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I

Zusammenfassung

In der vorliegenden Arbeit wird eine theoretische Betrachtung des Starkfeld-Pro-
zesses der Breit-Wheeler-Paarerzeugung in verschiedenen Szenarien und Kopplungs-
regimen dargestellt. Dabei wird sowohl die Erzeugung von Elektron-Positron-Paaren
in der Quantenelektrodynamik als auch von Quasiteilchen-Loch-Paaren in speziellen
Festkörpersystemen untersucht, und es werden Querverbindungen zwischen diesen
Phänomenen hergestellt.

Der lineare und der nicht-perturbative Prozess im starken Feld werden im Rah-
men von Versuchsanordnungen diskutiert, bei denen Bremsstrahlungsphotonen mit
den Energien bis zu mehreren GeV mit den elektromagnetischen Feldern eines Rönt-
genlasers (für den Zwei-Photonen-Fall) oder eines hochintensiven optischen Lasers
(im nicht-perturbativen Bereich) wechselwirken. Als Ergebnis werden Prognosen zu
der Anzahl von erzeugten Paaren gegeben. Im nicht-perturbativen Regime wird ein
besonderes Augenmerk auf die Effekte der longitudinalen und transversalen Laser-
fokussierung gelegt, da die erforderlichen hohen Intensitäten nur bei eng fokussierten
Laserpulsen erreichbar sind. Darüber hinaus wird die Paarbildung in einem al-
ternativen theoretischen Gerüst der Quantenelektrodynamik im 2+1-dimensionalen
Minkowski-Raum untersucht. In diesem Zusammenhang werden Veränderungen
hervorgehoben, die durch die Verringerung der Anzahl von Raumdimensionen her-
vorgerufen werden, wie z.B. nicht verschwindende Beiträge der Teilchenraten an
der Energieschwelle, wenn die Gesamtzahl der beteiligten Photonen ungerade ist.
Zusätzlich wird die Abhängigkeit der Anzahl der erzeugten Paare vom Quanten-
Nichtlinearitätsparameter im nicht-perturbativen Bereich modifiziert.

Schließlich wird die Zwei- und Drei-Photonen-Erzeugung von Quasiteilchen-Loch-
Paaren in einem Festkörpersystem aus monolagigem Graphen mit einer Lücke zwis-
chen den Valenz- und Leitungsbändern untersucht. Dabei werden Photonen mit En-
ergien im eV-Bereich verwendet. Da die Prozessraten durch ein Modell beschrieben
werden, das der modifizierten niederdimensionalen Quantenelektrodynamik ähnelt,
zeigen sie das charakteristische Verhalten einer 2+1-dimensionalen Rechnung.
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Abstract

In the present work a theoretical consideration of the Breit-Wheeler pair creation
in various scenarios and coupling regimes is presented. Both the generation of
electron-positron pairs in quantum electrodynamics and of quasiparticle-hole pairs
in special solid-state systems are investigated, and cross-connections between these
phenomena are established.

Thus, linear and strong field nonperturbative processes are discussed in setups,
where several GeV bremsstrahlung photons impinge on a field of an x-ray (for the
two-photon case) or high intensity optical (in nonperturbative regime) lasers, respec-
tively, and estimations for the numbers of created pairs are provided. For the latter,
special attention is paid to the effects of the longitudinal and transversal laser fo-
cusing since the required high intensities are achievable only in tightly focused laser
pulses. Moreover, the pair creation in an alternative framework of quantum elec-
trodynamics in 2+1 dimensional Minkowski spacetime is studied. In this context,
peculiar changes induced by the reduction of space dimensions are highlighted such
as nonvanishing contributions of the particle rates at the energy threshold when the
total number of participating photons is odd. Additionally, the dependence of the
number of created pairs on the quantum nonlinearity parameter in the nonpertur-
bative regime is altered.

Finally, the two- and three-photon production of quasiparticle-hole pairs are
studied in a solid state system of monolayered bandgapped graphene when using
photons with energies in the eV range. To that end, the reaction rates are derived
in a framework similar to the lower dimensional quantum electrodynamics and show
characteristic behaviour of a 2+1 dimensional study.
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Chapter 1

Introduction

Breit-Wheeler pair production, a reaction describing the creation of an electron-
positron pair resulting from a collision of two or more photons from sources γ and
γ′, represents one of the most fundamental processes of quantum electrodynamics
(QED). It allows for a striking possibility of matter creation purely from light, in
accordance with Einstein’s equivalence between mass and energy. Firstly described
by G. Breit and J. A. Wheeler [1] in 1934, it can be presented symbolically as

nγ + γ′ → e− + e+, (1.1)

where n stands for the number of participating γ photons. Thus, one distinguishes
between a linear two-photon process when n = 1 and a nonlinear pair creation oth-
erwise. The latter case was studied thoroughly by theoreticians in the 1960s and
1970s [2, 3, 4, 5] in configurations, where a quantised photon γ′ impinges on an elec-
tromagnetic field of monochromatic plane wave or a constant field with equal electric
and magnetic components. In the course of these studies, the focus was put on the
different regimes of the particle production depending on the intensity parameter1

ξ = |e|E0/(mω) with the electron charge e and mass m, as well as the plane-wave
field amplitude E0 and frequency ω. For ξ � 1 the process takes place in a per-
turbative weak field regime, where the pair creation rate is ruled by the absorption
of a distinct small number of photons and is suppressed with growing n: R ∝ ξ2n.
Conversely, for ξ � 1 one enters the nonperturbative strong field regime with the
characteristic Schwinger-like behaviour R ∝ e−8/(3κ), where κ = 2ω′E0/(mEc) � 1
is the quantum nonlinearity parameter for the counterpropagating geometry of the
corresponding fields and Ec = m2/|e| ≈ 1.3 × 1016 V/cm stands for the critical
Schwinger field strength. In this parameter range a perturbative expansion in ξ is
no longer possible and exact consideration is in order. A short summary of these
findings, as they represent a starting point for the studies presented in this thesis,
is discussed in chapter 3.

1Throughout this thesis and unless stated otherwise a natural unit system, where c = � = ε0 = 1
with the speed of light c, the Planck’s constant h divided over 2π and dielectric permittivity of
vacuum ε0, is employed. Moreover, a metric with the signature diag(gμν) = (1,−1,−1,−1) and
four-derivative ∂μ = ( ∂

∂t ,−∇∇∇) is used.

1
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Regardless of the high interest from the theoretical point of view, experimental
verification of the Breit-Wheeler process has been so far accomplished solely in the
nonlinear multiphoton (ξ � 1) regime in an experiment conducted at the Stanford
Linear Accelerator Center (SLAC) [6, 7]. The latter took place via two steps: Firstly,
multi-GeV energy photons were generated via an interaction between a 46.6 GeV
electron beam with an optical terawatt laser pulse of several eV frequency. Secondly,
the backscattered photons reacted with the laser field creating Breit-Wheeler pairs
and allowing for detection of about 100 created positrons during the entire experi-
ment. In general, the main obstacle for observation of this process is dictated by the
high energy required for the reaction to take place. Hence, in the described SLAC
setup at least five laser photons were needed (when the laser-dressing is taken into
account) in the second reaction step [8, 9].

The energy threshold lies even higher for the experimental verification of the
linear Breit-Wheeler pair creation demanding ωω′ ≥ 2m2 for counterpropagating
photon sources. Thus, a first observation of this channel has recently succeeded
in collisions of quasireal photons produced by acceleration of gold ions to ultra-
relativistic energies [10]. In addition, several theoretical proposals for experimental
validation of the linear process involving real photons were put forward: there are
studied designs combining thermal hohlraum radiation with plane-wave electromag-
netic field [11] or photons produced from bremsstrahlung in a high-Z target [12].
Alternatively, incorporation of two Compton gamma sources [13], laser pulses inter-
acting with thin aluminium targets or dense, short gas jets [14] and multi-PW laser
beams penetrating through narrow tube targets [15] were pursued. Moreover, an
experimental setup put forward at the Rutherford Appleton Laboratory is aiming to
detect the two-photon Breit-Wheeler process in interactions of MeV bremsstrahlung
photons with an x-ray laser [16].

Additionally, also the high intensity regime of the Breit-Wheeler pair production
with ξ � 1 has eluded experimental detection so far. However, the complication here
is represented by the requirement of extremely high effective field strength (ω′/m)E0,
which has to come close to the Schwinger scale. Consequently, solely with the recent
development in the laser and accelerator facilities a step towards the detection of
strong field Breit-Wheeler pairs can be taken (see Refs. [17, 18, 19, 20, 21] and
references therein). Therefore, vast theoretical effort has been put on the realistic
modelling of the involved laser field as the needed high intensity can be currently
reached only in tightly focused, short laser pulses (see e.g. Refs. [22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32]).

In this context, the present thesis addresses theoretically the questions of Breit-
Wheeler pair creation in different regimes and scenarios. To that end, after a pre-
sentation of general aspects of QED and a review on the pair production in a plane
wave, which are exposed in chapters 2 and 3, correspondingly, chapter 4 is dedi-
cated to the considerations of linear and strong field Breit-Wheeler reactions. Thus,
in section 4.2 a possibility for observation of the two-photon process involving a
bremsstrahlung photon impinging on an x-ray laser pulse is elucidated and the case
of bremsstrahlung interaction with an optical laser is discussed in section 4.3. In the



3

latter, special attention is paid to the incorporation of the laser focusing and study
of its impact on the pair production. These investigations are performed with regard
to the planned experiment at the Center of Advanced Laser Applications (CALA),
where an observation of the Breit-Wheeler pair creation in the highly nonlinear
nonperturbative ξ � 1, κ ≈ 1 regime for the first time is aimed [33].

Next, in chapter 5 the theory of quantum electrodynamics in 2+1 spacetime
dimensions is introduced and applied to the Breit-Wheeler pair creation. Thus,
the effect of lowering the spacial dimensionality is studied and striking differences
to the ordinary QED are shown: In 2+1 dimensional spacetime, when an even
number of strong field photons takes part in the particle production, the rate shows
a nonvanishing behaviour at the energy threshold, where created particles possess
zero momentum. In order to deepen the understanding of the found discrepancy
and apply the results of this rather abstract chapter on a real physical system, the
Breit-Wheeler pair creation in bandgapped graphene is considered in chapter 6.

Graphene monolayers with a gap between the valence and conduction bands
represent a sophisticated theoretical (and experimental) laboratory for observation
of Breit-Wheeler processes as valence electrons in this material when excited create
a quasiparticle-hole pair. The time evolution of the quasiparticle and hole in the
vicinity of the Fermi surface can be described by a relativistic Dirac-like equation
in 2+1 spacetime dimensions. When irradiating the graphene sheet with two light
sources, the analogues of Breit-Wheeler process take place. In subsections 6.2.1 and
6.2.2 of this thesis the two- and three-photon quasipair creation is studied. The
calculation describing the linear Breit-Wheeler reaction in bandgapped graphene
represents an alternative to the approach in section 4.2 which requires much lower
energy. Additionally, the study of the three-photon reaction is distinguished by the
non-zero threshold behaviour predicted in chapter 5 and providing this way a path
for an experimental observation of the results in the lower dimensional Minkowski
spacetime. Finally, the conclusions are provided in the last chapter, whereas some
technical details are displayed in appendices.
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Chapter 2

Theoretical framework of QED

The interaction of electrons, positrons and photons is described by the fundamental
theory of QED. The basic quantity from which all observables can be derived, is the
corresponding action. It reads [34]

S[a, ψ, ψ̄] =

∫
d4x

(
ψ̄(x)

(
i /D −m

)
ψ(x)− 1

2ζ
(∂μa

μ(x))2 − 1

4
fμν(x)f

μν(x)

)
,

(2.1)
where the Feynman notation /D = γμD

μ with 4× 4−dimensional Dirac γ−matrices
(see appendix A.1.1 for further details) and Dirac adjoint ψ̄ = ψ†γ0 of a four-
dimensional bispinor fermion field ψ are introduced. Moreover, m and e, e < 0,
denote the electron mass and charge, correspondingly, and Dμ = ∂μ + ieaμ stands
for the covariant derivative. The electromagnetic sector is represented by U(1) gauge
field aμ and the electromagnetic field tensor fμν . Here, ζ stands for the gauge fixing
parameter and it allows for the canonical quantisation of the electromagnetic field in
a Lorentz covariant way. Hence, from Eq. (2.1) we read off the fermionic, photonic
and interaction Lagrangian densities

Lf (x) = ψ̄(x)
(
i/∂ −m

)
ψ(x),

Lγ(x) = − 1

2ζ
(∂μa

μ(x))2 − 1

4
fμν(x)f

μν(x),

Lint(x) = −eψ̄(x)/a(x)ψ(x),

(2.2)

which are the starting points for description of the free photon and fermionic fields
as well as their interaction.

2.1 Interaction

In the interaction representation of QED, the interplay between particles is described
via scattering matrix (S-matrix) elements of the form

〈out|Ŝ[ψ̂, ˆ̄ψ, â]|in〉 (2.3)

5
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with the scattering operator

Ŝ[ψ̂, ˆ̄ψ, â] = T
[
ei

∫
d4xL̂int

]
, (2.4)

where T [...] stands for the time ordering operator and ψ̂, ˆ̄ψ, â denote quantised
fermion and photon field operators, correspondingly. Since the coupling between
electrons and positrons with electromagnetic field is dictated by the fine-structure
constant α = |e|2/(4π) ≈ 1/137 � 1, perturbation theory can be applied1. In the
present thesis, the expansion of the scattering operator up to the third order is of
interest

Ŝ[ψ̂, ˆ̄ψ, â] ≈ 1 + Ŝ(1)[ψ̂, ˆ̄ψ, â] + Ŝ(2)[ψ̂, ˆ̄ψ, â] + Ŝ(3)[ψ̂, ˆ̄ψ, â] +O
(
e4
)
, (2.5)

where

Ŝ(1)[ψ̂, ˆ̄ψ, â] = −ieT
[∫

d4x ˆ̄ψ(x)/̂a(x)ψ̂(x)

]
,

Ŝ(2)[ψ̂, ˆ̄ψ, â] =
i2e2

2!
T
[∫

d4x

∫
d4y ˆ̄ψ(x)/̂a(x)ψ̂(x) ˆ̄ψ(y)/̂a(y)ψ̂(y)

]
,

Ŝ(3)[ψ̂, ˆ̄ψ, â] = − i3e3

3!
T
[∫

d4x

∫
d4y

∫
d4z ˆ̄ψ(x)/̂a(x)ψ̂(x) ˆ̄ψ(y)/̂a(y)ψ̂(y) ˆ̄ψ(z)/̂a(z)ψ̂(z)

]
.

.

(2.6)

The states |in〉 and |out〉 represent the asymptotic states of the system at t → −∞
and t → ∞, respectively, when no interaction is present.

2.2 Radiation sector

2.2.1 Quantised radiation field and number states

When setting the gauge fixing parameter ζ = 1 (so-called Feynman gauge) and
carrying out the quantisation of the gauge field within Gupta-Bleuler formalism
[35, 36], the quantised electromagnetic field reads

âμ(x) = â+μ (x) + â−μ (x) =
∑
λ,k

1√
2ωVγ

(
εμ,λâk,λe

−ikx + ε∗μ,λâ
†
k,λe

ikx
)

(2.7)

with the normalisation volume Vγ, four-momentum k = (ω,kkk), k2 = 0, polarisation

vectors εμ,λ and creation and annihilation operators â
(†)
k,λ obeying the canonical equal

time commutation relations

[âk,λ, â
†
k′,λ′ ] = −gλλ′δkkk,kkk′ (2.8)

1Later on it will be shown that this condition needs to be modified in strong fields.
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and zero otherwise. In general, there exist four polarisation vectors with λ = 0, ...3.
Here, however, only two physical degrees of freedom for transversal polarisation
will be taken into account with λ = 1, 2 (for further details see Refs. [35, 36]) and
εμλεμ,λ′ = −δλλ′ . Thus, the orthogonality condition εk = 0 and the completeness
relation ∑

λ=1,2

εμλε
ν
λ = −gμν − kμkν − nk(kμnν + kνnμ)

(nk)2
(2.9)

with nμ = (1, 0, 0, 0) hold. Lastly, quantisation of the field requires introduction
of the vacuum state of minimal energy |0〉 with âk,λ|0〉 = 0 and 〈0|0〉 = 1, while
the quantised field itself describes quantum fluctuations around it. In general, a
quantum state with well defined number of photons nk,λ is represented by a Fock
number state

|nk,λ〉 =
(â†k,λ)

nk,λ√
nk,λ!

|0〉. (2.10)

2.2.2 Classical fields and coherent states

In this thesis the main source of photons is a laser, which produces coherent light
and, thus, can be most accurately described by a coherent state |αk〉 in a mode k
with normalisation 〈αk|αk〉 = 1 [37, 38]

|αk〉 = e−
1
2
|αk|2

∞∑
nk,λ=0

αnk,λ√
nk,λ!

|nk,λ〉 = D̂(αk)|0〉, (2.11)

where αk is a complex number and D̂(αk) is a unitary displacement operator. Fol-
lowing Ref. [39], a relation

D̂−1(αk)âμ(x)D̂(αk) = Aμ(x) + âμ(x) (2.12)

holds. Here, Aμ(x) stands for an “external” classical electromagnetic field potential
describing the laser.

When the number of laser photons that participate in the pair creation is small
compared to the total photon number in the laser field (which will be the case for
the present thesis, for further details see Refs. [40, 41, 42]), the depletion effects
of the laser may be ignored. In such a scenario the same coherent state would be
present in both final and initial states of the S-matrix element. Then, a transition

〈αk, n|Ŝ[ψ̂, ˆ̄ψ, â]|αk, n〉 → 〈n|Ŝ[ψ̂, ˆ̄ψ, â+A]|n〉 (2.13)

is allowed to be made, where |n〉 denotes the Fock number state of charged particles
involved in the process. Thus, the interaction with the laser is incorporated by the
classical field and the S-matrix elements can be calculated as usual with number
states.
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2.3 Fermionic sector

From the first line in Eq. (2.2) an equation of motion for free Dirac fermions can be
derived

(i/∂ −m)ψ(x) = 0, (2.14)

which is solved by a four-component spinor ψ(x) invariant under Sl(2,C) transfor-
mation [34]. For an electron, the latter reads

ψp,s(x) =

√
m

p0V
up,se

−ipx (2.15)

with a spinor up,s and when normalised to one particle in a normalisation volume
V . This condition is equivalent to setting the 0−th component of the current jμ =
ψ̄p,sγ

μψp,s to 〈j0〉 = 1/V . Moreover, a solution for an antiparticle (positron) is
obtained from ψp,s(x) when substituting p → −p and up,s → vp,s. Further details on
spinors up,s and vp,s are presented in appendix A.2.1.

When quantised, the plane-wave expansions of the fermionic field operators result

ψ̂(x) =
∑
p,s

√
m

p0V

(
up,sb̂p,se

−ipx + vp,sd̂
†
p,se

ipx
)
,

ˆ̄ψ(x) =
∑
p,s

√
m

p0V

(
v̄p,sd̂p,se

−ipx + ūp,sb̂
†
p,se

ipx
) (2.16)

with the nonvanishing equal time anticommutation relations for particle and an-
tiparticle creation and annihilation operators

{b̂p,s, b̂†p′,s′} = {d̂p,s, d̂†p′,s′} = δs,s′δppp,ppp′ (2.17)

and zero otherwise. Lastly, the fermionic Fock number states are defined as

|np−,s−〉 =
(b̂†p−,s−)

np−,s−√
np−,s− !

|0〉, |np+,s+〉 =
(d̂†p+,s+)

np+,s+√
np+,s+ !

|0〉 (2.18)

for electron and positron, correspondingly, with the fermion vacuum |0〉 satisfying
b̂p−,s− |0〉 = d̂p+,s+ |0〉 = 0. Moreover, the fermionic Feynman propagator

SF (x− y) = 〈0|T
[
ψ̂(x) ˆ̄ψ(y)

]
|0〉 (2.19)

in its Fourier representation reads

SF (x− y) =

∫
d4p

(2π)4
ie−ip(x−y)

/p−m+ i0+
. (2.20)
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2.4 QED in strong laser fields

2.4.1 Furry picture

When only few photons participate in the process, the corresponding electromag-
netic field is considered to be weak and the perturbation theory may be applied.
However, in the case of strong fields, where a large number of photons is involved,
an alternative treatment is in order. To that end, a transition to the special case of
interaction picture, which is called Furry picture [39, 43], is made, where the inter-
action of charged particles with the strong field is taken into account exactly2. This
is done by dividing the gauge field in Eq. (2.1) into perturbative weak field aμ(x),
which is further quantised, and strong background field Aμ(x), which is treated
classically and absorbed in the fermionic Lagrangian density. Thus, the single par-
ticle states related to fermions follow from solutions of Dirac equation in external
electromagnetic field and incorporate the interaction with background field in full
glory.

Of special interest for this thesis is a plane-wave external field Aμ(φ), which
depends on coordinates only through a phase φ = kx with k denoting the field
wave vector. Since the Dirac equation for this field configuration can be solved
analytically (see next section), the Fock space for the resulting field dressed states
can be constructed and the scattering operator reads

Ŝ[Ψ̂, ˆ̄Ψ, â] = T
[
e−ie

∫
d4x ˆ̄Ψ(x)/̂a(x)Ψ̂(x)

]
, (2.21)

where Ψ̂(x) stands for the fermionic field operator in Furry picture, which can be
expanded in dressed Volkov states, as discussed below.

2.4.2 Volkov states

Volkov states, which are also called dressed states, are the solutions of the Dirac
equation in a classical plane-wave electromagnetic field Aμ(φ) with a phase φ = kx
in a Lorentz gauge (∂μAμ = 0)

(i/∂ − e /A−m)Ψ = 0. (2.22)

When exploiting an ansatz Ψp,s(x) = NFp(φ)up,se
−ipx [2, 44, 45], where Fp(φ) rep-

resents the modification in the solution caused by the gauge field and converges to
Fp(φ)up,s → up,s for Aμ(φ) = 0, one obtains an electron solution

Ψp,s(x) = N(1 +
e

2kp
/k /A(φ))up,se

iSp(x) (2.23)

2The wave functions in interaction representation and Furry picture are related by a canonical
transformation.
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with the classical action

Sp(x) = −px−
∫ φ

0

dϕ

(
epA(ϕ)

kp
− e2A2(ϕ)

2kp

)
(2.24)

in the exponent. For the derivation of Eq. (2.23) the following relation was employed

fμν = kμ
dAν(φ)

dφ
− kν

dAμ(φ)

dφ
. (2.25)

In order to obtain a Volkov solution for a positron one substitutes p → −p and the
spinor up,s through vp,s (see Eq.(A.4)). Furthermore, the normalization constant N
is set similarly to the case of free fermions demanding 〈j0〉 = 〈Ψ̄p,sγ

0Ψp,s〉 = 1/V ,

which implies N =
√

m
q0V

. Here, q0 stands for the 0−th component of the effective

particle momentum in the electromagnetic field, which is defined as a phase averaged
kinetic momentum

qμ = pμ − e〈Aμ〉+
(
e
p〈A〉
kp

− e2
〈A2〉
2kp

)
kμ (2.26)

with effective squared mass q2 = m∗2 = m2(1 + e2〈A〉2/m2 − e2〈A2〉/m2).

Since the vacuum in the presence of a plane-wave field is stable, i.e. no creation
of electron-positron pairs via the Schwinger mechanism occurs [46], the quantisation
of fermionic fields is done similarly to the case of free fermions and the field operators
in the dressed state expansion read3

Ψ̂(x) =
∑
p,s

√
m

q0V

([
1 +

e

2kp
/k /A(φ)

]
up,se

iSp(x)b̂p,s

+

[
1− e

2kp
/k /A(φ)

]
vp,se

iS−p(x)d̂†p,s

)
, (2.27)

ˆ̄Ψ(x) =
∑
p,s

√
m

q0V

(
ūp,s

[
1 +

e

2kp
/A(φ)/k

]
e−iSp(x)b̂†p,s

+v̄p,s

[
1− e

2kp
/A(φ)/k

]
e−iS−p(x)d̂p,s

)
. (2.28)

In the next section a linearly polarised plane-wave potential of the form Aμ(φ) =
a0ε

μ cos(kx) with a maximal amplitude a0 and polarisation εμ is incorporated. In

3It can be shown that Volkov states form a complete orthogonal basis of the solutions to
Eq. (2.22) (for proof of completeness see e.g. Refs. [47, 48] and Refs. [3, 49] for orthogonality).
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such a scenario Volkov solutions for an electron and a positron read correspondingly

Ψq−,s− =

√
m

q0−V
(1 +

e

2kq−
/k /A)up−,s−e

−iq−x−i ea0q−ε

kq− sin(kx)−i e2a20
8kq− sin(2kx)

, (2.29)

Ψq+,s+ =

√
m

q0+V
(1− e

2kq+
/k /A)vp+,s+e

iq+x−i ea0q+ε

kq+
sin(kx)+i

e2a20
8kq+

sin(2kx)
. (2.30)

Here, the effective momentum and mass can be simplified to

qμ∓ = pμ∓ +
e2a20
4kq∓

kμ, m∗2 = m2

(
1 +

e2a20
2m2

)
(2.31)

and kp∓ = kq∓ holds. In line, the field operators need to be adjusted accordingly.
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Chapter 3

Breit-Wheeler pair creation in
monochromatic plane wave

Figure 3.1: Feynman dia-
gram of Breit-Wheeler pair
creation in a monochromatic
plane-wave field.

In this section the Breit-Wheeler pair creation pro-
cess in a linearly polarised plane-wave electromag-
netic field Aμ = εμa0 cos(kx) with polarisation εμ

and wave vector k = (ω,kkk) is considered1. Here,
an electron and a positron with momenta and spin
p±, s± are created when a photon with a wave vector
k′ and polarisation ε′, which originates from a weak
electromagnetic field that is seen as a perturbation,
interacts with a strong field Aμ. In such a scenario,
the only nonvanishing contribution to the transition
amplitude stems from the first order scattering oper-

ator in the Furry picture Ŝ[Ψ̂, ˆ̄Ψ, â] (see Eq. (2.21))

Sfi = 〈1p+,s+ ; 1p−,s− |Ŝ(1)[Ψ̂, ˆ̄Ψ, â]|1k′,ε′〉. (3.1)

Observe that the interaction with the monochro-
matic plane wave is accounted for in full glory by
the fermion field operators which contain Volkov solutions introduced in Sec. 2.4.2.
The corresponding Feynman diagram is depicted in Fig. 3.1, where a wavy line in-
dicates a quantised photon and double lines represent dressed states for electron
and positron. Next, when employing the anticommutation relations for fermions
and commutation relations for the photonic creation and annihilation operators the
transition amplitude reads

Sfi = −ie

√
1

2ω′Vγ

∫
d4xΨ̄q−,s−(x)/ε

′e−ik
′xΨq+,s+(x). (3.2)

1This subject war thoroughly investigated in Refs. [2, 3, 4], by which the presentation of this
section is guided.

13
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After inserting the Volkov solutions from section 2.4.2 into the equation above and
using the identities with γ−matrices displayed in appendix A.1.1 as well as the
transversal condition εk = 0, Sfi results to

Sfi = −ie

√
1

2ω′Vγ

m2

q+0 q
−
0 V

2

∫
d4xūp−,s−Mvp+,s+e

−i(k′−q+−q−)x−iz−sin(kx)−iz+sin(2kx)

(3.3)
with a matrix

M = /ε′ +
ea0
2

(
/ε/k/ε′

kp−
− /ε′/k/ε

kp+

)
cos(kx)− e2a20

2kp−kp+
/kε′μkμ cos2(kx) (3.4)

and arguments z− = ea0(
q+ε
q+k

− q−ε
q−k

), z+ = − e2a20
8

kk′
kq+kq− in the exponential function. In

order to solve the integral in Eq. (3.3), the generalised Bessel function J̃n(z−, z+) and
J̃ 1

n , J̃ 2
n are introduced in Eqs. (B.5) and (B.6) (see appendix B), correspondingly.

Following these definitions Eq. (3.3) can be simplified to

Sfi = −ie

√
1

2ω′Vγ

m2

q+0 q
−
0 V

2

∞∑
n=−∞

(2π)4δ4(nk + k′ − q+ − q−)ūp−Mnvp+ , (3.5)

where the delta function encodes the law of energy-momentum conservation in the
process and Mn is of the following form

Mn = /ε′J̃n(z−, z+) +
ea0
2

J̃ 1
n

(/ε/k/ε′
kq−

− /ε′/k/ε
kq+

)
− e2a20

2kq+kq−
ε′μkμJ̃ 2

n /k. (3.6)

Notice that the matrix above is dependent on the relative directions of field polari-
sations ε, ε′ and wave vector k. Here, two polarisation options of the weak field will
be considered: the case, where weak and strong fields are parallelly polarised (i.e.
propagate in one plane) and a case with unpolarised incident photon.

The quantity of primary interest in this thesis is the differential rate of pair
creation per volume, which is defined as

dR =
|Sfi|2
TV

V 2 d
3q−

(2π)3
d3q+

(2π)3
. (3.7)

Since d3p−d3p+/p−0 p
+
0 = d3q−d3q+/q−0 q

+
0 holds, the phase space in the expression

above is written in terms of the effective particle momenta q+, q− in order to be
consistent with the normalisation in Eqs. (2.29), (2.30). When inserting the squared
transition amplitude into the equation above one ends up with

dR =
e2m2

8π2ω′Vγ

∞∑
n=−∞

|ūp−Mnvp+ |2δ4(nk + k′ − q+ − q−)
d3q−

q−0

d3q+

q+0
, (3.8)

where the sum over n can be interpreted as a sum over a number of absorbed
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Figure 3.2: Feynman diagram depicting Breit-Wheeler pair creation in strong field
as an infinite sum of tree level contributions, where wavy lines with crosses stand
for absorbed field photons.

photons from the classical field Aμ(kx). Here, positive indices stand for photon
absorption, whereas negative n denote emission. As it will be seen later on, the
energy-momentum balance of the process will rule out negative contributions. Thus,
the interaction with the strong field is considered in full glory. The corresponding
Feynman diagram is shown in Fig. 3.2, where double lines stand for dressed states,
single lines denote free fermions and wavy lines represent perturbative and strong
field photons. The latter are marked with cross.

Firstly, the case of an unpolarised incident photon is considered. In such a sce-
nario the square of the amplitude is obtained by averaging over possible photon po-
larisations2 ε′λ′ and summing over lepton spins s±, i.e. |Mn|2 = 1

2

∑
λ′,s± |ūp−Mnvp+ |2,

and can be written as

|Mn|2 =
1

2

∑
λ′

Tr

[
/p− +m

2m
Mn

/p+ −m

2m
M̄n

]
(3.9)

with M̄n = γ0M †
nγ

0. The sum over polarisations is managed with help of the
completeness relation in Eq. (2.9). It is worth emphasising that, owing to the Ward
identity, only the term containing −gμν will contribute to the squared amplitude.
Exploiting the completeness relation as well as the energy-momentum balance and
transversal condition (kε = 0) provides

|Mn|2 = J̃2
n(z−, z+)−

e2a20
m2

(
1− (kk′)2

2kq+kq−

)[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

]
. (3.10)

Additionally, when deriving the equation above the following relation between gen-
eralised Bessel functions [2, 50]

(n+ 2z+)J̃n(z−, z+)− z−J̃ 1
n − 4z+J̃ 2

n = 0 (3.11)

has been used. Next, a particular polarisation of the incident photon is considered:

2Here, the considered transverse polarisations ε′λ′ are ε′‖ and ε′⊥ with the subscripts ‖,⊥ denoting
the parallel and perpendicular polarisations of the quantised photon, respectively, when compared
to the polarisation of the strong field.
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ε′ = ε′‖ = ε. Hence, the term proportional to cos2(kx) in Eq. (3.6) will no longer con-
tribute and when using enenrgy-momentum conservation, transversality condition
and Eq. (3.11) the squared amplitude reads

|M‖
n|2 =

1

2
Tr

[
/p− +m

2m
Mn

/p+ −m

2m
M̄n

]

= σJ̃2
n(z−, z+)−

e2a20
m2

(
1− (kk′)2

4kq+kq−

)[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

]
(3.12)

with σ = − e2a20
m2

(
z2−

64z2+
+ 1

2
+ n

4z+

)
. Moreover, since |Mn|2 =

(
|M‖

n|2 + |M⊥
n|2
)

holds, an expression for the transition amplitude of an incident photon, which is
polarised perpendicularly to the strong filed can be provided

|M⊥
n|2 = (1− σ)J̃2

n(z−, z+) +
e2a20
m2

(kk′)2

4kq+kq−

[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

]
. (3.13)

Followingly, the pair production rates per volume for a linearly polarised strong laser
field interacting with an incident photon with parallel and perpendicular polarisation
read

R⊥,‖ =
e2m2

(2π)2ω′Vγ

∞∑
n≥n0

∫
δ4(nk + k′ − q+ − q−)

d3q−

q−0

d3q+

q+0
|M⊥,‖

n|2, (3.14)

while the rate per volume for an unpolarised photon can be obtained via

R =
1

2

(
R⊥ +R‖

)
=

e2m2

8π2ω′Vγ

∞∑
n≥n0

∫
δ4(nk + k′ − q+ − q−)

d3q−

q−0

d3q+

q+0
|Mn|2. (3.15)

The fact that the summation index starts at n0 = 2m2
∗/(kk

′) results as a consequence
of the energy-momentum balance.

3.1 Asymptotic study

In this section the asymptotes of the particle creation rate for the Breit-Wheeler
process in monochromatic plane wave will be derived. The behaviour of the latter
is mainly governed by two dimensionless parameters: the intensity parameter ξ =
|e|
√

−AμAμ/m = |e|a0/m > 0, which encodes the strength of the external field, and

the quantum nonlinearity parameter κ = |e|
√

−(fμνk′μ)2/m3 = kk′ξ/m2 providing
insights on the importance of quantum effects. Depending on the intensity parameter
ξ, one distinguishes between perturbative ξ � 1 and nonperturbative ξ � 1 regimes.
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3.1.1 Small ξ behaviour

In the limit of small intensities, the rate in its most distinctive form is written as an
infinite sum of contributions resulting from interaction of the incident photon with
n strong field photons

R =
∑
n≥n0

Rn, Rn ∝ ξ2n. (3.16)

As the summands are proportional to ξ2n and ξ � 1 holds, from the equation above
it can be read off that the leading contribution to the pair creation rate is provided,
when energetically allowed, by the interaction of two photons. Hence, the terms
with n = 1 and n = 2 are considered in more detail.

The behaviour of the summands in Eq. (3.16) is dictated by the small arguments
asymptote of the generalised Bessel functions J̃n(z−, z+) as z− ∝ ξ � 1 and z+ ∝
ξ2 � 1 (see appendix B.1). Additionally, the effective electron mass and momenta
can be simplified to m∗ ≈ m and q±μ ≈ p±μ . Thus, when employing Eq. (B.8) up to
the order O(ξ2) for n = 1 one obtains

|M‖
n=1|2 =

ξ4

4

(
(kk′)2

4kp+kp−
− 1 + σm2

[
εp+

kp+
− εp−

kp−

]2)
, (3.17)

|Mn=1|2 =
ξ4

4

(
(kk′)2

2kp+kp−
− 1 +m2

[
εp+

kp+
− εp−

kp−

]2)
. (3.18)

Now, for calculation of the rates per volume a transition to the center of momentum
frame is made, where ppp+ = −ppp− = ppp =

√
ω′2 −m2 and p+0 = p−0 = ω′ = ω hold, while

the integration over ppp− is conducted with help of Dirac delta functions. Moreover,
the remaining integrals in spherical coordinates can be written as∫ 2π

0

dϕ

∫ 1

−1
d cos(ϑ)

∫
d|ppp||ppp|2

p20
δ(2p0 − 2ω′)... =

1

2

∫ 2π

0

dϕ

∫ un

1

du

u
√

u(u− 1)
...

(3.19)
with ϑ = ∠(kkk,ppp) and ϕ denoting an angle between (kkk,ppp) and (kkk, εεε) planes, i.e.
εp+ = −|ppp| cos(ϕ) sin(ϑ). In order to obtain the right hand side of the equation
above a substitution

cos(ϑ) =
p0
|ppp|

√
1− 1

u
with u =

(kk′)2

4kp+kp−
(3.20)

was performed and un = n/n0 = ωω′/m2 for n = 1. Thus, with the normalised

Mandelstam variable s2 = kk′/2m2 and σ = 1 +
(

ns2

u
− 1

)
sin(ϕ) the rates read

R
‖
n=1 =

e2m2ξ2

32π2ω′Vγ

∫ 2π

0

dϕ

∫ s2

1

du

u
√

u(u− 1)

(
u− 1 + σ

(
2

s2

√
u(s2 − u) cos(ϕ)

)2
)
,

(3.21)
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Rn=1 =
e2m2ξ2

64π2ω′Vγ

∫ 2π

0

dϕ

∫ s2

1

du

u
√

u(u− 1)

(
2u− 1 +

(
2

s2

√
u(s2 − u) cos(ϕ)

)2
)

(3.22)
and when the integrations are carried out one ends up with

R
‖
n=1 =

e2m2ξ2

16πω′Vγ

(3 + 2s2)
[
s(1− s2)−

√
1− s2(2s2 − 1) arccos(s)

]
2s4

√
s2 − 1

, (3.23)

Rn=1 =
e2m2ξ2

16πω′Vγ

[
−s

√
s2 − 1(1 + s2)

s4
+

(−1 + 2(s2 + s4))ln(s+
√
s2 − 1)

s4

]
.

(3.24)

Similarly, the expressions for n = 2, when taking into account terms up to
the order O(ξ4), are derived with help of Eq. (B.9) where the relevant contributions
involving generalised Bessel were obtained. Hence, the squared transition amplitudes
result to

|M‖
n=2|2 =

(
σ

(
z2−
8

+
z+
2

)2

− ξ2(1− u)

(
z2−
32

− z+
8

))
, (3.25)

|Mn=2|2 =
((

z2−
8

+
z+
2

)2

− ξ2(1− 2u)

(
z2−
32

− z+
8

))
(3.26)

and, when integrated in the center of momentum frame where for n = 2 the relation
ω′ = 2ω holds, the particle rates per volume approximate

R
‖
n=2 =

e2m2ξ4

4πω′Vγ

(
s
√
4s2 − 2(75− 170s2 + 28s4 + 144s6)

1536s8

+
3(25− 90s2 + 76s4)arcsinh(

√
2s2 − 1)

1536s8

)
, (3.27)

Rn=2 =
e2m2ξ4

8πω′Vγ

(
s
√
4s2 − 2(15− 40s2 + 12s4 + 48s6)

256s8

+
15(1− 2s2)2arcsinh(

√
2s2 − 1)

256s8

)
. (3.28)

3.1.2 Large ξ behaviour

The calculation of the pair production rates for ξ � 1 presented in this subsection
draws on Ref. [2]. In this limit, a large number of laser photons participates in
the particle creation. Hence, many summands from Eqs. (3.14) and (3.15) provide
similar contributions to the particle rate and a transition to the continuum limit∑

n ... →
∫
dn can be performed. Afterwards, the integrations over qqq+ and n are
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successively solved with help of the Dirac delta functions with

qqq+ = nkkk + kkk′ − qqq−, q+0 = nω + ω′ − q−0 (3.29)

and

δ(nω + ω′ − q+0 − q−0 ) =

∣∣∣∣ q+0kq+
∣∣∣∣ δ(n− n∗), n∗ =

k′q−

k(k′ − q−)
. (3.30)

In such a scenario the rates from Eq. (3.14) read

Rξ	1
⊥,‖ =

e2m2

(2π)2ω′Vγ

∫ ∞

−∞
dq−1

∫ ∞

−∞
dq−2

∫ ∞

−∞

dq−3
q−0 kq+

|M⊥,‖
n∗ |2. (3.31)

Next, without loss of generality it is assumed that the strong field propagates in
x3−direction and its polarisation vector is εεε = (1, 0, 0). Then, the new variables

χ+ =
kq+

m2
ξ, χ− =

kq−

m2
ξ,

λ = ω′ − k′3, γ+ = q+0 − q+3 , γ− = q−0 − q−3 ,

cos(x0) = − z−
8z+

=
q+ε q−k − q−ε q+k

mξkk′
=

q−1 γ
+ − q+1 γ

−

mξλ
,

t =
q−2 γ

+ − q+2 γ
−

mλ
with σ = 1 + t2

(3.32)

are introduced and substitutions in the integration variables are performed, so that
one arrives at

Rξ	1
⊥,‖ =

e2m2

(2π)2ω′Vγ

∫ π/2

0

dx0

∫ ∞

0

dt

∫ κ/2

0

dχ−
8ξ2 sin(x0)

χ+χ−
|M⊥,‖

n∗ |2, (3.33)

since the integrand is an even function in cos(x0) and t. In order to define the
integration region in χ′ the energy-momentum conservation and symmetry of the
integrand in χ− and χ+ with χ− + χ+ = κ were taken into account (the latter
results in χ− ∈ [0, κ/2]). Further, the substitutions t = sinh(u) and χ− = κ(1 +
tanh(v))/2 are made and large argument asymptotes of generalised Bessel functions
from Eq. (B.30) are employed in the equations above resulting in

Rξ	1
‖ ≈ 4e2m2

π3ω′Vγ

∫ π/2

0

dx0

∫ ∞

0

du

∫ ∞

0

dv

√
z cosh2(u)

cosh2(v)

(
Φ2(z)+

sinh2(v)

[
Φ2(z) +

Φ′2(z)
z

])
(3.34)
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and

Rξ	1
⊥ ≈ 4e2m2

π3ω′Vγ

∫ π/2

0

dx0

∫ ∞

0

du

∫ ∞

0

dv

√
z cosh2(u)

cosh2(v)

(
− tanh2(u)Φ2(z)+

cosh2(v)

[
Φ2(z) +

Φ′2(z)
z

])
(3.35)

with the Airy function Φ(z) = 1√
π

∫∞
0

cos(t3/3 + zt)dt and its derivative Φ′(z) of

argument z =
(

2 cosh2(v)
κ sin(x0)

)2/3

cosh2(u) . Finally, one evaluates the integrals above

asymptotically for different values of κ and arrives at (compare Eqs. (36’) and (36”)
in Ref. [2]) for κ � 1

R‖ =
3e2m2

32ω′Vγ

( κ

2π

)3/2

e−8/(3κ), R⊥ = 2R‖ (3.36)

and

R‖ =
27Γ7

(
2
3

)
e2m2

56π5ω′Vγ

(
3κ

2

)2/3

, R⊥ =
3

2
R‖ (3.37)

for κ � 1.

3.2 Constant crossed fields

When writing ξ = |e|E0/(mω) with the amplitude of the electromagnetic field E0 it
can be realised that the limit ξ � 1 can be seen as a limit to decreasing frequency ω
at constant intensity. Hence, following Ref. [2], a connection between a probability
of a process F (E0) in a constant field, whose magnetic and electric field strengths
are equal and orthogonal with amplitude E0 (constant crossed field), and probability
of the same process R(E0 sin(x0)) in an alternating field of plane wave exists, if the
latter varies slowly enough

R(E0) =
2

π

∫ π/2

0

dx0 F (E0 sin(x0)). (3.38)

To that end, the rates of the Breit-Wheeler pair creation in a constant crossed field
can be read off from Eqs. (3.34) and (3.35). Moreover, in Refs. [3, 4, 5] it is shown
that the rates per volume with fixed polarisation for the process in question can be
written as

F‖,⊥ = − αm2

6
√
πω′Vγ

∫ ∞

1

du(8u+ 1∓ 3)

u
√

u(u− 1)

Φ′(z)
z

(3.39)

with argument z = (4u/κ)2/3 and F = 1
2
(F‖ + F⊥).
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3.2.1 Limits for small and large κ

Depending on the quantum nonlinearity parameter, Eqs. (3.39) can be evaluated
asymptotically resulting in

F‖ =

√
3

2

e2m2

32πω′Vγ

κe−8/(3κ), F⊥ = 2R‖ (3.40)

for κ � 1 and

F‖ =
3Γ4

(
2
3

)
e2m2

28π3ω′Vγ

(3κ)2/3 , F⊥ =
3

2
R‖ (3.41)

for κ � 1. Thus, for small κ the rate shows exponential suppression, which is typ-
ical for tunnelling processes and Schwinger pair production. For large nonlinearity
parameters some remarks are in order. Firstly, the expressions for κ � 1 apply as
long as ξ � max{1, κ1/3} holds (see appendix B.2). Moreover, Eq. (3.41) combined
with the optical theorem provides insights on the validity of the perturbation the-
ory introduced in Sec. 2.1: The perturbative expansion is valid as long as radiative
corrections to the quantised radiation field remain negligible, i.e. if the condition
ακ2/3 � 1 is fulfilled. Hence, for strong electromagnetic fields the condition α � 1
should be modified to ακ2/3 � 1 [5].

3.2.2 Limit for ξ � 1, κ ≈ 1
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-2
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Figure 3.3: Comparison of the rate given in
Eq. (3.43) (black solid) with the analytical
asymptotes for κ ≈ 1 from Eq. (3.44) (red
dashed) and κ � 1 (blue dotted). This figure
was originally published in Ref. [51].

This subsection is based on section II
C of Ref. [51], where the asymp-
tote of the crossed constant field
Breit-Wheeler rate per volume in the
strong field regime (ξ � 1, κ ∼ 1)
was derived. This parameter config-
uration is of high relevance as it is
planned to be studied experimentally
at CALA in the near future [33].

In order to establish the be-
haviour of F in this limit, one starts
with the relation

Φ′(z) = − z√
3π

K2/3

(
2

3
z3/2

)
,

(3.42)
where Kν(x) stands for the modified
Bessel function of the second kind
[52]. As a consequence, the unpo-
larised rate resulting from Eq. (3.39)
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can be written as

F =
αm2

6πω′Vγ

8

33/2κ

∫ ∞

8
3κ

dp
3κp+ 1

p3/2
√

p− 8
3κ

K2/3(p), (3.43)

where the change of variable p = 8u/(3κ) has been carried out. Since p ∈ [ 8
3κ
,∞)

holds, the first contribution in the numerator is always substantially larger than 1
and the latter can be ignored. Moreover, for κ ∼ 1 the main contribution in the
integral results from the region p ∼ 8/(3κ), which is substituted in the integrand
and one ends up with

Fκ≈1 ≈
αm2

6πω′Vγ

√
8κ

∫ ∞

8
3κ

dp
K2/3(p)√
p− 8

3κ

=
αm2

πω′Vγ

(
2

3

)3/2

K7/12

(
4

3κ

)
K1/12

(
4

3κ

)
.

(3.44)
Note that the restrictions provided below Eq. (3.37) apply also in the present case.

The behaviour of the numerically evaluated rate given in Eq. (3.43) as a function
of κ is shown as black solid line in Fig. 3.3. It is compared with the asymptotic rate
from Eq. (3.44) (red dashed) and the one corresponding to the case κ � 1 (blue
dotted). In the region of interest for this section the black solid and red dashed
curves overlap. Indeed, for κ ∈ [1.5, 2.5] the error introduced by Eq. (3.44) lies
below 2% and grows to approximately 10% for κ � 1. This analysis reveals that
Fκ≈1 provides a good description of the pair production in the considered limit.



Chapter 4

Pair production from
bremsstrahlung in a focused field

In this chapter a theoretical study of an approach for detection of Breit-Wheeler
pairs is presented. The latter combines a perturbative photon generated via brems-
strahlung with a laser field, this way providing the needed high energy to the system
and allowing the process to take place. The scheme relies on the proposal of Reiss
[53], where an idea to probe the Breit-Wheeler pair creation via bremsstrahlung-laser
interaction was presented initially1. Here, the emphasis lies on a realistic description
of the involved fields: on the one hand, bremsstrahlung is incorporated via a photon
distribution function, which is characterised by a photon energy spectrum and not
a sharp energy value. On the other hand, focusing of the laser is integrated in the
calculation as the needed intensities are solely provided in tightly focused laser fields.

The scheme of the proposed setup is depicted in Fig. 4.1. Here, bremsstrahlung
photons are supposed to be generated by ultrarelativistic few-GeV electrons that
penetrate a high-Z target material producing in this way a broad spectrum of
bremsstrahlung radiation reaching energies up to several GeV. For acceleration of
electrons the laser wake-field acceleration (LWFA) method [33, 56, 57] is recom-
mended as it provides highly collimated and intense beams, which are required for
such endeavours. At the envisaged electron energies, in the high-Z target along-
side with the emission of bremsstrahlung Bethe-Heitler pairs can also be created,
since atomic Coulomb fields may lead to a photon decay [58, 59]. Thus, in order to
keep the interaction point free from particles not related to the process of interest
(i.e. Bethe-Heitler pairs and incident electrons), a strong magnet needs to be intro-
duced, which can sidetrack noise particles over a distance L. In the present context,
L ∝ O(1) m is needed.

Next, depending on the employed laser class, an experimental observation of
both linear and highly nonlinear nonperturbative regimes of Breit-Wheller pair pro-
duction is possible. To that end, if an x-ray free-electron laser (XFEL) emitting
keV photons is incorporated, the energy of the system would be sufficient for pro-
duction of an electron positron pair from two photons. Such scenario, where ξ � 1

1Similar configurations were also considered in Refs. [19, 32, 33, 54, 55].

23
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Figure 4.1: Scheme of the setup envisaged to experimentally observe Breit-Wheeler
pair creation as a result of collisions of bremsstrahlung γ quanta with a laser pulse.

holds, is investigated in section 4.2, which is based on Ref. [60]. Alternatively,
an optical laser of high intensity can be used that allows for reaching the ξ � 1,
κ ≈ 1 regime. The corresponding experimental setup is put forward by a group
at CALA and is described in Ref. [33]. A thorough theoretical study of the latter
scenario is discussed in detail in section 4.3, where, in particular, effects of longitu-
dinal and transversal focusing when modelling the laser field as a focussed paraxial
Gaussian pulse are displayed, limits of the paraxial approximation are discussed and
super-Gaussian envelopes are incorporated. This section relies on results published
initially in Ref. [51].

4.1 General aspects

As described above, the main constituents of the proposed setup for creation of Breit-
Wheeler pairs are bremsstrahlung photons and a high intensity laser (see Fig. 4.1).
Thus, in this section the theoretical description of the latter is provided starting
with the laser field.

4.1.1 Focused laser

Unless stated otherwise, the focused laser in this chapter is modelled as a linearly
polarised Gaussian pulse in paraxial approximation propagating in z−direction2

with polarisation εεε = (1, 0, 0). Consequently, the only nonvanishing electric and

2The focal point of the Gaussian pulse is set to define the origin.
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magnetic field components Ex = By read (see Ref. [61])

Ex = E0
e
−
(√

2 ln(2)
(t−z)

τ

)2

√
1 + ζ2(z)

e−(
r

w(z))
2

sin(Φ), (4.1)

with the pulse phase

Φ = Φ0 + ω(t− z)− ζ(z)
r2

w2(z)
+ arctan(ζ), (4.2)

where Φ0 stands for the constant phase and w(z) = w0

√
1 + ζ2(z) denotes the

beam width. The latter depends on the longitudinal coordinate z via the factor
ζ(z) = z/zR with the Rayleigh length zR = πw2

0/λ and the beam waist size w0 at
the focal point (z = 0). The transversal focusing of the pulse is accounted for by the
nontrivial dependence on r2 = x2 + y2, whereas its temporal envelope is governed
by τ , which is taken at FWHM from the intensity distribution.

4.1.2 Bremsstrahlung photons

In order to incorporate bremsstrahlung radiation into the process of Breit-Wheeler
pair production, the corresponding pair creation rate R is weighted by the distribu-
tion function W (kkk′) of the bremsstrahlung photons and integrated over the photon
momentum kkk′

Rγ =

∫
d3k′

(2π)3
W (kkk′) R(kkk′). (4.3)

Since the incident electrons form a highly collimated beam with energies E0 exceed-
ing the GeV scale, the spreading angle of bremsstrahlung photons can be approx-
imated by the inverse electron Lorentz factor θγ ≈ 1/γe = m/E0 ∼ O(1) mrad.
Under such circumstances, the vast majority of the bremsstrahlung photons is emit-
ted tangentially to the direction of propagation of the initial electron beam and its
spectral distribution in spherical coordinates can be approximated by (ω′ = |kkk′|)

W (kkk′) ≈ (2π)3Iγ(f, �)

ω′2sin(θkkk′)E0

Θ(E0 − ω′)δ(θkkk′ − φ)δ(φkkk′), (4.4)

where Θ(x) denotes the unit step function. Here, Iγ(f, �) is the energy spectrum of
bremsstrahlung photons with f = ω′/E0 being the normalised photon energy and
� = LT/Lrad the normalised target thickness. In this formula Lrad is the radiation
length of the target material (Lrad = 3.5 mm for tungsten and Lrad = 5.6 mm for
lead) and LT stands for the target thickness. Moreover, the collision angle (see
Fig. 4.1) is denoted as φ. After integrating out the angular variables, one ends up
with the following expression for the rate of produced electron-positron pairs per
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Figure 4.2: Bremsstrahlung spectra according to Eqs. (4.6) (red dashed) and (4.7)
(blue solid). The figure on the left was originally published in Ref. [51].

incident radiating electron

Rγ ≈
∫ 1

0

dfIγ(f, �) R (4.5)

once a change of variable ω′ = fE0 has been carried out. When the solid high-Z
target is thin, i.e. � � 1, the energy spectrum of bremsstrahlung photons in the full
screening approximation3 is given by [62, 63]

Iγ(f, �) ≈
�

f
(
4

3
− 4f

3
+ f 2), (4.6)

whereas for thicker targets with � < 2 the bremsstrahlung spectrum approximates
[63]

Iγ(f, �) ≈
(1− f)4�/3 − e−7�/9

f
(
7
9
+ 4

3
ln(1− f)

) . (4.7)

The outcomes from Eqs. (4.6) (dased red) and (4.7) (blue solid) are compared in
Fig. 4.2. In the left panel a very thin target (� = 0.015) is chosen, whereas a thick
target is considered on the right. For � � 1 both models (4.6) and (4.7) describe
the spectrum of bremsstrahlung photons well (as it is demonstrated by comparison
with numerical GEANT4 simulations in, for example, Refs. [32, 33]). However, both
spectra show an unrealistic divergence in the infrared limit f → 0, which will be
taken into account by limiting the impact of the lower energetic photons in the
further study. Thus, the negative impact of this part of the spectrum will not harm
the precision of the calculations. Moreover, even for thin targets Eq. (4.6) does
not manifest the characteristic steep decrease at the point f ≈ 1, which represents

3Commonly, the bremsstrahlung spectrum depends on the target material via the atomic num-
ber Z, which is included in Eq. (4.6) in terms of the radiation length Lrad. Additional Z-dependent
terms have been ignored, which introduces a minor error of maximal 2.5% [62, 63]. Moreover, the
term “complete screening“ refers to screening of nuclear Coulomb potentials by atomic electrons,
which is particularly effective at high energies E0 and small emission angles θγ .
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the fact that no photons with energies exceeding E0 can be created. To that end,
in Sec. 4.3, where thin targets will be of main interest, the rates resulting from
Eqs. (4.6) and (4.7) will be studied separately. Lastly, for thick targets (which will
be considered in Sec. 4.2), Eq. (4.7) will be employed as it was shown to have good
precision when compared to GEANT4 simulations in Ref. [32].

4.1.3 Volume of bremsstrahlung radiation

In the discussed type of experiments, the spatial extensions of the interacting laser
and bremsstrahlung beams play a very important role. As it can be seen from the
scheme provided for a counterpropagating geometry in Fig. 4.3, the interaction vol-
ume is mainly defined by the area around the focal point of the laser and, due to
the spreading, only a small number of bremsstrahlung photons is able to partici-
pate in the process, which has a huge negative impact on the number of created
Breit-Wheeler pairs. Here, an estimation of the volume covered by bremsstrahlung
radiation (dark blue in Fig. 4.3) is provided

Vγ ≈ πσz r̄
2 with r̄ =

rmin + rmax

2
(4.8)

Figure 4.3: Scheme of the proposed
experiment elucidating spreading of the
bremsstrahlung beam (blue). A variation
of this figure was originally published in
Ref. [51].

denoting the average radius of
the truncated cone formed by the
bremsstrahlung burst. In the expres-
sion above, the maximal and minimal
radii rmax ≈ θrmsσz + rmin and rmin =
σr +Le−θe− +Lθrms, respectively, de-
pend on the transversal σr and longi-
tudinal σz extensions of the witness
electron beam4. Moreover, the root-
mean squared of the spreading angle
of the bremsstrahlung photons reads
θrms = (θ2e− + θ2γ)

1
2 . In this chapter,

the electron beam spreading is char-
acterized by parameters provided in
Ref. [33]: the spreading angle is set
to θe− ≈ 0.5 mrad, while the distance
travelled by the electrons towards the
high-Z target equals Le− = 10 cm. Further, as L ∝ O(1) m and σr ∝ O(1) μm in
general hold, the averaged radius approximates r̄ ≈ rmin ≈ Le−θe− + Lθrms. Finally,
ideal collisions characterised by perfect synchronisations of the colliding beams will
be considered and, in order to minimise the longitudinal mismatching, the axial
bremsstrahlung extension σz will be chosen in a way that at t = 0 it covers the focal
region of the laser pulse. Thus, unless stated otherwise, σz ≈ 2zR.

4In general, the beam parameters for LWFA depend on the density of plasma, in which the
wake-field is generated [64, 65, 66].
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4.2 Linear Breit-Wheeler pair production

In this section a theoretical perturbative development of linear electron-positron pair
creation in context of the setup proposed above with an x-ray laser pulse and highly
energetic bremsstrahlung is shown. Here, in contrast to the well established proce-
dure where both photons are quantised, the ansatz introduced in subsection 2.2.2
is pursued allowing for modelling the laser as a focused pulse. To that end, firstly,
the theoretical framework describing an interaction between a classical laser field
and a quantised photon is presented. Next, laser focusing is taken into account by
particularising the laser field model to a Gaussian pulse and the bremsstrahlung en-
ergy distribution is incorporated as it was shown in subsection 4.1.2. Consequently,
estimations of the number of created Breit-Wheeler pairs are provided and results
are discussed. Note that this section draws on Ref. [60].

4.2.1 Pair production in an arbitrary laser field

As usual, the linear Breit-Wheeler process is described by the second-order S-matrix

element Sfi with Ŝ(2)[ψ̂, ˆ̄ψ, â] given in the second line of Eq. (2.6). However, while
the electron-positron pair and incident quantised photon are treated as Fock number
states, the laser field is included via a coherent state |αk〉 in the mode k 5. Thus,
for an electron and positron with spins and four-momenta p∓, s∓ and a quantised
photon with wave four-vector k′ and polarisation ε′ the S-matrix element reads

Sfi = 〈1p+,s+ ; 1p−,s− ;αk|Ŝ(2)[ψ̂, ˆ̄ψ, â]|1k′,ε′ ;αk〉 →
〈1p+,s+ ; 1p−,s− |Ŝ(2)[ψ̂, ˆ̄ψ, â+A]|1k′,ε′〉, (4.9)

where the transition involving a classical laser field Aμ(x) from Eq. (2.13) was per-
formed. Based on the equation above, the Breit-Wheeler process for a field of
arbitrary shape can be calculated, since the latter may be written as a linear su-
perposition of wave modes. To that end, using the expressions for field operators as
well as applying Eqs. (2.8), (2.17) and (2.19) leads to

Sfi = i2e2

√
1

2ω′Vγ

m2

p+0 p
−
0 V

2

(∫
d4x d4y ūp−,s− /A(x)SF (x− y)/ε′vp+,s+e

i(p+−k′)y+ip−x

∫
d4x d4y ūp−,s−/ε

′SF (x− y) /A(y)vp+,s+e
i(p−−k′)x+ip+y

)
. (4.10)

When inserting the Feynman propagator in its Fourier representation from Eq. (2.20)
into the two terms in the equation above, the integrations in y and x, respectively,

5In the further discussion a free electron laser is assumed as a possible source of x-ray radiation.
Even though the latter possesses a high degree of transverse coherence and an improved longitudinal
coherence when compared to synchrotron radiation sources [67, 68, 69], it is not fully coherent.
However, as long as only one FEL photon participates in the reaction, the precise photon statistics
in the FEL pulse will not affect the rate of the process.
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can be performed resulting in Dirac delta functions, which make the integrations
over p stemming from SF (x − y) trivial. Next, the four-potential of the form
Aμ(x) = εμa(k, x), where εμ stands for the field polarisation, will be considered.
Thus, the remaining integrals can be absorbed into the Fourier transformed of the
vector potential amplitude

ã(k̃, k) =

∫
d4x eik̃xa(x, k), (4.11)

which allows for writing the S-matrix element as

Sfi = i3e2

√
1

2ω′Vγ

m2

p+0 p
−
0 V

2
ã(p− + p+ − k′, k)

× ūp−,s−

(
/ε′

1

(/p− − /k
′
)−m+ i0+

/ε + /ε
1

(/k
′ − /p+)−m+ i0+

/ε′
)
vp+,s+ . (4.12)

Similarly to Eq. (3.7), the unpolarised rate per volume of the process is obtained
after averaging over the polarisations of the quantised photon (which is suitable since
the bremsstrahlung photons considered next are unpolarised) as well as summation
over the fermions spins

R =
1

2

∑
λ′

∑
s+,s−

∫
V d3p+
(2π)3

V d3p−
(2π)3

|Sfi|2
TV

, (4.13)

where the squared S-matrix element, while divided over the interaction time T and
volume V , is integrated over the phase space of the created particles. Thus, with
Eq. (2.9) and properties of elementary spinors from Eq. A.5 the transition amplitude
can be written as

1

2

∑
λ′

∑
s+,s−

|Sfi|2 = −e4

2

1

2ω′Vγ

m2

p+0 p
−
0 V

2

∫
d4k̃|ã(k̃, k)|2δ4(k̃ − (p− + p+ − k′))

× 1

4m2
Tr

[(
γμ 1

(/̃k − /p+)−m+ i0+
/ε + /ε

1

(/k
′ − /p+)−m+ i0+

γμ

)(
/p+ −m

)
(
/ε

1

(/̃k − /p+)−m+ i0+
γμ + γμ

1

(/k
′ − /p+)−m+ i0+

/ε

)(
/p− +m

)]
. (4.14)

After calculating the traces using the properties of the Dirac γ−matrices from ap-
pendix A.1.1, energy-momentum balance as well as k̃2 = 0 6 and integrating the
rate in the center of momentum frame (as it was shown in subsection 3.1.1 for the

6The condition for on-shell photons will be provided later on by the field models for all considered
field configurations.
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asymptotic expression for n = 1) the rate per volume is equal to

R =
1

TV

∫
d4k̃

(2π)4
|ã(k̃, k)|2Rn=1

N2
(4.15)

with Rn=1 from Eq. (3.22) and N2 = a20/4. In general, N stands for the photon nor-
malisation associated with the strong field. Thus, if the latter is quantised as it was
shown in subsection 2.2.1, the corresponding expression would read N = 1/

√
2ωVγ.

However, when no normalisation to one particle in the volume is performed, which
was the case in subsection 3.1.1, the relation 1/

√
2ωVγ ≡ a0/2 holds and the equa-

tion below Eq. (4.15) is valid.

4.2.2 Pair production in the field of a Gaussian pulse

In this section the laser field is modelled as a linearly polarised Gaussian pulse in
paraxial approximation, which was described in subsection 4.1.1. Thus, following the
expression above the absolute value squared of the Fourier transformed amplitude
ã(k̃, k) is required for further proceeding, which is provided in appendix C.1. To that
end, inserting the latter into Eq. (4.15) the rate per volume in cylindrical coordinates
reads

R =
E2
0

32N2

(τ/
√
2 ln(2))2w4

0

TA

∫ 2π

0

dφk̃

∫ ∞

−∞
dk̃z

×
∫ |k̃0|

0

dk̃⊥ k̃⊥e−
k̃2⊥w2

0
2

∫ ∞

−∞

dk̃0

k̃2
0

e−
(τ/
√

2 ln(2))2

2
(ω−k̃0)2δ(k̃z − k̃0 +

k̃2
⊥

2ω
)Rn=1, (4.16)

where the contribution responsible for the negative frequency was not taken into
account and the integration limit in k̃⊥ was modified in accordance with the fact,
that k̃⊥ can not exceed the photon energy |k̃0|. Moreover, the factor A arises from the
division of the integration volume V by a length factor which stems from squaring the
Dirac δ-function. Next, the integration over k̃z is carried out by exploiting the latter
and, afterwards, integration over k̃0 is performed asymptotically by evaluating all
components of the integrand except the exponential function at k̃0 = ω as it provides
the biggest contribution to the integral. From Eq. (3.22) it can be seen that the
two-photon rate Rn=1 depends mainly on the Mandelstam variable s2 ∝ k′k̃. In the
scenario discussed here it can be approached by

k̃k′ ≈ ωω′

⎛
⎝1− cos(φk̃)

√
1 +

k̃4
⊥

4ω4

⎞
⎠ (4.17)
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and when substituting v = k̃⊥w0√
2

one obtains

R(k, k′) ≈ E2
0

4ω2N2

(τ/
√
2 ln(2))

TA

√
π

2

w2
0

2

∫ ωw0
2

0

dv ve−v
2

×
∫ 2π

0

dφk̃Rn=1

[
ωω′

(
1− cos(φ)

√
1 +

v4

w4
0ω

4

)]
. (4.18)

Here, the angle φ in the argument of the two-photon rate is treated as an external
parameter dictated by the experimental setup in Fig. 4.1 and, thus, is not dependent
on the integration variables. Its value is chosen in a way to allow for a practicable
geometry of the experimental setup which avoids damage of technical devices by
high intensity beams. In the paraxial approximation, which is assumed to be valid
for the modelled Gaussian pulse (see Eq. (4.1)), the relation k̃⊥ � ω holds and the
square root in the argument of Rn=1 approximates to 1. Thus, consequently, the
rate of the process becomes

R(ω, ω′, cos(φ)) ≈ (1− e−
w2
0ω

2

4 )Rn=1 [ωω
′(1− cos(φ))] , (4.19)

where E0/ω = a0 was used. Moreover, the relation

TA =
τ

2

√
π

ln(2)

πw2
0

2
(4.20)

resulting from the energy consideration of the Gaussian pulse given in appendix C.2
was incorporated in order to derive the expression above. Lastly, as for an x-ray
laser, which belongs to the laser class that produce photons with sufficiently high
energy and is proposed as a photon source in the discussed setup, the wave length
is much smaller than the beam waist w0 � 1/ω, the exponential factor in the
expression above may be ignored.

4.2.3 Estimated number of created pairs

In this subsection an average number of created linear Breit-Wheeler pairs per in-
cident bremsstrahlung electron will be provided applying the procedure outlined
above. To that end, one multiplies the particle rate per volume that combines
Eqs. (4.5) and (4.19) with the laser pulse duration τ and interaction volume V

N = τV Rγ. (4.21)

While the pulse duration can be read of straightforwardly from the experimental
parameters, the interaction volume would be approximated by the focal area of
the laser beam in the focal plane A = w2

0π multiplied with the effective longitudinal
extension of the pulse. The latter is taken as doubled Rayleigh length 2zR. Next, the
wide spreading of the bremsstrahlung beam from Eq. (4.8) needs to be taken into
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account. In the considered framework it coincides with the photon quantisation
volume Vγ from Eq. (3.22). For the scheme of overlapping volumes the reader is
referred to Fig. 4.3. Thus, the number of created pairs per incident electron with

the Mandelstam variable s =
√

ωE0f(1−cos(φ))
2m2 reads

N ≈ τw2
0

(Le−θe− + Lθrms)2
αξ2m2

4E0

∫ 1

0

df

f
Iγ(f, l)

×
[
−s

√
s2 − 1(1 + s2)

s4
+

(−1 + 2(s2 + s4))ln(s+
√
s2 − 1)

s4

]
. (4.22)

Before proceeding with the numerical results, a discussion on possible experi-
mental parameters is needed. As it was indicated at the beginning of this chapter,
a suitable approach for electron acceleration is represented by the rapidly evolving
field of LWFA, which enables production of several-GeV electrons in relatively com-
pact experimental setups when using a sub-petawatt-class laser [70]. The latter can
be provided, for example, within the HiBEF project at the European XFEL [71]. In
this subsection electron energies in the range of 40 MeV to 4 GeV will be covered.

Moreover, the laser frequencies considered here will lie in the domain from soft
to hard x-rays (0.3− 10 keV). This choice in combination with the selected incident
electron energies ensures that bremsstrahlung photons with energies falling below
20% of E0, i.e. f � 0.2, will not be able to participate in the process. Indeed,
the lower bound of integration for such scenario reads fmin = 2m2

ωE0(1−cos(φ)) and the

inaccuracy of Eqs. (4.6) and (4.7) at small f is mitigated. A possible source of soft
x-ray laser pulses of 0.3 keV photon energy could be the FLASH facility at DESY
in Hamburg, where photons with wavelength between 4.2−52 nm can be generated.
Additionally, hard x-ray laser pulses with photon energies of 10 keV and higher can
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Figure 4.4: Number of pairs in dependence on the initial electron energy for ξ =
0.001, τ = 100 fs, w0 = 20 μm, L = 0.5 m and � = 1.25 (corresponding to LT = 7 mm
for lead target) and different collision angles φ. Here, the laser frequencies are set
to ω = 0.3 keV(left panel) and ω = 10 keV (right panel).
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be currently found at the European XFEL at DESY and the LCLS at Stanford [72].
Thus, all experimental constituents needed for the proposed setup are, in principle,
available at DESY in Hamburg.

Next, numerical estimations of the number of created pairs are provided. To that
end, the value of the laser field strength parameter is set to ξ = 0.001 throughout
this section. It corresponds to an intensity of I ≈ 8 × 1016 W/cm2 at ω = 0.3 keV
and I ≈ 9× 1019 W/cm2 at ω = 10 keV.
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Figure 4.5: Differential number of pairs re-
sulting from different bremsstrahlung photon
frequencies for � = 1.25, E0 = 4 GeV, ξ =
0.001, ω = 0.3 keV, τ = 100 fs, w0 = 20 μm,
L = 0.5 m.

In Fig. 4.4 it is shown how
the number of created Breit-Wheeler
pairs per incident bremsstrahlung
electron depends on the beam en-
ergy E0. Here, two different con-
figurations are considered. Firstly,
in the left panel a collision of a
soft x-ray laser pulse (ω = 300 eV)
with bremsstrahlung emitted from
1 − 4 GeV electrons is studied. Sec-
ondly, in the right panel it is assumed
that the pairs are created as a re-
sult of a collision between an XFEL
pulse of 10 keV photon energy and
bremsstrahlung from 40 − 140 MeV
incident electrons. Moreover, in or-
der to avoid damage of experimental
equipment which could result from
head-on geometry two collision angles
φ = 150◦ (depicted in red dashed)
and φ = 165◦ (blue solid) are employed (see Fig. 4.1). It can be seen that in the
considered energy ranges the number of pairs for both setups is similar and grows
with increasing E0. A comparable particle yield for the two parameter sets rests
on the fact that the product E0ω is about the same for both configurations. Since
lower energetic photon beam can be produced at smaller intensity when keeping ξ
constant, the values E0 = 4 GeV and ω = 0.3 keV will be taken in the further dis-
cussion. For the chosen parameters electron bunches accelerated in the framework
of LWFA can contain charges of several 100 pico-Coulomb up to a nano-Coulomb
[56, 57]. When taking a moderate value of 10 pico-Coulomb and assuming that every
electron emits a bremsstrahlung photon (which is realistic since thick targets with
� > 1 are considered) up to 8 pairs can be generated per shot with experimental
equipment available today or in the near future.

The impact of different bremsstrahlung frequencies on the number of created
pairs is examined with incident electron energy of E0 = 4 GeV for φ = 165◦ (blue
solid) and φ = 150◦ (red dashed) in Fig. 4.5. Both curves quickly grow at small f ,
manifest a maximum at the spectral region around ω′ ≈ 0.3E0 and fall afterwards.
This behaviour is a result of an interplay of the monotonically growing part of
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the integrand in Eq. (4.22) that solely depends on s, the factor 1/(E0f) and the
fact that the number of bremsstrahlung photons falls when their energy rises (see
Fig. 4.2). Moreover, the maximum of the red curve is slightly shifted to the right
when compared to the blue curve. This misalignment represents a manifestation
of the φ-dependence of the threshold energy ∼ [1 − cos(φ)]−1 as, with smaller φ, a
photon must posses a higher ω′ in order to overcome this barrier and participate in
the pair production.
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Figure 4.6: Number of created pairs in de-
pendence on the normalised target thickness
� for E0 = 4 GeV, ξ = 0.001, ω = 0.3 keV,
τ = 100 fs, w0 = 20 μm, L = 0.5 m.
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Figure 4.7: Number of created pairs in de-
pendence on the distance L between the solid
target and the laser focus. Here, the param-
eters are set to E0 = 4 GeV, ξ = 0.001,
ω = 0.3 keV, τ = 100 fs, w0 = 20 μm and
� = 1.25.

Further, the relation between the
thickness of the chosen target and the
expected number of created positrons
is illustrated in Fig. 4.6. A proposed
material can be, for example, lead
with Z= 82 and Lrad = 5.6 mm. Sim-
ilarly to the figures above, the red
dashed curve stands for φ = 165◦

geometry and the blue one denotes
φ = 150◦. The latter show upward
tendencies for � � 1.25 (LT � 7
mm for lead), reach their maximum
and decline afterwards. This be-
haviour reflects a growing probabil-
ity for the bremsstrahlung emission
when the incident electrons travel
longer through the target on the one
side, and the fact that the emitted
photons can be scattered or reab-
sorbed on the other. The probability
of these disruptive processes increases
with target thickness as well. Thus,
before photon losses start to domi-
nate, a maximum occurs.

When the optimal parameters
E0 = 4 GeV and � = 1.25 are
chosen, Fig. 4.7 elucidates the im-
portance of keeping the distance be-
tween the laser focus and the solid
target as small as possible since the
number of pairs decreases with grow-
ing L. The trend of the depicted
curves coincides with the L−2 factor
in Eq. (4.22) and represents the effect
of decreasing bremsstrahlung photon
density in the interaction volume as it
was discussed in subsection 4.1.3 (see
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Fig. 4.3).
From Eq. (4.19) and the discussion below it a conclusion was drawn that the effect

of laser focusing is negligible for an x-ray laser. This statement is also supported
when a closer look at Eq. (4.22) is taken: the number of created pairs is quadratic
in both the beam waist w0 and the parameter ξ. Thus, the process depends linearly
on the laser intensity and, following Eq. (C.7), only on the total laser energy.

Lastly, let us put the found results in context of predicted pair yields provided
by similar setups. As it was indicated earlier, for optimal parameters of the present
study and electron bunches of 100 pC to ≈ 1 nC a detection of ≈ 80 − 800 Breit-
Wheeler pairs per shot is possible. This number is comparable with the total amount
of positrons detected in the pioneering SLAC experiment [6, 7]. In the study of
linear Breit-Wheeler pair production in Ref. [12], where bremsstrahlung photons
collide with the hohlraum radiation, up to 105 pairs were obtained for 109 incident
electrons (approximately 150 pC). The higher pair yield may be attributed to the
larger interaction volume as it was not restricted to the focal area of the laser beam
but rather dictated by the radiation-filled hohlraum. In Refs. [19, 73] investigations
of the weakly nonlinear regime ξ � 1 of Breit-Wheeler pair creation occurring as
a result of bremsstrahlung-laser interaction were presented. Both studies take into
account highly energetic electron bunches of E0 = 17.5 GeV consisting of 1.5× 109

and 6 × 109 particles that produce bremsstrahlung, correspondingly. In Ref. [19],
where the focus was put on a realistic description of the experimental conditions at
LUXE, the pair yields of 10−2 for ξ = 1.2 and up to 350 for ξ = 6.5 per shot with an
optical laser (ω = 1.55 eV) were predicted (see Table 5 in Ref. [19]). Additionally,
the expected number of created pairs in Ref. [73], which relies on an asymptotic
formula for the pair production in the considered regime, amounts to approximately
[10−2, 106] for ξ ∈ [0.7, 7] per laser shot.
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4.3 Highly nonlinear nonperturbative regime

The present section is devoted to the calculation of the predicted number of cre-
ated Breit-Wheeler pairs in the highly nonlinear nonperturbative regime in a setup,
where an optical laser interacts with highly energetic bremsstrahlung photons (see
Fig. 4.1). This experimental endeavour was introduced in Ref. [33], where a pro-
posal to test the Breit-Wheeler process in the ξ � 1, κ � 1 regime at CALA was
put forward and first estimations of the particle yield based on a plane wave pulse
modelling of the laser field were given. Here, special interest lies on the effect of
transversal and longitudinal laser focusing as high intensities, which are characteris-
tic for the studied parameters, can be achieved solely in tightly focused laser beams.
Due to the considered parameters (ξ � 1) and incorporation of focusing into the
field description neither a perturbative treatment nor an approach involving Volkov
solutions comes into question. Hence, a locally constant field approximation (LCFA)
framework is applied, which is introduced in the following subsection, and resulting
estimations for parameters envisaged in Ref. [33] are presented. The results shown
in this section were initially published in Ref. [51].

4.3.1 Locally constant field approximation

Under the condition ξ � 1 7 the characteristic length of Breit-Wheeler pair forma-
tion l ∼ λ/(ξπ) is much smaller than the laser wave length λ = 2π/ω. Hence, par-
ticles when being created do not feel the field oscillations and the laser background
can be treated locally as a constant crossed field introduced in the section 3.2. Fol-
lowing Ref. [74], this approximation is applicable for low laser frequencies ω � m
and values of ξ starting from ξ � 5. Consequently, the number of created electron-
positron pairs per unit of volume and time produced by an incident bremsstrahlung
electron is approximated by (see Refs.[75, 76] combined with Eq (4.5)):

dN

dtdV

∣∣∣∣
ξ(xxx,t)	1

≈ Fγ(κ)|ξ→ξ(xxx,t) . (4.23)

In general, Fγ(κ) is the unpolarised transition rate per volume of the pair production
process in a constant crossed field from Eq. (3.39) averaged over the energy of the
bremssstrahlung photon as it was shown in Eq. (4.5). For the context of the present
section, a parameter region ξ � 1, κ ≈ 1 is relevant. Thus, instead of the rate from
Eq. (3.39) the approximative expression Fκ≈1 from Eq. (3.44) will be used hereafter.

7As the electromagnetic field of the laser is oscillating, alongside with ξ � 1 regions there are
contributions to the particle creation stemming from small and moderate intensity parameters. In
Fig. 4.8 the osillating values of ξ are presented. However, following Eq. (3.16) and Ref. [55], the
latter have much smaller impact than the high intensity domain. Thus, an assumption is made that
the production process is dominated by the spacetime regions, in which the strong field condition
ξ(xxx, t) � 1 holds.
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To that end, an estimated number of pairs reads

N ≈
∫
Γ

dtdV

∫ 1

0

df IγFκ≈1(κ)|ξ→ξ(xxx,t) (4.24)

with the bremsstrahlung photon spectrum Iγ from Eqs. (4.6) and (4.7) and Γ de-
noting the spacetime integration volume.

Figure 4.8: Laser intensity parameter for a Gaus-
sian pulse with ω = 1.55 eV and maximal in-
tensity of I0 = 1022 W/cm2. The region be-
tween white lines corresponds to the area, where
bremsstrahlung with longitudinal extension 2zR
exists.

Strictly speaking, Γ is dic-
tated by the regions where
ξ(xxx, t) � 1 holds and where
the bremsstrahlung photons are
propagating. However, as it
was pointed out in the foot-
note 7, due to the oscillating na-
ture of the electromagnetic field
and the fact that the contribu-
tions stemming from moderate
and small intensity parameters
are negligible, the integration
region may be extended to the
part of the spacetime where the
laser and the bremsstrahlung
pulses overlap. For a counter-
propagating geometry, i.e. φ =
180◦, the longitudinal extension
of the bremsstrahlung bunch is
given by 8

1

2
ω′σz ≤ k′x ≤ 1

2
ω′σz, (4.25)

which translates to

z± = −t± 1

2
σz. (4.26)

For a Gaussian pulse in a paraxial approximation from Eq. (4.1), the color scheme
in Fig. 4.8 shows the values of ξ(t,xxx) for ω = 1.55 eV and maximal intensity of
I0 = 1022 W/cm2, which will be used as benchmark parameters hereafter. In this
context, the region where the bremsstrahlung with longitudinal extension σz = 2zR
propagates is enclosed between the white solid lines. Thus, it can be seen that
the high intensity zones, which provide the major contribution to the pair creation
process, are located almost completely within the bremsstrahlung area for the chosen
parameter set. Moreover, transversal bremsstrahlung boundaries may be extended

8For geometries other than head-on the longitudinal extension of the bremsstrahlung will depend
on the collision angle and r (see comment on this issue in the last paragraph on page 38 and
Eq. (4.36)). However, the majority of the results relevant for this section will rely on φ = 180◦.
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to ±∞ as the field strength decays fast for r/w0 � 1. Having these details in mind,
the expected number of created pairs for a paraxial Gaussian pulse in cylindrical
coordinates can be expressed as

N ≈ 2π

∫ ∞

−∞
dt

∫ ∞

0

rdr

∫ −t+ 1
2
σz

−t− 1
2
σz

dz

∫ 1

0

df Iγ Fκ≈1(κ)|κ→κ(xxx,t). (4.27)

Hence, effectively, a transition from a constant to a space dependent quantum non-
linearity parameter is made, which is discussed in detail in the next subsection for all
considered field models. Additionally, when the Gaussian pulse beyond the paraxial
approximation is taken into account, the cylindrical symmetry of the laser pulse is
broken through nontrivial dependences on the azimuthal angle (see Eqs. (C.11) and
(C.12) in appendix C.3) and the factor 2π in the expression above has to be replaced
by a corresponding integration.

Next, a pulsed plane wave with a Gaussian envelope depending only on the
phase ϕ (see Eq. (C.8) in appendix C.2) is considered. This model is formulated
conveniently via light-cone coordinates [77, 78]

x± =
1√
2
(t± z), xxx⊥ = (x, y). (4.28)

For the present thesis only a head-on collision with φ = 180◦ is relevant for this field
model. In this framework the laser phase reads

ϕ = k+x− with k+ =
1√
2
(k0 + k3) =

√
2k0 (4.29)

and kk′ = k+k
′
− holds, whereas the phase of the gamma quantum is equal to ϕ′ =

k′x = k′−x+. Then, a substitution t → ϕ′, z → ϕ is performed

lim
T→∞

∫ T/2

−T/2
dt

∫ −t+ 1
2
σz

−t− 1
2
σz

dz

∫
Aint

dxxx⊥ ... = lim
T→∞

Aint

k+k′−
Δϕ′

∫ Δϕ/2

−Δϕ/2

dϕ ... (4.30)

and with Δϕ′ = ω′σz, Δϕ = 2ωT one obtains

N ≈ ω′

k+k′−
Vint

∫ ∞

−∞
dϕ

∫ 1

0

df Iγ Fκ≈1(κ)|κ→κ(ϕ). (4.31)

Here, in order to provide a fair comparison between different schemes for describing
the laser, the pulse energy in every model will be kept equal. To that end, the inter-
action volume turns out to be9 Vint = Aintσz with Aint given below Eq. (C.9). Now,
since Fκ≈1 depends inversely on the spreading volume of the bremsstrahlung from
Eq. (4.8), a factor Vint/Vγ ≈ w2

0/(2r̄
2) occurs. This ratio stands for the fraction of

the bremsstrahlung photons interacting with the laser pulse and for the parameters

9When a setup geometry other than counterpropagating is considered, the interaction volume
will depend on the collision angle φ.
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assumed in the numerical calculation of the number of pairs shown in the next sub-
sections it amounts to ≈ 2×10−5. Thus, similarly to the previous section, spreading
of the bremsstrahlung beam represents a crucial problem for the discussed class of
experiments.

A comment is in order: when Vint and Vγ coincide, no averaging over the spectrum
of bremsstrahlung is performed and Eq. (3.39) is used instead of the approximative
rate, the expression in Eq. (4.31) agrees with the probability for particle creation
resulting from Eq. (33) of Ref. [79]. The latter was derived from the imaginary
part of the vacuum polarisation tensor in a plane-wave background via the optical
theorem.

Finally, a constant crossed field Ex(ϕ) = E0Θ(1
2
Δϕ − ϕ)Θ(ϕ + 1

2
Δϕ) in a finite

spacetime volume is considered. For this model, when keeping the laser field energy
equal to the cases described previously, the expected number of particles reads

N ≈ TintVint

∫ 1

0

df Iγ Fκ≈1(κ) (4.32)

with Δϕ = 2ωTint and Tint =
τ
2

√
π

ln(2)
given below Eq. (C.10).

4.3.2 Time and space dependent κ

In order to provide the spacetime dependent quantum nonlinearity parameter as
needed for LCFA, the former is expressed in terms of the electromagnetic field tensor
fμν as κ = |e|

√
−(fμνk′ν)2/m3. To that end, when no particular choice of the laser

field description is made, one generally obtains

κ =
|e|ω′E0
m3

[(
Bz

E0
sin(φ) +

By

E0
cos(φ)

)2

+

(
Ex
E0

)2

+

(
Ey
E0

)2

+

(
Ez
E0

)2

−
(
Ey
E0

sin(φ) +
Ez
E0

cos(φ)

)2

+ 2
Bx

E0

(
Ey
E0

cos(φ)− Ez
E0

sin(φ)

)

+

(
Bx

E0

)2

+2
Ex
E0

(
Bz

E0
sin(φ)− By

E0
cos(φ)

)]1/2
(4.33)

with the electric and magnetic field components Ei and Bi, respectively, and an
assumed geometry, where strong laser pulse propagates with the wave vector kkk = ωeeez
as well as φ denotes the collision angle (see Fig. 4.1). Thus, in order to calculate
the particle number from Eq. (4.27) for a paraxial Gaussian pulse, the nonvanishing
field components Ex = By from Eq. (4.1) are to insert in the expression above and
one ends up with

κ(t,xxx) =
|e|ω′ [1− cos(φ)]

m3
|Ex(t,xxx)|. (4.34)

The black solid curve in Fig. 4.9 shows the local values of κ in dependence on the
longitudinal coordinate z for such a scenario, whereas the red dashed one accounts
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for the case where the terms describing longitudinal laser focusing are neglected.
Moreover, r = 0 and t = 0 were set and parameters from the table 4.1 were used.
Thus, it can be seen that the values of κ relevant for the present section encompass
the interval between 0 and roughly 2 providing a justification for the usage of the
approximated rate Fκ≈1 given in Eq. (3.44).
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Figure 4.9: Quantum nonlinearity parame-
ter κ for Gaussian pulses with (red dotted)
and without (black solid) longitudinal focus-
ing at t = 0, r = 0. This figure was initially
published in Ref. [51].

Additionally, in a pulsed plane-
wave background from Eq. (C.8) the
phase dependent quantum nonlinear-
ity parameter reads

κ(ϕ) = κ|ψ(ϕ)| (4.35)

with the monochromatic plane-wave
value κ = ωω′[1 − cos(φ)]ξ/m2 and
the function ψ(ϕ) from Eq. (C.8).

4.3.3 Comparison of dif-
ferent field models

In this and the following subsections
numerically evaluated estimations for
the number of created pairs by an in-
cident radiating bremsstrahlung elec-
tron based on the LCFA framework
are presented. Unless stated other-
wise, the benchmark parameters from
Ref. [33], which are listed in the ta-

ble 4.1, counterpropagating geometry (φ = 180◦) and a conservative value of
σz = 2zR are taken. The latter facilitates good synchronisation between the in-
teracting laser and bremsstrahlung beams. Moreover, a very thin tungsten target
(Lrad = 3.5 mm) with � = 0.015 is utilised in order to optimise the signal to noise
ratio (for further details see section 5 in Ref. [33]).

The starting point is a comparison between the different laser models, which
were presented above. To that end, in Fig. 4.10 the dependence of the number of
created pairs on the bremsstrahlung photon energy is analysed. The green dotted
curve represents a description of a laser, where a constant crossed field (CCF) is
contained in the finite spacetime volume VintTint and has the same energy as the
paraxial Gaussian laser pulse, combined with the asymptotic formula for the cre-
ation rate Fκ≈1, i.e. Eq. (4.32) is implemented. For generation of the blue dashed
curve the exact rate F from Eq. (3.39) was taken instead. As both curves lie tightly
by each other, applicability of the approximative expression is supported and, thus,
the latter is used in other models as well. Next, the black curve provides estimations
for dN/df when modelling the laser field as a pulsed plane wave with a Gaussian
envelope enclosed in a spatial volume Vint following Eq. (4.31). This description
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Incident electron energy E0 2.5 GeV
Distance travelled by the bunch Le− 0.1 m
Incident electrons collimation angle θe− 0.5 mrad
Normalised target thickness � 0.015
Distance travelled by bremsstrahlung L 0.5 m
Wavelength of the strong pulse λ 0.8 μm
Pulse waist size w0 2 μm
Pulse length τ 30 fs
Laser intensity parameter ξ 70
Laser repetition rate 0.1 Hz

Table 4.1: Parameters envisaged in the experiment planned at CALA, which were
provided in Ref. [33]. These values are adopted hereafter.

was also implemented in Ref. [33]. Lastly, the red curves were generated under
the assumption that paraxial Gaussian pulses describe the laser fields and rely on
Eq. (4.27). From Fig. 4.10 it can be seen that all curves show an upward trend
meaning that the particle yield increases as the energy of bremsstrahlung photons
grows. Whereas the most optimistic prediction is provided by CCF, the more re-
alistic descriptions incorporating finite laser duration and laser focusing reduce the
expected pair number by factors of about 5 and 10, correspondingly.
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Figure 4.10: Differential number of
pairs in dependence on the normalised
bremsstrahlung energy f = ω′/E0 for ξ = 70.
This figure relies on the benchmark param-
eters from table 4.1 and was initially pub-
lished in Ref. [51].

Following the fact that the en-
ergy of γ photons, which were emit-
ted by bremsstrahlung electrons, can
not exceed E0 and, accordingly, no
pairs can be created at f ≥ 1, all
curves should fall sharply to zero af-
ter a maximum at f ≈ 1 (see Fig. 4.2
and Refs. [32] and [62]). The de-
cay is absent owing to implementa-
tion of the bremsstrahlung spectra
from Eq. (4.6) for Iγ for generation
of all curves except the red dotted
one, which results when the thick tar-
get approximation in Eq. (4.7) is ap-
plied and a focused Gaussian pulse
model is adopted. In this section
very thin targets with � = 0.015 are
considered. Thus, due to the close
overlapping of red curves and negligi-
ble contribution from the low energy
range f ∈ [0, 0.2], the approximation

in Eq. (4.6) represents a good description of the bremsstrahlung spectrum and will
be used in the following calculations.
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Further, the estimated number of created pairs per incident electron depending
on the underlying field description (blue dashed for CCF, black solid for pulsed plane
wave and red for focused Gaussian pulse) is presented in Fig. 4.11 as a function of
the intensity parameter ξ. Here, a red dotted curve has been included, which results
from a collision geometry planned in the experiment described in Ref. [33] with
φ = 162◦. In order to describe geometries other than head-on a rotation of the
integration region depicted in Fig. 4.8 needs to be performed. To that end, the
longitudinal extension of the bremsstrahlung radiation translates into the following
limits in z:

z± = −(t∓ 1

2
σz)

1

| cos(φ)| + r| tan(φ)|, (4.36)

where the last term may be neglected as long as the longitudinal extension of the
bremsstrahlung beam is larger than the laser pulse length. However, the outlined
procedure represents a good approximation only whenever a collision geometry close
to a counterpropagating one is considered.
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Figure 4.11: Number of created pairs de-
pending on the modelling of the strong field
and the intensity parameter ξ. This figure re-
lies on the benchmark parameters from table
4.1 and was initially published in Ref. [51].

Similarly to Fig. 4.10, Fig. 4.11
shows that realistic description of
the laser pulse modifies the expected
yield by lowering it. As the pulse
energy is kept equal for all models,
this reduction is grounded solely on
the underlying laser field configura-
tion. While for CCF the intensity
is kept high and constant within the
whole interaction spacetime volume
VintTint, the field intensity linked to
a Gaussian profile changes from its
maximum at the center of the inter-
action volume to the minimal val-
ues at its edges as it is shown in
Fig. 4.8. Evidently, this intensity gra-
dient has a significant impact on the
pair creation yield and, thus, will be
closely studied in the subsequent sub-
sections.

Next, the predicted number of pairs for ξ = 70 (corresponding to the intensity
of I ≈ 1022 W/cm2) when modelling the laser as a focused Gaussian pulse will
be analysed. In this scenario the yield of created positrons per incident radiating
electron in a single laser shot is 4×10−8. As it was already pointed out in section 4.2,
the currently available experimental techniques (such as laser wakefield acceleration)
can generate electron bunches with up to ≈ 1 nC of total charge [56, 57]. In Ref. [33]
a production of several pC accelerated electron bunches with E0 = 2.5 GeV is
expected. Thus, an estimation for a 10 pC electron appears realistic providing
≈ 0.03 pairs per laser shot, when an assumption relying on GEANT4 simulations
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in Ref. [33] is made that only 1% of incident electrons will emit a bremsstrahlung
photon. Hence, when taking into account a laser repetition rate of 0.1 Hz, a creation
of 10 Breit-Wheeler pairs is expected per hour. It appears less than the 80 pairs
per hour estimated in Ref. [33], a prediction made when describing the laser field
as a pulsed plane wave. Thus, the more realistic modelling of the strong field by
incorporation of focusing leads to significant changes in the predicted pair yields.
Besides, in comparison to a particle yield reported in Ref. [32], where a similar setup
was studied and for ξ = 30 up to 104 pairs per laser shot and a pC of 2 GeV incident
electrons were estimated, the outcome of the present study turns out to be quite
small. This mismatch is presumably based on the fact that in Ref. [32] the divergence
of the bremsstrahlung ray was not taken into account as an assumption was made
that the latter can be counteracted by focusing the incident electron bunch. Here,
however, as it was pointed out previously, the bremsstrahlung spreading plays a
crucial role and reduces the particle yield by a factor Vint/Vγ ∼ 10−5.

1 2 3 4
10 -10
10 -9
10 -8
10 -7

0.4 0.6 0.8 1

2

4

10 -8

0.01 0.02 0.03

4

6
8 10 -8

Figure 4.12: Number of created pairs per
incident electron in dependence on incident
electron energy (upper panel), distance be-
tween the bremsstrahlung target and focal
point (middle panel) and target thickness
(lower panel). The other parameters are
taken from table 4.1.

Before going over to the thorough
study of the focusing effects, an out-
look on setup parameters beyond the
scope of Ref. [33] is provided. Here,
the laser field is modelled as a focused
Gaussian pulse in paraxial approxi-
mation. To that end, in the upper
panel of Fig. 4.12 the dependence of
the pair yield on the energy of the
incident electrons and the intensity
parameters ξ = 70, ξ = 60, ξ = 50
is presented in black, red and blue
colors, respectively. As the curves
show a strong positive trend, when
possible, the parameter E0 should be
maximised. Moreover, observe that
the increase in the number of created
particles is the fastest in the region
of low energy and for the lowest in-
tensity. Next, in the middle panel
the dependence on the distance L be-
tween the high-Z target and the in-
teraction point (see setup scheme in
Figs. 4.1 and 4.3) is studied. Since
the spreading of the bremsstrahlung
beam is more pronounced for larger
L, the curve has an expected falling
behaviour. Despite this trend, L
should be chosen sufficiently large to
provide enough distance for the effi-
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cient deflection of the incident electrons. Lastly, the expected number of created
pairs as a function of the normalised target thickness � is depicted in the lower panel
of Fig. 4.12. The rising tendency of the curve can be explained by the fact that the
probability of electrons to emit a bremsstrahlung photon increases when its path
through the high-Z material is prolonged. Here, a special attention needs to be paid
to the fact that the probability of noise processes in the bremsstrahlung target will
grow as well and, thus, an optimal combination in the value ensemble of all three
parameters E0, L and � is required (see discussion on this topic in Ref. [33]).
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Figure 4.13: Dependence of the pair yield on
the thickness of the bremsstrahlung bunch
σz when the number of gamma photons in
the pulse is kept constant. This figure relies
on the benchmark parameters from table 4.1
and was initially published in Ref. [51].

In addition, when describing the
laser as a focused Gaussian pulse
from Eq. (4.1), Fig. 4.13 shows the
dependence of the number of cre-
ated pairs on the thickness of the
bremsstrahlung burst σz. The neg-
ative trend of the curve is caused
by the longitudinal focusing, which
is incorporated in the laser de-
scription. It can be explained
by the fact that, provided a good
synchronisation between laser and
bremsstrahlung beams is achieved,
when the bremsstrahlung bunch is
shorter than the laser focal region 2zR
more γ photons can experience the
high intensity domain. Inversely, in

broader γ bunches the photon density is diluted and fewer photons can interact
with high intensity regions, which provide the most significant contribution to the
pair creation process. Instead, they interact with the low intensity regions at the
edges of the interaction volume, which do not have a sizeable impact on the particle
production.

4.3.4 Contributions from different focal regions

Our approach to the Breit-Wheeler effect via the LCFA has a particular advantage:
It allows us to gain spatially resolved insights into the production process. For this
purpose, contributions to the number of pairs stemming from different focal regions
are examined and exhibited in Fig. 4.14. The curves have been obtained when
modelling the laser field as a paraxial Gaussian pulse and reordering the integrations
from Eq. (4.27) in a way that the time integral is taken prior to the z−integration
and runs in the limits

t± = −z ± 1

2
σz (4.37)

for z ∈ [−0.75, 0.75]zR, z ∈ [−0.5, 0.5]zR, z ∈ [−0.25, 0.25]zR, respectively, and the
integration in f is not carried out. Thus, the fractions of the pair yield stemming
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from these integration regions are denoted by the patterns in red filled circles, blue
open boxes and green open circles, correspondingly. Fig. 4.14 shows that low en-
ergetic bremsstrahlung quanta provide the highest relative contribution from the
innermost region. It happens because these γ photons can only provide a signifi-
cant impact on the pair creation when they interact with the strong field domains
with very high intensity. As it was revealed in Fig. 4.10, in general, the major
contribution to the total number of pairs stems from high bremsstrahlung ener-
gies. Thus, the value f ≈ 1 is discussed in more detail: while 52% of the cre-
ated particles result from |z| ≤ 0.25zR, the doubled region with |z| ≤ 0.5zR gives
94%, and practically 100% of the pair production is contained in |z| ≤ 0.75zR.
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Figure 4.14: Differential number of pairs as
a function of the bremsstrahlung photon en-
ergy for different focal regions with ξ = 70.
This figure also relies on the benchmark pa-
rameters from table 4.1 and was initially pub-
lished in Ref. [51].
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Figure 4.15: Percentage of created parti-
cles from different focal regions for a focused
Gaussian pulse. This figure relies on the
benchmark parameters from table 4.1 and
was initially published in Ref. [51].

When in addition to the proce-
dure described above an integration
over the bremsstrahlung energy is
performed, the percentage of the par-
ticles produced in different focal re-
gions can be elucidated. Fig. 4.15
shows how the latter varies with
changing laser intensity parameter ξ.
The trend exhibited by the curves in-
dicates that with the growing of ξ
the importance of the outer zones in-
creases as the high intensity region
that facilitates the pair production
is extended to the whole Rayleigh
length. To be more precise, while
the innermost region (green open cir-
cles) accounts for about 53% of cre-
ated pairs for ξ = 70, its impact in-
creases to about 58% when the inten-
sity parameter is lowered to 20. This
tendency results from the fact that,
for rather low ξ, the local quantum
nonlinearity parameter κ reaches val-
ues close to 1, which are required for a
sizeable pair production, only in the
inner focal region. Outside the lat-
ter, κ quickly falls far below unity
and, accordingly, the pair production
is suppressed. In contrast, when ξ
is large, the local value of κ reaches
sufficient level over a broader region,

where the pair production can occur with significant probability. Note that the slope
of the curves in Fig. 4.11 decreases with increasing ξ, so that local changes of the
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field strength in a Gaussian pulse become less crucial when ξ is large.
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Figure 4.16: Distribution of created pairs in
the longitudinal direction for ξ = 70. This
figure also relies on the benchmark param-
eters from table 4.1 and was initially pub-
lished in Ref. [51].
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Figure 4.17: Dependence of the ratio be-
tween the number of produced pairs with
(N) and without (Nz=0) longitudinal focus-
ing on the intensity parameter ξ (upper
panel) and the pulse length τ (lower panel).
This figure relies on the benchmark param-
eters from table 4.1 and was initially pub-
lished in Ref. [51].

Furthermore, in Fig. 4.16 a com-
parison of the distribution of cre-
ated pairs along the longitudinal di-
rection z with σz = 2zR, which
is depicted in red, and a shorter
beam with σz = 2zR/6 correspond-
ing to black dashed and blue solid
lines is shown. In both cases for
the generation of the dashed curves
the longitudinal focusing in the de-
scription of the laser field was ig-
nored. It was achieved by omit-
ting the dependences on ζ(z) in the
paraxial field model in Eq. (4.1).
Conversely, the solid curves incor-
porate this effect. Also here, the
integration in t was limited as in
Eq. (4.37). Observe that the devi-
ations between corresponding curves
can be seen solely for the case
of broader bremsstrahlung bunches
denoted by red curves and occur
mainly outside the inner focal zone
z ∈ [−0.25, 0.25]zR. For shorter
beams of bremsstrahlung the ef-
fect of the longitudinal focusing
is absent as the interaction takes
place almost exclusively in the in-
nermost focal region, where the in-
tensity gradient is comparably small
(see Fig. 4.8). Moreover, the
higher maximum of the blue curve
as compared to the red one at
z = 0 can be understood as a
direct consequence of the smaller
bremsstrahlung extension: due to
the higher density the number of
γ quanta that experiences the re-
gion of highest field strength is
larger than in the case of a broader
bunch.
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4.3.5 Focusing effects

The importance of the incorporation of longitudinal focusing in the field description
is presented in Fig. 4.17. The curves show the ratios between the number of produced
pairs linked to the models with (N) and without (Nz=0) longitudinal focusing as
functions of the intensity parameter in the upper panel and the pulse duration in
the lower panel. The field description without longitudinal focusing is achieved,
similarly to the case described above, when neglecting the field dependence on ζ(z)
in Eq. (4.1). Here, the black and blue dotted patterns have been generated with
E0 = 2.5 GeV and E0 = 5 GeV, correspondingly, while setting τ = 30 fs in the
upper panel and ξ = 70 in the lower panel. From the upper panel it can be seen
that longitudinal focusing can be ignored when the laser intensity and electron
energy are high: for ξ = 70 the relative error 1−N/Nz=0 amounts to ∼ 8% for the
lower energetic case and ∼ 4% when the electron energy is 5 GeV. This fact can
be explained by the dependence of the quantum nonlinearity parameter κ on the
mentioned quantities. In the regions, where values of E0 and ξ are large enough for
κ to approach unity, the rate of pair production in CCF from Eq. (3.39) reaches
a regime with less pronounced slope than in the case of exponential damping for
κ � 1 (see Fig. 3.3). Thus, the rate is less sensitive to the gradient in κ caused by
longitudinal focusing. Conversely, the curves in the lower panel of Fig. 4.17 show
almost no variation for τ � 3 fs.
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Figure 4.18: Number of created pairs when
pulse energy is kept constant, while varying
beam waist size and intensity. The reference
values read ξ0 = 70, w0 = 2 μm and τ0 = 30
fs corresponding to x = 1. The remaining
parameters are given in table 4.1. This figure
was initially published in Ref. [51].

Further, an impact of tighter
transversal focusing when keeping
the laser pulse energy, which is given
in Eq. (C.7) and is proportional to
the laser intensity and beam waist
WG ∝ Iw2

0, constant is examined.
Here, I = E2

0/2 stands for the aver-
age laser intensity. Thus, in this sce-
nario a higher intensity I would de-
mand proportionally stronger focus-
ing, i.e. narrower beam and smaller
w0. This proportionality is achieved
by introduction of a scaling factor x:

WG ∝
(
ξ0
x

)2

(w0x)
2 = const.

(4.38)
Thus, if x grows, one obtains a beam
with the same energy, but decreased
intensity and broader focal point.
Having this in mind and by figuring
out the dependence of the number of
created pairs on x an optimisation of

the particle production can be achieved. Similarly, since WG ∝ Iτ the field ampli-
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tude can be varied simultaneously with the pulse duration while keeping the pulse
energy fixed.

The outcome of the discussion above while taking into account parameters w0 ∈
[1, 2.3] μm, τ ∈ [7.5, 40] fs and I ∈ [0.86, 4.2] × 1022 W/cm2 is shown as black
solid (altering transverse focusing) and red dotted (varying pulse duration) curves
in Fig. 4.18. The smallest values of the beam waist and τ correspond to the highest
intensity. Both graphs manifest a declining tendency with N ∝ cot(x), a depen-
dence found by curve fitting and depicted as blue dashed curve, with the maximal
pair yield at the smallest considered value x = 0.5. Hence, in the present context
achieving the highest possible intensity would benefit the pair creation more than in-
creasing the spacetime volume of interaction and the volume quotient Vint/Vγ, which
is associated with a huge negative impact, should be controlled by, for example, col-
limating the incident electron beam with a quadrupole magnet (decreasing θe−) or
via a faster deflection of electrons which have passed the high-Z target (decreasing
L) and not by loose focusing. This result extends the outcome shown in Fig. 4
in Ref. [33], where laser focusing has not been considered and pair production was
driven by a monoenergetic γ beam. The optimal intensity established there amounts
to approximately I ≈ 1022 W/cm2 for ω′ = 2.5 GeV and w̃ = 2 μm. Finally, from
Fig. 4.18 it can be seen that a consideration of longer pulses at the cost of smaller
intensity does not benefit the production of pairs either.
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Figure 4.19: Number of produced pairs as a
function of the laser intensity and the beam
waist while keeping the pulse energy con-
stant. The comparison is made for the refer-
ence values ξ0 = 110, w0 = 1 μm correspond-
ing to x = 1 and E0 = 10 GeV, while the re-
maining parameters are provided in the table
4.1. This figure was originally published in
Ref. [51].

Next, a similar procedure is ap-
plied on a setup where the energy
of incident electrons is increased to
E0 = 10 GeV leading to a pro-
nounced optimal combination of laser
intensity and focal spot radius. The
results of this study are exhibited in
Fig. 4.19, where a maximum at x ≈
0.9 corresponding to ξ ≈ 120 (I ≈
3 × 1022 W/cm2) and w̃ ≈ 0.9 μm
can be seen. Interestingly, in the re-
gion x � 0.9, where the laser field
is more tightly focused and has in-
creased intensity when compared to
x = 0.9, the pair yield decreases. It
appears that the effect of shrinking
interaction volume outweighs the ad-
vantage stemming from the growing
intensity.

Not taking into account the re-
sults based on CCF or pulsed plane
wave models, the fields so far were
considered in paraxial approxima-
tion, which is well established as long
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as the diffraction angle is small

ε =
2

w0ω
� 1. (4.39)

Yet in the discussions above the values ε ≈ 0.255 and ε ≈ 0.51 were reached at
w0 = 1 μm and w0 = 0.5 μm for λ = 0.8 μm (see Figs. 4.18 and 4.19), which are
close to the diffraction limit. Thus, in order to assess the deviations existing in the
presented calculations, the electromagnetic fields including higher order terms in ε
have been incorporated (see appendix C.3) while generating Fig. 4.20. Here, the
number of created pairs for two selected sharp energy values 500 MeV (left panel,
f = 0.2) and 2375 MeV (right panel, f = 0.95) from the bremsstrahlung spectrum
is exposed, i.e. no averaging is performed.
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Figure 4.20: Deviations from Gaussian
pulse in paraxial approximation (black solid)
and beyond paraxial pulses (dotted red and
dashed blue) for different diffraction angles
ε and ξ = 70, while the energies of inci-
dent photons are fixed to ω′ = 500 MeV
(left panel) and ω′ = 2.357 GeV (right
panel). This figure was originally published
in Ref. [51].

In both panels black patterns stand
for paraxial Gaussian pulses, whereas
red dotted and blue dashed curves
incorporate additional terms in the
series expansion in ε up to the or-
ders O(ε2) and O(ε4), correspond-
ingly. From Fig. 4.20 it can be seen
that for both additional accuracy lev-
els tiny deviations when compared to
the paraxial pulse start to appear at
ε � 0.4. This behaviour agrees well
with the results presented in Ref. [61],
where the electric and magnetic fields
beyond paraxial approximation were
initially introduced. Due to the
rather small modification resulting
from the higher-order terms, a con-
clusion is drawn that the paraxial
approximation is applicable for the
laser parameters utilised in this sec-
tion.

4.3.6 Super-Gaussian profiles

In addition to focused Gaussian pulses, here, the results provided so far are extended
to a field description by a super-Gaussian profile in both time and spatial envelopes.
Firstly, the sensitivity of provided results to the chosen time envelope is studied.
To that end, super-Gaussian time profiles are characterised by higher powers within
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the time-dependent exponent of Eq. (4.1), i.e. when 2 → n with n = 4, 8, . . .

Ex = E0
e
−
(√

2 ln(2)
(t−z)

τ

)n

√
1 + ζ(z)2

e−(
r

w(z))
2

sin(Φ). (4.40)
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Figure 4.21: Pulses with Gaussian (blue dot-
ted) and super-Gaussian time profiles with
n = 4 (green dashed) and n = 8 (red dot-
dashed). This picture has been generated by
setting τ = 5 fs and ω = 1.55 eV and was
originally published in Ref. [51].

The field configurations for n =
2, 4, 8 are depicted in Fig. 4.21. Thus,
as n increases, the field profiles show
broader plateaus around the origin
and steeper decay at the edges: the
fact that enables one to reach higher
intensities when compared to the
standard Gaussian model. Moreover,
the corresponding pulse energies for
n = 4 and n = 8 read

Wn=4 ≈
E2
0

2

πw2
0

2

τ21/4Γ
(
5
4

)
√

ln(2)
,

Wn=8 ≈
E2
0

2

πw2
0

2

τ23/8Γ
(
9
8

)
√

ln(2)

(4.41)

with Γ(x) denoting the Gamma func-
tion [52].

Now, the outcomes resulting from
a standard Gaussian pulse and super-
Gaussian configurations with n = 4
and n = 8 are compared while keep-

ing their energy at the same level. Thus, if the energy is fixed at the value of the
paraxial Gaussian pulse, WG = Wn=2 = Wn=4 must hold and the intensities of the
super-Gaussian models have to be adjusted followingly

In=4 = I

√
π

25/4Γ (5/4)
≈ 0.82I, In=8 = I

√
π

211/8Γ (9/8)
≈ 0.73I, (4.42)

where I stands for the standard paraxial intensity.

To that end, Fig. 4.22 depicts the investigation, where a number of pairs asso-
ciated with a standard Gaussian (blue solid) at a particular ξ is checked against
a corresponding N stemming from super-Gaussian time envelopes (red dashed for
n = 4 and blue dashed for n = 8) with lower effective intensity parameters (as

ξ = |e|
mω

√
2I). Here, the x−axis is provided by the ξ parameter of the standard

Gaussian. While all the three curves show an upward trend, the super-Gaussians
overpass the standard Gaussian yield at ξ ≈ 40. This behaviour supports the rea-
soning from the previous subsections stating that, for relatively low values of ξ, pair
production is driven by the regions with highest intensity around the origin.
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Figure 4.22: Number of produced pairs for
laser pulses described with super-Gaussian
time envelopes (red, blue dashed) and stan-
dard Gaussian with intensity parameter ξ =
70 (black solid) when keeping the laser en-
ergy for all pulses at the standard Gaussian
level. Dotted curves result when the value of
ξ is kept the same for all pulse shapes. This
figure was originally published in Ref. [51].
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Figure 4.23: Number of produced pairs for
laser pulses with super-Gaussian time en-
velopes (red, blue dashed) compared to stan-
dard Gaussian (black solid) when keeping
the laser energy at the standard Gaussian
level. This figure was originally published in
Ref. [51].

Conversely, at larger ξ values a
broader intensity range contributes
substantially and the super-Gaussian
plateaus may benefit the process
more strongly. Additionally, when no
modification of the intensity is under-
taken, one obtains estimated parti-
cle yields depicted by the dotted lines
in Fig. 4.22. As in this scenario the
energy in super-Gaussian pulses ex-
ceeds the one of the standard Gaus-
sian pulse, the former lead to more
created pairs in the whole intensity
range, with the outcome for n = 8
exceeding the one for n = 4.

The super-Gaussian time en-
velopes are studied also in Fig. 4.23,
where the focus lies on the depen-
dence of the pair yield on the pulse
duration. Analogously to the previ-
ous paragraph, here, the laser pulse
energy is kept constant for all three
considered profiles denoted by black
(standard Gaussian), red (n = 4
super-Gaussian) and blue (n = 8
super-Gaussian) patterns. Hence,
the intensity is varied correspond-
ingly to ξ = 70 for n = 2, ξ = 63.5
for n = 4 and ξ = 59.6 for n = 8.
Following Fig. 4.23 all three curves
posses positive trends. However, the
broader envelopes lead to a higher
pair production yield in the consid-
ered range. Thus, at the given energy
the intensity decrease can be compen-
sated by increasing the effective inter-
action time Tint (see Eq. (4.41)).

Next, super-Gaussian profiles mod-
elling the transverse shape of the
wave are considered. The latter are
defined through their intensity in the
focal plane z = 0 [80, 81]

I(r) = I0e
−2

(
r
w0

)m

(4.43)
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with m ≥ 2 and peak intensity I0 = E2
0 . Thus, the corresponding nonvanishing

electromagnetic field component reads

Ex = E0e−
(√

2 ln(2) ϕ
ωτ

)2

e
−
(

r
w0

)m

sin (ϕ) . (4.44)

For m = 2, the expression above describes the leading order term of the paraxial
field for z/zR � 1 (see Eq. (4.1)) and in the limit of m → ∞ the transversal part
converges to a rectangular function.

Here, a comment is in order. An analytical formula for super-Gaussian spatial
profiles, which was provided above, is valid only in the focal plane. In order to
extend it to the whole transversal area, numeric propagation methods are required,
which go beyond the scope of the present study. Thus, the expressions given here
are valid only in the regions where the longitudinal focusing of the laser beam can
be neglected. With this detail in mind, the pulse energy in the discussed scenario is
calculated and for m = 4 and m = 8 the latter results into

Wm=4 ≈
E2
0

2

π3/2w2
0

23/2
τ

2

√
π

ln(2)
, Wm=8 ≈

E2
0

2

πw2
0Γ
(
5
4

)
21/4

τ

2

√
π

ln(2)
. (4.45)
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Figure 4.24: Dependance of the number of
produced pairs on the spatial profile of laser
pulse. Here, super-Gaussian envelopes (red,
blue dashed) in the transverse plane are com-
pared to standard Gaussian. This figure was
initially published in Ref. [51].

Similarly to the case of temporal
profiles, when proceeding to study-
ing the impact of spatial focusing
on transversal super-Gaussian fields,
their energy must be kept equal to
the reference model. Hence, when
comparing the latter to a focused
paraxial pulse from Eq. (4.1), the cor-
responding laser intensity parameters
read

ξn=4 = ξ

(
2

π

)1/4

≈ 0.89ξ,

ξn=8 = ξ

(
23/4Γ

(
5

4

))−1/2
≈ 0.81ξ.

(4.46)

Omitting the effect of longitudinal fo-
cusing (as the expressions above ap-
ply solely in the z = 0 plane), in
Fig. 4.24 the number of created pairs
per incident bremsstrahlung electron
is elucidated when varying the refer-
ence value of the standard Gaussian
ξ. The black solid curve stands for
the unaltered paraxial pulse outcome, whereas n = 4 and n = 8 super-Gaussians are
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marked by dashed red and blue styles. It is noteworthy to point out that, as it has
been indicated previously in Fig. (4.16), for the chosen parameter range neglecting
the longitudinal focusing in the current discussion will not lead to a sizeable error.
From the graphs in Fig. 4.24, it can be seen that both super-Gaussian curves lie above
the paraxial result. This effect, although small, provides an indication regarding the
importance of optimising the interaction area: the effect of decreasing the intensity
from I = 1022 W/cm2 to In=4 = 8.4 × 1021 W/cm2 and In=8 = 6.9 × 1022 W/cm2

may be cancelled out by extending the region of maximal intensity, i.e. broadening
the laser beam. Finally, the dotted curves in Fig. 4.24 represent particle yields with
unadjusted intensities which are kept constant at the level of the x−axis value. In
this scenario the results associated with the super-Gaussian profiles are higher than
the standard Gaussian case throughout the whole range with the largest estimated
particle number for n = 8.

4.4 Summary

Summing up, in the present chapter a theoretical consideration of an approach
for experimental observation of Breit-Wheeler electron-positron pair creation in the
linear and highly nonlinear nonperturbative regimes was presented. Both studies
rely on a setup depicted in Fig. 4.1, where a quantised photon stemming from high
energetic GeV bremsstrahlung impinges on a high intensity laser pulse. In the linear
case a strong field pulse is produced by an x-ray laser with ξ � 1, whereas nonlinear
process relies on a laser with an optical wavelength and ξ � 1.

Firstly, in the linear regime described in section 4.2 a strong field QED technique
was adopted allowing for exact incorporation of a laser field modelled as a paraxial
Gaussian beam. Though, a conclusion was drawn that the field focussing is of minor
importance in this case as tight focusing of the beam is not mandatory. Important
experimental parameters turned out to be: energy of the incident electrons E0,
thickness of the high-Z target �, in which bremsstrahlung is emitted, and the distance
L between the bremsstrahlung production point and the laser focal point, where
the interaction takes place. Moreover, an estimated number of created pairs was
provided, which when considering E0 = 4 GeV, � = 1.25, L = 0.5 m for a laser with
ω = 0.3 keV and τ = 100 fs duration, amounts up to 800 Breit-Wheeler pairs per
laser shot.

Next, the nonlinear nonperturbative process in the ξ � 1, κ ≈ 1 regime was put
under theoretical scrutiny in section 4.3. Breit-Wheeler particle production in this
parameter range is of special interest as it allows for observation of the Schwinger-
like behaviour of the pair creation rate (see subsection 3.2.2). Here, a convenient
framework of LCFA was applied in a way that allows for investigation of the role
of transverse and longitudinal focusing of the strong field laser pulse as the regime
in question is achievable solely in tightly focused laser pulses. Thus, different field
models were adopted, where the laser is described as a constant field in a well defined
spacetime volume, a pulsed plane wave with a Gaussian time envelope and a focused
paraxial Gaussian pulse, while keeping the energy constant. When a field description
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by a paraxial Gaussian pulse was pursued, estimations for the created number of
pairs for the parameter range envisaged at the experiment planned at CALA (see
Ref. [33]) were elucidated: up to 10 pairs per hour could be detected at the facility in
question. Moreover, studies were conducted in order to provide the number of pairs
created in various focal regions of the laser pulse depending on the field intensity and
the energy of bremsstrahlung photons, as well as a general assessment of the role
of longitudinal focusing was performed. Further, the importance of tighter focusing
while adjusting the intensity was discussed and, lastly, super-Gaussian time and
space profiles were incorporated and effects of varying interaction spacetime volume
shown.



Chapter 5

Pair production in QED2+1

In the context of high energy physics, low dimensional theories have proven them-
selves as a powerful tool for providing useful insights to their higher dimensional
analogues. For example, some aspects of nonperturbative quantum choromodynam-
ics (see e.g. [82] and references therein) and solvability of the theory of gravity
[83] were revealed in that way. Moreover, the discovery of the quantum Hall effect
in 2+1 dimensional systems [84] and our understanding of high temperature QED
were facilitated by the quantum electrodynamics in 2+1 dimensions (QED2+1) with
the Chern-Simons contribution [85]. Regarding the question of pair production, the
Schwinger mechanism was extensively studied in various spacetime dimensions in
constant uniform electric and magnetic fields [86] and electric fields of finite dura-
tion [87]. In addition, Schwinger pair creation was put under theoretical scrutiny in
graphene: a solid state system, where excited valence electrons form a quasiparticle-
hole pair which behaves relativistically and can be described by a 2+1 dimensional
Dirac-like equation. Also Breit-Wheeler pair creation was considered in one spatial
dimension, which allowed for higher spacetime resolution [88] and better accuracy
of predictions [89] for this process.

Apart from gains in information for the 3+1 dimensional processes, the field of
lower dimensional theories is of high relevance for quantum simulations, which are,
due to their high complexity, usually designed in reduced dimensionality. The latter
are realised via refined placement of ultracold atoms into optical lattices and are
able to mimic the behaviour of many-body systems providing hints on the limits and
applicability of the underlying theory. For QED, the research so far is concentrated
on the 1+1 dimensional systems studying Schwinger pair production [90, 91, 92, 93,
94] and gradually evolves towards QED2+1 [95, 96, 97, 98].

Of particular interest in this chapter is the theory of 2+1 dimensional quantum
electrodynamics, which is described via the action looking quite similar to Eq. (2.1)
[99]

S[a, ψ, ψ̄] =

∫
d3x

(
ψ̄(x)

(
i /D −m

)
ψ(x)− 1

4
fμν(x)f

μν(x)

)
, (5.1)

where all quantities, however, denote the 2+1 dimensional analogues of their higher
dimensional counterparts and d3x = dtdxdy. Thus, the γ−matrices in the covariant

55
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derivative Dμ = ∂μ+ieaμ, μ = 0, 1, 2 are of the dimension 2×2 and further discussed
in appendix A.1.2, whereas the fermion spinors have a form of two-dimensional
vectors. Moreover, a reduction of spatial dimensions induces changes in the physical
dimensions of the involved fields ψ, a and the electron charge e

[ψ] = E, [a] = E1/2 and [e] = E1/2, (5.2)

where E stands for the dimension of energy. The fact that the charge in the expres-
sion above has a positive energy dimension makes QED2+1 a superrenormalisable
theory [34]. Hence, a term |e|2/4π can no longer be identified with the traditional
fine-structure constant α ≈ 1/137, which prevents one from performing the pertur-
bation theory as explained in section 2.1. To that end, an alternative expansion
parameter needs to be found, which in this scenario is chosen as a dimensionless
intensity parameters η = |e|a0/m > 0 with a gauge field amplitude a0, an analogy
to the intensity parameter ξ in QED. This assignment works because in a minimally
coupled framework a combination ea0 has always a dimension of energy regardless
the number of space dimensions d: [ea0] = E(3−d)/2E(d−1)/2 = E. Then, when as-
suming that η � 1, the perturbation theory can be applied as it was shown in
section 2.1.

In the present chapter, the Breit-Wheeler pair production in the underlying low
dimensional theory in various interaction regimes from weak to very strong fields
is studied. Starting from the description of the involved fields when highlighting
their differences when compared to 3+1 dimensional QED, the linear Breit-Wheeler
process is considered. Next, particle creation in a monochromatic plane-wave-like
field is discussed with particular focus on the low (η � 1) and high (η � 1) intensity
regimes. And, lastly, a comment on the breakdown of perturbation theory and the
relevance of the radiative corrections is made. This chapter is based on the results
published in Ref. [100].

5.1 General aspects

5.1.1 Radiation field

In the present chapter, depending on the field intensity, two different kinds of elec-
tromagnetic fields are involved: a strong field, which will be incorporated in the
procedure within the Furry picture (see subsection 2.4.1), and a low-intensity field
with η � 1 that is quantised. In 2+1 dimensions both fields are solutions of the
Maxwell equations resulting from Eq. (5.1) and their magnetic and electric field
components are a pseudo scalar and a two component vector, respectively [101].

The weak field contributes to the Breit-Wheeler pair production in terms of the
gauge field operator, which when quantised within a Gupta-Bleuler formalism reads
[99]

âμ(x) =
∑
λ,k

1√
2ωAγ

(
εμ,λâk,λe

−ikx + ε∗μ,λâ
†
k,λe

ikx
)
, (5.3)
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where a normalisation area Aγ arises (compare to Eq. (2.7)). When instead no nor-
malisation to one particle in the area is performed, a substitution a0/2 ≡ 1/

√
2ωAγ

is made, where a0 stands for the field amplitude. Moreover, a wave vector related to
the expression above reads kμ = (ω,kkk) with kkk = (k1, k2), while the focus here is put
only on the transversal polarisation vectors εμ, which obey kμεμ = 0, are normalised
to εμεμ = −1 and fulfil the completeness relation

εμεν = −gμν − kμkν − nk(kμnν + kνnμ)

(nk)2
(5.4)

with nμ = (1, 0, 0).

Conversely, in this chapter the strong field is represented by a linearly polarised
plane-wave-like three-potential of the form

aμ(kx) = a0ε
μcos(kx) (5.5)

for μ = 0, 1, 2 and kx = ωt− kxkxkx.

5.1.2 Free fermions

Similarly to QED3+1, in 2+1 dimensional space free Dirac fermions represent a
solution of the free Dirac equation

(i/∂ −m)ψ = 0, (5.6)

which, however, has a different dimensionality and manifests a SO(1, 2) invariance
[99, 102]. The solution is found by employing the plane-wave ansatz (see begin-
ning of appendix A.2.1) and resembles Eq. (2.15) with elementary spinors from
appendix A.2.2 and normalisation to one particle in an area A instead of volume V .
When quantised, the field operators read

ψ̂(x) =
∑
p

√
m

p0A

(
upb̂pe

−ipx + vpd̂
†
pe

ipx
)
,

ˆ̄ψ(x) =
∑
p

√
m

p0A

(
v̄pd̂pe

−ipx + ūpb̂
†
pe

ipx
)
,

(5.7)

where up− refers to a free electron spinor, whereas vp+ is the free negative-energy
solution from appendix A.2.2. Following Eq. (A.6), there is no longer a spin degree
of freedom in the system, and, thus, no sum over this quantum number in the
equations above is needed. Moreover, the momentum space representation of the
fermion propagator in 2+1 dimensions is given by

SF (x− y) =

∫
d3p

(2π)3
eip(x−y)

/p−m+ i0
. (5.8)
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5.1.3 Volkov states in 2+1 dimensions

Following Eq. (5.1), the time evolution of planar relativistic electrons interacting
with a strong electromagnetic field aμ(x) is described by a Dirac equation(

i /D −m
)
ψ = 0. (5.9)

As in 3+1 dimensions, the equation above is solvable only for a certain class of
electromagnetic fields. For a field configuration as given in Eq. (5.5), the procedure
follows the approach presented in section 2.4.2, despite of the inherent differences
caused by the dimensionality, and one obtains

Ψ̂q−(x) =

√
m

q−0 A

(
1 +

e

2kq−
/k/a

)
up−

× exp

[
−iq−x− i

ea0q
−ε

kq−
sin(kx)− i

e2a20
8kq−

sin(2kx)

]
. (5.10)

Here, the averaged effective momentum reads q−μ = p−μ +
e2a20
4kp−kμ with the effective

electron mass q−2 = m2
∗ = m2(1 + η2/2). Analogously, the Volkov solution for a

positron Ψq+(x) is given by Eq. (5.10) when carrying out the replacements: p− →
−p+ and up− → vp+ .

5.2 Pair creation by two photons in 2+1 dimen-

sions

When energetically allowed, an electron-positron pair with momenta p± can be
created from two photons with the wave vectors k and k′, which are represented via
the Fock number states. To that end, the S-matrix element reads

Sfi = 〈1p+ ; 1p− |Ŝ(2)[ψ̂, ˆ̄ψ, â]|1k′ ; 1k〉, (5.11)

where Ŝ(2)[ψ̂, ˆ̄ψ, â] stands for the second order scattering operator from the second
line in Eq. (2.6). The corresponding Feynman diagrams can be seen in Fig. 5.1.
Here, solid external lines denote created electron and positron, internal connecting
pieces stand for the fermionic propagator in 2+1 dimensions and wavy lines represent
the incident photons. Thus, when using the (anti-)commutation relations for the
involved particles and the definition of the Feynman propagator one obtains

Sfi = −ie2

√
1

22ωω′A2
γ

m2

p+0 p
−
0 A

2

(∫
d3x d3y ūp−/εSF (x− y)/ε′vp+ei(p+−k

′)y+i(p−−k)x

+

∫
d3x d3y ūp−/ε

′SF (x− y)/εvp+e
i(p−−k′)x+i(p+−k)y

)
. (5.12)



5.2. Pair creation by two photons in 2+1 dimensions 59

Figure 5.1: Feynman diagrams for linear Breit-Wheeler process.

Here, the Feynman slashed notation regarding the photon polarisations /ε(′) = ε
(′)
μ γμ

is restored. Then, the Feynman propagators in their momentum representation are
inserted and integrals over the spatial variables are carried out. Making use of the
Dirac δ−functions the remaining momentum integrations can be performed, which
leads to

Sfi = − ie2

AγA

√
m2

p+0 p
−
0

√
1

22ωω′
(2π)3δ3(k + k′ − p+ − p−)Mγγ′ (5.13)

with

Mγγ′ = ūp−

(
/ε/ε′

/k
′ − /p+ −m+ i0

+
/ε′/ε

/k − /p+ −m+ i0

)
vp+ . (5.14)

Similarly to the particle rate per volume in 3+1 dimensions, in this chapter a dif-
ferential particle rate per area, which is defined as

dR2+1 =
|Sfi|2
TA

A2 d
2p−

(2π)2
d2p+

(2π)2
, (5.15)

is integrated over the reduced 4-dimensional phase space of the created particles.
Thus, in the present context the quantity in question can be written as

R2+1
γγ′ =

e4

A2
γ

m2

8πωω′

∫
d2p−

p−0

d2p+

p+0
δ3(k + k′ − p+ − p−)|Mγγ′ |2, (5.16)

where the square of the amplitude reads

|Mγγ′ |2 = 1

16m2
Tr
[(

/ε
/k
′ − /p+ +m

k′p+
/ε′ + /ε′

/k − /p+ +m

kp+
/ε

)
(/p

+ −m)

×
(
/ε′
/k
′ − /p+ +m

k′p+
/ε + /ε

/k − /p+ +m

kp+
/ε′
)
(/p
− +m)

]
. (5.17)
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Using the properties of the γ−matrices from appendix A.1.2 and the energy-momentum
conservation, the expression above reduces to

|Mγγ′ |2 = 1

m2

[
(kk′)2

4kp+kp−
− 1 +

2m2kk′

kp+kp−
− m4(kk′)2

(kp+kp−)2

]
(5.18)

and the rate per area reads

R2+1
γγ′ =

e4a20a
′2
0

32π

∫
d2p−

p−0

d2p+

p+0
δ3(k + k′ − p+ − p−)

×
[

(kk′)2

4kp+kp−
− 1 +

2m2kk′

kp+kp−
− m4(kk′)2

(kp+kp−)2

]
, (5.19)

where the relations a
(′)2
0 ≡ 2/ω(′)Aγ have been inserted. The integration is conve-

niently performed in the center of momentum reference frame by adopting polar
coordinates. Thus, ppp = ppp+ = −ppp−, p+0 = p−0 , ω = ω′, kk′ = 2ωω′ = 2ω2 with
kp = ω(p0 − |ppp|cos(φ)) and after integrating out p− and p0 by employing the corre-
sponding δ−functions one arrives at

R2+1
γγ′ =

e2a′20 m
2

8π

η2

4

1

2ω

∫ 2π

0

dφ
[
− 1− 4u2

[1− (1− u)cos2(φ)]2
+

(1 + 4u)

[1− (1− u)cos2(φ)]

]
(5.20)

with u = m2/ω2 and η = |e|a0/m. The remaining integration is performed by using
Eqs. (3.616.8) and (3.642.3) in Ref. [103] and in terms of the Mandelstam variable
s =

√
kk′/2m2 it reads

R2+1
γγ′ =

e2a′20 m
8π

πη2

4s

[
−1− 2(s2 + 1)

s3
+

(4 + s2)

s

]
. (5.21)

From the equation above a quantity α2+1 = e2/(4πm) may be read off, which rep-
resents the counterpart of the QED fine-structure constant α. Moreover, when
m � e2/(4π) holds, α2+1 plays the role of a perturbative coupling constant. Next,
the rate per area displayed in the equation above can be compared with the leading
order expression resulting from the consideration of Breit-Wheeler pair creation in
a monochromatic wave at low intensities (see Eq. (5.38)). The latter is discussed in
detail in the next section.

5.3 Pair creation in a monochromatic plane-wave-

like field

In this section the creation of an electron-positron pair with three-momenta p∓ via
the Breit-Wheeler process with a plane-wave-like electromagnetic field from Eq. (5.5)
is considered (see Fig. 3.1 for the Feynman diagram). As the classical field is assumed
to be strong, the corresponding intensity parameter η is much larger than η′, which
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stands for the intensity parameter of the weak quantised field. To that end, the
Furry picture approach from subsection 2.4.1 is applied and the transition amplitude
results, analogously to Eqs. (3.1) and (3.2), from the first order scattering operator
with the dressed states

Sfi = −ie

∫
d3xΨ̄q−(x)/a

′(x)Ψq+(x), (5.22)

where a′μ(x) =
a′0
2
ε′μe

−ik′x denotes the photon wave function, which refers to the
amplitude a′0 rather than being normalised to one particle in the area, and Ψq±

are the Volkov solutions from subsection 5.1.3. When inserting the latter into the
equation above, terms proportional to the exponential cosl(kx)e−iz−sin(kx)−iz+sin(2kx)

with l = 0, 1, 2 and

z− = ea0(
q+ε

q+k
− q−ε

q−k
), z+ = −e2a20

8

kk′

kq+kq−
(5.23)

arise. Here, their Fourier expansions from Eqs. (B.5) and (B.6) in appendix B are
employed and, afterwards, the transition amplitude reads

Sfi = −i
ea′0
2

√
m2

q+0 q
−
0 A

2

∞∑
n=−∞

(2π)3δ3(nk + k′ − q+ − q−)ūp−Mnvp+ , (5.24)

where Mn is of the following form

Mn = /ε′J̃n(z−, z+) +
ea0
2
J̃ 1

n

(/ε/k/ε′
kq−

− /ε′/k/ε
kq+

)
− e2a20

2kq+kq−
ε′μkμJ̃ 2

n /k. (5.25)

In order to derive the expression above the energy-momentum conservation q++q− =
nk+k′ provided by the Dirac δ−functions, anticommutativity of γ−matrices as well
as transversal condition εk = 0 have been used.

Next, the rate of the process as it was defined in Eq. (5.15) is considered.
However, similarly to chapter 3, in order to simplify the integrations the relation
d2p−d2p+/(p−0 p

+
0 ) = d2q−d2q+/(q−0 q

+
0 ) is used, and the differential rate reads

dR2+1 =
|Sfi|2
TA

A2 d
2q−

(2π)2
d2q+

(2π)2
, (5.26)

which results into

R2+1 =
e2a′20 m

2

8π

∞∑
n=−∞

∫
d2q−

q−0

d2q+

q+0
δ3(nk + k′ − q+ − q−)|ūp−Mnvp+ |2, (5.27)

when Eqs. (5.24) and (5.26) are combined. In the equation above the sum over n
can be interpreted as a sum over the number of absorbed photons from the classical
field aμ(kx).
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Further, when taking into account the normalisation and properties of elementary
spinors in 2+1 dimensions from and below Eq. (A.7) in appendix A.2.2, the squared
transition amplitude |Mn|2 = |ūp−Mnvp+ |2 can be written as

|Mn|2 = Tr

[
/p− +m

2m
Mn

/p+ −m

2m
M̄n

]
(5.28)

with M̄n = γ0M †
nγ

0. At this point it is noteworthy to comment on the trace from the
equation above: Although the form of the squared amplitude remains unchanged
with respect to 3+1 dimensions as it was given in Eq. (3.9), the trace is no longer
taken over a 4× 4 matrix, but rather over the one of dimension 2× 2. Furthermore,
no averaging over the photon polarisations and summing up the lepton spins is
necessary. Thus, with the completeness relation from Eq. (5.4) one obtains

|Mn|2 = J̃2
n(z−, z+)−

e2a20
m2

(
1− (kk′)2

4kq+kq−

)[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

]
, (5.29)

where the energy-momentum balance and transversal condition have been used.
Here, owing to the Ward identity, only the term containing −gμν from Eq. (5.4)
contributes to the squared amplitude and, similarly to chapter 3, the relation given
in Eq. (3.11) was exploited.

With all these details at our disposal, in 2+1 dimensions the rate per area for
Breit-Wheeler pair creation in a plane-wave-like field reads

R2+1 =
e2a′20 m

2

8π

∞∑
n≥n0

∫
d2q−

q−0

d2q+

q+0
δ3(nk + k′ − q+ − q−)

×
[
J̃2
n(z−, z+)− η2

(
1− (kk′)2

4kq+kq−

)[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

]]
(5.30)

with a summation starting at n0 = 2m2
∗/(kk

′) due to the energy-momentum balance.
Next, a comparison between the expression above and the corresponding particle
rates in 3+1 dimensions (see Eqs. (3.14) and (3.15)) is drawn. Leaving aside the
lower dimensionality of the delta functions and the involved integration measures,
the main difference between R2+1 and the unpolarised rate in 3+1 dimensions from
Eq. (3.15) lies in the precise structure of the squared amplitude. The latter rather re-
sembles the squared amplitude of the pair production by a photon with polarisation
parallel to the electric field of the wave in Eq. (3.12) when setting σ = 1. Following
the last line of Eq. (3.32), this condition means lowering the dimensionality of the
system to a plane by elimination of the axis orthogonal to the polarisations of the
quantised photon and the strong field. Thus, it highlights the restriction provided
by a lower dimensionality: both photon wave vectors and polarisations are bound
to a plane. Hence, when moving the system to a center of momentum frame of
created particles, where photons are counterpropagating, their polarisations have to
be parallel. In this reference frame the variables read qqq − = −qqq + = −qqq, nkkk = −kkk′,
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nω = ω′. After integrating out q− and expressing the remaining integrals in polar
coordinates the rate can be written as

R2+1 =
e2a′20 m

2

8π

∞∑
n≥n0

∫ 2π

0

dφ

∫ ∞

0

dq

2q0
δ(q − q∗n)

×
(
J̃2
n(z−, z+)− η2

(
1− 1

1− q2

ω′2 cos2(φ)

)[
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

])
, (5.31)

where |qqq | ≡ q, kq+ = ω[ω′− qcos(φ)], kq− = ω[ω′ + qcos(φ)], εq− = −εq+ = qsin(φ)
and q∗n =

√
ω′2 −m2∗, q0 = ω′ were set. With help of the Mandelstam invariant

s =
√
kk′/2m2 the threshold number of absorbed photons reads n ≥ (1 + η2/2)/s2.

For every value of n a threshold energy

s2 ≥ 1

n

(
1 +

η2

2

)
= s2n (5.32)

can be defined, which must be overpassed in order for the process to occur, and
q∗n = ω′

√
1− (1 + η2/2)/ns2.

5.3.1 Threshold behaviour

Now, let us take a careful look at the behaviour of the rate at the energy threshold,
where the particles are created with zero momentum (q = 0). In contrast to the
higher dimensional case, the rate in Eq. (5.31) does not always vanish at q = 0. In
3+1 dimensions the remaining contribution in the rates from Eqs. (3.14) and (3.15)
after integrating over q− in the center of momentum frame∫

d3q

q20
δ(2q0 − 2ω′) =

∫
dΩ

∫
qdq

2q0
δ(q − q∗n) ∝ q∗n

s→sn−→ 0 (5.33)

always goes to zero at the threshold. In the present case of 2+1 dimensions, however,
the integrations over momenta with the Jacobi determinant will not vanish at all
times in the energy regime of interest and the threshold behaviour of the process
rate is governed solely by the process amplitude. Therefore, it is studied more in
detail starting with the arguments of the generalized Bessel functions

z− = − 2η

ms2
qsin(φ)

1− q2

ω′2 cos2(φ)

s→sn→ 0, z+ = − η2

4s2
1

1− q2

ω′2 cos2(φ)

s→sn→ − η2

4s2n
≡ z+n.

(5.34)
As one of the arguments vanishes at q = 0, the property of the generalized Bessel
function of one argument J̃n(0, z+n) from Eq. (B.2) is called for, where a distinction
between odd and even indices is made. Hence, when an even number of strong field
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Figure 5.2: Feynman diagrams of two and three photons pair creation processes in
external fields can be seen in the left and right panels.

photons n = 2� is absorbed, the rate from Eq. (5.31) at the threshold reads

R2+1
s→sn =

e2a′20 m
8

∞∑
2�≥n0

J2
�

(
− η2�

2(1+η2/2)

)
1 + η2/2

, (5.35)

whereas for an odd number of laser photons participating in the reaction, it is equal
to zero. Following the formula above, the threshold contribution to the rate vanishes
at η � 1, whereas for η � 1 it behaves like

R2+1
s→sn ≈ e2a′20 m

8

∞∑
2�≥n0

η4�
�2(�−1)

24�Γ2(�)
, (5.36)

where Γ(x) stands for the gamma function [52]. Thus, the nonvanishing threshold
behaviour of the process rate plays an important role for the low intensity regime
and will be studied further in the following subsection, where the small ξ asymptote
is established.

5.3.2 Behaviour for η � 1

Similarly to the behaviour of the Breit-Wheeler rate in QED (see Eq. (3.16), the
leading contributions to the pair creation in the present context are provided by the
n = 1 and n = 2 terms in Eq. (5.30). The corresponding Feynman diagrams are
depicted in Fig. 5.2. In both panels created fermions are denoted by external solid
lines, internal pieces represent the free fermion propagators and wavy lines stand for
the photons stemming from the quantised and classical (marked by crossed circles)
fields.

When energetically feasible, an absorption of one laser photon provides the
largest contribution to the process rate. Thus, the n = 1 summand in Eq. (5.30) will
be studied next. To that end, for η � 1 the effective electron and positron momenta
simplify to q± = p±. Moreover, the arguments of the generalized Bessel functions
are written as z− = ηm( p

−ε
p−k

− p+ε
p+k

), z+ = −η2m2

8
kk′

kp+kp− and their proportionality to
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η and η2 allows for expanding the Bessel functions in small arguments at it is shown
in Eq. (B.7) in appendix B.1. Having these in mind the squared amplitude results
into

|Mn=1
η�1|2 =

η2m2

4

(
p−ε
p−k

− p+ε

p+k

)2

− η2

4

(
1− (kk′)2

4kp+kp−

)
(5.37)

and after using Eq. (5.4) combined with the energy-momentum conservation p+ +
p− = k + k′ the rate for two photon interaction reads

R2+1
n=1 ≈

e2a′20 m
2

8π

η2

4

∫
d2p−d2p+

p−0 p
+
0

δ3(k + k′ − p+ − p−)

×
[

(kk′)2

4kp+kp−
− 1 +

2m2kk′

kp+kp−
− m4(kk′)2

(kp+kp−)2

]
. (5.38)

With η = |e|a0/m the equation above resembles the rate in Eq. (5.19), which was
calculated within the framework of perturbation theory for a process where interac-
tion of two quantised photons leads to creation of an electron-positron pair. Finally,
the phase space integrations are carried out in the center of momentum frame as it
was shown in section 5.2 and one arrives at

R2+1
n=1 ≈

e2a′20 m
8π

πη2

4s

[
−1− 2(s2 + 1)

s3
+

(4 + s2)

s

]
. (5.39)

It is worth mentioning that the rate vanishes at the energy threshold, which in the
present context corresponds to s = 1.

Next, the case where two strong field photons are absorbed (see lower panel of
Fig. (5.2) for the corresponding Feynman diagram) is considered. Here, after the
expansion of the Bessel functions in small arguments is performed the amplitude of
the process up to O(η4) equals to

|Mn=2
η�1|2 =

(
z+
2

+
z2−
8

)2

− η2

4

(
1− (kk′)2

4kp+kp−

)(
z2−
8

− z+
2

)
(5.40)

and the corresponding rate reads

R2+1
n=2 ≈

e2a′20 m
2

8π

∫
d2p−

p−0

d2p+

p+0
δ3(2k + k′ − p+ − p−)|Mn=2

η�1|2. (5.41)

Similarly to the n = 1 contribution, after employing the δ−functions for integrations
over p− and a transition to the center of momentum frame, the remaining integrals
in the equation above are carried out in polar coordinates with ppp = ppp + = −ppp −,
p+0 = p−0 = ω′ = 2ω, kk′ = 4ω2 and kp = ω(p0 − |ppp|cos(φ)). Consequently, the
asymptote for the two-photon absorption process from the strong field is obtained

R2+1
n=2 ≈

e2a′20 m
8π

πη4

128s8
[
10− 30s2 + 19s4 + 12s8

]
. (5.42)
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As it was already anticipated in Eq. (5.36), the equation above provides a nonvan-
ishing contribution at the energy threshold corresponding to s = s2 =

√
1/2.

s
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Figure 5.3: Pair production rates in 2+1 di-
mensions (blue and red) and in 3+1 dimen-
sions (black) in dependence on the Mandel-
stam invariant s for η = 0.01. This figure
was originally published in Ref. [100].

The threshold behaviour of the
n = 1 and n = 2 rates denot-
ing the two- and three-photon pro-
cesses, correspondingly, can be seen
in the upper and lower panels of
Fig. 5.3. Here, the asymptotes
derived in the current section are
depicted in blue, whereas the red
dashed curves result from numeri-
cally evaluating Eq. (5.30). The
graphs stemming from the study in
2+1 dimensions are compared to
the Breit-Wheeler particle rates in
standard QED from subsection 3.1.1
(black). The dotted curves represent
the outcomes from a consideration,
where the quantised photon was po-
larised parallelly to the polarisation
of the strong field as it was presented
in Eqs. (3.21) and (3.27), whereas
black solid curves stand for the rates
taking into account an unpolarised
photon (see Eqs. (3.22) and (3.28)).
Moreover, this assessment has been
done by setting η = 0.01. From the
discussed figure it can be seen that, with exception of the three-photon processes in
QED2+1, all particle rates provide a zero contribution at the energy threshold.

5.3.3 Behaviour for η � 1

In the high intensity limit a large number of strong field photons participates
in the pair creation process. Thus, many summands in Eq (5.30) provide non-
negligible contributions to the rate and, analogously to the calculation presented in
section 3.1.2, a transition to the continuum limit

∑
n ... →

∫
dn... can be developed.

Then, the integrals in n and qqq+ are performed with help of the delta functions and
Eq. (5.30) reads

R2+1
η	1 =

e2a′20 m
2

8π

∫
d2q−

q−0 kq+
|Mn=n∗ |2 (5.43)

with |Mn=n∗ |2 as given in Eq. (5.29) for n → n∗, n∗ = q−k′/[ω(ω′ − k′2 − q−0 + q−2 )].
Here, it is assumed without loss of generality that the strong field aμ is polarised in
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x1−direction. Next, a set of new variables is introduced:

X =
kq+

m2
η, X′ =

kq−

m2
η, γ− = q−0 − q−2 , (5.44)

which allow for writing the arguments of the generalised Bessel functions z± as

z+ = − η3κ

8XX′
, z− =

η2

mXX′
(q−εX− q+εX′) (5.45)

with the quantum nonlinearity parameter in 2+1 dimensions κ = ηkk′/m2. The
next step is represented by a substitution q−2 → γ− leading to

R2+1
η	1 =

e2a′20 m
2

8π

η

m2

∫ ∞

−∞

dq−1
X

∫ λ

0

dγ−

γ−
|Mn=n∗ |2, (5.46)

where λ = ω′ − k′2. The squared amplitude in the expression above contains gen-
eralized Bessel functions, which are further developed in the limit of large argu-
ments as the latter are dependent on η. The corresponding calculation is shown in
appendix B.2, where changes induced by the lower dimensionality are highlighted
throughout the study. Thus, taking into account Eq. (B.30) while setting σ = 1,
which is justified as the process takes place in a plane and σ = 1 + t2 with t de-
noting a variable orthogonal to the surface spanned by the field polarisation and
wave vectors (see Eq. (3.32) and description above it), one obtains for η � 1 and
η � κ1/3

|Mn=n∗ |2 ≈ 2

π

(
− 1

4z+sin
2(x0)

)2/3

×
[
Φ2(z)−

(
1− κ2

4XX′

)(
Φ2(z) +

Φ′2(z)
z

)]
(5.47)

with z = (−4 sin2(x0)z+)2/3

η2 sin(x0)
and an Airy function Φ(z) [2]. Moreover, when deriving

the equation above a new substitution involving x0, x0 ∈ [0, π] has been performed:
cos(x0) = − ω

κm3 (q
−
1 γ

+ − q+1 γ
−) with γ+ = q+0 − q+2 and γ+ + γ− = λ.

Further, a new integration variable ϑ is introduced, which is defined through

X′ =
κ

2
[1 + tanh(ϑ)], X =

κ

2
[1− tanh(ϑ)]. (5.48)

It is incorporated into the rate via a substitution X′ = ηω
m2γ

−, which leads to integra-
tion limits over X′ spreading over the interval [0, κ]. As the integrand in Eq. (5.46)

is symmetric in X′ and X with X′+X = κ, the relation
∫ κ

0
dX′... = 2

∫ κ/2

0
dX′... holds

and the corresponding integration over ϑ runs from 0 to ∞. Taking these details
into account the rate per area results to
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R2+1
η	1 ≈

e2a′20 m
8π

8

π

∫ π/2

0

dx0

∫ ∞

0

dϑ
√
z

cosh2(ϑ)

[
Φ2(z) + sinh2(ϑ)

(
Φ2(z) +

Φ′2(z)
z

)]
(5.49)

with z =
(

2cosh2(ϑ)
κsin(x0)

)2/3

. Moreover, when using

Φ′2(z)
z

=
1

2z

d2Φ2(z)

dz2
− Φ2(z), Φ2(z) =

1

22/3
√
π

∫ ∞

0

dt√
t
Φ(t+ 22/3z) (5.50)

combined with the defining equation for the Airy functions (see Ref. [104]), the
Breit-Wheeler rate can be written as a function depending linearly on the Airy
function of the shifted argument t+ 22/3z

R2+1
η	1 ≈

e2a′20 m
8π

8

22/3π3/2

∫ π/2

0

dx0

∫ ∞

0

dt√
t

×
∫ ∞

0

dϑ
√
z

cosh2(ϑ)

(
1 +

21/3sinh2(ϑ)

z

)
Φ(t+ 22/3z). (5.51)

Now, similarly to the procedure shown in subsection 3.1.2, the asymptotes of
Eq. (5.49) for various κ regimes will be studied. Starting with κ � 1 it is helpful to
notice that the Airy functions decrease monotonically with growing positive argu-
ment, i.e. since z ≥ 0, the largest contribution to the integral in Eq. (5.49) results
from the region close to ϑ̃ = 0 and x̃0 = π/2. Hence, Φ and Φ′ can be expanded for
large arguments as z ∝ 1/(κ)2/3 � 1

Φ2(z) =
z

3π
K2

1/3

(
2

3
z3/2

)
z→∞−→ z−1/2

4π
e−

4
3
z3/2 , (5.52)

Φ′2(z) =
z2

3π
K2

2/3

(
2

3
z3/2

)
z→∞−→ z1/2

4π
e−

4
3
z3/2 (5.53)

with the modified Bessel functions of the second kind Kν(x) [52]. After inserting the
expressions above into Eq. (5.49) all functions dependent on ϑ and x0 are expanded
around ϑ̃ and x̃0. Then, after taking the leading contributions in the integration
variables and subsequently carrying out the remaining integrals one ends up with

R2+1
η	1,κ�1 ≈

e2a′20 m
8π

3κ

8
√
2
e−

8
3κ . (5.54)

The equation above can now be compared to its 3+1 dimensional analogue given
in Eq. (3.36). The main difference is manifested in the change of the power linked
to the quantum nonlinearity parameter κ in the pre-exponential factor from 3/2 in
QED to 1 in QED2+1. This deviation is caused by the reduced dimensionality of the
phase space as in both cases the integrand in the limit κ � 1 depends on κ solely
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through the exponential function e−
4
3
z3/2 . Hence, since an integration over each

variable provides a factor κ1/2 and the rate in 2+1 dimensions does not depend on
the variable responsible for a dimension orthogonal to the plane spanned by photon
polarisations and propagation vectors (σ = 1), the expression above contains a power
of 1/2 less in the quantum nonlinearity parameter when compared to Eq. (3.36).

Next, the κ � 1 limit is studied. To that end, beginning with Eq. (5.49), the
substitutions κsin(x0) = p and ch(ϑ) = u are performed and the involved Airy
functions are written in terms of the modified Bessel functions of the second kind
as it was shown in Eq. (5.52) leading to

R2+1
η	1,κ	1 ≈

e2a′20 m
8π

16

3π2

∫ κ

0

dp

p
√

κ2 − p2

∫ ∞

1

du√
u2 − 1

×
[
u2K2

1/3

(
4u2

3p

)
+ (u2 − 1)K2

2/3

(
4u2

3p

)]
, (5.55)

while the integration over p is further divided into two intervals: [0, p0] and [p0, κ]
with p0 � κ. Then, the contribution from the first interval is negligible since
p/κ � 1 holds and, as it is shown below, it scales with κ−1

∫ p0

0

dp

p
√

κ2 − p2
... ≈ 1

κ

∫ p0

0

dp

p
... ∼ p

4/3
0

κ
� 1. (5.56)

For the remaining integrations a subsequent substitution t = 4u2/3p (see the argu-
ment of the Bessel functions) is made, while leaving p unchanged. Consequently,
one obtains

R2+1
η	1,κ	1 ≈

e2a′20 m
8π

4√
3π2

∫ κ

p0

dp
√
p
√

κ2 − p2

∫ ∞

4
3p

dt

×

⎡
⎣3p

4

√
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3pt
4
− 1

K2
1/3 (t) +

√
3pt
4
− 1

t
K2

2/3 (t)

⎤
⎦ , (5.57)

which allows for exploiting the behaviour of K1/3,2/3(t) in various regimes in a more
straight forward way. Having this goal in mind, the integration over t is split into
two sectors: ∫ ∞

4/3p

dt... =

∫ t0

4/3p

dt...+

∫ ∞

t0

dt... (5.58)

with a parameter t0 satisfying the following conditions

4

3κ
� 4

3p0
� t0 � 1,

3κt0
4

� 3p0t0
4

� 1. (5.59)

Let us consider firstly the contribution stemming from [t0,∞], where 3pt/4 � 1
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holds and, as a consequence, the integral approximates

∫ ∞

t0

dt

⎛
⎝3p

4

√
t

3pt
4
− 1

K2
1/3 (t) +

√
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4
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⎠
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4

∫ ∞
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dt
(
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1/3 (t) +K2
2/3 (t)

)
≈
√

3p

4

3Γ2(2
3
)

22/3t
1/3
0

. (5.60)

For deriving the right hand side of the equation above the condition t0 � 1 has
been used and Γ(x) stands for the gamma function [52].

Regarding the second contribution from Eq. (5.58) defined over [4/3p, t0]: Here,
since t � 1 applies, the small argument behaviour of the modified Bessel functions
Kν(t) ≈ Γ(ν)/2(t/2)ν [52] may be employed. Thus, taking advantage of the relations
4/3pt0 � 1 and t0 � 1 the integration in t is carried out providing

∫ t0

4/3p

dt

⎛
⎝3p
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√
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⎠
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3
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22/3t
1/3
0

+
35/6

√
π

210/3
Γ2(2

3
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)
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6
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π
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Γ2(1

3
)Γ(−1

3
)

Γ(1
6
)

p1/6. (5.61)

When the combined Eqs. (5.60) and (5.61) are inserted back into Eq. (5.57), which
results in the dropping out of the ambiguous parameter t0, as it should, and for the
leading order in κ one obtains

R2+1
η	1,κ	1 ≈

e2a′20 m
8π

311/6

21/35π
Γ2

(
2

3

)
κ1/3. (5.62)

Similarly to the case of low quantum nonlinearity parameters, there are devia-
tions in the expression above when compared to its 3+1 dimensional counterpart
shown in Eq. (3.37) in subsection 3.1.2. In QED the rate in the studied limit shows
a well known κ2/3 behaviour, which provides insights on the applicability of the per-
turbation theory in the quantised field (see discussion below Eq. (3.41)) and leads to
an establishment of a modified coupling in the strong fields ακ2/3. On contrary, in
Eq. (5.62) the rate dependence on κ is given through an exponent of 1/3. Thus, the
proper expansion parameter for QED2+1 could read g ∼ α2+1κ

1/3 whenever g � 1
holds. As for making a reliable statement on this issue a more sophisticated study of
the next-to-leading order terms within the perturbative expansion [5, 105, 106, 107],
which is beyond the scope of the present study, is required, the comment on the
modified coupling provided above must be considered as a conjecture. However,
owing to the superrenormalisable feature of the theory some interesting aspects can
still be read off from Eq. (5.62). When assuming that κ in 2+1 dimensions corre-
sponds to its 3+1 dimensional analogue and κ � 1 holds, the presence of the 1/3
exponent would induce a softer breakdown of the perturbation theory if α2+1 ∼ α.
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Conversely, if α2+1 � ακ1/3, i.e. e2/(4π) � mακ1/3, the collapse in QED2+1 could
be stronger than in QED.
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Figure 5.4: Comparison of the asymp-
totic rates in the limit of high intensity for
κ � 1 (purple dotted) and κ � 1 (red
dashed) with the pair production rate given
in Eq. (5.49). This figure was originally pub-
lished in Ref. [100].

In Fig. 5.4 the results of the
present subsection are visualised as
it shows the dependence of R2+1 on
the quantum nonlinearity parameter
κ for η � 1. The blue solid line rep-
resents numerically evaluated rates
given in Eqs. (5.49) and Eqs. (5.51),
whereas the small κ behaviour from
Eq. (5.54) and large κ asymptote pro-
vided in Eq. (5.62) are shown as red
dashed and purple dotted curves, cor-
respondingly.

5.4 Summary

In the present chapter a study of
the Breit-Wheeler pair creation in
2+1 dimensional Minkowski space-
time was presented. After a discus-
sion on the applicability of the per-
turbative treatment and introduction

of the field operators in the lowered dimensionality in the first section, the linear pro-
cess was investigated. Moreover, in section 5.3 the Breit-Wheeler particle production
resulting from the interaction of a weak quantised and a strong classical fields was
shown. In this context, special attention was paid to the different intensity regimes
of the strong field, which were compared to the calculation in the standard QED.
Interestingly, some crucial differences caused by the dimensionality of the system
were found. In the low intensity η � 1 domain the process rate, depending on the
number of participating strong field photons, manifested a non-zero contribution
at the energy threshold, where fermions are created with zero momentum. Thus,
the probability for creating a pair with vanishing momentum is not zero for 2+1
dimensional systems, when an even number of strong field photons interacts with
the weak field: a fact that will be studied further in the next chapter in another
physical context given by the solid-state system of bandgapped graphene.

For η � 1 the particle rates, which conveniently depend on the quantum nonlin-
earity parameter κ, showed also an altered behaviour when compared to QED. To
be more precise, the deviation occurred in the exponents of κ, which were lowered
by 1/2 for κ � 1 and 1/3 for κ � 1. On the basis of the latter point, a conjecture
on the breakdown of perturbation theory was provided and some comments on the
modification of the coupling constant in the strong fields were discussed.
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Chapter 6

Breit-Wheeler process in graphene

Building on the nonanticipated findings on the topic of Breit-Wheeler pair creation
in a lowered 2+1 dimensional spacetime, which was considered in the previous chap-
ter, here, the focus lies on an analogous process in a real physical system of graphene
monolayers. The latter is well known as a low-energy test ground for QED processes
as the electrons in this material at the vicinity of the Fermi surface show relativistic
behaviour that can be described by a 2+1 dimensional Dirac-like equation of mo-
tion: A property that allowed for observation of Klein tunneling [108], Casimir force
[109] or Coulomb supercriticality [110, 111] in this material. Moreover, graphene has
drawn the attention of theoreticians in the context of the QED particle production as
the interband transition of electrons in this system creates a hole in the valence band
this way modelling a creation of quasiparticle-hole pairs. Since it can withstand high
intensities, graphene represents a good candidate for experiments in strong electro-
magnetic fields. On that note, the Schwinger effect was thoroughly studied in gap-
less and bandgapped1 graphene in Refs. [112, 113, 114, 115, 116, 117, 118, 119, 120],
where a change in the pre-exponential factor from 2 in QED to 3/2 in graphene
was found. Observe that the lowering of the pre-exponential factor stands in cor-
respondence with the outcome for high intensity and quantum nonlinearity pa-
rameters in subsection 5.3.3. In this chapter the analogues of the linear and the
three-photon Breit-Wheeler pair production taking place in graphene with a tiny
bandgap are studied and compared to the consideration in QED2+1 as presented in
subsection 5.3.2. Besides, the approach to the linear process provides an alterna-
tive channel with respect to section 4.2 for experimental observation of this effect.
The three-photon reaction is discussed with reference to the previous chapter and
allows for experimental verification of the striking changes to the rate on the energy
threshold, which are caused by altered dimensionality. Lastly, the results presented
here are based on Ref. [121] and on the corresponding Supplemental Material [122].
Moreover, the used unit system varies slightly from the one utilised earlier: While
� = ε0 = 1 still holds, the speed of light in vacuum c is restored.

1Since the introduction of a gap between the valence and the conduction bands is equivalent
to the case of quasiparticles acquiring a non-zero mass, which reinforces the resemblance with
QED2+1, it will be also incorporated in the present study.
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6.1 Graphene as a QED-like medium

Figure 6.1: Monolayered
graphene honeycomb lattice
composed of two sublattices A
and B.

Graphene is a solid state system assembled as a
honeycomb lattice of carbon atoms, which lie in
the (x, y)-plane and are connected by strong co-
valent σ−bonds according to a sp2 hybridisation
of 2s, 2px and 2py orbitals [123]. The remaining
electrons of the 2pz (π−bond) orbitals, which
are perpendicular to the plane and have weak
overlaps, represent the dynamical degree of free-
dom and are responsible for the electronic and
transport properties of graphene. A structure of
this solid can be seen in Fig. 6.1. Here, the two
base atoms A and B of the graphene unit cell
are placed at (0, h) and (0, 0), respectively, with
h = a/

√
3 = 0.142 nm and two primitive lattice

vectors (depicted in black)

a1a1a1 = aexexex, a2a2a2 = a

(
1

2
exexex +

√
3

2
eyeyey

)
, (6.1)

whereas the corresponding vectors of the recip-
rocal lattice read

b1b1b1 =
4π

a

(
1

2
exexex −

√
3

2
eyeyey

)
, b2b2b2 =

4π√
3a

eyeyey,

(6.2)

Figure 6.2: The first Brillouin
zone of graphene with inequiva-
lent points K and K ′.

which were found by a relation aiaiaibjbjbj = 2πδij with
a Kronecker delta symbol δij. The associated re-
ciprocal lattice can be seen in Fig. 6.2 and, thus,
it is also hexagonal. Moreover, the first Bril-
louin zone is depicted as a hexagon in the middle
and has side length l = 4π

3a
. The vertices of the

hexagon are denoted asKKK andKKK ′, which are two
inequivalent points of the lattice as they can not
be reached by the reciprocal lattice vectors.

6.1.1 Massless graphene

The behaviour of the electrons in the non-
hybridised pz orbital is described further within
the tight-binding approximation, which takes
into account solely their interaction with the
atoms in the nearest neighbourhood. Following
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Fig. 6.1, the nearest neighbours of A and B are given by the atoms of the opposite
sublattice and can be reached by the vectors

δ1δ1δ1 =
a√
3
eyeyey, δ2δ2δ2 = − a√

3

(√
3

2
exexex +

1

2
eyeyey

)
, δ3δ3δ3 =

a√
3

(√
3

2
exexex −

1

2
eyeyey

)
. (6.3)

In this scenario the Hamiltonian representing an electron hopping from atom B to
its nearest atoms A reads

HTB = −t
∑

rrr;i=1,2,3;σ=±1

(
ĉ†A(rrr + δiδiδi, σ)ĉB(rrr, σ) + h.c.

)
, (6.4)

where ĉ
(†)
A,B(rrr, σ) stands for the annihilation (creation) operator of an electron with

spin σ located at the position rrr in the sublattice A or B and

ĉA,B(rrr, σ) =
∑
kkk

eirkrkrkĉA,B(kkk, σ), (6.5)

Figure 6.3: Valence and con-
duction bands for gapped (left)
and gapless (right) grahene in the
vicinity of K, K ′ points.

while t ≈ 2.8 eV denotes the nearest neigh-
bour hopping energy. From Eq. (6.4) two bands
of graphene touching at the points KKK and KKK ′,
which represent the Fermi surface of the system,
can be derived. Moreover, near the Fermi points
electrons show a for graphene characteristic rel-
ativistic behaviour that can be described by a
Dirac-like equation with the speed of light c re-
placed by the Fermi velocity vF ≈ c/300, which
makes this solid a suitable system for low-energy
QED test ground. The dispersion relation for
electrons in the vicinity of KKK and KKK ′ for a gap-
less system, which was discussed so far, can be
seen in the left panel of Fig. 6.3. In this con-
text, Eq. (6.4) can be written in the momentum
representation and expanded around the KKK, KKK ′

points. When taking into account the terms of
up to the first order in the expansion parameter,

the Hamiltonians for every Fermi point read [123]

HKKK =
∑

ppp,σ=±1
ψ†σKKK(vF (σ1px + σ2py))ψσKKK and

HKKK′ =
∑

ppp,σ=±1
ψ†σKKK′(vF (−σ1px + σ2py))ψσKKK′

(6.6)

with the two-component irreducible spinors ψT
σKKK = (ψσKKKA, ψσKKKB), ψT

σKKK′ =
(ψσKKK′B, ψσKKK′A) combining the Bloch states associated with the two sublattices in
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graphene linked to atoms A and B. This property, though arising from the under-
lying symmetry of the honeycomb lattice, resembles the electron spin and, thus, is
assigned with the name pseudospin [124]. Additionally, the momentum ppp = (px, py)
has to be understood relative to the KKK and KKK ′ points, which represented the points
of the expansion, and satisfying the condition |ppp| � pmax ≈ |KKK|, |KKK ′| ≈ 3 eV/vF ,
while σi, i = 1, 2, stands for the Pauli matrices from appendix A.1.2.

6.1.2 Bandgapped graphene

Now, in order to model a system coming closest to QED2+1, graphene with a tiny
gap2 (see the right panel of Fig. 6.3) is introduced. It is accounted for by adding a
mass term Δ = mgv

2
F in Eqs. (6.6), which leads to a relativistic dispersion relation

for quasiparticles εppp =
√
v2Fppp

2 +Δ2 relative to the Fermi-level [120, 123]

HKKK =
∑

ppp,σ=±1
ψ†σKKK(vF (σ1px + σ2py) + σ3Δ)ψσKKK ,

HKKK′ =
∑

ppp,σ=±1
ψ†σKKK′(vF (−σ1px + σ2py) + σ3Δ)ψσKKK′ .

The equations above can be combined to a Hamiltonian [125]

H =
∑
ppp,σ

Ψ̄σ(t, ppp) [vF γ̃̃γ̃γ · ppp+Δ]Ψσ(t, ppp) =

∑
ppp,σ=±1

[
ψ†σ,KKK(vF (σ1px + σ2py) + σ3Δ)ψσ,KKK + ψ†σ,KKK′(vF (σ1px + σ2py)− σ3Δ)ψσ,KKK′

]
,

(6.7)

where Ψ̄σ = Ψ†σγ̃
0, ΨT

σ = (ψT
σKKK , ψ

T
σKKK′) is a four-component spinor and the gamma

matrices γ̃μ form a reducible 4×4 representation satisfying {γ̃μ, γ̃ν} = 2gμν14×4 with
the metric tensor gμν = diag(1,−1,−1). Explicitly, they read γ̃μ = τ ⊗ (γ1, γ2, γ3)
with τ = σ3, γ

μ = (σ3, iσ2,−iσ1). Moreover, the matrices τ and γμ act in the spaces
of KKK, KKK ′ points and A, B sublattices, respectively.

While the first contribution in the second line of the expression above resembles
the tight-binding Hamiltonian linked to theKKK point from Eq. (6.6), the second term
differs from the standard representation associated with the pointKKK ′. However, the
latter can be achieved by developing the canonical transformations [123]

ψT
σ,KKK = (ψσ,KKK,A, ψσ,KKK,B) → ψT

σ,KKK , ψT
σ,KKK′ = (iψσ,KKK′,B,−iψσ,KKK′,A) → ψT

σ,KKK′e(−iπσ3/2)σ1 .
(6.8)

2A gap in graphene can be induced through various experimental techniques such as epitaxial
growth on suitable substrates, elastic strain or Rashba spin splittings on magnetic substrates
[126, 127, 128, 129, 130]. The typical values for the gaps in such scenarios reach up to O(0.1) eV
[131].
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6.1.3 Effective action

In the present chapter an interaction of two high-intensity counterpropagating elec-
tromagnetic fields with four-potentials a and a′, which propagate in 3+1 dimensional
spacetime, with the electrons in graphene restricted to the (x, y)−plane will be stud-
ied. This system can be described by an effective action with α, β = 0, 1, 2, 3 and
x = (ct,xxx), xxx = (x, y) according to

S =

∫
d3xdz

(
−1

4
f 2
αβ −

1

2
f ′αβf

αβ − 1

4
f ′2αβ

+δ(z)
∑
σ=±1

Ψ̄σ(x, z)
[
iγ̃0∂t vF γ̃

j
(
i∂j −

e

c
Aj(x, z)

)
−Δ

]
Ψσ(x, z)

)
, (6.9)

where Aα = aα + a′α, A0(x, z) = 0 is implied, f
(′)
αβ refer to the associated field

tensors f
(′)
αβ = ∂αa

(′)
β − ∂βa

(′)
α and the derivatives read ∂1,2 ≡ ∂/∂x, ∂/∂y. Moreover,

the gauge fields are on-shell, i.e. ∂αf
(′)
αβ = 0 with a

(′)
α (t,∞∞∞) → 0 and the spinors,

the γ̃−matrices as well as the remaining parameters are specified below Eq. (6.7),
whereas the repeated indices j = 1, 2 mean summation.

From the interaction term evF
c

∫
d3x JJJ · AAA(x) with the current density

JJJ(x) =
∑
σ=±1

Ψ̄σ(x)γ̃̃γ̃γΨσ(x) =
∑
σ=±1

[
ψ̄σKKK(x)γγγψσKKK(x) + ψ̄σKKK′(x)γγγψσKKK′(x)

]
, (6.10)

which is a vector lying in the plane of graphene, the scattering operator is obtained

Ŝg = T
[
exp

(
ie
vF
c

∑
σ=±1

∫
d3x ˆ̄ψσKKK γγγ ·(aaa+ âaa′)ψ̂σKKK + ˆ̄ψσKKK′ γγγ ·(aaa+ âaa′)ψ̂σKKK′

)]

(6.11)

with ˆ̄ψσKKK,KKK′ = ψ̂†σKKK,KKK′γ0. Here, it is assumed that the intensity of a is much larger
than a′, and, thus, the stronger field can be incorporated via a coherent states treat-
ment (see details in subsection 2.2.2), while the weaker field is quantised. Besides,
all fields occurring in the equation above are evaluated at z = 0 and have to be
understood as operators within the interaction picture. Moreover, a remark regard-
ing the energy scale is in order: since the Hamiltonian in Eq. (6.7) leading to the
expression above was derived for the energies below 3 eV, this restriction holds also
for the studied processes.

6.1.4 Electromagnetic fields

Since the interaction with electrons takes place in a plane, the wave vectors of both
fields will also be bound to the graphene sheet. Moreover, the electromagnetic
fields considered here are taken in Coulomb gauge (a′0(x) = 0 and a0(x) = 0) with
∇∇∇·aaa(x) = limz→0∇∇∇·aaa(x, z) = 0,∇∇∇·aaa′(x) = limz→0∇∇∇·aaa′(x, z) = 0. In such a scenario,
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the plane-wave expansion of the quantised weak electromagnetic field looks similar
to Eq. (2.7)

â′(x) =
∑

k,λ=‖,⊥

ε′k,λc√
2ω′Vγ

[
âk,λe

−ikx + â†k,λe
ikx
]

(6.12)

with a normalisation volume Vγ and kx ≡ ωt−kkk ·xxx, xxx = (x, y), where kμ = (ω/c,kkk).
Here, the orthogonal transversal polarisation vectors ε′‖,⊥ are understood as parallel
and perpendicular with respect to the graphene monolayer.

The strong classical field is linearly polarised with aμ(x) = a0εμcos(kx). When
taking the field polarisation under an angle θ to the graphene plane, aμ(x) can
be decomposed in terms of the perpendicular and parallel parts a(x) = a⊥(x) +
a‖(x) with a⊥(x) = a0 sin(θ)ε⊥ cos(kx) and a‖(x) = a0 cos(θ)ε‖ cos(kx). Then, the
orthogonal pieces a⊥(x) are projected out3 by the interaction given in Eq. (6.10) and
above it, leaving the system with only one degree of freedom (similarly to QED2+1

in subsection 5.1.1). Thus, the problem can be considered as the one with fields
of polarisation laying in the plane with ε‖ cos(θ) ≡ ε‖ denoting the projection of
the polarisation onto the graphene surface. Lastly, it is important to point out
that regardless the resemblance with QED2+1 the dimensions of both the coupling
strength and the electromagnetic field are associated with 3 + 1 dimensions. The
latter statement holds since the considered setup represents a real physical system
embedded in the 3+1 dimensional spacetime.

6.1.5 Quasi-fermions

The fields ψσ,KKK(x) and ψσ,KKK′(x) stem from the solutions of the free Dirac-like equa-
tions[

iγ0∂t + ivFγ
j∂j −Δ

]
ψσ,KKK(x) = 0,

[
iγ0∂t + ivFγ

j∂j +Δ
]
ψσ,KKK′(x) = 0 (6.13)

denoting the behaviour of the quasi-particles at the degeneracy points KKK and KKK ′

(see Eq. (6.7)). These are solved, similarly to subsection 5.1.2, by a plane-wave
ansatz with the elementary spinors

vKKK′(ppp) ≡ uKKK(ppp) =

√
εppp +Δ

2Δ

(
1

vF (p1+ip2)
εppp+Δ

)
,

uKKK′(ppp) ≡ vKKK(ppp) =

√
εppp +Δ

2Δ

(
vF (p1−ip2)

εppp+Δ

1

) (6.14)

fulfilling the relations uKKK(ppp)ūKKK(ppp) =
(γ0εppp−vFγγγ·ppp+Δ)

2Δ
, vKKK(ppp)v̄KKK(ppp) =

(γ0εppp−vFγγγ·ppp−Δ)

2Δ
.

When quantised, the corresponding plane-wave expansion of the field operator

3The same argument holds also for the weaker field with a′⊥(x).
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ψσ,KKK(x) reads

ψ̂σ,KKK(x) =
∑
ppp

√
Δ

εpppA

[
b̂σ,KKK(ppp)uKKK(ppp)e

−ipx +d̂†σ,KKK(ppp)vKKK(ppp)e
ipx
]

(6.15)

with px = εpppt − ppp · xxx and normalised to one particle in the area A. Here, b̂
(†)
σ,KKK(ppp)

and d̂
(†)
σ,KKK(ppp) stand for the annihilation (creation) operators for the quasiparticle

(excited valence electron) and the hole at the Fermi point KKK, respectively, with
bσ,KKK(ppp)|0〉 = dσ,KKK(ppp)|0〉 = 0. Followingly, the field operators satisfy the nonvanishing
equal time anticommutation relations

{ψ̂σ,KKK(t,xxx), ψ̂
†
σ′,KKK′(t,xxx

′)} = δσ,σ′δKKK,KKK′δ(2)(xxx− xxx′). (6.16)

The plane-wave expansion of the field ψσ,KKK′(x) is obtained from Eq. (6.15) by
replacing KKK → KKK ′, while two additional sets of the second quantisation operators
relative to the KKK ′ point have to be incorporated with bσ,KKK′(ppp)|0〉 = dσ,KKK′(ppp)|0〉 = 0.
Moreover, the operators need to preserve the corresponding spin and valley (the lat-
ter distinguishes between the two inequivalent pointsKKK andKKK ′) quantum numbers.
Thus, {bσ,KKK(ppp), b†σ′,KKK′(ppp′)} = δσ,σ′δKKK,KKK′δppp,ppp′ , {dσ,KKK(ppp), d†σ′,KKK′(ppp′)} = δσ,σ′δKKK,KKK′δppp,ppp′ must
apply. In addition, the free propagators for graphene in momentum representation
result

SKKK(ε,ppp) =
i

γ0ε− vFγγγ · ppp−Δ+ i0+
, SKKK′(ε,ppp) =

i

γ0ε− vFγγγ · ppp+Δ+ i0+
.

(6.17)

6.2 Breit-Wheeler creation of the quasipairs

Next, the creation processes of a quasiparticle and a hole with energies and mo-
menta (εppp− , ppp−) and (εppp+ , ppp+) from two electromagnetic fields a and a′ with the
wave vectors k and k′, correspondingly, in a graphene sheet will be discussed. The
scheme of the setup is displayed in Fig. 6.4. Here, in terms of the modified intensity
parameters η

(′)
g = |e|a(′)0 /(mgvF c), the field amplitudes are supposed to fulfil the con-

ditions ηg � η′g and ηg, η
′
g � 1 simultaneously. The latter restriction is required for

the perturbative treatment in both fields, which is pursued, since the Furry picture
approach relying on the incorporation of the Volkov states as the exact solutions
of the Dirac equation in plane-wave electromagnetic fields (see section 2.4) is not
applicable in graphene. This problematic relies on the fact that, due to the asym-
metry introduced by the Fermi velocity vF , the corresponding Dirac-like equation
in graphene is not solved by Volkov states [132, 133]. Moreover, the intensity of a is
chosen sufficiently large for the strong field procedure involving coherent states to
apply and, in this context, the transition amplitude reads

〈1ppp+ ; 1ppp− |Ŝg[ψ̂,
ˆ̄ψ, â′ + a]|1k′,ε′〉 (6.18)
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Figure 6.4: Scheme of the Breit-Wheeler-type pro-
duction of Dirac-like quasipairs in graphene. The
Feynman diagrams for two- and three-photon pro-
cesses are shown on the left. A variation of this
figure was originally published in Ref. [121].

with the scattering operator
from Eq. (6.11). Here, one
is interested in the two- and
three-photon creation of quasi-
particle-hole pairs. For the re-
spective Feynman diagrams see
the left panel of Fig. 6.4. Cor-
respondingly, the processes are
described by Ŝ

(2)
g and Ŝ

(3)
g con-

tributions in the scattering op-
erator expansion (compare to
Eqs. (2.5) and (2.6)). Notice
that the production of quasi-
pairs from one photon is en-
ergetically forbidden, in sim-
ilarity with QED, in gapped
graphene monolayers. Con-
versely, in the gapless system
the tree level process represents
a leading-order term [134, 135].
Besides, when calculating the

rates of the discussed processes, it is sufficient to take into account only a con-
tribution from one of the Fermi points and spin configurations and multiply the
outcome by the spin-valley degeneracy number, which is equal to Nf = 4. This
simplification holds as the result is not dependent on the spin of the excited valence
electron and on the sign in front of Δ (corresponding to KKK or KKK ′, see Eqs. (6.13)),
because the rates calculated further only depend on Δ2n with an integer n.

6.2.1 Linear quasipair creation

Having all these details in mind, for the two-photon transition amplitude resulting
from the first contribution in Eq. (6.11) for KKK and σ = +1 one obtains

Sfi = 〈1ppp+ ; 1ppp− |Ŝ(2)
g |1k′,ε′〉 = −(2π)3

√
Δ2

εppp+εppp−A
2

e2a0a
′
0v

2
F

4c2
M1

× δ(εppp++εppp−− ω − ω′)δ(2)(ppp++ppp−− kkk − kkk′), (6.19)
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where the δ-functions encode the energy-momentum conservation and the relation√
c2/2ω′Vγ = a′0/2 was used4. Besides, the matrix element reads

M1 = ūKKK(ppp−)
[
/ε′SKKK(ω − εppp+ , kkk − ppp+)/ε + /εSKKK(ω

′ − εppp+ , kkk
′ − ppp+)/ε

′] vKKK(ppp+), (6.20)

while the usual slash notation for products with γ−matrices is implied. However,
here, the latter are 2× 2−dimensional and defined as it is shown in appendix A.1.2.

The rate of the quasipair production per unit area is obtained by squaring the
transition amplitude, dividing it through the interaction time T and the normalisa-
tion area A while integrating over the density of final states and multliplying with
the degeneracy number Nf

Rg = Nf

∫
Ad2p+
(2π)2

∫
Ad2p−
(2π)2

|Sfi|2
TA

. (6.21)

Here, it is important to point out that the field frequencies have to be chosen such
that the integrals remain restricted to the regions where |ppp±| � pmax holds.

For the linear process, the equation above contains the term |M1|2, which with
help of spinor properties displayed below Eq. (6.14) can be rewritten as a trace over
a 2× 2−dimensional matrix

|M1|2 =
1

4Δ2
Tr
[(

/ε′SKKK(ω − εppp+ , kkk − ppp+)/ε + /εSKKK(ω
′ − εppp+ , kkk

′ − ppp+)/ε
′
)

× (γ0εppp+ − vFγγγ · ppp+ −Δ)
(
/εSKKK(ω − εppp+ , kkk − ppp+)/ε

′ + /ε′SKKK(ω
′ − εppp+ , kkk

′ − ppp+)/ε
)

× (γ0εppp− − vFγγγ · ppp− +Δ)
]
. (6.22)

It is noteworthy that, if the final state is chosen relative to the KKK ′ point, |M1|2
would contain SKKK′ rather than SKKK and the first bracket in the second line would
exchange its position with the one given in the final line. However, the equation
above turns out to be invariant under such replacement and, after calculating the
traces with help of relations from appendix A.1.2, reads

|M1|2 =
1

4Δ2
[C(k, k′) +D(k) +D(k′)] (6.23)

4This transition resembles a multiplication of the transition amplitude with
√
N‖ =√

2ω′Vγ

c2
a′2
0 cos2(θ′)

4 , where N‖ stands for the number of photons in the beam with parallel po-

larisation assuming a generalised geometry with a weak field polarisation having an angle θ′ to the
graphene surface (see discussion below Eq. (6.12)). For the case of field polarisation lying in the
(x, y)− plane, θ′ = 0 and the expression provided in the text holds.
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with

C(k, k′) =
2

[(k′k′)− 2(k′p+)][(kk)− 2(kp+)]
{2(k′p−)(kp+) + 2(k′p+)(kp−)

+8(p−p+)(kp+) + 8(p−p+)(kp−)− 10(kk′)(p−p+)

+Δ2[8(p−p+)− 4(kp−)− 4(k′p−) + 12(kp+) + 12(k′p+)− 10(kk′)]− 8Δ4
}

(6.24)

and

D(k) =
1

[(kk)− 2(kp+)]2
{4(kp−)(kp+)− 2(kk)(p−p+)

−Δ2[8(p−p+)− 24(kp+)− 8(kp−) + 18(kk)]− 24Δ4
}
. (6.25)

Here, the notation (kp) = ωεppp − v2F/c kkk · ppp was introduced. Thus, it can be seen
that the Lorentz invariance in the products is broken by the presence of the Fermi
velocity. Moreover, the squared transition amplitude is invariant under a transition
Δ → −Δ.

Now, the equations above combined with Eq. (6.19) can be inserted into the
defining expression for the rate from Eq. (6.21), which can be written in polar
coordinates and integrated using the three δ−functions. In the present context, a
particularization to the case with ω = ω′ is assumed, such that ppp ≡ ppp+ = −ppp−
applies5 and (kp) = ω2 − ωv2F/c |ppp| cos(ϕ), |ppp| =

√
ω2 −Δ2/vF hold. Then, the

remaining integration is carried out and the rate per area in terms of the Mandelstam
variable s = ω/Δ reads

Rg
1 =

η′2g η
2
gm

3
gc

4

8s4
F (s, β)

(1 + β2)G(s, β)
(6.26)

with β = vF/c and

F (s, β) = −s3(1 + β2)G(s, β) + s6(1− β2)2(1 + β4)

+ 2s4β2[3 + 2β2 − 5β4 + 8β6]− 32β6 − 16s2β6(β2 − 3), (6.27)

G(s, β) = [s2(1− β2)2 + 4β2]3/2. (6.28)

As one would expect, the rate above vanishes at the energy threshold (s = 1) and
for vF = c = 1 it equals to the corresponding expression derived in the framework
of QED2+1 in Eq. (5.39). Moreover, in the limit vF/c � 1, which is valid as vF ≈
c/300 � c, the rate of the process approximates

Rg
1 ≈ η2gη

′2
g m

3
gv

4
F

r2(4 + r2)

4(1 + r2)
5
2

, (6.29)

5Following the conservation of energy and momentum in graphene provided by the δ−functions,
the latter can be fulfilled by the quasiparticles alone, without participation of the ionic lattice to
absorb the recoil momentum.
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where r = |ppp|/(mgvF ) denotes a dimensionless parameter related to s through r =√
s2 − 1.

6.2.2 Three-photon process

In reference to the unanticipated results from the QED2+1 calculation from sub-
section 5.3.2, a particular interest in this section lies on the rate describing the
production of quasipairs driven by an interaction of two classical photons with the
quantised field (see lower Feynman diagram in Fig. 6.4). When considering the cre-
ated quasiparticle-hole pair relative to the KKK point and σ = 1, the corresponding
S-matrix element results from the third order term in the expansion of the scattering
operator Ŝ

(3)
g when taking into account only the first term in Eq. (6.11)

Sfi = 〈1ppp+ ; 1ppp− |Ŝ(3)
g |1k′,ε′〉 = −i(2π)3

√
Δ2

εppp+εppp−A
2

e3a20a
′
0v

3
F

8c3
M2

× δ(εppp++ εppp−− 2ω − ω′)δ(2)(ppp++ppp−− 2kkk − kkk′) (6.30)

with the amplitude given by

M2 = ūKKK(ppp−)
[
/εSKKK(εppp− − ω,ppp− − kkk)/εSKKK(ω

′ − εppp+ , kkk
′ − ppp+)/ε

′

+/εSKKK(εppp− − ω,ppp− − kkk)/ε′SKKK(ω − εppp+ , kkk − ppp+)/ε

+/ε′SKKK(εppp− − ω′, ppp− − kkk′)/εSKKK(ω − εppp+ , kkk − ppp+)/ε
]
vKKK(ppp+). (6.31)

When taking a careful look at the expression above, it can be seen that, conversely
to the fully perturbative treatment involving three quantised photons with six con-
tributions (see for instance the orthopositronium decay in [136]), only three terms
are present above. The reason for this deviation lies in the coherent nature of the
strong field description as the photons stemming from this field are nondistinguish-
able. Additionally, the squared amplitude needed for the calculation of the rate
reads

|M2|2 =
1

4Δ2
Tr
[ [

/εSKKK(εppp− − ω,ppp− − kkk)/εSKKK(ω
′ − εppp+ , kkk

′ − ppp+)/ε
′

+/εSKKK(εppp− − ω,ppp− − kkk)/ε′SKKK(ω − εppp+ , kkk − ppp+)/ε

+/ε′SKKK(εppp− − ω′, ppp− − kkk′)/εSKKK(ω − εppp+ , kkk − ppp+)/ε
]
(γ0εppp+ − vFγγγ · ppp+ −Δ)

×
[
/ε′SKKK(ω

′ − εppp+ , kkk
′ − ppp+)/εSKKK(εppp− − ω,ppp− − kkk)/ε

+/εSKKK(ω − εppp+ , kkk − ppp+)/ε
′SKKK(εppp− − ω,ppp− − kkk)/ε

+/εSKKK(ω − εppp+ , kkk − ppp+)/εSKKK(εppp− − ω′, ppp− − kkk′)/ε′
]
(γ0εppp− − vFγγγ · ppp− +Δ)

]
, (6.32)

which also contains a trace over a 2× 2 matrix.

Next, in order to obtain the rate of the three-photon process the equation above
with the corresponding square of the transition amplitude is inserted into Eq. (6.21).
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Then, similarly to the previous subsection, ω′ = 2ω with ppp ≡ ppp+ = −ppp− is assumed
and three of the integrals are carried out by the δ−functions, whereas the remaining
integration is specified in polar coordinates with (kp) = 2ω2 − ωv2F/c |ppp| cos(ϕ),
|ppp| =

√
4ω2 −Δ2/vF . As expected from Eq. (6.32), the resulting expression for the

process rate turns out to be quite tedious and, therefore, is handled numerically.
However, when expanded up to the second order in β, in terms of the dimensionless
momentum parameter the latter reads

Rg
2 ≈

η4gη
′2
g m

3
gv

4
F

729(1 + r2)
11
2

(72− 96β2 + r8(306− 50β2)− 1404r4(−1 + 3β2)

+ 52r2(−9 + 20β2)− 6r6(−375 + 358β2)) (6.33)

and, thus, for vF/c � 1 one obtains

Rg
2 ≈ η4gη

′2
g m

3
gv

4
F

2(4− 30r2 + 108r4 + 17r6)

81(1 + r2)
9
2

r→0→
8η4gη

′2
g m

3
gv

4
F

81
. (6.34)
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Figure 6.5: Behaviour of the rates in QED (lower
panel) and graphene (upper panel) near the energy
threshold. Here, the results for an unpolarised γ-
photon and a photon polarised parallelly to the strong
field are shown in panels b) and c), correspondingly.
This figure was originally published in Ref. [121].

Here, the scaling in the in-
tensity parameters ∝ η′2g and
∝ η4g stems from the fact
that for the pair creation an
absorption of one quantised
and two strong field pho-
tons is needed. Moreover,
from the equation above, it
can be seen that the rate
for the three-photon process
is not zero at the energy
threshold. Hence, the out-
come firstly found in the
lower dimensional theory of
QED2+1 can be observed in
a real physical system of the
gapped graphene and is not
disturbed by the breakdown
of the Lorentz invariance in
this framework caused by the
Fermi velocity of the quasi-
particles. In addition, the
behaviour of the rates for the
two- (blue solid) and three-
photon (red dashed) rates
near |ppp| = 0 is depicted in
the upper panel of Fig. 6.5 denoted with a). The displayed curves resemble the
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behaviour provided in this and the previous subsections: while the blue line starts
at zero, the n = 2 contribution attains a non-zero value at the threshold.

6.2.3 Comparison to QED and discussion

The fact that the quasiparticle production rate when two strong field photons are
absorbed does not vanish for |ppp| = 0 stands in sharp contrast to the QED rates
from chapter 3, which are always equal to zero in the corresponding limit6 (see
Eq. (5.33)). Thus, in this subsection, a comparison between the results found in the
present chapter and the Breit-Wheeler pair creation in the framework of ordinary
QED is discussed. To that end, the rates Rg

n (panel a) in Fig. 6.5) are plotted
against their QED analogues, which are depicted in the lower panel of Fig. 6.5.
The rates stemming from Eq. (3.15) for the configuration involving an unpolarised
photon are shown in the panel b), while the case with a photon polarised parallelly
to the polarisation of the strong field from Eq. (3.14) is given in the panel denoted
with c).

Putting aside the obvious differences in the threshold behaviour at |ppp| = 0 for
n = 2, which can be explained by the reduced dimensionality of the phase space of
the created quasipairs (see subsection 5.3.1), the course of the curve representing
Rg

1 ∼ |ppp|2 will be discussed next. As it was anticipated for the QED2+1 rate in
Eq. (5.30) and reviewed below this equation, following Fig. 6.5 the behaviour of
the rate in question rather resembles the trend set by the corresponding n = 1
curve in the panel c). This agreement can be explained by the fact that for the
process taking place in graphene only the projections of the field polarisations on
the graphene surface are relevant (see discussion below Eq. (6.12)). Thus, in the
chosen case of the counterpropagating fields, the setup resembles the situation of
photons polarised parallelly to each other.

Moreover, an interesting insight for the understanding of the vanishing and non-
vanishing threshold rates in graphene for the considered cases is provided by an
exposition of the total angular momentum of the system. According to the zero
momentum of created quasiparticles at the threshold, they do not carry orbital an-
gular momentum. In addition, the total spin of the quasiparticle-hole pair is also
zero as the spin is conserved in the electronic transition from the valence to the
conduction band [134]. However, following the structure of the spinors given below
Eq. (6.6) and in Eq. (6.14), an excited valence electron changes its pseudospin ac-
quiring, according to Ref. [134], one unit of angular momentum. The latter must
be delivered to the system by the participating photons, which is not possible when
only two linearly polarised photons take part in the reaction and at the threshold
Rg

1 = 0 must hold. Conversely, one unit of angular momentum can be provided
by the three-photon interaction resulting in a threshold behaviour of Rg

2 > 0. This
situation resembles the decay of orthopositronium, a spin-triplet state, which can

6The procedure shown in chapter 3 was restricted to the leading order in the fine-structure
constant α. When the next orders are taken into account, due to the Coulomb interactions in the
final state, the rates in QED attain a tiny non-zero threshold value; see, e.g. Ref. [137].
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annihilate only into three photons because a two-photon decay is forbidden.
Lastly, the results provided in this chapter can be verified experimentally when

applying moderately intense beams of terahertz radiation [138, 139, 140]. To that
end, when assuming a bandgap of Δ = 0.1 eV [126, 127, 128, 129, 130] combined
with the frequencies ω′ = 2ω � 0.1 eV and intensities I0 = 10I ′0 = 105W/cm2

(ηg ≈ 0.1, η′g ≈ 1.6 × 10−2), at the threshold the particle rate per area Rg
2 ≈ 1010

s−1μm−2 can be obtained. At this point a remark is in order: The perturbative
framework applied in this chapter holds only whenever the field amplitudes lie well
below the critical field in graphene Ec = Δ2/|e|vF , which translates to the critical
intensity of Ic = cE2

crit/2 ≈ 6 × 107W/cm2 for the considered gap. Moreover, a
detection of the created quasipairs could follow by measuring the current induced
by the excited valence electrons when an external voltage is applied [112].

6.3 Summary

In this chapter the linear and three-photon Breit-Wheeler processes represented by
a creation of quasiparticle-hole pairs in gapped graphene monolayers were studied.
The results obtained in this way provide a physical realisation of a low dimensional
system similar to QED2+1 considered in the previous chapter. Here, as the intensity
of the photon sources, which are counterpropagating, was chosen in a way that
ηg, η

′
g � 1, ηg � η′g hold, a perturbative treatment in both fields applies. However,

coherent implementation of the stronger field allows for better comparison with the
pure QED2+1 and QED analogues.

While the study of the two-photon process generates a new method for experi-
mental observation of the linear Breit-Wheeler reaction, the discussion on the three-
photon interaction verifies peculiar results provided in subsection 5.3.1. Thus, the
rate calculated in subsection 6.2.2 featured a nonvanishing contribution at the en-
ergy threshold, where the created pair has zero momentum. Despite the fact that
this result has been shown explicitly only for a three-photon rate, since it relies
on the lower dimensionality of the underlying vacuum state, it is expected to be
expandable to the case when the total number of absorbed strong field photons is
even (see Eq. (5.33)). Though, the next order processes which would exhibit similar
behaviour are much more difficult to detect at low and moderate intensities with
ηg, η

′
g � 1.



Chapter 7

Conclusions and outlook

In this thesis the Breit-Wheeler particle creation in various scenarios was discussed.
Thus, after a short introduction to the framework of QED at the beginning and
consequent review of the pair production in an electromagnetic plane-wave field, a
study of the linear process resulting from the interaction of an intense x-ray laser
and up to several GeV bremsstrahlung photons was presented in section 4.2. Thus,
when using incident bremsstrahlung electron bunches with up to 1 nC of charge,
the detection of 80-800 pairs is expected providing a long overdue experimental
verification of the linear Breit-Wheeler process from real photons.

When the x-ray laser in this setup is exchanged with an optical one of high inten-
sity, the nonperturbative regime with ξ � 1 and κ ≈ 1, as proposed in section 4.3, is
in reach. The analysis here has been focused on the incorporation of different laser
field models, including the constant crossed field, the plane wave and the paraxial
Gaussian pulse. In the case of the latter the impact of laser focusing was studied
by means of variation of the intensity and the corresponding beam waist, presence
of longitudinal focusing or adoption of super-Gaussian time and space envelopes.
Thus, it has been shown that the yielded number of pairs strongly depends on both
the laser intensity and the interaction volume. Moreover, in this setup an estimated
number of up to 10 pairs per hour is expected, which appears to be resolvable with
the currently available sophisticated detection technologies. Lastly, both studies
presented in chapter 4 may be complemented with the energy and momentum spec-
tra of created particles. This kind of information, which could be provided from the
side of theory with help of electron states derived in Refs. [25, 141], would facilitate
the experimental detection effort.

In the chapter 5, the Breit-Wheeler pair creation in 2+1 dimensional Minkowski
spacetime was investigated. Similarly to the previous case, the discussion involved
the weak field perturbative and strong field nonperturbative regimes. For the former,
a peculiar behaviour of the rates resulting from the absorption of an even number
of strong field photons was found that represents a general consequence of the 2+1
dimensional spacetime. They manifest a non-zero contribution at the energy thresh-
old, where the created particles have zero momentum. Similar even-odd staggerings
appear also in strong field processes in ordinary QED such as high-harmonic genera-
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tion, where they are related to the total parity of the photons that participate in the
reaction: a point that could be an extension of the present study. In the strong field
regime, a deviation in the exponent of the quantum nonlinearity parameter when
comparing to QED rates was highlighted. This mismatch can potentially lead to
different criteria for the applicability of the perturbation theory in 2+1 dimensions.
Thus, a corresponding calculation regarding the radiative corrections can be con-
ducted in the future and provide insights on the breakdown of perturbation theory
[5].

The low dimensional consideration in vacuum has been extended by a study of the
two- and three-photon Breit-Wheeler processes in bandgapped graphene, which were
presented in chapter 6. Since the behaviour of the charge carriers in this material
resembles the QED2+1-like description, the expected lifting of the three-photon rate
at the threshold could be verified. Moreover, the study of the linear Breit-Wheeler
process provides an alternative way for observation of this process. Finally, in future
work, regardless being tedious as a consequence of elaborate Volkov-like solutions in
graphene, the discussion could be extended by the incorporation of the high intensity
regime.

Concluding, it is noteworthy to point out that the investigations displayed in
the present work are relevant for the experimental efforts undertaken currently.
Thus, the discussion on the nonlinear nonperturbative Breit-Wheeler process was
performed within the scope of the research unit FOR2783, where a possibility to
observe the pair creation in the parameter range ξ � 1, κ ≈ 1 for the first time
is studied experimentally and theoretically [33]. In addition, the Breit-Wheeler
consideration in graphene supplements recent studies on the electron manipulation
by means of applied electromagnetic fields with the goal of the exploration of the
photon driven effects (see e.g. [142] and references therein).
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Appendix A

Conventions and important
relations

A.1 Traces and identities involving γ−matrices

A.1.1 3+1 dimensions

Firstly, the focus is put on 4 × 4−dimensional matrices γμ with μ = 0, 1, 2, 3,
which are relevant for calculations in 3+1 dimensional QED (as it can be seen
from its action in Eq. (2.1)). These satisfy the anticommutation relation {γμ, γν} =
2gμν involving a four-dimensional metric tensor gμν with signature a diag(gμν) =
(1,−1,−1,−1). Moreover, for trace calculations in chapter 3 the following relations
have been used

γ0γ†μγ0 = γμ, γμγμ = 414×4, Tr[γμγν ] = 4gμν , γμγνγμ = −2γν ,

Tr[γμ1 ...γμn ] = 0 for odd n, Tr[γμγμ] = 16,

Tr[γμ1 ...γμn ] = gμ1μ2Tr[γμ3 ...γμn ]− gμ1μ3Tr[γμ2γμ4 ...γμn ] + ...+ gμ1μnTr[γμ2 ...γμn ],

γμγαγβγμ = 2γαγβ + 2γβγα, γμγνγαγβγσγμ = 2γσγνγαγβ + 2γβγαγνγσ.

(A.1)

A.1.2 2+1 dimensions

In contrast to QED, in QED2+1 the Dirac matrices γμ, μ = 0, 1, 2, are 2 × 2−
dimensional satisfying the anticommutation relation {γμ, γν} = 2gμν , where gμν is
a metric tensor with signature diag(gμν) = (1,−1,−1). Here, the particularization
γμ = (σ3, iσ2,−iσ1) with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.2)
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is made. Moreover, in 2+1 dimensions the gamma matrices satisfy the following
relations [99]

γ0γ†μγ0 = γμ, γμγμ = 312×2, Tr[γμγν ] = 2gμν , Tr[γμγμ] = 6, γμγνγμ = −γν ,

Tr[γν ] = 0, Tr[γμγνγα] = −2iεμνα, γμγνγαγμ = 4gνα − γνγα,

γμγνγαγβγμ = γνγαγβ − 2γβγαγν , Tr[γμγνγαγβ] = 2(gμνgαβ − gμαgνβ + gμβgνα)

(A.3)

with the Levi-Civita tensor εμνα and ε012 = 1.

A.2 Spinors

A.2.1 3+1 dimensions

The free Dirac equation provided in Eq. (2.14) is solved by employing a plane-wave
ansatz ψp(x) = Nup,se

−ipx with a spinor up,s satisfying (/p − m)up,s = 0. Thus,
a positive-energy solution representing an electron can be found. Analogously, a
negative-energy approach ψp(x) = Nvp,se

ipx with (/p+m)vp = 0 leads to a positron
solution. Hence, one obtains four-dimensional vectors [34]

up−,s = Np−

(
χs

σσσppp−
m+p−0

χs

)
, vp+,s = Np+

(
σσσppp+

m+p+0
χ′s

χ′s

)
(A.4)

containing normalisation constants Np± =

√
m+p±0
2m

and elementary two-dimensional

spinor vectors χT
1 = χ

′T
1 = (1, 0), χT

2 = χ
′T
2 = (0, 1), which represent the spin degree

of freedom, as well as σσσ = (σ1, σ2, σ3) with the Pauli matrices σi, i = 1, 2, 3 from
Eq. (A.2).

Moreover, the spinors up−,s and vp+,s are normalised in accordance with the
following relations:

2∑
s=1

up−,sūp−,s =
/p− +m

2m
,

2∑
s=1

vp+,sv̄p+,s =
/p+ −m

2m
(A.5)

and ūp−,sγ
μup−,s =

pμ−
m

for ūp−,s ≡ u†p−,sγ
0, v̄p+,s ≡ v†p+,sγ

0.

A.2.2 2+1 dimensions

In order to solve the free Dirac equation given in Eq. (5.6) by a plane-wave ansatz, a
solution of the equation (/p−−m)up− = 0 for the electron spinor and (/p++m)vp+ = 0
for the positron spinor has to be found, which in this case are represented by two-
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dimensional vectors and result to

up− = Np−

(
1

p1−+ip2−
m+p−0

)
, vp+ = Np+

(
p1+−ip2+
m+p+0

1

)
(A.6)

with the normalisation constant Np± =

√
m+p±0
2m

. Note that in QED2+1 the states do
not have the spin degree of freedom. Further, the spinors up− and vp+ are normalised
in accordance with the following relations:

up− ūp− =
/p− +m

2m
, vp+ v̄p+ =

/p+ −m

2m
, (A.7)

where, when compared to Eq. (A.5) no summation over the spin is needed, and

ūp−γ
μup− =

pμ−
m

for ūp− ≡ u†p−γ
0, v̄p+ ≡ v†p+γ

0.
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Appendix B

Properties of generalised Bessel
functions

A generalised Bessel function [2, 50, 143] is defined as an infinite sum of products
of ordinary Bessel functions of one argument Ji(x) [52]

J̃n(z−, z+) =
∞∑

m=−∞
Jn−2m(z−)Jm(z+). (B.1)

When one of its arguments is zero, the latter can be written as [50, 143]

J̃n(0, z+) =

{
Jn/2(z+), n even,

0, n odd
and J̃n(z−, 0) = Jn(z−). (B.2)

Moreover, the following relations hold:

J̃n(−z−, z+) = (−1)nJ̃n(z−, z+), J̃n(z−,−z+) = (−1)nJ̃−n(z−, z+) (B.3)

and
J̃−n(z−, z+) = (−1)nJ̃n(z−,−z+). (B.4)

In order to evaluate the integrals in chapters 3 and 5, a Fourier expansion of the
generalised Bessel function is introduced

e−iz−sin(kx)−iz+sin(2kx) =
∞∑

n=−∞
e−inkxJ̃n(z−, z+) (B.5)
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and when Euler’s representation is incorporated, terms proportional to cosl(kx) with
l = 1, 2 can be written as

cosl(kx)e−iz−sin(kx)−iz+sin(2kx) =
∞∑

n=−∞
e−inkxJ̃ l

n,

J̃ 1
n ≡ 1

2

[
J̃n+1(z−, z+) + J̃n−1(z−, z+)

]
,

J̃ 2
n ≡ 1

4

[
J̃n+2(z−, z+) + 2J̃n(z−, z+) + J̃n−2(z−, z+)

]
.

(B.6)

B.1 Small argument behaviour

Depending on its arguments, generalised Bessel functions show different asymptotic
behaviour. As the arguments considered in the present thesis are proportional to
the laser intensity parameter ξ: z− = ξβ, z+ = ξ2� with β = −m( q

+ε
q+k

− q−ε
q−k

),

ρ = −m2

8
kk′

kq+kq− , the field strength will be the governing parameter for the function’s

behaviour. Following appendix C in [50], for small arguments, i.e. ξ � 1, the
generalised Bessel functions can be represented as a sum:

J̃n(ξβ, ξ
2�) ≈

(
ξ2�

2

)n
2

×
{∑n/2

k=0
(β2/2�)k

(2k)!(n/2−k)! for even n,∑(n−1)/2
k=0

(β2/2�)k+1/2

(2k+1)!((n−1)/2−k)! for odd n.
(B.7)

For the study presented in subsection 3.1.1 the small ξ limit of contributions includ-
ing Bessel functions with n = 1 and n = 2 are of interest. Thus, the relevant terms
read

J̃2
n=1(z−, z+) ≈

ξ2β2

4
, (J̃ 1

n=1)
2 − J̃n=1(z−, z+)J̃ 2

n=1 ≈
1

4
, (B.8)

J̃2
n=2(z−, z+) ≈

(
ξ2β2

8
+

ξ2ρ

2

)2

and (J̃ 1
n=2)

2 − J̃n=2(z−, z+)J̃ 2
n=2 ≈

ξ2β2

32
− ξ2ρ

8
.

(B.9)

B.2 Large argument behaviour

Next, large-argument asymptotes for generalised Bessel functions J̃n(z−, z+) and the
combination (J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n are provided, as they are needed for evaluation
of the squared matrix elements throughout this thesis. The procedure will be shown
following the lines of appendix B in Ref. [2].

Since the considered limit implies ξ � 1, it is convenient to bring the generalised
Bessel functions in a suitable form, where this property can be exploited. To that
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end, one uses their integral representation

J̃n(z−, z+) =
1

π
Re

[∫ π

0

dθef(θ)
]

with

f(θ) = −iz−sin(θ)− iz+sin(2θ) + inθ

(B.10)

and performs the integration asymptotically via the method of steepest descent
[144].

Figure B.1: Analytically continued
contour of integration C (red line).

This is done by promotion of θ to a com-
plex variable θ = x + iy and transformation
of the integration in Eq. (B.10) into an inte-
gral over a contour C going through the saddle
point θ0 for which a condition f ′(θ0) = 0 holds
(see Fig. B.1). Moreover, at the edges of the
contour Re [f(θ)] → −∞ must apply in order
to avoid divergence. Next, f(θ) is expanded
around θ0.

Even though this problem has been treated
thoroughly by various authors [2, 3, 4, 50, 145,
146], the majority of them has restricted the
analysis to an expansion up to the second order
of the function f(θ), which turns out to be a
good approximation when describing the limit of small κ. However, here, the focus
lies on deriving asymptotic formulas for both κ � 1 and κ � 1 and, therefore, an
expansion of f(θ) up to the third order term is needed [2, 147]

J̃n(z−, z+) ≈
1

π
Re

[∫
C

dθef(θ0)+
1
2!
f ′′(θ0)(θ−θ0)2+ 1

3!
f ′′′(θ0)(θ−θ0)3

]
. (B.11)

As it will be shown below, next order terms in the expansion will not provide signif-
icant contributions. Once this step has been carried out, the saddle point condition
(f ′(θ0) = 0) is studied in more detail, which gives rise to a quadratic equation in
cos(θ0):

cos2(θ0) +
z−
4z+

cos(θ0)−
n

4z+
− 1

2
= 0 (B.12)

the solution of which can be expressed as

cos(x0) cosh(y0)− i sin(x0) sinh(y0) = cos(θ0) = − z−
8z+

± i

ξ

√
σ (B.13)

with σ = −ξ2
(

z2−
64z2+

+ 1
2
+ n

4z+

)
. In Sec. 3.1.2 it is shown that for the Breit-Wheeler

process at high intensities σ ≥ 1 holds. Additionally, in QED2+1 once Eqs. (5.4),
(5.45) and the energy-momentum balance are used, one arrives at σ = 1. To guar-
antee the convergence of the analytically continued integral in Eq. (B.11) we choose
the saddle point with y > 0, which implies that sinh(y0) ∝

√
σ/ξ for x0 ∈ [0, π] (see
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Fig. B.1). This translates into the following behaviour

cos(x0)cosh(y0)
ξ	1
≈ cos(x0) = − z−

8z+
, sin(x0)sinh(y0) =

√
σ

ξ
,

1 + 2cos2(x0) + 2sinh2(y0)
ξ	1
≈ 1 + 2cos2(x0) = − n

2z+

(B.14)

and y0 ∝ O(1/ξ), x0 ∝ O(1). Consequently, having the relations above in mind,
one finds for ξ � 1

Re[f(θ0)] ≈ −y30
4n sin2(x0)

3(1 + 2cos2(x0))
, ζ ≡ Im[f(θ0)] ≈ n

[
x0 −

3sin(x0)cos(x0)

1 + 2cos2(x0)

]
,

(B.15)

f ′′(θ0) ≈ −y0
4nsin2(x0)

1 + 2cos2(x0)
, f ′′′(θ0) ≈ i

4nsin2(x0)

1 + 2cos2(x0)
=

4nsin2(x0)

1 + 2cos2(x0)
eiδ (B.16)

with δ = π/2. For ξ � 1 the number of absorbed photons approximates n ≥ n0 ≈
ξ3/κ ∝ ξ3 for fixed κ. Observe that this condition implies that ξ � κ1/3. Hence, the
expressions above behave effectively as Re[f(θ0)] ∝ const, ζ ∝ ξ3, f ′′(θ0) ∝ ξ2 and
f ′′′(θ0) ∝ ξ3 providing an estimation for the effective integration region (θ − θ0) ∼
1/ξ. It can be shown that all higher derivatives f (n)(θ) evaluated at θ0 will grow as
ξ3. Therefore, all products of the form f (n)(θ0)(θ− θ0)

n ∼ 1/ξn−3 will be suppressed
as compared to the first three terms in the expansion. With all these details to our
disposal, the contour integration is performed by an appropriated modification of
the integration path.

Figure B.2: Contour of integra-
tion (red line).

Firstly, following Eq. (B.10) the only non-
zero contribution to the integral is provided by
the middle part of C, which is denoted as C̃,
since the shares of its vertical parts are imagi-
nary and do not change the outcome. The com-
plex plane of integration is depicted in Fig. B.2.
Moreover, as there are no poles, the Cauchy in-
tegration theorem applies and C̃ can be replaced
by a curve L (green solid) as long as at the
edges of both the condition Re[f(θ)] → −∞
is valid and the connecting pieces (green dot-
ted), therefore, do not contribute. When approx-
imating f(θ) by its expansion up to the third
derivative, the latter condition holds whenever
Re[f ′′′(θ)(θ − θ0)

3] < 0 [blue areas in Fig. B.2] as according to Eqs. (B.15) and
(B.16) the third derivative f ′′′(θ0) is the fastest growing function in ξ. Similarly, the
contour L can be replaced by a straight line L′ that extends to ±∞ and is parallel
to the boundaries of the blue sectors. Now, a substitution u = reiε = θ− θ0+

f ′′(θ0)
f ′′′(θ0)
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is made resulting into

I0 =

∫
C̃

dθef(θ0)+
(θ−θ0)

2

2!
f ′′(θ0)+

(θ−θ0)
3

3!
f ′′′(θ0) = e

f(θ0)+
f ′′3(θ0)
3f ′′′2(θ0)

∫
L′
du e

f ′′′(θ0)
6

u3− f ′′2(θ0)
2f ′′′(θ0)

u

(B.17)
with L′ chosen to go through the point u = 0. Hence, for the direction of integration
as shown in Fig. B.2 along L′ from −∞ to ∞ the condition ε = 0 holds and one
obtains

I0 = e
f(θ0)+

f ′′3(θ0)
f ′′′2(θ0)

∫ ∞

−∞
dr exp

(
i
|f ′′′(θ0)|

6
r3 − f ′′2(θ0)

2f ′′′(θ0)
r

)
. (B.18)

After substitution t =
(
|f ′′′(θ0)|

2

)1/3

r and z = i f ′′2(θ0)
2f ′′′(θ0)

(
2

|f ′′′(θ0)|

)1/3

while making use

of the symmetry properties of the Euler form of the exponential function the integral
above reads

I0 = 2e
f(θ0)+

f ′′3(θ0)
f ′′′2(θ0)

(
2

|f ′′′(θ0)|

)1/3 ∫ ∞

0

dt cos

(
t3

3
+ zt

)
(B.19)

and with help of the integral representation of the Airy function Φ(y) =
1√
π

∫∞
0

cos(t3/3 + yt)dt one ends up with

I0 =

∫
C

dθef(θ) ≈
∫
C

dθef(θ0)+
(θ−θ0)

2

2!
f ′′(θ0)+

(θ−θ0)
3

3!
f ′′′(θ0)

≈ 2
√
π

(
2

|f ′′′(θ0)|

)1/3

Φ(z)e
f(θ0)+

f ′′3(θ0)
3f ′′′2(θ0) = 2

√
π

(
2

|f ′′′(θ0)|

)1/3

Φ(z)eiζ ,

(B.20)

where z ≈ y20

(
|f ′′′(θ0)|

2

)2/3

[2, 3]. The last approximation occurs because Re[f(θ0)]+

f ′′3(θ0)
3f ′′′2(θ0)

= 0 holds (see Eqs. (B.15) and (B.16)). Correspondingly, when exploiting

Eq. (B.10) we obtain

J̃n(z−, z+) ≈
1

π
Re[I0] =

2√
π

(
2

|f ′′′(θ0)|

)1/3

Φ(z)cos(ζ). (B.21)

Next, we proceed to the calculation of (J̃ 1
n )

2 − J̃n(z−, z+)J̃ 2
n . Similarly to

Eq. (B.10), it can be written as

(J̃ 1
n )

2 − J̃n(z−, z+)J̃ 2
n =

1

π2

(
Re

[∫ π

0

dθ cos(θ)ef(θ)
]2

−Re

[∫ π

0

dθef(θ)
]
Re

[∫ π

0

dθ cos2(θ)ef(θ)
])

, (B.22)

which is further expanded in cos(θ) ≈ cos(θ0)− sin(θ0)(θ− θ0)+1/2 cos(θ0)(θ− θ0)
2
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around the saddle point θ0. When defining

I1 =

∫
C

dθ(θ − θ0)e
f(θ), I2 =

∫
C

dθ(θ − θ0)
2ef(θ) (B.23)

one obtains up to I20/ξ
3 order

π2
(
(J̃ 1

n )
2 − J̃n(z−, z+)J̃ 2

n

)
≈ Re [sin(θ0)]

2 [Re[I1]2 − Re[I0]Re[I2]
]

+ Im[cos(θ0)]
2|I0|2 + 2Re[sin(θ0)]Im[cos(θ0)] (Re[I1]Im[I0]− Re[I0]Im[I1]) . (B.24)

Whereas the asymptotic expression for I2 results from Eq. (B.20) when taking a
derivative with respect to f ′′(θ0) of the last contribution in the first line and the
first term of the second line, the asymptote for I1 can be read off from a relation
2f ′′(θ0)I1 ≈ −f ′′′(θ0)I2

I1 ≈ −4
√
πf ′′′(θ0)
f ′′2(θ0)

(
2

|f ′′′(θ0)|

)1/3

eiζ
[
z3/2Φ(z) + zΦ′(z)

]
, (B.25)

I2 ≈
8
√
π

f ′′2(θ0)

(
2

|f ′′′(θ0)|

)1/3

eiζ
[
z3/2Φ(z) + zΦ′(z)

]
. (B.26)

Combining outcomes from Eqs. (B.21), (B.24),(B.25) and (B.26) one ends up with

J̃2
n(z−, z+) ≈

2

π

(
2

|f ′′′(θ0)|

)2/3

Φ2(z) (1 + cos(2ζ)) ,

(J̃ 1
n )

2 − J̃n(z−, z+)J̃ 2
n ≈ 2

πξ2

(
2

|f ′′′(θ0)|

)2/3

×
[
Φ2(z) +

Φ′2(z)
z

+ cos (2ζ)

(
Φ2(z)− Φ′2(z)

z

)]
.

(B.27)

Notice that the contributions to the rate coming from terms which are proportional
to cos (2ζ) can be neglected. They are highly oscillating since a large number of
photons is needed for the process to take place and the argument of the cos(2ζ)
is proportional to n (see Eq. (B.15)). Hence, the asymptotic expressions for large
arguments behaviour of generalised Bessel functions read

J̃2
n(z−, z+) ≈

2

π

(
2

|f ′′′(θ0)|

)2/3

Φ2(z),

(J̃ 1
n )

2 − J̃n(z−, z+)J̃ 2
n ≈ 2

πξ2

(
2

|f ′′′(θ0)|

)2/3 [
Φ2(z) +

Φ′2(z)
z

]
.

(B.28)
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Finally, by making use of Eqs. (B.14)-(B.16) one finds

(
2

|f ′′′(θ0)|

)2/3

≈ 1

ξ2sin2(x0)

σ

z
, y0 ≈

√
σ

ξ sin(x0)
, z =

(
− 4z+
ξ3 sin(x0)

)2/3

σ (B.29)

and

J̃2
n(z−, z+) ≈

2σ

πξ2z sin2(x0)
Φ2(z),

(J̃ 1
n )

2 − J̃n(z−, z+)J̃ 2
n ≈ 2σ2

πξ4z sin2(x0)

[
Φ2(z) +

Φ′2(z)
z

]
.

(B.30)
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Appendix C

Laser field profiles

This appendix draws on sections dedicated to the laser pulse profiles in Refs. [51, 60].

C.1 Fourier transformed of a Gaussian pulse’s vec-

tor potential

In the Lorentz gauge with ϕ = 0, the electric field relates to the vector potential
Aμ = (ϕ,εεεa) via an expression EEE = −εεε∂a

∂t
. Thus, the Fourier transformed of the

vector potential amplitude can be written as

ã(k̃, k) = −
∫

d4xeik̃x
∫ t

dt′E((t′,xxx), k). (C.1)

Next, the Fourier transformed of the vector potential corresponding to the field in
Eq. (4.1) with Φ0 = π/2 is calculated following the equation above as it is required for
the calculations presented in subsection 4.2.2. To that end, firstly, the integrations
over the spatial components d3x are performed while writing the cos(Φ) in the Euler
representation and using

∫ ∞

−∞
du e−au

2+ibu =

√
π

a
e−

b2

4a , ei arctan(ζ) =

√
1 + ζ2

1 + iζ
, (C.2)

which results in

Ẽ((t′, k̃kk), k) =
∫

d3xe−ik̃kkxxxE((t′,xxx), k) = π
√
πw2

0E0
2

τ√
2 ln(2)

e−
k̃2⊥w2

0
4

×
[
e
− (τ/

√
2 ln(2))2

4
(−k̃z+ω− k̃2⊥w2

0
4zR

)2
e
−it(k̃z+ k̃2⊥w2

0
4zR

)
+ e

− (τ/
√

2 ln(2))2

4
(−k̃z−ω+ k̃2⊥w2

0
4zR

)2
e
−it(k̃z− k̃2⊥w2

0
4zR

)

]
.

(C.3)
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Further, the integrals over t′ and t are carried out and one obtains

ã0(k̃, k) = − iπ2
√
πw2

0E0
k̃0

τ√
2 ln(2)

e−
k̃2⊥w2

0
4

×
[
e−

(τ/
√

2 ln(2))2

4
(ω−k̃0)2δ

(
k̃z − k̃0 +K

)
+ e−

(τ/
√

2 ln(2))2

4
(ω+k̃0)2δ

(
k̃z − k̃0 −K

)]
(C.4)

with K =
k̃2⊥w2

0

4zR
.

For long pulses, i.e. ωτ � 1, the biggest contribution in the exponential functions
is provided by k̃0 ≈ ±ω. Thus, when inserting the definition of zR, the expression
above approximates

ã0(k̃, k) = − iπ
√
πw2

0E0
k̃0

τ√
2 ln(2)

e−
k̃2⊥w2

0
4 δ

(
k̃z − k̃0 +

k̃2
⊥

2k̃0

)

×
[
e−

(τ/
√

2 ln(2))2

4
(ω−k̃0)2 + e−

(τ/
√

2 ln(2))2

4
(ω+k̃0)2

]
, (C.5)

which coincides with the corresponding result found in [148] for k̃⊥ � k̃0.

C.2 Energy of the Gaussian pulse

The beam energy carried by the Gaussian pulse can be calculated from the associated
beam power, which is obtained by integrating the z−component of the absolute value
of the Poynting vector over the transverse area d2r = dxdy through the focus

P (t, z) =
E2
0

2

πw2
0

2
e
−2

(√
2 ln(2) ϕ

ωτ

)2

×
{
1− 1

1 + ζ(z)2
[cos (2 (Φ0 + ϕ))− ζ(z) sin (2 (Φ0 + ϕ))]

}
(C.6)

with ϕ = ω(t− z). Once the equation above is integrated over time, one obtains the
pulse energy

WG ≈ E2
0

2

πw2
0

2

τ

2

√
π

ln(2)
(C.7)

with the accuracy up to a term decreasing exponentially in (ωτ)2 for ωτ � 1. Since
it does not influence the pulse energy, Φ0 = 0 was set.

In order to identify an effective interaction area Aint and an effective interaction
time Tint associated with a paraxial Gaussian pulse, its energy is compared to the
ones resulting from the laser field modelled as a plane-wave Gaussian pulse and
monochromatic plane wave. The field associated with the pulsed scenario can be
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read off from Eq. (4.1) when the limit w0 → ∞ is taken. Explicitly it reads

Ex(ϕ) = E0e−
(√

2 ln(2) ϕ
ωτ

)2

sin (ϕ) := E0ψ(ϕ). (C.8)

As the expression above does not depend on transversal coordinates, its beam power
would formally diverge. Therefore, the infinite area is parametrised as Aint leading
to P (ϕ) = E2

x(ϕ)Aint and the corresponding beam energy

Wpw ≈ E2
0

2
Aint

τ

2

√
π

ln(2)
. (C.9)

When keeping the energy of both configurations constant, one can identify the ef-
fective interacting area Aint = πw2

0/2. Implicitly, this means that the plane-wave
field is truncated transversally, i.e. Ex(ϕ) → Ex(ϕ)Θ(r)Θ(w0/

√
2− r) with the unit

step function Θ(x).

For ωτ → ∞ the plane wave in Eq. (C.8) goes over to a monochromatic limit with
a power P (ϕ) = E2

0 sin
2(ϕ)Aint. In this context, the beam energy equals Wmpw =

〈P 〉Tint, where

〈P 〉 = lim
Tint→∞

1

Tint

∫ 1
2
Tint

− 1
2
Tint

P (ϕ)dt = IAint (C.10)

is its mean power with I = E2
0/2 referring to the time-averaged intensity. When

comparing the expression above with Eqs. (C.9) and (C.10) the effective interaction

time equals Tint =
τ
2

√
π

ln(2)
.

C.3 Gaussian pulse beyond paraxial approxima-

tion

The electric and magnetic fields of a strong Gaussian pulse are modified by higher
order contributions in the diffraction angle ε = w0/zR. According to Ref. [61], up to
the fourth order in ε they read

Ex = E0e−
(√

2 ln(2)
(t−z)

τ

)2

e
− r2

w2(z)

(
S1 + ε2

[
ν2S3 −

ρ4S4

4

]

+ε4
[
S3

8
− ρ2S4

4
− ρ2(ρ2 − 16ν2)S5

16
− ρ4(ρ2 + 2ν2)S6

8
+

ρ8S7

32

]
+O(ε6)

)
,

Ey = E0νηe−
(√

2 ln(2)
(t−z)

τ

)2

e
− r2

w2(z)

(
ε2S3 + ε4

[
ρ2S5 −

ρ4S6

4

]
+O(ε5)

)
,

Ez = E0νe−
(√

2 ln(2)
(t−z)

τ

)2

e
− r2

w2(z)

(
εS2 + ε3

[
−S3

2
+ ρ2S4 −

ρ4S5

4

]
+O(ε5)

)
,

(C.11)
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Bx = 0, Bz = E0ηe−
(√

2 ln(2)
(t−z)

τ

)2

e
− r2

w2(z)

(
εS2 + ε3

[
S3

2
+

ρ2S4

2
− ρ4S5

4

]
+O(ε5)

)

By = E0e−
(√

2 ln(2)
(t−z)

τ

)2

e
− r2

w2(z)

(
S1 + ε2

[
ρ2S3

2
− ρ4S4

4

]

+ε4
[
−S3

8
+

ρ2S4

4
+

5ρ4S5

16
− ρ6S6

4
+

ρ8S7

32

]
+O(ε6)

)
.

(C.12)

In these formulae ν = x/w0, η = y/w0, ρ
2 = ν2 + η2 and

Sn =

(
1√

1 + ζ(z)2

)n

sin [Φ + (n− 1) arctan(ζ)] ,

Cn =

(
1√

1 + ζ(z)2

)n

cos [Φ + (n− 1) arctan(ζ)] ,

where an explicit expression for Φ can be found in Eq. (4.2). Moreover, the pulse
energy calculated with accuracy up to the fourth order in ε is equal to

WBPA ≈ E2
0

2

πw2
0

2

(
1 +

ε2

4
+

ε4

8

)
τ

2

√
π

ln(2)
. (C.13)
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[22] A. I. Titov, H. Takabe, B. Kämpfer and A. Hosaka, Enhanced Subthreshold
e+e− Production in Short Laser Pulses, Phys. Rev. Lett. 108108108, 240406 (2012)
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