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Abstract

This thesis is concerned with the study of the computational complexity of problems related
to elections and sport tournaments from the field of computational social choice. The latter
field, which is one of the youngest areas of theoretical computer science, primarily builds
on the field of computational complexity theory, which studies the difficulty of solving prob-
lems from an algorithmic perspective, and the field of social choice theory, which studies
decision-making processes from an axiomatic perspective. At its heart lies the study of the
computational complexity of problems related to decision-making processes such as elections,
tournaments, resource allocation, judgment aggregation, and matching. Despite its relatively
young age, computational social choice is considered as a central and very active field of artifi-
cial intelligence and multi-agent systems research, attracting computer scientists, economists,
and sociologists alike.

A key aspect that accompanies us through this thesis is the concept of uncertainty in elec-
tions and tournaments in relation to computational complexity. This includes, for example,
uncertainty about the preferences of voters, about the voting rule, and about the outcome of
the remaining matches in a tournament. In more detail, we focus on the following topics.

We start by studying the computational complexity of decision problems concerning bribery
and the evaluation of the robustness of election outcomes. We apply concepts from classical
decision complexity and show that the problems can be solved in polynomial time for certain
combinations of voting rules and types of functions measuring the strength of changes or un-
certainty in the votes, while for other cases they are NP-complete and thus unlikely to have
polynomial-time solutions. Afterwards, we study the computational complexity of the prob-
lem of designing scoring systems for elections and competitions with the goal of guaranteeing
the victory of a desired candidate or checking the robustness of a candidate’s victory with re-
spect to the system used. Besides various results regarding the classical decision complexity, in
terms of membership in P and NP-completeness, we further differentiate the complexity with
respect to different parameterizations and show FPT and W[2]-hardness results and conclude
with experiments on real-world data. Regarding elections with probabilistically distributed
preferences, we study the function complexity of determining the winning probabilities of
candidates for different combinations of voting rules, distribution models, tie-breaking proce-
dures, and parameterizations using concepts from counting complexity. We show membership
in FP for some cases, while showing #P-hardness for other cases. We then move to round-
robin tournaments and study the function complexity of calculating the probability that a
given team ends up as the champion under the assumption that we are in the course of a
tournament, whereby some of the matches have already been played while others remain to
be played. Again, we apply concepts of counting complexity, examine different parameteriza-
tions, and show memberships in FP, #P-hardness, and FPT results. In addition, we perform
experiments on real-world data and synthetic data and, motivated by the empirical results,
study the average-case complexity of the problem and show the expected polynomial time of
our FPT algorithm for certain distributions.

Finally, we switch from studying the complexity of problems whose instances model uncer-
tainties to studying the complexity of problems under the assumption of uncertainties about
the instances and discuss our proposal of applying the concept of smoothed analysis in the
field of computational social choice.
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Chapter 1

Introduction

Elections and tournaments are central mechanisms of coexistence and peaceful competition.
The use of elections ranges from the election of parliaments and presidents of entire countries
to the election of the spokesperson of a small group or the administration of a local club. Sim-
ilarly, tournaments range from world cups, the Olympics, and major national sports leagues
to local tournaments and school competitions. At their core, elections and tournaments have
the same goal: to select the most eligible candidates based on certain criteria in a fair man-
ner. However, the problem of deciding what these criteria are and what is meant by in a fair
manner is far from trivial. The scientific and formal study of these questions are central tasks
of social choice theory and related fields.

The formal study of elections from a mathematical point of view was most notably initiated
in the 18th century by Jean-Charles de Borda and Marie Jean Antoine Nicolas de Caritat,
the Marquis de Condorcet. Borda proposed a new voting rule in which each voter provides
a ranking over the candidates, according to which the candidates receive as many points as
there are candidates ranked below. In the end, the candidates with the highest score are
presented as the winners. He argued that his voting rule, which we refer to as the Borda
voting rule nowadays, is superior to plurality voting, in which each voter can award only a
single point to his or her preferred candidate, because it would take into account the pairwise
comparisons between the candidates. Condorcet, on the other hand, argued that there are
scenarios in which a candidate exists who beats every other candidate in a direct pairwise
majority comparison, but would still not be determined as the winner by the Borda voting
rule. However, the consideration of direct pairwise majority comparisons can end up in a
bizarre situation where circles are formed, as we will see in the following example. Consider
the following election with candidates a, b, and c and three voters. Voter 1 ranks candidate
a ahead of b followed by c. Voter 2 ranks candidate c before a followed by b. Finally, voter 3
ranks candidate b before c followed by a. Candidate a beats candidate b in a direct pairwise
majority comparison as voter 1 and voter 3 prefer a over b. Candidate b beats c as voter 1
and voter 2 prefer b over c. Eventually, however, c also beats a as voter 2 and voter 3 prefer
c over a. Thus, for each candidate there is another candidate who beats him or her in a
direct pairwise majority comparison. This phenomenon is known as the Condorcet paradox
and it shows that not in every scenario a winner can be determined using only direct pairwise
majority comparisons. Thus, in the following decades, an ongoing endeavor began to discover
new voting rules and to study their properties. Fundamental to the modern orientation of
social choice was the work of Nobel laureate Kenneth Arrow [1951], who showed, among
other things, that certain intuitively reasonable properties of voting rules are incompatible,
in the sense that no rule exists which satisfies them simultaneously. This result is commonly
known as Arrow’s impossibility theorem. Later, Gibbard [1973] and Satterthwaite [1975]
independently showed that no voting rule that meets a certain set of properties, which may
be seen as minimum requirements a meaningful voting rule should fulfill, can be immune to
manipulation by untruthful voting. For a comprehensive overview on the history of social
choice theory, we refer the reader to Urken [1995].
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Chapter 1 Introduction

Following the results of Gibbard and Satterthwaite, Bartholdi, Tovey, and Trick [1989a] stud-
ied the algorithmic complexity, in other words, the amount of computational resources re-
quired, of manipulating elections. They wanted to evaluate whether the possible computa-
tional burden of performing a manipulation could provide some level of protection. The field
that deals with the complexity of solving problems is computational complexity theory, based
on the fundamental work of Alan Turing in the first half of the last century. Thus, the work
of Bartholdi, Tovey, and Trick marked the emergence of the field to which most of our work
here can be assigned, the field of computational social choice. It arises from the intersec-
tion of the aforementioned fields of social choice theory and computational complexity theory
and is especially concerned with the study of problems related to decision making processes
from, but not only, a computational point of view. Note, however, that the topics studied by
computational social choice are not limited to elections. The focus is also on tournaments,
resource allocation including the allocation of indivisible goods and cake cutting, matching
under preferences, hedonic games, judgment aggregation, and many other topics. Moreover, it
has become evident that the connection between computational social choice and related fields
is bidirectional, as many advances in the area of computational social choice carry back to
social choice theory and computational complexity theory, see, e.g., Hemaspaandra [2018].

The developments in recent decades, such as the digitization of elections, the introduction of
direct democratic participation processes such as participatory budgeting, the establishment
of social networks, and the ever-increasing acceptance and spread of online games and e-
sports, have resulted in a high amount of recurring tasks involving large amounts of data
and new vulnerabilities. Thus, the question of the computational complexity of solving and
protecting these tasks has never been as relevant as it is today.

In this thesis we will consider a number of various known and novel problems and present sub-
stantial contributions to the study of their computational complexity. In the first part of the
thesis, we focus in particular on bribery, voting rule design, robustness, and prediction prob-
lems arising in elections, with a special focus on problems related to distance measures. Our
study of election prediction problems then leads into the second part of the thesis, where we
switch from elections to tournaments and study prediction problems in the context of round-
robin tournaments. We use a variety of different concepts from computational complexity
theory to examine the problems. For instance, in addition to classical decision complexity,
we also consider counting complexity, parameterized complexity, approximation, average-case
complexity, and empirical analysis using experiments on real-world data and synthetic data.
In addition, we also discuss the potential applications of smoothed analysis in the area of
computational social choice. We successfully apply a variety of different solution approaches
such as classical deterministic algorithms, heuristics and brute-force algorithms, dynamic
programming, (minimum cost) network flow, and linear and non-linear optimization.

Thus, a key concept that will recur throughout this thesis is uncertainty in relation to com-
putational complexity. This includes studying problems that model uncertainty in their in-
stances, for example, by uncertainty about the preferences of the voters, about the voting
rule, or about the outcomes of the remaining matches in a tournament, as well as studying the
complexity of problems assuming certain degrees of uncertainty over the instances themselves
using average-case analysis and smoothed analysis.
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Outline

The remaining thesis is structured as follows. In Chapter 2, we briefly present the foundations
and backgrounds of computational complexity theory and computational social choice that
we employ. In particular, we will discuss the literature and provide a context for our research.
In the following chapters we then illustrate and discuss our contributions to the field, and in
particular address the respective impact of the contribution and the related work.

In Chapter 3 we study the problem of priced bribery in elections in the constructive and
destructive cases and for various different distance measures with varying degrees of variability
and expressiveness. We study the classical decision complexity of the problems with respect
to well-known voting rules and also develop dichotomy results for the class of scoring rules.

In Chapter 4 we introduce the problem of designing scoring rules for elections and scoring
systems for competitions over rankings, such as racing competitions or the Eurovision Song
Contest, that guarantee the victory of a particular candidate. Furthermore, we investigate
the extension in which a scoring system is already in place and we try to modify the system
as little as possible with respect to different distance measures. In addition to the classical
decision complexity, we also study the parameterized complexity with respect to various
natural parameters. Our theoretical results are complemented by experiments on real-world
data to examine the complexity and relevance of the problem in practice.

In Chapter 5 we study the evaluation problem which is the problem of determining the winning
probability of candidates in elections in which the votes are distributed probabilistically. We
study the function complexity of the problem using notions from counting complexity and
parameterized counting complexity. We consider different scoring rules, three different types
of distribution models, tie-breaking procedures, and the decision variant. In particular, we
discuss the connection to the results obtained in Chapter 3 and discuss different motivations
such as election prediction and the evaluation of the robustness of election outcomes.

In Chapter 6, we then move from elections to round-robin tournaments, as used for example
in many major national sports leagues. We study the worst-case complexity, the parame-
terized complexity, and also the average-case complexity of the evaluation problem, i.e., the
determination of the probability of a given team to end up as the champion, and also of the
well-known sports elimination problem, in which we as whether a given team can still become
the champion. The theoretical results are complemented by experiments on real-world data
and synthetic data.

In Chapter 7, we then discuss our proposal on the possibilities of applying the smoothed
analysis of Spielman and Teng [2004, 2009] in the area of computational social choice. In
particular, we will discuss the subsequent related work.

Finally, in Chapter 8, we will summarize our results, discuss them as a whole, and give an
outlook on possible future work and directions.
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Chapter 2

Background

This chapter deals with the foundations and backgrounds of computational complexity theory
and computational social choice relevant to our research presented here.

2.1 Computational Complexity

At the heart of computational complexity lies the question of how hard it is to solve problems
from a computational point of view. These problems can have diverse shapes, for example
they can be about computing mathematical functions, breaking cryptographic encryptions,
or solving puzzles. In the following, we will give a short introduction to the basics of com-
putational complexity relevant for this work. For a comprehensive overview we refer to the
books of Papadimitriou [1994] and Arora and Barak [2009], which we have also used as a
guideline here.

2.1.1 Decision Complexity

In the first half of the last century, Turing [1937b] laid the foundations for the theory of
computation in his seminal paper. His goal was to study the computability of the Entschei-
dungsproblem (German for decision problem) proposed by Hilbert and Ackermann [1928],
which asks whether an algorithm exists that receives formal statements as input and outputs
whether they are true or false. For this he introduced the concept of the so-called Turing
machine, a finite rule-based automaton with access to a set of linear tapes, which he used
to capture the concept of computability. We have illustrated the basic layout of a Turing
machine in Figure 2.1. In fact, the generally accepted Church–Turing thesis states that the
class of intuitively computable functions corresponds to the class of functions computable by
Turing machines. This assumption is based on the work by Kleene [1936], Church [1936], and
Turing [1937a] who showed that the existing concepts of intuitive computability, namely gen-
eral recursivity (Gödel [1934], based on suggestions by Jacques Herbrand), λ-calculus (Church
[1936]), and Turing computability (Turing [1937b]) are all equivalent. Thus, for convenience,
and because it is beneficial for practical applicability, we often describe Turing machines by
their specification in the form of an algorithm in pseudocode or descriptive language and
often use the terms Turing machine and algorithm interchangeably. Note that unless stated
otherwise, by Turing machine we refer to a deterministic Turing machine.

Decision Problems

As in the original Entscheidungsproblem by Hilbert and Ackermann [1928], we start by focus-
ing on problems for which the answer can take only two different values: yes or no. This type
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Chapter 2 Background

· · · 1 0 1 0 1 1 0 0 1 · · ·

Finite

Automaton

read & write

Figure 2.1: Depiction of a Turing machine with access to a single tape over the alphabet
Σ = {0, 1} consisting of a finite automaton that determines the symbol to be
written and the movement to be performed based on the current state and
the symbol being read.

of problems is referred to as decision problems. In the context of computational complexity,
arguably the best-known decision problem is the Boolean satisfiability problem.

Satisfiability (SAT)

Given: A Boolean formula ϕ over a set X = {x1, . . . , xn} of Boolean variables.
Question: Does there exist an assignment of the variables in X such that ϕ is satisfied?

We refer to the input of a decision problem as an instance. So in the case of SAT, an instance
consists of a certain formula over a certain finite set of variables. We call such an instance
of a problem a yes-instance if the answer for it is yes. Accordingly, we call the instance a
no-instance if the answer for it is no.

Example 2.1. Consider the following instance of SAT consisting of the formula

ϕ = (x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ x3)

over the set of Boolean variables X = {x1, x2, x3, x4}. An assignment setting the formula
ϕ to true is x1 = false, x2 = false, x3 = true and x4 = true. Thus, the answer to the
question of the problem, whether an assignment exists for which the formula becomes true,
is yes whereby the given instance is a yes-instance.

Time Complexity

While it was quite simple to check whether there exists an assignment which sets the formula
in the previous example to true, this can become considerably more difficult for formulas over
a larger number of variables. For 8 variables there are 28 = 256 combinations, which we can
check with enough time by hand and quite fast with a modern computer to see if a suitable
assignment exists. For 20 variables, however, there are already 220 = 1048576 combinations,
for which we, even if we only need 10 seconds per combination by hand, already need just
over 121 days to check and should therefore better use a computer, for which even such a
high number can be managed in a few seconds. But what happens if we want to do the same
for 100 variables? Even if our modern computer could check 1012 assignments per second, it

6



2.1 Computational Complexity

0
4.54 · 10 9

years

(A
ge
of Earth)

13.8 · 10 9

years

(A
ge
of U

niv.)

40 · 10 9

years

Figure 2.2: Time scale to visualize the length of the exemplary running time of the brute
force algorithm for SAT compared to estimated real-world time durations.

would need just over 40 billion years to check all 2100 ≈ 1.27 · 1030 assignments, thus only
a little bit less than three times the current estimated age of our universe, and just over
533 times the time required by Deep Thought to compute 42, the “Answer to the Ultimate
Question of Life, the Universe, and Everything” according to the The Hitchhiker’s Guide to
the Galaxy by Douglas Adams [1979]. See Figure 2.2 for a visual comparison.

The problem here is the exponential growth of the number of possible solutions and the
associated exponential growth of time required to check them. Unfortunately, this growth
occurs in a wide variety of problems. The question now is whether it is possible to find
shortcuts in order to develop faster approaches to solve these problems. This leads us to the
field of computational complexity.

Based on the strong theoretical groundwork mentioned at the beginning of this section, Hart-
manis and Stearns [1965] build the foundation of computational complexity theory by propos-
ing that the complexity of problems can be classified by the number of steps required by a
Turing machine to solve them. The classification based on the number of steps required is
the so-called time complexity. On the other hand, the classification based on the number
of tape cells required by a Turing machine is the so-called space complexity. The investiga-
tion of space complexity was initiated by Myhill [1960] even before the investigation of the
time complexity, which is the main focus here.1 Thus, when we speak about computational
complexity in the following, we are referring to time complexity.

As suggested by Hartmanis and Stearns [1965], the time complexity of a Turing machine is
measured by how its worst-case runtime behaves asymptotically with respect to the input
size. The worst-case running time of a deterministic Turing machine depending on the input
size n = |I| is defined as the maximum number of steps the Turing machine needs to decide
an instance of the respective size. The central notation for the classification of different
growth rates is the Bachmann–Landau notation, and here in particular the so-called Big O
notation. We say that a function f is asymptotically bounded proportional to a function g if
∃c > 0 : ∃n0 ∈ N : ∀n ≥ n0 : f(n) ≤ c · g(n) holds, which we denote by f ∈ O(g).

We say that a deterministic Turing machine has a polynomial running time if its worst-case
running time is bounded by a polynomial. Accordingly, we say that a decision problem can
be solved in deterministic polynomial time if there exists a deterministic Turing machine with
polynomial running time which solves the problem.

1It should be mentioned here that the time complexity also limits the space complexity, since a Turing
machine can only write to a new cell on the tape if it also makes a step.
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Chapter 2 Background

By default, and without loss of generality, we assume that all inputs are encoded in binary,
this includes numbers, strings, lists, and more complex objects. For natural numbers, it is
also interesting in some scenarios to assume that they are encoded in unary. This means that
for the number k ∈ N, exactly k ones are written to the tape and thus k tape cells are needed
instead of ⌊log2(k)⌋ + 1 cells for the binary encoding. Therefore, an algorithm that has an
exponential running time depending on the length of the input encoded in binary can have a
polynomial running time under the assumption that the input is encoded in unary.

When dealing with the asymptotic worst-case running time analysis as defined above, we have
to be careful with respect to the practical efficiency of algorithms. First of all, the running
time in the worst-case may be misleading with respect to the running time of the algorithm in
practice, where the worst-case instances may not occur at all or not very frequently. This issue
will be discussed later with respect to parameterized complexity and average-case complexity.
Furthermore, the asymptotic running time analysis neglects constant factors and portions of
the running time. For example, an algorithm with a number of 2100 · n steps in the worst
case has a linear running time O(n), which is usually interpreted as very efficient, while no
currently realizable machine could perform this computation in a feasible amount of time
even for small inputs.

Complexity Classes

For a rough classification of problems with respect to their computational difficulty, the
problems are often sorted into so-called complexity classes. The two most prominent classes
are P and NP. The class P contains all decision problems which can be solved in deterministic
polynomial time. Accordingly, the class NP contains all decision problems for which a given
solution (sometimes referred to as a witness) for a yes-instance can be verified in polynomial
time.2 However, while yes-instances for problems in NP can be verified in polynomial time by
given solutions, which may themselves have only polynomial length due to the time constraint,
this is explicitly not required for no-instances. For example, although it is easy to see that
SAT is in NP, since a possible solution for a yes-instance in the form of an assignment can be
verified in polynomial time by evaluating the formula with respect to the given assignment,
for a no-instance it would have to be verified that none of the exponentially many possible
assignments sets the formula to true.

The complement class coC of a complexity class C consists of the problems in C with negated
questions. Thus, a yes-instance in C is a no-instance in coC and vice versa. For example, the
coNP counterpart of SAT is SAT, which asks if no assignment exists that sets the formula
to true. According to the definition, solutions for no-instances for problems in coNP can be
verified in polynomial time. Note that P = coP, but the exact relationship between NP and
coNP is not clear. However, it is suspected that NP ̸= coNP.

It is straightforward to verify that P ⊆ NP holds. However, whether P = NP or P ̸= NP is
true, is a long-standing open question. In the following we will discuss how the relationship

2As the name NP, which stands for non-deterministic polynomial time, suggests, the original definition of the
class is not the one presented here, but the equivalent definition over the length of the shortest accepting
path(s) of non-deterministic Turing machines.

8



2.1 Computational Complexity

between the complexity of problems is studied and why it is commonly assumed that P ̸= NP
and therefore P ⊊ NP holds.

Suppose we are given two decision problems A and B. If we notice that we can solve problem
A quite easily by solving problem B, we can draw the following conclusion: Problem B seems
to be at least as hard as problem A. In fact, it is apparent that if we have an approach
to problem B, we can also solve problem A, and, on the other hand, if problem A is very
difficult to solve, problem B should also be very difficult to solve. This idea of comparing two
problems is called reduction and is a key concept of computational complexity.

The most prominent type of reductions for decision problems in the literature and the one
we use here is the polynomial-time many-one reduction. We say that a decision problem A
is polynomial-time many-one reducible to decision problem B, denoted by A ≤p

m B, if there
exists a Turing machine which transforms each instance I of problem A in polynomial time
into an instance I ′ of problem B, where I is a yes-instance of A if and only if I ′ is also a yes-
instance of B. We refer to a decision problem B as C-hard for a complexity class C with respect
to the polynomial-time many-one reduction if A ≤p

m B holds for every A ∈ C. We refer to a
decision problem B as C-complete for a complexity class C with respect to the polynomial-
time many-one reduction if B is C-hard and B ∈ C. A very convenient property that the
polynomial-time many-one reduction, and also the reductions we will consider later, satisfy
is transitivity, which means that if A ≤p

m B and B ≤p
m C hold, it follows that A ≤p

m C.

Referring back to our observations from the previous informal motivation of reductions, we
see here that, for two problems A and B with A ≤p

m B, that if there exists a polynomial-time
algorithm for B, the combination of that with the polynomial-time algorithm used in the
reduction yields a polynomial-time algorithm for A. On the other hand, this conclusion also
means that if we assume that no polynomial-time algorithm exists for A, neither should there
be one for B. This is where we return to SAT and why it is one of the central problems of
computational complexity. Cook [1971] showed that every problem in NP is polynomial-time
many-one reducible to SAT and thus that SAT is NP-complete. Therefore, if SAT could
be solved in polynomial time, every problem in NP would be solvable in polynomial time,
whereby P = NP would follow. However, since decades of various approaches have failed to
find a polynomial-time algorithm for SAT, the common assumption is that such an algorithm
does not exist for SAT and thus also not for every other NP-hard problem. Building on Cook’s
theorem, Karp [1972] proved the NP-completeness of twenty-one further decision problems,
such as the clique problem, the feedback arc set problem, the graph coloring problem, and the
3-SAT problem, by reducing SAT to them. Here he also established the nowadays common
approach to show the NP-hardness of problems not each time via a direct reduction from
SAT, but, based on the previously mentioned transitivity of the polynomial-time many-one
reduction, by a reduction from other problems already proven to be NP-hard. An example for
such a chain of reductions is the proof by Karp [1972] of the NP-hardness of the feedback arc
set problem by showing that SAT can be reduced to the clique problem, the clique problem
to the vertex cover problem, and the vertex cover problem to the feedback arc set problem.
Later, the NP-completeness of many of the problems used in the literature was surveyed, and
in some cases also shown, by Garey and Johnson [1979]. In Figure 2.3 we have illustrated the
reduction chains up to some of the problems shown to be NP-hard in this work.

The classes P and NP are themselves only the lowest level of a larger structure of complexity
classes called the polynomial-time hierarchy introduced by Meyer and Stockmeyer [1972].

9
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SAT

3-SAT

3-DM X3C

Coloring Exact Cover Subset Sum

Clique

Vertex Cover Dominating Set
Scoring System

Existence (Chapter 4)

(frwπ , E(2,1,1,...,1,0))-
Destructive Distance
Bribery (Chapter 3)

(swapπ, Borda)-
Distance Bribery

(Chapter 3)

K

K

K K

K

K

K

K

GJ

Figure 2.3: Examples of chains of polynomial-time many-one reductions to prove the NP-
hardness of problems in this work. Each edge indicates a reduction from left
to right. Edges marked with K indicate reductions given by Karp [1972],
thus GJ marks reductions given, or hinted, by Garey and Johnson [1979].

Each level consists of three classes defined by Σp
i = NPΣp

i−1 , ∆p
i = PΣp

i−1 , and Πp
i = coΣp

i for

i ≥ 1 and ∆p
0 = Σp

0 = Πp
0 = P. Here PΣp

i−1 means that the problems of that class can be
solved in polynomial time by a deterministic Turing machine with access to a Σp

i−1 oracle,
that is a black box machine which returns answers to problems in Σp

i−1 for given instances in

constant time. Likewise, the problems of NPΣp
i−1 can be solved by a non-deterministic Turing

machine with access to an Σp
i−1 oracle in polynomial time. For example, ∆p

2 = PNP is the
class of decision problems that can be solved in polynomial time by a deterministic Turing
machine with access to an NP oracle. Note that all classes of one level of the polynomial-time
hierarchy are actually included in every single class of the next level, thus Σp

i ∪∆
p
i ∪Π

p
i ⊆ Σp

i+1

and vice versa for ∆p
i+1 and Πp

i+1 for i ≥ 0. Like P and NP, all classes of PH have their own
complete problems with respect to the polynomial-time many-one reduction and, also as for
P and NP, it is assumed that the complexities of the classes are truly distinct for i ≥ 1.
Finally, the union over all classes of the polynomial-time hierarchy is denoted by PH. The
polynomial-time hierarchy is itself contained in the class P#P which we will discuss in the next
section, and P#P, as well as all other decision problem complexity classes considered here, is
contained in PSPACE, the class of problems that can be solved by a Turing machine with
polynomially bounded space complexity. We have illustrated the structure of the complexity
classes for decision problems considered here and later in Figure 2.4.

P

NP

coNP

PNP = ∆p
2

NPNP = ∆p
2

coNPNP = Πp
2

∆p
3 PH P#P PSPACE· · ·

Figure 2.4: Illustration of the central decision complexity classes. Edges indicate inclu-
sions from left to right.
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2.1 Computational Complexity

2.1.2 Function and Counting Complexity

As mentioned at the beginning of the last section, a decision problem is the most restricted,
non-trivial type of problem in terms of the number of possible answers. However, in many
situations, we are interested in studying and solving problems of the form “What is the value
of f(x)?” for a function f and a given input x. This type of problems is called function
problems. Here we are particularly interested in the special case of counting problems.

Suppose we are given a decision problem A. The counting variant of A, denoted by #A, does
not ask whether a solution exists, but how many solutions exist. Valiant [1979] introduced
the central class of counting problems #P, which consists of the counting variants of decision
problems in NP. For example, #SAT ∈ #P, the counting variant of SAT, does not ask whether
an assignment exists which sets the formula to true, but how many such assignments exist.
The counterpart of P for function problems, that is the class of function problems which can
be answered in polynomial time by a Turing machine, is denoted by FP. Even if we consider
the classes FP and #P as counterparts of P and NP in the context of counting problems, this
is of course not valid in general. In fact, FP is by definition not a subset of #P, for the simple
reason that it also contains other function problems such as problems regarding calculating
certain probabilities and also decision problems.

The standard reduction for function problems is the Turing reduction. A function problemA is
polynomial-time Turing reducible to a function problem B, denoted by A ≤p

T B, if there exists
a Turing machine which, with access to an oracle for B, can answer any instance of problem
A in polynomial time. Analogous to the previously defined hardness and completeness of
decision problems with respect to the polynomial-time many-one reduction, we define the
hardness and completeness of function problems with respect to complexity classes like #P
using the polynomial-time Turing reduction. In addition, restricted polynomial-time Turing
reductions are often considered. For counting problems in particular, the polynomial-time
parsimonious reduction is often considered, which, similar to the polynomial-time many-
one reduction, transforms an instance of the original problem into an instance of the target
problem in polynomial time, such that the number of solutions in the constructed instance
equals the number of solutions in the original instance.

It is evident that every decision problem in NP is polynomial-time Turing reducible to its
counting variant in #P, since a Turing machine with access to the answer to the counting
variant through the oracle can easily check whether a solution exists at all. Thus, it is clear
that the counting variants of NP-complete decision problems are computationally hard since
the existence of a polynomial-time algorithm for them would imply P = NP. However, what
about the counting variants of decision problems that are in P? To answer this question,
Valiant [1979] studied the complexity of the counting variant of the decision problem of
checking whether a perfect matching, i.e., a subset of edges in which each node can be found
exactly once, exists in a bipartite graph, that is, an undirected graph in which the nodes
are divided into two disjoint sets and no edges exist between two nodes within the same set.
Formally, the problem is defined as follows.

Perfect-Bipartite-Matching

Given: A bipartite graph G = (U, V,E) with |U | = |V | = n, and edges E ⊆ U ×V .
Question: Does there exist a perfect matching M ⊆ E?
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Chapter 2 Background

While it is known that the decision variant of this problem is in P, Valiant [1979] showed
that its counting variant #Perfect-Bipartite-Matching is #P-complete with respect to
the polynomial-time Turing reduction and thus probably not solvable in polynomial time.
How the complexity of such #P-hard and #P-complete problems relates to the complexity of
decision problems in the polynomial-time hierarchy was studied by Toda [1991]. He showed
that an algorithm with a single call to a #P oracle can solve any problem from the polynomial-
time hierarchy in polynomial time, whereby PH ⊆ P#P holds. Thus, the immense complexity
of some function problems, such as the problems of computing certain probabilities, is often
proved by showing their #P-hardness, even if they are not counting problems themselves and
therefore are not in #P. Furthermore, it is also possible to show the #P-hardness of decision
problems using the Turing reduction as we will see later.

2.1.3 Parameterized Complexity

The previous definitions of computational complexity may give the impression that there
are essentially only two kinds of problems: simple ones that can be solved in polynomial
time and computationally hard, e.g., NP-hard or #P-hard, problems that are so hopelessly
complex that they cannot be solved for larger instances in practice. However, there are
several approaches to further differentiate the complexity of problems, both theoretically and
practically, and the most prominent approach for the worst-case complexity is to consider the
parameterized complexity as formally introduced by Downey and Fellows [1992, 2012]. The
key idea behind parameterized complexity is to understand how the complexity of problems
depends on certain parameters of their inputs. The resulting insights often explain the efficient
solvability of certain problems in practice, since parameters that make the problems difficult
to solve in the worst-case may not occur in practice with the same magnitude or frequency.

In the following we will focus on the definitions concerning decision problems, the definitions
for function problems and counting problems follow mostly analogously. A parameterized
(decision) problem is a (decision) problem A combined with a parameter p that constrains
the input. The parameter can be directly related to the input, like the desired size of the
clique or the number of nodes in a given graph, or it can be an underlying parameter, like
the treewidth of a given graph.

Example 2.2. For example, consider the dominating set problem, which is defined as follows.

Dominating Set

Given: An undirected graph G = (V,E) and k ∈ N.
Question: Does there exist a set V ′ ⊆ V with |V ′| ≤ k such that each v ∈ V \ V ′ is

adjacent to at least one u ∈ V ′?

Natural parameters which could be chosen to parameterize Dominating Set are the num-
ber of nodes |V |, the number of edges |E|, the maximum size of the dominating set k, the
maximum node degree ∆, or the treewidth of G.
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Dominating Set (k = 1) ∈ P

Dominating Set (k = 2) ∈ P

Dominating Set (k = 3) ∈ P

Dominating Set (k = 4) ∈ P

Dominating Set (k = 5) ∈ P

Coloring (k = 1) ∈ P

Coloring (k = 2) ∈ P

Coloring (k = 3) NP-compl.

Coloring (k = 4) NP-compl.

Coloring (k = 5) NP-compl.

Figure 2.5: Complexity of the slices of Dominating Set and Coloring with respect
to the parameter k, as discussed in Example 2.3.

The first approach we consider here is to study the complexity of parametrized decision
problems in the case where the parameter is simply assumed to be a constant. The complexity
class XP contains the parametrized decision problems that can be solved in O(g(p) · |I|f(p))
for some computable functions f and g, that is, polynomial time for a constant parameter
p, using a deterministic Turing machine. A parameterized decision problem is referred to as
para-NP-hard if and only if the decision problem is NP-hard for the case where the parameter
is assumed to be constant. In the context of XP and para-NP-hardness, we often speak of
examining the complexity in terms of so-called slices of the problem, where each slice of the
problem corresponds to a particular value of the parameter.

Example 2.3. Consider Dominating Set parameterized by the desired maximum size k
specified in the input. As mentioned in the previous section, Dominating Set is NP-
complete. However, we can try all

∑k
i=1

(
n
i

)
≤ (n+ 1)k possible subsets V ′ ⊆ V of size at

most k with n = |V | and thus check whether such a dominating set exists and thus solve
the problem. Assuming that k is constant, this is possible in polynomial time, so it follows
that dominating set parameterized by k is in XP.

On the other hand, consider Coloring, the problem of checking whether a coloring of the
nodes of a graph with a given number of colors k exists such that no adjacent nodes share
the same color. Lovasz [1973] showed that the problem is NP-hard for fixed k ≥ 3, implying
that Coloring parametrized by the number of colors is actually para-NP-hard, and thus
presumably not in XP.

We have summarized the complexity of the first few slices of the two problems with respect
to parameter k in Figure 2.5.

While the distinction between membership in XP and para-NP-hardness already provides
some insight into the complexity of NP-hard problems, there exists a further popular classifi-
cation for problems in XP. This is reasonable since even if a problem is in XP, its complexity
can scale very poorly with respect to the input size due to the potentially parameter-dependent
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degree of the polynomial constraining the runtime of a respective algorithm, such as in the
case of the brute force algorithm in Example 2.3 for Dominating Set.

We say that a parameterized (decision) problem with parameter p is fixed parameter tractable
(FPT) if it can be solved in O(f(p) · |I|O(1)) for some computable function f , often referred
to as FPT-time, using a deterministic Turing machine. The complexity class of decision
problems that are fixed parameter tractable is denoted by FPT accordingly. Thus, compared
to the surrounding class XP, the portion of the runtime that grows with the parameter is
required to be limited to an isolated factor detached from the portion that is bounded by a
fixed polynomial depending only on the input size.

Example 2.4. Consider the vertex cover problem defined as follows.

Vertex Cover

Given: A graph G = (V,E) and k ∈ N.
Question: Does there exist a set V ′ ⊆ V with |V ′| ≤ k such that for each {u, v} ∈ E :

u ∈ V ′ ∨ v ∈ V ′?

As in the previous example for dominating set, one could check all
∑k

i=1

(
n
i

)
≤ (n + 1)k

possible subsets V ′ ⊆ V of size at most k with n = |V | to check the existence of a vertex
cover, whereby Vertex Cover parameterized by k is in XP. On the other hand, this
algorithm does not run in FPT-time.

However, there is an alternative approach for Vertex Cover. Since for each edge {u, v} ∈
E either u or v (or both) must be in V ′ we can employ the following approach: As long as
k > 0 and there is still an edge, choose an arbitrary edge {u, v} ∈ E, and repeat this for
k ← k−1 once in G without u and adjacency edges and once in G without v and adjacency
edges. If we have removed all edges from the graph in one of the possible paths, we have
found a vertex cover of size at most k, if not, such a vertex cover does not exist.

Each instance of the algorithm recursively invokes two new instances, giving us a total of∑k
i=0 2

i = 2k+1 − 1 instances, and in each instance of the algorithm, we only need O(n)
additional steps, resulting in a total runtime of O(2k · n), which is FPT-time with respect
to parameter k. Thus, Vertex Cover parameterized by k is in FPT.

The corresponding reduction concept is the FPT-reduction. We say that a parameterized
decision problem A with parameter pA is FPT-reducible (≤FPT) to a parameterized decision
problem B with parameter pB if there exists a Turing machine which transforms every instance
I of A with parameter pA into an instance I ′ of B with parameter pB ≤ h(pA) for some
computable function h in FPT-time with respect to pA, where I is a yes-instance of A if and
only if I ′ is a yes-instance of B.

As for P and NP-hardness and for XP and para-NP-hardness, there is also a hardness no-
tion which is opposed to a membership in FPT. For this Downey and Fellows [1992, 2012]
introduced the W hierarchy. To define it, we first consider the following decision problem.
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2.1 Computational Complexity

Weighted Circuit Satisfiability

Given: A Boolean circuit C over a set of Boolean variables X and k ∈ N.
Question: Does there exist an assignment of X with k variables set to true, such that

C is satisfied?

For a given Boolean circuit, we denote as the depth the maximum length of a path from an
input to the output gate and as the weft the maximum number of gates on the path from
an input to the output gate with in-degree of at least three. Each class of the W hierarchy
W[t] with t ≥ 1 consists of those parameterized decision problems that are FPT-reducible to
the weighted circuit satisfiability problem parameterized by k restricted to Boolean circuits
with a constant depth d ≥ 1 and weft t. We refer to a parametrized decision problem
as W[t]-hard if all problems in W[t] can be reduced to the problem via FPT-reductions.
Accordingly, a parameterized decision problem is W[t]-complete if the problem is W[t]-hard
and is itself a member of W[t]. As before for NP, W[t]-hardness and membership in W[t]
can be shown using reductions from problems already proven to be W[t]-hard or to problems
already proven to be in W[t], respectively, due to the transitivity of the FPT-reduction.
Prominent examples are Clique parameterized by the clique size which is W[1]-complete and
Dominating Set parameterized by the maximum size of the set which is W[2]-complete. We
illustrate the concept of reducing parametrized problems to Boolean circuits presented here
using Dominating Set in Figure 2.6.

a b

cd

e

a b c d e

out

∨ ∨ ∨ ∨ ∨

∧

Figure 2.6: On the left we have a graph G = (V,E) over V = {a, b, c, d, e} together
with a dominating set V ′ = {b, e} of size k = 2. On the right side we have a
corresponding Boolean circuit with a depth of 3 and a weft of 2. The satisfying
assignment of the Boolean variables corresponding to the dominating set with
k = 2 variables set to true is highlighted.

It holds that FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP. While it is believed that each level of the W
hierarchy including FPT and XP is a proper subset of the next level, only FPT ⊂ XP has been
proven so far. However, under this assumption, the W[t]-hardness of a parametrized decision
problem is assumed to contradict the existence of a respective FPT-algorithm. Thus, we have
seen that the four basic NP-complete problems we have considered here as examples, namely
Coloring, Vertex Cover, Clique and Dominating Set seem to have quite different
complexities with respect to their natural parameter k.
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Chapter 2 Background

2.1.4 Average-Case Complexity

While computational complexity may seem like a self-justifying theory of reductions, com-
plexity classes, and various abstract concepts that exists only for itself, one of its original
goals was, and still is, to examine how long it takes to solve problems in practice. However,
the relevance of the definitions presented here so far is questionable in this regard since they
examine only the worst-case complexity of problems. While this approach is reassuring for
problems that can be solved very efficiently even in the worst-case, it is very unsatisfying for
problems that are NP-hard or #P-hard as it is often observed that real-world instances of such
problems can be solved much faster than their worst-case computational hardness suggests.
In fact, we will observe this ourselves in Chapter 6 for NP-hard and #P-hard problems in
the context of tournaments using experiments on real-world data. Thus, to find a theoretical
explanation for these observations Levin [1986] introduced the average-case complexity.

In the following, we will define the aspects of Levin’s average-case complexity that are relevant
to us in this work. We will use the conventions commonly used nowadays, such as those
suggested by Impagliazzo [1995]. In particular, we have been guided here by the survey by
Bogdanov and Trevisan [2006] and the chapter in the book by Arora and Barak [2009].

A distributional (decision) problem is given by a (decision) problem combined with a prob-
ability distribution D which models the distribution of the instances. It cannot be stressed
enough that both the problem and the distribution are essential for the significance and com-
plexity of distributional problems. For example, the distribution may be collapsed to one
possible instance, produce only trivial instances, or have other nonsensical properties with
respect to the actual objectives of the investigation or the scenario.

In the original definition by Levin [1986], D is given by single distribution function µ : N →
[0, 1], along with the respective density function µ′(x) = µ(x)− µ(x− 1), over a numeration
over all instances of variable size. For convenience, we simply denote the probability of an
instance Ix by µ′(Ix) = µ′(x). However, while this definition allows to model that different
input sizes occur with different probabilities, the definition is sometimes inconvenient from
a conceptual point of view for analyses similar to the previous approaches for worst-case
complexity, for which the instances are usually segmented with respect to their sizes. Thus,
Impagliazzo [1995] proposed that instead of a single distribution, D is given by a sequence of
distributions {Dn}n∈N, a so-called ensemble, where Dn denotes the distribution for instances
of size n. Fortunately, he also demonstrated that this convention makes no essential difference
for most of Levin’s definitions.

Something that Levin left open in his original definition, but which is of essential theoretical
relevance, is the complexity of D itself. Ben-David et al. [1992] defined two different types of
distributions for this purpose. A distribution D is P-computable if for a given instance the
distribution function, and hence the density function, can be computed in polynomial time
with respect to the instance size. However, there are many prominent distributions for which
calculating those probabilities is #P-hard. One example for this is the uniform distribution
over the completion of partial orders (see Brightwell and Winkler [1991]). Thus, they have
defined yet another broader category of distributions. A distribution D is P-samplable if there
exists an algorithm which, for a given input size n, generates a random instance of size n with
respect to D in polynomial time with respect to n.
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2.1 Computational Complexity

Now we have everything at hand to define the average-case complexity of algorithms and
problems. We say that an algorithm A runs in expected polynomial time with respect to a
P-samplable distribution D if EDn [TA] =

∑
|I|=n µ

′
Dn

(I) ·TA(I) ∈ O(nk) for some fixed k ∈ N
where EDn [TA] denotes the expected value of the running time TA of A with respect to the
distribution Dn. Likewise, we say that a distributional problem can be solved in expected
polynomial time if a corresponding algorithm exists.

While this definition over the pure expected running time is intuitive and often appropriate,
it poses a problem when trying to define complexity classes as in the previous sections. For
example, algorithms that have an expected polynomial time for a distribution may suddenly
have an exponentially growing expected running time after a quadratic slowdown, whereby
the definition is not robust with respect to polynomial changes of the running time. This is
problematic for the definition of complexity classes insofar as the classification of the running
time depends very strongly on the underlying computational model and polynomial-time
reductions of problems to problems with polynomial expected running time can result in
exponential running times.

Thus, Levin introduced the following, slightly more unintuitive but robust, definition. We
say that an algorithm A runs in average-case polynomial time with respect to a P-samplable
distribution D if EDn [(TA)

ε] =
∑

|I|=n µ
′
Dn

(I) · (TA(I))
ε ∈ O(n) for some fixed ε > 0. Accord-

ingly, we say that a distributional problem can be solved in average-case polynomial time if
a corresponding algorithm exists. The class distNP is defined as the class of distributional
decision problems consisting of a problem from NP combined with a P-samplable distribution.
The class AvgP (or sometimes distP) is defined as the class of distributional decision problems
in distNP that can be solved in average-case polynomial time. Note that any algorithm that
runs in expected polynomial time also runs in average-case polynomial time.

As in the previous sections, there is a corresponding type of reduction for AvgP and distNP. It
is defined analogously to the polynomial-time many-one reduction with the addition of the so-
called domination condition with respect to the two probability distributions, which ensures
that instances with high probabilities are not mapped to instances with too low probabilities.
If this condition were missing, it would be possible to lower the complexity of the problem in
the reduction simply by drastically reducing the probabilities of certain instances. Thus, this
condition is required to ensure that a distributional problem that is reduced to a distributional
problem in AvgP is also contained in AvgP. Using this reduction, it is then possible to define
distNP-hardness and distNP-completeness. However, we will not further elaborate on this
here, since we are mainly focused on finding expected polynomial time and average-case
polynomial time algorithms for worst-case computational hard problems.

As mentioned previously, the complexity of distributional problems depends crucially on the
distribution chosen. In practice, however, it is often difficult to find a meaningful distribution
that approximates the real-world distribution of instances or at least dominates it in terms of
complexity. A promising approach in this case is the smoothed complexity analysis as intro-
duced by Spielman and Teng [2004, 2009]. We will discuss possible models and applications
of this approach in the area of computational social choice in Chapter 7.
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2.2 Computational Social Choice

We will now introduce the basics for elections and tournaments from the field of computational
social choice, on which we will later build our investigations. As mentioned in the introduction,
one of the key aspects of computational social choice is the study of problems related to
decision making processes from a computational point of view. While elections play a very
prominent role, they are by far not the only topic considered. Other extensively studied
topics include tournaments, resource allocation, matching under preferences, hedonic games,
and judgment aggregation. As previously discussed, the developments in recent decades such
as the digitization of elections, the introduction of direct democratic participation processes,
and the establishment of social networks have resulted in unprecedented opportunities and
risks along with immense amounts of data, making the computational aspects of the respective
processes more important than ever before. Naturally, we can only address a small fraction
of the numerous topics and literature in the field of computational social choice. For a
comprehensive overview, we refer to the Handbook of Computational Social Choice edited
by Brandt et al. [2016], Economics and Computation edited by Rothe [2016], and Trends in
Computational Social Choice edited by Endriss [2017].

2.2.1 Elections

An election is given by a tuple E = (C, V ) with the set of candidates C = {c1, . . . , cm} with
m ≥ 2 and a list of votes, also called preference profile, V = (v1, . . . , vn) with n ≥ 1, where vi
denotes the vote (or preference) of voter i ∈ N with N = {1, . . . , n}. Throughout this work,
if not stated otherwise, m and n are used by default to denote the number of candidates and
the number of voters/votes, respectively. We focus on the two most prominent types of votes
used in the literature, namely approval votes and ordinal votes. In the case of approval votes,
each vote is given by a vector vi ∈ {0, 1}m, where the j-th entry indicates the disapproval
or the approval of voter i for candidate cj with a 0 or 1, respectively. In the case of ordinal
votes, each vote vi is given by a complete linear order >i over the set of candidates C. Thus,
each voter specifies a complete ranking over the candidates from most preferred at position
one down to least preferred at position m.

In the following we present an example for an election using ordinal votes.

Example 2.5. Consider the election E = (C, V ) with the set of candidates C = {a, b, c, d}
and preference profile V = (v1, v2, v3, v4, v5). The ordinal votes are given as follows.

v1 : b > a > d > c
v2 : c > a > b > d
v3 : c > a > b > d
v4 : d > c > b > a
v5 : a > d > b > c

The vote v3 : c > a > b > d of voter 3 indicates that voter 3 reported candidate c at
position 1 as the most preferred candidate, followed by candidate a at position 2, candidate
b at position 3, and candidate d at position 4 as the least preferred candidate.
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For the analysis of elections from a computational point of view, the encoding of an election
is of immense importance. As common in the literature, we assume by default that the
set of candidates, the profile, and the votes are given as lists and thus an election can be
encoded for both approval and ordinal votes in size O(n ·m). Alternatively, the profiles can
be encoded in the succinct representation, where the different available votes together with
their multiplicities as binary numbers are given. Thus, the input size can be exponentially
smaller than in the list representation. Hardness results are transferred from the standard
representation to the succinct representation, whereas efficiency results are transferred from
the succinct representation to the standard representation. However, the actual complexity of
problems can differ for the two representations, see Fitzsimmons and Hemaspaandra [2017].

In some cases, we will also encounter partial profiles, which, unlike the complete profiles
defined previously, may contain partial votes. A partial approval vote is given by a vector
ṽi ∈ {0, 1,⊥}m where ⊥ indicates an undetermined or missing entry. A partial ordinal vote
is given by a partial order ṽi over the candidates C, which is a irreflexive and transitive,
but, in contrast to a linear order, not necessarily connex relation. Thus, it is possible that
for certain pairs of candidates the preference of the respective voter is missing. For both
types, a completion of a partial vote ṽi is a complete vote vi of the respective type in which
the missing entries/comparisons have been determined while the previously determined ones
have been carried over. A completion of a partial profile Ṽ = (ṽ1, . . . , ṽn) is a complete profile
V = (v1, . . . , vn) in which vi is a completion of ṽi for 1 ≤ i ≤ n.

The winners of a given election are determined using a voting rule. Formally, a voting rule
is given by a mapping E : V(C)n → 2C \ {∅}, which maps a given list of votes over C to a
non-empty set of winning candidates, where V(C) denotes the set of all possible votes over
C for the respective vote type. Note, however, that we focus on single-winner elections and
thus the candidates in the set of winners should not be interpreted as being on a committee
but as being in a tie. In the literature, and also in the following, the term voting rule usually
not only refers to a single voting rule for a specific combination of m and n, but to an entire
family for multiple different combinations. Here, we focus on the following voting rules.

In the case of approval votes, we consider the canonical approval voting (AV) rule, where the
candidates with the maximum number of approvals win. While AV satisfies many desired
theoretical and practical properties, it is rarely used in practice (see Zwicker [2016]). In
addition, we consider a variant of AV, referred to as k-AV with m > k, in which each voter
must allocate exactly k approvals. Of special interest here are the most prominent single-
winner voting rules, namely plurality, which corresponds to 1-AV, and veto, which corresponds
to (m− 1)-AV.

In the case of ordinal votes, we focus on a family of voting rules referred to as positional
scoring rules. A positional scoring rule, or simply scoring rule for short, for a given number
of candidates m, is defined by a scoring vector α⃗ = (α1, α2, . . . , αm) ∈ Nm

0 with α1 ≥ α2 ≥
· · · ≥ αm with α1 > αm. The so-called score value αj denotes the amount of points a
candidate receives for being placed in position j by a voter. By accumulating these points, we
obtain the score of the candidates given by score(c) =

∑n
i=1 αposi(c)

, where posi(c) denotes
the position of candidate c in vote vi. The winners are the candidates with the maximum
score. A scoring rule for a variable number of candidates is characterized by a function that
generates the respective scoring vector for the given number of candidates in polynomial time.
A class of scoring rules, which includes all natural and common scoring rules, are the pure
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scoring rules introduced by Betzler and Dorn [2010]. The restriction here is that starting
from an initial vector for the minimum number of candidates m0 for which the rule is defined,
the respective vector for m+1 candidates has to be generated by inserting a valid value into
the vector for m candidates. The most prominent (pure) scoring rules are the following.

k-approval. Each voter awards one point to each of the first k ≥ 1 candidates in his or her
preference, whereby α⃗ = (1, 1, . . . , 1︸ ︷︷ ︸

k-times

, 0, 0, . . . , 0︸ ︷︷ ︸
(m− k)-times

) for m > k.

The well-known plurality rule corresponds to 1-approval.

k-veto. Each voter awards one point to each candidate except for the last k ≥ 1 in his or
her preference, whereby α⃗ = ( 1, 1, . . . , 1︸ ︷︷ ︸

(m− k)-times

, 0, 0, . . . , 0︸ ︷︷ ︸
k-times

) for m > k.

The well-known veto rule corresponds to 1-veto.

Borda. Each voter allocates the points to the candidates according to the number of lower-
ranked candidates, whereby α⃗ = (m− 1,m− 2, . . . , 0).

(2, 1, . . . , 1, 0). Each voter allocates one approval to the first candidate and one disapproval
to the last candidate in his or her preference, whereby α⃗ = (2, 1, . . . , 1, 0).

We illustrate these definitions in the following example.

Example 2.6. Consider the election E = (C, V ) given in Example 2.5. If we apply Borda
with scoring vector α⃗ = (3, 2, 1, 0) as the voting rule to E we receive the following scores.

score(a) = 2 + 2 + 2 + 0 + 3 = 9

score(b) = 3 + 1 + 1 + 1 + 1 = 7

score(c) = 0 + 3 + 3 + 2 + 0 = 8

score(d) = 1 + 0 + 0 + 3 + 2 = 6

Thus, we see that a is the unique winner of election E with respect to Borda in this case.

Note that if we had applied (2, 1, . . . , 1, 0) to the profile in Example 2.5 instead of Borda,
candidate b would have been the unique winner of the election. Thus, the outcome of an
election can strongly depends on the voting rule chosen and, here in particular, the scoring
rule chosen. We will discuss this issue in much more detail in Chapter 4.

If we look closely at the scoring rules, we notice that a rule such as plurality is characterized not
only by the vector (1, 0, . . . , 0) but also by (2, 0, . . . , 0), just as Borda is characterized not only
by (m− 1,m− 2, . . . , 1, 0) but also by the, occasionally used, vector (m,m− 1, . . . , 2, 1). The
reason for this is that two scoring rules α⃗, α⃗′ ∈ Nm

0 are equivalent with respect to their winner
determination if but also only if they can be mapped to each other using the transformation
α⃗′ = a · α⃗ + b with a ∈ Q>0 and b ∈ Z. Now if we say that a certain property or result
holds true for a certain scoring rule, then it is meant that it holds true for this rule and all
equivalent ones. Based on the previous equivalence, one can also normalize all equivalent
scoring rules to a unique representative with αm = 0 and α1, . . . , αm−1 scaled such that their
greatest common divisor equals one.

20



2.2 Computational Social Choice

If we consider the approval vote voting rule k-AV and the ordinal vote voting rule k-approval
for a given k directly side by side, it becomes clear that both describe essentially the same
voting rule. The crucial difference between the two is only the type of the votes and the
different strength of expression. In fact, the ordinal vote in this case is clearly more expressive
than the respective approval vote, which can be seen from the fact that the former can easily
be reduced to the latter, but the reverse does not apply. We will see later in Chapter 5 that this
very difference can have massive effects on the respective complexity of voting problems.

As mentioned in the definition of voting rules, we allow the rules to output a non-empty
set of tied winners. Indeed, it is easy to show that under the assumption of basic fairness
criteria such as equal treatment of voters and candidates, no voting rule can be resolute, i.e.,
always output exactly one winner. However, since the ultimate goal of single-winner elections
is to determine a single winner, we must eventually break these ties using tie-breaking. A
tempting approach to this is to further refine the winner set by applying further comparison
criteria. For example, one could try to break the ties of a plurality election by comparing
the Borda scores of the winners. However, such approaches can also be expressed as single
voting rules, which brings us back to the theoretical limit mentioned above. Leaving fairness
aside, a frequently used approach in both theory and practice is lexicographic tie-breaking,
i.e. breaking ties based on a given order. Another frequently used approach to break ties in a
fair manner, despite the theoretical limits mentioned above, is random tie-breaking. Namely,
we conduct a lottery among the tied candidates to determine the winner. Here, one can either
give the candidates uniform probabilities or, more generally, use certain criteria to determine
those probabilities. For an overview and discussion on tie-breaking approaches we refer to the
paper by Freeman et al. [2015]. In addition, we propose the use of robustness metrics, which
we will consider in Chapters 3, 4, and 5, as a possible very meaningful comparison criterion
to break ties or to determine the probabilities for the tie-breaking lottery.

Note that this section is only a brief glimpse into the rich area of voting. For a comprehensive
overview, we refer to the chapter by Zwicker [2016].

2.2.2 Computational Problems

At the heart of computational social choice lies the study of formal election problems from
the perspective of computational complexity. In the following, we will introduce and discuss
the central problems.

Winner Determination

When studying elections from a computational point of view, probably the most striking
problem to study is the problem of determining the winners of an election with respect to a
certain voting rule. Consequently, the initial investigation of this problem by Bartholdi, Tovey,
and Trick [1989b], along with their work on manipulation which we will discuss afterwards, laid
the foundation of computational social choice. For a voting rule E , the winner determination
problem is given as follows.
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E-Winner

Given: An election E = (C, V ) and a distinguished candidate p ∈ C.
Question: Is p a winner of the election E = (C, V ) with respect to E?

For voting rules such as the approval voting rule, the family of scoring rules, and many other
well-known voting rules such as Copeland, the winner determination problem is decidable in
polynomial time, usually by direct evaluation of the definitions and formulas with respect to
the given election. However, Bartholdi et al. [1989b] showed that the winner determination
problem for the Dodgson voting rule, introduced by Charles Dodgson [1876], better known
as Lewis Carroll, and for the Kemeny voting rule, introduced by Kemeny [1959], is indeed
NP-hard. Later, Hemaspaandra et al. [1997] and Hemaspaandra et al. [2005] showed that
the winner determination problems for Dodgson and Kemeny are not only NP-hard, but in
fact Θp

2-complete, whereas Θp
2 denotes the class of decision problems that can be solved in

polynomial time by a deterministic Turing machine with parallel access to an NP oracle.
An interesting case is the single transferable vote voting rule (STV), for which the winner
determination problem is NP-complete according to Conitzer et al. [2009], but a single winner
can be determined in polynomial time. The reason for this is that during the evaluation of
STV one may have to break multiple ties, which can result in exponentially many different
paths with possibly different winners at the end. Following an arbitrary path to determine
a single winner is possible in polynomial time. However, it seems that checking whether a
particular candidate ends up as the winner in one of the potentially exponentially many paths
is computationally hard.

Manipulation

In parallel to the winner determination problem, Bartholdi et al. [1989a] also introduced
the first election interference problem, the manipulation problem. For a voting rule E , the
manipulation problem is given as follows.

E-Manipulation

Given: An election E = (C, V ) and a distinguished candidate p ∈ C.
Question: Is there a vote v ∈ V(C), such that p is a winner of the election E′ = (C, V ′)

with V ′ = V ∪ (v) with respect to E?

As mentioned in the introduction, the main motivation for the complexity-theoretic investiga-
tion of the manipulation problem were the results of Gibbard [1973] and Satterthwaite [1975]
and, later, Duggan and Schwartz [2000], which, loosely speaking, state that any somewhat
appropriate voting rule is susceptible to manipulation. Bartholdi et al. [1989a] therefore sug-
gested a possible computational hardness as a possible barrier against manipulation. They
showed that the problem is decidable in polynomial time for scoring rules and Copeland,
among others, using a greedy algorithm, while the problem is NP-complete for the second-
order Copeland rule. This is in so far interesting, as the winner determination problem for
second-order Copeland is decidable in polynomial time and thus the hardness does not arise
from the implicit solution of that very problem through the manipulation problem, but from
the problem of manipulation itself. The extension of the manipulation problem to multiple
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cooperating manipulators is referred to as Coalitional Manipulation and was introduced
by Conitzer et al. [2007]. For a comprehensive overview on the manipulation problem and
the coalitional manipulation problem, especially regarding computational results, we refer to
Conitzer and Walsh [2016]. Note that the problem of manipulation is not malicious per se.
If we want the votes of voters to correspond as closely as possible to their underlying true
preferences, so that we can achieve a satisfactory collective result in this respect, then ma-
nipulation by individual voters is obviously negative and a computational barrier is desirable.
However, in practice, agents rarely vote this way and mostly try to maximize their personal
utility. Thus, it can be argued that it is up to each voter to understand the impact of his or
her vote and thereby, from a fairness and transparency perspective, a computational hurdle
is not desirable. In this respect, the less condemning term strategic voting is often used.

Regarding election interference problems such as manipulation, there is usually the so-called
constructive variant, where we try to make a distinguished candidate the winner, as in the
definition of the manipulation problem presented above, and the destructive variant, where
we try to prevent a distinguished candidate from winning. Further, there is a distinction as
to when the distinguished candidate is a winner, which we refer to as the winner model. In
the unique winner case, the interference is considered successful if, in the constructive case
{p} = E(V ′) and in the destructive case {p} ̸= E(V ′). On the other hand, in the non-unique
winner case, the interference is considered successful if, in the constructive case p ∈ E(V ′)
and in the destructive case p /∈ E(V ′). Thus, in the constructive unique winner case and in
the destructive non-unique winner case we are pessimistic about the tie-breaking and want
to guarantee that the distinguished candidate wins or respectively cannot become the winner
after the tie-breaking. In the constructive non-unique winner case and in the destructive
unique winner case we are optimistic about the tie-breaking and hope that the distinguished
candidate will win or respectively will not win after the tie-breaking. Typically, results focus
on one of the two models, but they can often be transferred to the other case as well.

Control

Following manipulation, Bartholdi et al. [1992] also introduced the interference problem of
election control. Here, the election chair tries to influence the outcome of the election by
deliberately changing the election process. They considered constructive election control by
adding or deleting candidates or voters and partitioning the candidates or voters creating two
primary elections. Since the different classical variants of election control are only of limited
relevance for the results here, we refer to the chapter by Faliszewski and Rothe [2016] for
a comprehensive overview. Another type of election control by the chair is the intentional
design of voting rules which we will consider later in Chapter 4.

Bribery

The third central election interference problem is bribery, which was introduced more recently
by Faliszewski et al. [2006] and is also studied by us in this work. Therefore, we introduce
and discuss it in much more detail in the following Section 2.2.3.
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Possible Winner

Turning away from the interference problems, another central problem in computational so-
cial choice and relevant to many of our results is the possible winner problem, which was
introduced by Konczak and Lang [2005]. For a voting rule E , the possible winner problem is
defined as follows.

E-Possible Winner

Given: A set of candidates C, a partial profile Ṽ over C, and a distinguished
candidate p ∈ C.

Question: Is there a completion V of Ṽ , such that p is a winner of the election E =
(C, V ) with respect to E?

The scenarios in which we need to perform a possible winner determination on partial data
are manifold. They range from election predictions based on incomplete voter preferences
aggregated from social media to winner determination based on incomplete election data due
to social and political circumstances in the area or flaws in data collection or transmission.
The possible winner problem concerning (pure) scoring rules is actually very well studied in
terms of its complexity. Betzler and Dorn [2010] showed that the problem is NP-complete for
all pure scoring rules except plurality, veto and (2, 1, . . . , 1, 0) whereas it is in P for plurality
and veto. Baumeister and Rothe [2012] completed the dichotomy result by showing that the
problem is also NP-complete for (2, 1, . . . , 1, 0). Recently, Chakraborty and Kolaitis [2021]
have strengthened the dichotomy result by showing that it also holds if one assumes that the
partial votes of the voters are partial chains, i.e., each vote consists of a complete order over
a subset of the candidates.

For AV and k-AV, on the other hand, the possible winner problem is in P. In the case of
AV, one only has to check whether the distinguished candidate is a winner if one sets all
undetermined entries for it to 1 and for all other candidates to 0. For k-AV, the problem is a
bit more complicated, since one also has to ensure that each vote contains exactly k approvals
after completion. First, we set each undetermined entry for the distinguished candidate for
which it is possible to 1, and in the next step we use a straightforward flow network to check if
it is possible to distribute the remaining approvals among the undetermined entries such that
no other candidate has more (or at least as many) approvals as the distinguished candidate.

In addition, many special cases and variants of the possible winner problem have been studied
in the literature. For example, Chevaleyre et al. [2010] studied the complexity of the problem
under the assumption that new candidates are added, thus each voter has a complete order
over the existing candidates but the preferences regarding the new ones are missing. The
difference to the special case of Chakraborty and Kolaitis [2021] discussed above is that here
the subset of candidates considered is the same for all voters. Kalech et al. [2011] studied
the special case where voters indicate only their top-k candidates. Moreover, the problem
was also applied to cases other than partial votes. For example, Baumeister et al. [2012] and
recently Neveling et al. [2021] studied the problem for uncertain weights of voters in weighted
elections, and Baumeister et al. [2011b] studied the problem for uncertainty about the voting
rule. The latter variant is also studied by us in Chapter 4.
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However, the possible winner problem as previously defined is only of limited use if a justified
winner actually has to be determined using partial data. For example, it may be that several
candidates or in the worst case all the candidates are possible winners even though preferences
are available. We present a possible solution to this problem in Chapter 5, where we not only
examine whether the candidates are possible winners, but also how likely they are to win
under certain assumptions, making them comparable.

For a general overview regarding the possible winner problem in elections, we refer to the
recent survey by Lang [2020]. The possible winner problem has also been considered in
other areas than elections, most notably in sports, where it is referred to as the elimination
problem. We will introduce this problem later in Section 2.3 and present our results on it in
Chapter 6.

2.2.3 Bribery

While the previously presented concept of manipulation is the most studied problem of elec-
tion interference, especially in terms of its axiomatic and computational aspects, it makes a
very strong assumption: the manipulator is involved so deeply in the election or in the elici-
tation of votes that he or she can specify a certain set of votes however he or she wants. The
question is whether there is a more subtle way for an agent to influence the election. Perhaps,
as a first step, the agent could kindly ask some voters to change their votes, but since this
would probably not be very successful, it seems reasonable to offer the voters a reward for
their willingness to change their votes, thus a trade, which leads us to the concept of bribery.
Note, however, that ‘the trade’ does not have to be the näıve act of handing over a certain
amount of currency in exchange for the service, whereby the boundaries of malicious bribery
quickly become blurred. For example, the offering provided by the agent can also be a simple
giveaway during a promotion event, which may subliminally influence the voter’s preference,
a campaign by a party in order to increase its popularity or decrease the popularity of the
opponents, or the mere gift, or at least the illusion, of personal attention. Bribery in its
various forms was already part of everyday political life in ancient Rome (Lintott [1990]) but
is also not unknown in today’s democracies (Lehoucq [2003]). Especially today’s possibility
to reach a large number of people quickly and anonymously via the Internet provides a great
environment for the various forms of bribery.

The formal definition of bribery considered below in the context of computational social choice
is derived from the original definitions by Faliszewski et al. [2006, 2009a] and the subsequent
work by Faliszewski [2008], Elkind et al. [2009], and Faliszewski et al. [2009b]. The definition
considered here, based on the survey by Faliszewski and Rothe [2016], generalizes the previous
definitions just mentioned in that it provides for a individual generic price function for each
voter. A price function for a certain voter is given by a mapping Π : V(C)→ N0 with Π(v) = 0
for the initial preference v of the voter and V(C) denoting the set of possible preferences over
C with respect to the given preference type. In that sense, a price function specifies how
much the respective voter demands to change his or her initial preference v into v′. Given a
voting rule E , the priced bribery problem is defined as follows.
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E-Priced-Bribery

Given: An election E = (C, V ) with profile V = (v1, . . . , vn), a distinguished
candidate p ∈ C, a budget B ∈ N0, and a collection of price functions
Π = (Π1, . . . ,Πn).

Question: Is there a profile V ′ = (v′1, . . . , v
′
n) over C with

∑n
i=1 Πi(v

′
i) ≤ B, such that

p is a winner of the election E = (C, V ′) with respect to E?

Note that this definition must be seen as a generic framework that is then tailored to the
specific bribery problem, especially with respect to the preference type, the unique winner
or non-unique winner case, the price function itself, and especially the encoding of the price
function. In some cases, additional restrictions may apply in addition to the budget. More-
over, the destructive variant is also considered, in which we have to ensure that p will not be
a winner of the election with respect to the winner case after the interference. To bring this
definition to life, we will now discuss the bribery models in the previously mentioned work,
which have led to this more general definition.

As previously mentioned, Faliszewski et al. [2006, 2009a] initiated the study of the compu-
tational complexity of bribery in elections. They consider both approval as well as ordinal
elections. For their definition, referred to as Bribery, the discrete price function is used with
Πi(v

′
i) = 0 if vi = v′i and 1 otherwise, which simply limits the total number of voters for

which we can change the vote by B. Moreover, they also considered $Bribery with price
function Πi(v

′
i) = 0 if vi = v′i and pi otherwise, in which each voter i is assigned a certain

price pi, whereas B now limits the total costs we can invest for changing the votes. Regarding
approval vote elections, they also considered Bribery’ and $Bribery’ in which the price
function depends on the number or, for the latter priced variant, the sum of the approval-
specific prices of flipping approvals of the voter. Here, only the cost per voter is constrained
by B, instead of the total sum. Thus, in the latter two definitions, we theoretically have the
possibility to bribe every voter in the election simultaneously, which can be considered rather
unnatural, while in the first definition we assume that the voters do not care how we change
their votes as long as we pay the initial price, even if we only want to make small changes
that may not be even very relevant to them. Faliszewski et al. [2009b] introduced a new
variant called Microbribery for elections in which preferences consist of complete pairwise
comparisons over the candidates but, unlike for the ordinal preference we introduced earlier,
do not have to be transitive. In this variant, the agent pays a price of 1 for each comparison
flip in a voter’s preference, analogous to Bribery’, but as in Bribery we bound the total
costs. This more natural way of aggregating the costs, which is now standard in the liter-
ature, combines the advantages of the two previous definitions considered above: it is both
sensitive to the strength of change in each preference and to the total costs. However, there
are two major drawbacks with the definition of Microbribery: first, the preference model
is rather unnatural and second, each flip of a pairwise comparison costs the same. These two
points of criticism were addressed by Elkind et al. [2009] in the definition of Swap-Bribery,
which is defined on ordinal preferences and also allows voters to set prices for swapping two
adjacent candidates. In addition, they also defined Shift-Bribery in which only swaps
moving the preferred candidate forwards, or in the destructive case the unpreferred candidate
backwards, are allowed. Now, one reason for the success of these models compared to the
general framework is the encoding of the price functions. In the general framework, the price
function for each voter has to be encoded by m! values for ordinal votes and 2m values for
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approval votes, which makes an evaluation of the computational complexity of the problems
on a polynomial scale pointless. However, this is not the case for the price functions in the
previously mentioned models. Bribery, Bribery’, and Microbribery do not require any
parameters at all, while $Bribery requires only one per voter, and $Bribery’ only m per
voter. Swap-Bribery requires O(m2) per voter and Shift-Bribery only O(m).

Due to the massive number of results on bribery in the literature, we will limit ourselves here
to the results that are most relevant to our later investigations in Chapter 3 and Chapter 5.
Thus, we focus on the results regarding scoring rules and the two most prominent variants of
bribery, namely Bribery and Swap-Bribery. Bribery is known to be efficiently decidable
for plurality and veto (Faliszewski et al. [2006]), 2-approval and 2- and 3-veto (Lin [2012]) and
NP-complete for k-approval with k ≥ 3 and k-veto with k ≥ 4 (Lin [2012]), Borda (Brelsford
et al. [2008]), STV (Xia [2012]), Copeland (Faliszewski et al. [2009b]), and many others. In
particular, it is known that Bribery is NP-complete for all pure scoring rules apart from
the previously mentioned ones and (2, 1, . . . , 1, 0) for which it is in P, whereby for the former
probably no polynomial-time solution exists (Hemaspaandra and Schnoor [2016]). Similar
results are available for Swap-Bribery, for which Elkind et al. [2009] have shown that there
exists a polynomial-time algorithm for plurality and veto. For all other pure scoring rules,
the problem is NP-complete by a simple reduction from Possible Winner which, according
to Betzler and Dorn [2010] and Baumeister and Rothe [2012], is NP-complete for all pure
scoring rules except plurality and veto. It should be mentioned that besides the worst-case
results mentioned above, the problems were also studied in terms of their approximability,
parameterized complexity, and complexity on restricted preference domains, e.g., by Brelsford
et al. [2008], Dorn and Schlotter [2012], Bredereck et al. [2016], and Faliszewski et al. [2019,
2021], Knop et al. [2020], and Elkind et al. [2020], among others.

In the following, we will discuss further models of bribery in the literature. More recently,
Knop et al. [2020] considered a generalization and combination of swap bribery with election
control, where the agent can pay for swaps as well as, in the case of approval voting rules,
for a shift in the approval threshold of a voter, i.e., the position in his/her ordinal preference
at which he/she starts approving candidates, as well as for removing and adding voters as
in the respective control problems. Moreover, they have determined the long unresolved
parameterized complexity of swap bribery, in terms of the number of candidates using n-
fold integer programs. Previously, Obraztsova and Elkind [2012] considered an extension of
the manipulation problem, called optimal manipulation, in which the manipulator tries to
achieve a manipulation that deviates as little as possible from his initial vote with respect to
the unweighted swap, the footrule distance, or the maximum displacement distance. Thus, the
problem corresponds to bribery restricted to a single bribable voter. The motivation is that
even if the manipulator is willing to change his or her vote, he or she does not want to deviate
too much from his or her initial vote due to convictions or fear of being discovered, especially if
the votes are public. The distance restricted bribery model of Yang et al. [2016] combines the
above-mentioned Bribery and Bribery’ model of Faliszewski et al. [2006, 2009a] differently
than the definition of Microbribery. Instead of looking at the total cost, the total number
of bribable voters is still restricted and in addition there is a threshold for how much a
bribed vote may deviate from the initial vote according to a certain distance. The motivation
for introducing the vote-wise distance restriction is the same as for optimal manipulation,
whereas here not only the voters want to hide their dishonesty, but also the agent may want
to hide the whole bribery attempt. Similar to the work of Yang et al. [2016], Dey [2019] also

27



Chapter 2 Background

studied Bribery’ and $Bribery with additional distance restrictions. Another interesting
extension of $Bribery was introduced by Dey et al. [2016], the so-called frugal bribery. Here,
the very natural restriction is imposed that the agent only approaches voters who also prefer
the distinguished candidate of the agent over the current winner and are thus presumably
more willing to cooperate. Constructive and destructive bribery with respect to distances as
price functions, in the fashion of Swap-Bribery, with the restriction on total costs, has been
studied by us, which we discuss in much more detail in Chapter 3 and in Chapter 5.

As mentioned in the introduction to this section, the lines between malicious bribery and
the generally considered acceptable, and in some cases even positive, promotion of one’s own
agenda are easily blurred. Hence, the underlying problem of bribery has also been examined
in other contexts. Note that all the problems mentioned in the following can be formulated
as bribery problems. For example, Christian et al. [2007] examined a variant of bribery in the
sense of lobbying. Further, Elkind and Faliszewski [2010] studied shift bribery as a framework
for campaigning and, recently, Zagoury et al. [2021] have studied negative campaigning in a
slightly different model where the possible degradation operations are given as a set. However,
even if these problems have a different motivation than bribery, they are still interference
problems in which an agent tries to influence the outcome of an election.

On the other side, there are several concepts in the literature where bribery only serves as
an underlying framework, but the goal is not interference but analysis. The best known is
the margin-of-victory (MoV) problem, which asks how many votes must be replaced at least
for the winner of the election to change. Getting back to our bribery models, this problem is
equivalent to the destructive variant of Bribery. The main motivation here is to assess the
strength of a candidate’s victory and, related to that, the robustness of the election outcome.
Thus, a high MoV speaks for such a clear election outcome that even the possibility of minor
interferences in the conduct of the election does not cast doubt on the legitimacy of the
result. This problem has been studied most notably by Cary [2011], Magrino et al. [2011],
and Xia [2012]. Note that while many of the election problems are rather theoretical, the
consideration of the MoV is often applied in practice and is either common practice or even
incorporated in the law. For an overview regarding the legislation concerning U.S. elections
see e.g., Tokaji [2004]. Following the same motivation, Shiryaev et al. [2013] investigated the
destructive variant of swap bribery with unit costs, referred to as the robustness problem.
Compared to the MoV, the robustness problem allows for a more fine-grained evaluation
of the robustness of an election outcome by taking into account errors, manipulations, and
uncertainties within votes. As a next step regarding the study of robustness, the complexity
of the counting variants of the respective problems were examined by Boehmer et al. [2021a]
and also by us. We will discuss those attempts in more detail in Chapter 5.

So far, we have focused mainly on bribery regarding single-winner elections, whereas bribery
was also investigated with respect to multi-winner elections by Faliszewski et al. [2017] and
with respect to iterative elections by Maushagen et al. [2018] and Zhou and Guo [2020]. Ro-
bustness was also studied regarding multi-winner elections by Bredereck et al. [2017, 2021].

Finally, it must be mentioned that bribery is not only studied in the context of elections but
also in related areas. For example, Baumeister et al. [2011a] studied the problem of bribery
regarding judgment aggregation, Rey and Rothe [2011] regarding path-disruption games in
graphs, Mattei et al. [2015] regarding sports tournaments, Grandi and Turrini [2016] regarding
rating systems, Erdélyi et al. [2017, 2020] regarding group identification, D’Angelo et al. [2021]
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regarding vote delegation games in liquid democracy, and Boehmer et al. [2021b] regarding
the stable marriage problem.

2.3 Sports

2.3.1 Competitions & Tournaments

Besides elections we also consider competitions and tournaments, especially in the context of
sports tournaments. As before for collective decision-making processes, the developments of
the last decades have made the computational of problems related to sports tournaments more
and more relevant. Those developments include, for example, the widespread establishment
of online gaming and e-sports, the ongoing monetization of sports e.g., through advertising
and gambling, and the amount of freely available data from countless sporting events. The
reason why we consider tournaments here together with elections are the strong similarities
in the basic framework. As with elections, we are given a set of agents from which a winner
has to be determined. Adapted to the scenario, however, we do not refer to it as the set of
candidates here, but as the set of teams T = {t1, . . . , tn}. Unlike elections, the winners here
are not to be determined based on voters’ preferences but based on performance comparisons
between the teams. We distinguish between two different types of comparisons: rankings and
pair-wise comparisons.

Ranking-Based Tournaments

Rankings are defined analogously to ordinal preferences in elections, that is all teams are
ranked from position one to position n. Rankings can have different origins, the most ob-
vious being race results as commonly used in motorsports or skiing, where participants are
ranked according to their finishing time. However, rankings can also come from a jury, as
in the Eurovision Song Contest, where each juror ranks the participants according to their
perceived performance. While this approach is again very similar to voting, the rationale
here is different. While in an election voters choose candidates according to their preferences,
jurors are supposed to rank participants objectively according to their performance.

Competitions and tournaments regarding rankings are often evaluated using scoring systems,
which are defined analogously to the scoring rules used in elections. Examples include skiing,
which currently uses α⃗ = (100, 80, 60, 50, 45, 40, 36, 32, 29, 26, 24, 22, 20, 18, 16, 15, 14, 13, 12,
11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, . . . , 0) in the major races such as the world cup, and the Formula
1, which has used many different scoring systems over the years, such as α⃗ = (9, 6, 4, 3, 2, 1, 0,
. . . , 0) in 1961–1990, (10, 6, 4, 3, 2, 1, 0, . . . , 0) in 1991–2002, (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) in
2003–2009, and (25, 18, 15, 12, 19, 8, 6, 4, 2, 1, 0, . . . , 0) in 2010–2018. However, scoring systems
are also used in non-sports competitions such as the Eurovision Song Contest with α⃗ =
(12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0, . . . , 0). In Chapter 4 we show that the chosen scoring system can
have a massive impact on the outcome, not only theoretically but also in practice.

In practice, there are also other approaches for evaluating ranking-based competitions. One
example is the Inverse-Borda-Nash rule used in the Olympic climbing competition, which was
named and studied by Kruger and Schneckenburger [2019].
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Pair-Wise Tournaments

Pair-wise comparisons, on the other hand, represent the outcomes of direct comparisons
between two teams, which we refer to as matches. The actual nature of these outcomes will
be discussed in in the following, depending on the chosen tournament format.

We start by considering score-based pair-wise tournaments, following the very general defini-
tions by Kern and Paulusma [2004]. In a score-based pair-wise tournament, the tournament
T = (T,M) consists of the set of teams T = {t1, . . . , tn} with n ≥ 2 and a set of pair-wise
matchesM = {m1, . . . ,mg} with g ≥ 1. As described above, each matchmi inM is associated
with a tuple (tx, ty) of competing teams tx, ty ∈ T with tx ̸= ty. For the purpose of visualizing
a tournament T , we use the so-called match graph of T , an undirected multi-graph consisting
of the teams as nodes and an edge for each match connecting the participating teams. Over
the course of a tournament, the matches result in specific outcomes which are associated with
certain amounts of points that the teams receive for their performances. For example, in
football (soccer) the winning team receives 3 points, while the other team receives 0 points.
In the case of a draw, both teams receive 1 point. In basketball it is the same, except that
the winning team gets 2 points instead of 3. In baseball there are no ties and either one
or the other team receives a point. In volleyball there are several different combinations of
points based on the strength of the win. Formally, we specify these rules by the set of pos-
sible outcomes O = {(α1, β1), . . . , (αℓ, βℓ)} with ℓ ≥ 1 and αs, βs ∈ N0 for 1 ≤ s ≤ ℓ. In
practice, some sports use rational amounts of points, such as in chess with 1/2 points for a
draw. However, those set of outcomes can be scaled to equivalent ones over N0. If a match
m : (tx, ty) results in an outcome (αs, βs), it means that team tx gets αs points and team ty
gets βs points. At the end of the tournament, the teams that have the maximum number of
points are the winners. By default, we assume that there is at least one outcome (αs, βs) ∈ O
with αs ̸= βs. In many cases, we will also assume that, as in most real-world tournaments,
the set of outcomes is symmetric, that is (βs, αs) ∈ O for all (αs, βs) ∈ O.

Note that for symmetric sets of outcomes the actual order of the teams in the match tuples
is negligible from a conceptual point of view, as long as it is clear which team receives which
amount of points. In many real-world tournaments, the first team of a match tuple is usu-
ally the so-called home team, i.e., the team in whose sports facility the match takes place.
Accordingly, in this case, the second team is the away team that travels for the match. In
general, the above definition of the set of outcomes allows, for example, the away team to
receive more points than the home team in the case of a draw or a win, in order to counteract
the home advantage, which has been statistically proven in many tournaments. However, the
home advantage is overcome in most tournaments by the fact that each pair of teams always
plays an even number of matches against each other, and thus each team can be the home
team the same number of times. Furthermore, it should be noted that the above definition of
a tournament also allows for extremely unrealistic and unfair tournaments, e.g., tournaments
in which the teams play different numbers of matches. This leads us to the most common type
of score-based pair-wise tournaments, but also of tournaments in general, used in practice.

A round-robin tournament is a score-based pair-wise tournament in which each teams plays
exactly once against each other team. A round-robin tournament with k rounds is a con-
catenation of k single-round round-robin tournaments as defined above. We illustrate these
definitions with an example.
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t1

t2t3

t4

Figure 2.7: Match graph for the round-robin tournament T considered in Example 2.7.

Example 2.7. Consider the following two-round round-robin tournament T = (T,M) over
the set of teams T = {t1, t2, t3, t4} and the set of matches M = {m1, . . . ,m12} given as
follows.

m1 : (t1, t2) m2 : (t2, t1) m3 : (t1, t3) m4 : (t3, t1)
m5 : (t1, t4) m6 : (t4, t1) m7 : (t2, t3) m8 : (t3, t2)
m9 : (t2, t4) m10 : (t4, t2) m11 : (t3, t4) m12 : (t4, t3)

The corresponding match graph is illustrated in Figure 2.7. We now assume that the
tournament was conducted using the set of outcomes O = {(2, 0), (1, 1), (0, 2)} and the
matches resulted in the following outcomes.

m1 → (2, 0) m2 → (1, 1) m3 → (1, 1) m4 → (2, 0)
m5 → (0, 2) m6 → (1, 1) m7 → (0, 2) m8 → (1, 1)
m9 → (1, 1) m10 → (2, 0) m11 → (2, 0) m12 → (1, 1)

To determine the winner(s), the scores of the teams are calculated by adding up the points
over the individual matches. Thus, t3 wins the tournament with 9 points, ahead of t4 with
7 points, t1 with 5 points, and t2 with 3 points.

There are numerous real-world examples for sports using round-robin tournaments. We have
summarized some of them together with the currently most commonly used set of outcomes
in Table 2.1. Note that in this work we focus on stand-alone round-robin tournaments where
the winning teams are the teams with the maximum number of points, possibly followed by
a tie-breaking. On the other hand, in many sports it is common that after the round-robin
tournament (or after multiple separated round-robin tournaments), often referred to as the
regular season, a certain number of top-ranked teams participate in a tournament for the
championship, often referred to as post-season.

In addition, round-robin tournaments are often used as intermediate or qualification phases
in larger tournaments. Examples are the so-called group stages of the FIFA World Cup or
the UEFA Champions League, in which a certain number of top-ranked teams from each
group then compete against each other in an elimination tournament. In addition, there are
many variations of round-robin tournaments in practice. For example, in the major North
American leagues, namely the National Football League, the National Basketball Association,
the National Hockey League, and the Major League Baseball National League and American
League, teams are divided into several divisions and smaller regional groups. The teams

31



Chapter 2 Background

Sport Set of Outcomes O

Baseball {(1, 0), (0, 1)}
Chess {(1, 0), (1/2, 1/2), (0, 1)}

Football (Soccer) {(3, 0), (1, 1), (0, 3)}
Ice Hockey {(3, 0), (2, 1), (1, 2), (0, 3)} or {(2, 0), (2, 1), (1, 2), (0, 2)}
Volleyball {(3, 0), (2, 1), (1, 2), (0, 3)}

Table 2.1: Examples of commonly used sets of outcomes in sports.

usually play a multi-round round-robin tournament in the regional group and in addition
play several games against teams from other groups and other divisions.

One reason why round-robin tournaments are so popular is the relative fairness and, related
to that, the perceived closeness of the final standing to the actual performance level. The
main reasons for this are that there is comparatively low dependence of the outcome on the
often randomly determined circumstances, that each team actually competes directly or even
several times against each competitor, and that the high number of matches compensates for
fluctuations in performance over the season. However, this comes at the cost of a very high
number of matches, possibly including even irrelevant matches at the end.

In a single-elimination tournament (also known as cup tournament), teams compete in rounds,
with each team that has not yet been eliminated competing in one match per round. The
losing teams in each round are eliminated from the tournament. We illustrate a single-
elimination tournament in Figure 2.8. Well-known examples for this type of tournaments
are the final stage of the FIFA World Cup or the UEFA Champions League, where in the
latter the teams actually compete against each other twice, except for the final, and the goals
are summed up in order to overcome a possible home advantage. Especially compared to
the round-robin tournaments, two main advantages are that we only need a relatively small
number of matches and that every remaining match is relevant and can have a direct impact
on the outcome. However, single-elimination tournaments have one major drawback: the
difficulty of a team to win the tournament can be highly dependent on the initial drawing of
the matches, the so-called seeding. This can massively affect perceived fairness and sometimes
leads to the conclusion that the winner was not necessarily the best team, but was lucky, either
in the seeding or in the matches.

t1 t2 t3 t4 t5 t6 t7 t8

t1 t4 t6 t7

t4 t7

t4

Figure 2.8: Example of a single-elimination tournament over eight teams with winner t4.
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There are also other tournament formats in practice, some of which are extensions and combi-
nations of the above. For example, there are also double-elimination tournaments, in which a
team is only eliminated if it has lost twice and is moved to a second branch of the tournament
after the first defeat. The Swiss system, often used in chess and becoming more and more
popular, is a combination of a score-based pair-wise tournament and a round-based elimina-
tion tournament, in which the teams earn points according to a set of outcomes and compete
in each round against a team with a similar score.

2.3.2 Computational Problems

As for elections, we will now present the computational problems for tournaments that are
relevant to our research here. In particular, we will focus on the problems regarding round-
robin tournaments, which we will later study in Chapter 6.

Scheduling

A key aspect of organizing a tournament is scheduling the matches. Before it comes to
choosing an exact date and time, there is usually the question of which matches will take
place in parallel or in the same time frame, the so-called matchday. It is usually assumed by
default that each team participates in at most one match per matchday. Now, if we look at
a score-based pair-wise tournament T = (T,M), we can see that such a schedule S : M → D
with S(m) ̸= S(m′) for two adjacent matches m,m′ ∈ M with D = {1, . . . , d} denoting the
set of available matchdays is actually equivalent to an edge coloring of the match graph.

Example 2.8. Consider the two-round round-robin tournament T given in Example 2.7.
One possible schedule S with the minimum number of matchdays required d = 6 is the
following.

Matchday 1 (S(m) = 1)

m5 : (t1, t4)
m7 : (t2, t3)

Matchday 2 (S(m) = 2)

m3 : (t1, t3)
m10 : (t4, t2)

Matchday 3 (S(m) = 3)

m1 : (t1, t2)
m11 : (t3, t4)

Matchday 4 (S(m) = 4)

m6 : (t4, t1)
m8 : (t3, t2)

Matchday 5 (S(m) = 5)

m4 : (t3, t1)
m9 : (t2, t4)

Matchday 6 (S(m) = 6)

m2 : (t2, t1)
m12 : (t4, t3)

Figure 2.9 shows an edge coloring of the match graph of T corresponding to S.

Due to this equivalence, we already know from the results of Holyer [1981] regarding the edge
coloring of cubic (3-regular) graphs that checking whether a score-based pair-wise tournament
can be scheduled with a given number of available matchdays is NP-complete, even if there
are only three matches per team and the number of available matchdays is three. On the
positive side, we also know, through the theorem of Vizing [1964], that if ∆ denotes the
maximum number of matches of a team in the tournament, the tournament can be scheduled
using ∆ + 1 matchdays.
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Figure 2.9: Edge coloring of the match graph of tournament T corresponding to the
schedule S given in Example 2.8.

For the special case of single-round round-robin tournaments, on the other hand, the problem
can be solved efficiently as the match graph is a complete graph which can be efficiently
colored using the minimum number of colors required, namely ∆ for even n and ∆+1 for odd
n with ∆ = n − 1. For multi-round round-robin tournaments, schedules for the individual
rounds are usually concatenated. There are numerous methods that can be used to find
such a schedule with the minimum number of matchdays required. Since most methods are
designed for an even number of teams, in the case of an odd number of teams a placeholder
team is usually added, whose matches simply correspond to a break for the respective team.
The standard method is the so-called circle method, which is also known as the canonical
1-factorization in the context of graphs. However, in practice there are a number of other
methods that take into account other aspects, such as teams alternating between home and
away matches as consistently as possible, a team not having to play several matches in a
row against the top teams, and that the schedule is randomized to some extent for fairness
reasons. For a comprehensive overview on the various aspects of round-robin tournament
scheduling, we refer to the survey by Rasmussen and Trick [2008].

An interesting question related to scheduling round-robin tournaments is whether one can
simply schedule the matchdays one after the other as desired and achieve a valid schedule with
the minimum number of matchdays required. Rosa and Wallis [1982] have shown that this is
not the case and have studied the property of partial schedules over only a subset of matchdays
of not being extendable to complete schedules with only the minimum number of matchdays
required. They referred to this property of a partial schedule, or equivalently of a partial edge
coloring, as premature. An example for such a premature schedule is given in Figure 2.10.
Furthermore, Colbourn [1983] showed that checking whether a given partial schedule is non-
premature is NP-complete. The results of Rosa and Wallis [1982] and Colbourn [1983] show
that scheduling round-robin tournaments is actually not trivial and especially not if we would
like the schedule to fulfill certain requirements. This means in particular that one cannot
simply schedule certain match days as desired, for example to increase television revenues
by having as few top matches as possible in parallel. Moreover, these observations are of
immense theoretical importance, especially for us, since they show that the requirement of
a schedule, as they exist for real-world tournaments, is a non-trivial restriction with respect
to complexity results. This is especially relevant since most previous results did not involve
schedules and the instances constructed in the reductions could not occur in practice.
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Figure 2.10: Premature schedule for a single-round round-robin tournament T = (T,M)
over the teams T = {t1, . . . , t6}.

Elimination

In the course of a tournament, the question of who will or can be the winner inevitably arises
at some point. For single-elimination tournaments, this question is trivial: any team that
has not yet been eliminated can still become the champion. For round-robin tournaments
and score-based pair-wise tournaments in general, this question is not so easy to answer. We
illustrate the problem in the following example.

Example 2.9. Suppose we consider a partially played single-round round-robin tournament
T = (T,M) over T = {t1, t2, t3, t4, t5, t6} with O = {(3, 0), (1, 1), (0, 3)} and the following
matches, schedule, and results.

Matchday 1

m1 : (t1, t6)→ (1, 1)
m2 : (t2, t5)→ (3, 0)
m3 : (t3, t4)→ (1, 1)

Matchday 2

m4 : (t1, t5)→ (3, 0)
m5 : (t2, t3)→ (3, 0)
m6 : (t4, t6)→ (0, 3)

Matchday 3

m7 : (t1, t4)→ (3, 0)
m8 : (t2, t6)→ (3, 0)
m9 : (t3, t5)→ (0, 3)

Matchday 4

m10 : (t1, t3)
m11 : (t2, t4)
m12 : (t5, t6)

Matchday 5

m13 : (t1, t2)
m14 : (t3, t6)
m15 : (t4, t5)

The scores after the first three matchdays are as follows: t2 leads with 9 points, followed
by t1 with 7 points, t6 with 4 points, t5 with 3 points, t3 with 1 point, and t4 with 1 point.

We now want to check which teams can still become the unique winner of the tournament.
The teams t3, t4, and t5 are already eliminated in this respect, as neither of them can
surpass team t2 with at most 6 remaining points. Clearly, the current leading team t2
can become the unique winner by winning its remaining two matches, regardless of the
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outcomes of the other matches. The same is true for team t1, which will definitely be the
unique winner if it wins its two remaining matches, since one of them is against t2. The
third team t6, however, has no chance to become the unique winner, although it can still
surpass team t2 with 6 additional points. The key problem for t6 is that t1 and t2 are still
facing each other and t2 has to lose this match so that t6 can surpass it. However, in that
case t1 has at least 10 points and t6 cannot become the unique winner anymore.

While in this small example the reasoning why a certain team can no longer become unique
winner, although it can still catch up with the leading team, was quite straightforward, the
reasoning for larger examples can become very complex. This leads us to the formal definition
of the corresponding computational problem. Formally the problem of checking whether a
certain team can still become a unique winner of a partially played tournament is referred
to as the sports elimination problem. Given a fixed set of possible outcomes O, the decision
problem is given as follows.

O-Elimination

Given: A score-based pair-wise tournament T = (T,M), a partial assignment of
outcomes in O to M , and a distinguished team p ∈ T .

Question: Is there a completion of the partially played tournament T , such that p
ends up as the unique winner?

In fact, the sports elimination problem is the counterpart to the possible winner problem for
elections that we discussed in Section 2.2.

Schwartz [1966] has shown that the elimination problem for baseball with O = {(1, 0), (0, 1)}
can be solved efficiently, by reformulating it as a network flow problem with O(n2) nodes
and applying the algorithm by Ford and Fulkerson [1956], whereas n denotes the number
of teams. Gusfield and Martel [1992] later improved this result by finding a formulation
using O(n) nodes. Subsequently, Wayne [2001] showed that there is a uniform score value
for all teams that can be calculated in polynomial time and for which a team is eliminated
if and only if it can no longer reach it. Bernholt et al. [1999], on the other hand, showed
that the elimination problem is actually NP-complete for O = {(3, 0), (1, 1), (0, 3)}, even in
the case where each team has at most three remaining matches and the tournament is an
ordinary, partially played round-robin tournament. They have also shown that the problem
can be solved efficiently in the case that each team has at most two remaining matches.
However, they did not pay attention to the existence of a suitable schedule that would allow
the constructed situations to occur in a real-world tournament. We will discuss this issue
later in Chapter 6.

Kern and Paulusma [2004] studied a more general variant of the elimination problem for
score-based pair-wise tournaments in which the current scores are given as a vector and not
by a partially played tournament. They presented a scheme to normalize set of outcomes to
show the following dichotomy result. For all sets of outcomes O = {(j, k − j) | 0 ≤ j ≤ k}
for k ∈ N and equivalent ones, they showed that the problem is solvable in polynomial time
by extending the approach by Schwartz [1966]. For all other sets of outcomes, the problem is
NP-complete, even if each team has at most three matches remaining. However, this result
should be taken with a grain of salt: the tournaments constructed in the reduction are for the
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most part very unrealistic and the initial score vector can be set arbitrarily, even if the score
vector cannot be generated by a partially played pair-wise tournament3. The parameterized
complexity of this variant of the elimination problem was also later studied in much more
detail by Cechlárová et al. [2016], with respect to various parameters such as the number of
remaining matches per team and graph parameters, such as the tree width and the minimum
feedback arc set size, of the match graph regarding the remaining matches. While efficiency
results and parameterized efficiency results transfer from this more general variant to the
normal variant with a partially played tournament, the same applies in the other direction
for hardness results.

The elimination problem has also been studied for other types of tournaments. As mentioned
at the beginning, for elimination tournaments, a team can still become champion if it has
not yet been eliminated. Neumann and Wiese [2016] studied the complexity of the elimina-
tion problem with respect to the system used in debating leagues, where four teams compete
against each other, and with respect to the Swiss system. In addition, many variants and
extensions of the elimination problem have been studied. Hoffman and Rivlin [1967] stud-
ied an extension of the elimination problem for Baseball where the goal is to check whether
a team can still reach at least a certain position. The motivation here is for example to
check if a team can still qualify for the post-season, a promotion, or for international tour-
naments. McCormick [1999] showed that this problem is NP-complete for Baseball with
O = {(1, 0), (0, 1)}, for which the regular elimination problem can be solved efficiently. Mat-
tei et al. [2015] studied the probabilistic variant of the elimination problem, where one not
only wants to know whether a team can become champion, but also with what probability
it will become champion. They studied this problem and various interference problems such
as manipulation and bribery for different tournament formats, including round-robin tourna-
ments and single-elimination tournaments. We will discuss this variant in much more detail
in Chapter 6.

Another very interesting problem in connection with tournaments, more specifically single-
elimination tournaments, is the problem of agenda control, where the goal is to construct a
single-elimination tournament in such a way that, under certain assumptions, the victory of
a team is guaranteed or the chance of victory is maximized. A special case of this problem is
the tournament fixing problem, where the structure of the tournament tree is given, and an
advantageous initial seeding has to be found. We refer to the survey by Williams [2016] for a
comprehensive overview.

3In fact, Pálvölgyi [2009] showed that the problem of checking whether a given score-based pair-wise tour-
nament can generate a certain score vector is itself already NP-complete for many sets of outcomes, as
already suspected by Kern and Paulusma [2004].
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Chapter 3

Distance Bribery in Elections

This chapter deals with the classical computational decision complexity of constructive and
destructive bribery with respect to distance-based price functions in scoring rule elections.

3.1 Summary

Inspired by the swap bribery problem by Elkind et al. [2009] and the robustness problem
by Shiryaev et al. [2013], i.e., destructive unit cost swap bribery, we study the problem of
constructive and destructive bribery in scoring rule elections on ordinal preferences in which
the price functions are given by distances, namely the weighted swap distance and the weighted
footrule distance as introduced by Kumar and Vassilvitskii [2010]1. For a set of candidates C
the weighted swap distance and the weighted footrule distance between two ordinal preferences
v and v′ over C are defined as follows:

swapwπ (v, v
′) =

∑
x>vy and y>v′x,

x,y∈C

π(x, y)

frwπ (v, v
′) =

∑
y∈C

∣∣∣∣∣∣
∑

x>vy, x∈C
π(x, y)−

∑
x>v′y, x∈C

π(x, y)

∣∣∣∣∣∣
with π : C × C → N0 with π(x, y) = π(y, x) for x, y ∈ C with x ̸= y and π(x, x) = 0
for x ∈ C denoting the weight function of a given voter. Note that distances, by satisfying
the (pseudo)metric properties, appear to be a rather natural framework for price functions
of rational voters, both for the study of bribery and robustness. In particular, the origi-
nal bribery problems presented in Section 2.2.3 use vote-wise distances as price functions.
Namely, Bribery uses the discrete distance and $Bribery uses a weighted variant of the
discrete distance, Bribery’ and $Bribery’ use the regular and a weighted variant of the
Hamming distance, respectively, Microbribery uses the Hamming distance on the pairwise
comparisons, and Swap-Bribery and Shift-Bribery use the weighted swap distance. Es-
pecially, also the robustness motivated problems like the one of Shiryaev et al. [2013] and the
margin-of-victory problem use the swap distance and the discrete distance, respectively.

In particular, we are interested in understanding how the degree of expressiveness of the price
functions affects the complexity of the problem. Thus, we scale the expressiveness of the
price functions by controlling the adjustability of the pairwise weights π(x, y) for x, y ∈ C
with x ̸= y that parameterize the distances, following Kumar and Vassilvitskii [2010]. We
distinguish between the unweighted variants with π(x, y) = 1, the element-weighted variants
π(x, y) = φ(x) · φ(y) with candidate weights φ : C → N0, and the fully weighted variants

1Kumar and Vassilvitskii [2010] actually used the terms generalized swap/footrule distance instead of weighted
swap/footrule distance, hence the name of theirs and our publication.
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where π(x, y) = π(y, x) can be set arbitrarily. In fact, the expressiveness increases in the
order in which the variants are given, in the sense that each variant generalizes the previous
ones. However, the required amount of information also increases, noticeable in the number
of parameters, namely O(1), O(m), and O(m2). All three variants are easy to motivate. In a
setting like the one of Shiryaev et al. [2013], where we only know the preferences of the voters,
the most intuitive way without making any further, possibly too speculative, assumptions is
to weight all pairs of candidates equally. This is particularly appropriate if we want to
measure the robustness and the uncertainties arise from technical errors in the collection or
transmission of the election data and are not dependent on the candidates. While this model
is appealing for its relatively low information demand and general complexity, in many cases
it is not realistic enough to represent voters’ natural sense of the strength of changes and
deviations in their preferences. For example, a voter is likely to have a relatively strong
opinion regarding the placement of certain candidates, such as his or her favorite and least
favorite candidates, while the placement of other candidates are relatively unimportant to
him or her as long as they do not interfere with the previously mentioned ones. This can be
reflected in the element-weighted variant, where each voter can weight the candidates, e.g.,
according to their personal perception of importance. While this model is already relatively
expressive, there are also natural settings that cannot be represented here. For example, it
is possible that a voter cares very much that a certain group of unpopular candidates is and
remains on the last positions, but a change in the intern positions of this group makes no
real difference to him or her. This is where the fully weighted variant would come into play,
which requires a lot of information, but is also highly adjustable.

Our results, together with the previous results, cover almost the entire spectrum for the
different degrees of expressiveness, for the constructive and destructive case, and for the most
prominent scoring rules. We were able to show that the transition in complexity, from P to
NP-completeness, depending on the voting rule, distance, and constructive or destructive case,
can happen at any point of transition to the next more expressive weighting: For plurality,
for example, all cases are in P, while for (2, 1, . . . , 1, 0) in the destructive case the footrule is
still in P for the element-weighted variant, but NP-complete for the fully weighted one. For
k-approval with k ≥ 2, the problem is still in P for the constructive case and the unweighted
swap distance but is already NP-complete for the element-weighted variant. Finally, for Borda
in the constructive case, the problem is already NP-complete for the unweighted variants of
the two distances. Thus, we have found a rich and diverse spectrum of complexity results
depending on the expressiveness of the weighting and the price function.

We were also able to develop much more general results. For example, our efficiency result
for the destructive case and the fully weighted variant for both distances covers not only
the k-approval voting rules with fixed k including plurality and veto, but pure scoring rules
in general whose scoring vectors behave rather statically. On the other hand, our hardness
result covers many scoring rules whose score vectors grow more dynamically, such as Borda,
⌊m/2⌋-approval, and many others. Furthermore, for the constructive case for the element-
weighted variants, we could develop a complete dichotomy result covering all pure scoring
rules. In addition, our hardness results cover many additional restrictions. For example, our
dichotomy result also applies to uniform candidate weights for all voters with only a small
set of total weights necessary. The results for the destructive case, which also cover the
constructive case, hold even if only one particular voter is bribable at all, which corresponds
to the optimal manipulation problem of Obraztsova and Elkind [2012].
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Recently, Chakraborty and Kolaitis [2021] studied the possible winner problem with prefer-
ences restricted to partial chains, i.e., partial orders consisting of total orders on a non-empty
subset of candidates, which, unlike the normal possible winner problem, can be easily reduced
to the element-weighted swap distance bribery by simply setting the weights for the candi-
dates in the subset to 1, for all others to 0, and setting the distance limit to 0 as well. Their
dichotomy result with respect to pure scoring rules thus also confirms the dichotomy result
here, even if restricted to candidate weights 0 and 1. However, the uniform weight functions
for all voters are not covered, since the results for the case with a uniform set of candi-
dates, which is equivalent to the possible winner problem with new candidates introduced by
Chevaleyre et al. [2010], are not complete regarding pure scoring rules.

We answer a number of open questions in the literature, e.g., one by Shiryaev et al. [2013]
concerning the complexity of destructive swap bribery on (pure) scoring rules and the com-
plexity of robustness with respect to the footrule distance, and of Obraztsova and Elkind
[2012] concerning the optimal manipulation problem for Borda and the weighted swap dis-
tance. Further, our results were later used for investigations on bribery and robustness in
counting and probabilistic settings, e.g., by Boehmer et al. [2021a] and also by us, which we
will discuss later in Chapter 5.

3.2 Publications

This work was published as:

D. Baumeister, T. Hogrebe, and L. Rey. Generalized Distance Bribery. In Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence, pages 1764–1771. AAAI
Press, 2019.

A preliminary version of this publication appeared in the proceedings of the 7th International
Workshop on Computational Social Choice (COMSOC 2018):

D. Baumeister, T. Hogrebe, and L. Rey. Generalized Distance Bribery. In Proceed-
ings of the 7th Workshop on Computational Social Choice, 2018.

Personal Contribution

The writing and development of the model was done jointly with Dorothea Baumeister and
Lisa Rey. The initial technical results were contributed by me. Parts of the results also appear
in my master’s thesis, which refers to the preliminary version (Baumeister et al. [2018]).
Specifically, preliminary versions of Theorem 4, Theorem 10, Theorem 15, and Theorem 16
in Baumeister et al. [2019] first appeared in my master’s thesis.
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Chapter 4

Manipulative Design of Scoring Systems

This chapter deals with the classical computational decision complexity, the parameterized
complexity, and the complexity of approximation in the context of designing and optimizing
a scoring system that guarantees a desired outcome.

4.1 Summary

In the original possible winner problem as introduced by Konczak and Lang [2005], we are
given partial preferences and want to check whether a particular candidate is a winner in
one of the possible completions of the preferences with respect to a given voting rule. In the
variant of the problem considered here, there is the twist that we have complete preferences,
but our voting rule, here in particular our scoring system (scoring rule), is not completely
specified. This problem has so far only been studied by Baumeister et al. [2011b] with respect
to Copelandα with adjustable tie factor α ∈ Q∩ [0, 1] and scoring systems in a very restricted
special case.

For the scoring systems considered here, the problem is formally given as follows.1

Scoring System Existence

Given: A set of candidates C with |C| = m, a list of profiles V1, V2, . . . , VN over C,
and a distinguished candidate p ∈ C.

Question: Is there a scoring vector α⃗ = (α1, α2, . . . , αm) ∈ Qm
≥0 with αm = 0, such

that p is the unique winner of election Ej = (C, Vj) with respect to α⃗ for
each 1 ≤ j ≤ N?

Note that compared to the version of Baumeister et al. [2011b], we consider a list of multiple
profiles instead of a single profile, which we will explain later. However, all of our results
also apply to the special case of a single profile. Note that while in the problem definition
a single candidate p is supposed to be the winner with respect to all profiles, by renaming
the candidates in the profiles one can easily extend the problem to different candidates. In
addition, we have introduced and studied a variant in which the possible solution α⃗′ ∈ Qm

≥0

may deviate only by at most a given value K ∈ Q≥0 from a given vector α⃗ ∈ Qm
≥0 with respect

to a distance D. We denote this variant by D-Close Scoring System.

1In our original publications (see Baumeister and Hogrebe [2019b,a]), we specified that α⃗ ∈ Rm
≥0 and argued

that if a solution α⃗ ∈ Rm
≥0 exists, then also a rational solution α⃗ ∈ Qm

≥0 exists, whereby we can focus on
α⃗ ∈ Qm

≥0 without loss of generality. While this is true and the following issue does not affect the given
results, one must be careful here to define the set of solutions over real-valued vectors. The reason is that
verification problems with arbitrary vectors may become tricky, due to the implicit problem of comparing
real numbers, of which the decidability and complexity strongly depends on the encoding.

43



Chapter 4 Manipulative Design of Scoring Systems

We have studied Scoring System Existence based on several possible applications. In the
context of elections, we can model the situation where an agent has predicted a collection of
most likely profiles and now wants to propose a scoring rule that guarantees the victory of
a particular candidate. Even though we use the term ‘manipulative’ in the title, the agent
may also try to find a system that seems particularly fair or that satisfies certain properties.
Another application closely related to elections are surveys and studies where participants
are asked to rank a list of objects, candidates, etc. and the agent subsequently tries to find
a system that supports his or her hypothesis or desired outcome. If a system already is in
place, it is reasonable to aim at modifying the system as little as possible while trying to
guarantee a certain outcome, which is the motivation for including the distance restriction in
D-Close Scoring System. This is especially relevant for us if we consider the application
in sports and competitions, such as racing, skiing, the Eurovision Song Contest, and many
others, where the participants receive points regarding their position in the competition. In
addition to the motivation of ensuring an outcome with as little change as possible, the
problem is particularly useful for evaluating the robustness of the outcome of an election or
competition with respect to the chosen scoring system. Note that while the problems appear
to be somewhat speculative, every voting rule and every system of deciding winners for
competitions has been determined at some point and usually by a small group of individuals,
and it would be particularly naive to assume that those same individuals decided free of any
underlying motives. We illustrate the two problems in the following example.

Example 4.1. Consider the election E = (C, V ) with C = {a, b, c, d} and V = (v1, v2, v3,
v4, v5) with

v1 : b > a > d > c
v2 : c > a > b > d
v3 : c > a > b > d

v4 : d > c > b > a
v5 : a > d > b > c

from Example 2.5 and scoring system α⃗ = (α1, α2, 1, 0). The scores of the candidates
are given by score(a) = α1 + 3 · α2, score(b) = α1 + 4, score(c) = 2 · α1 + α2, and
score(d) = α1+α2+1. In Figure 4.1 we illustrate the space of scoring vectors with respect
to α1 and α2. First, using Scoring System Existence, for each of the three candidates
a, b, and c, we would find at least one integer vector in which the respective candidate
is the unique winner, e.g. (3, 2, 1, 0) for a, (2, 1, 1, 0) for b, and (4, 1, 1, 0) for c. On the
other hand, no such vector exists for d, since the scores of a and c are in any case at least
as high as that of d. In addition, there are some interesting special cases which we want
to discuss here. First, we consider α⃗1 = (2, 1, 1, 0), which lies on the edge of the winner
area of b, but for which b is nevertheless unique winner due to the non-strict inequality
α2 ≥ 1. In comparison, α⃗2 = (4/3, 4/3, 1, 0), which also lies on the edge of the non-strict
inequality α1 ≥ α2, does not belong to any of the unique winner areas, since it lies on the
tie border between a and b. α⃗3 = (8/3, 4/3, 1, 0), in turn, is a three-tie vector between a,
b, and c. Considering D-Close Scoring System with a Euclidean distance limit of 1
around α⃗4 = (3, 2, 1, 0), we see that there are rational vectors for which b or c would be
unique winners, but all valid integer vectors in the radius either make a the unique winner
or lie on a tie border.

Thus, even in this small example, we have seen that a wide variation of different combinations
and properties of outcomes can arise depending on the system.
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Figure 4.1: Space of scoring vectors from Example 4.1 over (α1, α2, 1, 0) with respect
to α1 and α2. The dark colored areas contain vectors that do not satisfy
the monotonicity conditions. The other three different shaded areas are the
areas which contain the vectors for which respectively a, b, or c are the unique
winners. The white lines between the areas are the respective, infinitely thin,
tie borders. The circle around α⃗4 = (3, 2, 1, 0), indicates a Euclidean distance
of 1 from α⃗4.

We have studied the complexity, and in particular the parameterized complexity, of Scor-
ing System Existence for several combinations of rational and integer vectors, various
constraints, and parameterizations. For example, we have shown that the problem can be
solved efficiently by linear programming in the unconstrained variant even for multiple pro-
files and rational and integer vectors. The same is true for setting an arbitrary value γ for
α1, . . . , αm−1 for rational vectors, whereas we have shown that the problem is NP-complete
for integer vectors for αn−k = γ, even if the value γ ∈ N with γ ≥ 1 and the position k ≥ 1
are fixed. If we require αk = γ for integer vectors, the problem again becomes easy to solve
for fixed γ and k, but if we allow γ to be part of the input, it becomes NP-complete and W[2]-
hard with respect to the parametrization by γ. For the hardness results, we have developed
a general technique to construct, with respect to the monotonicity properties of the vectors,
almost arbitrary linear inequalities for the scores using certain combinations of votes within
a single profile. Thus, we can reduce a variety of combinatorial problems to Scoring Sys-
tem Existence with αk or αn−k = γ using their standard ILP formulations, including the
NP-complete, and with respect to the size of the set also W[2]-hard, dominating set problem.
With respect to the standard election parameters, the number of voters n and the number of
candidates m, respectively, the problem becomes FPT. We have studied D-Close Scoring
System for the three best known Minkowski distances, namely the Manhattan, Euclidean,
and Chebyshev distance, and have shown that for rational vectors the problem can again be
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solved efficiently by extending the linear program mentioned earlier. For integer vectors, the
distance constraint is sufficient to make the problem hard both in general and parameterized
by the distance bound. In particular, it also follows from the proof that no efficient constant-
factor approximation algorithm for the minimum necessary distance can exist, unless P = NP.
To study the practical relevance of the problem, we implemented the previously developed
integer linear programs in CPLEX and applied them with different further restrictions to
the Formula 1 data in the PrefLib (Mattei and Walsh [2013]), which were contributed by
Robert Bredereck and previously collected and used for studying the Kemeny voting rule
(Betzler et al. [2014]). We have found that in many years the championships were extremely
robust, in that no other scoring system exists under weak constraints where someone other
than the actual champion would have won. On the other hand, in many other years even
minimal changes resulting in very reasonable scoring systems would have produced different
champions. Obviously, these experimental results have to be taken with a grain of salt, as
this is a pure posterior analysis and changing the scoring system in practice may also lead to
a change in the behavior of the participants.

Regarding related work, the problem of scoring system existence as mentioned above has
been studied previously by Baumeister et al. [2011b] in the context of the possible winner
problem. They have shown that the problem is NP-complete for integer vectors of the form
(α1, . . . , αm−4, x1, x2, x3, 0) with xi = 1 for at least one i ∈ {1, 2, 3} under the assumption of
succinct representation. We have significantly generalized this result by showing that it is also
NP-complete for considerably less constrained vectors even without requiring the succinct rep-
resentation. Parallel to our investigations and seemingly unaware of the work by Baumeister
et al. [2011b], Viappiani [2018] studied the problem from a different non-complexity oriented
but rather axiomatic perspective. However, he performed similar experiments, curiously
enough, also on the PrefLib Formula 1 dataset and found that in certain years the actual
champion remains a winner independent of the actual scoring system used, just as we did.
Uncertainty about the voting rule was also studied by Elkind and Erdélyi [2012], who ex-
tended manipulation and coalitional manipulation to include a set of voting rules rather than
a single one, and the manipulator(s) try to manipulate in such a way that their candidate
would win with respect to each of the rules. They also present an interesting observation,
referred to a private communication with Jérôme Lang, that states that for a given profile
a distinguished candidate can only be the unique winner with respect to all integer scoring
rules if and only if the candidate is also the unique winner with respect to k-approval for
each k ∈ {1, . . . ,m− 1}. The latter condition is therefore an easy to verify criterion to show
that no scoring system exists under any constraint that makes another candidate the unique
winner, and if it fails, we already have a scoring rule by the respective k-approval that proves
the dependence of the candidate’s victory on the scoring rule in place.

While we have focused here so far, and also in the publication, predominantly on related work
in the context of computational complexity, there is a significant body of work that has studied
the automated data-based design of scoring rules, and voting rules in general, using different
approaches. We stress the ‘automated’ here because the manual design of voting rules based
on axioms, assumptions, and/or intuitions already has a long and rich history, as mentioned
in the introduction. All of the following approaches basically pursue the same objective as we
do here: finding and/or optimizing a voting rule with respect to certain criteria. The main
differences are the criteria, namely whether we try to reproduce the given outcome of certain
profiles or, e.g., to maximize the underlying utility functions of the voters, and the actual way
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of finding and optimizing the rule. Procaccia et al. [2009] studied the design of scoring rules
with respect to the concept of probably approximately correct (PAC) learning as introduced
by Valiant [1984], which forms the theoretical framework for the concept of machine learning.
In their scenario, there is a consultable agent that serves as a black box oracle and determines a
winner for each given profile. The goal is to find a scoring rule with as few queries to the agent
as possible, which determines the same winner with high probability for a given distribution.
In the case that the agent itself generates its answers according to an underlying scoring rule,
they show that an efficient learning algorithm exists which generates a scoring rule that is
sufficiently accurate, making the problem itself efficiently PAC-learnable. Thus, the objective
here is similar to ours, with the difference that in our problem, we are already given the
profiles together with the outcome as a list, instead of the consultable agent. Very recently,
Caragiannis and Fehrs [2021] have applied this approach to a generalization of scoring rules to
multi-winner elections, the so-called approval-based committee scoring rules. Referring back
to single-winner elections, a similar approach, but with underlying utility functions of the
voters generating the ordinal preferences and the goal to find a scoring rule that minimizes
the distortion, i.e., the relative loss in utility through using the respective voting rule instead
of maximizing the utilities, in the worst case, on average, or with respect to a set of learning
samples has been studied by Boutilier et al. [2015]. Later, Caragiannis et al. [2019] studied
the problem of finding and optimizing scoring rules that reproduce an underlying partially
known truthful ranking in a scenario where each voter submits an ordinal preference only
over a small subset of the candidates, which may differ from voter to voter. On the practical
side, Burka et al. [2016] trained neural networks to predict winners using random profiles
with certain properties. In their comparison most networks tended to predict the winners
according to the Borda rule. However, as they correctly point out in a recent revision (Burka
et al. [2021]), neural networks, even with only one hidden layer, are able to approximate
any voting rule pretty well under the assumption of a sufficient width of the layer and the
size of the training set, according to the universal approximation theorems regarding neural
networks (see, e.g., Cybenko [1989]). Nevertheless, for reasonable sizes of the network and
the training set the neural networks under consideration tend to predict according to Borda.
Regarding multi-winner rules, a popular way of transferring single-winner scoring rules to
multi-winner elections is to apply ordered weighted average aggregation (OWA) introduced
by Yager [1988]. Here, each voter assigns a score to each possible committee based on the
scalar product of the OWA vector and the respective scores of the candidates in the committee
with respect to a scoring rule sorted by the voter’s preference. Thus, OWA-based multi-winner
rules allow us to model a diminishing return of utility that a voter gets from the candidates
in the committee, making it possible to scale between multi-winner rules like k-Borda, which
emphasize individual strength of candidates in the committee, and rules like Chamberlin-
Courant, which emphasize diversity and representation of voters through the candidates in
the committee. Recently, Faliszewski et al. [2018, 2022] studied the design of such OWA-based
rules by considering so-called utopic distributions of winners, the distribution of candidates
in the winning committees over the space from which the votes and candidates are drawn
according to the Euclidean model, for which one can infer the objectives of the rule, such as
individual excellence or diversity. Their approach is to fix either the OWA vector or the scoring
rule and to optimize the other vector regarding the utopic distribution using a randomized
search algorithm. Interestingly, some of the resulting vectors actually corresponded to existing
rules with similar objectives, which supports the relevance of those very rules, while in other
cases new rules were found.
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4.2 Publications

This work was published as:

D. Baumeister and T. Hogrebe. How Hard Is the Manipulative Design of Scoring
Systems? In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 74–80, 2019a.

A preliminary version of this publication appeared as an extended abstract in the proceedings
of the 18th International Conference on Autonomous Agents and Multiagent Systems:

D. Baumeister and T. Hogrebe. Manipulative Design of Scoring Systems (Extended
Abstract). In Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems, pages 1814–1816. IFAAMAS, 2019b.

Personal Contribution

The writing and development of the model was done jointly with Dorothea Baumeister. The
technical results were contributed by me.
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Prediction and Probabilistic Robustness of Elections

This chapter deals with the function complexity of calculating the winning probability of
candidates in scoring rule and approval elections regarding different vote distributions.

5.1 Summary

When elections are discussed in the real-world, it is usually about two aspects: how an
upcoming election will probably turn out and how reliable are the results for a conducted
election. Hence, in the following we will study these two problems, namely the problem of
predicting the outcome of an election and the problem of determining the robustness of the
outcome of an election.

However, compared to the possible winner problem by Konczak and Lang [2005] and the
robustness problem by Shiryaev et al. [2013] considered in Section 2.2 and Chapter 3, we
want a more comprehensive and richer output, which is oriented to more than one possible
completion or modification of the election profile and allows for a more differentiating compar-
ison of the candidates. Therefore, we adopt the framework of election evaluation introduced
by Conitzer et al. [2007] and Hazon et al. [2012] in which the objective is to determine the
winning probabilities of candidates with respect to given distributions over possible profiles.
Formally the evaluation problem is given as follows.

E-Evaluation

Given: A set of candidates C, a profile distribution P over C, and a distinguished
candidate p ∈ C.

Question: What is the probability Φ that p is a winner of the election with respect to
E assuming that the profiles are distributed according to P?

Note that the problem as we state it here is quite generic and the motivation and complexity
depends heavily on the profile distribution and its encoding. For example, if one chooses
a distribution that is concentrated on one profile the problem is equivalent to the winner
determination problem and thus easy to solve for many voting rules. We focus on the following
three distributions. Note that all three of them are composed of independent distributions
over the possible ordinal/approval votes for each voter. Thus, we assume that in our scenarios
voters independently determine their vote. However, other scenarios are conceivable in which
due to group dynamics and large-scale influence the votes are correlated.

EDM. In the model which we refer to as the explicit distribution model (EDM), the votes
with positive probability for each voter are explicitly given as a list paired with their
respective probabilities as rational numbers. It was studied by Conitzer et al. [2007]
and it is also the model on which the problem was defined by Hazon et al. [2012].
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PPIC. In the partial profile impartial culture model (PPIC), we assume that we are given a
partial profile and consider a uniform distribution over the possible completions. Thus,
the problem in this case becomes the normalized counting variant of the possible winner
problem.

Mallows. In the Mallows noise model (Mallows), introduced by Mallows [1957] for ordinal
votes, we assume that every additional swap of two adjacent candidates in an ordinal
preference or the flipping of an approval entry in an approval vote with respect to a
given central profile lowers the probability by a factor φ ∈ Q ∩ (0, 1), referred to as the
dispersion parameter.

For distributions with independent voters, the EDM is the most general with respect to
expressiveness, since all such distributions can be expressed by explicitly listing the votes
with positive probability. However, from a computational point of view, the transformation
of distributions like PPIC or Mallows to EDM is not feasible, since it may require O(2m)
votes to be listed in the case of approval votes and even O(m!) votes to be listed in the case
of ordinal votes for each voter.

The presented models can be used to capture a wide range of scenarios through the evalua-
tion problem. For example, using PPIC, one can perform election predictions for upcoming
elections using partial data collected through polls or the (automatic) aggregation of social
media data. However, it is assumed here that each possible completion for a partial vote has
the same probability. While this assumption may be reasonable depending on the scenario
or may even be necessary in practice due to missing additional data, it may also be the case
that certain patterns or biases are known. In that case, the EDM can be used to model
such assumptions, but possibly at the expense of the compactness of the representation. An-
other highly relevant scenario that can be modeled under PPIC is the winner determination
using partial data. The reasons for partial election data can be diverse. Based on the cir-
cumstances, it may simply be too difficult or costly, or even impossible, to collect complete
election data. It may also be that the number of candidates standing for election or the way
in which votes are collected changes during the election, and thus some of the votes are not
complete according to the final record. Another recurring problem, especially in elections
with paper ballots, is the loss of election data during collection, counting, or transmission.
However, if a winner has to be determined in these scenarios, the usual first approach is to
check whether more than one candidate can be considered as the winner at all. If not, the
winner is already determined. This is the approach of the classical possible winner problem.
However, if more than one candidate is possible, we face a problem. How to decide between
the candidates? Especially if each of the candidates claims victory for itself. In these cases,
determining the probability of victory can be of immense benefit. In the worst case, all
candidates have the same chance of winning and we know that a winner determination via
tie-breaking or re-election will be necessary. In the best case, one of the candidates has a
winning probability close to one, whereby he or she is probably the rightful winner. However,
even if the election data is complete, we cannot be sure that it is flawless. For example, in
many situations we have to assume that voters have made mistakes when casting their votes,
that there have been small-scale manipulations, or that the data have been corrupted during
collection or transmission. In these situations, it is natural to ask how justified a candidate’s
victory is under such uncertainties and how close other candidates are to winning. This is
also the motivation behind the margin-of-victory problem and the robustness problem which
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we discussed in Section 2.2.3. However, the answers to these problems are based only on
single alternative profiles and, thus, may miss the bigger picture. Using Mallows and the
evaluation problem, we obtain a probability that incorporates all possible profiles based on
the dispersion parameter, which is adjustable to the degree of uncertainty in the data. Thus,
in contrast to the previous presented robustness measures we refer to this approach as the
probabilistic robustness.

However, these advantages we praise above come with immense computational cost in some
cases. We have shown that Evaluation assuming Mallows is #P-hard for k-approval and k-
veto respectively for fixed k ≥ 1, thus including plurality and veto, Borda, and (2, 1, . . . , 1, 0).
For this, we have shown that the evaluation problem for Mallows and the counting variant of
the unweighted swap bribery problem (see Chapter 3) are equivalent under polynomial-time
Turing reduction. By leveraging a reduction by Bachrach et al. [2010], which studied the
unnormalized counting variant of the possible winner problem, we were able to show that the
problem is #P-hard for PPIC and pure scoring rules even if each preference in the profile has
at most two possible completions. Since in this specific case PPIC instances can be efficiently
transformed into equivalent EDM instances, the #P-hardness for pure scoring rules also holds
for EDM, thereby completing the results by Hazon et al. [2012] regarding pure scoring rules.
Moreover, we have also shown that for k-AV with k ≥ 1 the problem is #P-hard for PPIC
and EDM, and for AV under EDM. On the positive side, for AV the problem is solvable in
polynomial time for both PPIC and Mallows using dynamic programming.

Due to the predominant computational hardness, we examined the parameterized complexity
with respect to constant numbers of candidates or voters in the next step. For a constant num-
ber of candidates, PPIC and Mallows instances can be efficiently transformed into equivalent
EDM instances, allowing us to solve the problem efficiently in that case using the polynomial-
time algorithm by Hazon et al. [2012]. For a constant number of voters, we could show for
almost all cases that the problem can be solved efficiently using different approaches. How-
ever, we found that for PPIC the problem is #P-hard in the non-unique winner case for all
pure scoring rules even for a single voter. However, this result does not hold for the unique
winner case, since in this case the problem for certain scoring rules can be trivial for a low
number of voters, making the complexity in this case much more diverse. For example, the
problem in that case is trivial for 2-approval for one voter, but #P-hard for two. For veto,
on the other hand, the problem is never #P-hard for a constant number of voters, since it
becomes trivial as soon as the number of candidates exceeds the number of voters by more
than one.

Apart from the case just mentioned, where the complexity may differ, all other results apply to
both the non-unique and the unique winner case. However, both models have a disadvantage
in terms of probability determination: the winning probabilities of the candidates do not
necessarily add up to one. In the non-unique winner case, profiles can be counted several
times, which is why the sum can be higher than one. In the unique winner case, profiles may
not be counted at all, which is why the sum may be less than one. To solve this problem, we
have also shown that all our results for the non-unique case also hold for uniform random tie-
breaking and lexicographic tie-breaking, for which the winning probabilities of the candidates
form a valid probability distribution.

Conitzer et al. [2007] originally defined the evaluation problem not as a weighted counting
problem but as a decision problem in which a rational number r is given and the question is

51



Chapter 5 Prediction and Probabilistic Robustness of Elections

whether the probability of victory is greater than r. In fact, the evaluation problem originated
as the verification problem for the manipulation problem with uncertain votes, thus, to check
whether a manipulation is successful with a certain minimum probability. They show several
NP-hardness results for manipulation and evaluation with r = 0, but also observe that the
manipulation problem for arbitrary r is not necessarily in NP. We support this observation by
showing that the decision problem and the weighted counting problem are equivalent under
polynomial-time Turing reduction for the models considered. Thus, the #P-hardness of the
evaluation problem as the verification problem makes the membership of the manipulation
problem in NP indeed very unlikely in the respective cases.

Very recently, Boehmer et al. [2021a] considered a similar approach to election robustness by
studying the counting variants of the swap bribery and shift bribery problems. In comparison
to the Mallows model, however, not all profiles are weighted according to their distance to
the original profile, but all profiles up to a given distance limit are weighted equally.

Problems corresponding to the evaluation problem have also been studied in many related
areas. For example, Fazzinga et al. [2015] studied the problem in the context of abstract
argumentation, Aziz et al. [2019] in the context of resource allocation, and Aziz et al. [2020]
in the context of stable matching. In sports, the evaluation problem was initially studied by
Mattei et al. [2015], and recently also by us. We will discuss the evaluation problem in sports
in much more detail in Chapter 6.
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This work was submitted by invitation to SNCS for the EUMAS 2021 special issue:

D. Baumeister and T. Hogrebe. On the Complexity of Predicting Election Outcomes
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Personal Contribution

The writing and development of the model was done jointly with Dorothea Baumeister. The
technical results were contributed by me.
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Chapter 6

Predicting Round-Robin Tournaments

This chapter deals with the worst-case and average-case function complexity of calculating
the winning probabilities of teams in round-robin tournaments.

6.1 Summary

As for elections in the previous chapter, one of the most discussed real-world problems for
sports tournaments is the prediction of their outcomes. However, many sports tournaments,
and in particular the round-robin tournaments studied here, have a crucial difference com-
pared to elections. While most elections are held in a short period of time and counting does
not begin until all voters have cast their ballots, most tournaments span a significant period
of time with respect to a given schedule. Thus, for tournaments, it is particularly realistic and
interesting to consider the case where we are at a certain point in the course of a tournament
where some matches and matchdays have already been played and others are still open.

To capture the state of a given score-based pair-wise tournament T = (T,M) over a set of
outcomes O we use a so-called outcome probability profile ρ = (ρm)m∈M , where ρm : O → Q
denotes the probability distribution over the outcomes O for match m. Analogously to the
evaluation problem for elections in Chapter 5, we can now define the evaluation problem for
tournaments. Assume we are given a fixed set of outcomes O.

O-Evaluation

Given: A score-based pair-wise tournament T = (T,M), an outcome probability
profile ρ for T with respect to O, and a distinguished team p ∈ T .

Question: What is the probability that p ends up as the unique winner of the tourna-
ment with respect to ρ?

As mentioned above, our main focus here is on the consideration of scheduled round-robin
tournaments, as they usually occur in the real world. We refer to O-Evaluation restricted to
round-robin tournaments given together with an optimal schedule as O-RRTS-Evaluation.
Something we have not explained yet, however, is how we model the scenario of observing the
tournament at a certain point in time, when certain matchdays have already been played and
others still remain. For this we make the following definition. We refer to a match m as open
if ρm assigns a probability greater than 0 to more than one outcome and refer to a matchday
as open if at least one of the assigned matches is open. If we now assume that we are in
a tournament at a certain point in time, a match m that lies in the past that has already
been played is not allowed to be open and must have a unique outcome with probability 1.
Thus, in the input of the evaluation problem, we do not explicitly distinguish the already
played matches from the remaining matches as in the definition of the elimination problem
in Section 2.3, but rather encode this in a compact way in the outcome probability profile.
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We will now illustrate the problem with an example.

Example 6.1. We consider the round-robin tournament T = (T,M) with T = {t1, t2, t3, t4,
t5, t6} and O = {(3, 0), (1, 1), (0, 3)} from Example 2.9. A possible outcome probability
profile over this tournament might look as follows.

Matchday 1 (3, 0) (1, 1) (0, 3)

m1 : (t1, t6) 0 1 0
m2 : (t2, t5) 1 0 0
m3 : (t3, t4) 0 1 0

Matchday 2 (3, 0) (1, 1) (0, 3)

m4 : (t1, t5) 1 0 0
m5 : (t2, t3) 1 0 0
m6 : (t4, t6) 0 0 1

Matchday 3 (3, 0) (1, 1) (0, 3)

m7 : (t1, t4) 1 0 0
m8 : (t2, t6) 1 0 0
m9 : (t3, t5) 0 0 1

Matchday 4 (3, 0) (1, 1) (0, 3)

m10 : (t1, t3) 0.7 0.2 0.1
m11 : (t2, t4) 0.8 0.1 0.1
m12 : (t5, t6) 0.4 0.2 0.4

Matchday 5 (3, 0) (1, 1) (0, 3)

m13 : (t1, t2) 0.3 0.4 0.3
m14 : (t3, t6) 0.5 0.3 0.2
m15 : (t4, t5) 0.4 0.3 0.3

As described above, matches that have already been played are assigned their results in
the outcome probability profile by setting the probability for the respective outcome to 1.

Now we focus on t1. As shown in Example 2.9, t1 with 7 points after the third matchday can
become the unique winner of the tournament, despite t2 leading with 9 points, for example
if t1 wins its two remaining matches, regardless of the outcomes of the other matches. For
the determination of the probability that t1 will end up as the unique winner, however, we
cannot make it so simple, since we essentially have to consider every possible combination
of outcomes of the remaining matches:

� As said, t1 is guaranteed to be the unique winner if it wins both of its remaining matches,
regardless of the other outcomes. The probability for this is 0.7 · 0.3 = 0.21.

� Second, t1 is guaranteed to be the unique winner if t1 wins against t3 and draws against
t2, whereby t2 has to draw or lose against t4, regardless of the other outcomes. The
probability for this is 0.7 · 0.4 · (0.1 + 0.1) = 0.056.

� Third, t1 is guaranteed to be the unique winner if t1 draws against t3 and wins against
t2, again, whereby t2 has to draw or lose against t4, regardless of the other outcomes.
The probability for this is 0.2 · 0.3 · (0.1 + 0.1) = 0.012.

Thus, the probability for t1 to end up as the unique winner is 0.21+0.056+0.012 = 0.278.

Note that in the above example we took several shortcuts in determining the probability
by first considering matches whose outcomes may render the outcomes of other matches
irrelevant. This is also the key idea of our FPT algorithm which we will present later.

As in the previous Chapter 5 regarding elections, where the evaluation problem assuming
PPIC may be seen as a weighted counting variant of the possible winner problem, here the
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evaluation problem can be seen as a weighted counting variant of the possible winner problem
for tournaments, the elimination problem. The reduction of the elimination problem to the
evaluation problem is thus simple and can be done in polynomial time. All matches played get
their unique outcomes in the outcome probability profile by setting the respective probability
to 1, for all remaining matches we set the probabilities according to a uniform distribution
over the outcomes. In order to answer the elimination problem, we only need to check if
the probability calculated by the evaluation problem is greater than 0. Thus, the worst-case
efficiency results, and also the average-case efficiency results presented here, carry over from
the evaluation problem to the elimination problem. In the other direction, the NP-hardness
of the elimination problem is also passed on to the evaluation problem. However, we will see
later that the hardness of the evaluation problem usually lies far above NP-hardness and in
some cases it is computationally hard even if the elimination problem can be solved efficiently
in the respective cases.

The computational complexity of the evaluation problem regarding round-robin tournaments
has only been studied by Mattei et al. [2015] and by Saarinen et al. [2015] before us. Saarinen
et al. [2015] have shown that the evaluation problem for round-robin tournaments with O =
{(1, 0), (0, 1)}, also referred to as Copeland tournaments in the context of elections, is indeed
#P-hard even if all outcome probabilities are from {0, 1/2, 1}. This result is in contrast to the
result of Schwartz [1966] regarding the elimination problem, which we discussed in Section 2.3
and which states that the elimination problem for O = {(1, 0), (0, 1)} is solvable in polynomial
time. However, Saarinen et al. [2015] do not take into account the existence of a schedule
in their reduction from the problem of counting Eulerian orientations, for which Mihail and
Winkler [1996] showed #P-completeness. This manifests itself in particular in the fact that
teams can have widely different numbers of open matches.

Thus, we were interested in understanding how the computational complexity of the prob-
lem behaves under the conditions described above, and in particular how the complexity
depends on the number of open matchdays. We were able to show that the problem is still
#P-hard for all symmetric sets of outcomes, even when restricted to scheduled round-robin
tournaments where only a fixed number of at least three matchdays remains open and all
outcome probabilities are from {0, 1/2, 1}. On the other hand, we showed that the problem
can be solved in polynomial time if there are at most two open matchdays This completes
our dichotomy result regarding the complexity of the problem with respect to the number of
remaining matchdays. In fact, the efficiency result for at most two open matchdays is only a
corollary of a more general efficiency result we proved. It states that the evaluation problem
for score-based pair-wise tournaments, and thus in particular for round-robin tournaments,
is fixed parameter tractable with respect to the so-called maximum fixing number. Loosely
speaking, this parameter scales with the number and density of matches between teams that
can be dangerous for our distinguished team in terms of becoming the champion.

Something that made the FPT parameter of the algorithm so intriguing to us, besides the
theoretical implications, was the impression that it might often be quite small for real-world
instances. Therefore, we collected data from 140 seasons from the major European football
leagues and determined the average maximum execution time of the algorithm across all
teams as a function of the number of open matchdays. While the average execution time
increased significantly with the number of open matchdays, it was still below 60 seconds
for 12 open matchdays, which corresponds to about one-third of the season for the seasons
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considered. In comparison, the trivial brute force approach would have to consider between
312·(16/2) ≈ 6.363 · 1045 and 312·(20/2) ≈ 1.797 · 1057 combinations, which is already not feasible
in practice. It should be mentioned here that while there are several different approaches in
the literature for solving the elimination problem such as ILP formulations, FPT algorithms,
and in some cases even polynomial-time algorithms (see Section 2.3), the algorithm we have
developed here is, to the best of our knowledge, the first approach for actually solving the
evaluation problem.

However, there was not enough real-world data to examine the behavior of the execution time
with respect to the number of participating teams. Therefore, we implemented three different
models by Ryvkin and Ortmann [2008] to generate hundreds of seasons for different numbers of
teams. Interestingly, and in contrast to the computational hardness we had previously shown,
the execution time for the three models dropped again by several orders of magnitude after an
initial spike and then increased only very slowly afterwards. These empirical observations led
us to investigate the actual average-case complexity of the evaluation problem for the worst-
case computational hard cases using our algorithm. And indeed, we were able to confirm our
observations by proving that the expected maximum execution time of the algorithm across all
teams is polynomially bounded for a distribution that seems to dominate the distribution of
real-world instances with respect to the complexity of the algorithm. As previously mentioned,
those average-case efficiency results also carry over to the elimination problem, for which again
no average-case results were known before.

A general criticism that can be made regarding the model used for evaluation here is the
independence of the outcome probabilities between matches. In real-world tournaments, it
is often observed that the performance of teams depends on the results in previous matches.
This is not only due to perceived trends and the resulting motivation or demotivation, but
especially due to the fact that at the end of the season a team may have already reached its
goal or may not be able to reach it anymore and thus may not perform to its full potential
in the following matches. Of course, the other direction is also often observed, namely that
a team that is relying on winning a certain match to reach its goal due to previous results
performs significantly better than expected. The modeling of such mechanics alone can be an
extremely complex step, which in many cases is probably not possible with polynomial effort
and takes the focus away from the computational complexity of the actual problem. Note,
however, that the case of independent outcome probabilities is a special case of dependent
outcome probabilities and therefore our hardness result also applies to that very case.

Another possibility for future work is to investigate other tournament formats such as the
Swiss system, which is often used in chess. This is particularly interesting because, unlike
round-robin tournaments, the set of remaining matches is determined by the outcomes of the
previous matches.
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6.2 Publications

This work was published as:

D. Baumeister and T. Hogrebe. Complexity of Scheduling and Predicting Round-
Robin Tournaments. In Proceedings of the 20th International Conference on Au-
tonomous Agents and Multiagent Systems, pages 178–186. IFAAMAS, 2021a

and

D. Baumeister and T. Hogrebe. On the Average-Case Complexity of Predicting
Round-Robin Tournaments (Extended Abstract). In Proceedings of the 21st Inter-
national Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,
2022.

Personal Contribution

For both publications, the writing and development of the model was done jointly with
Dorothea Baumeister. The technical results were contributed by me.
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Chapter 7

Smoothed Complexity Analysis

This chapter deals with the possibilities of applying the concept of smoothed analysis proposed
by Spielman and Teng [2004, 2009] in the context of computational social choice.

7.1 Summary

As discussed in Section 2.1.4, and shown in Chapter 6 regarding the prediction of round-
robin tournaments, average-case complexity can explain why in practice many problems can
be solved much faster than their worst-case hardness suggests. However, often the main
difficulty is not to prove that a problem can be solved efficiently with respect to a certain
distribution in the average-case, but to find a meaningful distribution in the first place, which
approximates the real-world distribution or at least, as in the previous chapter, seems to
dominate the real-world distribution with respect to the complexity of the problem. To
overcome this problem Spielman and Teng [2004, 2009] introduced the smoothed complexity
analysis. The smoothed complexity analysis of an algorithm represents a middle ground of
worst-case and average-case complexity by asking what the expected worst-case running time
of the algorithm is under the assumption that the instances are randomly perturbed. This
assumption is well founded if one assumes that the instances originate from real-world sources
that are subject to natural noise, such as data from sensors, including photography, sound
recordings, and other physical measurements, sensitive personal data that have been slightly
disturbed to protect privacy, or in general, data that have been interfered with in collection,
transmission, or storage.

We now introduce the formal definitions of smoothed complexity analysis. We start with the
original definitions which Spielman and Teng [2004, 2009] introduced to explain the practical
efficiency of the Simplex algorithm beside its exponential worst-case running time. The
smoothed complexity of an algorithm A over [−1, 1]n with respect to a Gaussian perturbation
with standard deviation σ is given by

SmoothedσA(n) = max
x̂∈[−1,1]n

E [TA(x̂+ δ)]

where δ ∈ Rn is a random vector in which each entry is sampled from the univariate Gaussian
distribution with standard deviation σ. Thus, instead of measuring the worst-case running
time over all instances, we measure the expected worst-cast running time assuming a per-
turbation of all instances. Note that for σ = 0 we retrieve the worst-case running time,
while for large σ we approach an average-case analysis. Note, however, that the focus here
is particularly on small perturbations around the central instance, which is also reflected in
the following definition. An algorithm A has polynomial smoothed complexity if there exist
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positive constants n0, σ0, c, k1, and k2 so that for all n ≥ n0 and 0 < σ ≤ σ0 it holds that

SmoothedσA(n) ≤ c · (1/σ)k1 · nk2 .

Thus, here we require that the algorithm has polynomially bounded smoothed complexity not
only as a function of the number of variables n, but also with respect to 1/σ. As mentioned
before, these definitions represent a middle ground between worst-case and average-case anal-
ysis, and as for the definition of average-case polynomial time, see Section 2.1.4, there is
also a weaker but more robust definition here. An algorithm A has probably polynomial
smoothed complexity if there exist positive constants n0, σ0, c, and ε so that for all n ≥ n0

and 0 < σ ≤ σ0 it holds that

max
x̂∈[−1,1]n

E [(TA(x̂+ δ))ε] ≤ c · (1/σ) · n

where δ ∈ Rn is a random vector in which each entry is sampled from the univariate Gaussian
distribution with standard deviation σ.

Smoothed complexity analysis has been successfully applied to many algorithms to explain
the efficient solvability of the respective problems in practice. For detailed overviews of
the various applications and aspects, we refer to the surveys by Spielman and Teng [2009]
and Manthey and Röglin [2011]. Naturally, the best-known and most widely recognized
application of smoothed analysis is its original application, the explanation of the efficiency
of the Simplex algorithm for linear programming in practice by Spielman and Teng [2004]
despite its exponential worst-case runtime. Another algorithm frequently used in practice is
the k-means algorithm for the clustering of data points, one of the main tasks in unsupervised
machine learning. Arthur et al. [2011] explained the practical efficiency of k-means by proving
its polynomial smoothed complexity, despite the worst-case exponential runtime shown by
Vattani [2011]. Other examples include the results of Banderier et al. [2003] on sorting and
the shortest path problem, of Beier and Vöcking [2004] on the algorithm by Nemhauser and
Ullmann [1969] for the Knapsack problem, of Englert et al. [2014] on the traveling salesman
problem, and of Etscheid and Röglin [2017] on the maximum-cut problem. In addition to
time complexity, smoothed analysis can also be used to study other performance measures
of an algorithm or mechanism. Spielman and Teng [2009] give some examples, such as the
approximation ratio of an approximation algorithm or the convergence rate of a best-response
dynamic.

Here we were interested in exploring the possibilities of applying the concept of smoothed
analysis to both computational and axiomatic examinations in the area of social choice. The
main reasons for the attractiveness of smoothed analysis in the field of computational social
choice is the rich amount of computational hardness results for various problems and the
always accompanying sentiment that many of these results are quite intriguing from a theo-
retical perspective, but probably not relevant in practice. However, proving the latter fails in
most cases in finding a suitable distribution of instances. Fortunately, preferences in the real-
world are subject to natural fluctuations and uncertainties, which satisfies the basic premise
of smoothed analysis. As a possible starting point, we suggested to study the computational
complexity of classical election problems such as winner determination, manipulation and
bribery (see Section 2.2), assuming that preferences are subject to perturbation according to
the Mallows model (see Chapter 5). We pointed out that it might be reasonable to consider
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the definitions of smoothed analysis that have been adapted to discrete problems, such as
those of Beier and Vöcking [2004] and Bläser and Manthey [2012]. In addition, we suggested
to investigate the relevance of other phenomena such as voting paradoxes and ties using the
smoothed framework.

Subsequent to our proposal paper, a series of papers appeared that successfully applied the
concept of smoothed analysis to the area of social choice. Xia [2020] studied the smoothed
likelihood of the Condorcet paradox and the satisfiability of combinations of certain voting
rule axioms, which, in theory, cannot be combined due to known impossibility results. As
suggested by us, Xia [2021] also examined the likelihood of ties in elections in the smoothed
framework with respect to many different voting rules. Very recently, Flanigan et al. [2022]
proposed an axiomatic model that can be positioned between our more specific proposal
and the very general model of Xia [2020]. The key difference between their model and that
of Xia [2020] is that they introduce a general distinct dispersion parameter with very mild
restrictions that control the strength of the noise. However, Flanigan et al. [2022], as well as
Xia [2020], consider the Mallows model as a central application of their models.

Xia and Zheng [2021] studied the smoothed complexity of computing rankings according to
the Kemeny and Slater voting rule. They show that if one considers the model of Bläser
and Manthey [2012] with a fixed dispersion parameter, which bounds the highest probability
an instance can have, one can solve the two problems considered, but by the argumentation
also many others, in smoothed polynomial time. However, fixing the dispersion parameter
is explicitly not allowed in the model of Bläser and Manthey [2012] and leads the definition
ad absurdum: fixing the dispersion parameter allows an instance, and for the usual pertur-
bation distributions, the central worst-case instance, to have a fixed minimum probability
independent of the input length. Thus, in this case, a reasonable definition of smoothed poly-
nomial time for discrete problems must admit a super polynomial running time assuming that
P ̸= NP holds. However, they use this as an argument that the definition is inappropriate for
the study of problems in the field of computational social choice. Consequently, they observed
that assuming the definitions of Spielman and Teng [2004], which were not designed for dis-
crete problems, the problems have a smoothed polynomial time for perturbation models only
if NP = RP holds, which is generally not assumed. Note that in comparison to the definitions
of Spielman and Teng [2009], they do not allow for a polynomial dependence of the smoothed
running time on the strength of the perturbation.

7.2 Publications

This work was published as:

J. Rothe, D. Baumeister, and T. Hogrebe. Towards Reality: Smoothed Analysis in
Computational Social Choice. In Proceedings of the 19th International Conference
on Autonomous Agents and Multiagent Systems, pages 1691–1695, 2020.
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The writing and development of the models was done jointly with Dorothea Baumeister and
Jörg Rothe.
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Chapter 8

Conclusions

In this chapter we summarize the thesis, discuss the results, and provide directions for possible
future work.

8.1 Results

We will start our conclusions by summarizing our studies in the previous chapters and high-
lighting our key results.

We started in Chapter 3 by studying the problem of constructive and destructive priced
bribery in scoring rule elections with respect to the weighted swap distance and the weighted
footrule distance and their variants with different levels in expressiveness, namely the un-
weighted variant, the element-weighted variant, and the fully weighted variant. For the con-
sidered scoring rules, we were able to determine the complexity in almost all cases with respect
to the classical decision complexity, namely membership in P versus NP-completeness. For
the class of pure scoring rules, we identified the decisive factors for the complexity in the
case of the constructive bribery and the element-weighted variants of the two distances and
were thus able to establish dichotomy results. We showed that the complexity of the problem
depends strongly on the combinations of prerequisites in each case, gave reductions that show
NP-hardness even in highly restricted special cases, and answered open questions from the
literature.

In Chapter 4 we turned to the problem of designing scoring rules and scoring systems for
elections and competitions in such a way that they guarantee the victory of a particular
candidate. We were able to strengthen the only result for the problem so far, by Baumeister
et al. [2011b], by showing that the problem is NP-complete as soon as we specify any non-
zero value at any posterior position in the integer scoring vector, not only if one of the
last three values prior to the final zero is one, and even without the assumption of succinct
representation. In addition, we examined the extension of the problem in which we assume
that a scoring system is already in place, which we want to change as little as possible with
respect to the Manhattan, Euclidean or Chebyshev distance. For these cases we again proved
NP-completeness for integer vectors. In addition to the classical decision complexity, we
investigated the parameterized complexity of the problems with respect to various natural
parameters such as the number of candidates and voters, the fixed value in the scoring vector,
and the distance limit, for which we showed either membership in FPT or W[2]-hardness.
Finally, we showed by experiments using Formula 1 results that the problem is relevant in
practice.

In Chapter 5 we studied the problem of determining the winning probability of candidates in
elections with probabilistically distributed votes, the so-called evaluation problem. For almost
all combinations of the two approval voting rules and the considered scoring rules, preference
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distribution models, winning cases, and parametrization of the number of candidates and
voters, we determined the complexity, in terms of membership in FP versus #P-hardness.
Moreover, we extended all results to random and lexicographic tie-breaking and showed the
polynomial-time equivalence of the function and decision variant of the problem. In addition,
we showed dichotomous results for the class of scoring rules assuming PPIC or EDM as the
distribution model and showed the polynomial-time equivalence of the evaluation problem
assuming Mallows and the counting variant of the unweighted swap bribery problem, which
we studied in Chapter 3.

In Chapter 6, we then moved from elections to sports tournaments, more precisely round-
robin tournaments, and studied the complexity of the evaluation problem for these as well
under the assumption that the probabilities for the outcomes of the remaining matches are
given. We showed that the problem is #P-hard as soon as at least three matchdays remain
and is in FP otherwise. We thus strengthened the existing result of Saarinen et al. [2015]
in that the hardness also holds if one assumes the existence of a schedule and all remaining
matches are not spread over the whole tournament, but compactly on the last matchdays.
To better understand the complexity of the problem in practice, we then considered the
parameterized complexity with respect to a specific parameter, the maximum fixing number,
which scales with the density of matches between the top teams and developed an FPT
algorithm with respect to this parameter. As a next step, we implemented the algorithm and
examined its running time using real data and synthetic data. We found that the running
time does not grow as expected for a #P-hard problem under the usual assumptions, which
is why we subsequently examined the average-case complexity of the problem. We were able
to theoretically confirm the efficiency observed in the experiments by showing the expected
polynomial running time in the considered case. In particular, we put a lot of emphasis on
justifying the choice of the distribution based on the empirical observations. The efficiency
results, and in particular the average-case polynomial time result, also inherit to the very
well-known elimination problem. As far as we know, this is the first average-case result in
the field of sports prediction problems and one of only a handful in the field of computational
social choice.

In Chapter 7, we then discussed our proposal to apply the smoothed analysis by Spielman
and Teng [2004, 2009] in the area of computational social choice to both the study of the
computational complexity and axiomatic properties. In particular, we reviewed the extensive
related work that has appeared subsequently to our proposal, showing that smoothed analysis
can be of great value for both the study of the computational complexity and the study of
axiomatic properties in the field of computational social choice.

Thus, a key aspect that has driven us through this thesis has been the concept of uncertainty in
relation to computational complexity: in Chapter 3, we studied the complexity of evaluating
the robustness of election outcomes in the presence of uncertainty about the preferences, in
Chapter 4, we studied the complexity of evaluating the robustness of election outcomes and
competition outcomes in the presence of uncertainty about the scoring rule, in Chapter 5, we
examined the complexity of predicting and evaluating the probabilistic robustness of election
outcomes in the presence of uncertainty about the preferences, in Chapter 6, we examined
the complexity of predicting sports tournaments in the presence of uncertainty about the
outcomes of the remaining matches, and in Chapter 7, we discussed the impact of uncertainty
on the concept of computational complexity itself.
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8.2 Future Work & Directions

In the following, we will conclude by briefly discussing directions for future work. Since we
have already discussed the specific opportunities for future work in the individual chapters,
we will discuss more general directions here.

A direction that has proven extremely fruitful in the course of this thesis, but also in the
literature, is the study of problems in terms of their worst-case complexity with the clear
understanding that the worst-case results, and in particular potential hardness results, are a
call to understand the underlying mechanisms of the problem that determine the complexity
and their relevance. For this purpose, the study of the complexity in special cases, the study
of the parameterized complexity, and the study of the average-case complexity have been
particularly helpful.

An approach that was highly useful in this thesis was to let the research be guided by in-
sights from experiments using real-world data and synthetic data, and to critically examine
the results found using these. This approach has several advantages. For example, consider-
ing real-world data and recognizing its characteristics helps to find parameterized algorithms
that provide significant practical progress. The practical and theoretical relevance of such
algorithms are not mutually exclusive, e.g. our FPT algorithm for the prediction of sports
tournaments in Chapter 6 showed not only that the problem can be solved much faster in
practice than the worst-case hardness suggests, but also that it can be solved in polynomial
time even in the worst-case in the case of at most two remaining matchdays. In addition, the
implementation and application of the algorithms to real-world data, such as in Chapter 4
for the design of scoring rules, shows whether the problem is even close to being relevant
in practice or whether the prerequisites are so strict that interesting use cases rarely arise
in practice. While the previous comments refer to advantages of considering experiments in
studies of given problems, keeping potential experiments in mind also has a conceptual advan-
tage in planning studies and finding significant problems. Keeping meaningful experiments
in mind can act as a reality check, since one cannot completely lose touch with reality and
the applicability of the results in practice. Thus, we think that this approach is particularly
appropriate for future studies of problems in the area of computational social choice and the
study of computational problems in sports.

Another direction is the adoption of, possibly more realistic and relevant, measures of com-
plexity than worst-case complexity. For example, the thoroughly discussed average-case com-
plexity and smoothed analysis still offer great potential in the field of computational social
choice, as we have seen in Chapter 6 and Chapter 7. But other complexity concepts, such as
parallel complexity theory, which deals with the possibilities and limits of the parallelization
of algorithms and problems and addresses the current demands in the context of big data, the
stagnant development of the speed of single processor cores, and the focus on large computer
clusters, have not yet been extensively studied in the field of computational social choice. See
Csar et al. [2017] for the, to the best of our knowledge, sole results in this regard. Naturally,
the rise of quantum computing, and the resulting increasing relevance of quantum complexity
theory, also opens up other questions such as the protection of elections and the protection
of voters’ privacy.
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Finally, it must be acknowledged that many of the studies discussed here are theoretical
groundwork, as long as more elaborate decision making processes, such as elections with more
expressive preferences than the currently used plurality voting systems, more fair allocation
procedures, e.g. those developed in cake cutting for decades, and advances in tournament
design, are not widely accepted and applied in practice. Thus, one of the main tasks of the
field of computational social choice should be to make those future insights as well as those of
the last decades accessible to the broad public, e.g., through simple explanations that build
trust and accessible implementations.
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dass ich eine Dissertation in der vorliegenden oder in ähnlicher Form noch bei keiner anderen
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