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Summary 

The posterior medial frontal cortex (mPFC) is a major contributor to action 

monitoring. In response-locked electroencephalography (EEG), two frontocentral 

event-related components (ERPs) with presumed origins in medial prefrontal 

cortex (mPFC) are associated with action monitoring: the error-related negativity 

(ERN) peaking 80-100 ms after error commission, and an observer mediofrontal 

negativity (oMN) peaking 100-300 ms after error observation. The predicted 

outcome-response (PRO) model and empirical findings suggest that the mPFC 

represents not action valence but expectancy violations. Observed action 

monitoring processes are probably further modulated by empathy, and possibly in 

relation with expectancies. Effects of subjective and objective error significance on 

action monitoring ERP components challenge the PRO model as they cannot be 

explained by expectancies. This PhD project aimed to investigate effects of 

expectancies, empathy and error severity as potential modulators of observed 

action processing. Studies 1 and 2 used a false-belief paradigm to differentiate 

valence and expectancy effects on observed action monitoring and its modulation 

by empathy. Study 1 showed that an early observed action monitoring component 

resembling the oMN represents expectancies, not vicarious error processing, and 

the results suggested an indirect effect of empathy on ERP amplitudes. This was 

confirmed in study 2 by showing that single-trial expectancy values influenced ERP 

amplitudes of a later ERP component, and were themselves influenced by 

empathy. Empathy could not explain additional variance of the ERP component. In 

study 3, we found (contrary to the PRO model) that error severity modulated the 

ERN in a piano playing paradigm. However, we found no error severity, but a 

binary valence effect for the oMN, which might be explained by expectancies. 

Expanding the PRO model, we suspect that the mPFC sends a need-to-adapt 

signal if either actions or predictions need to be adapted. Depending on the task, 

the focus might be either on predictions (studies 1 and 2) or actions (active 

paradigm in study 3). Future studies might investigate this theory by manipulating 

action and prediction deviations and the task focus.   
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List of Abbreviations 

ACC anterior cingulate cortex 

aMCC anterior midcingulate cortex 

BA Brodmann area 

BOLD blood-oxygenation-level dependent 

dmPFC dorsomedial prefrontal cortex 

EEG electroencephalography 

ERN/Ne error-related negativity/error negativity 

ERP event-related potential 

fMRI functional magnetic resonance imaging 

FRN feedback-related negativity 

IKI inter-keypress interval 

IRI interpersonal reactivity index 

LME  linear mixed effect 

MCC midcingulate cortex 

MIDI musical digital interface 

mPFC medial prefrontal cortex 

oFRN observer feedback-related negativity 

oMN observer mediofrontal negativity 

pMCC posterior midcingulate cortex 

pMFC posterior medial frontal cortex 

preSMA pre-supplementary motor area 

PRO model predicted response-outcome 

rewP reward positivity 

rmPFC rostromedial prefrontal cortex 

SMA supplementary motor area 

vmPFC ventromedial prefrontal cortex 
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Preface: Anatomy of the prefrontal medial wall 

Because various terms have been used in previous literature to refer to 

different parts of the prefrontal medial wall and some definitions remain unclear, I 

will shortly introduce the anatomy and the terminology that this dissertation is 

based on. The term medial prefrontal cortex (mPFC) has been used to describe 

just the isocortical regions of the prefrontal cortex (Etkin et al., 2011), including 

dorsomedial prefrontal cortex (dmPFC), rostromedial prefrontal cortex (rmPFC), 

and ventromedial prefrontal cortex (vmPFC; Ullsperger et al., 2014), but it can also 

refer to a broader area that includes the anterior cingulate cortex (ACC; e.g. 

Alexander & Brown, 2011). The anterior cingulate cortex, respectively, might refer 

to the original definition by Brodmann in which the Brodmann Areas (BAs) 24, 25, 

32 and 33 were included, or to a smaller area including only the rostral/ventral part 

as ACC (see Stevens et al., 2011), while the dorsal part of the ACC is referred to 

as midcingulate cortex (MCC). Ullsperger et al. (2014) refer to the posterior medial 

frontal cortex (pMFC) as including the rostral and caudal cingulate zone (dorsal 

and caudal ACC or MCC), pre-supplementary motor area (preSMA) and parts of 

the dorsomedial prefrontal cortex. Because the subareas of the prefrontal cortex 

are highly interconnected with each other (see Ridderinkhof, van den Wildenberg, 

et al., 2004, for a review), it is especially difficult to distinguish between distinct 

functional areas. To use concise terminology throughout this work, I will refer to the 

whole area around the prefrontal medial wall as mPFC (including parts of BA 6, 8, 

9, 10, 11, 12, and BA 24, 25, 32 and 33). I will further refer to the cingulate areas 

as ACC (BA 24, 25, 32 and 33) and the isocortical areas as isocortical mPFC 

(parts of BA 8-12) or directly refer to the subdivisions of the isocortical mPFC. I will 

use the Brodmann definition of the ACC, but use the terms (from rostral-dorsal to 

caudal-ventral) posterior MCC (pMCC), anterior MCC (aMCC), pregenual ACC and 

subcallousal ACC to refer to its subdivisions (according to Ullsperger et al., 2014). 

The term pMFC thus refers to the more posterior part of the mPFC. Please see 

Figure 1 for a schematic representation of the respective areas.  
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Figure 1 

Schematic representation of the prefrontal medial wall 

     

Note. On the left: Brodmann areas at the prefrontal medial wall (Brodmann, 1909). 
On the right: distribution of the prefrontal medial wall (according to Ullsperger et al., 
2014). I will refer to all colored areas as the medial prefrontal cortex (mPFC). I 
have marked what I will call the anterior cingulate cortex (ACC) with a red border, 
and what I will call isocortical regions of the mPFC with a green border. The ACC 
consists of the posterior midcingulate cortex (pMCC), anterior midcingulate cortex 
(aMCC), pregenual ACC (pACC) and subcallousal ACC (sACC). The isocortical 
regions of the mPFC consist of the dorsomedial prefrontal cortex (dmPFC), 
rostromedial prefrontal cortex (rmPFC) and ventromedial prefrontal cortex 
(vmPFC). Above the aMCC and pMCC are the supplementary motor area (SMA) 
and pre-SMA. The posterior medial frontal cortex (pMFC) contains the aMCC and 
preSMA and additionally parts of the SMA, pMCC and dmPFC (according to 
Ullsperger et al., 2014; marked with a grey border). 
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Introduction 

The human brain likes to be in control, especially when losing control has 

severe consequences. For example, picture an acrobat being tossed three meters 

high into the air to do a flip. At this moment, the brains of the acrobat and catchers 

down on the ground constantly monitor all available information to maximize 

control: not only do they monitor their own actions, but they monitor others’ actions 

and especially consequential errors. In short, their brains process as much relevant 

information as possible to maximize the likelihood of a safe landing. 

Action monitoring in any form relies heavily on the mPFC, especially the 

ACC (see Ridderinkhof, Ullsperger, et al., 2004). The mPFC codes negative 

outcomes (Becker et al., 2014; Holroyd et al., 2004; Nieuwenhuis et al., 2004) as 

well as own errors (Gawlowska et al., 2018; Holroyd et al., 2004; Ullsperger & 

Cramon, 2004) and errors observed in others (de Bruijn et al., 2009; Shane et al., 

2008; Yoshida et al., 2012). mPFC activity is also linked to subsequent behavior 

adaptation (Garavan et al., 2002; O'Doherty et al., 2003). While the mPFC is 

established as control center of the brain, the exact mechanisms of how this 

control is executed are still unclear, leading to several theories concerning their 

function. 

Specifically, the mPFC has been linked to error monitoring. In the early 

1990s, scientists found that a negative-going event-related potential (ERP) 

component in the electroencephalography (EEG) signal was larger for errors than 

correct actions (Falkenstein et al., 1991; Gehring et al., 1993). The researchers 

accordingly named the component error negativity (Ne; Falkenstein et al., 1991) or 

error-related negativity (ERN; Gehring et al., 1993). Although the name error-

related negativity might be misleading (see Alexander & Brown, 2011), the term 

ERN is well established and I will consequently use it in the current work to 

facilitate comparison to previous studies. The amplitude difference between ERPs 

after correct responses and errors is largest at frontocentral electrode sites, right 

above the mPFC, and evidence quickly accumulated linking it to mPFC and 

especially ACC activity (Debener et al., 2005; Dehaene et al., 1994; Kiehl et al., 



6 | Introduction  

 

2000; van Veen & Carter, 2002; for a review, see Taylor et al., 2007). In addition, 

the ERN latency shows that error processing happens fast; the ERN has its onset 

at or even before an erroneous action and peaks around 80 ms to 100 ms after it 

(Falkenstein et al., 1991; Gehring et al., 1993; for a review, see Gehring et al., 

2012). The role of the mPFC and respective ERP components has been 

extensively studied over the past 40 years. I will begin by giving an overview of the 

neural and behavioral components underlying research on action monitoring before 

proceeding to theories on the precise functions of action monitoring in the brain. 

Neural and behavioral components of action monitoring 

Own actions 

Going back to our example, let us imagine the acrobat in the air commits an 

error by flipping only half the way. At the moment of the error, her brain reacts, 

noticing the error and recalculating the next moves. 

The ERN, as described above (Falkenstein et al., 1991; Falkenstein et al., 

2000; Gehring et al., 1993; for a review, see Gehring et al., 2012), probably 

originates in the ACC (Dehaene et al., 1994; Ridderinkhof, Ullsperger, et al., 2004) 

and might be interpreted as the electrophysiological correlate of mPFC 

involvement in action monitoring. The ERP component occurs across different 

stimulus modalities (Forster & Pavone, 2008; Neta et al., 2015) and response 

modalities (Holroyd et al., 1998; Neta et al., 2015; Reinhart et al., 2012; van ’t Ent 

& Apkarian, 1999). Nevertheless, error responses might still slightly differ in 

latency, length, and topography, depending on task or response modality (Reinhart 

et al., 2012).  

In addition to a brain response, errors elicit a robust control-enhancing 

behavioral response that is connected to processes in the mPFC (Danielmeier et 

al., 2011; Fu et al., 2019): errors often lead to an increase in response time in the 

trials following the error, called post-error slowing (Rabbitt, 1966, 1969). This effect 

is especially pronounced in speeded-response tasks (Buzzell et al., 2017; 

Danielmeier et al., 2011; Hajcak & Simons, 2008). Post-error slowing, as the ERN, 

presumably represents a control process (Kalfaoğlu & Stafford, 2014). However, 
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although ERN amplitude and post-error slowing have been shown to correlate 

(see, for example, Debener et al., 2005; Gehring et al., 1993), dissociations have 

been found as well (e.g. Chang et al., 2014; Hajcak et al., 2003; Jentzsch et al., 

2014). These mixed findings can be explained by specific factors modulating ERN 

and post-error slowing differentially, such as error awareness (Nieuwenhuis et al., 

2001) or expertise (Jentzsch et al., 2014). As for the ERN, the exact mechanisms 

leading to post-error slowing are still debated. Some studies suggest that post-

error slowing is caused by a change in the speed-accuracy-tradeoff as a result of 

errors (Marco-Pallarés et al., 2008; Rabbitt, 1966). More current research hints at a 

reorienting process after errors or unexpected events (Buzzell et al., 2017; Hajcak 

& Simons, 2008; Houtman et al., 2012; Jentzsch & Leuthold, 2006; Notebaert et 

al., 2009; Núñez Castellar et al., 2010). This theory states that (infrequent) error 

events lead to increased attention on these events and participants must reorient 

attention to the task. In line with this explanation, participants show no post-error 

slowing or even post-error speeding when responses are allowed to be slow, 

especially for difficult tasks (Damaso et al., 2020; Williams et al., 2016). 

Observed actions 

After the acrobat has made her error, the catchers must react very fast, 

adapting their position to safely catch the flyer. Processing observed errors, in fact, 

might be as important as processing own errors in our social environment. Even if 

(unlike or example) action consequences for observed actions might not always be 

immediate, observation offers the bonus that we can learn from others’ mistakes. 

The brain activity of the catchers observing the error appears to be very similar to 

the acrobat’s own response. Enhanced activity in ACC and mPFC when observing 

errors (de Bruijn et al., 2009; Shane et al., 2008; Yoshida et al., 2012, for a review, 

see Koban & Pourtois, 2014) suggest that similar monitoring mechanisms as in 

own actions take place. Additionally, observers display activity in pre-SMA and 

SMA (Scangos et al., 2013; Shane et al., 2008), which suggests that their brains 

simulate the motor responses that are observed, possibly through mirror neurons 

(Di Pellegrino et al., 1992; Gallese et al., 1996).  
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Results from EEG studies support the notion that own and observed actions 

are processed by the same system. For observed errors, a negative-going ERP 

component at frontocentral sites has been observed (Bates et al., 2005; Carp et 

al., 2009; de Bruijn & von Rhein, 2012; Miltner et al., 2004; van Schie et al., 2004). 

This component has sometimes been dubbed observer error-related negativity or 

error-related negativity for observation (Bates et al., 2005; van Schie et al., 2004). 

As the ERN, evidence suggests that the ERP component is generated in the 

mPFC, specifically the ACC (Miltner et al., 2004; van Schie et al., 2004). Because 

(unlike for the ERN) there is no well-established term for the component and its 

functionality is yet undetermined (Alexander & Brown, 2011; Bellebaum et al., 

2020; Desmet et al., 2014), I will refer to the ERP component as observer 

mediofrontal negativity (oMN). 

There are also differences between processing of own and observed 

actions. Only the processing of observed actions – not of own actions -, activates 

the superior temporal sulcus (Ninomiya et al., 2018), anterior insula (Cracco et al., 

2016) and inferior parietal cortex (Shane et al., 2008). The oMN is usually smaller 

in amplitude than the ERN (Bates et al., 2005; Miltner et al., 2004; van Schie et al., 

2004) and it usually peaks later (Miltner et al., 2004; van Schie et al., 2004). 

However, the oMN latency seems to strongly depend on the task. Peaks as early 

as 130 ms have been observed in Go/NoGo-Tasks (Bates et al., 2005; Koban et 

al., 2010), but for Flanker tasks, the oMN peaks 150 to 300 ms after the observed 

action (Carp et al., 2009; de Bruijn & von Rhein, 2012; Miltner et al., 2004; van 

Schie et al., 2004). 

Behaviorally, post-error slowing effects have been observed for participants 

watching others make an error (Ceccarini & Castiello, 2019; Núñez Castellar et al., 

2011; Schuch & Tipper, 2007). Processes of reorienting after own errors thus 

possibly extend to observed errors. 

Own and observed feedback processing 

The outcome of actions in terms of their accuracy can be determined using 

two types of signals. First, internal signals can be used that directly reflect our 
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actions, and second, external signals can be used, such as feedback that we 

receive after the action. The acrobat might notice directly that her movements are 

not as expected, but she might also receive feedback on her action from her coach 

– or simply from the position in which she lands.  

Feedback processing in the brain greatly resembles error processing. The 

mPFC, especially ACC, plays a major part in both (Becker et al., 2014; Holroyd et 

al., 2004). Negative feedback (compared to positive feedback) leads to a relatively 

negative ERP component around 250 ms after the feedback. This component was 

originally called feedback-related negativity (FRN; Hajcak et al., 2006; Miltner et 

al., 1997; Yeung et al., 2005). It supposedly originates in the mPFC (Gehring & 

Willoughby, 2002; Nieuwenhuis et al., 2004). The component seems to be 

connected to the reward circuit (Becker et al., 2014, see Shohamy et al., 2008), 

including ventral striatum and ACC and neutral outcomes elicit similar negative 

amplitudes as negative outcomes (Holroyd et al., 2006; Kujawa et al., 2013). As a 

consequence, recent theories propose that the difference in FRN amplitudes 

between positive and negative outcomes stems from a relative positivity after 

positive (rewarding) outcomes. Negative and neutral outcomes, according to these 

theories, lead to a baseline activation in form of an ERP negativity. In this light, 

researchers suggest to use the term reward positivity (rewP) instead of FRN for the 

difference signal between positive and negative outcomes (Proudfit, 2015). 

Consequently, I will refer to the component as rewP for the difference signal 

between positive and negative outcomes, and as FRN when referring to the 

negativity following feedback that is presumably reduced after positive outcomes.  

As for error processing, a similar brain response as for feedback to own 

actions could be found in the catchers who observe the acrobat getting feedback 

from the coach. An ERP component similar to the rewP is also elicited, though with 

reduced amplitude and less consistently, when observing feedback given to others 

(Bellebaum et al., 2010; Fukushima & Hiraki, 2006, 2009; Itagaki & Katayama, 

2008; Kang et al., 2010; Koban et al., 2012; Yu & Zhou, 2006). In a functional 

magnetic resonance imaging (fMRI) study, an involvement of the mPFC, 
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specifically the ACC, has been found for observing feedback (Mobbs et al., 2009). 

However, the responses to observed feedback and the so-called observer FRN 

(oFRN) are strongly modulated by social context (Fukushima & Hiraki, 2009; 

Itagaki & Katayama, 2008; Kang et al., 2010; Koban et al., 2012) and 

interindividual differences such as gender and empathy (Fukushima & Hiraki, 2006, 

2009; Koban et al., 2012). These findings raise the question whether oFRN and 

rewP might not be functionally separate, but a more general correlate of outcome 

evaluation, regardless of the actor (self or other) of the preceding action (Gehring & 

Willoughby, 2002; Yeung et al., 2005). 

Theories on action monitoring in the mPFC 

As established in the previous paragraphs, own and observed actions and 

feedback elicit brain responses that robustly vary depending on their valence. 

Errors and negative feedback result in increased mPFC activity and enhanced 

ERP component amplitudes. But how can the brain know that an error has 

happened? What are characteristics of actions and contexts that need to be met 

for the mPFC to be active?  

The early research on error processing (Falkenstein et al., 1991; Gehring et 

al., 1993) also stated one of the first theories concerning the role of the ACC. They 

suggested that the region receives efference copies of the response and compares 

these to the representation of the intended response (Falkenstein et al., 1991; 

Falkenstein et al., 2000). In our example, the acrobat would compare her 

movement to the correct movement she has learned. If both are not the same, an 

ERN would emerge. If that theory held true, so Falkenstein et al. (2000) argued, 

the ERN should be larger the more the actual motion deviated from the aspired 

motion (supported by Bernstein et al., 1995; Falkenstein et al., 2000). Also, error 

responses should only show when an efference copy is created; the theory thus 

assumes that errors based on faulty knowledge elicit no ERN (Dehaene et al., 

1994, supported by Scheffers & Coles, 2000; Tucker et al., 1993).  

As a conflicting result to this early theory, Carter et al. (1998) found 

increased ACC Blood-Oxygenation-Level Dependent (BOLD) activity not only for 
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incorrect responses, but also for correct responses when two possible responses 

competed. In our example, the acrobat has a whole repertoire of movements she 

can perform in the air, which compete with each other. If the conflict between them 

is high, activity in the ACC is enhanced. In Carter et al.’s Conflict Monitoring 

Hypothesis, they proposed that ACC activity (and subsequently the ERN) codes 

response conflict rather than errors per se (Botvinick et al., 2001; Carter et al., 

1998; Yeung et al., 2004). Errors, according to the theory, are just a byproduct of 

the conflict – if conflict between the correct and erroneous response is especially 

high, the probability increases that the erroneous response is executed. The theory 

matched findings of increased ACC activity in tasks that enhanced conflict (Bench 

et al., 1993; Thompson-Schill et al., 1997) and could explain why unconscious 

errors could elicit an ERN. Van Veen and Carter (2002; see also Mathalon et al., 

2003; Nieuwenhuis et al., 2003, for similar findings) showed a negative component 

in the ERPs originating from the ACC for high conflict correct trials before the 

response, which was similar, but earlier, as an ERN. They suggested that both 

negative components represent a conflict peak. The earlier the conflict, the more 

likely it is that a correct action occurs. However, more rostral areas of the mPFC 

were shown to be active only in high-conflict errors, and more dorsal areas in low-

conflict errors, with overlap in the MCC (Wittfoth et al., 2008). Thus, while conflict 

might influence error monitoring, error processing cannot be fully explained by 

increased conflict in error responses. In addition, the Conflict Monitoring 

Hypothesis predicts larger ERNs for more frequent as opposed to less frequent 

errors (conflict between the responses is higher). However, the opposite pattern 

has been observed (see Holroyd & Coles, 2002). 

In an influential theory proposed shortly after the Conflict Monitoring 

Hypothesis, Holroyd and Coles (2002) account for error-related activity in the ACC 

based on principles of reinforcement learning. The mesencephalic dopamine 

system, including the substantia nigra, basal ganglia and ACC, is fundamental in 

learning from rewards. Single dopamine neurons in the midbrain of monkeys show 

high activity for unexpected rewards, baseline activity for expected rewards and 
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decreased activity for unexpected non-rewards (Hollerman & Schultz, 1998; 

Schultz et al., 1997). This indicates that the mesencephalic dopamine system 

codes expectations. Holroyd and Coles extended these findings to action 

monitoring in their Reinforcement Learning Theory. The theory predicts dopamine-

related ACC activity for bad behavioral outcomes, in accordance with previous 

theories, but only if they are worse than expected. If the acrobat tends to make the 

same error over and over again, ACC activity should be smaller than for an error 

she makes for the first time. The Reinforcement Learning Theory assumes that 

signed prediction errors are reflected in ACC activity. The theory thus assumes a 

difference for unexpected negative actions or outcomes and positive actions or 

outcomes, but no difference between expected negative and positive actions or 

outcomes. Holroyd and Coles could show, accordingly, that infrequent errors 

elicited higher ERN amplitudes than more frequent errors. In addition, the theory 

can be applied to the relation between ERN and RewP. Holroyd and Coles could 

show that if participants could learn to predict the feedback based on their 

responses, the feedback-locked RewP (quantified as the difference between 

correct and incorrect, so technically an inverted RewP) de- and the response-

locked ERN increased. This is much the same pattern as observed in monkeys’ 

dopamine neurons during learning (Hollerman & Schultz, 1998; Schultz et al., 

1997). In the following years, evidence accumulated both supporting the influence 

of expectancy on the ERN and RewP (Brown & Braver, 2005; Eppinger et al., 

2008) and the connection between ERN and RewP (Bellebaum & Colosio, 2014; 

Eppinger et al., 2008; Pietschmann et al., 2008). However, no respective 

connection was shown during observation (Bellebaum & Colosio, 2014).  

Opposed to assumptions made in the Reinforcement Learning Theory, ERN 

amplitudes and mPFC activity are increased not only for outcomes and actions that 

are worse than expected, but also for outcomes and actions that are better than 

expected (Ferdinand et al., 2012; Jessup et al., 2010; Núñez Castellar et al., 2010; 

Oliveira et al., 2007). The mPFC might thus code unsigned instead of signed 

prediction errors. Building on Holroyd & Coles’ (2002) assumptions, Alexander and 
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Brown (2011) proposed the predicted response-outcome (PRO) model: they 

assume that the mPFC generates predictions on both actions and outcomes. If 

these predictions match the actual response or outcome, the mPFC response is 

inhibited. If the predictions do not match, mPFC activity is, respectively, higher. 

This interprets error (and other) activity of the mPFC as unsigned prediction error 

activity. For the acrobat and her observers, the PRO model would assume 

increased mPFC activity also if the acrobat performs a correct movement after she 

has made the wrong movement several times in a row, not only if she makes an 

unexpected error. The PRO model is able to explain almost all characteristics of 

mPFC and ACC activation: First, it explains its sensitivity to error likelihood, and 

the decrease of rewP amplitudes during learning (see Bellebaum & Colosio, 2014; 

Eppinger et al., 2008; Pietschmann et al., 2008; due to the predictability of both 

positive and negative feedback for a well-learned task). Second, it also explains 

conflict effects – the higher the conflict, the more difficult it presumably is to make 

predictions concerning action or outcome, and the less expected specific actions 

and outcomes are.  

Current Research on the PRO model 

The PRO model interprets brain responses following both own and 

observed actions or outcomes as a function of the unexpectedness of the event. 

The acrobat, therefore, generates a brain response when a movement or an 

external signal differs from what she expects. This might even be more relevant in 

the moment than defining the action’s valence; if the acrobat is able to predict the 

movement, erroneous or not, she can more easily adapt to the action and its 

consequences. The same holds for the observing catchers. They need to notice 

whether the acrobat lands somewhere unexpected, but they do not need to know 

why she lands there to catch her safely.  

In recent years, more and more evidence has accumulated in support of the 

PRO model. As the model and the corresponding empirical findings build the main 

basis for the present work, the respective studies are described in detail in the 

following paragraph. 
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Own Action Monitoring 

Several studies have been conducted on the influence of expectancies in 

own response monitoring. Wessel et al. (2012) showed that both the ERN and the 

novelty-related frontocentral N2 are generated in the mPFC, specifically in the 

pMFC. In a subsequent fMRI experiment, they observed comparable activity in the 

aMCC after errors and novel events. Patients with lesions to the left prefrontal 

cortex showed significantly reduced ERN and novelty-related N2 amplitudes 

compared to healthy controls (Wessel et al., 2014). They also did not show, as the 

control group, slowing after novelty or error (Wessel et al., 2014). The ERN and N2 

thus seem to code similar processes, which might be related to expectancy. Both 

novelty events and (infrequent) errors reflect unexpected events, and error as well 

as novelty processing in the mPFC could be attributed to these expectancy 

violations. Núñez Castellar et al. (2010) used an adaptive algorithm that 

manipulated task difficulty. With this, they ensured predetermined error frequencies 

per participant, which should manipulate the expectancies of errors. The authors 

found a difference after correct and erroneous responses in ERN amplitudes only 

in the condition where errors were less frequent than correct responses (75% 

correct). They found no such difference in the condition where error responses 

were more frequent (35% correct). Gawlowska et al. (2018) used yet another 

expectancy manipulation. They employed a learning task where participants would 

naturally expect errors at the beginning of learning, with decreasing error 

expectancies as learning continued. They found that the processing of erroneous 

and correct responses as a function of ERN amplitude and ACC BOLD response 

did not differ at the beginning of the learning task. During learning, however, BOLD 

activations and ERN amplitudes after erroneous actions increased.  

Similar effects as for action processing have been observed for feedback 

processing. Most of these studies used feedback type frequency to manipulate 

expectancies: Jessup et al. (2010) showed that ACC activity in response to 

negative feedback did not only decrease when negative feedback was more 

frequent, but positive infrequent feedback resulted in significantly more ACC 
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activity than negative frequent feedback. Chase et al. (2011) found highest FRN 

amplitudes for infrequent negative feedback, and no significant difference between 

frequent positive feedback and frequent negative feedback. While these results 

suggest expectancy effects on ACC activity, they support signed prediction error 

activity (as proposed by Holroyd & Coles, 2002) rather than unsigned prediction 

error activity in the ACC. Ferdinand et al. (2012) constructed a time-estimation 

paradigm. Based on how much the participants deviated from the correct timing, 

they received negative (20%; high deviance from correct time point), positive (20%; 

low deviance from correct time point) or intermediate feedback (60%; intermediate 

deviance from correct time point). The thresholds for the respective feedback types 

were set adaptively to obtain the predetermined frequency. FRN amplitudes 

reflected frequency, but not valence. In contrast to these results, Núñez Castellar 

et al. (2010) observed no frequency effects on the FRN, possibly because of 

different predetermined feedback type frequencies (75% or 35% correct).  

Instead of a frequency modulation, Oliveira et al. (2007) prompted outcome 

expectancies before giving feedback to the participants. In the task they used, 

errors, and subsequently, negative feedback, happened quite often (just under 

50% of trials). The authors found lower FRN amplitudes after outcome-expectancy 

mismatches (participants stated that they had answered correctly and received 

negative feedback, or participants stated they had answered incorrectly and 

received positive feedback) than after matches. There was no effect of feedback 

valence. Interestingly, the study by Oliveira et al. also found that participants 

overestimated their own performance (i.e., the actual frequency of positive and 

negative feedback). This suggests that outcome frequencies cannot be exactly 

translated to participants’ expectancies. In their deterministic learning task, 

Gawlowska et al. (2018) found that the difference between FRN amplitudes after 

positive or negative feedback increased during learning. This contradicts findings 

on decreased differences in FRN amplitudes between positive and negative 

feedback for other deterministic conditions (Eppinger et al., 2008). However, 

Eppinger et al. (2008) varied contingencies as a within-subject factor, while 
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participants in the study by Gawlowska et al. always learned with 100% 

contingency. In this study, outcomes should become more expected, but negative 

feedback also became overall less frequent during learning. The comparison 

between the studies by Gawlowska et al. and Eppinger et al. shows that outcome 

contingencies, the interplay between different within-subject conditions, and 

frequency might influence expectancies. It can therefore be suspected that 

frequency modulations are not the only determinants of outcome expectancy, 

which I will address in further detail below. 

Finally, effects of expectancy – again manipulated by response type 

frequency – have been found for behavioral responses to errors. Notebaert et al. 

(2009) observed post-event slowing after infrequent correct and wrong responses 

with deterministic feedback. They also showed post-event slowing after 

unexpected events. The results were confirmed in a subsequent study (Núñez 

Castellar et al., 2010). Houtman et al. (2012) found enhanced post-error slowing 

after infrequent compared to frequent errors irrespective of whether participants 

received feedback or not.  

Observed Action Monitoring  

The similarity between own and observed action monitoring would suggest 

that respective effects of expectancy can be transferred to observed action 

monitoring. Desmet et al. (2014) created a paradigm in which participants watched 

persons using a device. They could either use it correctly or incorrectly, and the 

outcome could be positive or negative (but only negative outcomes were possible 

for incorrect use). Additionally, in some trials a random picture (unexpected and 

unrelated to the task) appeared on the screen during the outcome presentation 

(creating novelty events similar to Wessel et al., 2012). Unexpected events and 

unexpected negative feedback elicited highest mPFC activation, followed by action 

errors and expected negative feedback. Correct actions and correct outcome 

elicited the lowest activation.  

Again, most studies on the effect of expectancy in observed action 

monitoring manipulated expectancy with frequency: Schiffer et al. (2014) found 
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increased BOLD signals in the dmPFC after videos of correct or incorrect knot-

tying if actions of opposite valence had been seen in a preceding training session 

(compared to videos with matching valences between training and test session). 

Wang et al. (2015) found no difference in oMN amplitudes after correct and 

erroneous observed responses, if observed errors were frequent (80%, indicating a 

signed prediction error). However, they found a significant difference when 

observed errors and correct responses were equally frequent (50%). In contrast, 

Pezzetta et al. (2018) observed significantly higher ERN amplitudes after errors 

compared to correct actions in a virtual reality setting where errors were very 

frequent (70%). This study might be another example that frequency modulation 

does not necessarily equal expectancy modulation. Since Pezzetta et al. used 

grasp movements as the object of observation, which is a task often seen in 

everyday situations, the general expectation of erroneous actions might be low 

even if they were more probable in the experimental task. To identify effects of 

expectancy detached from frequencies, Kobza and Bellebaum (2013) and 

Bellebaum et al. (2020) used a false-belief paradigm in which instructions were 

used to shape expectancies, with constant event frequencies across conditions. 

They showed that oMN amplitudes after unexpected (correct or erroneous) 

observed actions were significantly higher than after expected (correct or 

erroneous) actions, respectively. This activation was shaped by trait empathy and 

oMN amplitude differences were observed only in highly empathic participants 

(Bellebaum et al., 2020).  

Expectancy – or frequency – effects have also been shown for observed 

feedback. Kobza et al. (2011) manipulated observed feedback frequencies. They 

found a difference in oFRN amplitude for negative and positive feedback only when 

negative outcome frequencies were low. They also found a main effect of outcome 

frequency: higher oFRN amplitudes emerged for feedback associated with a low 

frequency of correct outcomes than for feedback associated with a high frequency 

of correct outcomes. 
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Finally, Wang et al. (2015) used error frequency to manipulate expectancy 

in an observational task and, in contrast to previous findings, found no effect of 

error frequency on post-error slowing after observational errors, but a main effect 

of observed action valence. 

Discussion of empirical findings on the PRO model 

Although the presented studies form a strong case in favor of the PRO 

model, some potential problems arise. In most studies, action or outcome 

expectancies are manipulated via event type frequencies, often without checking if 

the manipulation worked. In this sense, it is important to note that while event 

frequency influences expectancies of these events to some extent, the two 

concepts are not equal. Significant valence effects for the oMN and for the FRN 

have still been observed when both events were equally frequent (Wang et al., 

2015; Yeung et al., 2005). Additionally, one study in which expectancies were 

directly measured (Oliveira et al., 2007) found an overoptimistic expectancy bias: 

participants expected to receive positive feedback more often than they actually 

did. Frequency modulations also do not consider baseline expectancies that might 

play a role in expectancy formation and might thus only work for previously 

unknown actions. As an example in observed action monitoring, Pezzetta et al. 

(2018) let participants observe grasp actions, a familiar task, and found no effect of 

error frequency on the oMN. In contrast, Schiffer et al. (2014) had participants 

observe knot tying, which was a novel task to the participants, and subsequently 

found an error frequency effect in mPFC activation.  

The problem of manipulating expectancies seems to be particularly relevant 

for research conducted on observed action monitoring. In two studies, no effects of 

frequencies on observed action monitoring (Pezzetta et al., 2018) or post-event 

slowing (Wang et al., 2015) were observed. These and other studies vary error 

frequency to manipulate expectancies of errors (Pezzetta et al., 2018; Schiffer et 

al., 2014; Wang et al., 2015), but, as explained above, the effects of probability on 

actual expectancies can be influenced by biases (Oliveira et al., 2007). In an 

attempt to exclude frequency effects, Bellebaum et al. (2020) and Kobza and 
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Bellebaum (2013) modified expectancies only via instructions while keeping action 

probabilities equal across conditions. However, this paradigm comes with its own 

limitations. The authors used a false-belief task, meaning that observed correct 

responses in the false-belief condition were errors from the perspective of the 

observed player: The player answers incorrectly based on the information available 

to them, but for the observer, who is privy to additional information, the action is an 

error. In this respect, errors in the false-belief condition could be perceived by the 

observer as vicariously correct actions, and vice versa for correct responses in the 

false-belief condition. Based on vicarious error processing, the oMN found by the 

authors would still encode valence, not expectancy. This interpretation seems 

more probable as electrophysiological responses were dependent on trait empathy 

(Bellebaum et al., 2020).  

The presented studies leave open two questions to investigate in observed 

error processing. First, can expectancy effects on observed action monitoring be 

found in a paradigm that rules out both, biases related to frequency modulations 

and vicarious error processing (i.e., perspective taking)? And second, are there 

possible modulators of expectancy formation that need to be accounted for in 

(observed) action monitoring research? Regarding the last point, the results of 

Bellebaum et al. (2020), if they can be attributed to expectancies, suggest a 

modulation of observed action monitoring by empathy as well as expectancy. The 

potential modulating effect of empathy on expectancy formation might be further 

investigated in follow-up studies.  

Further contradictory findings concerning the PRO model have been 

published by Maier and Steinhauser (2016). In a flanker task, they varied both error 

frequency and error type. They used two error types, namely single errors 

(participants failed to react to the target but successfully ignored the flankers) and 

double errors (participants failed to react to the target and chose the flanker 

response). The authors found that double errors led to higher ERN amplitudes than 

single errors even if frequencies for both error types were equally high. When 

double errors were less frequent than single errors, but error type could be 
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determined by the participants only at a later point (flankers occurred 100 ms after 

the target), ERN amplitudes did not differ. In compliance with the fact that even in 

studies where expectancies (or rather, frequencies), were accounted for, effects of 

valence were sometimes observed (Gawlowska et al., 2018; Jessup et al., 2010; 

Núñez Castellar et al., 2010; Pezzetta et al., 2018; Wang et al., 2015), this 

presents a third, albeit much broader, open question: are action monitoring 

processes for own and observed actions only dependent on expectancies, or are 

there some scenarios in which valence itself is (also) coded in the respective brain 

responses?  

Influences on Action Monitoring 

The theories discussed above try to answer the question which mechanisms 

are responsible for the increased activity in action monitoring brain areas such as 

the mPFC and respective ERP components after errors/negative outcomes 

compared to correct actions/positive outcomes. Based on the PRO model 

(Alexander & Brown, 2011), several studies have shown a strong effect of 

expectancy on action monitoring. However, as mentioned above, additional factors 

can influence action monitoring and might interact with expectancies, such as trait 

empathy (Bellebaum et al., 2020; Lockwood et al., 2015), or show effects above 

the effect of expectancies, such as error type (Maier & Steinhauser, 2016). I will 

discuss two potential modulators of action monitoring, namely interindividual 

differences, and the (subjective and objective) significance of errors. 

Interindividual differences 

The neural and behavioral correlates of action monitoring differ greatly 

between individuals based on several variables. The ERN is even discussed as a 

biomarker for psychiatric diseases due to systematic differences in ERN 

amplitudes between patients and healthy control groups. Enhanced ERN 

amplitudes compared to healthy controls were found in patients with obsessive 

compulsive disorder (Carrasco, Hong, et al., 2013; Endrass et al., 2008; Gehring et 

al., 2000) as well as their siblings (Carrasco, Harbin, et al., 2013). Enhanced ERN 

amplitudes were also observed for other anxiety disorders (Carrasco, Hong, et al., 
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2013; Endrass et al., 2014; Weinberg et al., 2010). For depression, the results are 

less coherent, with findings showing enhanced, decreased or non-altered 

amplitudes (Chiu & Deldin, 2007; Ladouceur et al., 2012; Ruchsow et al., 2004). 

In contrast, ERN amplitudes are diminished in patients with schizophrenia 

compared to healthy controls (Bates et al., 2002; Morris et al., 2006) as well as in 

siblings of schizophrenia patients (Simmonite et al., 2012). Reduced ERNs were 

also observed in bipolar disorder patients (Morsel et al., 2014). Furthermore, 

addiction patients elicit reduced ERNs (Franken et al., 2007; Littel et al., 2012; 

Luijten et al., 2011), and this reduction can even serve as a relapse predictor 

(Marhe et al., 2013) and as an indication for risk groups (Euser et al., 2013).  

In healthy participants, error monitoring seems to be linked, among others, 

to perfectionism (Barke et al., 2017; Perrone-McGovern et al., 2017; Stahl et al., 

2015) and emotional intelligence (Perrone-McGovern et al., 2017). While the 

relationship between ERN amplitudes and, for example, obsessive compulsive 

disorder, is pretty robust (Carrasco, Hong, et al., 2013; Endrass et al., 2008; 

Endrass et al., 2014; Gehring et al., 2000), other mediating interindividual 

measures, e.g. empathy and expertise, are less well-understood.  

Empathy and Action Monitoring 

Empathy stands out as a specifically relevant modulator of observed action 

monitoring for two reasons. First, empathic reactions, in a neuroscientific sense, 

are defined by a similar brain activation pattern during the self-experience of 

certain emotional states (mostly pain) and observing emotional states in others 

(Bufalari et al., 2007; Lamm et al., 2011; Singer et al., 2004). As established 

above, action monitoring of own and observed actions also activates mostly the 

same brain regions (de Bruijn et al., 2009; Koban & Pourtois, 2014; Shane et al., 

2008). This similarity between processing of own and observed emotional states 

and own and observed actions might suggest that observed action monitoring is an 

empathic response of the brain. Brain activation during pain observation is 

modulated by interindividual empathy differences (trait empathy, Singer et al., 

2004; Singer et al., 2006) and by contexts that induce or reduce empathic feelings 
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(state empathy; Singer et al., 2006). Similarly, observed action monitoring should 

be modulated by trait and state empathy. Second, and even more importantly, trait 

empathy might interact with effects of expectancy on observed action processing 

(Bellebaum et al., 2020; Lockwood et al., 2015) and, as a modulating factor, might 

account for some inconclusive results regarding the PRO model. 

While no clear definition of empathy exists as of today, Bernhardt and 

Singer (2012) describe it as the ability of understanding and sharing others’ 

emotions. Empathy is believed to contain both an affective and cognitive 

component (Davis, 1983). These subconcepts are supported by the different 

characteristics of psychiatric disorders associated with reduced empathy in either 

the cognitive (see autism spectrum disorder) or affective domain (see psychopathy; 

Jones et al., 2010). However, empathy is not a mere trait: The empathy felt 

towards another person as well as general empathic abilities can be influenced 

both by trait and state empathy (see Bernhardt & Singer, 2012). Trait and state 

empathy are closely connected, in that the one affects the other, and both affect 

empathic responses in the brain (Singer et al., 2004; Singer et al., 2006). Although 

I will focus on trait empathy in this work, I will also shortly discuss findings of state 

empathy on action monitoring. As mentioned above, state empathy is important to 

consider when interpreting trait empathy effects, because the latter might be 

influenced by the former.  

In the context of empathy, it is important to distinguish between own and 

observed action monitoring. Observing actions is in itself a social process while 

own error monitoring can, but doesn’t have to, happen in a social context. 

Consequently, we would expect stronger empathy effects on observed than own 

action monitoring. Still, one argument that might suggest a connection also 

between own action monitoring and empathy is that empathic feelings and abilities 

are closely connected to the ACC (Bernhardt & Singer, 2012; Lamm et al., 2010; 

Lamm et al., 2011; Singer et al., 2004). This could mean that this brain region 

influences both empathy and action monitoring, and respective cytoarchitectonic 
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differences, such as grey- and white-matter density and interconnectivity of the 

ACC, might affect both processes.  

Regarding state empathy, own action monitoring responses in the brain 

seem to be stronger in social contexts. Higher ERN amplitudes have been 

observed in an evaluation vs. a non-evaluation context (Hajcak et al., 2005), in 

competition vs. neutral context (van Meel & van Heijningen, 2010), and when a 

silent observer was present (Kim et al., 2005). However, an interaction with anxiety 

suggests that higher ERNs in social contexts might be due to a higher perceived 

significance of errors (Barker et al., 2015).  

As for trait empathy, some studies indeed found higher ERN amplitudes for 

more empathic participants (Larson et al., 2010; Santesso & Segalowitz, 2009). 

However, a recent meta-analysis, which also includes the two aforementioned 

studies, found no relation between the two measures (Amiruddin et al., 2017). In 

conclusion, a relationship between own action monitoring and empathy seems 

improbable but has not been ruled out yet. 

In action observation, a presumed effect of state empathy has been found in 

a number of studies. Observed action processing is modulated by the perceived 

similarity between own and observed person (Carp et al., 2009) and competitive 

vs. cooperative context (Koban et al., 2010). An effect of similarity on vicarious 

reward processing was shown in activation in ventral striatum and ACC (Mobbs et 

al., 2009). The more similar to themselves the observers rated the observed 

person, the stronger was the respective brain activation of the observer. Newman-

Norlund et al. (2009) observed higher activation in the middle ACC when observing 

friends’ vs. foes’ errors. Similarly, Kang et al. (2010) observed larger oFRN 

amplitudes after observing friends than strangers, and Marco-Pallarés et al. (2010) 

even observed an oFRN after observed wins in a competitive context. However, de 

Bruijn and von Rhein (2012) found no difference between oMN amplitudes in a 

competitive vs. cooperative context.  

With regard to trait empathy, studies are less conclusive. Brazil et al. (2011) 

found reduced amplitudes after both observed erroneous and correct actions for 
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patients with psychopathy compared to healthy controls. The authors explained 

this with reduced trait empathy of the patients. Clawson et al. (2014), on the other 

hand, found no differences in the response to vicarious feedback between 

participants with autism spectrum disorder and healthy controls. Again, a possible 

effect might have been due to lower trait empathy in participants with autism 

spectrum disorder. Newman-Norlund et al. (2009) found that activation in the 

ventral ACC and pre-supplementary motor area after observed action errors 

correlated negatively with empathic concern. Empathic concern is a subscale of 

the interpersonal reactivity index (IRI; Davis, 1980, 1983) that is regarded as a part 

of affective empathy. Shane et al. (2009) showed that responses to observed 

errors in the inferior parietal cortex correlated with the IRI cognitive empathy 

subscale perspective taking, while activity in the ventral ACC correlated with the 

IRI affective empathy subscale empathic concern. Lockwood et al. (2015) found 

that the likelihood of vicarious rewards correlated with activity in a part of the 

aMCC, and that this correlation was modulated by trait emotion contagion. Emotion 

contagion is an affective empathy subscale of the Questionnaire of Cognitive and 

Affective Empathy (Reniers et al., 2011). Fukushima and Hiraki (2009) found an 

influence of fantasy (affective empathy subscale of the IRI) and emotional reactivity 

(affective empathy subscale of the Cambridge Behavior Scale, Baron-Cohen & 

Wheelwright, 2004), on electrophysiological measures of observed error 

processing only when real persons (as opposed to a computer) were observed. 

Finally, Bellebaum et al. (2020) found that a general empathy measure assessed 

with the Cambridge Behavior Scale (Baron-Cohen & Wheelwright, 2004), 

modulated ERP responses to observed unexpected and expected events. 

In conclusion, while some effects of trait empathy on both own and 

observed error processing have been reported, the results are inconclusive as to 

when and which aspect of empathy is involved. In the case of own action 

processing, current research even suggests no connection between both 

processes. For observed error processing, other modulating factors seem to 

influence the effect of empathy on action monitoring. Both empathy and 
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expectancy effects on observed action processing could be modulated by other 

processes, and an interacting effect on observed action monitoring has been 

suggested (Bellebaum et al., 2020; Lockwood et al., 2015). This leads to another 

open question: could inconsistencies in the findings regarding both the influence of 

expectancy and the influence of empathy be attributed to the interaction between 

the two factors? 

Expertise and Action Monitoring 

Another potential factor modulating both expectancies and action monitoring 

of own and observed actions might be expertise. Expertise describes the ability of 

a person to perform above average in a specific domain (see Ericsson et al., 

1993), although it is difficult to determine at which point a person can be 

considered an expert. For acquiring expertise, both genetic (talent) and behavioral 

(practice) preconditions need to be met (Ericsson et al., 1993).  

  Regarding expectancies, expertise might facilitate predicting own and 

observed action and action outcomes (Özkan et al., 2019; Zhao et al., 2021): An 

experienced acrobat should be far better than a beginner at predicting, at any point 

in the stunt, what movements are likely to happen next or what potential outcomes 

a movement might have.  

As for effects of expectancy on action monitoring, relatively few research 

has been conducted as of yet. Jentzsch et al. (2014) found that with increased 

musical expertise, participants exhibited larger ERN amplitudes in response to 

errors. Rachaveti et al. (2020) observed that post-error slowing after negative 

feedback decreased as a function of practice. Harris et al. (2014) found higher 

ERN amplitudes in a spelling decision task for participants with higher spelling 

abilities. However, at least the results of the last two mentioned studies might be 

confounded with error frequency, indicating the importance of combining expertise 

and expectancy measures in future studies. Error monitoring has been investigated 

in expert groups performing in their area of expertise such as skilled typists 

(Kalfaoğlu et al., 2018) and pianists (Herrojo Ruiz et al., 2009; Maidhof et al., 2009; 
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Paas et al., 2021), but these groups have not been directly compared to non-

experts.  

For observing actions, expertise in the observed action is beneficial, but not 

necessary. Panasiti et al. (2016) showed that motor expertise helps in detecting 

errors (shown in behavioral data), apprehending errors (shown in increased 

amplitudes in a positive ERP reflection following the ERN; see also Candidi et al., 

2014 for motor-evoked potential data) and in motor simulation during observation 

(shown in left-lateralized mu suppression). However, Desmet et al. (2014) showed 

that activity in the mPFC was increased for errors even for actions that could not 

be performed by the observers themselves.  

While the possible modulations of expertise on own and observed action 

monitoring pose an interesting research field, I mainly focus on the already-

established effect of empathy in this dissertation. Especially for expert groups, 

however (as investigated in study 3), a potential effect of expertise on action 

monitoring – also as a modulator of other influences such as expectancy - is 

important to consider. 

Error Significance 

Action monitoring processes likely do not only differ between participants, 

but also depending on the specific action that has taken place. Specifically, 

research has indicated that the type of error influences action monitoring even if 

the error types are equally frequent and one should not be more expected than the 

other (Maier & Steinhauser, 2016).  

In most studies mentioned above, actions have been coded as either right 

or wrong (or expected and unexpected). However, errors can be manifold: If the 

acrobat forgets to point her toes during the flip, it will look less pretty, but if she only 

flips half-way, it might be dangerous. Those different levels of errors are common 

in musical performance or sports. In addition, there is the subjective significance of 

an error. If the acrobat has a tendency to not point her toes and has difficulty 

correcting this, she might consider the error to be more important than another 
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acrobat would. These different types of errors have been investigated only sparsely 

and in limited areas. 

The subjective importance of an error seems to be relevant for action 

monitoring. Higher motivation to perform correctly has been shown to lead to larger 

ERN amplitudes, with modulation by outcome consequences (Ganushchak & 

Schiller, 2008; Hajcak et al., 2005) and personal traits such as perfectionism 

(Barke et al., 2017; Perrone-McGovern et al., 2017; Stahl et al., 2015). Similar 

results were obtained in observed action processing studies (Koban et al., 2010; 

Newman-Norlund et al., 2009). Another index for subjective error significance 

might be automatic error correction, and accordingly, automatically corrected errors 

are accompanied by higher ERN amplitudes (Paas et al., 2021) or earlier peaks 

(Fiehler et al., 2005).  

Regarding error type, ERNs are larger for errors that require larger 

responses (under-reach vs. over-reach; Murata & Katayama, 2005). Especially the 

severity of an error might influence error processing (as severe errors would almost 

always equal subjectively more significant errors). Bernstein et al. (1995) 

conducted a stimulus-response study with four response options (two fingers on 

each hand), and compared single (wrong hand or wrong finger) to double errors 

(wrong hand and wrong finger). Double errors elicited significantly higher ERN 

amplitudes. In a Flanker task, Maier and colleagues (Maier et al., 2008; Maier et 

al., 2012; Maier & Steinhauser, 2016) also compared single (participants did not 

respond correctly to the target) and double errors (participants did not respond 

correctly to the target and failed to ignore the flankers) and found similar results. 

Importantly, Maier and Steinhauser (2016) determined that this pattern could not 

be attributed to error type frequencies. For both paradigms, it is still unclear if the 

higher ERN amplitude for double errors represents combined ERNs for both errors 

or if double errors are merely perceived as larger errors that then lead to increased 

amplitudes. For observed actions, small errors might be recognized less accurately 

than larger errors, and effects of severity on later ERP component such as P300 
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and N400 were shown (Amoruso et al., 2014). However, no studies investigating 

the effect of error severity on the oMN exist as of now.  

Addressing Open Questions 

As established above, the role of the mPFC as action monitoring instance 

has been shown in a great number of studies. However, the exact mechanisms 

and possible modulators of this process are still under investigation. For a start, the 

PRO model (Alexander & Brown, 2011) suggests that expectancies regarding 

actions or outcomes shape mPFC responses to own and observed actions and 

outcomes. Previous effects of action/outcome valence can be explained by the 

infrequency in which errors occur in most paradigms. While the model seems to fit 

most results in action monitoring studies, results on observed action monitoring do 

not yet show a definite picture. This is mainly due to conceptual problems with 

regard to the studies. Most of them used a modulation of event type frequencies to 

manipulate expectancies (see Pezzetta et al., 2018; Schiffer et al., 2014; Wang et 

al., 2015), which, however, might be confounded by previous task experience 

(Pezzetta et al., 2018) and an overoptimistic bias concerning the actual 

performance (Oliveira et al., 2007). Studies in which expectancies were 

manipulated with a false-belief condition, however (as in Bellebaum et al., 2020; 

Kobza & Bellebaum, 2013), pose the problem that an error in the false-belief 

condition might be perceived as a vicarious correct action. We address the 

question whether observed action monitoring reflects expectancies (not subjective 

evaluations of frequencies or vicarious error processing) in study 1. In addition, 

there is a possible modulating effect of empathy on the effects of expectancy on 

observed error processing (Bellebaum et al., 2020), and vice versa, an effect of 

expectancy on findings regarding empathy. This possible modulation calls for 

further investigation regarding the exact relationship between the two factors. A 

special focus on the exact empathy mechanisms involved in observed action 

monitoring is set in study 2, although empathy effects are investigated in all three 

studies. Finally, the effect of error severity on monitoring of both own and observed 

actions has been neglected in most previous work, also in its possible interaction 
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with expectancies (see Maier & Steinhauser, 2016), empathy (mainly in observed 

actions) and expertise. This open question is investigated in study 3.  
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Overview of Studies 

Study 1 

In this study, we aimed to eliminate confounds of expectancy induction in 

observed action monitoring. We used a scenario in which expectancies were 

induced not only by a false-belief condition, but also by varying the perceived 

difficulty of the observed task, while error frequencies were held constant. The 

focus was on a negative frontocentral ERP component previously associated with 

error observation (called oMN in the following summary). We assessed behavioral 

measures of expectancy as potential predictors of the oMN amplitude as well as 

trait empathy which may play a modulating role. 

Introduction 

As established in the General Introduction, action monitoring for observed 

actions elicits a similar electrophysiological ERP component as own action 

monitoring (van Schie et al., 2004, see also Koban & Pourtois, 2014). Both 

components are presumed to originate in the mPFC, probably the ACC (Dehaene 

et al., 1994; Taylor et al., 2007 for the ERN; Miltner et al., 2004; van Schie et al., 

2004 for the oMN). However, the ERP component for observed action is smaller 

and peaks later, usually 100 to 300 ms after the observed error, although latencies 

might depend on the paradigm (Bates et al., 2005; Koban et al., 2010 as opposed 

to Miltner et al., 2004; van Schie et al., 2004).  

Recent evidence supports the assumption that ERP components related to 

own action monitoring reflect unexpectedness rather than valence (Alexander & 

Brown, 2011; Ferdinand et al., 2012; Wessel et al., 2012). This extends to 

observed action monitoring: action prediction errors, i.e., the degree to which an 

observed action is unexpected (Burke et al., 2010; Donnarumma et al., 2017; 

Flanagan & Johansson, 2003), are assumed to shape oMN amplitudes. Kobza and 

Bellebaum (2013) used a false-belief paradigm to investigate expectancy effects 

on the oMN. In the false-belief condition, where errors were expected, they found 

larger negative amplitudes after correct than erroneous responses. However, the 

players’ objectively correct answer in the false-belief condition was an error from 
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the players’ perspective; it only resulted to be correct because circumstances were 

changed. Thus, the oMN found in the study could have been shaped by vicarious 

error processing instead of expectancies. This is further supported by the effect of 

empathy (measured with the Cambridge Behavior Scale; Baron-Cohen & 

Wheelwright, 2004) on action processing in the task (Bellebaum et al., 2020). The 

authors replicated the effect found by Kobza and Bellebaum, but only for highly 

empathic participants, while lowly empathic participants did not differ in their oMN 

response between conditions. Therefore, the open questions remain whether 

observed action processing is a function of expectancy or vicarious error 

processing, and whether effects of empathy can be found if subjective action 

valence is accounted for.  

To investigate these questions, we used the same false-belief paradigm as 

used by Kobza and Bellebaum (2013) and Bellebaum et al. (2020), but added the 

factor difficulty: errors in difficult trials are errors from the observed person’s and 

observer’s perspective. Meanwhile, errors should still be more expected in difficult 

than in easy trials because difficulty leads to a reduction in performance.  

We expected that the amplitude of the oMN should reflect expectancy, not 

vicarious action valence. Additionally, we expected empathy to influence this 

process and aimed to further investigate the relationship between empathy and 

expectancy regarding observed action monitoring. 

Method 

We recruited 33 healthy participants to take part in the study. We used an 

adaptation of the false-belief paradigm introduced by Kobza and Bellebaum (2013; 

see also Bellebaum et al., 2020). In this task, participants observed another person 

playing a two-shell game. The game was explained to participants as follows: The 

observed player would see two shells, one of which was placed over a ball. 

Afterwards, the shells would rotate multiple times, and subsequently, the player 

would have to indicate via joystick what shell they believed the ball to be under. 

Observers were told that they were able to see the ball at all points, but the 

observed person could not. In accordance with previous studies (Bellebaum et al., 
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2020; Kobza & Bellebaum, 2013), we introduced a trick condition in half of the 

trials. In this, the ball was swapped between the two shells which was known to the 

observer, but not the observed person (false-belief). We also added the factor 

difficulty. In difficult trials, the shells were turned so fast that it seemed difficult for 

the observed player to follow, and participants were told that the player had to 

guess the correct answer. We therefore induced three levels of expectancies. 

Correct answers were expected in low-difficulty no-trick trials, guessing (so 50% 

correct) was expected in high-difficulty trick- and high-difficulty no-trick trials, and 

incorrect answers were expected in low-difficulty trick trials. In fact, the observed 

player answered correctly 50% of the time in all conditions to avoid effects of event 

frequency. We used a block design to vary between trick and no-trick trials 

because the swapping of the ball was hard to perceive in high-difficulty trials. By 

using a block design, observer participants knew beforehand if a trick or no trick 

would occur. There were four blocks in total (of 117 trials each), with alternatively 

all trick or all no-trick trials, and the starting condition was determined randomly to 

avoid order effects. The difficulty condition was modulated within blocks, with a 

randomly determined order. For each trial type (trick or no-trick), half of the trials 

were presented in the high difficulty condition, and half in the low difficulty 

condition. In 48 trials across blocks (12 each for the low difficulty no-trick, low 

difficulty trick, high difficulty no-trick and high difficulty trick condition) instead of 

observing a response, participants were asked where they thought the player 

would point to (prompt trials). These trials served both as a manipulation check and 

as dependent variable for later behavioral expectancy analyses.  

We measured empathy with the German version of the Cambridge Behavior 

Scale (Baron-Cohen & Wheelwright, 2004; de Haen, n.d.) in accordance with 

Bellebaum et al. (2020). EEG signals at 30 passive electrodes (F7, F3, Fz, F4, F8, 

FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, 

P8, PO7, PO3, POz, PO4, PO8) as well as EOG signals from eye electrodes were 

recorded.  
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We determined expectancies of participants in each trial condition (low/high 

difficulty x trick/no-trick) as the percentage of prompt trials in which they expected 

the player to choose the shell under which the ball was hidden. Subsequently, we 

performed a linear mixed effect (LME) analysis on expectancy with factors Trial 

Type, Difficulty and Empathy. Random slopes for Trial Type and Difficulty and 

random intercepts were allowed per participant.  

For the EEG data preprocessing, a 0.5-Hz high-pass and a 20-Hz low-pass 

filter were applied to the recorded data. Independent component analysis and 

back-transformation was used to remove one component that represented blinks to 

reduce eye movement artifacts. Segments from -200 ms to 600 ms around the 

observed response were created and then baseline-corrected (the 200 ms pre-

response served as baseline). An automatic artifact rejection was performed before 

creating averages per participant and condition (Trial Type x Difficulty x Accuracy) 

and exporting them for further analyses. In a visual inspection of the EEG data, we 

observed possible modulations at an earlier time window than in the previous 

studies (Bellebaum et al., 2020; Kobza & Bellebaum, 2013). As latencies of the 

oMN can differ depending on the task, we thus analyzed both, the earlier and later 

negative peak. The negative peaks were determined per participant and condition 

(Trial Type x Difficulty x Accuracy) on average ERPs in time windows of 100-250 

ms and 250-420 ms, respectively. For both peaks, we determined the respective 

preceding positivities (in time windows from 50 ms to negative peak and 130 ms to 

negative peak, respectively) and subtracted them from the negative peaks to 

obtain peak-to-peak oMN amplitude values. We performed LME analyses with Trial 

Type, Difficulty, Accuracy and Empathy on both values. We allowed random slopes 

for Trial Type, Difficulty and Accuracy and random intercepts per participant. 

In a post-hoc analysis, we determined the effect of behavioral expectancy values 

(per condition and participant) on the oMN amplitude, while allowing random 

intercepts per participant. We used model comparisons to check if empathy 

explained additional variance when added to the model. 
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Results and Discussion 

We successfully verified that our manipulation worked. Expectancies for 

correct answers were highest in the low-difficulty no-trick condition and lowest in 

the low-difficulty trick condition. Expectancies were further modulated by empathy: 

we found stronger expectancies in both trick conditions for high empathic 

participants compared to low empathic participants in low-difficulty trials. A similar 

effect was not observed in the previous study, which entailed only low difficulty 

trials (Bellebaum et al., 2020). In this study, however, there was less variance 

between individual expectancies as in our task, suggesting a ceiling effect. We 

suspect that since our task included more factors, expectancy formation was more 

difficult and subsequently, there was more interindividual variation and the ceiling 

effect was reduced. This, in turn, allowed us to observe an effect of empathy on 

expectancies. Expectancies in no-trick conditions differed between high and low 

difficulty, but not in trick trials, possibly because of less strong expectancies in 

general in the trick trials.  

Concerning the ERPs, we found modulations of expectancy only on the 

early ERP component. oMN latencies differ based on task (see Koban & Pourtois, 

2014), and in the present study, due to the block design, very early expectancy 

formation (at the beginning of the shell-turning) was possible, which might have led 

to shorter latencies. 

There was a four-way interaction of Empathy, Trial Type, Difficulty and 

Accuracy in the early ERP component. Resolving this, we found an effect of 

empathy (higher amplitudes for higher empathy values) for trick low-difficulty trials 

with correct response and no-trick low-difficulty trials with incorrect response. 

Additionally, we found no effect of empathy on high-difficulty trials, but higher 

amplitudes for correct answers in high difficulty no-trick trials and a trend for higher 

amplitudes for incorrect answers in high difficulty trick trials. In conclusion, the 

results suggest an effect of expectancy on the oMN, as the pattern of ERP 

amplitudes mostly mirrors the pattern of expectancies of observed actions in the 

different task conditions. A modulation based on (vicarious) valence processing 
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can be excluded (in line with Bellebaum et al., 2020; Ferdinand et al., 2012; Kobza 

& Bellebaum, 2013; Schiffer et al., 2014), because such an effect should be 

irrespective of task difficulty. The pattern of behavioral results matches that of the 

early ERP peak for low-difficulty trials: Observed responses in trick trials are 

expected to be incorrect for high-empathic participants and observed correct 

responses in this condition elicit higher oMN amplitudes than observed incorrect 

responses for high-empathic participants. The opposite is true for high-empathic 

participants in no-trick trials. In contrast, the patterns are reversed in high difficulty 

trials. (Prediction) errors have been suggested to lead to increased attention on the 

source of the respective error (Notebaert et al., 2009; Steinhauser & Andersen, 

2019; Wessel, 2018). Due to the block design in this study, low and high difficulty 

in each trial type were directly compared and thus, attention might have been paid 

to the comparison as opposed to absolute probabilities. 

For the late ERP peak, we only found a modulation of accuracy in difficult 

trials. This suggests a functional difference between early and late observed error 

processing: processing of expectancies might happen early, followed by valence 

processing. 

When Trial Type, Difficulty and Accuracy were replaced by individual 

expectancy values of the observers as predictors for the early ERP peak 

amplitude, a significant expectancy effect emerged. The more the respective 

answer was expected, the smaller were the (early ERP peak) amplitudes. Also, 

empathy did not explain significantly more variance when added to the model. We 

suspect that empathy might affect oMN amplitudes via a positive effect on 

expectancy formation, which is in line with our finding of an empathy effect on 

behavioral expectancy measures. As stated by Brown and Brüne (2012), prediction 

in non-social and social contexts might depend on similar processes, but for social 

contexts, some additional factors – such as empathy – might play a role (see also 

Fukushima & Hiraki, 2009). Depending on the specific context, specific aspects 

and empathic resources might be needed, which might explain inconclusive results 

in previous research. 
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Conclusion 

Expectancies, not vicarious errors, are reflected in the oMN, although the effect 

had a shorter latency than expected. In our results, behavioral and 

electrophysiological dependent measures were modulated by empathy, but when 

behavioral expectancy values were used to predict electrophysiological responses, 

empathy did not explain any additional variance. We therefore assume that 

empathy modulates expectancy formation which in turn modulates neural action 

processing, and empathy is necessary for expectancy formation in some, but not 

all contexts. 
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Study 2 

In study 2, we empirically tested the indirect effect of empathy on observed 

action monitoring (measured with the oMN) via expectancy formation. To do this, 

we calculated single-trial expectancy estimates and tested their effect on ERP 

amplitudes, then used model comparisons to identify any further effects of 

empathy. 

Introduction 

Recent findings suggest that the supposed valence effects in observed 

action processing are a function of the expectancy of events (Alexander & Brown, 

2011): Observers experience an action prediction error if their predictions 

concerning others’ actions are not met (Brown & Brüne, 2012; Burke et al., 2010). 

This influences frontocentral activity (Desmet et al., 2014; Schiffer et al., 2014) and 

leads to a negative ERP component (study 1; Bellebaum et al., 2020; Kobza & 

Bellebaum, 2013; Wang et al., 2015) that I will refer to as oMN in this summary.  

Action observation happens in a social context, so a link between empathy and 

action observation could be presumed. This has been shown for state empathy 

(Carp et al., 2009; de Bruijn & von Rhein, 2012; Kang et al., 2010; Koban et al., 

2012), but results on trait empathy are inconclusive (Brazil et al., 2011; Clawson et 

al., 2014; Lockwood et al., 2015; Newman-Norlund et al., 2009; Shane et al., 

2009). The inconclusive results could be explained by effects of prediction on 

action observation (Alexander & Brown, 2011; Bellebaum et al., 2020; Kobza & 

Bellebaum, 2013; Wang et al., 2015).  

Empathy possibly facilitates expectancy formation in social situations 

(Brown & Brüne, 2012), but this might be task dependent, with, for example, higher 

need of empathy for false-belief tasks (see study 1; Bellebaum et al., 2020; 

Ferguson et al., 2015). In study 1, we assumed that expectancy formation might be 

facilitated by trait empathy and then might lead to respective processing of 

observed actions in the brain. While an effect of empathy on expectancy formation 

was found in this more complex task, no effect was found for a simple false-belief 

paradigm (Bellebaum et al., 2020). In the study by Bellebaum et al. (2020), 
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expectancy induction was quite successful, with little variance, in both the true- and 

false-belief conditions of the task. A higher variability in the sample might be 

necessary to find potential empathy effects on expectancy. Also, the expectancy-

inducing instructions differed from the actual event frequencies, and participants 

might have adapted their expectancies during the experiment. However, trial-by-

trial variations were not accounted for in previous studies.  

We therefore extended the sample of 50 women by Bellebaum et al. (2020) 

with a similar sample of men with varying backgrounds to increase variability in the 

induced expectancies. We also accounted for changes in expectancy over the 

experimental course by using single-trial expectancy values as predictors of single-

trial oMN amplitudes. We hypothesized that expectancy formation would be 

modulated by empathy and that this effect would possibly change over the 

experimental course. In accordance with the post-hoc analysis performed in study 

1, these expectancy values should predict frontocentral negative component 

amplitudes, but no further effect of empathy should emerge. 

Method 

The original sample consisted of 50 women (Bellebaum et al., 2020) and 55 

men were added. As one woman and two men were excluded based on missing 

data, there were 102 participants in total. We employed the two-shell game used 

by Kobza and Bellebaum (2013) and Bellebaum et al. (2020) in which a ball was 

hidden under one of two shells which then rotated. Participants were told that the 

observed player watched this procedure and would subsequently choose (via 

joystick) under which one of the two shells they believed the ball to be. The 

observer participants always saw the ball and observed the game from above. In 

50% of trials, the ball was swapped between shells, i.e., the player was tricked. 

Observer participants were told that this was visible to them, but not the player, 

making this a false-belief condition. Observer participants should expect correct 

answers in no-trick and wrong answers in trick trials. In fact, the player answered 

correctly 50% of the time in both conditions. In total, there were 420 observation 

trials, and false- and true-belief trials were presented in random order. In 48 
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additional trials (24 for each trick condition) trials ended not with the player 

answering, but with a question (prompt trial) to the observer: “where do you think 

the player will point the joystick?”.  

We acquired the behavioral expectancy data from participants’ answers to 

these questions and assessed empathy with the German version of the Cambridge 

Behavior Scale (Baron-Cohen & Wheelwright, 2004; de Haen, n.d.) before the 

experiment. We recorded EEG with 29 active electrodes (F7, F3, Fz, F4, F8, FC5, 

FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, 

PO9, P1, Pz, P2, PO10 and FCz, which was used as online reference). We also 

recorded EEG at both mastoids to serve as offline reference and recorded 

additional EOG measures.  

For the behavioral analysis, we calculated an LME model with expectancy 

(0 = observed response was expected to be incorrect, 100 = observed response 

was expected to be correct) as dependent single-trial variable, and the fixed effects 

Trial Type (trick/no-trick), Empathy, and Trial Number (to account for changes 

during the experiment). Both Empathy and Trial Number were continuous and 

mean-centered. Random slopes and intercepts per participant for Trial Type and 

Trial Number were included. 

For the EEG data, we first re-referenced all data to the mean mastoid signal. 

We filtered the data with 0.5 Hz high-pass and a 20 Hz low-pass filter. ICA and 

ICA-back-transformation were used to remove one component representing blinks. 

We then segmented the data starting -200 ms pre- and ending 600 ms post-event. 

Afterwards, we performed baseline-correction and used automatic artifact rejection 

to exclude bad segments. We exported both single-trial data and averages by 

condition (Trial Type x Accuracy) and participant and pooled the data over a 

frontocentral electrode cluster: Fz, FC1, FCz, FC2 and Cz. In the average signals 

for each condition and participant, we determined the latency of the maximum 

negative peak between 250 and 420 ms, and the latency of the preceding positive 

peak between 130 ms and the negative peak. Then, we extracted single-trial 

values at these latencies, determined the difference between negative and positive 
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peak for each trial and used this as a dependent variable to represent oMN peak-

to-peak amplitudes.  

We first aimed to replicate the results of Bellebaum et al. (2020) in a larger 

sample and with single-trial analysis. For this, we included factors Accuracy 

(correct or incorrect), Trial Type (trick or no trick) and Empathy in a model with 

peak-to-peak single-trial oMN amplitudes as dependent variable, and Accuracy 

and Trial Type as random factors by participant. In a second analysis, we first 

calculated two linear regression models of expectancy (the expectancy for a 

correct answer), for trick and no-trick, for each participant, determined based on 

the 24 data points for each trick condition and participant. The models allowed to 

estimate expectancy values for each trial. For the statistical analysis, we replaced 

Trial Type and Accuracy with the values of the respective regression model at the 

trial number. For observed error responses, we used inverted values, as the 

expectancy of an observed error was considered the reverse of the expectancy of 

a correct response, as which we coded participants’ answers to the prompt trials. 

We then checked whether Accuracy, Trial Type or Empathy explained additional 

variance when added to the model.  

Results and Discussion 

The expectancy manipulation worked, meaning that expectancies of correct 

answers differed significantly between trick and no-trick trials, with lower 

expectancies of correct answers in the trick trials than in the no-trick trials, although 

expectancies were less strong and more variable than in the study by Bellebaum et 

al. (2020). In the behavioral LME model, we found a corresponding main effect of 

Trial Type, as well as a three-way interaction between Trial Type, Trial Number 

and Empathy. Expectancies grew less strong across the experiment only in trick 

trials for participants with low empathy. We found no overall effect of changing 

expectancies across trials although induced expectancies concerning error and 

correct responses differed from the actual frequencies of these events. This was 

possibly due to a confirmation bias (Nickerson, 1998; Talluri et al., 2018; Urai et al., 

2019). As for the reduced strength of expectancies for low-empathic participants in 
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trick trials towards the end of the experiment, we suspected that since trick trials 

(as the false-belief condition) require more empathy than no-trick trials, upholding 

expectancies might be especially hard for low-empathic participants, resulting in a 

fatigue effect. This is in line with studies suggesting that empathizing is reduced 

when cognitive load is high (Apperly et al., 2008; Epley et al., 2004) and that 

propose a social working memory system (Meyer et al., 2012) that might be 

impaired in low-empathic participants.  

We were able to replicate the three-way interaction for the oMN found in 

Bellebaum et al. (2020). There was an interaction between Accuracy and Trial 

Type only for high empathy participants: the slope for Accuracy was inverted 

depending on Trial Type, with highest amplitudes for unexpected correct (in Trick 

Trials) and unexpected erroneous actions (in No-Trick Trials). With this analysis, 

we could show that single-trial data yield comparable results to analyses based on 

condition averages. 

For our main analysis, we found a significant effect of Expectancy on single-

trial peak-to-peak amplitudes of the oMN, and neither Trial Type, Accuracy nor 

Empathy explained significantly more variance when added to the model. We 

conclude that expectancy, not valence, influenced amplitudes (see Desmet et al., 

2014; Ferdinand et al., 2012; Jessup et al., 2010; Oliveira et al., 2007; Schiffer et 

al., 2014; Wessel et al., 2012; Wessel et al., 2014; Zubarev & Parkkonen, 2018, for 

corresponding results). The results also support an indirect influence of empathy 

on amplitudes via expectancy formation (as also found in study 1). This could 

explain inconclusive results on the effect of empathy on action monitoring (e.g. 

Brazil et al., 2011; Clawson et al., 2014). The ACC could either contribute 

separately to both empathy and error monitoring, or different parts of the ACC 

might be at play. The study design had some limitations: first, using a binary 

variable in the regression model might lead to information loss, and single-trial 

expectancy values were only an approximation of the actual expectancies because 

they were based on only 24 values. Additionally, the single trial EEG data 
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calculation, while it allowed to include more data than an average data approach, 

still includes only a fraction of the acquired EEG data. 

Conclusion 

Expectancy formation is dependent on empathy, and empathizing might not 

only be generally more difficult, but also more difficult to maintain over time for low-

empathic participants. Expectancies directly shaped ERP responses, and no 

additional variance was explained by Accuracy or Empathy. In future studies, 

expectancies could be measured in every trial to obtain more accurate values. 
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Study 3 

In study 3, we aimed to investigate another modulator of action monitoring 

besides expectancy, namely error significance. The PRO model (Alexander & 

Brown, 2011) cannot explain all effects of (subjective and objective) error 

significance on action monitoring (Ganushchak & Schiller, 2008; Hajcak et al., 

2005; Maier & Steinhauser, 2016). At the same time, most studies investigating 

action valence in both, own and observed action monitoring, do so in a binary 

fashion, differentiating only between errors and correct actions. Therefore, we 

investigated whether action valence affects own and observed action monitoring 

(as seen in ERN and oMN, respectively) in a dichotomous or continuous way. We 

additionally investigated whether empathy or expertise modulated this effect and 

examined further effects of subjective error importance and the interplay between 

error severity and expectancy. 

Experiment 1 

Introduction 

Research contrasting errors vs. correct actions has shown a clear pattern of 

activity in the mPFC (Debener et al., 2005; Ullsperger et al., 2014), corroborated by 

a negative mediofrontal component in electrophysiological data after errors, the 

ERN (see Gehring & Willoughby, 2002; Holroyd & Coles, 2002) While some 

aspects of error processing can be explained by the PRO model (Alexander & 

Brown, 2011), which suggests that the mPFC codes expectancies, valence, 

especially error significance, might still be coded in the mPFC. Action valence is 

often gradual, and behavioral adaptation (a function requiring the ACC, Devinsky et 

al., 1995; Holroyd & Coles, 2002) often needs to happen very quickly. Therefore, 

we suspect error severity to be represented in early action monitoring as coded in 

the ERN. In previous studies, double errors led to higher ERN amplitudes than 

single errors (Bernstein et al., 1995; Maier et al., 2012; Maier & Steinhauser, 

2016). To address the role of error severity on own action monitoring, we 

conducted Experiment 1 with pianists playing while EEG was recorded. There were 
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three types of events: correct responses, small errors (one note off), and large 

errors (two notes off). 

The paradigm allowed to investigate behavioral variables, namely post-

event reaction times and keystroke volume. Post-error slowing (for examples in 

piano tasks, see Herrojo Ruiz et al., 2009; Maidhof et al., 2009; Maidhof et al., 

2013; Paas et al., 2021) possibly stems from an attentional shift towards the error 

(or unexpected event) and a successive attention reorienting back to the task 

(Notebaert et al., 2009; Núñez Castellar et al., 2010). Errors are associated with 

reduced keypress volume (Herrojo Ruiz et al., 2009; Maidhof et al., 2009; Maidhof 

et al., 2013; Paas et al., 2021), but the processes behind this are yet unclear.  

We expected increased ERN amplitudes for large compared to small errors. 

Furthermore, the attention deviation should be stronger and thus, post-error 

slowing should be higher for large vs. small errors. We refrained from predicting 

error severity effects on keypress volume due to the lack of research on the 

underlying processes.  

Musicians might have higher empathic abilities compared to other people 

(Gujing et al., 2019; Rabinowitch et al., 2012). An effect of trait empathy on ERN 

amplitudes is improbable (Amiruddin et al., 2017), but cannot be ruled out, so we 

included empathy as a possible modulator. In addition, pianists form an expert 

sample with training in error management (Kruse-Weber & Parncutt, 2014; Palmer 

& Drake, 1997). Different processing of errors depending on expertise has been 

shown (Jentzsch et al., 2014), so error processing might be modulated by 

expertise in our sample. With our paradigm, we could attempt to replicate the study 

by Paas et al. (2021). The authors investigated errors in a piano-playing task and 

found higher ERN amplitudes for automatically corrected compared to uncorrected 

errors. Finally, to investigate the results in light of the PRO model (Alexander & 

Brown, 2011), we performed additional checks if any effect of error severity might 

be explained by factors possibly influencing expectancies (Event Type Frequency, 

note Difficulty, and Insecurity while playing). 
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Method 

We analyzed data from 21 pianist participants that all made at least 10 large 

errors. Six short pieces (played on only white keys with only the right hand) had to 

be learned two weeks before testing. The pieces were designed to provoke large 

errors. Participants filled out self-reports to measure Expertise and Empathy 

(Cambridge Behavior Score; Baron-Cohen & Wheelwright, 2004; de Haen, n.d.). 

After 29 active electrodes (FCz [which was used as online reference], F7, F3, Fz, 

F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, 

Pz, P4, P8, PO9, P1, Pz, P2 and PO10), as well as mastoid electrodes and EOG, 

were attached, participants played the pieces in random order 10 times each (so 

60 sequences in total). Their performance was recorded on a laptop with a 

webcam placed above the piano to acclaim videos later used in Experiment 2. 

Participants were instructed to play slightly faster than during practice and to keep 

to their tempo even if it meant making errors. While playing, we recorded EEG (an 

EEG marker was sent every 5th keystroke) and musical digital interface (MIDI) 

data.  

For the analysis, the MIDI data were compared offline to the correct score 

with a dynamic score-matcher algorithm (Large, 1993; Palmer & van de Sande, 

1993; Rankin et al., 2009) to determine correct and erroneous keypresses. We 

calculated two behavioral variables that later served as dependent variables. First, 

the inter-keypress-interval (IKI) as the difference between onset of the current and 

next keypress, which served as a measure for post-event reaction times. Second, 

we obtained the volume of each keypress (this equals to keypress velocity in piano 

playing, which is recorded in the MIDI signal). Additionally, three measures 

potentially influencing expectancy were calculated to later serve as independent 

variables, namely Event Type Frequency (how often each event happened for 

each participant), Difficulty (how often each individual note was played correctly in 

the ten times it was played) and Insecurity (absolute deviation from mean velocity). 

From the behavioral accuracy data, we determined the Event Types correct 

keypress, small errors, and large errors (as well as the additional Event Type 
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corrected small errors). We included only events that were preceded and followed 

by correct notes and that did not contain systematic errors (≥ 40% accuracy). 

For the behavioral data LME analyses, we determined Event Type as fixed 

and random effect. IKI was set as dependent variable for the first model, volume as 

dependent variable for the second model. We checked for possible effects of 

Expertise and Empathy with model comparisons and, if any or both variables 

explained more variance, added them to the final model.  

For the EEG data, markers were first recoded offline to match the behavioral 

data before EEG preprocessing was conducted. We used a 30 Hz low-pass and 

0.5 high-pass filter. Subsequently, we employed the Gratton & Coles algorithm 

(Gratton et al., 1983) to remove blinks and eye movement artefacts. The data were 

segmented around each Event Type (300 ms before to 600 ms after keypress). An 

automatic artifact rejection removed bad segments. Baseline correction was 

performed on a baseline of -300 to -200 ms. Averages per participant and condition 

and single-trial data were exported for further analysis, and data were pooled over 

electrodes Fz, FCz and Cz. We extracted single-trial signals, that is, the mean 

amplitude in an area of -10 to +10 ms around the latency of the negative (between 

-130 and 130 ms) and preceding positive peak (-180 ms to negative peak) found in 

the averages. We subsequently subtracted the single-trial value of the preceding 

positive peak from the value of the negative peak to obtain single-trial peak-to-peak 

measures (same procedure as in study 2). We used an LME analysis to determine 

the effect of the fixed effect factor Event Type on single-trial peak-to-peak ERN 

amplitudes, and additionally checked effects of Empathy and Expertise with model 

comparisons. 

In our first post-hoc analysis, we determined the effect of correction 

(corrected vs. uncorrected errors) on IKI, volume, and ERN amplitudes with 

respective LME models, and additionally checked for potential effects of Empathy 

and Expertise. In the second post-hoc analysis, we calculated the effect of Event 

Type Frequency, Difficulty and Security on IKIs and ERN amplitudes and 
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determined, with model comparisons, if any of these variables predicted IKIs or 

ERN amplitudes as well as the factor Event Type.  

Results and Discussion 

We found significantly longer IKIs after large than small errors, but no 

difference between small errors and correct keypress. Additionally, we found 

significantly lower volumes for small errors than correct keypresses, but no 

difference between small and large errors. While pianists might be good at 

suppressing post-error-slowing after small errors (Jentzsch et al., 2014), large 

errors might be more diverting and reorienting back to the task might be more time-

consuming than for small errors (Notebaert et al., 2009; Núñez Castellar et al., 

2010). Respectively, corrective movements might start earlier for small than large 

errors. 

We observed significantly higher ERN amplitudes for large errors compared 

to small errors and small errors compared to correct keypresses. We thus assume 

that error severity is represented in ERN amplitudes and thus presumably in the 

action monitoring system. 

There was no further effect of Expertise and Empathy on any of the 

dependent measures. For empathy, this is in accordance with previous results 

concerning the monitoring of actively performed actions (Amiruddin et al., 2017). 

As all our participants had a musical experience of more than 500 hours and were 

additionally well-acquainted with the musical stimuli, we assume a potential 

expertise ceiling effect. 

In a post-hoc analysis, corrected errors resulted in shorter IKIs, smaller 

volumes and higher ERN amplitudes compared to uncorrected errors (in 

accordance with Paas et al., 2021). We suspect that the corrective movement 

starts even earlier and is stronger (with even faster IKIs, possibly to make up for 

correction) in corrected than in uncorrected small errors, and suspect higher 

subjective importance of corrected compared to uncorrected errors. The effect 

cannot be attributed to error awareness, because participants had successfully 

adapted their hand movements also after included uncorrected errors. Regarding 
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variables that might have affected expectancies, Event Type Frequency and 

Difficulty predicted IKIs, and Event Type Frequency additionally modulated ERN 

amplitudes, which might suggest some effect of expectancy, although these 

variables are confounded with Event Type. Both Event Type Frequency and 

Difficulty were significantly worse predictors of IKIs and ERN amplitudes than 

Event Type. Consequently, the investigated variables, and therefore presumably 

expectancy, cannot explain all effects of error severity, although we cannot rule out 

that expectancy may have some influence on own action monitoring. 

Experiment 2 

Introduction 

A similar ERP component as for own action monitoring has been observed 

for observed action monitoring, which we call oMN (Bates et al., 2005; Miltner et 

al., 2004; van Schie et al., 2004). For observed action monitoring, previous studies 

(study 1, study 2) suggest that only expectancies, but not action valence affect 

observed action monitoring. As also no behavioral adaptation is needed in 

observed action monitoring, error severity might affect observed action processing 

less than it does own action processing. To investigate error severity effects on 

observed action monitoring, we recorded EEG in pianists while they watched 

videos of others playing (recorded in Experiment 1). In the material used for the 

observation study, large and small errors were roughly equally frequent, while 

correct keypresses were much more frequent. We therefore expected a significant 

oMN amplitude difference between observed correct and erroneous keypresses, 

but no difference between small and large errors.  

For observed actions, we would expect a more pronounced effect of trait 

empathy than for own action monitoring due to the social component of 

observation, but findings are mixed (Bellebaum et al., 2020; Brazil et al., 2011; 

Clawson et al., 2014; Fukushima & Hiraki, 2009; Lockwood et al., 2015). Possibly, 

empathy shapes expectancy formation which then shapes observed action 

processing (see studies 1 & 2). Expertise is not always necessary for action 

observation (Desmet et al., 2014), but influences observed action monitoring in 
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some ways (Panasiti et al., 2016), possibly also due to a facilitation of expectancy 

formation (Li & Feng, 2020; Özkan et al., 2019; Zhao et al., 2021). We therefore 

expected an effect of empathy, and possibly of expertise, on the oMN.  

An effect of error correction on observed action monitoring is not probable, 

because observer participants cannot know whether an error will be corrected. 

However, Paas et al. (2021) found an effect of error correction on observer 

feedback processing. In the present study, we thus aimed to investigate this effect 

also for observed action monitoring. To account for factors possibly modulating 

expectancy, we again measured Event Type Frequency and Difficulty as well as 

the Perceived Expertise (how good observers rated the players in the videos) to 

investigate their influence in comparison to the effect of error severity. In a final 

post-hoc analysis, we compared the pattern of the Event Type effect on ERN/oMN 

amplitudes between experiment 1 and 2.  

Method 

We investigated data from 23 pianists. Participants watched videos 

recorded from Experiment 1 of one of the six pieces of Experiment 1 (9 videos in 

total, shown either 6 [8 videos] or 12 [1 video] times). Participants were required to 

memorize the piece in the two weeks before testing. Before the experiment, they 

played the piece without score notation and on a muted keyboard, had the active 

EEG electrodes attached (same placement as in Experiment 1) and filled out self-

report measures as in Experiment 1. The experiment itself consisted of 60 

sequences: in each sequence, participants saw a video (without sound), and then 

answered two questions, namely how many errors the player had made and how 

experienced they believed the player to be. After the experiment, they played the 

piece themselves again.  

To serve as dependent behavior variable, we calculated the pre- and post-

experiment performance as correct notes in percent of all notes, using a dynamic 

score matcher algorithm (Large, 1993; Palmer & van de Sande, 1993; Rankin et 

al., 2009). As dependent behavioral variable and later also as a possible predictor, 

we determined the Recognized Error Margin (the absolute difference between 
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counted and actual errors). Participants were excluded if they differed more than 

1.645 SD (corresponding to a percent rank < 5) from other participants in their 

Recognized Error Margin. For another dependent behavioral variable and as 

predictor in a post-hoc analysis, we recorded the Perceived Expertise as stated by 

participants after each trial, and took the Objective Expertise of the Player as 

possible modulator of Perceived Expertise into account (as stated by the person 

depicted in the video, indicated by self-report for experiment 1). To serve as 

independent variables, we calculated Difficulty (the number of times each note was 

played correctly in the 60 videos) and the Observed Event Type Frequency (the 

number of times each event happened for each observed person).  

For the behavioral analyses, we determined the effect of Measurement Time 

(pre or post) on performance (as percent correct) using an LME model that allowed 

for random intercepts and slopes by Measurement Time and participant. We 

additionally determined an LME model with Empathy and Expertise as fixed effect 

factors on the dependent variable Recognized Error Margin that allowed for 

random intercepts by participant and video. Finally, we checked whether the 

Objective Expertise of the Player predicted the Perceived Expertise and 

additionally checked whether Empathy, Expertise or the Number of Perceived 

Errors explained additional variance. 

EEG data preprocessing was conducted as for Experiment 1. Peak-to-peak 

measures were obtained similarly to Experiment 1; negative peak latencies in the 

averages were determined in a time window between -100 ms and 100 ms. This is 

earlier than for previous studies investigating the oMN, although latencies seem to 

differ depending on the task (Bates et al., 2005; Miltner et al., 2004; van Schie et 

al., 2004). As in active sequential tasks (Maidhof et al., 2013), the observed 

movements might also be detected earlier (see Di Gregerio et al., 2022) when 

observing sequential tasks, resulting in earlier oMN latencies. The preceding 

positive peak was determined in a window between -150 ms and the negative peak 

latency. Values were extracted in the single-trial data as the mean value 10 ms 

before to 10 ms after the average peak latency, and the single-trial positive peak 
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was subtracted from the single-trial negative peak to obtain single-trial peak-to-

peak oMN values.  

For the EEG main analysis, we determined an LME model with oMN 

amplitude as dependent variable and Observed Event Type as fixed effect factor. 

We allowed random intercepts by participant and video. With model comparisons, 

we checked for additional influences of Empathy, Expertise and Recognized Error 

Margin. 

In the first post-hoc analysis, we calculated a similar LME model with 

Correction as fixed effect factor, also checking for additional influences of 

Empathy, Expertise and Recognized Error Margin. In the second post-hoc 

analysis, we determined the influence of Observed Event Type Frequency and 

Difficulty on oMN amplitudes and checked whether Observed Event Type predicted 

oMN amplitudes better than the two variables. Additionally, we investigated 

whether more variance was explained if perceived expertise of the players in the 

video was included into the main analysis model to predict oMN amplitude. 

In a final post-hoc analysis, we created a model with Event Type and 

Agency (active, observed) as fixed effect factor and z-transformed ERP amplitude 

values (single-trial ERN for the active, single-trial oMN for the observer group) as 

dependent variable. Random intercepts were allowed per participant. 

Results and Discussion 

Participants performed the piece with an average accuracy of around 85%, 

and there was no significant difference between pre- and post-test. As 

performance did not improve after watching 60 repetitions of the piece, we assume 

that participants did not learn additionally by watching the videos. The Recognized 

Error Margin did not depend on Empathy or Expertise, and participants differed on 

average 5.6 errors from the actual error number. A small variance between 

participants and no influence of interindividual measures suggests that this high 

number probably does not result from low performance in error monitoring, but 

from participants using other criteria to count errors than the score matcher 

algorithm. To account for potential interindividual differences in error recognition, 



52 | Overview of Studies  

 

we included Recognized Error Margin as a potential factor in the main analysis. 

However, the variable did not lead to increased model fit in the main model. 

Perceived Expertise was not influenced by actual expertise, but by the perceived 

number of errors.  

Concerning the oMN, we found higher amplitudes for small errors compared 

to correct keypresses, but no difference between small and large errors. This 

suggests that there was no or at least a smaller difference between small and large 

errors than for own errors. The missing effect might be attributed to the fact that the 

type of error was not relevant for the observed action monitoring task.  

For the EEG main analysis, we again found no influence of empathy or 

expertise. Expectancy formation concerning observed performance accuracy might 

have been easy in the current task. The high expertise of observers (at least 780 

h), together with the fact that they knew the piece by heart, might have further 

facilitated expectancy formation (Li & Feng, 2020; Özkan et al., 2019; Zhao et al., 

2021), leading to very low variance in expectancies and, respectively, no empathy 

or expertise effects.  

We found no difference between the processing of observed corrected and 

uncorrected errors. The oMN in our study occurred around the keypress itself and 

the mean interval between the error and the corrective keypress was almost three 

times as long as in the study by Paas et al. (2021), so an effect of the next 

keypress on the oMN (correction perceived as two subsequent errors) was 

improbable. In contrast to our study, Paas et al.’s participants also heard the 

volume of the note. In Experiment 1, we found that volume differed significantly for 

corrected compared to uncorrected actions, and such an effect might have been 

perceived as surprising or as an indicator of higher error significance by the 

observers in Paas et al.’s study.  

We found significant effects of Observed Event Type Frequency and of 

Difficulty on oMN amplitudes, and Observed Event Type Frequency was even as 

good a predictor as Observed Event Type. Observed Event Type Frequency and 

Observed Event Type were confounded and we cannot attribute the effect 
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definitely to either of the predictors, but the result matches the PRO model’s claim 

(Alexander & Brown, 2011) that valence effects in action monitoring could be 

explained by the low frequency of errors. Finally, we found no effect of perceived 

expertise on error processing. As this variable was also not predicted by the actual 

expertise, participants might have been insecure about making expertise 

assumptions and the weak assumptions did not affect expectancies and/or oMN 

amplitudes. 

In the third post-hoc analysis, we found a significant interaction between 

Agency and Event Type on z-transformed ERP amplitude values, confirming that 

the pattern of the effect of Event Type differed significantly between active and 

observer conditions. This difference was driven by the effect of large errors: only 

for this event, we found a significant difference between active and observer 

groups, with significantly higher z-score ERP values for the active group. This 

confirms that an effect of error severity is present only for own, but not for observed 

action monitoring. 

Conclusion 

We found an effect of error severity on own, but not observed action 

monitoring. Especially regarding effects of expectancy (which can explain results 

for observed, but not own actions), we propose that a need-to-adapt signal is sent 

by the action monitoring system when either predictions or actions need to be 

adapted. In the present study, action adaptation was needed only for Experiment 1, 

so it is perceivable that results in Experiment 2 are based (only) on prediction 

adaptation. Further research should test different levels of errors, and the effect of 

consequences (if adaptation is needed or not) on action monitoring. 
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General Discussion 

The three studies included in this dissertation addressed in detail several 

modulators of own and observed action monitoring, namely expectancy, empathy, 

and error severity. In study 1, we used a false-belief paradigm with an additional 

difficulty modulation to disentangle vicarious error processing and expectancy 

processing in observation. In study 2, we used a similar false-belief paradigm to 

disentangle effects of expectancy and empathy on observed action monitoring. In 

study 3, we investigated the effects of error severity on own and observed action 

monitoring by means of a piano playing paradigm while additionally investigating 

modulations by empathy, expertise and expectancy. 

In study 1, we modified observer participants’ expectancies using false-

belief and task difficulty. Effects of empathy and expertise interacted, with effects in 

an early time window of both modulators in the conditions in which false-belief was 

relevant and effects of just expertise in the conditions where it was not. A similar 

pattern emerged for participants’ behavioral expectancies.  

In study 2, we used a similar paradigm as in study 1, which included only a 

false-belief-, not a difficulty manipulation. We found that only for participants with 

low empathy, expectancies grew weaker for the false-belief condition during the 

experiment, suggesting a fatigue effect. We used regression lines to estimate 

single-trial expectancies for each participant and belief condition and found that the 

expectancy values predicted amplitudes of the oMN. This effect was not further 

modulated by empathy. Based on study 1 and 2, we assumed that empathy 

shaped expectancies which then shaped observed action monitoring. 

In study 3, we found that own, but not observed action processing was 

influenced by the degree of deviation of an error from the correct movement, i.e., 

larger errors elicited higher ERN amplitudes than small errors. Effects of 

expectancy seemed to be stronger in observed than own action processing, 

although valence and modulators of expectancies were confounded. 



General Discussion | 55 

 
In the following paragraphs, I will discuss possible modulators of neural 

action monitoring as investigated in the three studies, with a focus on expectancy, 

empathy and error severity. 

Expectancy 

After the formulation of the PRO-model (Alexander & Brown, 2011), 

evidence accumulated confirming a strong effect of predictions and expectancies 

on own and observed action monitoring (Bellebaum et al., 2020; Chase et al., 

2011; Ferdinand et al., 2012; Gawlowska et al., 2018; Jessup et al., 2010; Kobza 

et al., 2011; Kobza & Bellebaum, 2013; Notebaert et al., 2009; Núñez Castellar et 

al., 2010; Oliveira et al., 2007; Schiffer et al., 2014; Wang et al., 2015; Wessel et 

al., 2012). Studies 1 and 2 confirm this effect on an electrophysiological measure 

of observed action monitoring, i.e., the oMN, and further investigate how 

predictions are formed. In study 1 and 2, we found no main effect of valence on 

observed action monitoring when expectancies were accounted for. Expectancy 

was not directly modulated in study 3 and variables potentially influencing 

expectancy (event type frequency and difficulty) could not be disentangled from 

valence effects because events differed significantly in their frequency and 

difficulty. Main effects of frequency on ERN amplitudes and post-event reaction 

times (Experiment 1) as well as oMN amplitudes (Experiment 2), and main effects 

of difficulty on post-event reaction times (Experiment 1) and oMN amplitudes 

(Experiment 2), nevertheless suggest that an expectancy modulation cannot be 

ruled out. Accordingly, at least studies 1 and 2 clearly confirm the role of 

expectancies on observed action processing: they showed that observed action 

processing is independent from vicarious error processing (see study 1) and that 

another modulating factor on observed action processing, namely empathy (study 

2), might even influence expectancy formation instead of observed action 

processing directly.  

As mentioned above, we found no effect of valence on oMN amplitudes in 

studies 1 or 2 (in accordance with Bellebaum et al., 2020; Ferdinand et al., 2012; 

Oliveira et al., 2007; Schiffer et al., 2014). However, in a number of studies, even if 
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a significant effect of expectancies emerged, valence did seem to play a role 

(Gawlowska et al., 2018; Jessup et al., 2010; Núñez Castellar et al., 2010; 

Pezzetta et al., 2018; Wang et al., 2015) – an observation we also made in study 3. 

Some of the inconclusive results of previous studies can be accounted for by an 

overoptimistic bias of participants concerning their and others’ performance 

(Oliveira et al., 2007) which we also observed in study 1. However, our results from 

study 3, as well as corroborating results on the effects of motivation and error type 

(Ganushchak & Schiller, 2008; Hajcak et al., 2005; Maier & Steinhauser, 2016), 

suggest that expectancies are not the only factor shaping action monitoring, and, at 

least for own action monitoring, an action valence effect on action monitoring 

cannot be ruled out. For observed action monitoring, valence might play a role only 

if the other persons’ actions have any implications for the observed person, for 

example if their responses lead to winning or losing money (Marco-Pallarés et al., 

2010) or if they are watching goals from their supported or an opposing team 

(Newman-Norlund et al., 2009). In all three studies comprised in this dissertation, 

the observed person’s actions had no consequences for the observer participants. 

Instead, the task was to observe the person as thoroughly as possible to be able to 

answer prompts. In studies 1 and 2, observers had to for expectancies about the 

observed responses, in study 3, observers had to monitor the observed person’s 

performance and expertise (study 3). Our observer participants’ intention, 

therefore, was not for the observed person to answer in a certain way, but to be 

able to observe, and thus predict, their movement as best as possible. In this 

sense, ‘valence’ and ‘expectancy’ might even refer to the same construct for our 

participants. If they were able to predict the observed person’s answer, the 

observer acted correctly, and if not, they made a (prediction) error.  

As a limitation regarding the findings on expectancy, in studies 1 and 2, we 

measured expectancy directly with prompt questions interspersed throughout the 

experiment. However, we did not acquire expectancy values on a single-trial basis 

(because this would have possibly changed participants’ attention). This only 

allowed us to approximate actual expectancy in single-trial values in study 2 (and 
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averaged values in study 1), although these approximations already sufficed to find 

a respective effect. In study 3, we did not measure expectancies directly, but via 

event type frequency, note difficulty and security. While some of these (note 

difficulty and security) were acquired on a single-note or single-trial level, we can 

only infer potential expectancy effects from these variables, and they were 

additionally confounded with valence. In the future, it might be interesting to directly 

ask for participants’ expectations after each respective trial.  

Having said that, it is questionable whether expectancies can be fully 

accounted for by explicit measures of expectancy. In study 1, for example, we 

found enhanced amplitudes for correct actions in the high-difficulty true-belief 

condition and enhanced amplitudes for erroneous actions in the high-difficulty 

false-belief condition, which was not in accordance with behaviorally measured 

expectancies. As a block design for the false-belief condition was used, relative 

comparisons of the difficulty conditions (answers should be more likely to be 

correct in the high-difficulty trials compared to low-difficulty trials in the false-belief 

blocks, and vice versa in the true-belief blocks) could explain the result pattern. 

These expectancies could have been implicit, as they were not reflected in the 

explicit expectancy measures. In future studies, measures of explicit expectancy 

might be complemented with behavioral measures (reaction times and accuracy 

data) that could account for (implicit and explicit) expectancies.  

In summary, studies 1 and 2 clearly show that expectancy, not observed 

action valence, is coded in the action monitoring system when observing others (at 

least when the valence of the observed action has no implications for the 

participants). In study 3, although event type frequency and valence cannot be 

disentangled, the results for the oMN could be explained by event type frequency 

as well as by valence. This does not directly support an expectancy effect, but still 

supports the PRO model’s (Alexander & Brown, 2011) statement that most valence 

effects can be explained by error frequency. For own action monitoring – where the 

valence of an action almost always has implications for the participant – the (sole) 

influence of expectancy is more debatable. Error significance modulated ERN 
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amplitudes in study 3 even though the error types did not differ in their frequency, 

and variables that might influence expectancy formation could not explain this 

effect. Expectancies in observed action monitoring might be shaped by multiple 

factors, for example by the comparison between conditions (see study 1). A 

specifically important modulator of expectancies, as observed in studies 1 and 2, 

seems to be trait empathy. 

Empathy 

Effects of trait empathy on own action monitoring have been considered 

improbable (Amiruddin et al., 2017), although the role of the ACC in both action 

monitoring (see Ridderinkhof, Ullsperger, et al., 2004; Taylor et al., 2007) and 

empathy (Bernhardt & Singer, 2012; Lamm et al., 2010; Lamm et al., 2011; Singer 

et al., 2004) suggests a possible connection between the two. In accordance, we 

found that empathy did not influence own action monitoring in study 3. Presumably, 

effects of action monitoring are either modulated by different subareas of the ACC, 

or they are similar, but unrelated, processes.  

In contrast, effects of empathy on observed action monitoring are more 

likely, because of the similarity between brain responses for own and observed 

emotional states or actions (Bates et al., 2005; Bufalari et al., 2007; Lamm et al., 

2011; Miltner et al., 2004; Singer et al., 2004; van Schie et al., 2004). A number of 

studies corroborate this assumption (Bellebaum et al., 2020; Brazil et al., 2011; 

Fukushima & Hiraki, 2009; Lockwood et al., 2015; Newman-Norlund et al., 2009; 

Shane et al., 2009). However, findings are inconclusive. First, there are also 

observation studies that found no effect of empathy at all (Clawson et al., 2014; 

study 3). Second, the aforementioned studies found correlations with different sub-

constructs of empathy (measured with different subscales of empathy 

questionnaires). Of these studies, only Fukushima and Hiraki (2009) and 

Bellebaum et al. (2020) investigated general empathy and only Bellebaum et al. 

(2020) found an effect of general empathy.  

In studies 1 and 2, we therefore aimed to further investigate a potential 

effect of empathy on observed action monitoring. For false-belief tasks, general 
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empathy seems to be important to form predictions (Bellebaum et al., 2020; 

Ferguson et al., 2015), and we indeed found that general empathy, as measured 

with the Cambridge Behavior Score (Baron-Cohen & Wheelwright, 2004), 

influenced behavioral measures of expectancy as well as observed action 

monitoring in both studies. Subsequently, I will discuss the effect of general 

empathy on expectancy formation, and then discuss the consequent influences of 

empathy on observed action monitoring. 

In both studies, higher trait empathy led to improved expectancy formation. 

In study 1, this emerged as stronger expectancies for high empathy participants 

compared to low empathy participants only in the condition in which false-belief 

reasoning was necessary to form expectations. In study 2, the strength of 

expectancies decreased across the experiment only for low empathic participants 

in the false-belief condition. In study 1, presumably because the task was more 

complex, the empathy effect emerged across all trials, while in study 2, in a less 

complex task, the effect emerged as a fatigue effect in later trials. No effect of 

empathy on expectancies was found in a previous study with the same paradigm 

as in study 2 (Bellebaum et al., 2020), but effects were probably masked both by a 

homogenous sample, resulting in an expectancy ceiling effect, and the fact that 

variations across the experiment were not taken into account. The role of empathy 

on performance in a false-belief task is well established (Birch & Bloom, 2007; 

Wellman et al., 2001), and tasks with a social component (Brown & Brüne, 2012) 

might require empathy for expectancy formation, while others do not. Accordingly, 

empathy modulated expectancy formation in conditions in which the social 

cognitive load was especially high in studies 1 and 2. We interpreted the result 

patterns in the sense of a social working memory (Meyer et al., 2012; Meyer & 

Lieberman, 2012) of which more or less resources are needed to perform a task 

(see Apperly et al., 2008; Epley et al., 2004). For people with low trait empathy, the 

social working memory might be impaired, resulting in overall decreased 

performance (study 1) or stronger effects of fatigue on performance (study 2).  
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Based on the similar pattern between behavioral expectancy data and 

electrophysiological results concerning empathy effects in study 1, we suspected 

an indirect effect of empathy on neural correlates of observed action monitoring via 

expectancy formation. This was confirmed by a post-hoc analysis in which we 

found that behavioral measures of expectancy influenced oMN amplitudes, but no 

further effect of empathy. In study 2, as well, expectancy values influenced 

amplitudes of the oMN. Extending study 1, this was shown on a single-trial level, 

and again, empathy did not explain any additional variance. We suspect, based on 

the results from studies 1 and 2, that empathy has an indirect effect on observed 

action monitoring via its effect on expectancy formation. Depending on how much – 

or which aspect of – empathy is needed to form expectancies, empathy can thus 

play a larger or smaller role in observed action monitoring.  

In accordance with this assumption, we found no effect of general empathy 

on observed action processing in study 3, when participants observed other 

persons play a piano piece the observers knew by heart. Both their high 

experience with the piece and the first-person perspective of the used videos 

(Angelini et al., 2018; Drew et al., 2015) probably made expectancy formation 

effortless. This was confirmed by the fact that empathy did not influence 

participants’ ability to count the players’ errors in the videos. Also, expectancies, as 

opposed to studies 1 and 2, were not manipulated systematically, especially not by 

a social-cognitive demanding manipulation such as false-belief. This again might 

have led to easier and possibly more varied expectancy effects. Participants’ 

expectancies might have been modulated by the perceived expertise, number of 

errors of a specific observed person, and the knowledge about difficult passages in 

the piece. As no focus was put on these expectancies (as opposed to a direct 

instruction about what observer participants should expect in studies 1 and 2), 

many underlying factors could have played a part in expectancy formation (e.g., 

the sympathy felt towards specific players, the speed in which the piece was 

played). As a result, the empathy and expertise effects on expectancy formation, 

and thus on observed action monitoring, might have been respectively diminished. 
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As a limitation regarding the effects of empathy in the three studies, we 

used videos or simulations for the observation condition in all three studies. In 

studies 1 and 2, participants were told that they saw videos of a real person, but 

trials were simulated. In study 3, participants did observe a video of a real person, 

but still, no real-life observation happened and empathic processing might have 

been diminished by the simulation (studies 1 and 2) or by the first-person 

perspective in study 3. As effects of empathy are reduced when watching computer 

actions as opposed to other person’s actions (Fukushima & Hiraki, 2009), and 

empathy recruitment seems to depend on how social a task is perceived (Brown & 

Brüne, 2012), presenting simulations and videos on a monitor might compromise 

empathic processing. Thus, effects of empathy might be investigated more 

efficiently in a more real-life setting where participants observe other persons in the 

same room. 

Another problem with regard to empathy is that both the conceptualization 

and measurement of the concept are highly debated in the literature. No 

consensus exists on a definition of empathy or the concepts and components it 

contains. It has even been suggested to avoid the use of the unspecific term 

‘empathy’ altogether in favor of specific components that are believed to be a part 

of empathy, such as perspective taking (Hall & Schwartz, 2019). We used a self-

report measure of empathy, using the Cambridge Behavior Scale, to investigate 

effects of empathy in all three studies (Baron-Cohen & Wheelwright, 2004). This 

measure has been connected to processing in false-belief tasks (Bellebaum et al., 

2020; Ferguson et al., 2015), making it the preferred measurement for our 

paradigms in studies 1 and 2. The questionnaire controls for response bias by 

using positively and negatively scaled items and, in some way, for social 

desirability bias by introducing 20 distractor items to avoid a focus on empathy. 

However, the authors themselves note that the self-measure only depicts the 

individual’s belief – or desired belief – about themselves. In addition, the 

questionnaire provides a general empathy measure and therefore is based on a 

possibly unjustified definition of empathy and its underlying concepts. Previous 
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studies used a wide range of self-report measures for empathy that do not 

necessarily correlate with each other (Hall & Schwartz, 2019). In a meta-analysis, 

Wright et al. (2021) found that the magnitude of impairment of affective empathy 

across neurological diseases differed relative to which measurement was used 

(self-reports, other-reports and performance). Only for strong overall empathy 

effects in specific neurological diseases, all measurements led to the same result 

pattern. This suggests that for some – possibly less pronounced – empathy effects, 

different types of measurement might lead to conflicting results. In the future, a 

combined empathy measure (including self-report, other-report, performance and 

physiological measures) should be created and validated to be used in further 

studies. Such a measure might be used to gain an encompassing picture on 

empathic effects. Also, the focus in future research could lie on more specific 

concepts that are presumed to be a part of the general concept of empathy. 

In summary, empathy might affect expectancy formation in observation, 

thereby having an indirect influence on neural correlates of observed action 

monitoring. The amount and characteristic of empathy needed for expectancy 

formation seems to depend on the social-cognitive demands of the respective 

observation. Further research should expand on this assumption by using in-

person observations and improved empathy measurements.  

Error Severity 

As established above, the PRO model cannot explain all findings on action 

monitoring, especially the influence of motivation for good performance 

(Ganushchak & Schiller, 2008; Hajcak et al., 2005). These findings suggest an 

effect of subjective error significance on action monitoring. They are corroborated 

by studies finding altered amplitude sizes for different error types (Bernstein et al., 

1995; Falkenstein et al., 2000; Maier et al., 2012; Maier & Steinhauser, 2016; 

Murata & Katayama, 2005; Paas et al., 2021), even if frequencies of error types 

are accounted for (Maier & Steinhauser, 2016). We therefore suspected that in 

addition to expectancies, the deviation from the correct movement would influence 

action monitoring in a continuous way. We indeed found that large errors elicited 
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larger ERN amplitudes than small errors in a piano-playing paradigm in study 3. 

Also, small errors were played significantly more quietly than large errors and 

correct keypresses, but did not lead to post-error-slowing. Contrastingly, large 

errors did not lead to volume change, but to post-error slowing, which suggests 

that the processing speed of small and large errors differed (small errors led to 

earlier corrective movements). We additionally replicated findings by Paas et al. 

(2021) showing that ERN amplitudes for later corrected errors were increased 

compared to uncorrected errors. Although the specific mechanisms behind this 

effect are not yet investigated, we can rule out an effect of error recognition. This is 

because uncorrected errors were only included if they were followed by a correct 

note, meaning that the subsequent hand movement after the error had to be 

(intentionally) adapted. Participants were specifically instructed to not correct their 

errors and probably suppressed this reaction in uncorrected errors, but failed to do 

so in corrected errors. In a study investigating behavioral effects of errors in skilled 

typists, Crump and Logan (2013) observed that error correction happened rapidly 

and even led to post-error speeding, while post-error slowing occurred after errors 

when correction was disallowed. This suggests that for experts of sequential tasks, 

error correction avoidance might require additional cognitive resources. We 

therefore suspect that corrected errors led to an attentional focus on the error and, 

respectively, less attention on the task (as proposed by Notebaert et al., 2009), 

which then led to a failure to adhere the no-correction instruction. Presumably, this 

attention deviation happened specifically for corrected errors because they were 

perceived as specifically significant. This suggests that ERN amplitudes are also 

influenced by the subjective importance of errors.  

Please note that the processing of error severity was crucial for the task 

used in study 3, because piano playing is a sequential task, meaning that 

corrective actions of some type have to be conducted to continue fluent play, and 

these actions have to be more extensive for large than for small errors. We only 

included events where the previous and following note were played correctly to 

avoid overlapping processes, so the corrective actions after included errors were 
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always successful. Event type (correct, small and large error) predicted both post-

event reaction times and ERN amplitudes better than variables related to 

expectancy (event type frequency, difficulty and security). The effect of 

expectancies cannot be ruled out and has not been manipulated in the study. 

However, there are also valence effects, specifically of the effects of error severity, 

that presumably cannot be explained by expectancy, at least when error severity is 

relevant for task performance.  

For observed action monitoring, amplitudes did not differ significantly 

between large and small errors or between corrected and uncorrected errors, and 

effects could be explained by event type frequency as well as by event type. A 

post-hoc analysis revealed that the effect of event type on the oMN was 

significantly different than that on the ERN: while amplitudes (z-scored, to make 

the two measures comparable) were similar for correct events and small errors, for 

large errors, amplitudes for own action monitoring were significantly larger than 

amplitudes for observed action monitoring. In the observation task, error severity 

was not relevant for task performance because observer participants, firstly, did not 

perform any corrective actions and, secondly, were instructed to count all errors 

regardless of their severity. Based on our results, we suspect that the need for 

adaptation, and the size of the respective adaptation, is also (besides 

expectancies) coded in action monitoring. 

In conclusion, for own action monitoring, error severity, and possibly also 

subjective error importance, influences neural mechanisms of action monitoring as 

measured in ERN amplitudes. This effect cannot be explained by event type 

frequency or other measures that might influence expectancies. For observed 

action monitoring, differently severe errors do not lead to significantly different oMN 

amplitudes, and an influence of expectancy cannot be ruled out. These results 

have to be considered on the basis that for own action monitoring, valence and 

specifically error severity were important information to adapt hand movements, 

while the significance of errors had no consequence for observers in observed 

action monitoring. 
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Need-to-Adapt Signal 

Action monitoring as a process serves to control our actions and their 

outcomes as much as possible, and if they are not as they should be, adapt them 

(as in reinforcement learning, see Holroyd & Coles, 2002). But, the phrase “as they 

should be” already raises a problem which was investigated in action monitoring 

research in recent years: does that mean “as they are expected” or “as they are 

desired”? For successful control, clear expectancies as to actions and their 

outcomes are necessary, and the brain should strive to adapt predictions whenever 

they are not met. As the PRO model states, mPFC activity should reflect the 

unexpectedness of actions or outcomes rather than their valence, and we found 

corresponding results for observed actions in studies 1, 2, and to some degree, 

study 3.  

However, action monitoring also seems to be dependent on subjective 

goals: increased neural error monitoring responses have been observed for 

participants with high sensitivity for errors (with identical or even increased 

expectancy of errors), as in anxiety patients (Carrasco, Harbin, et al., 2013; 

Endrass et al., 2014) and highly perfectionist participants (Barke et al., 2017; Stahl 

et al., 2015). Neural responses also increase when the motivation for good 

performance is high (Ganushchak & Schiller, 2008; Hajcak et al., 2005). Adapting 

expectations might not always be enough to exhibit maximum control; the brain 

needs to take subjective goals and deviations from them into account. If a pianist 

wants to play a piece perfectly, it does not suffice that they expect the error (that is 

made at the same specific note every time they play the piece), they need to adapt 

their actions to avoid the error in the future – which is what we showed in study 3. 

We proposed in study 3 that the mPFC, as a region involved in action monitoring 

and reinforcement learning (Holroyd & Coles, 2002) sends a general need-to-adapt 

signal. When predictions are not met, the brain needs to adapt to the new 

environment (in accordance with the PRO model). Additionally, when behavior 

deviates largely from the desired action, adaptation might also be necessary, 

depending on the subjective goal. Brain activity in action monitoring might thus 
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code the need to adapt, not just for prediction models, but also for action models. 

In study 1, we found that the magnitude of what we believe to be an adapt-signal 

was dependent on the size of the prediction error, i.e., the more the observed 

actions differed from what was expected, the larger the monitoring response, 

because the more adaptation of the prediction model was needed. This was also 

observed for feedback processing (Ferdinand et al., 2012). The adaption signal 

thus should represent the need to adapt not only as a dichotomic measure, but 

indicates the magnitude of adaption needed to reach the desired action or 

prediction model. Support for this assumption stems from studies indicating a 

correlation between FRN amplitude and prediction error on a single-trial basis 

(Burnside et al., 2019; Fischer & Ullsperger, 2013; Krigolson et al., 2014), although 

the effects found in these studies cannot be interpreted independently of valence, 

as the authors calculated a signed prediction error.  

In the observational tasks used in study 1 to 3, we found a signal that could 

be accounted for by prediction errors only. In all paradigms, errors had no 

consequences for the observer participants, and observer participants were not 

able to influence the observed actions, so action models had little to no 

significance for them. On the contrary, their specific task was to closely observe 

and draw conclusions regarding the observed persons’ next move (studies 1 and 

2) or their performance (study 3), so it is conceivable that prediction model 

adaptations were of particular relevance for them. The observed responses can 

even be seen as the feedback to the observers’ predictions and reflect how good 

participants are at the task and how much they need to adapt. Observed action 

monitoring might thus be only a specific task for a general action monitoring 

system that works to improve task performance. In accordance, if observed 

outcomes are relevant for the observer, as in studies setting a cooperative or 

competitive environment, neural responses to others’ errors or negative feedback 

were shaped by the meaning of the outcome for the observers (Koban et al., 2010; 

Marco-Pallarés et al., 2010; Newman-Norlund et al., 2009) and presumably not just 

by prediction errors. In the active playing condition of study 3, both predictions and 
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action models were of relevance for the participants to continue fluent play, and 

accordingly, the need-to-adapt signal reflected action model deviations 

(presumably in addition to prediction model deviations, although we cannot 

conclude this from our results with any certainty).  

In summary, we suggest that both expectancies and action valence might 

influence a general action monitoring system (for both own and observed action 

monitoring) depending on what is relevant for successful task completion in a 

continuous, non-dichotomist fashion. This assumption should be tested empirically 

in future studies by investigating different levels of valence (partial errors, small 

errors, large errors, very large errors) as well as different levels of expectancy 

(high, medium, and low error expectancies) in both own and observed action 

monitoring. Especially for the valence effect, this is not easy, because new 

paradigms have to be developed to test different levels of action valence in an 

ecologically valid way. As the piano keyboard proved an adequate instrument in 

study 3 because of the normed key width, we suggest to use a piano-like device in 

(non-musical) future studies, for example in a stimulus-reaction-task where 

different stimuli are mapped to different keys. Participants would have to move 

their hand from a fixed point in front of the keyboard to the respective key as fast 

as possible, which might induce smaller and larger errors. With ever-improving 

measurements of 3-D movement kinematics (Marshall et al., 2022), these could be 

used for analyzing specific sports-related movements and their deviation from the 

correct action. As an example, dance movements requiring specific foot 

placements could be practiced by participants, and then performed while 3-D 

movement kinematics are reported. From these data, deviations between actual 

and correct foot placement could be calculated.  

Participants might differ in how severe they perceive an error, so individual 

error attributions should be taken into account. This could be done by asking 

participants after each trial if they believed they performed correctly, and if not, how 

far they believed their action deviated from the correct movement.  
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Videos, simulations or real-life observations of the same tasks could be 

used for observed action monitoring. Expectancy can be manipulated stepwise via 

task difficulty or via emphasizing speed on specific tasks in own actions, and via 

task difficulty, speed variances or instructions in observed actions. In an 

adaptation-paradigm, participants’ performance could be manipulated so that the 

task difficulty (e.g., by visibility of stimuli, see Notebaert et al., 2009) is increased if 

they are below the desired error frequency, and decreased if they are above. 

Regarding observed action, we were able to manipulate expectancies in study 1 by 

adapting task difficulty, making observer participants belief that the player would 

perform less well in some conditions. A similar effect might be achieved by 

manipulating expectancies with instructions concerning players’ ability for this task 

(“this person is especially good at this task”/”is less good”).  

For own and observed action monitoring paradigms, the relevance of 

prediction and action models could be manipulated in future studies. Previous 

studies showed that increasing reward led to higher ERN amplitudes (Ganushchak 

& Schiller, 2008; Hajcak et al., 2005). In further studies, the interaction between 

significance of a specific error for the outcome (monetary gain/punishment) and the 

error severity might be investigated. This could be done by comparing differently 

sized errors that are either punished depending on the deviance of the actual from 

the desired action, depending on their absolute valence (correct or wrong) or not at 

all. For own action monitoring, it might also be interesting to compare sequential 

and non-sequential tasks, because immediate corrective movements are only 

needed in sequential tasks. For observed action monitoring, the possibility for 

corrective actions might also be manipulated in a joint-action task (e.g., Loehr et 

al., 2013; Paas et al., 2021) – if correction is possible, again, more emphasis 

should be on action model adaptation. In conclusion, modulations of both the 

importance and magnitude of prediction and action errors should be investigated in 

future studies to explore the implications of the need-to-adapt theory.  

Finally, while we established that empathy influences the size of the need-

to-adapt signal for prediction models in observed action monitoring by manipulating 
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the strength of predictions, we can only presume its role for adapting action 

models. Possibly, empathy, at least in specific contexts, could influence the 

motivation to answer correctly or see another person answer correctly (as 

suggested by cooperative/competitive context studies, Marco-Pallarés et al., 2010; 

Newman-Norlund et al., 2009). We suggest accounting for empathy effects in 

future studies investigating the assumptions of the need-to-adapt signal, especially 

to test its effects on the processing of action valence, not just expectancies. 

In short, the results from studies 1-3, but specifically from study 3, leave us 

to assume that the action monitoring system generates a need-to-adapt signal 

whenever an action or prediction adaptation is needed for successful task 

completion. This signal includes the size of the adaptation needed, i.e., is larger for 

large required adaptations compared to small adaptations. Depending on the task, 

the signal might code either prediction adaptations, action adaptations or both. 

Expertise 

Besides findings on three important modulators of action monitoring, namely 

expectancy, empathy and error severity, which were the main focus of this 

dissertation, the studies 1 to 3 included some additional findings and methods 

which will be discussed in the subsequent paragraphs. First, we also investigated 

expertise as a possible modulator of action monitoring in study 3 – more on a side 

note, because we used an expert sample -, and I will shortly discuss the results.  

In study 3, we found no effects of expertise on own and observed action 

monitoring. Expertise has been shown to modulate own (Harris et al., 2014; 

Jentzsch et al., 2014; Rachaveti et al., 2020) and observed action monitoring 

(Candidi et al., 2014; Panasiti et al., 2016). We suspect that expertise has a similar 

effect on action monitoring as empathy. While expertise might not always be 

necessary to form predictions and thus might not be necessary for action 

monitoring (Desmet et al., 2014), it might, in some aspects, be beneficial to form 

expectancies about own and others’ actions (Özkan et al., 2019; Zhao et al., 2021). 

However, in study 3, we investigated an expert sample, and while participants 

differed in their expertise, all had more than 500 hours of experience with piano 
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playing and were also experts for the concrete material used in the study as they 

practiced the pieces before the experiment. This could have resulted, as 

mentioned earlier, in effortless expectancy formation and in an expertise ceiling 

effect. Additionally, no comparison with novices was possible. 

As another explanation for the missing effect, we measured expertise as the 

total number of hours participants spent with the instrument, but other aspects, 

such as genetic predisposal and practice techniques have to be considered when 

investigating expertise (Bonneville-Roussy & Bouffard, 2014; Meinz & Hambrick, 

2010; Williamon & Valentine, 2000). Wallentin et al. (2010) suggest to use 

behavioral musical performance as a measure of expertise and developed the 

Musical Ear Test. In future studies investigating (piano playing) expertise, 

behavioral performance tests might be developed for a more direct measure of 

expertise.  

On another note, effects of expertise on action monitoring might be different 

depending on the type of expertise. For the task on which expertise has been 

acquired, expertise should lead to less errors and improved action-outcome 

predictions in own and observed errors. However, it is possible that to achieve 

expertise in some areas, action monitoring itself is important. As an example, in 

musical training, errors should be avoided, but when they happen, students also 

need to react quickly and effectively to them (Kruse-Weber & Parncutt, 2014). 

Expertise, at least in some areas, might thus equal increased experience in error 

management. In accordance, Jentzsch et al. (2014) found that musical training led 

to improved action monitoring. Future studies could compare the effects on action 

monitoring of different areas of expertise in which either error behavior is 

specifically practiced (e.g., music and most sports) or not (e.g., running, for which 

success is shaped less by movement perfection and more by fitness and constant 

practice). 

To conclude, we did not find an effect of expertise on own or observed 

action monitoring in study 3, which might be due to an expertise ceiling effect in our 

study. Nevertheless, expertise as a modulator of action monitoring should be 
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further investigated, especially for areas in which expertise might include a specific 

expertise in error monitoring and management. For future studies, expertise should 

be measured with a behavioral performance test to obtain objective values. 

Latencies of the oMN 

Moving away from (observed) action monitoring modulators to the 

component reflecting the monitoring process, we made some interesting 

observations regarding the latency of the oMN. In most electrophysiological studies 

on observed action monitoring, the respective ERP component that we call oMN 

peaks between 100 to 250 ms after the onset of the observed response 

(Bellebaum et al., 2020; Carp et al., 2009; de Bruijn & von Rhein, 2012; Kobza & 

Bellebaum, 2013; van Schie et al., 2004), although earlier peaks have been 

observed for go/no-go tasks (Bates et al., 2005; Koban et al., 2010). In the three 

studies included in this dissertation, we found different latencies of the oMN: In 

study 1, we found effects in an area of 100 to 250 ms after the observed action; in 

study 2, we found effects in an area of 250 to 420 ms; and in study 3, we found 

effects in an area between 100 ms pre- and 100 ms post-event. These 

discrepancies suggest that oMN latencies are highly dependent on the task, or 

more specifically, on the time point at which observer participants receive and 

process relevant information. In study 1, we used a block design for the false-belief 

condition, and the second factor, difficulty, was visible at the very beginning of the 

trial. As a consequence, participants had already formed their expectancies and 

just had to compare them to the observed action at the time of the response of the 

observed player. This might have led to earlier processing compared to study 2, 

where the order was randomized and participants knew only at the end of the trial 

whether it was a false- or true-belief trial. In study 3, we used a sequential task. 

Research from own action processing suggests earlier ERN latencies for 

sequential tasks (Herrojo Ruiz et al., 2009; Kalfaoğlu et al., 2018; Maidhof et al., 

2009; Paas et al., 2021), possibly because actions start earlier as in non-sequential 

tasks and errors are thus noticed earlier as well (Maidhof et al., 2013). A similar 

effect is conceivable for observation, because also here, participants can assume 
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the action outcome already when the player is moving the finger to the respective 

key, before the actual keypress. In previous studies using observation in sequential 

tasks (joint-action studies using music performance, Loehr et al., 2013; Paas et al., 

2021), participants observed others only by listening to their musical output. In this 

setup, observer participants did not have the advantage of observing early 

movement indications, and latencies were more comparable to non-sequential 

observational tasks. 

The three studies of this dissertation are exemplary for the variability of the 

oMN latency. Presumably, the oMN is generated as soon as all information needed 

to interpret the action is collected, and, depending on the conditions, this can be 

earlier or later. 

Single-Trial Approach for Obtaining ERP Peak-to-Peak Amplitudes  

As a third additional point, I want to discuss the novel approach for obtaining 

single-trial ERP amplitudes that we developed for study 2 and subsequently used 

in study 3. Analyses from study 2 showed that single-trial results were comparable 

to results from averaged data (compared to Bellebaum et al., 2020). We calculated 

single-trial data by first finding the maximum negative and preceding positive peak 

in the averaged data (averaged by participant and condition), a step identical to 

conventional average EEG analyses (as also used in study 1). However, instead of 

retrieving the amplitude values at the respective latencies in the averaged data, we 

retrieved values at the respective latencies in each single segment. In study 2, to 

achieve maximum comparability with previous studies (study 1; Bellebaum et al., 

2020; Kobza & Bellebaum, 2013), we extracted only the value at the peak point. In 

study 3, we extracted an area in a -10 to +10-ms area around the peak to account 

for slight latency differences also within-subject and within-condition.  

The chosen single-trial approach offers two main advantages: first, it is a 

relatively easy and straightforward method to account for single-trial variances in 

EEG signals, and we could use the same statistical analysis method for single-trial 

analysis in study 2 and 3 as used for average analysis in study 1, namely LME 

models (LME models work with both data types). Second, the average from all 
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extracted single-trial data would be the same value as used in conventional 

average studies, so the approach allows comparability with previous studies while 

still including more data points.  

Nevertheless, a further progress in EEG data analysis is desirable, because 

even though our developed method includes much more data than previous 

analyses, it still only includes a fraction of all acquired EEG data. Also, some 

problems of average analyses remain, for example that within-subject trial-to-trial 

peak latency changes are not accounted for and a large variance in latencies can 

lead to smaller peaks and reduced effect sizes (see Luck, 2014). In a time with 

ever-improving technological and computational solutions, more and more 

possibilities to optimize EEG analyses by including an increasing number of data 

points arise. LME models seem a good approach for single-trial analysis (see also 

Frömer et al., 2018; Spinnato et al., 2015), and advances in machine-learning also 

suggest a promising role for the method in future EEG analysis methods (see 

Stewart et al., 2014; Wirth et al., 2018).  

Conclusion 

The functional role of the action monitoring system and its modulators is not 

sufficiently clarified, especially for action observation. We aimed to investigate 

possible modulators of own (study 3) and observed (study 1, 2 and 3) action 

monitoring. In studies 1 and 2, we found that prediction formation in observed 

action monitoring is modulated by empathy, and these predictions then modulate 

observed action processing, with larger amplitudes of negative frontocentral ERP 

components for less expected observed actions. Importantly, we found no effect of 

observed action valence. In study 3, we found that error severity further modulates 

own action monitoring, and that this effect cannot be explained by participants’ 

expectancies. Opposed to that, we found no effect of error severity in observed 

action monitoring and additionally found that the valence effect could also be 

explained by expectancies. Based on the findings of studies 1 to 3, we propose 

that the action monitoring system sends a need-to-adapt signal if either the 

prediction or action model needs to be adapted for successful task completion.  
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Abstract

Recent evidence suggests that the processing of observed actions may reflect an action prediction error, with more pronounced

mediofrontal negative event-related potentials (ERPs) for unexpected actions. This evidence comes from an application of a

false-belief task, where unexpected correct responses elicited high ERP amplitudes. An alternative interpretation is that the ERP

component reflects vicarious error processing, as objectively correct responses were errors from the observed person’s perspec-

tive. In this study, we aimed to disentangle the two possibilities by adding the factor task difficulty, which varied expectations

without affecting the definition of (vicarious) errors, and to explore the role of empathy in action observation. We found that the

relationship between empathy and event-related potentials (ERPs) mirrored the relationship between empathy and behavioral

expectancy measures. Only in the easy task condition did higher empathy lead to stronger expectancy of correct responses in the

true-belief and of errors in the false-belief condition. A compatible pattern was found for an early ERP component (150–200 ms)

after the observed response, with a larger negativity for error than correct responses in the true-belief and the reverse pattern in the

false-belief condition, but only in highly empathic participants. We conclude that empathy facilitates the formation of expecta-

tions regarding the actions of others. These expectations then modulate the processing of observed actions, as indicated by the

ERPs in the present study.

Keywords Action observation . Expectation . Empathy . ACC . Error processing

Monitoring one’s actions plays an important role in goal-

directed behavior, making it possible to adapt performance

quickly when necessary. An important aspect of this is the

recognition of committed errors. For example, when you open

the top drawer in the kitchen looking for a spoon, although

you know that spoons are in the bottom drawer. In this case,

you usually notice your error immediately. The neural pro-

cessing of own errors has been thoroughly investigated over

the past 30 years. In the 1990s, researchers first described a

negative deflection in the event-related potentials (ERPs) of

electroencephalography (EEG) data after error commission

(Falkenstein, Hohnsbein, Hoormann & Blanke, 1991). This

component, peaking within 100 ms after error commission,

is called error negativity (Ne) or error-related negativity

(ERN; Falkenstein et al. 1991; Falkenstein, Hoormann,

Christ & Hohnsbein, 2000; Gehring, Goss, Coles, Meyer &

Donchin, 1993; see also Gehring, Liu, Orr & Carp, 2012;

Holroyd & Coles, 2002).

Error monitoring, however, is not limited to own errors. A

negative deflection in ERPs similar to the ERN has been dem-

onstrated for study participants observing others’ errors. This

deflection is referred to as observer error-related negativity

(oERN; van Schie, Mars, Coles & Bekkering, 2004; see also

Koban & Pourtois, 2014). As the ERN (Falkenstein et al.,

2000; Dehaene, Posner & Tucker, 1994; Ridderinkhof,

Ullsperger, Crone & Nieuwenhuis, 2004; Taylor, Stern &

Gehring, 2007; see also Gehring et al., 2012), the oERN dis-

plays a frontocentral topography and is believed to originate

from the anterior cingulate cortex (ACC) (Miltner, Brauer,

Hecht, Trippe, & Coles, 2004; van Schie et al., 2004; see

also Koban & Pourtois, 2014). Recent findings also indicate

the involvement of other brain regions. Ullsperger,

Danielmeier, & Jocham (2014) suggest the posterior medial

frontal cortex (pMFC) as a generator of performance monitor-

ing components, including the anterior and posterior

midcingulate cortex, as well as presupplementary and
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supplementary motor areas and the posterior dorsomedial pre-

frontal cortex. For action observation specifically, the superior

temporal sulcus might additionally contribute to oERN gen-

eration (Ninomiya, Noritake, Ullsperger, & Isoda, 2018). In

comparison to the ERN, the amplitude of the oERN is smaller

(van Schie et al., 2004; Miltner et al., 2004). Not surprisingly,

it also peaks later relative to the eliciting event (see Gehring

et al., 2012), because it is not time-locked to a self-performed

response but to an observed action. Moreover, its latency

seems to vary between 130 and 300 ms, depending on the

experimental paradigm (Bates, Patel, & Liddle, 2005;

Koban, Pourtois, Vocat, & Vuilleumier, 2010 as opposed to

Carp, Halenar, Quandt, Sklar & Compton, 2009; de Bruijn &

von Rhein, 2012; Miltner et al., 2004; van Schie et al., 2004).

The monitoring of others’ actions can be considered a social

process. For example, it is of particular importance for joint

actions, when own actions are synchronized with others’

(Loehr, Kourtis, Vesper, Sebanz, & Knoblich, 2013;

Moreau, Candidi, Era, Tieri, Aglioti, 2020).

In recent years, the understanding of how performance

monitoring is represented in the human brain and of the pro-

cesses that underlie the ERN and related ERP components has

changed. Increasing evidence supports the assumption that

unexpected events, rather than errors, mainly drive ERP com-

ponents and brain activity previously associated with error

commission or error feedback for self-performed actions

(Alexander & Brown, 2011; Ferdinand, Mecklinger, Kray,

& Gehring, 2012; Wessel, Danielmeier, Morton, &

Ullsperger, 2012). As accuracy and expectancy are usually

confounded, at least for easy tasks, in which errors are rare,

it cannot be differentiated whether an ERP component reflects

an error or an unexpected event. This further applies to the

ERPs associated with observed errors: Do they actually reflect

the accuracy or the expectancy of these actions or both? It is

assumed that when other people’s actions are observed, pre-

dictions are formed that are then compared to the actually

performed actions (i.e. the outcome of the prediction). If the

two do not match, an action prediction error occurs (Burke,

Tobler, Baddeley, & Schultz, 2010; Donnarumma, Costantini,

Ambrosini, Friston & Pezzulo, 2017; Flanagan & Johansson,

2003), which is independent of the valence of the response,

i.e., equally pronounced for an unexpected error and for an

unexpected correct action.

An expectancy effect on a mediofrontal ERP component

for observed actions has indeed been demonstrated in a pre-

vious study by our group. In that study, we applied a paradigm

in which participants observed a person playing a stimulus-

response task, the two-shell-game (seeMethods for details). In

this game, participants have to track under which of two shells

a ball is hidden. Because this task is quite easy, erroneous

responses by the observed person were unexpected (Kobza

& Bellebaum, 2013). The task, however, also entails a false-

belief condition: in this, observers had exclusive access to

task-related knowledge that made correct responses unexpect-

ed. In this condition, the mediofrontal ERP component

showed larger negative amplitudes after (unexpected) correct

than (expected) error responses.

This finding appears to support the assumption that nega-

tive medio-frontal ERPs reflect that something unexpected

happens. However, there may be an alternative interpretation.

In the task we applied, as in real life, the observed person’s

subjective error could differ from the actual, objective error.

To return to the introductory example: When you know that

the spoons have been moved to the top drawer, but the ob-

served person does not, then opening the top drawer looking

for a spoon is objectively correct, but an error from the ob-

served person’s point of view. Objective and subjective error

are dissociated in a false-belief condition, but not in the true-

belief condition. Thus, the mediofrontal ERP component may

also code vicarious error processing: Both conditions for

which higher amplitudes were found, (objective) errors in

the true-belief condition and (objectively) correct actions in

the false-belief condition, are subjective errors to the naïve

observed person. This interpretation in terms of vicarious error

processing appears to be supported by a recent study where

we found that trait empathy, measured by the empathy quo-

tient (EQ) (Baron-Cohen & Wheelwright, 2004), was related

to the processing of those actions in the two-shell-game that

represented errors from the observed person’s perspective

(Bellebaum, Ghio, Wollmer, Weismüller, & Thoma, 2020).

In participants with higher empathy scores, particularly large

amplitudes of the mediofrontal negative ERP component were

found in these conditions. This finding, however, was

interpreted in terms of a facilitatory effect of empathy on the

generation of expectations regarding observed actions. To

summarize, it is not clear what cognitive process is primarily

reflected in ERPs following observed actions—that is, wheth-

er they represent (subjective) accuracy from the perspective of

the observed person and thus vicarious error processing or the

(un)expectedness of the observed action, nor what role empa-

thy plays in this respect. Although it shares some features with

the oERN as described in the literature (van Schie et al., 2004),

we will refer to the ERP component(s) of interest as negative

mediofrontal ERP component in order to leave its functional

significance undetermined.

In the present study, we aimed to disentangle effects of

vicarious errors and action expectancy on the processing of

observed actions by adding the factor task difficulty, because

it should affect the latter but not the former. The two-shell

game described above (Kobza & Bellebaum, 2013) can be

considered an easy task (low level of difficulty), yielding clear

expectations regarding the upcoming response in terms of

accuracy, with correct responses being expected in the true-

belief condition and errors in the false-belief condition. We

reasoned that in a task of high difficulty, expectations would

not be as clear. As there were only two response options,
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observers should expect that the observed person guesses

more often, so that expectations concerning accuracy of the

observed response would be nearer to chance level. In the

introductory example, increasing task difficulty could corre-

spond to looking for the drawer with the spoons in an unfa-

miliar kitchen, where you can more or less only rely on guess-

ing. Comparing ERPs elicited by responses in high and low

difficulty trials allows us to disentangle effects of action ex-

pectancy and vicarious error processing. The correct and in-

correct answers remain the same for both high and low diffi-

culty trials—subjectively, from the observed player’s point of

view, and also objectively. If the mediofrontal ERP compo-

nent reflects vicarious error processing, no effect of task dif-

ficulty would thus be expected. However, if the observers’

expectancy of the observed action determines its processing,

task difficulty should have an effect. This notion is only true,

however, if task difficulty indeed affects the expectancy of the

observed response.

We hypothesized that the amplitude of the mediofrontal

ERP component in response to observed actions that we and

others described before (Bellebaum et al., 2020; Bates et al.,

2005; Kobza & Bellebaum, 2013; van Schie et al., 2004)

primarily reflects the expectancy of the observed responses

rather than vicarious errors. In addition, we aimed to clarify

the role of trait empathy in the processing of observed re-

sponses. By adding the factor task difficulty, we aimed to

create more variance concerning the expected accuracy of

the observed action, so that not only effects of expectancy

and vicarious errors could be dissociated, but also the relation-

ship between empathy and expectation effects regarding ob-

served error monitoring could be examined.

Methods

Participants

A total of 38 participants took part in the study. As Mixed

Linear Models are not yet used comprehensively and methods

for power calculations have only emerged in the last years and

require effect sizes for specific effects and interactions (Green

& MacLeod, 2016), we chose this sample size based on stud-

ies using correlations to investigate the effect of continuous

measures of trait empathy on action monitoring (Lockwood,

Apps, Roiser, & Viding, 2015; Newman-Norlund, Ganesh,

van Schie, de Bruijn, & Bekkering, 2009; Shane, Stevens,

Harenski, & Kiehl, 2009). In these studies, sample sizes were

between 20 and 31 participants. Five of the acquired partici-

pants were excluded from data analyses, either due to techni-

cal problems (four) or because the dependent variables de-

rived from the EEG data were outliers in the analysis (one,

see below for details). The remaining 33 participants (12 men)

were between 18 and 33 years old (M = 22.8, SD = 3.6). They

reported no previous or existing psychiatric or neurological

illnesses and took no regular medication that could affect the

nervous system. All participants had normal or corrected-to-

normal vision and were German native speakers. Participants

received course credit for taking part in the experiment. The

study was approved by the ethics committee of the Faculty of

Mathematics and Natural Sciences at Heinrich Heine

University Düsseldorf, Germany.

Experimental Task

The paradigm in this study was an adaptation of the two-shell

game used by Kobza and Bellebaum (2013) and Bellebaum

et al. (2020). Participants were asked to observe another per-

son as he played the game. Unbeknownst to the participants,

the player was fictitious and the displayed trials were simulat-

ed. The (fictitious) male player was introduced with a name

and a photo, in order to give the impression that the partici-

pants observed the performance of a real person. The game

started with a ball being hidden under one of two shells. After

multiple rotations of the two shells (2, 3, or 4 rotations, ran-

domly determined), the fictitious player pointed a joystick

towards the shell where he believed the ball to be hidden.

The observers saw the game from above, which also meant

that they could see the ball at any time during the trial and

therefore knew immediately whether the observed player was

right or wrong when he moved the joystick at the end of the

trial. The player’s responses were balanced: half were correct

responses (pointing to the shell covering the ball), and the

other half were errors (pointing to the empty shell).

We aimed to modulate the observer’s expectations

concerning the player’s responses by two factors. First, as in

Kobza and Bellebaum (2013), a false-belief condition was

introduced. That meant that the player was tricked in half of

the trials (factor Trial Type): the ball was swapped between

the two shells during one of the rotations. Observer partici-

pants were told that this was almost never visible to the player,

while it was clearly visible to the observers themselves. If the

player was tricked, the observers should expect a wrong rather

than a correct answer of the player, because they believed that

the player could not have seen the trick, and he would there-

fore assume that the ball was under the wrong shell. In the no-

trick condition, respectively, the observers should expect the

player to answer correctly.

As correct responses in the trick condition were errors from

the perspective of the player, we added the factor Difficulty to

the task, which aimed to disentangle vicarious errors and ex-

pectancy: the difficulty of keeping track of the ball was high in

half of the trials, in that the shells were rotated more than three

times faster (255 ms per rotation) than in the previous version

of the experiment (850 ms per rotation), which was now con-

sidered the “slow” and thus low difficulty condition.

Participants were told that due to the speed, it would be more
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difficult for the player to follow the shells with his eyes, so he

had to guess more often in his decision under which shell the

ball was. We assumed therefore that in low difficulty trials,

observer participants would have stronger expectations re-

garding the player’s response accuracy than in the high diffi-

culty condition, for which the expected accuracy would only

be slightly higher or lower than chance level (i.e., 50%) in the

no-trick and trick conditions, respectively.

The experiment was arranged in four blocks of 117 trials

between which participants could take short breaks. In con-

trast to the procedure in our previous studies applying this

paradigm (Kobza and Bellebaum, 2013; Bellebaum et al.,

2020), trick and no-trick conditions were alternated between

blocks, because otherwise the build-up of expectations

concerning response accuracy by the observed person might

have been too complex given that we introduced an additional

factor. In two of these blocks, the player was always tricked, in

the other two blocks, he was never tricked. Observers knew in

advance that the next block would only contain trick or no-

trick trials. The order of the blocks was balanced between

participants; either the first two blocks were trick-trials and

the last two no-trick trials, or vice versa. Before the first block

was started, participants completed 12 practice trials (6 trick

and 6 no-trick trials).

Half of the 234 trials of each Trial Type were high difficul-

ty trials, the other half were low difficulty trials. The low

difficulty and high difficulty trials were presented in random

order in the two blocks of each of the two levels of the Trial

Type factor (trick and no-trick). In half of the trials, the ficti-

tious player answered correctly, in the other half, he answered

incorrectly, by pointing a joystick either at the shell containing

the ball or at the empty shell (factor Accuracy). In total, there

were thus eight conditions: correct and erroneous observed

responses in low difficulty trick trials, high difficulty trick

trials, low difficulty no-trick trials and high difficulty no-

trick trials. It was pseudo-randomized on which side (left or

right) the ball was located at the start and the end of each trial

and how long the trial lasted (two, three or four rotations).

Twelve trials of each Trial Type and Difficulty did not end

with the player’s answer, but with the observer participants

being asked which shell they thought the player would have

chosen. After a static display of 400 ms of the final position of

the shells, the respective question appeared (“Where will

Daniel point the joystick?”) as well as the letters “L” and

“R” for left and right under the corresponding shells. Trials

ended after button press or after 2,700 ms if no response had

been given until then. These prompts aimed to provide an

insight into the observer’s expectations and were thus impor-

tant to determine whether the intended manipulation of the

observer participants’ expectations worked.

A total of 420 trials were included in the EEG analysis, 105

trials for each combination of Trial Type and Difficulty.

Forty-eight trials were included in the behavioral analysis:

12 of each Trial Type and Difficulty condition. The time

course of the individual trials is shown in Figure 1.

Empathy measure

Participants were asked to complete the German version of the

Cambridge Behavior Scale (Baron-Cohen & Wheelwright,

2004; de Haen, n.d.), which is a measure of trait empathy. In

a previous study (Bellebaum et al., 2020), we found that this

empathy measure interacts with the experimental factors Trial

Type and Accuracy of the paradigm that we (in an adapted

version that additionally includes Difficulty) also applied in

the present study, which is why we focused on this measure.

The questionnaire contains 60 items, 20 of which are

distractor items. Items consist of statements (e.g., “I really

enjoy caring for other people”), which the participants can

agree or disagree with using a four-point Likert scale ranging

from “strongly agree” to “strongly disagree.” Items are scaled

negatively or positively. Participants can score a maximum of

two points per item. For positively scaled items, participants

receive two points if they “strongly agree,” one point if they

“slightly agree” and zero points if they “slightly disagree” or

“strongly disagree.” For negatively scaled items, the scoring is

reversed. Participants do not receive points for any answer on

distractor items. Points are added and result in an empathy

quotient (EQ) sum score that can range from 0 to 80.

EEG Recording

Thirty passive scalp electrodes were applied according to the

international 10-20 system (F7, F3, Fz, F4, F8, FT7, FC3,

FCz, FC4, FT8, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7,

P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8), and an electro-

encephalogram (EEG) was recorded throughout the experi-

ment using a BrainAmp Standard amplifier (Brain Products,

Munich, Germany) and the corresponding software

(BrainVision Recorder, version 1.20.0506, Brain Products,

Munich, Germany) at a sampling rate of 1,000 Hz.

Electrodes were referenced to the average of two electrodes

on the left and right mastoids. All impedances were kept be-

low 5 kΩ.

Procedure

Upon arrival in the laboratory, participants were informed

about the experimental procedure and gave written informed

consent to participate in the study. They were then asked to fill

in a demographic questionnaire and the German version of the

Cambridge Behavior Scale (Baron-Cohen & Wheelwright,

2004; de Haen, n.d.). After completion, we attached the

EEG electrodes and participants were placed in front of a

1,920 * 1,080 px desktop monitor, and the experiment began.

The experiment lasted about 45 minutes. The Stimulus
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presentation and response recording were controlled by

Presentation Software (Version 20.0, Neurobehavioral

Systems, Albany, CA).

Data analyses

Behavioral data We analyzed the responses to the prompt

trials to determine how the observers’ expectancies

concerning response accuracy of the player were modulated

by the factors Trial Type and Difficulty. As in our previous

studies (Kobza and Bellebaum, 2013; Bellebaum et al., 2020),

we aimed to induce expectations of correct responses in no-

trick trials and of error responses in trick trials, which were

possibly less strong in high difficulty trials. We thus deter-

mined the proportion of the prompt trials in which the observ-

er participants expected a correct response by the player for

low difficulty and high difficulty no-trick and trick trials.

EEG data EEG data were preprocessed using BrainVision

Analyzer software, version 2.1 (Brain Products, Munich,

Germany). Raw data were filtered with a 0.5-Hz high-pass

and a 20-Hz low-pass filter. We then aimed to remove blink

artefacts from the filtered raw signal. For this purpose, we

performed an independent component analysis on single-

subject EEG data. This analysis breaks down the raw data into

temporally independent and spatially fixed components. We

selected one component per participant that seemed to repre-

sent blink and vertical eye movement artifacts as observed in

the vEOG electrode, as indicated by a symmetrical frontal

distribution across the scalp. This component was then re-

moved via independent component analysis back-transforma-

tion. For ERP analysis, we created segments of 800-ms length

that started 200 ms before the observed choice (the time point

when the joystick pointed to one of the shells). We performed

a baseline correction using the average signal in the 200 ms

before the observed choice. All segments in which a voltage

step larger than 50 μV per ms occurred, in which highest and

lowest data points differed by more than 100 μV or in which

signals at any sample were higher than 100 μV or lower than

−100 μV were excluded from further analysis automatically.

On average, 3% of the error no-trick high difficulty segments

(SD = 7%), 3% of the correct no-trick high difficulty segments

Figure 1. Time course of events in the experiment trials. There were eight

conditions, low difficulty no-trick, low difficulty trick, high difficulty no-

trick, and high difficulty trick, which either ended in a correct or an error

response. Some trials ended not in a response by the observed player but

in a prompt question to measure the observer’s expectancies.
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(SD = 7%), 4% of the error no-trick low difficulty segments

(SD = 8%), 4% of the correct no-trick low difficulty segments

(SD = 7%), 2% of the error trick high difficulty segments (SD

= 5%), 3% of the correct trick high difficulty segments (SD =

4%), 3% of the error trick low difficulty segments (SD = 4%),

and 3% of the correct trick low difficulty segments (SD = 4%)

were excluded. None of the participants lost more than 30% of

all segments. Finally, single-subject averages were created for

all eight conditions of the experiment. Data for each subject

and condition were exported as text files and further processed

in MATLAB, version R2017b (Mathworks, Natick, MA).

Based on the findings obtained in previous studies of our

research group using this paradigm (Kobza & Bellebaum,

2013; Bellebaum et al., 2020), we expected that our experi-

mental manipulation would affect a negative-going compo-

nent in the ERPs between 250 and 420 ms after the observed

choice. For this component, an interaction between the factors

Trial Type and Accuracy (Kobza & Bellebaum, 2013;

Bellebaum et al., 2020) as well as a modulation of this inter-

action by Empathy (Bellebaum et al., 2020) have been de-

scribed. Thus, we investigated this component first. As in

our previous studies, we calculated a peak-to-peak amplitude

for the negative peak relative to a preceding positive peak.

First, we pooled the signal over the electrodes Fz, FCz, and

Cz, at which the component was particularly pronounced (see

Bellebaum et al., 2020, for a similar procedure). We then

calculated the most negative peak between 250 and 420 ms

after the observed choice and subtracted the most positive

peak in the preceding time window between 130 ms and the

negative peak.

Contrary to our hypotheses, the ERPs seemed to be mod-

ulated by the experimental manipulations also in an earlier

time window. Visual inspection of the signal at frontocentral

electrodes suggested that the experimental factors modulated

the first negative peak, that is, the N1 amplitude. Such an early

modulation was not entirely unexpected: for the oERN, for

example, as an ERP component reflecting the processing of

observed actions, some variability has been found in studies

concerning the latency with which it occurs. While it has

mostly been reported to peak later than 200 ms after the re-

sponse (van Schie et al., 2004; Miltner et al. 2004; Kobza &

Bellebaum, 2013), there also are reports of shorter latencies

(see Koban & Pourtois, 2014), with peaks as early as 150 ms

after the onset of the observed response in some studies (Bates

et al., 2005). It thus seems conceivable that a modulation of

the processing of observed actions can take place in the N1

time window. To analyze this component, we also considered

the pooled signal of three frontocentral electrodes (Fz, FCz,

and Cz), because the component was also most pronounced

frontocentrally (see topographic maps in the Results section).

To score the component, we determined the most negative

peak between 100 and 250 ms and subtracted the preceding

most positive peak between 50 ms and the negative peak of

the pooled signal. We will refer to this component as the early

frontocentral negative component, while the component we

analyzed first (see Bellebaum et al., 2020) will be referred to

as the late frontocentral negative component.

Outlier detection In each of the two EEG data sets (early

component, late component) we determined participants

whose peak-to-peak amplitude in at least one of the eight

conditions differed by more than three standard deviations

from the mean to identify outlier values in these dependent

variables. The same criterion was used for the EQ sum score

as continuous predictor variable. We found one participant

with elevated scores for both dependent variables and exclud-

ed this participant from further data analysis.

Statistical analysis The statistical analyses of the behavioral

and EEG data were based on the following strategy. First, the

behavioral data were analyzed to show if the task Difficulty

factor, together with the Trial Type factor, affected observers’

expectancy in the intended way. Specifically, an interaction

between the Trial Type and Difficulty factors was expected,

with pronounced expectations concerning the accuracy of the

observed action emerging only in low difficulty trials. In a

second step, we analyzed to what extent Difficulty and Trial

Type (due to their hypothesized effect on expectancy) affected

the processing of observed actions, as reflected in the early

and late frontocentral negative ERP components. If Trial Type

and Difficulty interact in their effect on expectancy, the two

factors also should interact in their effect on an ERP compo-

nent reflecting expectancy. The focus in the analysis was thus

on interactions involving these two factors. This analysis pro-

cedure established an indirect link between the behavioral

(expectancy) data and the neurophysiological data. In addi-

tion, potential effects of the continuous factor Empathy were

considered. We analyzed our data by means of linear mixed

effects (LME) analyses using the lme4 statistical package

(version 1.1-21) in R (version 3.5.3), because this type of

analysis allows to include both categorical and continuous

factors. All models were estimated using a restricted maxi-

mum likelihood approach, as proposed by Luke (2017). The

R package lmerTest (version 3.1-0) was applied for evaluating

significance in the models by using Satterthwaite approxima-

tion for the degrees of freedom. Effect sizes were calculated

with the function anova_stats of the package sjstats (version

0.17.9).

For the behavioral data, we defined the dependent variable

as the percentage of prompt trials in which participants indi-

cated that they expected the player to choose the correct an-

swer. We thus specified a model with percentage of expected

correct answers as dependent variable and participants as a

random-effect factor. Trial Type and Difficulty were defined

as categorical fixed-effect predictors. We also included the

random slopes of the categorical predictors by participants.
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As continuous factor we included Empathy (the EQ sum

score). For the categorical factors, the levels of the Trial

Type factor were recoded as +1 for trick and −1 for no-trick

and for the factor Difficulty as +1 for low difficulty and −1 for

high difficulty. The Empathy measures were mean-centered.

In the subsequent analysis of the EEG-data we analyzed the

later as well as the earlier frontocentral negative ERP compo-

nent. We thus specified two models, one for each of the com-

ponents as dependent variable, that were similar to the model

for the behavioral data, with Trial Type and Difficulty and the

additional factor Accuracy as categorical fixed-effect predic-

tors (modelling also their random slope by participants). Trial

Type and Difficulty were recoded as in the model for the

behavioral data (+1 = trick; −1 = no-trick; +1 = low difficulty;

−1 = high difficulty). Accuracy was recoded as +1 for correct

and −1 for error responses. The continuous factor, Empathy,

and the model estimation were the same as in the model for the

behavioral data. For all analyses the threshold for statistical

significance was set to p < .05.

Interactions. Interactions were resolved in a step-wise

manner according to Aiken, West, & Reno (1991): for every

n-way interaction, we calculated slopes of the n-1-way inter-

actions while one predictor was held constant. Significant in-

teractions in these analyses were then resolved in the same

way until all factors were resolved. For categorical factors,

in accordance with the variable coding, we used 1 or −1 as

constants. For the continuous factor Empathy, we shifted the

variable by one standard deviation downward or upward from

the mean (M – 1 SD or M + 1 SD) and calculated lower-level

interactions while holding the continuous factor constant at

low level empathy (low empathy, M – 1 SD) or high level

empathy (high empathy, M + 1 SD).

Analysis linking behavioral and ERPmeasures. To explore

whether there also was a direct relationship between expec-

tancy and observed response processing, we planned to con-

duct follow-up analyses in case of a significant effect of the

Trial Type and Difficulty factors on one of the ERP compo-

nents. For this purpose, we calculated expectancy measures

(concerning correct responses) for each of the conditions trick

high difficulty, trick low difficulty, no-trick high difficulty,

and no-trick low difficulty in every participant based on the

prompt trials. These values indicated how strongly correct

responses were expected. For error responses, the expectancy

values were recalculated as 1 – expectancy of the correct re-

sponse. The expectancy values were used as continuous factor

Expectancy (mean-centered) in an LME model, including

ERP component amplitudes as dependent variable. We in-

cluded all participants that were included in the previous anal-

yses in an additional outlier detection, based on the so-called

Cook’s Distance. As Cook’s Distance measures the influence

of single subjects on the model, this outlier detection method

might be especially suitable for exploratory analyses where

some aspects might not be perfectly controlled for (e.g.,

correlations between the predictors). Cook’s Distance analysis

revealed one outlier participant that was excluded from the

Expectancy analysis. To further test whether Empathy ex-

plained additional variance beyond the effect of expectancy,

we calculated an exploratory Chi-Square test using the anova-

function in R (from the package car, v 3.0-9) to compare the

two models. This allowed us to determine whether a model

including Expectancy and Empathy explained significantly

more variance than a model including only Expectancy and

thus, whether the frontocentral negative ERP component is

further influenced by trait Empathy. For this comparison, both

models were recalculated with a maximum likelihood

approach.

Results

Please find additional statistical data for the following LME

analyses in the Supplementary Materials, including estimates,

t-test statistics, standard errors, and confidence intervals for

the data in the reported analyses.

Behavioral analysis

The behavioral data reflecting the strength of the expectations

of the observers are depicted in Figure 2. For the percentage of

expected correct responses we found significant effects of

Trial Type, F(1,31.00) = 25.94, p < 0.001, ηp
2 = 0.23, and

Difficulty, F(1,31.00) = 11.55, p = 0.002, ηp
2 = 0.12. Trick

trials resulted in lower expectation of correct answers (b =

−12.41) than no-trick trials, as did high difficulty trials (b =

8.24) compared with low difficulty trials. Furthermore, a sig-

nificant interaction between Trial Type and Difficulty

emerged, F(1,30.99) = 8.85, p = 0.006, ηp
2 = 0.09. As can

be seen in Figure 3, expectancy of correct responses was de-

scriptively nearer to chance level in the high difficulty than

low difficulty trials. A follow-up analysis to resolve the inter-

action of the two factors revealed, however, that the factor

Difficulty was only significant for no-trick trials, F(1,55.91)

= 20.18, p < 0.001, b = 13.35, not for trick trials (p = 0.299). In

no-trick trials, correct answers were more expected in low

difficulty trials than in high difficulty trials. Analyzing high

and low difficulty trials separately, we found that Trial

Type was significant for both low difficulty trials,

F(1,55.75) = 35.63, p < 0.001, and high difficulty trials,

F(1,55.75) = 5.98, p = 0.018, but the difference was

less pronounced in high difficulty trials (b = −7.30 as

opposed to b = −17.53). In both Difficulty conditions,

correct answers were more expected in no-trick trials.

As Difficulty interacted with Trial Type and the differ-

ence between trick and no-trick trials was less pro-

nounced in high difficulty trials, we can conclude that

the difficulty manipulation worked, as expected.
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Significant differences between low and high difficulty

trials were found, however, only for no-trick, but not

for trick trials.

We also found that Empathy interacted with Trial Type,

F(1,31.00) = 4.59, p = 0.040, ηp
2 = 0.05, and with Trial

Type and Difficulty, F(1,30.99) = 6.87, p = 0.013, ηp
2 =

0.07. We further investigated the interaction effects, including

the continuous factor Empathy. We first considered the inter-

action between Empathy and Trial Type. Although the factor

Trial Type modulated the answer for participants with both

high and low empathy, F(1,31.00) = 26.14, p < 0.001, and

F(1,31.00) = 4.32, p = 0.046, respectively, the effect was

larger for high empathy participants (b = −17.66) than for

low empathy participants (b = −7.17). For both groups, trick

trials resulted in a lower expectation of correct answers than

no-trick trials, but the effect was larger in participants with

high empathy. Subsequently, we resolved the three-way inter-

action. A Trial Type by Empathy interaction was significant

only for low difficulty trials, F(1,55.75) = 10.64, p = 0.002,

not for high difficulty trials (p = 0.812). Further simple-slope

analyses for low difficulty trials revealed that the factor

Empathy was significant for low difficulty trick trials,

F(1,40.83) = 5.31, p = 0.026, as well as low difficulty no-

trick trials, F(1,45.66) = 5.34, p = 0.025. Higher empathy

led to lower expectation of correct answers in low difficulty

trick trials (b = −1.07) and to higher expectation of correct

answers in low difficulty no-trick trials (b = 0.90). The main

effect of Empathy and the remaining interaction did not reach

significance (all p ≥ 0.786).

In summary, we found that the expectancy modula-

tion by the factors Trial Type and Difficulty succeeded

(Figure 3). Importantly, expectations were further mod-

ulated by empathy, with higher effects of the experi-

mental factors on expectancy measures in high empathy

participants. However, even for high empathy partici-

pants, we only found a significant effect of Difficulty

in no-trick, but not in trick trials (Figure 2).

EEG analysis

Late frontocentral negative component The ERPs and their

topography for the relationship between Trial Type, Difficulty

and Accuracy are depicted in Figure 4. A display of the rela-

tionship between the four factors and the amplitude of the late

frontocentral negative component, whose mean latency

(across participants and conditions) was 335 ms (SD = 52

ms), is shown in Figure 5. The LME analysis did not reveal

any main effects for the late negative component amplitude

(all p ≥ 0.149). We found one significant interaction between

Difficulty and Accuracy,F(1,124.84) = 11.77, p < 0.001 (for a

visualization of this effect, see Figure 6). Follow-up analyses

revealed that Accuracy modulated the late negative compo-

nent only in high difficulty trials, F(1,59.99) = 4.75, p = 0.033,

ηp
2 = 0.06, not in low difficulty trials (p = 0.130). For high

difficulty trials, errors elicited a larger amplitude (b = 0.42)

than correct responses. We did not find any other interaction

effects (all p ≥ 0.323).

Figure 2. Behavioral data derived from prompt trials. Displayed is the percent of trials in which participants stated that they expected the player to

answer correctly, modulated by trait Empathy, Trial Type, and trial Difficulty. Confidence intervals are displayed around the regression lines.

Figure 3. Interaction effect between Trial Type and trial Difficulty in

behavioral data derived from prompt trials. The black line marks chance

level (50%). Mean and confidence intervals are displayed within the

respective violin plots.
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In summary, we did not find the expected modulation

of ERPs in the late frontocentral negative ERP compo-

nent (Figure 5), as the result pattern did not mirror the

expectancy modulation by the factors Trial Type and

Difficulty in the form of an interaction between the

factors. Instead we found a selective modulation of the

late component by Accuracy in high difficulty trials

(Figure 6).

Figure 4. A. ERPs pooled over Fz, FCz, and Cz after observed correct

and error responses for all combinations of the Trial Type and Difficulty

conditions. The two analyzed components, early and late frontocentral

negative component, are marked in the ERPs. B. Topography of the

difference between the ERPs after error and correct responses at the

maximum positive (low difficulty trick and high difficulty no trick) or

the maximum negative (low difficulty no trick and high difficulty trick)

peak of the difference between error and correct responses (between 150

and 180 ms) for the pooled signal of Fz, FCz, and Cz for both Trial Type

and Difficulty conditions.
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Early frontocentral negative component Figure 7 shows the

relation between the four factors and the amplitude of the early

frontocentral negative component. The mean latency of this

component (across participants and conditions) was 159 ms

(SD = 27 ms). The LME analysis on this component’s ampli-

tude revealed no significant main effects and no two-way

interactions (all p ≥ 0.069). Instead we found two three-way

interactions, one between Empathy, Trial Type and Accuracy,

F(1, 186.02) = 6.04, p = 0.015, ηp
2 = 0.03, and one between

Trial Type, Difficulty and Accuracy, F(1,186.02) = 5.64, p =

0.019, ηp
2 = 0.03, but no other three-way-interactions (all p ≥

0.524). Because we also found a significant four-way interac-

tion between all four factors—Empathy, Trial Type,

Difficulty, and Accuracy, F(1, 186.02) = 6.96, p = 0.009,

ηp
2 = 0.03, we focused on the resolution of this highest-

order interaction. We thus conducted two further LME-

analyses separately: one for low difficulty and one for high

difficulty trials. A significant three-way interaction between

Trial Type, Accuracy, and Empathy emerged for low difficul-

ty trials, F(1,186.01) = 12.98, p < 0.001, but not for high

difficulty trials (p = 0.898). In the resolution of the interaction

for low difficulty trials, an Accuracy by Empathy interaction

was found for both low difficulty trick, F(1,194.18) = 4.83, p

= 0.029, and low difficulty no-trick trials, F(1,194.08) = 8.20,

p = 0.005. For low difficulty trick trials, a significant effect of

empathy was found only for correct, F(1,77.83) = 7.02, p =

0.010, but not for error responses (p = 0.984); for no-trick

trials the pattern was reversed: an effect of Empathy was

found for error, F(1,52.71) = 4.56, p = 0.037, but not for

correct trials (p = 0.492). Higher empathy resulted in more

negative amplitudes for low difficulty correct trick trials (b =

−0.08) and for low difficulty error no-trick trials (b = −0.08).

Analyzing the high difficulty trials separately, no three-way

interaction emerged (p = 0.898), but an interaction between

Trial Type and Accuracy could be found, F(1, 186.01) = 7.23,

p = 0.008. A significant effect of Accuracy emerged only for

high difficulty no-trick trials, F(1,194.20) = 4.10, p = 0.044,

where correct responses led to higher amplitudes (b = −0.35),

although we found a trend for an Accuracy effect also in high

difficulty trick trials, F(1,194.16) = 3.07, p = 0.081, where

errors led to higher amplitudes (b = 0.31).

In summary, we found a modulation in an earlier time

window (around the N1) similar to the one we expected.

Consistent with the behavioral results for expectancy forma-

tion, we found that ERPs were modulated by an interaction of

Empathy, Trial Type, and Accuracy for low difficulty trials

only, where Empathy seemed to be important particularly for

Figure 5. Peak-to-peak amplitudes of the late frontocentral negative

component (250–420 ms) as a function of Trial Type, Difficulty,

Accuracy and Empathy. Confidence intervals are displayed around the

regression lines.

Figure 6. Interaction effect between Difficulty and Accuracy for the late

frontocentral negative component (250–420 ms). Mean and confidence

intervals are displayed within the respective violin plots.

Figure 7. Peak-to-peak amplitudes of the early frontocentral negative

component as a function of Trial Type, Difficulty, Accuracy, and

Empathy. Confidence intervals are displayed around the regression lines.
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the processing of those events that were considered unexpect-

ed (see the low difficulty grids in Figure 7).

Effects of expectancy and empathy on the early frontocentral

negative component

After we found that Trial Type and Difficulty affected the

early frontocentral negative ERP component, we aimed to

explore the relationship between expectancy and the ampli-

tude directly (seeMethods section). We found a main effect of

Expectancy, F(1,220.43) = 4.57, p = 0.034, ηp
2 = 0.02, b =

0.65. For higher Expectancy values, amplitudes were smaller

(Figure 8). We further conducted an analysis in which we

compared a model including only Expectancy to a model in-

cluding Expectancy and Empathy. This analysis must be con-

sidered exploratory, because empathy predicted expectancy in

our experiment, as was revealed by the behavioral data anal-

ysis. The two factors in the Expectancy x Empathy model

were thus not independent. A model including both predictors

did not explain significantly more variance than a model in-

cluding only Expectancy, Χ2(2) = 0.07, p = 0.967. In summa-

ry, the measured Expectancy values functioned as predictors

for the amplitude of the early frontocentral negative compo-

nent. Empathy did not account for significantly more variance

if Expectancy was already included as a predictor.

Discussion

In this study, we investigated the role of expectations in the

processing of observed actions and a potentially mediating

effect of empathy. To this end, we had participants observe a

person perform correct or error responses in a two-shell-game.

Expectancy was modulated by two factors that allowed to

distinguish between effects of vicarious errors and expectan-

cy. We found that our manipulation of the expectancy of the

observed response succeeded. We also found an effect of em-

pathy on the strength of the expectations. Concerning the neu-

rophysiological processing of observed responses, there was

evidence that the amplitude of a frontocentral negative ERP

component time-locked to observed responses was mainly

driven by the expectancy of the responses. Surprisingly, this

pattern was found in the N1 time window and thus earlier than

the ERP components that have been linked to observed re-

sponse processing in previous studies (Kobza and

Bellebaum, 2013; Bellebaum et al., 2020; van Schie et al.,

2004; see also Koban & Pourtois, 2014).

Behavioral measures of expectancy

We measured self-reported expectancies concerning the ob-

served response separately for each condition. This assess-

ment served to verify whether our experimental manipulations

affected participants’ expectancies in the intended way, which

was an important prerequisite for the interpretation of the ERP

data. We found a modulation by a false-belief condition (fac-

tor Trial Type), in accordance with previous studies applying

the same paradigm (Bellebaum et al., 2020; Kobza and

Bellebaum, 2013).Moreover, the newly introduced factor task

Difficulty affected participants’ expectations in that the differ-

ence between conditions with true and false belief was less

pronounced for trials with high difficulty. Analyzing true- and

false-belief conditions separately, we found a modulation by

taskDifficulty only in the true-belief, but not in the false-belief

condition. One reason seems to be that expectations in low

difficulty trials with a false-belief were less strong than expec-

tations for low difficulty true-belief trials. Expectations for

false-belief conditions seem to be harder to form (the same

effect was found in previous studies employing this paradigm,

see Bellebaum et al., 2020; Kobza&Bellebaum, 2013; as well

as in studies using false-belief tasks, see Birch & Bloom,

2007; Wellman, Cross, & Watson, 2001), and with the addi-

tional factor Difficulty, this might have led to smaller differ-

ences between the Difficulty conditions. We also found that

Empathy influenced expectancy formation in low difficulty

conditions: expectancies were formed most consistently in

high empathy participants. Bellebaum et al. (2020) did not

find a modulation of expectancy by empathy using the same

paradigm. In this previous study there was little interindivid-

ual variance in the expectancies, which clearly differed be-

tween false- and true-belief conditions. The introduction of

the task difficulty variation in the present study may have

led to more variance, so that empathy may have plaid a more

important role for expectancy generation.

It is important to keep in mind that expectancy was

assessed based on 12 prompt trials per condition only, so the

derived expectancy values do not reflect expectations on a

Figure 8. Effect of Expectancy on the early frontocentral negative

component. Confidence intervals are displayed around the regression

lines.
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single trial basis. Also, it has to be noted that the prompt trials

primarily served to check if the expectancy manipulation

succeeded. While the LME analysis suggests an interesting

modulation of expectancy by empathy, the behavioral results

should be interpreted with caution.

Latency of expectancy and empathy effects on the
processing of observed actions

An important difference between the present study and our

previous studies with the same paradigm (Kobza and

Bellebaum, 2013; Bellebaum et al., 2020) is that the modula-

tion of the ERPs by Expectancy and Empathy occurred much

earlier after the observed response in the present study. The

component also had a lower latency than the oERN, at least

for most of the studies investigating this component (Carp

et al., 2009; de Bruijn & von Rhein, 2012; Miltner et al.,

2004; van Schie et al., 2004); it occurred between 100 and

250 ms (mean 159 ms) and thus in the latency range of the

N100. Nevertheless, we have reason to believe that this early

modulation reflects an ERP component resembling other

components that have been linked to the processing of ob-

served responses. Firstly, the topography of the relative nega-

tivity in the ERPs for unexpected events showed a fronto-

central maximum (Figure 4) and is thus not only consistent

with the typical topography of the oERN, but also with that of

the ERN and the feedback-related negativity, which are all

related to performance monitoring (Falkenstein et al., 1991;

Gehring et al., 2012; Gehring & Willoughby, 2002; Miltner

et al., 2004; van Schie et al., 2004). Second, the modulation by

expectancy and/or empathy is comparable to modulations of

monitoring-related ERPs found in previous studies

(Bellebaum et al., 2020; Ferdinand et al., 2012; Kobza &

Bellebaum, 2013; Wessel et al., 2012). Particularly, these re-

sults correspond to those of Kobza and Bellebaum (2013) and

Bellebaum et al. (2020), who applied the same paradigm but

found the effect in a later time window. Third, and most im-

portant, the latency of the oERN and related components ap-

pears to differ depending on the task. For a Go/NoGo-Task an

oERN was observed as early as 150 ms after the observation

of errors in NoGo trials which corresponds to the latency

range of the present study (Bates et al., 2005; Koban et al.,

2010). This earlier latency has been linked to the lower com-

plexity compared with a Flanker task (Koban & Pourtois,

2014).

The question remains, however, why the modulation in the

present study occurred so early. The main difference between

the present and our previous studies (Bellebaum et al., 2020;

Kobza & Bellebaum, 2013) is that we used a block design for

trick and no-trick trials, so that participants knew beforehand

whether the observed person had a true or a false belief. In

blocks with trick trials, for example, they knew that the ob-

served person was more likely to point to the empty shell,

performing an error. If trick and no-trick trials alternate trial-

by-trial, as in our previous studies, expectation formation

probably takes more time. We believe that this early expecta-

tion formation enabled faster processing and thus earlier ERP

modulations. We therefore discuss the early ERP modulation

in the following sections and relate it to findings from the

literature, where mostly later components were analyzed, but

emphasize that these results should be interpreted with caution

as our hypothesis was related to a modulation in a later time

window.

Effects of expectation on observed error processing

Consistent with the previous results we obtained with this

paradigm (Kobza and Bellebaum, 2013; Bellebaum et al.,

2020), we found that the amplitude of a negative ERP com-

ponent following an observed response was modulated by

expectancy, although this modulation occurred earlier than

in the previous studies In participants who developed strong

expectations, the least expected events, that is, correct re-

sponses in low difficulty trials with a false-belief and error

responses in low difficulty trials with a true belief, elicited

the highest amplitudes.

Importantly, we found a modulation not only by the false-

belief condition, but also by the new factor task Difficulty. If

the ERP component had only reflected the false-belief

condition and not task difficulty, the modulation could have

been ascribed to vicarious error processing, as errors from the

perspective of the observed person were the same in both

Difficulty conditions. As this is not the case, we conclude

that the ERP modulation codes expectancy rather than

vicarious errors, which corresponds with the interpretation of

Kobza and Bellebaum (2013) and Bellebaum et al. (2020).

This supports theories on the role of expectancy for ampli-

tudes of ERP components generated by the ACC or pMFC,

stating that these components primarily code unexpected

events irrespective of valence (Alexander & Brown, 2011).

It also matches other recent results. Wessel et al. (2012) found

a common neural generator, namely the pMFC, of both the

ERN and the novelty-related frontocentral N2, suggesting an

overlap of the neural correlates of error and surprise

processing. Ferdinand et al. (2012) showed that the FRN

was elicited not only by unexpected negative, but also by

unexpected positive feedback. For observed actions,

Schiffer, Krause, & Schubotz (2014) reported activity in the

medial prefrontal cortex after unexpected incorrect as well as

unexpected correct responses in a functional magnetic reso-

nance imaging study (see also Wang et al., 2015). Our study

thus adds to existing evidence that activity in the medial pre-

frontal cortex and ACC in response to different events is crit-

ically modulated by the expectancy of these events.

It has to be noted that, in contrast to our hypotheses, the

ERP amplitude pattern was reversed in high difficulty trials
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compared with low difficulty trials. Amplitudes were en-

hanced for correct actions in true-belief and erroneous actions

in false-belief trials, respectively, which is not in accordance

with the behavioral expectancy measures. We suspect that

although participants formed explicit expectations, at least in

the true-belief condition, further implicit expectations might

have played a role, too. Multiple studies suggest that re-

sponses to errors or infrequent events lead to increased atten-

tion to the source of the (prediction) error (Notebaert,

Houtman, Opstal, Gevers, Fias, & Verguts, 2009;

Steinhauser & Andersen, 2019; Wessel, 2018). In our study,

trick and no-trick trials were presented in separate blocks,

while low difficulty and high difficulty trials were mixed with-

in one block. This means that for every trial, the observer

participants only had to consider whether the trial was difficult

(high difficulty) or not (low difficulty) for their expectancy of

the correct response, so that high difficulty and low difficulty

trials were directly compared to each other. As participants

had to focus on differentiating high and low difficulty trials,

their attention might have been relocated to this comparison as

opposed to absolute probabilities. The modulations observed

might thus code for the comparison between high and low

difficult trials, meaning that the likelihood of the actuallymore

expected responses might be implicitly underestimated in high

difficulty trials, resulting in the observed reverse pattern.

The exact mechanisms of expectancy formation, especially

concerning explicit and implicit expectancies that might have

played a role in our study, are not completely understood. In a

study in which participants observed erroneous everyday

actions in a virtual reality setting, Pezzetta, Nicolardi,

Tidoni, & Aglioti (2018) found a modulation of the ERPs

by the accuracy of the observed response, with higher oERN

amplitudes for errors, also when errors occurred more fre-

quently than correct actions. A reason for this could be that

the authors used simple everyday actions which might gener-

ally be expected to be performed correctly. Furthermore, other

studies suggest that the way events are processed is not entire-

ly determined by their frequency. Several studies found dif-

ferences between the processing of negative and positive feed-

back processing even if these events were equally probable

(Wang et al., 2015; Yeung et al., 2005). These findings have

been ascribed to an overoptimistic bias of participants to ex-

pect correct responses or positive outcomes more strongly,

especially for own behavior (Oliveira, McDonald, &

Goodman, 2007). Ferdinand et al. (2012) found comparable

amplitudes for unexpected positive and negative feedback in

the FRN, but observed an effect of valence in the P300, with

positive feedback eliciting larger amplitudes than negative

feedback. This difference in early and later processing resem-

bles the difference between the early and the late frontocentral

negative component in high difficulty trials in this study, with

the early component being modulated by expectancy and the

late component being modulated by valence. Also, Ferdinand

et al. describe a difference between actual expectations (more

than half of the participants believed that negative feedback

was more frequent when asked after the experiment, only less

than a quarter thought that positive feedback was more fre-

quent) and FRN amplitudes, again suggesting that other, less

conscious processes play a role in early processing when out-

comes are uncertain. Moreover, other factors apart from ex-

pectancy may also affect neural indices of performance mon-

itoring: Maier and Steinhauser (2016) found that active re-

sponders’ ERN was modulated by error significance rather

than error probability.

Effects of empathy on observed error processing

Another similarity between the present study and our previous

work on action observation is that empathy affected the pro-

cessing of observed responses (Bellebaum et al., 2020). In the

present study, this effect was restricted to the low difficulty

condition, where only for highly empathic participants ERP

amplitudes were higher for unexpected than expected events.

Figure 7 shows that the processing of unexpected events (cor-

rect responses in low difficulty trick trials and error responses

in low difficulty no-trick trials) was exclusively modulated by

empathy. As outlined in the introduction, our previous finding

might have reflected vicarious error processing, as in the false-

belief condition of our task correct responses were errors from

the observed person’s view. However, by showing that the

empathy effect is restricted to low difficulty trials, this inter-

pretation appears to become less likely, as correct responses in

high difficulty trick-trials are also errors for the observed per-

son. Our behavioral finding that only the expectancies in low

difficulty trials were modulated by empathy instead appears to

suggest that expectancy plays a modulatory role for the influ-

ence of empathy on the processing of observed actions.

Empathy, expectation, and the processing of
observed actions

Our results show an effect of empathy on both the expectancy

data and the ERPs. In an additional exploratory analysis, we

examined the relationship between expectation, empathy and

the ERP amplitudes in the eight conditions in one LME anal-

ysis. We found a positive relationship between expectancy

and ERP amplitude, which was not modulated by empathy.

We also found that including empathy as a predictor did not

explain significantly more variance than using expectancy

alone. Keeping in mind that empathy and expectancy were

correlated (see above), these results suggest that empathy did

not influence ERPs in the present study beyond the effect it

had on expectancy formation. This might be an indication that

empathy did not directly influence ERPs but via a positive

effect on the expectancy formation. Several studies addressed

the relationship between trait empathy and the processing of
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observed actions or action outcomes (Bellebaum et al., 2020;

Fukushima & Hiraki, 2006, 2009; Kobza, Thoma, Daum, &

Bellebaum, 2011; Newman-Norlund et al., 2009; Shane et al.,

2009), but expectancy was rarely taken into consideration,

which might be one reason for the inconsistency in the find-

ings. In the context of outcome processing, Lockwood et al.

(2015) described that a subregion of the ACC specifically

predicted other’s rewards in highly empathic participants,

whereas activity in that region was comparable for other’s

and own rewards in low empathizers. These findings may

mean that empathy facilitates the generation of predictions

based on other’s assumed mental states by helping to see an

event from the perspective of the observed person. At the

same time, positive linear relationships between empathy

and expectancy are not always found. In our previous related

study (Bellebaum et al., 2020), the observers could more eas-

ily predict what action the observed person was about to per-

form as task difficulty was not varied. Accordingly, partici-

pants developed strong expectations regarding the observed

person’s response with little interindividual variability and

thus little room for a modulation by empathy. Brown and

Brüne (2012) suggest that predictions in social contexts may

depend on similar processes as predictions in nonsocial con-

texts, but that additional (social) factors play a role only in

social contexts. Extending this assumption based on the pres-

ent findings, it might be that the more the context is dominated

by social factors, the more predictions might be modulated by

trait empathy. This idea finds some support by findings of

Fukushima and Hiraki (2009), who reported that empathy

affected the observer FRN only if participants observed

humans, not if they observed PC programs.

Limitations

Due to a relatively large number of exclusions, we analyzed a

smaller sample than planned originally. Investigating individ-

ual differences in a small sample can lead to false-positive

results. LME analysis allows for the inclusion of random ef-

fects, so that further interindividual differences besides empa-

thy are at least partly subtracted from the results (i.e., noise is

removed; Baayen, Davidson, & Bates, 2008). Nevertheless, it

cannot be excluded that the results in the present study repre-

sent a false positive result and thus they should be interpreted

with caution. Future studies should aim for an increased sam-

ple size when investigating effects of empathy on error

processing.

Conclusions

Applying a complex action observation task with true- and

false-belief conditions, we found that expectancy, not vicari-

ous errors, was reflected in ERPs time-locked to the observed

response, although in an earlier time window as previously

suspected. Both the expectancy of the observed action and

the ERPs following the observed action were modulated by

empathy.We suggest that trait empathy facilitates the process-

ing of stimuli and events from another person’s perspective by

facilitating expectancy formation. Furthermore, empathy

seems to be necessary for expectancy formation only for spe-

cific contexts in which social factors dominate. The results

found in this study, specifically regarding the indirect influ-

ence of empathy on performance monitoring via expectation

generation, could help to understand the nature of the prob-

lems in social interactions typically found in patients with

reduced empathic abilities and may have implications for ther-

apeutic approaches. For example, adding information that

makes it easier for these persons to predict and understand

others’ actions may improve their social skills. Further re-

search needs to investigate the factors that determine the

timing of expectancy and empathy modulations in the pro-

cessing of observed actions.
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1 |  INTRODUCTION

Error processing in the human brain has been studied exten-

sively in the past 30  years. Functional magnetic resonance 

imaging (fMRI) studies as well as studies using electroenceph-

alography (EEG) and source analysis have proposed a close 

link between error commission and activity in the posterior 

medial frontal cortex (pMFC; Ullsperger et al., 2014) and an-

terior cingulate cortex (ACC; Dehaene et al., 1994; Holroyd 

et  al.,  2004; Ullsperger & Cramon,  2004; for reviews, see 

Ridderinkhof et al., 2004; Taylor et al., 2007). Frontocentral 

activity seems to be reflected in a specific event- related po-

tential (ERP) component (Dehaene et al., 1994; Ridderinkhof 

et  al.,  2004), characterized by a negative peak around 
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Abstract

A number of studies suggest that event- related potential (ERP) components previ-

ously associated with error processing might represent expectation violation instead 

of valence. When observing others, these processes might further be modulated by 

trait empathy. We suggest that trait empathy modulates expectancy formation and 

that these expectancies then influence observed response processing as reflected in 

a frontocentral negative ERP component resembling the previously described ob-

server error- related negativity. We acquired single trial ERPs of participants who 

observed another person in a true-  or false- belief condition answering correctly or er-

roneously. Additionally, we prompted participants' expectancy in some trials. Using 

linear mixed model analyses, we found that for low empathy participants, expec-

tations for the false- belief condition decreased throughout the experiment, so that 

expectations were more pronounced in participants with higher empathy toward the 

end of the experiment. We also found that single trial expectancy measures derived 

from regression models of the measured expectancies predicted the amplitude of the 

frontocentral negative ERP component, and that neither the addition of empathy nor 

accuracy or trial type (true-  or false- belief) led to the explanation of significantly 

more variance compared with the model just containing expectancy as predictor. 

These results suggest that empathy modulates the processing of observed responses 

indirectly via its effect on expectancy of the response.
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100 ms after error response onset at frontocentral electrodes, 

called the error negativity or error- related negativity (ERN; 

Falkenstein et al., 1991, 2000; Gehring et al., 1993; Hajcak 

et  al.,  2005; for reviews, see Gehring et  al.,  2012; Holroyd 

& Coles, 2002). More recent studies have suggested that this 

effect is not limited to self- committed errors (for a review, 

see Koban & Pourtois,  2014). Research investigating neu-

ral correlates of the processing of observed errors in others 

also found an involvement of the pMFC and ACC (de Bruijn 

et al., 2009; Desmet et al., 2014; Ninomiya et al., 2018; Shane 

et al., 2008), although also other brain regions such as the su-

perior temporal sulcus were activated in addition (Ninomiya 

et  al.,  2018), as well as a similar negative ERP component 

(Miltner et al., 2004; van Schie et al., 2004; for a review, see 

Koban & Pourtois, 2014). While the topography and origin 

of this so- called observer error- related negativity (oERN) 

were comparable with the ERN (Miltner et al., 2004; van 

Schie et al., 2004), the oERN has a smaller amplitude (Miltner 

et al., 2004; van Schie et al., 2004) and a longer peak latency, 

with a larger variance between studies (130– 300  ms; Bates 

et al., 2005; Koban et al., 2010; as opposed to Carp et al., 2009; 

de Bruijn & von Rhein, 2012; Miltner et al., 2004), possibly 

depending on task complexity (Koban & Pourtois, 2014).

In most experimental settings investigating (observed) 

error processing, errors are less likely than correct responses. 

This is in accordance with everyday experience where errors, 

at least for easy or routine tasks, are generally infrequent. 

However, these study designs make it impossible to disen-

tangle the processing of expectation violations from error 

processing. Recent evidence has emphasized the role of pre-

dictions and prediction errors for ACC activity, indicating 

that the ACC, and consequently also those ERP components 

with an ACC origin that were previously associated with error 

processing, may code for unexpected events rather than errors 

(Alexander & Brown, 2011; Desmet et al., 2014; Ferdinand 

et  al.,  2012; Jessup et  al.,  2010; Oliveira et  al.,  2007; 

Schiffer et  al.,  2014; Wessel et  al.,  2012, 2014; Zubarev & 

Parkkonen, 2018). While watching the actions of others, ob-

servers seem to form predictions (Donnarumma et al., 2017; 

Flanagan & Johansson, 2003; Friston et al., 2012). If these pre-

dictions are not met, this results in an action prediction error 

(Brown & Brüne, 2012; Burke et al., 2010), which has been 

suggested to drive frontocentral activity (Desmet et al., 2014; 

Schiffer et  al.,  2014) and elicit an oERN- like component 

(Albrecht & Bellebaum, 2021; Bellebaum et al., 2020; Kobza 

& Bellebaum, 2013; Wang et al., 2015). In the following, we 

will refer to this component as frontocentral negative ERP 

component as its exact function is still to be determined.

Action observation takes place in a social context. It is thus 

conceivable that social cognitive skills such as empathy play a 

role in the processing of another's actions. A range of studies 

provided support for effects of empathy processes in action ob-

servation by showing a link between state empathy and error 

monitoring (Carp et  al.,  2009; de Bruijn & von Rhein, 2012; 

Kang et al., 2010; Koban et al., 2012; Marco- Pallarés et al., 2010; 

Mobbs et al., 2009; Weller et al., 2018). In contrast to that, stud-

ies investigating the role of trait empathy had inconclusive results 

(Brazil et al., 2011; Clawson et al., 2014; Lockwood et al., 2015; 

Newman- Norlund et al., 2009; Shane et al., 2009).

This could partially be explained by assuming that the 

frontocentral negative ERP component does not reflect ob-

served error processing, but the processing of prediction er-

rors (see Alexander & Brown, 2011) and thus unexpectedness 

or surprise of the observed action (Bellebaum et  al., 2020; 

Kobza & Bellebaum, 2013; Wang et al., 2015). In this respect, 

empathic processes may facilitate the formation of expectan-

cies concerning the observed action (Brown & Brüne, 2012), 

which is a prerequisite for prediction error processing. In 

how far the generation of predictions depends on empathic 

processes, however, might then be task- dependent: less or no 

empathy might be required when others' actions are relatively 

straight- forward (e.g., Clawson et al., 2014). For complex so-

cial tasks like false- belief- tasks, however, empathy may be 

needed to form predictions (Albrecht & Bellebaum,  2021; 

Bellebaum et  al.,  2020; Birch & Bloom,  2007; Ferguson 

et al., 2015; Wellman et al., 2001).

In two previous studies investigating the effect of em-

pathy on action observation (Albrecht & Bellebaum, 2021; 

Bellebaum et al., 2020), we applied a false- belief- task paradigm 

in the form of a two- shell game (Kobza & Bellebaum, 2013), 

as we hypothesized that empathy is particularly important 

in tasks with a false- belief (Birch & Bloom, 2007; Wellman 

et al., 2001). In this paradigm, participants observe a player 

who has to decide which of two shells contains a hidden ball. 

In some trials, the player is tricked and the ball is swapped 

between the shells, but only the observer participant has ac-

cess to this information, so that this condition entails a false 

belief of the player. This experimental manipulation aims 

to induce two expectancy conditions: observer participants 

should expect the player to answer correctly in no- trick trials, 

but erroneously in trick trials. Blocks of experimental trials 

were interspersed with prompt trials in which expectancies 

of the observers were assessed. In Bellebaum et al.  (2020), 

we found that a frontocentral negative ERP component in the 

typical oERN time window reflected the induced expectan-

cies, and that higher trait empathy enhanced this effect. The 

results were discussed in terms of a facilitation of expectancy 

formation via empathic abilities, but there was no significant 

relationship between empathy and the strength of the expec-

tancy concerning the observed response, so that the mecha-

nism by which empathy affects the processing of observed 

responses remained unclear. An alternative explanation could 

be that observers processed errors from the observed person's 

point of view, with enhanced amplitudes in conditions in 

which the observed response was a subjective error for the 

observed person, who didn't know that he/she was tricked.
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In a follow- up study (Albrecht & Bellebaum, 2021), we 

thus tried to disentangle the two alternative explanations by 

adding the factor task difficulty to the paradigm, because an 

(observed) error in a more difficult task may be more ex-

pected than an error in an easy task, but it remains an error 

from both the player's and observer's perspective. We indeed 

found first evidence that empathy affects expectancy, which 

drives the processing of observed responses. Possibly due to 

the higher complexity of the task and subsequent changes in 

the procedure (block design) an earlier frontocentral negativ-

ity compared with Bellebaum et al.  (2020) was modulated, 

around the N1 component. Although the results were thus not 

directly comparable, the study by Albrecht and Bellebaum 

(2021) revealed that adding variability concerning the expec-

tancy of the observed response can be a promising approach in 

studying the relationship between empathy, expectancy, and 

the processing of observed responses. In the present study, 

we thus aimed to modify our original study to increase the 

variability of expectancies and examine their effect further.

In Bellebaum et al.  (2020), we analyzed a sample of 50 

women, who were mostly psychology students. The homoge-

neity of the sample might have contributed to the ceiling/floor 

effect in expectancies with low variance (for a display, see 

supplementary material, Figure S2), which might be one rea-

son that the study found no effect of empathy on expectancy 

formation. We reasoned that studying the relationship be-

tween individual continuous predictor variables (expectancy, 

empathy) and observed response processing calls for a rather 

large and more heterogeneous sample with variability in the 

variables of interest. We thus decided to extend the already 

acquired sample by recruiting a comparably sized sample of 

men from various backgrounds. This had the desired effect 

of increasing the variability of expectancies (see Figure S2).

The second change with respect to the study by Bellebaum 

et  al.  (2020) is of methodological nature. Expectancies may 

have changed during the experiment, and therefore trial- by- trial 

variations of expectancy were taken into account, as has, for ex-

ample, also been done in studies on reward prediction error pro-

cessing (Burnside et al., 2019). One factor contributing to the 

change in expectancies could be that correct and error responses 

by the player were counterbalanced. During the course of the 

experiment, participants may thus have adapted their expectan-

cies based on the actual probabilities of the responses, and this 

adaptation may also differ between participants. To elucidate 

the relationship between empathy, expectancy, and observed 

response processing, we thus computed single- trial values for 

observer participant's expectancies and included the resulting 

expectancy values into an ERP analysis based on single trial 

data. We hypothesized that expectancy formation would be 

dependent on trait empathy, possibly modulated by changes 

over the experimental course. Furthermore, and in accordance 

with a previous related study (Albrecht & Bellebaum, 2021), 

we expected that trial- by- trial variations in expectancy would 

affect single- trial ERP data of a frontocentral negative compo-

nent previously associated with action observation, but that trait 

empathy would not explain any further variance in this model.

2 |  METHOD

2.1 | Participants

We acquired data from a sample of 105 participants. In a 

recent study on the relationship between empathy and the 

monitoring of observed responses we have already reported 

an analysis based on 50 of these participants, all women 

(Bellebaum et al., 2020). As outlined in the Introduction, our 

main interest in the present study was to find out about the 

interplay between empathy, expectancy, and observed action 

processing. As the original, quite homogeneous sample (only 

women, mostly from the same background as psychology un-

dergraduates) showed low variability in the expectancy meas-

ures (a ceiling/floor effect emerged in the no- trick and trick 

conditions, respectively), we decided to compile a more het-

erogeneous sample to add variability, which should also affect 

expectancy measures. For this purpose, we added 55 men from 

various backgrounds to the sample, so that the overall sample 

was balanced with respect to gender. Indeed, the variability of 

expectancy values was increased (see supplementary material, 

Figure S2), which meant a reduced ceiling/floor effect. Note 

that the men were added to enhance the original sample vari-

ability, not as a second group, and thus the men and women 

groups were not systematically matched concerning age (see 

Table S1). While this was advantageous regarding sample het-

erogeneity, we refrained from a direct comparison between 

men and women in this study. Three participants (one woman 

and two men) had to be excluded because for one the ERP 

component of interest could not be identified and two failed 

to answer to the prompt questions with which we assessed the 

expectancy of the observed response (see below). Of the re-

maining 102 participants, 53 were men and 49 women. All 

participants were between 19 and 38  years old (M  =  25.6, 

SD = 4.4). None of the participants reported a history of neu-

rological diseases or the acute intake of drugs or medication 

that would affect the nervous system. All participants had nor-

mal or corrected- to- normal vision. Participants received 15 € 

or course credit as reimbursement. The study was approved 

by the ethics committee of the Faculty of Mathematics and 

Natural sciences at Heinrich- Heine- University, Düsseldorf, 

and is in accordance with the declaration of Helsinki.

2.2 | Experimental task

We applied a Two- Shell Game paradigm identical to that de-

scribed in Bellebaum et al. (2020) and Kobza and Bellebaum 
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(2013). In this paradigm, the participants observe the actions 

of a fictitious player who ostensibly watches a ball being hid-

den under one of two shells and, after a few rotations, has to 

decide under which shell he/she suspects the ball. The player 

was introduced with a name and a picture on the screen at 

the beginning of the experiment. During the experiment, ob-

server participants saw the shells, ball, and hand of the player 

(holding a joystick) from above. The trials were simulated, 

with the player answering correctly and erroneously equally 

often, but observer participants were told that they observed 

a recording of an actual player. To facilitate empathising, all 

women observed a (fictitious) female player while all men 

observed a (fictitious) male player.

Observer participants were told that the player observed 

the game from the front and would use a joystick pointing 

either to the left or the right to select the specific shell. The 

observer participants, however, saw the game from above 

and were thus also able to see the ball throughout the whole 

game. To modify the observer participant's expectations to-

ward the player's answer, a false- belief condition was added. 

Observer participants were told that the player was tricked 

in half of the trials, where the ball was swapped between the 

shells. This would be almost never visible to the player, while 

observer participants saw the trick. The starting point of the 

ball (right or left), the number of rotations (two to four) and, 

respectively, the end point of the ball (right or left) were bal-

anced throughout the experiment. In trick trials, it was also 

balanced during which rotation the ball was swapped. In 

total, participants observed 468 trials, divided equally into 

four blocks between which observer participants could take 

short breaks. There were four experimental conditions: no- 

trick trials followed by either the correct or erroneous answer 

and trick- trials followed by either the correct or erroneous 

answer. According to the expectations set in the instructions, 

observer participants should expect correct answers in no- 

trick and errors in trick trials. All conditions occurred equally 

often and in random order throughout the experiment. Of all 

trials, 48 (24 of each trial type, trick and no- trick) ended not 

in the player answering, but in the prompt question: “Where 

will the player point the joystick?” which the observer par-

ticipants were instructed to answer with a respective left or 

right key. These prompt questions were spread throughout the 

experiment. This ensured that the observer participants were 

paying attention and provided a measure of each participant's 

actual expectancies. For the time course of events in each 

trial, please refer to Figure 1.

2.3 | Empathy measure

As an empathy measure, we selected the Empathy Quotient 

(EQ) obtained with the German version of the Cambridge 

Behavior Scale (Baron- Cohen & Wheelwright,  2004; de 

Haen, n.d.). This questionnaire consists of 60 items, of which 

20 are distractors. The items are statements that participants 

can agree or not agree to on a 4- point Likert scale (from 

“strongly disagree” to “strongly agree”). Items are negatively 

or positively scaled. A maximum of 2 points can be obtained 

per item: for positively scaled items, 2 for “strongly agree,” 

1 for “slightly agree” or 0 for “slightly disagree” or “strongly 

disagree.” For negatively scaled items, the scoring is re-

versed. No points can be obtained for the distractor items. All 

points are added up and result in an EQ sum sore between 0 

and 80. In the present study, empathy scores ranged from 23 

to 71 (M = 44.4, SD = 9.7) and data were normally distrib-

uted (see Figure S1).

The EQ was chosen as this general measure of empathy, 

including both affective and cognitive aspects of empathy, 

affected processing in the particular task used in this study 

(Albrecht & Bellebaum, 2021; Bellebaum et al., 2020) and 

in another false- belief task (Ferguson et  al.,  2015). In the 

female sample, the German version (Paulus, 2009) of the 

Interpersonal Reactivity Index (IRI; Davis, 1980, 1983) was 

considered as well (Bellebaum et  al.,  2020), but no signif-

icant modulation of the ERPs time- locked to the observed 

response was found for the IRI or its subscales of cognitive or 

affective empathy, possibly due to the lower number of items 

and the reduced variability in the obtained scores (Koller & 

Lamm, 2014).

2.4 | Procedure

After arrival in the lab, all participants gave informed writ-

ten consent to take part in the study. They then completed a 

demographic questionnaire as well as two empathy question-

naires. In addition to the German version of the Cambridge 

Behavior Scale, participants completed a German short ver-

sion (Paulus, 2009) of the IRI (Davis, 1980, 1983). As men-

tioned above, we did not consider the IRI in the present study.

After the questionnaires were completed, the EEG elec-

trodes were applied to the scalp and participants were sat 

in front of a desktop monitor with a screen resolution of 

1,920  ×  1,080  px, on which the computer experiment was 

presented. This took about 45 min. Stimulus presentation and 

the recording of the responses were controlled by means of 

the software Presentation (Version 20.0, Neurobehavioral 

Systems Inc).

2.5 | EEG recording

EEG signals were recorded with active silver/silver- chloride 

electrodes with a sampling rate of 1,000 Hz. The electrodes 

were attached according to the 10– 10 system on 29 scalp 

sites which were F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, 
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T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, 

P8, PO9, P1, Pz, P2, PO10, and FCz, which was used as on-

line reference. We also recorded EEG signals on both mas-

toids for re- referencing in the course of data analysis (see 

below). The ground electrode was placed at AFz. Moreover, 

we recorded an electrooculogram (EOG) to detect hori-

zontal (hEOG) and vertical (vEOG) eye movements. Two 

hEOG electrodes were placed at F9 and F10, respectively. 

One vEOG electrode was placed at Fp2, the other one below 

the right eye. We used a 32- channel actiCap electrode cap 

(ActiCAP; brain Products GnbH, Germany) and the signal 

was recorded with BrainVision Recorder software, version 

1.20 (Brain Products, Munich, Germany). Impedances were 

kept below 10 kΩ.

2.6 | Data analyses

2.6.1 | Behavioral data

Behavioral data were read from the Presentation logfiles 

and brought into the correct format to be analyzed in R by 

using MATLAB, version R2017b (Mathworks, Natick, 

Massachusetts, USA). We then conducted a single- trial lin-

ear mixed models (LME) analysis in R (version 3.5.3). The 

dependent variable was set as the expected accuracy in each 

of the 48 trials that served the assessment of expectancies. 

Although the dependent variable was binary (expected cor-

rect or error response), we chose to code it not as 0 and 1, but 

as 0 and 100, to yield larger b- values in the LME analyses 

F I G U R E  1  Time course of events in the experiment trials. The observer participants watched trick or no- trick trials that ended in either correct 

or erroneous answers of the player. The shells changed places several times. In trick trials, the ball was swapped between shells. All shells and 

ball movements were displayed as a video for the observer participants. In this figure, the movements are marked by arrows. All trials (trick and 

no- trick) ended either in a response by the observed player, or, in 48 trials, in a prompt question to measure the observer's expectancies. To ensure 

participants' attention and enhance plausibility, observed response times slightly varied. For details on the experimental conditions please refer to 

the main text
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(see below) which are easier to interpret, and to derive trial- 

by- trial expectancy values in percent that could be used for 

the single- trial ERP analysis (see also below). As independ-

ent variables, we included the categorical within- subject 

factor Trial Type (coded as −1 = no- trick, 1 = trick for the 

LME) and the continuous between- subject factor Empathy 

which consisted of the mean- centered EQ scores of the par-

ticipants. Furthermore, we assumed that expectancies might 

change during the experiment— mainly because the actual 

number of correct and erroneous answers did not match the 

expectancies set during the instructions (mostly correct in no- 

trick and mostly erroneous in trick trials). Thus, we added 

Trial Number as another independent variable. As there were 

468 trials in the experiment, and the prompt questions were 

randomly distributed across the trials, Trial Number was a 

continuous variable reflecting the course of the experiment. 

For each participant there was a maximum of 48 data points 

(all answered prompt questions; 24 per Trial Type). Trials in 

which participants did not answer fast enough were not in-

cluded in the data analysis. On average, 46.6 data points were 

included for each participant (SD = 2.0). The Trial Number 

score ranged from 1 to 468. The factor Trial Number was 

mean- centered for the analysis. Random intercepts were in-

cluded for participants as well as random slopes of Trial Type 

and Trial Number per participant.

2.6.2 | EEG data

EEG preprocessing

We prepared to conduct two analyses of the amplitude of the 

frontocentral negative component: First, we attempted to rep-

licate the results reported in Bellebaum et al.  (2020) in the 

larger sample and with single- trial EEG data, including the 

factors Accuracy (correct or incorrect answer), Trial Type 

(trick or no- trick trial), and Empathy (EQ score). Second, 

we analyzed the effect of expectancy. For this model, we 

replaced the factors Accuracy and Trial Type of the first 

analysis that aimed to affect the expectancy of the observed 

response, with the factor Expectancy, using the single trial 

values yielded by a regression model (see below). The EEG 

data were preprocessed with BrainVision Analyzer (Brain 

Products, Munich, Germany) and MATLAB (Mathworks, 

Natick, Massachusetts, USA) in the same way as described 

by Bellebaum et al. (2020). We applied a 20 Hz low- pass and 

a 0.5 Hz high- pass filter on the raw data. Subsequently, we 

performed an independent component analysis on the EEG 

data of each participant. We selected one component that 

represented vertical eye movements and blinks, as suggested 

by its topography (a symmetrical frontal distribution). This 

component was removed by ICA back- transformation. The 

data were then segmented into 800  ms epochs that started 

200  ms before the player's response (the joystick pointing 

to the left or to the right), and the pre- response period was 

used for baseline correction. This was in accordance with 

Bellebaum et al.  (2020). We then ran an automatic artifact 

rejection that removed all segments with a voltage step larger 

than 50 µV per ms, all segments where the highest and low-

est data point were more than 100 µV apart and all segments 

in which the signal was higher than 100 µV or lower than 

−100  µV. The artifact rejection removed on average 5% 

(SD = 6%) of segments. No participant lost more than 30% 

of trials. The data from all included segments of each partici-

pant were exported as text file, as the analyses were based on 

single trial ERPs. However, we also calculated the average 

EEG signal for each participant in each of the four conditions 

trick correct, trick error, no- trick correct, and no- trick error. 

This was done because the extraction of values for the ERP 

component of interest for each trial was based on individual 

participant's average ERPs (see below).

All further analyses were performed on the pooled sig-

nal across electrodes in a fronto- central electrode cluster 

consisting of Fz, FC1, FCz, FC2, and Cz in accordance with 

Bellebaum et al. (2020). At first, the latencies of the maxi-

mum negative peak between 250 and 420 ms and of the pre-

ceding positive peak between 130 ms and the negative peak 

in individual participants' averages were determined (see 

Bellebaum et  al.,  2020). We decided to calculate latencies 

for each condition (trick correct, trick error, no- trick correct, 

no- trick error) and each participant, as latencies varied not 

only between conditions for each participant (average stan-

dard deviation of the negative peak per participant = 26.8, 

for the preceding positive peak = 19.4 ms) but also within 

conditions across participants (negative peak: trick correct: 

M = 325.2 ms, SD = 41.1 ms; trick incorrect: M = 322.6 ms, 

SD = 45.2 ms, no- trick correct: M = 326.1 ms, SD = 42.3 ms, 

no- trick error: M = 328.1 ms, SD = 42.6 ms; preceding pos-

itive peak: trick correct: M = 259.2 ms, SD = 33.1 ms; trick 

incorrect: M  =  254.1  ms, SD  =  33.8  ms, no- trick correct: 

M = 254.8 ms, SD = 32.9 ms, no- trick error: M = 258.6 ms, 

SD = 27.1 ms). To obtain amplitude data for single trials, the 

amplitudes at the time points of individual participant's peak 

latencies were obtained for each individual segment. Then, 

peak- to- peak values were calculated by subtracting the max-

imum positive peak amplitude from the negative peak ampli-

tude. This allowed comparability with analyses of previous 

studies based on average ERP amplitudes that used a peak- to- 

peak amplitude approach (Bellebaum et al., 2020).

Before the statistical analysis was performed, outliers 

were excluded both within and between subjects: We ex-

cluded trials in which the peak- to- peak amplitude differed 

by more than two standard deviations from the respective 

participant's mean in this condition. On average, 5% of trials 

were excluded for each participant (SD = 4%). Furthermore, 

two participants for whom the peak- to- peak mean amplitude 

differed by more than two standard deviations from the group 
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mean in more than one condition were excluded. The remain-

ing participants entering the EEG analyses (48 women, 52 

men) were between 19 and 38 years old (M = 25.5, SD = 4.4). 

On average, 379.7 trials (SD = 32.8; of a maximum of 420 

trials) per participant were included in the analyses.

EEG analysis Accuracy × Trial Type × Empathy

As a first step, we decided to calculate an LME model that 

was equivalent to that used in Bellebaum et al. (2020) with 

the only difference that we used single- trial data. This analy-

sis was conducted because we were interested to see if we 

could replicate our previous finding of a dissociation in ob-

served response processing between a false-  (trick) and a 

true- belief condition (no- trick) in a sample with more vari-

able and, on average, less pronounced expectations concern-

ing the observed response. The peak- to- peak amplitude in 

each segment was defined as dependent variable. As inde-

pendent variable, we defined the categorical factor Accuracy 

(1  =  correct, −1  =  error) as well as the categorical factor 

Trial Type (1  =  trick, −1  =  no- trick), and the continuous 

mean- centered factor Empathy. Accuracy and Trial Type 

were included as random effects for each participant in the 

model, in addition to random intercepts.

EEG analysis expectancy

In a second model we aimed to examine the relationship be-

tween expectancy and response- locked ERPs directly. For 

this purpose, we applied a regression model to derive single- 

trial values for expectancy.

Regression model. As the behavioral data analysis did in 

fact reveal individual differences in expectancies depending 

on Trial Number and Trial Type (see Results section for 

details), we aimed to add trial- by- trial expectancy values 

(rather than the categorical factors Trial Type and Accuracy) 

as independent variable in the subsequent EEG analysis in 

order to examine the impact of expectancy on the frontocentral 

negative ERP component (see below), taking into account 

also changes in the expectations across the experiment. For 

some participants, for whom expectancies stayed the same 

throughout the experiment, we would expect a course parallel 

to the x- axis. For other participants, expectancies might be 

strong at the beginning and become less strong throughout 

the experiment or the other way around. Expectancies were 

measured with binary questions (observer participants stated 

which shell they believed the player would choose) to make 

answering relatively easy and keep prompt trials similar to 

observation trials. However, we assume that expectancies 

and predictions, as has been shown in studies investigating 

prediction errors (Burnside et al., 2019; Sutton & Barto, 1998), 

lie on a continuum between not expecting an event at all 

(coded as 0) or being absolutely sure the event will occur 

(coded as 1 or 100%). In order to account for the continuity 

of the underlying variable, we decided to treat answers (0 or 

100) as two ends of a scale rather than as a binary variable. 

As datapoints per trial type were relatively few, we opted for 

the simplest possible model to display expectancies, namely 

a linear regression model. In the first step, we thus calculated 

two linear regression models for each participant, one for 

trick and one for no- trick trials. The models were calculated 

with the MATLAB function fitlm (Mathworks, Natick, 

Massachusetts, USA) and were based on the participants' 

answers to the prompt questions, representing the linear 

development of expectancies throughout the experiment. We 

obtained a formula for each participant and each Trial Type 

of the type:

In this formula, E reflects the expectancy at each time 

point (in each trial; in %), b0 and b1 represent intercept and 

slope of the linear model, and t is the time, or more specifi-

cally, the trial number. As the question that the participants 

answered in prompt trials assessed the expectancy of a cor-

rect response, the formula allowed us to calculate this expec-

tancy for each of the 420 observation trials. For observed 

error responses, we calculated the inverted value (100 − E), 

however, so that expectancy measures that entered this anal-

ysis always represented the expectancy of the observed re-

sponse. These expectancy measures were then used as an 

independent variable to predict single- trial ERP amplitudes 

of the frontocentral negative component, time- locked to the 

observed response (see below). This was done to examine the 

hypothesis that the ERP component was driven by trial- to- 

trial variations of expectancy.

LME model. The LME model used for this calculation 

included Expectancy as a mean- centered continuous factor. 

By this, we replaced the factors Accuracy and Trial Type, 

that in our previous study (Bellebaum et  al.,  2020) served 

as factors that affect expectancy, with the actual, measured 

expectancy values of each participant. As expectancy values 

already varied between participants, Expectancy was not 

included as a random effect in this model, but we included 

random intercepts and slopes per participant.

Effect of Accuracy, Trial Type, and Empathy on model's 

fit

In the previous analysis, only expectancies were used to pre-

dict the amplitude of the frontocentral negative ERP com-

ponent. To determine if one of the factors used in the first 

LME EEG analysis (Accuracy, Trial Type, and Empathy) ex-

plained additional variance above the variance explained by 

Expectancy (and thus to investigate the hypotheses that trait 

empathy would not explain any further variance in this model), 

we compared models with chi square tests: The Expectancy 

E = b
0
+ b

1
× t.
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model with, respectively, an Expectancy  ×  Accuracy, an 

Expectancy  ×  Trial Type, and an Expectancy  ×  Empathy 

model. Coding and random effects remained the same as in 

the previous analyses; for the Expectancy × Accuracy model 

and the Expectancy × Trial Type model, the categorical fac-

tor was included as random factor. To make a comparison 

possible, the models were calculated with a maximum likeli-

hood instead of a restricted maximum likelihood approach as 

used for the Satterthwaite's approximation.

2.6.3 | Interactions

For resolving significant interactions, we calculated condi-

tional slopes, meaning the slope of a specific effect when 

one predictor was held constant. For categorical factors, we 

used either −1 or 1 as constants, according to the coding of 

the respective variable. For continuous factors, we investi-

gated effects of the remaining factors at the mean value of 

the continuous factor minus one standard deviation (M − 1 

SD) and, correspondingly, at M + 1 SD which allowed us to 

investigate effects for low and high levels of the respective 

continuous factor. We resolved significant interactions in 

a step- wise manner: while holding one factor constant, we 

checked for significant lower- level interaction effects and 

iterated this procedure until all factors were resolved.

3 |  RESULTS

In the following, the main results for the behavioral and 

EEG data are presented. Please find additional statistical 

data for each LME analysis in the supplementary material 

(Tables S2– S4).

3.1 | Behavioral data

On average across the whole experiment, observer par-

ticipants expected the player to answer correctly in 80.0% 

(SD  =  19.8%) of the prompt trials in no- trick trials. In 

trick trials, observer participants expected the player to an-

swer correctly in 28.9% (SD  =  25.1%). The expectancies 

were thus less strong and more variable than in the study 

by Bellebaum et al. (2020), as was intended in the present 

study. Nevertheless, the expectancy difference between 

conditions was highly significant, t(101) = 13.17, p < .001, 

suggesting that the instruction was successful in inducing 

different expectations concerning the accuracy of the ob-

served action in the trick and no- trick conditions. As de-

scribed in the Methods section, a behavioral data analysis 

by means of LME was conducted to examine the devel-

opment of expectancy in the trick and no- trick conditions 

across the experiment, and in how far the expectancy was 

affected by empathy.

Figure  2 shows the relationship between the behavioral 

expectancy measure, Trial Number, and Empathy accord-

ing to Trial Type (trick and no- trick condition). In accor-

dance with the result reported above, the analysis revealed 

a main effect of Trial Type, F(1, 174.40) = 56.02, p < .001, 

b = −25.71, indicating smaller expected accuracy for trick 

than for no- trick trials. No other significant main effects 

were found (all p  ≥  .726). The analysis further revealed a 

significant three- way interaction between Trial Type, Trial 

Number, and Empathy, F(1, 4,807.40)  =  6.38, p  =  .012, 

ηp
2 < .01. To further resolve this interaction, we examined ef-

fects of the other factors for low and high levels of Empathy. 

For participants with lower empathy, we found a significant 

two- way interaction of Trial Type and Trial Number, F(1, 

4,814.20) = 7.85, p = .005, but no such effect for participants 

F I G U R E  2  Behavioral expectancy data as a function of Trial Type, Empathy and Trial Number. Confidence intervals are displayed around the 

regression lines
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with higher empathy (p  =  .441). A significant main effect 

of Trial Number for low Empathy participants emerged in 

trick trials, F(1, 195.40) = 7.99, p = .005, b = .03, but not in 

no- trick trials (p = .490). This indicates that the expectancy 

of correct responses increased in trick trials for participants 

with low empathy. Figure S3 provides an alternative way to 

illustrate the three- way interaction. Here it can be seen that, 

descriptively, higher empathy participants show a larger dif-

ference in expectancies between trick and no- trick trials to-

ward the end of the experiment, which resembles the pattern 

of expectancies we found in Albrecht and Bellebaum (2021), 

where we did not examine the development of expectancies 

over time (see also Figure S4). There were no other signifi-

cant interaction effects for the analysis of expectancies across 

the experiment (all p ≥ .085).

3.2 | EEG analysis: Accuracy × Trial 
Type × Empathy

Grand average ERPs for the four conditions trick correct, 

trick error, no- trick correct, no- trick error, and the respective 

topographies as well as the topographies of the error- correct 

difference waves are displayed in Figure 3. Due to the high in-

terindividual peak latency variability the between- condition 

differences might be underestimated in the grand- average 

ERPs. Nevertheless, it can be seen that the peak- to- peak 

amplitude of the frontocentral negativity differs between ob-

served correct and error responses for no- trick, but not for 

trick trials, which becomes even more apparent in the small 

display of the amplitudes and in the bar plots showing peak- 

to- peak amplitudes. Descriptive data for single- trial peak- 

to- peak amplitudes of the frontocentral negative component 

according to Trial Type, Accuracy, and Empathy are dis-

played in Figure 4. In the Accuracy × Trial Type × Empathy 

LME model, we found a three- way interaction between all 

factors, F(1, 37,789.00) = 12.59, p < .001, ηp
2 < .01. When 

resolving for empathy, a significant interaction effect of 

Accuracy and Trial Type emerged only for high empathy par-

ticipants, F(1, 37,787.00) = 14.60, p < .001, but not for low 

empathy participants (p = .231). The slope for Accuracy was 

significant in no- trick trials, F(1, 611.00) = 8.24, p = .004, 

b = .27, as well as trick trials, F(1, 620.00) = 5.88, p = .016, 

b = −.23. In no- trick trials, amplitudes were more negative 

after observing errors than correct responses; the opposite 

was true for trick trials in high empathy participants. This 

is consistent with the descriptive pattern of expectancies, 

which showed more pronounced differences between trick 

and no- trick trials for high than low empathy participants 

(for an additional display, see Figure S4), although this was 

most pronounced toward the end of the experiment (see 

Figure S3). The LME analysis revealed a trend for an over-

all main effect of Accuracy, F(1, 162.00) = 3.54, p = .062, 

b = .09, ηp
2 < .01 (amplitudes were more negative for error 

responses), but no other main effects (all p ≥ .438). We also 

found a trend for the Trial Type × Accuracy interaction, F(1, 

37,786.00) = 3.44, p = .064, ηp
2 < .01. As this was only a 

trend and we also found a higher- order interaction, we did 

not resolve this interaction. No other interactions were found 

(all p ≥ .148).

3.3 | EEG analysis: The effect of expectancy

Please refer to Figure 5 for the descriptive data of the anal-

ysis of the frontocentral negative ERP component with 

Expectancy as independent variable. For a scatterplot con-

taining individual data points, please refer to the supple-

mentary material (Figure S5). We found a significant effect 

of Expectancy, F(1, 37,876.00) = 12.14, p < .001, b < .01, 

ηp
2 < .001. The more unexpected the observed response was, 

the more negative was the amplitude of the negative fronto-

central component.

We then performed three separate Chi- Square tests to ex-

amine whether additional variance would be explained by 

one of the factors used in the first LME analysis. We found no 

significant difference in model fit between a model contain-

ing only Expectancy and a model containing Expectancy and 

Accuracy, Χ2(4) = 7.26, p = .123. Likewise, we also found 

no difference in model fit between the Expectancy model and 

an Expectancy × Trial Type model, Χ2(4) = 2.40, p = .661. 

Finally, a model containing Expectancy and Empathy did not 

account for significantly more variance than a model only 

containing Expectancy, Χ2(2) = 2.12, p = .346.

4 |  DISCUSSION

In this study we investigated the effects of empathy and ex-

pectancy on the processing of observed actions. As hypoth-

esized, we found that the expectancy of the observed action 

was modulated by empathy in the sense that, depending on 

the empathy level of a participant, expectations developed 

differently during the course of the experiment so that to-

ward the end of the experiment high empathy participants 

had stronger expectations concerning the accuracy of the ob-

served response than low empathy participants. Subsequently, 

we found that the derived expectancy measures for each trial 

modulated observed response processing, as reflected in a 

frontocentral negative ERP component. Our analyses sug-

gest that empathy affects observed response processing only 

indirectly, via its effect on expectation formation, as adding 

empathy to the statistical model did not explain significantly 

more variance of the analyzed ERP component than a model 

only containing expectancy. Similarly, the accuracy of the 

observed response and the fact whether the observed person 
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had a true or false belief did not have significant effects on 

observed response processing.

4.1 | Expectancy formation and empathy

We measured participants' expectations by prompting, after 

a regular trial, which shell the participants believed the ob-

served player to choose. Expectations were modulated by 

employing a true-  and a false- belief condition that should 

lead to participants expecting correct answers in the true-  and 

errors in the false- belief condition. We indeed found a re-

spective effect of Trial Type in the prompt questions, indi-

cating that the expectation modulation worked. This was in 

accordance with previous research employing this paradigm 

(Albrecht & Bellebaum, 2021; Bellebaum et al., 2020; Kobza 

& Bellebaum, 2013). In addition, we found that expectations 

of low empathy participants in the false- belief (trick) condi-

tion became less strong over the course of the experiment, 

while expectations did not change significantly during the 

F I G U R E  3  Grand- average ERPs and topographies for observed error and correct responses in trick and no- trick trials. (a) Grand Average 

ERPs pooled over Fz, FCz, Cz, FC1 and FC1 after observed correct and error responses for trick and no- trick trials. The FRN complex (P2 

followed by FRN) is highlighted. Additionally, mean peak- to- peak amplitudes for correct and error responses for trick and no- trick trials are 

displayed in bar plots. (b) Topographies of the highest negative peak at the pooled signal in all conditions relative to the preceding positive peak are 

shown (in accordance with the peak- to- peak measure used in the analyses). (c) Topographies of the difference of correct and error trials in both trial 

types at the highest negative peak in the error- correct difference wave at the pooled signal
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experiment for low empathy participants in the true- belief 

condition and for high empathy participants in both condi-

tions. This led to differences in expectancies between high 

and low empathy participants, with more pronounced expec-

tations in those with high empathy scores.

There are two possible explanations for the finding that 

expectations changed during the experiment exclusively for 

trick trials in low empathizers. Firstly, the induced expectan-

cies (correct answers in no- trick, errors in trick trials) did not 

match the observed players' actual responses, which were cor-

rect in 50% of the trials in all conditions. During the course 

of the experiment, the participants might have noticed the 

discrepancy between their expectations at the beginning of 

the experiment and the actual answers and may have adjusted 

their expectancies. However, this seems unlikely, as such an 

effect would have appeared in both true-  and false- belief trials 

and probably for both high and low empathy participants. 

Instead, the relatively stable expectations in most conditions 

match studies on the confirmation bias (Nickerson,  1998): 

When interpreting ambiguous events, participants tend to 

weigh events that support their initial beliefs more highly 

than vice versa (see Talluri et al., 2018; Urai et al., 2019).

We think that a second explanation for the change of ex-

pectations across the experiment is more likely, namely that 

for low empathy participants, it is difficult to uphold per-

formance in trick- trials as these require the most empathy: 

previous research has shown that empathy is required to 

form expectations about others' actions in false- belief tasks 

(Birch & Bloom, 2007; Wellman et  al.,  2001). Less empa-

thy should be required to form expectations in a true- belief 

condition. Several studies suggest that cognitive load may 

lead to reduced empathizing. Epley et al. (2004) found that 

participants were more likely to interpret situations from an 

egocentric perspective (rather than another person's) when 

under time pressure. Apperly et  al.  (2008) observed an ef-

fect of false- belief on processing costs when the false- belief 

was presented in the first of two sentences, but not when it 

was presented in the second, indicating a decrease in false- 

belief processing over time. Meyer et al. (2012) proposed the 

existence of what they called a social working memory sys-

tem: while brain regions associated with mentalizing (tem-

poparietal junction, frontoparietal regions) were less active 

in previous studies with increasing cognitive or perceptual 

load, Meyer et al. found increased activation both in regions 

associated with working memory and regions associated with 

mentalizing when increasing social cognitive load. The au-

thors argue that to be able to mentalize, specific information 

and assumptions about the other person have to be maintained 

and manipulated, which requires a form of working memory 

specified for social information. Meyer et al. indeed found 

lower task performance when “social load” was high. In ad-

dition, they found that activity in the medial prefrontal cortex 

F I G U R E  4  Peak- to- peak amplitudes as a function of Empathy, Accuracy, and Trial Type, calculated in an LME analysis based on single trial 

ERPs of the frontocentral negative component. Error bars represent confidence intervals

F I G U R E  5  Peak- to- peak amplitudes as a function of expectancy, 

calculated in an LME analysis based on single trial ERPs of the 

frontocentral negative component. Error measures represent 

confidence intervals
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and precuneus correlated with perspective taking abilities, 

which suggests that social working memory might be mod-

ulated by individual trait empathy. This explanation might 

also be strengthened by results we found in a previous study 

(Albrecht & Bellebaum, 2021) with a similar, but more com-

plex, paradigm than in Bellebaum et al. (2020). In this par-

adigm that probably required more cognitive effort to form 

expectations, we found an effect of empathy also on averaged 

expectancies. In the current paradigm, forming expectations 

in the no- trick condition should be relatively straight- forward 

and less empathizing should be necessary (as the information 

given to the observed player and the observer participants is 

the same). In the trick condition, however, more empathiz-

ing should be necessary (as the observer participant has dif-

ferent knowledge compared with the player), which would 

mean an increased social load (see Meyer et  al.,  2012). 

Based on the social working memory system theory (Meyer 

& Lieberman, 2012; Meyer et al., 2012) it may be assumed 

that highly empathic participants, as they have greater so-

cial capacities, are able to empathize fairly well also in the 

trick condition, while for low empathic participants, this 

condition is socially and cognitively more demanding, and 

thus it might be harder for them to maintain a rather high 

social workload during the course of the experiment (Apperly 

et  al.,2008; Epley et  al.,  2004; Meyer & Lieberman, 2012; 

Meyer et  al.,  2012). This effect would not show in the no- 

trick condition because social load should be lower in this 

condition.

In one previous study by our group, we found no effect of 

empathy on expectation formation (Bellebaum et al., 2020). 

However, the sample in this study showed a rather strong 

ceiling/floor effect regarding the expectancy of observed 

correct responses in the no- trick and trick trials, respectively, 

so that a possible modulation of empathy on expectancy 

would not be visible in these data. In a different variant of 

the paradigm with more variance in expectancy measures we 

recently found that empathy affected expectancy (Albrecht 

& Bellebaum,  2021). In addition, the study by Bellebaum 

et al. (2020) did not consider changes over the experimental 

course, and as an effect of empathy only emerged in inter-

action with trial progression across the experiment, possible 

effects of empathy on expectation formation may have been 

missed in our previous study.

4.2 | Frontocentral negative ERP 
component and expectancy

The first part of the analysis of the ERP data is a replication of 

the results by Bellebaum et al. (2020) with a larger, partially 

overlapping sample using single- trial data. This analysis al-

ready suggests that the frontocentral negative ERP compo-

nent following observed responses is modulated by empathy 

and expectation, with variations in the latter being modulated 

via true-  and false- belief conditions with the factor Trial 

Type. This shows that single- trial ERP analyses with LMEs 

yield comparable results as analyses based on average ERPs. 

Previous studies employing single- trial EEG analysis have 

employed a variety of approaches, including model- based re-

gression analysis (Burnside et al., 2019; Pornpattananangkul 

et al., 2019) and machine learning (Stewart et al., 2014; Wirth 

et  al.,  2018). In few exploratory analyses, single- trial EEG 

data have been analyzed with LMEs: Frömer et  al.  (2018) 

combined cluster- based permutation tests and LME analyses. 

Spinnato et  al.  (2015) used LME to calculate classifiers in 

order to discriminate between errors and correct answers in 

EEG data. The present study contributes to this by introduc-

ing a rather simplified method to analyze single- trial EEG 

data that provides results comparable with more traditional 

analyses.

One aspect of the result pattern might appear inconclusive 

at first sight. In the first EEG analysis, we found effects of 

the experimental factors on ERP amplitudes in high empa-

thy participants, but the behavioral data indicated that expec-

tancies were affected in low empathy participants. However, 

in the behavioral data, this variation was dependent on the 

trial course, which was not considered in the EEG analysis. 

Moreover, the change in expectancies over time in low empa-

thy participants led to differences in expectancies compared 

with high empathy participants. In the latter, expectancies 

were more pronounced which presumably led to more pro-

nounced processing differences between conditions.

When Trial Type and Accuracy were replaced by single- 

trial expectancy values derived from individual statistical 

models for the development of expectancy over the course 

of the experiment, we found a main effect of the factor 

Expectancy, which indicated that when expectancy was low 

(observed response was unexpected), amplitudes were higher 

in contrast to when expectancy was high (response was ex-

pected). We found that Trial Type (true or false belief) did not 

account for significantly more variance when included in the 

model, suggesting that the differences found between the Trial 

Types in the first analysis was due to differences in expectancy 

and no other processes were at play. The same was true for 

Accuracy, which supports findings that it is expectancy, not 

valence, that influences ERPs that were previously linked to 

error monitoring (Desmet et al., 2014; Ferdinand et al., 2012; 

Jessup et al., 2010; Oliveira et al., 2007; Schiffer et al., 2014; 

Wessel et al., 2012, 2014; Zubarev & Parkkonen, 2018). We 

also found that a model including trait empathy in addition 

to expectancy did not explain significantly more variance 

than a model not including trait empathy. This is consistent 

with our hypothesis that empathy influences the frontocentral 

negative component only indirectly because it affects expec-

tancy formation. The expectancies then influence observed 

response processing as reflected by the frontocentral negative 
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component. As the behavioral data indicate, expectation for-

mation (at least in the false- belief condition) is dependent on 

empathy. The findings are thus consistent with the results we 

obtained in a related recent study with a variant of the pres-

ent paradigm. In that study we found that empathy affected 

expectations and observed response processing in parallel 

(Albrecht & Bellebaum,  2021). The results are, however, 

not directly comparable due to differences in the paradigm 

and, as a consequence of this, differences in the timing of 

the ERP component that was modulated. In the present study, 

taking the modulation by expectancy into account by inte-

grating the measured expectancies into the model, it seems 

that the effect of empathy on ERPs does not exceed the ef-

fect empathy has on expectation formation. This may explain 

inconsistent findings for a modulation of ERP components 

by trait empathy (Brazil et  al., 2011; Clawson et  al., 2014; 

Lockwood et al., 2015; Newman- Norlund et al., 2009; Shane 

et al., 2009), as this seems to depend on the task and also on 

the context which might modulate expectation formation.

For example, Brazil et al. (2011) and Clawson et al. (2014) 

studied patients with psychopathy or autism, respectively, 

who observed another person performing a Flanker task. 

However, Brazil et al. presented the target arrow and the re-

sponse, measuring the oERN, while Clawson et al. presented 

the target arrow, distractors and response, and added a feed-

back screen, measuring a component time- locked to observed 

feedback, the observer feedback- related negativity. This 

meant that participants in Clawson et al.'s study had two ad-

vantages: First, because they saw the distractors (exactly the 

same as the observed person), it was easier for them to take 

the observed person's perspective and thus to form expectan-

cies concerning the accuracy of the answer. Second, they re-

ceived direct feedback on whether the answer was correct or 

not, whereas participants in Brazil et al.'s study had to deduce 

this information themselves, which in the study by Clawson 

et al. meant a lower cognitive load that might have allowed a 

stronger focus on the observation itself (which is consistent 

with our behavioral results, see above), which again might 

have led to an easier formation of expectancies. These dif-

ferences might serve as an explanation as to why Brazil et al. 

found differences between healthy controls and patients, but 

Clawson et al. did not.

Our interpretation of the results of the present study does 

not necessarily speak against the notion that the ACC is in-

volved both in empathy (Singer & Lamm, 2009) and action 

monitoring (Ridderinkhof et  al.,  2004; Taylor et  al.,  2007; 

van Schie et  al.,  2004; see also Koban & Pourtois,  2014). 

The ACC, together with other brain regions, is believed to 

be a contributor to ERP components previously associated 

with error processing (see Gehring et  al.,  2012; Koban & 

Pourtois,  2014). If there is no direct modulation of action 

monitoring ERP components by empathy, the ACC could ei-

ther independently contribute to both processes, or different 

parts of the ACC could contribute to empathy and action 

monitoring. Imaging techniques that have a better spatial 

resolution, such as fMRI, might be employed to further in-

vestigate this aspect. In any case, our data suggest that, for 

observed actions at least, empathy and expectancy are closely 

coupled and that the latter affects action monitoring.

4.3 | Limitations

While the experiment was constructed in a way that observer 

participants should have the impression that they observed 

a real person (by introducing the player by showing both a 

name and a picture and showing the player's hand during the 

trials), participants did not see, for example, a video of the 

player or even a “real” player. Empathy still seemed to be 

important for the current task, but it is possible that it might 

play even a greater role in more realistic settings.

We described the development of a binary variable (the 

answer to the prompt questions was either “right” or “left”) 

with a mathematical model in order to derive a continuous 

measure of expectancy for every trial, similar to what has 

been done for analyses of prediction errors before (e.g., see 

Burnside et al., 2019; Sutton & Barto, 1998). However, we 

did not measure expectancies for every trial, but only for 

24 trials per Trial Type, distributed over the course of the 

experiment. We believe that these data were sufficient to 

calculate estimates for the expectancies of every partici-

pant in every trial, but it is likely that these models are not 

perfectly accurate and more data might be required to in-

crease the models' accuracy. It is important to note that the 

models were linear, but expectations may have changed in 

a nonlinear way throughout the trials, which again would 

have resulted in less accurate models of the participants' 

expectations.

We also found that single- trial EEG data can be analyzed 

with mixed linear models in a way that the results are com-

parable to more traditional analyses. However, it should be 

noted that the method used in this study to extract single- 

trial data still considers only a fraction of the acquired EEG 

data. Extracting single- trial amplitudes at the time points of 

the average peaks allowed us to take into account variance of 

the data that would normally be lost due to averaging. In the 

current study, we aimed to apply analysis methods as similar 

as possible compared with previous studies on observed re-

sponse processing that employed this paradigm (Bellebaum 

et al., 2020; Kobza & Bellebaum, 2013) or to other studies 

on action observation ERPs (e.g., Bates et  al.,  2005; Carp 

et  al.,  2009). However, a large part of the ERP data were 

still not considered, including data on other than the pooled 

electrodes and data on other than the determined latencies. 

Possible intertrial differences in the latency of the frontocen-

tral negative component are also not considered.
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4.4 | Conclusion

We found that the participants' expectation formation 

concerning observed responses and the development of 

expectations across the experiment was dependent on em-

pathy: expectations became less strong over the course of 

the experiment only for low empathy participants in the 

false- belief condition, which led to more pronounced expec-

tations in high than in low empathy participants. We dem-

onstrated that these expectancies then shape ERP responses 

to observed actions, which is in accordance with previ-

ous findings by our group (Albrecht & Bellebaum, 2021; 

Bellebaum et  al.,  2020; Kobza & Bellebaum,  2013). By 

applying single- trial analysis and matching behavioral to 

EEG data, we showed that the influence of empathy on a 

negative frontocentral component was only indirect: empa-

thy appears to influence expectancy formation, which then 

in turn affects the frontocentral negative component. The 

fact that the factor accuracy did not add significantly to 

the explanation of variance in the ERPs supports an ex-

isting body of literature indicating that it is expectations, 

not action valence, that primarily drive observed response 

processing. Future studies may investigate the interplay 

of empathy and expectancy further by using expectancy 

measures obtained in each trial.
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EFFECTS OF OWN AND OBSERVED ERROR SEVERITY 2 

 

Abstract 

 Errors elicit a negative mediofrontal event-related potential (ERP), for both own errors 

(error-related negativity; ERN) and observed errors (here referred to as observer mediofrontal 

negativity; oMN). It is yet unclear, however, if the action monitoring system codes action 

valence as an all-or-nothing phenomenon or if the system differentiates between errors of 

different severity. We investigated this question by recording electroencephalography (EEG) 

data of pianists playing themselves (Experiment 1) or watching others playing (Experiment 2). 

Piano pieces designed to elicit large errors were used. While active participants’ ERN amplitudes 

differed between small and large errors, observers’ oMN amplitudes did not. The different 

pattern in the two groups of participants was confirmed in an exploratory analysis comparing 

ERN and oMN directly. Additionally, only ERN amplitudes were sensitive for later error 

correction. Post-hoc analyses suggested that the oMN is more strongly driven by the expectancy 

of the eliciting event than the ERN. We suspect that both prediction and action mismatches can 

be coded in action monitoring systems, depending on the task, and a need-to-adapt signal is sent 

whenever mismatches happen to indicate the magnitude of the needed adaptation. 

Keywords: Error Severity, Action Monitoring, Observed Action Monitoring, ERN, oERN 
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Slip or Fallacy? Effects of Error Severity on Own and Observed Pitch Error Processing in 

Pianists 

Over the last 30 years, researchers have investigated the neural correlates of error 

processing mostly by treating errors as an all-or-nothing phenomenon (either error or correct; 

e.g. Falkenstein et al., 1991; Gehring et al., 1993; Jessup et al., 2010; Ullsperger et al., 2014). 

Contrasting errors vs. correct actions showed that error processing involves several areas at the 

medial wall of the prefrontal cortex (this region will be referred to as medial prefrontal cortex or 

mPFC), including the anterior cingulate cortex (ACC; Debener et al., 2005; Ullsperger et al., 

2014). An event-related potential (ERP) component investigated in the context of error 

processing is the error-related negativity (ERN), a negative-going frontocentral deflection that 

peaks around 100 ms after an erroneous response (Falkenstein et al., 1991; Falkenstein et al., 

2000; Gehring et al., 1993, for reviews, see Gehring et al., 2012; Holroyd & Coles, 2002). The 

ERN appears to be generated in mPFC, probably the ACC (Debener et al., 2005; Dehaene et al., 

1994; Ridderinkhof et al., 2004; Taylor et al., 2007).  

Not all researchers agree that the mPFC is primarily involved in error processing, and 

thus it has also been questioned whether the ERN reflects error processing per se. Apart from a 

conception in terms of conflict monitoring (Botvinick et al., 2001; Carter et al., 1998; Yeung et 

al., 2004), the more recent predicted-response outcome model (PRO model; Alexander & Brown, 

2011), states that the mPFC activity reflects unexpected outcomes and actions rather than errors 

(see Gawlowska et al., 2018; Jessup et al., 2010; Wessel et al., 2012). Although there is initial 

evidence supporting this view (Jessup et al., 2010; Wessel et al., 2012), there is also reason to 

believe that the mPFC codes information that is particularly relevant for error processing.  
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In this context it is interesting to note that all of the above-mentioned findings neglect the 

fact that action valence can vary more gradually than just distinguishing right vs. wrong. In 

sports, music or many other motor-cognitive tasks, people can diverge from the correct 

movement on a scale from “perfect” to “completely wrong”. In everyday language, we use terms 

such as slip or fallacy, which also suggests that we distinguish between errors of different 

severity. The ACC receives input from both motor and cognitive brain areas and is supposedly 

involved in the planning and regulation of behavior (see Devinsky et al., 1995; Holroyd & Coles, 

2002), making it a crossroad for correcting and adapting behavior. For this function, the system 

needs to know how much adaptation is needed - for example when a pianist hits a key one or two 

notes amiss and must adapt their hand position within milliseconds to hit the next note. Taking 

into account the function of the ACC, the variety of errors in everyday life, and the early 

processing needed for error (severity) detection in order to adapt behavior, it is conceivable that 

error severity is processed early after error commission in the time window of the ERN. We thus 

assume that the ERN as a fast indicator of information related to error processing codes action 

valence on a spectrum and not as an all-or-nothing phenomenon, thus reflecting error severity. 

This would also support the view that the mPFC/ACC is, at least partially, involved in 

representing performance accuracy and not entirely driven by event expectancy, as stated by the 

PRO model (Alexander & Brown, 2011, see for example Maier & Steinhauser, 2016 for 

conflicting results regarding the model).  

Initial evidence supporting the assumption of a continuous encoding of error severity 

stems from studies comparing different types of responses yielding different error types (under-

reach vs. over-reach, Murata & Katayama, 2005; hand vs. finger, Falkenstein et al., 2000; 

corrected vs. uncorrected, Paas et al., 2021). An effect of error size has been described in two 
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paradigms in which wrong actions in either one (single error) or two (double error) dimensions 

were possible (Bernstein et al., 1995; Maier et al., 2008; Maier et al., 2012; Maier & Steinhauser, 

2016): double errors led to significantly larger ERN amplitudes than single errors. These results, 

however, may also be explained by two parallel action monitoring processes for both 

dimensions, each coding accuracy in a binary fashion, that add up to an increased ERN. It has yet 

to be investigated whether different degrees of deviations from the aspired action indeed lead to 

correspondingly increased neural responses in action monitoring regions.  

Interestingly, the processing of observed actions involves similar brain areas as the 

processing of self-actions, such as the mPFC, specifically the ACC (Yoshida et al., 2012, for a 

review, see Koban & Pourtois, 2014) and pre-supplementary and supplementary motor areas 

(Scangos et al., 2013), with additional activity, inter alia, in the superior temporal sulcus 

(Ninomiya et al., 2018), inferior frontal gyrus (Shane et al., 2008), and anterior insula (Cracco et 

al., 2016, for a review, see Koban & Pourtois, 2014). Accordingly, observed errors have been 

reported to elicit an ERP component corresponding to the ERN, the observer error-related 

negativity (oERN) at frontocentral sites (Bates et al., 2005; de Bruijn & Rhein, 2012; Miltner et 

al., 2004; van Schie et al., 2004). Source localization suggests the origin of the oERN also in the 

mPFC (van Schie et al., 2004), probably in the ACC (Miltner et al., 2004). Compared to the 

ERN, the oERN displays smaller amplitudes and peaks later relative to the eliciting event, which 

is an observed action and thus a visual stimulus rather than an own motor response, with the 

latency depending on the task (Bates et al., 2005; de Bruijn & Rhein, 2012; van Schie et al., 

2004). Research in observed error processing, as in own error processing, has mostly focused on 

binary response classifications in terms of accuracy (e.g. Bates et al., 2005; de Bruijn & Rhein, 

2012; Kobza & Bellebaum, 2013). Recent evidence from our lab indicated, however, that 
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observed responses are processed primarily based on their expectancy and not their accuracy 

(Albrecht & Bellebaum, 2021a, 2021b), which might also lead to differences compared to active 

responding with respect to effects of error severity.  

To study effects of error severity so-called sequential tasks such as typing or playing the 

piano (Herrojo Ruiz et al., 2009; Kalfaoğlu et al., 2018; Maidhof et al., 2009; Maidhof et al., 

2013; Paas et al., 2021) appear to be a particularly suitable. In these tasks, errors are frequent and 

participants stay seated while performing a (highly-practiced) everyday motor task that is 

ecologically valid and not dependent on feedback (Herrojo Ruiz et al., 2009). Typically, the ERN 

occurs 20-100 ms before the response in sequential tasks (Herrojo Ruiz et al., 2009; Kalfaoğlu et 

al., 2018; Maidhof et al., 2009; Paas et al., 2021) and thus earlier than in tasks involving a single 

response (Falkenstein et al., 1991; Gehring et al., 1993). Maidhof et al. (2013) showed that 

potential errors are noticed earlier with regard to the registered keypress (probably due to earlier 

movement onset compared to non-sequential tasks), and earlier error registration results in 

shorter ERN latencies (Di Gregorio et al., 2022). Further, error monitoring and error severity 

processing are especially important for adaptation during sequential tasks. 

In the present study, we thus conducted two experiments with pianists. In Experiment 1, 

participants played piano pieces which included frequent changes of hand positions, thereby 

provoking small and large errors. While participants played, both EEG and behavioral data were 

assessed. Videos recorded during Experiment 1 served as stimuli for Experiment 2, in which 

participants watched videos of other pianists performing while EEG data were assessed in the 

observers. With these experiments we aimed to investigate two main questions: First, are ERN 

amplitudes enhanced for larger compared to smaller errors? And second, is a similar effect found 

also for observed errors? 
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Experiment 1 

 In Experiment 1 we studied effects of error severity on error processing during active 

piano playing. Apart from the neural processing of errors, the piano playing paradigm allows to 

investigate also relevant behavioral variables: First, post-event reaction times can be assessed. A 

relative slowing of reaction times after errors is a well-studied phenomenon (Rabbitt, 1966, 

1969), possibly linked to an attentional shift towards the error (or unexpected event), resulting in 

an attention reorienting process back to the task that underlies the longer reaction times 

(Notebaert et al., 2009; Núñez Castellar et al., 2010). Post-error slowing is presumably 

modulated by activity in the ACC (Danielmeier et al., 2011; Debener et al., 2005; Fu et al., 

2019), but findings on the relationship between ERN and post-error slowing are mixed (Chang et 

al., 2014; Debener et al., 2005; Gehring et al., 1993; Hajcak et al., 2003). Possibly, some factors 

influence post-error slowing and the ERN differently (such as expertise, Jentzsch et al., 2014, or 

error awareness, Nieuwenhuis et al., 2001), leading to a dissociation in respective tasks. Post-

error slowing has also been observed in piano-playing tasks (Herrojo Ruiz et al., 2009; Paas et 

al., 2021). A second variable of interest is keypress volume (assessed as velocity), as error notes 

were played significantly more quietly than correct notes in previous piano playing studies 

(Herrojo Ruiz et al., 2009; Maidhof et al., 2009; Maidhof et al., 2013; Paas et al., 2021). As 

larger errors might lead to a larger focus of attention on the error, enhanced post-error slowing 

was expected for large compared to small errors. Additionally, quieter keypress volumes after 

errors compared to correct keypresses were expected, but as the processes behind the volume 

reduction are not yet established, we refrain from predicting differences between small and large 

errors regarding volume.  
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 Person-related factors may also affect error processing, especially in musicians, who 

form a specific group of participants. First, musical training in children seems to enhance trait 

empathy (Hietolahti-Ansten & Kalliopuska, 1990; Kalliopuska & Ruókonen, 1986; Rabinowitch 

et al., 2012) and adult musicians show significantly higher empathy levels compared to non-

musicians, with increased connectivity of the insula with, inter alia, the ACC (Gujing et al., 

2019). Some studies suggest a positive effect of trait empathy on ERN amplitude (Larson et al., 

2010; Santesso & Segalowitz, 2009). Although the findings are inconsistent (Amiruddin et al., 

2017), potential effects of empathy should be considered when analyzing a high-empathy sample 

such as musicians.  

 Secondly, the musicians acquired in the present study are an expert sample, and expertise 

might alter action monitoring processes (Jentzsch et al., 2014; Rachaveti et al., 2020). For 

example, expert pianists rely little on external auditory feedback for detecting pitch errors 

(Finney, 1997; Finney & Palmer, 2003; Herrojo Ruiz et al., 2009; Maidhof et al., 2009). The 

altered action monitoring processes in experts might generate to other tasks outside their area of 

expertise: Jentzsch et al. (2014) found enhanced ERN amplitudes for highly compared to barely 

trained musicians in a Stroop task. Also, expert musicians exhibit less post-error slowing than 

non-musicians, at least in non-music tasks (Jentzsch et al., 2014). More experienced pianists thus 

might exhibit altered error processing compared to persons with less or no piano experience due 

to their specific training.  

 The paradigm also offered the opportunity to investigate additional factors possibly 

affecting action monitoring. First, we aimed to replicate findings by Paas et al. (2021) who found 

altered behavioral and electrophysiological responses to later corrected vs. uncorrected piano 

playing errors. The authors investigated only notes for which the next keypress was correct, and 
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since the hand had to be adjusted to achieve this, corrected and uncorrected errors both must 

have been recognized by the player, so that differences in error recognition are unlikely to 

account for the finding. However, as error correction should be avoided in piano playing, later 

corrected errors probably lead attention away from the task and towards the error itself - later 

corrected errors thus might be perceived as subjectively more important. Indeed, effects of the 

subjective importance of errors on error processing have been observed (Ganushchak & Schiller, 

2008; Hajcak et al., 2005). These findings constitute a challenge for the PRO model (Alexander 

& Brown, 2011), as does the finding that double errors elicit higher ERN amplitudes than single 

errors even when expectancies are accounted for (Maier & Steinhauser, 2016). Based on these 

findings, we hypothesized that the processing of active responses is not entirely driven by 

expectancy and that therefore participants show more pronounced ERNs for large compared to 

small errors (and for corrected than uncorrected errors), while all types of errors elicit an ERN 

relative to correct responses. To explore potential effects of expectancy, we took into account 

additional behavioral measures indirectly related to expectancies of the shown response as 

potential predictors of neural action monitoring processes: the difficulty of the respective note 

(mean error rate of each note by participant), the overall frequency per participant of each error 

type, and the insecurity with which the respective key was played (deviance from the mean 

volume of each participant). As suggested by Maier and Steinhauser (2016), we expected error 

severity to predict error processing beyond the effect of expectancy. 

Method 

Participants 

 We recruited experienced pianists to take part in the study via social media, person-to-

person recruiting and flyers distributed at the university, music conservatory, and music schools. 
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Because the pieces included large steps between keys to induce errors and the pieces were thus 

difficult to learn, we suggested a minimum experience of 1500 hours spent with the instrument, 

although participants were allowed to take part with less experience if they were able to play the 

pieces fluently. Data from 25 participants were recorded. Of these, one had to be excluded due to 

technical difficulties during data acquisition and another 3 were excluded because they made less 

than 10 large errors. The remaining sample of 21 participants consisted of 12 cis-gender women 

and 9 cis-gender men between 17 and 34 years old (Mean [M] = 23.1 years, Standard Deviation 

[SD] = 4.2 years). Twenty of them were right-handed, one person was left-handed. All 

participants reported no previous neurological or psychiatric illnesses and no intake of 

medication that affected the nervous system. All participants took part voluntarily. The study is 

in compliance with the declaration of Helsinki and was approved by the ethics committee of the 

Faculty of Mathematics and Natural Sciences at Heinrich-Heine-University, Düsseldorf. 

Material 

 We designed six pieces to be played with only the right hand. All pieces consisted of 96 

sixteenth notes in 6 bars and ended with a seventh bar that consisted of a single whole note. To 

keep the physical distance between played keys constant, all pieces were written in C major and 

thus only played on white keys. The pieces kept to a general harmonic structure and the highest 

notes played could be interpreted as a melody, the remaining notes as accompaniment. The 

pieces were designed to require large hand movements to induce errors. The lowest key 

throughout the pieces was E3, the highest key was A5. Consecutive notes could differ between 1 

and 10 white keys; the average difference was 4.98 white keys (SD = 1.88 keys). The pieces 

were written in MuseScore 3 (version 3.6.2, MuseScore BVBA, 2021). They are included in the 

supplementary material (Figure S1).  
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 An automatically created recording was generated for each of the pieces (created with 

MuseScore 3, version 3.6.2, MuseScore BVBA, 2021) in which the melody parts of the pieces 

were pronounced. In the recording, pieces were played at 60 beats per minute (one beat = one 

quarter note), and tempo at the top of the score notation was also stated as 60 quarter notes per 

minute.  

Experimental Task and Setup 

 The pieces as well as the recording were sent to each participant two weeks before 

testing. Participants were instructed to study the pieces in the next 14 days. They were told that 

they should be able to play the pieces with the right hand quite fluently, but that they should not 

strive for perfect sound and that occasional errors during play were acceptable. Participants were 

also told to practice in whatever tempo they felt comfortable. They were given an instruction to 

practice approximately 15 minutes a day (distributed as they saw fit). According to self-reports, 

the participants practiced the pieces 204.1 minutes on average (SD = 188.9 minutes, 45-840 

minutes). 

 For data acquisition during the experiment, participants used a digital piano (Casio LK-

S450 for most participants, two participants used a Yamaha YDP-144 R Arius). During the 

experiment, the keyboard was set on mute, so that participants could not hear themselves play. 

The piano was positioned in front of a desktop monitor (1920 x 1080 px) that served for visual 

stimulation. Participants could navigate through the experiment with their left hand and the 

lowest note on the keyboard. A Logitech BRIO webcam was connected to an additional laptop 

for recording the participants’ hand from above during play for the videos used in Experiment 2. 

A picture of the setup can be seen in Figure 1. We recorded the Musical Instrument Digital 

Interface (MIDI) information of the played segments on the experiment computer. MIDI refers to 
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the signal used by digital instruments to generate and communicate tones including note on- and 

offset, key and velocity (in piano playing, this corresponds to volume). Stimulus presentation, 

EEG trigger timing and MIDI recording was controlled with Python 3.7.5 using the packages 

psychopy (version 3.2.3; Peirce et al., 2019) and mido (version 1.2.9, Ole Martin Bjørndalen 

2021, mido.readthedocs.io).  

The experiment consisted of 60 sequences in total, 10 for each piece. Each sequence 

started with a score notation preview of the piece that was to be played (a picture of the first two 

bars, i.e. the first line, of the respective piece score notation, including the piece number). 

Participants could then start the recording which began with 4 metronome beats (1000 hz beeps) 

accompanied by the numbers 1 to 4 displayed on the screen. Subsequently, the score notation of 

the whole piece was displayed on the screen to allow participants to play from sheet. After they 

were done with playing the piece, participants ended the recording and proceeded to the next 

sequence. A display of the sequence structure can be seen in Figure 2. 

 Before the experiment, participants were asked in what tempo they had practiced the 

pieces. Accordingly, the metronome beats were set for each participant individually to a tempo 

slightly faster than the tempo in which they had practiced to increase difficulty. Participants were 

instructed to start playing right after the last metronome beat had been presented. They were 

further asked to keep to one tempo (loosely that of the metronome) during each sequence and to 

put emphasis on playing fluently, even if that meant making errors. 

 The 60 sequences were preceded by 3 practice sequences in which participants could get 

to know the procedure of a sequence, but in which they were shown a mock preview and no 

actual score notation during play. They were instructed to get familiar with the instrument and 

the procedure during these practice sequences, and to play whatever came to their mind. 
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Assessment of Empathy and Expertise 

Empathy 

We chose the empathy quotient (EQ) measured with the German version of the 

Cambridge Behavior Scale (Baron-Cohen & Wheelwright, 2004; de Haen, n.d.) to measure trait 

empathy. In the scale, participants are asked to rate their agreement to 60 statements on a 4-point 

Likert scale (from “strongly agree” to “strongly disagree”). The statements contain 20 distractor 

items. For positively scaled true items, participants receive 2 points for “strongly agree”, 1 point 

for “slightly agree” and 0 points for “slightly disagree”/”strongly disagree”. Scoring is reversed 

for negatively scaled true items. All points from true items are added up for the EQ sum score (0 

to 80 points).  

We additionally administered the German short version (Paulus, 2009) of the 

Interpersonal Reactivity Index (IRI; Davis, 1980, 1983). The IRI is another empathy measure 

containing subscales for cognitive and affective empathy. The index was included to enable post-

hoc analyses as to which aspect of empathy contributed to a possible general empathy effect. 

Piano Playing Expertise  

Expertise was defined as total hours spent with the instrument, calculated by multiplying 

the self-reported number of years of piano experience with the self-reported average hours of 

practice per week times 52 (number of weeks per year).  

EEG Recording 

 We recorded EEG signals at a 1000 Hz sampling rate with a 32-channel actiCap electrode 

cap (ActiCAP; Brain Products GmbH, Germany) with the software Brain Vision Recorder 

(version 1.20, Brain Products, Munich, Germany). The active silver/silver-chloride electrodes 

were attached according to the 10-20 system on 29 scalp sites, i.e. FCz (which was used as 
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online reference), F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, 

CP6, P7, P3, Pz, P4, P8, PO9, P1, Pz, P2 and PO10. Additionally, we recorded the signal from 

both mastoids to use as offline reference. The ground electrode was placed at AFz. For 

electrooculogram (EOG) data, we placed two horizontal EOG (hEOG) electrodes at F9 and F10, 

respectively, and two vertical EOG (vEOG) electrodes at Fp2 and below the right eye. All 

impedances were kept below 10 kΩ. 

An EEG marker was sent every 5th keystroke to avoid a possible overlap of markers 

(Maidhof et al., 2009). The MIDI data allowed offline determination of markers for the 

remaining keystrokes. We conducted a pilot test for a possible delay between key press and 

marker by using a Tektronix TDS 210 oscilloscope. Key presses are transformed to audio signals 

by the digital instrument in real-time. In the test, we therefore compared onset times between the 

audio and marker signal. The markers were sent consistently 1.6 ms before tone onset across all 

tests.  

Procedure 

 Participants received the piano pieces two weeks before the actual experiment in the lab. 

After arrival, participants gave informed written consent to take part in the study and completed 

a demographic questionnaire and empathy and expertise self-report measures. 

 Subsequently, EEG electrodes were attached to the scalp and participants started the 

experiment. Participants received written instructions and the experimenters were present during 

three practice sequences for questions and further explanations. At the start of the experiment, 

recordings of video, MIDI and EEG were started. The experiment lasted between 35 and 75 

minutes, depending on the speed in which participants played. After completion of the 

experiment, participants received compensation in the form of either course credit or 40 €. 
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Data Analyses 

Behavioural Data Processing 

Data Preprocessing and Definition of Event Types. All following analysis steps were 

performed in MATLAB, version R2017b (Mathworks, Natick, Massachusetts, USA). We 

employed the MATLAB MIDI Toolbox (Eerola & Toiviainen, 2004) and a dynamic score 

matcher algorithm created by Large (1993; see also Palmer & van de Sande, 1993; Rankin et al., 

2009) to compare the recorded MIDI signal with the correct score notation the participants had 

been asked to play. This procedure was used to determine the different types of trials for which 

ERP and behavioral data were compared (see below). The algorithm finds a so-called optimal 

match between two MIDI sequences and assigns every played note an attribute: match, 

substitution (a score notation note was replaced in the performance), addition (there was an 

added note in the performance that could not be matched to any notation note) and miss. All 

substitution events were defined as “uncorrected” errors (see also below). 

We then calculated the interval in white keys for substitution events (and addition events, see 

post-hoc-analyses) between the correct score notation note and the corresponding performance 

note. Black keypresses were not considered in the analysis. 

In the analyses, we included the event types correct, small error (one-note errors that were 

not corrected), and large error (two-note errors that were not corrected). All errors larger than 

two-not errors were excluded. Moreover, we only included error and correct events that were 

preceded and followed by a correctly played note, which also excludes correct notes played 

before or after miss events. Each of the 97 notes included in the score notation of each piece was 

played 10 times in the course of the experiment, which allowed us to calculate the note accuracy 

for every note as the percentage of times the note was played correctly. Only notes that had an 
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accuracy higher or equal to 40% were considered in the analysis, to exclude notes that were 

played systematically wrong. Additionally, we only included notes for which at least one error 

trial and one correct trial was included, to avoid confounds of note selection.  

For the purpose of exploratory analyses, we determined an additional event type, corrected 

errors (see Paas et al., 2021). Corrections barely occurred for large errors, which is why we 

concentrated on the comparison between small corrected and small uncorrected errors. Corrected 

errors were always marked as addition events, but addition events did not always represent 

subsequently corrected errors. Sometimes, participants seemed to have slipped after playing a 

note (pressed the same or an adjacent key). To select only corrected notes, we included addition 

notes that were closer to the following than to the previous note; other addition notes were 

marked as postslips. For corrected error events, we defined the following correct note in the 

score notation as the corresponding note to the performance note.  

Behavioral Dependent Variables. Two behavioral measures served as dependent variables, 

which possibly differed between event types (correct, small error, large error) or between 

corrected and uncorrected errors. To investigate potential behavioral effects of error severity, 

namely on keypress volume and post-event slowing, the behavioral dependent variables Volume 

and Inter-Keypress-Interval (IKI) were assessed. Volume was defined as the recorded velocity in 

the MIDI signal of each note. IKI was defined as the difference between note onset time of the 

current and of the following note (see Paas et al., 2021). This maps the time delay between the 

event (correct, small or large error) and the subsequent correct keypress and serves as a measure 

of post-event reaction time, which is used to calculate post-error-slowing. 

Behavioral Variables as Potential Predictors of Action Monitoring. Finally, we 

calculated three variables based on the behavioral data that could be related to participants’ 
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expectancy regarding the action outcome and that were used as potential predictors of the 

dependent behavioral and ERP measures reflecting action monitoring. First, the inverted note 

accuracy (the non-inverted note accuracy was previously used as inclusion criterion), i.e. the note 

error rate, was defined as a measure for the difficulty of any included note. The higher the error 

rate, the more difficult the note should be for the respective participant, and the more errors they 

should expect (see Albrecht & Bellebaum, 2021b, for a modulation of expectancy by difficulty). 

Second, the distribution of event types was different for participants depending on their 

performance, and we expected that the more frequent an event type was, the more it would be 

expected. The percentage of all event types (correct, small error, and large error) for each 

participant formed the variable Event Type Frequency. Third, piano players often play either 

more loudly or more quietly in passages in which they are insecure, so changes in velocity can 

serve as an indicator of (in)security. The less secure participants are about a passage, the more 

they should expect to make errors, which is why insecurity might influence expectancies. 

Insecurity was calculated as the absolute difference between the velocity of each played note and 

the mean velocity for each participant. All continuous measures that were considered 

subsequently in any analysis were scaled to lie between -0.5 and 0. 5 and then mean-centered. 

Behavioral Data Statistical Analysis 

 For all statistical analyses, if not stated differently, we conducted single-trial linear mixed 

models (LME) analyses in R (version 3.5.3) using the package lme4 (version 1.1-23). According 

to best practice (Meteyard & Davies, 2020), all models should include all within-subject main 

and interaction effects as random effects, if this is possible without leading to model fit errors. 

For all subsequently described analyses, we performed an iterative process: all within-subject 

main and interaction effects were first included as random factors. If this led to model fit errors 
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(singular fit or overfitting), we tested which random effect led to this error and removed this 

from the model. As most of our models included only the main effect Event Type, for some 

models this factor is included as random effect factor and for others not, depending on the model 

fit. 

 All trials of the respective statistical models (see below) for which the behavioral 

dependent measures IKI or volume value differed by more than two SDs from the mean values 

per participant and Event Type were removed for further analysis. On average, 4.6 % of trials 

(SD = 0.8 %, Maximum = 6.0 %) were excluded for each participant and condition for the IKI 

analysis, and 4.0 % of trials (SD = 0.72 %, Maximum = 5.5 %) were excluded for the volume 

analysis.  

We conducted LME analyses, calculating separate models for dependent variables IKI 

(post-event reaction time) and volume (velocity). As independent variable, we set the three-level 

factor Event Type (correct, small error, large error). Small error was set as baseline condition to 

determine both the difference between correct and (small) errors (to analyze whether an ERN 

occurred) and between small and large errors. Consequently, we created the design matrix 

depicted in Table 1 based on simple coding. We included random intercepts and slopes for Event 

Type per participant into each model.  

With Cook’s Distance outlier detection (using the “influence” function of the package stats, 

version 4.02, in R) based on the calculated models (with a cut-off value of 4/(n-number of 

predictors-1)), we removed 3 participants from the IKI analysis (remaining n = 18, 17 – 34 years, 

M = 23.0 years, SD = 4.4 years, 9 women, 9 men) and 1 participant from the volume analysis 

(remaining n = 20, 17 – 34 years, M = 23.3 years, SD = 4.2 years, 11 women, 9 men). 

Subsequently, the models were recalculated with the new sample. 
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We also investigated possible modulations of IKI and volume by Empathy and Expertise 

(in interaction with Event Type). Model comparisons (on a Bonferroni-corrected Alpha level of 

.025; with lmerTest, version 3.1-3) were used to check if any model that included Empathy or 

Expertise explained significantly more variance than the original model. If one or both did, we 

checked whether adding both at the same time explained more variance than adding only one. To 

investigate the simplest possible model, we only included Empathy or Expertise if one or both 

explained significantly more variance, and calculated further statistical results with all included 

predictors on the thus determined best model.  

EEG Data Preprocessing 

We recoded the EEG marker files offline by synchronizing the markers sent every five notes 

with the recorded MIDI data using MATLAB. The new markers were then written into new 

marker files which were loaded into Brain Vision Analyzer (Brain Products, Munich, Germany). 

Subsequently, we applied a 0.5 Hz high-pass and 30 Hz low-pass filter to the data (as suggested 

by Luck, 2014). As participants read score notations while they played and were not prevented 

from looking down on their hand (both to obtain maximum ecological validity), vertical and 

horizontal eye movements occurred frequently during the experiment and the corresponding 

artefacts had to be removed from the EEG data. For this, we used the Gratton and Coles ocular 

correction algorithm (Gratton et al., 1983). The respective hEOG and vEOG channels were used 

as reference for eye artefact detection. The data were segmented into 900 ms long epochs starting 

300 ms before note onset. Subsequently, an automatic artifact rejection based on the signal from 

the electrodes of interest Fz, FCz and Cz was performed. The artifact rejection removed all 

segments that included voltage steps larger than 50 μV/ms, for which the difference between 

highest and lowest amplitude was more than 100 μV, in which amplitudes were lower than -100 
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μV or higher than 100 μV, and for which activity was less than 0.1 μV. On average, 12.1 

segments per participant were removed (0 to 146 segments, SD = 31.7 segments). This left 

enough segments per participant and condition for the following analyses (see also Table S2 in 

the Results section). 

The interval between 300 and 200 ms before the event was used for baseline correction (for 

similar procedures in sequential task paradigms, see Herrojo Ruiz et al., 2009; Maidhof et al., 

2013). Single-trial data as well as averages for each Event Type were exported per participant.  

To calculate the dependent ERP variable, the ERN amplitude, the signal was first pooled at 

Fz, FCz, and Cz, as at these sites the ERN is typically maximally pronounced, which was also 

the case in the present study. As participants were allowed to play in their individual tempo, and 

the latencies of ERNs in sequential tasks are related to movement onset (Maidhof et al., 2013) 

and thus indirectly to tempo, we expected large peak latency variations between participants 

which were visible in single-participant data inspection. To include peaks from all participants, 

we determined the latencies of the maximum negative peak in the averages, in a time window 

between 130 ms pre- and 130 ms post-event for each Event Type and participant, and latencies 

of the preceding maximum positive peak in a time window between 180 ms pre-event and the 

negative peak (for a similar procedure, see Maier et al., 2012). We subsequently calculated the 

single-trial negative peak measure as the mean signal in the time window 10 ms before to 10 ms 

after the negative peak latency determined from the averages and calculated the positive peak 

measures for each trial relative to the average positive peak accordingly. Single-trial ERN peak-

to-peak measures were then calculated as the difference between the negative and positive peak 

values in each segment. We used peak-to-peak measures, as segments might partly overlap in a 
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sequential task, to account for differences in baseline activity which can indeed be seen in Figure 

3. 

All trials for which the ERN differed by more than two SDs from the mean values per 

participant and Event Type were removed, which was the case for, on average, 4.9 % of trials 

(SD = 0.5 %, Maximum = 5.7 %) per participant. No participant was excluded based on Cook’s 

outlier detection. 

EEG Data Statistical Analyses  

We defined an LME model with ERN amplitude as dependent variable (see above for the 

general procedure for defining LME models). Event Type served as independent variable, coded 

as in the behavioral analyses (see Table 1). Random intercepts per participant were included 

(adding Event Type as random factor led to singular fit error).  

Model comparisons were used to check if any model that included Empathy or Expertise 

explained significantly more variance than the model without these factors (on Bonferroni-

corrected Alpha-levels of .025), with the same procedure used in the behavioral analysis. 

Post-Hoc Analyses on Behavioral and EEG Data 

Two post-hoc analyses were conducted to further investigate other influences on error 

processing. First, we investigated possible differences between corrected and uncorrected errors 

(replicating Paas et al., 2021), by defining models with the factor Error Correction (-0.5 = 

uncorrected, 0.5 = corrected) and the dependent behavioral variables IKI and Volume, and the 

electrophysiological measure ERN amplitude. For this analysis, we originally included 23 

participants: the three participants that did not commit enough large errors could be included, but 

another participant with less than 10 corrected errors had to be excluded. Trials whose values 

differed more than 2 SD per condition and participant from the mean for the respective 
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dependent variables in the models were excluded. With Cook’s Distance, we determined one 

outlier for the IKI model (remaining n = 22, 17-34 years, M = 23.4 years, SD = 4.3 years; 14 

women, 8 men), one outlier for the volume model (remaining n = 22, 17-34 years, M = 23.4 

years, SD = 4.3 years; 14 women, 8 men), and two outliers for the ERN model (remaining n = 

21, 17-34 years, M = 23.4 years, SD = 4.5 years, 13 women, 8 men). Again, we tested whether 

adding either Empathy or Expertise led to significantly more explained variance; results of the 

model comparisons were interpreted on Bonferroni-corrected Alpha levels of .025.  

Secondly, we investigated potential effects of the Difficulty of the respective note, the 

Event Type Frequency for each participant, and the Insecurity with which participants played on 

IKIs and on the ERN (as the volume data were used to calculate one of the three potential 

predictors, we omitted this dependent variable from this analysis step). Additionally, we checked 

if these potential predictors of behavioral and ERP measures themselves differed by Event Type 

by calculating separate models with the respective variable as dependent variable and Event 

Type as independent variable (we allowed for random slopes and intercepts per participant). 

Then we checked whether either of the three potential predictors, when replacing Event Type as 

independent variable, led to a better model fit for predicting the behavioral IKI or the ERN. The 

models determined in the main analyses only containing Event Type as predictor were used for 

comparison. Again, we corrected the Alpha level with Bonferroni correction, this time to α = 

.017 due to the three model comparisons for each dependent variable.  

Results 

 Additional statistical results for all models can be found in the supplementary material. 

Expertise & Empathy 
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 Participants spent 7760.38 h on average playing the piano during their lifetime (range 520 

h – 24960 h, SD = 7871.76 h, see Figure S3 for a histogram). The sample had an average EQ 

score of 39.76 points (range 23 – 56 points, SD = 9.48 points, see Figure S4 for a histogram).  

Behavioural Data 

 On average, correct keypresses occurred in 90.70% of all keypresses, small errors in 

3.03%, and large errors in 1.44%. All included participants made at least 10 large errors. For 

detailed information, see Table S2. 

IKI  

Neither Empathy (p = .458) nor Expertise (p = .606) explained additional variance when 

added to the model in addition to Event Type. There was a significant effect of Event Type on 

IKIs, F(2,14.66) = 18.18, p < .001. Contrast comparisons revealed a significant difference 

between small and large errors (p = .010, b = 29.39), but not between correct responses and small 

errors (p = .608, b = 2.30). After a large error keypress, participants took significantly longer (M 

= 371.03 ms, SD = 24.23 ms) to press the next key compared to after a small error keypress (M = 

355.73 ms, SD = 13.40 ms), while the IKI after correct actions was comparable (M = 359.62 ms, 

SD = 4.42 ms). 

Volume 

Again, neither Empathy (p = .091) nor Expertise (p = .238) explained significantly more 

variance when added to the model. We found a significant effect of Event Type, F(2,15.04) = 

15.94, p < .001. Both correct events (p < .001, b = 3.22) and large errors (p < .001, b = 2.60) 

resulted in significantly higher volume levels (M = 71.55 velocity, SD = 0.47 velocity; and M = 

69.96 velocity, SD = 2.00 velocity, respectively) compared to small errors (M = 67.58 velocity, 

SD = 1.59 velocity).  
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ERN 

For a display of ERPs in the three Event Type conditions, see Figure 3. Adding either 

Empathy (p = .393) or Expertise (p = .436) to the model did not result in significantly more 

explained variance compared to a model containing only Event Type as predictor. There was a 

significant effect of Event Type, F(2,18590.00) = 32.28, p < .001. Contrasts revealed 

significantly lower amplitudes for correct responses (M = -1.03 µV, SD = 0.30 µV) compared to 

small errors (M = -1.85 µV, SD = 0.84 µV; p < .001, b = 0.90) and significantly higher 

amplitudes for large errors (M = -3.33 µV, SD = 1.48 µV) compared to small errors (p < .001, b 

= -1.39).  

Post-hoc Analyses 1: Comparison of Corrected and Uncorrected Errors 

IKI  

 Including Empathy (p = .236) or Expertise (p = .437) did not lead to significantly more 

explained variance. There was a significant difference between corrected and uncorrected errors, 

F(1,16.34) = 50.40, p < .001, b = 40.10. After correction, participants pressed the following note 

significantly faster (M = 302.10 ms, SD = 16.15 ms) than after uncorrected errors (M = 382.72 

ms, SD = 15.18 ms).  

Volume 

 Neither Empathy (p = .284) nor Expertise (p = .161) explained additional variance. There was a 

significant effect of Correction, F(1,21.34) = 78.03, p < .001, b = 9.98. Corrected errors were 

played significantly more quietly (M = 61.09 velocity, SD = 2.05 velocity) than uncorrected 

errors (M = 67.98 velocity, SD = 1.58 velocity).  

ERN 
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See Figure 4 for a display of ERPs for corrected and uncorrected (small) errors. Neither 

Empathy (p = .041) nor Expertise (p = .988) explained significantly more variance when added 

to the model on a Bonferroni-corrected Alpha-level of .025. There was a significant effect of 

Correction, F(1,2727.40) = 6.89, p = .009, b = 0.86. Corrected errors (M = -2.88 µV, SD = 1.20 

µV) were associated with larger ERN amplitudes than uncorrected errors (M = -1.88 µV, SD = 

0.86 µV).  

Post-hoc Analyses 2: Event Type Frequency, Difficulty and Insecurity  

Before examining potential effects of the three variables Event Type Frequency, 

Difficulty and Insecurity on the behavioral and ERP measure of interest (see below), we checked 

whether Event Type affected the three variables. For this purpose, we calculated three models 

with the respective variable as dependent and the factor Event Type as independent variable. For 

M and SD of all three variables, see Table 2. Event Type Frequency was significantly different 

between conditions, F(2,45.00) = 2012.10, p < .001. Correct events were more frequent than 

small errors (p < .001, b = 85.59), but large and small errors did not differ significantly (p = 

.155). Event Type also significantly affected Difficulty, F(2,18595.00) = 593.72, p < .001. 

Correct Events were associated with lower difficulty values compared to small errors (p < .001, b 

= -8.53), and large errors were associated with higher difficulty (p = .001, b = 1.73) compared to 

small errors. Note that this difference is descriptively small and statistical results are influenced 

by the high number of data points used. Insecurity values also differed significantly between 

conditions, F(2,18597.00) = 45.11, p < .001. In accordance with the results for the absolute 

volume levels (see above), both correct events and large errors led to less deviation from the 

mean volume than small errors (p < .001, b = -1.65 and p < .001, b = -2.60, respectively).  
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IKI. The analysis of effects of Event Type Frequency, Difficulty and Insecurity on the 

IKI revealed that Difficulty predicted IKIs, F(1,13.89) = 7.61, p = .015, b = 12.96 (more difficult 

notes were followed by longer IKIs), as did Event Type Frequency, F(1,14.24) = 8.72, p = .010, 

b = -7.85 (lower frequencies led to longer IKIs), but Insecurity did not (p = .127). In the 

comparison between the main analysis model (Event Type as factor) and the models with either 

Difficulty, Event Type Frequency or Insecurity as factor, Event Type as factor led to a better 

model fit (AICEventType = 172428) compared to Difficulty, χ2(4) = 130.08, p < .001 (AICDifficulty = 

172550), Event Type Frequency, χ2(4) = 181.78, p < .001 (AICEventTypeFrequency = 172601) and 

Insecurity, χ2(4) = 101.89, p < .001 (AICInsecurity = 172521). 

ERN. Event Type Frequency predicted ERN amplitudes, F(1,16627.00) = 53.55, p < 

.001, b = 1.52 (larger amplitudes for smaller frequencies), but Difficulty (p = .356) and 

Insecurity (p = .155) did not. As for the IKI, the model with Event Type as a factor fitted the data 

significantly better (AICEventType = 131963) than a model with Difficulty, χ2(1) = 63.55, p < .001 

(AICDifficulty = 132025), Event Type Frequency, χ2(1) = 11.11, p < .001 (AICEventTypeFrequency = 

131972), or Insecurity, χ2(1) = 62.39, p < .001 (AICInsecurity = 132024). 

Conclusion for Experiment 1 

 In Experiment 1, we compared the processing of different error types in a piano-playing 

paradigm. Our results show that ERN amplitudes as well as behavioral measures vary depending 

on the type of error. Larger ERN amplitudes were observed for large compared to small errors as 

well as corrected compared to uncorrected errors, while all errors were accompanied by a larger 

ERN relative to correct responses. Post-error-slowing occurred only for large errors, while small 

errors were played in a lower volume than large errors and correct keypresses. The results 

indicate that the action monitoring system does not only differentiate between right and wrong, 
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but also between different degrees of erroneous actions. Moreover, we did not find evidence that 

other factors related to expectancy affected the ERN and thus the processing of own responses. 

Experiment 2 

Observing errors can be just as important as monitoring one’s own errors, for example, 

when musicians play together or teach others. As established above, the mechanisms of 

processing vicarious actions appear to be similar, albeit not completely identical, compared to 

those involved in the processing of own actions. Researchers observed a corresponding ERP 

component, the oERN (Bates et al., 2005; Miltner et al., 2004; van Schie et al., 2004), and 

increased activity in the mPFC for observed others’ errors (see Koban & Pourtois, 2014).  

As outlined for own responses above, also the neural response to observed actions can be 

modulated by expectancy (see Alexander & Brown, 2011), as has been shown for mPFC activity 

(Schiffer et al., 2014) and the amplitude of a frontocentral oERN-like ERP component (Albrecht 

& Bellebaum, 2021a; Kobza & Bellebaum, 2013). Recent studies from our lab even suggest that 

previously observed valence effects for observed actions on this component can be completely 

attributed to expectancies (Albrecht & Bellebaum, 2021a, 2021b). Therefore, it is questionable 

whether the component is related to observed error processing, and we will thus subsequently 

refer to it as observer mediofrontal negativity (oMN). The strong expectancy effect on the oMN 

amplitude may suggest a functional dissociation between ERN and oMN, with potentially 

differing effects of error severity on the two components.  

As with active error processing, research in observed error processing has so far focused 

on a binary classification of response accuracy (e.g. Bates et al., 2005; de Bruijn & Rhein, 2012; 

Kobza & Bellebaum, 2013). The observational data used in this study were taken from the 

actively performing participants of Experiment 1. We expected to see higher oMN amplitudes 
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for errors than for correct keypresses, as errors were less frequent and thus more unexpected. 

But, as there was only a slight difference between small and large error frequency in the videos 

for Experiment 2 and as we assumed that the oMN was mainly driven by the expectancy of the 

observed response, we suspected to find no difference in oMN amplitude between the error types 

and thus a different pattern as for own responses in Experiment 1. 

There may also be differences between the monitoring of own and observed actions with 

respect to potential modulators. The observation – and interpretation – of other persons’ actions 

is a social process, which suggests a link to trait empathy that might not be present in own action 

monitoring. However, previous findings on such a relationship are mixed: Trait empathy effects 

on error processing have been observed in some studies for an oMN-like component (Bellebaum 

et al., 2020; Brazil et al., 2011), but not in others (e.g. Clawson et al., 2014). A possible 

explanation for these mixed findings could be that empathy has an indirect effect on observed 

response processing: It may modulate expectancy formation regarding others’ actions (see also 

Lockwood et al., 2015), which in turn influences observed response processing (Albrecht & 

Bellebaum, 2021a, 2021b). Moreover, depending on the nature of the task, social-cognitive 

processes may be more or less strongly required to form predictions. Consequently, empathy 

could be relevant for some tasks, but not others (Albrecht & Bellebaum, 2021b).  

A factor potentially less relevant for early processing of observed responses is expertise. 

For observed error monitoring as coded in the oMN, it is not necessary that the respective 

movement can be performed by the observers themselves (Desmet et al., 2014), While altered 

ERP responses have been found for expert pianists compared to other musicians and non-

musicians after other pianists’ errors (Panasiti et al., 2016), the authors found no differences 

between groups in the oMN-like component for errors vs. correct responses, but larger 
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amplitudes in the following positivity. Based on the reported findings, we expected oMN 

amplitudes to be modulated by trait empathy but not by expertise. 

Unexpectedly, Paas et al. (2021) found that electrophysiological reactions to other-

produced tones differed between subsequently corrected and uncorrected errors, although 

listeners should not know beforehand whether errors would be corrected or not. To further 

investigate this accidental finding, we compared oMN amplitudes after (visually) observed errors 

that were either subsequently corrected or not.  

As outlined above, oMN amplitude was hypothesized to be primarily driven by 

expectancies concerning the observed response, which should lead to a different pattern with 

respect to error severity processing as for own responses. We aimed to support this expected 

finding and its interpretation with further exploratory analyses. As in Experiment 1 for active 

responding, we calculated measures that might influence participants’ expectancy, namely the 

event type frequency for each type of observed action and the difficulty of each observed note. 

We suspected that at least event type frequency, as an established modulator of expectancies 

(Schiffer et al., 2014; Wang et al., 2015), and maybe also difficulty (see Albrecht & Bellebaum, 

2021b) would predict oMN amplitudes as well as, or even better than, event type. We also 

explored whether the perceived expertise in the observed player affected the monitoring of 

observed responses. Finally, to directly compare the processing of own and observed actions, we 

also conducted an analysis including the ERPs from experiments 1 and 2 with factors agency and 

event type. In this exploratory analysis amplitude differences between the components ERN and 

oMN were eliminated via z-standardization. As we hypothesized to find differences between 

small and large errors in the ERN, but not in the oMN, we expected to find a significant 

interaction between agency and event type.  
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Method 

Participants 

 As in Experiment 1, experienced pianists were recruited via print-material, social media 

and mouth-to-mouth advertising. Again, a minimum experience of 1500 h was suggested, but 

lower values were allowed if participants were able to play the respective material by heart (see 

below). We recorded data from 29 observer participants. Of these, 3 had to be excluded due to 

technical problems, three because of low performance in the pre- and post-performance test or 

during the experiment (see below). The remaining 23 participants consisted of 15 cis-gender men 

and 8 cis-gender women between 18 and 44 years (M = 24.5 years, SD = 6.4 years). One 

participant was left-handed, 22 right-handed. All participants reported no previous psychological 

or neurological illnesses, no intake of medication that could affect the nervous system, and had 

normal or corrected-to-normal vision. Participation was voluntary and participants received 

compensation of 40€ or course-credit. The study was in accordance with the declaration of 

Helsinki and approved by the ethics committee of the Faculty of Mathematics and Natural 

Sciences at Heinrich-Heine-University, Düsseldorf. 

Material 

 Participants watched videos that were recorded during data acquisition of Experiment 1. 

In contrast to Experiment 1, participants were required to know the piece by heart to facilitate 

observation. To limit the time effort and ensure that participants reached a high performance 

level, we used only one of the six short pieces per participant that were used in Experiment 1. To 

obtain a large number of trials per condition, we calculated the number of isolated events for 

each event type and piece. Large errors were the most infrequent event type, so we chose the 

piece in which the most isolated large errors were made on average. Consequently, we chose 10 
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videos in which this piece was played (each from a different participant of Experiment 1) that 

included as many isolated pitch errors as possible and as few other error types as possible 

(postslips, missed notes, black key notes, pitch errors that deviated more than two white keys 

from the correct key). In total, participants watched the same piece being played 60 times. Due to 

a technical error, one of the 10 chosen videos was watched 12 times, 8 videos were watched 6 

times each and one video was not watched at all. Originally, the intention was to play each of the 

10 videos 6 times. As the order of the videos was randomized, however, and the focus of the 

study was on the processing of the single notes, this technical error does probably not affect the 

results of the study. Participants saw 6600 isolated correct notes being played, 290 isolated small 

errors and 210 isolated large errors (see Table S11 in the supplementary materials).  

 The expertise of the pianists that played the piece in the video ranged from 936 to 22620 

hours (M = 6423.1 h, SD = 6078.8 h). Videos had a resolution of 1280*720 px and a framerate of 

60. The videos always started 1 s (or 60 frames) before the first keypress and ended 1 s (or 60 

frames) after the last. They were trimmed at the upper and lower side so that only the piano and 

the moving hand were visible. For practicing, participants received the score notation and 

auditory recording of the piece before the experiment.  

Experimental Task and Setup 

 Similar to the procedure for Experiment 1, the material was sent to participants before 

testing and they were instructed to practice about 15 minutes a day on average in a tempo that 

felt comfortable for them. In contrast to Experiment 1, they were, however, instructed to learn 

only one piece, and this by heart. Participants stated an average practice time of 130.0 minutes 

(SD = 93.1 minutes, range 44 – 420 minutes). Before the experimental observation task was 

conducted in the lab, participants were asked to perform the piece themselves on a digital piano 
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(Casio LK-S450) while MIDI signal was recorded on a connected laptop. The piano was set on 

mute to avoid additional feedback and to make the conditions as similar as possible to 

Experiment 1.  

 For the experimental task, participants sat before a 1920 x 1080 px desktop monitor. 

Participants were instructed to watch the videos carefully and count the errors made in each of 

them. The experiment consisted of 60 video presentations (9 different videos; durations between 

31-70 s, M = 47.8 s, SD = 12.8 s), which were played in random order. The videos were 

embedded in sequences that also contained control questions after each video (see below). For a 

display of a sequence, see Figure 5.  

Participants could start the sequences themselves. After a short fixation cross (500 ms) 

the video was displayed. Participants received only visual input, the videos were played without 

sound. A marker was sent to the EEG recording software every 5th observed keypress. Following 

the videos and another 500 ms fixation cross, participants were asked how many mistakes the 

observed person had made in this segment. They could freely enter a number and proceed with 

the Enter key. After another 500 ms fixation cross, participants were asked how experienced in 

piano playing they believed the observed person to be on a scale from 1 to 10. Again, they could 

enter a number and proceed with the Enter key. Subsequently, the next sequence came on, which 

could again be started by the participant. Stimulus presentation and recording was controlled 

with Presentation (version 22.0, Neurobehavioral Systems, Albany, CA, USA). After completing 

the experiment, participants were again asked to play the piece on the muted digital piano while 

MIDI was recorded.  

Assessment of Empathy and Expertise. We acquired the measures Empathy and Piano 

Playing Expertise in Experiment 2 in the same way as in Experiment 1.  



EFFECTS OF OWN AND OBSERVED ERROR SEVERITY 33 

 

Procedure 

 Participants received the material to practice the piano pieces used in the experiment via 

e-mail two weeks before the actual study in the lab. For testing in the laboratory, participants 

first gave written informed consent to take part in the study. After this, they played the studied 

piece by heart. Participants subsequently filled out the demographic questionnaire, including 

Expertise and Empathy measurements, after which EEG electrodes were attached. Participants 

then completed the actual experiment which lasted around 60 minutes. Finally, the electrodes 

were removed and participants played the piece again. Participants received either course credit 

or 40 € as compensation. 

EEG Recording 

 EEG measures were recorded in the same way as in Experiment 1, and markers were sent 

and reconstructed in the same way.  

Data Analyses 

Behavioral Data of the Pre- and Post-Tests 

All following steps were performed in MATLAB, version R2017b (Mathworks, Natick, 

Massachusetts, USA). As for Experiment 1, we used the dynamic score matcher algorithm 

created by Large (1993; see also Palmer & van de Sande, 1993; Rankin et al., 2009) to compare 

the recorded MIDI signal with the correct score notation for the pre- and post-experiment piano 

performance. We calculated the accuracy as the percentage of correctly played notes for each 

participant, separately for the pre- and post-experiment piano performance. If participants 

restarted playing the piece during the recording, all previous notes were excluded from further 

analysis. All participants that had an accuracy of less than 50% in both tests were excluded. This 

was the case for two participants in total. 
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Event Types Used for the ERP Analysis 

We used the same, previously determined relevant notes and events from Experiment 1 for 

the ERP analysis in Experiment 2. For this purpose, the notes and event types were extracted 

from the logfiles corresponding to the respective videos shown in Experiment 2. Inclusion 

criteria for notes were identical to the Experiment 1 analyses, with the exception that we also 

included notes with less than 30% note accuracy in Experiment 2: high error rates might indicate 

systematic errors for the players themselves, but do not indicate potential systematic errors of the 

observer participants. A computer error during testing caused some videos to end too early for 

seven participants. In only one of them this led to a significant decrease in analyzable segments, 

and this participant was thus excluded from the analysis.  

Behavioral Data Assessed During the Experiment and Data Extracted from the Participants of 

Experiment 1 

We assessed the measure Number of Perceived Errors (as stated by the participants after 

each sequence) and then calculated the measure Recognized Error Margin as the absolute 

difference between the Number of Perceived Errors and the actual error number (as calculated 

from the logfiles of Experiment 1; all error types were included in this measure). One participant 

of Experiment 2 who scored more than 1.645 SD higher (equivalent to a percent rank < 5) than 

the other participants in the Recognized Error Margin was excluded. Subsequently, the Perceived 

Expertise of the observed player (as stated by participants after each sequence, see above) and 

Objective Expertise of the observed player (Expertise measurement calculated for each player 

from Experiment 1) were determined. Finally, as measures that may affect expectancy of the 

observed response, we additionally calculated the Difficulty of each note in the piece, i.e. the 

number of times in percent, that the note was played incorrectly across all 60 sequences, and the 
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Observed Event Type Frequency, i.e. the number of times (in percent) that each event (correct 

response, small error, large error) occurred for each observed person. All continuous measures 

that were considered subsequently as factors in any analysis were scaled to lie between -0.5 and 

0. 5 and then mean-centered. 

Behavioral Data Statistical Analysis 

For the analysis of the behavioral data of the pre- and post-test, an LME analysis in R 

(version 3.5.3) was performed with accuracy as dependent variable and Measurement Time as 

fixed effect factor. Random intercepts per participants were allowed. For the procedure 

determining the final model in terms of the random effects structure please refer to the Methods 

section of Experiment 1. 

Then it was checked whether Empathy or Expertise influenced participants’ ability to 

detect errors by defining an LME model that included Recognized Error Margin as dependent 

variable and Empathy and Expertise as fixed effect factors and that allowed for random 

intercepts by subject and by observed video.  

Additionally, we investigated the relationship between perceived expertise and objective 

expertise of the observed player. An LME model with perceived expertise as dependent variable 

and Objective Expertise as fixed effect was defined, which allowed random intercepts and slopes 

for Objective Expertise by participant and random intercepts by observed video. Then it was 

examined whether adding either Empathy, Expertise or the Number of Perceived Errors (as 

stated by participants after each trial) in the respective trial explained significantly more variance 

by using model comparisons on a Bonferroni-corrected alpha level of .017. If one variable 

explained more variance, it was added to the model. If two or three variables explained more 
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variance when added to the model one at a time, we systematically checked which model led to 

the best model fit.  

EEG Data Preprocessing  

First, EEG markers were recoded based on the MIDI data gained in Experiment 1 for each of 

the observed players by using MATLAB. Subsequently, the markers were imported to Brain 

Vision Analyzer (Brain Products, Munich, Germany) for EEG data preprocessing which was 

conducted in the same way as the processing described for Experiment 1. The artefact rejection 

removed an average of 5.2 segments (range 0-86 segments, SD = 17.0 segments).  

Segments were also created in accordance with the procedure in Experiment 1, resulting in 

three Observed Event Types, namely observed correct response, observed small error, and 

observed large error (only uncorrected errors were included, but we additionally added the event 

type observed small corrected errors for a post-hoc analyses). Again, single-trial data and 

averages per Observed Event Type and participant were exported and electrodes Fz, FCz and Cz 

were pooled. 

The component that we call oMN (often referred to as oERN in the literature) occurs later 

than the ERN in non-sequential tasks, namely 100 to 300 ms after the event (depending on the 

task, see Bates et al., 2005; Miltner et al., 2004; van Schie et al., 2004). To date, this component 

has not been investigated in sequential tasks. If, however, earlier ERN peaks in active sequential 

tasks are related to the earlier onset of the movement relative to key registration compared to 

non-sequential tasks (Di Gregorio et al., 2022; Maidhof et al., 2013), it is conceivable that the 

oMN also peaks earlier in sequential tasks, as the observed movement can be detected earlier. 

Indeed, visual inspection of our data revealed a negativity that seemed to represent action 

monitoring between -100 and 100 ms around the observed keypress (see Figure 6). In accordance 
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with this, we determined the latencies of the maximum negative peak in a time window between 

-100 ms pre-event and 100 ms post-event in the average of each participant in each Event Type 

condition. The preceding positive peak was searched in the time window between -150 ms and 

the negative peak. Again, single-trial measures were calculated in an area from 10 ms before to 

10 ms after the negative and positive peak latency for the respective participant and condition, 

and peak-to-peak measures for each trial were determined as the difference between the two 

values. Because peaks were not as pronounced as in the active data and latencies might have 

varied between trials within participants (due to different playing speeds of the different players 

in the videos), we additionally investigated the mean amplitude in the time window from -100 to 

+100 ms with the same model. Results are reported in the Supplementary Material. 

We determined outlier trials in which the oMN amplitude differed by more than 2 SDs from 

the mean values per Observed Event Type and participant. On average, 4.6 % (SD = 0.8 %, 

Maximum = 7.3 %) trials per participant were excluded. One subject was removed as outlier for 

the oMN analysis with Cook’s Distance. The remaining sample consisted of 22 participants, 15 

men and 7 women, aged between 18 and 44 years (M = 24.6 years, SD = 6.6 years). After data-

cleaning was complete, more than 100 segments remained for each participant and condition (see 

Table S12). 

EEG Data Statistical Analyses  

We first defined an LME model with oMN amplitudes as dependent variable and Observed 

Event Type as independent variable, coded as in the previously described analyses for 

Experiment 1 (see Table 1). Random intercepts per participant were set (see Methods part for 

Experiment 1 for the procedure in determining the random effects structure of the model). All 
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continuous measures that were considered as predictors subsequently were scaled to lie between 

-0.5 and 0.5 and then mean-centered. 

As in Experiment 1, Empathy as well as Expertise of the observers were included as 

additional factors in the models. Model comparisons were used to check if adding one or both 

explained significantly more variance compared to the model without both measures. If that was 

the case, the factor was included in the subsequent model analyses. We additionally tested 

whether adding the Recognized Error Margin, which represented error recognition accuracy and 

may be affected by attentional factors, as independent variable explained more variance. The 

model comparisons were interpreted on a Bonferroni-corrected alpha level of .017. 

Post-Hoc Analyses on EEG data 

For our first post-hoc analysis, oMN amplitudes locked to corrected and uncorrected 

observed (small) errors were compared. For this purpose, an identical model as for the respective 

analysis in Experiment 1 was used. We then checked if Empathy, Expertise or Recognized Error 

Margin explained additional variance for the models. 

A second additional analysis was conducted to test whether observed error processing (as 

reflected in the oMN) was better explained by either the Difficulty or the Observed Event Type 

Frequency of notes than by Observed Event Type. Additionally, we checked if a model involving 

the Perceived Expertise of the observed person explained significantly more variance than the 

model with only Observed Event Type as predictor.  

Post-Hoc Analyses comparing active and passive ERP data 

 In an exploratory post-hoc analyses, we aimed to compare the effects of the factor Event 

Type between the ERN and oMN, that is, between the active and observer participants of 

Experiments 1 and 2. As we were not interested in amplitude differences between the two 
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dependent ERP variables (ERN and oMN), we used z-transformed data of both the active and 

observer groups. We determined a model with Event Type (correct, small error, large error, 

coded as in the previous analyses) as within-subject and Agency (active, observer, coded as -0.5 

and 0.5, respectively) as between-subject fixed effect factor. Z-standardized single trial ERP 

amplitudes were set as dependent variables. Random intercepts per participant were allowed. 

Cook’s distance analysis excluded 3 participants, resulting in a total of 41 participants (17 to 44 

years, M = 24.0 years, SD = 5.6 years, 18 women, 23 men), 22 in the observer group (18 to 44 

years, M = 24.6 years, SD = 6.6 years, 7 women, 15 men) and 19 in the active group (17 to 34 

years, M = 23.3, SD = 4.3, 11 women, 8 men). A potential interaction was resolved by 

determining the Agency effect for the respective conditions correct, small error and large error. 

Results 

 Additional statistical results for all models can be found in the supplementary material. 

Expertise & Empathy 

 Participants had a mean Expertise of 4913.09 hours (SD = 4404.90 h, 780 h - 17160 h). 

The mean EQ score of all participants was 44.00 (SD = 9.93, 17 – 63). Both variables did not 

differ significantly between the samples of Experiments 1 and 2 (EQ: t(42) = -1.44, p = .156; 

Expertise: t(42) = 1.50, p = .141). For histograms of both variables, see Figure S13 and S14 in 

the supplementary material. 

Behavioral Data of the Pre- and Post-Test 

 Participants had an average accuracy of 86.21% in the pre-experimental test (SD = 

11.88%), and an average accuracy of 83.80% in the post-experimental test (SD = 16.18%), which 

did not differ significantly F(1,22.00) = 1.18, p = .289, b = -2.42. This indicates that participants 

did not learn additionally by watching the 60 repetitions of the piece. 
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Behavioral Data Assessed during the Experimental Task 

 Regarding the Recognized Error Margin, participants differed on average by 5.60 (SD = 

1.66) perceived errors from the actual errors in the videos. The difference between perceived and 

actual errors was not modulated by Empathy (p = .561), Expertise (p = .097) or an interaction 

between Empathy and Expertise (p = .590). The Recognized Error Margin was calculated as the 

absolute difference in each sequence between the number of actual and recognized errors. 

Looking at over- and under-estimation separately, participants underestimated the number of 

errors in 76.73% of trials on average (SD = 20.85%), overestimated the number of errors in 

15.39% on average (SD = 18.40%), and correctly stated the number of errors in 7.88% on 

average (SD = 4.71%). In sequences in which participants under- or correctly estimated the 

number of errors, they failed to notice an average of 44.98% of errors (SD = 14.15%). In 

sequences in which participants over- or correctly estimated the number of errors, they noticed 

on average 46.39% of additional errors (SD = 12.73%). The results show that participants were 

not excellent at recognizing errors. However, this was not dependent on interindividual 

measures, and the variance between participants was relatively small. To still control for 

interindividual differences regarding error recognition, we considered the Recognized Error 

Margin as a variable in our main analysis. 

 In a model including perceived expertise as dependent and Actual Expertise as 

independent variable, adding observers’ Empathy (p = .464) or Expertise (p = .054) did not lead 

to significantly better models, but adding the perceived number of errors did, χ2(2) = 174.30, p < 

.001, AICwithout = 4859.10, AICwith = 4688.80. The actual expertise of the players did not influence 

the perceived expertise as a main effect (p = .952) or in interaction with the Perceived Number of 

Errors (p = .071), but we found a main effect of Perceived Number of Errors, F(1,1307.63) = 



EFFECTS OF OWN AND OBSERVED ERROR SEVERITY 41 

 

186.00, p < .001, b = -6.23. A higher number of perceived errors led to lower perceived 

expertise.  

EEG data 

 ERPs in response to the different Observed Event Types are displayed in Figure 6. For 

the number of segments included in each condition for the analysis, see table S12. Neither 

adding Empathy (p = .681) or Expertise (p = .270) nor the Perceived Number of Errors (p = .965) 

explained any additional variance compared to a model with Observed Event Type as the only 

predictor. We found a main effect of Observed Event Type, F(2,11440.00) = 23.13, p < .001. 

The contrast between observed small errors (M = -1.04 µV, SD = 0.56 µV) and observed correct 

keypresses (M = -0.45, SD = 0.19 µV; p < .001, b = 0.58) revealed a significant difference, but 

no difference was found between large (M = -1.25 µV, SD = 0.66 µV) and small errors (p = .248, 

b = -0.21). Calculating the oMN as a mean amplitude between -100 and 100 ms around the event 

revealed a similar pattern (see supplementary material, section S19). 

Post-Hoc Analysis: Corrected vs. uncorrected 

 ERPs for corrected vs. uncorrected errors are displayed in Figure 7. We found that adding 

Empathy (p = .187), Expertise (p = .105) or the Perceived Number of Errors (p = .589) did not 

explain any additional variance when added to a model containing Observed Correction as 

factor. Observed corrected errors elicited an average amplitude of -1.31 µV (SD = 0.88 µV), 

observed uncorrected errors an average amplitude of -1.19 µV (SD = 0.64 µV). Observed 

Correction did not significantly affect the ERPs, F(1,1576.20) = 0.14, p = .705, b = 0.09.  

Post-Hoc Analysis: Frequency and Difficulty 

 As all participants viewed the same videos (with small exceptions due to technical 

problems, see above), we did not calculate statistical differences between Observed Event Types 
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in Observed Event Type Frequency or Difficulty. The mean values are displayed in Table 3: 

observed correct keypresses were more frequent than both small and large errors, but small 

errors were only slightly more frequent than large errors. Observed correct keypresses were less 

difficult than both error types, but error types barely differed in their Difficulty. Both Observed 

Event Type Frequency, F(1,1238.90) = 44.34, p < .001, b = 0.76 (smaller amplitudes for more 

frequent events) and Difficulty, F(1,31985.00) = 14.81, p < .001, b = 0.76 (smaller amplitudes 

for easier notes) had a significant effect on peak-to-peak amplitudes. However, only Observed 

Event Type Frequency, χ2(1) = 1.94, p = .164, AICEventType = 264808, AICEventTypeFrequency = 

264808 served as a similarly good predictor as Observed Event Type. Difficulty was a 

significantly worse predictor, χ2(1) = 31.29, p < .001, AICDifficulty = 264838. Adding Perceived 

Expertise to the main analysis model (i.e. the model for the effect of Observed Event Type on 

oMN amplitude) did not explain additional variance (p = .436).  

Exploratory Analysis comparing active and observer ERP data from Experiments 1 and 2. 

 Although there was a main effect of Event Type, F(2,55383.00) = 49.25, p < .001, and a 

trend effect of Agency, F(1,172.00) = 3.83, p = .052, our main interest was on the interaction 

between Agency and Event Type. This interaction was significant, F(2,55383.00) = 5.91, p = 

.003. Resolving the interaction, there was no effect of Agency for correct events (p = .488) or 

small errors (p = .982), but for large errors F(1,3570.00) = 9.38, p = .002, b = 0.13: the 

standardized amplitudes of the ERP component related to monitoring were significantly larger 

for the active compared to the observer group. 

Conclusion for Experiment 2 

 We studied the processing of different error types in an action observation paradigm in 

which participants watched videos of others playing the piano. In accordance with previous 
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studies we found larger amplitudes of the oMN for errors vs. correct responses. As in most 

studies investigating (observed) error processing (see, for example, Miltner et al., 2004; van 

Schie et al., 2004), valence effects in this study are confounded by low frequencies of errors. 

Between-condition differences in observed event type frequencies could thus explain the result 

pattern as well as differences in observed action valence. The focus of the study was, however, 

on potential effects of error severity, and there was no significant difference between observed 

small and large, and also not between observed corrected and uncorrected errors. The result 

pattern thus differed from the one in Experiment 1, where we found error severity effects for 

own action processing, as well as effects of error correction. The difference between active and 

observational response monitoring was further supported by an exploratory analysis directly 

comparing the data obtained in both experiments. This analysis indeed revealed that large errors, 

but not small errors and correct responses, were processed differently between active and 

observer participants, indicating that the error type is less influential in observed action 

processing than in own action processing. As observed small and large errors were similarly 

frequent, one could assume that these two error types were similarly expected, which may have 

led to the comparable processing of small and large observed errors.  

General Discussion 

  Experiment 1 aimed to identify the effect of error severity on behavioral and 

electrophysiological action monitoring during piano playing. In Experiment 2, we investigated 

the electrophysiological effect of error severity when observer participants watched videos of 

pianists playing. 

Error Severity 
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 In line with the hypothesis, Experiment 1 revealed increased ERN amplitudes for large 

compared to small errors, which, in turn, elicited larger ERN amplitudes than correct responses. 

Previous research also found a distinction between different error types (Bernstein et al., 1995; 

Maier et al., 2008; Maier et al., 2012; Maier & Steinhauser, 2016). However, our study is the 

first to directly test the effect of error severity within one action dimension. Behaviorally, 

participants showed post-error slowing for large, but not small errors. Overall, we thus found 

clear effects of error severity. Post-error slowing was reported in some previous studies 

investigating piano play (Herrojo Ruiz et al., 2009; Paas et al., 2021). The missing post-error 

slowing after small errors might be attributed to the expertise in our sample: some previous 

studies showed that expertise reduced or even eliminated post-error slowing (Crump & Logan, 

2013; Jentzsch et al., 2014; Loehr et al., 2013; Rachaveti et al., 2020), depending on task 

demands (Jentzsch et al., 2014). Further, if speed – or keeping a respective tempo – was 

emphasized, post-error slowing was reduced or not present (Jentzsch & Leuthold, 2006; Loehr et 

al., 2013). In the present study, participants had to keep the tempo, possibly explaining why no 

slowing occurred after small errors. Large errors, on the other hand, might have posed more 

demands with respect to corrective movements and attention, leading to the observed post-error-

slowing, possibly due to a reorienting process (see Buzzell et al., 2017; Notebaert et al., 2009; 

Núñez Castellar et al., 2010).  

 As found in previous studies, participants played small errors significantly more quietly 

than correct notes (Herrojo Ruiz et al., 2009; Maidhof et al., 2009; Maidhof et al., 2013; Paas et 

al., 2021), whereas large errors were played at a similar volume as correct notes. We included 

only notes that were succeeded by a correct keypress, so for all (‘uncorrected’) errors, hand 

movements following the error had to be adapted to keep on playing successfully (sequential 
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correction). Together with the finding of post-error slowing, the reduced volume for only small 

errors suggests that action correction for small errors might start earlier than for large errors 

(even at keypress), which confirms recent findings on early error movement cancellation effects 

(Foerster et al., 2022).  

 For action observation (Experiment 2) there was no difference in processing between 

small and large errors, but, in accordance with previous studies, a significantly larger oMN 

amplitude for observed errors compared to correct keypresses was found (see Bates et al., 2005; 

Bellebaum et al., 2020; de Bruijn & Rhein, 2012; Koban et al., 2010; Miltner et al., 2004; van 

Schie et al., 2004). Error recognition accuracy, that is, the difference between the number of 

perceived and actual errors, did not explain additional variance in the model. Thus, even though 

the null effect does not allow the conclusion that error severity does not affect observed action 

processing, we assume that the effect is at least reduced in comparison to own errors. This 

assumption was further supported by an exploratory analysis in which we compared the ERP 

amplitude pattern between the active (Experiment 1) and observer (Experiment 2) groups. We 

found that only for large errors, z-standardized amplitude values were significantly larger for the 

active than for the observer group. 

Empathy and Expertise 

 Model comparisons neither justified the inclusion of empathy nor expertise in predicting 

error processing as reflected in either behavioral or ERP measures, which suggests that these 

characteristics of the participants did not affect own or observed action monitoring. For empathy 

in own actions, this is in accordance with previous ERN results (Amiruddin et al., 2017). In 

contrast, some previous studies found empathy to modulate observed action monitoring 

(Bellebaum et al., 2020; Brazil et al., 2011; Fukushima & Hiraki, 2009). However, we could 
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show that the effect of empathy on observed response processing was indirect and only occurred 

because empathy facilitated the formation of expectancies (Albrecht & Bellebaum, 2021a, 

2021b). Moreover, this effect emerged in a task with a false-belief component requiring social 

cognitive abilities. We assume that in the present task without false-belief component 

participants could form expectancies irrespective of empathy.  

 Our results do also not support an effect of expertise on own action monitoring that was 

found in a previous study (Jentzsch et al., 2014). Rachaveti et al. (2020) reported altered post-

error slowing after 15 days of practice in a video game. However, both these studies found 

differences between novices and early stage experts, whereas our sample consisted solely of 

highly experienced participants (at least 520 hours of experience). There was also no effect of 

expertise on observed action processing. While a potential expertise effect in observation might 

be expected in a later time window than the oMN (Panasiti et al., 2016), the missing influence 

might again be due to an expertise ceiling effect (at least 780 h), as in experiment 1.  

Corrected vs. uncorrected errors 

 In our first post-hoc analysis, in accordance with Paas et al. (2021), we found faster post-

action reaction times in the active sample after (small) corrected than uncorrected errors. This 

acceleration probably compensated for the time lost by the correction. As Paas et al., we found 

that participants played corrected error notes significantly more quietly than uncorrected error 

notes. Please note that we only included events followed by a correct note. We thus have to 

differentiate between two processes: immediate note correction (the correct note was repeated 

after an error; as in the Event Type corrected errors) and sequential correction (the hand 

movement following the error was adapted so that the subsequent note was played correctly; 

which happened in all not-corrected errors with following correct notes). Thus, in this case, we 
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would like to also interpret the pattern of lower volumes and smaller post-error reaction times to 

reflect an earlier onset of corrective actions (either note correction or sequential correction) for 

corrected (small) errors compared to uncorrected (small) errors. The higher ERN amplitudes for 

corrected than uncorrected errors also replicate Paas et al.’s findings. In the current study, 

participants were acting against instructions when correcting errors, as they were told to keep on 

playing – in the same tempo – if an error occurred. Similarly, in Paas et al.’s joint action study, 

error correction could negatively impact collaborative play because an additional note was 

included into the rhythm structure. Error correction seems to be a natural, maybe automatic, 

process in sequential tasks (Crump & Logan, 2013). In most piano playing scenarios outside of 

practice and especially in the current task, participants have to actively suppress error correction. 

In line with accounts that suggest that errors or infrequent events deviate attention away from the 

task, resulting, inter alia, in post-error slowing (Notebaert et al., 2009; Núñez Castellar et al., 

2010), we suspect that participants perceived later corrected errors as especially significant, 

which led to particularly strong attention deviation and a subsequent failure to suppress 

correction. This suggests that both subjective importance (corrected vs. uncorrected errors) and 

physical deviance from the correct actions (large vs. small errors) influences ERN amplitudes. 

As for the main analyses, the EEG and behavioral effect of correction was neither modulated by 

empathy nor expertise. 

 In the observation data, there was no difference between corrected and uncorrected errors 

in the oMN. In contrast, Paas et al. (2021) found a correction effect for observers – however, an 

important methodological difference is that participants in their study listened to others playing 

(i.e., ERPs were locked to observed auditory feedback), while participants in our study watched 

muted videos of others playing (i.e. ERPs were locked to the observed action). Consequently, 
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Paas et al. found differences at longer latencies in the ERPs (215 to 340 ms). Corrective notes 

followed very closely to the previous error note, so the component might have coded the 

accumulation of two consecutively played errors (wrong note + correction) in the case of 

correction. Our oMN occurred earlier, often before the keypress, and could not have overlapped 

temporally with the following correction – especially since corrections took on average longer 

than in Paas et al.’s study (97 ms opposed to less than 30 ms) – so this interpretation seems 

likely. Our results do not support Paas et al’s alternative interpretation that subjective importance 

(leading to correction) overlaps between active player and observer. As we found reduced 

volumes for later corrected errors in Experiment 1 and volume changes probably could be 

noticed when listening, but not when observing a muted video, observer participants could have 

also reacted to unexpected volume changes in Paas et al’s study. 

Potential Expectancy Effects on (Observed) Response Processing and Their Theoretical 

Implications 

Expectancy and valence are often confounded in action monitoring studies, as errors are 

less frequent than correct actions (e.g. Falkenstein et al., 1991; Gehring et al., 1993; Miltner et 

al., 2004; van Schie et al., 2004). Similarly, the three variables that we measured as potentially 

influencing expectancies in the present study, i.e. Event Type Frequency, Difficulty and 

Insecurity, differed significantly between Event Types. To rule out effects that can be explained 

by expectancy, we therefore checked whether one of the variables predicted ERN amplitudes as 

well as Event Type. According to the PRO model (Alexander & Brown, 2011), all amplitude 

variance should be accountable to expectancies, and especially Event Type Frequency (Chase et 

al., 2011; Jessup et al., 2010), but also Difficulty (Albrecht & Bellebaum, 2021b) have been 

shown to influence action monitoring responses. For the active group of Experiment 1, however, 
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Event Type could not be exchanged for Difficulty, Event Type Frequency, or Insecurity, without 

a loss of explained variance. This suggests that the effect of Event Type, and thus error severity, 

cannot be merely attributed to expectancy for active responding, although some influence of 

expectancies might be conceivable.  

 Concerning the oMN in observer participants, Observed Event Type Frequency as 

measure of expectancy served as just as good a predictor as Observed Event Type. As Observed 

Event Types differed in their frequency, the variables were confounded, which makes the 

interpretation difficult. However, the frequency differences between small and large errors were 

negligible compared to the large frequency difference between correct responses and (small and 

large) errors. We might thus carefully conclude that the observed pattern of oMN amplitudes in 

observers, differing between errors and correct responses, but not between small and large errors, 

can be attributed to Event Type Frequencies, which in turn may have influenced expectancies. 

This interpretation is consistent with findings from our own (Albrecht & Bellebaum, 2021a, 

2021b; Bellebaum et al., 2020; Kobza & Bellebaum, 2013) and others’ (Schiffer et al., 2014) 

previous studies in which observed response valence and expectancy were manipulated 

independently and in which clear expectancy effects on observed response processing were 

found.  

The different findings in action monitoring for action and observation also have 

theoretical implications. The PRO model states that mPFC activity reflects the (un)expectedness 

of outcomes and actions rather than their accuracy (Alexander & Brown, 2011; see Gawlowska 

et al., 2018; Kobza & Bellebaum, 2013; Schiffer et al., 2014; Wessel et al., 2012). However, our 

data suggest that the monitoring of own actions at least partially reflects the deviation from a 

(subjective) goal. Based on the finding of different activations depending on the error size, we 
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assume that the action monitoring system sends a general need-to-adapt signal to update not only 

prediction models, but also action models. The first assumption is in line with the PRO model 

(Alexander & Brown, 2011), while the second extends it. For predictions, the magnitude of the 

adapt-signal depends on the prediction error, which has been shown for different event types: For 

feedback processing, for example, larger ERP amplitudes were found for infrequent compared to 

frequent feedback, irrespective of feedback valence (Ferdinand et al., 2012). Also, prediction 

error size modulates trial-by-trial ERP amplitudes in feedback processing (Fischer & Ullsperger, 

2013; Ullsperger et al., 2014), suggesting that amplitudes depend on the size of the prediction 

adaptation. However, the aforementioned studies modulate a signed prediction error, so any 

effects can be accounted for not only by expectancies, but also by valence, and valence does 

seem to play an important role in feedback processing (see Proudfit, 2015). We observed a 

similar effect of prediction error size for the processing of others’ actions, when less predicted 

actions elicited larger oMN amplitudes, irrespective of action valence (Albrecht & Bellebaum, 

2021b). We believe that the adapt-signal, or maybe two overlapping adapt-signals, code the 

magnitude of prediction (as in Albrecht & Bellebaum, 2021b; Ferdinand et al., 2012) and action 

adaption needed to meet the desired outcome (as in the current study) continuously (rather than 

dichotomously). This extension of the PRO model could explain the magnitude of adapt-signals 

for cases where either an action or a prediction model or both have to be updated. Whether action 

or prediction adaptations are needed highly depends on the task: in observation, if others’ 

movements cannot be influenced (as in our study), an adapt-signal should be sent for prediction 

errors, but in active performance, especially in a sequential task, the adapt-signal should (also) be 

highly dependent on the necessity to update action models. 



EFFECTS OF OWN AND OBSERVED ERROR SEVERITY 51 

 

Future studies might test this suggested extension of the PRO model for both own and 

observed actions by modulating the necessity to adapt movements quickly (sequential vs. non-

sequential task) and, especially in observed action, the possibility to adapt actions at all 

(observation vs. joint-action tasks, see Loehr et al., 2013; Paas et al., 2021). Additionally, the 

continuous, non-dichotomous, nature of the signal should be tested by introducing multiple 

valence levels (correct, almost-error, small error, large error etc.) and extending findings on 

multiple expectancy levels (from highly expected to highly unexpected, possibly by modulating 

both signed and unsigned prediction errors). To further corroborate the dissociation between 

expectancy and error severity, participants’ expectancy regarding the action should be assessed 

directly after each trial. 

Conclusion 

 In conclusion, our results offer first evidence for a continuous error severity coding in the 

brain during active action processing. Crucially, our results suggest that this effect cannot be 

(only) attributed to expectancies, suggesting a reliance on a more general need-to-adapt signal in 

action processing. In contrast, not error severity but possibly expectancy modulated observed 

action monitoring, which is in line with prediction error coding and updating predictions. The 

divergent findings between action and observation concerning the effect of error severity might 

hint at the representation of different continuous need-to-adapt signals in the mPFC, with 

different signals playing larger roles in action or observation, respectively. This suggested 

extension of the PRO model (Alexander & Brown, 2011) should be tested empirically by 

introducing multiple valence and (extending previous research, see Albrecht & Bellebaum, 

2021b; Ferdinand et al., 2012) expectancy levels, and manipulating the significance of action 

adaptation in own and observed action monitoring.  
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Table 1 

Design Matrix of the factor Event Type 

 

 Small Error Correct Large Error 

Small Error 0.66 -0.33 -0.33 

Correct -0.33 0.66 -0.33 

Large Error -0.33 -0.33 0.66 

Note. The first line depicts the baseline condition.  



EFFECTS OF OWN AND OBSERVED ERROR SEVERITY 62 

 

Table 2 

Means and Standard Deviations for Difficulty, Event Type Frequency and Insecurity by Event 

Type for Experiment 1. 

 

Difficulty (in % errors) 

 M SD 

Correct 20.02 0.22 

Small Error  29.92 0.85 

Large Error  30.81 1.45 

Event Type Frequency (in % of all events) 

 M SD 

Correct 90.33 3.34 

Small Error  4.73 2.05 

Large Error  2.08 1.66 

Insecurity (in velocity, absolute deviation from mean 

velocity) 

 M SD 

Correct 9.68 0.14 

Small Error  11.64 0.50 

Large Error  8.59 0.61 
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Table 3 

Means and Standard Deviations for Event Type Frequency and Difficulty by Observed Event 

Type for Experiment 2. 

 

Difficulty (in % correct) 

 M SD 

Correct 19.12 0.29 

Small Error  27.22 1.30 

Large Error 27.70 1.32 

Event Type Frequency (in % of all events) 

 M SD 

Correct 88.17 2.05 

Small Error  4.94 1.40 

Large Error  3.31 0.79 

Note. M = Mean, SD = Standard Deviation. As all participants saw the same videos (except some 

minor variation due to technical errors), standard deviations are driven only by differences 

between videos (and, as for difficulty, differences between notes), but not by differences between 

participants. 
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Figure 1 

Setup of Experiment 1 
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Figure 2 

Sequence Structure of Experiment 1 
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Figure 3 

ERPs as a function of Event Type for Experiment 1 

 

Note. Figure A displays the ERPs respective to the event (correct keypress, small error or large 

error). Figure B displays the ERPs aligned for the negative peak latency identified for each 

participant and condition; Figure C displays the ERPs aligned for the respective preceding 

positive peak latency.  
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Figure 4 

ERPs as a function of Correction for Experiment 1 

 

Note. Figure A displays the ERPs respective to the event (small corrected error or small 

uncorrected error). Figure B displays the ERPs aligned for the negative peak identified for each 

participant and condition; Figure C displays the ERPs aligned for the respective preceding 

positive peak. 
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Figure 5 

Sequence structure in Experiment 2 
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Figure 6 

ERPs of observers as a function of Observed Event Type (Experiment 2). 

 

Note. Figure A displays the ERPs respective to the event (observed correct keypress, observed 

small error or observed large error). Figure B displays the ERPs aligned for the negative peak 

identified for each observer participant and condition; Figure C displays the ERPs aligned for the 

respective preceding positive peak.  
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Figure 7 

ERPs of observer participant as a function of Correction (Experiment 2). 

 

Note. Figure A displays the ERPs respective to the event (small corrected error or small 

uncorrected error). Figure B displays the ERPs aligned for the negative peak identified for each 

observer participant and condition; Figure C displays the ERPs aligned for the respective 

preceding positive peak 


