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2 Introduction

There has been continuous attention drawn onto the issues regarding compe-

tition from the economists, market agents and policy makers. While these issues

are important in the study of market efficiency and social welfare, they also bring

up significant complexity due to the heterogeneity of market agents, the mul-

tiplicity of competition tools, the difference in exogenous market features, etc.

Here, I mainly discuss three types of market environments: credence goods mar-

kets, platform competition with network effects, and capacity precommitment

and price competition in the markets with perfectly inelastic demand.

Chapter 1 discusses the fraudulent behavior and market inefficiency in cre-

dence goods markets. The most distinctive feature in such markets for expert

services is that there is significant information asymmetry among market agents.

Different from many other traditional markets, customers seeking for expert ser-

vices usually lack the knowledge of what kinds of problems they have as well as

the treatment quality they receive. Naturally, sufficient information advantage

is granted to the experts as they can learn the needs of their customers by per-

forming diagnosis and provide the treatments or services. Given this feature,

fraudulent behaviors are the main concern in such markets and have essential

influence on market efficiency.

Many studies have addressed the fraudulent behaviors in markets for expert

services. Certainly, their predictions do not all match real-life observations,

depending on their specific assumptions. In the seminal paper by Dulleck and

Kerschbamer (2006), a general theoretical model is developed to analyze experts’

behaviors and market outcomes. They mainly show that, with some specific as-

sumptions, efficient market outcome, in which experts always provide the proper

treatments and all the customers are treated, can be sustained in equilibrium.

However, these results are mainly built on an implicit assumption that experts

can always perform perfect diagnosis. Many real-life observations suggest that

experts’ diagnostic ability can hardly be perfect. Using a quasi-experimental

approach, Xue et al. (2019) find that lack of sufficient diagnostic knowledge is

an important driver of the large amount of inappropriate antibiotic prescription

in rural China. By studying the performance of radiologists in the U.S., Chan

et al. (2022) show that diagnostic skills play an important role in explaining the

variation of their diagnostic performance of pneumonia.

To study how diagnostic abilities affect market outcomes in credence goods
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markets, we extend the model in Dulleck and Kerschbamer (2006) by assum-

ing that experts are heterogeneous in their diagnostic abilities. We find that

inefficient market outcomes are possible in equilibrium when customers cannot

observe experts’ abilities before entering the market.

Chapter 2 takes the view onto platform competition, of which the market

features and analysis differ from traditional markets in several aspects. First,

as platforms facilitate the interactions of market agents from different groups,

the utilities of the agents depend not only on the goods or services they purchase,

but also on the network size they are associated with. Second, given the features

of agents’ utilities, price structures of platforms also appear in a different form

from that of traditional markets (see Armstrong (2006) and Tan and Zhou

(2021)). The third one is the interdependency of equilibrium prices on different

sides (see-saw effects). Since agents value network size, lowering the price on

one certain side may lead to price increase on the other side(s) (see Rochet and

Tirole (2003) and Weyl (2009)).

Inspired by the price interdependency in such markets, I study a model of

platform competition with endogenous locations. My results show that the

equilibrium locations depend on the specified pricing policies and competi-

tion modes. Considering mill pricing policy and unbalanced competition, I find

that, in contrast to the principle of maximum differentiation in the standard

Hotelling model, platforms may choose to have more intensified competition on

one side, when the difference of cross-sided network externalities is sufficiently

high. Given this pricing policy, the principle of maximum differentiation still

holds under balanced competition. With discriminatory delivered pricing policy,

the tendency of agglomeration emerges in equilibrium under both unbalanced

and balanced competition. Actually we can find out that location choices can

also play the role of commitment device in the market.

In the third chapter, I discuss another kind of commitment device in a dif-

ferent setup, in which firms decide on their capacities prior to price compe-

tition. Using a downward sloping demand function, Kreps and Scheinkman

(1983) prove that this two-stage game finally yields Cournot outcome. I mod-

ify the model in Kreps and Scheinkman (1983) by assuming perfectly inelastic

demand and analyze the equilibrium outcomes with different cost structures. I

provide complete characterizations of the best responses in the stage of capac-
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ity decisions. My results mainly show that the monopoly outcome can always

be sustained in equilibrium. In addition, there exists a capacity equilibrium in

which only a fraction of consumers are served with increasing marginal cost of

capacity installation.
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1.1 Introduction

In markets for expert services – such as medical treatments, repairs, and fi-

nancial and legal advice – diagnostic abilities differ across experts and are far

from perfect. For instance, Chan et al. (2022) show that skill plays an impor-

tant role in pneumonia diagnoses by U.S. radiologists; Xue et al. (2019) show

in their quasi-experimental study that lack of sufficient diagnostic knowledge is

an important driver of the large amount of inappropriate antibiotic prescription

in rural China; and the ECDC Technical Report (2019) finds that “uncertain

diagnosis” was a common reason for antibiotic prescribing in cases in which pre-

scribers (mostly medical doctors in EU/EEA countries) would have preferred

not to prescribe (26% stated this as a reason occurring at least once during the

previous week).1

Nevertheless, the theoretical literature following Dulleck and Kerschbamer

(2006) generally assumes that experts can perfectly diagnose their customers’

problems, and sometimes makes predictions that do not seem to be in line

with real-world observations. For example, Dulleck and Kerschbamer (2006)

highlight that fraudulent behavior does not occur, and experts serve customers

efficiently when customers are ex ante homogeneous, when they are commit-

ted to undergoing treatment after receiving a diagnosis, and when either the

treatment is verifiable, or experts are liable; yet, inadequate treatments are an

important issue in real-life credence goods markets.2

We theoretically analyze whether and how experts’ diagnostic abilities change

1Further examples include Lambert and Wertheimer (1988) (diagnoses of psychopathol-
ogy), Brammer (2002) (psychological diagnoses), Coderre et al. (2009) (diagnostic perfor-
mance for clinical problems), Kondori et al. (2011) (diagnoses by dentists), and Mullainathan
and Obermeyer (2022) (diagnoses of heart attacks).

2In the U.S. healthcare market, for example, the FBI estimates that up to 10% of the 3.3
trillion US$ of yearly health expenditures are due to fraud (Federal Bureau of Investigation,
2011). For an overview of the phenomenon of so-called physician-induced demand (PID), see
McGuire (2000). Gottschalk et al. (2020) show that 28% of dentists’ treatment recommenda-
tions involve overtreatment recommendations. Fraud in repair services has been documented
for cars (Taylor, 1995; Schneider, 2012; Rasch and Waibel, 2018), cellphones (Hall et al.,
2019), and computers (Kerschbamer et al., 2016, 2019; Bindra et al., 2020). Balafoutas et al.
(2013) and Balafoutas et al. (2017) document fraud in the market for taxi rides. Moreover,
fraudulent behavior has been reported in several lab experiments on credence goods (see, for
instance, Dulleck et al., 2011; Mimra et al., 2016a,b). Kerschbamer and Sutter (2017) provide
an overview of the experimental literature on credence goods markets.
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the market outcome in a credence goods market. Our model captures two types

of scenarios that represent a wide range of important real-life credence goods

markets. First, our set-up applies to those markets in which customers require

immediate care, and in which experts must rely on talent, experience, or specific

knowledge (for example, mathematical and statistical skills), which cannot be

acquired or extended in the short or medium term.3 Such a limitation to invest

in skills may also be due to capacity or time constraints. Another reason for a

lack of investment may be that experts are not even aware of their limited skills

for a specific task. On a related note, we stress that incorrect diagnoses occur

despite the high entry barriers in such markets in which experts are required to

have a specific qualification. This may be due to the fact that certain skills are

not included in the curriculum in the certifying stage.4

Second, as we show in an extension, our results extend to many situations in

which experts exert unobservable effort to increase their diagnostic ability, or

in which such effort is observable, but experts are homogeneous with regard to

the effort costs involved.

Importantly, we assume that prices are not completely fixed,5 and that they

are at least partially borne by customers, as is the case for most repair ser-

vices and many dental and some medical treatments in numerous countries.

Whereas it is true that costs for many of the above-mentioned services are cov-

ered by insurance, customers often have to pay rather large amounts for some

3Brush Jr et al. (2017) provide an overview of research that analyzes diagnostic decision-
making by expert clinicians. The authors highlight the importance of expertise and experience
when they conclude that “[t]he ability to rapidly access experiential knowledge is a hallmark
of expertise. Knowledge-oriented interventions [...] may improve diagnostic accuracy, but
there is no substitute for experience gained through broad clinical exposure” (pp. 632–633).

4For example, in Germany, it is criticized that physicians are not sufficiently trained
in mathematics and statistics during their university studies, which may be problem-
atic for the success of the vaccination campaign to fight the spread of COVID-19 (see
https://www.spiegel.de/panorama/bildung/corona-impfung-warum-fehlende-

mathekenntnisse-unter-aerzten-den-impferfolg-gefaehrden-a-8ce4fb92-69b9-4212

-9064-cff9b8bbd4b0, accessed on January 5, 2023).
5For example, the website clearhealthcosts.com reports that for

magnetic resonance imaging (MRI), different facilities (hospital, radiol-
ogy center, doctor’s office) charge a great range of diverging prices. See
https://clearhealthcosts.com/blog/2012/11/how-much-does-an-mri-cost-part-2/

(accessed on January 5, 2023).
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of these services out of their own pocket.6 For instance, Adrion et al. (2016)

analyze medical claims for inpatient hospitalizations across the United States.

The authors find that out-of-pocket spending is substantial, even among insured

individuals.7 For healthcare in China, Li et al. (2017) stress the low reimburse-

ment caps in outpatient care, leading to a coverage of only three to five typical

outpatient visits. In addition, not all services are covered by health insurance.

On a more general note, according to OECD (2019), patients in OECD countries

on average pay one in every five health dollars out of their own pocket, where

out-of-pocket payments vary across services and goods. On average, almost

two-thirds of dental care spending are paid directly.8

Our model bases on the standard credence goods model by Dulleck and Ker-

schbamer (2006).9 A credence good is a good for which customers do not know

which type of quality they need. By contrast, experts learn the necessary quality

after performing a diagnosis. Because experts often perform both the diagnosis

and the treatment, experts may exploit their informational advantage in one

of three different ways. First, when experts overtreat customers, they provide

more expensive treatments than necessary. Second, when experts undertreat

their customers, they provide an insufficient treatment. Third, when experts

overcharge their customers, they charge for more expensive treatments than

provided. In this paper, we focus on the first two forms of fraud and the inef-

ficiencies caused by such a behavior. In our set-up, (inefficient) overtreatment

and/or undertreatment can occur due to the heterogeneity in experts’ diagnos-

tic abilities. Experts can have low or high diagnostic ability, but customers do

not observe the type of experts with whom they interact. We are interested in

how such differences in diagnostic quality affects expert behavior and market

efficiency, and whether better diagnostic abilities yield more efficient outcomes.

In contrast to earlier contributions (see the literature overview below) and mo-

6For experimental studies that analyze the implications of insurance coverage in the con-
text of credence goods markets, see Kerschbamer et al. (2016) and Balafoutas et al. (2020).

7Moreover, Pham et al. (2007) use data from a survey among American physicians, and
find that physicians do not routinely consider patients’ out-of-pocket costs when making
decisions with regard to more expensive medical services.

8Note also that co-payments or partial insurance in percentage terms could be readily
incorporated into the model, resulting in different equilibrium prices, but without changing
the results qualitatively. Because this is not the focus of this paper, we abstract away from
such payments.

9The seminal article on credence goods markets is by Darby and Karni (1973).
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tivated by the above-mentioned circumstances in many credence goods markets,

our basic model assumes that diagnosis outcomes are exogenous, that is, more

effort or higher investments do not affect diagnostic quality. This has important

welfare implications because always recommending the major or minor treat-

ment can be socially optimal in this case.

Our results can be summarized as follows. As a benchmark, we analyze the

situation in which expert types are known. In this case, we find that a low-ability

expert who performs a correct diagnosis only with some probability – just like a

high-ability expert who always correctly identifies a customer’s major or minor

problem – efficiently serves the market. In contrast to a high-ability expert

type, however, such efficient behavior can require to always perform the major

or minor treatment.

With unobservable types, multiple pooling equilibria exist. There always

exists an efficient equilibrium. Depending on the diagnostic ability and the

probability for a high-ability expert type, inefficient equilibria can also exist,

which means that increasing the observability of types – for example, via certi-

fication – weakly increases efficiency in our setting. An inefficient equilibrium is

characterized by the low-ability expert type relying on the diagnosis too often,

by both types always providing the major treatment, or by both types always

providing the minor treatment. Increasing the probability for a high-ability ex-

pert type or marginally improving the low-ability’s diagnostic ability can be a

pure waste. When the expert types and the customers coordinate on an equilib-

rium in which both types exclusively provide the major treatment, the increase

in the probability of a high-ability expert and the improvement in diagnostic

ability do not lead to a better market outcome. A sufficiently strong increase

in the low-ability expert’s diagnostic ability, however, guarantees an efficient

outcome. We also show that our results are robust to certain forms of diag-

nosis effort and to competition. Moreover, we find that warranties or fines are

effective policy tools when the success or the failure of a treatment is verifiable.

The remainder of the paper is organized as follows. In the next section, we

provide an overview of the related literature. We describe the model set-up

in Section 1.3. In Section 1.4, we derive the equilibria, distinguishing between

the cases of observable types (Section 1.4.1) and unobservable types (Section

1.4.2). In Section 1.5, we discuss the different equilibria in terms of efficiency
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and comparative statics and analyze extensions of our model: diagnosis effort,

competition, and fines and warranties. Section 1.6 concludes and provides some

policy implications.

1.2 Related Literature

Our paper is related to the literature investigating expert heterogeneity in cre-

dence goods markets. Typically, the literature offers evidence that the effi-

ciency benchmark result with homogeneous experts and customers and liability

or verifiability breaks down when heterogeneity is introduced.10 Dulleck and

Kerschbamer (2009) investigate credence goods markets with heterogeneous ex-

perts in a retail environment.11 Customers need a costly diagnosis to find out

which service they need. High-ability experts (“specialized dealers”) can provide

a diagnosis, whereas low-ability experts (“discounters”) cannot. High-ability

experts can provide both minor and major services. By contrast, low-ability

experts can only provide the minor service.12 In a dynamic set-up in which cus-

tomers can visit multiple experts, the incentive for experts to provide a diagnosis

diminishes if customers’ switching costs are sufficiently low.13

Frankel and Schwarz (2014) also employ a dynamic set-up, to study experts

heterogeneous with respect to their costs. Customers return to an expert who

provides the minor treatment and visit another expert with positive probabil-

ity if they receive a major treatment when costs are observable. If experts’

costs are not observable for customers, the first best cannot be implemented.

10Emons (1997, 2001) does not rely on heterogeneity, but shows that if a monopolist ex-
pert’s capacities are not fully utilized, the expert fills these unused capacities by overtreatment.
Gottschalk et al. (2020) provide experimental evidence.

11Fong (2005), Dulleck and Kerschbamer (2006), Hyndman and Ozerturk (2011), and Jost
et al. (2021) study customer heterogeneity in credence goods markets. Szech (2011) analyzes
expert heterogeneity in a health-care market with one type of problem.

12Alger and Salanié (2006) and Obradovits and Plaickner (2020) also look at settings with
(observable) high-ability experts and discounters, but they only consider the case in which
the high type’s diagnostic ability is exogenously perfect, and the discounter’s ability is non-
existent.

13By contrast, Bester and Dahm (2018) build on Dulleck and Kerschbamer (2009) and
allow for an additional service in the second period in case the service in period one turns
out to be insufficient, where the delay in service is costly. The authors show that if the delay
costs are sufficiently high – that is, if a second service does not improve customers’ utilities
–, the first-best allocation can be implemented.
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Relatedly, Hilger (2016) extends Dulleck and Kerschbamer (2006)’s model by

assuming heterogeneity in experts’ treatment costs. Treatment costs are no

longer observable to customers. Hence, experts cannot credibly signal to pro-

vide the appropriate treatment anymore.14 Then, experts can take advantage

of their expert status, resulting in equilibrium mistreatment in a wide range of

price-setting and market environments.15

Moreover, Kerschbamer et al. (2017) find theoretical and experimental evi-

dence that inefficient market outcomes with fraud can arise due to the hetero-

geneity in experts’ social preferences. In particular, experts displaying a strong

inequity aversion are reported to overtreat or undertreat customers to reduce

differences in payoffs.

All of those papers look at very different dimensions of expert heterogeneity

that are unrelated to differences in diagnostic abilities, and thus complement

the mechanisms and policy implications in our paper.

The article closest to ours is Schneider and Bizer (2017a), who offer an exten-

sion of the setup in Pesendorfer and Wolinsky (2003).16 Whereas Pesendorfer

and Wolinsky (2003) assume that experts are homogeneous and must decide

whether they exert high or low diagnosis effort, Schneider and Bizer (2017a)

consider two types of experts. Again, both types must decide whether to ex-

ert high or low diagnosis effort, and both types perform an accurate diagnosis

when they choose high effort. Experts differ, however, when they decide to

only exert low effort: In this case, the low-ability expert type always misdi-

agnoses a customer’s problem, which is drawn from a continuum of problems,

but the high-ability expert type recommends the accurate treatment with some

probability. In contrast to the present setup, customers can search for multiple

14Liu (2011), Fong et al. (2014) (in an extension), and Heinzel (2019a) study a credence
goods market with selfish and conscientious experts. The authors show that the existence of
conscientious experts in a market can lead to a more fraudulent behavior of the selfish type.

15Heinzel (2019b) studies the impact of expert heterogeneity with respect to cost for treat-
ing a minor problem on the customers’ search for second opinions.

16Chen et al. (2022) analyze a model in which experts sometimes have heterogeneous
diagnosis costs. Inderst and Ottaviani (2012a,b,c) and Inderst (2015) consider homogeneously
imperfect diagnostic abilities in markets for financial advice. Balafoutas et al. (2020) study
the interaction of homogeneously imperfect diagnostic abilities and insurance coverage. Fong
et al. (2021) analyze a model in which doctors with homogeneously imperfect diagnostic
abilities can refer patients to labs for (further) testing. Schniter et al. (2021) experimentally
investigate the interaction of a rating system and both (homogeneous) diagnosis and service
uncertainty.
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opinions. The authors find that with a sufficient number of high-ability experts,

there is the possibility for a second-best equilibrium in which welfare is maxi-

mized even without a policy intervention of fixing prices. Moreover, in line with

Pesendorfer and Wolinsky (2003), given a small share of high-ability experts, a

second-best equilibrium requires fixed prices.

Schneider and Bizer (2017b) experimentally test this model.17 They find that

experimental credence goods markets with expert moral hazard regarding the

provision of truthful diagnoses are more efficient than predicted by theory. With

regard to better expert qualification (in the sense of a larger share of high-ability

experts), the authors find that market efficiency increases with fixed prices but

remains unaffected or even declines with price competition.

Finally, Crettez et al. (2020) show that awareness campaigns may reduce

overtreatment in a setting in which experts have different diagnostic abilities.

Crucially, experts in their setting do not set prices, and respond to moral rather

than direct monetary incentives of the different treatments. Moreover, low-

ability experts do not get any information from the diagnosis in their setting.

1.3 Model

Building on Dulleck and Kerschbamer (2006), we consider the following cre-

dence goods market with a mass one of customers and a monopolistic expert.

Each customer is aware that they have a problem, and that they need a major

treatment with probability h or a minor treatment with probability 1−h. Each

customer decides whether to visit the expert. When customers decide to do so,

they are committed to undergoing the recommended treatment and paying the

price charged for that treatment.18 Customers can verify the treatment per-

formed and can see whether the treatment is sufficient to solve the problem.

17In a similar framework with ex-ante homogeneous experts, Momsen (2021) experimentally
investigates how transparency influences outcomes in credence good markets.

18A possible justification for this assumption is that search costs may simply be too high,
and that these costs are not outweighed by the potential savings from searching for a second
opinion and avoiding an unnecessary major treatment. In general, what happens if customers
are not committed to undergoing the recommended treatment is already an interesting ques-
tion in itself (see, for example, Fong et al. (2014)). For homogeneous experts, Baumann
and Rasch (2022) analyze how diagnostic uncertainty interacts with customers’ possibility to
search for a second opinion.
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Hence, customers can observe undertreatment but not overtreatment. If the

problem is solved, a customer receives a gross payoff equal to v. If it is not

solved, a customer receives a gross payoff of zero. Like most of the literature,

we assume that customers are rational and indifferent customers decide in favor

of a visit.

The expert can be one of two types, which is common knowledge.19 When

the expert has high diagnostic ability, which happens with commonly known

probability x, he performs an accurate diagnosis with certainty (at no cost),

that is, he identifies the necessary treatment without making mistakes.20 When

the expert has low ability, which happens with probability 1 − x, he performs

an accurate diagnosis with commonly known probability q ∈ [1/2, 1).21 Hence,

a low-ability expert can make two types of errors, which occur both with prob-

ability 1 − q. When the expert makes a false positive error, he diagnoses a

major problem, although the customer only has a minor problem. Under a false

negative error, the expert diagnoses a minor problem, but the customer has a

major problem.

The expert has costs of c̄ and c
¯
for providing the major and minor treatment

(with c
¯
< c̄). The major treatment solves any of the two problems, whereas

the minor treatment only solves the minor problem. We assume that v > c̄

holds, which means that it is always (that is, even ex post) efficient to treat

a customer. Furthermore, the expert sets prices p̄ and p
¯
for the major and

minor treatment and charges the customer for the recommended (verifiable)

treatment. An expert’s profit amounts to the price-cost margin per customer

treated. When customers do not visit the expert, the expert makes zero profit.

We assume that the expert cannot be held liable when providing an insufficient

19One can extend our model to n types. Where applicable, the expert with the lowest
ability determines thresholds. Our results do not change qualitatively, but the notation would
become cumbersome.

20Our results would not change qualitatively if the high-ability expert type also made
mistakes (with a lower probability than the low-ability expert type). Moreover, our results
are largely robust to a (potentially heterogeneous) small positive diagnosis cost (when the
performance of a diagnosis is verifiable). It would simply reduce profits as long as both types
make non-negative profits. Otherwise, the type with the higher diagnosis cost will not serve
any customers.

21Note that a probability lower than one half does not make sense because in this case, the
expert could provide better services by performing the treatment that was not diagnosed.
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treatment.22

The timing of events, which is illustrated in Figure 1.1, is as follows:

1. Nature determines whether the expert has high ability (with probability

x) or low ability (with probability 1 − x).

2. The expert learns his type and chooses a price vector P = (p̄, p
¯
), which

specifies a price for each of the two treatments.

3. Customers observe the prices, form beliefs µ(P) that an expert setting a

price vector P is a high-ability expert, and decide whether to visit the

expert. When customers do not visit the expert, the game ends, and both

players receive payoffs of zero.

4. When customers visit the expert, nature determines whether they have a

major problem (with probability h) or a minor problem (with probability

1− h).

5. When the expert has low ability, nature determines the outcome of the

diagnosis, which is accurate with probability q. A low-ability expert type

has beliefs µ̄ (
¯
µ) that a customer indeed faces the major (minor) problem

when the diagnosis points to a major (minor) problem. A high-ability

expert type always performs an accurate diagnosis.

6. The expert recommends and performs a treatment and charges the price

for that treatment. Then, payoffs realize.

Whereas a customer only decides whether to visit an expert, an expert’s

strategy consists of a (potentially type-dependent) price vector and a treatment

decision that can depend on the type, the price vector, and the signal.

1.4 Analysis and Results

Now we derive the (non-trivial) equilibrium outcomes in the credence goods mar-

ket specified above. We distinguish between two cases in which expert types

22We discuss liability in Section 1.5.5.
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Notes: We refrain from explicitly stating the treatment choice in the game tree because due

to verifiability, the expert’s price choice implies the respective treatment. Note further that

the first (second) entry in the payoff vector represents customer (expert) payoff.

Figure 1.1: Timing of events in the expert market.

are (i) observable and (ii) unobservable. We employ subgame-perfect equilib-

ria and perfect Bayesian equilibria when analyzing games with complete and

incomplete information. By “non-trivial”, we mean equilibria with interaction,

that is, we exclude equilibria in which the customer believes that an indifferent

expert would recommend the opposite of what he should recommend from a

customer’s point of view, and, therefore, no customer visits an expert. We start

by analyzing the benchmark case with observable types.

1.4.1 Benchmark: Observable types

To analyze the optimal pricing and treatment decisions by the two expert types,

we look at the relative price-cost margins for the two treatments.
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1.4.1.1 Price-cost margins

Three scenarios are possible: (i) The profit margin is larger for the major treat-

ment; (ii) the profit margin is larger for the minor treatment; and (iii) the profit

margins for the major and the minor treatments are the same. We focus on

those equilibria that yield the highest profits in each (sub-)scenario.

Only major treatments.

In scenario (i), the expert – independent of his type (and, hence, observability)

– finds it optimal to recommend only the major treatment, which implies that

even for a high-ability expert type, overtreatment occurs sometimes. Denote this

case by superscript o and note that a monopolistic expert always appropriates

all surplus from trade, which means that optimal prices are given by

p̄o = v (1.1)

and

p
¯

o ≤ v −∆c. (1.2)

Here, ∆c := c̄−
¯
c denotes the difference in treatment costs. The resulting profit

amounts to

πo = v − c̄. (1.3)

Only minor treatments.

In scenario (ii), the expert – again independent of his type – finds it optimal to

exclusively recommend the minor treatment to his customers. This means that

even a high-ability expert type always chooses the minor treatment, and, hence,

sometimes undertreats his customers. In this case, denoted by superscript u,

optimal prices are given by

p̄u ≤ (1− h)v +∆c (1.4)

and
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p
¯

u = (1− h)v. (1.5)

The profit in this case amounts to

πu = (1− h)v − c
¯
. (1.6)

Equal markups.

Given the observability of types, the pricing decision in scenario (iii), denoted

by superscript e, depends on the expert’s type because different abilities result

in different expected gains from trade for customers.23 Then, for a high-ability

expert type (denoted by subscriptH), the combination of the customers’ binding

participation constraint and equal markups leads to prices of

p̄e

H = v + (1− h)∆c

and

p
¯

e

H
= v − h∆c.

The profit for this expert type equals

πe

H = v − c
¯
− h∆c. (1.7)

Similarly, the prices set by the low-ability expert type, denoted by subscript

L, amount to

p̄e

L = (1− h+ hq) v + (h− 2hq + q)∆c

and

p
¯

e

L
= (1− h+ hq) v − (1− h+ 2hq − q)∆c.

The profit for this type equals

23Scenario (iii) is a special case of the other two scenarios, but for the sake of brevity, we
will not repeat the analyses of (i) and (ii) when analyzing (iii), although they also apply.
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πe

L = (1− h+ hq) v − c̄+ (h− 2hq + q)∆c. (1.8)

Note that it holds that

∂πe
L

∂q
= hv + (1− 2h)∆c > 0, (1.9)

which is due to the fact that v > c̄. Not surprisingly, because customers’ ex-

pected benefit from visiting an expert increases with the probability of receiving

the accurate (sufficient) treatment, profits increase with better abilities.

Efficiency.

Before characterizing the two types’ optimal pricing behavior, let us briefly

comment on efficiency. Efficiency is determined by two factors: (i) whether

customers’ problems are solved, and (ii) at what cost these problems are solved.

Because the expert can fully extract the surplus, the expert is interested in

maximizing customers’ expected valuation. As a consequence, the expert weighs

the additional costs of providing the more expensive major treatment against

the increase in probability that the problem is solved, realizing the customer

valuation v. As such, the expert opts for the most efficient treatment. Note

further that social welfare consists of the sum of (expected) expert and customer

surplus, where transfers between the two sides are assumed to be welfare neutral.

As a consequence, whenever an expert opts for a certain pricing scheme given

observability of the type, this is optimal from a social welfare point of view and

efficient. As mentioned, for the low-ability type, profits under equal markups

increase with better abilities, which means that the same is true for welfare.

Define Po := (p̄o, p
¯
o), Pu := (p̄u, p

¯
u), and Pe

i := (p̄e
i, p
¯
e

i
) (with i ∈ {H,L}). We

can now analyze the pricing and treatment decisions of the two types. We start

with the high-ability expert type.

1.4.1.2 High-ability expert type

The pricing decision of the high-ability expert type, if the expert can commit

to a strategy, has been studied before and can be characterized as follows:
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Lemma 1.1 (Dulleck and Kerschbamer, 2006). An observable high-ability expert

type efficiently serves all customers and sets a price vector Pe
H .

Proof. Follows from a straightforward comparison of expression (1.7) and ex-

pressions (1.3) and (1.6), respectively, and the assumption that v > c̄.

We can thus point out that the high-ability expert type benefits from offering

equal-markup prices. By doing so, the expert can charge higher markups be-

cause the expert credibly commits to treating customers honestly. At the same

time, every problem is solved at the lowest cost, that is, the outcome is efficient.

1.4.1.3 Low-ability expert type

In order to specify the optimal prices set by a low-ability expert, we note that

πo ⋚ πe

L ⇔ h ⋚
q∆c

(1− q)v − (1− 2q)∆c
=: ho

L

and

πu ⋚ πe

L ⇔ h ⋛
(1− q)∆c

qv + (1− 2q)∆c
=: hu

L.

Given these comparisons and definitions, we can state the following proposi-

tion:

Proposition 1.1. Given that a low-ability expert type makes diagnosis errors,

an observable low-ability expert type efficiently serves his customers and sets the

following prices: ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Pu if h ∈ [0, hu
L] ,

Pe
L if h ∈ (hu

L, h
o
L],

Po else.

Figure 1.2 illustrates the pricing and treatment decisions by the low-ability

expert type. We point out that always choosing the major or the minor treat-

ment can be efficient.24 For example, when the probability of a major problem

is not too low, and the probability of an accurate diagnosis is not too high, it is

optimal to always recommend and perform the major treatment. In this case,

24This is related to a similar result in Bester and Dahm (2018). There, if the diagnosis
cost is too high, it is optimal to implement a treatment without a diagnosis.
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Figure 1.2: Pricing of an observable low-ability expert type.

the likelihood of failing to solve the customer’s problem is greater than that of

unnecessarily incurring the higher costs.

We now turn to the case with unobservable expert types.

1.4.2 Unobservable types

In this part, we first present general features of the equilibrium outcomes in our

set-up. We then derive the equilibria and discuss two refinements.

1.4.2.1 Preliminaries

With regard to equilibrium profits, we can state the following:

Lemma 1.2. In any equilibrium, both expert types make the same profit.

Proof. If one expert type made a strictly higher profit in an equilibrium by

posting a certain price menu, the other type could easily mimic this offer and

make the same strictly higher profit. Because ability does not directly affect

profits here, both types make the same profit as long as they charge the same

prices.
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Note that this implies that, given a costly opportunity to invest in their

diagnostic ability, experts would not have an incentive to do so unless this was

observable.

Corollary 1.1. If expert types are unobservable, there are no private benefits

to a better diagnostic ability.

This means that in settings in which ex ante investments by experts are

important, a policymaker should try to make investments or abilities visible

(for example, through certification).

There are equilibria in which different expert types post the same price vec-

tor as well as separating equilibria. In the price-pooling equilibria, different

expert types achieve identical profits because their costs do not differ. For any

separating equilibrium, there is a price-pooling equilibrium in which the expert

provides the same treatment, and the customer pays the same price along the

equilibrium path, such that payoffs are the same. The only difference between

these two types of equilibria concerns the price for the treatment that is never

chosen. Hence, we have:

Corollary 1.2. For any separating equilibrium, there is an outcome-equivalent

equilibrium without separation in prices.

Thus, we focus on pure-strategy equilibria with price pooling. Among those,

we focus on the equilibria that yield the highest profits.25

1.4.2.2 Definition and existence of equilibria with price pooling

Given the comparison of the two price-cost margins, there are three classes of

equilibria: price pooling with (i) only major-treatment recommendations, with

(ii) only minor-treatment recommendations, and with (iii) equal markups. The

prices and profits for the first two scenarios are the same as in Subsection 1.4.1

(see expressions (1.1)–(1.6)).

To simplify the specification of the equilibria, we define the following values

of the probability for a high-ability expert type:

25Additional equilibria exist in which both expert types provide the same treatments, but
post uniformly lower prices. Customers have off-equilibrium beliefs that any expert posting
higher prices is a low-ability expert with sufficiently high probability. Hence, a customer
would not visit the expert that posts higher prices.
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x̄o := 1− (1− h)∆c

(1− q)(hv + (1− 2h)∆c)
(1.10)

and

x̄u :=
−hqv + (1− q − h+ 2hq)∆c

(1− q)(hv − (1− 2h)∆c)
. (1.11)

We start by defining the first class of equilibria:

Definition 1.1 (Major-treatment equilibria). Major-treatment equilibria with

price pooling are characterized as follows:

� Both expert types choose the price vector Po.

� Both expert types always recommend and perform the major treatment.

� The low-ability expert type has beliefs µ̄ =
¯
µ = q.

� On the equilibrium path, customers’ beliefs equal µ (Po) = x, and cus-

tomers always visit the expert.

� Off the equilibrium path, customers have beliefs:

– µ ∈ [0, x̄o] if p
¯
− c
¯
= p̄− c̄ and p̄ > p̄o,

– µ ∈ [0, 1] otherwise.

Next we define the second class of equilibria:

Definition 1.2 (Minor-treatment equilibria). Minor-treatment equilibria with

price pooling are characterized as follows:

� Both expert types choose the price vector Pu.

� Both expert types always recommend and perform the minor treatment.

� The low-ability expert type has beliefs µ̄ =
¯
µ = q.

� On the equilibrium path, customers’ beliefs equal µ (Pu) = x, and cus-

tomers always visit the expert.

� Off the equilibrium path, customers have beliefs:
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– µ ∈ [0, x̄u] if p
¯
− c
¯
= p̄− c̄ and p

¯
> p
¯

u,

– µ ∈ [0, 1] otherwise.

Let us briefly comment on the structure of these equilibria. In the major-

recommendation equilibria with price pooling, both expert types choose their

price vectors, such that they always optimally recommend the major treat-

ment, independent of the customer’s problem. Analogously, in the minor-

recommendation equilibria with price pooling, both types choose their price

vectors, such that it is always optimal to recommend the minor treatment. A

low-ability expert type believes to have received the correct diagnosis with a

probability that is equal to the accuracy of his diagnosis. Given that both ex-

pert types set identical prices, that is, no information concerning expert types

is conveyed, customers believe to face a certain expert type with the ex ante

probability that this type is chosen by nature whenever the major-treatment (or

minor-treatment) price vector is observed.

With regard to customers’ off-equilibrium beliefs, we distinguish two cases:

First, when customers observe prices that are lower than those actually charged

along the equilibrium path, there is no restriction with regard to the beliefs.

This is due to the fact that both expert types do not have any incentive to set

lower prices in the first place because this would only result in lower profits.

Second, customers would be willing to pay a higher price to the high-ability

type when they receive an appropriate treatment with a higher probability in

return. This means that customers must have a sufficiently weak belief that

an expert setting higher prices than those to be charged along the equilibrium

path indeed has high ability. Given sufficiently weak beliefs, the high-ability

type cannot make a higher profit from deviating to equal-markup prices because

customers’ expected surplus does not increase compared to a situation in which

they always receive the major or minor treatment. Comparing the profits for

these cases gives expressions (1.10) and (1.11).

We now turn to equal-markup equilibria. In these equilibria, each type of

expert may choose to either condition the treatment on the diagnosis, or to

always perform one of the two treatments. Thus, special cases of the major-

treatment and minor-treatment equilibria can be equal-markup equilibria. To

get the intuition, consider the scenario in which both types of expert follow their
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diagnosis (subscript dd). In this case, prices for equal markups are given by

p̄e

dd = (1− h+ hq − hqx+ hx) v + (h− 2hq + 2hqx− 2hx+ q − qx+ x)∆c

and

p
¯

e

dd
= (1− h+ hq − hqx+ hx) v−(1− h+ 2hq − 2hqx+ 2hx− q + qx− x)∆c.

The profit for each type equals

πe

dd =(1− h+ hq − hqx+ hx) v

− c
¯
− (1− h+ 2hq − 2hqx+ 2hx− q + qx− x)∆c. (1.12)

A comparison of profits in the different scenarios reveals that

πo ⋚ πe

dd ⇔ h ⋚
(q − qx+ x)∆c

(1− q + qx− x)v − (1− 2q + 2qx− 2x)∆c
=: ho

dd

and

πu ⋚ πe

dd ⇔ h ⋛
(1− q + qx− x)∆c

(q − qx+ x)v + (1− 2q + 2qx− 2x)∆c
=: hu

dd.

It holds that

∂ho
dd

∂q
,
∂ho

dd

∂x
> 0, (1.13)

and

∂hu
dd

∂q
,
∂hu

dd

∂x
< 0. (1.14)

Thus, both probabilities have a very similar effect on the two thresholds. This

is due to the fact that the scenarios with only major-treatment/minor-treatment

recommendations are affected by neither of the two probabilities because the

two expert types do not differ in their recommendations. Under equal-markup

pricing, efficiency is affected by diagnostic quality. Because the expected gain

from interaction is always zero for the customer, however, it does not make any
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difference for the customer from an ex ante point of view whether the customer

faces a high-ability expert with probability x (and consequently receives the

accurate treatment with certainty), or whether the customer faces a low-ability

expert type and receives the accurate treatment with probability q.

More generally, let Pe
jk := (p̄e

jk, p
¯
e

jk
), where j ∈ {d, o, u} specifies whether

the high-ability expert type always follows his diagnosis or recommends the

major or the minor treatment, where k ∈ {d, o, u} characterizes the respective

recommendation decision for the low-ability expert type, and where

p̄e

jk = p
¯

e

jk
+∆c = x [1j=ov + 1j=u((1− h)v +∆c) + 1j=d(v + (1− h)∆c)]

+ (1− x) [1k=ov + 1k=u((1− h)v +∆c) (1.15)

+1k=d(v(1− h(1− q)) + ((1− h)q + h(1− q))∆c)] ,

where 1 is the indicator function. The profits are πe
jk = p̄e

jk − c̄.26

Given the above prices, we can define equal-markup equilibria:

Definition 1.3 (Equal-markup equilibria). Equal-markup equilibria with price

pooling are characterized as follows:

� Both expert types choose the price vector Pe
jk.

� j ∈ {d, o, u} specifies whether the high-ability expert type always follows his

diagnosis or recommends and performs the major or the minor treatment,

and k ∈ {d, o, u} does so for the low-ability expert type.

� The low-ability expert type has beliefs µ̄ =
¯
µ = q.

� On the equilibrium path, customers’ beliefs equal µ(Pe
jk) = x, and cus-

tomers always visit the expert.

� Off the equilibrium path, customers have beliefs:

26Note that our results do not depend on the assumption that the low-ability ex-
pert type’s diagnosis is correct with a probability q that does not depend on the un-
derlying problem. If we allow for that and let q̄ and q

¯
be the according probabilities,

we have p̄e
jk = p

¯
e

jk
+ ∆c = x [1j=ov + 1j=u((1− h)v +∆c) + 1j=d(v + (1− h)∆c)] + (1 −

x)
[︁
1k=ov + 1k=u((1− h)v +∆c) + 1k=d(v(1− h(1− q̄)) + ((1− h)q

¯
+ h(1− q̄))∆c)

]︁
.
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– µ ∈ [0, x] if p
¯
− c
¯
= p̄− c̄ and p

¯
> p
¯

e

jk
,

– µ ∈ [0, 1] otherwise.

Given identical markups, any treatment recommendation is equally profitable

for an expert – independent of his type. As in the previously defined equilibria,

a low-ability expert type believes to have received the correct diagnosis with

a probability that equals the accuracy of his diagnosis. Again, no information

concerning expert types is revealed through the price setting, which means that

customers believe that they face a certain expert type with this type’s (ex ante)

probability to be selected by nature whenever the equal-markup price vector is

posted by the expert.

With regard to customers’ off-equilibrium beliefs, prices that are higher than

those to be charged along the equilibrium path must be accompanied by a

sufficiently weak belief that the expert has high ability.27 Again, there is no

restriction with respect to the beliefs when customers observe prices that are

lower than those charged along the equilibrium path.

Using these definitions, we can thus state equilibrium existence as follows:

Proposition 1.2. The existence of equilibria with price pooling is characterized

as follows:

(i) For h ∈ [0, hu
L], there exist minor-treatment equilibria;

(ii) for h ∈ [ho
L, 1], there exist major-treatment equilibria;

(iii) for h ∈ [0, 1], there exist equal-markup equilibria.

There exist several different types of equal-markup equilibria, some of which

appear to be implausible. The usual equilibrium selection criteria do not have

bite here because the expert’s type does not affect his profits directly, but only

indirectly via equilibrium prices that depend on customers’ beliefs. We continue

with a further analysis of equal-markup equilibria by imposing two assumptions

on equilibrium selection that are relevant in different contexts.

27We constrain off-equilibrium beliefs in that case by assuming that customers believe that
indifferent experts will not hurt them on purpose. More precisely, customers believe that
indifferent experts either follow their diagnosis or perform the ex ante optimal treatment.
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1.4.2.3 Refinements: Recommendation behavior

Having a closer look at the different recommendation options expert types have

when they are indifferent due to equal-markup pricing, we first analyze the case

in which experts follow their diagnosis. Then, we analyze the case in which

experts maximize their customers’ expected utility.

Indifferent expert type follows his diagnosis.

A scenario in which both expert types follow their diagnosis when they are

indifferent may be relevant if experts are overconfident or completely unaware

of their type, or if they might want or need to justify their decision (for example,

when presenting diagnosis outcomes in court).28

We describe the set of equilibria in this case in the following proposition:

Proposition 1.3. The existence of equilibria with price pooling when indifferent

experts follow their diagnosis is characterized as follows:

(i) For h ∈ [0, hu
L], there exist minor-treatment equilibria;

(ii) for h ∈ [hu
dd, h

o
dd], there exist equal-markup equilibria in which each expert

type follows his diagnosis; and

(iii) for h ∈ [ho
L, 1], there exist major-treatment equilibria.

Because hu
dd < hu

L and ho
dd > ho

L, there are multiple equilibria for some values

of h but not for others.

Figure 1.3 illustrates the existence of the different equilibria. In all figures,

the size of the gray areas (that is, combinations of q and h) is determined by

customers’ off-equilibrium beliefs when observing higher (equal-markup) prices

than those to be charged in the respective equilibria. The figures show the

largest possible size of gray areas when higher-than-equilibrium equal-markup

prices lead customers to believe that they face a low-ability expert type with

certainty. When the customers’ off-equilibrium belief about the probability of

a high-ability expert type increases, the parameter space where major- and

minor-treatment equilibria exist shrinks.

28Note that following their diagnosis may come with another benefit that we abstract away
from in our analysis: A low-ability expert might learn and improve his ability over time.
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Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty. When the customers’ off-equilibrium belief about the probability of a high-ability

expert type increases, the parameter space where major- and minor-treatment equilibria ex-

ist shrinks.

Figure 1.3: Equilibrium pricing when an indifferent expert type follows his
diagnosis.

Indifferent expert type maximizes customers’ expected utility.

If both expert types maximize their customers’ expected utility when they are

indifferent, after setting the prices, experts behave as if their type were ob-

servable, that is, the high-ability expert type will always follow his diagnosis,

whereas the low-ability expert type will only do so if his diagnosis is correct

with a sufficiently high probability. Otherwise, the low-ability expert type will

always perform the major or the minor treatment, depending on which will lead

to a higher expected utility for customers. The set of equilibria in this case is

described in the following proposition:

Proposition 1.4. The existence of equilibria with price pooling when indifferent

experts maximize customers’ expected utility is characterized as follows:
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(i) For h ∈ [0, hu
L], there exist minor-treatment equilibria;

(ii) for h ∈ [ho
L, 1], there exist major-treatment equilibria;

(iii) for h ∈ [0, 1], there exist equal-markup equilibria. In those, the high-ability

expert type always follows his diagnosis. The low-ability expert type follows

his diagnosis if h ∈ (hu
L, h

o
L], always performs the minor treatment if h ∈

[0, hu
L], and always performs the major treatment if h ∈ (ho

L, 1].

Figure 1.4 illustrates the existence of the different equilibria.
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Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty. When the customers’ off-equilibrium belief about the probability of a high-ability

expert type increases, the parameter space where major- and minor-treatment equilibria ex-

ist shrinks.

Figure 1.4: Equilibrium pricing when an indifferent expert type maximizes his
customers’ expected utility.
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1.5 Discussion

In this section, we discuss the welfare properties of the equilibria considered and

analyze how better diagnostic outcomes impact the efficiency of these equilibria.

Moreover, we analyze how robust our results are to diagnosis effort, competition,

and fines and warranties.

1.5.1 Efficiency and welfare

We compare efficiency and social welfare in the equilibria derived in the previous

section. A first observation is that the minor-treatment and the major-treatment

equilibria are never efficient because the high-ability type could always provide

the correct diagnosis, which would result in cost savings. By contrast, the equal-

markup equilibria in which the low-ability expert type maximizes his customers’

utility are the efficient equilibria. For h ∈ (hu
L, h

o
L], these efficient equilibria

coincide with the equal-markup equilibria in which both expert types follow

their diagnosis. For all other parameter values, the equal-markup equilibria in

which both expert types follow their diagnosis are inefficient. We can hence

state the following result:

Proposition 1.5. Consider the equal-markup equilibria in which the high-ability

expert type always follows his diagnosis, and the low-ability expert type follows

his diagnosis if h ∈ (hu
L, h

o
L], performs the minor treatment if h ∈ [0, hu

L], and

performs the major treatment if h ∈ (ho
L, 1]. These equilibria are efficient. The

maximum prices and the resulting profits are weakly higher than those in any

other equal-markup equilibrium with price pooling.

We can use this insight to analyze the effects of improvements in diagnostic

quality.

1.5.2 Better diagnostic performance

From a policy perspective, it is an important question whether better diagnostic

performance improves the market outcome (that is, efficiency and social welfare)

– especially when such an endeavor involves substantial costs. An improvement

can come in two forms: First, the low-ability expert type may become better at
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supplying an accurate diagnosis (that is, q increases). Second, the probability

that an expert is a high type increases (that is, x increases). We discuss each

improvement separately and start with better diagnostic precision.

1.5.2.1 Increase in diagnostic precision

The effect of an increase in the diagnostic precision crucially depends on the ex

ante probability of customers with a major problem and the equilibrium that

is played. We first outline the impact of an increase in diagnostic precision

on social welfare under the efficient equilibria. Then, we compare how social

welfare in the other equilibria is affected by an increase in diagnostic precision.

For the efficient equilibria and a high ex ante probability of customers having

a major problem (h ∈ (ho
L, 1]), the low-ability expert always provides the major

treatment. Hence, a marginal increase in the diagnostic precision does not

change the surplus. This also holds for a low likelihood that customers suffer

from a major problem (h ∈ [0, hu
L]), where the low-ability expert always chooses

the minor treatment independent of his diagnostic signal. By contrast, whenever

customers have the major problem with some intermediate probability (h ∈
(hu

L, h
o
L]), both expert types follow their diagnostic signal. Then, a more precise

diagnosis leads to a higher surplus because the low-ability expert provides the

appropriate treatment for customers more often.

Next, we investigate the impact of a higher precision of diagnostic ability

in the other equilibria on efficiency relative to the above benchmark. We dif-

ferentiate three cases based on the ex ante probability that a customer suffers

from a major problem h: high (h > (1 + x)∆c/((1 − x)v + 2x∆c)), medium

(h ∈ (∆c/v, (1 + x)∆c/((1 − x)v + 2x∆c))), and low probability (h < (1 −
x)∆c/((1 + x)v − 2x∆c)).

For the case of a high probability for the major problem, (inefficient) major-

treatment equilibria exist besides the efficient equal-markup equilibria for low

values of q. Figure 1.5 illustrates this case. For low values of q, it is effi-

cient that a low-ability expert always provides the major treatment. Hence,

an increase in diagnostic precision neither changes the behavior of experts in a

major-treatment equilibrium nor in the efficient equal-markup equilibrium. The

inefficiency of the major-treatment equilibrium does not change. For medium

values of q, equal-markup equilibria exist in which both expert types follow their
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Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty.

Figure 1.5: Market (in)efficiency (compared to the most efficient equilibrium)
when a major problem occurs with sufficiently high probability

(h > (1+x)∆c/((1−x)v+2x∆c)), and when off-equilibrium beliefs equal zero.

diagnosis. The efficiency of these equilibria increase as the low-ability type’s di-

agnosis becomes more accurate. If customers and the expert coordinate on the

major-treatment equilibrium, the increase in diagnostic precision again does not

change efficiency. For high values of q, only the two equal-markup equilibria ex-

ist and coincide. Hence, an increase in diagnostic precision does not change

efficiency.

In the case with a medium probability for the major problem, the major-

treatment equilibria and the equal-markup equilibria in which experts follow

their diagnosis when they are indifferent exist also for low values of q. Fig-

ure 1.6 displays this case. Starting from a low value of q, an increase in the

diagnostic precision leads to a lower inefficiency in the equal-markup equilibria
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in which experts follow their diagnosis. This does not hold for the major-

treatment equilibria. There, the inefficiency persists. When q is sufficiently

high, both equal-markup equilibria coincide.
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Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty.

Figure 1.6: Market (in)efficiency (compared to the most efficient equilibrium)
when a major problem occurs with medium probability

(h ∈ (∆c/v, (1 + x)∆c/((1− x)v + 2x∆c))), and when off-equilibrium beliefs
equal zero.

The case of a low probability for the major problem is analogous to the case

of a high probability. We can thus summarize our findings in the following

straightforward proposition:

Proposition 1.6. When both types do not choose an equal-markup price vector

for h ∈ (hu
dd, h

u
L) or h ∈ (ho

L, h
o
dd), better diagnostic abilities of the low-ability

expert type have no effect on efficiency. If q > (max{hv,∆c}−h∆c)/(hv+(1−
2h)∆c), however, an increase in q increases efficiency.
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Thus, better diagnostic abilities do not necessarily lead to higher efficiency.

Naturally, if improving diagnostic abilities comes at any cost, this may decrease

welfare. If the diagnostic ability of the low-ability type becomes large enough,

however, such that there does not exist a major-treatment or a minor-treatment

equilibrium anymore, an increase in that ability is efficiency enhancing. Conse-

quently, a sufficiently strong increase in the diagnostic ability of the low-ability

type can robustly increase welfare.

1.5.2.2 Increase in probability of high-ability expert

The second dimension that may be important for a policymaker is the share

of high-ability experts in the market. This section analyzes how such a higher

share affects efficiency in the market.
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Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty.

Figure 1.7: Equilibrium pricing for combinations of q and x (for h > ∆c/v).

Figure 1.7 illustrates the existence of the different equilibria depending on the
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diagnostic precision and the probability for a high-ability expert type. A first ob-

servation is that for relatively precise diagnoses (q > (max{hv,∆c}−h∆c)/(hv+

(1−2h)∆c)), only equal-markup equilibria exist. The two equal-markup equilib-

ria coincide. For a lower diagnostic precision (q ≤ (max{hv,∆c} − h∆c)/(hv +

(1− 2h)∆c)), multiple equilibria that actually lead to different behaviors exist:

For lower values of q and high values of x, the major-treatment equilibria and

the two types of equal-markup equilibria exist. For lower values of q and x, only

the major-treatment equilibria and the efficient equal-markup equilibria exist.

With regard to the impact of an increase in the probability for a high-ability

expert, efficiency increases for high values of q (q > (max{hv,∆c}−h∆c)/(hv+

(1 − 2h)∆c)), where only equal-markup equilibria exist. For lower values of q

(q ≤ (max{hv,∆c}−h∆c)/(hv+(1−2h)∆c)) and low values of x, an increase in

the probability for a high-ability expert type leads to an increase in the surplus

under the efficient equilibrium. In the major-treatment equilibria, high-ability

experts stick to providing a major treatment, although they could provide the

appropriate treatment, which does not affect social welfare. For higher values

of x, the equilibria in which experts follow their diagnosis also exist.

An increase in x leads to a lower inefficiency as the probability for an incorrect

diagnosis by low-ability experts decreases. Figure 1.8 illustrates the case for

lower values of q.

Note that increasing neither x nor q actually decreases efficiency if there is

no direct cost of doing so. If increasing either is not free, a policymaker should

not make use of this option if players coordinate on the major- or the minor-

treatment equilibria, unless in combination with other policies that have the

potential to get rid of those equilibria, such as price regulation or increasing

transparency. A further important exception is the following: As Figure 1.7

illustrates, if the policymaker increases q not only marginally but by sufficiently

much, those equilibria do not exist anymore. Increasing x to a value smaller

than one does not have such an effect.

Proposition 1.7. When both types do not choose an equal-markup price vector

for h ∈ (hu
dd, h

u
L) or h ∈ (ho

L, h
o
dd), a higher probability of the high-ability expert

type does not decrease inefficiencies.

Whereas a sufficiently large increase of the low-ability type’s diagnostic abil-



1.5. Discussion 37

0 1

0

(1−q)hv−(h−2hq+q)∆c
(1−q)hv+(1−q)(1−2h)∆c

(1 − h)∆c

x

S
c
o
p
e
o
f
in

e
ffi

c
ie
n
c
y

Pe
do

Po

Pe
dd

Note: The size of the gray area (that is, combinations of q and h) is determined by cus-

tomers’ off-equilibrium beliefs when observing higher prices than those to be charged in

the respective equilibria. The figure shows the largest possible area when higher-than-

equilibrium prices lead customers to believe that they face a low-ability expert type with

certainty.

Figure 1.8: Market (in)efficiency (compared to the most efficient equilibrium)
when major problem occurs with sufficiently high probability (h > ∆c/v),
when diagnostic quality of the low-ability expert type is sufficiently low

(q < (v−∆c)h/(hv+(1− 2h)∆c)), and when off-equilibrium beliefs equal zero.

ity guarantees an increase in welfare, an increase of the probability of the high-

ability expert type does not (unless the probability becomes one).

1.5.3 Effort

In our basic model, we have assumed that diagnostic ability is exogenous. Our

results, however, extend to several important situations in which the expert can

exert effort to influence the precision of a diagnosis. First, if effort is not ob-

servable or too costly, the expert does not have an incentive to exert any effort.

Our exogenous diagnostic ability could be interpreted as the exogenous baseline
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diagnostic ability (for exerting no effort) in this case.29 Second, if effort is ob-

servable, but both types face the same effort costs, they choose the same effort

because they make the same profit.30 Moreover, this is also the case if the costs

are not the same but similar enough, such that the low-ability type wants to

imitate the high-ability type. In either case, our exogenously given diagnostic

abilities could be interpreted as endogenous total diagnostic abilities, no mat-

ter whether the heterogeneity stems from different baseline diagnostic abilities,

different translations of effort into diagnosis improvements, or a combination

of the two. This reasoning also applies, of course, if the different expert types

choose different effort levels in equilibrium (for example, because they do not

have the same effort levels to choose from), but those different levels cannot be

told apart.

1.5.4 Competition

So far, we have assumed that the expert is a monopolist. This section demon-

strates that our results are robust to competition. There is a shift of surplus

from experts to customers, but the equilibrium treatment strategies continue to

exist, and, hence, efficiency remains unchanged. In the following, we consider a

situation in which at least two experts compete à la Bertrand.

When the experts’ types are observable, we have to consider three different

cases. First, if there are at least two experts with a high diagnostic ability, at

least two high-ability experts charge prices as in Section 1.4.1, the only difference

being that the prices of both treatments are reduced by their expected profit

as given in Section 1.4.1. Customers only visit those experts, and those experts

follow their diagnosis. Other experts charge prices that are not attractive for

customers. Thus, all experts make zero profits, and no one has an incentive to

deviate.

Second, if all experts have a low ability, at least two of them charge prices as

in Section 1.4.1, with the only difference being that the prices of both treatments

are reduced by their expected profit as given in Section 1.4.1. Customers only

29Recall that our results do not depend on the high-ability type having perfect ability.
30Our results for unobservable types apply as long as experts do not end up with the same

diagnostic ability. If they end up with the same diagnostic ability, we are essentially back to
a situation in which types are observable, and our results of Section 1.4.1 apply.
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visit those experts, and those experts employ the treatment strategy of Section

1.4.1. Other experts charge prices that are not attractive for customers. Again,

all experts make zero profits, and no one has an incentive to deviate.

Third, if there is exactly one expert with a high ability, at least one low-

ability expert charges prices as in Section 1.4.1, the only difference being that

the prices of both treatments are reduced by the low-ability type’s expected

profit given in Section 1.4.1. The high-ability expert reduces his prices from

Section 1.4.1 by the same amount, such that customers are indifferent between

visiting him and the low-ability expert. In equilibrium, however, all customers

visit the high-ability expert who follows his diagnosis. All other experts charge

prices that are not attractive for customers. Thus, all low-ability experts make

zero profits, and no one has an incentive to deviate. The high-ability expert

makes positive profits, but does not have an incentive to deviate either.

We can thus summarize experts’ treatment decisions for the case with ob-

servable types as follows:

Proposition 1.8. Assume expert types are observable. Given any parameter

values, if an expert’s treatment strategy is part of an equilibrium in the monopoly

case, it is also part of an equilibrium in the competition case.

When the experts’ types are not observable, low-ability experts can – as in

the monopoly case – imitate a high-ability expert at no cost because they have

the same profit function.31 Thus, all equilibria derived in Section 1.4.2 have a

treatment-equivalent equilibrium, the only difference being that the prices of

both treatments are reduced by experts’ expected profit in the corresponding

equilibrium as given in Section 1.4.1. At least two experts charge those prices,

customers only visit those experts, and other experts charge unattractive prices.

Experts make zero profits, and no one has an incentive to deviate. If q is large

and h is intermediate, however, there are additional equal-markup equilibria in

which experts make positive profits as long as they charge only moderate prices:

If there is no profitable major-treatment or minor-treatment vector that would

also appeal to customers, customers may also hold the belief that a deviating

expert posting an equal-markup price vector provides a diagnosis-independent

treatment, which is not attractive to customers. If prices were too high, an

31Hence, it also does not matter whether experts can observe each others’ types.
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expert could deviate by posting a major-treatment and minor-treatment price

vector. This means that the threat of major-treatment and minor-treatment

price vectors can provide commitment against high prices.

We can summarize our analysis of competition with unobservable types anal-

ogously to Proposition 1.2:32

Proposition 1.9. Assume expert types are not observable. In the case of

Bertrand competition with at least two experts, the existence of equilibria with

price pooling is characterized as follows:

(i) for h ∈ [0, hu
L], there exist equilibria with minor-treatment price vectors;

(ii) for h ∈ [ho
L, 1], there exist equilibria with major-treatment price vectors;

(iii) for h ∈ [0, 1], there exist equilibria with equal-markup price vectors.

Thus, because the treatments under competition are the same as with a

monopolistic expert, the results with regard to efficiency remain unchanged.

1.5.5 Fines and warranties

In this section, we assume that the expert is liable and has to pay a fine f > 0

whenever the treatment is insufficient. A compensation that the expert has to

pay to the customer if the treatment is insufficient (warranty) would work in

the same way.33

Introducing a fine implies that the major-treatment equilibria no longer exist:

Because the high-ability type of expert knows better when he can recommend

a minor treatment without risking a fine, there exists a price vector, such that

the high-ability expert type has a strict incentive to recommend the appropri-

ate treatment, and the low-ability expert type has a strict incentive to always

recommend the major treatment to avoid the potential fine (such a price vector

would have a slightly smaller profit margin for the major treatment when not

taking into account the fine). Because this is the efficient thing to do for a

32The results of Propositions 1.3 and 1.4 extend analogously.
33Note that fines and compensations are similar to what the literature calls liability. In

contrast to liability, however, the expert may (and, depending on parameters, sometimes will)
provide an insufficient treatment. For efficient liability design in credence goods markets, see
Chen et al. (2022).
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low-ability expert type in that parameter region, customers’ willingness to pay

would increase, resulting in a higher profit margin for both treatments, and,

hence, giving the high-ability expert type the opportunity to profitably deviate.

Moreover, introducing a fine implies that the minor-treatment equilibria no

longer exist. Because the high-ability type of expert knows better when he has

to recommend a major treatment and should not risk the fine, there exists a

price vector, such that the high-ability expert type has a strict incentive to

recommend the appropriate treatment, and the low-ability expert type has a

strict incentive to always recommend the minor treatment (if the fine is not

large), while risking the fine (such a price vector would have a slightly smaller

profit margin for the major treatment when not taking into account the fine,

even slightly smaller than in the deviation price vector in the above paragraph).

Because this is the efficient thing to do for a low-ability expert in that parameter

region, customers’ willingness to pay would increase, resulting in a higher profit

margin for both treatments, and, hence, giving the high-ability expert type the

opportunity to profitably deviate.

Note also that for all of the efficient equal-markup equilibria that we derived

for the case without fines, there exist equilibria in which the expert employs the

same treatment strategy, and customers always visit for the case with fines. By

contrast, the inefficient equal-markup equilibria are not robust because there is

always a profitable deviation price vector that unambiguously determines either

expert type’s treatment strategy. Thus, (even small) fines and warranties are

adequate policy tools for implementing efficient market outcomes.

1.6 Conclusion

We present a credence goods model with expert types that differ in their di-

agnostic ability. Whereas a high-ability expert type always performs a correct

diagnosis with regard to the customer’s problem, a low-ability expert type some-

times makes mistakes when diagnosing problems.

In our benchmark case with observable expert types, both expert types post

equal-markup prices to signal that they have no incentive to overtreat or under-

treat (on purpose). The high-ability expert type posts higher prices than the

low-ability type because the customers’ valuation for receiving a correct diag-
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nosis (and treatment) is higher than for a possibly incorrect one. Furthermore,

profits are higher for the high-ability type than for the low-ability type.

Under unobservable expert types, we find that efficient market outcomes

always exist. Nevertheless, expert types may also coordinate on inefficient equi-

libria. In both – efficient and inefficient – equilibria, the two expert types post

equal prices. This is the case because the low-ability expert type could always

mimic the high-ability expert type when the high-ability expert type deviates

from equal prices. Hence, markups and profits are identical for both expert

types, which also implies that there are no private benefits to improving one’s

diagnostic ability. Increasing transparency through (perfect) certification, that

is, making expert types observable, would weakly increase efficiency in our set-

up.34 This is especially important in settings in which experts’ investments in

their diagnostic ability are essential.

Relative to the efficiency under efficient equilibria, a marginal increase in the

low-ability type’s diagnostic ability does not necessarily improve social welfare.

Welfare depends on the probability that customers need a major treatment

and on the equilibrium experts coordinate on. We find that efficiency do not

improve if the probability for a major problem is sufficiently high or sufficiently

low. Only for an intermediate likelihood, an increase in efficiency results if the

expert types post equal-markup prices and follow their own diagnosis.

We observe that an infinitesimally costly increase in the share of the high-

ability type can even decrease social welfare because the equilibrium outcomes

do not change, but costs must be incurred. For example, if expert types coor-

dinate on an equilibrium in which both expert types always provide the major

treatment, increasing the probability for a high-ability expert does not change

the behavior of expert types, although the high-ability expert type would be

able to provide a correct diagnosis.

Whereas a sufficiently large increase in the low-ability type’s diagnostic abil-

ity can guarantee an efficient equilibrium, increasing the share of high-ability

experts would only do so if there was no low-ability type left at all. This sug-

gests that increasing minimum standards for experts can be a more successful

34Note that imperfect certification – often the only feasible option in practice – does not
necessarily render our other insights obsolete. There can still be substantial variation in
diagnoses, even among highly qualified experts; see, for example, Botvinik-Nezer et al. (2020),
Huntington-Klein et al. (2021), and Menkveld et al. (2021).
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policy than increasing the share of excellent experts.

If the success or failure of a treatment is verifiable, warranties or fines for an

insufficient treatment appear to be useful policy tools. Without such verifiabil-

ity, the optimal policy is not as straightforward.

Our results suggest that a regulation that obliges experts to follow the diag-

nostic results can be detrimental to social welfare. Such a regulation supports

the efficient equilibrium only if diagnostic precision is sufficiently high. More-

over, it is never optimal to require both expert types to always provide a certain

treatment. However, if the policy maker can differentiate expert types, requir-

ing the low-ability type to always provide a certain treatment is optimal if this

type’s ability is sufficiently low. Overall, our results show that a careful design

of expert markets is necessary to attain the social optimum.
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2.1 Introduction

In this paper, I study the competition of platforms which offer differentiated

products à la Hotelling in the presence of network effects when the location

choices are endogenous. My research mainly shows that the equilibrium loca-

tions depend on the specified pricing policies and competition modes. Under

mill pricing policy and unbalanced competition (in which platforms can choose

their locations on only one side), in contrast to the principle of maximum differ-

entiation in the standard Hotelling model, a tendency of agglomeration emerges

in equilibrium when the difference of cross-sided network externalities is suffi-

ciently high. Given this pricing policy, the principle of maximum differentiation

still holds under balanced competition (in which platforms’ location choices ap-

ply to both sides). With discriminatory delivered pricing policy, the tendency

of agglomeration emerges in equilibrium under both unbalanced and balanced

competition.

Competition among platforms differs from traditional one-sided markets in

several aspects. The most distinctive ones are the price structure and the in-

terdependency of prices on difference sides. Using a Hotelling specification with

cross-sided network effects, Armstrong (2006) provides a theory of platform

competition and shows that with single-homing agents and membership fees,

the equilibrium prices are given by the prices in the standard Hotelling model

adjusted downward by cross-sided network externalities. More precisely, agents

on each side receive a subsidy, of which the amount corresponds to how much

the agents on the other sides value network size. This price structure actually

implies a kind of interdependence of prices on different sides, namely the price

on one side depends on the level of the aggregate network effects associated to

it. As discussed by Rochet and Tirole (2003) and Weyl (2009), there is a see-saw

effect among the prices on different sides. The see-saw effect basically tells a

fact that when there is a downward pressure (due to competition or regulation)

on the prices on one side, the prices on the other side(s) may increase. Because

the decrease in price can lead to a higher demand on this side. Since market

agents on the other side(s) value network size, their willingness to pay increases.

Therefore, platforms can charge a higher price on these side(s).

To study how this see-saw effect affects platforms’ decisions of location choice,
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I extend the model of platform competition with fixed locations in Armstrong

(2006) to a two-stage game, in which platforms select their locations in the first

stage and compete in prices in the second. This is a very interesting research

question because this very effect of price movement on different sides implies

that a more intensified competition on one side does not necessarily reduce

platforms’ profits, as the lost of profit on this side can be compensated by the

increased price(s) on other side(s). The most interesting result in my research

is that, when agents’ (individual users and sellers) valuations of the cross-sided

network effects are sufficiently heterogeneous, platforms tend to approach each

other in equilibrium under some specific combinations of pricing policies and

competition modes. The product differentiation level in equilibrium could be

even lower than the socially optimal one.

Besides mill pricing policy, discriminatory delivered pricing is also studied in

this paper. Under this pricing policy, platforms pay the transportation costs and

can discriminate the market agents based on their locations. My results show

that, different from mill pricing policy, a tendency of agglomeration emerges

under both unbalanced and balanced competition.

The remainder of this paper is structured as follows. In Section 2.2 the

relevant literature is discussed. In Section 2.3 I introduce the basic setup and

assumptions of the model. In Section 2.4 and Section 2.5 I come to the derivation

of the results under the two different pricing policies respectively. In Section 2.6

I conclude and discuss some possible policy implications.

2.2 Literature

This paper mainly contributes to the literature of platform competition. In the

paper by Armstrong (2006), the author provides a basic framework of pricing

schemes in two-sided markets. Using a discrete choice model with within-sided

and cross-sided network externalities, Tan and Zhou (2021) provide a general

framework of platform competition with n sides and arbitrary number of plat-

forms and show that the price structure of platform competition basically follows

a similar pattern as in Armstrong (2006) when there is full market coverage. As

mentioned before, Rochet and Tirole (2003) and Weyl (2009) identify and dis-

cuss a see-saw effect in platform pricing, which is also considered as the core
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of the price interdependency in this paper. As shown in these papers, prices

charged by platforms may vary across different groups, because market agents

from different sides may value network size heterogeneously. Besides the asym-

metry in prices, my research shows that platforms also respond to this kind of

heterogeneity by their incentives of location choices (product selection).

As studied by d’Aspremont et al. (1979), firms will choose to locate at the

different end-points in the standard Hotelling model with quadratic transporta-

tion costs. This is often referred to as the principle of maximum differentiation.

But having the maximum level of product differentiation may not be profitable

anymore with cross-sided network effects, since a more intensified competition

on one side may result in a higher price on the other side. Aiming at studying

platforms’ incentive of location choices with network effects, a location game is

incorporated into platform competition in this paper.

In my research, it is essential to derive the conditions for a market-sharing

equilibrium, in which both platforms are active. Because when network effects

are fairly strong, there may be an equilibrium outcome with market tipping.

For example, Arthur (1989) studies the market standardization outcome when

consumers entering the markets sequentially. By treating the consumer choice

as a stochastic process, it is proved that the whole market will be locked in a

specific standard when this standard achieves its critical mass. This explains

why some inferior standards finally prevail in the markets even if there are better

ones. Sometimes, market agents may find it optimal to adopt a wait-and-see

strategy in order to be able to utilize the maximum network size. Take the

paper by Farrell and Saloner (1985) as an example. They study a sequential

game of technology adoption and find that there exits a unique bandwagon

equilibrium for some specific types of agents. Weyl (2010) provides a monopoly

pricing theory in which platforms can adopt insulating tariffs to prevent market

agents from misallocating. Throughout my analysis, the conditions for a market

sharing equilibrium are assumed to hold and equilibria with market tipping are

not considered.

It has been shown in the early literature that the market outcomes vary sig-

nificantly with agents’ expectations of network size. Katz and Shapiro (1985)

incorporate within-sided network effects into a standard Cournot game and show

that asymmetric equilibrium can exists, in which only a fraction of firms are ac-
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tive, if consumes’ expectations are assumed to be self-fulfilling. In two-sided

markets, Jullien (2011) defines a divide and conquer strategy for the second-

mover in a Stackelberg price game when consumers are pessimistic. For the

second-mover, its price has to be so favorable that an agent will choose a uni-

lateral switch to it. In this paper, all market agents are assumed to be fully

rational and they always coordinate on the platform which provides a higher

utility to them.

In addition to uniform pricing policy, discriminatory delivered pricing is also

studied in this paper. Hoover (1937) studies spatial price discrimination and pro-

vides explainations for why prices are not necessarily increasing with distance.

Holahan (1975) proves that spatial discriminatory pricing may induce higher net

benefits than uniform pricing and it will bring consumers from afar in attraction.

What is more, the adopted pricing policies have crucial influence on location

choice as well. Focusing only on firms’ location choices, Greenhut et al. (1986)

conclude that spatial discriminatory pricing policy generally induces more prod-

uct differentiation than uniform delivered pricing. Hamilton et al. (1989) study

firms’ location choices with spatial discrimination and compare the equilibrium

outcomes under Cournot and Bertrand competition. They find that firms tend

to choose the locations which minimize the total transportation costs given their

demand schedules. Anderson et al. (1992) show in a location-then-price model

that socially optimal locations can be sustained in equilibrium under discrimina-

tory delivered pricing. Anderson and De Palma (1988) study this pricing policy

with heterogeneous products and find that complete agglomeration is possible

in equilibrium when the degree of product heterogeneity is sufficiently high. In

this paper, I consider a location-then-price game under discriminatory delivered

pricing with network effects and find that insufficient differentiation levels are

possible in equilibrium when the difference of cross-sided network effects is high

enough.

2.3 The Model

This section mainly introduces the setup of the model that exists as a two-

stage Hotelling model with network effects. There are two platforms (A and B)

competing for market agents from two sides: Individual users (denoted by U )
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and sellers (denoted by S ). Assume that market agents are uniformly distributed

in the agent space I. On each side there is a continuum of agents with measure

1. For simplicity, the cost of serving each agent is assumed to be zero. Only

single-homing agents are considered here. The utility of a user (locating at x)

from joining platform i is

ui
U = v − piU + αUn

i
S + βUn

i
U − tU(x− xi)2, (2.1)

and the utility of a seller (locating at x) from joining platform i is

ui
S = v − piS + αSn

i
U + βSn

i
S − tS(x− xi)2, (2.2)

where i ∈ {A,B}. v is the stand-alone utility of an agent from joining a plat-

form. This value is assumed to be homogeneous across agents on different sides

and sufficiently high, such that all market agents are active. piU and piS de-

note the prices (in the form of membership fees) charged by platform i on the

user and seller sides respectively. αU > 0 and αS > 0 are the parameters of

the cross-sided network externalities. βU and βS denote the parameters of the

within-sided network externalities. Note that the parameters of the cross-sided

network externalities are strictly positive, whereas the parameters of the within-

sided externalities could be negative. In other words, there may be congestion

effects within agent groups. ni
U and ni

S represent the demand of platform i on

the user and seller sides respectively. The last term represents the transporta-

tion cost from joining a platform locating at xi. With parameters tU and tS,

the transportation cost takes a quadratic form.

The timing of the game is as follows: In the first stage, platforms choose their

locations {xA, xB} in the agent spaces. Without loss of generality, it is assumed

that xA ≤ xB. In this stage, two different scenarios are discussed. The first

one is (potentially) unbalanced competition. In this scenario, platforms choose

their locations for only one side. On the other side, they are assumed to be

located at the two extremes. The second one is defined as balanced competition,

namely xi applies on both sides.1 In stage two, platforms compete in prices

by setting pi = (piU , p
i
S). Two different pricing policies are considered here:

1Weyl (2009) also uses the terms unbalanced and balanced competition, but his is a notion
that mainly describes price compititon, while the terms here are extended onto platforms’
location choices.



2.4. Mill Pricing 57

Mill pricing and discriminatory delivered pricing. With mill pricing policy, the

transportation costs are paid by the agents and platforms are only allowed to set

a uniform price on each side. Whereas with discriminatory delivered pricing,

platforms pay the transportation costs and they are allowed to discriminate

their agents at different locations. In next sections, I will discuss platform

competition under the two pricing policies respectively.

2.4 Mill Pricing

Under mill pricing policy, market agents pay the transportation costs and plat-

forms set a constant membership fee on each side. It has been shown in the

early litertature that without network effects, the equilibrium locations under

this pricing policy involve platforms locating at the two extremes (principle of

maximum differentiation, see d’Aspremont et al. (1979)). However, the equi-

librium locations with network effects may be different from it. The discussion

here is undertaken in the two above mentioned scenarios: (potentially) unbal-

anced competition and balanced competition. Note that in both scenarios, each

platform has only one location variable xi.

2.4.1 Unbalanced competition

It is often observed in the market that the competition intensity is asymmetric

across different sides. This phenomenon is more obvious in the markets in which

there is significant heterogeneity across different sides. Therefore, platforms

may select products in different patterns in order to cater to the heterogeneous

preferences across different groups. In this subsection, I assume unbalanced

competition and platforms can only select locations on the user side. On the

seller side, they are simply located at different extremes in the agent space,

meaning that xi
U = (xA, xB) and xi

S = (0, 1).

2.4.1.1 Price equilibrium

In the second stage, platforms compete in prices after observing the location

choices in the previous stage. Given the utilities in (2.1) and (2.2), the number

of agents buying from platform i on side U is to be formulated by the following
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pattern:

ni
U =

αU(n
i
S − nj

S) + βU(n
i
U − nj

U)− (piU − pjU)− tU((x
A)2 − (xB)2)

2tU(xB − xA)
, (2.3)

and the number of agents of platform i on side S is given by

ni
S =

αS(n
i
U − nj

U) + βS(n
i
S − nj

S)− (piS − pjS) + tS
2tS

, (2.4)

where i, j ∈ {A,B} and i ̸= j. Equation (2.3) and (2.4) actually define a system

of equations. In Lemma 2.1, I derive the conditions for a unique solution of this

system of equations.

Lemma 2.1. For any pair of location choices (xA, xB), there exist a unique

solution of the equation system defined by (2.3) and (2.4) if

βU < 0, βS < 2tS. (2.5)

Proof. Define the system of equations above as ni
k = f(ni

k), where k ∈ {U, S}.
Note that ni

k is defined on a closed area [0, 1] and f(ni
k) is a continuous function.

So, according to Brouwer’s fixed point theorem, the system of equations above

has at least one solution. As long as
∂f(ni

k)

∂ni
k

< 1, this system of equations has

a unique solution. Solving
∂f(ni

k)

∂ni
k

< 1, we get the conditions in (2.5) in this

lemma.

Solving the system of equations defined by (2.3) and (2.4), we get the demand

functions of platform A on the two sides:

nA
U =

αUαS + αU(p
A
S − pBS )− ΩS(p

A
U − pBU )− ΩS(βU + tU((x

A)2 − (xB)2))

2(αUαS − ΩUΩS)
,

nA
S =

αUαS + αS(p
A
S − pBS )− ΩU(p

A
U − pBU )− ΩUΩS + αStU(x

A − xB)(xA + xB − 1)

2(αUαS − ΩUΩS)
,

where ΩU := βU + tU(x
A − xB), and ΩS := βS − tS. The demand of platform

B on each side is nB
k = 1 − nA

k . Given the demand function of each platform

on each side, the profit of platform i, πi
M,un (M for Mill pricing and un for
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unbalanced competition), can be written as

πi
M,un = piU · ni

U + piS · ni
S.

Before proceeding to solve the equilibrium prices, it is worthwhile to discuss

the necessary and sufficient conditions for a market-sharing equilibrium. When

platforms locate sufficiently near to each other, agents may find it optimal to

coordinate on only one platform to enjoy the whole network size. In order to

avoid the situation of multiple equilibria, the conditions in Lemma 2.2 must be

satisfied throughout the analysis.

Lemma 2.2. Under mill pricing policy and unbalanced competition, for any

pair of locations (xA, xB), the necessary and sufficient conditions for a market-

sharing equilibrium are

βU < 0 (2.6)

4βU(βS − tS) > (αU + αS)
2. (2.7)

Proof. Since the profit function may not be continuous in prices, the approach

discussed by Tan and Zhou (2019) is introduced to help deriving the conditions:

The profit function of each platform is transformed from prices into quantities,

while keeping the prices of the other platform fixed. The Hessian matrix of the

profit of platform i is then given by

Hi = 2 ·

[︄
2(βU + tU(x

A − xB)) αU + αS

αU + αS 2(βS − tS)

]︄
.

For a maximized profit of platform i, the Hessian matrix must be negative

semidefinite for any pair of location choices, which means the conditions in

(2.6) and (2.7) must be satisfied.

Keeping the location choices in the first stage fixed, the equilibrium prices

must satisfy the first-order conditions and can be solved by a system of equations
∂πi

M,un

∂pik
= 0. The precise expressions of equilibrium prices given locations xA and

xB are given in Appendix A.

The price structure of platform competition has been analyzed in early liter-

ature with various settings. With symmetric platforms and full market coverage
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under fixed market volume, the papers by Armstrong (2006) and Tan and Zhou

(2021) prove that the equilibrium prices on each side actually can be decom-

posed by the following rule: The prices equal to the equilibrium prices in the

standard Hotelling model (the market power generated by product differentia-

tion plus the operating cost) adjusted downward by the network externalities

associated to this side. In this two-stage model, the prices listed in Appendix A

also follow the price structure identified in the previously mentioned literature.

For symmetric locations, the price on each side is given by:

piU = tU(1− 2xA)− αS − βU ,

piS = tS − αU − βS.

Note that the first term in piU , tU(1 − 2xA), represents the market power of

platform i on the user side given the locations. One can find out that as the

two platforms moving towards each other, they are losing their market power

associated with product differentiation. When their locations coincide at the

market center, they could end up with negative prices. One can find out in

the next part that platforms will move closer to each other in equilibrium if

the difference of cross-sided network effects is high enough. But a complete

agglomeration can never be an equilibrium. The reason can be found right

here. Since the prices may drop too severely and even become negative when

the distance between the two platforms shrinks, they will never find it optimal

to locate together.

Different from traditional markets, platforms must take the interdependency

of their prices on different sides into consideration when maximizing their profits.

With this Hotelling specification and linear externalities, a price change on one

side of a platform leads to the following effect on its price on the other side:

∂piU
∂piS

=
αU + αS

2(βS − tS)
, (2.8)

∂piS
∂piU

=
αU + αS

2(βU + tU(xA − xB))
. (2.9)

Equation (2.8) and (2.9) show that there is indeed a see-saw effect on equilibrium

prices from different sides. As long as the conditions for a unique demand
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and a market-sharing equilibrium hold for any pair of locations (xA, xB), the

expressions in (2.8) and (2.9) are strictly negative. This means that a decrease

in price on one side does not only increase the demand on this side, but also

leads to a higher equilibrium price on the other side. It is worthwhile to notice

that the effects of a price change are asymmetric on different sides. Keeping

the parameters of network effects and transportation cost fixed, the effect of a

price change on the sellers side does not depend on platforms’ location choices.

However, as shown in equation (2.9), the effect of a change in piU on piS depends

on the distance between the two platforms. When (xA − xB) increases,
∂piS
∂piU

decreases, which means that when the distance between the competing platforms

becomes smaller, the see-saw effect on the user side gets stronger. We know from

the standard two-stage Hotelling model that firms tend to locate at the two end-

points of the consumer space, since the loss from a decreased price cannot be

compensated by the gain from an increased demand from they moving closer to

each other. However, this principle may lose its power with cross-sided network

effects. When a platform moves towards its competitor, alongside its demand

being increasing, it encounters higher benefits from the other side, of which the

agents are willing to pay more due to cross-sided network effects. Therefore,

it is not so straightforward to tell the effect of a tendency of agglomeration on

platforms’ profits. The following analysis illustrates that this effect depends

mainly on the difference of cross-sided network externalities of the two sides.

2.4.1.2 Spatial competition

Because the equilibrium prices on different sides move in opposite directions,

moving towards the center of the agent space has an ambiguous effect on plat-

forms’ profits. Since the product differentiation level on the seller side remains

maximized, platforms may have incentive to move closer to each other in the

user market in order to extract more rent from the sellers when the difference

of cross-sided network effects is sufficiently high. Considering only symmetric

locations (i.e., xB = 1 − xA), this intuition is proved by the analytical results,

and the equilibrium of the spatial game in the first stage is summarized in the

following proposition.

Proposition 2.1. For the location-then-price game with mill pricing and un-
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balanced competition, platforms do not locate at the extremes if αU > α∗
U :=

α2
S+(βS−tS)(αS−3(βU−tU ))

2αS−βS+tS
and the equilibrium location of platform A (xA∗

) is the

smaller root that solves
∂πA

M,un

∂xA = 0, while the equilibrium location of platform B

is xB∗
= 1− xA∗

. Otherwise, platforms choose to locate at different extremes.

See Appendix B for a detailed proof. The equilibrium locations are illus-

trated in Figure 2.1. The lower curve represents the equilibrium locations of

platform A and the upper one, which is symmetric to the lower one, represents

the equilibrium locations of platform B. It is worthwhile to notice that although

platforms have an incentive to move towards the market center when the cross-

sided network effect on the user side is sufficiently high, complete agglomeration

will never be an equilibrium. Actually since the conditions for a market-sharing

equilibrium must be fulfilled, the two platforms will still maintain certain dis-

tance.










 



Figure 2.1: Equilibrium locations under mill pricing and unbalanced
competition.

2.4.1.3 Social welfare

We know from the conclusion in the standard Hotelling model that firms’ de-

sired differentiation level is over-sufficient compared to the social optimum. In
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the standard location-then-price game, the socially optimal differentiation level

involves firms locating at the first and third quartiles in the consumer space,

which correspond to the locations that minimize the total transportation costs.

However, the results are still some way from being clear with network effects,

since platforms have incentive to move towards the center. The comparison is

summarized in the following proposition.

Proposition 2.2. For the location-then-price game with mill pricing policy and

unbalanced competition, the socially optimal locations involve platforms locating

at xA = 1
4
and xB = 3

4
. The equilibrium differentiation level is higher than the

social optimum if αU < α∗∗
U , where α∗∗

U is the bigger root of (αS + 2αU)(3αS +

αU)+ (βS − tS)(αS −αU − 6(2βU − tU)) = 0. Otherwise, the differentiation level

is lower than the socially optimal one.

See Appendix C for a detailed proof. The comparison between the equilib-

rium and socially optimal locations is illustrated in Figure 2.2, in which the

dashed curves represent the locations which maximize social welfare.





















Figure 2.2: Comparison between the equilibrium and socially optimal locations
under mill pricing and unbalanced competition.

In this case, the socially optimal locations correspond to the locations which

minimize the total transportation costs. One can infer from the comparison
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that when the cross-sided network effect on the user side is sufficiently high,

platforms voluntarily choose to have more intensified competition on this side.

But in this case, the agents on the seller side suffer from the increased price due

to the see-saw effect.

2.4.2 Balanced competition

This subsection discusses mill pricing policy with balanced competition. xi
k =

(xA, xB) denotes the location choices of the two competing platforms, respec-

tively. Given the utilities in (2.1) and (2.2), the demands of agents buying from

platform i on the user and seller sides satisfy

ni
U =

αU(n
i
S − nj

S) + βU(n
i
U − nj

U)− (piU − pjU)− tU((x
A)2 − (xB)2)

2tU(xB − xA)
, (2.10)

ni
S =

αS(n
i
U − nj

U) + βS(n
i
S − nj

S)− (piS − pjS)− tS((x
A)2 − (xB)2)

2tS(xB − xA)
, (2.11)

where i, j ∈ {A,B} and i ̸= j.

2.4.2.1 Price equilibrium

Similar as unbalanced competition, Lemma 2.3 states the condition for a unique

demand in this case.

Lemma 2.3. For any pair of location choices (xA, xB), there exist a unique

solution of equations (2.10) and (2.11) if

βk < 0.

The proof is similar as in Lemma 2.1 and is omitted here. The demand of

platform i on side U is

ni
U =

αUαS − βUβS + αU(p
i
S − pjS)−ΘS(p

i
U − pjU) + ΦU

2(αUαS −ΘUΘS)
,

and the demand of platform i on side S is

ni
S =

αUαS − βUβS + αS(p
i
U − pjU)−ΘU(p

i
S − pjS) + ΦS

2(αUαS −ΘUΘS)
,
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where ΘU := βU+tU(x
i−xj), ΘS := βS+tS(x

i−xj), ΦU := ((xi−xj)(αU tS(x
i+

xj − 1)−βU tS −ΘStU(x
i+xj)) and ΦS := ((xi−xj)(αStU(x

i+xj − 1)−βStU −
ΘU tS(x

i + xj)). The demand of the other platform is given by nj
k = 1 − ni

k.

Given the demand function of each platform on each side, the profit of platform

i, πi
M,ba (ba for balanced competition), can be written as

πi
M,ba = piU · ni

U + piS · ni
S.

The necessary and sufficient conditions for a market-sharing equilibrium are

provided in Lemma 2.4.

Lemma 2.4. Under mill pricing policy and balanced competition, for any pair of

locations (xA, xB), the necessary and sufficient conditions for a market-sharing

equilibrium are

βU < 0 (2.12)

4βUβS > (αU + αS)
2. (2.13)

Proof. Here is the same approach as used in Lemma 2.2. In this case, the

Hessian matrix of the profit of platform i is given by

Hi = 2 ·

[︄
2(βU + tU(x

A − xB)) αU + αS

αU + αS 2(βS + tS(x
A − xB))

]︄
.

Given the conditions for a market-sharing equilibrium, we get the equilib-

rium outcome of the price competition in this stage. Similar as in the previous

analysis, the equilibrium prices can be derived by solving the first-order condi-

tions.

2.4.2.2 Spatial competition

In the first stage, platforms choose their locations simultaneously taking the

price competition into consideration. Again, only symmetric location equilib-

rium will be considered here. Proposition 2.3 summarizes the equilibrium in the

location game. A detailed proof is in Appendix D.
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Proposition 2.3. For the location-then-price game with mill pricing policy

and balanced competition, platforms locate at opposite extremes in equilibrium,

namely xA∗
= 0 and xB∗

= 1.

2.4.2.3 Social welfare

The above analysis proves that the results derived in the standard two-stage

Hotelling model are still true in the case with network effects under balanced

competition. A comparison between the equilibrium and socially optimal loca-

tions is summarized in Proposition 2.4.

Proposition 2.4. For the location-then-price game with mill pricing policy and

balanced competition, the socially optimal locations involve platforms locating at

xA = 1
4
and xB = 3

4
. This means that there is always excess differentiation

between the competing platforms in the market.

A detailed proof is provided in Appendix E. Figure 2.3 shows the comparison

between the equilibrium and socially optimal locations in this case. Comparing

to the results under unbalanced competition, the equilibrium locations under

balanced competition are largely driven by the assumption that platforms’ lo-

cation choices apply to both sides simultaneously. Given the locations of their

competitors, moving towards the center intensifies competition on both sides.

Therefore the principle of maximum differentiation remains in effect.

2.5 Discriminatory Delivered Pricing

Other than mill pricing policy, it is also often observed in the market that

transportation costs are paid by the platforms. In this section, the analysis

comes to another pricing policy: Discriminatory delivered pricing. Similar as in

the previous section, both unbalanced and balanced competition are discussed.

2.5.1 Equilibrium price without network effects

Before proceeding to the analysis with network effects, the case of price compe-

tition without network effects is briefly discussed here. With this pricing policy,

it is assumed that transportation costs are paid by the platforms. What is
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Figure 2.3: Comparison between the equilibrium and socially optimal locations
under mill pricing and balanced competition.

more, platforms can discriminate the agents based on their locations. Such a

case has already been analyzed in previous research, for example, in Anderson

et al. (1992). It has been proved that with these assumptions, the price compe-

tition at each point in the agent space is similar to the case in which these two

platforms compete with asymmetric costs. Figure 2.4 (a reduced version of that

in Anderson et al. (1992), Chapter 8) illustrates the equilibrium prices without

network effects. The equilibrium prices are represented by the bold curve in this

figure.

I briefly introduce some relevant results in Anderson et al. (1992) here. First,

at each point in the agent space, the platform with the lowest transportation

cost wins the agent and it charges the price which equals to the second lowest

transportation cost in the market. One can find out in this figure that platforms

make zero profit at the margin. Second, although the transportation costs are

paid by the platforms, equilibrium prices are not necessarily increasing with

distance. This is because the two platforms have to compete more severely in

the area between them. Anderson et al. (1992) also analyze a location-then-

price game under this pricing policy and they prove that the socially optimal

locations can be sustained in equilibrium.
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Figure 2.4: Discriminatory delivered pricing without network effects.

2.5.2 Price competition with network effects

With network externalities, the utility of an agent on the user side from joining

platform i can be written as

ui
U = v − piU + αUn

i
S + βUn

i
U .

The utility of a seller from joining platform i is

ui
S = v − piS + αSn

i
U + βSn

i
S.

For the platforms, the transportation cost on each side is assumed to be linear

in distance in this case, i.e., tk|xi
k − x|.2

Given the utility functions of the agents, the equilibrium prices can be derived

2It has been proved that, in the standard Hotelling model with linear transportation cost,
a pure strategy equilibrium does not exist when firms locate close enough to each other (See
d’Aspremont et al. (1979)). Nevertheless, such an equilibrium always exists with discrimina-
tory delivered pricing. So linear transportation cost is assumed here to simplify the analysis.
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by shifting the cost curve of one of the platforms as shown in Figure 2.5. Here

d = αk(n
i
g − nj

g) + βk((n
i
k − nj

k).

 



  










Figure 2.5: Discriminatory delivered pricing with network effects.

2.5.3 Unbalanced competition

Under discriminatory delivered pricing policy, the network effects can be con-

sidered as platforms’ cost advantage if one platform has larger network size on a

specific side. This advantage can be too high to fade away when reaching even

the farthest agent and thus make the other platform driven out. Therefore, the

conditions for a market-sharing equilibrium must be satisfied under this pricing

policy as well and are given in the next lemma.

Lemma 2.5. For any pair of locations, the location-then-price game under dis-

criminatory delivered pricing with unbalanced competition has a unique market-

sharing equilibrium if αk <
1
2
tk − βk.

See Appendix F for a sketch of proof. Given the utility functions of the

agents, the demand functions of platform A are given by

nA
U =

αUαS − (βS − tS)(βU − tU(x
A + xB))

2αUαS − 2(βS − tS)(βU − tU)
, (2.14)
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nA
S =

αS(αU − tU(x
A + xB − 1))− (βS − tS)(βU − tU)

2αUαS − 2(βS − tS)(βU − tU)
. (2.15)

The demand functions for platform B are nB
k = 1− nA

k . Proposition 2.5 states

the corresponding equilibrium locations.

Proposition 2.5. Under discriminatory delivered pricing and unbalanced com-

petition, the (symmetric) equilibrium locations are given by

xA∗
=

βStU − tS(αS + tU)

4(αSαU − (βS − tS)(βU − tU))
, (2.16)

xB∗
= 1− βStU − tS(αS + tU)

4(αSαU − (βS − tS)(βU − tU))
. (2.17)

Proof. Given the demand functions, the profit of platform A, πA
D,un (D for Dis-

criminatory delivered pricing), can be derived as

πA
D,un =

∫︂ xA

0

[tU(xB − x) + αU(n
A
S − nB

S ) + βU(n
A
U − nB

U )− tU(x
A − x)] dx

+

∫︂ nA
U

xA

[tU(xB − x) + αU(n
A
S − nB

S ) + βU(n
A
U − nB

U )− tU(x− xA)] dx

+

∫︂ nA
S

0

[tS(1− x) + αS(n
A
U − nB

U ) + βS(n
A
S − nB

S )− tSx] dx.

The profit of platform B can be written in a symmetric form. Taking the first

derivative of the profit of platform A with respect to its location variable xA

and considering only the symmetric locations, we get

tU(βStU − tS(αS + tU))

2αSαU − 2(βS − tS)(βU − tU)
− 2tUx

A. (2.18)

The expression in (2.18) is strictly positive at xA = 0 when the conditions for

a market-sharing equilibrium hold, which means that the profit of platform A

is increasing at this point. It is also true that the first derivative of πA
D,un with

respect to xA is negative at the point xA = 1
2
with the conditions for a market-

sharing equilibrium being satisfied. This means that the optimal location for

platform A is within [0, 1
2
] and, analogously, that for platform B is within [1

2
, 1].

Setting expression (2.18) equal to zero we get the optimal location for platform



2.5. Discriminatory Delivered Pricing 71

A, which is given in expression (2.16). The equilibrium location for platform B

is given by xB∗
= 1− xA∗

.

It is worthwhile to notice that, as long as the conditions for a market-sharing

equilibrium hold, the equilibrium location of platform A is increasing with higher

cross-sided network effect on the user side αU and that of platform B is decreas-

ing in it, meaning that the following relationships always hold:

∂xA∗

∂αU

=
4αS(tS(αS + tU)− βStU)

(4αSαU − (βS − tS)(βU − tU))2
> 0,

∂xB∗

∂αU

= − 4αS(tS(αS + tU)− βStU)

(4αSαU − (βS − tS)(βU − tU))2
< 0.

The results further confirm the intuition that platforms are willing to have

more competition when the cross-sided network effect on the user side increases.

Whether the sufficiency of equilibrium differentiation reaches the level required

by the social optimum is summarized in the following proposition.

Proposition 2.6. Under discriminatory delivered pricing and unbalanced com-

petition, the socially optimal locations are still xA = 1
4
and xB = 3

4
, which

minimize the total transportation costs. The equilibrium differentiation level is

smaller than the socially optimal one if αU > ᾱU := βSβU−(αS+βU )tS
αS

.

See Appendix G for a sketch of proof. Figure 2.6 demonstrates the equilib-

rium locations as well as a comparison with the social optimum.

2.5.4 Balanced competition

Similar as unbalanced competition, the necessary and sufficient conditions for a

market-sharing equilibrium in this case are given in the following lemma.

Lemma 2.6. For any pair of locations, the location-then-price game under dis-

criminatory delivered pricing with balanced competition has a unique market-

sharing equilibrium if αk <
1
2
tk − βk.

See Appendix F for a sketch of proof. Under balanced competition, the de-

mand functions for platform A look slight different from that under unbalanced
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Figure 2.6: Comparison between the equilibrium and socially optimal locations
under discriminatory delivered pricing and unbalanced competition.

competition and are given by

nA
U =

αS(αU − tU(x
A + xB − 1))− (βU − tU)(βS − tS(x

A + xB))

2αUαS − 2(βU − tU)(βS − tS)
,

nA
S =

αU(αS − tS(x
A + xB − 1))− (βS − tS)(βU − tU(x

A + xB))

2αSαU − 2(βS − tS)(βU − tU)
.

The demand functions for platform B on side k is 1− nA
k . Therefore, the profit

of platform A is

πA
D,ba =

∫︂ xA

0

[tU(xB − x) + αU(n
A
S − nB

S ) + βU(n
A
U − nB

U )− tU(x
A − x)] dx

+

∫︂ nA
U

xA

[tU(xB − x) + αU(n
A
S − nB

S ) + βU(n
A
U − nB

U )− tU(x− xA)] dx

+

∫︂ xA

0

[tS(xB − x) + αS(n
A
U − nB

U ) + βS(n
A
S − nB

S )− tS(x
A − x)] dx

+

∫︂ nA
S

xA

[tS(xB − x) + αS(n
A
U − nB

U ) + βS(n
A
S − nB

S )− tS(x− xA)] dx.

The profit of platform B can be put in a symmetric form. The equilibrium
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outcome in the first stage in this case is summarized in the following proposition.

Proposition 2.7. Under discriminatory delivered pricing and balanced compe-

tition, the equilibrium location for platform A is given by

xA∗
=

βU t
2
S + tU(βStU − tS(αS + αU + tS + tU))

4(αSαU − (βS − tS)(βU − tU))(tU + tS)
. (2.19)

The equilibrium location for platform B is xB∗
= 1− xA∗

.

Proof. Considering again only symmetric locations, the first derivative of the

profit of platform A with respect to xA can be written as

βU t
2
S + tU(βStU − tS(αS + αU + tS + tU))

2αSαU − 2(βS − tS)(βU − tU)
− 2(tS + tU)x

A. (2.20)

At the point xA = 0, the expression in (2.20) is positive when the conditions

for a market-sharing equilibrium hold, meaning an increasing profit function

at this point. One can check that the profits of the two platforms are driven

down to zero if they locate at the market center. Solving the function by settign

expression (2.20) equal to zero we get the optimal location for platform A.

Similar as before, as long as the conditions for a market-sharing equilibrium

are satisfied, the following relationships always hold:

∂xA∗

∂αU

=
((αS + tS)tU − (βU tS))((αS + tU)tS − (βStU))

4(αSαU − (βS − tS)(βU − tU))2(tU + tS)
> 0,

∂xB∗

∂αU

= −((αS + tS)tU − (βU tS))((αS + tU)tS − (βStU))

4(αSαU − (βS − tS)(βU − tU))2(tU + tS)
< 0.

This means that the equilibrium location of platform A is increasing with higher

cross-sided network effect on the user side αU and that of platform B is decreas-

ing in it.

Comparing to the results under mill pricing policy, the tendency of agglom-

eration holds even with balanced competition under discriminatory delivered

pricing. Proposition 2.8 states the comparison between the equilibrium out-

come and social welfare.
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Proposition 2.8. Under discriminatory delivered pricing and balanced compe-

tition, the socially optimal locations involve the two platforms locating at xA = 1
4

and xB = 3
4
. What is more, the equilibrium differentiation level is smaller than

the social optimum if αU > α̃U := βSβU (tS+tU )−(αS+βS+βU )tStU
tStU+αS(tS+tU )

.

In Appendix H a sketch of proof is provided. The equilibrium as well as

socially optimal locations are illustrated in Figure 2.7.

















Figure 2.7: Comparison between the equilibrium and socially optimal locations
under discriminatory delivered pricing and balanced competition.

2.6 Conclusions and Policy Implications

In this paper, I consider a location-then-price model with both within-sided and

cross-sided network effects. By assuming different pricing policies and compe-

tition modes, I find that under mill pricing policy and unbalanced competition,

competing platforms are willing to locate less distantly in equilibrium on one

side, when there is significant heterogeneity in the valuations of network size

among different groups. Given this pricing policy, the principle of maximum

differentiation still holds under balanced competition. With discriminatory de-

livered pricing policy, the tendency of agglomeration emerges in equilibrium un-
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der both unbalanced and balanced competition. This effect becomes increasingly

evident when the difference of cross-sided network externalities increases.

Comparing to the socially desirable locations, insufficient differentiation is

possible in equilibrium, when the difference of cross-sided network externalities

is sufficiently high. This effect is more obvious in unbalanced competition than

in balanced competition under mill pricing policy. Because when platforms can

select locations on only one side, they can extract more rent from the other side

due to the see-saw effect as they move towards each other.

These results have important policy implications. First, policy makers should

pay special attention to the potentially unbalanced spatial competition among

platforms. When platforms voluntarily choose more intense competition on one

side, it is possible that the prices on the other sides are too high and the total

social welfare is impeded. Second, besides price regulation, balancing the de-

gree of competition on all of the sides should be taken into consideration when

making regulating policies, especially when platforms can choose the level of

differentiation flexibly. Since a price decrease due to regulation on one side may

cause dramatic prices increase on many other sides and this may not be socially

optimal. Last but not least, welfare maximizing locations are not sustainable

any more under discriminatory delivered pricing policies when network exter-

nalities are considered in the model. This deserves some special attention, since

it has been shown that there could be insufficient differentiation in the markets

with network effects both under balanced and unbalanced competition.



76 2.6. Conclusions and Policy Implications

Appendices

A Equilibrium prices given xA and xB

Under mill pricing and unbalanced competition, the equilibrium prices given

location choices are given by

pAU =
2α3

S + α2
SM

U
1 + αS(2α

2
U + 5αUβU −M2 +M3) + (βU + tU(x

A − xB))MU
4

M2 − (2αS + αU)(αS + 2αU)

pAS =
2α3

U + α2
UM

S
1 + αU(2α

2
S + 5αS(βS − tS)− (βS − tS)M5) + (βS − tS)M

S
4

M2 − (2αS + αU)(αS + 2αU)

pBU =
2α3

S + α2
SN

U
1 + αS(2α

2
U + 5αUβU −M2 −N3) + (βU + tU(x

A − xB))NU
4

M2 − (2αS + αU)(αS + 2αU)

pBS =
2α3

U + α2
UN

S
1 + αU(2α

2
S + 5αS(βS − tS)− (βS − tS)N5) + (βS − tS)N

S
4

M2 − (2αS + αU)(αS + 2αU)

where MU
1 = 5αU + 2βU + tU(x

A − xB)(xA + xB + 1), MS
1 = 5αS + 2βS − 2tS,

M2 = 9(βS − tS)(βU + tU(x
A − xB)), M3 = αU tU(x

A − xB)(3 + 2xA + 2xB),

MU
4 = 2α2

U − 3(βS − tS)(3βU + tU(x
A − xB)(xA + xB + 2)), MS

4 = 2α2
S −

M2 + αStU(x
A − xB)(xA + xB − 1), M5 = 9βU + tU(x

A − xB)(xA + xB + 8)

and NU
1 = 5αU + 2βU − tU(x

A − xB)(xA + xB − 3), NS
1 = 5αS + 2βS − 2tS,

N3 = αU tU(x
A − xB)(2xA + 2xB − 7), NU

4 = 2α2
U − 3(βS − tS)(3βU − tU(x

A −
xB)(xA + xB − 4)), NS

4 = 2α2
S − M2 − αStU(x

A − xB)(xA + xB − 1), N5 =

9βU − tU(x
A − xB)(xA + xB − 10).

B Proof of Proposition 2.1

Taking the first derivative of the equilibrium profit of platform A with respect

to its location variable xA and setting xA = 0, xB = 1 we get the following

expression

∂πA
M,un

∂xA

⃓⃓
⃓⃓
xA=0,xB=1

=
(α2

S + αS(2αU + βS − tS)− (βS − tS)(αU + 3βU − 3tU))tU
2(9(βS − tS)(βU − tU)− (2αS + αU)(αS + 2αU))

.

As long as the conditions for a market-sharing equilibrium hold, the denom-

inator is always positive. The numerator is non-negative if αU ≥ α∗
U :=
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α2
S+(βS−tS)(αS−3(βU−tU ))

2αS−βS+tS
. This means that if αU ≥ α∗

U is true, the profit of plat-

form A is increasing in xA at xA = 0. When the two platforms jointly locate

at the market center, the first-derivate is given by
∂πA

M,un

∂xA

⃓⃓
⃓⃓
xA= 1

2
,xB= 1

2

= − tU
2
< 0.

Given the continuity of the first derivate, the optimal location of platform A

must be within [0, 1
2
] and solves

∂πA
M,un

∂xA = 0. The equilibrium location is actually

the smaller root that solves
∂πA

M,un

∂xA = 0. For platform B, the optimal location

can be derived in a symmetric manner.

C Proof of Proposition 2.2

Under mill pricing and unbalanced competition, the aggregate consumer surplus

CSM,un can be calculated as

CSM,un =

∫︂ nA
U

0

[v − pAU + αUn
A
S + βUn

A
U − tU(x− xA)2] dx

+

∫︂ 1

nA
U

[v − pBU + αUn
B
S + βUn

B
U − tU(x− xB)2] dx

+

∫︂ nA
S

0

[v − pAS + αSn
A
U + βSn

A
S − tSx

2] dx

+

∫︂ 1

nA
S

[v − pBS + αSn
B
U + βSn

B
S − tS(1− x)2] dx.

The social welfare in this scenario is given by SWM,un = CSM,un + πA
M,un +

πB
M,un. Taking the first derivate of SWM,un with respect to xA and assuming

that location choices of the two platforms are symmetric in equilibrium we

obtain the socially optimal locations: xA = 1
4
and xB = 3

4
.

When xA = 1
4
and xB = 3

4
, the first derivate of the profit of platform A with

respect to its location choice can be written as

∂πA
M,un

∂xA
=

(3α2
S + 2α2

U + αS(7αU + βS − tS) + αU (tS − βS)− 6(βS − tS)(2βU − tU ))tU
18(βS − tS)(2βU − tU )− 4(2αS + αU )(αS + 2αU )

.

The above expression is non-negative if αU ≥ α∗∗
U , where α∗∗

U is the bigger root

of (αS +2αU)(3αS +αU)+ (βS − tS)(αS −αU − 6(2βU − tU)) = 0. The situation

of platform B is symmetric to that of platform A. This means that platforms

tend to move too close to each other when the cross-sided network effect on the
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user side is sufficiently high.

D Proof of Proposition 2.3

In this section, the proof of Proposition 2.3 is provided. If the platforms’ optimal

location choices are xA = 0 and xB = 1, we must have
∂πA

M,ba

xA

⃓⃓
⃓⃓
xA=0,xB=1

≤ 0 and

∂πB
M,ba

xB

⃓⃓
⃓⃓
xA=0,xB=1

≥ 0.

Taking first derivative of platform A’s equilibrium profit with respect to its

location xA and assuming that platforms locate at different extremes of the

agent space, the following expression is obtained:

α2
U tS + α2

StU − 3Ψ1 + αUΨ2 + αS(2αU(tS + tU)−Ψ2)

2(9(βS − tS)(βU − tU)− (2αS + αU)(αS + 2αU))

where Ψ1 = (βS−tS)(βU−tU)(tS+tU), Ψ2 = βU tS−βStU . The above expression

is always non-positive as long as the conditions for a market-sharing equilibrium

hold. The equilibrium location of platform B can be proved in a symmetric

manner. Therefore, it can be concluded that the equilibrium locations for the

two competing platforms are xA = 0 and xB = 1.

E Proof of Proposition 2.4

In this scenario, the total consumer surplus is given by

CSM,ba =

∫︂ nA
U

0

[v − pAU + αUn
A
S + βUn

A
U − tU(x− xA)2] dx

+

∫︂ 1

nA
U

[v − pBU + αUn
B
S + βUn

B
U − tU(x− xB)2] dx

+

∫︂ nA
S

0

[v − pAS + αSn
A
U + βSn

A
S − tS(x− xA)2] dx

+

∫︂ 1

nA
S

[v − pBS + αSn
B
U + βSn

B
S − tS(x− xB)2] dx.

The social welfare is SWM,ba = CSM,ba + πA
M,ba + πB

M,ba. Taking the first deriva-

tives of SWM,ba with respect to xA and considering only symmetric locations we
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obtain
∂SWM,ba

∂xA
= −1

4
(tS + tU)(4x

A − 1).

Setting the above expression equal to zero we get xA = 1
4
. The socially optimal

location of platform B is given by xB = 3
4
. These are the location configurations

that maximizes the social welfare in this scenario.

F Proof of Lemma 2.5 and Lemma 2.6

Under discriminatory delivered pricing, the advantage provided by network size

can be considered as a shift of the cost curve of each platform. Taking platform

A as an example, one can find out that if the aggregate network size of it is

too large, the cost curve of platform B keeps shifting upward until there is no

intersection point of the two curves. In that case platform B is driven out of the

market completely. Because now platform A is sufficiently efficient such that

even the cost of serving the farthest agent (x = 1) is lower than that of platform

B. To avoid this situation, the increasing part of platform A’s cost curve must

be strictly lower than that of platform B, which means that the conditions in

Lemma 2.5 and Lemma 2.6 must be satisfied.

G Proof of Proposition 2.6

The aggregate consumer surplus is

CSD,un =

∫︂ nA
U

0

[v − tU(x
B − x) + αUn

A
S + βUn

A
U ] dx

+

∫︂ 1

nA
U

[v − tU(x− xA) + αUn
B
S + βUn

B
U ] dx

+

∫︂ nA
S

0

[v − tS(1− x) + αSn
A
U + βSn

A
S ] dx

+

∫︂ 1

nA
S

[v − tSx+ αSn
B
U + βSn

B
S ] dx.

Adding up the profits of the two platforms and the consumer surplus we get the

social welfare in this scenario: SWD,un = CSD,un + πA
D,un + πB

D,un. The socially

optimal locations are still the ones that minimize the total transportation costs,
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namely xA = 1
4
, xB = 3

4
.

Taking the first derivate of the profit of platform A with respect to its location

xA at the point xA = 1
4
, xB = 3

4
we get

∂πA
D,un

∂xA

⃓⃓
⃓⃓
xA= 1

4
,xB= 3

4

=
αS((αU + tS) + βU(tS − βS))tU
2((βS − tS)(βU − tU)− αSαU)

.

The expression above is nonnegative if αU ≥ ᾱU := βSβU−(αS+βU )tS
αS

, which means

that platforms tend to have more intensified competition than the socially op-

timal level if the cross-sided network effect on the user side is high enough.

H Proof of Proposition 2.8

The aggregate consumer surplus is

CSD,ba =

∫︂ nA
U

0

[v − tU(x
B − x) + αUn

A
S + βUn

A
U ] dx

+

∫︂ 1

nA
U

[v − tU(x− xA) + αUn
B
S + βUn

B
U ] dx

+

∫︂ nA
S

0

[v − tS(x
B − x) + αSn

A
U + βSn

A
S ] dx

+

∫︂ 1

nA
S

[v − tS(x− xA) + αSn
B
U + βSn

B
S ] dx.

The social welfare in this scenario is given by SWD,ba = CSD,ba + πA
D,ba + πB

D,ba.

One can check that the optimal locations are still xA = 1
4
, xB = 3

4
.

At the point xA = 1
4
, xB = 3

4
we have

∂πA
D,ba

∂xA
=

αUαStS + βStStU + (αU + βU)tStU + αStU(αU + tS)− βSβU(tS + tU)

2((βS − tS)(βU − tU)− αSαU)
.

The expression above is nonnegative if αU ≥ α̃U := βSβU (tS+tU )−(αS+βS+βU )tStU
tStU+αS(tS+tU )

.
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3.1 Introduction

In this paper, I study a modification of the model in Kreps and Scheinkman

(1983) by assuming perfectly inelastic demand. The characterization and ef-

ficiency of the equilibrium are studied under both constant and increasing

marginal costs of capacity installation. In the analysis of price competition,

I provide a full characterization of the Bertrand-Edgeworth price equilibrium

given firms’ capacity choices. The results mainly show that under any given

cost functions, monopoly outcome can always be sustained in equilibrium. While

most of the equilibria involve firms choosing their aggregate capacity equal to

the market volume, insufficient capacity can also occur in equilibrium.

The paper by Kreps and Scheinkman (1983) implies that the result to an

oligopoly game depends not only on the strategic variables which are chosen in

the game but also on the timing in which these variables are employed. They

introduce a two-stage game in which the firms choose their capacities in the first

stage and compete in prices in the second. With a downward-sloping demand

function, this two-stage game finally yields Cournot outcome.

The objective of this paper is to introduce a modification of perfectly inelastic

demand to the Kreps-Scheinkman model and provide a complete characteriza-

tion of the equilibrium. As argued in some other literature, the results in Kreps

and Scheinkman (1983) are mainly driven by the assumption that demand is

rationed efficiently. However, Davidson and Deneckere (1986) show that this

result may not be true when using some alternative rationing rules, and even

overcapacity can emerge in equilibrium. By assuming perfectly inelastic de-

mand, the equilibrium outcome does not depend on the rationing rule anymore

and we can concentrate on comparing the effect of different capacity installation

costs.

The remainer of the paper is organized as follows. In Section 3.2 the related

literature will be discussed. In Section 3.3, I introduce the basic setup of the

model. Section 3.4 provide the analysis with constant marginal capacity instal-

lation cost. The model with increasing marginal installation cost is discussed

in Section 3.5. Finally, the conclusions and interpretation of the results are

provided in Section 3.6.
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3.2 Literature

My study mainly builds on the work by Kreps and Scheinkman (1983), in which

the authors show that the two-stage game finally yields the unique Cournot

outcome, with the demand allocated as the efficient rationing rule. However,

Davidson and Deneckere (1986) argue that this result is not robust when using

alternative rationing rules, and excessive capacity and asymmetric equilibrium

are also possible. While Madden (1998) proves that the problem regarding the

rationing rules studied by Davidson and Deneckere (1986) vanishes and the

Cournot outcome is restored, if the demand is assumed to be uniformly elas-

tic and all the costs are sunk before price competition. Instead of modeling a

Bertrand-like price competition in the second stage, Moreno and Ubeda (2006)

prove that the Cournot equilibrium prevails if firms set a reservation price after

building their capacities. What is more, the robustness of Kreps-Scheinkman

results also prevails to some extent under demand uncertainty. For example,

Lepore (2012) establishes a model in which firms build their capacities before

the state of demand is realized. The author proves that the Cournot outcome

can emerge under certain conditions of the demand distribution. As a com-

mitment device, capacity commitment is also proved as a barrier to entry. For

example, Allen et al. (2000) provide another kind of modification in which firms

(incumbents and entrants) make capacity decisions sequentially and compete

in price simultaneously afterwards. In such a model, capacity precommitment

can serve as entry deterrence and the incumbent may even find it optimal to

hold excessive capacity in order to prevent the entrant from choosing a large

capacity. While the Kreps-Scheinkman model assumes symmetric production

costs for firms, Deneckere and Kovenock (1996) show that Cournot outcome

may not emerge in equilibrium when firms have asymmetric production costs.

Especially, there may be only mixed-strategy capacity equilibrium when the

cost for capacity is significant.

Some related results with constant marginal capacity installation cost have

been found also by Acemoglu et al. (2009) and De Frutos and Fabra (2011). Ace-

moglu et al. (2009) characterize the equilibria in a similar game with potentially

asymmetric linear capacity installation cost. They characterize a continuum of

pure-strategy equilibria in the capacity stage by proving their sufficiency and
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necessity. Differently, my approach in the first stage is to fully characterize the

profit functions and the best responses given the capacity decisions of their com-

petitors. They also investigate the difference in efficiency among the equilibria

by distinguishing Price of Anarchy and Price of Stability. De Frutos and Fabra

(2011) also study a similar capacity-then-price game with perfectly inelastic

demand. They focus on the effect of demand uncertainty on the potentially

asymmetric market outcomes. As a benchmark situation, a two-player model

with deterministic demand is first discussed without providing a full character-

ization of the price competition in the second stage.

An essential part in the analysis in this paper is that, within a certain range

of capacity choices, firms engage in a Bertrand-Edgeworth competion (see Edge-

worth (1925)) and adjust their prices randomly within a specific price interval.

With a downward-sloping demand, De Francesco and Salvadori (2009) general-

ize the features of mixed-strategy price equilibrium under duopoly to oligopoly

and provide a full characterization for triopoly market. (See also De Francesco

and Salvadori (2022)). Compte et al. (2002) study the Bertrand-Edgeworth

price competition with n firms and examine the relationship between the asym-

metry in capacity distributions and tacit collusion. Hirata (2009) also studies

the characterization of the mixed-strategy price equilibrium given different ca-

pacities of firms and applies the results to merger analysis. Deneckere and

Kovenock (1992) study a game of price leadership with capacity constraints.

Interestingly, when the capacity configurations lead to no pure-strategy equi-

librium in the simultaneous game, the large firm can become price leader by

endogenous timing choices with efficient rationing rule. Furth and Kovenock

(1993) further prove that an endogenously determined price leader can emerge

with differentiated products within a certain range of capacity constraints. By

varying firms excess capacity, Fonseca and Normann (2008) test the influence of

different capacities on price behaviors in a repeated Bertrand-Edgeworth setting

in a laboratory experiment. They show that increasing capacity levels indeed

impose downward pressure on average market prices. However, the decline in

prices is less pronounced than theoretical prediction.
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3.3 The Model

Consider the Kreps-Scheinkman model with perfectly inelastic demand. There

are M consumers and each of them is to buy one unit of goods as long as the

price does not exceed their reservation price pm, which is also the monopoly

price in this game. There are two firms in the market. Consumers, at first, buy

from the firm with the lowest price. After the capacity of this firm is exhausted,

they switch to the other firm. The equilibrium concept used in this model is

subgame-perfect Nash equilibrium.

As for the timing, it is specified as: In the first stage, firms make their

capacity decisions and production takes place. The capacity decisions of the

firms are denoted by xi (i ∈ {1, 2}), which can be observed at the coming stage.

Without loss of generality, it is assumed that x1 ≤ x2. For simplicity, production

cost is assumed to be zero. But there is still capacity installation cost for the

firms, which is denoted by C(xi), C(0) = 0, with the condition ∂C(xi)
∂xi

≥ 0.

In the second stage, firms initiate their competition in price, and their prices

are denoted by pi. Following the setup in Kreps and Scheinkman (1983), the

demand of a firm is specified as follows: If p1 < p2, firm 1’s demand is

s1 = min(x1,M). (3.1)

This equation represents that the firm with the lower price can sell its whole

capacity as long as it does not exceed the market volume. In this situation, firm

2’s demand is

s2 = min(x2,max(M − x1, 0)). (3.2)

Here the term M − x1 is the residual demand in the market. Since firm 2 has a

higher price, the demand of it must be related to the residual demand, in other

words, related to the capacity of its rival. The equations take a symmetric form

if p1 > p2. If p1 = p2 = p, the demand of firm i is

si = min(xi,
M

2
+ max(0,

M

2
− xj)) = min(xi,max(

M

2
,M − xj)). (3.3)

In all the above mentioned situations, the profit for firm i is πi = pisi − C(xi).

I analyze the model with two types of capacity installation costs here. First
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is the situation with constant marginal capacity installation cost. Here I mainly

discuss the case in which the marginal cost is positive. The model with zero

marginal cost is analyzed as a subcase of it. On top of that, the model with

increasing marginal capacity installation cost is also to be discussed.

3.4 Constant Marginal Capacity Installation Cost

In this section, I discuss the model with constant capacity installation cost. I

mainly analyze the influence of positive (constant) capacity installation cost on

firms’ best responses. Then a subcase with zero marginal capacity installation

cost will be briefly discussed.

3.4.1 Positive (constant) marginal capacity installation

cost

In this case, a constant cost c > 0 exists for each unit of capacity installed. In

the second stage, firms engage in a Bertrand-like price competition and, given

firms’ capacity decisions, three cases are discussed. Then, I analyze firms’ best

responses in the capacity setting stage.

3.4.1.1 Price competition

With the fact that, the profits generated for the firms depend on x1 and x2,

three forms of price competition are analyzed here. Table 3.1 contains a sum-

mary of all the cases of price competition.

Case 1.1 Case 1.2 Case 1.3 (a) Case 1.3 (b)

x1 ≥ M x2 ≥ M x1 + x2 ≤ M xi < M , x1 + x2 > M x1 < M , x2 ≥ M

Table 3.1: Summary of price competition in the second stage.

Case 1.1 . x1 ≥ M and x2 ≥ M . First, the view is on the case, where

both firms choose enough large capacities that can cover the entire market.
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This makes it the same situation as the standard Bertrand competition without

capacity constraints. The subgame equilibrium in this case is pi = 0, si =
M
2
,

and πi = −cxi.

Case 1.2 . In this case, we have x1 + x2 ≤ M . Hence the competition is

absent and both firms can set the monopoly price p1 = p2 = pm and sell s1 = x1,

s2 = x2. The profit of firm i is πi = (pm − c)xi.

Case 1.3(a). In this case, we have xi < M , x1 + x2 > M . While the

total capacity of the two firms exceeds the market volume, neither of them can

satisfy the whole market all by itself. This is the case of the known Bertrand-

Edgeworth game (see Tirole (1988), pp. 211-212). Since no pure-strategy price

equilibrium exists here, only the mixed-strategy equilibrium remains, namely

the case where firms set prices randomly from the interval [p, pm]. In a mixed-

strategy Nash equilibrium, firm 2 is indifferent between setting the highest and

lowest price and therefore we have

(p− c)xi = pm(M − xj)− cxi. (3.4)

Given x1 ≤ x2 and solving this equation for p we get p(x2 < M) = pm(M−x1)
x2

,

which is the infimum of the price interval. The expected profit of each firm is

given by

π1 =
pm(M − x1)x1

x2

− cx1 (3.5)

and

π2 = pm(M − x1)− cx2. (3.6)

Let Gi(p) denote the probability that firm i charges the price no higher than

p. We have

p[G1(p)(M − x1) + (1−G1(p))x2] = pm(M − x1), (3.7)

so,

G1(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p < p(x2 < M)

pm(M−x1)−px2

p(M−x1−x2)
, if p(x2 < M) ≤ p ≤ pm

1, if p > pm.

(3.8)
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And for firm 2 we have

p[G2(p)(M − x2) + (1−G2(p))x1] =
pm(M − x1)x1

x2

, (3.9)

therefore

G2(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p < p(x2 < M)

x1(pm(M−x1)−px2)
px2(M−x1−x2)

, if p(x2 < M) ≤ p ≤ pm

1, if p > pm.

(3.10)

The cumulative distribution functions are shown in Figure 3.1a and 3.1b. It

is clear that the distribution function G2 has a mass at pm.



   

(a) The distribution function G1.



   

(b) The distribution function G2.

Figure 3.1: The distribution functions of prices in Case 1.3 (a).

Case 1.3 (b). In this case, we have x1 < M , and x2 ≥ M . The price

competition takes the similar form as before. Even so, the infimum of price

interval as well as the profits are similar as that in Case 1.3(a) except that x2

should be replaced by M in the analysis. As shown before, the lower bound

of the price interval must make firm 2 indifferent between getting the residual

demand and serving the whole market. So, we have

p(x2 ≥ M) =
pm(M − x1)

M
. (3.11)
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The expected profits of the two firms are

π1 = pm(M − x1)
x1

M
− cx1 (3.12)

and

π2 = pm(M − x1)− cx2. (3.13)

In this case, the cumulative distribution functions are

Gb
1(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p < p(x2 ≥ M)

Mp−pm(M−x1)
px1

, if p(x2 ≥ M) ≤ p ≤ pm

1, if p > pm.

(3.14)

Gb
2(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p < p(x2 ≥ M)

Mp−pm(M−x1)
pM

, if p(x2 ≥ M) ≤ p ≤ pm

1, if p > pm.

(3.15)

The distributions have the same patterns as in Figure 3.1a and 3.1b.

3.4.1.2 Capacity decisions

In this part, I discuss the best responses of firms in the first stage. Taking the

price comptition into consideration, four different scenarios are considered here.

Scenario 1.1: xj ≥ M. If firm j’s capacity is larger than the market

volume, the profit of firm i is given by

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pm(M−xi)xi

M
− cxi, if 0 < xi < M

−cxi, if xi ≥ M.

(3.16)

Here, the profit of firm i depends only on its own capacity. If firm i also chooses

a capacity level higher than the whole market, negative profit is left for it as

analyzed in Case 1.1. Otherwise, if xi < M , the game is as shown in Case 1.3

(b), generating a profit as in equation (3.13) for firm i. The profit is shown in

Figure 3.2. Here, the best response of firm i is to choose a capacity level which

satisfies the first-order condition
∂πi(xj≥M)

∂xi
= 0. So, the optimal capacity of firm
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i is

xi =
(pm − c)M

2pm
. (3.17)









 
 

 

Figure 3.2: The profit of firm i in Scenario 1.1.

Scenario 1.2: Mpm

2pm−c
< xj < M. In this scenario, firm i’s profit can be

summarized as

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(pm − c)xi, if 0 < xi ≤ M − xj

pm(M−xi)xi

xj
− cxi, if M − xj < xi ≤ xj

pm(M − xj)− cxi, if xi > xj.

(3.18)

Here, firm j’s capacity alone is unable to serve all the consumers in the market.

If firm i chooses xi ≥ xj, the market is completely covered and firm i can

always expect its profit to be positive, even if it sets the highest price in the

market. Its profit in this case is given by πi = pm(M − xj)− cxi. By choosing

M − xj ≤ xi < xj, the situation is as shown in Case 1.3(a) and firm i has

a concave profit function in this interval with a unique maximum point. The

first-order condition yields xi =
pmM−cxj

2pm
. If xi < M − xj, the subgame of the

second stage is down to the monopoly case (Case 1.2 ) and firm i’s profit, which

is given by πi = (pm−c)xi, increases with higher capacity. The profit of firm i is

illustrated in Figure 3.3. The best response of firm i is to choose xi =
pmM−cxj

2pm
.

Scenario 1.3: M
2

< xj ≤ Mpm

2pm−c
. The profit of firm i has the identical

expression as in (3.18). The difference between the profit here and that in Sce-
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Figure 3.3: The profit of firm i in Scenario 1.2.

nario 1.2 is that M−xj >
pmM−cxj

2pm
is true. This implies that the quadratic part

of the profit curve is strictly decreasing and the best response in this situation

is xi = M − xj. Figure 3.4 shows the profit of firm i in this scenario.

   
  



 


Figure 3.4: The profit of firm i in Scenario 1.3.
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Scenario 1.4: 0 ≤ xj ≤ M
2
. In this scenario, firm i’s profit is given by

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(pm − c)xi, if 0 < xi ≤ M − xj

pm(M − xj)− cxi, if xi > M − xj.

(3.19)

As shown in Figure 3.5, the best response of firm i is xi = M − xj.



    


Figure 3.5: The profit of firm i in Scenario 1.4.

So far, all the scenarios in the capacity stage have been analyzed. Proposition

3.1 summarizes the equilibrium in the full game.

Proposition 3.1. In the game with positive (constant) marginal cost of ca-

pacity installation, the subgame-perfect equilibrium involves firms choosing their

capacities which satisfy

x1 + x2 = M,

xi ∈ [
M(pm − c)

2pm − c
,

Mpm

2pm − c
], i ∈ {1, 2}.

Firms set pi = pm in equilibrium and the complete best responses in the second

stage are as in section 3.4.1.1.
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Proof. Summarizing the analysis above we get the best responses of firm i:

BRi(xj) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

M − xj, if 0 < xj ≤ Mpm

2pm−c

pmM−cxj

2pm
, if Mpm

2pm−c
< xj < M

(pm−c)M
2pm

, if xj ≥ M.

(3.20)

Figure 3.6 illustrates the best response functions. Solving the best response

functions simultaneously we get the continuum of equilibria.



 




 

  
 



 

  
 



 





Figure 3.6: The best responses and the equilibrium capacities with positive
(constant) marginal capacity installation cost.

Given the best responses, the game has infinitely many equilibria in pure

strategies. This equilibrium outcome provides several implications. First, in

equilibrium, firms are willing to choose their capacities equal to the residual

demand, since holding excessive capacity is a pure loss and is harmful to their

profits. In addition, the length of the overlapping part in Figure 3.6 depends

on the level of cost c. The higher c is, the longer is the overlapping part and
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firms are thus more willing to take the residual demand. For example, when c

is slightly higher than 0, the best response functions have a unique intersection

point. If c = pm, firm i chooses xi = M−xj as long as xj < M and 0 if xj ≥ M .

What is more, asymmetric capacities are possible in equilibrium. The market

is always fully covered and the sum of firms’ profits equals the monopoly profit,

despite of this asymmetry. It is worthwhile to notice that the asymmetry among

equilibria does not affect their efficiency.

3.4.2 Zero marginal capacity installation cost

In this case, the marginal capacity installation cost is assumed to be zero. With

this assumption, the analysis shows that there is a unique symmetric equilib-

rium, in which firms share the market equally, as well as asymmetric equilibria,

in which the total capacity is higher than M .

3.4.2.1 Price competition

Similar as the analysis before, three cases in the stage of price competition are

discussed here.

Case 2.1 . x1 ≥ M and x2 ≥ M . This is the case of perfect competition

and firms set p1 = p2 = 0 and obtain π1 = π2 = 0.

Case 2.2 . x1 + x2 ≤ M . Firms charge pi = pm and make a profit of

πi = pmxi.

Case 2.3 (a). xi < M , x1+x2 > M . In this case, firms set prices randomly

from the interval [p, pm].

p(x2 < M) =
pm(M − x1)

x2

(3.21)

is the infimum of the price interval. The expected profit of each firm is given by

π1 = pm(M − x1)
x1

x2

, (3.22)

π2 = pm(M − x1). (3.23)

Case 2.3 (b). x1 < M , and x2 ≥ M . Here, the lower bound of the price
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interval is

p(x2 ≥ M) =
pm(M − x1)

M
. (3.24)

The expected profit function of firm 2 is the same as in (3.23), and that of firm

1 is given by

π1 = pm(M − x1)
x1

M
. (3.25)

3.4.2.2 Capacity decisions

In the analysis of firms’ capacity decisions, three different scenarios are consid-

ered.

Scenario 2.1: xj ≥ M. In this scenario, the expected profit of firm i is

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pm(M−xi)xi

M
, if 0 < xi < M

0, if xi ≥ M.

(3.26)

Figure 3.7 shows the relationship between xi and πi in this scenario. The first-

order condition yields xi =
M
2
. If xj ≥ M , firm i will choose xi =

M
2

as best

response.



 


  



Figure 3.7: The profit of firm i in Scenario 2.1.
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Scenario 2.2: M
2
≤ xj < M. In this scenario, firm i’s expected profit is

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi, if 0 < xi < M − xj

pm(M − x1)
x1

x2
, if M − xj ≤ xi < xj

pm(M − xj), if xi ≥ xj.

(3.27)

The complete relationship between xi and πi in this scenario is shown in Figure

3.8. The first-order condition yields xi =
M
2
. As illustrated, it is optimal for

firm i to set xi =
M
2
.



  



  

Figure 3.8: The profit of firm i in Scenario 2.2.

Scenario 2.3: 0 ≤ xj <
M
2
. The expected profit of firm i is

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi, if 0 < xi < M − xj

pm(M − xj), if xi ≥ M − xj.

(3.28)

As shown is Figure 3.9, the best response is xi ≥ M − xj.

So far all the best responses of firm i have been discussed. The situation is

symmetric for firm j. The complete best response for firm i and the equilibrium

are summarized as follows:

Lemma 3.1. When the marginal cost of capacity installation is normalized to
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Figure 3.9: The profit of firm i in Scenario 2.3.

zero, the best response of firm i is

BRi(xj)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

xi ≥ M − xj, if 0 ≤ xj <
M
2

xi =
M
2
, if xj ≥ M

2
.

(3.29)

Proposition 3.2. With zero marginal capacity installation cost, the subgame-

perfect equilibrium involves {xi = M
2
, xj ≥ M

2
}, i, j = 1, 2, i ̸= j, with the

complete price best responses as in section 3.4.2.1.

Proof. Figure 3.10 illustrates the best reply functions of the two firms. We can

find out that the equilibrium capacities are {xi =
M
2
, xj ≥ M

2
}.

Corollary 3.1. In the game with zero marginal capacity installation cost, the

only capacity equilibrium in which firms’ joint profit is maximized is {x1 =
M
2
, x2 =

M
2
}.

In this game, there are infinitely many equilibria. Since zero capacity in-

stallation cost is assumed here, excessive capacity is possible in equilibrium.

The only symmetric capacity equilibrium here is {x1 =
M
2
, x2 =

M
2
} and this is

Pareto efficient from the firms’ perspective, i.e., firms’ joint profit is maximized

in this equilibrium. Only in this equilibrium, the monopoly outcome is sus-

tained as firms set p1 = p2 = pm. For other asymmetric equilibria, the expected
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Figure 3.10: The best reply functions and the equilibrium with zero marginal
capacity installation cost.

profit for the larger firm is the same as that in the symmetric one, because the

residual demand is always M
2
. The smaller firm, however, is worse off. It gets an

expected profit as shown in equation (3.22) or (3.25), which are strictly smaller

than the monopoly profit.1 Note that these equilibria are equally efficient from

the perspective of social welfare.

3.5 Increasing Marginal Capacity Installation

Cost

With positive (constant) marginal capacity installation cost, infinitely many

equilibria are found in the two-stage game and firms are, to some extend, willing

to take the residual demand in order to avoid competition. Therefore, asym-

1Those asymmetric equilibria can be considered as Spiteful equilibria. Because one firm
can deviate from the symmetric equilibrium by increasing its capacity in order to squeeze out
some profit of its rival. See Saijo and Nakamura (1995) and Wobker (2015).
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metric capacities are possible in equilibrium. However, this asymmetric result

may be driven by the assumption of constant marginal installation cost. If it

is the case, firms may not have incentive to choose a relatively high capacity

and compete aggressively with increasing marginal installation cost. Therefore,

the model with increasing marginal capacity installation cost is assumed in this

section. Same basic setup is taken as before and the capacity installation cost

is assumed to be C(xi) =
1
2
ĉx2

i . Two different situations are discussed in this

section. The first is the situation of full market coverage, in which the marginal

cost is sufficiently low (or the market volume is sufficiently small) and all the

consumers will be served in equilibrium. The second situation refers to partial

market coverage, in which only a fraction of consumers will be served as the

installation cost is too high to have the marginal consumer attended.

3.5.1 Full market coverage

The first situation studied here is full market coverage. The most important

assumption imposed under this situation is that the parameter of marginal in-

stallation cost satisfies ĉ < 2pm

M
.

The procedure of analyzing price competition is similar as before (see Table

3.1). Given the capacity decisions of firms, three different forms of price compe-

tition will be considered: the case of perfect competition, monopoly competition

and Bertrand-Edgeworth competition. Taking the different price competition

forms into consideration, five scenarios of capacity decisions will be analyzed.

Scenario 3.1 xj ≥ M. In this scenario, the profit of firm i is given by

πi(xj ≥ M) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pm(M−xi)xi

M
− 1

2
ĉx2

i , if 0 < xi < M

−1
2
ĉx2

i , if xi ≥ M.

(3.30)

Figure 3.11 shows how firm i’s profit changes with its capacity. The optimal

capacity satisfies the first-order condition of the first part of the profit function

and is given by

xi =
Mpm

ĉM + 2pm
.
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Note that the optimal capacity here is still smaller than M
2

and the value is

constant.





 

  





 


Figure 3.11: The profit of firm i in Scenario 3.1.

Scenario 3.2 x̂ < xj < M , where x̂ =
ĉM−2pm+

√
ĉ2M2+4(pm)2

2ĉ
. In this

scenario, the profit of firm i is

πi(x̂ < xj < M) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi − 1
2
ĉx2

i , if 0 < xi ≤ M − xj

pm(M−xi)xi

xj
− 1

2
ĉx2

i , if M − xj < xi ≤ xj

pm(M − xj)− 1
2
ĉx2

i , if xi > xj.

(3.31)

The profit of firm i is shown in Figure 3.12. The optimal capacity solves the

first-order condition in the second part of the profit function, and is given by

xi =
Mpm

ĉxj + 2pm
.

Scenario 3.3 M
2

< xj ≤ x̂. In this scenario, the profit function of firm i

is the same as in Equation (3.31), but the curve exhibits itself slightly different

from the previous one. Figure 3.13 shows the profit curve of firm i. Since xj is

relatively smaller than that in the previous scenario, the best response of firm i

is to take the residual demand and set xi = M − xj.

Scenario 3.4 M − pm

ĉ
< xj ≤ M

2
. The profit of firm i in this scenario can
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Figure 3.12: The profit of firm i in Scenario 3.2.

    







Figure 3.13: The profit of firm i in Scenario 3.3.

be summarized as follows:

πi(M − pm

ĉ
< xj ≤

M

2
) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi − 1
2
ĉx2

i , if 0 < xi ≤ M − xj

pm(M − xj)− 1
2
ĉx2

i , if xi > M − xj.

(3.32)

The profit curve is shown in Figure 3.14. In this scenario, since xj is still

relatively small, the best response of firm i is still to take the rest of the market

and set xi = M − xj.

Scenario 3.5 xj ≤ M − pm

ĉ
. The profit function of firm i has the identical
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Figure 3.14: The profit of firm i in Scenario 3.4.

expression as that in Scenario 3.4. However, the profit curve, which is illustrated

in Figure 3.15, is slightly different from the previous one. Since xj is too small

in this scenario, firm i has no incentive to take the residual demand as the

installation cost would be too high at the margin. Therefore, the best response

of firm i in this scenario is constant and is given by xi =
pm

ĉ
. This is the optimal

capacity which a monopolist would choose in the market.

    









Figure 3.15: The profit of firm i in Scenario 3.5.

So far, all the best response functions of firm i have been characterized. The

next lemma summarizes the best response of firm i.

Lemma 3.2. In the model with increasing marginal cost of capacity installation
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and when ĉ < 2pm

M
holds, firm i’s best response function is

BRi(xj) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pm

ĉ
, if 0 ≤ xj ≤ M − pm

ĉ

M − xj, if M − pm

ĉ
< xj ≤ x̂

pmM
2pm+ĉxj

, if x̂ < xj < M

pmM
2pm+ĉM

, if xj ≥ M.

(3.33)

Proposition 3.3. In the model with increasing marginal cost of capacity instal-

lation, and provided that ĉ < 2pm

M
, there exits a continuum of equilibria all of

which exhibit x1 + x2 = M in the stage of capacity decision, when x̃ ≤ xi ≤ x̂

holds, where x̃ =
ĉM+2pm−

√
ĉ2M2+4(pm)2

2ĉ
. In equilibrium, firms set pi = pm. The

complete pricing strategies is the same as that under constant marginal instal-

lation cost.

Proof. The best responses of the two competing firms are shown in Figure 3.16.

Solving the best reponses simultaneously we get the equilibria in the stage of

capcacity decisions. The infimum of the support of the range x̃ is the smaller

root of the equation pmM−2pmxi

ĉxi
= M − xi. Here, only the smaller root of the

equation is feasible since the bigger one, which is given by
ĉM+2pm+

√
ĉ2M2+4(pm)2

2ĉ
,

is obviously greater than M .

Similar as the case with positive (constant) marginal installation cost, there

are infinitely many equilibria in this game. Firms choose their capacities which

just satisfy the market demand and neither of them holds excessive capacity.

Interestingly, in this situation, the equilibrium capacities here are not equally

efficient both from the perspective of the firms and from that of social welfare.

The efficiency comparison is given in Proposition 3.4.

Proposition 3.4. In the model with increasing marginal capacity installation

cost, and provided that ĉ < 2pm

M
, the most efficient capacity equilibrium is the

one at xi = xj =
M
2
.

Proof. Given the assumption of perfectly inelastic demand, consumer surplus is

fully extracted by firms. Social welfare in this situation is given by

SW = pmx1 −
1

2
ĉx2

1 + pmx2 −
1

2
ĉx2

2.
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Figure 3.16: The equilibrium capacities with increasing marginal installation
cost when ĉ < 2pm

M
.

Since x1 + x2 = M in equilibrium, the socially optimal capacity is M
2
. Figure

3.17 shows the concavity of social welfare.

Intuitively speaking, the socially optimal capacity is exactly the point, at

which firms have the same marginal cost. Because the marginal cost is increasing

in firms’ capacity.

3.5.2 Partial market coverage

One can imagine that when the capacity installation cost is too high at the

margin, firms may find it optimal to refuse some consumers and only cover a

fraction of the market. This situation, in which ĉ ≥ 2pm

M
holds, is discussed

here. The analysis of price competition is the same as the case with constant

marginal installation cost (see Table 3.1) and therefore is omitted here.

Proposition 3.5. In the model with increasing marginal capacity installation

cost and when ĉ ≥ 2pm

M
holds, firms’ best response functions are the same as that
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Figure 3.17: Social welfare with increasing marginal capacity installation cost
when ĉ < 2pm

M
.

in Equation (3.33).

Proof. There are in total five scenarios to discuss here. The first two scenarios,

Scenario 4.1 and 4.2, are the same as Scenario 3.1 and 3.2, respectively. The

other scenarios are discussed below.

Scenario 4.3 M − pm

ĉ
< xj ≤ x̂. In this scenario, the profit of firm i is

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi − 1
2
ĉx2

i , if 0 < xi ≤ M − xj

pm(M−xi)xi

xj
− 1

2
ĉx2

i , if M − xj < xi ≤ xj

pm(M − xj)− 1
2
ĉx2

i , if xi > xj.

(3.34)

The profit curve is shown in Figure 3.18 and the optimal capacity here is xi =

M − xj.

Scenario 4.4 M
2
< xj ≤ M − pm

ĉ
. Firm i’s profit has the same expression

as the one in Scenario 4.3. However, since M − xj > pm

ĉ
, the curve and the

optimal capacity look differently. With a profit shown in Figure 3.19, the best

response in this scenario is xi =
pm

ĉ
.
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Figure 3.18: The profit of firm i in Scenario 4.3.




 





  

Figure 3.19: The profit of firm i in Scenario 4.4.

Scenario 4.5 0 < xj ≤ M
2
. The profit of firm i is

πi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

pmxi − 1
2
ĉx2

i , if 0 < xi ≤ M − xj

pm(M − xj)− 1
2
ĉx2

i , if xi > M − xj.

(3.35)

As shown in Figure 3.20, the optimal capacity lies in the first part of the curve

and is given by xi =
pm

ĉ
.

Although the best responses in the first stage are the same as previous,
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Figure 3.20: The profit of firm i in Scenario 4.5.

the equilibrium is different. The next proposition characterizes the equilibrium

when the parameter of marginal capacity installation cost is sufficiently high.

Proposition 3.6. In the game with increasing marginal installation cost and

provided that ĉ ≥ 2pm

M
, there exits a unique pure-strategy subgame-perfect Nash

equilibrium which involves both firms choosing xi = xj =
pm

ĉ
and setting pi = pm.

The full characterization of price strategies is the same as the case with constant

marginal installation cost.

Proof. Given the best responses and the assumption on ĉ, the equilibrium in

the capacity decision stage is illustrated in Figure 3.21. In this case, there

is a unique capacity equilibrium in pure strategy. Solving the best response

functions simultaneously we get the intersection point of the two best response

curves: xi = xj =
pm

ĉ
.

When the parameter of the marginal cost of building capacity is high enough,

firms would find it optimal to choose a constant capacity which actually max-

imizes the monopoly profit in the market. It is worthwhile to notice that the

market is only partially covered with the equilibrium strategies. Because the

total capacity supplied in the market is 2pm

ĉ
, which is strictly smaller than M

if ĉ < 2pm

M
is true. Only at the point ĉ = 2pm

M
, all the consumers will be served.

Note that although some consumers are rejected, this equilibrium is still socially

optimal.
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Figure 3.21: The equilibrium capacities with increasing marginal installation
cost when ĉ ≥ 2pm

M
.

3.6 Conclusion

In this paper, I characterize the equilibrium in a capacity-then-price game with

perfectly inelastic demand. In the analysis, I provide complete characterizations

of the best responses in price competition and capacity decisions. The results

in my research show that the monopoly outcome can always be sustained in

equilibrium in this non-cooperative game. In addition, the effects of different

types of capacity installation costs on equilibrium are also studied. With positive

(constant) marginal cost, there is a continuum of capacity equilibria in which

the sum of firms’ capacities equals the total market volume. With zero marginal

cost for capacity installation, the symmetric subgame-perfect Nash equilibrium

involves firms sharing the market volume equally. This is the only equilibrium

in which there is no excessive capacity and firms’ joint profit is maximized.

When the marginal cost is increasing in capacity, the market is fully covered

in equilibrium only when the parameter of marginal cost is sufficiently low.
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Otherwise, there is a unique capacity equilibrium with partial market coverage.

From the perspective of social welfare, the equilibria under constant marginal

cost are equally efficient. However, those under increasing marginal cost may

not be the same, especially when the parameter of marginal installation cost is

sufficiently low. In this case, only the symmetric equilibrium, in which firms

have identical marginal cost, is socially desirable.

In addition, there exists a capacity equilibrium in which only a fraction of

consumers are served with increasing marginal cost of capacity installation.

Although some consumers are rejected by firms, this result is still the most

efficient, since building extra capacity is too costly at the margin.
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In my dissertation, I discuss competition issues in three different market

environments using theoretical methods.

In Chapter 1, we discuss market outcomes in credence goods markets when

experts are heterogeneous in their diagnostic abilities. We find that when the

types of experts are observable to customers, efficient market outcomes can be

sustained in equilibrium. However, the efficient outcomes may involve the low-

ability expert always providing the major or minor treatment. When the types

of experts are unobservable to their customers, multiple equilibria emerge within

some certain ranges of parameters. The results have several welfare implications,

among which a very interesting one is that, when market agents coordinate on

the inefficient equilibria, increasing the share of high-ability experts may not

lead to higher efficiency.

In Chapter 2, I analyze platform competition with endogeneous locations.

Taking different pricing policies and competition modes into consideration, I

find that platforms may choose to have more intensified competition on some

certain side(s). If a tendency of agglomeration emerge in equilibrium, the equi-

librium differentiation level can be lower than the social optimum. Only with

mill pricing and balanced competition, the principle of maximum differentiation

stays valid and there is excess differentiation between the competing platforms.

These results have important policy implications. For example, insufficient dif-

ferentiation levels on some certain sides in platform competition deserve special

attention from the policy makers. What is more, balancing the competition on

different sides should be taken into consideration besides price regulation.

Chapter 3 is about capacity precommitment and price competition in markets

with perfectly inelastic demand. In this chapter, complete characterizations of

firms’ best responses and equilibrium outcomes are provided. My results mainly

show that the monopoly outcome can be sustained in equilibrium. While the

equilibria are equally efficient with constant marginal cost of capacity installa-

tion, there is significant efficiency variation among the equilibria with increasing

marginal cost. In addition, when the capacity installation cost is too high at

the margin, the most efficient equilibrium outcome may involve some consumers

being rejected.
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