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Summary

Soft matter systems consist of microscopic substances dispersed in a dispersion
medium. Usually, the microscopic substance is composed of colloidal particles,
with a typical size from a few nanometers to a few micrometers. The particles’
motion is mainly governed by thermal agitation. Conversely, when thermal agi-
tation does not play a role in the system’s dynamics, the particles (referred to as
grains) can only move due to the drag of external forces. Having for both types of
systems a wide range of applicability in everyday use. Hence, the importance of
experimentally studying microscopic or macroscopic properties. Recently, Digital
Fourier Microscopy (DFM) has been introduced. It is a conceptual framework
applied to a time series of images to obtain static and dynamic properties of col-
loidal systems. In this thesis, we present an optimization of the DFM analysis
scheme and show a variety of its applications. The different optimization algo-
rithms decrease the computational time of analysis.

Also, we present an extension of the theoretical framework by including the ef-
fects of moderate multiple scattering, allowing us to define a limit of applicability
of the techniques for moderately turbid suspensions. We employ, as well, DFM
to extract microrheological properties such as the complex viscosity for various
systems, including viscous, visco-elastic, biological, and other complex fluids. In
addition, we use DFM to study the contribution of polydispersity to the velocity
deviations of sedimenting colloidal systems. Moreover, we extend the physical
understanding of the transition between colloidal and granular dynamics by using
real and reciprocal space observables. Complementary, we present the polydis-
perse Langevin model, computer simulations, and experimental results.

Furthermore, we study the extension of the DFM framework to X-Ray radio-
graphs, where we extract the dynamics of sedimenting and fluidized granular
suspensions. Finally, we introduce the Rheo-DFM framework and use it to char-
acterize the shear profile imposed by a plate-plate shear cell to a colloidal system.
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1 Introduction

Soft matter systems consist of a microscopic substance dispersed in a dispersion
medium [1]. Usually, the microscopic substance is composed of colloidal particles,
with a typical size from a few nanometers to a few micrometers. The dispersion
medium is often a liquid. These particles are considered small enough to minimize
the effects of gravity. These systems are present in everyday life [2]. Examples are
seen in the food industry [3], like chocolate or milk, to name a few, in most com-
mon everyday technological appliances, like the liquid crystal inside of screens [4].
Moreover, the variety of these systems is also present in Biology, such as cells,
bacteria, and proteins [5].

The microscopic properties of colloidal dispersions (for simplicity, samples) are
experimentally studied with electromagnetic radiation by analyzing the signal
resulting from the interaction of this probing radiation with the sample [6–8].
Thus, different experimental techniques are named according to the electromag-
netic radiation properties (wavelength, coherence, etc.), such as the case of Optical
Microscopy, Dynamic and Static Light scattering (DLS and SLS). On the other
hand, macroscopic properties can be determined by the system’s flow properties.
These experiment types are known as Rheology tests [9, 10]. For example, the
shear viscosity is the property that describes the opposition of a suspension to
flow. The viscosity is susceptible to particle shape, size, and concentration. It
can also reflect the interaction between particles, as well as internal structural
changes or aggregation [9]. Furthermore, in order to gain more insights into how
the microscopic and microscopic properties are linked, a combination of the pre-
viously described techniques has been developed [11–14].

Recently, Digital Fourier Microscopy (DFM) has been introduced [7]. It is a
conceptual framework applied to a time series of images to obtain microscopic
properties of colloidal systems. It allows the extraction of static and dynamic
properties of the studied sample by performing image analysis on a series of ac-
quired images using an optical microscope. Where no restriction of the illumina-
tion properties is imposed, thus various imaging conditions, i.e., an incandescent
poly-chromatic lamp, fluorescence imaging, laser, etc, can be employed. With
this framework, spatial-temporal information in the reciprocal space is obtained,
similar to a Dynamic Light Scattering experiment (DLS), without the need for
specialized equipment.
The purpose of this work is to illustrate some of the contributions and applica-
tions of the theoretical framework of DFM, including its basic description and
extensions. The content of this thesis is presented as follows. Chapter two sum-
marizes the basic concepts of soft matter systems, including static and dynamic
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1 Introduction

correlations, the Langevin picture of Brownian motion, and the main definitions
of observables. In chapter three, we introduce the different optical regimes and
the theoretical framework of Digital Fourier Microscopy.

In chapter four, we summarize all our experimental results, where each subsection
presents a different application of the DFM framework. These include Optimized
algorithms for DFM (Sec.4.1), Effect of moderate multiple scattering in hetero-
dyne near field scattering (Sec.4.2), Microliter viscometry (Sec.4.3), Velocity de-
viations from sedimentation of dilute systems (Sec. 4.4), From colloid to grain, a
dynamic description of sedimentation in dilute systems (Sec. 4.5), Digital Fourier
Analysis of X-Ray radiographs of granular suspensions (Sec.4.6), and Dynamics
of sheared particles: Rheo-DFM (4.7). Finally, in chapter five, we present our
conclusions.
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2 Analysis of soft matter in Real and Fourier space

2.1 Static Correlations

Soft matter systems consist of a microscopic substance dispersed in a dispersion
medium [1]. Usually, the microscopic substance is composed of colloidal particles,
with typical size from a few nanometers to a few micrometers, and the dispersion
medium is often to be a liquid. These particles are considered small enough to
minimize the effects of gravity, but larger than the dispersion medium molecules.
Hence, the liquid can be approximated as a continuum.

For simplicity, we will consider a system of N spherical particles of diameter σ
immersed in a liquid. These type of systems are very sensitive to external forces
and thermal agitation, which is also known as Brownian motion (random move-
ment of the particles due to constant collisions with the molecules of the solvent).
Furthermore, these particles interact between themselves via a pair-wise interac-
tion potential, denoted by U(r). Where r is the distance vector that connects the
center of mass between two particles.

In the following we will consider simple pair-wise interaction potential, having
U(r) to be spherically symmetric, i.e. it only depends on the magnitude of r,
hence U(r)=U(r).
One of the simplest form of pair-wise interaction potential is the so-called Hard
Sphere potential. It represents how particles are not allowed to interpenetrate
or overlap, this is achieved by having a very strong repulsion when r < σ. The
mathematical representation of a Hard Sphere potential is given by,

UHS(r) =

{
∞ r < σ

0 r ≥ σ.
(1)

Although in nature there are many different interaction potentials, it is out of the
scope of this work to describe in detail all of them. For more information regard-
ing classical statistical mechanics theoretical framework, please refer to [1,15–18].

Once the interaction between particles is sketched, we can define useful quantities
to describe the studied system. One of them is the bulk number density (ρ),

ρ =
N
V
. (2)

It indicates the number of particles (N) in the total volume (V ). Even though it
is usually used, a more convenient quantity to represent the amount of particles in
the solution is the particle volume fraction (φ). It is defined as the ratio between
the occupied volume of the particles (NVp) over V . Having Vp as the volume of

3



2 Analysis of soft matter in Real and Fourier space

one particle, thus the expression of volume fraction is given by

φ =
NVp

V
=

π

6
σ3ρ. (3)

Fig.1 displays rendered Hard Sphere systems with different volume fractions. The
left panel shows a dilute one with φ=0.05, and the right panel depicts a concen-
trated one with φ=0.35.

Fig. 1: Snapshots of Hard Sphere systems with different volume fraction (φ), φ=0.05 (left), and φ=0.35 (right).
The illustrations were made by rendering the particle coordinates from our Monte Carlo computer
simulations based on the Metropolis algorithm [18].

As bulk property, ρ does not contain any information of the configuration of
the system, i.e. internal arrangement or micro-structure. Thus, it is necessary
to define a function capable of describing the position of each particle. This is
achieved by introducing the spatial-density ρ(x), as it encloses the position of
each particle in the system. Each particle is considered point-like, and in any
given configuration of the system, the spatial-density is given by,

ρ(x) =
∑

N

δ(x − xj). (4)

The ensemble average over all possible configurations of ρ(x) for an homogeneous
system is known as the average one-particle density, ρ0(x),

ρ0(x) = 〈ρ(x)〉 = N
V

= ρ. (5)

Eq.(5) doesn’t contain any new information when compared to Eq.(2). Thus, in
order to be able to study structural arrangements or density fluctuations, another
tool has to be introduced. This is the case of density correlations.
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2 Analysis of soft matter in Real and Fourier space

Correlation is a statistical operation for estimating fluctuations or changes of a
variable with respect to another. When the variable is compared with itself, the
operation is known as auto-correlation, and cross-correlation when the compari-
son is made among different variables [19]. For our purposes, the correlation is
one of the main operations for studying density fluctuations over a sample. These
fluctuations could be spatial density fluctuations or temporal density fluctuations.

A correlation function that captures spatial density fluctuations is the two particle
density correlation, also known as the density-density correlation function. It is
given by,

ρ2(x,x′) = 〈ρ(x)ρ(x′)〉. (6)

When Eq.(6) is normalized, it is known as the pair distribution function or radial
distribution function [15,16,18],

g(|x − x′|) = ρ2(x,x′)

ρ0(x)ρ0(x)
=

1

ρ2

〈 N∑
j=1

N∑
i=1,i �=j

δ(x − xi)δ(x − x′
j)
〉
. (7)

The radial distribution function g(r) indicates the probability of finding a particle
at a certain distance r = |x − x′| from another particle, where x and x′ are each
corresponding particle coordinates.

Fig. 2: Radial distribution function from a hard sphere dispersion at different volume fractions (left) and its
corresponding structure factors (right). Data has been obtained from Monte Carlo simulations using
the Metropolis algorithm for a system composed of 1024 particles, and an ensemble average over 106

configurations.

For hard sphere systems, the radial distribution has three main features: It is
zero for r < σ, it presents a distinct peak at r = σ, and it displays oscillations
around the unity for intermediate distances. Moreover, due to its normalization
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2 Analysis of soft matter in Real and Fourier space

g(r) = 1 when r→∞. This because for large distances, the homogeneity of the
system makes equally probable to find a particle, as all spatial correlations are
averaged out. An illustration of the radial distribution for a hard sphere disper-
sion is illustrated on the left panel of Fig.2.

Another common tool for studying structural arrangement is the Fourier space
version of the density-density correlation function (Eq.(6)), is the Structure factor
S(Q) [1]. In order to obtain it, let us start by performing a spatial Fourier
transform of Eq.(4),

ρ̂(Q) =
∑

N

exp (−iQ · xj) . (8)

In the Fourier space, a collection of N localized particles, is described by a super-
position of planar waves, having the position of each particle (xj) projected onto
the wave vector Q. The magnitude of Q is Q = 2π/L. Hence, Q can be thought
as a "measuring ruler" of inverse length L. Then, the calculation of the structure
factor is similarly defined as Eq.(6), i.e.

S(Q) ≡ 1

N
〈ρ̂(Q)ρ̂∗(Q)〉 = 1 +

1

N

〈 N∑
l=1

N∑
n �=l

exp(−iQ · (xl − xn))
〉
. (9)

Here, (∗) refers to the complex conjugate. Moreover, it is worth noting that the
only difference between Eq.(6) and Eq.(9) is their normalization. Furthermore,
the structure factor is related to the radial distribution function by [1],

S(Q) = 1 + ρ

∫
e−iQ·r[g(r)− 1

]
dr + (2π)3ρ δ(Q). (10)

Thus, S(Q) shows similar behaviour as g(r) (Fig.2 right panel). The main differ-
ence relies in the probing length scale, having Q instead of r. Moreover, it also
contains peaks that represent the mean inter-particle distance at Qσ ≈ 2mπ, for
m=1. These, become more evident for volume fractions larger than φ ∼ 0.20, as
for these volume fractions the system becomes more structurized. Hence, more
peaks appear for m = 2, 3, ....

As a final remark we mention the limiting behaviour of S(Q). It is obtained at the
large wave vector limit, i.e. S(Q→∞) = 1, reminding that higher wave vectors
imply smaller probed length scales.
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2 Analysis of soft matter in Real and Fourier space

2.2 Dynamic Correlations

In the previous section we have introduced the use of correlations as a statistical
function to quantify similarity. This is carried out by a variable multiplication
and an average over all possible configurations that represent the same system’s
state. The latter is referred as an ensemble average. When computing static
quantities, the temporal path or how the configurations are changing in time is
irrelevant. Thus, if dynamical behaviour is of interest, the time dependence has
to be introduced. In the following, we will assume the Ergodic hypothesis, which
states that the overall ensemble average is equivalent to a sufficiently sampled
time average [1].

The dynamical behavior of a system that undergoes Brownian motion can be
represented as a stochastic or random process. Mathematically, multiple types of
stochastic processes exists [19, 20] and usually, for systems in equilibrium, there
are two types: The first one is known as stationary stochastic process. It is de-
fined as a stochastic process where its joint probability distribution function do
not depend on time shifts. This is a direct consequence of time-invariance of a
physical system [19]. The other type of stochastic process is the one known as
wide sense stationary process. It is defined by three conditions: The first moment
of the distribution doesn’t vary with time, it has a finite second moment for any
given time, and at least possess stationary increments. That means, stationary
only in time increments or equivalently to time differences [20,21].

Stationary or wide sense stationary processes of a dynamical arbitrary function
f(t) can be characterized by the dynamical auto-correlation function C(τ). It is
defined as

C(τ) = 〈f(t0)f(t0 + τ)〉t0, (11)

where t0 is starting time. C(τ) captures the similarity of f(t) for a given t0, when
compared to itself at different later time (t0+τ ). The time τ is known as delay time
and it is defined as τ=kΔt, k an integer, and Δt the sampling time. The brackets
〈〉t0 indicate that an average over all starting times t0 is performed. If the interest
is in the shape of C(τ) rather than the absolute magnitude, it is convenient to
normalize Eq.(11) and obtain the normalized dynamical auto-correlation function.
There are two possibilities of normalization [21],

C (τ) =
[
C(τ)− 〈f(t0)〉2t0

]
/〈f(t0)〉2t0. (12)

and
c(τ) =

[
C(τ)− 〈f(t0)〉2t0

]
/〈f 2(t0)〉t0. (13)

In both cases the baseline has been subtracted, and divided by either the square of
the first moment (Eq.(12)) or by the second moment (Eq.(13)). Usually, Eq.(13)
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2 Analysis of soft matter in Real and Fourier space

is the one being used due to its similarity to the correlation coefficient [21]. It
starts at the unity for τ = 0, and for sufficiently large delay times it decays to zero.

When the stationary status is not known apriori, it is convenient to use the
structure function or the mean square change [21],

D(τ) = 〈[f(t0 + τ)− f(t0)]
2〉t0. (14)

This because of the possibility of having another type of stationary process that
is not wide sense or stationary process, where Eq.(11) is not well-defined [21].
Moreover, for stationary processes the structure and the auto-correlation functions
are related through [21]

D(τ) = 2C(0)− 2C(τ). (15)
Some properties of the structure functions are: They start at zero for τ =0, are
always positive, and reach to a maximum value of 2C(0). It is important to point
out that although it has a similar name, the structure function has nothing to do
with the structure factor from Eq.(9).

The expressed concepts in Eq.(11) can be applied to the dynamical density

ρ(x, t) =
∑

N

δ(x − xj(t)), (16)

and obtain the normalized density-density correlation function in the real space.
It is the temporal counterpart of the radial distribution function g(r) known as
the van Hove function [22]. Using the same definition for the distance between
particles as in Eq.(7), the van Hove function is defined as

G(r, τ) =
1

Nρ

〈 N∑
j=1

N∑
i=1

δ [r − (Δxji(t0, τ))]
〉
t0

(17)

where Δxji(t0, τ) = xj(t0 + τ)− xi(t0) is the displacement between particles i,j
in the time interval τ . The double summation of Eq.(17) can be split into the self
and distinct terms. The self van Hove function is defined when i=j, i.e.

Gs(r, τ) =
1

Nρ

〈 N∑
j=1

δ [r − (Δxi(t0, τ))]
〉
t0

(18)

where Δxi(t0, τ) is the traveled distance per particle. The self part represents the
probability of a particle being at x(t0) at t0 and then displaced by Δxi during τ .

The complementary part of Eq.(18) i �= j, is known as the distinct van Hove
function

Gd(r, τ) =
1

Nρ

〈 N∑
j=1

N∑
i �=j

δ [r − (Δxji(t0, τ))]
〉
t0
. (19)

8



2 Analysis of soft matter in Real and Fourier space

Noting that for τ=0, Gd(r, τ=0) = g(r). Hence, the distinct part of the van Hove
function represents the dynamical analogue of the radial distribution function.

In a similar manner, the dynamical Fourier density is defined by

ρ̂(Q, t) =
∑

N

exp (−iQ · xj(t)) . (20)

It is used to obtain the collective dynamical structure factor [1],

Sc(Q, τ) =
1

N

〈 N∑
j=1

N∑
j=1

exp [−iQ ·Δxji(t0, τ)]
〉
t0
, (21)

and subsequently it can be decomposed in a self and distinct part.

To conclude this section, we show the result of computing the structure function
(Eq.(14)) of the dynamical Fourier density (Eq.(20)), obtaining

D(Q, τ) = 2S(Q)− 2Sc(Q, τ). (22)

By defining the collective intermediate scattering function [1, 23]

fc(Q, τ) ≡ Sc(Q, τ)

S(Q)
(23)

Eq.(22) can be expressed as

D(Q, τ) = 2S(Q) [1− fc(Q, τ)] , (24)

The previous two equations are the main observables obtained in experiments
such as Digital Fourier Microscopy (DFM) and Dynamic Light Scattering (DLS)
[1, 7, 8, 24], while Eq.(18) and Eq.(19) can be calculated through particle coordi-
nates extracted by means of particle tracking algorithms from optical microscopy
expedients [25].

9



2 Analysis of soft matter in Real and Fourier space

2.3 Langevin picture of Brownian motion

The first person to introduce a mathematical description for particle dispersions
undergoing Brownian motion was A. Einstein in 1905 [26]. His work was based
on the diffusion equations of A. Fick [27], where an ensemble of particles is con-
sidered and their concentration tends to be uniform over all available space. The
latter leads to the diffusion equation for the particle concentration ρ(x, t). The
work was later extended by M. Smoluchowski (1916) [28] introducing the equation
named after him. This equation is able to describe the density fluctuations of a
colloidal sample in the presence of an external field. A more general equation,
similar to Schrödinger’s equation, was obtained by Fokker-Planck (1916-1917),
which describes the temporal evolution of the probability distribution function
w(x, t) from a stochastic process that results from Brownian motion [19,29,30].

In the following we will summarize an alternative approach obtained by P. Langevin
in 1908 [31]. It has been widely used for performing computer simulations to study
the dynamics of colloidal suspensions with many different interactions [32], and
it is equivalent to the solution of the Smoluchowski equation [1]. The Langevin
framework is based on a stochastic equation of motion that describes the position
x(t) of a Brownian particle under the influence of a fluctuating random force.
This in order to account for the thermal collisions of the solvent molecules with
the Brownian particle. For simplicity we will derive it in one dimension but it can
be easily extended to three.

Following Newton’s second law, the Langevin equation for a particle in an ideal
viscous fluid is

mẍ(t) = −ξẋ(t)− d

dx
Uext(x) + f(t), (25)

where m is the mass of the particle. The first term on the right hand side of
the equation corresponds to the frictional force that the particle experiences due
to the continuous collisions with the solvent molecules. It is proportional to the
particle velocity and the proportionality constant ξ is known as the friction coeffi-
cient. For a spherical particle ξ = 3πησ, with η the shear viscosity of the solvent
and σ the particle diameter. The second term in Eq.(25) corresponds to the force
generated by an external potential Uext(x), this can be the gravitational, electric
or the resulting one from the superposition of inter-particle interactions. Finally,
the third term corresponds to the Gaussian stochastic force f(t). It satisfies three
properties: f(t) is Gaussian distributed, its first moment is zero, 〈f(t)〉=0, and it
is delta convoluted 〈f(t)f(t′)〉 = 2ξkBTδ(t − t′). Here kB is the Boltzmann con-
stant and T , the temperature. The latter represents the fluctuation-dissipation
theorem [33,34].

10



2 Analysis of soft matter in Real and Fourier space

It is worth mentioning that a sum of random Gaussian variables is also a Gaussian
variable, and a random Gaussian variable is uniquely defined through its first two
moments, the mean and variance [19]. Thus, the probability distribution function
P (x) of a Gaussian random variable x is given by:

P (x) =
1√
2πσ2

exp

[
−(x − 〈x〉)2

2σ2

]
(26)

where 〈x〉 is the mean of x and σ2=〈[x − 〈x〉]2〉 the variance.

In the following only small inertial effects are considered thus, the second deriva-
tive in Eq.(25) is safely neglected. This leads the over damped Langevin equation,

ẋ(t) = −1

ξ

d

dx
Uext(x) +

1

ξ
f(t). (27)

Here, we present the solution of Eq.(27) for a free particle, i.e. no external inter-
actions (Uext(x) = 0). However, in Sec.2.5 we discuss the coupling of a particle
to an external force. The solution, considering the initial condition for a starting
time t0 to be x(t= t0)=x0, is given by,

x(t0 + τ) = x0 +
1

ξ

∫ t0+τ

t0

f(t′)dt′. (28)

Where τ is a delay time. Due to the nature of a stochastic differential equation,
the solution shown in Eq.(28) lacks of meaning. Rather it is more convenient to
estimate average quantities, such is the case of the mean value 〈x(t)〉. Recalling
the properties of the stochastic force f(t), we obtain,

〈x(t0 + τ)〉 − 〈x(t0)〉 =
1

ξ

∫ t0+τ

t0

〈f(t′)〉dt′ = 0. (29)

The previous result illustrates a condition of stationarity, and it can also be seen as
the first moment of the one dimension probability distribution function w(x, τ |t0).

We continue by computing the second moment or variance,

σ2
x(τ) = 〈[x(t0 + τ)− 〈x(t0 + τ)〉]2〉 = 1

ξ2

∫ t0+τ

t0

∫ t0+τ

t0

〈f(s)f(t′)〉dsdt′. (30)

By using the second property of f(t) we obtain

σ2
x(τ) =

2kBT

ξ
τ = 2Dτ, (31)

where D is the diffusion coefficient. Eq.(31) relates to the Mean Squared Dis-
placement (MSD) by,

〈Δx2(t0, τ)〉 = 〈[x(t0 + τ)− x0]
2〉 = σ2

x(τ). (32)

11



2 Analysis of soft matter in Real and Fourier space

Thus, for a system with stationary first moment the variance and MSD are equal.
The rearrangement of Eq.(31) leads to the Einstein’s relation

D =
〈Δx2(t0, τ)〉

2τ
=

kBT

ξ
, (33)

and by using the Stokes’s friction coefficient of a sphere (ξ = 3πησ) the right
hand side of the equation is also known as the Stokes-Einstein relation.
By substitution of Eq.(29) and Eq.(31) in Eq.(26) the distribution w(x, τ |t0) can
be found and expressed as follows:

w(x, τ |t0) =
1√

4πDτ
exp

[
−(Δx(t0, τ))

2

4Dτ

]
. (34)

Eq.(34) is the exact solution of the Fokker-Plank equation, and for this case
w(x, τ |t0) corresponds to the self part of the van Hove function (Eq.18) [1].

Once the probability distribution function is known, we can proceed to calculate
the self intermediate scattering function along the x axis f(Qx, τ) by computing

f(Qx, τ) = 〈exp [iQxΔx(t0, τ)]〉

=

∫
exp [iQxΔx(t0, τ)]w(Δx, τ |t0)dΔx

= exp

[
−1

2
Q2

x〈Δx2(t0, τ)〉
]
, (35)

or equivalently
f(Qx, τ) = exp

[
−Q2

xDτ
]
. (36)

Eq.(35) and Eq.(36) are two important results. The first one, has been used for
measuring the MSD in light-scattering experiments for dilute tracer particles in
different complex media [23, 35, 36]. The second one, when combined with the
Stokes-Einstein relation (Eq.(33)) is very useful for characterizing the particle
size in a dilute colloidal suspension. However, special attention has to be taken as
it has to be considered that in an experimentally accessible colloidal suspension,
the particles are very unlikely to have the same particle size, rather they follow
a particle size distribution. This leads to a distribution of diffusion coefficients,
thus an averaged measured diffusion coefficient is obtained [5,37]. For narrow dis-
tributions, and without loosing generality, we will use a Gaussian distribution to
represent the distribution of diffusion coefficients and illustrate a possible exten-
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2 Analysis of soft matter in Real and Fourier space

sion of Eq.(36). This approach is also known as the cummulant method [37,38],

f(Qx, τ) =

∫ ∞

0

exp
[
−Q2

xDτ
]
P (D)dD

= exp
[
−Q2

x〈D〉τ
] ∫ ∞

−∞
exp

[
−Q2

x(D−〈D〉)
]
P (D−〈D〉) d(D−〈D〉)

= exp

[
−Q2

x〈D〉τ
{
1− 1

2
Q2

x〈D〉τ δ2D
〈D〉2

}]
, (37)

where δ2D is the variance of the diffusion coefficient distribution and the ratio
δD/〈D〉 is known as the coefficient of variation or polydispersity index of the
diffusion coefficient.

2.4 Generalized Brownian Particle in a viscoelastic medium, viscometry

The purpose of this section is to sketch an abbreviated derivation of the Gen-
eralized Stokes-Einstein relation (GSE), and to introduce the line of arguments
for understanding the foundations of passive one-point micro-rheology. This by
following ref [39]. Mason and Weitz were the first to experimentally test the GSE
relation (1995). They were able to probe bulk visco-elastic properties such as
the complex viscosity (η∗(ω)) or the visco-elastic modulus (G∗(ω)) of complex
fluids. This by relating them to the Laplace transformation of the mean squared
displacement of tracer particles. These relations were obtained via a Laplace anal-
ysis of the Generalized Langevin Equation [40, 41]. The later approach was the
beginning of a new experimental method known as passive micro-rheology, and it
has been applied to a broad type of biological and complex systems [36,42–45].

To improve the experimental errors associated with the Laplace technique, a
Fourier analysis of the generalized Langevin equation was introduced [35, 39, 46].
In the following we will present the Fourier analysis of the generalized Langevin
equation for a particle with velocity (v(t)= ẋ(t)) and without external forces [16],

mv̇(τ) = f(τ)−
∫ τ

0

ζ(τ − t′)v(t′)dt′. (38)

Here, for simplicity, we have set t0=0. The previous equation differs from Eq.(25)
in the frictional term, here ζ(τ) is the memory function that describes the local
viscoelastic response of an isotropic, complex fluid. The viscoelasticity of a fluid
relapses in its ability to store and dissipate energy upon mechanical perturba-
tions [9]. In order to proceed, the properties described in Sec.2.3 for the stochastic
random force f(τ) will be assumed unaltered except for the fluctuation-dissipation
relation, taking the form 〈f(0)f(τ)〉 = 2kBTζ(τ) [16, 33, 47]. Noticing that with
ζ(τ) = ξδ(τ) Eq.(25) is recovered.

13
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In addition, let us consider that the distribution of random forces is entirely
decoupled from a past distribution v(0). This imposes

〈v(0)f(τ)〉 = 0. (39)

Eq.(38) can be solved for v(ω) in the Fourier temporal space. We will show the
results using the same mathematical assumptions as in [39]. Using the convolution
theorem, it is possible to obtain

v∗(ω) =
f∗(ω) +mv(0)

iωm+ ζ∗(ω)
. (40)

Moreover, it is possible to relate the memory function (ζ∗(ω)) with the velocity
autocorrelation function by multiplying Eq.(40) by v(0) and perform an ensemble
average. The previous leads to

〈v(0)v∗(ω)〉 = kBT

iωm+ ζ∗(ω)
, (41)

where we have made use of the equipartition theorem, i.e. m〈v(0)v(0)〉 = kBT .
The first term in the denominator of Eq.(41) is the contribution of inertial effects
and, again, will be assumed negligible for the following [41].

Finally, in order to relate the memory function to the complex viscosity it is
needed to know the exact solution of the flow field for an arbitrary complex fluid
surrounding a moving sphere. For this, the authors in references [39–41,48] have
assumed and successfully proven that a natural extension of the case of purely
viscous systems can be assumed, taking the form

η∗(ω) =
ζ∗(ω)

3πσ
. (42)

Hence, the relation between the complex viscosity and the velocity auto-correlation
function is obtained,

η∗(ω) =
kBT

3πσ〈v(0)v∗(ω)〉 . (43)

Eq.(43) can be expressed in terms of the mean squared displacement 〈Δx2(t0, τ)〉
by means of the following one dimensional identity [39]

F
{
〈Δx2(t0, τ)〉

}
=

2

(iω)2
F
{
〈v(0)v(τ)〉

}
(44)

giving,

η∗(ω) =
2kBT

3πσ(iω)2F
{
〈Δx2(t0, τ)〉

} . (45)

The previous relation is the Generalized Stokes-Einstein (GSE) relation, and it
is frequently presented in terms of the complex viscoelastic modulus G∗(ω) =

14
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iωη∗(ω) [9, 49]. This gives rise to

G∗(ω) =
2kBT

3πσiωF
{
〈Δx2(t0, τ)〉

} . (46)

The previous equations are the main ingredients for performing microliter vis-
cometry (Eq.(45)) and passive microrheology (Eq.(46)). The latter is achieved by
computing the mean squared displacement from computer based particle track-
ing analysis of microscopy images of tracer particles [43] or by measuring the
self intermediate scattering function in dynamic light scattering type experiments
performed under non-interacting, dilute tracer concentration [23, 35, 36, 50]. In
which, from Eq.(35), the following relation is applied

〈Δx2(t0, τ)〉 = − 2

Qx
ln [f(Qx, τ)] . (47)

2.5 Brownian Particle in the presence of an external Force, the linear regime

In the previous sections we presented the solution of the Langevin equation for
a free Brownian particle in an ideal viscous fluid (Sec. 2.3) and in a generalized
viscoelastic medium (Sec.2.4). In the following, we present an extension to the
particle in an ideal viscous fluid by adding the effect of an external potential,
Uext(x). This, leads to an external force

FD = −∇Uext(x). (48)

In particular, we present it for potentials that lead to a constant external force,
such is the case of the gravitational potential or an electric field. For this, we will
consider an homogeneous and isotropic viscous medium, where the mobility tensor
is constant (μ = μ), thus its inverse can be expressed as the friction coefficient
(ζ = ξ = 1/μ). Hence, a linear relation of the dragged velocity (vD) and the
external force is found. This, is also known as a linear regime or a Stokes flow
[1,51,52], having

vD =
1

ξ
FD. (49)

Since FD acts in one specific direction, a description of the Langevin equation in
three dimensions is necessary. Thus, by considering FD in ẑ, the three Cartesian
coordinates are given by

ẋ(t) =
1

ξ
fx(t), ẏ(t) =

1

ξ
fy(t), ż(t) =

1

ξ
fz(t) + vD (50)
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where fx, fy, fz are the stochastic forces per coordinate, and x0, y0, z0 the initial
conditions of the system at t= t0. The solution per coordinate is

x(t0 + τ) = x0 +

∫ t+τ

t0

1

ξ
fx(t′)dt′

y(t0 + τ) = y0 +

∫ t0+τ

t0

1

ξ
fy(t′)dt′

z(t0 + τ) = z0 +

∫ t0+τ

t0

1

ξ
fz(t′)dt′ + vDτ (51)

Then, the first moment is given by

〈x(t0 + τ)〉 = x0, 〈y(t0 + τ)〉 = y0, 〈z(t0 + τ)〉 = z0 + vDτ, (52)

where the perpendicular coordinates to the external force (x, y) exhibit the same
first moment as Eq.(29). Noting that for systems that present drift, ie., systems
without a stationary first moment, the mean squared displacement per coordinate

〈Δx2(t0, τ)〉 = 〈[x(t0 + τ)− x0]
2〉 = 〈[y(t0 + τ)− y0]

2〉 = 2Dτ,

〈Δz2(t0, τ)〉 = 〈[z(t0 + τ)− z0]
2〉 = 2Dτ + v2Dτ

2

is not the same as the variance, such is the case of the z component, i.e.

σ2
x(τ) = 〈[x(t0 + τ)− 〈x(t0 + τ)〉]2〉 (53)

= 〈[y(t0 + τ)− 〈y(t0 + τ)〉]2〉
= 〈[z(t0 + τ)− 〈z(t0 + τ)〉]2〉
= 2Dτ.

Thus, the perpendicular coordinates to the direction of the force has the same
expression of the probability distribution function w(x, τ |t0) in Eq.(34). In con-
trast, the one parallel to the direction of FD, has the main difference in the first
moment, i.e.

w(x, τ |t0) = w(y, τ |t0) =
1√

4πDτ
exp

[
−(Δy(t0, τ))

2

4Dτ

]
,

w(z, τ |t0) =
1√

4πDτ
exp

[
−(Δz(t0, τ)− vDτ)

2

4Dτ

]
. (54)

Once the probability distribution function per coordinate is obtained, we can
proceed to calculate f(Q, τ) of the 3 dimensional displacement

Δr(t0, τ) = Δx(t0, τ )̂i+Δy(t0, τ)ĵ +Δz(t0, τ)k̂.

This, by computing

f(Q, τ) = 〈exp [iQ ·Δr(t0, τ)]〉

=

∫ ∫ ∫
exp [iQ ·Δr]w(Δx, τ |t0)w(Δy, τ |t0)w(Δz, τ |t0)dΔxdΔydΔz

= exp
[
−Q2Dτ

]
exp [iQzvDτ ] (55)
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where Q= |Q| is the magnitude of the wave vector Q. The previous result can
be interpreted as a convolution of intermediate scattering functions that encloses
statistical independent motion information as,

f(Q, τ) = fB(Q, τ)fD(Q, τ) (56)

where fB(Q, τ) is the intermediate scattering function containing the exponential
decay from the Brownian motion, with a characteristic time scale τB = 1/DQ2

that can be thought analogously as in Eq.(31), i.e. 1/Q2 ∼ L2 ∼ Dτ . The second
term, fD(Q, τ) is the one corresponding to the drag from FD, it involves a unitary
phasor with frequency ωD = QvD or characteristic time τD = 1/QvD. This has
the characteristics of ballistic motion, i.e. 1/Q ∼ L ∼ vDτ . Hence, the Fourier
space description of the particle motion contains analogue information as in the
real space.

2.6 Intermediate scattering function from a distribution of velocities

The results in the previous section was performed by solving the Langevin equa-
tion of one particle in the presence of a constant external force. In order to
generalize it to a distribution of particles, we include a velocity distribution P (v)
in the description. The velocity distribution arises from the fact that each particle
of the system can couple differently to the external force, thus imposing different
velocities per particle. Some examples are when FD is related to the particle size
as in gravity and electrophoresis experiments, or when a spatial velocity profile
is distributed over the sample volume. In these cases, fD(Q, τ) for wave vectors
parallel to FD becomes the weighted superposition of all possible velocities, i.e.

fD(Q, τ) =

∫ ∞

−∞
exp [iQvτ ]P (v)dv. (57)

Hence, depending on the velocity distribution, the analytical expression of fD(Q, t)
can be obtained.

In the following, we show two different examples of P (v). The first example is a
narrow distribution of velocities approximated by a normal distribution. In this
case, a similar cummulant analysis as in Sec.2.3 for fD(Q, t) can be performed,
thus

fD(Q, τ) =

∫ ∞

−∞
exp [iQvτ ]P (v)dv

= exp [iQ〈v〉τ ]
∫ ∞

−∞
exp [iQ(v−〈v〉)τ ]P (v−〈v〉)d(v−〈v〉)

= exp [iQ〈v〉τ ] exp
[
−1

2
Q2δ2vτ

2

]
. (58)
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Here, 〈v〉 is the mean velocity of the distribution and δv is the standard deviation.
We would like to stress out the factorization steps, as this can be performed for
any velocity distribution. Furthermore, the final expression of Eq.(58) can be
thought of as if fD(Q, τ) has two main contributions. One being the mean directed
motion, indicated by the unitary phasor term containing 〈v〉. The second one,
the exponential decay containing δv, is the relative directed motion to the mean
directed one. Hence, as a general remark, the intermediate scattering function
of a distribution of velocities can be decomposed into the mean directed motion
(〈v〉), and the relative directed contribution to it (v′=v−〈v〉), as

fD(Q, τ) = exp [iQ〈v〉τ ]
∫ ∞

−∞
exp [iQv′τ ]P (v′)d(v′) (59)

here, P (v′) is the relative to the mean velocity distribution.

The second example of velocity distribution is the one present in rheology exper-
iments [9]. Where mechanical deformations of two parallel plates impose a linear
velocity profile along one axis (ẑ), i.e. v′(z)=γz. γ is known as shear rate. For
this case, the integral of Eq.(59) is performed along a certain length (L) that
encloses the velocity distribution [12,13], leading to

fD(Q, τ) = exp [iQ〈v〉τ ] 1
L

∫ L/2

−L/2

exp [iQγτz]dz

= exp [iQ〈v〉τ ]sin (QγτL/2)

QγτL/2
. (60)

Again, Eq.(60) shows two terms, the unitary phasor from the mean directed mo-
tion enclosed in L, and the second term regarding the relative motion to it.

As a concluding remark, we would like to point out that even though the previous
results were shown for one dimensional velocity distributions. The expression
shown in Eq.(57) can be generalized to any coordinate system, where the choice
of such system will depend on the type of dynamics. The spherical coordinate
system is the most common for bacteria, or active systems [53–57]. Furthermore,
due to the isotropy of the motion, the relevant information is obtained over the
radial projection on Q, resulting in a much simpler description ultimately being
a 1-D problem [8].
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2.7 Polydisperse Langevin Description

The overall idea of this section is to introduce an extension of the Langevin model
for polydisperse systems by taking into account an ensemble of particles, which is
described by a particle size distribution P(σ). Although we consider dilute non
interacting systems, in Section (2.7.3) we introduce the effect of interactions for
the Ermack-McCammon algorithm of Brownian Dynamics simulations. In our
description, each particle is considered to be under the influence of an external
force in the linear regime, hence a stokes flow is considered. This leads to a drag
velocity vD, and adds an extra contribution in the over-damped Langevin equation
in the direction of the force. Thus, for a particle of diameter σ (represented as
a subscript) the correspondent Langevin equation in the direction of the external
force is

żσ(t) =
1

ξ
fz(t) + vDσ, (61)

where fz is the stochastic force. It satisfies three properties: fz is gaussian dis-
tributed, its first moment is zero, 〈fz〉=0, and it is delta convoluted 〈fz(t)fz(t′)〉 =
2ξkBTδ(t − t′). Here, kB is the Boltzmann constant, T the temperature, and ξ
is known as the friction coefficient. For a spherical particle ξ = 3πησ, with η the
zero shear viscosity of the solvent.

The solution of Eq.(61) is given by,

zσ(t0 + τ) = z0 +

∫ t0+τ

t0

1

ξ
fz(t′)dt′ + vDστ. (62)

Here, z0 = z(t = t0) is the initial conditions of the system. We proceed by us-
ing Eq.(62) and compute the Mean Squared Displacement (MSD) per particle
(〈�z2σ(t0, τ)〉t0), obtaining

〈�z2σ(t0, τ)〉t0 = 2Dστ + v2Dσ τ
2 (63)

where Dσ = kBT/ξ is the free diffusion coefficient of a particle with diameter σ,
and 〈...〉t0 indicates a time average. For sake of clarity, we recall that t0 is the
starting time and τ is the delay time.

Now, we introduce the overall MSD by considering an ensemble average (〈...〉E)
over a distribution of particle size P(σ), i.e.

〈�z2(t0, τ)〉t0,E =

∫
〈�z2σ(t0, τ)〉t0P(σ)dσ. (64)

The previous leads to the following expression,

〈�z2(t0, τ)〉t0,E = 2〈D〉E τ + 〈v2D〉Eτ 2. (65)
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The last expression is a general description, as we have not introduced any func-
tional form of P(σ). Hence, it is implied that all of the previous averages exist
within the desired distribution description.

In order to differentiate relative to directed motion, we make use of the variance
of the velocity

δ2v = 〈v2D〉E − 〈vD〉2E, (66)

and combine it with Eq.(65). Thus,

〈�z2(t0, τ)〉t0,E = 2〈D〉E τ +
(
〈vD〉2E + δ2v

)
τ 2

= 2〈D〉E τ + 〈vD〉2E
(
1 + CV2

v
)
τ 2, (67)

where CVv=δv/〈vD〉E is the coefficient of variation or polydispersity index of the
velocity. By following the delay time dependence, Eq.(67) describes two types of
motion: diffusive, as the ensemble MSD is proportional to τ , and ballistic, where
the MSD is proportional to τ 2. Additionally, the motion can be seen as relative
motion and collective directed motion. Being the diffusive and the δv terms rela-
tive motions to the collective contribution term 〈vD〉E.

In the reciprocal space, a similar analysis can be performed over the Intermediate
Scattering Function (ISF). Choosing Qz as the wave vector in the direction of the
external force, and by combining Eq.(37) and Eq.(58) the ISF takes the following
form,

f(Qz, τ) = exp

[
−Q2

z〈D〉E τ

{
1−1

2
Q2

z〈D〉E τ
δ2D

〈D〉2E

}]

× exp

[
iQz〈vD〉E τ−1

2
Q2

zδ
2
vτ

2

] (68)

where δ2D is the variance of the diffusion coefficient distribution, and the ratio
CVD = δD/〈D〉 is known as the coefficient of variation or polydispersity index
of the diffusion coefficient. Given the fact that D is related to σ, changes in the
size coefficient of variation CVσ = δσ/〈σ〉 imply changes in CVD = δD. It was
found that for CVσ < 0.1, the term containing δ2D becomes negligible [37]. This
is also corroborated and analyzed in Section (4.4). Experimentally, it is possible
to measure the real part of Eq.(68). Thus, the measured intermediate scattering
function is

fm(Qz, τ) = exp

[
−Q2

z〈Dσ〉E τ −1

2
Q2

zδ
2
vτ

2

]
cos (Qz〈vDσ〉E τ). (69)
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2.7.1 Reduced Units

The use of reduced units helps to find characteristic scales that describe a system,
and it is useful to generalize the description to different equivalent systems [18].
To start, we consider the mean diameter 〈σ〉E as the unit length. Hence, a particle
coordinate in reduced units is

z∗(t) = z(t)/〈σ〉E (70)

where (∗) denotes reduced units. For pure Brownian motion the ensemble MSD
in reduced units takes the following form.

〈�z∗2(t0, τ)〉t0,E =

〈∣∣∣∣z(t0 + τ)

〈σ〉E
− z(t0)

〈σ〉E

∣∣∣∣
2
〉

t0,E

=
1

〈σ〉2E
〈�z2(t0, τ)〉t0,E

= 2
〈D〉E
〈σ〉2E

τ. (71)

With the previous, it is possible to define a temporal scale of the ensemble, ad-
dressed as the ensemble Brownian time (t�B), where

t�B ≡ 〈σ〉2E
〈D〉E

. (72)

Thus, the reduced time
τ ∗ =

τ

t�B
, (73)

and by substitution of Eq.(72) in Eq.(71) considering Eq.(73) the complete re-
duced ensemble MSD takes the form

〈�z∗2(t0, τ
∗)〉t0,E = 2τ ∗. (74)

It follows by reducing Eq.(65) by making use of the previous results,

〈�z∗2(t0, τ
∗)〉t∗0,E = 2τ ∗ +

〈vD〉2E〈σ〉2E
〈D〉2E

(
1 + CV2

v
)
τ ∗2. (75)

Eq.(75) reveals the ensemble Péclet number,

Pe� ≡ 〈vD〉E〈σ〉E
〈D〉E

. (76)

Finally, Eq.(75) takes the following form.

〈�z∗2(t0, τ
∗)〉t∗0,E = 2τ ∗ + Pe�2

(
1 + CV2

v
)
τ ∗2. (77)

In addition, with the reduced wave vector, Q∗
z =Qz〈σ〉E, it is possible to write

Eq.(69) in reduced units,

fm(Q
∗
z, τ

∗) = exp

[
−Q∗

z
2τ ∗ −1

2
Q∗

z
2CV2

v Pe�2τ ∗2
]
cos (Q∗

zPe� τ ∗). (78)

21



2 Analysis of soft matter in Real and Fourier space

2.7.2 Analytical Gaussian Model under the presence of gravity

The settling of particles in a suspension is the most common example of particles
in the presence of an external force. In a dilute suspension, the particles mo-
tion is governed by the force balance between the effect of the gravitational field,
buoyancy and the frictional force. This leads to a steady state motion with con-
stant settling velocity also known as the Stokes velocity vs =�ρgσ2/18η, where
�ρ=ρs−ρp is the difference between the solvent and particle densities, g is the
gravitational acceleration, σ the particle diameter, and η the viscosity of the sol-
vent. For fixed particle composition, bigger particles will sediment more rapidly
than smaller ones. In nature, most of the suspensions present a particle size
distribution P(σ). Usually, the distributions that describe the polydispersity of
various systems are known to be: Normal (Gaussian), Log-Normal or Weibull [58].

The quantity that represents the relative broadness of the distribution is given
by the size coefficient of variation (CVσ), defined as the ratio of the standard
deviation of the distribution (δσ) by the mean value 〈σ〉, i.e. CVσ= δσ/〈σ〉. For
simplcity in the notation, we have used (〈...〉) to represent the ensemble average
(〈...〉E). A suspension is referred as monodisperse if its size distribution is nar-
row, i.e. CVσ∼0, thus the size variation is negligible, contrary to the one referred
as polydisperse. As a consequence of the particle size distribution, the overall
sedimentation motion can be represented by a velocity distribution. Having its
corresponding velocity coefficient of variation quantified by CVv = δv/〈vs〉, and
depending on the functional form of P(σ) a relationship between the velocity
(CVv) and the size coefficient of variation (CVσ) can be found.

In the following we make use of a Gaussian distribution as size distribution, i.e.

P(σ) =

⎧⎨
⎩
0 σ ≤ 0

1√
2πδ2σ

exp
[
− (σ−〈σ〉)2

2δ2σ

]
σ > 0

(79)

where 〈σ〉 is the mean particle diameter, and δσ is the standard deviation of the
distribution. The previous is motivated on the fact that narrow distributions can
be characterized by the first two moments [59]. Once the distribution is defined,
it is possible to compute all of the characteristic physical quantities (〈v〉,〈D〉, t�B,
and Pe�). This, in order to describe them by the distribution variables, 〈σ〉 and δσ.

For the velocity, the second moment of the distribution is computed. Therefore,

〈vs〉 =
�ρg

18η
〈σ2〉 = �ρg

18η
〈σ〉2

(
1 + CV2

σ

)
. (80)

Where we have used the definition of variance, δ2σ = 〈σ2〉−〈σ〉2. For the Diffusion
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coefficient, the first negative moment of the distribution needs to be obtained, as

〈D〉 = kBT

3πη

〈
1

σ

〉
, (81)

which, analytically, is not a simple task. However, we have solved it by numerical
integration. Our result is shown in Fig.3.

Fig. 3: The left panel shows a comparison of the numerical integration of the first negative moment for a
Gaussian distribution 〈1/σ〉 with the inverse of the first moment 〈σ〉, and as an inset we show the
obtained constant value for the relative deviation between the two moments. The right panel shows the
relative deviations of the two moments as a function of the square of the coefficient of variation CVσ

(black line). The found quadratic relation is shown as red dots, the analytical expression is shown as
legend.

The numerical results are plotted against the inverse of the first moment 1/〈σ〉
(left panel Fig.3). A linear dependence with zero intercept was found. More-
over, we proceeded to extract the relative difference from them, having found a
constant value for different polydispersities (shown as inset). Then, we plotted
[〈1/σ〉/(1/〈σ〉)] − 1 versus CV2

σ (right panel Fig.3). This, in order to be able
to extract a polynomial relation with CV2

σ. We proceeded to fit a second degree
polynomial (for CV2

σ) to the numerical integration data, obtaining coefficients
that were rounded to the algebraic expression that is shown as legend. Strikingly,
we found a very good agreement with the extracted expression and the numerical
integration results, as their relative difference was found to be less than 0.01%.
For simplicity, we neglected the ∼ O((CV2

σ)
2), as with the first order in CV2

σ the
accuracy of the expression was found to be 99.97% among the tested interval.
Hence, we consider the first negative moment of σ to be,

〈D〉 = kBT

3πη

〈
1

σ

〉
=

kBT

3πη

1

〈σ〉(1 + CV2
σ + 3CV4

σ) �
kBT

3πη

1

〈σ〉(1 + CV2
σ). (82)

It is worth mentioning that this is a numerical analysis, and if higher precision is
needed, the order of description can be increased.
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Once 〈vs〉 and 〈D〉 are obtained, the ensemble Brownian time takes the form,

t�B ≡ 〈σ〉2
〈D〉 � 3πη

kBT
〈σ〉3 1

1 + CV2
σ

. (83)

Finally, for the ensemble Péclet

Pe� ≡ 〈vs〉〈σ〉
〈D〉 � π

6

�ρg

kBT
〈σ〉4 (84)

2.7.3 Polydisperse Ermack-McCammon Algorithm

Stochastic Force

Here, we briefly describe an extension, by including polydispersity, of the Ermack-
McCammon algorithm without Hydrodynamic interactions. This algorithm is one
of the most used algorithms for performing Brownian dynamics simulations [32].
For simplicity, we derive it for one dimension. We start by the discretization of the
solution of the Langevin equation in 1-D for a particle of diameter σ represented
as a subscript. Thus,

xσ(t0 +�t) = xσ(t0) + βDσFσ�t+ δxσ(�t), (85)

where β = 1/kBT , Dσ is the particle free diffusion coefficient, and �t is a dis-
cretized representation of a delay time τ . Fσ is the external net force acting
over the particle, and in general it is the linear superposition of the force arising
from the interaction potential and other types of forces like gravity, electric, etc.
δxσ(t0) is a random displacement due to collisions between the particle and the
solvent molecules. It satisfies the fluctuation-dissipation theorem [33,34], i.e.

〈δxσ(t)〉t = 0,

〈δxσ(t)δxσ(t′)〉t = 2Dσ�tδ(t− t′), (86)

where t and t′ are two arbitrary times that are only correlated when t = t′.
Moreover, numerically it is computed by

δxσ(�t) =
√
2Dσ�tPGauss, (87)

where PGauss is a number that follows a random Gaussian distribution function
with first moment zero and a unitary second moment.

In reduced units Eq.(85) takes the following form

x∗σ(t0 +�t∗) =
1

〈σ〉xσ(t0 +�t∗) = x∗σ(t0) +
Dσ

〈D〉β〈σ〉Fσ�t∗ + δx∗σ(�t∗). (88)

Here we have obtained the reduced time units by �t∗ =�t/t�B =�t〈D〉/〈σ〉2.
Naturally, the reduced units of force over the ensemble (F �) are obtained, where

β〈σ〉Fσ ≡ F ∗
σ =

Fσ

F �
. (89)
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Thus,

F �=
1

β〈σ〉 . (90)

Finally, Eq.(88) takes the form

x∗σ(t0 +�t∗) = x∗σ(t0) +
Dσ

〈D〉F
∗
σ�t∗ + δx∗σ(�t∗). (91)

As consequence of the reduced units, Eq.(86) is

〈δx∗σ(t)δx∗σ(t′)〉t =
1

〈σ〉2 〈δxσ(t)δxσ(t
′)〉t

=
1

〈σ〉22Dσ�tδ(t− t′)

= 2
Dσ

〈D〉�t∗δ(t− t′). (92)

From Eq.(82) and Dσ=kBT/3πησ, the diffusion coefficients ratio can be obtained,
Dσ

〈D〉 =
〈σ〉
σ

(
1

1 + CV2
σ

)
. (93)

Finally, the stochastic displacement correlation is

〈δx∗σ(t)δx∗σ(t′)〉t = 2
〈σ〉
σ

(
1

1 + CV2
σ

)
�t∗δ(t− t′). (94)

In the following, we obtain the corresponding expressions regarding the external
force term of Eq.(91). As it depends on the type of considered external force. For
our purposes, we will obtain it for the gravitational force and the one related to
the interaction potential.

External Force: Gravity

As an example of external force interacting with the particle, we consider the
effect of the gravitational force. Taking into account the balance between the
buoyant and the weight of a particle when immersed in a liquid, i.e.

Fg = �ρg
πσ3

6
, (95)

Here, the definition of �ρ sets the force sign. Recalling F � (Eq.(90)) Eq.(95) in
reduced units takes the following form,

F ∗
g =

π

6

�ρg

kBT
σ3〈σ〉. (96)

The physical constants that are in the right hand term of Eq.(96) can be replaced
by the ones of Pe� (Eq.(84)). Then,

F ∗
g = Pe�

σ3

〈σ〉3 . (97)
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Finally, by multiplying Eq.(93) with Eq.(97), the corresponding term for the dis-
cretized displacement (Eq.(91)) takes the form,

Dσ

〈D〉F
∗
g = Pe�

σ2

〈σ〉2

(
1

1 + CV2
σ

)
. (98)

Continuous Hard Sphere-Like interaction potential

For the interaction potential, we make use of an extended version of the continuous
potential that reproduces hard sphere-like interactions. The use of this type of
potentials is crucial, as the discontinuous nature of the hard sphere potential
creates an ill imposed problem for the calculation of the force in the discretized
Brownian dynamics algorithm (Eq.(88)). The pair-wise interaction force is defined

F ≡ −dU(r)

dr
, (99)

where r is the magnitude of the distance vector between the center of two particles,
and U(r) is the interaction potential. For one component systems, the continuous
potential Ucp(r) has the form [60],

Ucp(r) =

{
Aε

[(
σ
r

)λ − (
σ
r

)λ−1
]
+ ε r < Bσ

0 r ≥ Bσ,
(100)

where,

A = λ

(
λ

λ− 1

)λ−1

, B =
λ

λ− 1
. (101)

Here, σ is the particle diameter, λ reflects the repulsive (term with power λ) and
attractive behaviour (term with power λ−1), and ε is the energy parameter used
as amplitude. It is also used to define a reduce temperature T ∗ = kBT/ε. The
values of λ= 50, and T ∗ = 1.4737 were found to ensure thermodynamic consis-
tency to reproduce physical properties of hard core potentials [61].

The natural extension of Eq.(100) for two particles of different size is given by.

Ucp(r) =

{
Aε

[(σij

r

)λ − (σij

r

)λ−1
]
+ ε r < Bσij

0 r ≥ Bσij,
(102)

again, r is the magnitude of the distance vector between the center of two particles,
σij = 1/2(σi+σj) is the minimum distance between the two particles of diameter
σi and σj respectively. Moreover, we have assumed the Lorentz-Berthelot mixing
rules, i.e. for all crossed terms ε and λ are equal [62–64]. This is
Hence, the interaction force between particles for distances r < Bσij is given by

Fcp(r) = −dUcp(r)

dr
=

Aε

σij

[
λ
(σij

r

)λ+1

− (λ−1)
(σij

r

)λ
]
. (103)
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In reduced units Eq.(103) takes the following form,

F ∗
cp(r

∗) = β〈σ〉Fcp(r
∗) =

A

T ∗σ∗
ij

[
λ

(
σ∗
ij

r∗

)λ+1

− (λ−1)

(
σ∗
ij

r∗

)λ
]
. (104)

Finally, the total force acting over a particle i expressed for the discretized dis-
placement (Eq.(88)) is obtained. Having,

Dσ

〈D〉F
∗
p (r

∗) =
∑
j

A

T ∗σ∗
ij

1

σ∗
ii(1 + CV2

σ)

[
λ

(
σ∗
ij

r∗

)λ+1

− (λ−1)

(
σ∗
ij

r∗

)λ
]
. (105)

2.7.4 Simulation Example and validation

In this section, we show a comparison between the results of the polydisperse
Ermack-McCammon Brownian Dynamics simulations (BD) (Sec.2.7.3) and the
analytical results from the Polydisperse Langevin description (Sec.2.7). Moreover,
the observables in the real space (MSD) and reciprocal space (ISF) were obtained
for such numerical experiments. This simulation run was selected for a system
with polydispersity index CVσ = 0.07 and Pe� = 150 using an ensemble of 1024
particles. In reciprocal space, we chose the scattering wave vector that covers a
length scale of one particle diameter i.e. Q∗

z=2π. Our results are shown as closed
symbols in Fig.4.

Fig. 4: Comparison of the obtained analytical expressions of Eq.(77) and Eq.(78) (continous lines) with the
MSD (left panel) and ISF (right panel) computed from the polydisperse Ermack-McCammon Brownian
Dynamics simulations (BD) using the polydisperse Langevin desciption (closed symbols). The physical
parameters of the simulation run are written as legend in the figures

Finally, we show a comparison between the analytical expressions from Eq.(77)
and Eq.(78) (shown as continuous line in Fig.4) with the observables computed
from the computer simulations. The comparison shows a very good agreement
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between the theoretical expressions and the simulations results. Thus, proving
the validity of the theoretical expressions and the implementation in the Ermack-
McCammon algorithm. Furthermore, these analytical expressions provide the
theoretical framework to be used for comparison with experiments in the following
of this work.

28



3 Experimental Methods

3.1 Optical Regimes

Colloidal dispersions (for simplicity, samples) are experimentally studied with
electromagnetic radiation by analyzing the signal resulting from the interaction
of this probing radiation with the sample [6–8]. Different experimental techniques
are named according to the electromagnetic radiation properties (wavelength, co-
herence, etc.) and the region where the signal is collected. In the following, we
will consider visible, coherent, and incoherent light as probing radiation and two-
dimensional sensors or digital cameras as detectors. Although here we only show
the basics of the conceptual framework for those radiation types, the presented
concepts can also be extended to X-Rays or any other type of radiation [65, 66].
The distance z from the sample plane (z=0) where the signal is collected define
different detection zones and, based on them, different measuring techniques are
established. A basic illustration is shown in Fig.5.

Fig. 5: Different detection zones defined as a function of the detection position z.

The transition between the different optical regimes depends on the following
physical properties: illumination width (D), wavelength of the radiation source
(λ), and the size of the radiated objects (d) [65–67]. In the following, D�d is con-
sidered. The optical microscopy plane is defined at z=0. Then, for small distances
z < dD/λ, the region of Deep Fresnel, Shadowgraphy, or Near Field scattering
is defined [66–68]. In this region, the collected signal is characterized by having
static spatial properties independent of z, i.e. the spatial auto-correlation func-
tion of the scattered field is invariant upon propagation within this region [65,67].
In contrast, for large distances z > D2/λ, the spatial properties change. This
can be observed on how an image gets bigger while moving to larger z values.
This regime is known as the Fraunhofer or the Far Field region [66, 67, 69]. The
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intermediate regime, for dD/λ<z<D2/λ, is known as the Fresnel regime. [66,67].

The present work was performed using detection schemes based in the dashed
regions of, i.e. Optical Microscopy and Near-Field scattering. In Fig.5, we
present images of colloidal particles of size 7.32μm recorded at different values
of z in Fig.(6). The imaging setup consists of two illumination light sources,
a laser, and a narrowly distributed monochromatic light emitting diode (LED).
The images were captured by a 20X microscope objective and a Complementary
metal–oxide–semiconductor (CMOS) digital camera. In the sample plane, similar
image content can be appreciated for both imaging conditions, i.e. bright blob
for particles in focus. When z increases, the scattered light from the laser illumi-
nation superimpose, leading to a speckle pattern that does not change its spatial
characteristics within this detection zone (z= (1−3)mm Fig.5). Conversely, all of
the spatial information of the sample is lost for the LED illumination at distances
outside of the sample plane (homogeneous gray images Fig.5 z = (1, 2, 3)mm.).
This because of the different properties of the illumination sources, such as tempo-
ral and spatial coherence [66]. However, for the regions where spatial information
is preserved, the image content represents a density map of the sample [7].

Fig. 6: Illustration of the type of images resulting from illuminating a sample with a laser (HNFS) and a
monochromatic LED (Optical Microscopy) as a function of the detection position (z).

The corresponding framework capable of describe the image content for both
presented cases will be introduced in the following section.
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3.2 Digital Fourier Microscopy and Heterodyne Near Field Scattering

Digital Fourier Microscopy (DFM) is a conceptual framework applied to a time
series of images.Each of these images, denoted by i(x, t), represent a density map
of the studied sample, and by performing an image analysis, the spatio-temporal
information in the reciprocal space can be obtained. Thus, similar information as
in a Dynamic Light Scattering experiment (DLS) is extracted [7]. The images can
be acquired by means of an optical microscope using various imaging conditions,
i.e. an incandescent poly-chromatic lamp, fluorescence imaging, etc.

If the light source consists of a laser and the imaged plane is in the near field
scattering region (Fig.5), the imaging technique is known as Heterodyne Near
Field Scattering (HNFS) [24, 70]. Examples of images acquired by different opti-
cal microscopy configurations and HNFS are shown in Fig.7.

Fig. 7: Images of different colloidal dispersions obtained using different Optical Microscopy techniques and
Heterodyne Near Field Scattering.

In HNFS, i(x, t) consists of a speckle pattern in the deep Fresnel regime [24]. It is
formed by the superposition of the reference electric field e0(x), with the scattered
electric field generated by all the illuminated particles es(x, t). Thus,

i(x, t) ∼ |e0(x) + es(x, t)|2 ∼ i0(x) + e0e
∗
s(x, t) + e∗0es(x, t). (106)

The far field light scattering information, such as the intermediate scattering
function (f(Q, τ)) and the average scattered intensity [8, 71], are extracted by a
Digital Fourier Analysis (DFA) or also known as Differential Dynamic Alogorithm
(DDA) [24,70,72].

The previous scheme can be extended to different kinds of light sources and imag-
ing configurations. Due to their experimental differences, each application has
its own name. bright-field Differential Dynamic Microscopy (bDDM) is defined
when the images are obtained in the sample plane using a bright field microscope.
When a monochromatic light source, such as a light emitting diode (LED) is used,
it will be referred as monochromatic Differential Dynamic Microscopy (mDDM).
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If a narrow bandpass filter is used for acquiring images such that a specific wave-
length is captured then, λ Differential Dynamic Microscopy (λDDM) and when
the images are acquired by a confocal microscope, confocal Differential Dynamic
Microscopy (conDDM).

For microscopy based images, i(x, t) is formed by a convolution of the three
dimensional point-spread function K(x−x′, z) with the sample density ρ(x′, z, t)
via

i(x, t) = i0(x) +
∫

K(x − x′, z)ρ(x′, z, t)dx′dz, (107)

where i0 is a stationary uniform background contribution. In the following we
present the key ideas behind DFA. For more detailed information please refer
to [7, 70,72].

A schematic representation of the DFA algorithm is shown in Fig.8. It is per-
formed as follows: First, record a series of images i(x, t) (represented in the first
column in the main loop (τ -loop) in Fig.8). Then, the fluctuating signal is calcu-
lated as,

�i(x, t, τ) = i(x, t+ τ)− i(x, t), (108)

which accounts for the difference between two images separated by a delay time
τ = m�t, m ∈ N, �t = 1/FPS, and FPS (Frames Per Second) is the sampling
rate. Here, we will refer to t as starting time.

Then, the power spectrum of the fluctuating signal TRS(q, t, τ) is calculated by a
discrete Fourier transform (third column τ -loop, Fig.8)„

TRS(q, t, τ) = |F [�i(x, t, τ)] |2, (109)

where q is the image wave vector. Its magnitude is discretized by q = n�q,
having �q = 2π/L, L is the image size and n the pixel number. Furthermore,
the magnitude of q is related to the magnitude of the scattering wave vector
Q = (4πns/λ) sin (θ/2) by

Q =
√
2k

[
1−

√
1−

(q
k

)2
] 1

2

, (110)

being ns the refractive index in the medium of propagation, θ the scattering angle,
and λ the wavelength of light, k = 2πns/λ is the wave vector from the illumi-
nation source in the medium of propagation [70, 73]. The previous relation arise
from the fact that the calculated Fourier transform is a 2D projection of the 3D
scattering process [24, 73]. Special care has to be taken while performing the
numerical Fourier transform, this in order to avoid spectral leakage. It occurs
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when inhomogeneities in the intensity are present at the borders of the �i(x,t,τ)
images. To overcome this, a careful window scheme should be applied [74].

Finally, the structure function D(Q, τ) is determined. For signals that can be
considered stationary, the signal statistics do not depend on the starting time tk.
An average over tk is performed, obtaining the time averaged structure function
(the result is represented as a colored arrow coming out of the τ -loop) [75]:

D(Q, τ) = 〈TRS(Q(q), tk, τ)〉tk. (111)

This relates to the real part of the intermediate scattering function (ISF), f(Q, τ)
via,

D(Q, τ) = A(Q) [1− f(Q, τ)] + B(Q). (112)

The term A(Q) [1− f(Q, τ)] describes the contribution associated to the dynam-
ics of the studied system (f(Q, τ)) and the location and optical appearance given
by the imaging technique of the sample (A(Q)) [7]. B(Q) is the power spectrum
of the detection noise, unavoidably present even when there are no dispersed par-
ticles.

Fig. 8: Schematic representation of the DFA algorithm.

Since A(Q) depends on the imaging technique, for DDM it has the form [7]

A(Q) = 2N |K̂(Q)|2S(Q) (113)

and for HNFS [65]

A(Q) = 4Is(Q) = 4φT (Q)P (Q)S(Q) (114)

where N is the number of particles, |K̂(Q)|2 is the power spectrum of the imaging
point-spread function, S(Q) is the structure factor. Moreover, φ is the volume
fraction of the system, T (Q) is the optical transfer function of the collection op-
tics, and P (Q) is the particles form factor. In some cases, when the point spread
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function can be calculated, Eq.(113) is exactly the same as Eq.(114) [7].

Numerically, A(Q) and B(Q) are estimated according to the following procedure.
The power spectrum of the detection noise or background term, B(Q), is taken as
an average of all D(Q, τ) determined at short delay times (τ →0) and Q values
so large (Q→Qmax) that, due to the limited optical resolution of the imaging set-
up, barely contain information of the system but rather the background [36, 50].
B(Q) is taken to be constant for all Q values thus,

B(Q) � B′(Q) = D(Q →Qmax, τ → 0), (115)

where B′(Q) is the estimated value of B(Q). A(Q) can be determined from the
long-time decorrelation plateau as, D(Q, τ → ∞) = A(Q) + B(Q). Finally, the
intermediate scattering function can be obtained via the following equation,

β(Q)f(Q, τ) =
D(Q, τ→∞)−D(Q, τ)

D(Q, τ→∞)− B′(Q)
, (116)

where β(Q) � 1− [B(Q)− B′(Q)] /A(Q) takes into account the signal to noise
ratio and the accuracy of the estimation of B(Q).

The analytical expression of f(Q, τ) depends on the particular system dynamics
and can be used to extract useful information. For isotropic motion, the dynam-
ics depend only on the magnitude of the scattering wave vector Q. Hence, to
improve statistics, an azimuthal average over the polar angle θ in the Q plane is
performed. It is represented as the middle loops (Q-loops) in Fig.8. Moreover,
for dilute Brownian systems f(Q, τ) = exp(−τ/τc). It contains a characteristic
time τc = 1/D0Q

2, with D0 the free diffusion coefficient. With the previous,
the hydrodynamic radius (RH) of the beads in suspension can be obtained. This
dynamical measurement is known to be particle sizing, and in order to obtain it,
the Stokes-Einstein relation is used, i.e. D0 = kBT/6πηRH , with kB being the
Boltzmann’s constant, T the temperature, η the system’s viscosity.
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4.1 Optimized algorithms for DFM

The DFM image analysis requires heavy post processing computation in order to
extract the spatio-temporal information from an experiment. The bottle neck in
the calculations of the structure function (D(Q, τ)) has two sources: The tem-
poral, which involves the total number of images acquired for the calculation of
D(Q, τ). The spatial, where the consideration of the size (amount of pixels) of an
image is needed to optimize the computation of the 2-D Fast Fourier transform.
In order to reduce computational time, more powerful computational architec-
tures are used, such as Graphical Processing Units or GPUs [53,76].
Nevertheless, it is still needed an efficient statistical scheme that reduces the
number of calculations, thus minimizing the computational time. This, without
compromising the final results.

To illustrate the efficiency and performance of different sampling algorithms, let
us consider the calculation of D(Q, τ) for an acquired set of 50,000 images cap-
tured with a sampling rate of 100 FPS. We obtained the images using HNFS.
The studied sample is a particle suspension of polystyrene particles (σ=330 nm)
in ultra-pure water (18 MΩcm), with particle volume fraction of φ=5×10−5.

The HNFS experimental setup is described by three components: Illumination,
sample container and collecting optics. The illumination consisted of a He-Ne
laser with wavelength λ0 = 632.8 nm and power 30 mW (JDSU Uniphase). Its
beam was spatially filtered and collimated, yielding a parallel beam with diame-
ter 10 mm. The sample was contained in a flat rectangular glass cuvette of 4cm
height, 10mm width, and 1mm optical path (21-G-1 Starna GmbH).

The scattered intensity pattern was imaged with an optical arrangement consisting
of a microscope objective (CFI Plan Fluor 20X 0.5NA) and a tube lens (Thorlabs
ITL200). The later projected an image onto an 8 bit CMOS black and white
camera. The camera is equipped with a sensor of 1280×1024 pixels, each of area
4.8×4.8μm2 (AVT Mako-U130). A more detailed description can be found in [77].
In the following, some types of different optimization algorithms are presented.
The first subsection deals with the temporal averaging schemes, and the second
shows an optimization of the spatial information per image. It is worth mentioning
that although the application of the algorithms is presented for one type of imaging
technique, such algorithms can also be applied to any type of DFM imaging
configuration as shown in [7, 78].
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4.1.1 Temporal sampling optimization

Digital Fourier Microscopy (DFM) is a conceptual framework applied to a time
series of images, denoted by i(x, tk) and represented in the first column of Fig.8.
Where tk=k�t, �t=1/FPS, and FPS is the sampling rate. k ∈ N, k≤N , and
N corresponds to the total number of acquired images, i.e the maximum acquired
time is tN = N�t. A density map of the studied sample is represented in the
information content within i(x, tk), and by an image analysis the spatio-temporal
fluctuations in the reciprocal space can be obtained. Thus, similar information as
in light scattering experiments is obtained [7].

The previous analysis is done by obtaining the fluctuating signal �i(x, tk, τ) (rep-
resented in the second column of Fig.8) between two images separated by delay
time τ = p�t; p ∈ N, and p ≤ N − 1. The later is achieved by performing
the subtraction between a starting image i(x, tk), and the subsequently delayed
i(x, tk + τ). Thus,

�i(x, tk, τ) = i(x, tk + τ)− i(x, tk). (117)

Then, the power spectrum of the fluctuating signal is calculated by a discrete
Fourier transform, obtaining an image denoted by TRS(Q, tk, τ) (represented in
the third column of Fig.8),

TRS(Q, tk, τ) = |F [�i(x, tk, τ)] |2, (118)

where Q is the scattering wave vector (Eq.(110)). For signals that can be consid-
ered stationary and isotropic, the signal statistics, and hence, the power spectrum
do not depend on the starting time tk nor on the direction of the scattering wave
vector Q. An average over tk and an azimuthal average over the polar angle θ
in the Q plane is performed to improve statistics, obtaining the time averaged
structure function (represented in the fourth and fifth column of Fig.8) [75]:

D(Q, τ) = 〈TRS(Q, tk, τ)〉tk,θ. (119)

In order to optimize the temporal sampling in the DFM analysis, it is convenient
to write the temporal average of Eq.(119) in its discretized form

D(Q, τ) =

〈
1

O

O∑
k=1

TRS(Q, tk, τ)

〉
θ

. (120)

here, tk takes the values from k ∈ {1, 2, 3, ...,O =N−p} and O corresponds to
the maximum number of elements in the set of TRS images available for the time
average per delay time. For covering a long range of delay times, a large number
of images are recorded, and for optimizing the corresponding computational time,
it is convenient to choose τ=p�t such as p follows a logarithmic progression.
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An example of the computational time needed to evaluate D(Q, τ) for different
number M of TRS images, such as M ≤ O , is represented in Fig.9. It was taken
from a total set of N=50, 000 images for 250 logarithmically separated τ .

Fig. 9: Computational time needed to compute the image structure function D(Q, τ) as a function of the number
of elements M (Eq.(120). The computation was performed for 250 logaritmically separated delay times
(τ) from a total set of 50,000 images.

It is clear that, by increasing M, the computational time increases. Thus, a care-
ful selection of the M elements that better represent the average is advised for
reducing the computational time to the minimum. Moreover, the total TRS image
set could carry some issues. For example, a TRS(Q, tk, τ) image and its consecu-
tive one TRS(Q, tk+1, τ) may contain some temporal overlapping region from the
experimental time line, leading to some redundancy or “similarity" in the infor-
mation between them. This because the captured dynamics may have not evolved
sufficiently among these pair of TRS images. Thus, they barely contain relevant
different temporal information for the computation of D(Q, τ). To address this
issue, here we introduce three sampling algorithms, i.e. selection rules of the
k-elements to perform the time average of Eq.(120):

1. Redundant Algorithm (R), consists in taking all TRS available for a specific
τ = p�t, this translates into taking tk such as k ∈ {1, 2, 3, ... ,O =N−p}.
The later is a brute force method for computing D(Q, τ). It is considered to
be a reliable algorithm when all elements are considered besides its inefficient
numerical implications. In the following this algorithm is used as a control
scheme.

2. Reduced Redundant (RR), is a sampling rule that leads to a reduction of
the intrinsic redundancy between TRS elements. It consists in introducing a
skipping rule among all TRS available for a specific τ = p�t, this translates
onto taking tk such as k ∈ {1, 1+ ε, 1+2ε, 1+3ε, ..., }. Here, ε is the skipping
factor that leads to a maximum number of elements of (O − 1)/ε and it is
given by ε = pα, where α is the average redundant exponent. Here we took
α to have the value of 0.75
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3. Sampling Uniformly at Random (SUR), is a Monte Carlo-like method used
as sampling scheme. It is based on assigning equal probability to all of the
available TRS, where D(Q, τ) is computed using a certain number of random
but not repeated TRS elements. Thus, shuffling all of the different tk available
per delay time (τ ). The later is an adaptation of the random clipping scheme
proposed by Schätzel [21, 79,80].

To illustrate the efficiency and performance of the previously described sampling
algorithms, let us consider the calculation of D(Q, τ) from a set of N = 50, 000
images. This, at τ=1000�t, the previous leads to a total of O=49, 000 available
TRS elements from which, for keeping the number of TRS small, we consider a sub-
set of M=128 elements. The computation of D(Q, τ) by the R sampling scheme
is performed over the first consecutive 128 TRS elements. This means selecting
tk= t1, t2, ..., t128. Moreover, by using the RR sampling scheme, the tk elements are
taken with ε=10000.75 ∼ 178, these correspond to tk= t1, t179, t357, t1069, ..., t22,785.
Finally, for the SUR scheme, 128 tk’s were taken randomly from the 49,000 avail-
able, this by considering equal probability without replacement.

As consequence, each sampling scheme covers different measurement time. A
graphical representation is devised by plotting all the k values per scheme, as
k = tk/�t (Shown in the left panel of Fig.10). The elements taken with the R
algorithm have sampled a very small amount of the measurement time, oppositely
to the RR and SUR schemes. Being SUR the algorithm that covers the whole
measurement time.

Fig. 10: Representation of the reached sampled time of R, RR and SUR sampling schemes (Left panel). The
right panel shows β(Q)f(Q, τ) obtained from the result of D(Q, τ) by the three sampling schemes (as
described in Eq.(116)). The results are plotted as a function of τQ2 for a Q range that covers the
majority of sampled length scales of an image (0.7 ≤ Q ≤ 4.5)

[
μm−1

]
. Curves are shifted by one for

clarity.

The right panel of Fig.10 shows the extracted β(Q)f(Q, τ) (Eq.(116)) obtained
from the three different sampling schemes, R, RR, and SUR to compute D(Q, τ).
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They are plotted as a function of τQ2 for a Q range that covers the majority of
sampled length scales of an image (0.7 ≤ Q ≤ 4.5)

[
μm−1

]
. For particles under-

going free diffusion, all of the β(Q)f(Q, τ) should collapse onto a master curve,
as seen for the three cases. The main difference between the three, comes from
the spreading and the presence of oscillations at the decorrelated plateau for the
R scheme (τQ2 ≥ 1), but they don’t appear for the RR and SUR schemes. These
indicate the reduced data significance from the R sampling scheme, as the overall
sampled time is the smallest of the three schemes.

In order to quantify the statistical convergence of the structure function D(Q, τ)
for the different sampling schemes, we proceeded to compute the coefficient of
variation per sampling scheme, i.e.

CV(Q, τ) =

√
1

M−1

M∑
k=1

[〈TRS(Q, tk, τ)〉θ −D(Q, τ)]2

D(Q, τ)
, (121)

and performed a frequency count including all Q and τ values. The value of this
coefficient reflects the relative deviation of the three sampling schemes to D(Q, τ)
computed with all possible TRS. To illustrate it, the evolution of the frequency
counts as a function of different M values is shown in Fig.11.

Fig. 11: Frequency count of the different CV(Q, τ) obtained for different M values. Results from the redundant
scheme (R) are shown in the left panel. The center and left panel show the ones obtained from RR and
SUR schemes, respectively.

Results for the redundant scheme (R) are shown in the left panel, while the results
from the RR and SUR are presented in the center and right panel. Focusing on
the small number of TRS elements (M=32) (red frequency counts in Fig.11), the
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data from the redundant algorithm (R) shows a wider histogram when compared
to the ones from RR and SUR. This indicates the difference in effectiveness of
the sampling time between them. Moreover, this difference can be depicted by
following the shift to smaller values of the mode of the distribution, where the RR
and SUR sampling schemes have a faster tendency to approach close to zero for
smaller values of M. It is worth noting that, despite the obtained values, SUR and
RR algorithms have the narrower histograms. However, the data obtained from
the SUR scheme presents the narrowest histograms, indicating that this sampling
scheme is the most effective of the three.
To test the effectiveness of the sampling schemes, we systematically increased M
and obtained the evolution of the mode from the frequency counts, obtaining an
asymptotic value of CV(Q, τ)=0.05 (left panel of Fig.12). The R scheme achieves
the asymptotic value for M ∼ 4, 000. The RR and SUR reach it with a smaller
number of M, being M = 512 enough to get as close to CV=0.06. Thus, the total
number of TRS elements gets reduced. As a consequence, the computational time
of the calculation of D(Q, τ) gets majorly improved, being reduced by an order
of magnitude, as shown in Fig.9.

Fig. 12: Statistical convergence of CV (left) and RH (right) for all three algorithms plotted for different number
of image pairs (M). The dashed line represents the convergence value of RH =0.153μm

The effect of the statistical convergence of D(Q, τ) can also be studied by extract-
ing a physical quantity encoded in f(Q, τ). Such is the case of the hydrodynamic
radius RH present in the characteristic time of f(Q, τ) for purely diffusive sys-
tems (Eq.(36)). For this purpose, we obtained f(Q, τ) for different M values and
extracted RH by performing a cumulant fit [38]. Our results are shown in the
right panel of Fig.12, where the error bars represent the propagation of the 95%
confidence interval from the RH . The extracted values of RH show similar trend
like the modal value of CV(Q, τ), where the SUR scheme converges within the
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smallest image pairs that we have used (M=32), while the RR needs 4 times more
number of TRS elements to converge (M=128) hence, the SUR scheme shows the
highest optimization for performing time averages.

4.1.2 Spatial sampling optimization

The power spectrum is of fundamental importance in the DFM scheme (Eq.(118)).
Due to the large number of images involved, its determination is a highly-demanding
computational task. For images made of Np×Np pixels, the computational time
of the two dimensional fast fourier transform (2DFFT) is N 2

p log2(Np) [7, 81].
An illustration of the dependence of the computational time as a function of the
image size is shown in Fig.13. The calculations were performed over a total num-
ber of 50,000 images, using 250 logarithmically spaced delay times, and M=3072.

Fig. 13: Computational time as a function of the image size. The calculations were performed over a total
number of 50,000 images, using 250 logarithmically spaced delay times, and M=3072.

The previous indicates that a reduction in image size would contribute to lowering
the computational time. Thus, an algorithm that is able to reduce the acquired
image size without compromising spatial information would benefit in speeding
up the calculations. In the following we make use of an algorithm called Digital
Data Reduction (DDR), based on a digital image interpolation algorithm. The
main purpose is to reduce the image size by enhancing the significant data per
pixel, thus reducing spatial instead of temporal redundancy. This is accomplished
by matching the digital resolution (due to the fixed pixel size), and the optical
resolution without losing relevant spatial data [82]. The latter is a frequency space
criterion, given that for an image acquired with an optical microscope the limiting
optical frequency will be given by its correspondent resolution limit. Thus, if
the mismatch is considerable, an important amount of pixels of the performed
calculations will have no contribution to the analysis. In order to quantify the
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matching of the resolutions, a matching factor δ is defined as

δ ≡ KR

KNy
(122)

where,

KR =
π

0.61λ
NA, KNy =

Np

2
�k = π

M ′

ps
, (123)

where KR is the corresponding frequency for the Rayleigh resolution criteria of
the optical element that generates the image [83] and KNy is the corresponding
Nyquist frequency due to a fixed pixel size (ps) of the sensor [82]. KNy can be
obtained from maximum frequency from the discretization �k of the reciprocal
space, �k = 2π/L [73, 82], where L = Npps/M

′ corresponds to the image size,
which depends on the magnification M ′ of the imaging system, the number of
pixels Np and the pixel size ps. The ratio ps/M

′ is also known as pixel pitch.

Digital Data Reduction (DRR) reduces the effective image size using a bicubic
interpolation that performs antialiasing. This can be found as a standard routine
in MATLAB known as imresize. An example of this procedure is presented in
Fig.14. DDR1 stands for an image reduction 1, i.e. keeping the same image size,
as in comparison for DDR2 and DDR4, leading to a reduction of 0.5 and 0.25
per dimension, respectively. Then, the final image is 1, 1/4, 1/16 of the original
image size, accordingly. As can be appreciated from Fig.14, an increase on DDR
scheme leads to higher values of δ, thus modifying the amount of data per pixel
in the reciprocal space. The latter can be summarized in three regimes: The first
one, over sampling regime (δ < 0.5), where a greater area (or number of pixels)
contains no spectral information compared to the circle of the power spectrum
(dark area). The second regime, good sampling condition (0.5≤ δ≤ 1.0), where
the dark area is reduced. Notice that the circle of the power spectrum is still fully
visible. It should be pointed that δ = 1 is the optimal sampling condition but
hardly achieved due to the fixed pixel size from the sensor and optical conditions
in the imaging setup. In the third regime (δ>1.0), the power spectrum limits are
outside from the area of the image, leading to a loss of larger frequencies. Because
of this, the third regime is know as the under sampling. The effects of DDR in
the power spectra are quantified and summarized in Fig.15.

For an overall static analysis D(Q, τ→∞) was obtained, and it is shown in Fig.15.
DDR4 (δ =1.24) exhibits a reduction to 85% of the Q range when compared to
an unaltered range of DDR1 (δ =0.31) and DDR2 (δ =0.62). This is because for
DDR1 and DDR2 the circle of the power spectrum is inside the image boundaries
as mentioned before. Then, special care has to be taken in order to not violate the
conditions for extracting an estimated value of B(Q), as described by (Eq.115).
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Fig. 14: Graphical representation of the DDR algorithm for the fluctuating signal from HNFS speckle images
(upper), and their corresponding power spectra (lower). All of the upper images represent the same
spatial area.

The main effect of DDR2 is that it introduces an effective optical transfer func-
tion (OTF) when compared to DDR1; having a stronger effect DDR4. A possible
explanation is that DDR interpolates between pixels, leading to an effective pixel
size that alters its captured spatial resolution (maximum accessible frequency).
This translates into a stronger curvature of D(Q, τ → ∞) for higher Q values.

To further study a possible effect of DDR to the extracted dynamical information,
we proceeded to obtain the intermediate scattering functions per scattering wave
vector Q. Our results are plotted as a function of τQ2 (lower left of Fig.15). As
expected for particles undergoing free diffusion, all results collapse onto a mas-
ter curve. Thus, DDR does not affect the extracted f(Q, τ). Additionally, we
extracted the characteristic times (τc = 1/DQ2) from each Q per DDR scheme.
Results are shown in Fig.15 (lower right). It can be observed that for DDR2 and
DDR4, τc(Q) overlaps with the ones extracted from the unaltered DDR1, reas-
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Fig. 15: Azimuthal averaging of the long time limit of the structure function D(Q, τ→∞) (upper), f(Q, τQ2)
(lower left) and the extracted characteristic times (τc(Q) = 1/DQ2) for the different digital data
reduction schemes: DDR1 (circles), DDR2 (triangles) and DDR4(diamonds).

suring that the DDR scheme has no effect in the extracted dynamics. Hence, an
optimized spatial post processing scheme can be performed to reduce computa-
tional time.
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4.2 Effect of moderate multiple scattering in heterodyne near field scattering

DFM is very successful for studying soft matter and biological systems, so far
is has been restricted to samples showing single scattering only, that is dilute,
index-matched transparent suspensions or images from very thin optical depth
(for a detailed review see Ref. [7] and included references). This limits the range
of applications since many soft matter systems are intrinsically turbid showing
multiple scattering. For example, if there is a refractive index mismatch, the
maximum concentration that can be sampled gets reduced. This because most
of the light suffers multiple scattering, thus the transmitted light is significantly
reduced and all the relations in Eq.(106,107) do not hold. The reduction of trans-
mitted light can be quantified by the transmittance, T = IT/I0, i.e. the ratio
of the transmitted light through a sample (IT) by the transmitted light through
sample made of pure solvent under the same optical configuration. Another very
useful quantity is called the reflectance, defined by R = 1− T .

In the following a summary of the relevant findings of Ref. [77] is presented. The
statistical properties of the HNFS signal including moderate multiple scattering
are computed for the real and reciprocal space. Then, validated with experiments
where the turbidity is controlled through the particle volume fraction. Here the
samples consists of polystyrene particles (σ = 330nm) in ultra pure water. An
illustration of the level of turbidity and its corresponding R for some of the
samples used in this work is shown in Fig.16.

Fig. 16: Effect of the concentration, or volume fraction, on the degree of turbidity and its corresponding re-
flectance (R). The volume fraction increases from left to right. The samples consisted of polystyrene
particles (σ = 330nm) in ultra pure water.

The reflectance values were obtained by measuring the transmittance of the sam-
ples in a rectangular quartz cuvette of optical path 1mm. The light source used
is a He-Ne laser beam with 10mm beam width, which has 18.9mW as output
power and wavelength λ0 = 632.8nm. The intensity IT of the transmitted laser
beam was measured by a Laser power meter (Coherent Fieldmate with a Silicon
photodiode). Experiments were carried out by the setup described in Ref. [77].
A series of 50,000 images of 480×480 pixels were recorded at a rate of 100 FPS
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for all of the studied samples. The camera used is an 8 bit CMOS black and
white camera with 1280×1024 pixels each of area 6.7×6.7 μm2(Allied Vision
Technologies, Marlin-131).

4.2.1 HNFS Signal in Real Space

In HNFS the transmitted light acts as a reference beam or local oscillator. Its
static electric field eT(x) interferes with light scattered by the sample, which has
an electric field esc(x, t). The electric field of the scattered light, esc(x, t), can be
thought as a superposition of different electric fields ep(x, t) which all arrive at
the detection plane, but have undergone different numbers of scattering events,
p, while traversing the sample:

esc(x, t) =
N∑
p=1

ep(x, t) . (124)

It contains contributions from single scattering, eS(x, t) = e1(x, t), and, if present,
from multiple scattering, eM(x, t) =

∑
p>1 ep(x, t), which includes all multiple-

scattering contributions, i.e. double, triple, etc. scattering. Similar to the case of
far field scattering [84–86], formally these contributions can be separated to yield
the total scattered electric field

esc(x, t) = e1(x, t) +
N∑
p=2

ep(x, t) = eS(x, t) + eM(x, t) . (125)

In the following we will continue as in [77]:

1. eS(x, t) and eM(x, t) are Gaussian-distributed random variables with mean
zero and phases uniformly distributed between −π and +π,

2. eS(x, t) and eM(x, t) are statistically independent,

3. |eM| � |eS| < |etr|, i.e. only moderate multiple scattering.

Then, the intensity pattern captured by the camera is

i(x, t) = |etr(x) + eS(x, t) + eM(x, t)|2

≈ itr(x) + etr(x)e∗S(x, t) + e∗tr(x)eS(x, t)
+ etr(x)e∗M(x, t) + e∗tr(x)eM(x, t) , (126)

where itr(r) = |etr(r)|2, note that Eq.(126) is an extension of Eq.(106). Due
to assumption 3., terms that are second order in the contributions from single
and multiple scattering can be neglected, ensuring heterodyne detection is still
met [8, 24,70,87].
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We then proceed to extract the fluctuating signal, it can be split into single-
scattering and multiple-scattering contributions according to

�i(x, t, τ) = �iS(x, t, τ) +�iM(x, t, τ), (127)

with the single-scattering signal

�iS(x, t, τ) = etr(x)e∗S(x, t+τ) + e∗tr(x)eS(x, t+τ)

−etr(x)e∗S(x, t)− e∗tr(x)eS(x, t) (128)

and analogous the multiple-scattering signal iM(r, t, τ).

The electric fields of the single and multiple-scattered light, eS(r, t) and eM(r, t),
are assumed to be Gaussian distributed and statistically independent (assump-
tions (1, 2)) and, moreover, etr(x) is essentially constant. Therefore, �i(r, t, τ) is
also Gaussian distributed with mean zero. Hence, the position- and time-averaged
probability distribution is

〈P (�i(x, t, τ))〉x,t = P (etr(x)eS(x, τ))P (etr(x)eM(x, τ))

= 1√
2πσ2

sc(τ)
exp

(
− �i2(τ)

2σ2
sc(τ)

)
, (129)

where σ2
sc(τ) = σ2

S(τ) + σ2
M(τ) is the second moment of the distribution. It de-

pends on the second moments of the distributions of the single-scattering and
multiple-scattering signals, σS and σM, respectively.

In the extreme multiple-scattering limit, the intensity pattern i(r, t) is a homodyne-
like speckle pattern and i(r, t) an exponentially distributed random variable. Since
�i(r, t, τ) represents the difference between two of such patterns, its values obey
a Laplace probability distribution with variance 2b2M(τ) [87–89]:

〈P (�i(r, t, τ))〉r,t =
1

2bM(τ)
exp

(
− |�i(τ)|

bM(τ)

)
. (130)

Images i(x, t) for different levels of R are shown in Fig.17 (top). For R =0.011
the superposition of the reference beam and the HNFS speckles can be appre-
ciated. The previous gets screened by a different speckle pattern for higher values
of R, being this a visible indication of the appearance of moderate multiple scat-
tering. To quantify this effect, we computed the corresponding 〈P (�i(x, t, τ))〉
for τ = 0.01s (symbols in bottom). The extracted data shows an increase in the
width and a change in shape of the probability distributions for R values where
their corresponding images displayed the effect of moderate multiple scattering.

To quantify the quality of the fit, the coefficient of determination (R2) is extracted
and presented in Fig.18. The main findings can be summarized into four regions:
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Fig. 17: Images of different samples composed of polystyrene particles (σ = 330nm) in ultra pure water for
different levels of reflectance (top) and probability distributions from the HNFS signal, 〈P (�i(x, t, τ))〉
(bottom), computed for τ = 0.01s (symbols). The continuous lines represent the fit for a Gaussian
distribution functions while the dotted for the the Laplace distribution functions.

Fig. 18: Coefficient of determination R2 as a function of R for fits based on a Gaussian and a Laplace probability
distribution

• Single scattering, for small reflectance values (0<R<0.15) where a Gaussian
distribution is a very good approximation for 〈P (�i(x, t, τ))〉 having R2 >
0.998, whereas the Laplace distribution shows smaller values.

• Moderate multiple scattering, corresponding to intermediate reflectances (0.15<
R < 0.30). Having a noticeable decrease of the quality of the Gaussian fits
and, correspondingly, an increase of the quality of the Laplace fits.

• The cross-over, for (0.30 < R < 0.45). Where the R2 from the two fits is
observed indicating that the heterodyne signal becomes comparable to the
homodyne signal from the multiple scattering. In this region a combination
of the Gaussian and Laplace distributions can be used to describe the data.
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• Multiple scattering, for (0.45<R) where the signal becomes mainly homo-
dyne and it is very well described by a Laplace distribution.

4.2.2 HNFS Signal in Reciprocal Space

In order to obtain far-field-like information, the power spectrum of the HNFS
signal is computed. The HNFS signal �i(r, t, τ) (Eq. 127) is Fourier transformed
to yield �I(q, t, τ). In the following Fourier transformed variables are indicated
by capital letters.

�I(q, t, τ) = �IS(q, t, τ) +�IM(q, t, τ) , (131)

where q is the spatial-frequency vector in the plane being imaged. The single-
scattering contribution is given by

�IS(q, t, τ) ∼ E∗
S(q, t+τ) + ES(−q, t+τ)

−E∗
S(q, t)− ES(−q, t) (132)

taking Etr(q) ∼ δ(q) into account. The multiple-scattering contribution �IM(q, t, τ)
is similarly defined. The squared modulus or power spectrum is

TRS(Q, t, τ) = |�IS(q, t, τ)|2 + |�IM(q, t, τ)|2

+2Re{�IS(q, t, τ)�I∗M(q, t, τ)} . (133)

This equation is a compact notation for the full expression that has 64 terms. Fi-
nally, the structure function D(Q, τ) is determined. Due to the time average, the
cross-terms of the single-scattering and multiple-scattering contributions vanish
since they are statistically independent. Thus the structure function is given by

D(Q, τ) = 〈TRS(Q(q), t, τ)〉t,θ (134)
= 4IS(Q)− 4Re{〈ES(Q, t)E∗

S(Q, t+τ)〉t,θ}+
4IM(Q)− 4Re{〈EM(Q, t)E∗

M(Q, t+τ)〉t,θ} ,

where IS(Q)=〈ES(Q, t)E∗
S(Q, t)〉t,θ is the single-scattering intensity and IM(Q) =

〈EM(Q, t)E∗
M(Q, t)〉t,θ the multiple-scattering intensity. The decorrelation of mul-

tiple-scattered light typically occurs much faster than the frame rate of the camera
and hence 〈EM(Q, t)E∗

M(Q, t+τ)〉t,θ ≈ 0 for the delay times τ considered in our
experiments. Therefore, the observed structure function becomes

D(Q, τ) = 4IS(Q) [1− f(Q, τ)] + 4Beff(Q) , (135)

where f(Q, τ) = Re{〈ES(Q, t)E∗
S(Q, t+τ)〉t,θ}/IS(Q) is the intermediate scat-

tering function and the effective ‘baseline’ Beff(Q) = IM(Q) + B(Q) contains
delay-time-independent contributions due to the (moderate) multiple scattering
and background noise B(Q) caused by, e.g. the camera shot noise. Recalling the
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numerical estimation of f(Q, τ) given by Eq.(116),

β(Q)f(Q, τ) =
D(Q, τ→∞)−D(Q, τ)

D(Q, τ→∞)− B′(Q)
, (136)

where B′(Q) is the estimated background noise from a single scattering measure-
ment Eq.(115), thus

β(Q) ∼ 1− IM(Q) + δβ(Q)

IS(Q)
(137)

taking δβ(Q) ≡ B(Q)−B′(Q). The expression obtained in Eq.(137) is only valid
for moderate multiple scattering. If multiple scattering dominates, the signal is
homodyne and other relations hold. [87, 88].

The analytical expression of f(Q, τ) depends on the particular system dynamics
and can be used to extract useful information. For isotropic motion, the dynamics
depend only on the magnitude of the scattering wave vector Q. Hence, to im-
prove statistics, an azimuthal over the polar angle θ in the Q plane is performed.
Moreover, for dilute Brownian systems f(Q, τ) = exp(−τ/τc). It contains a char-
acteristic time τc = 1/D0Q

2, with D0 the free diffusion coefficient. With the
previous, the hydrodynamic radius of the beads in suspension (RH) can be ob-
tained. This dynamical measurement is known to be particle sizing, and in order
to obtain it, the Stokes-Einstein relation is used, i.e. D0 = kBT/6πηRH , with kB
being the Boltzmann’s constant, T the temperature, η the system’s viscosity.

Fig. 19: β(Q)f(Q, τQ2) for different values of R from different samples composed of polystyrene particles (σ =
330nm) in ultra pure water(left). The effect of moderate multiple scattering is summarized in two main
contributions to β(Q)f(Q, τ). The first one is a reduction in β(Q) as R increases. The second one, for
R > 0.3, a faster decay at short τQ2 starts to appear. However, each β(Q)f(Q, τ) maintains parallel
among different R obtaining similar slopes, thus similar slopes, i.e. Diffusion coefficients (D0), describe
each system dynamics. The Q range represents the majority of the sampled wavelengths of the acquired
images (0.75 ≤ Q ≤ 6.5[1/μm]). Normalized hydrodynamic radius (Rh(R))/(Rh(0) as a function of R
(right). The dashed lines indicate a deviation of ±10 % from Rh(0).

Examples of β(Q)f(Q, τ) for some of the measured samples is shown in Fig.19
for different R values. The effect of moderate multiple scattering is summarized
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in two main contributions to β(Q)f(Q, τ). The first one, as sketched in Eq.(137),
a reduction in β(Q) as R increases. The second one, for R>0.3, a faster decay
at short τQ2 starts to appear. However, at τQ2 > 0.5 each β(Q)f(Q, τ) main-
tains parallel among different R, thus similar slopes, i.e. Diffusion coefficients
(D0), describe each system dynamics. It is important to mention that the data
is represented in τQ2 scale where for freely, non-interactive Brownian particles,
f(Q, τQ2) collapse onto master curve.

We proceeded to obtain each slope of β(Q)f(Q, τ) by extracting the characteristic
time (τc = 1/D0Q

2) via a standard cumulant analysis [38]. With the extracted
diffusion coefficient, the normalized hydrodynamic radius Rh(R)/Rh(0) is calcu-
lated and presented in the right hand side of Fig.19. As suggested by β(Q)f(Q, τ),
the extracted Rh(R)/Rh(0) starts to deviate significantly for R>0.3, observing
a deviation grater than 10 %. Additionally, the uncertainty in the determined
values starts to increase. Hence, the limit of applicability of the HNFS technique
is obtained, this is in agreement with the previously described in Sec.4.2.1.

51



4.3 Microliter viscometry

A macroscopic approach to characterize colloidal suspensions is by determining
its flow properties. The shear viscosity is the property that describes the op-
position of a suspension to flow. The viscosity is susceptible to the the particle
shape, size, and particle concentration. It can also reflect the interaction between
particles, as well as internal structural changes or aggregation [9]. Depending on
how an instrument can impose a flow onto the sample, the shear viscosity can
be measured by viscometers or mechanical rheometers. The first ones are only
allowed to measure the liquid under one type of flow condition, fixed by the ge-
ometry of the instrument. Mechanical rheometers can impose several types of
flow by deforming the sample, thus being able to characterize systems with more
complex behaviour. If the flow is produced by a constant deformation at a given
shear rate (γ̇), the extracted viscosity is known as the steady shear viscosity η(γ̇),
and if the flow is made by applying small amplitude oscillatory shear (SAOS) a
frequency-dependent complex viscosity is measured η∗(ω).

The frequency dependent viscosity is related to the visco-elastic complex modu-
lus by η∗(ω) = G∗(ω)/iω, where G∗(ω)=G′(ω)+iG′′(ω), and G∗(ω) displays the
ability of a system to store (G′) or dissipate (G′′) energy. The connection between
the steady shear and the oscillatory shear viscosities is given by the empirical rule
known as the Cox-Merz rule. It states that, for very small frequencies and shear
rates, both viscosities are equal [90]. The main limitation for the frequencies or
rates probed by a Rheometer is given by its limited torque resolution of the in-
strument.

An extension of SAOS experiments can be extracted from passive micro-rheology
or micro-viscometry [36, 42–44, 91–93]. This is achieved by combining the Cox-
Merz rule, the Generalized Stokes Einstein relations, and the Mean Squared Dis-
placement (MSD) of tracer particles in the suspension of interest. The MSD can be
extracted by means of particle tracking algorithms, applied to optical microscopy
images from suspensions where the visibility of tracer particles is possible, i.e.
fairly transparent samples. The tracer particle size is limited to the optical res-
olution of the microscope, and the ability of tracking algorithms to identify it.
Additionally, the MSD can be obtained from the intermediate scattering function
measured in dynamic light scattering experiments, thus breaking the limitation
of size from the tracer particles, and depending on the optical conditions of the
suspensions, i.e. transparent or turbid, Quasi-elastic DLS or Diffusing Wave Spec-
troscopy can be employed [35,40,41,46,94].

In the following, the main findings of Ref. [36] are presented and organized as
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follows: The first subsection introduces the application of the DFM framework for
micro-viscometry, and its application on different suspensions: an ideal viscous
fluid, a biological colloidal suspension made of lysozyme proteins, and a visco-
elastic polymer suspension. In the second subsection, the particle size for tracer
conditions is discussed, as well as possible outlooks for the applicability of the
technique.

4.3.1 Ideal, biological and visco-elastic fluids

The combination of microliter viscometery and the Digital Fourier Microscopy
framework will be denoted as η-DFM. The approach consists in taking images
acquired by an optical microscope of tracer particles added to the system under
study. The tracers should be non interacting, thus not altering significantly the
system to study. As a consequence, the concentration of tracer particles in sus-
pension should be dilute. Then, the MSD is obtained via the structure function
D(Q, τ) from a DFM analysis (Eq.174). Finally, by combining the Generalized
Stokes Einstein relations and the Cox-Merz rule the steady shear viscosity can be
estimated.

The data analysis goes as follows, it starts by obtaining the azimuthally averaged
structure function from a DFM anaylsis

D(Q, τ) = A(Q) [1− f(Q, τ)] +B(Q). (138)

Under tracer conditions, the intermediate scattering function f(Q, τ) can be re-
lated to the mean squared displacement 〈�x2(τ)〉 [23, 94,95],

f(Q, τ) = exp

[
−Q2

2d
〈�x2(τ)〉

]
. (139)

This is a generalization for d spatial dimensions of Eq.(35). Since the motion of the
particles is projected onto a two dimension sensor, namely a camera d=2. Finally
by combining Eq.(138) and Eq.(139) the MSD of the tracers can be obtained

〈�x2(τ)〉=− 2d

Q2
ln

[
1−D(Q, τ)− B(Q)

A(Q)

]
(140)

where A(Q) and B(Q) can be estimated following the procedure described by
Eq.(115) and Eq.(116). Other numerical approaches can be found in [91,92].

The obtained MSD then can be related to the rheological and viscometric prop-
erties of the medium via the Generalized Stokes-Einstein relation (GSE), recalling
Eq.(46)

G∗(ω) =
2dkBT

3πσiωF{〈�x2(τ)〉} (141)
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where kB is the Boltzmann constant, T is the temperature, σ is the tracer diam-
eter, and F{〈�x2(τ)〉} is the Fourier transform of the MSD. Assuming a local
power law for the MSD, it is possible to approximate it with [39]

iωF{〈�x2(τ)〉} ≈ 〈�x2(1/ω)〉Γ [1 + α(ω)] i−α(ω) (142)

where Γ represents the gamma function, α(ω) =
∣∣∂ ln 〈�x2(τ)

〉
/∂ ln τ

∣∣
τ=1/ω

ac-
counts for the characteristics of the sample and takes values between 0 and 1.
If viscous behaviour dominates, α ≈ 1, and for elastic behaviour α ≈ 0 (A full
description can be found in [35,36,39]). Plugging this approximation in Eq.(141)
the magnitude of the complex modulus G∗(ω) becomes

G(ω)= |G∗(ω)| = 2dkBT

3πσ〈�x2(1/ω)〉Γ [1 + α(ω)]
(143)

and the real (elastic) G′(ω) and complex (loss) G′′(ω) parts (moduli) of G∗(ω)
are given by,

G′(ω)=G(ω) cos [πα(ω)/2] , G′′(ω)=G(ω) sin [πα(ω)/2] . (144)

The complex viscosity can be calculated using its definition as

η∗(ω) = G∗(ω)/iω . (145)

Finally, the corresponding steady shear viscosity is estimated via the Cox-Merz
rule,

|η∗(ω)|ω→0 ≡ η(γ̇)γ̇→0. (146)

In order to validate η-DFM, we have applied it to different type of suspensions.
The first application is a series of ideal liquids, Glycerol-water mixtures. The
viscosity of these mixtures have frequently been examined, and have become a
reference system to test viscometry and microrheology techniques. In our study,
we tested glycerol-water mixtures with glycerol mass fraction ranging from 0%
to 57%, each containing polystyrene spheres of size σ=330nm as tracers . The
tracer particles volume fraction was set to 5×10−5.

We have obtained transmission images using an upright bright field microscope
(Nikon Eclipse 80i), equiped with a 20X microscope objective, and an 8 bit CMOS
black and white camera (Mako-U130, Allied Vision Technologies). The applica-
tion of DFM to the previously described optical configuration is known as bright
field Differential Dynamic Microscopy (DDM) [75]. Under this optical configura-
tion, a series of 20,000 images were recorded at 100 FPS and, subsequently, we
analysed them using the SUR algorithm (described Sec.4.1). Full details on the
experimental conditions as well as other experimental techniques employed in this
work can be found in [36].
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The output of the analysis leads to the intermediate scattering function f(Q, τ).
It is expected to scale with Q2 as indicated in Eq.(139), this can be used to test
tracer conditions. Indeed, if represented as a function of τQ2, all f(Q, τ) obtained
for a specific glycerol content but different Q values fall on top of each other onto
a master curve for the employed Q range, as shown in the inset of the left panel
of Fig.20. The selected Q range, (0.70− 4.75)

[
μm−1

]
, covers the majority of the

length scales sampled by the images.

Fig. 20: Results obtained for ideal fluids (glycerol-water mixtures) applying η-DFM. Mean squared displace-
ment (MSD) for tracers with a diameterσ = 330nm in glycerol–water mixtures (left panel), and its
corresponding Intermediate scattering functions f(Q, t) as a function of τQ2, the arrow represents an
increase in glycerol concentration (inset left panel). Magnitude of the extracted frequency dependant
viscosity η∗(ω) compared with steady shear viscosity from rheology experiments for different glycerol
concentrations(middle panel). Comparison of the normalized viscosity, η(c)/η(0), as a function of glyc-
erol mass fraction (c) determined by η−DFM, steady shear rheology, viscometry measurements, and
literature data (right panel) [96].

As the viscosity of the liquid mixture increases, the decay of f(Q, τ) is shifted
to larger delay times. We proceed to extract the MSD as expressed by Eq.(140),
taking under consideration data points that satisfy f(Q, τ) > 0.1, this to ensure
enough signal to noise ratio. The correspondent MSD is shown as open symbols
in the left panel of Fig.20. Similarly to f(Q, τ) a shift in the MSD can be seen,
reflecting a slow down in dynamics due to the increase of glycerol concentration.
The linear dependence in the MSD indicates purely diffusive motion, being con-
sistent with the motion of particles in an ideal (Newtonian) liquid.

Proceeding with the η-DFM analysis, the modulus of the complex viscosity |η∗(ω)|
was computed following Eq.(144) and Eq.(145). The results are plotted (open
symbols) and compared with steady shear measurements (closed symbols) in the
middle panel of Fig.20. This shows an agreement of the steady shear viscosity
and the magnitude of the complex viscosity, displaying no significant dependence
on ω and γ̇ for all glycerol concentrations. Thus, confirming the Cox-Merz rule
and the validity of η−DFM. Additionally, for systems with a very low viscosity,
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η−DFM complements the limited sensitivity of the mechanical rheometry at low
frequencies. The viscosity η for the same glycerol-water mixtures was also mea-
sured by viscometry.

Finally, we proceeded to extract by extrapolation the zero shear viscosity, and
normalize it with the one obtained for pure water (right panel Fig.20). The ex-
tracted values from η−DFM agrees with the ones from steady shear rheology
and viscometry. Small differences can be appreciated at glycerol concentrations
higher than 45%. A reason of this comes from the uncertainty of the low viscosity
of water, having a larger impact in the normalized viscosity. Nevertheless, the
overall agreement proves the validity of η−DFM in ideal fluids.

We performed the second application of η−DFM to series of biological fluids, a
series of protein suspensions made of different volume fractions of Lysozyme pro-
teins dissolved in a buffer solution of pH 4.5. To each of the protein suspensions,
1μm polystyrene spheres coated with hydrophilic PEG 300 were added to perform
as particle tracers. Their coating was chosen in order to minimize protein–particle
interactions, and the particles volume fraction was fixed as above. Using the same
optical configurations as for the glycerol-water mixtures, we recorded a series of
50,000 at 50 FPS and analyzed them (for more information please refer to [36]).
The intermediate scattering function (f(Q, τ)) and MSD were determined for a
Q range of (0.70− 3.5)[μm−1] (inset left panel of Fig.21).

Fig. 21: Results obtained by applying η-DFM to a biological fluids, lysozyme aqueous suspensions with different
volume fractions (φ). Mean squared displacement (MSD) for PEG coated tracers with a diameter of
1μm (left panel), and its corresponding Intermediate scattering functions f(Q, t) as a function of τQ2,
the arrow represents an increase in lysozyme volume fraction (inset left panel). Modulus of the complex
viscosity, |η∗(ω)|, and steady-shear viscosity η∗(γ̇) as a function of angular frequency ω and shear rate
γ̇ (middle panel) determined by η-DFM (open symbols) and steady-shear measurements (obtained at
T =25oC and φ=0.12; [97] filled righ triangle). Comparison of the normalized viscosity, η(φ)/η(0), as a
function of lysozyme volume fraction (bottom axis) and concentration (top axis) of lysozyme solutions
as determined by η-DFM, viscometry measurements and literature data (as indicated).
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Having analogous behaviour as the glycerol-water mixtures, the f(Q, τ) collapses
onto a master curve when plotted as a function of τQ2(inset). The MSD shows
a shift to larger delay times τ as the protein concentration increases. Indicating
an increase in protein-protein interactions. Additionally, the MSD increases lin-
early with delay time τ , implying that the protein solutions behave as an ideal
fluid in the explored time window. As a consequence, |η∗(ω)| do not depend
on ω (middle panel Fig.21) apart from small fluctuations at small ω. This is
due to the poorer statistics of f(Q, τ) at large τ , translating into fluctuations
in the MSD, and consequently as numerical noise for |η∗(ω)|. The magnitude
of η∗(ω) is consistent with previous measurements [97] (middle panel of Fig.21,
filled symbols), where unlike to the glycerol–water mixtures, we did not perform
steady-shear measurements with the lysozyme solutions since they are inhibited
by a shear thinning effect caused by the formation of a dense film of adsorbed
protein at the air–solution interface [98]. However, a comparison of the results
obtained with η−DFM with conventional viscosity measurements, and literature
data is presented in the left panel of Fig.21. In which, the agreement reinforce
the validity of η−DFM.

Our third application was done to a visco-elastic fluid, an aqueous poly-ethylene
oxide (PEO) solution. The solution contained 900 kDA PEO at a mass fraction
of 2.1%. Due to their non ideal viscous behaviour, these type of solutions are fre-
quently used to test rheological and microrheology techniques [35, 36, 41, 91, 92],
in our case we used it to illustrate the performance of η−DFM in the presence
of non ideal viscous behaviour. We added polystyrene particles of σ=330nm as
tracers at fixed tracer volume fraction of 7.5×10−4, and proceeded to acquire a
series of 125,000 images at a rate of 100 FPS. The images were recorded under
similar conditions as described above. In depth experimental details are described
in Ref. [36].

We proceeded to extract f(Q, τ) over a Q range of (1.6−4.75)[μm−1], and plot it
as a function of τQ2 (inset right panel Fig.22). Again, for different Q values, we
observe that they overlap onto a master curve. By continuing the analysis, the
MSD is extracted and plotted in the right panel of Fig.22). Where, by a careful
inspection, a linear increase at larger delay times τ is seen, and a deviation from
this relation is appreciable in the lowest measured decade of delay times. We can
infer a sub-diffusive tracer dynamics due to the smaller slope of the MSD at the
mentioned region. To test this finding, we obtained |η∗(ω)| and compared it with
steady shear and SAOS measurements (middle panel Fig.22). Where we can see
a very good agreement for all of the mentioned techniques, and even following the
shear thinning behaviour at higher shear rates, hence further reinforcing the relia-
bility of η−DFM and confirming the applicability of the Cox-Merz rule Eq.(146).
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Shear thinning is a non-trivial rheological behaviour, it can be investigated by
analyzing the behaviour of the viscous (G′(ω)), and elastic (G′′(ω)) moduli. Both
accessible to the η−DFM framework by following Eq.(144).

Fig. 22: Results obtained by applying η−DFM to a visco-elastic fluid, PEO solution containing tracer particles
with a diameter of 330nm. Mean-squared displacement (MSD), as a function of delay time τ (left
panel) and the corresponding intermediate scattering function f(Q, τ) for a range of Q values as a
function of τQ2 (inset left panel). Note that, in this representation, f(Q, τ) for different Q fall on
top of each other. Modulus of the complex viscosity, |η∗(ω)|, and steady-shear viscosity η∗(γ̇) as a
function of angular frequency ω and shear rate γ̇, determined by η−DFM, SAOS, and steady-shear
measurements (as indicated). Elastic, G′(ω), and loss, G′′(ω), modulus extracted from η−DFM and
SAOS as a function of angular frequency ω.

Finally, we obtained the viscous and elastic moduli, and compared them with the
ones from mechanical SAOS experiments (right panel Fig.22). Depending on the
values of G′(ω) and G′′(ω) two regions can be observed: The first one, at low fre-
quencies, the viscous behaviour dominates, appreciable when G′′(ω) has greater
values than G′(ω), additionally this is the region where |η∗(ω)| shows almost no
change as a function of ω, corresponding to the linear increase of the MSD. The
second region is at large frequencies, where both moduli start to converge for our
accessed frequency window, and hence, the elastic contribution becomes relevant.
This leads to a decrease in |η∗(ω)|, and translates onto the sub-diffusive behaviour
in the MSD. Furthermore, at higher frequencies accessible by our η−DFM mea-
surements, we could infer a cross of the two moduli, indicating a transition from
liquid to solid-like behaviour.

To conclude this section, we would like to point out that for all of the η−DFM
applications, a decade of frequencies was accessible, smaller than accessible by
mechanical rheometer.Thus, η−DFM is a complementary technique, and a reliable
method to determine not only the zero shear viscosity but also the visco-elastic
behaviour of fluids.
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4.3.2 Tracer size in microliter viscometry

The founding concept of micro-viscometry or micro-rheology relies on the defini-
tion of tracer particle, as stated above, it is defined as a non-interacting probing
particle inserted into a sample of interest. The motion of the tracer particles is
influenced by the sample visco-elastic properties. For the tracer particles, the
sample is considered as a continuum, and based on the previous description, the
following assumptions are made: the frequency dependent viscosity η∗(ω) is pro-
portional to the memory function, and in addition, the proportionality term is
given by the expression of the stokes friction coefficient (ξ = 3πησ) [39, 99].
In all of the presented applications, the particle size was always bigger than the
characteristic length scale of the studied system. For example, in glycerol-water
mixtures, the solution molecules size is of the order of Ångstroms, compared to
the nanometer sized tracer particles. Similar case has the protein suspensions,
where the lysozyme’s size ranges in the order of a few nanometers [100], and the
used tracer particle diameter was 1μm. Additionally, for the visco-elastic poly-
meric solution, the average mesh size of 8nm [35] is significantly smaller than
the 330nm of the tracer particles. Thus, the required conditions are proven to
be fulfilled by the successful application of η−DFM and other micro-viscometry
techniques [35,36,41,46,91,92]. However, we wanted to test the possibility of hav-
ing a colloidal suspension where a small portion of the system could be used as
tracers. Keeping in mind that, the characteristic length scale of the system would
be similar to the probing tracers, leading to possible violation of the requirements
to perform micro-viscometry. Nevertheless, the previous would have the benefit
that no extra care has to be taken for the selection of the tracer system in order
to suppress tracer-suspension interactions.

The data analysis for such type of experiments are not easily performed in the
DFM framework using bright field microscopy as imaging technique. The rea-
son of this is due to the image content, where for the non dilute concentrations,
collective properties are captured, thus the expression for the intermediate scat-
tering function (Eq.(139)) is not valid for all probed length scales. Thus, different
strategies are followed, such is the case of selecting scattering wave vectors where
only self properties can be extracted [50]. Another approach is to introduce op-
tical tracers, obtained by surface treating some of the particles to enhance their
scattering signal, resulting in an averaged captured signal that encompasses only
self information [23]. For this reason, we propose to exploit the versatility of the
DFM framework by using fluorescence microscopy as imaging technique, using in
our case confocal microcopy. In these type of techniques, the image content is
made of fluorescence signal obtained from optically excited objects that are la-
beled with a fluorescent dye, thus introducing an analogue to optical tracers which
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has been successfully used for extracting the MSD in Quasi-elastic Dynamic Light
Scattering experiments [94,95].

In the following, we present the results obtained for applying η−DFM in a struc-
turized fluid, consisting of a mixture of fluorescently labled (Rhodamine-B) and
non labled, sterically stabilized poly methyl methacrylate (PMMA) particles of
size σ = 300nm. The particles are inmersed in an organic solvent mixture com-
posed of cis-Decahydronaphthalene and Tetrahydronaphalene (80/20 volume ra-
tio). This solvent mixture ensures index matching between solvent and particles,
reducing Van der Walls interactions, and additionally, it has been proven that the
inter-particle interactions are considered to be hard sphere-like [101–104].
We synthesized the particles following a similar procedure as Antl. et al. [105],
and for all of the studied samples, the optical tracers volume fraction was fixed to
be in the order of φ∼0.01. Particle suspensions were prepared with different total
volume fractions, ranging from φ=0.01 to φ=0.30 (similar sample preparation
protocol can be found in [106, 107]. Our studied samples were imaged using a
Nikon A1R-MP confocal scanning unit mounted on a Nikon Ti-U inverted micro-
scope with a Nikon Plan Apo 40X oil immersion objective (NA=1.3), employing
a solid state laser with a wavelength of 561nm as excitation light source. The
total number of images was adjusted in order to properly probe the long time dy-
namics of each measured volume fraction, contrary to the acquisition rate which
was fixed at 30 FPS. Additionally, we performed SAOS experiments in order to
compare the magnitude of the complex viscosity η∗(ω).

The intermediate scattering function (f(Q, τ)) was determined for a Q range of
(1.5−4.5)[μm−1], and plotted as a function of τQ2 for different suspension vol-
ume fractions (inset left panel Fig.23). As shown, the data collapses onto a master
curve for this scaling representation, indicating the validity of the applicability
Eq.(139). We proceed to extract the MSD, and plot it with open symbols in
the left panel of Fig.23, which have a similar behaviour than the glycerol-water
mixtures and the protein suspensions. A shift in the MSD is seen as increasing
the suspension volume fraction, along with a linear dependence for the lowest
volume fractions. For the highest volume fraction shown, φ = 0.3, a linear depen-
dence is seen for short times τ <0.4 s, an inflection regime for intermediate times
0.4 s < τ < 2.0 s, and linear regime for large times τ > 2.0 s. This corresponds
for previously described dynamical transition of the short-, long-time diffusion of
hard sphere fluids [95].

We proceeded with the η−DFM analysis and extracted the modulus of the com-
plex viscosity η∗(ω). The results are plotted (open symbols) and compared with
SAOS measurements (closed symbols) in the middle panel of Fig.23. Where we
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can see a very good agreement between them, and the data obtained by η−DFM is
able to follow the shear thinning behaviour at higher frequencies. As seen before,
η−DFM complements the limited sensitivity of the mechanical measurements
at low frequencies, thus covering frequencies where no significant dependence of
|η∗(ω)| on ω is seen, allowing us to extrapolate for extracting the zero shear
viscosity. To test this finding, we proceeded to obtain the normalized viscosity,
η(φ)/η(0) for SAOS and η−DFM and compare it with the Quemada analytical
expression [108] (right panel Fig.23).

Fig. 23: Results obtained for structural fluids (hard-sphere colloidal suspensions) applying η-DFM. Mean
squared displacement (MSD) for optical tracers with a diameter of 300nm for different volume fractions
of hard-sphere colloidal suspensions (left panel), and its corresponding f(Q, τ) as a function of τQ2 for
(1.5≤ Q ≤ 4.5)[μm−1]. Note that, in this representation, f(Q, τ) for different Q fall on top of each
other. The arrow represents an increase in the suspension volume fraction (inset left panel). Magnitude
of the extracted frequency dependant viscosity η∗(ω) (open symbols) compared with small amplitude
oscilatory shear SAOS (closed symbols) from rheology experiments for different volume fraction con-
centrations(middle panel). Comparison of the normalized viscosity, η(φ)/η(0), as a function of volume
fraction φ determined by η−DFM, SAOS measurements, and the analytical Quemada expresion (solid
line) [108](right panel)

The Quemada expression has been shown to capture the trend of the normalized
viscosity of hard-spheres [9]. The experimentally extracted η(φ)/η(0) follows the
Quemada theoretical expression, having a small deviation between the extracted
from SAOS and η(φ)/η(0). The reason of this is due to the difficulties for the
error associated by extracting the zero shear viscosity for the frequencies where
the resolution of the mechanical rheometer is met. Nevertheless, the overall good
agreement in the complex viscosity, and the normalized viscosity, proves the vi-
ability of applying η−DFM in suspensions where a few components of the same
system are used as tracers. Furthermore, our results supports the validity of using
the Microrheology approach to study rheological properties of structurize fluids
for volume fractions up to 0.3, where an in depth analysis for higher volume frac-
tions is still needed to fully validate the approach towards the different phase
transitions of a hard sphere fluid. However, η−DFM leads to be a very powerful
tool to test the universality of the General Stokes Einstein relations [99,109].
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4.4 Velocity deviations from the sedimentation of dilute systems

The settling of particles in a suspension is the most common example of particles
in the presence of an external force. In a dilute suspension, the settling motion
is governed by the force balance among the gravitational field, buoyancy and the
frictional force. This leads to a steady state motion with constant settling veloc-
ity, also known as the stokes velocity vs=�ρgσ2/18η, where �ρ=ρp−ρs is the
density difference between the particle and solvent densities, g is the gravitational
acceleration, σ the particle diameter, and η the viscosity of the solvent. For fixed
particle composition, bigger particles settle faster than smaller ones.

In nature, most of the suspensions present a particle size distribution P(σ). The
quantity that represents the relative broadness of the distribution is given by the
size coefficient of variation CVσ=δσ/〈σ〉, defined as the ratio of the standard de-
viation of the distribution (δσ) by the mean value 〈σ〉. A suspension is referred as
monodisperse if its size distribution is narrow, i.e. CVσ∼0, thus the size variation
is negligible, contrary to the one referred as polydisperse. As a consequence of
the particle size distribution, the overall settling motion can be represented by a
velocity distribution. Which has its corresponding velocity coefficient of variation
quantified by CVv=δv/〈vs〉, and depending on the functional form of P(σ) a rela-
tionship between CVv and CVσ can be found. Hence, the settling of the suspended
particles is composed by two types of movement, a mean collective one, given by
the mean collective velocity 〈vs〉 and a relative, given by the relative velocity of the
individual particles, v′s=vs−〈vs〉, with respect to the mean collective velocity 〈vs〉.

Experimentally, Dynamic Light Scattering (DLS) is able to characterize the dy-
namics of suspended particles. However, conventional far field dynamic light
scattering techniques are only sensitive to the relative motion, this is due to its
homodyne detection scheme that is able to extract the square modulus of the
intermediate scattering function f(Q, τ) [8]. Conversely, in heterodyne detection
schemes, the real part of f(Q, τ) is obtained. Thus, making it sensitive to the
mean collective motion and the relative one. Examples of this detection scheme
are the one called Heterodyne Near Field Scattering (HNFS), which is based in
Digital Fourier Microscopy (DFM) conceptual framework (Sec. 3). Additionally,
the mean static scattered light can be obtained, allowing the possibility to com-
pare the size polydispersity of a system with the corresponding from the velocity
distribution.

In the following, we characterize the settling dynamics of three dilute aqueous
suspensions by means of HNFS measurements. Two of the suspensions were com-
posed of polystyrene particles of mean diameter 〈σ〉=7.32μm and 〈σ〉=7.84μm
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(PS06005 Bangs Laboratories, PS/Q-R-B660 microParticles GmbH). The third
sample consisted of silica particles with 〈σ〉= 3.92μm (SiO2-F-L1490 microPar-
ticles GmbH). The previous systems led to a Péclet range of Pe ≥ 150, having
Pe = vsσ/D as the number that expresses the ratio between gravitational and
thermal diffusive (D) motion. Our experimental results were compared with the-
oretical expressions and Brownian dynamics computer simulations, where a Gaus-
sian particle size distribution was taken into account. This led us to introduce
an analytical relationship between CVv and CVσ, that was corroborated by the
comparison of the dynamical analysis of f(Q, τ) and the Mie Scattering analysis
of the static light scattering information.

4.4.1 Polydisperse Langevin Model

In nature, many suspensions are constituted by a distribution of particle sizes, in
the following we will consider a Gaussian distribution, this is

P(σ) =
1√
2πδ2σ

exp

[
−(σ − 〈σ〉)2

2δ2σ

]
, (147)

where 〈σ〉 is the mean particle diameter, and δσ is the standard deviation of
the distribution. For simplcity in the notation, we have used (〈...〉) to represent
the ensemble average (〈...〉E). Often is useful to describe the broadness of the
distribution by the size coefficient of variation or polydispersity index, defined by
the ratio of the standard deviation over the mean value, i.e. CVσ = δσ/〈σ〉.
The complete description of the dynamics of the dilute suspension can be obtained
by adding the contribution from each individual particle size of the distribution,
i.e. for each σ a Langevin equation can be employed. The motion imposed
by gravity corresponds to the one of low Reynolds number, this holds true for
latex particles smaller than σ ≤ 10μm (Re = ρsσvs/η ≤ 10−4), thus a Stokes
flow is considered (also known as the linear regime as expressed in Eq.(49)) and
the inertial effects in the Langevin equation are safely neglected [1, 51, 52]. We
proceeded to numerically simulate the dynamics of particles described by the over-
damped Langevin equation using the polydisperse Ermak-McCammon algorithm
(Sec.2.7.3). It was done in reduced units denoted by (∗), using the mean particle
diameter 〈σ〉 as unit of distance, the ensemble Brownian time t�B ≡ 〈σ〉2/〈D〉
as unit of time, and F � = kBT/〈σ〉 as unit of force (Sec.2.7.1). In the direction
parallel to gravity (ẑ), the corresponding reduced over-damped Langevin equation
(Eq.(27)) for a particle of diameter σ takes the following form

ż∗σ(t
∗) =

Dσ

〈D〉f
∗
z (t

∗)−F ∗
u (z

∗)− Dσ

〈D〉Pe�σ∗3, (148)

where Dσ is the particle diffusion coefficient, and 〈D〉 is the mean diffusion co-
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efficient over the size distribution. The stochastic force is represented by f ∗z , and
F ∗
u is the net force arising from the interaction potential between particles. In

our case we made use of a continuous approximation for a hard sphere potential,
with the corresponding parameters to ensure thermodynamic consistency [61]. Fi-
nally, the last term of Eq.(148) represents the sedimentation, as it comes forth
the force balance between the buoyant and the resulting force from the gravita-
tional potential in reduce units, being proportional to the ensemble Péclet number
Pe�=〈vs〉〈σ〉/〈D〉. For more details please refer to Sec.2.7.3.

In order to compare with HNFS experiments, we analytically calculated the cor-
responding real part of the intermediate scattering function f(Q∗, τ ∗, σ∗) per par-
ticle size. This, by taking Q∗ = Q〈σ〉 oriented parallel to ẑ, and obtained the
mean over the size distribution [5, 37], i.e.

f(Q∗, τ ∗) =

∫
f(Q∗, τ ∗, σ∗)P(σ∗)dσ∗. (149)

The previous can be analytically calculated, leading to

f(Q∗, τ ∗)=exp

[
−Q∗2 τ ∗

{
1−1

2
Q∗2 τ ∗CV2

D

}
−1

2
Q∗2CV2

v Pe�2τ ∗2
]
cos (Q∗Pe� τ ∗),

(150)
where CVD = δD/〈D〉 is the diffusion coefficient of variation or polydispersity
index of the diffusion coefficient caused by the distribution of particles. For a
detailed description please refer to Sec.2.3 and 2.7. In real units Eq.(150) is,

f(Q, τ)=exp

[
−Q2〈D〉 τ

{
1−1

2
Q2〈D〉τCV2

D

}
−1

2
Q2CV2

v 〈vs〉2τ 2
]
cos (Q〈vs〉τ).

(151)
The computer simulations were performed using different size polydispersity in-
dexes, 0.0≤ CVσ ≤ 0.1, illustrated in the left panel of Fig.24. We have used a
total number of 1024 particles and the simulation box size was set in order to have
a volume fraction of φ= 5×10−5, providing the dilute regime for the simulated
system. Finally, the chosen probing wavelength was set to satisfy Q〈σ〉=2π, as
for this value distances of the order of the mean particle size are probed. With
the previously described simulation parameters, we studied the effect of the par-
ticle size distribution for purely diffusive motion dynamics, i.e. Pe�=0. Results
are shown in the middle panel of Fig.24. Under these conditions, the intermedi-
ate scattering functions superimpose for all the CVσ values, having no significant
dependency over the polydispersity. Moreover, we hardly see any change of the
characteristic delay time from the ln-linear representation (inset) of f(Q∗, τ ∗).
Hence, we conclude that for analytically describing the intermediate scattering
function in the explored polydispersity range at Pe� =0, the term that includes
CVD in Eq.(150) can be neglected. The latter is in agreement with the previously
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found by Pusey and van Megen [110,111].

Fig. 24: Results obtained from the computer simulations using the polydisperse Langevin model for differ-
ent CVσ values of normally distributed particle sizes (left panel). Intermediate scattering functions
(f(Q∗, τ∗)) computed at Q∗ =Q〈σ〉 = 2π and Pe� = 0 for all CVσ, along with its corresponding ln-
linear representation as inset(center panel). For all CVσ, f(Q∗, τ∗) follows closely a single exponential
decay. In addition, no significant dependence on polydispersity can be seen. Right panel represents
f(Q∗, τ∗) for Q∗ =2π and Pe� =150. The dashed envelope corresponds to Pe� =0 (purely diffusive),
and the oscillatory behaviour is related to the collective ballistic motion. Furthermore, the additional
damping effect comes from the relative ballistic motion, it is due to the effect of polydispersity in the
settling velocity as expressed in Eq.(150)

We continued to analyze the effect of the polydispersity in the dynamics of set-
tling particles using the polydisperse Langevin model by setting Pe�=150, as this
represents the Péclet value from our experimental systems. Results are shown
in the right panel of Fig.24. The effect of mean collective motion is expressed
as strong oscillations in f(Q∗, τ ∗), and for the monodisperse case (pink curve),
has an envelope described by the purely diffusive motion of Pe�=0 (represented
by the dashed line). Conversely, for polydisperse systems where an additional
damping term is seen, the single exponential from diffusion, does not represent
the envelope of the oscillations, where an additional damping term is seen. This
extra term arises from the relative motion in addition to the mean collective mo-
tion, due to the different velocities imposed by the particle size distribution in the
system. It has a stronger effect for higher polydispersities, as it is able to almost
completely damp the oscillations of the mean collective motion (CVσ=0.1, light
purple line).

The extra damping term is analytically described by the quadratic term in the
exponential function of Eq.(150) and Eq.(151). Thus, by combining the main
findings of the studied Péclet, it is possible to obtain a general expression that
captures diffusive, relative directed, and mean collective motion. In real units it
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is given by,

f(Q, τ) = exp

[
−Q2〈D〉τ−1

2
Q2δ2vτ

2

]
cos

[
Q〈vs〉τ

]
(152)

recalling that 〈D〉 is the mean diffusion coefficient, 〈vs〉 is the mean collective
velocity, i.e. mean settling velocity, and δv is the standard deviation of the ve-
locity distribution. The corresponding characteristic times are given by τB(Q)=
1/〈D〉Q2 for the diffusive time scale, τδv =

√
2/Qδv, and τ〈v〉=1/Q〈vs〉 for the ve-

locity deviations and mean velocity characteristic times respectively. Noting the
Q scale dependence for the type of dynamics described, having a Q2 dependence
for random motion, and Q for directed motion.

Given that the settling velocity is a function of the particle size, the relationship
between the size (CVσ) and the velocity (CVv) coefficients of variation can be
obtained, having for normally distributed particle size

CVv = 2CVσ. (153)

This relationship is only valid when the velocity distribution is related to the size
distribution, and will not hold for other types of velocity distributions caused for
example: by convection or other non steady state phenomena. Hence, the relative
motion to the mean collective from a settling system can be applied as a direct
dynamical measurement for estimating the polydispersity of a system.

Complementary to a dynamical measurement, Static Light Scattering (SLS) is
sensitive to the particle size distribution, having an effect in the total scattered
light intentsity Is(Q). This is because Is(Q) is the superposition of all the indi-
vidual scattering intensities per particle Ip(Q), i.e.

Is(Q) =

∫
Ip(Q, σ)P(σ)dσ. (154)

Ip(Q) can be calculated via the Raleigh-Gans-Debye scattering theory (RGD) if
the particles are smaller than the wavelength of the illumination light source. As
we worked with particles bigger than the wavelength of light, Mie theory was used
instead [112, 113]. The analytical solution of Mie theory is not trivial, making it
difficult to operate with. To overcome this, we employed numerical calculations
that are based on the Bohren-Huffman Mie-MATLAB routines [113, 114], and
were adapted for computing the average intensity of a distribution of particles.
Our numerical scheme was validated by comparison with the ones obtained from
MiePlot-software utilizing the same particle distribution [115].

Once our numerical calculations were validated, we proceeded to explore the ef-
fects of polydispersity in Is(Q), fixing the mean particle size and its corresponding
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refractive index for two cases resembling our experimental systems: 〈σ〉=3.92μm
silica (SiO2), and 〈σ〉 = 7.88μm polystyrene particles. The refractive index of
the particles was assumed homogeneous over the whole sphere, with an average
particle refractive index. Furthermore, we had used literature values related to
the experimentally studied systems, taking np=1.434 for SiO2 and np=1.587 for
polystyrene [116]. As we worked with aqueous suspensions, the refractive index
of water was chosen to be ns=1.332, for monochromatic red light λ=0.632μm.
The shape of P(σ) and CVσ were selected to be the same as previously described.

Our results are shown in Fig.25, where for increasing polydispersity an evident
smearing of the different minimum values of Is(Q) is seen. This is similar for both
of the studied conditions (silica left panel, polystyrene right panel), thus CVσ and
〈σ〉 can be estimated by comparing the numerical Mie theory calculations from
a distribution of particles to the measured Is(Q). It is worth mentioning that
in Mie theory the first minimum value has no fixed position, oppositely to the
Raleigh-Gans-Debye theory (RGD) where Q〈σ〉=8.98 [8,110,112,113] and a mean
particle size can not be obtained by reading this Q value. This deviation between
theories is due to the complete consideration of all of the optical properties of the
scattering process involved in Mie theory, such as refractive index of the medium
and particles, absorbance, and reflectivity of the particles [113]. Nevertheless, for
these systems we found that a good estimation can be found at Q〈σ〉 ∼ 2π.

Fig. 25: Numerical calculations of Mie theory for the total scattered intensity Is(Q) as a function of the degree
of polydispersity CVσ, obtained for two different particle sizes and compositions. The particle sizes
were chosen to match the ones from the experimentally studied systems of this work, i.e. 〈σ〉=3.92μm
(SiO2), and 〈σ〉=7.88μm (polystyrene). Similarly with the refractive indexes, we employed np=1.434
for SiO2 particles, and np=1.587 for polystyrene particles [116].
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4.4.2 Experimental Results

Experiments were carried out using the HNFS setup described in Sec.4.1. In
addition, a sample chamber was added to the setup in order to reduce ther-
mal instabilities. This led to fluctuations inside of the chamber of ±0.2C. Our
measurement protocol is as follows: samples were diluted from a stock suspen-
sion and poured in a glass cuvette of 4cm height and 1mm optical path (21-G-1
Starna GmbH). The cuvette was sealed with a stopper leaving a small air bubble
in order to help re-disperse the particles for resetting their initial conditions. In
addition, a 3D printed plastic sample holder was used to avoid heat conduction
that could cause convection inside of the sample cell. The filled cuvette along
with the sample holder was placed in the instrument and left to thermalize for
1 hour. After thermalization, the sample (placed in the plastic holder to avoid
direct hand contact with it) was rigorously agitated by hand, using the air bubble
as stirrer for 30 seconds. Afterwards, the glass cuvette was placed back into the
instrument. A waiting time period was set before starting the image acquisition,
having 0.75h for silica 3.92μm particles, 1.5h for polystyrene 7.32μm and 2h for
polystyrene 7.84μm. After this time, a constant settling velocity was found and
the image acquisition was started. At the start of the acquisition time, the sed-
imentation front was located at least at ∼ 1.5cm from the observation window,
allowing a sufficient measurement time without any stratification effects, as this
phenomenon is known to alter the bulk particle distribution. Furthermore, in or-
der to avoid back flow, the observation area is located at 1.2cm from the bottom
of the cell. Hence, bulk information was assumed to be captured.
The resetting process was carried out in order to have a complete set of three
independent experiments, a summary of the experimental details of each experi-
ment are shown in Table 1.

Sample Volume fraction FPS Acq. Time[min] Image size [pixel] Image size [mm2]
silica 3.92μm 2.5×10−6 75 30 512× 512 6.04

polystyrene 7.32μm 5.0×10−5 50 60 1024× 1024 24.16
polystyrene 7.84μm 5.0×10−5 50 60 1024× 1024 24.16

Table 1: Summary of the experimental details from the different measured samples.

Dynamical measurements were performed using a 2X 0.1NA microscope objective
as collecting optics, resulting in a sufficiently large field of view. This led to a
Q range of (0.1−0.9)

[
μm−1

]
, corresponding to distances (L = 2 ∗ π/Q) larger

than the particle size. For this Q range and Péclet values, the diffusion term in
Eq.(152) can be safely neglected. This because the ratio between τB/τδv ∼ 10.
Furthermore, it was confirmed by a non-linear fit of Eq.(152) to the experimental
data, where no meaningful data was extracted for τB(Q). Intermediate scattering
functions obtained from one of the three independent measurements per particle
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size are shown as symbols in Fig.26. The continuous line represents the computer
simulations of the polydisperse Langevin model, using as input parameters the
extracted values from the numerical fitting of Eq.(152) to these experimental data.

Fig. 26: Measured Intermediate scattering functions f(Q, τ) (open symbols) compared with computer simula-
tions using the polydisperse Langevin model (lines). The left corresponds to the silica 3.92μm sample,
the center to the polystyrene 7.32μm sample, and the right to the polystyrene 7.84μm sample. The
input parameters for the simulations were obtained from the extracted values of fitting Eq.(152) to the
experimental data without free parameters.

We have found a very good agreement between computer simulations and the
HNFS measurements for all of the studied Q range, corroborating our theoretical
description of settling particles. At this point, we would like to stress out the
difference in number and amplitude of the oscillations in f(Q, τ) for the different
measured samples, as this indicates the difference in polydispersity among them
as the diffusive term in Eq.(152) has been neglected (see above). The number of
oscillations and the height of the amplitudes get higher for smaller CVσ. Quali-
tatively, the most polydisperse sample was the silica particles, as the amplitude
of the oscillations are the smallest of the three. To quantify it, the mean and
standard deviation of the extracted characteristic times was computed. These
results are presented in Fig.27. The straight line in each case represents a linear
fit with a fixed slope of −1, and the intercept was left as free parameter.

The value of −1 is the expected slope for both of the characteristic times in a
log-log representation. This is because they are inversely proportional to Q. In
all of the three particle systems, a very good agreement with the predicted Q
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Fig. 27: Mean and standard deviation of the extracted characteristic times τδv(Q) =
√
2/Qδv, and τ〈v〉(Q) =

1/Q〈v〉 from the three independent measurements explored per particle size. The straight lines represent
a linear regression with fixed slope of −1. The extracted mean velocity (〈v〉) and velocity deviations (δv)
are shown as legends in each panel. The left panel corresponds to the silica 3.92μm sample (red), the
center panel to the polystyrene 7.32μm sample (blue), and the right panel to the polystyrene 7.84μm
sample (green). Note the separation between τδv and τ〈v〉(Q) increases as the value of CVv decreases.

scaling was found, thus 〈v〉, δv were subsequently extracted from the intercept
values. Then, CVv was computed. Note the separation between τδv and τv(Q)
increases as the value of CVv decreases. These results are shown as legends in its
corresponding panel of Fig.27, and in Table 2.

Sample Pe� 〈σ〉[μm] (SLS) CVσ (SLS) 〈vs〉[μm/s] (DLS) CVv (DLS) CVv/CVσ

silica 3.92μm 179.3 3.76 0.080 6.035 0.148 1.850
polystyrene 7.32μm 178.0 7.00 0.045 1.291 0.088 1.956
polystyrene 7.84μm 225.1 7.88 0.035 1.670 0.068 1.943

Table 2: Summary of the extracted experimental information from the different measured samples. These results
represent the average value from the three performed dynamical measurements (DLS) and Static Light
Scattering (SLS) sample characterization.

Finally, we characterized the measured samples by means of SLS obtaining Is(Q)
from the long delay time limit of HNFS [24], and by comparing them to Mie
theory calculations. For this purpose, we employed a 20X 0.5NA microscope ob-
jective as collecting optics. This led to a Q range of (0.1−4.7)

[
μm−1

]
, allowing

us to cover the first minimum of Is(Q) for all of the samples ((0.1− 3.1)
[
μm−1

]
for SiO2 particles, and (0.1 − 1.7)

[
μm−1

]
for polystyrene) without the need of

correcting for smearing effects due to the optical transfer function, as it increases
towards large Q values [65, 68]. Furthermore, in order to reduce the amount of
acquired data, we lowered the Frame Rate to 0.33Hz. Results of the comparison
of Mie theory calculations (solid line) with the experimental ones (open symbols)
are shown in Fig.28 an summarized in Table 2.
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Fig. 28: Comparison of the total scattered intensity Is(Q) obtained from HNFS experiments (symbols) with Mie
theory numerical calculations (solid lines). The left panel corresponds to the silica 3.92μm sample, the
center panel to the polystyrene 7.32μm sample, and the right panel to the polystyrene 3.84μm sample.
Input values for computing the numerical calculations of the Mie theory are written as legends for each
case.

Our characterization using SLS is in good agreement with the dynamical one.
We inferred this, as the silica 3.92μm (left panel) and polystyrene 7.32μm (cen-
ter panel) samples have ∼ 4% difference in mean particle size, and less than 1%
for the polystyrene 7.84μm sample. In addition, we obtained from all of the
measured samples CVv/CVσ ≈ 2 (Eq.(153)). It is worth mentioning that for
both polystyrene samples we obtained the smallest relative difference from the
theoretical value of 2, having obtained an average of ∼ 3% difference. However,
we obtained ∼ 7.5% for the silica 3.92μm sample. These difference could come
from the SLS characterization, as we have assumed an homogeneous refractive
index distribution over the whole sphere. This is supported by the fact that some
particle batches could contain optical core-shell type particles [117], making the
Mie theory more involved. A step further in this direction was discarded, as we
consider these deviations relatively small being within experimental errors. In ad-
dition, the minimum of the form factor is less pronounced as the polystyrene cases
(because of a smaller refractive index difference), thus larger uncertainty in deter-
mination of the polydispersity is expected. Despite these differences, we conclude
that we were able to differentiate the degree of polydispersity among different
samples. Thus, with these results, we experimentally demonstrate the validity
of Eq.(152), (Eq.(153), and the overall theoretical description of the Polydisperse
Langevin model.
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4.5 From colloid to grain. A dynamic description of sedimentation in dilute systems

Systems under sedimentation of immersed colloidal and granular particles are the
two ends of a collection of dynamical regimes. The motion of colloidal systems
is characterized by the random or Brownian motion of the particles (referred as
colloids) in them. By this, the overall sample concentration is going to be ho-
mogeneous over the whole sample volume, i.e., the particles will not sediment.
This process is also known as free diffusion, and it is quantified by the diffusion
coefficient D. Free diffusion is the result of thermal agitation, arising from the
random collisions of the solvent molecules with the colloids in the system. As a
result, no preferred orientation in the motion is present.

On the other hand, when thermal agitation does not play a role in the dynamics
of the system, the particles (referred as grains) can only move due to the drag
of external forces. This kind of systems are known to be athermal or granular.
Granular systems are affected by gravity causing grains to settle or sediment. Be-
tween the previously described dynamical limits (colloidal-granular) it is possible
to find systems that present combination of both dynamical behaviours, i.e. col-
loidal systems that present strong thermal agitation that ultimately sediment or
granular systems in which a remaining of thermal agitation is still detectable [118].

In consequence, the response of a system to gravity and thermal agitation can be
used to characterize its dynamical behaviour. For this matter, it is convenient to
define physical quantities to evaluate the interplay of these. Such is the case of the
Péclet number, i.e., Pe=vDσ/D, where vD is the drag velocity due to the presence
of gravity, σ is the particles diameter, and D its their corresponding diffusion co-
efficient. Although Pe assist for this matter, the value on its own fails to describe
the possible dynamical behaviour. Thus, it is convenient to study the dynami-
cal behaviour under different Péclet values and its impact on physical observables.

The purpose of this section is to quantify the effect of an external force on phys-
ical observables in the real and reciprocal space, and to illustrate a possible dy-
namical phase diagram. This result is general for any dragging force, such as
gravity in sedimentation or in electrophoresis experiments. Specifically, we focus
on the mean squared displacement and the intermediate scattering function of
a dilute-polydisperse system in the presence of the gravitational force. The lay-
out of the work is presented in the following way. We begin by presenting the
polydisperse Langevin model and the corresponding observables in the real and
reciprocal space. Then, we show a systematic study by applying the model to
Brownian dynamics simulations. Finally, we corroborate our theoretical results
with sedimentation experiments of different particle sizes using Heterodyne Near
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Field scattering.

4.5.1 Effect of an external force in real and reciprocal space observables: mean squared displacement and
intermediate scattering function

The dynamics of a system composed of particles undergoing Browninan motion
in the presence of an external force can be described by the individual Langevin
equation of each particle. For our purposes, we will consider a non-interacting
dilute system. The system is composed of different particle sizes followed by a size
distribution P(σ). In addition, a linear relation of the dragged velocity (vD) with
the external force is assumed. Thus, a Stokes flow is considered and the inertial
effects of the Langevin equation are safely neglected.

The corresponding over-damped Langevin equation for a particle of size σ in the
direction of the external force takes the following form,

żσ(t) =
1

ξ
fz(t)+vDσ. (155)

Where, ξ = 3πησ is the friction coefficient, η is the zero shear viscosity of the
solvent, and fz(t) is the stochastic force.

The real space observable, the Mean Squared Displacement (MSD), is then com-
puted by the solution of Eq.(155). Thus, the MSD per particle is

〈�z2σ(t, τ)〉t = 2Dστ + v2Dστ
2. (156)

Here, 〈...〉t states a starting time average, Dσ = kBT/3πησ is the free diffusion
coefficient of a particle of diameter σ, kB is Boltzmann’s constant, and T the
temperature. The overall ensemble of particles is described by a particle size dis-
tribution function (P(σ)), which has 〈σ〉E and δ2σ as its first and second moments.
Usually, it is convenient to define the size coefficient of variation or polydispersity
index as CVσ=δσ/〈σ〉E.

To obtain an observable that represents the whole ensemble of particles, an average
over P(σ) is performed (represented by 〈...〉E), i.e.

〈Δz2(t, τ)〉t,E =

∫
〈Δz2σ(t, τ)〉tP(σ)dσ

= 2〈D〉E τ + δ2v τ
2 + 〈vD〉2E τ 2

= 2〈D〉E τ + (1+CV2
v)〈vD〉2E τ 2, (157)

where we have employed the definition of the variance of the velocity, δ2v =
〈v2D〉E−〈vD〉2E. The previous result shows two delay time (τ ) dependencies. The
first one, corresponds to the Brownian or diffusive behaviour, where the MSD is
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proportional to τ , and the second one where the MSD is proportional to τ 2 is the
ballistic behaviour imposed by the external force. Moreover, the overall motion
can also be considered as directed collective motion, for the case of the mean drag
velocity 〈vD〉E, and the relative motion to it, as is the case of 〈D〉E, and δv terms.
Furthermore, CVv = δv/〈vD〉E represents the velocity coefficient of variation of
the velocity distribution. Depending on the functional relation between the drag
velocity and the particle size, and the functional form of P(σ), a relation between
CVv and CVσ can be found. It is worthwhile to mention that in Eq.(157) we
have left CVv and we have not introduced a relationship with CVσ, as this result
is a general one. It comes without assuming any functional form of the velocity
distribution, and in principle, an analogous result can be obtained without the
assumption that the velocity distribution is related to the particle distribution,
where the 〈...〉E is replaced by the integral over the diffusion coefficient distribu-
tion and a velocity distribution.

In order to generalize the description, and easily find characteristic scales, it
is convenient to use reduced units [18]. For the polydisperse Langevin model
(Sec.2.7), they are: 〈σ〉E for unit length, t�B = 〈σ〉2E/〈D〉E as unit of time. Thus,
the MSD (Eq.(157)) in reduced units takes the following form

〈�z∗2(t∗, τ ∗)〉t∗,E = 2τ ∗ + Pe�2
(
1 + CV2

v
)
τ ∗2, (158)

where τ ∗=τ/t� is the reduced delay time, Pe�=〈vD〉E〈σ〉E/〈D〉E is the ensemble
Péclet number, which quantifies the relevance of the thermal agitation versus the
external force for the overall ensemble.
The main contribution of each kind of dynamics (diffusive or ballistic) to the MSD
can be quantified by calculating the delay time needed for the system to translate
a unit of distance 〈σ〉E, thus 〈�z∗2(t, τ)〉t,E=1. We will refer to this delay time
as τ ∗〈σ〉, and it is obtained by solving the quadratic function of Eq.(158). This
results in

τ ∗〈σ〉=
−1 +

√
1 + (1 + CV2

v)Pe�2

(1 + CV2
v)Pe�2

. (159)

Eq.(159) has the limit τ ∗〈σ〉 → 1/2 for Pe� → 0. This corresponds to the delay time
needed to translate the unit distance 〈σ〉E for particles undergoing pure Brownian
motion. Moreover, for Pe� → ∞, τ ∗〈σ〉 → 0. The latter implies that as higher the
Péclet number gets, the contribution of the external force dominates, thus there
is no significant Brownian motion in the translation of the particles.A graphic
representation of Eq.(159) is shown in Fig.29 for different Pe� and CVv values.
It has been scaled with the result of the limit Pe� → 0, as this introduces nor-
malized axis, i.e., 2τ ∗〈σ〉→1, and 2τ ∗〈σ〉→0 for Pe� → ∞. By visual inspection of
Fig.29, we can observe that the dynamical behaviour is similar for all of the CVv

74



4 Summary of Experimental Results

tested, as all curves fall on top of each other. Moreover, we estimated the relative
deviation of ∼ 1.94% between the monodisperse case, CVv =0, and the highest
velocity coefficient of variation (CVv=0.20) at the largest Pe�. Furthermore, this
dynamical behaviour can be summarized onto the following dynamical regimes:
The first one is the colloidal regime, it is found for Pe�<0.1, as 2τ ∗〈σ〉 �1. Then,
the colloidal with external force regime is found. It is the one where the external
force starts to act, as it adds a ballistic contribution to the MSD. We infer the
upper limit at Pe� � 100, where 2τ ∗〈σ〉 � 0.01. Finally, the third regime is found
for Pe� > 700. Here, the contribution of the external force completely overtakes
the diffusive one. Thus, the thermal agitation becomes negligible. This regime is
addressed as the ballistic-athermal or granular regime.

Fig. 29: Normalized τ∗〈σ〉 as a function of the ensemble Péclet number (Pe�) for different velocity coefficients of
variation (CVv) values. By this normalization, 2τ∗〈σ〉 → 1 for Pe� → 0 as seen. τ∗〈σ〉 is the delay time
needed for a system to translate a unit distance 〈σ〉E . The lower small grey circles correspond to the
Pe� values of the experimentally studied samples (Sec.4.5.2).

To further develop our findings, and study the influence of the external force in
the real space observable, namely the mean squared displacement, we performed
Brownian dynamics simulations. An extension of the Ermack-Mcammon algo-
rithm including the system polydispersity was employed (for further description
of the model please refer to Sec.2.7). For this, we have considered P(σ) to be a
Gaussian distribution, leading to CVv � 2CVσ. Furthermore, we have considered
the force balance among the effect of the gravitational force, the buoyancy of the
particles and the friction as the external force, leading to vD=vs=�ρgσ2/18η as
the terminal settling velocity, where �ρ = ρs−ρp is the density difference between
the solvent and particle densities. The computer simulations were performed for
an overall volume fraction of φ=5× 10−4, including an ensemble of 512 particles.
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In different runs, we studied different polydispersities i.e. 0 ≤ CVσ ≤ 0.1. In
addition, we selected four different Péclet regions, Pe� = {1, 33, 150, 800}, they
correspond to 2τ ∗〈σ〉={0.8, 0.05, 0.01, 0.002}.

Our results are summarized in Fig.(30). As an overview, we corroborated that
the MSD has the same shape for all of the studied polydispersities in the selected
Péclet numbers. This can be inferred from the superposition of all of the MSD’s
in Fig.(30). Moreover, Pe�=0 (free diffusion represented by dashed line) has been
included as reference to compare the effects of the external force. For Pe� = 1,
the external force starts to play a role, as a deviation from the linear regime is
seen for τ/t�B > 1. Conversely, for most of the delay times where τ/t�B < 1 the
behaviour of the MSD is proportional to τ ∗. In addition, the results superimpose
to the MSD obtained for Pe�=0. For higher Pe� values, this behaviour gradually
shifts towards smaller delay times. The transition time between colloidal motion
and ballistic motion (τ ∗c−g) in the MSD, is approximated when the magnitude of
both terms in Eq.(158) are equal. Thus, τ ∗c−g∼2/([1 +CV2

v]Pe�2) and its value is
reduced by two orders of magnitude for Pe�=33 when compared to Pe�=1, and
four orders for Pe�=150. Finally, for Pe�=800 the linear diffusive behaviour is
overtaken by the quadratic behaviour of the MSD. Hence, the motion in this Pe�

is dominated by the external force.

The previous sheds information over the different dynamical regimes found, where
three main regimes can be used to describe the motion, i.e., Colloidal (Pe�< 1),
colloid in the presence of an external force (1<Pe�<150), and finally for Pe�>800
the granular regime is found. These results, when compared to the ones obtained
by using τ ∗〈σ〉, show different Péclet values for defining the boundaries of each
dynamical regime. The reason of this comes from the lack of a proper boundary
definition, as depending on which of both observables is used, the upper boundary
is set.

A clearer boundry can be set by introducing experimental limitations of the instru-
mental capability to detect small displacements. Thus, depending on the experi-
mental capabilities the boundary could be defined. For example, the localization
uncertainty obtained from tracking algorithms from bright field microscopy images
is ∼10nm [25]. This is half of the minimum distance needed in order to capture
the linear regime at Pe�=150. This Péclet value corresponds to 〈σ〉E =7.32μm
polystyrene particles in water (〈D〉E=0.0084μm2/s), thus 〈�z∗2(t, τ)〉t,E=10−5.
This corresponds to an average displacement

√
〈�z2(t, τ)〉t,E = 23nm, hence at

this Pe�, the displacement is barely detected. Furthermore, Pe� = 800 corre-
sponds to 11μm polystyrene particles in water (〈D〉E = 0.0056μm2/s), and in
order to detect displacements related to Brownian motion

√
〈�z∗2(t, τ)〉t,E ≤
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Fig. 30: Computer simulation results of the time and ensemble mean squared displacements (〈�z∗2(t∗, τ∗)〉t,E)
of systems with dynamics that include Brownian motion in the presence of an external force. This
force imposes a settling velocity (vs), and is the result of the force balance among the effect of the
gravitational potential, the buoyancy of the particles and the friction of the solvent. The contribution
of the external force is quantified by the ensemble Péclet number (Pe� = 〈vD〉E〈σ〉E/〈D〉E). The
ensemble of particles is described by a Gaussian distribution with size coefficient of variation CVσ. The
(∗) represents reduced units, where 〈σ〉E is taken for unit length, t�B = 〈σ〉2E/〈D〉E as unit of time.

10−3 needs to be properly sampled. This implies a detection of position smaller√
〈�z2(t, τ)〉t,E ≤ 11nm. Hence, the granular boundary is perfectly defined by

the experimental limitations.

A similar analysis can be performed to the intermediate scattering function (ISF)
in the reciprocal space. The real part of the ISF is experimentally accessible by
heterodoyne-like scattering techniques [7, 24,77]. Thus, for comparison purposes,
we will represent it as f(Q, τ). In real units, the real part of the ISF of an ensemble
of particles under the influence of an external force and thermal agitation has the
following form:

f(Q, τ) = exp

[
−Q2〈D〉E τ −1

2
Q2δ2vτ

2

]
cos (Q〈vD〉E τ). (160)

Here, we have considered the wave vector Q to be parallel of the direction of
the external force. Moreover, Eq.(160) encodes in different functional forms the
two types of motion of the system, having a cosine term for the mean directed
collective motion ( for 〈vD〉E) and the exponential term for the relative motion
to it (including 〈D〉E and δ2v). In addition, each contribution contains the corre-
sponding characteristic times: τ〈v〉(Q)=1/Q〈vD〉E for the mean directed collective
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motion, τB(Q)= 1/Q2 〈D〉E and τδv(Q)=
√
2/Qδv, for the diffusive and velocity

deviations characteristic times, respectively. Noting the Q scale dependence for
the type of dynamics described, having a Q2 dependence for Brownian motion,
and Q for directed motion.
It is possible to write Eq.(160) in reduced units, obtaining

f(Q∗, τ ∗) = exp

[
−Q∗2τ ∗ −1

2
Q∗2CV2

vPe�2τ ∗2
]
cos (Q∗Pe� τ ∗). (161)

The previous translates into the three characteristic times in reduced units, i.e.,
τ ∗〈v〉(Q

∗)=1/Q∗Pe�, τ ∗B(Q
∗)=1/Q∗2 and τ ∗δv(Q

∗)=
√
2/Q∗Pe�CVv.

In order to explore the effect of the external force in the real part of the ISF, we also
used computer simulations including the polydisperse Langevin model. We have
selected the same simulation parameters as before and in addition, we opted for a
proving wavelength of the order of an average particle size, i.e., Q∗=Q〈σ〉E=2π.
A summary of our results is shown in Fig.31, where the case of Pe� = 0 and
CVσ = 0 has been included for comparison purposes (dashed line). This case is
analytically described by the Q∗2 term in the exponential decay function from
Eq.(161).

Fig. 31: Summary of the results obtained from computer simulations using the polydisperse Langevin model for
the real part of the intermediate scattering function (f(Q∗, τ∗)). The computer simulations were per-
formed for different ensemble Péclet (Pe�) and polydispersity values (CVσ). For comparison purposes,
the case of Pe�=0 and CVσ=0 is showed for all Pe� as dashed lines, it is analytically described by the
Q∗2 term in the exponential decay function from Eq.(161).
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Contrary to the MSD, the ISF present changes for different CVσ for Pe� ≥ 1.
Starting from the case of Pe� = 1, a small effect due to the polydispersity and
the external force can be appreciable close to the decay value of the function,
i.e., f(Q∗, τ ∗) = 1/e (showed in the top-left panel of Fig.31 along with a lin-log
representation of f(Q∗, τ ∗) as inset). This effect is seen as deviations from Pe�=0
and it becomes more noticeable for CVσ>0.05 (inset). Moreover, the oscillatory
behaviour from the mean directed collective motion is hardly seen. Thus, for this
length scale and Pe�, the majorly dynamical behaviour can mainly be considered
to be Brownian.

The mean directed collective motion starts to become appreciable for an increased
Pe�. As Pe� =33 (top-right panel of Fig.31) shows few oscillations at larger τ ∗.
Moreover, for small polydispersity values, CVσ < 0.05, the envelope of the func-
tion is the case of Pe� = 0. Thus, for those CVσ the CVv information can not
be retrieved. Similarly to the case of Pe� =1, a gradual shift from the envelope
of Pe� = 0 is seen for CVσ > 0.06. This separation becomes more noticeably for
CVσ=0.10, showing that CVv contributes to the decorrelation of f(Q∗, τ ∗). This
effect is described by the second term in the exponential function from Eq.(161)
and becomes more significant at even greater Pe� values. In this Péclet regime the
Brownian motion and the contribution of the external force are both important
for describing the dynamical behaviour of the system for all of the studied CVσ.
Hence, this region is addressed as the colloid in the presence of an external force.

Large values of the Pe� imply a higher contribution of the external force on the
overall dynamics of the system. This is seen for the case of Pe�=150 (bottom-left
panel of Fig.31), where stronger oscillations in f(Q∗, τ ∗) are present due to the
imposed mean directed collective motion. This implies a more relevant contribu-
tion from CVv, as the envelope of the overall f(Q∗, τ ∗) deviates from the Pe�=0
at CVσ > 0.02, translating in a reduction of half order of magnitude at the 1/e
value of f(Q∗, τ ∗) for CVσ > 0.05. Thus, the effect of CVv dominates the dy-
namics of the system becoming the main source in the decorrelation of f(Q∗, τ ∗),
leaving the contribution of the Brownian motion to the short time regime of the
function. This sets an indication of the dynamical transition where the effect of
the thermal agitation can be considered negligible.

Finally, for Pe� = 800 (lower-right panel of Fig.31), the Brownian contribution
to the dynamics of the system becomes negligible. This is seen by the devia-
tion of f(Q∗, τ ∗) from the case of Pe�=0 at shorter delay times (τ ∗ ∼ 10−3) for
CVσ > 0.02. As it becomes overtaken by the effect of CVv. The previous sets
up the granular regime, it is seen by an increased number of oscillations present
within the Pe�=0 envelope. In addition, also overtakes the Brownian contribu-
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tion, as the envelope of f(Q∗, τ ∗) deviates from the Pe�=0 for polydispersities as
small as CVσ=0.01. The previous is in agreement with the obtained information
from the analysis of the MSD. However, one of the advantages of the reciprocal
space is the ability to unfold the length scale information, or Q dependence. This
is achieved by close inspection of the characteristic times that corresponds to each
dynamical information (Eq.(161)), i.e. , τ ∗〈v〉(Q

∗), τ ∗B(Q
∗), and τ ∗δv(Q

∗). The latter
can be generalized by the diagram sketched in Fig.32.

Fig. 32: Dynamical diagram described by the different characteristic times from each type of motion in reduced
units. The red dotted line corresponds to the ballistic mean directed collective motion τ∗〈v〉(Q

∗) =
1/Q∗Pe�, the black big dashed line to the ballistic relative motion τ∗δv(Q

∗) =
√
2/Q∗Pe�CVv, and the

green dashed-dotted to the random Brownian motion τ∗B(Q
∗) = 1/Q∗2. The overall dynamics can by

described by three regions: the colloidal, the colloidal with external force and the granular. These
regions are separated by two characteristic length scales, Q∗

c = Pe� addressed as the colloidal length
scale, as marks the transition point between the colloidal and colloid with external force, and the colloid
to granular for Q∗

c−g=Pe�CVv/
√
2. As it marks the transition between a colloid with external force to

granular.

The information in the diagram can be summarized by three dynamical regimes:
colloidal, colloidal with external force, and granular. The boundary between them
is defined by two characteristic length scales. The first, Q∗

c = Pe�, will be ad-
dressed as the colloidal length scale. It is obtained when τ ∗B(Q

∗)= τ ∗〈v〉(Q
∗), and

sets the boundary between the colloidal and colloidal with external force dynam-
ical regimes. The second, addressed as colloid to granular, Q∗

c−g=Pe∗CVv/
√
2, is

obtained when τ ∗B(Q
∗)= τ ∗δ〈v〉(Q

∗). It sets the boundary between the colloid with
external force and the granular dynamical regimes.
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With the previous as reference, the colloidal regime is met for Q∗ > Q∗
c , i.e.

smaller length scales, where the Brownian characteristic time (τ ∗B(Q
∗)) is re-

sponsible to decorrelate f(Q∗, τ ∗) (represented as dash-dotted line in Fig.32).
This, as it is the fastest characteristic time (appearing first from bottom to top
in the diagram of Fig.32). Then, the colloid with external force is defined for
Q∗

c−g <Q∗<Q∗
c . Here, the characteristic time from the mean directed collective

motion (τ ∗〈v〉(Q
∗)) starts to appear (represented as dotted line in Fig.32). More-

over, the decorrelation of f(Q∗, τ ∗) is only caused by τ ∗B(Q
∗), as it is located below

the characteristic time from the relative to the mean motion τ ∗δ〈v〉(Q
∗) (represented

as big-dashed line in Fig.32). Finally, for Q∗<Q∗
c−g, i.e. larger length scales, the

granular dynamical behaviour is defined. The definition becomes natural, as all
of the contributions due to the external force dominate the description of the dy-
namics, having τ ∗B greatly above τ〈v〉 and τ ∗δv. Furthermore, the main contribution
for the decorralation of f(Q∗, τ ∗) is due to τ ∗δv. Interestingly, for length scales
around Q∗

c−g, a mixed description of the dynamics is found. As for Q∗ = Q∗
c−g,

the contribution of τ ∗δv becomes equally significant as τ ∗B. As a consequence, both
terms contribute to the decorrelation of f(Q∗, τ ∗), leading to a mixed dynamical
behaviour. We will refer to this as the colloidal-granulate regime. Finally, for
length scales around to Q∗ = Q∗

c , the dynamics become mainly colloidal as the
decorrelation of f(Q∗, τ ∗) is caused by τ ∗B(Q

∗) with a barely visible contribution
of τ ∗δv.

4.5.2 Experimental Results

To corroborate our findings, we performed Heterodyne Near Field Scattering ex-
periments of dilute suspensions in steady state sedimentation. The main observ-
able from this scattering technique is the real part of the intermediate scattering
function (f(Q, τ)). Moreover, the multi-Q resolution of the technique allowed
us to measure different length scales simultaneously. The experiments were car-
ried out using the HNFS setup described in Sec.4.1. It was equipped with CFI
Plan Fluor 20X 0.5NA Microscope objective, allowing us to capture a Q range of
(0.3 − 4.7)[μm−1]. This translates onto about an order of magnitude in reduced
units of the scattering wave vector Q∗. In addition, steady state was ensured
by adding a sample chamber to reduce thermal instabilities. The experiments
were carried out at 19C with fluctuations inside of the chamber of ±0.2C. The
polydispersity of each particle batch was defined by the manufacturer synthesis
protocol, and for comparison purposes, it was characterized by the static light
scattering information (SLS) from the instrument. Thus, within the same exper-
iments, static and dynamic information were measured. Furthermore, to fix the
dependence of the Péclet number to the mean particle size, we opted for fixing the
particle composition. Thus, different sizes of polystyrene particles were selected
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(ρp = 1.048 g/cm3). A summary of the measured samples is shown in Table 3.

Sample Volume fraction FPS Acq.Time[min] Image size Pe� 〈σ〉E [μm](SLS) CVσ(SLS)
PS-2.00μm 1.0×10−5 25 120 1024× 1024 1.2 1.82 0.120
PS-5.00μm 3.0×10−5 50 60 1024× 1024 35.0 4.76 0.062
PS-7.32μm 5.0×10−5 50 60 1024× 1024 150.0 7.00 0.045
PS-11.00μm 1.0×10−4 50 40 1024× 1024 880.0 10.56 0.056

Table 3: Summary of the experimental details from the different measured samples.

Our measurement protocol is as follows: samples were diluted from stock suspen-
sion and poured in glass cuvette of 1mm optical path and 40mm of height (21-G-1
Starna GmbH). The cuvette was sealed with a stopper leaving a small air bubble
in order to help re-disperse the particles for resetting their initial conditions. In
addition, the cuvette was attached to a 3D printed plastic sample holder to avoid
heat conduction that could cause convection inside of the sample cell. The filled
cuvette along with the sample holder was placed in the instrument and left to
thermalize for 1 hour. After thermalization, the sample (in the plastic holder to
avoid direct contact with it) was rigorously agitated by hand using the air bubble
for 30 seconds, afterwards it was placed back into the instrument. Before starting
the image acquisition a waiting time period was set. Having 50h for PS-2.00μm
particles, 8.5h for PS-5.00μm, 1.5h for for PS-7.32μm and 0.75h for PS-11μm.
After this time, a constant settling velocity was found and the image acquisition
was started. At this stage, the sedimentation front was located at ∼1.5cm above
the observation window. This allowed us to have a sufficient measurement time
without any stratification effects, as this phenomenon alters the bulk particle dis-
tribution. Moreover, in order to avoid back flow perturbation, the observation
area is located at 1.2cm from the bottom of the cell. Hence, bulk information was
assumed to be captured. The resetting process was carried out in order to have a
complete set of three independent experiments. A summary of one measurement
type per sample is illustrated in Fig.33. For comparison purposes, we show length
scales that satisfy Q∗<2π. The reduction on the number of Q∗ is due to the fixed
Q range of the instrument. In order to differentiate Brownian to ballistic motion,
we have scaled the delay time axis to τQ, as this is the natural scale for ballistic
motion ,i.e., 1/Q ∼ vτ .

The τQ scaling causes a gradual spreading among the different f(Q∗, τQ) for the
case of Pe�=1.2 (upper-left Fig.33). This is expected for this Pe�, as the dynami-
cal behaviour is majorly described by colloidal dynamics. The colloidal behaviour
scales with Q2 as 1/Q2 ∼ Dτ . Additionally, an oscillation from the mean directed
collective motion contribution starts to appear at τQ ∼ 10 for Q∗ < 1. This effect
becomes more visible for higher Péclet values, as the contribution of the external
force increases. For example, at Pe�=35 (upper-right Fig.33), higher amplitude
oscillations with up to three periods are seen. Furthermore, all of f(Q∗, τQ) align
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Fig. 33: Summary of the measured f(Q, τ) from settling suspensions for different ensemble Péclet values (differ-
ent colors). The different Pe� were obtained by changing the particle size as indicated in Table 3. The
dotted line represent Brownian dynamics simulation using the polydisperse Langevin model taking as
input the corresponding Pe� and a tuned CVσ.

by this scaling. This shows that the overall dynamics are governed by ballistic-like
motion. However, a small spreading becomes visible at the first minimum of the
function, τQ∼ 5.0. This is due to the small but still present contribution of the
Brownian motion, as this is the only contribution of Eq.(161) that depends on Q
in this representation. In contrast, for Pe�=150 (lower-left Fig.33), this spreading
is hardly seen. Here, all of the f(Q∗, τQ) tend to collapse onto a master curve
in the ballistic τQ scaling. Additionally, the importance of the external force
becomes more dominant, as the first minimum in the oscillations shifts towards
smaller τQ (τQ∼2.5). This trend is seen also for Pe�=880 (lower-right Fig.33),
where the first minimum is at τQ ∼ 1.0. However, the measured f(Q∗, τQ) at
this Pe� value contains less number of periods (∼2) when compared to Pe�=150
(∼4). The reason of this is due to the difference in polydispersity, as it can be seen
from the value of CVσ extracted from the comparison with Brownian Dynamics
simulations using the polydisperse Langevin model (dotted lines). We used as
input parameters the extracted mean Pe� from the characteristic times (Fig.34),
leaving the value of the polydispersity as a free parameter.
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Fig. 34: Characteristic delay times obtained for each studied Pe� (indicated as open symbols), τB(Q) =
1/Q2 〈D〉E corresponds to the characteristic time due to Brownian motion, τ〈v〉(Q) = 1/Q〈v〉E and
τδv(Q)=

√
2/Qδv represents the mean and standard deviation from the imposed velocity distribution.

The different Pe� values were obtained by different particle sizes (a summary of these is indicated in
Table 3). The dashed lines represent the average values of each characteristic time. In addition, both
axes are shown normalized for comparing with dynamical phase diagram in Fig.32.

We continued by obtaining the relevant characteristic times from f(Q, τ) using
Eq.(160). This was performed by a custom written program of numerical non
linear curve fitting using Matlab. Then, we proceeded to normalize the extracted
data accordingly. Results obtained from the average of three independent mea-
surements per Pe� are shown as open symbols in Fig.34. Additionally, we have
included the reference average values of each characteristic time (dashed lines).

For the case of Pe�=1.2 (upper-left Fig.34), we could not extract τδv, as the main
contribution for the decorrelation of f(Q, τ) comes from τB. The corresponding
dashed line was computed by using the polydispersity value from the SLS mea-
surement. Moreover, due to the small Pe�, we were able to extract τ〈v〉 around
the colloidal lenght scale Q∗

c =Pe�=1.2. Hence, for this Pe�, a mixed dynamical
behaviour was found, obtaining a mainly colloidal description for the dynamics of
the system (as shown in Fig.32). Furthermore, the colloidal dynamical behaviour
was found for length scales where the separation of τ〈v〉 and τB become significant
Q〈σ〉E > 5. The next dynamical behaviour was found for Pe�=35.0 (upper-right).
It corresponds to the colloid in the presence of an external force. As f(Q, τ) is

84



4 Summary of Experimental Results

mainly described by the corresponding terms of τ〈v〉 and τB. Furthermore, the
extracted characteristic times are found at Q∗ <Q∗

c = Pe� = 35.0. Similarly to
Pe�=1.2, we were not able to extract τδv for this Pe�. The reason of this is due
to the level of similarities between the two characteristic times. This is in agree-
ment with the previously shown from the numerical simulations, as for this Pe�

and polydispersity, the information regarding CVv can not be retrieved (Fig.31).
This limitation was not found at Pe�=150.0, where we were able to extract the
information by the deconvolution of the cosine term of f(Q, τ) and performing a
short time analysis to ln (f(Q, τ)). At the measured length scales, the dynamical
information is described by the colloidal-granulate mixed dynamical behaviour.
This is seen as the captured length scales are around Q∗

c−g=Pe�CVv/
√
2∼16. It

is worth mentioning that, similarly as Pe�=35.0 for Q∗ > Q∗
c−g, the information

regarding CVv becomes hardly accessible. Finally, we found the third dynamical
behaviour at Pe�=880, where no τB was found. Theoretically this characteristic
time is found to be more than one order of magnitude above τδv and τ〈v〉. Hence,
the dynamics of this Pe� are characterized by the granular description.

With the previous, we corroborate the dynamical phase diagram shown in Fig.32,
as all of the extracted dynamical behaviour is properly described by the pre-
sented theoretical framework. Moreover, this framework provides a rich descrip-
tion depending on the probed length scale and the system conditions, such as
mean particle size (〈σ〉E), polydispersity (CVσ) and the strength of external force
(quantified by Pe�). We found that the most dynamical content is found in the
colloidal-granulate regime. In these regime, it is possible to fully characterize sys-
tems in the presence of external force, as all of the dynamical contributions, i.e.,
τB,τ〈v〉,τδv, are obtained. We would like to stress out the simplicity of the theo-
retical framework, as all of the presented quantities are related to experimentally
accessible average quantities.
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4.6 Digital Fourier Analysis of X-Ray radiographs of granular suspensions

Granular suspensions are defined as suspensions where the particle dynamics are
not govern by thermal agitation, thus these systems are also known as ather-
mal [119, 120] or as noncolloidal suspensions [121]. In contrast to colloidal sam-
ples, granular suspensions exhibit dissipative dynamics, becoming very sensitive
to friction due to particle-particle collisions. Many of these systems are found in
nature as powders, sand, grains, among others.
Granular particles sediment due to their particle size, hence in order to over-
come sedimentation, additional energy needs to be supplied to the system. This
is experimentally achieved by vibration or by fluidization, either in liquid or air
fluidized beds. Furthermore, due to the properties of granular materials, the par-
ticle dynamics have been mainly studied by Diffusing Wave Spectroscopy (DWS)
[122–129], Dynamic Sound scattering (DSS) [130–135],X-Ray scattering [136], and
through image analysis from light and X-Ray sources [118,137–147].

X-Ray Radiography has been a key imaging technique for studying dynamics of
systems that are opaque to visible light [139]. It allows the study of a variety
of systems, ranging from microscopic biological samples like blood [139, 140], to
macroscopic systems, such as glass beads, lentils or rice. The previous studies
were achieved by performing Particle Image Velocimetry (PIV) on the acquired
images [145].

PIV is employed for obtaining density displacements within consecutive images,
thus it is possible to infer a velocity map that captures the motion of the imaged
system. This type of motion can be random, such as Brownian motion, or bal-
listic directed motion like sedimentation [137,138,148]. In addition, for a system
that presents a distribution of ballistic velocities, the motion can be decomposed
into two types, the mean collective motion, and the individual motion relative
to the mean directed motion. Density fluctuations can also be analyzed in the
Fourier space, such analysis scheme is known as Digital Fourier Analysis (DFA).
This leads to similar information as in static and dynamic light scattering ex-
periments. It has been employed for studying motion from a variety of colloidal
suspensions, were images from various visible light microscopy techniques were
analyzed [7]. One of the advantages of a Fourier approach is the ability to differ-
entiate the nature of the type of motion due to its wavelength dependence, i.e.
having Q2 for random motion and Q for ballistic motion.

In the following, we show an extension of the use of the DFA image analysis to
X-ray radiographs (X-DFA). This was achieved by firstly performing DFA in dif-
ferent series of synthetic radiographs and validated by comparison with the results
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from PIV. In order to test the information content from the analysis scheme, we
have simulated four different types of motion: directed, a normal distribution of
directed motions, random motion, and a combination of all of the previous. The
synthetic X-Ray radiographs were generated by using the Beer-Lambert law with
extinction coefficients that take into account the X-ray beam hardening. In ad-
dition, the validated analysis scheme was employed to experimentally study the
sedimentation of granular suspensions, and to characterize the motion of particles
in a liquid fluidized bed. This work was done in collaboration with the Institute
for Multiscale Simulation, Erlangen [149].

4.6.1 Samples, X-ray Radiographs and Data Analysis

Experimentally, we used granular particles immersed in 50% v/v water-glycerol
mixture (150-180μm soda-lime glass spheres (GL0191B5/150-180 MoSci) of mass
density 2.48±0.03 g/cm3). The solvent mixture was chosen to have a viscosity of
7.1mPa·s at 298K. The value of the viscosity slowed down the overall sedimenta-
tion kinetics, thus becoming detectable by our detection unit set at the maximum
recording speed, without compromising spatial resolution by binning among pixels
for increasing acquisition speed. The samples were inside of a polystyrene 10mm
rectangular cuvette, and were fluidized by an upwards homogeneous fluid flow.
The flow was generated by a syringe pump (Harvard Apparatus PHD-ULTRA
4400 combined with a 100 ml Hamilton GasTight syringe) that pumped a fluid at
a constant rate. In order to ensure a homogeneous fluid, the pumped fluid passed
through a reservoir and a distributor before entering the sample [150]. Sedimen-
tation was avoided by an increased and constant pump speed of 2000μl/min and
1500μl/min. These pump speeds were chosen as we found they produced a con-
stant and steady fluidization that was succesfully captured.

The sedimentation experiments consisted in studying the kinetics of sedimenta-
tion from a suspension of spherical glass granulates. This was realized after the
cessation of the fluidization of the suspension. We controlled the different starting
fluidization states by selecting different pump speeds from our fluidized bed setup,
ranging from 300μl/min to 750μl/min. The fluidization led to an expanded initial
state of the fluidized bed, where bigger pump rates translated in larger expan-
sions, thus smaller particle volume fractions were achieved. This, allowed us to
prepare different volume fractions (φ), estimated via Eq.(162) with the correspon-
dent beam hardening effective attenuation coefficient [151]. Our estimation led
to volume fractions in the range of (0.55−0.45). For more experimental details,
please refer to [149].
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X-ray radiographs consist of transmission images obtained from radiating a sam-
ple with X-rays produced from an X-Ray tube, then the transmitted X-rays are
collected via a scintillator coupled to a CCD camera in order to digitalize the
produced image. The images were obtained by radiating the granular samples
using an XWT-160-TCHE Plus X-ray tube with a tungsten transmission target,
it worked under an acceleration voltage of 80 kV and an anode current of 550μA.
The transmitted X-rays were detected by a PerkinElmer DEXELA 1512 flat panel
detector [152], which produced a 14 bit images consisting of 1944×1536 pixels.
The image acquisition setup was configured to capture consecutive frames at a
rate of 26.31 FPS, each with an average pixel size of 9.74μm. In addition, due
to the size of the detector, we have selected and analyzed regions of the image
corresponding of signal coming within the sample cell. An example of the type
of radiographs used in this work is shown in Fig.35. The left panel shows an ex-
perimentally acquired one, where the selected region of interest is enclosed within
the white square, the middle panel corresponds to the close up from the analyzed
region of interest and the right panel represents a generated synthetic radiograph
produced from the following description.

Fig. 35: Examples of the type of radiographs used in this work. The left panel depicts an experimentally
obtained radiograph. Due to the sensor size, a small region of interest (ROI) was selected and analyzed
(indicated by the white square). The middle panel shows the selected ROI. The right displays a synthetic
radiograph generated by modeling the beam hardening of X-Rays passing through a granular sample
using computer simulated particle positions.

The radiograph image content is obtained by taking into account the change of
the X-ray spectrum due to beam hardening over the whole traveled path of the
photons (z). This is described by the effective Beer-Lambert law via an effective
attenuation coefficient μeff [151,153], that depends on the energy spectrum of the
radiation source, material composition, and on the sensitivity of the detector.
Hence, the attenuated measured X-ray intensity I(z) for a given pixel is given by,

I(z) = I0 exp [−μeff(z)z] (162)

I0 corresponds to the incoming X-Ray intensity. For a material with homogeneous
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chemical composition, the radiographs provide a local measurement of the bulk
density of the medium averaged over the path of the ray [145], i.e a projection.
Our simplified synthetic X-ray radiographs were generated from a time series of
particle positions from computer simulations, where parallel X-ray beams traveled
in straight lines across the whole sample. The z coordinate was defined along the
X-ray propagation path, additionally we have considered a constant value of μeff

and no detection smearing effects. Those rays are imagined to impinge on all of
the particles in their propagation path, and only the transmitted ones are then
projected onto a plane resulting in a landscape of penetration lengths for the
whole particle system. The X-ray trajectory was added up linearly over the result
of overlapping particles. Finally, the path length per particle was computed using
a mask that accounted for the particles spherical shape. For more details please
refer to [149].

Digital Fourier Analysis

Digital Fourier Analysis (DFA) or Differential Dynamic Alogorithm (DDA) [7,72]
is an analysis scheme applied to images that represent a density map of the studied
sample. It provides information on the spatio-temporal density fluctuations in the
spatial reciprocal space, obtaining information as in a static (SLS) and dynamic
light scattering (DLS) experiments. DFA is performed as follows. First, record a
series of N images denoted by i(x, tk), where x represents the position, tk=k�t,
�t = 1/FPS, with FPS the sampling rate, k ∈ N, k ≤ N . Resulting in the
maximum acquired time tN =N�t. Then, calculate the fluctuating signal as,

�i(x, t, τ) = i(x, t+ τ)− i(x, t) (163)

which accounts for the difference between two images separated by a delay time
τ=p�t; p ∈ N, and p ≤ N−1. This is followed by obtaining the power spectrum
of the fluctuating signal, which is calculated by a discrete Fourier transform. The
result is an image denoted by TRS(Q, t, τ),

TRS(Q, t, τ) = |F [�i(x, t, τ)] |2. (164)

where Q is the image wave vector. Its magnitude is discretized by Q = n�Q, with
�Q=2π/L, L is the image size and n the pixel number [7,54,75]. Special care has
to be taken while performing the numerical Fourier transform in order to avoid
spectral leakage, which occurs when image inhomogeneities are present in the
borders of the image. To overcome this, a careful window scheme should be applied
[74]. Finally, for signals that can be considered stationary, the signal statistics
and hence the power spectrum do not depend on the start time t. An average
over t is performed, obtaining the time averaged structure function D(Q, τ) [75],

D(Q, τ) = 〈TRS(Q, t, τ)〉t. (165)
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This is related to the real part of the intermediate scattering function (ISF),
f(Q, τ) via [7],

D(Q, τ) = A(Q) [1− f(Q, τ)] + B(Q) (166)

where the ISF captures the temporal density-density correlations in the spatial
Fourier plane. The term A(Q) describes the static power spectrum of the signal,
and it is mainly composed by three terms,

A(Q) ∼ T (Q)P (Q)S(Q). (167)

T (Q) takes into account the modulated transfer function of the imaging sys-
tem. The terms P (Q) and S(Q) are analogous to the form and structure factor
obtained from static light scattering, as they are the power spectrum of the indi-
vidual imaged object, and the Fourier transform of the spatial correlation among
the imaged objects. Finally, B(Q) is the power spectrum of the detection noise.

Numerically, A(Q) and B(Q) were estimated according to the following proce-
dure, the background term B(Q) was approximated from an average of all D(Q, τ)
determined at short delay times and large enough Q values that, due to the lim-
ited spatial resolution of the imaging set-up, they barely contain information of
the system but rather of the background [36, 50]. Additionally, we have assumed
B(Q) to be constant for all Q values. Thus,

B(Q) � B′(Q) = D(Q →Qmax, τ → 0). (168)

Having estimated B(Q), A(Q) was determined from the long-time decorrelation
plateau, as D(Q, τ →∞) = A(Q) + B(Q). Finally, the Intermediate scattering
function can be obtained via the following equation,

β(Q)f(Q, τ) =
D(Q, τ → ∞)−D(Q, τ)

D(Q, τ → ∞)− B′(Q)
, (169)

where β(Q) � 1 − [B(Q)−B′(Q)] /A(Q). The value of β(Q) reflects the signal
to noise ratio, and the accuracy of the estimation of B(Q). Hence, in order to
achieve β(Q)� 1, a high signal to noise ratio has to be met i.e. A(Q)�B(Q),
and B′(Q) � B(Q).

The expression for f(Q, τ) depends on the type of motion projected in the direc-
tion of the scattering wave vector Q. For a system that undergoes random motion
and a distribution of collective motion, f(Q, τ) takes the following (Sec.2.7):

f(Q, τ) = exp

[
−Q2Dτ−1

2
Q2δ2vτ

2

]
cos (Q〈v〉τ) (170)

where D is the diffusion coefficient from the random motion, 〈v〉 is the mean
directed velocity, and δv is the standard deviation of the velocity distribution
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from the directed motion. The corresponding characteristic times are given by
τD(Q) = 1/DQ2 for the diffusive time scale, τδv(Q) =

√
2/Qδv, and τ〈v〉(Q) =

1/Q〈v〉 for the velocity deviations and mean velocity characteristic times respec-
tively. Noting the Q scale dependence for the type of dynamics described, having
Q2 dependence for random motion as 1/Q2 ∼ L2 ∼ Dτ , and Q for directed mo-
tion, where 1/Q ∼ L ∼ 〈v〉τ . Hence, by using the Q dependence it is possible to
determine the nature of the motion. Furthermore, the Q range "selects" which
type of motion dominates or can be particularly determined.

In the following section, we tested X-DFA on synthetic radiographs from computer
simulations, where each term of Eq.(170) was calibrated. This was achieved by
changing the type of dynamics in each simulation series, having simulated mean
directed motion, directed motion with a distribution of velocities, random motion,
and a superposition of all of the above.
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4.6.2 X-DFA on Syntetic Radiographs

In the following, we show the analysis of four series of 10, 000 synthetic radio-
graphs, each of size 512×512 pixels. The synthetic radiographs were image plane
projections from our idealized model of the beam hardening of X-rays. The hard-
ening arises from the wavelength-dependent attenuation of passing X-rays through
particle configurations. The particle configurations consisted of three-dimensional
particle coordinates, each having a particle diameter of 19 pixels.
The four series of radiographs consisted of different types of particle dynamics,
they were fixed through the equation of motion from each simulated particle.
Our results are shown in Fig.36 and they are organized as follows, each row of
the main figure summarizes the information per type of dynamics. We have simu-
lated, mean directed motion (A), directed motion with a distribution of velocities
(B), random motion (C), and a combination of all of the above (D). Furthermore,
the first column contains the information regarding the simulation properties, and
for corroboration purposes results from PIV. The second column contains the ob-
tained f(Q, τ) for different wave vectors Q from our X-DFA analysis. Finally,
the extracted characteristic times from fitting f(Q, τ) with the corresponding an-
alytical model is shown in column three. The table of Fig.36 shows the analytical
model of f(Q, τ) and its characteristic times τc(Q) describing each of the men-
tioned type of dynamics.

As first example, we show results of directed motion in Fig.36A. This type of mo-
tion is defined for systems in which all particles move with an identical constant
velocity v. In the following, we fixed each particle velocity along the vertical axis
of the image to be 〈v〉=2.00 px/frame. The imposed single velocity is modeled
as a delta distribution, and it is shown as the red line in Fig.36A-1.
In order to verify the imposed velocity in the resulting radiographs, we performed
PIV analysis. It was made using a software package known as PIVlab [154]. We se-
lected an image separation of 5 frames, this translates into a 10 pixel displacement,
ensuring enough particle displacement in order to be correctly detected [155,156].
The gray histogram in Fig.36A-1 corresponds to a frequency count from the re-
sults coming from all of the probed interrogation windows and images analyzed
with PIV, it is hardly visible as it superimposes to the one from the simulation. In
addition, a small region of interest from the original synthetic radiographs includ-
ing the arrows from the PIV analysis is shown as an inset in Fig.36A-1. From the
PIV analysis we obtained an average mean velocity of 1.99px/frame, matching
perfectly with the one introduced in the computer simulation. Hence, the input
information in the simulation is properly projected onto the synthetic radiographs
and measured by PIV.
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We proceeded to perform X-DFA and obtained the intermediate scattering func-
tions f(Q, τ) for different wave vectors Q. As we are interested in the directed
motion dynamics, we selected and azimuthally averaged Q values parallel to 〈v〉
±5o, leading to a smearing of at most 2%. These results are presented in Fig.36A-
2, where the f(Q, τ) from all of the wave vectors show an oscillatory behaviour.
The analytical expression of f(Q, τ) is given by the cosine function written in the
(A) entry of the table in Fig.36. Moreover, all f(Q, τ) overlap onto a master curve
in a τQ scale, this is expected for particles undergoing ballistic motion. Finally,
we extracted the characteristic times τ〈v〉(Q) by performing a numerical fit of the
analytical expression to each of the obtained data. Results are shown in log-log
scale in Fig.36A-3, the value of −1 from the slope corroborates the Q scaling,
and from the intercept the value 〈v〉=1.99 px/frame was obtained. The obtained
value agrees with the PIV and the simulated values, thus validating the X-DFA
analysis for extracting information from a mean directed motion.

We continue by showing our second example of dynamics, a directed motion with
a distribution of velocities (Note that although we consider a distribution of ve-
locities, the spheres are still assumed to all have the same size). The summary of
these results are shown in row (B) of Fig.36. We chose a normal distribution of
velocities and randomly assigned them to each particle in the simulation, having
fixed the mean velocity 〈v〉=2.00px/frame, and the standard deviation of the dis-
tribution δv =0.4px/frame. This is represented as the red line in Fig.36B-1. As
before, we proceeded to perform a PIV analysis of our synthetic radiographs. An
illustration of the velocity map in a small ROI is shown as an inset in Fig.36B-1,
along with the corresponding frequency count from all of the interrogation win-
dows and images analyzed (shown in grey).
We have recovered the input value from the computer simulation, obtaining
〈v〉 = 1.98px/frame. However, the width of the velocity distribution was not
correctly obtained. This can be explained by considering how the dynamical in-
formation in the image was constructed and determined. As we have randomly
assigned to each individual particle a velocity, each region of interest represents
a small sampling region from the overall distribution. The PIV analysis obtains
the mean displacement per region. Hence, the frequency count from PIV only
represents a spatially smoothed mean displacement, and does not contain the full
range of relative motion [155].
It is worth mentioning that, in order to be able to obtain the full three dimensional
velocity distributions using PIV, the images should be obtained using a different
type of image configuration, such as the one from light sheet PIV or stereoscopic
PIV [155]. Furthermore, ideally, the particle concentration and optical resolution
should be such that each interrogation window of the PIV analysis contains single-
particle information, as opposed to the ’extended’ and projected 3D information
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of the radiographs. Nevertheless, in real flow experiments or sedimentation exper-
iments, the velocity distribution can be spatially heterogeneous [138, 145]. Thus,
a PIV analysis can yield the fluctuations from a velocity distribution per analyzed
interrogation window.
To continue the analysis, we performed X-DFA using the same criteria as be-
fore. The obtained f(Q, τ) are shown in Fig.36B-2. Here, two features from the
previous case are present: the first one, is the oscillatory behaviour of f(Q, τ).
The second one, is the collapse to a master curve for all of the wave vectors in
the ballistic τQ scale. In contrast, the amplitude of the oscillation is found to
be damped. This is characterized by the exponential decay expressed in the (B)
entry of the lower table of Fig.36, as it is the result from the relative to the mean
motion from the particle velocity distribution4.4. Moreover, we numerically fitted
the analytical expression and obtained the two corresponding characteristic times
(plotted in Fig.36B-3). These results confirm the ballistic Q scaling by having a
−1 slope for both characteristic times, and with the intercept value we estimated
〈v〉=1.99px/frame, δv=0.39px/frame. The obtained values are in perfect match
with the input ones from the computer simulation, proving even further the va-
lidity of X-DFA to capture velocity deviations. In addition, it also illustrates the
complementary information from a Fourier analysis to a real space correlation one
like PIV. As it is able to easily describe not only the average mean motion, but
also the relative motion to it.

Random motion is the third example of particle dynamics that we show. For our
context we considered it exactly as colloidal Brownian motion or free diffusion.
The summary of these results are shown in row (C) of Fig.36. In our case, the
system is freely diffusive with a diffusion coefficient D=0.781px2/frame (red line
Fig.36C-1). This type of particle dynamics is not usually quantified via PIV, as
it rather tends to be included in the PIV description to estimate its contribution
to the error of detecting directed motion [155]. For our purposes, we computed
it only to illustrate the randomness of the motion within a small ROI from the
synthetic radiographs (inset Fig.36C-1). Random motion is well known to be
studied using DFA, as it was the first type of motion studied using Differential
Dynamic Microscopy (DDM), and other type of techniques from Digital Fourier
Microscopy (DFM) [7]. This type of particle dynamics has a τQ2 scaling as the
main feature of f(Q, τ), leading to a collapse onto a master curve for all of the
Q values . It can be seen in our results of X-DFA in Fig.36C-2. In addition,
as the motion is homogeneous and isotropic, a full azimuthal averaging in the
power spectra can be performed to improve statistics. The theoretical expression
of f(Q, τ) for random motion is an exponential decay, having a Q2 dependence on
the characteristic decay time. The analytical expression, and the characteristic
time is shown in the panel (C) of the lower table of Fig.36.
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Fig. 36: Results obtained from the four series of synthetic radiographs, they consisted of different types of particle
dynamics. The information per type of dynamics is summarized in each row of the main figure. Row
(A) contains results from homogeneous directed motion, (B) from a directed motion with a distribution
of velocities, (C) from random motion, and (D) from a combination of all of the above. Furthermore,
column (1) contains the information regarding the simulation properties and a region of interest from our
synthetic radiographs. For corroboration purposes, results from PIV are included. Column (2) shows
the obtained f(Q, τ) for different wave vectors Q from our X-DFA analysis. Finally, the extracted
characteristic times from fitting f(Q, τ) with the corresponding analytical model is shown in column
(3). The lower table shows the analytical model of f(Q, τ) that describes each of the mentioned types
of dynamics, along with its corresponding characteristic times τc(Q).
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We proceeded to fit all of the computed f(Q, τ) with the analytical model, obtain-
ing the characteristic Brownian times τB(Q). The results are shown in Fig.36C-3,
and for this case, they show a slope of −2. The latter corroborates the diffu-
sive scaling of the dynamics and from the intercept of Fig.36C-3 we obtained
D = 0.77px2/frame. The value is in very good agreement with the fixed value
from the simulation, having a relative deviation of 1.5%. These results corrobo-
rate the validity of extracting random motion information via X-DFA, widening
the applicability of the analysis to extract dynamical information of directed and
random motion.

To conclude, we show the results from our fourth example. It is composed of a
superposition of all of the above particle dynamics, i.e. a directed motion with
a velocity distribution and a random motion. The random motion was described
by a diffusion coefficient of D�0.19px2/frame. This resulted in a Péclet number
Pe= 〈v〉σ/D= 200. Systems with this Péclet number are mainly driven by the
directed motion, while still having a very small contribution from the random
motion [118], making this the perfect testing conditions to check the capabilities
of extracting the dynamical information using X-DFA.
We proceeded the same way as before, thus the summary of the results are shown
in row (D) of Fig.36. Here, the PIV analysis gives the same result as the distribu-
tion of directed motion from row (B) because the effect of the Brownian motion is
small as quantified by Pe=200. However, there are some differences for X-DFA
(Fig.36D-2), a small shift can be appreciated in the first maximum of the oscilla-
tion at the overlapped f(Q, τ) (τQ=0.3). This, is due to the additional damping
term due to the random motion, where the complete theoretical description is
composed of three terms: the first two are two damping terms, the random, and
the relative to the mean motion from the velocity distribution. The third one is
the oscillatory term from the mean directive motion. The full expression, and the
corresponding characteristic times are written in panel (D) of the lower table from
Fig.36. Following the same approach, we fitted the analytical expression to the
extracted f(Q, τ), obtaining the three correspondent characteristic times (shown
in Fig.36D-3). These have the corresponding slope according to the type of Q
scaling from the nature of the dynamics, and from the intercept we estimated
D=0.19px2/frame, 〈v〉=1.99px/frame, and δv=0.40px/frame respectively.

The very good agreement obtained by the X-DFA results and the simulated values
confirms the conceptual framework of the analysis method, being able to extract
complementary information to PIV, even when mixed dynamics are present, such
as directed motion and random. Making X-DFA a powerful analysis scheme for
obtaining information from X-ray radiographs.
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Last but not least, we want to stress that the previous description was only about
the dynamical information contained in the series of radiographs. In addition,
static information can also be obtained as it is contained in the A(Q) term of
Eq.(167) and in analogy to light scattering, observables like the particle size and
particle size distribution can be extracted. This is valid if the expression of the
power spectra is known. For radiographs, the analytical expression of the power
spectrum of the absorbance image of a sphere leads to the same expression as
the form factor of a sphere described by the Raleigh-Gans-Debye (RGD) descrip-
tion [37]. To illustrate it, we present in Fig.37 the comparison of a computed
RGD form factor for monodisperse spheres of size 〈σ〉 = 19px, with the A(Q)
extracted from all our four different series of synthetic radiographs. The results
show a perfect agreement, thus validating the use of the RGD description as an
analogous for the power spectrum of the absorbance image of a sphere. This result
wideness the output information from X-DFA, making it capable to characterize
spherical granulates average size and estimate the sample polydispersity.

Fig. 37: Comparison of the RGD form factor of 〈σ〉=19px spherical particle (red dashed line), with the extracted
A(Q) from all of the different simulation examples (symbols).

In the following section we exploited the capabilities of X-DFA in two experimental
conditions. We have used it to study sedimentation of granular suspensions and
to characterize the fluidization of a liquid granular bed.
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X-DFA on Sedimentation Experiments

The experiments consisted in studying the sedimentation of a suspension of spher-
ical glass granulates. The granulates start to sediment after the cessation of the
fluidization. We controlled the starting fluidization state by selecting the pump
speed in the fluidized bed. The fluidization led to an expanded initial state of
the fluidized bed, where bigger pump rates translated into larger expansions, thus
smaller particle volume fractions. The measurement protocol consisted in prepar-
ing a fluidized phase to homogenize the system, then stopping the fluidization and
starting the image acquisition. An example of the acquired images can be seen in
the middle panel of Fig.35. The field of view of the images was bigger than the
cuvette containing the granular suspension, thus a small ROI of 900×300 pixels
of the acquired images was selected for analysis. The width was chosen to cover
the majority of the cuvette width neglecting the borders to only observe bulk sed-
imentation. The height was chosen large enough to capture as large as possible
a sedimentation column passing through the selected region, thus increasing the
time of the experiment.

To illustrate our results, we show the obtained data from the cessetaion of flu-
idization of with a pump rate of 750μl. An example of the selected ROI is in the
upper-left panel of Fig.38. The image analysis was performed as in the synthetic
radiographs section. We analyzed the selected ROI using PIV and X-DFA. The
PIV analysis was performed following the same protocol as before, selecting a tem-
poral separation of the images of 0.72 s. Contrary to the simulation results, some
velocity differences over the ROI can be observed in the velocity map, namely
slight changes in thr orientation of some of the arrows in the velocity map (green
arrows Fig.38). Hence, we conclude that the velocity distribution is spatially
heterogeneous as previously seen in experiments [148]. This can additionally be
quantified.
To quantify the velocity distribution, we computed a frequency count over the
projected vertical velocity for all interrogation windows and images, and obtained
an estimate of the velocity distribution P(v) by normalizing the frequency count.
The result is shown in grey in Fig.38. Furthermore, suggested by the shape of
the distribution, we fitted a normal distribution and obtained an average veloc-
ity 〈v〉=130.6μm/s and velocity fluctuations captured by the standard deviation
δv=12.5μm/s.

For the X-DFA analysis, we divided the ROI into three subsections of 300×
300 pixles, as it is convenient to use square images for the numerical Fourier
transform (FFT). We processed them individually and averaged the 2-D struc-
ture functions. The result is a spatially averaged D(Q, τ). Then, we extracted
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Fig. 38: Summary of the obtained results using PIV and X-DFA for the cessation of fluidization with a pump
rate of 750μl. The upper-left panel shows an example of an analyzed ROI that covers the majority of the
cuvette’s width (900×300 pixels). The slightly different orientations of the arrows indicate a spatially
heterogeneous velocity distribution captured by the PIV analysis. The upper right panel shows the
quantification of the velocity distribution, obtained by the normalized frequency counts of the vertical
components of all obtained velocities from interrogation windows and images. The lower-left panel
shows the spatially averaged intermediate scattering functions obtained from X-DFA. The presented Q
range covers the majority of the length scales contained in the image. The lower-right panel shows the
extracted characteristic times from fitting the analytical model of f(Q, τ) for directed motion with a
distribution of velocities.

the corresponding azimuthally averaged f(Q, τ), for Q oriented along the vertical
axis ±5o. The results are shown in τQ scale in the lower-left panel from Fig.38,
showing a collapse of all the extracted f(Q, τ) onto a master curve, as expected
for directed motion dynamics.
Finally, we extracted the characteristic times τ〈v〉(Q), τδv(Q) by fitting the corre-
sponding analytical expression of f(Q, τ) (panel B of the table in Fig.36). These
are shown as open symbols in the lower-right panel of Fig.(38). The dashed lines
indicate linear regressions to the characteristic times, both with a slope of -1, and
from the intercept 〈v〉=132.3μm/s and δv = 15.6μm/s were obtained. The re-
sults led to a very good agreement between PIV and X-DFA, hence validating rhis
analysis method and confirming the finding in the synthetic radiographs section.

We also performed experiments for other volume fractions prepared by applying
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different pump speeds. Those experiments were subsequently analyzed by PIV
and X-DFA as described above. The obtained 〈v〉 and δv for the different explored
φ are shown in Fig.39 as open symbols and error bars respectively.

Fig. 39: Obtained mean sedimentation velocity 〈v〉 (open symbols) and δv represented as error bars for the
different explored volume fractions φ or pump speeds using X-DFA (squares) and PIV (circles) for the
cessation of fluidization experiments. The dashed line represents the calculation of the Richardson-Zaki
expression without any free parameters.

The mean settling velocity 〈v〉 is seen to decrease as a function of φ. This trend is
in perfect agreement with the Richardson and Zaki expression [157, 158] without
any free parameters (dashed line in Fig.39). The expression 〈v〉(φ)= vs(1 − φ)n

was obtained by Richardson and Zaki to describe the settling velocity of granulate
suspensions with different volume fractions. In this expression, vs=�ρgσ2/18η
is the Stokes settling velocity, �ρ = ρp−ρs the density difference between the
particles and the solvent, η the kinematic viscosity of the solvent, and σ the par-
ticle diameter. The expression of the exponent n was found to be n=4.35Re−0.03

with the Reynolds number Re=ρsvsσ/η. The values of our experimental system
result in n∼4.74, Re∼0.0556 and vs∼2264μm/s. We have used ρp=2.40g/ml,
ρs=1.14g/ml at 298K and from the analysis of A(Q), the value σ=153μm was
obtained (left panel Fig.40). The very good agreement between the Richardson-
Zaki expression with the PIV and X-DFA proves the validity of our experimental
procedure, thus enabling us to characterize the sedimentation of granulars by two
different analysis methods applied to the X-Ray radiographs in the real and in the
Fourier space. In addition, δv has been determined. It is larger for the smallest
volume fraction (φ=0.45) and decreases as the volume fraction increases. This
can be explained by the smaller particle density which provides more available
space for fluctuations to occur.

Complementary to PIV, X-DFA allow us to extract static properties of the sam-
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ple. These are form factor P(Q), and structure factor S(Q). We obtained them by
the analysis of A(Q) using Eq.(167). We fitted the RGD polydisperse expression
to match the large Q (Q > 0.45μm−1) behaviour of A(Q). This resulted in an es-
timate particle size 〈σ〉≈153μm and coefficient of variation CVσ=δσ/〈σ〉∼0.13.
These results are in agreement with the manufacturers specification.

Fig. 40: X-DFA Analysis of the static properties. The left panel shows A(Q) as a function of the scattering
wave vector Q for the different volume fractions (φ). The values of the mean particle size (〈σ〉) and the
coefficient of variation (CVσ=δσ/〈σ〉) were obtained from fitting the polydisperse RGD to the large Q
behaviour of A(Q) (Q > 0.45μm−1). The right panel shows the extracted structure factor (S(Q)) by
the deconvolution of A(Q). The different volume fractions are indicated.

We also obtained S(Q) by deconvolving P (Q) from A(Q) (shown in the right
panel of Fig.40). The overall behaviour of S(Q) follows the same trend as ex-
pected for concentrated systems. It shows a peak at Q∼0.42μm−1 for φ=0.45,
which translates into a mean inter-particle distance 〈d〉=2π/Q ∼ 150μm. That
this values is slightly smaller than 〈σ〉 and it is characteristic of polydisperse sys-
tems. Moreover, as the volume fraction increases, the position of the peak shifts
to slightly large Q and the amplitude increases. Hence, the overall system be-
comes more tightly packed as the volume fraction increases, as expected.
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X-DFA on Fluidization Experiments

We furthermore exploited X-DFA to characterize the random dynamics of a flu-
idized state. For this set of experiments, we recorded two series of images that
covered 5 minutes (1500μl/min) and 2.5 minutes (2000μl/min) of random flu-
idization correspondingly. We selected ROIs of 512 × 512 pixels that were cen-
tered inside of the cuvette (as illustrated in Fig.35). To illustrate the dynamics,
we performed PIV to obtain the velocity map. These are shown for reduced ROIs
(256×256 pixels) in the left column of Fig.41, the arrow length represents the
obtained velocity. Showing higher velocities for the 2000μl/min pump speed.

Fig. 41: Random motion during fluidization achieved by a pump speed of 2000μl/min (upper row) and
1500μl/min (lower row). The images in the left column represent a quarter of the original acquired
images along with the velocity map that was computed using PIV. The right column shows the inter-
mediate scattering function f(Q, τ) obtained by means of X-DFA, showing a collapse onto a master
curve for all of the extracted wave vectors Q in the τQ scale.

Supported by the randomness of the velocity map, the X-DFA anylsis was per-
formed as in the case of the random motion in the synthetic radiographs. We
performed a full azimuthal average of D(Q, τ) and extracted the corresponding
f(Q, τ). All of the extracted f(Q, τ) scale with a τQ scale for both pump speeds.
This scaling suggest that the dynamics are dominated by ballistic motion. The re-
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sults are shown in the right column of Fig.41. Our results show similar behaviour
as the ones obtained with sound scattering for systems running under similar con-
ditions [135]. We characterized the sample dynamics by fitting to the data the
intermediate scattering function given by Eq.(170) and setting the the average
velocity to zero. This was used as it takes into account the ballistic term from
the velocity fluctuations (δ2v) and a possible diffusion term (D). No significant
contribution of the diffusion term was found, as the data was scattered without
the characteristic Q2 scaling. Hence, we concluded that the only relevant term
from Eq.(170) to describe the sample dynamics from our measurements is the
exponential decay due to the velocity fluctuations.

The extracted characteristic times from the velocity fluctuations τδv(Q) are shown
in Fig.42. For both experimental configurations a slope of -1 was found in log-log
representation, thus validating the ballistic characteristics of the motion in the
fluidized bed. We extracted the velocity fluctuation obtaining δv =108μm/s for
the 1500μl/min pump speed and δv = 233μm/s for the 2000μl/min. This is
in agreement with the velocity map obtained with PIV, showing higher velocity
fluctuations for the higher pump speed.

Fig. 42: Characteristic times τδv(Q) obtained by fitting the exponential decay term of the velocity fluctuations
(δv) from Eq.(170) to the extracted intermediate scattering function f(Q, τ). The dash lines represent
linear fits to τδv(Q). The slope of -1 indicates ballistic dynamics, and from the intercept we estimated
the velocity fluctuations (given in the legend).

Finally, we analyzed the statical properties contained in A(Q) for both pump
speeds (Fig.43). We performed it in a similar manner as the sedimentation ex-
periments, using the polydisperse RGD expression for the form factor to match
the large Q behavior of A(Q). We extracted very similar values as before,
〈σ〉= 153μm and CVσ = δσ/〈σ〉= 0.13. Furthermore, the deviations at smaller
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Q values are due to structure present in the sample, they are described by S(Q)
and obtained by deconvolution of A(Q) (shown in the right panel of Fig.43). The
results of S(Q) show a similar peak position as the sedimentation case. But in
addition, they display a higher value for S(Q→0). By recalling the relationship
between the structure factor and the isothermal compresibility [15], we assume
that this indicates the different compressibility state of the systems, showing a
looser state for the fluidized experiments and a more compacted state for the
sedimentation experiments (right panel Fig.41).

Fig. 43: X-DFA Analysis of the static properties. The left panel shows A(Q) as a function of the scattering
wave vector and the mean particle size (〈σ〉) and coefficient of variation (CVσ=δσ/〈σ〉) obtained from
fitting the polydisperse RGD to the large Q behaviour of A(Q) (Q> 0.45μm−1) to the two different
fluidization experiments. The deviations at smaller Q values are due to structure present in the sample,
they are described by S(Q) and are obtained by deconvolution of A(Q). The right panel shows the
extracted structure factors (S(Q)) for both fluidized experiments.
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4.7 Dynamics of sheared particles: Rheo-DFM

Rheology is the branch of physics that studies the flow of matter subjected to
a macroscopic deformation [10]. Depending on its response, many mechanical
properties such as viscosity, store (G’) or loss (G”) modulus, and other transient
properties (relaxation, retardation)are defined [9]. In general, for soft systems,
the dynamical viscoelastic response i.e. the system’s ability to store or lose en-
ergy upun deformation, can be related to the system’s micro-structure and the
interaction among the constituents of the system [9,159].

Macroscopic rheology of soft systems is mainly performed by rotational rheome-
ters or shear cells [9]. These are instruments that enclose the system under a
certain geometry to apply deformations using a controlled scheme. Some ex-
amples of geometries are parallel plates or cone-plate configurations, while for
controlled schemes, the most common ones are constant and/or oscillatory defor-
mation. Furthermore, microscopic information of soft systems is mainly studied
via quantitative microscopy using particle tracking tools [11], or via scattering
experiments [14]. Hence, the combination of macroscopic and microscopic experi-
mental techniques becomes very useful for linking both properties of soft systems,
enabling to study the internal microscopic structure while simultaneously under-
going through a macroscopic deformation.

Another experimental approach to study the dynamics of microscopic structures
is Digital Fourier Microscopy (DFM) [7]. It is a framework based in combining
optical microscopy images with a differential Fourier analysis. It allows to quan-
tify density fluctuations in the spatial Fourier space, obtaining similar information
as in Static Light Scattering (SLS) and Dynamic light scattering (DLS) experi-
ments. The main advantage of DFM compared to particle tracking techniques is
its computational simplicity for quantifying the dynamical information. And, in
contrast to the relative dynamical information supplied by conventional far field
light scattering, DFM provides information of the collective and relative motion.
Hence, DFM is a suitable candidate for characterizing the imposed motion from a
rheology experiment. In addition, when DFM is performed by means of confocal
microscopy, the overall sample volume can be scanned. Thus, it is possible to
quantify the imposed effect from a rheology experiment among different sections
or layers of the system. The combination of both techniques, i.e. Rheology and
Digital Fourier Microscopy, will be denoted as Rheo-DFM.

The purpose of this section is to illustrate the preliminary results of Rheo-DFM.
It was employed to characterize the effect of a constant deformation made by a
plate-plate shear cell to a colloidal suspension. It allowed us to quantifying the
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imposed velocity profile across the sample gap, and from these results the shear
rate (γ̇) was also obtained.

The shear cell consists of two parallel plates (top and bottom) separated by a gap
size of about 70μm. The plates have circular windows on each surface that are
covered by glued coverslips. Thus, it is possible to image the sample contained
between the plates. The motion of the plates is anti-parallel, this is achieved by
precise displacements of the bottom plate by the push of a piezo actuator (PI
Instruments, model P-841.6B). The motion is transferred to the upper plate by a
lever with fixable height, its position allows to adjust the height of the zero veloc-
ity plane in the sample. In order to reverse the motion, two springs are attached
at the opposite side of the upper plate. A further detailed description of the shear
cell design and performance can be found in [106,160–163].

The shear cell was coupled to a Nikon Ti-U inverted microscope, and the images
were acquired using a Nikon A1R-MP confocal scanning unit. We have used a
solid state laser (λ=561nm) as exitation source, and as collecting optics a 40X
Nikon Plan Fluor microscope objective (NA=0.75). The confocal scanning unit
was configured to record images at a rate of 60FPS. Each image had an optical
depth of 4μm and consisted of 256× 256 pixels, corresponding to a sample area
of 79.4×79.4μm2. With these scanning configurations, we acquired images for 10
sections separated by 5μm, probing a total height of 50μm. Finally, the constant
deformation of the shear cell was controlled by supplying a 5V triangle signal to
the piezo actuator controller. We set the frequency to be 0.05Hz, ensuring enough
measuring time for forward and backward motion.

The studied sample consisted of a suspension of crossed-linked poly(methyl methacry-
late) (PMMA) particles of diameter 1.1μm. They were fluorescently labelled with
monomerized methyl methacrylate rhodamine B, and were in-house synthesized
based on previously established methods [107]. The particles were suspended in a
(50:50)% V/V acrylic double matching liquid (Cargille Laboratories CAT: 19577)
and Bromocycloheptane (97% Alfa Aesar CAT:B23110). We fixed the particle
volume fraction to φ = 0.2, this allowed us to have a enough signal in each of the
acquired sections while avoiding any shear thickening effects due to concentra-
tion effects [9]. For the solvent mixture, we assumed a linear dependence of the
refractive indexes and viscosities, leading us to estimate a theoretical refractive
index of 1.499, matching the one of PMMA, and a theoretical viscosity value if
150mPa·s, this value allow us to safely neglect any contribution from Brownian
motion. Hence, only shear-imposed dynamics were assumed to be sampled.
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The experimental procedure was as follows, we loaded the particle suspension
into the shear cell, making sure that no air bubbles were left inside. Then, the
shear cell was turned on by using the same triangle shape signal, and it was left
to run for the rest of the full experimental campaign. We waited for a period of
20 minutes in order to let the system stabilize, and by visual inspection with the
confocal microscope, we located the stagnation point (zero velocity plane). This
plane was labeled as zero height. We then focused the microscope at a distance of
2μm above the bottom plate (−27μm from the stagnation point) and proceeded
to record a series of 14, 425 images. This number of images allowed us to record
13 full shear cycles. After completion, each of the next heights were focused and
measured using the same number of images.

Prior to the DFM data analysis, we pre-processed each of the image series in order
to obtain the starting and the ending of the effective image series that contained
a constant displacement motion. This was achieved in a similar fashion as in
Particle Image Velocimetry (PIV) [154–156], by tracking the displacement peak
of the image correlation between frames separated 5 frames. A representation of
the obtained displacement for different heights within the sample is shown in Fig.
44. It is shown for two shear cycles out of the 13 measured. The gray zone depicts
the effective image series where only directional motion was found. Deviations of
constant displacement are due to inertial effects coming from the flow reversibility
imposed by the shear cell along the sample height.

Fig. 44: Representation of the obtained displacements for different heights within the sample gap of the plate-
plate shear cell geometry. Shown for two shear cycles out of the 13 measured. The gray zone depicts
the effective image series where only directional motion was found.
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Once the effective image series was found, we proceeded to analyze it using the
DFM framework, starting by obtaining the fluctuating signal

�i(x, t, τ) = i(x, t+ τ)− i(x, t) (171)

which accounts for the difference between two images (i(x, t)) separated by a
delay time τ = m�t, where m ∈ N, Δt = 1/FPS. Then, the power spectrum of
the fluctuating signal is calculated and averaged over different starting times (t),
leading to the time averaged structure function

D(Q, τ) = 〈|F [�i(x, t, τ)] |2〉t. (172)

Where Q is the scattering vector, and it is discretized as Q = nΔQ, having
ΔQ= 2π/L, where L is the image size and n the pixel number [7, 54]. Special
care has to be taken while performing the numerical Fourier transform in order to
avoid spectral leakage, it occurs when image inhomogeneities are present in the
borders of the image. This can be overcome by applying a window scheme [74].
The structure function D(Q, τ) is related to the intermediate scattering function
f(Q, τ) via,

D(Q, τ) = A(Q) [1− f(Q, τ)] + B(Q). (173)

The term A(Q) describes the static power spectrum of the signal, it is mainly
composed by three terms, as

A(Q) ∼ T (Q)P (Q)S(Q). (174)

T (Q) takes into account the modulated transfer function of the imaging system,
P (Q) and S(Q) are analogous to the Form and Structure factor obtained from
Static light scattering, as they are the power spectrum of the individual imaged
object, and the Fourier transform of the spatial correlation among the imaged
objects. Finally, B(Q) is the power spectrum of the detection noise.

Numerically, A(Q) and B(Q) were estimated according to the following proce-
dure, the background term B(Q) was approximated from an average of all D(Q, τ)
determined at short delay times and large enough Q values that, due to the lim-
ited spatial resolution of the imaging set-up, they barely contain information of
the system but rather of the background [36, 50]. Additionally, we have assumed
B(Q) to be constant for all Q values. Thus,

B(Q) � B′(Q) = D(Q →Qmax, τ → 0). (175)

Having estimated B(Q), A(Q) was determined from the long-time decorrelation
plateau, as D(Q, τ →∞) = A(Q) + B(Q). Finally, the Intermediate scattering
function can be obtained via the following equation,

β(Q)f(Q, τ) =
D(Q, τ → ∞)−D(Q, τ)

D(Q, τ → ∞)− B′(Q)
, (176)
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where β(Q) � 1 − [B(Q)−B′(Q)] /A(Q). The value of β(Q) reflects the signal
to noise ratio, and the accuracy of the estimation of B(Q). Hence, in order to
achieve β(Q)� 1, a high signal to noise ratio has to be met i.e. A(Q)�B(Q),
and B′(Q) � B(Q).

The expression for f(Q, τ) depends on the type of the motion projected in the
direction of the scattering wave vector Q. For our case, we assume Brownian mo-
tion to be neglected, and a narrow distribution of directed motion in the observed
region is an effect of the imposed shear. Thus, f(Q, τ) takes the following form:

f(Q, τ) = exp

[
−1

2
Q2δ2vτ

2

]
cos (Q〈v〉τ) (177)

where 〈v〉 is the mean directed velocity, and δv is the standard deviation of the
velocity distribution of the directed motion. The corresponding characteristic
times are given by τδv(Q) =

√
2/Qδv, and τv(Q) = 1/Q〈v〉. Noting the Q scale

dependence for the type of dynamics described, having Q for directed motion, as
the displacement is proportional to time i.e. 1/Q ∼ L ∼ vτ .

We tested the validity of our assumption over the imposed velocity distribution in
the imaged region and the analytical expression of f(Q, τ) by computing Particle
Image Velocimetry (PIV) over the effective image series [154]. An illustration of
the obtained data can be seen in Fig.(45), the data corresponds to the acquired im-
ages for height 7μm above the bottom plate (−18μm from the stagnation point).
The inset of the left panel of Fig.(45) shows a region of interest of one of the
acquired images, along with the obtained velocity map from PIV (arrows). The
slight different orientations of the arrows indicates the existence of a velocity dis-
tribution over the sampled image, this arises from the spatially heterogeneous
velocity map imposed by the flow from the sheared deformation.

The velocity distribution P(v) was estimated in the flow direction (horizontal
axis) by normalizing a frequency count. It was made over the different veloc-
ity maps, taking into account all of the different starting times with the same
temporal spacing between frames (∼0.08s) including the total 13 sheared cycles.
Moreover, a careful selection of the PIV parameters was done in order to reduce
typical PIV artifacts [155,156].

Our results are presented in the left panel of Fig.(45). The shape of P(v) suggests
that can be analytically described by a Gaussian distribution, being corroborated
by a Gaussian fit (red line). The fit led to an estimation of the mean velocity
of 〈v〉= 6.74μm/s and standard deviation of the distribution of δv = 0.65μm/s.
These results prove our original assumption of the shape of the velocity distribu-
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tion, thus validating Eq.(177) as the analytical expression of f(Q, τ) for describing
these type of particle dynamics.

Fig. 45: Illustration of the obtained information from the acquired images at height 7μm above the bottom
plate (−18μm from the stagnation point). The main figure from the left panel illustrates the velocity
distribution P(v) obtained from a PIV analysis, the inset shows an example of the obtained velocity map
over a small region of interest. The middle panel shows our estimation of f(Q, τ) by the application of
the DFM framework. All of the obtained f(Q, τ) shows an oscillatory plus a damping term, suggested by
Eq.(177). Furthermore, all of them collapse onto a master curve when plotted in τQ scale, as expected
for particles undergoing ballistic motion. The right panel shows a log-log representation of the extracted
τv(Q), and τδv(Q) by fitting the corresponding analytical expression. In this representation we obtained
the slope of -1. It represents the ballistic Q scale, and from the intercept, v and δv were obtained.

We proceeded to apply the DFM framework to estimate f(Q, τ). It was computed
from the azimuthal average of D(Q, τ) for Q oriented parallel in the direction of
the flow ±5o. In addition, D(Q, τ) was the result of all of the 13 sheared cycles.
Our results are illustrated in the middle panel of Fig.(45), and are shown for a Q
range that covers the majority of the sampled wavelengths within an image (as
indicated). All of the obtained f(Q, τ) collapse onto a master curve when plotted
in τQ scale, as expected for particles undergoing ballistic motion. Moreover, an
oscillatory with a damping behaviour can be seen from all of the obtained func-
tions, suggesting that Eq.(177) can be used to extract the velocity distribution
properties.

We continued our analysis by obtaining the characteristic times τv(Q), and τδv(Q).
This was achieved by fitting f(Q, τ) with the expression given by Eq.(177). Our
results are shown in a log-log scale in the right panel of Fig.(45). In this rep-
resentation, both characteristic times have a slope of -1, indicating the ballistic
Q scaling. Furthermore, by the intercept value obtained from a linear regression
(dashed lines), the values of 〈v〉=6.92μm/s and δv =0.58μm/s were estimated.
These results are in very good agreement with the previously shown PIV results,
thus proving the validity of the usage of Rheo-DFM by means of the analytical
expression of f(Q, τ).
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Finally, we applied the DFM framework to obtain 〈v〉 and δv for all of the mea-

Fig. 46: Velocity profile characterized by means of Rheo-DFM. The dashed line represents a linear

sured heights (z). Our results are shown in Fig.(46), where the error bar of the
velocity represents δv and the error bar of z corresponds to plus minus half of the
optical thickness. As expected from a plate-plate geometry, the velocity profile
along the plates is linear. Moreover, by applying a linear regression taking into
account the deviations from both axes [164], we obtained the value of the shear
rate γ̇=0.36 s−1.
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The following section summarizes the main results of the research presented in
this thesis: Optimized algorithms for DFM (Sec.4.1), Effect of moderate multi-
ple scattering in heterodyne near field scattering (Sec.4.2), Microliter viscome-
try (Sec.4.3), Velocity deviations from sedimentation of dilute systems (Sec.4.4),
From colloid to grain, a dynamic description of sedimentation in dilute systems
(Sec.4.5), Digital Fourier Analysis of X-Ray radiographs from granular suspen-
sions (Sec.4.6), and Dynamics of sheared particles: Rheo-DFM (Sec.4.7).

In this thesis, we optimized the DFM analysis scheme and showed a variety of
applications of DFM to study the static and dynamical properties of colloidal and
granular suspensions. Moreover, we presented different optimized algorithms that
decreased the computational time to extract reliable information. Furthermore,
we extended the theoretical framework of heterodyne near field scattering (HNFS)
by including the effects of moderate multiple scattering, allowing us to define a
limit of applicability of the techniques for moderately turbid suspensions. Ad-
ditionally, we have used DFM to extract microrheological properties such as the
complex viscosity for various systems, including viscous, visco-elastic, biological,
and other complex fluids. In addition, we used heterodyne near field scattering to
study the contribution of polydispersity to the velocity deviations of sedimenting
colloidal systems. Moreover, we extended the physical understanding of the tran-
sition between colloidal and granular dynamics by using observables in the real
and reciprocal space. We achieved the previous by employing the polydisperse
Langevin model, computer simulations, and experimental results. Furthermore,
we studied the extension of the DFM framework to X-Ray radiograms, where we
extracted the dynamics of sedimenting and fluidized granular suspensions. Fi-
nally, we introduced the Rheo-DFM framework and used it to characterize the
shear profile imposed by a plate-plate shear cell to a colloidal system.

Optimized algorithms for DFM

In this work we have introduced the concept of temporal and space redundancy
for the DFM framework. We presented three different algorithms for the temporal
computation part: the standard redundant algorithm (R), which computes the
time average by accounting for all available elements, and two more efficient al-
gorithms, the Reduced Redundant (RR) and the Sampling Uniformly at Random
(SUR), where each algorithm introduces a sampling rule to remove redundancy.
The previous reduces significantly the amount of information taken for computing
the time averages. Thus, a significant reduction in computational time is obtained
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without altering the overall result. Moreover, we have analyzed the convergence
of our proposed algorithms, having SUR the highest optimization for performing
time averages as it is the one that converges with the smallest number of elements.

We have shown that, by using Digital Data Reduction (DDR), it is possible to
reduce the computational memory consumption up to 16 times without losing
dynamical physical information, leading to lower computational times, obtaining
a speed up of a factor of 5 without GPU acceleration. The previous was achieved
by digitally matching (bining) the imaging system’s resolution frequency (KR)
to the Nyquist frequency of the detector (KNy).Then, by knowing the optical
features of an imaging set-up, and using the definition of δ = KR/KNy, it is
possible to optimize image treatment. This, by selecting the appropriate digital
binning or, by the knowledge of δ, an optimum data acquisition can be designed,
while keeping in mind that an effective optical transfer function is introduced as
an artefact at higher Q values without compromising the dynamics.

Effect of moderate multiple scattering in heterodyne near field scattering

In this work, we systematically investigated the effects of multiple scattering in
heterodyne near field scattering (HNFS) experiments. We controlled the degree of
multiple scattering by tuning the concentration of aqueous suspensions of colloidal
particles, as, by increasing concentration, a reduction of transmitted light is seen.
This phenomenon was quantified by the reflectance defined as R = 1 − T with
T = IT/I0 the transmittance, i.e., the ratio of the transmitted light through a
sample (IT) by the transmitted light through a sample made of pure solvent under
the same optical configuration. We also analyzed the statistical properties of the
heterodyne signal in real space for different R values, changing from a Gaussian to
a Laplace probability distribution of the intensity differences. Where the change
of the probability distribution allowed us to define four regions: single scattering
(0 < R < 0.15), moderate multiple scattering (0.15 < R < 0.30), a cross over
region (0.30< R < 0.45) and the multiple scattering (R > 0.45). Furthermore,
we studied the effects of increasing R in the image structure function D(Q, τ).
Where we found that given the low Q wave vectors and the slow acquisition
time, the effect of moderate multiple scattering leads to an effective background
contribution Beff(Q). We used this result in the data analysis to extract the single
scattering intermediate scattering function f(Q, τ) and hydrodynamic radius Rh.
Finally, we obtained the limit of applicability of the technique for R<0.30.

Microliter viscometry

In this work we have presented η-DFM, an extension of the applicability of the
DFM framework in order to extract micro-viscometry information from a vari-
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ety of colloidal systems, i.e., an ideal viscous fluid (glycerol-water mixtures), a
biological colloidal system (lysozyme proteins), a visco-elastic polymer suspen-
sion (aqueous-based poly(ethylene oxide)) and a hard sphere fluid (Poly(methyl
methacrylate) particles in organic solvents). The η-DFM framework was tested
for all systems and compared to macroscopic Small Amplitude Oscillatory Shear
(SAOS) rheology experiments and macroscopic steady shear viscosity measure-
ments. As a result, we obtained perfect matching between them, validating the
η-DFM framework. Moreover, η-DFM could access lower frequencies than that
obtained in conventional rheometry. Furthermore, we exploited the versatility
of the DFM framework by using confocal fluorescence microscopy as an imaging
technique. We tested the possibility of having a colloidal system with a small
portion acting as tracers, stressing the tracer/system size condition. Again, our
results showed an excellent agreement between η-DFM and SAOS, corroborating
the validity of the Generalized-Stokes Einstein relations for hard sphere liquids.
It is essential to mention that further testing needs to be performed, specifically
towards the different phase transitions of the hard sphere fluid at higher volume
fractions than the ones tested here and, additionally, other types of fluids with
different particle interactions.

Velocity deviations from the sedimentation of dilute systems

In this work, we described the dynamics of sedimentation using the polydisperse
Langevin model, studied the analytical expression of the real part of the inter-
mediate scattering function f(Q, τ), and used the model to study the effect of
polydispersity in sedimentation using computer simulations. We performed dy-
namic light scattering experiments for three systems with different particle sizes,
polydispersity indexes and two different optical properties. However, all systems
fall within the same ensemble Péclet range (Pe�), thus having similar dynami-
cal behavior. With the previous, we proved the theoretical model’s validity for
the description and the validity of our computer simulations. Moreover, the ex-
tracted dynamical polydispersity was corroborated by the Mie theory analysis of
the static light scattering information of the experiments. Furthermore, we have
shown the versatility of using HNFS for these experiments, as it simultaneously
provides both static and dynamic information.

From colloid to grain. A dynamic description of sedimentation in dilute systems

In this work, we showed the different dynamical regimes that arise from intro-
ducing an external force to the description of the dynamics of colloidal particle
systems, where we found that the ensemble Péclet number (Pe�) helps quantify the
contribution of the external force vs. thermal agitation. Moreover, we extended
the physical description of the system’s dynamics by including size polydisper-
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sity in the theoretical framework and applied it to Brownian dynamics computer
simulations. We performed a systematic study on different polydispersity values,
characterizing in a quantitative manner, the impact on the mean squared displace-
ment and the intermediate scattering function by the overall description. Based
on the behavior of the MSD and the characteristic decorrelation of the ISF, we
found a very rich dynamical phase diagram that is summarized in the following
way: for (Pe�<1), the majorly dynamical behavior of the system is only driven by
thermal agitation and can be considered to be Brownian, then for (1<Pe�<33)
the colloid in the presence of an external force region appears, as the contribution
of the external force starts to become significant. Then, for (33<Pe�<800), the
effect of the external force is stronger, and the external force mainly describes the
overall particle dynamics. However, a trace of thermal agitation is still detectable.
Finally, for (Pe�>800) the granular regime is defined. Here, no thermal agitation
is detected, and only the external force is responsible for the system dynamics.
Furthermore, we corroborate our theoretical results with Heterodyne Near Field
scattering sedimentation experiments of different particle sizes that allowed us to
control the Pe� of the system.

Digital Fourier Analysis of X-Ray radiographs of granular suspensions

In this work, we extended the capability of the Digital Fourier Analysis framework
to X-Ray radiographs, widening its range of applicability. We used computer sim-
ulations to produce synthetic radiographs that encompassed different dynamical
information. We modeled the image content by taking into account the change of
the X-ray spectrum due to beam hardening over the whole traveled path of the
photons via an effective attenuation coefficient. We tested four different types of
dynamics: homogenous directed, directed with a distribution of velocities, ran-
dom motion, and a combination of the above. The excellent agreement between
the fixed computer simulation values and the ones obtained from the X-DFA val-
idated the conceptual framework of the analysis method. Moreover, we extracted
equivalent information as in static light scattering experiments, such as the form
and structure factor out of the static quantities in the DFA (A(Q)). Furthermore,
we showed its applicability to sedimentation and fluidization experiments.

Dynamics of sheared particles: Rheo-DFM

In this work, we presented preliminary results of Rheo-DFM. We performed DFM
employing confocal microscopy, exploiting its optical capabilities to scan different
sections or layers of the sheared system. We employed it to characterize the
effect of a constant deformation made by a plate-plate shear cell to a colloidal
suspension consisting of PMMA particles in a highly viscous double matching
solvent dispersed at a volume fraction of (φ=0.2). This system allowed us to safely
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discard any contribution from diffusion to the intermediate scattering function to
extract the imposed velocity distribution of the particles due to shear. Moreover,
we quantified the imposed velocity profile across the sample gap and, from these
results, the shear rate (γ̇) was also obtained. Our findings were corroborated by
Particle Image Velocimetry, another image analysis scheme based on real space.
Hence, Rheo-DFM could be used as a complementary tool to access dynamical
information of sheared systems.

116



Acknowledgements

First and foremost, I would like to thank my Doktorvater Prof. Dr. Stefan U.
Egelhaaf for providing me with the opportunity to perform this work. Moreover,
for always making time to discuss and share his point of view on every subject with
a welcoming smile and interest in my learning experience and personal growth.

To my daughter Valentina and my wife Maria for being my strongest teachers,
driving force, and a constant inspiration.

To the strong support of my parents, brothers, and family in-law. Thank you for
your loving care, always being there, and for providing a safety net.

To all of my dearest people whose time came during the process of this thesis.

To Angel, for your friendship, excellent discussions, and teaching me how to be
pragmatic, patient, and express myself.

To JP, for your support, friendship, and being part of this experience.

To Roberto, for your friendship, advice, and having time to share and discuss new
and old ideas.

Thank you, Jörg, Christoph, Dana, Patrick, Jan, and Philipp, for giving me a
warm welcome to the group and helping me in the transition to the German cul-
ture.

Thank you to all my friends in armor, Andreas and Debasish, for providing me
backup whenever it was needed.

Thank you, Alejandro, Ramón, Erick, Luis, for your friendship and for being part
of this experience.

Last but not least, I would like to thank to all of the students that accepted my
supervision, your positive energy towards the work was like fuel to me.

117



References

[1] J. Dhont, An Introduction to Dynamics of Colloids. Elsevier, 2003.

[2] M. Doi, Soft Matter Physics. Oxford University Press, 2013.

[3] T. Vilgis Reports on Progress in Physics, vol. 78, no. 12, p. 124602, 2015.

[4] R. Jones, Soft Condensed Matter. Oxford University Press, 2002.

[5] W. C. K. Poon and D. Andelman, Soft Condensed Matter Physicsin Molec-

ular and Cell Biology. Taylor and Francis.

[6] T. Lee, B. Senyuk, R. P. Trivedi, and I. I. Smalyukh, Optical Microscopy of

Soft Matter Systems. John Wiley and Sons, Ltd, 2016.

[7] F. Giavazzi and R. Cerbino, “Digital fourier microscopy for soft matter dy-
namics,” Journal of Optics, vol. 16, p. 083001, 2014.

[8] B. Berne and R. Pecora, Dynamic Light Scattering: With Applications to

Chemistry, Biology, and Physics. Courier Corporation.

[9] J. Mewis and N. Wagner, Colloidal Suspensions Rheolody. Cambridge Uni-
versity Press, 2012.

[10] C. W. Macosko, Rheology: Principles, Measurements, and Applications.
Wiley-VCH, 1994.

[11] T. Sentjabrskaja, P. Chaudhuri, M. Hermes, W. C. K. Poon, J. Horbach,
S. U. Egelhaaf, and M. Laurati, “Creep and flow of glasses: strain response
linked to the spatial distribution of dynamical heterogeneities,” Scientific

Reports, vol. 5, no. 11884, pp. 2045–2322, 2015.

[12] S. Aime and L. Cipelletti, “Probing shear-induced rearrangements in fourier
space. i. dynamic light scattering,” Soft Matter, vol. 15, pp. 200–212, 2019.

[13] S. Aime and L. Cipelletti, “Probing shear-induced rearrangements in fourier
space. ii. differential dynamic microscopy,” Soft Matter, vol. 15, pp. 213–226,
2019.

[14] D. Kushnir, N. Beyer, E. Bartsch, and P. Hébraud, “Wide-angle static and
dynamic light scattering under shear,” Review of Scientific Instruments,
vol. 92, no. 2, p. 025113, 2021.

[15] D. McQuarrie, Statistical Mechanics. Harper Collins Publishers, 1973.

[16] J. Hansen and I. McDonald, Theory of simple liquids 2nd ed. AP Academic
Press, 1990.

118



References

[17] G. D. J. Phillies, Elementary Lectures in Statistical Mechanics. Springer-
Verlag, 2000.

[18] M. Allen and D. Tildesley, Computer Simulation of Liquids. Oxford Uni-
versity Press.

[19] N. van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier,
2007.

[20] I. Florescu, Probability and Stochastic Processes. Wiley, 2015.

[21] W. Brown, Dynamic Light Scattering, The Method and Some Applications.
Oxford University Press.

[22] L. Van Hove, “Correlations in space and time and born approximation scat-
tering in systems of interacting particles,” Phys. Rev., vol. 95, pp. 249–262,
1954.

[23] W. van Megen, S. M. Underwood, and I. Snook, “Tracer diffusion in con-
centrated colloidal dispersions,” The Journal of Chemical Physics, vol. 85,
no. 7, pp. 4065–4072, 1986.

[24] F. Ferri, D. Magatti, D. Pescini, M. A. C. Potenza, and M. Giglio, “Hetero-
dyne near-field scattering: A technique for complex fluids,” Phys. Rev. E,
vol. 70, p. 041405, 2004.

[25] J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for
colloidal studies,” vol. 179, pp. 298–310.

[26] A. Einstein, “Über die von der -molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,”
Annalen der Physik, vol. 322, pp. 549–560, 1905.

[27] A. Fick, “Über Diffusion,” Annalen der Physik, vol. 170, pp. 59–86, 1855.

[28] M. von Smoluchowski, “Zur kinetischen Theorie der Brownschen Molekular-
bewegung und der Suspensionen,” Annalen der Physik, vol. 326, pp. 756–
780, 1906.

[29] R. Huilgol and N. Phan-Thien, Fluid Mechanics of Viscoelasticity. Elsevier,
1997.

[30] H. Risken, The Fokker-Planck Equation Methods of Solution and Applica-

tions. Springer-Verlag.

[31] D. Lemons and A. Gythiel, “Paul langevin’s 1908 paper “on the theory of
brownian motion” [“sur la théorie du mouvement brownien,” c. r. acad.
sci. (paris) 146, 530–533 (1908)],” American Journal of Physics, vol. 65,
pp. 1079–1081, 1997.

119



References

[32] D. Ermak and J. A. McCammon, “Brownian dynamics with hydrodynamic
interactions,” The Journal of Chemical Physics, vol. 69, pp. 1352–1360,
1978.

[33] R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in

Physics, vol. 29, pp. 255–284, 1966.

[34] D. J. Evans and F. P. Morriss, “The green–kubo relations,” in Statistical

Mechanics of Nonequilibrium Liquids, pp. 77–93, Academic Press, 1990.

[35] B. R. Dasgupta, S. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz,
“Microrheology of polyethylene oxide using diffusing wave spectroscopy and
single scattering,” Phys. Rev. E, vol. 65, p. 051505, 2002.

[36] M. A. Escobedo-Sánchez, J. P. Segovia-Gutiérrez, A. B. Zuccolotto-Bernez,
J. Hansen, C. C. Marciniak, K. Sachowsky, F. Platten, and S. U. Egelhaaf,
“Microliter viscometry using a bright-field microscope: η−DDM,” Soft Mat-

ter, vol. 14, pp. 7016–7025, 2018.

[37] P. Lindner and T. Zemb, Neutrons, X-Rays and Light Scattering Methods

Applied to Soft Condensed Matter. Elsevier, 2002.

[38] B. Frisken, “Revisiting the method of cumulants for the analysis of dynamic
light-scattering data,” Appl. Opt., vol. 40, pp. 4087–4091, 2001.

[39] T. Mason, “Estimating the viscoelastic moduli of complex fluids using the
generalized stokes-einstein equation,” Rheologica Acta, vol. 39, pp. 371–378,
2000.

[40] T. Mason and D. Weitz, “Optical measurements of frequency-dependent lin-
ear viscoelastic moduli of complex fluids,” Phys. Rev. Lett., vol. 74, pp. 1250–
1253, 1995.

[41] T. Mason, H. Gang, and D. Weitz, “Diffusing-wave-spectroscopy measure-
ments of viscoelasticity of complex fluids,” J. Opt. Soc. Am. A, vol. 14,
pp. 139–149, 1997.

[42] T. A. Waigh, “Microrheology of complex fluids,” Reports on Progress in

Physics, vol. 68, pp. 685–742, 2005.

[43] M. Gardel, M. Valentine, and D. Weitz, Microrheology, pp. 1–49. Springer
Berlin Heidelberg, 2005.

[44] P. Cicuta and A. M. Donald, “Microrheology: a review of the method and
applications,” Soft Matter, vol. 3, pp. 1449–1455, 2007.

[45] D. Wirtz, “Particle-tracking microrheology of living cells: Principles and
applications,” Annual Review of Biophysics, vol. 38, pp. 301–326, 2009.

120



References

[46] Q. Li, X. Peng, and G. Chen, D. andMcKenna, “The laplace approach in
microrheology,” Soft Matter, vol. 16, pp. 3378–3383, 2020.

[47] P. Chaikin and T. Lubesky, Principles of Condensed Matter Physics. Cam-
bridge University Press, 1995.

[48] A. Levine and T. Lubensky, “One- and two-particle microrheology,” Phys.

Rev. Lett., vol. 85, pp. 1774–1777, 2000.

[49] S. Li, G. Zhao, and H. Chen, “The relationship between steady shear viscos-
ity and complex viscosity,” Journal of Dispersion Science and Technology,
vol. 26, pp. 415–419, 2005.

[50] F. Giavazzi, C. Malinverno, G. Scita, and R. Cerbino, “Tracking-free deter-
mination of single-cell displacements and division rates in confluent mono-
layers,” Frontiers in Physics, vol. 6, p. 120, 2018.

[51] S. Kim and S. Karrila, Microhydrodynamics: Principles and Selected Appli-

cations. Butterworth Heinemann, 1991.

[52] D. Pimponi, M. Chinappi, P. Gualtieri, and C. Casciola, “Mobility tensor
of a sphere moving on a superhydrophobic wall: application to particle
separation,” Microfluidics and Nanofluidics, vol. 16, pp. 571–585, 2014.

[53] P. Lu, F. Giavazzi, T. Angelini, E. Zaccarelli, F. Jargstorff, A. Schofield,
J. Wilking, M. Romanowsky, D. Weitz, and R. Cerbino, “Characterizing
concentrated, multiply scattering, and actively driven fluorescent systems
with confocal differential dynamic microscopy,” Phys. Rev. Lett., vol. 108,
p. 218103, 2012.

[54] D. Germain, M. Leocmach, and T. Gibaud, “Differential dynamic microscopy
to characterize brownian motion and bacteria motility,” Am. J. Phys.,
vol. 84, pp. 202–210, 2016.

[55] L. G. Wilson, V. Martinez, J. Schwarz-Linek, J. Tailleur, G. Bryant,
P. Pusey, and W. Poon, “Differential dynamic microscopy of bacterial motil-
ity,” Phys. Rev. Lett., vol. 106, p. 018101, 2011.

[56] V. A. Martinez, R. Besseling, O. A. Croze, J. Tailleur, M. Reufer, J. Schwarz-
Linek, L. G. Wilson, M. A. Bees, and W. C. K. Poon, “Differential dynamic
microscopy: A high-throughput method for characterizing the motility of
microorganisms,” Biophys. J., vol. 103, no. 8, pp. 1637–1647, 2012.

[57] C. Kurzthaler, C. Devailly, J. Arlt, T. Franosch, W. C. K. Poon, V. A.
Martinez, and A. T. Brown, “Probing the spatiotemporal dynamics of cat-
alytic janus particles with single-particle tracking and differential dynamic
microscopy,” Phys. Rev. Lett., vol. 121, p. 078001, 2018.

121



References

[58] K. Eitel, G. Bryant, and H. J. Schöpe, “A hitchhiker’s guide to particle sizing
techniques,” vol. 36, pp. 10307–10320.

[59] I. M. Krieger, “Statistics of narrow distributions,” Journal of Macromolecu-

lar Science, Part B, vol. 4, pp. 437–440, 1970.

[60] J. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A. Müller, “Pseudo
hard-sphere potential for use in continuous molecular-dynamics simulation
of spherical and chain molecules,” The Journal of Chemical Physics, vol. 137,
no. 14, p. 144505, 2012.

[61] C. A. Báez, A. Torres-Carbajal, R. Castañeda Priego, A. Villada-Balbuena,
J. M. Méndez-Alcaraz, and S. Herrera-Velarde, “Using the second virial co-
efficient as physical criterion to map the hard-sphere potential onto a con-
tinuous potential,” J. Chem. Phys., vol. 149, p. 164907, 2018.

[62] H. A. Lorentz, “Ueber die anwendung des satzes vom virial in der kinetischen
theorie der gase,” Annalen der Physik, vol. 248, no. 1, p. 127–136, 1881.

[63] D. Berthelot, “Sur le mélange des gaz,” Comptes rendus hebdomadaires des

séances de l’Académie des Sciences, vol. 126, pp. 1703–1855, 1898.

[64] J. Rowlinson and F. Swinton, Liquids and Liquid Mixtures. Butterworth
Scientific, 1982.

[65] R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instru-
mentation and results from time and spatially resolved investigations of soft
matter systems,” Current Opinion in Colloid and Interface Science, vol. 14,
pp. 416–425, 2009.

[66] R. Piazza, “Optical correlation techniques for the investigation of colloidal
systems,” in Colloidal Foundations of Nanoscience (D. Berti and G. Palazzo,
eds.), pp. 233–266, Elsevier, 2014.

[67] A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light
speckles: theory,” Phys Rev, A, vol. 78, p. 063806, 2008.

[68] F. Croccolo and D. Brogioli, “Quantitative fourier analysis of schlieren
masks: the transition from shadowgraph to schlieren,” Appl. Opt., vol. 50,
pp. 3419–3427, Jul 2011.

[69] J. Rička, “Dynamic light scattering with single-mode and multimode re-
ceivers,” Appl. Opt., vol. 32, no. 15, pp. 2860–2875, 1993.

[70] D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic het-
erodyne near field scattering,” Applied Physics Letters, vol. 92, p. 241101,
2008.

122



References

[71] B. Chu, Laser Light Scattering: Basic Principles and Practice. Dover Pub-
lications, Incorporated, 2007.

[72] F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, and A. Vailati, “Shad-
owgraph analysis of non-equilibrium fluctuations for measuring transport
properties in microgravity in the gradflex experiment,” Microgravity Science

and Technology, vol. 28, pp. 467–475, 2016.

[73] F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scatter-
ing information obtained by optical microscopy: Differential dynamic mi-
croscopy and beyond,” Phys. Rev. E, vol. 80, p. 031403, 2009.

[74] F. Giavazzi, P. Edera, P. Lu, and R. Cerbino, “Image windowing mitigates
edge effects in differential dynamic microscopy,” The European Physical

Journal E, vol. 40, p. 97, 2017.

[75] R. Cerbino and V. Trappe, “Differential dynamic microscopy: Probing wave
vector dependent dynamics with a microscope,” Phys. Rev. Lett., vol. 100,
p. 188102, 2008.

[76] G. Cerchiari, F. Croccolo, F. Cardinaux, and F. Scheffold, “Quasi-real-time
analysis of dynamic near field scattering data using a graphics processing
unit,” Review of Scientific Instruments, vol. 83, p. 106101, 2012.

[77] M. A. Escobedo-Sánchez, L. F. Rojas-Ochoa, M. Laurati, and S. U. Egelhaaf,
“Investigation of moderately turbid suspensions by heterodyne near field
scattering,” Soft Matter, vol. 13, pp. 5961–5969, 2017.

[78] M. A. Escobedo-Sánchez, H. A. De la Cruz-Burelo, J. L. Arauz-Lara,
C. Haro-Pérez, and L. F. Rojas-Ochoa, “Study of translational and rotational
dynamics of birefringent colloidal particles by depolarized light scattering in
the far- and near-field regimes,” J. Chem. Phys., vol. 143, p. 044902, 2015.

[79] K. Schätzel, “Signal preprocessing for digital correlators,” Applied physics,
vol. 22, pp. 251–256, 1980.

[80] K. Schätzel, “Rate correlation and data preprocessing with digital correla-
tors and structurators,” in Photon Correlation Techniques in Fluid Mechan-

ics (E. O. Schulz-DuBois, ed.), (Berlin, Heidelberg), pp. 226–241, Springer
Berlin Heidelberg, 1983.

[81] K. Rao, D. Kim, and J. Hwang, Fast Fourier Transform: Algorithms and

Applications. Springer.

[82] R. Gonzalez and R. Woods, Digital Image Processing. Pearson, 2008.

[83] S. U. Egelhaaf, Optical microscopy in Soft Matter From Synthetic to Bio-

logical Materials. Forschungszentrum Jülich GmbH, 2008.

123



References

[84] E. Sevenard and W. Schröer, “Correlation functions of singly and multiply
scattered light analysed by the 3-d cross-correlation technique,” Phys. Chem.

Chem. Phys., vol. 4, pp. 1900–1906, 2002.

[85] C. M. Sorensen, R. C. Mockler, and W. J. O’Sullivan, “Multiple scattering
from a system of brownian particles,” Phys. Rev. A, vol. 17, pp. 2030–2035,
1978.

[86] G. Koopmans, P. C. Hopman, and J. Greve, “Double-scattering effects in
depolarised light scattering spectrometry,” J. Phys. A: Math. Gen., vol. 12,
pp. 581–590, 1979.

[87] J. Goodman, Speckle Phenomena in Optics. Englewood: Roberts and Com-
pany, 2007.

[88] S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Schef-
fold, “Noise in laser speckle correlation and imaging techniques,” Opt. Expr.,
vol. 18, pp. 14519–14534, 2010.

[89] S. Kotz, T. J. Kozubowski, and K. Podgórski, The Laplace Distribution

and Generalizations: A Revisit with Applications to Communications, Eco-

nomics, Engineering, and Finance. Springer Science+Business Media, LLC,
2001.

[90] W. P. Cox and E. H. Merz, “Correlation of dynamic and steady flow viscosi-
ties,” Journal of Polymer Science, vol. 28, pp. 619–622, 1958.

[91] P. Edera, D. Bergamini, V. Trappe, F. Giavazzi, and R. Cerbino, “Differ-
ential dynamic microscopy microrheology of soft materials: A tracking-free
determination of the frequency-dependent loss and storage moduli,” Phys.

Rev. Materials, vol. 1, p. 073804, 2017.

[92] A. Bayles, T. Squires, and M. Helgeson, “Probe microrheology without par-
ticle tracking by differential dynamic microscopy,” Rheologica Acta, vol. 56,
pp. 2440–2452, 2017.

[93] F. Del Giudice, M. Tassieri, C. Oelschlaeger, and A. Q. Shen, “When mi-
crorheology, bulk rheology, and microfluidics meet: Broadband rheology of
hydroxyethyl cellulose water solutions,” Macromolecules, vol. 50, pp. 2951–
2963, 2017.

[94] W. van Megen and S. M. Underwood, “Tracer diffusion in concentrated
colloidal dispersions. iii. mean squared displacements and self-diffusion co-
efficients,” The Journal of Chemical Physics, vol. 91, pp. 552–559, 1989.

[95] W. van Megen and S. M. Underwood, “Tracer diffusion in concentrated col-
loidal dispersions. ii. non-gaussian effects,” The Journal of Chemical Physics,
vol. 88, no. 12, pp. 7841–7846, 1988.

124



References

[96] N.-S. Cheng, “Formula for the viscosity of a glycerol water mixture,” Indus-

trial and Engineering Chemistry Research, vol. 47, pp. 3285–3288, 2008.

[97] P. D. Godfrin, S. D. Hudson, K. Hong, L. Porcar, P. Falus, N. J. Wagner,
and Y. Liu, “Short-time glassy dynamics in viscous protein solutions with
competing interactions,” Phys. Rev. Lett., vol. 115, p. 228302, 2015.

[98] V. Sharma, A. Jaishankar, Y. Wang, and G. H. McKinley, “Rheology of
globular proteins: apparent yield stress, high shear rate viscosity and inter-
facial viscoelasticity of bovine serum albumin solutions,” Soft Matter, vol. 7,
pp. 5150–5160, 2011.

[99] A. M. Puertas and T. Voigtmann, “Microrheology of colloidal systems,”
Journal of Physics: Condensed Matter, vol. 26, p. 243101, 2014.

[100] A. S. Parmar and M. Muschol, “Hydration and hydrodynamic interactions
of lysozyme: Effects of chaotropic versus kosmotropic ions,” Biophysical

Journal, vol. 97, pp. 590–598, 2009.

[101] P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspen-
sions of nearly hard colloidal spheres,” Nature, vol. 320, pp. 340–342, 1986.

[102] P. N. Pusey, Colloidal Suspensions, In: Liquids, Freezing and Glass Tran-

sition (J. P. Hansen and D. Levesque and J. Zinn-Justin, eds.). North-
Holland, Amsterdam, 1991.

[103] G. Bryant, S. R. Williams, L. Qian, I. K. Snook, E. Perez, and F. Pincet,
“How hard is a colloidal “hard-sphere” interaction?,” Phys. Rev. E, vol. 66,
p. 060501, 2002.

[104] C. P. Royall, W. C. K. Poon, and E. R. Weeks, “In search of colloidal hard
spheres,” Soft Matter, vol. 9, pp. 17–27, 2013.

[105] L. Antl, J. Goodwin, R. Hill, R. Ottewill, S. Owens, S. Papworth, and
J. Waters, “The preparation of poly(methyl methacrylate) latices in non-
aqueous media,” Colloids and Surfaces, vol. 17, pp. 67 – 78, 1986.

[106] P. Maßhoff, I. Elsner, M. A. Escobedo-Sánchez, J. P. Segovia-Gutiérrez,
A. Pamvouxoglou, and S. U. Egelhaaf, “Shear-induced crystallisation in bi-
nary colloidal suspensions investigated using confocal microscopy,” Journal

of Physics: Materials, vol. 3, p. 035004, 2020.

[107] J. P. Segovia-Gutiérrez, M. A. Escobedo-Sánchez, E. Sarmiento-Gómez, and
S. U. Egelhaaf, “Diffusion of anisotropic particles in random energy land-
scapes—an experimental study,” Frontiers in Physics, vol. 7, p. 224, 2020.

[108] D. Quemada, “Rheology of concentrated disperse systems and minimum
energy dissipation principle,” Rheologica Acta, vol. 16, pp. 82–94, 1977.

125



References

[109] A. J. Banchio, J. Bergenholtz, and G. Nägele, “Rheology and dynamics of
colloidal suspensions,” Phys. Rev. Lett., vol. 82, pp. 1792–1795, 1999.

[110] T. Zemb and P. Lindner, Neutron, X-rays and Light. Scattering Methods

Applied to Soft Condensed Matter. Elsevier.

[111] P. N. Pusey and W. van Megen, “Detection of small polydispersities by
photon correlation spectroscopy,” The Journal of Chemical Physics, vol. 80,
pp. 3513–3520, 1984.

[112] H. C. van de Hulst, Light Scattering from Small Particles. Dover, 1981.

[113] C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small

Particles. John Wiley and Sons, Ltd., 2007.

[114] C. Mätzler, “Matlab functions for mie scattering and absorption: Research
report no. 2002-08,”

[115] http://www.philiplaven.com/mieplot.htm.

[116] B. L. Inc., “Tech support doc 0021: Material properties of
polystyrene and poly(methyl methacrylate)(pmma) microspheres.”
https://www.bangslabs.com/sites/default/files/imce/docs/
TSD0021MaterialPropertiesWeb.pdf.

[117] G. J. Ojeda-Mendoza, H. Contreras-Tello, and L. F. Rojas-Ochoa, “Refrac-
tive index matching of large polydisperse silica spheres in aqueous suspen-
sions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects,
vol. 538, pp. 320–326, 2018.

[118] A. Bérut, O. Pouliquen, and Y. Forterre, “Brownian granular flows down
heaps,” Phys. Rev. Lett., vol. 123, p. 248005, 2019.

[119] D. Bi, S. Henkes, K. E. Daniels, and B. Chakraborty, “The statistical physics
of athermal materials,” Annual Review of Condensed Matter Physics, vol. 6,
pp. 63–83, 2015.

[120] K. Kanazawa, T. G. Sano, T. Sagawa, and H. Hayakawa, “Minimal model
of stochastic athermal systems: Origin of non-gaussian noise,” Phys. Rev.

Lett., vol. 114, p. 090601, 2015.

[121] C. Ancey, N. Andreini, and G. Epely-Chauvin, “Granular suspension
avalanches. i. macro-viscous behavior,” Physics of Fluids, vol. 25, p. 033301,
2013.

[122] N. Menon and D. J. Durian, “Particle motions in a gas-fluidized bed of sand,”
Phys. Rev. Lett., vol. 79, pp. 3407–3410, 1997.

126



References

[123] N. Menon and D. J. Durian, “Diffusing-wave spectroscopy of dynamics in a
three-dimensional granular flow,” Science, vol. 275, pp. 1920–1922, 1997.

[124] L. L Xie, M. J. Biggs, D. . Glass, A. S. McLeod, S. U. Egelhaaf, and G. Pe-
tekidis, “Granular temperature distribution in a gas fluidized bed of hol-
low microparticles prior to onset of bubbling,” Europhysics Letters (EPL),
vol. 74, pp. 268–274, 2006.

[125] M. Biggs, D. Glass, L. Xie, V. Zivkovic, A. Buts, and M. A. Curt Kounders,
“Granular temperature in a gas fluidized bed,” Granular Matter, vol. 10,
pp. 63–73, 2008.

[126] V. Zivkovic, M. Biggs, D. Glass, P. Pagliai, and A. Buts, “Granular temper-
ature in a liquid fluidized bed as revealed by diffusing wave spectroscopy,”
Chemical Engineering Science, vol. 64, pp. 1102–1110, 2009.

[127] K. Kim and H. K. Pak, “Diffusing-wave spectroscopy study of micro-
scopic dynamics of three-dimensional granular systems,” Soft Matter, vol. 6,
pp. 2894–2900, 2010.

[128] P. Born, S. Reinhold, and M. Sperl, “Probing density waves in fluidized
granular media with diffusing-wave spectroscopy,” Phys. Rev. E, vol. 94,
p. 032901, 2016.

[129] A. Amon, A. Mikhailovskaya, and J. Crassous, “Spatially resolved mea-
surements of micro-deformations in granular materials using diffusing wave
spectroscopy,” Review of Scientific Instruments, vol. 88, p. 051804, 2017.

[130] M. L. Cowan, J. H. Page, and D. A. Weitz, “Velocity fluctuations in fluidized
suspensions probed by ultrasonic correlation spectroscopy,” Phys. Rev. Lett.,
vol. 85, pp. 453–456, 2000.

[131] M. Kohyama, T. Norisuye, and Q. Tran-Cong-Miyata, “High frequency dy-
namic ultrasound scattering from microsphere suspensions,” Polymer Jour-

nal, vol. 40, pp. 398–399, 2008.

[132] M. Kohyama, T. Norisuye, and Q. Tran-Cong-Miyata, “Dynamics of micro-
sphere suspensions probed by high-frequency dynamic ultrasound scatter-
ing,” Macromolecules, vol. 42, pp. 752–759, 2009.

[133] A. Nagao, M. Kohyama, T. Norisuye, and Q. Tran-Cong-Miyata, “Simul-
taneous observation and analysis of sedimentation and floating motions of
microspheres investigated by phase mode-dynamic ultrasound scattering,”
Journal of Applied Physics, vol. 105, p. 023526, 2009.

[134] A. Nagao, T. Norisuye, T. Yawada, M. Kohyama, and Q. Tran-Cong-Miyata,
“Collective motion of microspheres in suspensions observed by phase-mode

127



References

dynamic ultrasound scattering technique,” Ultrasonics, vol. 52, pp. 628–635,
2012.

[135] M. L. Cowan, J. H. Page, T. Norisuye, and D. A. Weitz, “Dynamic sound
scattering: Field fluctuation spectroscopy with singly scattered ultrasound
in the near and far fields,” The Journal of the Acoustical Society of America,
vol. 140, pp. 1992–2001, 2016.

[136] R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bösecke, and
M. Giglio, “X-ray-scattering information obtained from near-field speckle,”
Nat. Phys., vol. 4, pp. 238–243, 2008.

[137] R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,”
Annu. Rev. Fluid Mech., vol. 23, pp. 261–304, 1991.

[138] P. N. Segrè, E. Herbolzheimer, and P. M. Chaikin, “Long-range correlations
in sedimentation,” PRL, vol. 79, pp. 2574–2577, 1997.

[139] S.-J. Lee and G.-B. Kim, “X-ray particle image velocimetry for measuring
quantitative flow information inside opaque objects,” Journal of Applied

Physics, vol. 94, pp. 3620–3623, 2003.

[140] G. B. Kim and S. J. Lee, “X-ray piv measurements of blood flows without
tracer particles,” Experiments in Fluids, vol. 41, pp. 195–200, 2006.

[141] Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung,
and J. R. Winkelman, “Ultrafast x-ray study of dense-liquid-jet flow dynam-
ics using structure-tracking velocimetry,” Nature Physics, vol. 4, pp. 305–
309, 2008.

[142] A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and
K. Hourigan, “The past, present, and future of x-ray technology for in
vivo imaging of function and form,” Journal of Applied Physics, vol. 105,
p. 102009, 2009.

[143] S. J. Lee, G. B. Kim, D. H. Yim, and S. Y. Jung, “Development of a compact
x-ray particle image velocimetry for measuring opaque flows,” Review of

Scientific Instruments, vol. 80, no. 3, p. 033706, 2009.

[144] S. Dubsky, R. A. Jamison, S. C. Irvine, K. K. W. Siu, K. Hourigan, and
A. Fouras, “Computed tomographic x-ray velocimetry,” Appl. Phys. Lett.,
vol. 96, p. 023702, 2010.

[145] F. Guillard, B. Marks, and I. Einav, “Dynamic x-ray radiography reveals
particle size and shape orientation fields during granular flow,” Scientific

Reports, vol. 7, p. 8155, 2017.

128



References

[146] M. Y. Naz, S. A. Sulaiman, S. Shukrullah, A. Ghaffar, Y. Khan, and I. Ah-
mad, “Piv investigations on particle velocity distribution in uniform swirling
regime of fluidization,” Granular Matter, vol. 19, p. 40, 2017.

[147] A. Ruhlandt and T. Salditt, “Time-resolved x-ray phase-contrast tomog-
raphy of sedimenting micro-spheres,” New Journal of Physics, vol. 21,
p. 043017, 2019.

[148] P. N. Segrè, W. van Megen, P. N. Pusey, K. Schätzel, and W. Peters, “Two-
colour dynamic light scattering,” J. Mod. Opt., vol. 42, pp. 1929–1952, 1995.

[149] M. Baur, X-ray radiography of granular systems - particle densities and

dynamics: Röntgen Radiographie granularer Systeme - Dichte und Dynamik

der Teilchen. PhD thesis, 2020.

[150] M. Schröter, D. I. Goldman, and H. L. Swinney, “Stationary state volume
fluctuations in a granular medium.,” Physical review. E, Statistical, nonlin-

ear, and soft matter physics, vol. 71, p. 030301, 2005.

[151] M. Baur, J. Claussen, S. Gerth, J. Kollmer, T. Shreve, N. Uhlmann, and
T. Pöschel, “How to measure the volume fraction of granular assemblies
using x-ray radiography,” Powder Technology, vol. 356, pp. 439–442, 2019.

[152] A. C. Konstantinidis, M. B. Szafraniec, R. D. Speller, and A. Olivo, “The
dexela 2923 cmos x-ray detector: A flat panel detector based on cmos ac-
tive pixel sensors for medical imaging applications,” Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, vol. 689, pp. 12–21, 2012.

[153] M. Baur, N. Uhlmann, T. Pöschel, and M. Schröter, “Correction of beam
hardening in x-ray radiograms,” Review of Scientific Instruments, vol. 90,
p. 025108, 2019.

[154] W. Thielicke and E. Stamhuis, “Towards user-friendly, affordable and accu-
rate digital particle image velocimetry in matlab,” Journal of Open Research

Software, vol. 2(1), p. 30.

[155] M. Raffel, C. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kom-
penhans, Particle Image Velocimetry A Practical Guide. Springer-Verlag,
2018.

[156] W. Thielicke, The flapping flight of birds: Analysis and application. PhD
thesis, 2014.

[157] J. F. Richardson and W. N. Zaki, “Sedimentation and fluidisation: Part i,”
Chemical Engineering Research and Design, vol. 75, pp. S82–S100, 1997.

129



[158] A. S. Michaels and J. C. Bolger, “Settling rates and sediment volumes of
flocculated kaolin suspensions,” Ind. Eng. Chem. Fund., vol. 1, pp. 24–33,
1962.

[159] D. T. N. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and A. G. Yodh,
“Rheology of soft materials,” Annu. Rev. Condens. Matter Phys., vol. 1,
pp. 301–322, 2010.

[160] G. Petekidis, P. N. Pusey, A. Moussaïd, S. Egelhaaf, and W. C. K. Poon,
“Shear-induced yielding and ordering in concentrated particle suspensions,”
Physica A: Statistical Mechanics and its Applications, vol. 306, pp. 334–342,
2002.

[161] P. A. Smith, Colloidal gels under oscillatory shear. PhD thesis, School of
Physics, Univesity of Edinburgh, 2004.

[162] M. Laurati, K. J. Mutch, N. Koumakis, J. Zausch, C. P. Amann, A. B.
Schofield, G. Petekidis, J. F. Brady, J. Horbach, M. Fuchs, and S. U. Egel-
haaf, “Transient dynamics in dense colloidal suspensions under shear: shear
rate dependence,” Journal of Physics: Condensed Matter, vol. 24, p. 464104,
2012.

[163] P. Maßhoff, Colloidal Spheres under Shear: The Interplay between Macro-

scopic Deformation and Microscopic Properties. PhD thesis, Heinrich Heine
Universität Düsseldof, 2019.

[164] D. York, “Least-squares fitting of a straight line,” Can. J. Phys., vol. 44,
pp. 1079–1086, 1966.

130


