
On Executing State-Based
Specifications and Partial Order

Reduction for High-Level Formalisms

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Philipp Körner

aus Herne

Düsseldorf, Januar 2023

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Michael Leuschel
Heinrich-Heine-Universität Düsseldorf

2. Dr. Akram Idani
Université Grenoble Alpes

Tag der mündlichen Prüfung: 14. Oktober 2022

Parts of this thesis have been published in the following
peer-reviewed articles, conference proceedings and book chapters

• Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings, and Mi-
chael Leuschel. Embedding High-Level Formal Specifications into Applications. In
Proceedings FM (International Symposium on Formal Methods), volume 11800 of
Lecture Notes in Computer Science, pages 519–535. Springer, 2019

• Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings, and Mi-
chael Leuschel. Integrating formal specifications into applications: the ProB Java
API. Formal Methods in System Design, 57:160–187, 2020

• Sebastian Krings, Philipp Körner, Jannik Dunkelau, and Chris Rutenkolk. A Veri-
fied Low-Level Implementation of the Adaptive Exterior Light and Speed Control
System. In Proceedings ABZ (International Conference on Rigorous State-Based
Methods), volume 12071 of Lecture Notes in Computer Science, pages 382–397.
Springer, 2020

• Philipp Körner and Florian Mager. An Embedding of B in Clojure. In Compan-
ion Proceedings MODELS (International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings), page 598–606. ACM, 2022

• Philipp Körner, Michael Leuschel, and Jannik Dunkelau. Towards a Shared Spe-
cification Repository. In Proceedings ABZ (International Conference on Rigorous
State-Based Methods), volume 12071 of Lecture Notes in Computer Science, pages
266–271. Springer, 2020

• Philipp Körner and Michael Leuschel. Towards Practical Partial Order Reduction
for High-Level Formalisms. In Proceedings VSTTE (International Conference on
Verified Software: Theories, Tools, and Experiments) 2022, volume 13800 of Lecture
Notes in Computer Science. Springer, 2023. To appear.

Other peer-reviewed publications

Articles on Modelling and Verification

• Michael Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte, Michael Leu-
schel, Luis-Fernando Mejia, and Laurent Voisin. The First Twenty-Five Years of
Industrial Use of the B-Method. In Proceedings FMICS (International Conference
on Formal Methods for Industrial Critical Systems), volume 12327 of Lecture Notes
in Computer Science, pages 189–209. Springer, 2020

• Fabian Vu, Dominik Hansen, Philipp Körner, and Michael Leuschel. A Multi-
Target Code Generator for High-Level B. In Proceedings iFM (International Con-
ference on integrated Formal Methods), volume 11918 of Lecture Notes in Computer
Science, pages 456–473. Springer, 2019

• Philipp Körner and Jens Bendisposto. Distributed Model Checking Using ProB. In
Proceedings NFM (NASA Formal Methods Symposium), volume 10811 of Lecture
Notes in Computer Science, pages 244–260. Springer, 2018

• Jens Bendisposto, Philipp Körner, Michael Leuschel, Jeroen Meijer, Jaco van de
Pol, Helen Treharne, and Jorden Whitefield. Symbolic Reachability Analysis of
B through ProB and LTSmin. In Proceedings iFM (International Conference on
integrated Formal Methods), volume 9681 of Lecture Notes in Computer Science,
pages 275–291. Springer, 2016

• Philipp Körner, Jeroen Meijer, and Michael Leuschel. State-of-the-Art Model
Checking for B and Event-B Using ProB and LTSmin. In Proceedings iFM (In-
ternational Conference on integrated Formal Methods), volume 11023 of Lecture
Notes in Computer Science, pages 275–295. Springer, 2018

• Dominik Hansen, Michael Leuschel, David Schneider, Sebastian Krings, Philipp
Körner, Thomas Naulin, Nader Nayeri, and Frank Skowron. Using a Formal B
Model at Runtime in a Demonstration of the ETCS Hybrid Level 3 Concept with
Real Trains. In Proceedings ABZ (International Conference on Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z), volume 10817 of Lecture Notes in Computer
Science, pages 292–306. Springer, 2018

• Dominik Hansen, Michael Leuschel, Philipp Körner, Sebastian Krings, Thomas
Naulin, Nader Nayeri, David Schneider, and Frank Skowron. Validation and real-
life demonstration of ETCS hybrid level 3 principles using a formal B model.
Software Tools for Technology Transfer, 22, 2020

Articles on Teaching Formal Methods

• Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner, Marie
Farrell, Magne Haveraaen, Faron Moller, Philipp Körner, Sebastian Krings, Peter
Olveczky, Bernd-Holger Schlingloff, Nikolay Shilov, and Rustam Zhumagambetov.
Rooting Formal Methods within Higher Education Curricula for Computer Science
and Software Engineering – A White Paper. In Proceedings FMFun (International
Workshop on Formal Methods - Fun for Everybody) 2019, volume 1301 of CCIS.
Springer, 2021

• Sebastian Krings and Philipp Körner. Prototyping Games Using Formal Methods.
In Proceedings FMFun (International Workshop on Formal Methods - Fun for
Everybody) 2019, volume 1301 of CCIS. Springer, 2021

• Philipp Körner and Sebastian Krings. Increasing Student Self-Reliance and En-
gagement in Model-Checking Courses. In Proceedings FMTea (Formal Methods
Teaching), pages 60–74. Springer, 2021

iv

Articles on Logic Programming

• Philipp Körner, Michael Leuschel, João Barbosa, Vı́tor Santos Costa, Verónica
Dahl, Manuel V. Hermenegildo, Jose F. Morales, Jan Wielemaker, Daniel Diaz,
Salvador Abreu, and Giovanni Ciatto. Fifty Years of Prolog and Beyond. Theory
and Practice of Logic Programming, pages 1–83, 2022

• Philipp Körner and Sebastian Krings. plspec - A Specification Language for Prolog
Data. In Proceedings Declare (International Workshop on Functional and Cons-
traint Logic Programming) 2017, volume 10997 of LNAI. Springer, 2018

• Isabel Wingen and Philipp Körner. Effectiveness of Annotation-Based Static Ty-
pe Inference. In Proceedings WFLP (International Workshop on Functional and
Constraint Logic Programming) 2020, volume 12560 of Lecture Notes in Computer
Science, pages 74–93. Springer, 2021

• Philipp Körner, David Schneider, and Michael Leuschel. On the Performance of
Bytecode Interpreters in Prolog. In Proceedings WFLP (International Workshop
on Functional and Constraint Logic Programming) 2020, volume 12560 of Lecture
Notes in Computer Science. Springer, 2021

• Falco Nogatz, Philipp Körner, and Sebastian Krings. Prolog Coding Guidelines:
Status and Tool Support. In Proceedings ICLP (International Conference on Logic
Programming) (Technical Communications), volume 306 of EPTCS, 2019

• Alexandros Efremidis, Joshua Schmidt, Sebastian Krings, and Philipp Körner.
Measuring Coverage of Prolog Programs Using Mutation Testing. In Proceedings
WFLP (International Workshop on Functional and Constraint Logic Program-
ming) 2018, volume 11285 of Lecture Notes in Computer Science. Springer, 2019

• Sebastian Krings, Michael Leuschel, Philipp Körner, Stefan Hallerstede, and Miran
Hasanagić. Three Is a Crowd: SAT, SMT and CLP on a Chessboard. In Proceedings
PADL (International Symposium on Practical Aspects of Declarative Languages),
volume 10702 of Lecture Notes in Computer Science. Springer, 2018

v

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne un-
zulässige fremde Hilfe unter Beachtung der

”
Grundsätze zur Sicherung guter wissen-

schaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.
Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen
Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternom-
men.

Düsseldorf, den 11. Juli 2022

Philipp Körner

When things go wrong, simplify.

Dan John

Abstract

This thesis is a selection of my co-authored manuscripts on state-based formal methods
tools and applications. A focus lies on the B Method and the animator, constraint solver
and model checker ProB.
The first part explores the opportunities that stem from executing state-based speci-

fications. Three approaches are investigated:
Firstly, embedding the tool ProB into Java programs and interacting with it using a

high-level API that exposes animation, constraint solving and model checking techni-
ques: This technique enables a variety of applications, and has been successfully utilised
in a timetable planning tool and a demonstrator in the railway domain.
Secondly, treating imperative code as a specification and attempting verification using

the model checker CBMC: While technically feasible, verification after implementation
comes with a variety of pitfalls and fixing located errors is quite cumbersome at this
stage.
Finally, embedding the B language into Clojure in order to programmatically generate

(parts of) and solve constraints or animate and model check constructed B machines:
this approach treats specifications as plain data. Following the ideas of Lisp, this enables
tools that analyse and transform specifications as well as the creation of domain-specific
languages (DSLs).

The second part of this thesis re-visits an implementation of a state space reduction
technique, partial order reduction (POR), in ProB. Anecdotally, we had little success
with exploiting POR techniques for real-world models. Using a large collection of B
machines, we put numbers to our impressions and find that, indeed, in the vast majority
of cases, POR does not yield any reduction.
Motivated by a grand challenge we set ourselves, — a model of an interlocking system

that should be susceptible to POR techniques, yet does not exhibit any reduction — we
identify two idioms that hinder POR for higher-level specifications. The first idiom, usage
of parameterised operations, often can be eliminated by unrolling a single operation into
many, one for each possible parameter value. The second idiom, usage of high-level data
structures such as sets or functions, often can be addressed by replacing sets with a
bitvector encoding, or using constraint solvers to determine independence of operations.

Zusammenfassung

Diese Arbeit enthält eine Auswahl an Manuskripten, an denen ich mitgewirkt habe, zum
Thema Zustands-basierter formaler Methoden, insbesondere Werkzeuge und Anwendun-
gen. Der Fokus liegt dabei auf der B-Methode und dem Animator, Constraint Solver und
Model Checker ProB.
Der erste Teil befasst sich mit den Möglichkeiten, die sich daraus ergeben Zustands-

basierte Spezifikationen auszuführen. Drei Voransgehensweisen werden untersucht:
Erstens, das Werkzeug ProB in Java Programmen einzubinden und damit über des-

sen Schnittstelle, die Animations-, Constraint Solvings- und Model Checking-Techniken
bereitstellt, zu interagieren. Dieses Vorgehen ermöglicht eine Vielfalt an Anwendungen
und wurde erfolgreich in einem Werkzeug zur Erstellung von Stundenplänen und einen
Demonstrator im Schienenverkehr eingesetzt.
Zweitens, imperativen Code als eine Spezifikation zu behandeln und Verifikation mit

dem Model Checker CBMC zu versuchen. Technisch ist es zwar möglich, die Verifikation
nach der Implementierung zu erledigen; allerdings gibt es dabei eine Reihe Fallstricke
und gefundene Fehler sind zu diesem Zeitpunkt nur noch schwer zu beheben.
Drittens, die B Sprache in Clojure einzubetten um programmatisch (Teile von) Cons-

traints zu generieren und zu lösen oder auch so konstruierte B Maschinen zu animieren
oder zu model checken. Dieses Verfahren behandelt Spezifikationen als einfache Daten.
Dies folgt den Ideen von Lisp und erlaubt es Werkzeuge zu implementieren, die Spezi-
fikationen analysieren und transformieren, sowie Domänen-spezifische Sprachen (DSLs)
zu erstellen.
Der zweite Teil dieser Arbeit befasst sich mit einer Implementierung einer Technik

zur Reduktion des Zustandsraumes in ProB, die sogenannte Partial Order Reduction
(POR). In unseren bisherigen Experimenten hatten wir wenig Erfolg mit der Anwen-
dung von POR Techniken, sobald es um realistische Modelle ging. Anhand einer großen
Sammlung von B Maschinen testen wir unsere Eindrücke und können feststellen, dass
in den allermeisten Fällen POR tatsächlich keine Reduktion bringt.
An einer Herausforderung die wir uns setzen — ein Modell eines Stellwerks das für

POR Techniken bestens geeignet sein sollte, jedoch keine Reduktion vorzeigt — identifi-
zieren wir zwei Idiome, die die Anwendung von POR für höhere Spezifikationenssprachen
erschweren. Das erste Idiom davon ist die Verwendung von parameterisierten Operatio-
nen, die in vielen Fällen eliminiert werden kann, indem man eine Operation in mehrere
umschreibt, und zwar eine für jeden möglichen Wert der Parameter. Dem zweite Idi-
om, die Verwendung von höheren Datenstrukturen wie Mengen oder Funktionen, kann
häufig entgegengewirkt werden, indem man Mengen durch eine Kodierung eines Bitvek-
tors ersetzt, oder indem man Constraint Solver verwendet um die Unabhängigkeit von
Operationen festzustellen.

Acknowledgments

For more than ten years, I have been with the STUPS group in Düsseldorf. It is safe to
say that I have enjoyed this time very much.
I owe my deepest gratitude to my supervisor Michael Leuschel, for sharing his knowl-

edge, trust and support in many fruitful discussions with me; to Jens Bendisposto, who
mentored me during my student years, taught me so much about programming and
was always willing to lend an ear and give advice; and also to Sebastian Krings, who
mentored me during my early phase as a researcher and co-authored many articles with
me.
Another special thanks to Claudia Kiometzis is due, for keeping the administrative

side of the university off my back and so many pleasant chats.
I also want to thank all the people I worked with, who taught me a thing or two

and provoked new thoughts, in no particular order: Carl-Friedrich Bolz-Tereick, Ivo Do-
brikov, David Geleßus, Jannik Dunkelau, Dominik Hansen, Sven Hager, Lukas Laden-
berger, Mareike Mutz, Jessica Petrasch, Kristin Rutenkolk, David Schneider, Jonas
Schneider, Joshua Schmidt, Fabian Vu, and John Witulski.
Computational infrastructure and support were provided by the Centre for Informa-

tion and Media Technology at Heinrich Heine University Düsseldorf. Their work enabled
the benchmarking tasks of chapters 5 and 6

Outside of the HHU, I must thank all my co-authors for all their work, their knowledge
and new insights. Of course, I gratefully thank all anonymous reviewers, who offered
constructive feedback or (fairly!) shot down my drafts, for their academic service.

To my family and friends, thank you for your support and patience.

Contents

Abstract ix

1. Introduction 3
1.1. State-Based Formal Methods . 3
1.2. The B-Method . 6

1.2.1. Popular B Tools . 7
1.3. Overview Over the Chapters . 7
1.4. Integrating formal specifications into applications: the ProB Java API . 9

1.4.1. Research Questions . 10
1.4.2. Design and Methods . 10

1.5. A Verified Low-Level Implementation and Visualization of the Adaptive
ELS and SCS . 11
1.5.1. Research Questions . 12
1.5.2. Design and Methods . 12

1.6. Treating Specifications as Data . 12
1.6.1. Research Questions . 13
1.6.2. Design and Methods . 14

1.7. Towards a Shared Specification Repository 15
1.7.1. Research Questions . 15
1.7.2. Design and Methods . 16

1.8. Empirical Evaluation of POR for B . 16
1.8.1. Research Question . 17
1.8.2. Design and Methods . 17

1.9. Towards Practical Partial Order Reduction for High-Level Formalisms . . 17
1.9.1. Research Questions . 18
1.9.2. Design and Methods . 18

xv

Contents

I. Integrating Formal Methods Tooling and Applications 19

2. Integrating Formal Specifications into Applications — The ProB Java API 21
2.1. Introduction . 21

2.1.1. B, Event-B and ProB . 22
2.2. ProB Java API . 23
2.3. Examples . 26

2.3.1. Real-Time Animation: Pac-Man 26
2.3.2. Predicting the Future: Chess . 29
2.3.3. ProB Logic Calculator . 31
2.3.4. DSLs on Top of B: lisb . 33
2.3.5. ProB as a Constraint Solver: PlüS 35
2.3.6. Real Time Animation: ETCS Hybrid Level 3 Concept 37

2.4. Discussion: Should Formal Specifications be Executable? 38
2.4.1. Executability . 38
2.4.2. B as an Executable Language . 40
2.4.3. Should Formal Specifications be Executable? 40

2.5. Related Work . 42
2.5.1. Visualisation . 42
2.5.2. Code Generation . 42
2.5.3. Other Tools . 44
2.5.4. Other Approaches . 45

2.6. A Look Into the Crystal Ball – Potential for the Future 46
2.6.1. Integration Potential with Artificial Intelligence 46
2.6.2. Tool-Wrapping FMU . 47
2.6.3. Future Use Cases . 47

2.7. Conclusions . 47
2.8. Declarations . 48

3. A Verified Low-Level Implementation and Visualization of the Adaptive
Exterior Light and Speed Control System 51
3.1. Introduction . 51
3.2. Background on Used Methodology and Tools 53

3.2.1. MISRA C . 54
3.2.2. Test-driven Development and Mocking 54
3.2.3. CBMC . 54

3.3. Requirements and Modelling Strategy . 55
3.3.1. Process From Requirements to Code and Assertions 55
3.3.2. Code Structure . 55
3.3.3. Traceability of Requirements . 57
3.3.4. Variability of Requirements . 57
3.3.5. Properties Addressed & Limitations 58

3.4. Model details . 58
3.4.1. Formalization Approach . 58

xvi

Contents

3.4.2. Modelling Idioms . 59
3.4.3. Coding Examples . 60
3.4.4. Modelling of Time Constraints . 61
3.4.5. Readability and Comprehensibility 62

3.5. Validation & Verification . 64
3.5.1. Test-Driven Development Using cmockery 64
3.5.2. Model Checking Using CBMC . 66

3.6. Other Observations . 71
3.6.1. Specification Ambiguities, Flaws and Suggested Improvements . . 71
3.6.2. Improvements to our Employed Methodology 72
3.6.3. Note about Deriving a Software Implementation 74

3.7. Comparison . 76
3.8. Conclusions . 77

4. Treating Specifications as Data 79
4.1. Introduction . 79

4.1.1. Motivation . 80
4.2. Background . 81

4.2.1. The B Specification Language . 81
4.2.2. Clojure . 82

4.3. lisb — Internals . 83
4.3.1. Architecture Overview . 83
4.3.2. Components . 85

4.4. Case Study: Machine Transformation . 88
4.5. Case Study: Algorithm Description Language DSL 90
4.6. Addressing B-specific Issues . 93

4.6.1. Language Semantics — Definitions 93
4.6.2. Introducing Convenience Operators 94

4.7. Related Work . 94
4.8. Conclusions . 95

4.8.1. Future work . 96

xvii

Contents

II. Towards an Improved Partial Order Reduction for B 99

5. Towards a Shared Specification Repository 101
5.1. Introduction and Motivation . 101
5.2. Proposed Index . 102
5.3. Conclusions, Related and Future Work 104

6. Interlude: Empirical Evaluation of POR for B 107
6.1. Introduction . 107
6.2. Setup . 107
6.3. Results . 108
6.4. Threats to Validity . 109

7. Towards Practical Partial Order Reduction for High-Level Formalisms 111
7.1. Introduction . 111
7.2. Background . 113
7.3. Idiom 1: Parameterised Operations . 116

7.3.1. Solution: Unrolling of Operations 116
7.4. Idiom 2: Usage of Compound Values (Sets, etc.) 117

7.4.1. Solution 1: Constraint-Based POR Analysis 118
7.4.2. Solution 2: SAT Encoding of Finite Sets 121

7.5. Case Study & Challenge: Railway Interlocking System 122
7.5.1. Interlocking Model Overview . 123
7.5.2. Insights . 125

7.6. Conclusions and Future Work . 126
7.A. Pseudo-Code Overview of the POR Analysis 128

8. Conclusions and Future Work 133
8.1. Integrating formal specifications into applications: the ProB Java API . 133
8.2. A Verified Low-Level Implementation and Visualization of the Adaptive

Exterior Light and Speed Control System 134
8.3. Treating Specifications as Data . 136
8.4. Towards a Shared Specification Repository 137
8.5. Empirical Evaluation of POR for B . 139
8.6. Towards Practical Partial Order Reduction for High-Level Formalisms . . 140

Bibliography 143

Information About Included Manuscripts 167

xviii

Introduction

1. Introduction

Since the early days of computing, hardware got significantly more powerful: vast in-
creases in computational power and available memory enabled the development of more
complex software and software systems interacting with each other. The increase in
opportunities comes at a cost: complex software systems are hard for developers to fully
grasp and, so, programming errors occur.

In everyday life, software is almost omnipresent. Thus, there is a broad range in which
software errors may manifest: they may lead to inconveniences (“I had to restart my
PC and lost a few minutes’ worth of work on a PowerPoint presentation”), disrupted
infrastructure (e.g., most trains in the Netherlands were not running on April 3, 20221),
financial losses (e.g., the Santander UK bank duplicated transactions around Christmas
20212), risk of human lives (e.g., systems in Austrian pharmacies gave a wrong dosage
recommendation for medication3) or catastrophic failure leading to loss of human lives
(e.g., two crashes of Boeing 737 MAX planes in 2018 and 2019, killing 346 people in
total4).

Formal methods are an important means to assure software quality. Where software
may threaten critical infrastructure or endanger human lives, the usage of formal meth-
ods, and in particular of model checking techniques and proof, are recommended or
necessary to meet legal regulations.

1.1. State-Based Formal Methods

State-based formal methods are suitable to model and verify software: at the core, one
reasons about the state of the software, i.e., the valuation of all variables at a point in
time. Then, paths, i.e., sequences of states, can be used to reason about the behaviour
of the model.

1http://web.archive.org/web/20220404093945/https://www.reuters.com/business/

autos-transportation/most-dutch-rail-network-halted-by-technical-problem-2022-04-03/
2http://web.archive.org/web/20220103024411/https://techxplore.com/news/

2021-12-santander-uk-mn-christmas-day.html
3http://web.archive.org/web/20211021004926/https://oesterreich.orf.at/stories/

3126243/
4http://web.archive.org/web/20220421153916/https://www.businessinsider.com/

european-canadian-regulators-to-do-own-review-of-boeing-jet-2019-3

3

http://web.archive.org/web/20220404093945/https://www.reuters.com/business/autos-transportation/most-dutch-rail-network-halted-by-technical-problem-2022-04-03/
http://web.archive.org/web/20220404093945/https://www.reuters.com/business/autos-transportation/most-dutch-rail-network-halted-by-technical-problem-2022-04-03/
http://web.archive.org/web/20220103024411/https://techxplore.com/news/2021-12-santander-uk-mn-christmas-day.html
http://web.archive.org/web/20220103024411/https://techxplore.com/news/2021-12-santander-uk-mn-christmas-day.html
http://web.archive.org/web/20211021004926/https://oesterreich.orf.at/stories/3126243/
http://web.archive.org/web/20211021004926/https://oesterreich.orf.at/stories/3126243/
http://web.archive.org/web/20220421153916/https://www.businessinsider.com/european-canadian-regulators-to-do-own-review-of-boeing-jet-2019-3
http://web.archive.org/web/20220421153916/https://www.businessinsider.com/european-canadian-regulators-to-do-own-review-of-boeing-jet-2019-3

1. Introduction

In literature, software is typically modelled mathematically as a transition system5

[BK08], defined as a 6-tuple TS = (S,Act ,→, I, AP, L), which consists of:

• a set of states S, typically defined as the product type of all state variable types,

• a set of actions Act , which can be regarded as labels for computation steps,

• a transition relation →⊆ S × Act × S, that links a program state and an action
to successor states,

• a set of initial states I ⊆ S,

• a set of atomic propositions AP , which can be regarded as predicates over state
variables,

• the labelling function L : S → 2AP that labels each state with a set of atomic
propositions that are true in that state.

In most cases, one is interested in the set of states R ⊆ S that are reachable from the
initial states I. Then, the reachable part of the transition relation, → ∩ (R×Act×R),
is referred to as the state space induced by the transition system.

The transition relation → is often described in rules that have a form similar to:

Action: if Guard then Substitution

The action may only be executed if the guarding predicate evaluates to true in a state
s, resulting a successor state s′ following the variable substitutions. Accordingly, then
(s,Action, s′) ∈→ holds.

These rules allow a description of concurrency where several actors or processes can
make progress. Each (deterministic) process has at most one available action. The
model then accounts for nondeterminism of the system by interleaving all processes, so
that several processes can make progress from a specific state. In other cases, actors or
processes might also directly behave nondeterministic on an individual basis, with several
available actions. Often, systems become hard to grasp once concurrent processes share
(parts of their) state, as this further increases the amount of possible states and (too)
many interactions have to be considered.

Proof. One of the antecedents of proven software is the calculus that later became
known as Hoare logic [Hoa69]. The basic idea is that a program can be enriched with
assertions that can be proved. Later state-based formalisms consider a model of the
software instead that shall be proven correct and then serves as a “blueprint” to derive
software [Abr07]. Many powerful theorem provers and constraints solvers support this
task, e.g., Coq [BC10], Isabelle [NWP02], Kodkod [TJ07] and Z3 [dMB08].

5For the verification of temporal properties, typically a variation named Kripke structure is used.

4

1.1. State-Based Formal Methods

Animation. An animator is an important tool during modelling: While proof guar-
antees correctness wrt. to the specification, it is also important that one verifies that
the specified behaviour is actually correct6. Thus, an animator allows exploration of
the behaviour by interactively executing (and reverting) actions from arbitrary program
states. This way, modelling and domain experts can verify that the machine “does the
right thing”, i.e., certain state changes are allowed as expected, certain traces can be
executed and the calculated program states are correct. Part I of this thesis heavily
relies on the animation capabilities.

Model Checking. A model checker is a tool that automatically verifies that certain
properties, e.g., deadlock-freedom or invariant preservation, are fulfilled. To get an idea,
a näıve model checker takes a transition system and simply enumerates all possible pro-
gram states using a description of the transition relation →, and verifies the property
in each state individually. There are also more involved properties (e.g., temporal prop-
erties expressed in LTL [Pnu77] or CTL [BAPM83] that reason about execution traces
rather than a single state), which require other verification algorithms [VW86, CES86].

However, an exhaustive approach is often not feasible due to the so-called state space
explosion problem: typically, the state space grows exponentially in size with the amount
of state variables and actions. Thus, more sophisticated techniques have been developed,
(e.g., symbolic model checking that is based on predicates representing sets of states
rather than state enumeration [BCM+92]). One technique that attempts to reduce the
enumerated part of the reachable states is called partial order reduction [Pel93] and is
the focus of part II of this thesis.

There are many state-based formalisms. Examples appearing in this thesis include:

• B [Abr96] is a high-level formalism which is part of the B-method. As B, its suc-
cessor Event-B [Abr10], and the supporting tool ProB [LB03] are the foundation
of this thesis, they are considered in more detail below in section 1.2.

• Alloy [Jac03] is the name of both a language and an analyzer tool that can be
used to describe complex structures, and is based on first-order relational logic.
Typically, it is not regarded as a state-based formalism; however, extensions such
as Electrum and a recent update (Alloy 6) add state-based behaviour. The model
finding engine of Alloy is an efficient SAT solver named Kodkod [TJ07]. The αRby
tool [MJ14] also embeds the specification language Alloy into the programming lan-
guage Ruby. Alloy models can be translated into B machines [KSB+18, KLS+20].

• ASM (Abstract State Machine) [BS03] is a method for high-level specifications.
Its concepts are very similar to those of B and Event-B, and can be translated to
Event-B [LB16].

6In the same vein, consider Donald Knuth’s infamous comment: “Beware of bugs in the above code;
I have only proved it correct, not tried it.”

5

1. Introduction

• Promela is a low-level formalism that is similar to C code. In fact, C code can
be embedded and used as part of the transition function. It is supported by the
model checker SPIN [Hol97] that generates a C program that verifies the model.

• TLA+ [Lam02] is a high-level untyped formalism sharing a similar abstraction level
with B. Specifications can also be written in a programming language-like spec-
ification language named PlusCal [Lam09] and can then be translated to TLA+.
The most well-known supporting tool is the model checker TLC. A large subset of
TLA+ can be translated to B [HL12].

• VDM (Vienna Development Method) [Weg72, Jon90] is a formal method that also
has its foundations in first-order logic. Its core language is the VDM-SL (spec-
ification language) which is supported by the Overture tool; a dialect VDM++
supports a more object-oriented style including classes and inheritance. The VDM
core language and B share a similar abstraction level.

1.2. The B-Method

One rigorous methodology is the B-method [Abr96]. It was devised by Jean-Raymond
Abrial in the 1980s and can be seen as an extension to the Z notation [ASM80]: while
they share their foundations in first-order set theory, B was designed to offer a more
structured notation and to support (i) refinement techniques, (ii) formal proof, and (iii)
code generation.

Items (i) to (iii) suffice to give an overview of the methodology that is a correct-
by-construction approach: First, an abstract, high-level specification is created that is
obviously correct. For example, at this stage, a machine may “magically” obtain the
result via a mathematical description which may include sets, relations, functions and
sequences.

Then, this abstract specification is iteratively refined : more detail of how computation
shall proceed is added to the machine. Each refinement step is linked to the previous
refinement via proof obligations. These proof obligations ensure that the overall be-
haviour is not altered and still represents the calculations of the more abstract machine.
If all proof obligations are correctly discharged by automated solvers, manual proof or
— in some cases — careful manual review (e.g., after successful model checking), one
can be sure that the current refinement still is correct.

Eventually, all high-level constructs are eliminated and an implementation level (named
B0) is reached, where only structs, boolean and integer variables as well as enumerated
sets occur. Then, a code generator can be applied and code can be derived that is correct
wrt. the original specification.

Event-B [Abr10] is a notation with very similar methodology: it shares the high-level
constructs and, roughly, the structure (except operations (i.e., actions) being re-named
to events, separation of static and dynamic parts, etc.) with B. While B is intended to
obtain correct software, Event-B is intended to verify the behaviour of complex systems
including several actors, hardware components, etc. Thus, a notable difference is that

6

1.3. Overview Over the Chapters

certain constructs — conditional statements and loops — were removed in order to
streamline proofs. A detailed comparison including available tool support was recently
published by Leuschel [Leu21].

1.2.1. Popular B Tools

The modelling process is supported — aside from aforementioned provers — by various
tools. An overview can be found in an article I co-authored [BKK+20]. Below, the tools
mentioned in the main parts of this thesis are introduced.

ProB

ProB [LB03] is an animator and model checker for B and Event-B. As mentioned
above, several other state-based formalisms are supported via translation. It is written
in SICStus Prolog [CM12b] and is built on top of SICStus’ constraint logic programming
solver for finite domains (CLP(FD)) in order to solve first-order logic constraints.

AtelierB

AtelierB [Cle16] is a proprietary IDE (integrated development environment) for the
B-Method, supporting both B and Event-B, and is currently distributed by ClearSy.
It comes with a variety of tools, including a proof obligation generator, provers, an
automatic refinement tool (BART) [BM99] and code generators.

Rodin

Rodin [ABH+10] is an IDE developed for Event-B. Similar to AtelierB, it includes a
proof obligation generator and supports a variety of provers. It is based on Eclipse and
many additional tools (including ProB) are available via a plug-in mechanism.

1.3. Overview Over the Chapters

The main body of this thesis can roughly be grouped into two parts: first, integrating
code with specifications via formal methods tools, and, second, partial order reduction.
Figure 1.1 depicts the relationship between the individual chapters. In the following, a
more detailed explanation is given.

Part I: Integrating Tooling & Applications

The first part of this thesis is concerned with integration of specifications into complex
systems and tools.
While the core of ProB itself is written in Prolog, chapter 2 presents the Java API

of ProB. As many developers are unfamiliar with Prolog, the Java API allows easier
implementation of tools that integrate ProB. In particular, one can also execute B

7

1. Introduction

Part I

Part II

Chapter 2

ProB Java API

executable

specifications and

advanced tooling

Chapter 3

ABZ Automotive

Case Study

verification on C code

Chapter 4

lisb

B embedding

in Clojure

Chapter 5

Specification

Repository

large dataset

of B machines

Chapter 6

empirical POR

evaluation

assessment of

POR impact

Chapter 7

POR for high-

level formalisms

improvements on

POR analysis

constrasting
approach

enables

data foundation

background

prototype for

Figure 1.1.: Overview of the Relationship Between Chapters

specifications as part of a program, integrating high-level specifications early in the
development cycle.
In stark contrast to this approach, chapter 3 implements a case study directly in C

and only later attempts to verify properties. It challenges conventional wisdom that
the application of formal methods is faster, less error-prone, etc., and surveys the tool
support for verification of programs.
Returning to the Java eco-system, the library lisb is implemented on top of ProB’s

Java API and is presented in chapter 4. It serves as a foundation for tools that pro-
grammatically generate or transform specifications by treating them as plain data. An
early version of lisb is already featured as a case study in chapter 2.

Part II: Partial Order Reduction

The second part of this thesis is on the current state of the partial order reduction (POR)
technique in B, identifies obstacles and suggests improvements.
Chapter 5 concerns the large collections of B and Event-B specifications gathered

during the development of ProB. The work of this chapter organises a repository of

8

1.4. Integrating formal specifications into applications: the ProB Java API

benchmarks and makes information about the machines available, such as the number
of reachable states, number of operations or ProB’s runtime.

In chapter 6, the benchmark repository is used in order to grasp how effective the
partial order reduction technique applied on B machines is in practice.

Since the results of this evaluation are rather negative, it motivated further investi-
gations regarding the static analysis of POR. In chapter 7, two widespread patterns are
identified that hinder successful application of the technique.

The bachelor’s thesis of Jan Roßbach [Roß22] provides a link between the two parts:
He implemented an automatic refinement tool using lisb that transforms the previously
identified patterns hindering POR into constructs more suitable for static analysis. In-
deed, the resulting machines are more susceptible to the existing implementation of
partial order reduction in ProB. The developed tool even allowed a breakthrough for
larger models, in particular the grand challenge presented in chapter 7.

In the following, the background motivating each chapter is given. Further, the indi-
vidual research questions are stated and the design and methods to obtain answers are
described.

1.4. Integrating formal specifications into applications:
the ProB Java API

A typical formal methods workflow separates the development and proof of a specifica-
tion from obtaining and embedding a final software product, may it be generated code or
manual implementation, into a real cyber-physical system. Accordingly, formal methods
tools usually are only intended for verification and do not offer an API to interact with
them in a more fine-grained manner.

In contract, the ProB Java API exposes ProB’s capabilities for constraint solving,
animation and model checking. Individual B states are translated to Java objects and
can be inspected programmatically. Further, one can evaluate predicates, examine which
transitions are enabled and guide the animator by hand to successor states. Accordingly,
it is the foundation of a new JavaFX frontend of ProB [BGJ+21] and several other tools
(cf. section 2.5.3 and chapter 4).

Aside from developing formal methods tools, this API also gives rise to embedding
formal specifications into applications: instead of generating code, one can animate the
specification and execute state transitions based on external input. In chapter 2, we
present different application patterns and discuss benefits and drawbacks. This includes
(real-time) applications with user interaction such as Pac-Man, a chess engine driven
by non-determinism of the specification and bounded model checking, and constraint
solving for university time-table planning.

All these applications technically could have been directly implemented on top of
the ProB core in Prolog. However, Prolog is arguably harder to grasp for software
engineers, and its library eco-system is significantly limited compared to Java.

9

1. Introduction

1.4.1. Research Questions

In the past, arguments pro and contra executability of specifications have been brought
forth [HJ89, Fuc92, GH96]. The discussion seems to be settled and it is ascertained that
(accidental) executability of specifications is not harmful as long as expressiveness of the
formalism is not limited. However, in our experience, specifications that work well for
animation are often less suitable for proof, and vice versa. Thus, we raise the question:

Research Question 1. In what circumstances should (high-level) specifications be ex-
ecuted?

A similar question is concerned with the application that may be embedding a formal
specification or a formal methods tool. Whether such an approach is sensible depends
on the kind of application. In certain situations, such as embedded systems or harsh
real-time constraints, embedding (high-level) formal methods tools is less suitable or
even impossible. We ask:

Research Question 2. What kinds of applications can reasonably interact with a formal
methods tool?

A similar approach is that an abstract specification is refined until code can be gen-
erated from the specification. Typically, this requires many refinement steps, as set
operations, functions, etc. have to be eliminated, until the B0 level is reached. A re-
cent tool — B2Program by Vu et al. [VHKL19] — also allows code generation from
specifications that are more high-level than B0. Then, one could use the generated code
instead of embedding formal methods tools. It is worth discussing:

Research Question 3. What are benefits and drawbacks wrt. generated code?

1.4.2. Design and Methods

In the article, we first present the ProB Java API as well as several applications imple-
mented on top. This includes:
Pac-Man as an example for real-time applications: The rules and state of the Pac-

Man game are encoded as an Event-B machine. The movement and the corresponding
state changes can be considered as a “turn-based” game: During each tick, control of the
Pac-Man is first given to the user via keyboard inputs, which trigger the corresponding
events in the machine. Then, each ghost is moved by a simple AI. The challenge of
this case-study is that animation and visualisation has to occur fast enough, so that the
application feels like a real game.
Chess as an example for non-determinism and AI applications: Similar to the Pac-

Man game, the board state and legal moves are encoded as a B machine. However,
there are no real-time constraints for chess engines and it is acceptable for the view to
freeze for several seconds. Here, a small AI (minimax with alpha-beta pruning) drives
the exploration of the state space after the user’s turn. It then picks the move it deems
best for the other player.

10

1.5. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

ProB Logic Calculator that brings the B (as well as the TLA+) language to the
web: A small web server takes the input of a text box, tries to parse it as an expression
or predicate and evaluates it using ProB. The result is then rendered back on the web
page. It serves as an example how easy it is to embed ProB, as the entire code consists
of about 220 lines of Clojure.

lisb is another application in Clojure: an earlier version compared to the one in
chapter 4 is presented. It briefly describes the capabilities of embedding parts of the B
language in Clojure and using ProB as a backend. The main insight is that this version
of lisb enables (small) DSLs for constraint generation from external data sources. Such
constraints can be directly evaluated using ProB and, in turn, resulting values can be
used to drive applications or serve as inputs for new constraints.

PlüS [Sch17, SLW18] is an application for university timetable planning. In the
background, there is a B machine that holds the current state of the timetable. The B
machines has operations so that the user may check for conflicting courses and to move
individual courses in order to resolve these issues. Using the state of the B machine, one
can also generate PDF files containing the recommended timetables for each combination
of major and minor subject.

ETCS HL3 Concept [HLS+18, HLK+20] is an example of an industrial application:
Roughly, trains are controlled not only based on physical track sections (which can be
distinguished via axle counters or track circuits), but even on virtual subsections of the
same track section. The safety-critical core component, that manages these virtual sub-
sections, is an embedded B model. For a demonstrator, real-world hardware components
interacted with the ProB model.

Based on our experience with such diverse applications, we assess what kind of appli-
cations may benefit from embedding (high-level) formal specifications.

1.5. A Verified Low-Level Implementation and
Visualization of the Adaptive Exterior Light and
Speed Control System

The article in chapter 3 describes an experiment that we conducted as an answer to the
ABZ 2020 case study. In stark contrast to the article before, we discard the usage of
formal methods during development entirely. In what may be more common practice in
industry, we started a test-driven implementation in C directly from the specification.
We used the opportunity to also experiment with formal methods tools that claim to be
able to verify existing programs.

This approach puts conventional wisdom of the formal methods community to the
test: typical claims are that employing formal methods during development is faster,
better, cheaper and can eliminate nearly entire classes of errors [Hal90, BH95, ED07].
Thus, our implementation provides a baseline that other case study contributions, which
actually employ formal methods, should surpass.

11

1. Introduction

1.5.1. Research Questions

While employing formal methods during development is often claimed to be advan-
tageous, there is little data on successful formal methods projects. Even less data is
available on projects that have been implemented by two different teams, one using an
approach based on formal methods based and the other developing the software in a “tra-
ditional” way. We hoped to add to the of evidence that formal methods are beneficial.
A provocative formulation of the leading question may thus be:

Research Question 4. How does verification after a non-formal, test-driven work-
flow (“correcting-the-construction”) compare to applying formal methods from the get-go
“correct-by-construction”?

One motivation of the article concerns code generation (e.g., [Vu18]): the correctness
of code generators usually is not proven. Hence, optimally, one would verify the desired
properties on the emitted code. The question we thus asked ourselves is:

Research Question 5. What classes of properties of C code are verifiable by existing
tools?

1.5.2. Design and Methods

Initially, we implemented the ABZ 2020 case study in C. We employed a test-driven
approach, first testing each individual functional requirement based on the textual de-
scription in the specification document [HR20] before implementing it. The order in
which we implemented the requirements was based on what was necessary to fulfil the
provided validation sequences.
After we did our best to ensure correctness using these traditional means, we selected

several requirements and added assertions for CBMC, a bounded model checker for C,
to the code.
Chapter 3 is an extended version of the article for the ABZ. In particular, we use the

opportunity to compare our approach with the other case study contributions.

1.6. Treating Specifications as Data

“ . . . there is nothing wrong with saying: programs process data. Because
data is information. Information systems. . . this should be what we are do-
ing, right? We are the stewards of the world’s information. And information
is just data. It is not a complex thing. It is not an elaborate thing. It is a
simple thing, until we programmers start touching it.”

Rich Hickey — Clojure, Made Simple

The idea for the first version of lisb was proposed by David Schneider [Sch17, Chap-
ter 7] during his case study on data validation of university curricula [SLW18]. Briefly

12

1.6. Treating Specifications as Data

summarised, the goal was to verify that all combinations of major and minor subjects
at the faculties of Arts & Humanities and Business Administration & Economics at
Heinrich Heine University Düsseldorf can be studied in the legal standard time (“Regel-
studienzeit”). One idea was to generate conforming timetables from scratch using a
constraint-based approach [SLW15]. In order to address several shortcomings with the
B language and to interact with (partial) solutions that the constraint solver provides,
lisb was created. The main goal was to transform the course information obtained from
the electronic course catalogue into constraints that can be programmatically manipu-
lated, combined and extended.
However, in order to capture more informal constraints, e.g., preferred timeslots of

lecturers, it was decided that a state-based approach, where operations move courses
from one slot to another and verify candidate solutions, is more practical. This decision
led to a slumber period for lisb.
This initial prototype of lisb covered a subset of B that contains the mathematical no-

tation of predicates and expressions, making it possible to generate complex constraints.
Such an approach would have been useful, e.g., for a SAT encoding of the crowded chess-
board puzzles [KLK+18]. In order to calculate the number of true boolean variables,
bit-wise adders had to be generated. Due to a lack of such a technique, a string was
iteratively concatenated in to order to obtain an input file for the solver.
A noteworthy addition is that lisb now captures the entire B language, so that entire

B (state) machines can be generated. One motivation was to extract and verify models
from smart contracts. This allows us to explore the benefits of Lisp — often summarised
as code is data and data is code — in the context of formal specifications. By treating
specifications as plain data, one can take them apart, develop or generate separate
components independently and re-combine the results. This facilitates the following
tasks, which currently are not possible using plain B:

• programmatic generation of specifications,

• transformation of existing machines,

• minor language extensions such as introduction of new operators,

• development of domain-specific languages,

• re-use of common expressions and predicates.

1.6.1. Research Questions

The DEFINITIONS system of B has several issues as discussed by Leuschel [Leu21]:
Some tools insert definitions by text replacement, whereas others insert a piece of AST
instead. This may lead to different interpretations due to operator precedence, as, in the
latter case, an implicit pair of parentheses is added around the definition call. Further,
definitions allow accidental capturing of variables.
Clojure, on the other hand, offers a clean and powerful macro system that — if used

correctly — does not have these issues. Such a macro system may be a solution to the
question:

13

1. Introduction

Research Question 6. What kind of issues of B’s DEFINITIONS can be addressed
using a Lisp-style macro system?

B has no standard way to interact with external data sources. During early develop-
ment of lisb, ProB added support to read and write XML files via external functions
(implemented in Prolog and accessible in B) [HSL16]. A more programmatic way is more
extensible wrt. new data formats. Especially in the context of data validation, where
data might also be required to be pre-processed before its correctness can be verified,
we ask:

Research Question 7. What is a favourable way to integrate external data sources with
ProB’s constraint solver?

Many existing B tools use the ProB binary (written in Prolog) directly, or, more
recently, the Java API (cf. chapter 2). A language embedding that allows a programming
language to construct (parts of) specifications can as well be used for implementation
of more advanced tools. This includes DSL tools that generate a B specification, as well
as machine-to-machine transformations. An interesting question gauges whether it is
preferable to use a tool such as lisb and the worth of meta-programming facilities in a
specification language:

Research Question 8. How does meta-programming of B models elevate DSL and tool
development?

1.6.2. Design and Methods

In order to answer these research questions, we have experimented with lisb over the
course of several years. Early versions included examples based on well-known constraint
programming problems, e.g., finding solutions for Sudoku or the n-queens problem.
We also generated constraints that solve the crowded chessboard problem discussed
in [KLK+18].

More recently, as we widened the scope of lisb to deal with entire B machines, we con-
sidered tools that generate B machines. In particular, we discuss a lisb implementation of
the algorithm description language by Clark [CBH+16, Cla16]. Further, the refinement
tool by Jan Roßbach [Roß22] gives insights regarding machine transformations.

14

1.7. Towards a Shared Specification Repository

1.7. Towards a Shared Specification Repository

“Questions were disorder awaiting organization. The more you understood,
the more the world aligned. The more chaos made sense, as all things
should.”

Brandon Sanderson — Rhythm of War

My bachelor’s thesis was on distributed model checking via ProB [Kör14, KB18],
and my master’s thesis fully integrated a B frontend using ProB into LTSmin [Kör17,
KML18]. For both research articles, one would expect a proper evaluation of the devel-
oped tool. Concerning distributed model checking, one is interested in machines large
enough so that at some point during model checking, there are enough unvisited states
such that queues of 600 workers can be filled; yet, the state space should be finite. Dif-
ferent techniques of LTSmin may cater to different features of machines. When asking
for interesting machines for benchmarks, I was met with a shrug.
A specification repository as suggested in the article in chapter 5 can fix this issue.

Instead of having thousands of text files specifying something, we add data about the
machines. The collected data can be used for regression testing, or testing new B tools
(e.g., [Leu20]).
In many formal methods communities, there is no standardised set of benchmarks.

In particular, in the B community, machines are often selected arbitrarily with no clear
rationale in order to measure impact of novel algorithms and tools. This may be due
to lack of realistic machines and can easily introduce a selection bias in the result. In
plenty of instances, benchmarks are also not available, or were made available at one
time but have not been archived properly. In contract, large sets have been established
[BST10, HS00] for SMT and SAT solving, which are built by their communities.
The goals of the article were to provoke reflection on scientific standards, especially on

reproducibility and benchmark selection, within the B community, and to ease locating
interesting machines for new researchers.

1.7.1. Research Questions

Once a collection of machines grows to a critical mass, it is hard to retrieve specifications
with certain features. For example, selecting machines with at least 100 000 states, with
at most ten operations or those that can be model checked with 4 GB of RAM, is
impossible without additional information. Additionally, the relevant features may differ
based on the application: different tools might, for example, parse different dialects of
B, machines for data validation significantly differ from those specifying state-based
behaviour, etc. Hence, the following question:

Research Question 9. How can information about specifications be organised in an
open, extensible way?

Once a set of benchmarks is selected, another question is how to make it accessible.
It could be described by a set of filters or a text file containing all files. Optimally, the

15

1. Introduction

raw data shall be included as well. In order to achieve reproducible research, we raise
the question:

Research Question 10. How should sets of benchmarks be handled?

In some cases, new versions of specifications are created after they are published. This
may be due to unforeseen errors, bug fixes or conflicting features. We thus ask:

Research Question 11. How should changes to specifications be incorporated into the
repository?

In the dataset that initialised the repository, we included the public examples that
were collected during the development of ProB. It contains benchmarks for different al-
gorithms, examples for several constructs and idioms, test cases, machines from publicly
reported issues, teaching material and much more. Thus, the next question is concerned
with what a “typical” specification is and how much variety there is:

Research Question 12. What kind of specifications are available in ProB’s public
examples?

1.7.2. Design and Methods

All machines contained in the public ProB examples are loaded and model checked.
Some arbitrary timeout is necessary in order to deal with infinite state spaces. For now,
we limited the runtime to 30 minutes per machine in order to collect the data.
The results are stored as machine-processable .edn (extensible data notation) files.

This includes, for example, whether ProB is able to load the machine (as some test cases
for the parser are included), the number of variables, operations, states and transitions,
whether the invariant holds or whether there is a deadlock. It is extensible wrt. specific
information gathered by different algorithms, tools and tool configurations, e.g., runtime,
reduced state space size or memory consumption.

1.8. Empirical Evaluation of POR for B

Partial order reduction (POR) is a state space reduction technique for model checking.
It exploits the independence of operations op1, . . . , opn; i.e., if op1, . . . , opn are enabled
in any given state s, then all permutations of op1, . . . , opn must induce a valid execution
fragment starting in s and every permutation must yield the same state s′. Then, in the
best case, only a single ordering of these operations must be explored.
Ultimately, the optimal reduction depends on the considered property. Checking for

deadlock-freedom usually yields better reduction than invariant verification. Often, the
state invariant is a predicate containing most if not all state variables. Any operation
that may negate the invariant usually is explored regardless of independence. Only
so-called stutter events, which are known to preserve the invariant, are not explored.
Proving an operation to be a stutter event often is far from trivial. Thus, because of the

16

1.9. Towards Practical Partial Order Reduction for High-Level Formalisms

additional requirement for invariant checking that is hard to fulfil, one would expect the
best reduction for checking deadlock-freedom. Further, verification of a specific part of
the invariant that includes fewer identifiers may also yield better reduction than checking
the entire invariant. In some cases, it can even be worthwhile to verify each conjunct
independently.
For many (lower-level) formalisms, POR is able to reduce the number of explored

states and transitions by several orders of magnitudes, resulting in shorter runtime
and lower memory consumption. Consequently, even large models can be verified with
modest computational power.
One approach to POR, the ample set approach of Peled [Pel93] was implemented in

ProB by Dobrikov [Dob17]. While the technique certainly is promising, application to
real models did not fulfil our expectations for B. In fact, almost no “interesting” (e.g.,
large-scale or industrial) B model was susceptible to the implemented POR techniques
for neither deadlock nor invariant checking.

1.8.1. Research Question

In the brief chapter 6, we considered the following research question:

Research Question 13. How well does the current implementation of POR in ProB
perform?

1.8.2. Design and Methods

In order to gauge the impact of the current implementation of partial order reduction
in ProB, we make use of the specification repository presented in chapter 5. Each
machine is model checked two times for 30 minutes without applying POR for different
properties: the first run attempts to verify deadlock-freedom, the second run shall verify
invariant preservation. Afterwards, the same two runs are executed with POR. For all
runs, we examine the number of reached states.
Considering different properties may give us insights on strengths and weaknesses of

POR for B. We take into account that, due to re-ordering of operations using POR, the
number of states reported by ProB may differ if the property is violated (as other parts
of the state space are explored first). We also account for machines that time out with
POR and do not time out without POR, and vice versa.

1.9. Towards Practical Partial Order Reduction for
High-Level Formalisms

The results of the empirical evaluation in chapter 6 made clear that POR works very
well for only a few models. As expected, most reduction occurs during verification of
deadlock-freedom. However, the vast majority of machines (> 80 %) was not susceptible
to the POR technique implemented in ProB.

17

1. Introduction

However, there is a number of models of which we would expect good reduction. The
article in chapter 7 identifies some typical features of B machines that hinder POR and
suggests new techniques for analysis. In the analysis, we focus on checking deadlock-
freedom only, as it is the foundation on which invariant checking is built. Additionally,
invariant checking requires operations to be recognised as stutter events, which rarely is
the case.

1.9.1. Research Questions

The included manuscript investigates the following question:
There are several theories that could explain the results of chapter 6: first, as discussed

by Leuschel [Leu08], B has a high level of abstraction. A single state transition in B
can represent thousands or even millions of state changes in lower-level formalisms. For
example, in B, one can sort an arbitrary large sequence with a single expression, whereas
in Promela, one would have to manually implement a sorting algorithm. It may well be
that, for abstract specifications, potential for reduction is “lost” simply by avoiding these
intermediate steps. In turn, reduction may occur during refinement of a specification
towards an implementation level.
Second, due to the expressiveness of B, there are many ways to formulate the same

constraints. In practice, B machines may follow idioms coined by Abrial [Abr96, Abr10],
or may be written to suit specific tools such as provers or animators. Such a specification
style may have influence on the effectiveness of POR.
Third, an issue may be that independence often simply is not determined during static

analysis. One could assume that solver backends time out during static analysis.

Research Question 14. Why is the application of POR techniques in ProB unsuc-
cessful in most cases?

1.9.2. Design and Methods

Equipped with the knowledge of chapter 6, we select small B machines that feature some
degree of independence, and should thus be susceptible to POR techniques. Based on
those examples, we identify patterns where POR is not successful and propose (i) un-
rolling of parameterised operations, (ii) a bitvector encoding of sets for more fine-grained,
fast syntactic analysis, and (iii) slower constrained-based checks to obtain additional in-
formation as solutions.
Afterwards, we aim to transfer the gained insights to a grand challenge, an academic

model of an interlocking system by Abrial [Abr10, Chapter 17], which escaped our POR
techniques for many years. This model has been discussed in more detail by Leuschel
[LBH14]: it shares many features with industrial models that cannot be disclosed. By
forcing a certain operation to be taken as soon as possible, one can reduce the state space
by two orders of magnitudes — this behaviour is exactly what we would expect POR
to accomplish. Indeed, with a prototypical implementation of the aforementioned trans-
formations and constraint-based analysis, this reduction is achievable on the original
model.

18

Part I.

Integrating Formal Methods Tooling
and Applications

2. Integrating Formal Specifications
into Applications — The ProB Java
API

Abstract

The common formal methods workflow consists of formalising a model followed by ap-
plying model checking and proof techniques. Once an appropriate level of certainty is
reached, code generators are used in order to gain executable code.
In this paper, we propose a different approach: instead of generating code from formal

models, it is also possible to embed a model checker or animator into applications in
order to use the formal models themselves at runtime. We present a Java API to the
ProB animator and model checker. We describe several case studies that use this API
as enabling technology to interact with a formal specification at runtime.

2.1. Introduction

When designing safety-critical software, the use of formal methods is highly recom-
mended [CEN11] to ensure correctness. This is often done by combining (manual and
automatic) proof with model checking.
Once a formal model has been found to be correct, it is usually required to translate the

model into a traditional, imperative programming language. Then, low-level formalisms
are usually close enough that code can be generated easily. When using high-level
formalisms though, the model has to be gradually refined to an implementation level so
that it only uses a restricted version of the specification language, disallowing high-level
constructs which require, e.g., constraint solving techniques or unconstrained memory
for execution. The alternative to code generation is manual implementation, which is
known to be error-prone.
In this paper, we investigate another approach: we assume that a high-level specifica-

tion is written to be executable, in the sense that a tool like an animator or model checker
is able to compute all state transitions. Can we then implement a program interfacing
with, e.g., a model checker that also simulates the environment and executes the model
by choosing a traversing transition?
This paper is a mixture of a position, tool and application paper, and is structured as

follows: in the remainder of this section, we briefly introduce two high-level specification
languages, B and Event-B, as well as ProB, an animator and model checker for these

21

2. Integrating Formal Specifications into Applications — The ProB Java API

languages. Afterwards, we present the enabling technology, the ProB Java API, which
allows for fine-grained interaction with ProB in section 2.2. Following, we evaluate our
approach by implementing and discussing several new case studies based on the ProB
Java API in section 2.3, summarising its use in existing industrial applications and
insights gained from implementation work. In section 2.4, we distinguish an embedding
of a formal specification in software from user-driven animation and revisit arguments
concerning executability of specifications in the context of our approach and the B
language. Then, related work in form of similar tools and other applications built by
third parties on top of the ProB Java API are considered in section 2.5. Next, we give
an outlook about what kind of applications of the presented approach we may see in the
future in section 2.6, before drawing our conclusions in section 2.7.
This article is based on our contribution to the 3rd world congress on formal methods

(FM’19) [KBD+19]. It extends the original paper in the following ways:

• We give a more in-depth overview of the capabilities of the ProB Java API, and
present some code snippets that show basic usage of its API in a Java application.

• We discuss two additional, previously unpublished case studies that show further
use cases of the technology.

• The discussion in section 2.5 is set into a more B-specific context, since the logical
foundation is neither intended nor possible to execute entirely.

• We include a more thorough comparison with new experiments regarding code
generation as presented in [VHKL19].

• We give a summary of known third-party tools that already use ProB Java API.

• We discuss the integration potential of executable specifications with AI as well as
possible future use cases.

2.1.1. B, Event-B and ProB

Both B [ALN+91] and its successor Event-B [Abr10] are state-based specification lan-
guages that allow for high levels of abstraction. They are based on Zermelo-Fraenkel set
theory with the axiom of choice [Fra22, FBHL73], using sets for data modelling. Fur-
ther, they make use of generalised substitution for state modifications, and refinement
calculus [Bac81, BW12] to describe models at different levels of abstraction [CM12a].
The highest level of abstraction includes, besides set theory, formulation of quantified

formulae over arbitrary domains, functional composition and lambda expressions, as well
as non-deterministic assignments1.
In the following, we describe several projects that make use of ProB [LB03], an

animator and model checker for both B and Event-B. Its core is developed mainly in
SICStus Prolog [CWA+88], with some parts being implemented in C and Java, and makes

1Cf. https://www3.hhu.de/stups/prob/index.php/Summary_of_B_Syntax

22

https://www3.hhu.de/stups/prob/index.php/Summary_of_B_Syntax

2.2. ProB Java API

use of co-routines and SICStus’ CLP(FD) library [COC97]. Besides B, ProB offers
support for several other formalisms as well, including TLA+ [Lam02] (via translation
to B [HL12]), Z [SA92, PL07], CSP [Hoa78, BL05] and more. Hence, the approach
discussed in this article is immediately applicable to languages other than B and Event-
B.

2.2. ProB Java API

As ProB is written in Prolog, which admittedly is neither the most popular nor the
easiest language to pick up, it is hard for formal method experts to adapt or extend the
default validation capabilities of ProB.
Thus, a main design goal of the ProB Java API was to offer convenient access to

the core features of ProB. It allows data exchange in both directions, allowing one to
provide inputs to ProB and obtaining the outputs without having to parse streams or
log files.
The ProB Java API also allows a fine-grained interaction with ProB, not just one-

shot scenarios. Indeed, ProB provides a command-line interface, which can and has
been used to develop several tools on top of it (e.g., DTVT [LBL12], OLAF, CAVAL or
SafeCap [ILR13] for data validation or BTestBox [dAOMDM19] for test-case generation).
However, these tools usually require just a one-shot interaction with ProB: ProB is
asked to validate a formal model andProB’s outputs are translated to feedback provided
to the user. Many tools require a more fine-grained interaction, with repeated calls to
ProB depending on the results of earlier calls.
The source code of ProB Java API is available on GitHub [Proa]. For developers

who want to build tools on top of the ProB Java API, we create releases of the tool as
jar files than can be consumed using one of the build tools for the JVM such as Maven
or Gradle. The artifacts are stored on Maven Central [Prod].

Socket

Model
Checker

Animator

B Inter-
preter

Constraint
Solver

ProB CLI
(Prolog)

Tcl/Tk GUI

Socket

ProB Java API
(Java)

State
Space

Trace

...

Current
State

State
View

Trace
View

Model
Checking
View

Figure 2.1.: Overview of the ProB Ecosystem

A general overview of the ProB Java API is given in fig. 2.1. For each B model that is
interacted with, an instance of the ProB CLI (command line interface) which actually

23

2. Integrating Formal Specifications into Applications — The ProB Java API

loads the model is started in socket-mode. This means that the ProB CLI listens on
a socket for commands to execute whitelisted Prolog code. The whitelist offers fine-
grained access to ProB’s constraint solving, animation and model checking capabilities
as well as ProB’s preferences and machine components.

Each command on the whitelist has a corresponding implementation in the ProB
Java API. This offers an API that is fairly low-level and intended for ProB and ProB
Java API developers. It is complemented by a high-level API that is built on top
and abstracts away from ProB’s internals in Prolog. The high-level API allows easy
animation of the model, exploration of the state space, solving custom constraints over
the variables in the state space, or registration of listeners subscribed to custom formulae
which are notified once a new state is reached.

The State Space acts as the central interface to the ProB CLI. It is a representation
of the underlying labelled transition system. Exploring the state space by executing
operations adds transitions and newly encountered states. It allows animation of the
model, evaluation of predicates in arbitrary states, extraction of states that match a
given predicate, and, in general, execution of arbitrary ProB Java API commands.

The Model is an in-memory version of the loaded B machine. The ProB Java API
offers convenient access to the contents of the specification. This includes invariants,
variables, operations and their preconditions, etc. Upon that, it is possible to expand on
loaded machines by adding further invariants or operations, resulting in a dynamically
altered version with stricter semantics [CBH+16].

The Trace keeps track of the path throughout the state space starting from the initial-
isation of the machine. Traces behave like a browser history in the sense that they are
append-only, but it is possible to “go back in time” and start a new fork. Executing an
operation during animation automatically appends the successor state to the currently
active trace.

The State objects are linked to their corresponding state space. They store outgoing
transitions as well as map abstractions of variables and formulas to abstractions of values.
For example, it is possible to retrieve the value of a given state variable but also to add
expressions and predicates which are automatically evaluated in every state and are kept
track of.

Value Translation is required to give a meaningful representation to the values of
state variables. By default, ProB provides a string representation of each value to the
ProB Java API. However, they can be translated into Java data structures as well: For
example, B integers are translated into BigIntegers, B sets correspond to Java sets and
sequences to Java lists. Naturally, this translation does not work for infinite sets. To
avoid duplication of the entire state space in ProB and the ProB Java API, only up

24

2.2. ProB Java API

public static void main(String [] args) throws Exception {

String filename = args [0];

int steps = Integer.parseInt(args [1]);

Api api = Main.getInjector ().getInstance(Api.class);

// load model , initialize state space

StateSpace stateSpace = api.b_load(args [0]);

Trace trace = new Trace(stateSpace);

// execute specified amount of transitions

for (int i = 0; i < steps; i++) {

trace = trace.anyOperation(null);

}

State state = trace.getCurrentState ();

// print current state

state.getVariableValues(EXPAND).forEach(

(k, v) -> {System.out.println(k+"=>"+v);}

);

stateSpace.kill();

}

Listing 2.1: ProB Java API Usage Example

to 100 states are cached in Java. If a non-cached state is required, it is retrieved via a
handle (a unique state ID) from the ProB CLI.

Trace Synchronisation is a tool that is provided by the ProB Java API. It allows
coupling of multiple traces, even on different B models. One example is that a refined
machine is synchronised with a more abstract version upon the shared operations, in
order to ensure that it is a valid refinement. Another example is synchronisation of two
entirely different machines that are two components in a system.

In the following, we want to demonstrate how the ProB Java API can be used within
a Java application. The program loads a B model, performs a number of random steps
and prints the value of each variable in the final state. The example is simplified to a
minimum, i.e., we do not handle errors like missing files or syntax errors in the B model.
Also, deadlocks will be ignored, i.e., if no operations can be executed, the animator will
remain in the same state. Listing 2.1 shows the animation code, the full code is available
on GitHub [Proc].

25

2. Integrating Formal Specifications into Applications — The ProB Java API

The entry point to the ProB Java API is the Api class. We use the Guice depen-
dency injection framework [Goo], this means we can retrieve a fully configured Api class
using a so-called Injector. The Api class has methods to load formal models for several
formalisms, e.g. B, Event-B, Z, CSP, TLA+ and a few more. All methods return a
StateSpace object, that is as described the central interface to interact with the Prolog
core. We can then create a Trace object and start to execute operations, in this exam-
ple we perform some random operations. We could pass a filter (e.g. a list of operation
names from which we want to choose the operations), but here we pass null which means,
that we do not care which operations are used. Finally, we inspect the resulting state
of the execution. Here, we print the values for each variable, but we could also inspect
the invariant or evaluate arbitrary expressions or predicates.

2.3. Examples

In this section, we describe different use cases based on several examples. The first couple
of examples we discuss are student projects implementing two well-known games: Pac-
Man and Chess in section 2.3.1 and section 2.3.2, respectively. Furthermore, we present
an application in section 2.3.3 that does not represent the typical software development
cycle, but rather shows how to use the API in a more creative way: it implements
a web application that checks whether predicates (written in B or TLA+) are valid
and provides counter-examples when not. Afterwards, in section 2.3.4, we show an
experiment regarding domain specific languages on top of B. Finally, the approach found
use in two more complex projects, namely a timetable planner for university courses, and
a safety critical, industrial application for the ETCS Hybrid Level 3 concept, considered
in sections 2.3.5 and 2.3.6, respectively.
For the four software prototypes, we use the state that is translated into Java data

structures in order to provide an (interactive) visualisation. The other examples provide
feedback to the user via the web-based front-end or uses a read-eval-print-loop (REPL)
for user interaction.
Links to all code examples that are publicly available are given in section 2.8.

2.3.1. Real-Time Animation: Pac-Man

Our first example application is based on a formal model of Pac-Man.
The formal model itself is written in Event-B. It specifies all valid positions on the

board that the Pac-Man and the ghosts can be in. There are state transitions that
describe valid moves, though in the model itself ghosts are allowed to turn around. The
model also manages the duration and targets of super pills (so that ghosts may be eaten,
but only once per pill), and encounters of the Pac-Man with pills and ghosts. Finally,
it keeps tracks of the Pac-Man’s lives and deadlocks the game once none of Pac-Man’s
lives are left. It is possible to play a turn-based version of Pac-Man in the animator.
Note that the model is non-deterministic in the sense that there are multiple available

operations, one for each direction the Pac-Man and each ghost may move.

26

2.3. Examples

Front-End (Visualisation)

(Groovy)

KeyListener
Move Pac-Man
Move Ghosts

Event-B Machine

use
r

inp
ut

execute
event

send updated state
to visualisation

Figure 2.2.: Architecture of a Pac-Man Game Based on a Formal Model

Additional to the model, we implemented an interface via ProB Java API that allows
to play the game via traditional controls instead of executing transitions by clicking in
the operation view. On the press of an arrow key, the following actions happen:

• In the current state, it is evaluated whether the Pac-Man may move into that
direction and the operation to move him is executed if allowed. Operations that
result in eating a pill are preferred. This yields a new Trace object.

• For each ghost, it is evaluated whether enough time has passed to leave the monster
pen. If so, the transition to move the ghost in a direction mandated by a heuristic
is executed. New Trace objects are generated after moving each ghost and the
movement operation is appended.

• It is verified whether the Pac-Man or some of the ghosts have to jump to the other
side of the board via the tunnel. If the operation is enabled, it is executed.

• If available, operations that catch a ghost or the Pac-Man are executed.

• The GUI inspects the current state of the Trace and updates based on the new
state values. The positions of the ghosts and the Pac-Man, the remaining pills, the
score and the amount of remaining lives are extracted from the animation state.

For this kind of application, as the calculation of the next-state function is very fast,
we did not encounter any performance issues when executing the model. We found that,
even though the visualisation is in Java, depending on the operating system and JDK
implementation, the game can run smoothly or just below acceptable performance2. Yet,
we find it especially note-worthy that it is indeed possible to create real-time applications

2On a Mac, it runs smoothly. On more powerful Linux PCs, it runs with stutters. We suspect that
the socket communication is slower depending on the OS.

27

2. Integrating Formal Specifications into Applications — The ProB Java API

that depend on user input based on formal models, as at least five events per tick are
executed, one to move the Pac-Man and four to move the ghosts. Plain animation in
ProB could not capture this, instead it would turn Pac-Man into a turn-based game.

Main Contribution: Real-Time Animation

The Pac-Man case study shows that our approach is feasible for real-time applications as
long as the computation of successor states is not too complex. The application is able
to timely react to user input, directly embedding the formal model in the application
does not lead to a noticeable performance decline.

Lessons Learned: Non-Determinism

The case study made obvious that it is hard to get the amount of non-determinism
right. The formal model itself has to incorporate certain aspects non-deterministically,
e.g. we have to take into account every key the player might press. Each time the state
of the underlying model changes, ProB has to compute which events are enabled and
the successor states they lead to.

However, as the player will only pick a single move out of all the possible ones, most
of the events are never really executed and the computation work is discarded anyway.
Due to the way ProB and the ProB Java API-based animation interact, we cannot
simply let the user move first and then find out if the selected movement is actually
valid as we would have to roll back changes to the state space. Simultaneously, the
model has to be as deterministic as possible to allow automatic execution. As at least
the ghosts are to be moved automatically, the computer controlled aspects of Pac-Man
could be modelled deterministically in order to avoid ambiguity and to avoid having to
implement how to decide between different options. Yet, we decided that the AI outside
of the model should choose between different options, e.g., whether ghosts should turn
a corner, resulting in a more general model with a higher amount of non-determinism.
Finally, since a “tick” of the game, i.e., one movement of the Pac-Man and each ghost,
is made up of not one but several operations that are tested and executed, this impacts
performance manifold.

In summary, there is a tradeoff between determinism and execution speed that is
both driven by the rules of the game as well as by design decision when modelling it.
Further research is needed to find out where the sweet spot between non-determinism
and determinism lies when modelling games, in particular, when we have to take into
account overheads caused by the animation engine, interactivity, generality, as well as
the communication between ProB and ProB Java API. Furthermore, it would be
interesting to see if we can develop modelling approaches leading to an optimal tradeoff
in general.

28

2.3. Examples

2.3.2. Predicting the Future: Chess

In the chess example, we have two use cases. Firstly, we want two (human) players to
be able to play against each other. Secondly, a (simple) chess AI should be available to
play against.

As with Pac-Man, we use the formal specification in order to specify the rules of
the game. The model offers all valid moves as enabled actions, checkmate is encoded
as an invariant violation. Then, we can use the vanilla ProB animator to play chess
(preferably with an additional visualisation of the current state).

The more interesting part is that a basic AI of a computer-opponent is hard to specify
but somewhat easy to implement. Thus, the AI was written in Java using the ProB
Java API: we implemented the Minimax algorithm with alpha-beta pruning [KM75]. The
calculated game tree has the current state at its root and its children are the successor
states representing all valid turns by the AI. Their children again are their corresponding
successor states where each state represents a turn by the human player and so forth.
For termination, we limit the depth of the state space that should be explored, i.e. the
amount of turns the AI is able to look ahead. Hence, this depth determines the AI’s
strength.

The Java side hereby is responsible for two things. It decides which child states
need to be expanded and picks the most beneficial action for the AI opponent based
on the explored game tree. Figure 2.3 visualises the execution. After the user’s turn,
the state space is explored, uncovering all possible courses the game could take. Then,
the best action is chosen and the current chess state is updated accordingly. Note that
the calculation of successor states happens on ProB side, as the game logic is fully
implemented in B.

In the model, the board itself is represented via a square-centric approach: a total
function maps each position on the board to either a chess piece or a special “empty”
value. While a partial function or piece-centric approach have their individual advan-
tages, this offers benefits for constraint solving, visualisation and easy identification of
empty fields. Moving operations are split into two, one that moves a piece and one
that additionally takes a piece of the enemy. Their preconditions share predicates for
identifying combinations of position and chess piece, movement paths and whether a
player is in check.

In order to assign a weight to each state, we use a more sophisticated evaluation
function that only depends on a single state. It incorporates both the amount of pieces on
the board and their positions and is also specified in B. Then, after checking states until
a given depth, the turn suggested by Minimax is picked for the opponent. This strategy
is very similar to bounded model checking [BCC+03], though execution is kept explicit
instead of resorting to symbolic means. However, regarding this chess implementation
we are not particularly concerned with violated invariants other than for identifying a
checkmate state (which the AI accounts for). Instead, all possible outcomes are generated
via execution of the model. Afterwards, a trace is chosen based on its Minimax value,
eventually leading to an action that guarantees the most favourable outcome.

29

2. Integrating Formal Specifications into Applications — The ProB Java API

rZkm0
Z0Z0Z
0O0Z0
Z0ZBZ
0ZKZ0

Current State

State Space
Exploration

(Game Driven)

rZkm0
ZPZ0Z
0Z0Z0
Z0ZBZ
0ZKZ0

rZkZ0
ZnZ0Z
0Z0Z0
Z0ZBZ
0ZKZ0

rj0m0
ZPZ0Z
0Z0Z0
Z0ZBZ
0ZKZ0

rZ0m0
ZPj0Z
0Z0Z0
Z0ZBZ
0ZKZ0

rZkZ0
ZnZ0Z
0Z0Z0
Z0ZBZ
0ZKZ0

Calculated
Turn

Depth 1

Depth 2

Depth 0

Qj0m0
Z0Z0Z
0Z0Z0
Z0ZBZ
0ZKZ0

User Turn Minimax

Update State

Figure 2.3.: Architecture of Chess Based on a Formal Model

This case study offers worse results than Pac-Man from a performance perspective.
Due to the state space explosion caused by the sheer amount of possible moves, gener-
ating all successor states as deep as required by a strong chess engine is infeasible. An
implementation in, e.g., plain C or Java is orders of magnitudes faster. Modern chess
engines usually make use of additional heuristics, and opening and end game databases
in order to improve performance. Using our approach following a somewhat naive im-
plementation, only a small part of the state space from a given board position can be
generated in reasonable time, which results in the AI being a rather weak opponent.

Main Contribution: Game-driven Model Exploration

In this case study, we replaced the common exploration strategies of ProB (depth-
first, breadth-first and random) by an exploration strategy based on the current state
of a game. The Minimax algorithm is used to drive the model checker, with the aim
of expanding the most promising states, rather than exhaustively analysing the state
space. Hence, we were able to implement a heuristic-based model checking approach.
Although ProB offers support for directed model checking [LB11] with a custom

heuristic function already, our game-driven model exploration offers a huge advantage.
Specifying an exploration heuristic in B is limited to the closed world of the calculated
state. For each state, the heuristic provides a value after which it is sorted into a priority
queue. It is not possible to argue about the heuristic values of, e.g., sister nodes in the
search tree. By animating the model externally in ProB Java API however, we are able
to do exactly that: comparing heuristic values of different nodes to decide which states
do not need to be explored further by alpha-beta pruning.

30

2.3. Examples

In a way, this approach can be understood as a generalisation of directed model
checking, as it is not restricted to searching for the common violations of interest in
regular model checking scenarios (deadlocks, invariant violations, etc.). The search can,
as in this example, be directed at a set of states fulfilling a certain set of criteria. While
we here employed a check-mate as invariant violation, the desired criteria do not need
to be formalizable in the first place (w.r.t. the state’s closed world), but can also take
meta information into account. Such meta information can consist of data collected over
sister states, current path length, computation time needed for the state, historical data
of current path, etc. Hence, it contributes highly customisable control over a highly
formalisable set of operations, while not being restricted to pure model checking but
allowing a wider range of analysis methods and other applications.

Lessons Learned: Model Complexity

Fully encoding all possible moves on a chessboard has lead to a model that is very
complex and features a very large state space. Even though our traversal strategy avoids
exhaustively expanding it, debugging and partial exploration were extremely difficult:

• Errors such as incoherences with chess’ movement rules sometimes only occurred
for certain paths in the state space. For example, castling is only allowed if the
king and the corresponding rook did not move until that point. For these cases, it
is not enough to verify proper execution of operations in arbitrary states. Instead,
the model has to be driven into a particular state (which includes more than just
the positions on the board). To some extent, these traces had to be compiled
manually.

• Once a target state was reached, it was often hard to understand why particular,
complex predicates evaluated to true or false in that state. While ProB offers
some debugging tools to do so, debugging B models is not as comfortable as it is
for modern programming languages.

• It was hard to determine whether a bugfix covered the error in all states or just in
the ones we debugged it in.

• Positions with a high number of possible moves and counter-moves take long to be
evaluated by ProB, since the enabledness of all outgoing transitions is computed.
In consequence, traversing them during debugging attempts slows down debugging
as well.

Furthermore, the high complexity prevented our proof efforts. Further investigation into
a refinement-based implementation of chess might help to overcome the difficulties.

2.3.3. ProB Logic Calculator

As an answer to a challenge proposed by Leslie Lamport [Log] we implemented a logic
calculator as a web application. The calculator accepts expressions and predicates in

31

2. Integrating Formal Specifications into Applications — The ProB Java API

Figure 2.4.: ProB Logic Calculator http://eval-b.stups.uni-duesseldorf.de solv-
ing a Smullyan puzzle

either B or TLA+ and evaluates them, treating all free variables as being existentially
quantified.
As an example, let us find a solution to a puzzle by Smullyan. The puzzle involves

Knights and Knaves. While Knights always tell the truth, knaves always lie. We have
three persons Gawain, Bors and Mordred and the following propositions:

1 Gawain says: “Bors is a knave or Mordred is a knave”

2 Bors says: “Gawain is a knight”

The translation to B is straightforward. Figure 2.4 shows the web-interface of the
logic calculator with a solution to the puzzle.

Main Contribution: Web- and Java Integration

The logic calculator shows that embedding a formal methods toolchain into an appli-
cation is possible with little effort. Its backend is written in about only 220 lines of
Clojure [Hic20] code on top of the constraint solving API that is provided by the ProB
Java API. The application source code can be found on GitHub [Prob]. The logic cal-
culator demonstrates how the ProB Java API constraint solver can be used from any
language that runs on the JVM and is able to call Java. Furthermore, it shows that
both desktop and web applications can be targeted.

Lessons Learned: Get Communication Right

The first version of the logic calculator was implemented as a PHP web page which called
the ProB CLI via Common Gateway Interface. This had the drawback of startup time:

32

http://eval-b.stups.uni-duesseldorf.de

2.3. Examples

a new ProB CLI was started after every evaluation request of the user, leading to a
noticeable lag. The ProB Java API enabled us to develop a more flexible website,
without noticeable startup time. The formulae are actually evaluated as the user types
them.
In consequence, the ProB Java API enabled an easy embedding of formal methods

technology into a web service. The logic calculator requires no installation effort, and
can be run from any device with a browser. It can be useful for first experiments in the
B language and to check out the capabilities of ProB’s solver.
The recently developed kernel for Jupyter based on the ProB Java API [GL20] pro-

vides a more powerful notebook interface. It is an evolution of the logic calculator,
enabling to mix B formulas with text and visualisations, but it requires more effort
from the end user to set up. Here, the ProB Java API becomes essential: processing a
computational notebook requires multiple calls to ProB, with dependence upon earlier
results.

2.3.4. DSLs on Top of B: lisb

The B language is rather inflexible, e.g., the original dialect only supports let and if-
then-else constructs for statements. In the context of expressions, these features are not
available. As an example, it is not possible to retrieve the absolute value of a number
by writing x := IF x > 0 THEN x ELSE -x END3.
Another issue is that the B language does not offer a proper macro system. The only

means to define B snippets and use them in different places is via C-preprocessor-like
macros refered to as definitions. These definitions are however not satisfactory, e.g.,
operator precedences are not always clear and variable identifiers may be captured by
accident, which may result in erroneous replacements.
This combination of inflexibility and wonky definitions system lead us to work on

lisb: lisb is an experiment that aims to leverage the syntactical flexibilities of a lisp-like
language – in this case, Clojure. The key concept is that all B operators of the predicate
sub-language (i.e., there is no support for state machines) are implemented in Clojure.
Each operator is a pure function that generates a part of the AST (abstract syntax tree)
that is used to solve the predicate that is formulated by the user. Then, several parts
of the AST can be re-combined before it is sent to the ProB constraint solver.
To continue the example of the if-then-else expression earlier, one could write the

absolute value function according to the re-writing rule given in [HL12]:

(λt.(t ∈ {TRUE} ∧ (x > 0)|x) ∪ λt.(t ∈ {TRUE}∧ ≠ (x > 0)| − x))(TRUE)

As this construct is not very readable, it might be preferable to write a function myifte

once (using lisb) that generates this corresponding AST, and then call it via (myifte

(> x 0) x (- x)) instead.
Overall, this approach gives rise to new, flexible DSLs on top of B, as one can easily

write pure functions that return a new AST, potentially combining many operator usages

3In recent versions of ProB, this is possible due to improvements discussed in section 2.3.5.

33

2. Integrating Formal Specifications into Applications — The ProB Java API

user=> (eval (to-ast (b (= (* 2 :x) (+ 1 2 3)))))

{"x" 3}

Listing 2.2: Solving a Predicate on a Clojure REPL

(b= (b* 2 :x)

(b+ 1 2 3))

{:tag :eq,

:children

({:tag :mul,

:children (2 :x)}

{:tag :plus,

:children (1 2 3)})}
Language
Frontend

Intermediate
Representation

=

*

x 2

+

1 +

2 3

AST (Backend)

Figure 2.5.: Frontend, Intermediate and Backend Representation of Predicate in list-
ing 2.2

to complex instructions. At the same time, DSLs can allow users to handle, explore and
work with the results. Another aim was to explore whether this gives a viable approach
for the case study presented in section 2.3.5.

Listing 2.2 shows how a simple predicate such as 2 ∗ x = 1+ 2+ 3 can be represented
in lisb and solved by ProB. The form contained in (b ...) is rewritten by a macro
into the code depicted as “Language Frontend” in fig. 2.5. This code is then executed in
order to create an intermediate representation, also as shown in fig. 2.5. Finally, to-ast
creates a ProB-specific AST, and eval evaluates it using the ProB Java API.

The main idea is that both the language frontend and tool-specific AST can be changed
in order to become more independent of B. For example, predicates may be written in
a syntax that is closer to other formalisms, e.g., Alloy or SMT, or more specific to a
given problem. The intermediate representation only holds for mathematical information
unrelated to any formalism. Finally, translations can be provided in order to use tools
other than ProB, with the hope that, eventually, (most) predicates might be solved
using Z3 [dMB08] or other solvers.

A more involved example is given in listing 2.3, which creates the mathematical con-
straints required to solve the well-known n-queens problem. How the constraints exactly
describe the problem is not relevant here; what is interesting is that some expressions
that are used repeatedly can be assigned to identifiers, such as the integer interval width.
Each form in the code creates part of the intermediate representation and is combined in
order to create the entire predicate. Also, the predicate can be instantiated with a size
and a (partial) solution for the problem, returning a new intermediate representation in
turn. It can be used to find a solution individually, that might in turn be re-used as
input for other predicates. Alternatively, the returned predicate may be combined with
other predicates as well.

34

2.3. Examples

(defpred nqueens-p [size sol]

(let [width (range 1 size) ;; AST blocks

q1pos (apply sol :q1) ;; that are repeated

q2pos (apply sol :q2)] ;; and can be reused

(and (member? sol (>-> width width))

(forall [:q1 :q2]

(=> (and (member? :q1 width) (member? :q2 width)

(> :q2 :q1))

(and (not= (+ q1pos (- :q2 :q1)) q2pos)

(not= (+ q1pos (- :q1 :q2)) q2pos)))))))

Listing 2.3: Definition of N-Queens in lisb

Main Contribution: Exploring Domain Specific Languages

The ProB Java API and lisb integrate very nicely: under the hood, ProB ASTs are
generated and send to ProB in order to find solutions. The aforementioned value
translator then translates the results into Java data structures, which can be used in
Clojure as well. In the other direction, it would be cumbersome to write a parser with a
proper macro system oneself. Here, lisb takes the advantages of Clojure, or rather Lisp,
and extends them into the (B-like) input language. This renders it very easy to create
a domain specific language on top of B.

Lessons Learned: Predicates Are Not Everything

Ultimately, lisb only covers the subset of expressions and predicates in B. While the
initial state, where all formulas are evaluated, can be set-up individually, state transi-
tions are not (yet) considered. Yet, one of the main advantages of B is not only the
expressiveness of the language, but also the usage of a clearly defined state machine.
Thus, for a real application, lisb was not sufficient, and more involved usage of the API
were necessary.

2.3.5. ProB as a Constraint Solver: PlüS

PlüS [PlU] is an application for planning university timetables [Sch17, SLW18]. The goal
is to show that it is possible for students to finish their studies in legal standard time for
all courses or combinations of major and minor subjects. If a course or a combination
is found to be infeasible, the smallest conflicting set of classes and time frames should
be provided such that it can be fixed manually. This process is started from the current
timetables. Complete re-generation of timetables is avoided due to informal agreements,
e.g., lecturers prefer given time slots or are unavailable on certain days.

A database stores information about all courses, e.g., for which subject they can be
attributed, whether they are mandatory or if other courses are prerequisites. From this
database, a B model is compiled. This is included in another B machine that allows

35

2. Integrating Formal Specifications into Applications — The ProB Java API

checking for feasibility of a subject, move lectures etc. from one time-slot to another
and to calculate the unsatisfiable core if applicable.

The formal model is the foundation for a GUI in JavaFX. The initial state is the
initial timetable setup. Each course and combination can be checked individually, which
triggers the state transition that checks feasibility. If the B model returns that there are
conflicts, they are highlighted in the GUI. Then, the user can move courses to different
time slots and re-calculate. This is done via drag-and-drop and, again, triggers the
corresponding operation in the B machine.

If a course works out with the current scheduling, the state variable that represents
the timetable is used to generate PDF files containing a default timetable that can be
given to students, so they know in what semester they should attend which courses.

In this application, the interaction with ProB is hidden from the user, i.e., they do
not need to know about formal methods, states and transitions. It is currently used by
the University of Düsseldorf.

Main Contribution: Improving the B Eco-System

PlüS was one of the earlier projects that used the ProB Java API extensively in the
way presented. In particular, the value translator that translates B values into Java data
structures, which is used in the other case studies, was created during the development of
PlüS. Furthermore, certain shortcomings of B were identified: if-then-else statements are
only available for substitutions, but not in the predicate and expression sub-language.
Similarly, it is not possible to use let-like syntax to locally capture values for any
identifier. These have been addressed in newer versions of ProB, which extend the
syntax of B in these ways.

Lastly, it is hard to express function-like constructs that calculate values that can
be used in predicates. B offers definitions, which offer a macro system similar to the
C-preprocessor with all its shortcomings, e.g. shadowing of variable identifiers, which
are unacceptable in a formal language. Currently, we work on a language extension for
ProB that allows a more sophisticated construct to implement pure functions.

Lessons Learned: Model Interaction

Interacting with the model can be quite cumbersome: in particular, feeding information
from scratch into the model can be slow or very complex. Instead, it is easier to generate
a large model containing all information.

Initially, the idea was to work on pure predicates without a state machine in order
to find scheduling conflicts. However, the aforementioned shortcomings in the language
resulted in large predicates with many repetitions that were hard to debug. We found
that incorporating the information into a state machine with given operations for manip-
ulation of the schedule is more sensible. Additionally, this offers a simple undo-feature
by reverting the trace to an earlier state.

36

2.3. Examples

2.3.6. Real Time Animation: ETCS Hybrid Level 3 Concept

We also used the ProB Java API in an industrial project, for a demonstrator of the
ETCS (European Train Control System) HL3 (hybrid level 3) principles. HL3 is a novel
approach to increase the capacity of the railway infrastructure, by allowing multiple
trains to occupy the same track section. This is achieved by dividing the track sections
into virtual subsections (VSS). While the status of the track sections is determined by
existing wayside infrastructure (axle counters or track circuits), the status of the VSS is
computed from train position reports.
In this application, the formal model was used as a component at runtime to control

real trains in real time. This can be seen in the video presenting the technology at
https://www.youtube.com/watch?v=FjKnugbmrP4&t=163, where in the lower center
one can see the visualisation (using the ProB Java API) of the formal model. The
visualisation shows that two trains occupy the same track section, but occupy disjoint
virtual subsections.
The core of HL3 was written as a B model, managing the status of said virtual

subsections. For the overall demonstrator, the HL3 model was interfaced with other
real-world hardware components:

• an interlocking (IXL) which manages the signals and the status of the track sec-
tions,

• a Thales Radio Block Centre (RBC) which communicates with the trains and
grants movement authorities

• and an Operation and Maintenance Server (OMS).

These three components fed information into the model via ProB Java API in order
to drive the formal model.
The model itself is non-deterministic. Based on the inputs from the external sources,

the corresponding operation is chosen. After updating the state of the model, the suc-
cessor state is passed to a consumer in Java that in turn sends information to the IXL,
OMS and RBC. The VBF application, comprising ProB, ProB Java API and the
B formal model, performs well enough on a regular notebook computer for a real-life
demonstration involving the management of actual trains on their VSS. More details
about the model and the demonstrator can be found in [HLS+18, HLK+20].
The overall architecture of the VBF demonstrator is very similar to the Pac-Man

example. The Pac-Man board can be seen equivalent to the railtrack topology, and the
Pac-Man behaves similar to trains, as they move based on external input. Instead of
only visualising the model state to the user, additionally the application reacts to it and
communicates with other components.

Main Contribution: Application Based on Model Alone

The ETCS case study fully relies on an embedded model rather than on code generation.
By doing so, it has proven our approach to be both feasible and efficient in a real-
world application. The overall development time was low when compared to manual

37

https://www.youtube.com/watch?v=FjKnugbmrP4&t=163

2. Integrating Formal Specifications into Applications — The ProB Java API

or automated code generation. In addition, the formal model was very close to the
HL3 natural language requirements. Changes to the requirements and model could be
quickly carried out. Indeed, the use of our demonstrator has uncovered over 40 issues in
the original HL3 principles paper, which were corrected in the official document along
with our formal model. Of course, a fully refinement-based approach ending with code
generation would be able to prove the system correctness and hence deliver a higher
level of certainty than our approach does. However, we believe that for prototypes and
demonstrators, a model-checked and well-tested specification that is directly executed
can beat non-formal software development by a wide margin in terms of development
time and costs.

Lessons Learned: Full-Stack Debugging Workflow

One important benefit of our approach was that we could store the formal model’s
behaviour in log files and later replay these traces in the ProB animator. This allowed
us to analyse suspect behaviours, fix the HL3 specification and model, and then check
that the corrected model solved the uncovered issues by replaying the trace again. That
is, we automatically got record and replay capabilities of debuggers as in [NPC05].

2.4. Discussion: Should Formal Specifications be
Executable?

When thinking of executing formal specifications, one usually has animation or code
generation (cf. [GK91, WLB00]) in mind. We think that the term “execution” of formal
specification is somewhat overloaded; its semantics differ when considering animation
and code generation techniques. Finally, embedding gives a new dimension of this.
Thus, in this section, we will first consider differences between those three approaches

concerning executability (section 2.4.1). Afterwards, we take another look at the B
language in particular (section 2.4.2). Finally, we revisit arguments made in past dis-
cussions [HJ89, Fuc92, GH96] whether specifications should be executable or not in the
first place in the content of embedding (section 2.4.3).

2.4.1. Executability

As mentioned above, executability of a formal specification can refer to several constructs
depending on the context.
First, animation of a formal specification is an important means to quickly find errors

by executing certain scenarios. This can either be done manually or even replaying a
given trace automatically. Executing a longer trace by hand and verifying whether each
encountered state is correct is very cumbersome and might be aided by state visualisa-
tions.
The most noteworthy feature about animation is that it is a means to develop, debug

and reason about the correctness of a specification. Usually, the user interacts with the

38

2.4. Discussion: Should Formal Specifications be Executable?

tool directly and events are chosen by hand, even ones that should be picked by the
environment. In our case studies, that includes movement of the ghosts in Pac-Man,
moving the chess pieces of the enemy and providing the input of signals, points, etc.
When considering what it means to execute a model in this context, we can characterise

it as follows:

• Computation of transitions does not need to be efficient (but it is preferable).

• Constraint solving may fail (or rather: time out), but execution may still continue
when manually providing values satisfying the constraints.

• Animation is used during development and covers a large part of the language.

Second, code generators usually are applied to (a subset of) the language that offers
precise executable semantics. In the case of the B language, this is usually a small
subset named B0, which does not include functions, relations, deferred sets, etc. (cf.
section 2.5.2 for more details). This approach has several advantages and drawbacks:

• Since B0 is very limited and very close to, e.g., a subset of C, such concrete
specifications can immediately be translated to suitable low-level constructs. Then,
computation is efficient even for the generated code, in particular when compared
to approaches that try to emulate higher-level constructs (though may be less
efficient compared to hand-written code).

• Constraint solving cannot fail, since the language (subset) cannot express any
constraints.

• Development of the model (usually) is finished once code generators are applied.

• The generated code can directly interface with other components.

• The input language severely lacks abstractions and expressiveness.

Finally, embedding is a hybrid approach that tries to combine the best of both worlds:

• Computation must be efficient if the specification demands it, but can be inefficient
for proof-of-concept implementation.

• Constraint solving must not fail, since execution would stop in this case.

• Embedding of the specification can be used during development of a prototype as
well as be shipped as a finished product.

• The embedded specification can interface with other (existing) components.

• As with animation, large parts of the input language are “executable”, yet usually
efficient execution is required.

Overall, executability has different meanings, depending on the context. During an-
imation, the characteristic question is “Can a solution be found automatically or be
supplied?”, for code generation, it is “Can the model be translated?”, while for our
approach, the relevant key question is “Can the specification be executed sufficiently
efficiently?” In the following, we use the latter meaning of the word.

39

2. Integrating Formal Specifications into Applications — The ProB Java API

2.4.2. B as an Executable Language

For all intents and purposes, the B language is, foremost, a specification language. It
was never intended to be executed; a software requirement document should be trans-
lated into an abstract model that works “at a more abstract level execution is no longer
possible” [Abr06] (emphasis in original). In fact, as the B language has its roots in
first-order logic, abstract constraints are not even decidable in general. Only a small,
implementable subset called B0 (which will be discussed in more detail in section 2.5.2)
has defined executable semantics. Why bother trying to execute a more abstract speci-
fication then?
During refinement in the traditional workflow, the abstract model is gradually trans-

formed into a concrete model, that at some point is intended to be executed, or rather
that code is generated from. Yet, in order to validate that the behaviour of the abstract
model is correct in the first place, tools offering animation capabilities are required. Oth-
erwise, errors or inconsistencies in the specification document can easily end up in the
final software product. These tools usually rely on constraint solvers or user interaction
in order to determine values for execution.
The point that justifies re-visiting the discussion presented in section 2.4.3 is that the

following inherent limitation holds: not the entirety of the B language can be executed
at all or in reasonable time. In these cases, either an efficient implementation would
be algorithmically (nearly) impossible, or some refinement is required in order to state
the problem in a way that the constraint solver is able to execute it. As argued, the
consequence for shipping such a model to be used as part of software during run-time
is different from animation during creation of the model and reasoning about its cor-
rectness. Thus, not just any specification can be used in a standalone tool. Instead,
a certain level of concreteness is required, whereas higher levels of abstraction become
feasible.

2.4.3. Should Formal Specifications be Executable?

The famous article by Hayes and Jones [HJ89] has led to quite a bit of controversy. It
argues that formal specifications should not be executable and gives several counterar-
guments (CA):

CA1 Proof is more important than (finite) execution,

CA2 Forms of usable specifications are restricted,

CA3 Executable specifications tend to be over-specified,

CA4 Execution is inefficient.

This does not mean that we disagree with these arguments. In the context of the
executability discussed in section 2.4.2, these arguments offer valid points against our
approach. In the following, we want to consider these arguments and give our reasoning

40

2.4. Discussion: Should Formal Specifications be Executable?

why we deliberately go against this judgement and use a high-level specification language
such as B.

Firstly (CA1), we find formal proof to be very important. However, we have ob-
served that for most formal specifications, which are more involved and are written to
be executable (in the sense of animation), it is very hard and cumbersome to discharge
any proof obligation. On the other hand, models written to be proven usually are not
executable (again, in the sense of animation) either. Yet, proof should always be com-
plemented by animation in order to verify that not only the model is consistent in itself,
but also describes the desired behaviour. This is a challenge for executability (in the
sense of both animation and embedding) that indeed needs to be addressed in the future,
may it be by improving the constraint solver that works on the set-theoretical founda-
tions of B, or by searching for new techniques for provers. We think that, currently,
we cannot offer embedding of a fully proven specification that is sufficiently complex.
Yet, trying to prove unsound specifications may result in a counterexample that quickly
raises awareness of an error that may not be uncovered (quickly) by testing or model
checking.

Secondly (CA2), as discussed in section 2.4.2, B is a language that is very high-level
and allows writing non-executable specifications (as one could encode a non-decidable
problem in a single state transition). Instead of worrying about these issues, we try to
provide an approach for specifications an animator can handle and execute (efficiently).

Surprisingly, most B and Event-B specifications can be animated with ProB. The
major exceptions are mathematical models involving infinite domains, and some ax-
iomatic specifications which require infinite models (e.g., algebraic specification of a
stack). Also, sometimes users add complicated axioms to their model: this makes proof
easier but animation more complicated. Thus, it can be necessary to separate proof
axioms from animation axioms. In [CLM+19] we developed the prob-ignore pragma,
to annotate proof axioms not necessary for animation. Animation configuration is kept
in separate refinements of the proof models, which allows animators and provers to co-
exist peacefully on the same development. Animation ensures no inconsistency in model,
proof ensures we scale to all instances/topologies.

Thirdly (CA3), over-specification does not seem to be an issue for our use case. An
example from [HJ89] is a sorting algorithm. In B, this can be calculated by the constraint
solver by purely specifying the property what it means for a sequence to be sorted.
An example for a valid B predicate that can be solved by ProB in order to yield a
sorted sequence is given in fig. 2.6. Note that no concrete implementation is specified,
as the problem is solved declaratively. Moreover, in the typical workflow of the B-
Method, a concrete implementation happens during refinement. Thus, the writer of the
specification is usually able to choose the level of abstraction herself.

The last argument concerning performance (CA4) is carefully reviewed for each of our
case studies individually in section 2.3 and overall in section 2.7. As different perfor-
mance constraints are given on a case-by-case basis, it is hard to classify specifications
that are suitable to be embedded.

41

2. Integrating Formal Specifications into Applications — The ProB Java API

input = [12,−3, 42, 7] ∧ (input sequence)

output ∈ 1..size(input)→ ran(input) ∧ (type of output)

∀e ∈ ran(input) · (card(input▷ {e}) = card(output▷ {e}))) ∧ (keep elements)

∀i · 1 ≤ i < size(input) =⇒ output(i) ≤ output(i+ 1) (ordering)

Figure 2.6.: Sorting Predicate

2.5. Related Work

There are several tools that are able to achieve part of the case studies presented,
e.g., state visualisation tools and code generators that we will present in section 2.5.1
and section 2.5.2, respectively. Some additional applications that other researchers and
industrial practitioners already built on top of the ProB Java API will be discussed
briefly in section 2.5.3. Finally, there are approaches that work very similar to ProB
Java API. We will take a look at those in section 2.5.4.

2.5.1. Visualisation

All the presented projects include a GUI which displays a visualisation of the current
state. State visualisation by itself is a useful tool to understand the application state
more easily and is often used during the development of a model, debugging, and also
to explain it to a domain expert.
BMotionWeb [LL16, Lad17] is a tool for state visualisation based on web technologies.

It also builds upon the ProB Java API and allows simple interaction with the model.
The chess example from section 2.3.2 uses this tool both for visualisation and embedding
the script that controls the AI. A heavy disadvantage however is the complex technology
stack: BMotionWeb builds upon ProB Java API and uses Groovy, SVG, JavaScript
and HTML5, where each component of the stack may go wrong, rendering development
very cumbersome. Thus, a more simple successor was developed called VisB [WL20]. It
also builds upon ProB Java API, but is easier to use and maintain.
State visualisation is not unique to the B formalisms: e.g., another tool that allows

visualisations based on web technologies is WebASM [ZGS14], which works on top of
CoreASM [FGG07]. CoreASM is a tool that can be used to execute abstract state
machines (ASM). Another advanced visualisation framework is PVSio-Web [WRM18]
for PVS. Also, for Event-B a series of other visualisation tools were developed, such as
Brama, AnimB and JEB [YJS13] which includes a JavaScript interpreter for B.

2.5.2. Code Generation

A more traditional approach is to generate (low-level) code based on the specification.
Translation tools usually cannot work on most constructs that high-level formalisms
have to offer, e.g. calculation of an appropriate parameter for an operation, set compre-

42

2.5. Related Work

hensions or solving quantifications usually require constraint solving techniques which
are infeasible to generate.

A popular implementation-level subset of B is named B0 [Abr96, Cle16], from which
translation into an imperative language is fairly straightforward. Many features of the
B language are missing though, including many operators on functions, relations and
sets as well as quantifications.

For B and Event-B, several code generators exist. One such code generator is C4B
which is integrated in Atelier B [Cle16]. It allows generation of C code from the im-
plementation level subset of B (i.e. B0). However, refining a model of industrial size
down to B0 is a notably cumbersome task to do. Another code generator that is ca-
pable to cope with a subset of B0 is b2llvm [BDLM14] that generates LLVM code. A
notable toolset for Event-B is EB2ALL [MS11], which allows code generation to several
languages including C and Java.

Another approach attempts code generation from a higher level of abstraction. Mod-
ern programming languages offer, e.g., sets and maps, which allows easy translation
of B constructs such as sets, relations and functions. Supporting code generation for
more constructs from B that are not included in B0 might make an approach using code
generation more feasible. One such code generator is EventB2Java [CR16, RCWR17]
that translates higher-level constructs. More recently, B2Program [VHKL19] was pre-
sented.

When translating aforementioned data structures, one loses an important property of
the resulting program: execution is not necessarily possible in constant memory, i.e.,
without dynamic memory allocation. B0, on the other hand, is intended to be generate
code suitable for, e.g., embedded systems, as failure to allocate memory is not handled
as part of the formal method. This aligns with the approach we present in this article:
the overall idea is that prototypes can be executed during early development stages.

However, there is one fundamental difference to code generation: performance often is
drastically better due to access to ProB’s constraint solver. Generated code must, e.g.,
enumerate and apply a filter predicate to all possible integer values. As an example, the
set {x|x ∈ NAT ∧ x < 3} is calculated by the code generated by B2Program shown
in listing 2.4. The code is far from optimal: since the range of 32-bit (signed) natural
numbers is very large, computation of the set is very slow. While this approach is feasible
if the domain is small enough, usually application of constraint solving techniques is far
more preferable, especially on large or even unbounded domains.

Code generation is not exclusive to the B method: e.g., VDM specifications can be
used to generate C++ or Java code [JLC15]. In particular, higher-level constructs
such as set comprehensions are handled by this translation as well. Moreover, when
targetting Java, this code generator can also translate pre- and postconditions to JML
(Java Modelling Language) annotations, that allow optional checks of correctness of the
system realisation [TJLL18].

43

2. Integrating Formal Specifications into Applications — The ProB Java API

BSet <BInteger> _ic_set_0 = BSet <BInteger> ();

for(BInteger _ic_x :

(BSet <BInteger>::interval ((BInteger (0)),

(BInteger(2147483647))))) {

if((_ic_x.less((BInteger (3)))).booleanValue ()) {

_ic_set_0 = _ic_set_0._union(BSet <BInteger>(_ic_x));

}

...

}

Listing 2.4: Java Code Generated by B2Program

2.5.3. Other Tools

A variety of third-party tools have been developed using the ProB Java API, highlight-
ing that it can be used as good way to build tools.

• The HRemo tool for invariant discovery, where ProB is used to produce traces
with undesirable states, fed to the machine learning system HR. HRemo is de-
scribed in detail in chapter 4 of [Rod13] and used, e.g., in [GIL12].

• The VTG (Vulnerability Test Generator) system [SLF+12] is based on an Event-B
model of the JavaCard bytecode operations. VTG then creates mutants of those
JavaCard operations using the ProB Java API, and then uses ProB to generate
test traces to exercise those mutants. Note that the generation of the mutants
with ProB Java API was orders of magnitude faster than the original code within
Rodin.

• CODA [BCE+13] is a refinement-based framework for modelling component-based
embedded systems. The animation and simulation features were implemented via
access to the ProB Java API.

• Cucumber Event-B https://github.com/tofische/cucumber-event-b is a tool
to execute test scenarios described in the Gherkin language for Event-B models.
It is used for high-level assurance tests [FD19].

• Meeduse http://vasco.imag.fr/tools/meeduse/ is a tool for domain specific
languages building upon EMF (Eclipse Modelling Framework). The domain spe-
cific languages are translated to B and the operational semantics realised with
ProB. Meeduse has been applied, e.g., to develop a domain specific language for
the railway domain [ILW+19a].

• The VDM interpreter of the Overture tool [LBF+10] was integrated with ProB in
order to execute implicit VDM specifications [LIL15]. In particular, ProB’s con-
straint solving capabilities are used to find solutions for parts of the specification,
that are not in the executable subset of the VDM specification language. This
integration makes use of an early version of the ProB Java API. Due to lessons
learned from other projects and performance improvements, especially concerning

44

https://github.com/tofische/cucumber-event-b
http://vasco.imag.fr/tools/meeduse/

2.5. Related Work

record types (as they were used in PlüS, presented in section 2.3.5), the current
ProB Java API could render similar integrations with other tools much easier.

Other tools using ProB Java API exist, e.g., the data validation tool Rubin developed
in collaboration between Thales and the STUPS group.

2.5.4. Other Approaches

Another formal specification language is part of the Vienna Development Method (VDM)
[Jon90]. A well-known tool for VDM is Overture [LBF+10], which implements an in-
terpreter in Java. In [NLL12], an extension to the VDM language and Overture was
presented. It allows execution of Java code from VDM specifications and, in turn, to
control the interpreter to evaluate expressions in the current state. The goal is to add vi-
sualisation of the current state to the model and to integrate models with legacy systems,
as we did, e.g., in section 2.3.6.

An application that can also be understood as “execution” of a formal model is co-
simulation [GTB+17]. Formalisms usually differ in their application area: e.g., B is a
formalism used to model discrete events, whereas behaviour regarding continuous time is
hard or impossible to express. Using interfaces such as FMI [BOA+12], one can combine
several models in different formalisms. A co-simulation orchestration engine, such as
Maestro [TLG+19], usually manages the passage of time and synchronises the execution
of all models. Such a component that is orchestrated can be either be a tool-wrapping
FMU (functional mock-up unit) or a generated FMU. Tool-wrapping FMUs implement
the FMI in a way that tool exposes the behaviour of the model to the interface, such that
a high-level model can be used. An example is the Overture FMU extension [TLL18].
Generated FMUs usually stem from a model and are exported by a tool. Then, the
generated C code represents a dynamic system and implements the interface of the
standard. Again, the Overture is able to generate such FMUs [BTJHL17].

Built on top of FMI, INTO-CPS [LFW+16] focuses on co-simulation with pragmatic
integration of current industrial-strength tools. It also offers, amongst others, model
checking, hard- and software-in-the-loop simulations. INTO-CPS also provides usage
different levels of abstraction of the models [TN16], and gives rise to visualisation tech-
niques such as augmented reality. One future endeavour is to create models of the
physical world as a “digital twin”, in order to simulate complex cyber-physical sys-
tems [FLP19].

Another approach [Num13] is interesting as well: in his thesis, Nummenmaa executes
several example runs on probabilistic specification of games. The idea is to leverage
non-determinism in order to simulate and analyse game design. For this, the DisCo
method [JKSSS90] is utilised. Yet, in these simulations, the model does not interact
with an environment.

45

2. Integrating Formal Specifications into Applications — The ProB Java API

2.6. A Look Into the Crystal Ball – Potential for the
Future

In the previous sections, we have presented several applications that already use the
ProB Java API and discussed the circumstances, under which we deem such an ap-
proach reasonable. Now, we want to take a look into the crystal ball and discuss some
potential use cases that we did not implement yet, but seem very promising. We discuss
integrations with more sophisticated artificial intelligence than the one used in the Pac-
Man or Chess case studies and link to existing research on that topic in section 2.6.1.
Finally, we will name some other future tools that ProB Java API allows us to imple-
ment in section 2.6.3.

2.6.1. Integration Potential with Artificial Intelligence

As already mentioned in the discussion of the chess case study in section 2.3.2, the
approach of defining custom AI to control ProB’s exploration strategy corresponds to
the notion of directed model checking. Using AI heuristics for directed model check-
ing is already a researched approach in the community, for instance utilising AI plan-
ning heuristics [KHDB06], Monte-Carlo Tree Search [PF15], or relaxation techniques for
heuristic finding [SH09]. However, the integration with executable specifications allows
for a more general notion of directed model exploration and analysis.

As the ProB Java API offers the possibility to simulate modified copies of a model
in-memory, it is also possible to introduce a self-repairing model checking routine. Com-
bining regular model checking techniques with a constraint-based repair method as out-
lined in [SKL18] would allow a ProB Java API based controller to alter the model once
a violation is found by applying generated repair suggestions. The model checking could
then continue on the repaired model to search for possible further violations. This can
be done for multiple possible repair suggestions, allowing to directly discard faulty ones
automatically or present the user a set of viable options once all states were explored.

On another note, a component-wise integration as proposed in [HMR+19] is also easily
possible with ProB Java API. The idea is to compose independent executable specifica-
tion components (ES-only components) with AI-only components, where both, the ES
and AI components only address particular subgoals of the overall system. The refine-
ments in this approach are done by extending the system with further components or
by splitting components into smaller ones. The splitting step allows for substitution of
a subgoal of the original component for an implementation of the respective other type,
i.e., splitting an ES component into three subcomponents where one is implemented as
AI component. Vice-versa, (partially) replacing AI components with ES components
allows for a more provable system. Hence, applying this approach to an initial AI-only
system might increase the provable guarantees of the system at least for certain subgoals
while not having to switch to a fully formal workflow.

46

2.7. Conclusions

2.6.2. Tool-Wrapping FMU

The B language itself has no notion of time: all events are discrete and happen instanta-
neously. Yet, often time constraints are important and are expressed by state variables.
One strategy is to add a time variable that is only incremented by certain events. The
drawback is that this way, the state space usually becomes infinite and, thus, exhaustive
explicit-state model checking is impossible. Another way to model time is to maintain a
collection of deadline timers that count down instead. This is method is described and
used in [CMR07, RC07, HLK+20, LMW20].
The ProB Java API allows users to superimpose any notion of time on their model,

whatever modelling strategy is used – or manage time outside of the B model. Thus, it
is feasible to implement the FMI standard as an individual tool-wrapping FMU (which,
however, requires the development of C glue code via Java’s native interface). It would
also be sensible to explore how continuous behaviour can be modelled and verified as
well, making use of hybrid automata [Hen00].

2.6.3. Future Use Cases

Embedding a formal model directly into applications has several benefits that might aid
enabling future use cases.
First, the model is closer to the actual hardware. This allows it to be included in real-

time simulations of the system, including all components and the actual (rather than a
modelled) environment. This also allows usage of formal models for hardware-in-the-loop
tests, which are common for instance in the automotive industry (cf. [FFHS06, SP08]).
Having the model included in full system-level tests should help remedy some concerns
regarding the loss of fully formal proof.
Second, as part of a regular application, formal models can easily be accessed pro-

grammatically. This enables new kinds of analyses not readily available in current formal
methods toolchains. For instance, the ProB Java API can be used to define, execute
and analyse test case as well as user usage scenarios. This is especially handy, when
formal modelling in used together with specifications including classical use case defi-
nitions. Ultimately, the ProB Java API can be used to connect formal models with
frameworks such as JUnit and thus enables a tighter integration of formal methods and
non-formal development. In particular, it might be easier to formulate test cases in the
sense that they can be expressed in a way that is closer to the specification or more
involved than, say, an LTL formula.

2.7. Conclusions

In this paper, we presented the ProB Java API, which offers an easy to use interface
to the ProB animator and model checker. The ProB Java API renders it possible
to write applications that interact with a formal model at runtime, offering declarative
programming, rapid prototyping and easy debugging. Furthermore, we embedded formal
models into actual applications and investigated this approach via five different case

47

2. Integrating Formal Specifications into Applications — The ProB Java API

studies. We also considered counterarguments regarding executable specifications and
re-evaluated them given the gained experiences.
Overall, we can draw the following conclusions:

• We think that specifications can and should indeed be executable, as it allows veri-
fication of an interpretation or an implementation against the specification. Given
a suitable high-level specification language, many counterarguments such as over-
specification do not hold. With a tool as presented in section 2.2 or in [NLL12], it
is possible and (often) viable to use that specification as a library in an applica-
tion, allowing embedment of declarative programming into traditional, imperative
programming languages.

• Development of complex components is significantly eased by the level of abstrac-
tions provided by a high-level specification language, such as B. Integration with
existing code, written in other programming languages or running on different ma-
chines, is very useful. When adapting the formal model, changes can immediately
be evaluated via a test scenario in the context of an entire application. In contrast,
adapting a traditional implementation is more cumbersome and more prone to in-
troducing new, unrelated bugs. Tool support such as model checking or animation
proved to be invaluable to uncover errors early on which may otherwise have gone
unnoticed for a longer time.

• The main concern for real-life applications, as already stated in 1989 by [HJ89], is
performance. Low-level applications written in traditional imperative, functional
or even logical programming languages can be orders of magnitudes faster because
they can work at lower levels of abstraction. Hence, for many time-critical appli-
cations the execution of formal specifications is not the way to go yet. However,
as long as performance requirements are reasonable (e.g., if data sets are rather
small), utilising formal models at runtime allows us to quickly deploy complex
applications that can make use of the eco-system associated with formal methods,
from proof to animation and model checking.

• The presented case studies clearly show that the integration of formal models in
a typical software development life cycle is possible. Yet, since the entirety of the
API can be accessed, the ProB Java API allows for applications that are way
more involved and may prove to be the foundation for game changers concerning
use cases and accessibility of formal methods. We think that this approach is just
scratching the surface of what is possible, especially regarding the integration with
AI components, and we are excited to see what academic and industrial usages
may emerge.

2.8. Declarations

Funding

The HL3 case study in section 2.3.6 was funded by Thales.

48

2.8. Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not applicable

Code availability

All code of ProB Java API and our public case studies is available on GitHub:

ProB Java API source code https://github.com/hhu-stups/prob2_kernel

ProB Java API Maven artifacts https://search.maven.org/artifact/de.hhu.

stups/de.prob2.kernel

API example https://github.com/hhu-stups/executable_spec_example

Pac-Man plug-in https://github.com/pkoerner/EventBPacman-Plugin

Chess https://github.com/pkoerner/b-chess-example

Logic Calculator https://github.com/hhu-stups/prob-logic-calculator

lisb https://github.com/pkoerner/lisb

PlüS https://github.com/plues/plues

ProB Jupyter Kernel https://gitlab.cs.uni-duesseldorf.de/dgelessus/prob2-jupyter-kernel

The code implementing the HL3 case study is confidential and cannot be disclosed
here.

Acknowledgments

We thank Christoph Heinzen and David Geleßus for authoring and improving the pre-
sented Pac-Man application, as well as Philip Höfges for the chess model, AI and GUI.
Additionally, we want to thank the many people who were involved in the development
of both ProB and ProB Java API, the Slot Tool and the ETCS Hybrid Level 3 case
study.

49

https://github.com/hhu-stups/prob2_kernel
https://search.maven.org/artifact/de.hhu.stups/de.prob2.kernel
https://search.maven.org/artifact/de.hhu.stups/de.prob2.kernel
https://github.com/hhu-stups/executable_spec_example
https://github.com/pkoerner/EventBPacman-Plugin
https://github.com/pkoerner/b-chess-example
https://github.com/hhu-stups/prob-logic-calculator
https://github.com/pkoerner/lisb
https://github.com/plues/plues
https://gitlab.cs.uni-duesseldorf.de/dgelessus/prob2-jupyter-kernel

3. A Verified Low-Level
Implementation and Visualization of
the Adaptive Exterior Light and
Speed Control System

Abstract

In this article, we present an approach to the ABZ 2020 case study, that differs from
the ones usually presented at ABZ: Rather than using a (correct-by-construction) ap-
proach following a formal method, we use C for a low-level implementation instead.
We strictly adhere to test-driven development for validation, and only afterwards apply
model checking using CBMC for verification. In consequence, our realization of the ABZ
case study serves as a baseline reference for comparison, allowing to assess the benefit
provided by the various formal modeling languages, methods and tools.

3.1. Introduction

The ABZ 2020 Case Study [HR20] describes two assistants commonly found in modern
cars. The overall system consists of two loosely coupled components, the adaptive exte-
rior light system (ELS) and the speed control system (SCS). The ELS controls head- and
taillights, while the SCS controls the vehicle’s speed. Both have to take into account the
environment and parameters defined by the driver. Obviously, both are safety critical
components, rendering safety and security a development priority.

In this article, we present our implementation of ELS and SCS. Our approach differs
from the other case study implementations in that we do not employ a fully formal
development method. Instead, we attempted an approach closer to what might happen
in industry, where formal methods are not common yet. To do so, we implemented
both the ELS and the SCS directly in (MISRA) C, following a test-driven development
workflow. Only afterwards, we attempted formal verification directly on the C code,
using the CBMC model checker [CKL04]. Both MISRA C and CBMC will be introduced
more thoroughly in section 3.2.1 and section 3.5.2, respectively. Test-driven development
and mocking of test objects will be presented in section 3.2.2.

51

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Rationale. Sometimes formal methods practitioners claim to hold a high ground over
“traditional” software development or at least claim that there rarely are disadvan-
tages [Hal90, BH95]. The argument seems convincing; yet, we are not aware of any
(case) study comparing two teams working on the same project, one employing a formal
approach and the other working “traditionally”. For this case study, we aim at providing
a baseline for comparison with fully formal approaches or other approaches combining
formal and informal verification, e.g., as suggested for spacecrafts [YZ16]. We opted to
postpone verification as much as possible, to allow a fair evaluation of (dis-)advantages
of the individual approaches. Our aim is to examine, whether a rigorous approach is
beneficial in the context of the case study. If so, we hope to add to the body of evi-
dence that formal methods actually are beneficial compared to “traditional” software
development.

Distinctive Features. Several features render our approach unique: Firstly, as the
implementation is written in C, it could be directly deployed to an embedded system.
Models written in formal specification languages would have to be refined to an imple-
mentation level before code can be generated. Furthermore, code generators usually are
not proven and might introduce new errors. In cases where code generation is not easily
applicable, side-by-side development of code is suggested. However, this approach is
error-prone as well.

Secondly, the implementation is close to actual hardware. Code that interacts with
sensors or user input is separated, i.e., it could immediately be linked to real sensors.
Additionally, our implementation makes use of threads, just as the subcomponents of the
system would run in parallel. We expect that most specifications using formal methods
simply allow some non-determinism concerning the ordering of state transitions.

In consequence, our implementation allows real-time simulation of the system, whereas
state transitions in formal methods usually happen instantly and do not amount for any
time elapsed. This also allows usage of our implementation for hardware-in-the-loop
tests, which are common for automotive software [FFHS06, SP08].

Thirdly, C together with the MISRA rules restricting its usage stems from the auto-
motive industry and is widely used in practice. Thus, our implementation closely mimics
real-world development conditions.

Team Overview. Our team comes from a formal methods background: While all mem-
bers are very familiar with the B method [Abr96, Abr10], we did not have particular
expertise with C development or verification tooling for C. The basic code structure as
well as the fixture for the test scenarios was developed by SK and PK in a synchronous
meeting. Afterwards, SK implemented the ELS, JD was responsible for the SCS and
tests were provided by PK and KR. Formal verification was done by SK and PK. Both
the ad-hoc and the 3D visualization was provided by KR due to her individual knowledge
in this area.

52

3.2. Background on Used Methodology and Tools

Figure 3.1.: Meeting in a Virtual Seminar Room

Collaboration. As we were working from different locations, we used asynchronous
messaging via Mattermost1 for coordination and progress reports. The code was version-
controlled using Git and GitHub. Finally, during the COVID-19 pandemic, we addition-
ally employed the software Gather2 for synchronous meetings discussing progress and
next steps. In Gather, one controls an avatar through a virtual world and video confer-
ences are started automatically based on predefined rooms or proximity. A screenshot
of the authors meeting in Gather is shown in fig. 3.1.

Additional Contributions. This article is based on our case study submission [KKDR20]
and extends it by

• a discussion on how the given requirements are represented and how far we can
trace the impact of requirements on the implementation,

• a thorough presentation of our approach to development,

• improved visualization,

• additional information on the development team as well as the tools and techniques
used,

• an evaluation of readability and comprehensibility of our implementation, and

• a comparison to the other case studies.

3.2. Background on Used Methodology and Tools

Our implementation complies with MISRA C and was developed in a test-driven manner.
Afterwards, CBMC was employed for formal verification. Below, we briefly introduce
these methods and tools.

1https://mattermost.com/
2https://www.gather.town/

53

https://mattermost.com/
https://www.gather.town/

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

3.2.1. MISRA C

MISRA C is a set of development and style guidelines for C, introduced by MISRA, the
Motor Industry Software Reliability Association. The standard [mis13] defines a subset
of C meant to be used for safety critical systems, in particular in the automotive sector.
In fact, both ISO 26262 [ISO11] and the software specification by AUTOSAR [aut19]
suggest the usage of MISRA C for automotive applications.
The overall goal of MISRA C is to increase both safety and security by avoiding

common pitfalls. Thus, the rules prohibit or discourage the use of unsafe constructs, try
to avoid ambiguities, and so on. The MISRA C standard distinguishes between three
kinds of rules: those that are mandatory, those that are required but could be ignored
if a rationale is given, and rules that are advisory only. For instance, there is a required
rule stating that any switch statement should have a default label and a mandatory rule
stating that any path through a non-void function should end in a return statement.
While most rules could be checked by hand, we used cppcheck3 to verify compliance

of our implementation. Given that some rules are undecidable, the result is only an
indication and manual review is required as well.
Despite its prevalence, MISRA C has been criticized regarding both efficiency and

ease of use. In particular, the possibilities of false positives [Hat07] and of introducing
new errors by (thoughtlessly) changing code to adhere to the rules [BM08] should be
carefully considered. Despite the criticism, MISRA C remains the de facto standard in
the automotive industry and is used throughout all production code in this case study.

3.2.2. Test-driven Development and Mocking

Test-driven Development is an approach to software development, that follows a certain
development cycle: before implementing a new feature or fixing an issue, an appropriate
test case is formulated and executed [Bec03]. Without code change, the test is expected
to fail.
Afterwards, the code is extended and improved to make the test pass. As a result,

a high test coverage and resulting confidence is achieved. Furthermore, the test suite
helps during later refactorings.
To simplify formulating tests and to allow testing program parts in isolation, mocks

can be used. A mock is an object or library that simulates the input and output behavior
of program parts [Bec03]. However, rather than implementing the full functionality,
mocks are usually much simpler than the code they replace. For instance, mocks often
behave deterministically or even to provide constant outputs. For testing purposes,
mocks can record their inputs and provide them to assertions.

3.2.3. CBMC

CBMC [CKL04] is a model checker for programs written in C. It uses bounded model
checking [BCCZ99] to verify a default set of properties, mostly related to common pro-

3http://cppcheck.sourceforge.net

54

http://cppcheck.sourceforge.net

3.3. Requirements and Modelling Strategy

gramming errors, such as: memory safety, including bounds checks and pointer safety,
occurrence and treatment of exceptions, and presence of undefined behavior due to C
quirks. While those are worthwhile to find and correct, they only ensure general cor-
rectness but not adherence to the requirements.
To check individual properties, CBMC can be used to verify user-given assertions

stated as C-style assertions using the macros in assert.h.

3.3. Requirements and Modelling Strategy

In this section, we give an overview on how we transformed the requirements into code
and test, our validation strategy and the limitations of our implementation.

3.3.1. Process From Requirements to Code and Assertions

We used the requirements given in the case study description without further modifica-
tion or transformation. For each requirement we covered, we generated:

• Unit tests, which are used for test-driven development. See section 3.5.1 for details.

• Assertions to be checked via CBMC as presented in section 3.5. These assertions
are meant to verify that properties hold in general rather than just in the test
scenarios.

The validation sequences were taken from the Excel file and encoded in integration
tests, using the same techniques as the unit tests.
Using CBMC to verify assertions can of course result in counterexamples. Those are

given as traces, which can be used to create additional validation sequences by replacing
erroneous steps by desired ones. Again, these tests can then be used to improve the
implementation and ensure the absence of the counterexample.
The combined approach using both testing for validation and model checking for

verification has its merits and provides a high degree of certainty. However, it also has
its drawbacks. In particular, the double meaning of assertions can lead to confusion:
C-style asserts are used both to encode properties for CBMC and to fail tests. Yet,
there is no combined methodology to react on failing assertions and errors uncovered by
model checking have to be handled differently from failing tests.

3.3.2. Code Structure

The overall architecture of our implementation is depicted in fig. 3.2. We follow a
structure that is fairly similar to the one the specification provides. Since two subsystems
are specified, the code is separated into two folders, one for the cruise control and the
other for the light system. This is to help ensure that the systems are independent of each
other. Shared type definitions, e.g., the pedal deflection, the sensor state enumeration,
and shared sensors, are stored separately. An artificial time sensor was introduced for
testing, but can easily be replaced by an actual clock.

55

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Clock (external)

Time

Sensors
(from Car)

Key Status

Brightness

...

ELS

initialize ELS

read sensors

functionality store last state

SCS

initialize SCS

read sensors

functionality store last state

M
o
ck
ed

fo
r
T
es
ts

Input
(from Driver)

Pitman Arm

...

Output (to Car)

ELS State

SCS State

rea
ds

reads

reads

reads

re
ce
iv
es

receives

writes

writes

Figure 3.2.: System Architecture and Internal Communication

Each of the subsystems is split into three header files and implementations. The first
header file declares the accessible and shared sensors for the subsystem, and contains
relevant type definitions. Another header file defines the user interface, e.g., how the
pitman arm may be moved or what input the pedals for gas and brakes may yield. The
last header file contains definitions for the actuators, i.e., what the system is allowed to
do. Only the latter two header files are actually implemented, eventually resulting in
three C files:

• A state struct that contains all the data relevant to the subsystem.

• The user interface to simulate inputs. This changes some internal variables that
keeps track of the state of the UI; in a deployed system, this can be replaced by
additional sensors. The attributes correspond to the signals that the subsystem
has to communicate.

• The realization of the state machine with several guarded state transitions. This
is the actual implementation of the specified safety properties.

For the test cases, sensors are mocked. In order to get an actual executable, real sensors
have to be linked during compilation. The time spent for development, validation and
verification is given in table 3.1.

56

3.3. Requirements and Modelling Strategy

Table 3.1.: Development Time

Task Time in Hours

basic implementation and code structure 2
ELS implementation, tests and scenarios 30
SCS implementation, tests and scenarios 22
model checking 3
refactoring and code cleanup 2
state visualization 6

For the sake of brevity, we will only show small code snippets in this paper. The full
implementation is available at

https://github.com/wysiib/abz2020-case-study-in-c-public.

3.3.3. Traceability of Requirements

As the other case studies, we do not employ a fully formal approach to traceability.
The only form of traceability we provide is by using naming patterns. Our unit tests in
general contain the requirement they are concerned with in the name of the test routine.
Larger integration tests also reference the validation sequence they represent, which in
turn contains the requirements justifying individual steps.
As a consequence, we can only trace which test cases are validating certain require-

ments and to what extent requirements are covered. Comments aside, we have no link
between a requirement and the individual part of the code realizing it.

3.3.4. Variability of Requirements

In our current implementation, we handled the requirements’ variability by introducing
artificial sensors that produce a single constant value, i.e., sensors for

• the driver position, (left or right);

• the marked code, (USA, Canada or EU); and

• if the vehicle is armored.

The values returned are fixed and assigned during the system’s initialization. While this
approach was easy to implement on top of our initial system, it also pollutes both the
code and the program state to some extent.
In the automotive industry, a commonly used approach for handling variability is

software product line development [CN02, KD06]. If the variability had been larger, we
could have split ELS and ECS into a common base product used for all market segments
and used a software product line approach to develop individual manifestations, e.g., for
Canada vs. USA.

57

https://github.com/wysiib/abz2020-case-study-in-c-public

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Given that the variability in the requirements was not that large, we opted for the
simpler implementation in order to concentrate on validation and verification.

3.3.5. Properties Addressed & Limitations

Due to time constraints, we opted not to implement every single requirement but tried
to cover as much as possible. Aside from the emergency brake light, all requirements
have been taken into account for the ELS. For the SCS, we implemented about two-
thirds of the requirements, up to (including) SCS-28. While it would be nice to have
a more complete implementation, we do not think that it would impact our gathered
conclusions.

A feature of the requirements that is not addressed satisfyingly are timers. We are
convinced that any modern CPU to be used in cars is fast enough to execute an iteration
of the state machine withing a reasonable time frame. Thus, any real system realized
following our approach should be able to guarantee execution within the smallest time
resolution that is relevant to the subsystems and their respective requirements.

Yet, it is hard to give any real-time guarantees. The only evidence that can be given
is to run the system often enough and measure whether execution is kept in the specified
tolerances. However, this is still better than what we expect of more formal approaches,
which usually do not account for wall time at all.

3.4. Model details

In the following, we will detail implementation idioms we employed to simplify handling
and verification of the involved state machine, and explore some snippets of our code to
showing these idioms in practice.

3.4.1. Formalization Approach

As stated, we postponed verification as much as possible. Instead, as our first step, we
set up the validation sequences as test cases. Then, following test-driven development,
we added to the implementation code by only considering the first failing assertion in a
scenario. Once the test passed, we moved on to the next. In a second step, we added
test cases that are directly related to one or sometimes several requirements.

Finally, we set up CBMC and tried to verify the properties described by the require-
ments. As stated, we use the same code for testing and formal verification, avoiding
any translation between verification and testing environments as done for instance by
Chen et al. [CRW+17] and others. However, both approaches remain distinct rather
than being combined into a single verification procedure [YSAA97].

58

3.4. Model details

3.4.2. Modelling Idioms

Besides sticking to the MISRA C guidelines and test-driven development we also adopted
two further idioms during modelling: only use enumeration types, and do not expose
mutability. We will motivate and elaborate on these in the following subsections.

Use Enumeration Types

We opted to define all types as enumeration types. This is to be expected for some data
types, which are true enumerations, such as:

typedef enum {Ready, Dirty, NotReady} sensorState;

Yet, we also defined integer types as enumerations:

typedef enum {

percentage_low = 0,

percentage_high = 100

} percentage;

The reasons for this are twofold: first, we can easily identify thresholds and the value
range for each type. While percentages are straightforward, other values such as the
steering wheel angle are not easily represented in a human-understandable format. An
excerpt of the corresponding type definition is as follows (analogously for turning the
steering wheel to the right):

typedef enum {

st_calibrating = 0,

st_hard_left_max = 1, /* 1.0 deg */

st_hard_left_min = 410,

st_soft_left_max = 411, /* 0.1 deg */

st_soft_left_min = 510,

st_neutral_maxl = 511, st_neutral = 512,

... /* analogous for the right side */

} steeringAngle;

Such a type definition renders it easier to identify, e.g., in what direction the steering
wheel is turned and how far. For instance,

st_hard_left_max <= angle &&

angle <= st_hard_left_min

can be used to check if the wheel has been turned far to the left.
C behavior is undefined if a value that is out of range of the corresponding enumeration

is passed. Thus, our second intention was that model checking tools could easily deduce
the actual value range rather than having to consider integers exhaustively. This will be
discussed further in section 3.5.2.

59

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Do Not Expose Mutability

It is easy to write broken code when using mutable structs, especially if they are used in
order to communicate between threads. Instead, we pass values to and from interface
functions. This means, that values are copies of the data which are not referenced from
anywhere else in the program and the receiver may do however they please with it. An
example is that the state from the light sub-system can be queried (for test cases). The
returned value will never change unless the test case chooses to do so; no action in the
ELS influences it. This also allows reading multiple output variables consistently.

On the other hand, frequently changing internal variables, are declared as local (using
the static keyword). They are always stored in the same “place” and may not be
exposed; in particular, there are no getter functions for these variables.

3.4.3. Coding Examples

Below, we present some key snippets of our implementation. We focus on the concept
of the ELS systems, as the SCS is structured the same way.

The core of our ELS is the light_do_step function, spanning over almost 300 lines
of C code, that is called in a loop. Some auxiliary functions exist to properly set the
high beam light, blinkers, etc. where it was appropriate to heat the DRY principle. The
light_do_step function can be divided in three major parts, described below.

Sensor Reads and Type Information for CBMC First, all relevant sensors are read
and stored locally. For verification with CMBC (as discussed in section 3.5.2), it is
necessary to provide type information for integer ranges and enums. Listing 3.1 shows
this for three examples: first, all possible states of the key are enumerated. Second, as
C represents booleans as integers, boolean values must be specified to be exactly true or
false. Third, integer ranges such as the possible values for the battery voltage have to
be provided as an axiom. Additionally, we add assumptions based on the specification,
e.g., that the engine state is linked to the key position.

As noted, we implemented time as a sensor as well. Listing 3.2 shows that we also
had to add assumptions that the timestamp only increases.

Implementation of Requirements Requirements are encoded by a collection of if-
statements. Interestingly, no else-branch exists in the function — most likely, because
the specification does not contain the words “else” or “otherwise”. In the snippet in
listing 3.3, we show how two smaller requirements are realized.

Assertions The last part of the light_do_step function contains code for invariant
verification. Listing 3.4 contains assertions that can be checked using CBMC to verify
two requirements.

60

3.4. Model details

keyState ks = get_key_status();

__CPROVER_assume(ks == NoKeyInserted || ks == KeyInserted || ks ==

KeyInIgnitionOnPosition);

bool engine_on = get_engine_status();

__CPROVER_assume(engine_on == true || engine_on == false);

voltage voltage_battery = get_voltage_battery();

__CPROVER_assume(voltage_battery >= voltage_min && voltage_battery <=

voltage_max);

...

__CPROVER_assume(implies(ks == KeyInIgnitionOnPosition, engine_on ==

true));

__CPROVER_assume(implies(engine_on == true, ks ==

KeyInIgnitionOnPosition));

Listing 3.1: Sensor Reads and CBMC Assumptions

size_t tt = get_time();

__CPROVER_assume(tt >= when_light_on);

__CPROVER_assume(tt >= blink_timer);

__CPROVER_assume(tt >= ambi_light_timer);

__CPROVER_assume(tt >= pitman_arm_move_time);

Listing 3.2: Time as a Sensor

3.4.4. Modelling of Time Constraints

When writing code that takes time into account, one is easily tempted to access the
current time provided by the operating system. This is a bad when time-based properties
are to be tested, as tests would have to be enriched with sleep statements to achieve
proper timing for the situation under test.

Instead, we introduced an artificial sensor reporting the current time in milliseconds,
comparable to a unix timestamp. For testing, this sensor is mocked and some artificial
time is provided. The code does not know anything about time, it just reads a sensor
returning an integer value.

The only assumption made is that one cannot go back in time. In consequence,
the step functions can be called in a continuous loop, independent of the computing
speed and time needed for a single iteration. On fast hardware, there might even be
several executions within the same timestamp (e.g., if the resolution is milliseconds) or
timestamps might pass without an execution following (e.g., when using nanoseconds).
Mocking the sensor also has the advantage that test scenarios, that would take several
minutes of wall time, can be executed in milliseconds instead.

If the entire piece of software was to be shipped, it would be trivial to swap out the
sensor: One only has to link an implementation that provides the real time, which may
be the provided by the operating system.

61

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

// ELS-16 (has priority over ELS-17)

if(!engine_on && (last_lrs != lrs_auto)

&& (get_light_rotary_switch() == lrs_auto)) {

set_all_lights(0);

}

...

// ELS-41: reverse gear

if(reverse_gear) {

set_reverse_light(100);

}

if(!reverse_gear) {

set_reverse_light(0);

}

Listing 3.3: Implementation of two Requirements

// ELS-22: low beam => trail lights

assert(implies(blinking_direction != hazard,

implies(get_light_state().lowBeamLeft > 0,

get_light_state().tailLampLeft > 0 ||

get_light_state().tailLampRight > 0)));

...

// ELS-41: reverse gear turns on reverse lights

assert(implies(reverse_gear, get_light_state().reverseLight > 0));

assert(implies(!reverse_gear, get_light_state().reverseLight == 0));

Listing 3.4: Verification of two Requirements

3.4.5. Readability and Comprehensibility

Aside from the MISRA rules and the idioms presented in section 3.4.2, we did not employ
further guidelines to increase readability. However, as MISRA C is already designed to
improve readability [BBH18], and given that C is a widely used language we assume our
implementation to still be accessible for non-expert developers unfamiliar with formal
methods. In the following, we will revisit our implementation and discuss the readability
of the code and hold it against this assumption.

Readability Metrics over ELS and SCS

An intuitive metric for readability seems to be the number of lines of code (LOC).
ELS and SCS include 605 and 642 LOC, respectively, not counting 328 blank and 200
comment lines. However, more precise metrics for readability have been suggested.
Buse and Weimer [BW10] show that the average number of identifiers per line, the

average line length, or average nesting depth are negatively correlated with readabil-

62

3.4. Model details

ity. Simultaneously, the average number of comment lines, and the average number of
semantically breaking blank lines are positively correlated with readability. The nega-
tive impact of nesting on readability is further pointed out by Johnson et al. [JLY+19].
Taking this into account, our code still seems to be readable. We observe a minimum
amount of nesting, with only if-constructs introducing mostly only one extra level of
indentation, nesting for at most two levels. The average line lengths for the ELS and
SCS are 34.37 and 36.27 characters, respectively, with maxima of 170 and 125 charac-
ters. These numbers suggest that the majority of lines is short and comprehensible, with
some outliers rendering individual parts of the code less readable.

Subjective Readability of ELS and SCS

Besides readability metrics, a more subjective way of estimating the code readability
is to simply try reading it again. The main interest hereby lies withing our two step
functions, which are continuously looped over. For the ELS and SCS modules, these
functions consist of 276 and 127 LOC, respectively. Both start by accessing all the
sensors, partly without processing their return values. The rest of the implementation
follows a clear pattern: if-statements checking for a condition to act upon. While the
code lacks some comments which explain why certain things are done, the references
to the respective requirement from the case study accompany the code fragments as
annotations. Overall, as the code is not written in a high-level specification language
which more closely captures natural language, the overall readability seems to be limited
by the general readability of (MISRA) C code. While this can be seen as a drawback,
one could also argue that no further understanding of higher mathematics or set theory
is required as for instance in certain formal languages. Thus, the code remains equally
readable to experts and non-experts alike.

Readability of the Unit Tests

Following, we want to take a closer look at our tests’ readability. Each unit tests follows a
pattern of arrange, act, assert, as shown in listing 3.5. As this is a well-known technique,
we assume the tests are comprehensible by non-experts.
However, we can observe two points negatively impacting readability. Firstly, some

tests involve multiple assertions. Especially in terms of time-sensitive behaviors, we
observe patterns where the test advances the timer, asserts a specific property (e.g.,
light on or off) then repeats the process to assert the property change after a certain
time.
Secondly, as this was such a common pattern specifically in the ELS, we introduced

macros which reduced boilerplate code, but might have reduced readability. The macro
progress time partial in listing 3.5, line 25 for instance advances time for a given time
frame and asserts that a property retains a given value along the way. While incredibly
valuable for writing the tests, we acknowledge that the macro’s name is not descriptive
enough as it does not convey its role as an assert statement. Hence, the readability of
the test itself decreases.

63

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Code Pollution due to CMBC Annotations

As C is not designed for formal verification, we found that some annotations for CMBC
started to pollute the code. While adding asserts into the code to introduce invariants
is straightforward and immerses into the C code quite well, we needed to add further
axioms to the code so CMBC was able to properly work with our enum types. This
resulted in cluttering of the sensor reads as can be seen in listing 3.1. Here, we ended
up with one big block of sensor read and value axiom pairs which impacts readability.
However, in most formal languages, this would be a non-issue as they were designed
with invariants and axioms in mind and include the as first class citizens appropriately.
Furthermore, we added these axioms at the very end of the development process whereas
they are much more involved in early development stages in fully formal methods.

3.5. Validation & Verification

We tried to validate our implementation throughout the whole development process
by using test-driven development, as we will discuss in section 3.5.1. In addition, we
used the CBMC model checker to fully verify different properties of our implementation
directly on the C code as we will describe in section 3.5.2.

3.5.1. Test-Driven Development Using cmockery

We used test-driven development based on the provided scenarios. For this, we rely on
Google’s cmockery library4, which provides a unit testing framework and allows mocking
functions. Since we did not want to execute all tests in real-time, we mocked functions
that extract sensor data as well as the current time in our test cases. We used two
different kinds of test cases for a first quick validation:

• The provided scenarios were automatized and used as integration tests.

• In addition, we implemented unit tests for all requirements given in the specifi-
cation document. Of course, each unit test only covers a minimal scenario that
shows how the requirement is supposed to be understood and automatizes the
verification of that single scenario.

A snippet taken from the test case of the requirement ELS-3 is shown in listing 3.5.
The system is initialized to belong to an EU-based car with left-hand drive and without
any extras such as ambient light. Initialization and assertions regarding the correctness
of the initial state are not shown. Afterwards, in lines 2 to 9, we update the sensors to
the values they should hold at the start of the test scenario and the code setting up the
mocked functions is called. In particular, we set the time sensor used to simulate the
actual clock as described in section 3.4.4. Overall, the test setup phase ensures that our
artificial sensors report the required values.

4https://github.com/google/cmockery

64

https://github.com/google/cmockery

3.5. Validation & Verification

1 // ignition: key inserted + ignition on

2 sensor = update_sensors(sensor, sensorTime, 1000);

3 sensor = update_sensors(sensor, sensorBrightnessSensor, 500);

4 sensor = update_sensors(sensor, sensorKeyState,

KeyInIgnitionOnPosition);

5 sensor = update_sensors(sensor, sensorEngineOn, 1);

6
7 mock_and_execute(sensor_states);

8
9 sensor = update_sensors(sensor, sensorTime, 2000);

10 pitman_vertical(pa_Downward5);

11 mock_and_execute(sensor_states);

12
13 assert_partial_state(blinkLeft, 100, blinkRight, 0);

14 pitman_vertical(pa_ud_Neutral);

15 sensor = update_sensors(sensor, sensorTime, 2000);

16 mock_and_execute(sensor);

17
18 pitman_vertical(pa_Upward7);

19
20 progress_time_partial(2000, 2499, blinkLeft, 100, blinkRight, 0);

21 progress_time_partial(2500, 2999, blinkLeft, 0, blinkRight, 0);

22
23 int i;

24 for (i = 3; i < 6; i++) {

25 progress_time_partial(i*1000, i*1000 + 499,

26 blinkLeft, 0, blinkRight, 100);

27 progress_time_partial(i*1000 + 500, i*1000 + 999,

28 blinkLeft, 0, blinkRight, 0);

29 }

Listing 3.5: Test of Requirement ELS-3

65

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Line 10 shows the difference between sensors and driver interaction: While sensors
have to be mocked in order to simulate an actual system, user input is given directly.
This corresponds to what will happen in an actual car: the system has to react to user
input immediately, while it can read sensor data arbitrarily.
Line 13 asserts that the left blinker is on 100% and the right one is on 0% once

the step function was executed after the user input was given. We use the function
assert partial state, since we only make an assertion regarding the two variables
blinkLeft and blinkRight, rather than making an assertion over all state variables.
Finally, Lines 20–21 as well as 25–28 assert that for each millisecond in the time

interval, the provided values remain the same, i.e., that the step function does not
change output values during that time frame.
As can be seen, we have implemented different C macros to simplify test case devel-

opment:

• assert(partial) state which checks if the internal states of ELS and SCS cor-
respond to given assertions. The assertions can specify the state both partially, as
done in the listing, and fully.

• progress time(partial) combines assertions on the state with a progression of
time as reported by the time sensor.

Validation Results. As expected, using test-driven development provided the usual
benefits:

• having to formulate test cases helped us gain an understanding of the requirements
and how they are supposed to work,

• refactoring was made easier and more secure, and

• the implementation was closer to the actual specification from the start.

The fact that we are working with an actual implementation made test-driven de-
velopment come naturally. However, different ways of combining formal methods with
test-driven development have been discussed [Bau04] as well. In addition, developing
specifications using continuous testing has been suggested for former ABZ case studies
in the context of the B method [HLW+15, HLS+18].

Influences on Code. Using the macros above, our initial design of splitting sensors,
user input and actuators did not have to be adapted further to be testable. Yet, it
created a vast amount of code entirely dedicated to testing. Of 5223 source code lines
(including a Makefile and code used for visualization but not counting comments and
blank lines), 3786 lines are test code.

3.5.2. Model Checking Using CBMC

As stated above, we used CBMC to verify properties of our implementation directly
on the C code. Depending on where we place C-style assertions, they correspond to
different kinds of properties commonly used in state-based formal methods:

66

3.5. Validation & Verification

• If placed at the end of the loop implemented by the ELS and the SCS state
machines depicted in fig. 3.2, assertions correspond to safety invariants that have
to hold in every state reachable by one of the subsystems.

• If placed anywhere inside the loop, assertions can be used as invariants on inter-
mediate states.

• If placed outside the loop, we can check if properties hold after a certain number
of iterations (controlled by CBMC’s unrolling preferences).

• By using additional variables for unrolling state traces, we can implement a lightweight
verification of temporal properties. Of course, this is not as powerful as LTL or
CTL.

Examplary Verification of ELS-22. Requirement ELS-22 is a great example for an
invariant. It states “Whenever the low or high beam headlights are activated, the tail
lights are activated, too”. For this, we can add an assertion such as:

implies(get_light_state().lowBeamLeft > 0,

get_light_state().tailLampLeft > 0 ||

get_light_state().tailLampRight > 0)

The disjunction in the second part of the implication is important for American cars: as
tail lamps are used for indicators, it is accepted behavior if one tail lamp is temporarily
deactivated during a flashing cycle. When running CBMC, it immediately came up with
a counterexample. A part of the output trace can be found in listing 3.6.
The counterexample shows how the two system variables ks, i.e., the key state, and

engine on, i.e., the engine’s ignition state, change while light do step is executed.
The main issue with such a counterexample is that each variable assignment, function

call and return from a function introduces a new state. While this representation mimics
the internal workings of the C code, it does not correspond to the mental model: com-
parable to common state-based formal methods, we regarded a state change to include
multiple variables at once.
Hence, as we were only interested in comparing state variables per full iteration of

light do step, the output was barely readable to us (the counterexample consists of
more than 200 lines).
CBMC can optionally reduce the output by removing assignments unrelated to the

property. This did not work well for us, as the assignment of signals for the low beam
headlights was removed as well. We ended up manually writing state variables in a
spreadsheet to comprehend the scenario and ultimately created our own visualization
which we will present in section 3.6.2 A (condensed) version can be found in table 3.2.
Here, the state changes between two full iterations of our step function are shown,
rather than changes of individual variables during the execution. This representation
aligned better to our mental model of the implementation and was thus more helpful for
debugging.

67

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

State 59 file light/light-impl.c line 242 function light_do_step thread

0

--

ks=/*enum*/NoKeyInserted (00000000000000000000000000000000)

State 63 file light/light-impl.c line 242 function light_do_step thread

0

--

ks=/*enum*/KeyInIgnitionOnPosition (00000000000000000000000000000010)

State 65 file light/light-impl.c line 244 function light_do_step thread

0

--

engine_on=FALSE (00000000)

State 69 file light/light-impl.c line 244 function light_do_step thread

0

--

engine_on=TRUE (00000001)

Listing 3.6: Partial CBMC Output

The error in our code was that, based on ELS-17, only the low beam headlights were
activated due to activated daytime running light. This was not uncovered by the test
scenarios, since daytime light was only tested by night, where, coincidentally, other
triggers activated the tail lamps.

Verification Results. However, the assertion still failed to verify. Upon further analysis
of the property, we discovered a conflict between ELS-22 and hazard blinking in Canadian
and US cars. In those cases, hazard blinking deactivates both tails lights for the dark
cycle, thus violating the property. We extended our assertion by checking our variable
for blinking direction beforehand:

assert(implies(blinking_direction != hazard,

/* old assertion */));

Afterwards, we were able to successfully verify the property using CBMC.

Influences on Code. At first glance, using CBMC only required to add assertions to
the code. As assertions are often introduced as part of understanding certain scenarios,
this does not change the modeling strategy itself. Yet, CBMC comes with a flaw: it
is not able to detect integer ranges given by enumerations. This means it frequently
finds errors with invalid values for enumerations. As a consequence, one has to add
assumptions about value ranges, which cannot be compiled to actual code. Another

68

3.5. Validation & Verification

Table 3.2.: Example Trace Violating ELS-22. KeyIn = KeyInIgnitionOnPosition.

State Variable Iteration 1 Iteration 2

key state NoKeyInserted KeyIn
engine on FALSE TRUE
all doors closed FALSE TRUE
brightness 0 37539
speed 0 936

daytime light was on FALSE TRUE
low beam left 0 100
low beam right 0 100
last engine FALSE TRUE
last key state NoKey KeyIn
last all door closed FALSE TRUE

assumption that needs to be added is that consecutive timestamps cannot get smaller.
Thus, for useful verification, some form of conditional compilation is required.

Corrigendum. In preparation of this thesis, I reviewed the verification attempts
made in this article. Despite best efforts, the changes above indeed do not suffice
for verification with CBMC. It presented a counterexample because internal state
changes were made transparent for the tool. However, external state changes by the
environment, e.g., the driver interacting with the pitman arm or toggling the hazard
lights, were still left opaque. Indeed, if no user interaction is made possible and not
even the engine can be started, there is little to verify.
Fortunately, CBMC is able to recognise that a function allows user interaction pos-
sible if the function name is prefixed with nondet . Then, all possible return values
are considered based on the type declaration. Surely, this collided with our naming
conventions and interfered with readability. After such a refactoring, it was possible
to prove false as no valid execution path was found anymore. It was necessary to
relax assumptions stated via CPROVER assume. However, we found no way to encode
that values must occur in a certain order. For example, the light rotary switch cannot
be turned from off to on directly but must have the auto position in between.
Additional re-write of the code was necessary for what would be constants in B, e.g.,
information on the market code (USA, Canada, EU, . . .), whether it is an armoured
vehicle or what optional features are installed. Originally, it was intended to initialise
these values once and query them if needed. With this approach, using the nondet

prefix might change constants on each query. However, CBMC also does not seem to
allow non-deterministic choice of function arguments to initialise the values once.
The workaround we implemented is that the functions returning constants are treated
as nondet functions. Then, all constants are retrieved once before the main loop

69

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Table 3.3.: Runtime and Memory (Geometric Mean) of CBMC Verification Tasks With
Bound n.

Property Measurement n = 1 n = 2 n = 3 n = 5 n = 10 n = 15

ELS-14 runtime (sec) 0.73 1.52 2.63 6.84 27.26 72.27
(4 assertions) memory (MB) 80.66 96.95 114.09 169.10 338.18 511.23

w/ trace runtime (sec) 1.54 2.75 9.10 41.47 118.33
memory (MB) 83.13 92.12 133.50 261.81 412.81

ELS-15 runtime (sec) 0.73 1.49 2.60 6.34 26.81 72.58
(1 assertion) memory (MB) 80.44 97.18 113.78 169.15 341.18 518.05

w/ trace runtime (sec) 1.36 2.44 6.79 38.87 117.24
memory (MB) 82.67 91.24 127.87 252.78 400.20

ELS-16 runtime (sec) 0.75 1.47 2.62 6.20 26.66 71.83
(1 assertion) memory (MB) 80.47 97.13 113.76 169.15 341.15 511.05

w/ trace runtime (sec) 1.38 2.55 6.98 31.05 94.28
memory (MB) 82.96 91.52 128.45 246.76 386.80

ELS-18 runtime (sec) 0.74 1.49 2.61 6.29 29.70 69.47
(1 assertion) memory (MB) 80.45 97.14 113.86 169.18 341.23 518.05

ELS-22 runtime (sec) 0.75 1.48 2.60 6.48 27.46 82.62
(1 assertion) memory (MB) 80.45 97.16 113.78 169.15 338.23 511.22

ELS-41 runtime (sec) 0.73 1.46 2.54 6.15 25.82 71.28
(2 assertions) memory (MB) 80.80 97.67 113.40 169.19 338.15 510.97

ELS-43 runtime (sec) 0.73 1.45 2.55 6.33 27.70 77.42
(1 assertion) memory (MB) 80.44 97.16 113.82 169.16 341.19 517.86

all the above runtime (sec) 0.76 1.70 3.01 7.04 33.09 87.28
(11 assertions) memory (MB) 80.31 97.08 114.29 169.22 342.73 518.11

starts by calling the nondet getters. Each call to the getter function had to be
re-written to use the local values instead.
Overall, significantly more work is required for verification if done correctly, including
additions and changes to the code. This insight impacts our impression that CBMC
works right out of the box and that little expertise is required.

Addendum: Performance. Calling CBMC for verification requires that an entry
point is specified. Initially, we used the light do step function that executes a
single step. Using this entry point, only a single (high-level) state change is executed,
i.e., a bound of n = 1 is used and no loop is unrolled. As all state variables are left
open (and are valuated via the aforementioned nondet functions), such a CBMC run

70

3.6. Other Observations

already was helpful to locate initial errors. However, this is severely limited, as errors
that require two state changes cannot be located.
As an entry point for actual verification, we used the light loop function that simply
calls light do step in a loop. Then, one can specify a bound, i.e., the number of
loop iterations that CBMC unrolls for verification.
Table 3.3 contains the runtime (wall time) and memory consumption (maximum res-
ident set size) for different CBMC runs. Assertions were grouped according to the
requirement they belong to. The verification of ELS-14, ELS-15 and ELS-16 only fails
for a bound n ≥ 2. In these cases, the data for generating a trace to a counterexample
(that is beautified, i.e., a greedy heuristic is used in order to shorten it) is also stated.
All benchmarks were executed ten times on an Intel i7-7700HQ CPU. Version 5.6 of
CBMC was used. The values in table 3.3 represent the geometric mean (according
with Fleming and Wallace [FW86] of all repetitions.
From table 3.3, one can observe that, quite naturally, runtime for low bounds is very
fast (< 1 second). The runtime and memory consumption seem to grow exponentially
with the bound n. Further, the number of assertions of the verification task only has
a small impact on the overall runtime. Requesting a trace to an error seems to cause
a significant overhead for larger bounds: for ELS-14 and ELS-15, the runtime nearly
doubles. Surprisingly, however, the memory consumption slightly decreases.
Note that CBMC additionally generates an unwinding assertion: only if this assertion
is proven by the backend, the property is proven regardless of the bound. For all
our benchmarks, the unwinding assertion could not be proven and, thus, even the
assertions that could not be falsified are not fully proven.

3.6. Other Observations

Our implementation work allowed us to identify several flaws in the specification as well
as shortcomings of our implementation strategy. In the following, we document such
issues and give suggestions and solutions.

3.6.1. Specification Ambiguities, Flaws and Suggested
Improvements

During development, we identified several shortcomings or ambiguities within the spec-
ification. These issues were found during analysis of the requirements and during im-
plementing test cases. As we only performed validation steps after implementation,
the validation steps just uncovered shortcomings of our own implementation and non-
compliances w.r.t. the specification. Due to page limitations, we will only present some
of them:
ELS-37 is somewhat broken or at least highlights an incompleteness in the specifica-

tion. For now, there is no way to discern whether an adaptive cruise control is part of
the vehicle; from the specification, we had to assume that it is installed in every system.

71

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Then, according to SCS-1, there does not even have to be a desired speed. We think
that, in order to make sense at all, it rather should be “is active” than “is part of the
vehicle”. Also, this is the only part of the specification that refers to an advanced
cruise control.

ELS-42 does not specify what should happen in case of sub-voltage. The only given
information is that the adaptive high beam headlight is not available. What should
happen remains unclear, e.g., should the manual high beam headlight be used instead?

ELS-19 contains a contradiction: first, it states that ambient lighting prolongs already
active low beam headlights. Later, it says that the headlamps “remain active or are
activated”. We think that some actions are reasonable to activate the headlight even
if it was not on before (e.g., opening the doors). Others definitely should not activate
the headlight (e.g., if the brightness falls below the specified threshold, as passing cars
and the setting sun might trigger the brightness sensor). Also, it does not have any
constraints regarding the light rotary switch: if the switch is in the “off” position, we
think the ambient light should not activate at all.

While currentSpeed is specified as a sensor in the ELS, it is not clear how the SCS
accesses this value. No sensor is provided according to the specification, and only the
brake pressure is mentioned as actuator but not the gas pedal. Thus, the SCS as specified
appears to only be responsible for determining the desired speed but not for actually
deploying it to the current speed? To our understanding, the measured current speed
should be a sensor to the SCS to allow it to work properly.

SCS-23 specifies a safety distance for the adaptive cruise control of 2.5 s·currentSpeed
when the current speed is below 20 km/h, and a safety distance of 2 m if both vehicles
are standing. Assuming currentSpeed < 0, 2.88 however, the safety distance according
to SCS-23 is below 2 m and effectively approaches 0 the closer the vehicle gets to a
standstill, e.g., 2.5 s · 2.8 km/h = 2.5 s · 0.77m/s = 1.925m < 2m . But once a standstill
is reached, the safety distance is reset to 2 m and thus violated instantly. It remains
unclear whether these 2 m distance is meant as minimum or intended to delay the
reaction to eventual acceleration of the vehicle in front.

SCS-28 references a maximum deceleration value, which was only described for the
adaptive cruise control in SCS-20 and SCS-21. We assume that it references the same
maximum deceleration of 5 m/s2. It further specifies the acoustic signal which is to be
played if the time to reach a standstill with maximum deceleration (5 m/s2) is greater
than the time until impact. This acoustic signal however may overlap with the signal
specification given in SCS-21.

3.6.2. Improvements to our Employed Methodology

We are surprised how easy it was to implement the case study in C, given that none of
the authors is a professional C developer. While we were unsure during implementation,
given our test harness and the results of CBMC, we now have more confidence in the
correctness of our implementation. However, CBMC’s output was hard to interpret as
we discussed above.

72

3.6. Other Observations

Figure 3.3.: OpenGL based visualization

To improve, we created different visualizations. One such visualization is a state
visualization based on PlantUML5 (cf. fig. 3.5). A second visualization was a domain-
specific visualization in C++ with OpenGL, using the existing sources directly as part of
the compilation. However, development was incomplete and thus omitted for the initial
article.
Revisiting the visualizations for this extended article, we found that both are not fully

satisfactory: The PlantUML-based visualization is very technical, directly referring to
implementation details. While it is still beneficial for understanding test failures, it
relies on knowledge about the internal workings of the implementation and is thus not
presentable to external stakeholders.
The C++ visualization in contrast provides a domain-specific visualization showing

a car and is thus understandable without knowing implementation details. However, as
the visualization was directly linked to the C sources, it proved rather inflexible and
prone to breakage when implementation details changed. While it was still useful as a
mere demonstration tool, its value for development was diminished.
To improve, we decided to further separate implementation and visualization. Our

goal was to keep interacting with the implementation simple, but also allow replacing it
with a new version straightforwardly.
To achieve this, we added a small sensor implementation, to be controlled from the

outside and linked as a shared library. On top, we used F# to develop a visualization
using the RayLib library. This approach worked well, reducing the communication of
the two components to a simple and somewhat stable C interface.
While the older OpenGL based Visualization looked pleasing, it almost completely

omitted numerical feedback. This decision stroke us as too extreme in retrospect, so

5https://plantuml.com/

73

https://plantuml.com/

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Figure 3.4.: Newly developed RayLib visualisation

we opted for a more minimal look, but including both a domain-specific visualizations
and values of state variables. For example the steering angle directly corresponds to
the displayed image of a steering wheel as well as to the traced out path the vehicle is
currently headed. We found the visuals very helpful in gaining a quick understanding of
the implementation’s behavior. The geometric intuition provided by the 3D view was a
welcome addition.
In contrast to the old visualization, we included an interactive component, enabling

the user to experiment and explore the behavior. By default, an automatically animated
car will perform a lemniscate around an attractor point. This was surprisingly effective
in finding behavior, that doesn’t conform with expectations: For instance, when using
the pedals some reaction is to be expected. Yet, even though the pedal position indeed
changed as seen in the visualization, nothing happened w.r.t. the car’s movement. In
consequence, we noticed that neither does the gas pedal cause acceleration, nor does
the brake pedal decelerate the vehicle. As far as the SCS is concerned, the brake pedal
merely disables cruise control as mandated by SCS-16.
Using C for implementation proved very flexible, as there exists a plethora of ways to

interact with other languages. Thus, that it would have been easy to use other ways of
animation. For instance, we were able to execute our implementation in a browser by
compiling it to wasm via the Emscripten Compiler Frontend (emcc) and then interact
with it using JavaScript.

3.6.3. Note about Deriving a Software Implementation

As we have started from a low-level implementation in C, the software implementation
was always readily available. Hence, in our case, the “model” can be directly compiled
and executed. However, testing the executable would still be interesting if we look

74

3.6. Other Observations

Figure 3.5.: Visualization using PlantUML

75

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

beyond our simple tests, i.e., with an actual implementation at hand, hardware-in-the-
loop tests would be desirable.

3.7. Comparison

In the 2020 ABZ Proceedings, five other contributions were published, all of them pro-
viding verified formal models rather than implementations:

• Arcaini et al. [ABG+20], who utilized abstract state machines (ASMs) [BGR03]
and the ASMETA framework [AGRS11],

• Cunha et al. [CML20], who modeled their solution in Electrum [MBC+16], an
extension to Alloy [Jac12],

• Leuschel et al. [LMW20], who developed their solution in classical B [Abr96] and
later translated to Event-B for proof [Abr10],

• Mammar et al. [MF20, MFL20], used Event-B for two distinct models of the
ELS [MFL20] and the SCS [MF20].

The main difference between our approach and the other case studies is that we tried to
verify an existing low-level implementation after it has been developed. In comparison,
the formal approaches undertaken by the other case studies tend towards following a
correct-by-construction approach. That is, they later derive an implementation from the
formal model by code generation, e.g., as possible for B [VHKL19].
The case study implemented using ASMs by Arcaini et al. [ABG+20] uses a formalism

of a much higher abstraction level than our concrete implementation. However, code
generation is available for ASMs as outlined by the authors. As a result, a C++ (rather
than plain C) implementation could be derived from the formal models and might look
somewhat like our direct implementation.
Furthermore, ASMETA allows doing conformance testing, i.e., deriving unit tests from

the formal model rather than writing them by hand as we did.
The actual implementation aside, Arcaini et al. designed their models in roughly the

same fashion as we designed our implementation. ELS and SCS are coupled very loosely
and are developed as independently as possible. At the same time, they share some
signals, comparable to the actuators we defined above. During development, features
were added gradually while keeping a (proven) refinement chain intact. While we added
features in roughly the same fashion and order, we had no access to a formal proof of
refinement. Thus, we had to rely on our test cases entirely.
The approach followed by Arcaini et al. does not verify timing issues, as there is no

continuous time in ASM. This is a weakness when compared to our low-level implemen-
tation which could be executed in realtime.
The case study performed by Cunha et al. [CML20] follows an approach to verification

and validation that is similar to ours. Initially, the authors use test case given as
animation scenarios (i.e., small test cases) and reference scenarios (i.e., the execution

76

3.8. Conclusions

sequences given in the specification). This is comparable to the test-driven development
we employed as discussed in section 3.5.1.
Formal verification of the requirements is performed after (some of) the development

steps. This is again is comparable to our approach of using CBMC on an already existing
implementation (cf. section 3.5.2).
The case study by Leuschel et al. [LMW20] models time in the same way we did. There

is a dedicated model implementing timers based on elapsed milliseconds. In contrast to
our simple clock module shown in fig. 3.2, Leuschel et al. use a more involved timer,
supporting deadlines and even triggers.
The case study also uses a domain specific visualization tailored specifically for the

case study. Here, using a well-established formal method shows its merits. For B and
Event-B, a multitude of animation frameworks and tools is available and can be used
without much overhead. In the case study, a visualization tool called “VisB” is used,
which allows modifying SVG graphics based on state variables. While this approach is
comparable to our visualization, no custom implementation aside from some glue code
connecting the image to the state values was needed.
Visualization and timers aside, the B and Event-B models are much more formal than

our implementation and rely heavily on proof (by Rodin) and model checking (by ProB)
rather than testing.
The two articles by Mamar et al. concentrate on the ELS [MFL20] and the SCS [MF20]

individually. A particular focus is on the model’s differentiation between the two systems
and the environment. The model for the environment closely resembles the sensors and
inputs modules shown in fig. 3.2.
Again, the case study uses ProB for model checking. Given that the authors in-

tentionally tried to avoid rather costly LTL model checking and proof, their properties
resemble what we check using CBMC. In particular, simple properties on state sequences
are rendered model checkable by storing the pre-state in individual variables available
for comparison with the current state.

Further Related Work. An alternative to both our immediate low-level implementa-
tion and to the code generation approaches that would usually follow with the other case
studies is to embed the formal models in runtime code directly, i.e., without compiling
them to some other language.
For B, this has been outlined in a demonstration of the ETCS hybrid level 3, where

a classical B model is able to control real trains [HLS+18]. The approach uses the
ProB Java API [KBD+20] to connect the formal model to the outside world and allows
interacting with it.

3.8. Conclusions

To summarize, we have implemented a low-level version of the ABZ 2020 case study in
MISRA C, a language commonly used in the automotive industry. We relied on test-
driven development for validation as well as on formal verification using model checking.

77

3. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

Compared to case studies using more rigorous approaches, our approach shows both
advantages and disadvantages. In particular, our implementation stays close to the ac-
tual system, can easily be deployed to an actual car, and could be used for simulation and
hardware-in-the-loop tests. Furthermore, due to the popularity of C in the automotive
industry, it is more approachable by developer untrained in formal methods.

Corrigendum. As discussed in section 3.5.2, it might be too easy to verify the wrong
thing. While the approach may still be more accessible by developers, we have to re-
evaluate that a larger amount of training is necessary than assumed initially.

However, we certainly missed the expressiveness and mathematical clarity of more rig-
orous approaches, as well as having invariants and other properties as first class citizens
rather than inserting them artificially via macros and external functions. Compared to a
formal method, we were only able to do very lightweight verification of temporal proper-
ties and would certainly have favored to be able to model check LTL or CTL properties.
Thus, while we were able to verify our implementation to a certain degree, we suspect
that a more thorough approach would be able to provide stronger guarantees.
Furthermore, we currently do not validate any properties on time constraints aside

from simulating an external clock in the test cases. As part of possible future work, we
intend to use CBMC to try to provide real-time guarantees and to verify the correct be-
havior in presence of scheduling and limited by the actual specifications of an embedded
device.
Both could be verified by providing a Verilog model of the hardware, sensors and

connections. Afterwards, co-verification of the implementation with the Verilog circuit
model can be performed by CBMC [CKY03]. Additionally, we would like to consider
other tools that work directly on the C code, e.g., Symbiotic [CVS18] or Klee [CDE08].
Further future reasearch could be done in the combination of formal and informal

approaches, e.g., when thinking about code generators: proven invariants on a high-
level model could be compiled to C assertions. Then, they could be verified on the
low-level code as well, effectively demonstrating the correctness of the code generators.

78

4. Treating Specifications as Data

Abstract

Considering programs as data enables powerful meta-programming. One example is
Lisp’s macro system, which gives rise to powerful transformations of programs and al-
lows easy implementation of domain-specific languages. Formal specifications, however,
usually do not rely on such mechanisms and are mostly written by hand in a textual
format (or using specialised DSL tools).
In this paper, we investigate the opportunities that stem from considering specifica-

tions as data. For this, we embedded the B specification language in Clojure, a modern
Lisp. We use Clojure as a functional meta-programming language and the ProB Java
API to capture the semantics of B, i.e., to find solutions for constraints or animate ma-
chines. From our experience, it is especially useful for tool development and generation
of constraints and machines from external data sources. It can also be used to implement
language extensions and to design domain-specific languages.

4.1. Introduction

Formal specification languages are usually employed to gain a mathematical description
of problems, algorithms and state machines. Rightly so, the syntax and features of
many formalisms is set in stone in order to capture a precise semantics. Thus, e.g.,
introduction of new operators requires changes to a specific tool-chain, even when they
can be mapped to a combination of existing operators. Infrastructure for domain-specific
languages and program transformation tools usually is not available. One such model-
driven engineering (MDE) methodology is the B method.
An interesting approach is to embed a specification language into a programming lan-

guage: Examples include αRby [MJ14], which allows writing Alloy [Jac03] constraints
in a DSL that generates a Ruby program and an Alloy model. Then, one can interact
with (partial) solutions as they are automatically translated into Ruby data structures.
However, this approach is less suitable for programatic generation or transformation of
models, as Ruby code is not represented by plain Ruby data (and one would have to re-
sort to working with complex internal representations of the code or string concatenation
to generate a new program).
We implemented a similar embedding called lisb (section 4.3), which embeds the B

language in Clojure [Hic20] (a modern Lisp that runs on the JVM) as an internal DSL.
In lisb, Clojure is used as a meta-programming language due to its rich macro system.
We use the ProB Java API [KBD+20] to capture the semantics of B, to construct B

79

4. Treating Specifications as Data

machines under the hood, to find solutions for constraints and for all verification &
validation activities (V&V).
Our goal is to investigate the benefits of programmatic construction of constraints and

entire B models. Thus, we re-visit the ideas behind Lisp’s mantra code is data and data
is code: In Lisp (and other homoiconic languages), meta-programming is ubiquitous, and
generation as well as transformation of programs is mere data transformation. Further,
it allows a safe and expressive macro system, which can be used to create domain-specific
languages.
In this paper, we aim at transferring these benefits from programming languages to

formal B specifications in order to facilitate the work of tool developers (rather than
modelling experts). Following, we give a brief introduction to B and Clojure in sec-
tion 4.2, and introduce the internals of the lisb tool in section 4.3. In section 4.4, we
present lisb’s capabilties for tool development based on an automatic refinement tool.
Further, the implementation of a small imperative DSL is described in section 4.5. We
also show how lisb can be used to fix certain shortcomings of B en passant (section 4.6),
in particular addressing the definition system (which is an error-prone C-preprocessor-
style macro system) and extending the language with new operators (e.g., a ternary
if-then-else operator on expressions).

4.1.1. Motivation

Overall, the development of lisb was driven by two experiments of our group:
The initial idea came during implementation of a case study on data validation of

university curricula [Sch17, SLW18]. Briefly summarised, the goal was to verify that all
combinations of major and minor subjects at the faculties of Arts & Humanities and
Business Administration & Economics at Heinrich Heine University Düsseldorf can be
studied in a legal standard time (typically six semesters). One idea was to generate
conforming timetables from scratch using a constraint-based approach [SLW15].
A first version of lisb only covered the B sub-language that contains expressions and

predicates (but covered no state changes via variable substitutions) and was created
with two design goals in mind: First, to address several shortcomings with the B lan-
guage — in particular, the lack of convenience operators (such as let and if on the level
of expressions instead of substitutions1) and an error-prone definition system (see sec-
tion 4.6.1) that was used to avoid repetition of predicates and substitutions that are
shared between several operations — and, second, to interact with (partial) solutions
that the constraint solver provides. The main application was to transform the course
information obtained from the electronic course catalogue into constraints that can be
programmatically manipulated, combined and extended.
Later, another motivator was a student project aiming at translating Solidity contracts

[Dan17] to B machines. Thus, it was required to extend lisb to cover the entirety of the
B language in order to capture state changes. This experiment helped to expose the
potential for domain-specific languages. At this point, lisb was mature enough so that

1During the project, ProB was extended to introduce these operators.

80

4.2. Background

more complex tools can be created on top of it. As mentioned above, an example is a
tool that applies certain refinement steps in order to gain an equivalent version of the
machine that exposes more information during a specific static analysis (section 4.4).

4.2. Background

In this section, we give a brief primer on the languages involved in the embedding, the
B specification language and Clojure.

4.2.1. The B Specification Language

Roughly, the B methodology supports a correct-by-construction approach: Starting with
an abstract, state-based model that specifies the desired behaviour, one adds more de-
tails by refining the model. Each refinement step is linked to the one before by proof
obligations one has to discharge in order to show that the specification did not diverge.
The models are written in the B language [Abr96], which is based on first-order logic
and set theory. A rather simple B model specifying Peterson’s algorithm is given in
listing 4.1 (where we prefer standard mathematical symbols over the ASCII notation).

In the SETS clause, an enumerated set of statuses is defined (equivalent to enumerated
types in programming languages). In the CONSTANTS clause, the constant other is intro-
duced, which is constrained to the sequence [2,1] (equal to the relation {(1, 2), (2, 1)})
in the properties clause. The state variables are declared in VARIABLES clause and ini-
tially assigned during the INITIALISATION (note that x is chosen non-deterministically
and two possible initial states exist). The state is then manipulated as specified by the
guarded substitutions in the OPERATIONS clause; here, it is encoded that either process
must acquire the mutex before it may enter the critical section. Afterwards, it leaves the
critical section again. The safety property that both processes may not be in the critical
section at the same time is encoded as part of the INVARIANT clause. The invariant is
typically verified by proof (e.g., using AtelierB [Lec14a]) or exhaustive model checking
(e.g., using ProB [LB08]).

Indeed, such a mathematical notation is very powerful and expressive. Different tools
have been created or extended to exploit the high abstraction level in order to concisely
capture constraints and perform data validation on large data sets. Examples include
ProB [HSL16], OVADO [AV14], PredicateB or DTVT [LBL12]. Further industrial uses
are described in [BKK+20].

We built lisb on top of the ProB [LB08] toolchain in order to programmatically
interact with solutions. ProB is an animator, model checker and constraint solver
for the B language that has been used in various industrial settings [BKK+20]. While
written in Prolog, a Java API exists to interact with the interpreter core and even to
write entire applications that embed B specifications [HLS+18, KBD+20].

81

4. Treating Specifications as Data

1 MACHINE Peterson

2 SETS Status = {noncrit,wait,crit}

3 CONSTANTS other

4 PROPERTIES other = [2,1]

5 VARIABLES pc,b,x

6 INVARIANT b ∈ 1..2→ B ∧ x∈1..2 ∧ pc ∈ 1..2→Status ∧
7 not(pc(1)=crit ∧ pc(2)=crit) ∧
8 ∀i(i∈1..2 ⇒ (b(i)=⊤ ⇔ pc(i)=wait ∨ pc(i)=crit))

9 INITIALISATION

10 b := [⊥,⊥] ∥ x :∈ 1..2 ∥ pc := [noncrit,noncrit]

11 OPERATIONS

12 RequestCS(Proc) = PRE Proc∈1..2 ∧ pc(Proc)=noncrit THEN

13 pc(Proc) := wait ∥ b(Proc) := ⊤ ∥ x := other(Proc) END;

14 EnterCS(Proc) = PRE pc(Proc)=wait ∧ Proc∈1..2 ∧
15 (x=Proc ∨ b(other(Proc))=⊥) THEN

16 pc(Proc) := crit END;

17 LeaveCS(Proc) = PRE Proc∈1..2 ∧ pc(Proc)=crit THEN

18 pc(Proc) := noncrit ∥ b(Proc) := ⊥ END

19 END

Listing 4.1: B Specification of Peterson’s Algorithm

4.2.2. Clojure

Clojure is a functional programming language that runs on top of the JVM. It has
facilities to interoperate with other JVM languages and, thus, code can call and be
called from Java, Scala, Groovy, etc. We chose Clojure over other JVM languages
because its strengths complement several weaknesses of B: Clojure offers a rich standard
library that facilitates generation and processing of data from disk or other sources; it
taps into the rich JVM ecosystem for library and tool support; and, most importantly,
the rich macro system simplifies code transformation and empowers development of
DSLs. Finally, all of Clojure’s data structures are immutable by default (as required
for parallel substitutions in B), which also eases transformation, re-combination of and
interaction with parts of variable values, predicates or state machines. As Clojure is not
a mainstream language, we will briefly introduce some key concepts here.
As a Lisp dialect, function calls are written as lists. For example, the call (f a b) is

equivalent to calling f(a, b) in Java. In nested calls, arguments are evaluated before
calling the function.
Homoiconicity — the property that code is written as data structures of the language

— gives rise to a rich macro system. Such macros facilitate DSL development (even of
entire DSL stack, e.g., [HE10]). In Clojure, macros are like functions, but the evaluation
mechanism differs: here, arguments are not evaluated when calling the macro. Rather,
the macro code re-writes (expands) the arguments into a new expression that is evaluated
instead.

82

4.3. lisb — Internals

(b= (b* 2 :x)

(b+ 1 2 3))

{:tag :equals,

:left {:tag :mul,

:nums (2 :x)},
:right {:tag :add,

:nums (1 2 3)}}Internal
DSL

Intermediate
Representation

=

*

x 2

+

1 +

2 3

AST (Backend)

Figure 4.1.: Frontend, Intermediate Representation and Backend

A built-in macro that we use later is the threading macro ->>. It takes a form
and iteratively inserts it as the last argument of all preceding forms. As an example,
(->> a (b c) (d e)) is macro-expanded to (d e (b c a)).

4.3. lisb — Internals

lisb is an embedding of the B language in Clojure. Similar to αRby, one can express
constraints and B machines in a lightweight internal DSL in Clojure. Under the hood,
a B machine is generated and loaded using the ProB Java API [KBD+20]. Using this
API, one can calculate and interact with solutions of constraints as well as animate and
model check complete B machines.
In listing 4.2, the machine from listing 4.1 is loaded from disk and transformed into

lisb’s internal DSL. While this language is human-readable, it is less suitable for pro-
grammatic manipulation and transformation. Instead, one can translate this internal
DSL into an intermediate representation, that trades readability for programmatic pro-
cessability, simply by evaluating it. An impression of these two languages is given in
fig. 4.1 and explained in section 4.3.2. Before we jump into details, we will give an
overview of lisb’s architecture and different usage scenarios in section 4.3.1.

4.3.1. Architecture Overview

A typical user program that uses lisb is situated as depicted in fig. 4.2. The individual
components will be discussed in detail in section 4.3.2.
lisb serves as an intermediate layer between a user program and the ProB Java API;

ultimately, it generates B models from data in order to interact with them using ProB.
The different notations (lisb’s internal DSL, and the IR) can be mixed arbitrarily, and
each of them can be generated programmatically. Indeed, users can write their own DSLs
(User DSL in fig. 4.2) in Clojure (or, in principle, any JVM language). A small example
is the algorithm description language presented in section 4.5). The creation of more
involved DSLs is also possible, such as object-oriented notations or graphical DSLs (e.g.,
UML and BPMN). Typically, each construct of the user DSL has to be translated to a

83

4. Treating Specifications as Data

1 user=> (require '[lisb.translation.util :as util]

2 '[lisb.translation.lisb2ir :refer :all])

3 user=> (def lmch (util/b->lisb (slurp "Peterson.mch")))

4 user=> (clojure.pprint/pprint lmch) ; pretty print, shortened

5 (machine :Peterson

6 (sets (enumerated-set :Status :noncrit :wait :crit))

7 ...

8 (variables :pc :b :x)

9 (invariants

10 (member? :b (--> (interval 1 2) bool-set)) ...

11 (for-all [:i]

12 (member? :i (interval 1 2))

13 (or (<=> (= (fn-call :b :i) true) (= (fn-call :pc :i) :wait))

14 (= (fn-call :pc :i) :crit))))

15 (init (parallel-sub

16 (assign :b (sequence false false))

17 (becomes-element-of [:x] (interval 1 2))

18 (assign :pc (sequence :noncrit :noncrit))))

19 (operations ...

20 (:LeaveCS [:Proc]

21 (pre (and (member? :Proc (interval 1 2)) (= ...))

22 (parallel-sub (assign (fn-call :pc :Proc) :noncrit)

23 (assign (fn-call :b :Proc) false))))))

24 user=> (def ir (eval `(b ~lmch))) ; generate IR

Listing 4.2: Loading the Peterson Machine in lisb

lower-level DSL (e.g., the lisb internal DSL) or generate the corresponding IR directly. In
the following, we aim to give an intuition on how lisb can be used in different scenarios.

Specification Transformation Users interested in transforming existing constraints
and specifications usually will load a machine and work on its IR. Typically, one would
generate a mixture of IR (stemming from the original machine) and a lightweight DSL
(such as lisb’s internal DSL or an individual one). Because the internal DSL eventually
generates IR, one can interleave both representations arbitrarily. Then, one can load
the result and interact with it, or save it to a new machine file.

Specification Generation and Domain-Specific Languages If constraints or ma-
chines shall be generated from external data sources, one would generate bits of the
internal DSL and evaluate it to the IR. Then, one can re-combine these bits of IR pro-
grammatically. DSLs would typically be re-written to other, lower-level DSLs or lisb’s
internal DSL. Technically, it may also directly emit IR code at the cost of readability of
the translation rules.

84

4.3. lisb — Internals

User
Program

User
DSL

Internal
DSL

IR

ProB AST

ProB Java API

Re-
Translation

ProB core
(Prolog)

may generate

may be written in
written in

may generate

evaluates to

generates

generates

generates

model-checking
animation

solve
constraint

solution

MC result
machine state

translated
solutions
& states

commandsresults

lisb

Figure 4.2.: Architecture of a Program Using lisb — Arrows Denote Possible Data Flows

Modelling Activities A modelling expert typically would not be interested in using
the IR. Instead, they would use a mixture of the internal DSL and, potentially, custom
DSLs.

4.3.2. Components

In the following, we will describe the individual components shown in fig. 4.2 in more
detail. Afterwards, we put everything together and describe what tools using lisb have
access to.

ProB Java AST The backbone of lisb is the AST library provided by the ProB parser,
which is used by the ProB Java API. Its nodes are Java classes and can be instantiated
in Clojure using Java interop.
Unfortunately, the Java classes themselves are automatically generated by the parser

generator SableCC [GH98] and are not intended to be constructed manually: First, the
unwieldy code depicted in listing 4.3 is required in order to create a small predicate such
as x*2=1+2+3 (cf. the lisb code in fig. 4.1). Second, since AST nodes are automatically

85

4. Treating Specifications as Data

1 new Start(

2 new APredicateParseUnit(

3 new AEqualPredicate(

4 new AMultOrCartExpression(

5 new AIntegerExpression(

6 new TIntegerLiteral("2")),

7 new AIdentifierExpression(

8 Collections.singletonList("x"))),

9 new AAddExpression(

10 new AAddExpression(

11 new AIntegerExpression(

12 new TIntegerLiteral("1")),

13 new AIntegerExpression(

14 new TIntegerLiteral("2"))),

15 new TIntegerLiteral("3")))),

16 new EOF());

Listing 4.3: Creating the Java AST for x ∗ 2 = 1 + 2 + 3

generated, the usage of many nodes is unintuitive (e.g., a singleton list is required in line
6 of listing 4.3). Third, as the nodes are mutable, it is not possible to insert sub-trees in
multiple locations of the same AST and assume that the result is correct. Overall, this
AST is neither suitable for transformation nor offers readability.

Intermediate Representation The intermediate representation (IR) is intended for
programmatic processing and consequently addresses some issues of the ProB AST
directly. It is a pure data representation with the following advantages: First, it avoids
encapsulation of the AST’s information and, thus, yields a data literal that can be
written and accessed without too much boilerplate. Second, we claim that the IR is more
intuitive because it is based on the semantics of the actual operators in the language
instead of grammar rules used for parsing. Third, as the IR is just data, one may copy
& paste sub-trees without worrying to break something. The equivalent IR of the code
in listing 4.3 is depicted in the middle box of fig. 4.1.

The IR of scalar values (booleans, numbers, sets and strings) is the corresponding
Clojure data literal. Variable identifiers are represented as Clojure keywords (roughly,
identifiers prefixed with a colon that stand for themselves). All mathematical opera-
tors contained in the B language are represented by maps containing the key :tag for
identification and an additional key for their operands. The representation of the math-
ematical sub-language for predicates and expressions is, in principle, agnostic to the
formalism that it is compiled to. Machine nodes, e.g., the invariant or operations clause
are represented in the same way as operators; however, this representation is B-specific
and aligns with ProB’s AST nodes.

Internal DSL lisb’s internal DSL is built on top of its IR. Contrary to the IR, it is
designed for humans to write (parts of) constraints and machines in a Clojure style and

86

4.3. lisb — Internals

T
ab

le
4.
1.
:
E
x
am

p
le
s
of

li
sb

S
y
n
ta
x

B
(A

S
C
II
)

li
sb

In
te
rm

ed
ia
te

R
ep
re
se
n
ta
ti
on

D
es
cr
ip
ti
on

42
42

42
n
u
m
b
er

"
f
o
o
"

"
f
o
o
"

"
f
o
o
"

st
ri
n
g

x
:
x

:
x

V
ar
ia
b
le

{1
,2
,3
}

#
{1

2
3
}

#
{1

2
3
}

en
u
m
er
at
ed

se
t

N
A
T
U
R
A
L

n
at
u
ra
l-
se
t

{:
t
a
g

:
n
a
t
u
r
a
l
-
s
e
t
}

se
t
of

n
at
u
ra
l
n
u
m
b
er
s

1
|
-
>
2

(
m
a
p
l
e
t

1
2
)

{:
t
a
g

:
m
a
p
l
e
t
,

:
l
e
f
t

1
,

:
r
i
g
h
t

2
}

tu
p
le

(
|
-
>

1
2
)

tu
p
le

(a
lt
er
n
at
iv
e)

a
+

b
(
+

:
a

:
b
)

{:
t
a
g

:
a
d
d
,

:
n
u
m
s

(
1

2
)
}

ad
d
it
io
n

a
+

b
+

c
(
+

:
a

:
b

:
c
)

{:
t
a
g

:
a
d
d
,

:
n
u
m
s

(
:
a

:
b

:
c
)
}

ad
d
it
io
n

0
<
x
&
x
<
42

(
<

0
:
x

4
2
)

{:
t
a
g

:
l
e
s
s
,

:
n
u
m
s

(
0

:
x

4
2
)
}

le
ss

th
an

a
:
{1
,2
}

(
m
e
m
b
e
r
?

:
a

#
{1
,
2
})

{:
t
a
g

:
m
e
m
b
e
r
,

:
e
l
e
m

:
a
,

:
s
e
t

#
{1

2
}}

m
em

b
er
sh
ip

#
(x
).
(x

>
42
)

(
e
x
i
s
t
s

[
:
x
]

(
<

:
x

4
2
)
)

{:
t
a
g

:
e
x
i
s
t
s
,

:
i
d
s

[
:
x
]
,

ex
is
te
n
ti
al

q
u
an

ti
fi
ca
ti
on

:
p
r
e
d

{:
t
a
g

:
l
e
s
s
,

:
n
u
m
s

(
:
x

4
2
)
}}

M
A
C
H
I
N
E

f
o
o
..
.

(
m
a
c
h
i
n
e

f
o
o

.
.
.
)

{:
t
a
g

:
m
a
c
h
i
n
e
,

:
m
a
c
h
i
n
e
-
c
l
a
u
s
e
s

.
.
.
,

B
m
ac
h
in
e

:
n
a
m
e

:
f
o
o
,

:
a
r
g
s

[
]
}

O
P
E
R
A
T
I
O
N
S
..
.

(
o
p
e
r
a
t
i
o
n
s

.
.
.
)

{:
t
a
g

:
o
p
e
r
a
t
i
o
n
s
,

:
v
a
l
u
e
s

.
.
.
}

op
er
at
io
n
s
cl
au

se
R
eq
u
es
tC

S
(P

ro
c)

=
..
.

(
R
e
q
u
e
s
t
C
S

[
:
P
r
o
c
]

.
.
.
)

{:
t
a
g

:
o
p
,

:
r
e
t
u
r
n
s

[
]
,

:
a
r
g
s

[
]
,

op
er
at
io
n
d
efi
n
it
io
n

:
n
a
m
e

:
R
e
q
u
e
s
t
C
S
,

:
b
o
d
y

.
.
.
}

P
R
E

X
T
H
E
N

Y
(
p
r
e

(
l
i
s
b

X
)

(
l
i
s
b

Y
)
)

{:
t
a
g

:
p
r
e
c
o
n
d
i
t
i
o
n
,

:
p
r
e
d

(
I
R

X
)

p
re
co
n
d
it
io
n

:
s
u
b
s

(
I
R

Y
)
}

87

4. Treating Specifications as Data

to create an abstraction of the intermediate representation. It thus can be regarded
as a lightweight DSL for B. Its foundation consists of pure functions that generate the
corresponding IR. All operators and machine clauses of B are available in the internal
DSL with a one-to-one mapping to AST nodes in B. Examples are b=, b+ or b* in
fig. 4.1. The operator names are prefixed with b in order to avoid name clashes with the
default Clojure core functions (so that they can still be used easily). In the context of a
seperate b macro, function symbols such as =, + or * then are replaced by the functions
that generate the IR, and will eventually yield an equality, addition or multiplication
node in the Java AST.

An excerpt of the syntax is given in table 4.1.2 Note that no new semantics is defined;
one can map all internal DSL functions directly to corresponding B operators and clauses.
In fact, the exact same AST nodes ProB uses to represent B machines are generated.
Some operators have multiple aliases (such as generating tuples via |-> or maplet).
Others take a variadic number of arguments (such as <) to accommodate a Clojure-style
of writing predicates. In a pre-processing step, it is replaced by a proper conjunction of
predicates.

Re-Translation The re-translation module consists of two parts: first, the ProB Java
API returns solutions, states, traces and model checking results as Java objects. While
they are directly accessible from Clojure using interop, we also provide a small translation
layer that transforms such Java objects back into Clojure data. Infinite sets that are
stored as a symbolic value in ProB (such as the set of even numbers), are not represented
as Java objects and, thus, cannot be translated. However, one could translate them to
a corresponding snippet of IR. Second, ProB’s Java AST used for constraints and
machines can also be translated into the internal DSL.

4.4. Case Study: Machine Transformation

In the following, we present a transformation of B machines that was required in the
scope of another research endeavour. The idea is that certain data refinement rules
are applied to an existing B machine in order to yield a new one. Initially, we wanted
to integrate this transformation into ProB (in the Prolog kernel) directly; however,
various implementation details of ProB (e.g., a complex machine-loading mechanism
and source-mapping of AST parts) render such an endeavour challenging. In order to
evaluate whether the approach is promising (and worth the hassle to implement it in
ProB), a prototype was written in lisb instead. Arguably, a functional programming
language like Clojure (that integrates almost seamlessly with Java) is also more accessible
for software engineers than a logic programming language like Prolog.

Ongoing, there is an attempt to improve the precision of the static analysis of B
machines for partial order reduction (POR): the ultimate goal is to locate as many
“independent” pairs of operations. Without too many details, the ideas are as follows:

2A full overview can be found https://github.com/pkoerner/lisb/blob/master/doc/Lisb.md.

88

https://github.com/pkoerner/lisb/blob/master/doc/Lisb.md

4.4. Case Study: Machine Transformation

1 VARIABLES pc1, pc2, b1, b2, ...

2 INVARIANT b1∈B ∧ b2∈B ∧ pc1∈ Status ∧ pc2∈ Status ∧ ...

3 OPERATIONS ...

4 LeaveCS1 = PRE pc1=crit THEN pc1 := noncrit ∥ b1 := ⊥ END

5 LeaveCS2 = PRE pc2=crit THEN pc2 := noncrit ∥ b2 := ⊥ END

6 END

Listing 4.4: Excerpt of Desired Re-Writes

for example, in listing 4.1, the LeaveCS operation is statically known to contain two
operations, one with the parameter Proc = 1 and the other with Proc = 2. Per definition,
every operation “depends” on itself (so LeaveCS would be flagged as “dependent”); yet
LeaveCS(1) can be determined to be “independent” of LeaveCS(2). Thus, it is useful
to generate a new operation for each parameter value.
Second, the analysis has to find pairs of operations that can be executed in either order.

A syntactical approach is very fast, but is limited to variable access, e.g., LeaveCS(1)
and LeaveCS(2) both access the variables b and pc. However, there exists a disjoint
decomposition of these variables, as both operations write to different “slots” of the b

and pc functions. The idea is to make the slots explicit and assign them to different
variables; naturally, all mentions of the original variables have to be re-written as well.
The desired machine for analysis would look like the excerpt in listing 4.4: judging

only from the accessed identifiers, one can determine that these operations must be
independent of each other, as the read and write sets of the operations are disjoint.
For this transformation, the following features of lisb were used:

1. The original machine is parsed and the resulting AST is transformed into the
intermediate representation that is susceptible to programmatical manipulation.

2. To find statically finite set variables, the machine is loaded via the ProB Java
API and all variables are type checked (e.g., in order to get all values of the Status
set).

3. For the operation unrolling, parts of the IR (containing slightly re-written guards)
are fed to the constraint solver in order to find all solutions for operation param-
eters.

4. With the information above, the IR is transformed in multiple steps, first generat-
ing new operations that eliminate parameters (when possible) and afterwards the
re-write of set variables and their usage. Finally, a simplification step eliminates
redundant conjuncts, assignments, etc.

5. The ProB Java API’s pretty printer is used to emit a new B machine.

Based on lisb, a prototype of such a rather involved automatic refinement tool that is
capable to work with complex machines (such as the one discussed in [LBH14]) can be

89

4. Treating Specifications as Data

1 user=> (require '[com.rpl.specter :as s])

2 user=> (defn TAG [t] (s/path #(= (:tag %) t)))

3 user=> (def CLAUSES (s/if-path (s/must :ir) [:ir :clauses]

4 [:machine-clauses]))

5 user=> (defn CLAUSE [name] (s/path [CLAUSES s/ALL (TAG name)]))

6 user=> (set (apply concat (s/select [(CLAUSE :operations) :values

7 s/ALL :body :pred :preds] ir))

8 #{{:tag :or, :preds

9 ({:tag :equals, :left :x, :right :Proc}

10 {:tag :equals, :left

11 {:tag :fn-call, :f :b,

12 :args ({:tag :fn-call, :f :other, :args (:Proc)})},

13 :right false})}

14 {:tag :equals,

15 :left {:tag :fn-call, :f :pc, :args (:Proc)}, :right :crit}

16 {:tag :member, :elem :Proc, :set {:tag :interval, :from 1, :to 2}}

17 {:tag :equals,

18 :left {:tag :fn-call, :f :pc, :args (:Proc)}, :right :wait}

19 {:tag :equals,

20 :left {:tag :fn-call, :f :pc, :args (:Proc)}, :right :noncrit}}

Listing 4.5: Retrieving the IR of all Unique Guard Conjuncts from the Peterson Machine
(Continues Listing 4.2)

written in about 750 lines of Clojure code3, of which about 60 lines are devoted to a small
DSL. The IR harmonises — because it is plain data — with widespread transformation
libraries in Clojure, such as Specter4. For example, listing 4.5 shows that one can retrieve
the IR of all guard conjuncts (without duplicates) in a few lines of code.
One can generate a modified copy by simply calling Specter’s transform instead of

select. Using the path from listing 4.5, one would transform all guards based on an
argument function. Naturally, the described refinement tool has to transform more parts
of the machine than just the guards.

4.5. Case Study: Algorithm Description Language DSL

Domain-specific languages are increasingly used in order to give domain experts access to
formal methods. E.g., Meeduse [Ida20] aims at building proved DSLs for the B method
and has recently been applied in the railway domain [ILW+19b, YICD20]; The SafeCap
platform [ILR13] provides a graphical DSL that is used to capture railway topologies,
their logical structure and signalling rules.

3The tool can be found at https://github.com/JanRossbach/fset.
4https://github.com/redplanetlabs/specter

90

https://github.com/JanRossbach/fset
https://github.com/redplanetlabs/specter

4.5. Case Study: Algorithm Description Language DSL

1 procedure(name: "mult") {

2 argument "x", "NAT"

3 argument "y", "NAT"

4 result "product", "NAT"

5 precondition "x >= 0 & y >= 0"

6 postcondition "product = x * y"

7 implementation {

8 var "x0", "x0 : NAT", "x0 := x"

9 var "y0", "y0 : NAT", "y0 := y"

10 var "p", "p : NAT", "p := 0"

11 algorithm {

12 While("x0 > 0",

13 invariant: "p + x0*y0 = x*y") {

14 If("x0 mod 2 /= 0") {

15 Then("p := p + y0")

16 }

17 Assign("x0,y0 := x0/2,y0*2")

18 }

19 Assert("p = x*y")

20 Return("p")

21 }}}

Listing 4.6: Multiplication Example from [CBH+16]

In the following, we give an impression of how to implement a smaller DSL in lisb.
There have been several implementations of DSLs built on top of the ProB Java API
directly. We chose to re-implement an algorithm description language that originally
was translated to the Event-B notation [CBH+16] (while Event-B is quite similar to
B, it does not contain while-loops or if-then-else statements; see [Leu21]). This DSL is
rather limited, containing only:

• procedures and procedure calls,

• variable assignments,

• assertion statements,

• if-then-else statements,

• while-loops,

• sequential composition of statements.

An example algorithm in this DSL that calculates the multiplication of two numbers via
repeated addition is depicted in listing 4.6.
Roughly, the corresponding Event-B Machine is generated by inserting a program

counter (PC) variable, adding an event for each assignment and two events of each if-
statement and while-loop (one guarded by the PC and the condition of the if-statement
or while-loop, the other by the PC and the negated condition).

91

4. Treating Specifications as Data

1 (adl :Multiply

2 (var :x (in :x nat-set) 5)

3 (var :y (in :y nat-set) 3)

4 (var :p (in :p nat-set) 0)

5 (algorithm

6 (while (> :x 0)

7 (assert (= (+ :p (* :x :y)) (* 5 3)))

8 (if (not= 0 (mod :x 2))

9 (assign :p (+ :p :y)))

10 (assign :x (/ :x 2), :y (* :y 2)))

11 (assert (= :p (* :x :y))))))

Listing 4.7: Example Usage of Algorithm DSL in lisb

1 (defn assign [pc & kvs]

2 {:pc (inc pc)

3 :ops (fn [jump?]

4 (let [opname (keyword (str "assign" pc))

5 newpc (if jump? jump? (inc pc))]

6 [`(bop ~opname []

7 (bprecondition

8 (b= :pc ~pc)

9 (bassign ~@kvs :pc ~newpc)))]))})

Listing 4.8: Implementation of Assignments in lisb’s Algorithm DSL

As a case study, we implemented this DSL (aside from procedure calls to avoid gener-
ating multiple machines) in lisb that generates the corresponding (classical) B machine.
In favour of a fair comparison with the original DSL, we refrained from using while-loops
and if-then-else substitutions. We further opted not to use strings containing B formu-
las like the original algorithm description language: while calling the B parser is trivial,
we strive for the ability to hide as much B syntax from the user as possible. The lisb
version of the example in listing 4.6 can be seen in listing 4.7. Note that, again, both
the DSL and the embedded code is plain data that can be generated by a Clojure or
Java program.

As an example, we show the function that generates the operation corresponding to
an assignment in the algorithm DSL in listing 4.8. It takes the current program counter
(PC), which is maintained by an algorithm macro, and a number of pairs of variable
names and expressions. Internally, a new operation with a unique name is generated,
with the only guard being that the PC matches. Aside from the given assignments, the
PC is set to a new value. Jumps require that the next PC is passed later by calling a
function: the last statement of a then-branch needs to jump behind the else-block (or
to the start of a while-loop, etc). Yet, the target PC may still need to be calculated
after the operations are generated, because the last PC of the then-branch is required

92

4.6. Addressing B-specific Issues

1 DEFINITIONS

2 add(xx,yy) == xx+yy

3 egt(xx) == (∃ yy.(yy ∈ 1..99 ∧ xx < yy))

Listing 4.9: Two Suspicious Definitions

to generate the start of the else-branch. Thus, we pass the target PC via the jump?

argument to finalise the operations.

The entire code for the DSL containing assertions, assignments, while-loops and if-
statements that also generates the entire B machine can be written in about 100 lines of
Clojure5. No additional parser or any other tooling aside from lisb is required. Similar to
PlusCal [Lam09] and TLA+ [Lam02], lisb’s internal DSL that embeds all B expressions
may also be used.

4.6. Addressing B-specific Issues

The B language has a so-called definitions system that is based on text replacement
(similar to macros in the C language). One could argue that certain (local) transfor-
mations and DSLs can be implemented directly using definitions. Below, we examine
drawbacks of this system and illustrate why lisb offers a cleaner solution.

4.6.1. Language Semantics — Definitions

The definition mechanism of the B language is similar to C preprocessor macros and has
similar drawbacks: Actual operator precedences may be misleading and differ based on
the tool. Further, it is also possible to capture variables on accident. Below, we present
two examples which have been discussed by Leuschel [Leu21] in detail.

Operator Precedences One issue is that the definitions mechanism is interpreted dif-
ferently by different tools. Consider the first definition in listing 4.9: When calling the
definition in AtelierB as 2*add(0,5), the result will be 5 because it will be expanded to
2 ∗ 0 + 5. However, evaluating the expression with ProB will expand the definition to
2 ∗ (0 + 5) and 10 will be returned.

Variable Capturing The second definition in listing 4.9 shows the issue of variable
capturing. Calling egt(5) will yield true (since yy = 6 exists). However, yy = 5∧egt(yy)
will result in the rewritten predicate yy = 5 ∧ (∃yy.(yy ∈ 1..99 ∧ yy < yy)), which is
false.6

5The implementation can be found at https://github.com/pkoerner/lisb/blob/

f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj.
6For such cases, ProB will generate a warning.

93

https://github.com/pkoerner/lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj
https://github.com/pkoerner/lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj

4. Treating Specifications as Data

1 (defpred add [xx yy] (+ xx yy))

2 (defpred egt [x] (exists [:y]

3 (and (in :y (interval 1 99))

4 (< x :y))))

Listing 4.10: Two Safe Predicates

lisb’s Alternative to Definitions lisb’s solution to code reuse is the predicate abstrac-
tion (pred). It is a macro that internally replaces all variables (i.e., keywords) with new
variable names. The code snippet in listing 4.10 contains the safe equivalent expressions
to the B definitions in listing 4.9. First, the add predicate is unambiguous wrt. operator
precedence as, highlighted by the parenthesis, the result is an addition that is directly
inserted into the AST. Second, the egt predicate cannot capture the variable y because
of the renaming of all prefixes of all local variables with lisb_. As an example, the B
code ∃lisb5355.(lisb5355 ∈ 1..99 ∧ 5 < lisb5355) results from calling egt(5) in lisb.

4.6.2. Introducing Convenience Operators

The B language only supports a branching if-then-else construct on the level of variable
substitutions. However, it is missing if-then-else on the expression level, e.g., one cannot
get the absolute value of an integer by writing IF x > 0 THEN x ELSE -x END. During
initial development of lisb, ProB’s dialect introduced support for such an expression,
which required changes to its parser and its constraint solver core. We argue that one
should be able to define an operator based on the (admittedly unwieldy) tool-agnostic
re-writing rule below presented by Hansen [HL12].

(λt.(t ∈ {TRUE} ∧ (x > 0)|x)
∪ λt.(t ∈ {TRUE} ∧ ¬(x > 0)| − x))(TRUE)

In lisb, one can introduce such a ternary operator easily by simply defining the re-
writing rule. The entire implementation of an ifte expression and of an absolute value
function, which require no further changes to ProB or its parser, is given in listing 4.11.

4.7. Related Work

High-level formalisms have already been embedded into programming languages: as al-
ready discussed, we drew inspiration from αRby [MJ14], as well as from PlusCal [Lam09].
However, these tools seem to be more tailored towards modelling experts rather than tool
developers who have to examine and interact with specifications on a more fine-grained
basis.
The idea of programmatic construction of specifications is not new: solvers such as

Z3 [dMB08], Coq [BC10] and also ProB itself have APIs that allow building constraints.
lisb attempts to hide low-level details (such as creation of suitable types) and provides
a more abstract DSL to this end.

94

4.8. Conclusions

1 (defpred ifte [condition then else]

2 (fn-call (union (lambda [:t] (and (member? t #{true})

3 condition)

4 then))

5 (lambda [:t] (and (member? t #{true})

6 (not condition)

7 else)))

8 true))

9

10 (defpred abs [x] (ifte (> x 0) x (- x)))

Listing 4.11: Manual Implementation of if-then-else and its Usage

The Rosette framework employs similar macro-based techniques in order to con-
struct solver-aided domain specific languages (dubbed SDSLs) [TB13]. However, they
are used for specification transformation with the goal to gain symbolic computation
and partial evaluation capabilities.

4.8. Conclusions

In this paper, we have presented lisb, which embeds the B language into Clojure in order
to meta-program specifications. While it may be less appealing for modelling experts,
as they are confronted with another programming language, lisb certainly is a helpful
library for rapid tool development.

By embracing the ideas of Lisp and treating specifications as pure data, existing spec-
ifications can easily be transformed and new ones can be generated from external data
sources. Especially for large datasets, it can be significantly faster and more memory-
efficient to avoid parsing a textual representation and to generate the AST programmat-
ically instead. Moreover, Clojure’s macro systems provides support for easy creation of
domain-specific languages.

Overall, we conclude that formal methods tools will heavily benefit from such a data-
oriented approach. As we assume that the majority of formal methods experts does not
have a background in Clojure, facilities for generating (parts) of specifications, e.g., a
proper macro system, could also be a useful part of formal languages. Alternatively, a
structured subset of the macro language could be extracted for a designated DSL design
tool.

Embedding into programming languages makes formal methods also more accessible
for programmers. Then, an interesting idea is that DSLs could generate parts of a model
and of an executable program at the same time.

95

4. Treating Specifications as Data

1 (defn dwyer-s-responds-p-between-q-and-r [S P Q R]

2 (□ (U (=> (∧ Q (◦ (♢ R)))

3 (=> P (U (¬ R)

4 (∧ S (¬ R)))))

5 R)))

Listing 4.12: Definition of an LTL Pattern

4.8.1. Future work

lisb opens doors leading to many directions: first, many higher-level specification lan-
guages such as TLA+ or Kodkod share a similar abstraction level. One could use the
work of existing translations and add support for their tools or output specifications in
other languages. Here, DSLs and pattern matching libraries can help to reduce awkward
or inefficient translations by providing constructs closer to a language’s idioms.
Second, in constrast to the current focus on model checking, animation and embedding

into applications, one could provide a DSL that generates constructs known to work well
with provers. This can be useful since many models written to work with animators such
as ProB do not work well with proving tools, and vice versa.
Third, one goal of lisb is to provide more DSLs so that model extraction from exist-

ing software becomes feasible. As demonstrated, constructs such as if-statements and
loops can easily be expressed, whereas function calls, classes and interfaces require more
complex translations. Polymorphic and recursive functions are known to be particu-
larly challenging to express in B [Leu21]. FASTEN [RGS19, RNM+21] demonstrates
the power of entire DSL stacks that can be composed, e.g., support for components
with inputs and outputs, contract-based design, and allows unit testing of particular
components for test-driven development.

LTL Pattern DSL

Finally, DSLs are also often needed for related formalisms, e.g., LTL. While the formal
semantics are clear, nested LTL formulas often become hard to understand for humans.
Thus, it may be worthwhile to define certain LTL patterns as well: With a similar
approach as presented in this paper, preliminary work suggests that it is straightforward
to create a small DSL, e.g., based on the patterns presented by Dwyer et al. [DAC98].
As an experiment, we implemented some of these patterns in the same vein as lisb7:

We build upon ProB’s Java AST for LTL formulas, define a small intermediate repre-
sentation and add a tiny DSL that defines LTL operators as unicode symbols (such as
□, ♢, . . .). On top of that, we implemented a few of Dwyer’s patterns. In listing 4.12,
we show the definition of the pattern “S responds to P between Q and R”.
Finally, we also added a function that acts as another small DSL layer: the dwyer

function (see listing 4.13) dispatches based on the pattern (e.g., absence or response)

7The proof-of-concept is available at: https://github.com/pkoerner/lisb/blob/

046dfbdce4926064ab39cec25b31b17ac1160a05/src/lisb/translation/ltl/ltl.clj

96

https://github.com/pkoerner/lisb/blob/046dfbdce4926064ab39cec25b31b17ac1160a05/src/lisb/translation/ltl/ltl.clj
https://github.com/pkoerner/lisb/blob/046dfbdce4926064ab39cec25b31b17ac1160a05/src/lisb/translation/ltl/ltl.clj

4.8. Conclusions

1 user=> (dwyer :response "x=1" "y=2")

2 "□((y=2) => (♢(x=1)))"
3 user=> (dwyer :response "x=1" "y=2" :before "a=2")

4 "((y=2) => ((¬(a=2)) U ((x=1) ∨ (¬(a=2))))) U ((a=2) ∨ (□(¬(a=2))))"
5 user=> (dwyer :response "x=1" "y=2" :between "a=3" :and "b=42")

6 "□((((a=3) ∨ (◦(♢(b=42)))) => ((y=2) => ((¬(b=42)) U ((x=1) ∨
(¬(b=42)))))) U (b=42))"

Listing 4.13: Generation of LTL Formulas

and the scope (e.g., by default globally, before X, or between X and Y). As the generated
Java AST object that can be passed to the ProB Java API offers no readable output,
the function returns a pretty print of the generated LTL formula instead.

Acknowledgments

The authors would like to thank Kristin Rutenkolk for her feedback, Jan Roßbach for
his implementation of the data refinement tool and David Geleßus for his quick fixes in
the ProB toolchain. The first author also thanks David Schneider, Jens Bendisposto
and Michael Leuschel for their fruitful suggestions and support.

97

Part II.

Towards an Improved Partial Order
Reduction for B

5. Towards a Shared Specification
Repository

Abstract

Many formal methods research communities lack a shared set of benchmarks. As a result,
many research articles in the past have evaluated new techniques on specifications that
are specifically tailored to the problem or not publicly available. While this is great
for proving the concept in question, it does not offer any insights on how it performs
on real-world examples. Additionally, with machine learning techniques gaining more
popularity, a larger set of public specifications is required. In this paper, we present
our public set of B machines and urge contribution. As we think this to be an issue in
other communities in scope of the ABZ as well, we are also interested in specifications
expressed in other formalisms, for example Alloy, TLA+ or Z.

5.1. Introduction and Motivation

Our group in Düsseldorf has collected since 2003 thousands of B and Event-B machines:
our ProB repository contains around 13 000 machines, of which more than 3500 are
publicly available. The examples are used for ProB’s regression, performance and
feature tests. Those public examples contain some duplicates, as they are compiled
from different sources: e.g., from tickets in our bug tracker, teaching, literature, case
studies, or student projects.
Naturally, not all machines are relevant to all research questions: infinite state spaces

might be interesting in order to evaluate symbolic model checking techniques [Kri17],
whereas large yet finite state spaces are the important class for distributed model check-
ing [KB18]. Other use cases, such as data validation [HSL16] work by executing a model
along one particular, linear path, while others, like constraint solving problems, some-
times work on machines without variables, consisting of a single state. Most recently,
machine learning (ML) techniques are applied to model checking or synthesis as well,
and require a large number of specifications, e.g., in order to extract and re-combine
predicates [DKS19]. Even with access to numerous machines, it is time-consuming and
cumbersome to identify machines to use for benchmarking, especially since only a small
amount of data can be presented in a typical research article. Without any doubt, other
research groups have their individual set of B machines they use for testing and evalu-
ation. Thus, we propose that individual sets of benchmarks from different parts of the
community are combined into a global, shared repository. With this paper, we start this

101

5. Towards a Shared Specification Repository

endeavour, and create an index of our specifications as described in section 5.2. Benefits
include:

• Benchmarks are publicly available and experiments can be replicated easily.

• Performance comparisons of several tools in different versions can be drawn.

• Suitable benchmarks can be quickly identified.

• Examples for translations between formalisms or ML are available.

• Particularly successful examples can be shared for teaching.
While we are most involved in the B and Event-B community, we think that similar

issues are present in other communities which make up the ABZ conference. Thus, we
explicitly want to invite everyone to contribute specifications written in other formalisms
as well. The repository is located at:

https://github.com/hhu-stups/specifications

5.2. Proposed Index

Since our initial set of models is rather large, it is vital that a sufficient amount of meta-
information is attached to the models. For this, we suggest usage of edn1, a serialisation
format with parsers available in most mainstream programming languages. For each
specification, some basic information should be offered:

• Which formalism is this specification written in?

• A SHA-256 hash code to identify duplicates, and to ensure reproducibility of ex-
periments regarding the specification.

• Number of deferred sets, enumerated sets, constants, state variables and operations
/ events, number of included machines, etc.

• Number of states and state transitions in the machine (if known).2

• Presence of invariant violations, deadlocks, etc. (if the property is known).

• Optional link to another (previous) model (e.g., a correction or evolution).

The information above is known to never change, but can be extended once further
properties are considered. Additional information depending on the tool, its configura-
tion or the use case altogether can be included as well, such as temporal properties (e.g.,
expressed in LTL or CTL) which are expected to hold or to be violated, tool name and
version/revision which is able to parse or execute the specification, or settings, walltime
and memory usage required for application of a technique such as model checking.

1Extensible Data Notation, see: https://github.com/edn-format/edn
2Note that different tools count the number of transitions and states slightly differently. it might be
necessary to keep track of the number of initial states and, e.g., the virtual constants setup states
of prob. then, one can derive the expected statistics for other validation tools. some settings can
also influence the number of states, e.g., the default scope for deferred sets or maximum number of
transitions per operations. in that case, it is preferable not to specify a number of states, but rather
include that number in a specific run of the tool (see below), that also includes the settings needed
for replication.

102

https://github.com/hhu-stups/specifications
https://github.com/edn-format/edn

5.2. Proposed Index

1 (def META-INF-DIR (java.io.File. "../meta-information"))

2

3 ;; get a sequence of all meta-information files in the directory

4 (def meta-files (remove (fn [file] (.isDirectory file))

5 (file-seq META-INF-DIR)))

6

7 (defn read-meta-file [f] (read-string (slurp f)))

8

9 (->> meta-files

10 (map read-meta-file)

11 (filter (fn [data]

12 (and (= (:formalism data) :b)

13 (number? (:number-of-states data))

14 (> (:number-of-states data) 100000))))

15 (map :file))

Listing 5.1: Finding Specifications Based on Their Information

Optional Fields. Naturally, this data must also be extensible via optional fields. For
instance, additional information due to a new use case can be gathered, e.g., the amount
of states when using state space reduction techniques. As runtime might depend on
the hardware it was ran on, relevant data should be included as well. They also allow
extension of the information, e.g., for further tools such as Atelier-B [Cle16] or handling
of entirely different file formats, e.g., Rodin [ABHV06] archives. In order to select
suitable set of specifications, one can simply apply a filter predicate testing the formalism
or dialect of it. Furthermore, optinal fields enable links between different machines (e.g.,
due to refinement or different parameter instantiation) and to external information, such
as references to articles describing the model, descriptions of the models as well as the
author(s) and their contact information. Finally, certain metrics do not make sense for
specific use cases of a formalism, or cannot be applied to other formalisms at all. Thus,
such data must not be a mandatory field (but may be mandatory for a given formalism)3.

Filtering Specification. As previously mentioned, we use edn for the meta information
because this format can easily be processed. A short example written in Clojure is given
in listing 5.1. There, all files containing meta-information in the directory are located
(ll. 1–5). Then, they are read in and filtered (ll. 7–15). The expression starting in l.
9 returns a list of all file names of specifications written in the B formalism that are
known to have a state space of at least 100 000 states. At the time of writing, there
are 45 such machines. This example shows that finding specifications based on certain
criteria is fairly easy and necessary for verification tool maintainers.

3It would be sensible to define different standard formats for different formalisms. These can be
automatically enforced in a CI pipeline, e.g., by Clojure Spec [Clo], before pull requests are accepted.

103

5. Towards a Shared Specification Repository

Table 5.1.: Overview of available machine meta data with a timeout of 30 min.

Errors on Load 310
Formalism 763 Event-B 2886 Classical B
Deadlock found 1080 yes 1576 no 683 timeout
Invariant violated 255 yes 2498 no 586 timeout

max avg usage in # machines
States 1 000 002 8743 2624
Transitions 5 570 544 53 296 2624
Included Machines 13 1.18 3339
State Variables 10 000 7.49 2282
Operations 2000 6.00 2497
Deferred Sets 50 0.44 669
Enumerated Sets 19 0.79 1310
Invariants 10 000 9.39 1958
Constants 10 000 8.63 2090
Properties 12 015 17.51 2094
Static Assertions 188 1.46 646
Dynamic Assertions 54 0.20 200
Definitions 374 2.75 1265

Table 5.1 provides an overview of the information of B machines currently present in
the repository, compiled after running each machine with a timeout of 30 minutes in the
ProB model checker.

On Updating Versions. We strongly argue that the published version of a specification
must not be replaced. Once they are online, they may be used by any researcher. Even
though git clearly documents the history of a file, it would be unclear which version was
used as a benchmark or presented in an article. If mistakes were spotted, new versions
can be submitted as a modified copy.

5.3. Conclusions, Related and Future Work

We firmly believe that a shared repository of specifications will benefit all communities
coming together at ABZ. Aside from making benchmarks available for replication, it can
assist courses teaching the formal methods. Furthermore, it builds the foundation for
exciting new research that relies on such a dataset.
Similar issues have been found in other communities. This led to the creation of central

benchmarking sets, e.g., BEEM for models written in DVE [Pel07], or the PRISM
benchmark suite [KNP12] for models written in PRISM. Yet, to our knowledge, it is
not possible to contribute to these databases. This has led to criticism that, e.g., not
many models that are large enough are featured. Also, a fixed set of benchmarks is not

104

5.3. Conclusions, Related and Future Work

a viable approach in the B community, that creatively uses the B language in order to
solve very different types of problems.
In other communities, such as SMT and SAT solving, shared benchmark sets are estab-

lished for many years [BST10, HS00]. They both grow via community contributions and
are the foundation for solver competitions [BDMS05, JLBRS12]. SMT-LIB in particu-
lar is a success story, containing more than 100 000 benchmarks. There are many other
examples for competitions and problem collections, e.g., SV-COMP4, TPLP5 [Sut17],
which we cannot exhaustively list here due to page limitations.
An interesting question we could not answer in this paper is to what extent our

examples match the reality of (confidential) industrial specifications. An answer requires
to take a closer look at the data that is available to us. When considering state space
size, number of variables and operations as well as idioms used, e.g., usage of program
counters or certain data structures, it might be possible to label some public machines
accordingly.
Furthermore, research papers often contain links to download pages not only for bench-

marks, but also tools themselves. Some tools presented years ago are hard or near
impossible to find now. Some conferences, e.g., POPL, established artifact evaluation
committees, yet making artifacts permanently available often is optional. ACM con-
ferences offer different badges6 depending on availability, replicability, etc. A similar,
mandatory repository containing at least one binary version or even the source code of
tools presented at conferences might prove useful to the research community as well.
Worth mentioning here is the StarExec platform [SST14], that allows storage and exe-
cution of tools and benchmark problems, which may serve this effort to a satisfactory
extent already.
In order for the presented endeavour to be successful, the effort of the entire community

is required and their contributions to this repository will be appreciated.

Acknowledgments

Computational support and infrastructure was provided by the “Centre for Information
and Media Technology” (ZIM) at the University of Düsseldorf (Germany). We thank
the many persons who contributed to the repository (a list is available at the project’s
website).

4https://sv-comp.sosy-lab.org/2020/
5Which inspired the second author to generate another library, Dozens of Problems for Partial Deduc-
tion https://github.com/leuschel/DPPD.

6Cf. https://www.acm.org/publications/policies/artifact-review-badging

105

https://sv-comp.sosy-lab.org/2020/
https://github.com/leuschel/DPPD
https://www.acm.org/publications/policies/artifact-review-badging

6. Interlude: Empirical Evaluation of
POR for B

Abstract

Background and purpose: Partial order reduction (POR) is a technique to tackle the
state space explosion problem. In low-level formalisms, such as Petri nets, it is known
to reduce the amount of states by several orders of magnitudes. Usually, one does
not achieve such results for specifications in B. We investigate what improvements are
necessary.

Design and methods: We make use of a public repository of B specifications and measure
the impact of ProB’s POR algorithm.

Results: Around 85 % of the state spaces yield no reduction during deadlock checking,
more than 95 % of the machines yield no reduction during invariant checking.

Conclusions: (i) Specialised solvers may be required to determine independence of op-
erations. (ii) Textbook B modelling style may be counterproductive for POR.

6.1. Introduction

In order to evaluate the impact of ProB’s partial order reduction, we consider a much
larger collection of B and Event-B specifications taken from the repository [KLD20] and
compare the state space sizes with and without applying POR. For our experiments,
we select B machines with at least two operations in order to have an opportunity for
independent events to occur. The set of machines and produced results can be found on
GitHub1.

6.2. Setup

All machines were model checked for 30 minutes (per configuration) with 2 GB of RAM.
Each job was allocated a single CPU core of an Intel E5-2697v2 (Ivy Bridge EP) running
at 2.70 GHz. A nightly version of ProB 1.11.0 (commit 1b6f14bbd533c2459b1ce675eb
57ab24fee89caa) was used.

1https://github.com/hhu-stups/specifications/tree/aa25fdcecdac58095a1fa9c9e917b524db55e8b7

107

https://github.com/hhu-stups/specifications/tree/aa25fdcecdac58095a1fa9c9e917b524db55e8b7

6. Interlude: Empirical Evaluation of POR for B

6.3. Results

Since we are considering only machines with at least two operations, “only” 1894 B
machines from [KLD20] can be analysed. The actual number of results reported per
category (deadlock vs. invariant checking) varies due to timeouts and errors, as explained
below.
In both cases, the data set is further split in two based on whether an error (deadlock or

invariant violation) is found or not. As the state space exploration is halted once an error
occurs, we cannot reliably argue about state space reduction in case an error is found.
Indeed, the POR algorithm may re-order operations. Thus, even with a deterministic
breadth-first-search, this can lead to considerable fluctuations in the runtime, due to
finding an error state earlier or later.

Deadlock Checking For deadlock checking, we had to exclude 519 machines that could
not be fully checked within the specified timeout of 30 minutes by neither the default
settings nor using POR. 17 further machines caused a timeout only when using POR,
whereas 25 machines (around 4 % of all machines encountering any timeout) only timed
out using the vanilla baseline implementation. We can assume some reduction occurred
for these 25 B machines.
After removing 3 machines due to some other error (e.g., CLP(FD) overflows during

analysis), 1330 machines are subject to this analysis. Of these, 1121 are deadlock-free,
while the other 209 contain a deadlock.
The original and reduced state space sizes are given in fig. 6.1a and fig. 6.1b. All data

points on the diagonal correspond to cases where no reduction occurs, while data points
below the diagonal correspond to a reduction due to POR. In the right figure (fig. 6.1b)
data points can also be found above the diagonal, meaning that here model checking
with POR did find the deadlock later than without POR.
Of the 1121 deadlock-free machines, only 191 (17 %) showed some reduction with

POR. On average the reduced state space has 54 % of the original size (i.e., a reduction
of 46 %) for these 191 machines. The median is 56 % of the original size. Similar, of 209
machines containing deadlocks, we can observe 36 (17.2 %) with a reduced state space
and 9 with a larger one (as discussed earlier).
Thus, even when adding the 25 machines with timeout when not using POR above,

we have less than 20 % of models where POR reduces the state space.

Invariant Checking For invariant checking, we can analyse 1385 machines after ex-
cluding 452 where both model checking algorithms time out, 2 machines that only time
out with POR and 55 machines that only time out without POR. Again, we can assume
some reduction for the latter cases (around 11 % of all machines featuring any timeout).
Further, we exclude 55 additional machines due to other occurring errors, such as well-
definedness issues or overflows in the CLP(FD) backend. This leaves 1331 machines to
analyse here.
1169 machines preserve the invariant. The (reduced) state space sizes are visualised

in fig. 6.2a. Of these, we can observe a state space reduction in 37 machines (3.2 %).

108

6.4. Threats to Validity

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

S
ta
te

S
p
ac
e
S
iz
e

(a) Deadlock-Free Models

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

S
ta
te

S
p
ac
e
S
iz
e

(b) Deadlock-Containing Models

Figure 6.1.: (Reduced) State Space Sizes for Deadlock Checking

On average the reduced state space has 76 % of the original size (i.e., a reduction of
24 %) for these 37 machines. The median is 86 % of the original size. Unexpectedly,
a single outlier lies above the diagonal, i.e., yields a larger state space with POR. This
is a machine that acts as a test for ProB’s randomisation library, and hence the state
space can change with each run. Even when assuming that all 55 machines with timeout
produce a reduction, we have a reduction in less than 10 % of cases.
Of 162 machines with invariant violations (fig. 6.2b), we observe 30 machines (18.5

%) with a reduced state space and 18 with a larger one.

6.4. Threats to Validity

One needs to address the following points:

• Many machines time out and are excluded. This could in principle include large
machines that are more suitable for POR. Some timeout is needed as many of these
machines have an infinite state space. Due to the exponential state space explosion
problem, a larger timeout will only include a few additional machines. From our
sample, we can also observe the trend that smaller machines exhibit state space
reductions more often (cf. figs. 6.1a and 6.2a). Further, we inspect issues that are
more prevalent in larger machines that hinder POR in section 7.5.

• The set of machines may not be representative, as it includes many examples from
literature, small machines used for teaching, different versions or instantiations
of the same machine, etc. In particular, it does not contain larger, confidential
machines from industry. From our experience, POR does not work well for these
machines. The bias may even be towards machines well-suited for POR, as it
includes several models meant for testing of the algorithm.

109

6. Interlude: Empirical Evaluation of POR for B

100 101 102 103 104 105 106

100

101

102

103

104

105

106

Vanilla State Space Size

P
O
R

S
ta
te

S
p
ac
e
S
iz
e

(a) Invariant-Preserving Models

100 101 102 103 104 105

100

101

102

103

104

105

Vanilla State Space Size

P
O
R

S
ta
te

S
p
ac
e
S
iz
e

(b) Invariant-Violating Models

Figure 6.2.: (Reduced) State Space Sizes for Invariant Checking

• Note that machines are excluded that time out using regular model checking but
not when using POR. However, this rarely occurs and does not significantly impact
our conclusions, as the vast majority of models still does not exhibit any reduction.

• Note that we cannot present reduction of memory consumption or runtime in detail
here. Due to the additional analysis phase and overhead during runtime, POR may
be slower even if it reduces the state space. The reader is invited to inspect the
full data set made available on GitHub (footnote 1).

Acknowledgments

Computational infrastructure and support were provided by the Centre for Information
and Media Technology at Heinrich Heine University Düsseldorf.

110

7. Towards Practical Partial Order
Reduction for High-Level
Formalisms

Abstract

Partial order reduction (POR) has considerable potential to reduce the state space during
model checking by exploiting independence between transitions. This potential remains,
however, largely unfulfilled for high-level formalisms such as B or TLA+. In this chapter,
we report on our experiments regarding POR: We analyse why POR fails to achieve
reductions and identify minimal examples without reduction that make use of high-
level constructs in B, and provide several new ideas to make POR pay off for more
complex formal models. A proof-of-concept implementation then yields two orders of
magnitude reduction in the state space for a particularly challenging case study, a railway
interlocking model that escaped our POR techniques thus far.

7.1. Introduction

Partial order reduction (POR) [God90, Pel93, Val89] is a technique to tackle the state
space explosion problem in model checking [CGP99]: Instead of executing all inter-
leavings of independent behaviour, only one is explored in the best case. In low-level
formalisms, such as Petri nets or Promela, and in process algebras like CSP or mCRL2,
POR is known to reduce the state space by several orders of magnitudes [BJL+19,
GRHRW15, Hol97, LPVDPH16].
In contrast, the application of POR to high-level formalisms like TLA+ [Lam02] or B

[Abr96, Abr10] has been disappointing thus far. Attempts at using POR for TLA+ using
TLC [YML99] were not successful and abandoned1. POR has also been implemented for
B using the ample set approach within ProB [DL14, DL16, Dob17]. While considerable
reduction can be obtained for some specifications, the technique does not seem beneficial
for real-life examples. Another attempt of using POR for B was made using LTSmin
together with ProB [BvdPW10, LPVDPH16]. It uses ProB to solve predicates and
calculate the next states while POR is provided by LTSmin. LTSmin’s approach to
POR is based on the stubborn set theory [Val89] and works well for low-level formalisms.

1Private communication from Stephan Merz to Michael Leuschel at Schloß Dagstuhl; see also the
presentation by Kuppe [Kup18].

111

7. Towards Practical Partial Order Reduction for High-Level Formalisms

1 MACHINE NoReduction

2 VARIABLES xx, locked

3 INVARIANT xx ∈ POW(1..2) ∧ locked ∈ B
4 INITIALISATION xx := ∅ ∥ locked := ⊥
5 OPERATIONS

6 add(yy) = SELECT locked = ⊥ ∧ yy ∈ 1..2 ∧ yy ̸∈ xx

7 THEN xx := xx ∪ {yy} END;

8 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

9 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

10 END

Listing 7.1: Adding a Value Into a Set — No Reduction

1 MACHINE HasReduction

2 VARIABLES xx_1, xx_2, locked

3 INVARIANT xx_1 ∈ B ∧ xx_2 ∈ B ∧ locked ∈ B
4 INITIALISATION xx_1 := ⊥ ∥ xx_2 := ⊥ ∥ locked := ⊥
5 OPERATIONS

6 add_1 = SELECT locked = ⊥ ∧ xx_1 = ⊥ THEN xx_1 := ⊤ END;

7 add_2 = SELECT locked = ⊥ ∧ xx_2 = ⊥ THEN xx_2 := ⊤ END;

8 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

9 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

10 END

Listing 7.2: Unrolled and SAT Encoded Version of listing 7.1 — POR is Successful

Compared to ProB’s approach in [DL14, DL16, Dob17], the approach of LTSmin is
more fine-grained (wrt. guards), yet rarely achieves (mostly slightly) better reduction
for B models2. Overall, POR rarely seems worth the effort for practical B models.
This chapter takes a closer look at deadlock checking B models with POR; The main

insight we gained is that static analysis of a model (before model checking) often does not
determine a precise enough independence relation. The techniques described in the rest
of this chapter focus on POR for deadlock checking (as effectiveness is already low and
LTL model checking requires even more constraints): Many B models contain operations
drawing a parameter from a known finite set; such operations are treated as a unit and,
thus, independence between certain instances cannot be captured. We propose to unroll
such operations by replacing them with a new operation for each parameter (section 7.3).
Additionally, operations that access a shared set variable usually only interact with a
small subset of its elements. We discuss benefits and drawbacks of a constraint-based
analysis as well as encoding sets to SAT variables before applying a syntactical analysis
(section 7.4).

2Already the results in section 4.3 and table 3 of [KML18] for POR were unsatisfying. Other techniques
of LTSmin were very effective, however.

112

7.2. Background

As an example, the model in listing 7.1 can (automatically) be re-written to an equiv-
alent model depicted in listing 7.2 by unrolling the add operation and encoding the
set xx as booleans. The former model yields no state space reduction using ProB’s
POR, whereas the latter one does. Though some specifications may require additional
re-writes or more involved analysis techniques, the combination of these two techniques
allows state space reduction by POR on large, real-world models. In section 7.5, we
share key insights based on a grand challenge we set ourselves, a large model with many
real-world features whose state space should be significantly reduced using POR, yet
escaped our approach so far. With the techniques above, the expected reduction occurs.

7.2. Background

The B-Method

[Abr96] and its successor Event-B [Abr10] are methodologies that rely on a correct-by-
construction approach, i.e., an abstract specification is proven correct and is iteratively
refined as more details are added. Proofs accompany all refinement steps, linking each
iteration to the ones before.

Both B and Event-B have seen particular use in the railway industry [BKK+20]. While
the former focuses on software development, the latter is designed for modelling systems.
Event-B is most commonly used via the Rodin toolset [ABH+10], and exported proof
information can be used for model checking [BL09]. B and Event-B are very expressive,
encompassing first-order logic with (higher-order) sets, sequences, functions, relations
and records. Both formalisms are state-based with (possibly non-deterministic) initial
assignments of constants and state variables, and guarded transitions (named operations
in B and events in Event-B)3 yielding successor states. A state of a B model is composed
of values for all the constants and variables of the model.

While we study both B and Event-B models, we will use the term operation to denote
both B operations and Event-B events. Small examples of a B specification are given
in the motivating example in listings 7.1 and 7.2. B machines might include additional
clauses such as the CONSTANTS clause (that declares identifiers of constants similar to
the VARIABLES clause), the PROPERTIES clause (constraining the constants) or the SET

clause (that contains, e.g., enumerated sets). While the following concepts of operation
and operation instance are related, it is important to distinguish between them:

Notation. An operation is the name of a guarded substitution (aka statement) that
may be parameterised. E.g., add or lock in listing 7.1 are operations. The guarded
substitution is also called the body of the operation.

An operation along with values for all its parameters is called an operation instance.
E.g., add(1) is an operation instance. Another one is add(2).

An operation instance is thus a transition label.

3Or actions in TLA+.

113

7. Towards Practical Partial Order Reduction for High-Level Formalisms

ProB

[LB03, LB08] is an animator, model checker and constraint solver for the B language.
It is written in SICStus Prolog [CM12b] and its constraint-solving backend makes use
of coroutines and the CLP(FD) library [COC97]. Alternative backends are available
via translations to SAT and SMT: the work of Plagge and Leuschel [PL12] uses the
Kodkod [TJ07] library to translate B to SAT, while the works of Krings, Schmidt and
Leuschel [KL16, SL21] translate B to SMT for using Z3 [dMB08] as a solver.

Partial Order Reduction

POR [BK08, Pel93, Pel94] is a model checking technique that only explores a subset of
the state space. POR is considered to be appealing because, for n independent operation
instances, one has to explore (in the best case) only a single ordering rather than n! many.
Thus, exponential reductions are possible in concurrent systems that synchronise on few
events. While the underlying idea seems simple, the conditions to ensure correctness are
intricate4.

POR exploits independent operation instances: Two operation instances are indepen-
dent, if they can be performed in any order without changing the resulting state. This
is visualised in fig. 7.1: If α and β are independent and simultaneously enabled in the
original state space, this implies that β can be executed after α and vice-versa, and
the resulting states are identical. In short, this is the case if the operation instances
commute and do not disable each other.

Below, we will give a more formal definition. Note, as is usual when presenting POR,
we assume that operation instances are deterministic, i.e., given an operation instance
α and a state s there is at most one successor state s′ such that s

α−→ s′.5

Notation (Enabling Predicate). For an operation e, we define ene to be its enabling
predicate (its guard) that is evaluated over a state s.

Definition 1 (Independence). Two operation instances α and β are independent, if the
following constraint holds. Otherwise, they are dependent.

∀s, s1, s2 : enα(s) ∧ enβ(s) ∧ s
α−→ s1 ∧ s

β−→ s2 =⇒ ∃s′ : enβ(s1) ∧ enα(s2) ∧ s1
β−→ s′ ∧ s2

α−→ s′

The operation instance lock depends on add(1) (and vice versa, as the independence
relation is symmetric), because performing lock may (and will) disable add(1). The
operation instance add(1) is independent of add(2).

Usually, one approximates the independence relation during static analysis before model
checking based on operations. Two operations are independent if all respective operation
instances are independent.

4For example, an error in a twenty-year-old algorithm was recently discovered [Sie19].
5For Event-B it is straightforward to lift all non-determinism into parameters. In Classical B this
is more difficult; but the formalisation of independence with non-determinism would make the
presentation overly complex and detract from the main points of the chapter.

114

7.2. Background

s

s1 s2

s′

⇒s2

s

s1

α
β

β
α

α
β

Figure 7.1.: Visualisation of the Operation Independence Definition

As an example, the operations add and unlock are independent of each other be-
cause they write different variables (and the read in the guard of add of unlock is not
conflicting)6.

The Ample Set Approach

As the POR implementation in ProB relies on the ample set approach7, we introduce
it more formally. For this chapter, it is not necessary to understand why POR works in
detail, but only what information is required.
By op(α) we denote the operation associated with an operation instance α. We also

define the enabled operations in a state s by enabled(s) = {op(α) | ∃s′ : s α−→ s′}.
An ample set is a subset of enabled operations in a state (referred to as s in the

following formulas) that are considered by model checking. In other words, all operation
instances for operations not contained in the ample set are ignored. For example, in
Figure 7.1, we could choose ample(s) = {op(α)} and thus ignore β in s. To reach a
sound reduction of the state space, one requires the following conditions to hold (taken
from [Dob17]):

(A 1) Emptiness Condition: ample(s) = ∅ ⇔ enabled(s) = ∅

(A 2) Dependence Condition: Along every finite path in the original state space
starting at s, an operation dependent on ample(s) cannot appear before some
operation e ∈ ample(s) is executed.

The conditions (A 1) and (A 2) suffice for deadlock checking; LTL model checking (which
is used for invariant checking) has additional conditions (stutter and cycle), yet those
are out of scope for this chapter. In ProB’s implementation, two local criteria are used
instead of (A 2). They have been proven correct in [DL16, Dob17]:

(A 2.1) Direct Dependence Condition: Any (ignored) operation e ∈ enabled(s) \
ample(s) is independent of all operations in ample(s).

(A 2.2) Enabling Dependence Condition: Any (disabled) operation e ∈ Events \
enabled(s) that depends on some operation f ∈ ample(s) and is possibly co-
enabled with f may not become enabled by execution of operations e′ ̸∈ ample(s).

6More precisely, all operation instances of add are independent of unlock because they can never be
enabled at the same time.

7The implementation in LTSmin uses stubborn sets. There is not much difference concerning our
argument as the analysis must extract mostly the same information.

115

7. Towards Practical Partial Order Reduction for High-Level Formalisms

{}
⊥start

{1}
⊥

{2}
⊥

{1, 2}
⊥

{}
⊤

{1}
⊤

{2}
⊤

{1, 2}
⊤

ad
d(
1)

add(2)

add(2) ad
d(
1)

lock

unlock

lock

unlock

lock

unlock

lock

unlock

Figure 7.2.: State space of the machine in listing 7.1. Each state consists of the set xx
(at the top) and the boolean locked (at the bottom). The commutativity
of the add operation instances is highlighted.

Two operations are considered to be possibly co-enabled if there exists a state s in which
both guards are satisfied. Note that such a state may not be reachable.
Thus, in practice, the independence relation, an enabling relation and a “may be co-

enabled” relation between operations are approximated during a static analysis phase
(which we will refer to as POR analysis).

7.3. Idiom 1: Parameterised Operations

ProB’s partial order reduction and the POR analysis identifies operations by their
name. However, there may be several operation instances, i.e., combinations of a name
and concrete parameter values. A trivial example is part of listing 7.1.
From a high-level point of view, this machine has three operations where only add and

lock can be enabled simultaneously but are dependent. Thus, the state space cannot be
reduced. Yet, the operation instances add(1) and add(2) satisfy exactly our definition
of independence (fig. 7.1), as add(1) and add(2) commute (see fig. 7.2)!
In this example, the independence of some operation instances within the same op-

eration is not exploited. In many cases, certain operation instances of one operation
are independent of certain operation instances of another operation. An example is
described based on our grand challenge in section 7.5.2.

7.3.1. Solution: Unrolling of Operations

The example above has one important property: for the considered operation add, we
can statically determine a finite set of possible values for the parameters (i.e., either
yy = 1 or yy = 2). In this case we can replace the operation with all its operation
instances, by hardwiring the parameter values. For the example above, this gives rise to
two operations add 1 and add 2 in listing 7.3.

116

7.4. Idiom 2: Usage of Compound Values (Sets, etc.)

1 OPERATIONS

2 add_1 = SELECT locked = ⊥ ∧ 1 ̸∈ xx THEN xx := xx ∪ {1} END;

3 add_2 = SELECT locked = ⊥ ∧ 2 ̸∈ xx THEN xx := xx ∪ {2} END;

4 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

5 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

Listing 7.3: Unrolled add Operation

Advantage: Necessary Preprocessing

This technique is the bare minimum to locate independence between operations that
share at least one variable. Thus, it is the foundation for the techniques below.

Drawback: Infinite Sets

This unrolling technique is not always applicable given that parameter choices for all
states have to be considered. Indeed, the calculation of all possible parameter values may
be expensive and yield a large or infinite number of values (due to an overapproximation
by the static analysis).

Drawback: Multiple Evaluations

While unrolling an operation may be suitable for POR analysis, it duplicates the majority
of sub-expressions. Each operation is considered individually in ProB, and shared sub-
expressions have to be re-evaluated which results in a slow-down during model checking.
Below, we assume that all operation instances are unrolled. Thus, there is no difference

between the concepts of operation and operation instance and their independence. In
case an operation cannot be unrolled, it is retained as-is and syntactic independence can
still be determined.

7.4. Idiom 2: Usage of Compound Values (Sets, etc.)

With the simple unrolling technique above, we have established that the POR analysis
could now in principle spot the independence between operation instances. In prac-
tice, the POR analysis in ProB will, however, not determine the independence if two
operations write to the same variable.
For performance reasons, the POR analysis focuses mostly on syntactic aspects in

order to yield a fast approximation8. It considers the (action) read and write sets of
two operations (AR1, AR2, R1, R2, W1 and W2). A variable is contained in the action
read set AR of an operation, iff the substitution reads it; in the read set R iff the guard
or the substitution reads it; and in the write set W iff the variable is written to. The

8Which is precise enough for some formalisms (at least using LTSmin’s POR), but not for oth-
ers [LPVDPH16].

117

7. Towards Practical Partial Order Reduction for High-Level Formalisms

W1 ∩W2 = ∅

race
dependent

W1 ∩R2 = ∅
∧W2 ∩R1 = ∅

syntactic
independent

W1 ∩ AR2 = ∅
∧W2 ∩ AR1 = ∅

action
dependent

disabling
analysis

independent guard
dependent

falsetrue

true
false

true false

cann
ot

disab
le

can
disable

Figure 7.3.: Syntactically Determining the Independence Relation of Two Operations

POR analysis then follows the flowchart depicted in fig. 7.3, where only the disabling
analysis uses semantic aspects.
If we re-consider the operations in listing 7.3, we can observe that both add_1 and

add_2 write to the same variable xx. Obviously, the intersection of the two write sets
W1 ∩W2 is not empty and a syntactic POR analysis yields that the two operations are
(race) dependent. Yet, set union is associative and commutative and the operations
should be classified as independent because (xx ∪ {1}) ∪ {2} = (xx ∪ {2}) ∪ {1}.
A summary of a combined approach can be found in Appendix 7.A (listing 7.5).

7.4.1. Solution 1: Constraint-Based POR Analysis

Since the original syntactic approach depicted in fig. 7.3 does not suffice, we added a
new constraint-based semantic approach. Instead of syntactically classifying a pair of
operations as race or action dependent (see fig. 7.3), we use a constraint solver (ProB,
Kodkod or Z3) during the POR analysis. Below, we present how we determine oper-
ations to be independent by considering non-disabling and commutativity constraints
separately (see Def. 1). Further, in order to be able to check (A 2.2) on the fly, we also
use constraints to determine which other operations may (not) be enabled by a specific
operation. Finally, again for (A 2.2), one also has to determine which operations may be
co-enabled. For the overall approach, we use the notion of before-after predicates and
enabling predicates:

Notation (Before-After Predicate). For an operation instance e, we define BAe(s, s
′)

to be the before-after predicate. It is a conjunction of the guard of operation op(e) and
the predicate whose solutions s′ form the successor states of s using e.

118

7.4. Idiom 2: Usage of Compound Values (Sets, etc.)

As an example, the before-after predicate for the operation add_1 is9:

BAadd1(s, s
′) ≡ locked = ⊥ ∧ 1 ̸∈ xx⏞ ⏟⏟ ⏞

enadd1
(s)

∧ xx′ = xx ∪ {1} ∧ locked ′ = locked⏞ ⏟⏟ ⏞
substitution of add1

Before-after predicates do not exist for all operations, e.g., those containing a WHILE-
loop.

Non-Disabling Constraint

Independent operations must not disable each other and commute. The constraint below
checks whether operation α can disable the operation β. The conjunct Info might contain
additional information, such as the values of constants, proven theorems or (parts of)
the state invariant. Also note that the states s and s′ may not be reachable in the state
space, and, thus the following computes a (safe) approximation of disabling:

∃s, s′.(Info ∧ enβ(s) ∧ BAα(s, s
′) ∧ ¬enβ(s

′))

For example, to check whether add_1 may disable add_2, we have to consider the con-
straint:

∃s, s′.(Info ∧ locked = ⊥ ∧ 2 ∈ xx⏞ ⏟⏟ ⏞
enadd2

(s)

∧ locked = ⊥ ∧ 1 ̸∈ xx ∧ xx′ = xx ∪ {1} ∧ locked ′ = locked⏞ ⏟⏟ ⏞
BAadd1

(s,s′)

∧ ¬(locked ′ = ⊥ ∧ 2 ∈ xx′)⏞ ⏟⏟ ⏞
¬enadd2

(s′)

)

As this constraint is a contradiction, we can conclude that add 1 cannot disable add 2

(and, analogously, vice versa). This does not suffice for independence, and we have to
continue to check the commutativity of the operations (see below). However, lock can
(and will) disable add 1 and the operations cannot be independent. The same holds for
lock and add 2.

Commuting Constraint

The next constraint below encodes counter examples to commutativity in Def. 1. egain,
if a solution is found, a timeout occurs or unknown is returned by the solver, we conclude
that the operations might be non-commuting and thus dependent:

∃s, s1, s2, s3, s4.(Info ∧ BAα(s, s1) ∧ BAβ(s, s2) ∧ BAα(s2, s3) ∧ BAβ(s1, s4) ∧ s3 ̸= s4)

E.g., to find that add 1 and add 2 commute, the following constraint is used:

9We will directly refer to the state variables by their name; e.g., xx is part of state s, and xx′ is a
variable of s′.

119

7. Towards Practical Partial Order Reduction for High-Level Formalisms

∃s, s1, s2, s3, s4.(locked = ⊥ ∧ 1 ̸∈ xx ∧ xx1 = xx ∪ {1} ∧ locked1 = locked⏞ ⏟⏟ ⏞
BAadd1

(s,s1)

∧ locked = ⊥ ∧ 2 ̸∈ xx ∧ xx2 = xx ∪ {2} ∧ locked2 = locked⏞ ⏟⏟ ⏞
BAadd2

(s,s2)

∧ locked2 = ⊥ ∧ 1 ̸∈ xx2 ∧ xx3 = xx2 ∪ {1} ∧ locked3 = locked2⏞ ⏟⏟ ⏞
BAadd1

(s2,s3)

∧ locked1 = ⊥ ∧ 2 ̸∈ xx1 ∧ xx4 = xx1 ∪ {2} ∧ locked4 = locked1⏞ ⏟⏟ ⏞
BAadd2

(s1,s4)

∧¬(xx3 = xx4 ∧ locked3 = locked4)⏞ ⏟⏟ ⏞
s3 ̸=s4

)

Due to the associativity and commutativity of the set union, the two operations will
commute. Further, as they do not disable each other, the constraint can be found to
be unsatisfiable. Hence, we know for certain that for all states Def. 1 holds and the
operations are independent of each other.

Non-Enabling Constraint

For condition (A 2.2), we also have to know which operations can enable each other. In
order to determine whether operation α can enable β, we need a constraint similar to
the non-disabling constraint:

∃s, s′.(Info ∧ ¬enβ(s) ∧ BAα(s, s
′) ∧ enβ(s

′))

As an example, add 1 cannot enable add 2 and vice versa. However, both these opera-
tions can be enabled by unlock.

Co-Enabledness Constraint

Again, for condition (A 2.2), we need to know which operations are potentially co-
enabled. The constraint below is true if the operations α and β are co-enabled in some
state:

∃s.(Info ∧ enα(s) ∧ enβ(s))

For example, add 1 and add 2 are both enabled in the initial state. However, lock and
unlock are never co-enabled as their guards form a contradiction.

Advantage: Precision

Overall, such a constraint-based analysis is very precise and, in an optimal world, would
obtain all necessary information for POR.

120

7.4. Idiom 2: Usage of Compound Values (Sets, etc.)

Drawback: Required Information

In practice, (proven) invariants often are important to determine independence (i.e.,
they should be part of the Info predicate above). E.g., if x > 0 ⇒ x = y is known,
we can infer that the guards x > 0 and y ≤ 0 are mutually exclusive. However, adding
conjuncts to the Info predicate can also make a constraint solver time out. We were not
able to find a heuristic that selects additional information for the solver and consistently
succeeds for more complex models.

Drawback: Analysis Overhead

For many constraints the solvers time out, which vastly increases the POR analysis time.
We found that for many models, such an analysis surpasses the actual model checking
time for the full state space. The issue is further discussed regarding the interlocking
example in section 7.5.2.

Drawback: Instability of Solver Integrations

ProB’s own constraint solver does not perform well in finding unsatisfiability of the
commuting constraints. Other integrated solvers on the other hand, i.e., Kodkod and
Z3 fit extraordinarily well. However, for some constraints Kodkod and Z3 will occupy
all available memory (including swap space), leading to crashes during POR analysis.

7.4.2. Solution 2: SAT Encoding of Finite Sets

While the constraint-based approach above works well for smaller models, the blow up
of analysis time renders it less favourable for larger ones. Thus, we have implemented
a prototype10 that aims to expose syntactic independence by automatically re-writing
finite set variables (as well as finite relations) into a series of boolean variables. This
is technique often refered to as “bit blasting”, or “data refinement” in the context of
modelling and refinement. It also is used in Kodkod’s translation to SAT, and similar
re-writes are required when encoding such a model in lower-level formalisms, such as
Promela. In listing 7.2, an example encoding is given for the machine in listing 7.3.

One can see that the (original) set variable xx can contain at most two values that
can be determined statically (i.e., 1 and 2). Then, the original set xx is replaced by a
group of boolean variables, here xx_1 (that equals TRUE iff 1 ∈ xx) and xx_2 (that equals
TRUE iff 2 ∈ xx). Finally, a membership check is a comparison with TRUE (or FALSE for
non-membership, e.g., in the guard of add_1), and the set union with a singleton set
just sets the according boolean to true (e.g., in the body of add_1). Most operators
concerning sets, functions and relations can be re-written (though some translations are
rather involved [TJ07], and are omitted here).

10Available at: https://github.com/JanRossbach/fset

121

https://github.com/JanRossbach/fset

7. Towards Practical Partial Order Reduction for High-Level Formalisms

Advantage: Faster Analysis

The POR analysis yields a pretty precise result even if the original, fast syntactical
analysis in fig. 7.3 is re-used. For example, add_1 reads and writes only xx_1 and does
not require xx_2, and vice versa for add_2, resulting in independent operations on a
syntactical level. Further, as the behaviour of the machine is not altered, one could also
verify that this is a valid refinement in order to ensure correctness.

Drawbacks

Performance There are several aspects of performance overheads to consider here:
first, the translation itself requires some time, especially if all operations are unrolled and
if complicated invariants are used. For larger models, our prototype of the translation
may take several minutes. Second, the translated model does not perform as well during
model checking with ProB, and may be several times slower. Thus, a sensible option
would be to use the translated model for POR analysis only and map the results to the
original model.

Translatable Subset Unfortunately, not all operators in the B language have a straight-
forward mapping to a SAT encoding. As a fallback, one may re-calculate the original
set by combining all boolean values it is spliced into. Yet, in these instances, one loses
all syntactic independence again.

7.5. Case Study & Challenge: Railway Interlocking
System

In his book on Event-B [Abr10], Abrial presents a model11 of a railway interlocking
system. The role of an interlocking is to safely operate signals and points within an
area of the train network. This means that the interlocking controller has to ensure that
trains do not collide and that points are not moved while a train is driving over them.
In this section, we investigate the impact of the POR analysis techniques we presented

above with this interlocking system by Abrial [Abr10, Chapter 17] (cf. listing 7.4).
Although it is an academic model intended for teaching, we chose it because (i) it
shares several features with real-world models, (ii) while SAT-based approaches are
able to verify small to medium-sized interlockings [Bor18, PFB19], the verification of
larger interlockings is still an active research area and challenge, (iii) applying ProB’s
POR yields no state space reduction,(iv) it requires vast resources for model checking
— its state space for the simple topology from Fig. 7.4 consists of 61 648 077 states and
invariant checking with ProB would take about six days (based on estimates [KB18]
— without distributed model checking, the process ran out of memory and crashed),
(v) one can identify that partial-order reduction is in principle possible because the
route_freeing operation is independent of all other operations. One can hand-code

11https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_TLC.mch

122

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_TLC.mch

7.5. Case Study & Challenge: Railway Interlocking System

Figure 7.4.: Example interlocking track layout based on page 524 of [Abr10] with 5
signals, 5 points, one crossing and 14 tracks segments

this insight into the model [LBH14] by forcing this operation (route_freeing) to be
taken as soon as it is enabled12, thereby reducing the state space to 672 174 states. Our
challenge for the last years has been to identify why our current approach fails and to
obtain this two-order of magnitude reduction by (an improved) POR.

7.5.1. Interlocking Model Overview

The rail network is divided into individual blocks; the blocks in Fig. 7.4 are named A –
N. The interlocking allows trains to follow a fixed number of statically determined routes
through the network. Fig. 7.4 contains 10 routes, named R1 – R10. For example, route
R1 goes through blocks L, A, B, C, while route R2 goes through L, A, B, D, E, F, G
and route R6 is the reversed route of R1, going through C, B, A, L (analogously for R7
– R10).
The model also contains the following constants and variables: fst and lst are func-

tions that map a route to its first and last block, respectively. nxt is a function that —
given a route — returns a function mapping a block to its successor. rtbl is a relation
storing the routes for each block.
resbl (reserved blocks) resrt (reserved routes) and rsrtbl (blocks reserved for

routes) store information about reservations. OCC keeps track of blocks that are oc-
cupied. frm stores which routes are formed on the physical track (TRK). LBT maps a
route to the last block of the train.
Operations are usually called within a certain order: first, a route has to be re-

served (route_reservation) and the points need to be positioned to match the route
(point_positionning). Then, these points are locked as the route is formed
(route_formation). On formed routes, trains may enter and leave blocks in the cor-
responding order (via the operations FRONT_MOVE_1, FRONT_MOVE_2, BACK_MOVE_1 and
BACK_MOVE_2). Once a train finishes its route, the route is freed again (route_freeing).

12https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_tlc_POR.mch

123

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_tlc_POR.mch

7. Towards Practical Partial Order Reduction for High-Level Formalisms

1 SETS BLOCKS={A,B,C,D,E,F,G,H,I,J,K,L,M,N};

2 ROUTES={R1,R2,R3,R4,R5,R6,R7,R8,R9,R10}

3 CONSTANTS fst, lst, nxt, rtbl

4 VARIABLES LBT, TRK, frm, OCC, resbl, resrt, rsrtbl

5 INITIALISATION

6 resrt := ∅ ∥ resbl := ∅ ∥ rsrtbl := ∅ ∥ OCC := ∅ ∥ TRK := ∅ ∥
7 frm := ∅ ∥ LBT := ∅
8 OPERATIONS

9 route_reservation(r) =

10 SELECT r ̸∈ resrt ∧ (rtbl−1)[{r}] ∩ resbl = ∅
11 THEN resrt := resrt ∪ {r} ∥
12 rsrtbl := rsrtbl ∪ (rtbl ▷ {r}) ∥
13 resbl := resbl ∪ (rtbl−1)[{r}] END;

14 route_freeing(r)

15 SELECT r ∈ resrt \ ran(rsrtbl)

16 THEN resrt := resrt \ {r} ∥ frm := frm \ {r} END;

17 FRONT_MOVE_1(r) =

18 SELECT r ∈ frm ∧ fst(r) ∈ resbl \ OCC ∧ rsrtbl(fst(r)) = r

19 THEN OCC := OCC ∪ {fst(r)} ∥ LBT := LBT ∪ {fst(r)} END;

20 FRONT_MOVE_2(b) =

21 SELECT b ∈ OCC ∧ b ∈ dom(TRK) ∧ TRK(b) ̸∈ OCC

22 THEN OCC := OCC ∪ {TRK(b)} END;

23 BACK_MOVE_1(B) =

24 SELECT b ∈ LBT ∧ b ̸∈ dom(TRK)

25 THEN OCC := OCC \ {b} ∥ rsrtbl := {b} ◁− rsrtbl ∥
26 resbl := resbl \ {b} ∥ LBT := LBT \ {b} END;

27 BACK_MOVE_2(b) =

28 SELECT b ∈ LBT ∧ b ∈ dom(TRK) ∧ TRK(b) ∈ OCC

29 THEN OCC := OCC \ {b} ∥ rsrtbl := {b} ◁− rsrtbl ∥
30 resbl := resbl \ {b} ∥ LBT := LBT \ {b} ∪ {TRK(b)} END;

31 point_positionning(r) =

32 SELECT r ∈ resrt \ frm

33 THEN TRK := ((dom(nxt(r)) ◁− TRK)

34 ▷− ran(nxt(r))) ∪ nxt(r) END;

35 route_formation(r) =

36 SELECT r ∈ resrt \ frm ∧
37 (rsrtbl−1)[{r}] ◁ nxt(r) = (rsrtbl−1)[{r}] ◁ TRK

38 THEN frm := frm ∪ {r} END

39 END

Listing 7.4: Grand Challenge: Abrial’s Interlocking System (Excerpt)

124

7.5. Case Study & Challenge: Railway Interlocking System

Since only some routes share blocks, several routes can be reserved, formed and several
trains may be on the tracks at the same time. For example, route R1 does not share
any block with route R4 or R5. On the other hand, route R3 and R4 both include the
blocks F and G.

7.5.2. Insights

Operation Unrolling

As previously mentioned, this is the key technique for the POR analysis that avoids re-
writing the POR implementation itself. In our case study, one can unroll all operations,
as parameters are either one of the ten routes or fourteen blocks. Then, the unrolled
model has 92 operations. If the operations were not unrolled, one could not exploit that
some pairs of routes do not overlap (and the corresponding operation instances are, thus,
independent). One consequence is that the POR analysis cannot infer the independence
of, e.g., the route reservation of the disjoint routes R1 and R5. Another consequence is
that, e.g., route_reservation and route_formation are overapproximated as depen-
dent, even though some pairs of routes do not overlap (and the corresponding operation
instances are, thus, independent).

Constrained-Based Analysis

The constraint-based approach is able to yield a precise independence analysis. This,
however, comes with a cost: if operations are dependent on each other, solvers usually
time out rather than returning a counterexample or unknown. As many operations
do not commute (or may enable or disable each other), this drastically increases POR
analysis time. As 4186 (unordered) pairs of operations exist, a full analysis that checks
the non-disabling, commutativity (for independence) as well as non-enabling and co-
enabledness constraints (for (A 2.2)) takes several hours even on modern hardware due
to the amount of timeouts. Finally, even though the obtained information was pretty
precise, we did not achieve any reduction with this approach. The POR analysis was
not able to determine that a crucial pair of operations cannot be co-enabled (cf. (A
2.2)), and was not precise enough concerning the enabling relation. In particular, for
the same parameter route R, the operation instance route_freeing(R) may disable
both point_positionning(R) and route_formation(R) and, thus, is not independent
of them. However, the operations are never enabled at the same time. If this co-
enabledness was disproven, the reduction would occur as expected.

SAT Encoding

Finally, the SAT encoding of the original model13 in combination with the constraint-
based analysis yielded the most precise POR analysis results. In consequence, the tech-
nique also allowed the POR algorithm to achieve the same reduction as the hand-written

13https://github.com/pkoerner/train-por/blob/main/train_auto4.mch

125

https://github.com/pkoerner/train-por/blob/main/train_auto4.mch

7. Towards Practical Partial Order Reduction for High-Level Formalisms

version. Analysis and model checking takes about 30 minutes (1881 seconds) and re-
quires 5048 MB of memory. In comparison, the hand-written version without ProB’s
POR takes around 7 minutes (397 seconds) and uses 2038 MB of memory. The faster
runtime is due to the overhead of the POR as well as the less efficient encoding of the
refinement. Reasons for the additional memory usage include a larger refined model and
larger states, storage of POR analysis results, etc.

7.6. Conclusions and Future Work

In this chapter, we have identified two idioms in B and Event-B — operation abstraction
by parameters and usage of high-level data types — that often hinder the POR analysis
and, henceforth, successful state space reduction. Certainly, there are further patterns
that may be uncovered in the future. Thus, our main conclusion is that the usage of high-
level constructs prevalent in B are indeed the root cause for our previous unsatisfying
experiences with POR and, thus, deeper analysis is required.
We have described three techniques in sections 7.3 and 7.4, (i.e. unrolling of oper-

ations, constraint-based POR analysis of operations based on before-after predicates
and/or a precise SAT encoding of finite set variables). Individually, each technique is
no universal remedy and brings its own drawbacks to the table. In combination, how-
ever, one can exploit their individual advantages and, indeed, we were able to match the
two order of magnitude state space reduction of the hand-written version for deadlock
checking of the interlocking case study.
Related work is dynamic POR [FG05] which is especially useful for model checking of

concurrent software systems, where possible parameter values are drawn from large or
infinite sets such as integer values. It avoids static analysis altogether, tracks information
dynamically during execution traces and backtracks later if alternative paths that need
to be explored are identified. One main benefit is that one does not need to keep the
entire state space in memory but only the execution that is currently considered. While
this is quite different from our approach, it still requires precise information on the
dependence relation and, thus, cannot yield better reduction alone. Yet, evaluating the
dependency relation lazily — i.e., considering only combinations of operation instances
which are actually encountered — can help where our improvements in sections 7.3
and 7.4 currently fail, i.e., when parameters are drawn from infinite sets or when sets
are statically unbounded.
The constraint-based analysis still has room for improvement: for one, there might be

useful heuristics for similar operation pairs to avoid timeouts. If missing information was
made more transparent to the user, one might also assist the POR analysis by providing
(proven) theorems. Yet, our implementation of SAT encoding is not mature enough for
large-scale benchmarking. In the future, we aim to evaluate our new approach in the
large.
Finally, the focus of this study lies on deadlock checking — invariant or LTL model

checking may require different or additional techniques. In particular, it is often hard to
prove that operations preserve the invariant (which is required for operations to be stut-

126

7.6. Conclusions and Future Work

ter events, which in turn is required for successful reduction during LTL model checking).
Thus, work in this direction might benefit from integrating provers to obtain information
about invariants that are guaranteed to be preserved by individual operations.

Acknowledgments

The authors would like to thank Joshua Schmidt for his patience and relentless work on
the Z3 interface and Jan Roßbach for his implementation of the SAT encoding of finite
sets.

127

7. Towards Practical Partial Order Reduction for High-Level Formalisms

7.A. Pseudo-Code Overview of the POR Analysis

1 non_disabling = set()

2 independent = set() ## symmetric

3 may_enable = set()

4 may_be_coenabled = set() ## symmetric

5

6

7 def por_analysis():

8 determine_non_disabling()

9 determine_independence() # execute after non_disabling is determined

10 determine_may_enable()

11 determine_coenabledness()

12

13 def determine_non_disabling():

14 for op1 in ops:

15 for op2 in ops:

16 if op1 == op2:

17 ## not relevant for POR

18 ## phase 1: syntactic check (fast):

19 if empty(intersection(write(op1), read(op2))):

20 non_disabling.add(pair(op1, op2))

21 else:

22 ## optional phase 2: fallback to constraint solver

23 if solve(non_disabling_constraint(op1, op2)) == contradiction:

24 non_disabling.add(pair(op1, op2))

25

26 def determine_independence():

27 ## requires non_disabling relation to be calculated

28 for op1 in ops:

29 for op2 in ops:

30 if op1 == op2:

31 pass ## assume dependent

32 else if op1 >= op2:

33 pass ## performance optimisation: symmetric relation

34 else if pair(op1, op2), pair(op2, op1) in non_disabling:

35 ## if one op might disable the other, ops are dependent.

36 ## phase 1: syntactic check (fast):

37 if empty(intersection(write_set(op1), write_set(op2))):

38 independent.add(pair(op1, op2))

39 independent.add(pair(op2, op1)) # symmetry reduction

40 else:

41 ## optional phase 2: fallback to constraint solver

42 if solve(commuting_constraint(op1, op2)) == contradiction:

43 independent.add(pair(op1, op2))

44 independent.add(pair(op2, op1)) # symmetry reduction

128

7.A. Pseudo-Code Overview of the POR Analysis

45

46 def determine_may_enable():

47 for op1 in ops:

48 for op2 in ops:

49 if op1 = op2:

50 continue ## an op cannot enable itself

51 ## phase 1: syntactic check (fast):

52 if empty(intersection(write_set(op1), guard_read_set(op2)):

53 pass

54 else:

55 ## optional phase 2: fallback to constraint solver

56 if solve(non_enabling_constraint(op1, op2)) != contradiction:

57 may_enable.add(pair(op1, op2))

58

59 def determine_coenabledness():

60 for op1 in ops:

61 for op2 in ops:

62 ## no reasonable syntactical approximation feasible

63 ## must assume true without further information

64 if solve(coenabledness_constraint(op1, op2)) != contradiction:

65 may_be_coenabled.add(pair(op1, op2))

Listing 7.5: Pseudo-Code of POR Analysis

129

Conclusions

8. Conclusions and Future Work

In this final chapter, we re-visit the research questions from chapter 1 and try to answer
them based on the conclusions from each article.

8.1. Integrating formal specifications into applications:
the ProB Java API

We found that the ProB Java API renders it easy to embed high-level specifications
directly into programs. This raises the questions:

• RQ 1: In what circumstances should (high-level) specifications be executed?

• RQ 2: What kinds of applications can reasonably interact with a formal methods
tool?

• RQ 3: What are benefits and drawbacks wrt. generated code?

Re RQ 1: When to execute high-level specifications?

Executability of formal specifications — e.g., in the form of animation — is always
desirable in order to verify not only the absence of errors but also that the specification
actually fulfils the requirements. Naturally, this should happen as soon as possible in
the development process.

Re RQ 2: When to embed FM tools?

It makes sense to embed a specification in order to simulate an environment that follows
known rules. One example is the ETCS HL3 case study, where existing components
were hooked into the application and triggered certain events; another is Pac-Man,
where the ghosts have several movement options at a junction, but the actual behaviour
is described by an algorithm.
Less suitable are applications with heavy real-time requirements; for example, a Pac-

Man GUI that actually feels smooth seems still out of reach due to the communication
overhead with the ProB kernel. If the requirements are more lax, as with the ETCS HL3
demonstrator, embedding the specification is certainly an option. Real-time constraints
can also be acted upon in two ways: first, direct integration of the formal methods
tool; in the case of ProB, implementation in Prolog that avoids communication and
translation overhead makes more applications feasible at the cost of leaving the Java

133

8. Conclusions and Future Work

eco-system behind. Second, refinement to lower levels of abstraction that require less or
even avoid constraint solving, which should speed up the calculation of successor states.

Re RQ 3: Executing Specifications vs Code Generation

In some instances, deriving an implementation is hard or cumbersome, and, often, too
many of refinement steps are necessary to actually reach B0. Some steps can be done
automatically [Lec14b], using tools like BART [BM99]. If the required performance
is provided by ProB and its Java API, one can certainly embed the entire tool in
an application. Nota bene: this approach should be used for rapid prototyping or
demonstrators, not for actual safety-critical systems.
Code generation from more high-level specifications has been explored [Vu18, VHKL19].

However, this approach also faces limitations: first, a sufficient number of refinements is
still required — e.g., comprehension sets must follow a certain pattern where the n-th
conjunct of the predicate must constrain the n-th variable to a finite type. Second, large
or infinite sets (e.g., set of integers) are still enumerated entirely. Here, the performance
of constraint solvers makes a significant difference [VBL22]. Thus, we conclude, that for
applications that work on small and finite types, generated code easily outperforms in-
terpretation; however, once efficient constraint solving is required, embedding the entire
ProB interpreter may be beneficial.

So What? Overall, developing formal specifications similar to a “model-in-the-loop
testing” approach seems to be a sensible next step in the evolution of formal methods
and should be made more accessible to practitioners. Similarly, the Functional Mock-
Up Interface (FMI) standard [BOA+12] allows co-simulation of hybrid models. Using
FMI, a B model could simulate discrete state changes only, while other tools simulate
a continuous environment. Especially with recent experiments with floating-point and
real numbers, an implementation of the FMI is worth pursuing.
Another interesting idea could be to combine code generators, e.g., B2Program

[VHKL19], with the Java API for faster execution of (parts of) specifications. This
could, again, enhance the range of applications where the performance of the presented
approach is not sufficient.

8.2. A Verified Low-Level Implementation and
Visualization of the Adaptive Exterior Light and
Speed Control System

Our case study in chapter 3 was designed to address the following questions:

• RQ 4: How does verification after a non-formal, test-driven workflow (“correcting-
the-construction”) compare to applying formal methods from the get-go “correct-
by-construction”?

134

8.2. A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS

• RQ 5: What classes of properties of C code are verifiable by existing tools?

Re RQ 4: Formal vs Non-Formal Development Approaches

The implementation rigorously followed a test-driven approach; the number of lines of
code for testing is about four times the number of lines of code of the implementation.
At the early implementation phase, we thus felt confident in the correctness of the
implementation, and our tests were able to catch the most severe bugs. However, the
more implementation work was done, the more we felt that we lost understanding of our
code and changes triggered failing tests more frequently. Additionally, the test scenarios
required more adaptations of our code.

Addressing located issues is far from trivial. For example, the implementation of
the light system is rather small with about 400 lines of C code. However, the main
function that reads all sensors and calculates the signals to be sent to the lights contains
35 if-statements on the top-level, with additional nested ifs. The conditions of the if-
statements are in many cases not trivial to understand, which makes it hard to reason
about conditions that are contradictory or what requirement has precedence over others.

The design of our implementation allowed us to interact with the code easily and
account for missing tools: for example, graphics libraries could be linked with the code
in order to achieve visualisations of real-time executions. Further, we found that the
state changes in the trace provided by CBMC were too fine-grained. However, we could
quickly account for this issue with an ad-hoc visualisation tool.

Merging several execution step might also make sense for animation of higher-level
formalism: e.g., the CODA framework [BCE+13] (based on Event-B and UML-B [SB06])
automatically executes “internal” events (usually, a skip event in the abstract machine)
using ProB. State visualisation tools such as BMotionWeb [LL16] and VisB [WL20] also
can execute several events at once (as, e.g., in the Pac-Man case study section 2.3.1).

Re RQ 5: Verifiable Properties on Implementation

With CBMC, one can verify properties such as invariants in B (depending on where
an assertion is placed in the code). However, the actual verification requires unwieldy
injection of additional information for the tool in the code. While there are other tools
that work on C code, CBMC does not support temporal logics such as LTL or CTL, yet,
some properties (e.g., the next operator) can be emulated by injecting additional state
variables.

Attempts of formal verification using CBMC immediately raised counterexamples, in
some cases due to bugs, in others due to our assumptions on possible program states, or
due to missing information from the specification. Sound verification, however, is not as
easy as it seems at first glance and more training with the CBMC tool is required than
expected. Indeed, our first attempts of verification were incorrect and significant changes
to the code are required. Here, the claimed benefits of a more structured approach prove
true.

135

8. Conclusions and Future Work

So What? In summary, this case study will add to the body of evidence that formal
methods are beneficial. At the very least, a model checking tool exposed errors we did
not locate before. In order to organise the code, a notion of guarded substitutions, such
as operations in B, as well as related analysis tools would certainly have been helpful.
Yet, looking back after more than two years since the submission of our case study, it
is likely that changes to code and a formal specification will be painful and error-prone.
However, we would have more trust in correctness of formal model here. So, overall, the
approach of the article should not be adopted for real projects.
On the other hand, it is worth highlighting the benefits of our approach: the code can

be directly linked into real sensors and be executed. Also, a broad range of off-the-shelf
libraries can be applied. Typically, this is not achievable with formal method tools,
though one can achieve similar results using, e.g., the ProB Java API.
Finally, the experiment showed that, indeed, it is possible to locate errors in C code.

Verification of invariants is also efficient: due to the nondeterministic sensor reads and
user interactions, the code is translated to SMT predicates that form an inductive proof
and only a few iterations of the main loop have to be unwound. Thus, for code generators,
such an additional validation step on the emitted code certainly is feasible and only
requires that the emitted code contains CBMC’s annotations and adheres to its naming
conventions.

8.3. Treating Specifications as Data

With our implementation of lisb in chapter 4, we examined the research questions below:

• RQ 6: What kind of issues of B’s DEFINITIONS can be addressed using a
Lisp-style macro system?

• RQ 7: What is a favourable way to integrate external data sources with ProB’s
constraint solver?

• RQ 8: How does meta-programming of B models elevate DSL and tool develop-
ment?

Re RQ 6: Alternative Definition System

The expressiveness of Clojure’s macro system is a great fit for generating B machines.
However, getting the right combination of quoting and unquoting reader macros right
is notoriously intricate; from my experience teaching Clojure, this is the topic students
struggle the most with. Thus, the difficulty of mastering this kind of macro system
may outweigh its benefits, especially in the context of safety-critical where correctness
is required.
We have also presented lisb’s defpred mechanism, which is similar to ProB’s inter-

pretation of definitions. It inlines the predicate or expression by directly inserting a
sub-tree in the AST. The difference is that lisb is not able to capture variables from an

136

8.4. Towards a Shared Specification Repository

outer scope. If another variable is used, it must be passed as an argument. We deem
this a sensible middle ground of the alternatives, as it eliminates the most common error
sources and is still easy to use.

Re RQ 7: Interaction with External Data Sources

The embedding of B in Clojure has similar advantages to the embedding of Alloy in Ruby
(αRby) [MJ14]: no additional parser is needed, the language can be easily extended,
solutions that the solver provides can be processed for further constraint solving tasks,
and, relevant for RQ 7, external data from disk, network, etc. can be transformed into
a format suitable for the formal language and its tooling.
The goals of lisb and αRby differ: where αRby seems to be mostly motivated by mixed

execution, usage of partial solutions and stages model finding, lisb aims at processing
input data, solutions and the opportunity of meta-programming entire specifications.
Addresses these goals, we differ in our judgement concerning the programming language
the formalism is embedded into: we deem a functional language more suitable for data
transformation that an imperative language.

Re RQ 8: Meta-Programming Specifications

This approach facilitates tool and DSL development. As B machines are treated as
plain data, stateless transformation is easily possible. As examples, first, we considered
the algorithm description language implemented by Clark in her master’s thesis [Cla16,
CBH+16]. In a single afternoon, we were able to design a DSL in lisb that generates B
operations for all statements contained in the proposed language. Second, as a bachelor
student with no prior knowledge of lisb or B, Roßbach was able to implement a rather
complex automatic refinement tool as part of his bachelor’s thesis [Roß22]. Thus, we
conclude that the infrastructure lisb for meta-programming is satisfactory, and even
complex tools and DSLs can be implemented.

So What? Meta-programming of formal specifications are a preferable way of interact-
ing with external data sources. It also enables easier development of tools that support
(e.g., a refinement tool) or use (e.g., providing a DSL) the formalism. Certainly, it would
be an interesting experiment to compose B specifications using the B language itself in
order to obtain transformations that can be proven correct.
Many features prevalent in programming languages raise issues and questions on how

to express them in B. Examples include, recursion, inheritance, interfaces or polymorphic
functions in general, which require significant translation effort. It is not clear whether
such constructs can be expressed at all with the current B language [Leu21]. Thus, future
experiments on DSLs can drive the evolution of the B language or certain dialects.

8.4. Towards a Shared Specification Repository

In order to accommodate different possible use cases, we asked:

137

8. Conclusions and Future Work

• RQ 9: How can information about specifications be organised in an open, exten-
sible way?

• RQ 10: How should sets of benchmarks be handled?

• RQ 11: How should changes to specifications be incorporated into the repository?

• RQ 12: What kind of specifications are available in ProB’s public examples?

Re RQ 9: Extensible Information Organisation

The B machines in the repository may be used by different applications. We simply
used maps to organise the data. One would expect certain keys always to be present,
as certain information is application- and tool-agnostic. Examples include whether the
machine includes errors that should be determined on load (e.g., parse or type errors),
how many variables and operations are present, and whether it contains a deadlock or
invariant violation.
Other information depends on tooling and used techniques: for example, applying

partial order reduction might yield a lower number of explored states and transitions,
and, thus, improve run-time and memory consumption significantly. One would expect
corresponding entries to be optional, e.g., if a technique cannot be applied to machines
with certain features. Using Clojure’s spec library1, one can also automatically check
conformance to this format.

Re RQ 10: Benchmark Sets

Benchmark sets and results can be included in the repository itself, as for example done
for well-definedness checking [Leu20]. An alternative approach was recently presented
in the context of machine repair [CSD+22], where the authors describe the filters they
applied in order to reach the benchmark set. However, as machines can be added at any
time, it is important to cite the revision that is used as a foundation.

Re RQ 11: Changes to Benchmarks

In the manuscript, we advocated that changes to the specifications should not occur and
new version should be added instead. While immutability of benchmarks certainly is a
desirable property, it may also hinder changes due to tool development. As an example,
ProB introduced a new keyword floor for experiments with floating-point and real
numbers. Consequently, all examples of lift machines that contained a state variable
named floor to specify the position of the lift were broken and updated. Though it may
be useful to document that certain machines once worked with ProB, in this instance,
adding copies introduces semantic clones of the machines which may in turn lead to
a bias for benchmarks. Thus, a more pragmatic approach would be to let the version
control system git take care of tracking changes.

1https://clojure.org/guides/spec

138

https://clojure.org/guides/spec

8.5. Empirical Evaluation of POR for B

Re RQ 12: Overview of Available Machines

Regarding the available machines, we can classify (at the time of writing) 4091 machines
roughly as:

• 818 machines that do not parse properly,

• 659 B and 178 Event-B machines without operations (or events), which are most
likely used for constraint programming or data validation,

• 1284 B and 288 Event-B machines with less than 1000 reachable states,

• 211 B and 95 Event-B machines with more than (or equal to) 1000 reachable states,

• 384 B and 174 Event-B machines of unknown size.

We can conclude that the repository contains many “small” machines with only few
states. For 653 specifications, this may be due to the usage of deferred sets, which by
default are treated as sets with only two elements. In such cases, one could probably
scale the state space arbitrarily by changing ProB’s preferences.

So What? Gathering information about ProB’s public examples was long overdue and
it is good to see that first research articles make use of it for larger-scale evaluation efforts
[Leu20, CSD+22]. However, some further organisation is necessary in order to separate
toy examples from specifications stemming from industry and academic case studies
with similar features. Then, one can propose default benchmark sets for established
applications such as model checking.

8.5. Empirical Evaluation of POR for B

Regarding partial order reduction in B, we asked ourselves:

• RQ 13: How well does the current implementation of POR in ProB perform?

Judging from our evaluation in chapter 6, the current implementation of POR in
ProB does not achieve reduction for the majority of machines. While POR typically
is associated with reduction of several orders of magnitude, we mostly observed less
than an order of magnitude, with a few outliers that were very susceptible to POR.
However, the empirical evaluation mostly considered smaller models, and POR might
perform better for larger models. Yet, there is little substance supporting this theory:
in chapter 7, we found that certain widespread modelling patterns, that are especially
used to structure larger models, interfere with the POR analysis.

So What? While we assessed that, currently, POR does not perform well, we also
found some strategies that enable more precise POR analysis. One can imagine that,
in the future, certain automatic re-writes of machines may boost POR effectiveness
significantly.

139

8. Conclusions and Future Work

8.6. Towards Practical Partial Order Reduction for
High-Level Formalisms

Finally, we are able to answer the following question:

• RQ 14: Why is the application of POR techniques in ProB unsuccessful in most
cases?

The use of high-level data structures and abstraction is a good indicator that POR
will not perform well. However, it is neither a sufficient nor a necessary condition; Many
low-level specifications are not suitable for POR as their ordering is important, and some
high-level specifications feature syntactical independence which allows ProB’s POR to
reduce the state space.
However, the usage of higher-level constructs is widespread in the B language, as they

are more expressive and, as such, more comfortable to use. In chapter 7, we identified
two idioms — operation abstraction by parameter and usage of sets — that interfere
with ProB’s POR analysis. We also presented strategies that improve the precision of
the POR analysis.
This does not mean that these are the only two idioms. Careful evaluation and better

visualisation why a POR technique fails is necessary to identify or counteract further
idioms. In particular, a large-scale evaluation similar to the one in chapter 6 that includes
new techniques is still outstanding.
One of the main issue concerning solvers in the POR analysis is that in the current

implementation, they are called too rarely to be effective. In practice, most of the
required analysis result can be obtained by solvers such as Kodkod (if applicable) as well
as Z3. Here, these solvers are often able to produce counterexamples quickly. However,
if the constraint holds true, the solvers usually time out. This renders the usage to their
best capabilities difficult and unlikely.
ProB’s own solver does not work particularly well with commuting constraints that

include set operators; e.g., (s ∪ {1}) ∪ {2} = (s ∪ {2}) ∪ {1} can not be proven to be
true as s is quantified over all possible set values. Improved constraint handling rules
that encode commutative operators may help here.

So What? Overall, the situation is not as dire as chapter 6 suggests. The two identified
idioms that hinder POR are widely used in B and addressing them can improve the
performance of POR significantly. On the other hand, the current state still is not very
satisfactory: the bitvector encoding does not work for all operators. Especially function
calls are hard to translate, and n-ary relations for n > 2 can blow up significantly. The
solvers that are currently available are also not sufficient, as timeouts are too costly
during analysis of larger models.
Thus, an approach that seems to be more hopeful would be to create specialised solvers

for each constraint type. For example, many operators △ (e.g., the set union ∪) are
known to be commutative and associative, so that (a△b)△c = a△(b△c) = a△(c△b) =
(a△c)△b holds, which is the form of the independence constraints. Using constraint

140

8.6. Towards Practical Partial Order Reduction for High-Level Formalisms

handling rules (CHR) [Frü09], one could specify such rules in Prolog. Then, a mixture
of solvers and bitvector encoding might be a combination that works well for the static
analysis.
Alternatively, one could also explore the dynamic partial order reduction techniques

and see what benefits are transferable from software model checking to high-level spec-
ifications.

141

Bibliography

[ABG+20] Paolo Arcaini, Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene,
and Patrizia Scandurra. Modelling an Automotive Software-Intensive
System with Adaptive Features Using ASMETA. In Proceedings ABZ
(International Conference on Rigorous State-Based Methods), volume
12071 of Lecture Notes in Computer Science, pages 302–317. Springer,
2020.

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. Rodin: An Open Toolset
for Modelling and Reasoning in Event-B. Software Tools for Technology
Transfer, 12(6):447–466, 2010.

[ABHV06] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent
Voisin. An Open Extensible Tool Environment for Event-B. In Proceed-
ings ICFEM (International Conference on Formal Engineering Meth-
ods), volume 4260 of Lecture Notes in Computer Science, pages 588–605.
Springer, 2006.

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[Abr06] Jean-Raymond Abrial. Formal Methods in Industry: Achievements,
Problems, Future. In Proceedings ICSE (International Conference on
Software Engineering), pages 761–768. ACM, 2006.

[Abr07] Jean-Raymond Abrial. Formal Methods: Theory Becoming Practice.
Journal of Universal Computer Science, 13(5):619–628, 2007.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software En-
gineering. Cambridge University Press, 2010.

[AGRS11] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scan-
durra. A model-driven process for engineering a toolset for a formal
method. Software: Practice and Experience, 41(2):155–166, 2011.

[ALN+91] Jean-Raymond Abrial, Matthew Lee, Dave Neilson, P.N. Scharbach, and
Ib Holm Sørensen. The B-Method. In Proceedings VDM (International
Symposium of VDM Europe), volume 552 of Lecture Notes in Computer
Science, pages 398–405. Springer, 1991.

143

Bibliography

[ASM80] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Spec-
ification language. In On the Construction of Programs: An Advanced
Course. Cambridge University Press, 1980.

[aut19] General Specification of Basic Software Modules. AUTOSAR, Munich,
2019.

[AV14] Robert Abo and Laurent Voisin. Formal implementation of data vali-
dation for railway safety-related systems with OVADO. In Proceedings
SEFM (International Conference on Software Engineering and Formal
Methods) 2013, volume 8368 of Lecture Notes in Computer Science, pages
221–236. Springer, 2014.

[Bac81] Ralph-Johan Back. On correct refinement of programs. Journal of Com-
puter and System Sciences, 23(1):49–68, 1981.

[BAPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The Temporal Logic
of Branching Time. Acta informatica, 20(3):207–226, 1983.

[Bau04] Hubert Baumeister. Combining Formal Specifications with Test Driven
Development. In Proceedings XP/Agile Universe, volume 3134 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2004.

[BBH18] Roberto Bagnara, Abramo Bagnara, and Patricia M. Hill. The MISRA C
Coding Standard and its Role in the Development and Analysis of Safety-
and Security-Critical Embedded Software. In Proceedings SAS (Interna-
tional Static Analysis Symposium), volume 11002 of Lecture Notes in
Computer Science, pages 5–23. Springer, 2018.

[BC10] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Pro-
gram Development: Coq’Art The Calculus of Inductive Constructions.
Springer, 2010.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. Advances in computers,
58(11):117–148, 2003.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Proceedings TACAS (Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems), volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[BCE+13] Michael Butler, John Colley, Andrew Edmunds, Colin Snook, Neil Evans,
Neil Grant, and Helen Marshall. Modelling and refinement in CODA. In
Proceedings Refine (International Refinement Workshop), volume 115 of
EPTCS, pages 36–51, 2013.

144

Bibliography

[BCM+92] Jerry R. Burch, Edmund Clarke, Kenneth L. McMillan, David L. Dill,
and Lain-Jinn Hwang. Symbolic model checking: 1020 states and beyond.
Information and computation, 98(2):142–170, 1992.

[BDLM14] Richard Bonichon, David Déharbe, Thierry Lecomte, and Valério
Medeiros. LLVM-Based Code Generation for B. In Formal Methods:
Foundations and Applications, volume 8941 of Lecture Notes in Com-
puter Science, pages 1–16. Springer, 2014.

[BDMS05] Clark Barrett, Leonardo De Moura, and Aaron Stump. SMT-COMP:
Satisfiability modulo theories competition. In Proceedings CAV (Inter-
national Conference on Computer Aided Verification), volume 3576 of
Lecture Notes in Computer Science, pages 20–23. Springer, 2005.

[Bec03] Kent Beck. Test-driven Development: By Example. Kent Beck signature
book. Addison-Wesley, 2003.

[BGJ+21] Jens Bendisposto, David Geleßus, Yumiko Jansing, Michael Leuschel,
Antonia Pütz, Fabian Vu, and Michelle Werth. ProB 2-UI: A Java-
Based User Interface for ProB. In Proceedings FMICS (International
Conference on Formal Methods for Industrial Critical Systems), volume
12863 of Lecture Notes in Computer Science, pages 193–201. Springer,
2021.

[BGR03] Egon Börger, Angelo Gargantini, and Elvinia Riccobene. Abstract State
Machines 2003. Advances in Theory and Practice: 10th International
Workshop, ASM 2003, Taormina, Italy, March 3-7, 2003. Proceedings,
volume 2589. Springer, 2003.

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of For-
mal Methods. IEEE Software, 12(4):34–41, 1995.

[BJL+19] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco
Muñiz, and Jiŕı Srba. Partial Order Reduction for Reachability Games.
In Proceedings CONCUR (International Conference on Concurrency
Theory), volume 140 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[BKK+20] Michael Butler, Philipp Körner, Sebastian Krings, Thierry Lecomte,
Michael Leuschel, Luis-Fernando Mejia, and Laurent Voisin. The First
Twenty-Five Years of Industrial Use of the B-Method. In Proceed-
ings FMICS (International Conference on Formal Methods for Industrial
Critical Systems), volume 12327 of Lecture Notes in Computer Science,
pages 189–209. Springer, 2020.

145

Bibliography

[BKL+16] Jens Bendisposto, Philipp Körner, Michael Leuschel, Jeroen Meijer, Jaco
van de Pol, Helen Treharne, and Jorden Whitefield. Symbolic Reacha-
bility Analysis of B through ProB and LTSmin. In Proceedings iFM
(International Conference on integrated Formal Methods), volume 9681
of Lecture Notes in Computer Science, pages 275–291. Springer, 2016.

[BL05] Michael Butler and Michael Leuschel. Combining CSP and B for specifi-
cation and property verification. In Proceedings FM (International Sym-
posium on Formal Methods), volume 3582 of Lecture Notes in Computer
Science, pages 221–236. Springer, 2005.

[BL09] Jens Bendisposto and Michael Leuschel. Proof assisted model checking
for B. In Proceedings ICFEM (International Conference on Formal En-
gineering Methods), volume 5885 of Lecture Notes in Computer Science,
pages 504–520. Springer, 2009.

[BM99] Lilian Burdy and Jean-Marc Meynadier. Automatic refinement. In
Proceedings BUGM (B User Group Meeting) at FM’99, 1999. https:

//www-sop.inria.fr/everest/Lilian.Burdy/ug020003.pdf.

[BM08] Cathal Boogerd and Leon Moonen. Assessing the Value of Coding Stan-
dards: An Empirical Study. In Proceedings ICSM (International Con-
ference on Software Maintenance), pages 277–286. IEEE, 2008.

[BOA+12] Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Jung-
hanns, Jakob Mauss, Dietmar Neumerkel, Hans Olsson, and Antoine
Viel. Functional mockup interface 2.0: The standard for tool indepen-
dent exchange of simulation models. In Proceedings MODELICA, pages
173–184. Linköping University Electronic Press, 2012.

[Bor18] Arne Borälv. Interlocking Design Automation Using Prover Trident. In
Proceedings FM (International Symposium on Formal Methods), volume
10951 of Lecture Notes in Computer Science, pages 653–656. Springer,
2018.

[BS03] Egon Börger and Robert F. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer, 2003.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Stan-
dard – Version 2.0. In Proceedings SMT (International Workshop on
Satisfiability Modulo Theories), 2010.

[BTJHL17] Victor Bandur, Peter Würtz Vinther Tran-Jørgensen, Miran Hasanagic,
and Kenneth Lausdahl. Code-generating VDM for Embedded Devices.
In Proceedings of the 15th Overture Workshop, volume 1513 of School

146

https://www-sop.inria.fr/everest/Lilian.Burdy/ug020003.pdf
https://www-sop.inria.fr/everest/Lilian.Burdy/ug020003.pdf

Bibliography

of Computing Science Technical Report Series, pages 1–15. School of
Computing Science, University of Newcastle upon Tyne, 2017.

[BvdPW10] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed
and Symbolic Reachability. In Proceedings CAV (International Confer-
ence on Computer Aided Verification), volume 6174 of Lecture Notes in
Computer Science, pages 354–359. Springer, 2010.

[BW10] Raymond P.L. Buse and Westley R. Weimer. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering, 36(4):546–558,
2010.

[BW12] Ralph-Johan Back and Joakim Wright. Refinement Calculus: A System-
atic Introduction. Springer, 2012.

[CBH+16] Joy Clark, Jens Bendisposto, Stefan Hallerstede, Dominik Hansen, and
Michael Leuschel. Generating Event-B Specifications from Algorithm
Descriptions. In Proceedings ABZ (International Conference on Abstract
State Machines, Alloy, B, TLA, VDM and Z), volume 9675 of Lecture
Notes in Computer Science, pages 183–197. Springer, 2016.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proceedings OSDI (Conference on Operating Sys-
tems Design and Implementation), volume 8, pages 209–224. USENIX
Association, 2008.

[CEN11] CENELEC. Railway Applications – Communication, signalling and pro-
cessing systems – Software for railway control and protection systems.
Technical Report EN50128, European Standard, 2011.

[CES86] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logic speci-
fications. ACM TOPLAS (Transactions on Programming Languages and
Systems), 8(2):244–263, 1986.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 1999.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking
ANSI-C Programs. In Proceedings TACAS (International Conference on
Tools and Algorithms for the Construction and Analysis of Systems), vol-
ume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004.

147

Bibliography

[CKY03] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consis-
tency of C and Verilog programs using bounded model checking. In Pro-
ceedings DAC (Design Automation Conference), pages 368–371. IEEE,
2003.

[Cla16] Joy Clark. An Algorithm Description Language of Event-B. Master’s
thesis, Heinrich Heine Universität Düsseldorf, January 2016.

[Cle16] ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence,
France, 2016. Available at http://www.atelierb.eu/.

[CLM+19] Mathieu Comptier, Michael Leuschel, Luis-Fernando Mejia, Julien Mo-
linero Perez, and Mareike Mutz. Property-Based Modelling and Vali-
dation of a CBTC Zone Controller in Event-B. In Proceedings RSSRail
(International Conference on Reliability, Safety, and Security of Railway
Systems), volume 11495 of Lecture Notes in Computer Science, pages
202–212, 2019.

[Clo] Clojure Spec Guide. https://clojure.org/guides/spec. Accessed:
2020-03-12.

[CM12a] Dominique Cansell and Dominique Méry. Foundations of the B method.
Computing and informatics, 22(3-4):221–256, 2012.

[CM12b] Mats Carlsson and Per Mildner. SICStus Prolog—the first 25 years.
Theory and Practice of Logic Programming, 12:35–66, 2012.

[CML20] Alcino Cunha, Nuno Macedo, and Chong Liu. Validating Multiple Vari-
ants of an Automotive Light System with Electrum. In Proceedings ABZ
(International Conference on Rigorous State-Based Methods), volume
12071 of Lecture Notes in Computer Science, pages 318–334. Springer,
2020.

[CMR07] Dominique Cansell, Dominique Méry, and Joris Rehm. Time Constraint
Patterns for Event B Development. In Proceedings B (International Con-
ference of B Users), volume 4355 of Lecture Notes in Computer Science,
pages 140–154. Springer, 2007.

[CN02] Paul Clements and Linda Northrop. Software product lines. Addison-
Wesley, 2002.

[COC97] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended
finite domain constraint solver. In Proceedings PLILP (International
Symposium on Programming Language Implementation and Logic Pro-
gramming), volume 1292 of Lecture Notes in Computer Science, pages
191–206. Springer, 1997.

148

http://www.atelierb.eu/
https://clojure.org/guides/spec

Bibliography

[CR16] Néstor Cataño and Victor Rivera. EventB2Java: A Code Generator for
Event-B. In Proceedings NFM (NASA Formal Methods Symposium), vol-
ume 9690 of Lecture Notes in Computer Science, pages 166–171. Springer,
2016.

[CRD+21] Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner,
Marie Farrell, Magne Haveraaen, Faron Moller, Philipp Körner, Sebas-
tian Krings, Peter Olveczky, Bernd-Holger Schlingloff, Nikolay Shilov,
and Rustam Zhumagambetov. Rooting Formal Methods within Higher
Education Curricula for Computer Science and Software Engineering –
A White Paper. In Proceedings FMFun (International Workshop on For-
mal Methods - Fun for Everybody) 2019, volume 1301 of CCIS. Springer,
2021.

[CRW+17] Mingshuai Chen, Anders P. Ravn, Shuling Wang, Mengfei Yang, and
Naijun Zhan. A Two-Way Path Between Formal and Informal Design of
Embedded Systems. In Proceedings UTP (International Symposium on
Unifying Theories of Programming), volume 10134 of Lecture Notes in
Computer Science, pages 65–92. Springer, 2017.

[CSD+22] Cheng-Hao Cai, Jing Sun, Gillian Dobbie, Zhé Hóu, Hadrien Bride,
Jin Song Dong, and Scott Uk-Jin Lee. Fast Automated Abstract Ma-
chine Repair Using Simultaneous Modifications and Refactoring. Formal
Aspects of Computing, 2022.

[CVS18] Marek Chalupa, Martina Vitovská, and Jan Strejček. Symbiotic 5:
Boosted Instrumentation. In Proceedings TACAS (International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems), volume 10806 of Lecture Notes in Computer Science, pages
442–446. Springer, 2018.

[CWA+88] Mats Carlsson, Johan Widen, Johan Andersson, Stefan Andersson, Kent
Boortz, Hans Nilsson, and Thomas Sjöland. SICStus Prolog user’s man-
ual, volume 3. Swedish Institute of Computer Science, 1988.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
specification patterns for finite-state verification. In Proceedings FMSP
(Workshop on Formal Methods in Software Practice), pages 7–15. ACM,
1998.

[Dan17] Chris Dannen. Introducing Ethereum and Solidity, volume 1. Springer,
2017.

[dAOMDM19] Diego de Azevedo Oliveira, Valério Medeiros, David Déharbe, and Mar-
tin A. Musicante. BTestBox: A Tool for Testing B Translators and Cov-
erage of B Models. In Proceedings TAP (International Conference on

149

Bibliography

Tests and Proofs), volume 11823 of Lecture Notes in Computer Science,
pages 83–92. Springer, 2019.

[DKS19] Jannik Dunkelau, Sebastian Krings, and Joshua Schmidt. Automated
Backend Selection for ProB Using Deep Learning. In Proceedings NFM
(NASA Formal Methods Symposium), volume 11460 of Lecture Notes in
Computer Science, pages 130–147. Springer, 2019.

[DL14] Ivaylo Dobrikov and Michael Leuschel. Optimising the ProB Model
Checker for B using Partial Order Reduction. In Proceedings SEFM
(International Conference on Software Engineering and Formal Meth-
ods), volume 8702 of Lecture Notes in Computer Science, pages 220–234.
Springer, 2014.

[DL16] Ivaylo Dobrikov and Michael Leuschel. Optimising the ProB model
checker for B using partial order reduction. Formal Aspects of Com-
puting, 28(2):295–323, 2016.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Proceedings TACAS (International Conference on Tools and
Algorithms for the Construction and Analysis of Systems), volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[Dob17] Ivaylo Miroslavov Dobrikov. Improving Explicit-State Model Checking
for B and Event-B. PhD thesis, Universitäts- und Landesbibliothek der
Heinrich-Heine-Universität Düsseldorf, 2017.

[ED07] Didier Essamé and Daniel Dollé. B in Large-Scale Projects: The Canarsie
Line CBTC Experience. In Proceedings B (International Conference of
B Users), volume 4355 of Lecture Notes in Computer Science, pages
252–254. Springer, 2007.

[ESKK19] Alexandros Efremidis, Joshua Schmidt, Sebastian Krings, and Philipp
Körner. Measuring Coverage of Prolog Programs Using Mutation Test-
ing. In Proceedings WFLP (International Workshop on Functional and
Constraint Logic Programming) 2018, volume 11285 of Lecture Notes in
Computer Science. Springer, 2019.

[FBHL73] Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. Foun-
dations of set theory, volume 67. Elsevier, 1973.

[FD19] Tomas Fischer and Dana Dghaym. Formal Model Validation Through
Acceptance Tests. In Proceedings RSSRail (International Conference on
Reliability, Safety, and Security of Railway Systems), volume 11495 of
Lecture Notes in Computer Science, pages 159–169, 2019.

150

Bibliography

[FFHS06] Hosam K. Fathy, Zoran S. Filipi, Jonathan Hagena, and Jeffrey L. Stein.
Review of hardware-in-the-loop simulation and its prospects in the au-
tomotive area. In Modeling and simulation for military applications,
volume 6228. SPIE, 2006.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduc-
tion for model checking software. In Proceedings POPL (Symposium on
Principles of Programming Languages), pages 110–121. ACM, 2005.

[FGG07] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. CoreASM: An
extensible ASM execution engine. Fundamenta Informaticae, 77(1-2):71–
103, 2007.

[FLP19] John S. Fitzgerald, Peter Gorm Larsen, and Ken Pierce. Multi-modelling
and Co-simulation in the Engineering of Cyber-Physical Systems: To-
wards the Digital Twin. In From Software Engineering to Formal Meth-
ods and Tools, and Back, pages 40–55. Springer, 2019.

[Fra22] Adolf Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengen-
lehre. Mathematische Annalen, 86(3):230–237, 1922.

[Frü09] Thom Frühwirth. Constraint Handling Rules. Cambridge University
Press, 2009.

[Fuc92] Norbert E. Fuchs. Specifications are (preferably) executable. Software
Engineering Journal, 7(5):323–334, 1992.

[FW86] Philip J. Fleming and John J. Wallace. How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results. Communications
of the ACM, 29(3):218–221, 1986.

[GH96] Andrew Gravell and Peter Henderson. Executing formal specifications
need not be harmful. Software Engineering Journal, 11(2):104–110, 1996.

[GH98] Etienne M. Gagnon and Laurie J. Hendren. SableCC: An Object-Oriented
Compiler Framework. IEEE, 1998.

[GIL12] Gudmund Grov, Andrew Ireland, and Maria Teresa Llano. Refinement
Plans for Informed Formal Design. In Proceedings ABZ (International
Conference on Abstract State Machines, Alloy, B, VDM, and Z), volume
7316 of Lecture Notes in Computer Science, pages 208–222. Springer,
2012.

[GK91] Carlo Ghezzi and Richard A. Kennerer. Executing Formal Specifica-
tions: The ASTRAL to TRIO Translation Approach. In Proceedings
TAV (Symposium on Testing, Analysis, and Verification), pages 112–
122. ACM, 1991.

151

Bibliography

[GL20] David Gelessus and Michael Leuschel. ProB and Jupyter for logic, set
theory, theoretical computer science and formal methods. In Proceed-
ings ABZ (International Conference on Rigorous State-Based Methods),
volume 12071 of Lecture Notes in Computer Science, pages 248–254.
Springer, 2020.

[God90] Patrice Godefroid. Using Partial Orders to Improve Automatic Ver-
ification Methods. In Proceedings CAV (International Conference on
Computer Aided Verification), volume 531 of Lecture Notes in Computer
Science, pages 176–185. Springer, 1990.

[Goo] Google Guice Repository. https://github.com/google/guice. Ac-
cessed: 2020-02-27.

[GRHRW15] Thomas Gibson-Robinson, Henri Hansen, A. William Roscoe, and
XuWang. Practical partial order reduction for CSP. In Proceedings NFM
(NASA Formal Methods Symposium), volume 9058 of Lecture Notes in
Computer Science, pages 188–203. Springer, 2015.

[GTB+17] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and
Hans Vangheluwe. Co-simulation: State of the art. arXiv preprint
arXiv:1702.00686, 2017.

[Hal90] Anthony Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11–
19, 1990.

[Hat07] Les Hatton. Language subsetting in an industrial context: A compari-
son of MISRA C 1998 and MISRA C 2004. Information and Software
Technology, 49(5):475–482, 2007.

[HE10] Bernhard G. Humm and Ralf S. Engelschall. Language-Oriented Pro-
gramming Via DSL Stacking. In Proceedings ICSOFT (International
Conference on Software and Data Technologies), pages 279–287, 2010.

[Hen00] Thomas A. Henzinger. The theory of hybrid automata. In Verification
of digital and hybrid systems, pages 265–292. Springer, 2000.

[Hic20] Rich Hickey. A History of Clojure. In Proceedings HOPL (History of
Programming Languages), pages 1–46. ACM, 2020.

[HJ89] Ian James Hayes and Cliff B. Jones. Specifications are not (necessarily)
executable. Software Engineering Journal, 4(6):330–339, 1989.

[HL12] Dominik Hansen and Michael Leuschel. Translating TLA+ to B for
validation with ProB. In Proceedings IFM (International Conference on
Integrated Formal Methods), volume 7321 of Lecture Notes in Computer
Science, pages 24–38. Springer, 2012.

152

https://github.com/google/guice

Bibliography

[HLK+20] Dominik Hansen, Michael Leuschel, Philipp Körner, Sebastian Krings,
Thomas Naulin, Nader Nayeri, David Schneider, and Frank Skowron.
Validation and real-life demonstration of ETCS hybrid level 3 principles
using a formal B model. Software Tools for Technology Transfer, 22,
2020.

[HLS+18] Dominik Hansen, Michael Leuschel, David Schneider, Sebastian Krings,
Philipp Körner, Thomas Naulin, Nader Nayeri, and Frank Skowron. Us-
ing a Formal B Model at Runtime in a Demonstration of the ETCS
Hybrid Level 3 Concept with Real Trains. In Proceedings ABZ (Inter-
national Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z), volume 10817 of Lecture Notes in Computer Science, pages 292–
306. Springer, 2018.

[HLW+15] Dominik Hansen, Lukas Ladenberger, Harald Wiegard, Jens Bendis-
posto, and Michael Leuschel. Validation of the ABZ Landing Gear Sys-
tem using ProB. In ABZ 2014: The Landing Gear Case Study, volume
433 of CCIS, pages 1–17. Springer, 2015.

[HMR+19] David Harel, Assaf Marron, Ariel Rosenfeld, Moshe Vardi, and Gera
Weiss. Labor Division with Movable Walls: Composing Executable Spec-
ifications with Machine Learning and Search (Blue Sky Idea). In Pro-
ceedings AAAI (Conference on Artificial Intelligence), volume 33, pages
9770–9774, 2019.

[Hoa69] Charles Antony Richard Hoare. An Axiomatic Basis for Computer Pro-
gramming. Communications of the ACM, 12(10):576–580, October 1969.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. In
The origin of concurrent programming, pages 413–443. Springer, 1978.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[HR20] Frank Houdek and Alexander Raschke. Adaptive Exterior Light and
Speed Control System. In Proceedings ABZ (International Conference
on Rigorous State-Based Methods), volume 12071 of Lecture Notes in
Computer Science, pages 281–301. Springer, 2020.

[HS00] Holger H. Hoos and Thomas Stützle. SATLIB: An online resource for
research on SAT. In SAT2000: Highlights of Satisfiability Research in the
Year 2000 (Frontiers in Artificial Intelligence and Applications), pages
283–292. IOS Press, 2000.

[HSL16] Dominik Hansen, David Schneider, and Michael Leuschel. Using B and
ProB for Data Validation Projects. In Proceedings ABZ (International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and

153

Bibliography

Z), volume 9675 of Lecture Notes in Computer Science, pages 167–182.
Springer, 2016.

[Ida20] Akram Idani. Meeduse: A Tool to Build and Run Proved DSLs. In
Proceedings IFM (International Conference on Integrated Formal Meth-
ods), volume 12546 of Lecture Notes in Computer Science, pages 349–367.
Springer, 2020.

[ILR13] Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. The SafeCap
Platform for Modelling Railway Safety and Capacity. In Proceedings
SAFECOMP (International Conference on Computer Safety, Reliability,
and Security), volume 8153 of Lecture Notes in Computer Science, pages
130–137. Springer, 2013.

[ILW+19a] Akram Idani, Yves Ledru, Abderrahim Ait Wakrime, Rahma Ben Ayed,
and Philippe Bon. Towards a Tool-Based Domain Specific Approach
for Railway Systems Modeling and Validation. In Proceedings RSSRail
(International Conference on Reliability, Safety, and Security of Railway
Systems), volume 11495 of Lecture Notes in Computer Science, pages
23–40, 2019.

[ILW+19b] Akram Idani, Yves Ledru, Abderrahim Ait Wakrime, Rahma Ben Ayed,
and Simon Collart-Dutilleul. Incremental Development of a Safety Crit-
ical System Combining Formal Methods and DSMLs. In Proceedings
FMICS (International Conference on Formal Methods for Industrial
Critical Systems), volume 11687 of Lecture Notes in Computer Science,
pages 93–109. Springer, 2019.

[ISO11] ISO. Road vehicles – Functional safety, 2011.

[Jac03] Daniel Jackson. Alloy: A Logical Modelling Language. In Proceedings
ZB (International Conference of B and Z Users), volume 2651 of Lecture
Notes in Computer Science, pages 1–1. Springer, 2003.

[Jac12] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2012.

[JKSSS90] H. Jarvinen, Reino Kurki-Suonio, Markku Sakkinen, and Kari Systa.
Object-oriented specification of reactive systems. In Proceedings ICSE
(International Conference on Software Engineering), pages 63–71. IEEE,
1990.

[JLBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon.
The international SAT solver competitions. Ai Magazine, 33(1):89–92,
2012.

154

Bibliography

[JLC15] Peter Würtz Vinther Jørgensen, Morten Larsen, and Luis Diogo Mon-
teiro Duarte Couto. A code generation platform for VDM. In Proceedings
of the 12th Overture Workshop, volume 1446 of School of Computing Sci-
ence Technical Report Series, pages 21–35. School of Computing Science,
University of Newcastle upon Tyne, 2015.

[JLY+19] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita
Sharif. An Empirical Study Assessing Source Code Readability in Com-
prehension. In Proceedings ICSME (International Conference on Soft-
ware Maintenance and Evolution), pages 513–523. IEEE, 2019.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM. Prentice-
Hall, 1990.

[KB18] Philipp Körner and Jens Bendisposto. Distributed Model Checking Using
ProB. In Proceedings NFM (NASA Formal Methods Symposium), volume
10811 of Lecture Notes in Computer Science, pages 244–260. Springer,
2018.

[KBD+19] Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings,
and Michael Leuschel. Embedding High-Level Formal Specifications into
Applications. In Proceedings FM (International Symposium on Formal
Methods), volume 11800 of Lecture Notes in Computer Science, pages
519–535. Springer, 2019.

[KBD+20] Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings,
and Michael Leuschel. Integrating formal specifications into applications:
the ProB Java API. Formal Methods in System Design, 57:160–187, 2020.

[KD06] Timo Käköla and Juan Carlos Duenas. Software product lines. Springer,
2006.

[KHDB06] Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd
Behrmann. Adapting an AI planning heuristic for directed model check-
ing. In Proceedings SPIN (International SPIN Workshop on Model
Checking of Software), volume 3925 of Lecture Notes in Computer Sci-
ence, pages 35–52. Springer, 2006.

[KK18] Philipp Körner and Sebastian Krings. plspec - A Specification Language
for Prolog Data. In Proceedings Declare (International Workshop on
Functional and Constraint Logic Programming) 2017, volume 10997 of
LNAI. Springer, 2018.

[KK21a] Philipp Körner and Sebastian Krings. Increasing Student Self-Reliance
and Engagement in Model-Checking Courses. In Proceedings FMTea
(Formal Methods Teaching), pages 60–74. Springer, 2021.

155

Bibliography

[KK21b] Sebastian Krings and Philipp Körner. Prototyping Games Using Formal
Methods. In Proceedings FMFun (International Workshop on Formal
Methods - Fun for Everybody) 2019, volume 1301 of CCIS. Springer,
2021.

[KKDR20] Sebastian Krings, Philipp Körner, Jannik Dunkelau, and Chris
Rutenkolk. A Verified Low-Level Implementation of the Adaptive Exte-
rior Light and Speed Control System. In Proceedings ABZ (International
Conference on Rigorous State-Based Methods), volume 12071 of Lecture
Notes in Computer Science, pages 382–397. Springer, 2020.

[KL16] Sebastian Krings and Michael Leuschel. SMT solvers for validation of B
and Event-B models. In Proceedings IFM (International Conference on
Integrated Formal Methods), volume 9681 of Lecture Notes in Computer
Science, pages 361–375. Springer, 2016.

[KL18] Philipp Körner and Michael Leuschel. Embedding Formal Specifications
as Libraries into Applications. Technical Report cs-tr-1525, School of
Computing, Newcastle University, December 2018.

[KL23] Philipp Körner and Michael Leuschel. Towards Practical Partial Or-
der Reduction for High-Level Formalisms. In Proceedings VSTTE (In-
ternational Conference on Verified Software: Theories, Tools, and Ex-
periments) 2022, volume 13800 of Lecture Notes in Computer Science.
Springer, 2023. To appear.

[KLB+22] Philipp Körner, Michael Leuschel, João Barbosa, Vı́tor Santos Costa,
Verónica Dahl, Manuel V. Hermenegildo, Jose F. Morales, Jan Wiele-
maker, Daniel Diaz, Salvador Abreu, and Giovanni Ciatto. Fifty Years
of Prolog and Beyond. Theory and Practice of Logic Programming, pages
1–83, 2022.

[KLD20] Philipp Körner, Michael Leuschel, and Jannik Dunkelau. Towards a
Shared Specification Repository. In Proceedings ABZ (International
Conference on Rigorous State-Based Methods), volume 12071 of Lecture
Notes in Computer Science, pages 266–271. Springer, 2020.

[KLK+18] Sebastian Krings, Michael Leuschel, Philipp Körner, Stefan Hallerstede,
and Miran Hasanagić. Three Is a Crowd: SAT, SMT and CLP on a
Chessboard. In Proceedings PADL (International Symposium on Practi-
cal Aspects of Declarative Languages), volume 10702 of Lecture Notes in
Computer Science. Springer, 2018.

[KLS+20] Sebastian Krings, Michael Leuschel, Joshua Schmidt, David Schneider,
and Marc Frappier. Translating Alloy and extensions to classical B.
Science of Computer Programming, 188:1–25, 2020.

156

Bibliography

[KM75] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta
pruning. Artificial intelligence, 6(4):293–326, 1975.

[KM22] Philipp Körner and Florian Mager. An Embedding of B in Clojure. In
Companion Proceedings MODELS (International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings),
page 598–606. ACM, 2022.

[KML18] Philipp Körner, Jeroen Meijer, and Michael Leuschel. State-of-the-Art
Model Checking for B and Event-B Using ProB and LTSmin. In Pro-
ceedings iFM (International Conference on integrated Formal Methods),
volume 11023 of Lecture Notes in Computer Science, pages 275–295.
Springer, 2018.

[KNP12] Marta Kwiatkowska, Gethin Norman, and David Parker. The PRISM
benchmark suite. In Proceedings QEST (International Conference on the
Quantitative Evaluation of Systems), pages 203–204. IEEE, 2012.

[Kör14] Philipp Körner. Improving Distributed Model Checking in ProB. Bach-
elor’s thesis, Heinrich Heine Universität Düsseldorf, August 2014.

[Kör17] Philipp Körner. An Integration of ProB and LTSmin. Master’s thesis,
Heinrich Heine Universität Düsseldorf, February 2017.

[Kri17] Sebastian Krings. Towards Infinite-State Symbolic Model Checking for B
and Event-B. PhD thesis, Universitäts-und Landesbibliothek der HHU
Düsseldorf, 2017.

[KSB+18] Sebastian Krings, Joshua Schmidt, Carola Brings, Marc Frappier, and
Michael Leuschel. A Translation from Alloy to B. In Proceedings ABZ
(International Conference on Abstract State Machines, Alloy, B, TLA,
VDM, and Z), volume 10817 of Lecture Notes in Computer Science, pages
71–86. Springer, 2018.

[KSL21] Philipp Körner, David Schneider, and Michael Leuschel. On the Perfor-
mance of Bytecode Interpreters in Prolog. In Proceedings WFLP (Inter-
national Workshop on Functional and Constraint Logic Programming)
2020, volume 12560 of Lecture Notes in Computer Science. Springer,
2021.

[Kup18] Markus A. Kuppe. Let TLA+ RiSE. RiSE group all-hands meeting,
August 2018.

[Lad17] Lukas Ladenberger. Rapid creation of interactive formal prototypes for
validating safety-critical systems. PhD thesis, HHU Düsseldorf, 2017.

[Lam02] Leslie Lamport. Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley, 2002.

157

Bibliography

[Lam09] Leslie Lamport. The PlusCal Algorithm Language. In Proceedings
ICTAC (International Colloquium on Theoretical Aspects of Comput-
ing), volume 5684 of Lecture Notes in Computer Science, pages 36–60.
Springer, 2009.

[LB03] Michael Leuschel and Michael Butler. ProB: A model checker for B.
In Proceedings FME (International Symposium of Formal Methods Eu-
rope), volume 2805 of Lecture Notes in Computer Science, pages 855–874.
Springer, 2003.

[LB08] Michael Leuschel and Michael Butler. ProB: an automated analysis
toolset for the B method. Software Tools for Technology Transfer,
10(2):185–203, 2008.

[LB11] Michael Leuschel and Jens Bendisposto. Directed Model Checking for B:
An Evaluation and New Techniques. In Formal Methods: Foundations
and Applications, volume 6527 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2011.

[LB16] Michael Leuschel and Egon Börger. A compact encoding of sequential
ASMs in Event-B. In Proceedings ABZ (International Conference on
Abstract State Machines, Alloy, B, TLA, VDM, and Z), volume 9675 of
Lecture Notes in Computer Science, pages 119–134. Springer, 2016.

[LBF+10] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John S. Fitzgerald,
Kenneth Lausdahl, and Marcel Verhoef. The overture initiative inte-
grating tools for VDM. ACM SIGSOFT Software Engineering Notes,
35(1):1–6, 2010.

[LBH14] Michael Leuschel, Jens Bendisposto, and Dominik Hansen. Unlocking the
Mysteries of a Formal Model of an Interlocking System. In Proceedings
Rodin Workshop 2014, 2014.

[LBL12] Thierry Lecomte, Lilian Burdy, and Michael Leuschel. Formally Checking
Large Data Sets in the Railways. CoRR, abs/1210.6815, 2012. Proceed-
ings of DS-Event-B.

[LCB09] Michael Leuschel, Dominique Cansell, and Michael Butler. Validat-
ing and Animating Higher-Order Recursive Functions in B. In Jean-
Raymond Abrial and Uwe Glässer, editors, Rigorous Methods for Soft-
ware Construction and Analysis, pages 78–92. Springer, 2009.

[Lec14a] Thierry Lecomte. Atelier B, chapter 2, pages 35–46. Wiley, 2014.

[Lec14b] Thierry Lecomte. Return of Experience on Automating Refinement in
B. In Proceedings SETS (Workshop about Sets and Tool), 2014.

158

Bibliography

[Leu08] Michael Leuschel. The high road to formal validation. In Proceedings
ABZ (International Conference on Abstract State Machines, B and Z),
volume 5238 of Lecture Notes in Computer Science, pages 4–23. Springer,
2008.

[Leu20] Michael Leuschel. Fast and effective well-definedness checking. In
Proceedings IFM (International Conference on Integrated Formal Meth-
ods), volume 12546 of Lecture Notes in Computer Science, pages 63–81.
Springer, 2020.

[Leu21] Michael Leuschel. Spot the Difference: A Detailed Comparison Between
B and Event-B. In Logic, Computation and Rigorous Methods, volume
12750 of Lecture Notes in Computer Science, pages 147–172. Springer,
2021.

[LFW+16] Peter Gorm Larsen, John S. Fitzgerald, Jim Woodcock, Peter Fritzson,
Jörg Brauer, Christian Kleijn, Thierry Lecomte, Markus Pfeil, Ole Green,
Stylianos Basagiannis, and Andrey Sadovykh. Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-CPS project.
In Proceedings CPS Data (International Workshop on Modelling, Anal-
ysis, and Control of Complex CPS), pages 1–6. IEEE, 2016.

[LIL15] Kenneth Lausdahl, Hiroshi Ishikawa, and Peter Gorm Larsen. Interpret-
ing implicit VDM specifications using ProB. In Proceedings of the 12th
Overture Workshop, volume 1446 of School of Computing Science Tech-
nical Report Series, pages 6–20. School of Computing Science, University
of Newcastle upon Tyne, 2015.

[LL16] Lukas Ladenberger and Michael Leuschel. BMotionWeb: A Tool for
Rapid Creation of Formal Prototypes. In Proceedings SEFM (Interna-
tional Conference on Software Engineering and Formal Methods), volume
9763 of Lecture Notes in Computer Science, pages 403–417. Springer,
2016.

[LMW20] Michael Leuschel, Mareike Mutz, and Michelle Werth. Modelling and
Validating an Automotive System in Classical B and Event-B. In Pro-
ceedings ABZ (International Conference on Rigorous State-Based Meth-
ods), volume 12071 of Lecture Notes in Computer Science, pages 335–350.
Springer, 2020.

[Log] Logic Calculators. https://web.archive.org/web/20120418155039/

http://research.microsoft.com/en-us/um/people/lamport/tla/

logic-calculators.html. Accessed: 2020-02-27.

[LPVDPH16] Alfons Laarman, Elwin Pater, Jaco Van De Pol, and Henri Hansen.
Guard-based partial-order reduction. Software Tools for Technology
Transfer, 18(4):427–448, 2016.

159

https://web.archive.org/web/20120418155039/http://research.microsoft.com/en-us/um/people/lamport/tla/logic-calculators.html
https://web.archive.org/web/20120418155039/http://research.microsoft.com/en-us/um/people/lamport/tla/logic-calculators.html
https://web.archive.org/web/20120418155039/http://research.microsoft.com/en-us/um/people/lamport/tla/logic-calculators.html

Bibliography

[MBC+16] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis
Kuperberg. Lightweight Specification and Analysis of Dynamic Systems
with Rich Configurations. In Proceedings FSE (International Symposium
on Foundations of Software Engineering), pages 373–383. ACM, 2016.

[MF20] Amel Mammar and Marc Frappier. Modeling of a Speed Control System
Using Event-B. In Proceedings ABZ (International Conference on Rigor-
ous State-Based Methods), volume 12071 of Lecture Notes in Computer
Science, pages 367–381. Springer, 2020.

[MFL20] Amel Mammar, Marc Frappier, and Régine Laleau. An Event-B Model of
an Automotive Adaptive Exterior Light System. In Proceedings ABZ (In-
ternational Conference on Rigorous State-Based Methods), volume 12071
of Lecture Notes in Computer Science, pages 351–366. Springer, 2020.

[mis13] MISRA C:2012 – Guidelines for the use of the C language in critical
systems. MISRA, 2013.

[MJ14] Ido Milicevic, Aleksandar Erfrati and Daniel Jackson. aRby—An Em-
bedding of Alloy in Ruby. In Proceedings ABZ (International Conference
on Abstract State Machines, Alloy, B, TLA, VDM and Z), volume 8477
of Lecture Notes in Computer Science, pages 56–71. Springer, 2014.

[MS11] Dominique Méry and Neeraj Kumar Singh. Automatic code generation
from event-B models. In Proceedings SoICT (Symposium on Information
and Communication Technology), pages 179–188. ACM, 2011.

[NFM17] Elisa Negri, Luca Fumagalli, and Marco Macchi. A Review of the Roles
of Digital Twin in CPS-based Production Systems. Procedia Manufac-
turing, 11:939–948, 2017.

[NKK19] Falco Nogatz, Philipp Körner, and Sebastian Krings. Prolog Coding
Guidelines: Status and Tool Support. In Proceedings ICLP (Interna-
tional Conference on Logic Programming) (Technical Communications),
volume 306 of EPTCS, 2019.

[NLL12] Claus Ballegaard Nielsen, Kenneth Lausdahl, and Peter Gorm Larsen.
Combining VDM with executable code. In Proceedings ABZ (Inter-
national Conference on Abstract State Machines, Alloy, B, VDM and
Z), volume 7316 of Lecture Notes in Computer Science, pages 266–279.
Springer, 2012.

[NPC05] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Contin-
uously recording program execution for deterministic replay debugging.
In ACM SIGARCH Computer Architecture News, volume 33, pages 284–
295. IEEE, 2005.

160

Bibliography

[Num13] Timo Nummenmaa. Executable formal specifications in game develop-
ment: Design, validation and evolution. PhD thesis, University of Tam-
pere, 2013.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002.

[Pel93] Doron Peled. All from one, one for all: on model checking using repre-
sentatives. In Proceedings CAV (International Conference on Computer
Aided Verification), volume 697 of Lecture Notes in Computer Science,
pages 409–423. Springer, 1993.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In Proceedings CAV (International Conference on Computer
Aided Verification), volume 818 of Lecture Notes in Computer Science,
pages 377–390. Springer, 1994.

[Pel07] Radek Pelánek. BEEM: benchmarks for explicit model checkers. In
Proceedings SPIN (International SPIN Workshop on Model Checking of
Software), volume 4595 of Lecture Notes in Computer Science, pages
263–267. Springer, 2007.

[PF15] Simon Poulding and Robert Feldt. Heuristic model checking using a
monte-carlo tree search algorithm. In Proceedings GECCO (Conference
on Genetic and Evolutionary Computation), pages 1359–1366. ACM,
2015.

[PFB19] Camille Parillaud, Yoann Fonteneau, and Fabien Belmonte. Interlock-
ing Formal Verification at Alstom Signalling. In Proceedings RSSRail
(International Conference on Reliability, Safety, and Security of Railway
Systems), volume 11495 of Lecture Notes in Computer Science, pages
215–225. Springer, 2019.

[PL07] Daniel Plagge and Michael Leuschel. Validating Z specifications using the
ProB animator and model checker. In Proceedings IFM (International
Conference on Integrated Formal Methods), volume 4591 of Lecture Notes
in Computer Science, pages 480–500. Springer, 2007.

[PL12] Daniel Plagge and Michael Leuschel. Validating B, Z and TLA+ using
ProB and Kodkod. In Proceedings FM (International Symposium on
Formal Methods), volume 7436 of Lecture Notes in Computer Science,
pages 372–386. Springer, 2012.

[PlU] PlüS. https://plues.github.io/en/index/. Accessed: 2020-02-27.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings SFCS
(Symposium on Foundations of Computer Science), pages 46–57. IEEE,
1977.

161

https://plues.github.io/en/index/

Bibliography

[Proa] ProB Java API Source Code. https://github.com/hhu-stups/prob2_
kernel. Accessed: 2020-03-11.

[Prob] The ProB Logic Calculator. https://github.com/hhu-stups/

prob-logic-calculator. Accessed: 2020-07-10.

[Proc] ProB Java API Example Source Code. https://github.com/

hhu-stups/executable_spec_example. Accessed: 2020-03-11.

[Prod] ProB Maven Artifacts. https://search.maven.org/artifact/de.

hhu.stups/de.prob2.kernel. Accessed: 2020-03-11.

[RC07] Joris Rehm and Dominique Cansell. Proved Development of the Real-
Time Properties of the IEEE 1394 Root Contention Protocol with the
Event B Method. In Proceedings ISoLA (International Symposium
on Leveraging Applications of Formal Methods, Verification and Val-
idation), volume RNTI-SM-1 of Revue des Nouvelles Technologies de
l’Information, pages 179–190. Cépaduès-Éditions, 2007.

[RCWR17] Victor Rivera, Néstor Cataño, Tim Wahls, and Camilo Rueda. Code gen-
eration for Event-B. Software Tools for Technology Transfer, 19(1):31–52,
2017.

[RGS19] Daniel Ratiu, Marco Gario, and Hannes Schoenhaar. FASTEN: An Open
Extensible Framework to Experiment With Formal Specification Ap-
proaches. In Proceedings FormaliSE (Workshop on Formal Methods in
Software Engineering), pages 41–50. IEEE, 2019.

[RNM+21] Daniel Ratiu, Arne Nordmann, Peter Munk, Carmen Carlan, and Markus
Voelter. FASTEN: An Extensible Platform to Experiment with Rigorous
Modeling of Safety-Critical Systems. In Domain-Specific Languages in
Practice, pages 131–164. Springer, 2021.

[Rod13] Maria Teresa Llano Rodriguez. Invariant discovery and refinement plans
for formal modelling in Event-B. PhD thesis, Heriot-Watt University,
UK, 2013.

[Roß22] Jan Roßbach. Boolean Encoding of Statically Finite Sets in B Machines.
Bachelor’s thesis, Heinrich Heine Universität Düsseldorf, March 2022.

[SA92] Michael Spivey and Jean-Raymond Abrial. The Z Notation. Prentice-
Hall, 1992.

[SB06] Colin Snook and Michael Butler. UML-B: Formal modeling and design
aided by UML. ACM TOSE (Transactions on Software Engineering and
Methodology), 15(1):92–122, 2006.

162

https://github.com/hhu-stups/prob2_kernel
https://github.com/hhu-stups/prob2_kernel
https://github.com/hhu-stups/prob-logic-calculator
https://github.com/hhu-stups/prob-logic-calculator
https://github.com/hhu-stups/executable_spec_example
https://github.com/hhu-stups/executable_spec_example
https://search.maven.org/artifact/de.hhu.stups/de.prob2.kernel
https://search.maven.org/artifact/de.hhu.stups/de.prob2.kernel

Bibliography

[Sch17] David Schneider. Constraint Modelling and Data Validation Using For-
mal Specification Languages. PhD thesis, Universitäts- und Landesbib-
liothek der Heinrich-Heine-Universität Düsseldorf, 2017.

[SH09] Jan-Georg Smaus and Jörg Hoffmann. Relaxation refinement: A new
method to generate heuristic functions. In Proceedings MoChArt (Inter-
national Workshop on Model Checking and Artificial Intelligence) 2008,
volume 5348 of LNAI, pages 147–165. Springer, 2009.

[Sie19] Stephen F. Siegel. What’s Wrong with On-the-Fly Partial Order Reduc-
tion. In Proceedings CAV (International Conference on Computer Aided
Verification), volume 11562 of Lecture Notes in Computer Science, pages
478–495. Springer, 2019.

[SKL18] Joshua Schmidt, Sebastian Krings, and Michael Leuschel. Repair and
Generation of Formal Models Using Synthesis. In Proceedings iFM (In-
ternational Conference on integrated Formal Methods), volume 11023 of
Lecture Notes in Computer Science, pages 346–366. Springer, 2018.

[SL21] Joshua Schmidt and Michael Leuschel. Improving SMT Solver Integra-
tions for the Validation of B and Event-B Models. In Proceedings FMICS
(International Conference on Formal Methods for Industrial Critical Sys-
tems), volume 12863 of Lecture Notes in Computer Science, pages 107–
125. Springer, 2021.

[SLF+12] Aymerick Savary, Jean-Louis Lanet, Marc Frappier, Tiana Razafind-
ralambo, and Josselin Dolhen. VTG - Vulnerability Test Generator, a
Plug-in for Rodin. In Proceedings Workshop Deploy 2012, Fontainebleau,
France, 2012.

[SLW15] David Schneider, Michael Leuschel, and Tobias Witt. Model-Based Prob-
lem Solving for University Timetable Validation and Improvement. In
Proceedings FM (International Symposium on Formal Methods), volume
9109 of Lecture Notes in Computer Science, pages 487–495. Springer,
2015.

[SLW18] David Schneider, Michael Leuschel, and Tobias Witt. Model-based Prob-
lem Solving for University Timetable Validation and Improvement. For-
mal Aspects of Computing, pages 545–569, 2018.

[SP08] Michael Short and Michael J. Pont. Assessment of high-integrity embed-
ded automotive control systems using hardware in the loop simulation.
Journal of Systems and Software, 81(7):1163–1183, 2008.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-
community infrastructure for logic solving. In Proceedings IJCAI (In-
ternational Joint Conference on Automated Reasoning), volume 8562 of
Lecture Notes in Computer Science, pages 367–373. Springer, 2014.

163

Bibliography

[Sut17] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastruc-
ture. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning,
59(4):483–502, 2017.

[TB13] Emina Torlak and Rastislav Bodik. Growing Solver-Aided Languages
With Rosette. In Proceedings Onward! (International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Soft-
ware), pages 135–152. ACM, 2013.

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Proceedings TACAS (International Conference on Tools and Algorithms
for the Construction and Analysis of Systems), volume 4424 of Lecture
Notes in Computer Science, pages 632–647. Springer, 2007.

[TJLL18] Peter Würtz Vinther Tran-Jørgensen, Peter Gorm Larsen, and Gary T.
Leavens. Automated translation of VDM to JML-annotated Java. Soft-
ware Tools for Technology Transfer, 20(2):211–235, 2018.

[TLG+19] Casper Thule, Kenneth Lausdahl, Cláudio Gomes, Gerd Meisl, and Pe-
ter Gorm Larsen. Maestro: The INTO-CPS co-simulation framework.
Simulation Modelling Practice and Theory, 92:45–61, 2019.

[TLL18] Casper Thule, Kenneth Lausdahl, and Peter Gorm Larsen. Overture
FMU: Export VDM-RT Models as Tool-Wrapper FMUs. In Proceedings
of the 16th Overture Workshop, volume 1524 of School of Computing Sci-
ence Technical Report Series, pages 23–38. School of Computing Science,
University of Newcastle upon Tyne, 2018.

[TN16] Casper Thule and René Nilsson. Considering Abstraction Levels on a
Case Study. In Proceedings of the 14th Overture Workshop: Towards
Analytical Tool Chains, pages 16–31, 2016.

[Val89] Antti Valmari. Stubborn sets for reduced state space generation. In Pro-
ceedings ICATPN (International Conference on Application and Theory
of Petri Nets), volume 483 of Lecture Notes in Computer Science, pages
491–515. Springer, 1989.

[VBL22] Fabian Vu, Dominik Brandt, and Michael Leuschel. Model Checking B
Models via High-level Code Generation. In Proceedings ICFEM (Inter-
national Conference on Formal Engineering Methods), Lecture Notes in
Computer Science, 2022. To appear.

[VHKL19] Fabian Vu, Dominik Hansen, Philipp Körner, and Michael Leuschel. A
Multi-Target Code Generator for High-Level B. In Proceedings iFM (In-
ternational Conference on integrated Formal Methods), volume 11918 of
Lecture Notes in Computer Science, pages 456–473. Springer, 2019.

164

Bibliography

[Vu18] Fabian Vu. A High-Level Code Generator for Safety Critical B Models.
Bachelor’s thesis, Heinrich Heine Universität Düsseldorf, August 2018.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach
to Automatic Program Verification. In Proceedings LICS (Symposium in
Logic in Computer Science). IEEE, 1986.

[Weg72] Peter Wegner. The Vienna definition language. ACM Computing Sur-
veys, 4(1):5–63, 1972.

[WK21] Isabel Wingen and Philipp Körner. Effectiveness of Annotation-Based
Static Type Inference. In Proceedings WFLP (International Workshop
on Functional and Constraint Logic Programming) 2020, volume 12560
of Lecture Notes in Computer Science, pages 74–93. Springer, 2021.

[WL20] Michelle Werth and Michael Leuschel. VisB: A lightweight tool to visual-
ize formal models with SVG graphics. In Proceedings ABZ (International
Conference on Rigorous State-Based Methods), volume 12071 of Lecture
Notes in Computer Science, pages 260–265. Springer, 2020.

[WLB00] Tim Wahls, Gary T. Leavens, and Albert L. Baker. Executing formal
specifications with concurrent constraint programming. Automated Soft-
ware Engineering, 7(4):315–343, 2000.

[WRM18] Nathaniel Watson, Steve Reeves, and Paolo Masci. Integrating User
Design and Formal Models within PVSio-Web. In Proceedings F-IDE
(Formal Integrated Development Environment), pages 95–104, 2018.

[YICD20] Asfand Yar, Akram Idani, and Simon Collart-Dutilleul. Merging Railway
Standard Notations in a Formal DSL-Based Framework. In Proceedings
ECSA (European Conference on Software Architecture), volume 1269 of
CCIS, pages 411–419. Springer, 2020.

[YJS13] Faqing Yang, Jean-Pierre Jacquot, and Jeanine Souquières. JeB: Safe
simulation of Event-B models in javascript. In Proceedings APSEC (Asia-
Pacific Conference on Software Engineering), Volume 1, pages 571–576.
IEEE, 2013.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking
TLA+ specifications. In Proceedings CHARME (Advanced Research
Working Conference on Correct Hardware Design and Verification Meth-
ods), volume 1703 of Lecture Notes in Computer Science, pages 54–66.
Springer, 1999.

[YSAA97] Jun Yuan, Jian Shen, Jacob Abraham, and Adnan Aziz. On combining
formal and informal verification. In Proceedings CAV (International Con-
ference on Computer Aided Verification), volume 1254 of Lecture Notes
in Computer Science, pages 376–387. Springer, 1997.

165

Bibliography

[YZ16] Mengfei Yang and Naijun Zhan. Combining Formal and Informal Meth-
ods in the Design of Spacecrafts. In Engineering Trustworthy Software
Systems, volume 9506 of Lecture Notes in Computer Science, pages 290–
323. Springer, 2016.

[ZGS14] Simone Zenzaro, Vincenzo Gervasi, and Jacopo Soldani. WebASM: an
abstract state machine execution environment for the web. In Proceedings
ABZ (International Conference on Abstract State Machines, Alloy, B,
TLA, VDM and Z), volume 8477 of Lecture Notes in Computer Science,
pages 216–221. Springer, 2014.

166

Information About Included
Manuscripts

While I can honestly claim major contributions to all articles presented in this thesis,
parts of the articles have been written by Jens Bendisposto, Jannik Dunkelau, Sebastian
Krings, Michael Leuschel, Florian Mager and Kristin Rutenkolk. Behind the scenes,
many more people were involved with implementation work, especially several students
writing their theses at the STUPS group.

In the following, I try to acknowledge everyone’s contribution as fairly as possible.
Special thanks to everyone mentioned here for supporting my research.

Integrating formal specifications into applications: the
ProB Java API

The article “Integrating formal specifications into applications: the ProB Java API” is
published in the journal “Formal Methods in System Design” [KBD+20]. It is part of
the special issue containing extended versions of the “Best Papers from FM 2019”.

A short version was informally published as part of the Event-B Day 2018 [KL18]. The
first peer-reviewed publication was part of the proceedings of the Third World Congress
on Formal Methods (sub-titled “The Next 30 Years”) (FM 2019) [KBD+19].

The informal manuscript of the Event-B Day was written by Philipp Körner and
Michael Leuschel. Both published articles are co-authored by Philipp Körner, Jens
Bendisposto, Jannik Dunkelau, Sebastian Krings and Michael Leuschel.

Design and architecture of ProB’s Java API was mainly done by Jens Bendisposto.
Significant implementation work was done by Joy Clark.

The Pac-Man case study has been created by Christoph Heinzen and performance
improvements were made by David Geleßus. The chess case study has been created by
Philip Höfges. The ProB logic calculator presented in the article has been implemented
by Jens Bendisposto. A prior version written in PHP and the Prolog evaluation logic was
developed by Michael Leuschel. lisb was developed by Philipp Körner. Main contributors
of the PlüS case study are David Schneider, Joshua Schmidt, Tobias Witt and Philip
Höfges. Many people were involved in the ETCS HL3 project: the embedded B model
was written by Dominik Hansen and Michael Leuschel.

The idea to use B models at runtime was promoted by Michael Leuschel, in particular
for HL3 and PlüS [SLW15]; an early antecedent is to use B for functional programming
[LCB09]. This is very much related to the concept of “Digital Twins” yet is not identical
(though it matches some definitions of the term in literature [NFM17, Table 1]).

167

Information About Included Manuscripts

Philipp Körner’s contributions to the article are:

• creation of an initial draft,

• code contributions to the ProB Java API and ETCS HL3 case study,

• description of the ProB Java API,

• presentation of the Pac-Man, Chess, lisb and PlüS case studies,

• discussion regarding executability,

• discussion of related VDM-based approaches, FMUs and hybrid systems.

Jens Bendisposto’s, Jannik Dunkelau’s, Sebastian Krings’ and Michael Leuschel’s con-
tributions to the article are:

• implementation, maintenance of and example code for the ProB Java API,

• implementation of and text about the ProB logic calculator and the ETCS HL3
case study,

• details on B and ProB,

• discussion of lessons learned,

• comparison with code generation and related tools,

• discussion of potential of AI integration.

Full bibliographic references:

• Philipp Körner and Michael Leuschel. Embedding Formal Specifications as Li-
braries into Applications. Technical Report cs-tr-1525, School of Computing, New-
castle University, December 2018

• Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings, and Michael
Leuschel. Embedding High-Level Formal Specifications into Applications. In Pro-
ceedings FM (International Symposium on Formal Methods), volume 11800 of Lec-
ture Notes in Computer Science, pages 519–535. Springer, 2019

• Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings, and Michael
Leuschel. Integrating formal specifications into applications: the ProB Java API.
Formal Methods in System Design, 57:160–187, 2020

A Verified Low-Level Implementation and Visualization
of the Adaptive Exterior Light and Speed Control
System

The manuscript in chapter 3 is based on an article that is part of the ABZ 2020 con-
ference proceedings [KKDR20] and is an extended version that has been submitted to

168

Information About Included Manuscripts

the International Journal on Software Tools for Technology Transfer (STTT). The cur-
rently submitted version describes validation efforts that later proved to be incomplete.
Thus, clearly marked corrigenda are inserted to highlight any changes I made to the
manuscript later on.
The new manuscript is submitted under the same title as above. Both versions have

been co-authored by Sebastian Krings, Philipp Körner, Jannik Dunkelau and Kristin
Rutenkolk. The initial idea for this article was proposed by Sebastian Krings.

Philipp Körner’s contributions to the article are:

• design of the development approach (equally with Sebastian Krings),

• implementation and testing of the adaptive exterior light system (ELS) (equally
with Sebastian Krings),

• initial verification attempts using CBMC (equally with Sebastian Krings).

• verification using CBMC.

Sebastian Krings’, Jannik Dunkelau’s and Kristin Rutenkolk’s contributions to the ar-
ticle are:

• implementation and testing of the speed control system (SCS),

• additional testing of the ELS for American cars,

• visualisation of the program state,

• comparison with the other case studies.

Full bibliographic reference: Sebastian Krings, Philipp Körner, Jannik Dunkelau, and
Chris Rutenkolk. A Verified Low-Level Implementation of the Adaptive Exterior Light
and Speed Control System. In Proceedings ABZ (International Conference on Rigorous
State-Based Methods), volume 12071 of Lecture Notes in Computer Science, pages 382–
397. Springer, 2020

Treating Specifications as Data

The chapter “Treating Specifications as Data” was published under the title “An Em-
bedding of B in Clojure” in the proceedings of the 19th Workshop on Model Driven
Engineering, Verification and Validation (MoDeVVa 2022). It is part of the Companion
Proceedings of the 25th International Conference on Model Driven Engineering Lan-
guages and System (MODELS 2022). The manuscript is co-authored by Philipp Körner
and Florian Mager. Recently, the article was invited to be extended for a special issue
of Innovations in Systems and Software Engineering (a NASA Journal, Springer).
The first idea of embedding B in Clojure was suggested by David Schneider.

169

Information About Included Manuscripts

Philipp Körner’s contributions to the article are:

• implementation and design of lisb,

• idea to cover the entirety of B,

• idea to use meta-programming techniques for B tools and DSLs,

• implementation of the algorithm DSL in lisb (with Florian Mager).

Florian Mager’s contributions to the article are:

• additional implementation work covering B machines in lisb,

• details on the current internals of lisb.

The automatic refinement tool discussed in the article was developed by Jan Roßbach
under the supervision of Philipp Körner.

Full bibliographic reference: Philipp Körner and Florian Mager. An Embedding of
B in Clojure. In Companion Proceedings MODELS (International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings), page 598–606.
ACM, 2022

Towards a Shared Specification Repository

This article was published as a short paper at the 7th International Conference on
Rigorous State-Based Methods (ABZ 2020) [KLD20].

It was co-authored by Philipp Körner, Michael Leuschel and Jannik Dunkelau.

Philipp Körner’s contributions to the article are:

• benchmarking, organisation and presentation of the ProB examples.

Michael Leuschel’s and Jannik Dunkelau’s contributions to the article are:

• initial collection of the machine files,

• addition to the features to collect data about,

• additional benchmark execution,

• additions to related work.

Full bibliographic reference: Philipp Körner, Michael Leuschel, and Jannik Dunkelau.
Towards a Shared Specification Repository. In Proceedings ABZ (International Confer-
ence on Rigorous State-Based Methods), volume 12071 of Lecture Notes in Computer
Science, pages 266–271. Springer, 2020

170

Information About Included Manuscripts

Empirical Evaluation of POR for B

The short manuscript in chapter 6 is included in this thesis for adequate background and
motivation for the last article in chapter 7. Originally, these two chapters are part of
the same (published) manuscript; Due to page limitations during an earlier submission,
they had been split into two. Thus, this small chapter is an extended version of section 3
of Philipp Körner and Michael Leuschel. Towards Practical Partial Order Reduction for
High-Level Formalisms. In Proceedings VSTTE (International Conference on Verified
Software: Theories, Tools, and Experiments) 2022, volume 13800 of Lecture Notes in
Computer Science. Springer, 2023. To appear..
The manuscript is co-authored by Philipp Körner and Michael Leuschel.

Philipp Körner’s contributions to the manuscript are:

• creation of the initial draft,

• setup and execution of the empirical evaluation,

• presentation of the results.

Michael Leuschel’s contributions to the manuscript are:

• improvements on the presentation,

• highlighting threats to validity.

Full bibliographic reference: Parts of the chapter have been published in: Philipp
Körner and Michael Leuschel. Towards Practical Partial Order Reduction for High-Level
Formalisms. In Proceedings VSTTE (International Conference on Verified Software:
Theories, Tools, and Experiments) 2022, volume 13800 of Lecture Notes in Computer
Science. Springer, 2023. To appear.

Towards Practical Partial Order Reduction for
High-Level Formalisms

This chapter was presented at the 14th International Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE 2022) and was accepted for inclusion in the
proceedings. It is a version of this article without its section 3 (which is a shorter
version of the previous chapter of this thesis). As above, the manuscript is co-authored
by Philipp Körner and Michael Leuschel.

Philipp Körner’s contributions to the article are:

• creation of the initial draft,

• identification of the idioms hindering POR,

• proposal and evaluation of solutions,

• details on the effectiveness of dynamic POR.

171

Information About Included Manuscripts

Michael Leuschel’s contributions to the article are:

• improvements wrt. correctness, consistency, and clarity,

• selection and description of the grand challenge (see [LBH14]),

• proving in Rodin that the operation route_freeing(R) cannot be co-enabled with
route_formation(R) (and, thus, point_positionning(R)) (see section 7.5.2),

• initial discussion about dynamic POR.

Full bibliographic reference: A version of this chapter has been published in: Philipp
Körner and Michael Leuschel. Towards Practical Partial Order Reduction for High-Level
Formalisms. In Proceedings VSTTE (International Conference on Verified Software:
Theories, Tools, and Experiments) 2022, volume 13800 of Lecture Notes in Computer
Science. Springer, 2023. To appear.

172

List of Figures

1.1. Overview of the Relationship Between Chapters 8

2.1. Overview of the ProB Ecosystem . 23

2.2. Architecture of a Pac-Man Game Based on a Formal Model 27

2.3. Architecture of Chess Based on a Formal Model 30

2.4. ProB Logic Calculator http://eval-b.stups.uni-duesseldorf.de solv-
ing a Smullyan puzzle . 32

2.5. Frontend, Intermediate and Backend Representation of Predicate in list-
ing 2.2 . 34

2.6. Sorting Predicate . 42

3.1. Meeting in a Virtual Seminar Room . 53

3.2. System Architecture and Internal Communication 56

3.3. OpenGL based visualization . 73

3.4. Newly developed RayLib visualisation . 74

3.5. Visualization using PlantUML . 75

4.1. Frontend, Intermediate Representation and Backend 83

4.2. Architecture of a Program Using lisb — Arrows Denote Possible Data Flows 85

6.1. (Reduced) State Space Sizes for Deadlock Checking 109

6.2. (Reduced) State Space Sizes for Invariant Checking 110

7.1. Visualisation of the Operation Independence Definition 115

7.2. State space of the machine in listing 7.1. Each state consists of the set xx
(at the top) and the boolean locked (at the bottom). The commutativity
of the add operation instances is highlighted. 116

7.3. Syntactically Determining the Independence Relation of Two Operations 118

7.4. Example interlocking track layout based on page 524 of [Abr10] with 5
signals, 5 points, one crossing and 14 tracks segments 123

173

http://eval-b.stups.uni-duesseldorf.de

List of Listings

2.1. ProB Java API Usage Example . 25
2.2. Solving a Predicate on a Clojure REPL 34
2.3. Definition of N-Queens in lisb . 35
2.4. Java Code Generated by B2Program 44

3.1. Sensor Reads and CBMC Assumptions 61
3.2. Time as a Sensor . 61
3.3. Implementation of two Requirements . 62
3.4. Verification of two Requirements . 62
3.5. Test of Requirement ELS-3 . 65
3.6. Partial CBMC Output . 68

4.1. B Specification of Peterson’s Algorithm 82
4.2. Loading the Peterson Machine in lisb . 84
4.3. Creating the Java AST for x ∗ 2 = 1 + 2 + 3 86
4.4. Excerpt of Desired Re-Writes . 89
4.5. Retrieving the IR of all Unique Guard Conjuncts from the Peterson Ma-

chine (Continues Listing 4.2) . 90
4.6. Multiplication Example from [CBH+16] 91
4.7. Example Usage of Algorithm DSL in lisb 92
4.8. Implementation of Assignments in lisb’s Algorithm DSL 92
4.9. Two Suspicious Definitions . 93
4.10. Two Safe Predicates . 94
4.11. Manual Implementation of if-then-else and its Usage 95
4.12. Definition of an LTL Pattern . 96
4.13. Generation of LTL Formulas . 97

5.1. Finding Specifications Based on Their Information 103

7.1. Adding a Value Into a Set — No Reduction 112
7.2. Unrolled and SAT Encoded Version of listing 7.1 — POR is Successful . 112
7.3. Unrolled add Operation . 117
7.4. Grand Challenge: Abrial’s Interlocking System (Excerpt) 124
7.5. Pseudo-Code of POR Analysis . 128

List of Tables

3.1. Development Time . 57
3.2. Example Trace Violating ELS-22. KeyIn = KeyInIgnitionOnPosition. . . 69
3.3. Runtime and Memory (Geometric Mean) of CBMC Verification Tasks

With Bound n. 70

4.1. Examples of lisb Syntax . 87

5.1. Overview of available machine meta data with a timeout of 30 min. . . . 104

175

	Abstract
	Introduction
	State-Based Formal Methods
	The B-Method
	Popular B Tools

	Overview Over the Chapters
	Integrating formal specifications into applications: the ProB Java API
	Research Questions
	Design and Methods

	A Verified Low-Level Implementation and Visualization of the Adaptive ELS and SCS
	Research Questions
	Design and Methods

	Treating Specifications as Data
	Research Questions
	Design and Methods

	Towards a Shared Specification Repository
	Research Questions
	Design and Methods

	Empirical Evaluation of POR for B
	Research Question
	Design and Methods

	Towards Practical Partial Order Reduction for High-Level Formalisms
	Research Questions
	Design and Methods

	Integrating Formal Methods Tooling and Applications
	Integrating Formal Specifications into Applications — The ProB Java API
	Introduction
	B, Event-B and ProB

	ProB Java API
	Examples
	Real-Time Animation: Pac-Man
	Predicting the Future: Chess
	ProB Logic Calculator
	DSLs on Top of B: lisb
	ProB as a Constraint Solver: PlüS
	Real Time Animation: ETCS Hybrid Level 3 Concept

	Discussion: Should Formal Specifications be Executable?
	Executability
	B as an Executable Language
	Should Formal Specifications be Executable?

	Related Work
	Visualisation
	Code Generation
	Other Tools
	Other Approaches

	A Look Into the Crystal Ball – Potential for the Future
	Integration Potential with Artificial Intelligence
	Tool-Wrapping FMU
	Future Use Cases

	Conclusions
	Declarations

	A Verified Low-Level Implementation and Visualization of the Adaptive Exterior Light and Speed Control System
	Introduction
	Background on Used Methodology and Tools
	MISRA C
	Test-driven Development and Mocking
	CBMC

	Requirements and Modelling Strategy
	Process From Requirements to Code and Assertions
	Code Structure
	Traceability of Requirements
	Variability of Requirements
	Properties Addressed & Limitations

	Model details
	Formalization Approach
	Modelling Idioms
	Coding Examples
	Modelling of Time Constraints
	Readability and Comprehensibility

	Validation & Verification
	Test-Driven Development Using cmockery
	Model Checking Using CBMC

	Other Observations
	Specification Ambiguities, Flaws and Suggested Improvements
	Improvements to our Employed Methodology
	Note about Deriving a Software Implementation

	Comparison
	Conclusions

	Treating Specifications as Data
	Introduction
	Motivation

	Background
	The B Specification Language
	Clojure

	lisb — Internals
	Architecture Overview
	Components

	Case Study: Machine Transformation
	Case Study: Algorithm Description Language DSL
	Addressing B-specific Issues
	Language Semantics — Definitions
	Introducing Convenience Operators

	Related Work
	Conclusions
	Future work

	Towards an Improved Partial Order Reduction for B
	Towards a Shared Specification Repository
	Introduction and Motivation
	Proposed Index
	Conclusions, Related and Future Work

	Interlude: Empirical Evaluation of POR for B
	Introduction
	Setup
	Results
	Threats to Validity

	Towards Practical Partial Order Reduction for High-Level Formalisms
	Introduction
	Background
	Idiom 1: Parameterised Operations
	Solution: Unrolling of Operations

	Idiom 2: Usage of Compound Values (Sets, etc.)
	Solution 1: Constraint-Based POR Analysis
	Solution 2: SAT Encoding of Finite Sets

	Case Study & Challenge: Railway Interlocking System
	Interlocking Model Overview
	Insights

	Conclusions and Future Work
	Pseudo-Code Overview of the POR Analysis

	Conclusions and Future Work
	Integrating formal specifications into applications: the ProB Java API
	A Verified Low-Level Implementation and Visualization of the Adaptive Exterior Light and Speed Control System
	Treating Specifications as Data
	Towards a Shared Specification Repository
	Empirical Evaluation of POR for B
	Towards Practical Partial Order Reduction for High-Level Formalisms

	Bibliography
	Information About Included Manuscripts

