technical aspects as described before, also ideas about further pos-
sible applications of the method come to mind during its development.

Identification of Chains in Multi Chain Complexes Physiological functions of
proteins are often not performed by a single chain protein alone, but by protein
complexes consisting of multiple protein chains. A Ąst step of structural inter-
pretation of cryo-EM maps of protein complexes is often the identiĄcation which
region of the density map corresponds to which protein chain. A rough idea was,
that our method could help to do that. For a complex of m chains one would have
m predicted distance matrices for inter-residue distances. Placing as many beads
as there are residues in all chains in total in the density map and calculating all
bead distances would give a large distance matrix for the beads. The idea is then,
to compare distance patterns found in sub-groups of beads with distance patterns
in the predicted distances and to identify which beads best resemble which protein
chain. The question is, how to deĄne those sub-groups of beads. Without prior
map segmentation there is no hint which beads would correspond to the same
chain.

On-the-fly Modification of Traces in Chimera Our method for topology tracing
can not only be used to build a trace but also to assess traces. For that purpose, a
.bild Ąle is generated that visualises possible wrong connections. In a next step, we
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would like to provide a Chimera plug-in which allows to modify the trace while
reviewing it. The idea is to open the trace and the .bild Ąle in Chimera, review
the possible wrong connections and decide via clicking if one wants to accept the
change or keep the original geometry. The new trace can then be saved separately.
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