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Abstract

Active matter comprises self-driven units that convert energy from their environment
into mechanical work and systematic motion. The study of active matter systems is
of particular interest for two reasons: First, contrary to their passive counterparts,
active systems are intrinsically out of equilibrium, which requires the development
of new approaches to describe them. Second, such systems exist on various scales
(from microswimmers, cells, and bacteria, to fish, birds, and even humans), allowing
for a wide range of biological and physical applications. Meanwhile, the field of
active matter extends from the development of complex self-propulsion mechanisms
to the study of a wide range of observed collective phenomena in many-body systems
and, more recently, to the application of machine learning methods. In this thesis,
I address five topics and investigate various active matter systems using numerical
simulations. It is shown how non-reciprocal interactions allow phoretic particles to
form dynamic clusters, active modular swimmers, and active “droploids”. Motivated
by the variety of microorganisms that use quorum sensing to communicate with
each other, I start with a model of a binary mixture of chemotactic particles
and demonstrate the formation of complex patterns, such as individual swarms
of particles pursuing each other, as well as different cluster phases that can eject
their interior once they have formed. A similar simulation model can be used to
study the motion of spheroidal photocatalytic microswimmers that self-propel and
self-organize into active assemblies of different geometries and speeds. Then, the
interaction between light-activated particles and a phase-separating environment is
modeled. Under illumination, a two-way coupling between these systems is created
giving rise to a novel structure: a liquid droplet encapsulating a self-assembled
colloidal engine that induces self-propulsion and drives the entire structure. By
combining experiments and simulations, the speed and growth dynamics of this
novel structure can be analyzed. Furthermore, colloidal assemblies are ideal
model systems to study crystallization phenomena. A simple simulation method
is introduced to model the annealing of two-dimensional colloidal monolayers.
To take a next step towards smart particles, I then equip active particles with
artificial intelligence. It is shown how they learn a strategy to consume a nutrient
field as efficiently as possible. Last, I use methods from statistical physics to
model the spread of infectious diseases. With an appropriate model, different
vaccine distribution strategies are tested and it is shown that the question of a
spatiotemporal distribution can play an important role. Similarly, in a further
work, the popular susceptible-infected-recovered model is generalized to account
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for recurrent mutations and their impact on the contagion dynamics is investigated.
This work provides fundamental insights into novel active matter structures and
collective phenomena of colloidal particles, and offers interesting links to approaches
from machine learning and epidemiology.
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Kurzfassung

Aktive Materie umfasst selbstangetriebene Einheiten, die Energie aus ihrer Umge-
bung in mechanische Arbeit und systematische Bewegung umwandeln. Die Unter-
suchung von Systemen aktiver Materie ist besonders aus zwei Gründen von großem
Interesse: Erstens befinden sich aktive Systeme im Gegensatz zu ihren passiven
Gegenstücken von Natur aus außerhalb des Gleichgewichts, was die Entwicklung
neuer Ansätze zu ihrer Beschreibung erfordert. Zweitens existieren solche Systeme
in verschiedensten Größenordnungen (von Mikroschwimmern, Zellen und Bakterien,
bis hin zu Fischen, Vögeln und auch Menschen), was eine Vielfalt an biologischen
und physikalischen Anwendungen erlaubt. Mittlerweile erstreckt sich das Feld der
aktiven Materie von der Entwicklung komplexer Selbstantriebsmechanismen über
die Untersuchung eines breiten Spektrums von beobachteten kollektiven Phänome-
nen in Vielteilchensystemen bis hin zur Verwendung von Methoden des Maschinellen
Lernens. In dieser Arbeit befasse ich mich mit fünf Themengebieten und untersuche
verschiedene Systeme aktiver Materie mithilfe von numerischen Simulationen. Es
wird gezeigt, wie sich phoretische Teilchen über nicht-reziproke Wechselwirkungen
zu dynamischen Clustern, aktiven modularen Schwimmern und aktiven „Droploids“
formen. Motiviert durch die Vielzahl an Mikroorganismen, die Quorum sensing
nutzen, um miteinander zu kommunizieren, beginne ich mit einem Modell einer
binären Mischung von chemotaktischen Teilchen und demonstriere die Bildung
komplexer Strukturen, wie einzelne Schwärme von Teilchen, die sich gegenseitig
verfolgen, sowie verschiedene Clusterphasen, die ihr Inneres ausstoßen können,
sobald sie sich gebildet haben. Mit einem ähnlichen Simulationsmodell lässt sich
die Bewegung ellipsoider photokatalytischer Mikroschwimmer untersuchen, die sich
selbst antreiben und zu aktiven Assemblierungen unterschiedlicher Geometrien
und Geschwindigkeiten organisieren. Nachfolgend wird die Wechselwirkung zwis-
chen lichtaktivierten Teilchen und einer phasentrennenden Umgebung modelliert.
Unter Beleuchtung entsteht eine zwei-Wege Kopplung zwischen diesen Systemen,
die zu einer neuartigen Struktur führt: ein Flüssigkeitströpfchen, das einen selb-
storganisierten kolloidalen Motor einkapselt, der Selbstantrieb erzeugt und somit
die gesamte Struktur antreibt. Durch eine Kombination von Experimenten und
Simulationen kann die Geschwindigkeit und Wachstumsdynamik dieser neuartigen
Struktur analysiert werden. Darüber hinaus eignen sich kolloidale Anordnungen
auch ideal als Modellsysteme um Kristallisationsphänomene zu untersuchen. Eine
einfache Simulationsmethode wird vorgestellt, mithilfe derer man das Ausheilen
zweidimensionaler kolloidaler Monoschichten simulieren kann. Um einen nächsten
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Schritt in Richtung intelligenter aktiver Teilchen zu gehen, statte ich als nächstes
aktive Teilchen mit künstlicher Intelligenz aus. Es wird gezeigt, wie diese eine
Strategie lernen, um eine Nährstoffverteilung möglichst effizient zu konsumieren.
Zuletzt nutze ich Methoden aus der statistischen Physik, um die Ausbreitung von
Infektionskrankheiten zu modellieren. Anhand eines geeigneten Modells werden
verschiedene Strategien zur Impfstoffverteilung getestet und es zeigt sich, dass die
Frage einer räumlich-zeitlichen Verteilung eine wichtige Rolle spielen kann. Ebenso
wird in einer weiterführenden Arbeit das beliebte Susceptible-Infected-Removed
Modell verallgemeinert, um wiederholt auftretende Mutationen zu berücksichtigen
und ihre Auswirkungen auf die Infektionsdynamik zu untersuchen. Diese Arbeit
liefert grundlegende Erkenntnisse über neuartige Strukturen aktiver Materie und
kollektive Phänomene kolloidaler Teilchen und bietet interessante Verknüpfungen
zu Ansätzen aus dem Maschinellen Lernen und der Epidemiologie.
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1 Introduction

The state of matter can usually be assigned to one of the three common categories:
solid, liquid and gas. This distinction is drawn on the basis of different properties,
such as whether the material is deformable in shape or confined to a fixed volume.
However, for some materials this scheme is not applicable. For example, an eraser,
a loaf of bread from the bakery, or the morning’s toothpaste exhibit a certain
intrinsic order, but they are rather “soft” than rigid because they can be easily
deformed by hand. This thesis is about soft condensed matter [1–4], or “soft matter”
for short, which is one of many intermediate states and exists in a region between
solid and liquid. It includes everyday things like ink, blood or mayonnaise but
also polymers [5], liquid crystals [6] and glasses [7, 8], as well as biological systems
such as bacterial suspensions [9,10]. In particular, non-deformable solid colloidal
particles suspended in a viscous fluid are also referred to as soft matter and serve as
ideal model system to study physical phenomena such as self-assembly and pattern
formation [11–17].

A common feature of soft matter is the mesoscopic scale of the individual building
blocks which ranges from a few nanometers to around a hundred micrometers.
On the one hand, this is much larger than the length scale of individual atoms
and molecules of the liquid in which the colloids are suspended. On the other
hand, this is much smaller than the length scale of the characteristic patterns and
hierarchical structures into which the individual building blocks may self-assemble
as the system approaches equilibrium. A characteristic of soft matter are the
typically weak interactions between the constituents of the system, which are on
a similar energy scale as the thermal energy of the environment. Therefore, soft
matter is particularly sensitive to external perturbations and its behavior is strongly
affected by thermal fluctuations. For a colloidal particle, this is manifested by
an irregular and erratic motion caused by random collisions of the surrounding
molecules of the liquid. This motion is called Brownian motion, named after
the Scottish botanist Robert Brown, who discovered it under the microscope in
1827 [18]. Later, an analytical description for this motion was provided by Einstein
in 1905 [19] and Smoluchowski in 1906 [20].

For a bacterium, however, the question inevitably arises of how it is able to find
food or to flee from toxic substances. Fortunately, nature has provided a variety of
propulsion mechanisms for this purpose. For example, some bacteria have developed
filamentous structures on their surface, called flagella, which provide them with
motility [25]. To understand this directed motion in more detail, scientists build
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Figure 1.1: Examples of active matter systems. a Swarming bacteria move in
dynamic clusters that split and merge. Colors indicate bacteria that
belong to different clusters. Reproduced from [21]. CC BY 4.0. b
A “tornado” of schooling barracudas (large, predatory fishes) [22]. c
Pedestrian scramble at Shibuya Crossing in Tokyo [23]. d Programmable
assemblies of colloidal metamachines with translational or rotational
motion. Blue arrows indicate the direction of rotation, red arrows
indicate the direction of propulsion. Identical scale for all images.
Reproduced from [24]. CC BY 4.0.

artificial colloidal particles under laboratory conditions that are self-propelled by
an internal drive. Here we already delve into the field of so-called active soft
matter [26, 27], whose components take energy from the environment and drive
the system out of equilibrium. An important research area of active matter is
constituted by biological or artificial objects that are able to self-propel. The concept
of self-propelled particles (SPP) [28] is used to describe the motion of autonomous
particles that extract energy from their environment and convert it into directed
motion. For example, SPPs can be applied to model the coordinating behavior and
collective motion in fish schools [29], bird flocks [30], or locust swarms [31], and on
a smaller scale in swarming bacteria [21] and self-organized arrays of cells [32]. In
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addition, even in computer simulations of crowd dynamics of pedestrians, models
of SPPs can be used to describe their collective behavior [33,34]. See Fig. 1.1 for
some examples of active matter systems.

In this thesis I use agent-based models to study various systems of (active) soft
matter. In Chapter 2, the basic concepts of chemotaxis are explained, i.e., the
movement of organisms in response to a chemical stimulus, and self-propulsion
mechanisms of active particles are described, which self-propel and self-organize
into active colloidal assemblies. Inspired by the variety of microorganisms that
communicate by producing certain chemicals to which others respond, I explore
a simple physical model beyond the commonly considered one-species limit. It is
demonstrated how the species selective chemical production in an active mixture
of chemotactic particles leads to collective behavior and interesting patterns.

In Chapter 3, a next step in the evolution of active matter is established by realiz-
ing a versatile feedback loop between a nonequilibrium system and its environment.
Under illumination of a mixture of light-activated colloids in a near-critical bath,
the colloids heat up and induce a phase separation in their local environment. This
leads to the emergence of droplets, which act back on the colloids by attracting
and encapsulating them. Inside the droplets, the colloids form active assemblies
which work as internal engines and drive the entire structures. The resulting active
structures include droplets and colloids and perform directed motion. We name
them “active droploids”.

Positioning a very large number of colloidal particles on a planar surface forms
an ideal model system to study crystallization phenomena. In Chapter 4, a simple
but efficient method to anneal two-dimensional colloidal crystals is described.
Subsequently, I present a suitable theoretical model to simulate the applied method.

Machine learning has gained tremendous attention again in recent years and has
also reached the research area of active soft matter. In Chapter 5, I explain how
a system of communicating active particles is able to learn collection strategies,
after explaining basic principles of an artificial neural network and methods of
reinforcement learning.

Although it may not be obvious at first, the field of mathematical modeling
of infectious diseases is fairly close to the statistical methods used in theoretical
soft matter. The Covid-19 pandemic prompted us to exploit this and create
models describing the course of the pandemic in a variety of scenarios. After a
brief explanation of the classical approaches to describing the spread of infectious
diseases in Chapter 6, I present two theoretical models that we developed. The
first one is used to test different vaccine distribution strategies, while the second
one allows to study the impact of mutations on the contagion dynamics.

The computational methods are described in Chapter 7 followed by the scientific
publications listed in Chapter 8. A summary and an outlook of this thesis are
given in Chapter 9.
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2 Self-propulsion strategies and
self-assembly of chemotactic
particles

2.1 Chemotaxis

Chemotaxis [35–37] describes the movement of living organisms or cells due to a
chemical substance gradient [38,39] (from “chemical substance” + ancient Greek
(táxis) “orientation”). This is one of the most fundamental physiological cellular
responses, because finding beneficial substances, such as food, or fleeing from
toxins is of enormous importance to microorganisms. If this movement along the
gradient occurs in the direction of higher concentrations of the substance, it is
referred to as positive chemotaxis and the substance is called attractant. If, on the
other hand, the movement is performed in the opposite direction, this is called
negative chemotaxis and the respective substance is referred to as repellent. Many
microorganisms and synthetic particles adapt their movement also in response to
other stimuli and there exist many other forms of taxis in addition to chemotaxis,
e.g., driven by a temperature field (thermotaxis) [40, 41], different light intensities
(phototaxis) [42–44], as well as by gravity (geotaxis or gravitaxis) [45,46] or viscosity
(viscotaxis) [47] to name a few. Chemotaxis not only allows microorganisms to find
locations with higher concentrations of a nutrient more quickly or to avoid areas
with harmful substances, but may also serve as a communication mechanism among
themselves [48]. For example, microorganisms can also be attracted to chemicals
produced by others, such as cAMP in Dictyostelium cells [49] or autoinducers in
signaling Escherichia coli [50, 51]. However, a difficulty arises here as bacteria are
not able to directly sense the direction of the chemical concentration gradient. Due
to the small size of bacteria, typically a few micrometers, the local concentration
gradient is obscured by their Brownian motion. In order to be able to identify the
direction of the gradient, a bacterium needs to swim a distance in a random direction
and uses receptors on its surface to measure whether the substance concentration
changes. If, in the case of positive chemotaxis, the substance concentration increases
along this path, the bacterium maintains the direction. As soon as the concentration
decreases, the bacterium changes its direction of movement. Although the bacterium
cannot measure the concentration gradient directly and also does not retain a sense
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of orientation in memory, it moves on average in the direction of higher concentration.
In certain bacteria, this results in a “run-and-tumble” motion [9, 52], in which the
bacterium alternately moves in a fixed direction and then stays at a location for a
short time to change orientation. So-called run-and-tumble particles are often used
in the course of a mathematical description to model this motion in detail [53, 54].

Chemotaxis can be observed not only in biological systems, such as bacteria
or other microorganisms, but also in synthetic systems, e.g., chemical robots or
artificial enzyme molecules. Self-propelled microscopic building blocks like artificial
microswimmers and active colloidal particles [55,56], or just active particles [57,58],
serve as ideal model systems for active matter. The surface of such particles is
typically coated with a certain material, which causes an interaction with the
environment and induces an effective motion. For example, in so-called Janus
particles (named after the Roman god with two faces) [59, 60], the surface of
the particles is divided into two halves, which have different chemical or physical
properties, resulting in a symmetry breaking. A reaction catalyzed on half of the
surface, for example, leads to a change in the chemical concentration of a substance.
This can create a gradient along the particle due to its asymmetric structure,
which can induce a movement. Remarkably, the self-produced concentration field
decays rather slowly and typically scales as 1/r in three dimensions with the
distance r from the particle (if the phoretic field relaxes quasi-instantaneously
and does not decay through other reactions) [61]. This allows for long-ranged
interactions among the particles, for example, directing their motion towards (or
away from) the producing particle. A key feature of chemical interactions between
the particles is that they are in general nonreciprocal and break action-reaction
symmetry. This violation of Newton’s third law (actio = reactio) results from
the effective interaction between the particles via the chemical concentration field,
meaning that a particle can attract others while remaining unaffected itself. The
particles are able to communicate with each other and coordinate their motion. In
systems with many particles, these interactions between self-propelled particles
can lead to interesting collective phenomena, as also observed in the biological
habitat. Therefore, artificial particles serve as a helpful synthetic analogue to
microbiological systems when studying collective behavior and signaling-induced
pattern formation, such as dynamic clusters [62–66], traveling waves [67–69] or
collectively self-optimized patterns [48].

Within a mathematical description of a many-body system, there exists a wide
range of models, which describe the behavior of a suspension of (chemotactic)
particles [70–73]. While such a model itself is ideally kept minimalistic, it should
cover the properties of the particles and the system as accurately as possible and
represent experimental observations. This raises the question of the dominant
interactions which have to be considered for active colloids [61,74]. When modeling
chemotactic particles, not only the motion of the particles must be taken into
account, but also the coupling with the dynamics of the chemicals. Consequently,
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the equations of motion of the particles are coupled with a diffusion equation
describing the chemical field. Furthermore, besides the phoretic coupling, there are
short-range steric repulsions, which are an essential part in describing agglomeration
of particles and the formation of clusters. Additionally, the motility of the active
particles alone can lead to a spontaneous accumulation of particles, known as
motility-induced phase separation (MIPS) [75–79]. Hydrodynamic effects can also
play a role [27,80,81], when active particles cause a solvent flow by their motion
which in turn may affect the motion of neighboring particles. However, in the case
of those active colloids discussed in this thesis, phoretic interactions are assumed
to dominate [61,63] (different from microswimmers, which change their shape to
self-propel, and for which hydrodynamic effects are essential [80, 82,83]).

Furthermore, synthetic colloids and microorganisms typically reside in fluids with
low Reynolds numbers, meaning, one considers small micrometer-sized particles
in very viscous fluids. The dynamics of the particles is overdamped and can be
described by the well-known active Brownian particle model [58]. At this point, it
should be mentioned that for larger particles or more flowable fluids, inertial effects
can become relevant, which must be taken into account appropriately [84].

In the following, a basic model describing the motion of chemotactic self-propelled
particles in a concentration field is explained. Considering a system of N over-
damped colloids responding to a chemical field c(r, t) via chemotaxis, the dynamics
of the particle motion are described by the Langevin equation:

ṙi(t) = α∇c(r, t) +
√
2Dηi(t) , (2.1)

where ri is the position of particle i (i = 1, ..., N), D is a translational diffusion
coefficient and ηi(t) is a unit variance Gaussian white noise with zero mean to
model the random movement of the particles due to Brownian motion. The strength
of the chemotactic coupling of the particles to the concentration field is described
by α, where α > 0 leads to chemoattraction (positive chemotaxis) and α < 0 to
chemorepulsion (negative chemotaxis). It is possible to model steric repulsions
among particles by using an additional force term. The dynamics of the chemical
field c(r, t) is described by a diffusion equation ċ(r, t) = Dc∆c (with diffusion
coefficient Dc). If the particles interact with the field, e.g., by producing the
chemical substance itself, this equation can be extended by additional point sources.
Similarly, chemical reactions or other processes may decrease (or increase) the
concentration in the bulk, which can also be accounted for by another appropriate
sink (or source) term. One obtains the following diffusion equation for a system of
N particles producing a chemical field c(r, t) with rate k0:

ċ(r, t) = Dc∆c+ k0

N∑

i=1

δ(r− ri)− kdc , (2.2)

where the coefficient kd determines a degrading of the chemical field in the bulk.
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Paper I and II discuss the collective behavior and self-assembly of phoretically
interacting particles that produce a chemical concentration field, described in a
manner similar to Eqs. (2.1) and (2.2). To understand the origin of the structure
formation, a linear stability analysis is performed, which is discussed below for the
simplest case.

2.1.1 Keller-Segel instability

It is useful to describe the particle motion by a particle density field ρ(r, t) =∑N
i=1 δ(r− ri(t)). The corresponding Fokker-Planck equation [85], which is equiva-

lent to the Langevin equation (Eq. (2.1)) (for point particles), gives a continuous
representation of the probability distribution to find a particle at position r at time
t:

ρ̇(r, t) = D∆ρ−∇ · (αρ∇c) . (2.3)

When applied to particle position distributions this equation is better known as
Smoluchowski equation [86]. Accordingly, the diffusion equation for the chemical
concentration field can be written as:

ċ(r, t) = Dc∆c+ k0ρ− kdc . (2.4)

In this form, Eqs. (2.3) and (2.4) are also known as Keller-Segel model [70,87]. Using
these equations, a linear stability analysis can now be performed by first linearizing
both equations around the steady state solution (ρ, c) = (ρ0, k0ρ0/kd) =: (ρ0, c0),
which represents the uniform phase. To study the consequences of a deviation from
the homogeneous phase, small perturbations of the particle density ρ = ρ0+ δρ and
the chemical field c = c0 + δc are considered. The resulting linearized equations
then read:

∂tδρ = D∆δρ− αρ0∆δc , (2.5)

∂tδc = Dc∆δc+ k0δρ− kdδc . (2.6)

One can now perform a Fourier transform in space and use a separation ansatz
ρ̂(q, t) = eλtρ̂(q) and ĉ(q, t) = eλtĉ(q) (with wave vector q), leading to the following
eigenvalue problem:

λ

(
δρ̂
δĉ

)
=

(
−Dq2 αρ0q

2

k0 −Dcq
2 − kd

)(
δρ̂
δĉ

)
. (2.7)

The eigenvalues λ of the matrix determine the stability of the system. For eigenval-
ues whose real part is strictly less than zero, the steady state is stable. If, instead,
there is at least one eigenvalue with a positive real part, the steady state is unstable.
The determination of the eigenvalues λ followed by a Taylor expansion and the
subsequent examination on a positive real part leads to the following instability
criterion:

Dkd < αk0ρ0 . (2.8)
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a b c

Figure 2.1: Schematic illustration of cluster formations as a consequence
of the Keller-Segel instability. a-c Chemotactic particles that are
initially separated (a), aggregate and form clusters (b) that merge over
time (c).

This is also known as the Keller-Segel instability, which occurs due to the positive
feedback between the chemical production of the particles and the attraction of the
particles towards higher concentrations (for α > 0). As can be seen in Eq. (2.8),
strong chemical production and chemotactic coupling of particles leads to instability.
In contrast, the homogeneous phase is approached with increasing particle diffusion
and fast evaporation of the chemicals. Figure 2.1 schematically illustrates a typical
formation of a cluster of passive particles due to the Keller-Segel instability, which
grows over time and coalesces with surrounding clusters.

2.2 Mixtures of chemotactic particles

In many biological processes in which microorganisms or cells communicate with
each other using certain (chemical) substances, there are typically several species
involved that simultaneously produce different chemicals to which others respond.
A simple example of a signaling loop involving different chemicals is given by the
interaction between macrophages and tumor cells [88]. Macrophages are certain
white blood cells and usually play an important role in human immune defense.
However, the tumor cells secrete a colony-stimulating factor (CSF-1) leading to
the aggregation and growth of the macrophages, which respond to this signal by
moving up the chemical gradient. In turn, the macrophages release epidermal
growth factors (EGF), which are actually important for the immune system, but
in this context they lead to growth and increased mobility of tumor cells. While
there are many models on colloidal chemotactic mixtures [89, 90], the study of
such a scenario is particularly interesting because, for simplicity, most existing
models describe the interaction of the mixture using only a single chemical field [91].
Motivated by the above example, in Paper I my coauthors and I studied a simple
model in which a mixture of two different species of chemotactic particles interact
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a

b

c

e

d

f

Figure 2.2: Mixtures of chemotactic particles. a,b Snapshots from particle-
based (a) and continuum-based (b) simulations of a binary mixture of
chemically interacting particles (black and white) which self-organize
into hunting swarms. c-f Sequence of simulation snapshots showing a
cluster ejection caused by chemical delay effects. Reproduced from [66].
CC BY 4.0.

with each other, each producing an individual chemical. Similar to the particle
based description in Eqs. (2.1) and (2.2) and the continuous description in Eqs. (2.3)
and (2.4), each extended by appropriate terms accounting for the coupling with the
other species, we investigated and analyzed possible phases occurring in this system.
Depending on the chemoattractive and chemorepulsive interactions among the
species, we discovered various interesting phases, of which a “hunting-swarm phase”
is particularly remarkable, in which swarms of each species form and one of them
pursues the other, see Fig. 2.2a,b. Physically, this phase occurs when the particles
of one species attract each other to form a cluster, but likewise attract the particles
of the second species, which in turn repel the particles in the cluster. Moreover,
the predicted phase diagram of this model comprises the formation of clusters
composed of both types of particles, with the inner core formed by one species
surrounded by a diffuse or solid shell of particles of the other species (“core-shell
clusters”). In particular, a low diffusion coefficient of the chemicals can lead to
delay or memory effects and, due to signaling via two chemicals, to particle clusters
that exhibit complex self-dynamics. More specifically, the core-shell clusters can
eject their inner particles once they have formed, whereupon the particles of both
species build new clusters and the described process repeats (Fig. 2.2c-f). For
more details and an explicit formulation of the equation of motion, see Paper I in
Chapter 8 - Scientific publications.
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2.3 Self-propulsion strategies of active particles

There are various ways to equip an artificial microswimmer with mobility [92],
as already briefly indicated in Section 2.1. Usually, this is accomplished by sym-
metry breaking of the system, for example, in the case of a photocatalytic Janus
particle by its asymmetric coating. The main driving mechanisms of such (light-
driven) microparticles can mostly be traced back to self-diffusiophoresis [93], self-
thermophoresis [94] or self-electrophoresis [95,96], where usually the overall mech-
anism consists of a complex combination of several processes. Illumination of
the particle then enables an asymmetric generation of substance concentrations,
temperature gradients or electric fields, creating a fluid flow that drives the particle
(Fig. 2.3).

As the name indicates, the mechanism of self-diffusiophoresis results from asym-
metric diffusion of chemicals along the particle, e.g., when a particle converts a
chemical fuel into individual reaction products. An example of this are silica (SiO2)
particles that are half coated with platinum (Pt) and catalyze the decomposition of
hydrogen peroxide (H2O2) [97]. The surface chemical reaction 2H2O2 → O2+2H2O
is then catalyzed on the platinum side of the particle. A concentration gradient of
the reaction products leads to an asymmetric repulsive interaction that drives the
particle.

In self-thermophoresis, the surface of particles is partially coated with a pho-
tothermal material (e.g., gold) [98]. If the particle is illuminated with laser light
of a certain wavelength, a temperature field is generated which causes a gradient
along the particle due to the asymmetric coating. This drives the particle, where
the direction of particle motion depends on the Soret coefficient ST = DT

D
with the

diffusion coefficient D and the thermodiffusion coefficient DT .
The self-electrophoretic drive mechanism is also often responsible for many light-

driven, typically photo-semiconducting microparticles. There, electron-hole pairs
are produced under illumination by a photo-semiconductor on one hemisphere of
the particle. Electrons and holes then migrate to different halves of the particle
where reduction and oxidation half reactions are catalyzed. In particular, this
is seen when one half of a particle in water is coated with a metal (e.g., gold
or platinum) along with the semiconductor photocatalyst on the other half (e.g.,
titanium dioxide TiO2) [99]. This facilitates the separation of electrons and holes,
with the photogenerated holes remaining in the semiconductor and carrying out the
water oxidation (2H2 + 4h+ → O2 + 4H+), while the photogenerated electrons can
easily accumulate in the metal for the reduction reaction (4H++4 e− → 2H2). This
asymmetric production and consumption of protons during the reaction generates
an electric field that points towards the Au side. As a result, the ions migrate
towards the Au side and drag the water along leading to a fluid flow and a motion
of the particle in the opposite direction. In this way, the particle itself generates
an electric field which drives it towards the semiconductor side.
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Propulsion
PropulsionPropulsionPropulsion

a b c
Light

Light

Self-thermophoresis Self-electrophoresisSelf-diffusiophoresis

Figure 2.3: Schematic representation of mechanism for propulsion of
synthetic catalytic particles. a Self-diffusiophoresis. b self-
thermophoresis. c self-electrophoresis.

2.4 Spheroidal photocatalytic microswimmers

In collaboration with Juliane Simmchen and Sandra Heckel from TU Dresden,
we investigated a system of spheroidal microswimmers that individually exhibit
directional motion and form into active assemblies under light illumination [100],
similar to the previous section. But unlike the Janus particles in 2.3, whose
characteristics are given by an asymmetric coating of the surface, the remarkable
feature in our work is an isotropic construction of single-component particles. The
investigated particles are coated with bismuth vanadate (BiVO4), a semiconducting
material, allowing them to self-propel in the same way under illumination without
the need for an asymmetrization step [101, 102]. Here, the main characteristic
is the BiVO4 coating, which can occur in three different crystal structures, with
monoclinic scheelite being the most photocatalytically active. If electron-hole pairs
are generated upon illumination of the particle’s surface, the monoclinic scheelite
crystal structure favors spatial separation of the photogenerated electrons and
holes on different crystal facets, resulting in an effective charge separation [103].
When the particles are immersed in a hydrogen peroxide (H2O2) solution and
illuminated with UV light, the decomposition of H2O2 is catalyzed. In this process,
the H2O2 reacts with the holes in the crystal producing oxygen and hydrogen
ions. Then, the hydrogen ions are consumed by the other half-reaction as H2O2
reacts with the electrons in the crystal to form water (Fig. 2.4a). Due to the
spatial separation of the electrons and holes upon illumination, the oxidation and
reduction half-reaction of H2O2 decomposition are spatially separated. Ultimately,
this creates a proton gradient around the particle that induces an intrinsic driving
force, causing the particle to move. In Paper II we investigated those spheroidal
BiVO4 microswimmers combining an experimental approach with simulations and
analytical calculations. The spheroidal swimmers are able to self-propel individually
with velocities of about 4µms−1 and self-organize into different active assemblies.
Due to the spheroidal shape of the particles, these assemblies appear in various
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Figure 2.4: Motion mechanism and modeling of spheroidal BiVO4 particles.
a SEM image of a spheroidal BiVO4 particle and mechanism of the H2O2
fuel degradation. b Schematic representation of a spheroidal swimmer
as it is handled in a simulation, producing a chemical asymmetrically
on part of its surface and inducing movement in the direction of its
catalytic cap. c,d Experimental (c) and simulated (d) tracks of three-
triangle (left) and four-caterpillar (right) particle assemblies. (a), (c)
and (d) reprinted with permission from [100]. Copyright 2020 American
Chemical Society.

arrangements with different velocities, ranging from closely clustered particle
assemblies to “caterpillar” structures in which the particles are lined up along their
short axis, see Fig. 2.4c,d. The explicit formulation of the simulation model, particle
arrangements and swimming behavior of the active assemblies are described in
detail in Paper II in Chapter 8 - Scientific Publications.
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3 Active colloidal molecules
interacting with their
environment

As demonstrated in the previous chapters, the individual constituents in systems
of active matter are able to convert the energy from the environment into a
directed motion. In contrast to systems at equilibrium, in active matter systems
the environment acts as a persistent free energy source, unidirectionally feeding
the system of active particles. This can induce a rich phenomenology, such as
the emergence of spatiotemporal patterns in self-driven colloids [104] but also, for
example, in systems of active droplets [105–110] formed through liquid-liquid phase
separation [111–114].

However, in these examples, the environment can mediate effective interactions
between active particles, but it does not show intrinsic dynamics that adapts to
the dynamics of the active particles. In contrast, biological systems often exhibit
a two-way coupling with their surrounding environment, for example, involved in
homeostasis, gene-expression regulation, and structure formation [115,116].

In Paper III, I investigate the two-fold coupling between light-activated colloidal
particles and liquid droplets formed from a critical binary mixture of water and
2,6-lutidine. The resulting feedback loop leads to novel structures that hinge on the
mutual coupling between the colloids and the surrounding solvent. Before discussing
this work in more detail, I will explain under which conditions phase separation
of a binary liquid mixture occurs and how it can be described theoretically and
modeled in a simulation.

3.1 Liquid-liquid phase separation

In thermodynamics, phase separation describes the transition of a homogeneous
mixture into distinct coexisting phases [117]. A common type of phase separation
system is given by binary liquid mixtures consisting of two different molecular
components, e.g., a mixture of water and oil. The state of such mixtures is deter-
mined by the thermodynamically most favorable condition with the lowest energy
configuration. While the water oil solution typically remains demixed, the state of
a so-called critical mixture can be easily changed to be either mixed or demixed,
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Figure 3.1: Phase diagram of the water–2,6-lutidine mixture. The critical
point is defined by the critical lutidine mass fraction at cL

c = 0.286
and the critical temperature at Tc = 34.1◦C [118]. Depending on the
temperature and composition, the system is found in the mixed phase
(white background) or demixed phase (green background). The dashed
line indicates the region of spinodal decomposition, where both phases
separate from each other resulting in characteristic worm-like structures
(dark green background). Between the spinodal and binodal (light green
background), nucleation occurs in one of the two phases as individual
droplets of the minority phase form (i.e., at supercritical 2,6-lutidine
concentration, water-rich droplets form in a lutidine-rich background).
Reproduced from [119]. CC BY 4.0.

depending on the composition ratio of the components and the temperature of
the solution. The critical mixture of water and 2,6-lutidine is a common choice in
experiments because the system can be easily prepared near its critical temperature
close to room temperature. The phase diagram of the water–2,6-lutidine mixture
is shown in Fig. 3.1. Below the critical temperature, the equilibrium state is
given by the phase in which the fluid is homogeneously mixed. The solid line in
Fig. 3.1 is called the “binodal”, above which both phases can coexist in separated
regions (sometimes also called coexistence line). If a mixed fluid is then heated
to a temperature above the binodal line, the fluid phase separates by forming
domains of A-rich (2,6-lutidine) and B-rich (water) phases that grow over time.
Above the dashed line, the fluid separates by spinodal decomposition, which is
why this line is called “spinodal” [120]. Here, the fluid phase separates into a
characteristic worm-like structure, as it is illustrated in the inset in the dark green
area of Fig. 3.1. The spinodal curve is defined by the condition that the second
derivative of the free energy with respect to the composition is zero. At the critical
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point (defined by the fluid’s critical concentration cL
c and critical temperature Tc),

the binodal and spinodal line coincide and no thermodynamic barrier impedes
the system to demix. This is characteristic for a second order (continuous) phase
transition, where the free energy’s first derivative with respect to some thermody-
namic variable, e.g., temperature, is continuous, while a discontinuity occurs in
the second derivatives. As a result, a fluid with critical concentration cL

c becomes
thermodynamically unstable and its free energy is at a local maximum, when it
is heated above the critical temperature Tc (see Fig. 3.2). At this point, single
fluctuations in the fluid are sufficient to induce a phase separation. A different
situation, i.e., a first order phase transition, occurs when the fluid is prepared in
an off-critical state, for example due to a higher 2,6-lutidine concentration. With
increasing temperature, the homogeneous phase becomes metastable and remains
resistant to small fluctuations, as opposed to the scenario described above. The
system initially requires time to overcome a nucleation barrier, after which droplets
of the lower concentrated phase form. This regime of nucleation and growth is
in between the binodal and the spinodal (light green area in Fig. 3.1) [121]. At
later times, these separated regions grow with a power law, where the domain size
increases with L ∼ t

1
3 according to the Lifshitz-Slyozov law [122–124].

3.2 Ginzburg-Landau free energy

3.2.1 The Landau expansion: free energy of a uniform system

The Landau theory is a phenomenological mean-field theory for the description of
continuous phase transitions [125]. Although this theory was originally established
as an attempt to describe second-order (continuous) phase transitions, it can also be
used as a quantitative model for first-order (discontinuous) transitions. The central
idea of the Landau theory is the introduction of an order parameter ϕ specifying
the free energy F(ϕ) of the system. In general, the order parameter is the mean
value of some observables which indicate the state of the system. In Paper III, the
order parameter is introduced as the relative concentration difference of the two
species A (2,6-lutidine) and B (water) of the mixture. In regions where A and B are
homogeneously mixed, ϕ equals zero, whereas ϕ = ± 1 in pure regions of A and B,
respectively. The phase of the system, at given temperature T , is then determined
by minimizing the free energy F(ϕ). According to the Landau theory, the order
parameter ϕ is assumed to be small near the transition temperature between the
two phases, allowing an expansion of F(ϕ) in powers of ϕ. The phase separation is
described in sufficiently good approximation if the free energy is expanded up to
the 4th order in ϕ (sometimes also called ϕ4-theory [126]). The free energy density
of a uniform system is then:

f0(ϕ) = u0 + u1ϕ+
u2

2
ϕ2 +

u3

3
ϕ3 +

u4

4
ϕ4 + . . . , (3.1)
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Figure 3.2: Schematic illustration of the homogeneous free energy profile.
The free energy density f0(ϕ) features a single minimum for T < Tc,
retaining the mixture in the homogeneous phase. For T > Tc, two
minima at ϕ = ±ϕ0 arise and the fluid demixes.

with the free energy F0 = V f0, where V is the volume of the system. Assuming the
symmetric case of a binary mixture, where the free energy is invariant to reflection
operations so that the relation f0(ϕ) = f0(−ϕ) holds, allows us to eliminate the
odd terms in Eq. (3.1). The Landau coefficients are experimentally determined
parameters, where a change of sign in u2 = u2(T ) due to a temperature change
decides the occurrence of a phase transition. The order parameter of the system
is assumed to remain finite when minimizing the energy, i.e., u4(T ) > 0. The
critical temperature of the system is determined by u2(Tc) = 0, which allows to
approximate u2(T ) ≈ a0(T − Tc) for temperatures close to Tc, with a0 < 0 for
a lower critical solution temperature. Similarly, for small deviations around Tc,
u4(T ) = b = const. can be approximated. Figure 3.2 shows a schematic plot of the
free energy f0(ϕ) ∼ a0

2
(T−Tc)ϕ

2+ b
4
ϕ4 for the cases T > Tc and T < Tc, respectively.

The minima ±ϕ0 are given by the equilibrium condition when minimizing the
Landau free energy with respect to ϕ: df0

dϕ
= 0 ⇒ a0(T − Tc)ϕ + bϕ3 = 0. The

solution is given by

ϕ0(T ) =

{
0, if T ≤ Tc

±(−a0(T−Tc)
b

)1/2, if T > Tc
(3.2)

meaning the mixed phase is stable for T ≤ Tc, whereas, by contrast, the demixed
phase is stable for T > Tc.

3.2.2 Spatial variations: free energy of a nonuniform system

Now we consider a spatially nonuniform system, like a phase-separating fluid. Per
definition, the order parameter must be spatially dependent, ϕ = ϕ(r). In a region



3.3 Cahn-Hilliard equation (“Model B”) 19

with a nonuniform composition, the local free energy depends not only on the local
composition, but may also depend on the composition of the local environment.
Thereby, the free energy is a function that depends on the order parameter as well
as its derivatives [127]:

f(ϕ,∇ϕ,∇2ϕ, ...) =f0(ϕ) +
∑

i

∂f

∂ ∂ϕ
∂ri

∂ϕ

∂ri
+
∑

ij

∂f

∂ ∂2ϕ
∂ri∂rj

∂2ϕ

∂ri∂rj

+
1

2

∑

ij

∂2f

∂ ∂ϕ
∂ri

∂ ∂ϕ
∂rj

∂ϕ

∂ri

∂ϕ

∂rj
+ ... .

(3.3)

Using the same argument as in Eq. (3.1), the odd terms in ri vanish for an isotropic
medium, truncating Eq. (3.3) to:

f(ϕ,∇ϕ,∇2ϕ, ...) = f0(ϕ) + κ1∇2ϕ+ κ2(∇ϕ)2 + . . . , (3.4)

with κ1 =
∂f

∂∇2ϕ
and κ2 =

∂2f

∂|∇ϕ|2 . Integrating Eq. (3.4) over a volume V and applying
the divergence theorem, the total free energy functional is obtained:

F [ϕ(r, t)] =
∫

V

f(ϕ,∇ϕ,∇2ϕ, ...)dV =

∫

V

f0(ϕ) +
κ

2
(∇ϕ)2 + . . . dV , (3.5)

where κ
2
= −dκ1

dϕ
+ κ2. Equation (3.5) is also called Ginzburg-Landau free energy,

tracing back to the 1950 Ginzburg-Landau paper [128]. The gradient term κ(∇ϕ)2
in Eq. (3.5) models the surface energy of the interfaces separating the phases and,
thus, prevents discontinuities. It can also be interpreted as an additional energetic
cost due to a variation of the order parameter.

3.3 Cahn-Hilliard equation (“Model B”)

As the total concentration of the two substances remains unchanged during the
phase separation, the order parameter must be conserved. The dynamics of such a
system is described by the so-called Model B [129], which implies the convergence
of the conserved order parameter towards equilibrium with a rate proportional to
the divergence of its current:

∂ϕ(r, t)

∂t
= −∇ · j(r, t) . (3.6)

The current j(r, t) is proportional to the gradient of the chemical potential µ

j(r, t) = −M∇µ(r, t) , (3.7)
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where M is the inter-diffusion constant of the mixture and µ can be obtained from

µ(r, t) =
δF
δϕ

, (3.8)

with the functional derivative δF
δϕ(r)

= ∂f
∂ϕ
− ∇ · ∂f

∂∇ϕ
. Combining Eqs. (3.6),(3.7),

and (3.8) and inserting the Ginzburg-Landau free energy (Eq. (3.5)) yields

∂ϕ(r, t)

∂t
= M∆

(
a(T − Tc)ϕ+ bϕ3 − κ∇2ϕ

)
, (3.9)

which is known as Cahn-Hilliard equation [127,130] (or Model B). The Cahn-Hilliard
equation, derived by John W. Cahn and John E. Hilliard, is a mathematical equation
capable of describing the process of phase separation of a binary mixture, where
the two components of the fluid, which are described by the order parameter ϕ,
can spontaneously separate and form distinct domains of each component.

3.4 Feedback driven “active droploids”

In Paper III, we demonstrate a possibility to implement a simple and controllable
system of colloids and a “responsive environment”, creating a versatile feedback
loop. In collaboration with Giovanni Volpe and Falko Schmidt from University
of Gothenburg, we experimentally realized and theoretically modeled a system of
colloidal particles, exposed in a critical mixture. More specifically, we used two
types of hydrophilic particles: light-absorbing and non-absorbing particles. The non-
absorbing particles are less hydrophilic than the absorbing ones. These particles are
immersed in a near-critical water–2,6-lutidine mixture, which has a critical lutidine
composition cL

c = 0.286 and a critical temperature at Tc = 34.1◦C. The temperature
of the mixture is maintained near-critical at T0 = 32.5◦C using a heatbath. Under
illumination (wavelength Λ = 1070 nm, intensity I = 142µWµm−2), the light-
absorbing particles then absorb the light and convert it into heat. As a result, the
particles raise the temperature of the surrounding liquid just above Tc and induce
local phase separation of water and lutidine. Due to the phase segregation and
the hydrophilicity of the particles, water accumulates in the vicinity of the light-
absorbing particles. From the point of view of neighboring non-absorbing particles,
the symmetry of the environment is broken, since the water concentration increases
in the direction of a light-absorbing particle. Due to the generated local gradient in
the composition, the hydrophilic non-absorbing particles experience a phoretic force
pointing in the direction of the light-absorbing particles. Notably, this attractive
force is non-reciprocal and causes the non-absorbing particles to move towards
the light-absorbing particles and to push them forward. “Active molecules” are
formed, which move ballistically through the environment and coalesce into active
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Figure 3.3: Formation of active droploids. Schematic and snapshots from the
experiment and the simulation. Reproduced from [119]. CC BY 4.0.

clusters with multiple particles [131]. As the number of light-absorbing particles
increases locally over time, the temperature significantly exceeds Tc and a water
droplet forms, enclosing the entire particle cluster. Remarkably, the active cluster
of particles transfers its motility to the droplet and acts like an internal motor.
This happens because the light-absorbing particles inside the droplet continuously
phase separate their environment, causing the droplet to follow the particle motion.
In this way, not only do the particles influence their environment by inducing phase
separation, but the environment also acts back on the particles by enabling their
motion and encapsulating the particles inside a droplet. We name these novel
structures of droplets with a colloidal motor “active droploids” [119]. Once formed,
the active droploids move, collide and merge with each other, growing in size over
time (see Fig. 3.3). Remarkably, size and speed of the active droploids can be
controlled by the laser intensity.

In the simulation model we consider N overdamped colloidal particles at position
ri, where i = 1, . . . , N . To model the phase separation dynamics of this specific
system, we extend the Cahn-Hilliard equation taking into account an inhomogeneous
temperature distribution T (r). The temperature field produced by the light-
absorbing particles results from the heat equation

Ṫ (r, t) = DT∆T + k0
∑

absorb.

δ(r− ri)− kd(T − T0) , (3.10)

where DT is the diffusion constant of the temperature field, k0 is the strength of the
heat production and kd is the heat dissipation due to the coupling of the sample to
an external water heatbath. Subsequently, the inhomogeneous temperature field is
coupled to the Cahn-Hilliard equation:

ϕ̇(r, t) =M∆
(
a(T − Tc)ϕ+ bϕ3 − κ∇2ϕ

+ Aa

∑

absorb.

δ(r− ri) + Ana

∑

non−abs.

δ(r− ri)
)
.

(3.11)
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Here, we describe the effective accumulation of water near the hydrophilic particles
by an additional source term for the solvent-composition at the position of each
particle. Since the non-absorbing particles are less hydrophilic than the absorbing
particles, the coefficients Aa (absorbing) and Ana (non-absorbing) can be chosen to
account for the different hydrophilicities of the two types of particles. Similar as
in Chapter 2, we model the dynamics of the colloids as Brownian particles using
Langevin equations

γṙsi (t) = βs∇ϕ+ αs∇(∇ϕ)2 −∇riV +
√
2Dγηs

i , (3.12)

where D is the translational diffusion coefficient, γ is the Stokes drag coefficient,
ηs

i (t) represents Gaussian white noise with zero mean and unit variance, and V
accounts for steric repulsions among the colloids (see Chapter 7 for details on the
implementation). The first two terms on the right side of Eq. (3.12) describe the
coupling of the particles to the composition field. On the one hand, this is the
attraction of the hydrophilic particles towards water-rich regions, described by the
first term with β < 0 (because ϕ < 0 corresponds to a higher water concentration,
as described above). On the other hand, the second term describes a movement
towards the water-lutidine interface, which mainly affects the weakly hydrophilic
non-absorbing particles. At high temperatures, the active cluster inside the droplet
dissolves and the non-absorbing particles move towards the water-lutidine interface
to reduce the interfacial area of the system and hence the total interfacial free
energy. See Paper III for further information on the simulation model, a detailed
explanation of the experimental setup, and a quantitative analysis of the active
droploid dynamics.
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4 Acoustic crystallization of
colloidal monolayers

4.1 Polycrystalline structures

Colloidal assemblies also serve as ideal model systems to study crystallization
phenomena [132–137]. In a further collaboration, a simple and generic method was
investigated to efficiently anneal two-dimensional (2D) colloidal crystals at liquid
interfaces.

A small microscopic crystal within a polycrystalline structure is called grain
(or crystallite). Each grain is a region with a periodic arrangement of building
blocks and a certain crystallographic orientation. Polycrystalline materials, or
polycrystals, consist of many crystallites of different sizes and orientations, each
separated by so-called grain boundaries, 2D defects in the crystal structure. Most
inorganic materials have a polycrystalline structure, like rocks, common metals or
ice. For example, when water begins to freeze, small ice crystals form and grow
until they fuse together. The separated highly ordered small crystals with random
orientations then form a polycrystalline structure, which macroscopically does
not show a periodic pattern. An important property of a material is the average
size of the grains, as this can determine the properties of the material. A small
grain size, for example, is accompanied by a higher ductility of the material. In
contrast, a large grainsize with high order layers leads to increased electrical and
thermal conductivity and is necessary for functional surfaces, such as photonic [138],
phononic [139, 140] or plasmonic materials [141, 142]. Consequently, methods to
control the grain size as well as an understanding of the underlying growth processes
are of enormous interest.

By external stimuli, such as vibrations [143,144], increase in temperature [145],
movement of active particles [146] or electric fields [147], the so-called grain coars-
ening, i.e., the growth and fusion of grains in a polycrystalline material, can be
enhanced. Upon stimulation, dislocations and vacancies at the disordered grain
boundaries can rearrange more rapidly, allowing to efficiently anneal defects and
generate grain boundary movement. Overall, this leads to enhanced grain growth
and a higher ordered crystal structure.
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4.2 Sound induced monolayer annealing

In collaboration with Nicolas Vogel’s group from Friedrich-Alexander University
Erlangen-Nuremberg and Liesbeth Janssen from Eindhoven University of Technol-
ogy, we investigated a simple monolayer annealing setup in which it is possible
to efficiently anneal two-dimensional colloidal crystals at liquid interfaces using
a conventional loudspeaker. The acoustic stimuli from the loudspeaker generate
standing waves at the interface, which generates additional surface area. This
allows local reorganization of the colloidal particles into a structure of higher order.
Remarkably, the grain size can be controlled by the amplitude and frequency of
the loudspeaker, as well as the particle density.

Using a simple generic simulation model, we can accurately unveil the dependence
of the grain size on amplitude, frequency, and particle density. In addition, the
simulations allow us to track the particle trajectories, giving us a better under-
standing of the exact annealing process. We found that the main mechanism is
given by collective rotations of particle groups around fixed centers (see Fig. 4.1).
The exact process of rotation depends on the orientation angle mismatch between
the grains.

During the completion of this thesis, the manuscript about this work is still in
preparation. Nevertheless, since the simulation model introduces a new method
to model the additional surface area available to particles during acoustic stimuli
and allows to unveil the mechanism underlying the annealing process, I will briefly
explain the simulation details in the following section.

4.2.1 Simulations of the acoustic annealing of
two-dimensional colloidal crystals

In our simulation model, we consider an ensemble of N overdamped colloidal
particles at positions ri in two spatial dimensions, where i = 1, ..., N is the particle
index. The particle coordinates are considered in the domain from −L/2 to L/2 in
both directions with box length L and periodic boundary conditions. The dynamics
of the particle motion is described by the following Langevin equations

ṙi(t) =
√
2Dηi(t)−∇riV (r1, . . . , rN)/γ , (4.1)

where γ the Stokes friction coefficient, D is the translational diffusion coefficient
(both assumed to be equal for all particles) and ηi represents unit variance Gaussian
white noise with zero mean. The strong repulsions among particle pairs are modeled
using a repulsive Yukawa pair potential V (r1, . . . , rN) =

1
2

∑
i,j ̸=i Vij(ri, rj), where

Vij(ri, rj) = V0
exp(−rij/λ)

rij
. Here, rij = ∥ri − rj∥ is the distance between particles i

and j, V0 is the amplitude of the potential and λ is a screening length. To model
the generated additional surface area upon acoustic stimulation, the simulation box
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Time

a

b

Figure 4.1: Exemplary snapshots from the simulations. a Evolution of grain
sizes during the annealing process over time. The coloration of the
individual particles indicates the orientation, i.e., their arrangement
to neighboring particles, and allows detection of different grains. b
Superposition of the particle positions, in each case of the initial config-
uration (left panel from (a)) and the particle positions at later times.
In the lower part of the simulation box, a typical moiré pattern can be
observed, resulting from the characteristic particle motion during the
annealing process, i.e., the rotation of particle groups around a center
particle.

length L(t) is periodically expanded and shrunk with the frequency f associated
with the loudspeaker. The time-dependent box length reads

L(t) = L0(1 + A(1− cos(2πft)) , (4.2)

ranging between the minimum value of the initial box length L0 and the maximal
possible box length L0(1 + 2A) determined by the amplitude A.

In each simulation step of time ∆t, two subsequent moves are applied for
given particle positions ri(t). First, the particle positions are updated to r

(1)
i , by

numerically solving Eq. (4.1) using an Euler integration scheme [148]. Second, the
particle positions r

(1)
i are scaled with the simulation box length at time t+∆t as:

ri(t+∆t) =
L(t+∆t)

L(t)
r
(1)
i . (4.3)

These two steps are performed repeatedly to generate particle trajectories.
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Figure 4.1 shows typical simulation snapshots at different times during the
annealing process. The coloration indicates which particles belong to the same
grain. A point defect, or more precisely a vacancy, can be detected in the upper
part of the panels. Such defects are annealed by movement and repositioning of
neighboring particles until the defect reaches a grain boundary. In the lower part
of the panels, merging of entire grains to remove grain boundaries can be observed.
Such merging results from the transfer of particles from one grain to another. This
process occurs in several steps as individual groups of particles sequentially rotate
around a fixed center particle. The time sequence of these realignments as well as
the rotating shift of particles can be seen in Fig. 4.1b.
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5 Machine learning for active
matter

In recent years, machine learning methods have become increasingly important. On
the one hand, this results from the availability of vast amounts of data and, on the
other hand, from a permanent increase in computer resources and possibilities to
store and analyze these data. The application of machine learning has also gained
popularity in the natural sciences, specifically in the field of active matter [149,150].
For example, machine learning techniques are applied in digital microscopy to
characterize and track different types of matter such as active particles or droplets
[119,151]. Using convolutional neural networks, complex pattern formations can
be investigated and classified [152]. Furthermore, active particles can be equipped
with artificial intelligence and used as microrobots, e.g., for learning collective
behavior [153,154], exploring and navigating in complex environments [155–159],
delivering drugs [160,161] or environmental remediation [162].

In Paper IV, a system of particles in a complex environment is studied that
use machine learning to develop a strategy for adapting their collective behavior.
First, I will present some basic concepts of neural networks in Section 5.1 and
explain the used machine learning algorithm in Section 5.2 to finally come back to
its application in the paper in Section 5.3.

5.1 Artificial neural networks

When talking about a neural network, one might initially think of a network of
neurons in the nervous system of a living being. Although the name is biolog-
ically inspired, in the context of artificial neural networks it refers to a model
for processing information [163]. Basically, a neural network is a large universal
function approximator or, more precisely, a general function Fθ(x) with parame-
ters θ = (θ1, θ2, ...), which is supposed to approximate a certain (often unknown)
function F using many training examples. The artificial neural network consists of
individual units called neurons that hold a scalar value y and are located on layers
that are connected to each other. Signals can be transmitted between neurons via
these connections, allowing to pass information through the neural network. This
signal is nothing else than a real number, which is received by a neuron, evaluated
by a non-linear function and transferred to the next neuron. Hence, the value of a
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Figure 5.1: Schematic of a dense neural network. a Illustration of a typical
artificial neuron operation. b Structure of an artificial dense neural
network with two hidden layers.

neuron is computed by the previous layer’s values of the network. In addition, an
offset b, called bias, is added to each value of a neuron and the connections between
neurons are weighted with so-called weights w (see Fig. 5.1). To approximate an
arbitrary function sufficiently well, a large number of neurons (and layers) may be
required. The value of a neuron l in layer n+ 1 is given by:

y
(n+1)
j = f(

∑

k

w
(n+1,n)
jk y

(n)
k + b

(n+1)
j ) , (5.1)

where the biases b
(n+1)
j determine the offset of neuron j in layer n + 1 and the

weights w
(n+1,n)
jk specify the strength of the connection between neuron j in layer

n+ 1 and neuron k in layer n. The function f is a non-linear activation function
that is equally applied to all neurons of the same layer. A commonly used activation
function is the so-called Rectified Linear Unit (“ReLU”) function, which is piecewise
linear with f(x) = 0 for x < 0 and f(x) = x for x ≥ 0. Other used activation
functions are for example the smoothened step-function “sigmoid” or the tangent
hyperbolic function. All values of the network are obtained by starting from the
values in the input layer and computing Eq. (5.1) for all subsequent layers. If a
network consists of many hidden layers, i.e., many layers between the input and
the output layer, it is called a deep neural network. The use of several layers form
a more extensive inner structure and increase the efficiency of the network. In
order to measure the accuracy of the network and to be able to adjust the network
parameters (weights and biases) during training, a cost function is introduced,
which identifies the deviation of the network output Fθ(x) to the approximated
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function F (x). The cost function describes how well the neural network predicts
the expected output. In the simplest case, the square of the deviation is used,
allowing to write a cost function depending on the weights and biases as:

C(θ) =
1

2
(Fθ − F )2 . (5.2)

Then, the idea is to use gradient decent to find the parameters θ for which the cost
function becomes minimal. For this purpose, the parameters are shifted along the
negative gradient of the cost function:

δθl = −η
∂C(θ)

∂θl
, (5.3)

where η is called the learning rate. Applying the chain rule, we obtain:

∂C(θ)

∂θl
=

∑

j

([Fθ]j − [F ]j)
∂[Fθ]j
∂θl

, (5.4)

where [Fθ]j corresponds to the value y
(N)
j of the respective neuron in the output

layer N . Using Eq. (5.1) and applying the chain rule again yields:

∂y
(n)
j

∂θl
= f ′(z

(n)
j )

∂z
(n)
j

∂θl
, (5.5)

where z
(n)
j =

∑
k w

(n,n−1)
jk y

(n−1)
k + b

(n)
j . If θl is not in layer n this leads to:

∂y
(n)
j

∂θl
= f ′(z

(n)
j )

∑

k

w
(n,n−1)
jk

∂y
(n−1)
k

∂θl
. (5.6)

As can be seen in Eq. (5.6), the layered structure of the artificial neural network
results in a recursivity that allows to determine all necessary derivatives starting
from the output layer N up to the layer with the respective θl. Once reaching layer

n̂, where the θl is located, one obtains ∂z
(n̂)
j

∂θl
= y

(n̂−1)
l (if θl = w

(n̂,n̂−1)
jl ) or ∂z

(n̂)
j

∂θl
= 1

(if θl = b
(n̂)
j ), respectively. This is called the backpropagation algorithm and is the

essential step when using neural networks [164].

5.2 Reinforcement learning: Q-learning

As previously described, knowledge about the function F to be approximated is a
crucial point in the learning process of the neural network. In the case explained so
far, F was always known, allowing the cost function in Eq. (5.2) to be computed.
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Because of this knowledge of the “correct answer” that the network should reproduce,
this scenario is called supervised learning. However, a further field of machine
learning includes scenarios with unknown functions F . One imagines a robot (called
an agent in this context) in an environment in which it moves and with which
it interacts. At each time step of a sequence t = 1, 2, 3, . . . the agent observes a
state st and takes an action at. By giving the agent a reward (or punishment) for
an action it performs, it learns a strategy predicting the most profitable action
based on the state it is in. The mapping from state to action is called policy.
This method of independent learning of a strategy through feedback from the
environment belongs to the field of reinforcement learning (RL) [165–167].

Basically, there are two main types of RL methods, value-based and policy-
based methods. All other methods can either be traced back to one of them or
are a combination of them (e.g., like actor-critic RL methods) [168,169]. Value-
based methods approximate a so-called value function, which maps a state-action
pair to a value. The better the action, the larger the value. With value-based
methods no explicit policy is learned, the policy depends on the value-function
itself. Accordingly, value-based methods create a deterministic policy that can be
implicitly derived from the value function. Policy-based algorithms try to create an
explicit representation of a (stochastic) policy πθ(a|s), which provides a probability
for an action at = a in a state st = s.

In the following, I will elaborate on a value-based RL approach called Q-learning
[170], since I used this method in Paper IV. The approach of this method is to
introduce a so-called quality-function Q(s, a), which indicates the expected future
return when performing some action a in some state s. Here, a “discounted” future
reward is calculated as Rt = rt + γrt+1 + ...+ γT−trT = rt + γRt+1, where rt is the
reward at time step t = 0, 1, 2, . . . , T and the discount factor 0 ≤ γ < 1 allows to
value short-time rewards more than long-term ones. More precisely, the Q-value
of a state-action pair is then given as the expectation value of the return over all
trajectories that start in (s, a) and follow the policy π:

Qπ(s, a) = Eπ[Rt|st = s, at = a] . (5.7)

In the same way, a value for a state s can be given as the expected discounted
return received by an agent in state s following policy π:

V π(s) = Eπ[Rt|st = s] . (5.8)

Naturally, the Q- and V -values are related, meaning that the value of a state
depends on the possible actions in that state. The value of a state s is therefore
given by the value Qπ(s, a) weighted by the probability that action a is chosen:
V π(s) =

∑
a∈A π(a|s)Qπ(s, a). For a deterministic policy (as in Q-learning), the

value of a state is equal to the Q-value of the action selected by the policy.
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Inserting Rt in Eq. (5.7) and using the law of iterated expectation yields the
Bellmann equation for Qπ:

Qπ(s, a) = Eπ[Rt|st = s, at = a]

= Eπ[rt + γRt+1|st = s, at = a]

=
∑

s′

P (s′|s, a)
∑

a′

π(a′|s′)[r(s, a, s′) + γEπ[Rt+1|st+1 = s′, at+1 = a′]]

=
∑

s′

P (s′|s, a)[r(s, a, s′) + γ
∑

a′

π(a′|s′)Qπ(s′, a′)] ,

where P (s′|s, a) is given by the dynamics of the environment and denotes the
probability of the transition into state s′ with expected reward r(s, a, s′) when
performing action a in state s. For the optimal policy π∗, the expected return is
maximal for each possible state-action pair (s, a): Qπ∗

(s, a) = max
π

Qπ(s, a). In
Q-learning, the optimal policy is deterministic and greedy, which means that always
the action with the highest Q-value is taken. Substituting the optimal Q-function
into the Bellmann equation results in:

Qπ∗
(s, a) =

∑

s′

P (s′|s, a)[r(s, a, s′) + γmax
a′

Qπ∗
(s′, a′)] . (5.9)

In practice, one can use sample-based methods such as temporal difference methods
and use the following update rule:

Qπ(s, a)← Qπ(s, a) + α(r(s, a, s′) + γmax
a′

Qπ(s′, a′)−Qπ(s, a)) . (5.10)

Here, α is the learning rate, a small positive number, which relates to the speed of
improvement. At the beginning of the learning process, exactly those Q-values in
state s are high which provide an immediate reward. During learning with many
training trajectories, the update rule causes the high Q-values in state s to affect
neighboring states s′, which can be reached quickly from state s. From there, this
in turn affects neighboring states of s′ and the Q-values propagate through the
state space.

Depending on the specific problem, the number of state-action pairs can quickly
become very large. When coming back to the example of the robot in an envi-
ronment, the state is defined as the current position of the robot, possibly along
with additional information describing the environment locally. In each state, the
robot has a variety of possible actions, such as changing the position, altering the
environment, etc. Evaluating all state-action pairs sufficiently often during training
is far too expensive in this situation. However, in such cases, the Q-table Q(s, a)
can be approximated by a neural network, which is called Deep Q-Learning. During
training, the update rule in Eq. (5.10) is then applied by fitting the output of
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the neural network to r(s, a, s′) + γmax
a′

Qπ(s′, a′). For certain situations, the deep
Q-Network (DQN) algorithm can be an efficient method, especially by using further
techniques to improve the approximating network, such as double DQNs [171],
dueling DQNs [172], or prioritized experience replay [173].

5.3 Communication strategies of smart active
agents

A variety of microorganisms communicate with each other by producing signaling
molecules to which others respond (quorum sensing). Motivated by this, in a further
work we modeled communicating active agents equipped with artificial intelligence.
We studied a system of active agents whose goal is to consume a nutrient field
as efficiently as possible. By using a reinforcement learning algorithm the agents
learn an optimal strategy to cooperatively consume a nutrient field. Depending
on the particle density and the rate of consuming nutrients, the particles apply
different strategies that determine their orientation along the nutrient field and the
self-produced quorum sensing field. These can be classified into three strategies: a
“uniting strategy”, where all agents cooperatively accumulate together; a “spreading
strategy”, where agents stay separated from each other; and an “adaptive strategy”,
where the agents adaptively decide whether to follow or stay away from others.
These results demonstrate the potential of active systems equipped with artificial
intelligence for future applications and could be applied, e.g., to help microrobots
in finding efficient strategies to decontaminate polluted water.

For a detailed explanation of the RL algorithm and the learned strategies see
Paper IV.
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6 Modeling contagion dynamics

Due to the worldwide outbreak of the disease COVID-19 caused by the coronavirus
SARS-CoV-2 [174–176], there has been an immense increase in the research of
infectious diseases and pandemics worldwide. This research involves not only
experts in virology, biology, medicine or pharmacy, but also physicists who develop
and study mathematical models to understand the spread of a pandemic. In
particular, the field of statistical physics, where systems of very large numbers of
particles are studied, provides well-tested theories and methods, and is therefore
closely related to the modeling of large crowds of people and the transmission of
infectious diseases.

For example, ordinary diffusion equations combined with the SIR model were used
to study the spread of plague in medieval Europe [177]. The SIR model is a classic
compartmental model in epidemiology that divides the population into certain
groups and models the total number of individuals in each group [178–181]. The
name originates from the classification of the population into Susceptibles, Infected
and Recovered. Other physical modeling approaches use more sophisticated “agent-
based” models that describe the behavior of individuals and provide a more accurate
picture of contagion dynamics [182–185]. Prompted by the question of effective
measures that help against the pandemic, the effects of social distancing and
lockdowns have also recently been studied [186, 187]. Another newly presented
model uses dynamical density functional theory (DDFT) [188, 189] to describe
a society of social distancing individuals as a system of particles with repulsive
interactions that can infect each other in the form of a “SIR-DDFT model” [190].

In Paper V and Paper VI, we similarly use concepts from statistical physics and
study the spread of a pandemic in different scenarios. In Paper V, we introduce an
individual-based model, which we use to develop a strategy for optimal vaccination
distribution in space and time. In Paper VI, we use the classical SIR model
and generalize it to account for mutations that lead to repeatedly occurring new
strains. Before discussing this work in more detail, I give a brief introduction to
mathematical modeling of pandemics and the well-known SIR model.

The SIR model is a classical approach to describe the spread of infectious diseases.
In addition to the SIR model, there are a number of variations and extensions
that, for example, include exposed persons, i.e., those who are infected but not
yet infectious (SEIR model) [191], consider the number of deaths (D) separately
(SIRD model) [192], or describe the spread of diseases without the development of
immunity (SIS model) [193]. Typically, the different variables describe the total
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number of individuals in each group, and the model consists of a combination
of ordinary differential equations. Assuming that each person can be infected
only once and then either becomes immune or dies, and that infected persons are
immediately infectious (unlike in the SEIR model), the SIR model reads as:

Ṡ(t) = −βSI
N

,

İ(t) = β
SI

N
− γI ,

Ṙ(t) = γI .

(6.1)

Here S(t) denotes the number of healthy individuals not yet infected, I(t) the
number of infected and R(t) the number of removed or resistant individuals. The
total number of individuals remains constant : N = S + I +R. β is the number of
new infections per time unit caused by an infected individual, where βSI is the
so-called bilinear incidence rate [194]. 1/β thus describes the mean time between
two contagious contacts. The rate at which infected persons recover or die is given
by γ. The basic reproduction number, which is a epidemiological measure of the
spread of an infectious disease, is here R0 =

β
γ
. More precisely, R0 describes the

expected number of further contagions caused by one infected person within its
disease duration (in a fully susceptible population). At the beginning of a pandemic,
one can approximate N ≈ S (all individuals are healthy and not immune) where
the change in infections in Eq. (6.1) is given by: İ = (β − γ)I. If the number
of infections increases, i.e., if İ > 0, then β > γ and R0 = β

γ
> 1. Note, that

this then predicts an exponential growth in infection numbers. If the number
of susceptibles decreases in the further course of the pandemic, the number of
infected individuals continues to increase when R0

S
N

> 1 and finally saturates once
S reaches N

R0
. For the SARS-CoV-2 coronavirus, for example, the reproduction

number is estimated to be between three and four, meaning that two-thirds to
three-quarters of the population must be infected or resistant before so-called “herd
immunity” is achieved [195].

6.1 Strategic vaccine distribution

In mid-June 2020, the available measures to contain the pandemic were contact-
tracing [196], social-distancing [197–199], and testing [200], and the hope was
for rapid development of an effective vaccine to achieve herd immunity more
quickly. However, even after development and admission, it takes a long time
before a sufficient supply is available to offer a vaccination to the entire population.
Therefore, an important question is what strategy to use to efficiently distribute
a vaccine that is initially available in limited quantities. Existing vaccination
guidelines mainly focus on a demographic distribution practice and the question
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to whom vaccine should be provided first (e.g., prioritizing individuals of certain
age or risk groups). Encouraged by this, we raised the question of an optimal
distribution strategy of vaccines in space and time [201].

Our simulation model is based on Brownian agents whose random motion is
described via Langevin equations. We assume that infected agents can infect
others within a radius Rc. Furthermore, from the Brownian agents we derive a
(nonuniform) statistical mean-field model that allows a continuous description of
the contagion dynamics. This model can be seen as an generalization of the SIR
or SEIR model to inhomogeneous situations with the consideration of possible
immunization by vaccination. We divide the whole population into six categories:
susceptible S(r, t), exposed E(r, t) (infected but not yet diseased), infected but free
of symptoms (or having mild symptoms) F (r, t), infected with symptoms I(r, t),
removed (vaccinated or recovered) R(r, t), and victims V (r, t).

For several parameters, such as the initial reproductive number or the vaccination
rate, we examined the evolution of the number of infections and deaths over time and
compared different distribution strategies. We found that the optimal distribution
does not only depend on individual-based factors but also on a spatiotemporal
distribution (i.e., where and when to provide vaccines). In these strategies, the
vaccine distribution is controlled by the bilinear incidence rate βSI , rather than by
population density. For all considered parameters, an “infection-weighted” strategy,
in which the available vaccine is distributed proportionally to the locations with
the highest bilinear incidence rate, generally results in a lower number of deaths
than a demographic distribution practice, in which vaccine doses are distributed
proportionally to population density [202]. This is particularly efficient if the
regions with the highest bilinear incidence rates are sequentially prioritized, i.e.,
only those regions (e.g., cities) with the highest number of new infections in a
certain time frame receive all available vaccine doses (“focusing strategy”).

See Paper V for a detailed evaluation of the different strategies, especially for
different initial reproduction numbers and vaccine production rates, as well as
taking into account additional social-distancing rules and delays in registration of
new cases.

6.2 Mutation induced infection waves

During a pandemic and the ongoing vaccination of the population, which can
take several months or years until herd immunity is achieved, the occurrence of a
mutation can have an important influence on the course of the pandemic [203–207].
This can lead to a competition between vaccination and the emergence of new,
potentially more contagious mutations. Not only regarding the coronavirus, but
also for future pandemics, the development of powerful models that can simulate
such scenarios is essential. In another work, we therefore generalized the popular
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SIR model to account for mutations which lead to repeatedly occurring new strains
and investigate their consequences on the pandemic, e.g., also in combination with
nonpharmaceutical interventions and vaccinations [208].

In our model, we allow for the continuous occurrence of new strains depending
on a certain mutation rate. The fraction of susceptible and recovered individuals
is denoted by S and R, respectively, and the fraction of individuals infected with
strain n is given by In:

Ṡ = −
∑

n

βnSIn,

İn = βnSIn − γIn,

Ṙ =
∑

n

γIn.

(6.2)

Here βn is the infection rate of strain n, which is randomly chosen from a certain
characteristic distribution, and 1/γ is the average disease duration. By averaging
over many strains, the model described by Eqs. (6.2) can be coarse grained, yielding
the following effective model:

Ṡ = −β(t, I)SI,
İ = β(t, I)SI − γI,

Ṙ = γI.

(6.3)

Here, I describes the total number of infections of all strains and β(t, I) is the
averaged infection rate (the specific dependence on infection numbers depends on
the underlying mutational dynamics). This model allows the prediction of the
averaged or most likely outcome of the infection numbers. Using a numerical
evaluation of the multi-strain model (Eqs. (6.2)) and an analytical prediction based
on the mean-field model (Eqs. (6.3)), we investigated the impact of mutations on
the course of the pandemic.

First, we studied the direct effect of mutations by assuming that mutations and
new strains emerge at a constant rate µ. Second, we tried to estimate indirect effects
through a self-amplification of mutations, assuming that (i) new mutations can serve
as seeds for further, possibly more contagious, mutations and (ii) mutation rates
are higher when infection numbers are high. To model this, we used a mutation
rate that depends on current infection numbers µ(I).

A general finding from the models is that mutations can lead to an explosive
increase in infection numbers, which, in contrast to the common SIR model, is
characterized by a super-exponential growth. If herd immunity is achieved during
the course of the pandemic, i. e., if R < 1, new mutations can induce a rebound in
the reproduction number, leading to a new wave of infections. This process can even
repeat several times over the course of the pandemic, leading to a pattern of multiple
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infection waves. If the mutation rate also increases with the number of infections,
an even stronger effect occurs. New mutations emerge at a self-accelerating rate
and infection numbers grow extremely rapidly, making it increasingly difficult for
the population to achieve herd immunity.

For more details and a full description of the studied scenarios as well as the
infection wave patterns, see Paper VI.
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7 Computational methods
In this chapter I will explain the computational methods I used to model the
equations of motion described in the previous chapters. The overdamped Langevin
equation that describes the Brownian dynamics of a many-body system of N
particles at position ri(t) at time t reads:

ṙi(t) =
1

γ
Fi +

√
2Dηi , (7.1)

where Fi is the total force acting on particle i, e.g., due to a chemical concentration
gradient or interactions with neighboring particles, and, as described in the previous
chapters, γ is the friction coefficient and D the diffusion coefficient. To account for
the excluded volume effects in the simulations, I used both a Yukawa potential [209]
and a Weeks-Chandler-Anderson potential [210] as approximations. For the latter,
one would obtain in Eq. (7.1) Fi = −∇riV with V = 1

2

∑
i,j ̸=i Vij, where the sum

includes all particles and Vij = 4ϵ
[
( σ
rij
)12 − ( σ

rij
)6
]
+ ϵ if rij ≤ 21/6σ and zero

otherwise. Here rij describes the distance between particles i and j, ϵ gives the
strength of the potential, σ = 2R is the particle diameter (with radius R for all
particles), and rc = 21/6σ specifies a cutoff radius beyond which the potential is
zero.

Instead of iterating over all particle pairs when calculating the interactions among
the particles, which is computationally very expensive and scales with O(N2), there
are more efficient methods to calculate the forces between neighboring particles. I
used the so-called neighbor list, where the simulation box is divided into cells of size
rc×rc, with rc being the cutoff radius of the potential that is used to model the steric
repulsions between the particles. Then, the interaction of a particle in cell {cx, cy}
is restricted to particles from neighboring cells indexed by {cx − 1, cx, cx + 1} and
{cy − 1, cy, cy + 1}. This allows for a much faster calculation as the computational
cost is reduced to O(N).

The right-hand side of Eq. (7.1) contains a stochastic contribution (second term)
in order to account for the translational fluctuations of the particle. These random
forces are described using Gaussian white noise with zero mean ⟨ηi(t)⟩ = 0 and unit
variance ⟨ηi(t)ηj(t

′)⟩ = δijδ(t − t′)I, where ⟨·⟩ denotes an average over different
realizations, δij is the Kronecker delta, δ(·) denotes the Dirac delta function and I
the (dimension dependent) unit matrix.

In computer simulations, the particle trajectories are obtained by numerical
integration of Eq. (7.1) [148]. Due to the Gaussian process, Eq. (7.1) has the
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typical form of a stochastic differential equation (SDE). It is considerably more
complicated to solve this equation compared to deterministic differential equations
(DDE) and there is only a sparse number of methods to analytically solve it [211,212].
Likewise, the well established numerical schemes for solving DDEs cannot be easily
extended to SDEs, which is why equations of the type like Eq. (7.1) are also often
just integrated using the simple Euler-Maruyama method [213]. This first simple
method was developed by Maruyama in 1955 and is a generalization of Euler’s
method for DDE. Here, the simulation time is partitioned into small intervals of
the size ∆t and a simple Taylor expansion is used to obtain the positions of the
particles at the next time step:

ri(t+∆t) = ri(t) +
1

γ
Fi(ri(t))∆t+

√
2DRi

√
∆t . (7.2)

Note that the increments in a Brownian motion are normally distributed with
mean 0 and variance ∆t. This can be modeled by drawing a set of independent
Gaussian random variables Ri of zero mean and unit variance multiplied by the
factor

√
∆t [214]. For each time step, the forces at time t are calculated, which are

used to determine the new positions at time t+∆t.
However, there are a variety of more efficient numerical methods for SDEs of

the type of Eq. (7.1), such as the stochastic Runge-Kutta methods [214, 215]. Due
to the simple noise term (the prefactor

√
2D is constant), higher order schemes

can be easily constructed. Higher accuracy can be obtained by a second-order
Runge-Kutta algorithm by calculating the forces on the particles at two stages.
The positions of the particles can then be obtained as:

r̃i(t+∆t) = ri(t) +
1

γ
Fi(ri(t))∆t+

√
2DRi

√
∆t (7.3)

ri(t+∆t) = ri(t) +
1

2γ
(Fi(ri(t)) + Fi(r̃i(t+∆t)))∆t+

√
2DRi

√
∆t. (7.4)

Equation (7.3) is the simple Euler-Maruyama step, which allows a first estimate
of the next particle position. Equation (7.4) then determines the average of the
forces Fi(ri(t)) and Fi(r̃i(t+∆t)) at the two stages. This method offers a higher
accuracy than the simple Euler-Maruyama method and allows larger time steps ∆t.

In Chapters 2, 3 and 5 the dynamics of the particles is coupled to a phoretic
field (e.g., chemical concentration, temperature). The phoretic field is sampled
on a uniform grid, while the particles can move freely without any restrictions.
Finite difference methods are used to solve the dynamics of the phoretic field,
where the particle positions (described above) and the phoretic field are iterated
alternately by one step. The dynamics of the phoretic fields are solved with central
difference in space and the forward Euler method in time. The temporal and spatial
discretizations are chosen small enough to satisfy the Courant-Friedrich-Lewy
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condition [216]. Particles that produce the phoretic field are simulated as point
sources. The interaction between particles and the phoretic field is approximated
by bilinear interpolation. That means, that each particle contributes to the values
at the four nearest grid points proportionally to the relative distances from the
particle to the grid point.

Furthermore, boundary conditions must be taken into account. Usually a small
sample of the configuration is considered in computer simulations and particles in
a box of size L are simulated with periodic boundary conditions. That means the
box is periodically repeated in all directions, such that each particle has an image
in each direction at distance L.
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Swarm Hunting and cluster 
ejections in chemically 
communicating Active Mixtures
Jens Grauer1, Hartmut Löwen1, Avraham Be’er2,3 & Benno Liebchen1,4*

A large variety of microorganisms produce molecules to communicate via complex signaling 
mechanisms such as quorum sensing and chemotaxis. the biological diversity is enormous, but 
synthetic inanimate colloidal microswimmers mimic microbiological communication (synthetic 
chemotaxis) and may be used to explore collective behaviour beyond the one-species limit in simpler 
setups. in this work we combine particle based and continuum simulations as well as linear stability 
analyses, and study a physical minimal model of two chemotactic species. We observed a rich phase 
diagram comprising a “hunting swarm phase”, where both species self-segregate and form swarms, 
pursuing, or hunting each other, and a “core-shell-cluster phase”, where one species forms a dense 
cluster, which is surrounded by a (fluctuating) corona of particles from the other species. Once formed, 
these clusters can dynamically eject their core such that the clusters almost turn inside out. these 
results exemplify a physical route to collective behaviours in microorganisms and active colloids, which 
are so-far known to occur only for comparatively large and complex animals like insects or crustaceans.

Chemotaxis - the movement of organisms in response to a chemical stimulus - allows them to navigate in com-
plex environments, find food and avoid repellants. It is involved in many biological processes where microor-
ganisms (or cells) coordinate their motion; these include wound healing, fertilization, pathogenic invasion of a 
host, and bacterial colonization1,2. In such cases, microorganisms are attracted (or repelled) by certain substances 
(chemoattractants/ chemorepellents), but they are also attracted to chemicals produced by other microorganisms 
(or cells), such as cAMP in the case of Dictyostelium cells3 or autoinducers in signaling Escherichia coli4, which 
leads to chemical interactions (communication) among the microorganisms.

While many existing models studying microbiological chemotaxis (or chemical interactions) focus on a single 
species5–12, the typical situation in the microbiological habitat is that various different species simultaneously 
produce certain chemicals to which others respond via chemotaxis or based on quorum sensing mechanisms. 
One simple example involving chemical signaling across species is provided by macrophage-facilitated breast 
cancer cell invasion which has recently been modeled13. There, tumor cells attract macrophages, which are cer-
tain white blood cells normally playing a key role in the human immune system. They then control the physi-
ological function of the macrophages and exploit their abilities. More specifically, the tumor cells produce the 
colony-stimulating factor (CSF-1) leading to the attraction and growth of macrophages which in turn release 
epidermal growth factors (EGF) resulting in the growth and mobility increase of the tumor cells (see Fig. 1).

Similarly to microorganisms, synthetic inanimate colloids, coated with a material which catalyzes a certain 
reaction on (a part of) their surface, show chemical interactions as well14–16. There, the colloids act as sources of the 
chemical field, which shows a 1/r-steady-state far-field profile in 3D (if the chemical does not ’decay’ e.g. through 
bulk reactions), leading to long-ranged chemical interactions between the colloids. For active colloids17–21, these 
interactions have been explored in single-species systems22–27, and more recently also in mixtures28–34, where chem-
ical interactions can be non-reciprocal and break action-reaction symmetry28,35,36. This allows for the formation of 
active molecules28–30, where self-propulsion spontaneously emerges when the underlying nonmotile ’colloidal 
atoms’ bind together. Similarly as for their microbiological counterparts, in all these studies on mixtures of syn-
thetic colloids it has been assumed that the different species interact via a single chemical substance.

1Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, 
Düsseldorf, Germany. 2Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, 
Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel. 3Department of 
Physics, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel. 4Institut für Festkörperphysik, Technische 
Universität Darmstadt, 64289, Darmstadt, Germany. *email: liebchen@fkp.tu-darmstadt.de
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In the present work, we propose and explore a physical minimal model for two species of chemically inter-
acting particles, both of which produce an individual chemical substance. Such a situation occurs for example 
in tumor-macrophage systems involving the EGF/CSF-1 paracrine signalling loop between two cell types men-
tioned above13. By comparing numerical simulations of Langevin equations describing the particle dynamics 
(Fig. 2(a–d)) with numerical solutions of deterministic continuum equations describing the dynamics of their 
density fields (Fig. 2(e–h)) and a linear stability analysis, we systematically explore and analyze the phase dia-
gram of this system. As our key result, we discover a “hunting-swarm phase” (see Fig. 2(a,e)), where both species 
segregate and form individual swarms, one of them closely pursuing the other one. This phase resembles a group 
of hunters chasing a group of prey trying to stay together, not allowing the hunters to split up the group. It is 
interesting to note that a phenomenologically similar form of swarm hunting also occurs in much larger systems, 
e.g. in insects and systems of larvae hunting crustaceans (Daphnia)37–39, where collective predation phenomena 
and escape strategies have already been analyzed40, but not for microorganisms or synthetic colloids. Physically 
this phase occurs, if one species (“the hunters”) is attracted by the chemicals produced by the other species (“the 
prey”) and the prey is in turn repelled by the chemicals produced by the hunters. Note that a different form of 
moving clusters has recently been observed also in simulations involving only one chemical species33. Unlike 
the hunting swarms which we present here, the moving clusters in33 do not involve a species segregation into 
two individual swarms, but rather consist of a single aggregate of asymmetrically distributed predator and prey 
particles. By systematically exploring the parameter space underlying our model, we find that hunting swarms 
in fact occur generically if the chemical interactions are strong enough and have opposite sign. However, if the 
response of hunters and prey to the chemicals produced by the respective other species is strongly asymmetric, 
we instead find dense clusters of one species surrounded by a diffusive or rigid corona of particles from the other 
species (see Fig. 2(b,d,f,h)). These core-shell clusters can show a complex dynamics, ejecting their interior once 
they have formed. This behaviour hinges on model-ingredients which have not been considered in previous mod-
els of chemically interacting particle mixtures31,33,41. These are (i) a finite relaxation time of the chemicals leading 
to delay or memory effects in the absence of which the cluster ejections do not occur and (ii) the presence of two 
chemicals, which can lead e.g. to a coexistence of instantaneous and non-instantaneous interactions and in gen-
eral also to coexisting attractions and repulsions with different ranges. The setup considered in the present work 
allows us to exemplify that a phenomenologically similar ejection may in principle originate from a remarkably 
simple mechanism hinging on a systematic invasion of the hunters into a cluster of prey particles, as we will later 
discuss in detail.

Model
We consider an ensemble of two species of overdamped colloids (synthetic or biological), which we call prey and 
hunters, ∈s p h{ , }, each of which contains N  particles which produce a chemical field c tr( , )s  with a rate k0. We 
assume that each particle responds to the chemical fields either via synthetic chemotaxis, which leads to a cou-
pling ∝∇cs in far-field22,27, similar as for apolar colloids, or via biological chemotaxis which is sometimes mod-
eled using an analogous form of the coupling6. To model the particle dynamics we use Langevin equations 
( = …i N1, , , ∈s p h{ , }): 

∑ ηγ α γ∂ = ∇ − ∇ +
′∈

′
′t c V Dr ( ) 2

(1)
t i

s

s p h
ss

s
i
s

r
{ , }

i

Figure 1. Schematic: (a) Interaction between tumor cells and macrophages (b) physical minimal model used in 
the simulation: two species realized as different particles (brown and red) with radius R and distance rij. The 
movement of the particles depends both on their self-produced chemicals (blue and purple) and on the 
concentration produced by the other species. Arrows represent effective chemical interactions among the 
particles, which in general are non-reciprocal.
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where D is the translational diffusion coefficient of the particles, γ is the Stokes drag coefficient (assumed to be the 
same for both species) and η t( )i

s  represents unit-variance Gaussian white noise with zero mean. The chemotactic 
coupling coefficient of species s to the chemical of species ′s  is denoted as α ′ss  where α >′ 0ss  leads to chemoattrac-
tion and α <′ 0ss  results in chemorepulsion (negative chemotaxis). In addition, V  accounts for excluded volume 
interactions among the particles which all have the same radius R and which we model using the 
Weeks-Chandler-Anderson potential = ∑ ≠V Vi j i ij

1
2 ,  where the sums run over all particles and where 

 =












 −



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
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





+σ σV 4ij r r

12 6

ij ij
 if σ≤r 2ij

1/6  and zero else. Here  determines the strength of the potential, rij denotes 

the distance between particles i and j, σ=r 2c
1/6  indicates a cutoff radius beyond which the potential energy is 

zero and σ = R2  is the particle diameter.
The chemical fields c t c tr r( , ), ( , )h p  are produced by particles of hunters and prey, respectively. The dynamics 

of these fields, follows a diffusion equation (diffusion coefficient Dc), with additional (point) sources. We also use 
a sink term whose coefficient may be zero or nonzero if chemical reactions or other processes degrading the 
chemical occur in bulk. For simplicity we focus on the case where D k k, ,c d0  are identical for both species.
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Material (SI) for details) and Eqs. (1), (2) reduce to (omitting tildes) 
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Figure 2. Hunting swarms and core-shell clusters: Simulation snapshots of Eqs. (3), (4) for =N2 2000 
chemically interacting particles (white dots represent hunter-particles; black dots show prey-particles) coupled 
to self-produced chemical fields at time =t 1500 (a), 5000 (b-d). Panels (a–d) show particle based simulations, 
where colours show the chemical field produced by the prey c p, panels (e–h) show simulations of the associated 
continuum equations at time =t 5000 (e), 10000 (f-h), where colours show the density of hunters ρh and prey 
ρ p. (a,e) show hunting swarm patterns, (c,g) show mixed clusters, (b,f) show core-shell clusters with diffusive and 
(d,h) with rigid corona. Dimensionless parameters (tildes omitted): α = 1pp , α = 0hh , µ = .0 001, =D 1c , 

= .D 0 001 (a-d), = .D 0 01 (e-h) for reasons of stability, = 1  and box length =L 250box  (a–d), =L 100box   
(e-h). See supplementary material for simulation details and the stabilization method used for the field 
equations underlying panels (e–h).
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Hunting Swarms and core-Shell clusters
To explore the collective behaviour of many chemotactic agents, we now solve Eqs. (3) and (4) using Brownian 
dynamics simulations for the particle dynamics coupled to a finite difference scheme to calculate the dynamics 
of the self-produced chemical fields. We solve the diffusion equation in 2D for numerical efficiency and do not 
expect that our results would change qualitatively when solving the 3D diffusion equation (see the exemplaric 
simulation snapshot Fig. 2  in the SI and notice that the linear stability analysis which does not depend on the 
dimensionality of the diffusion equation is also in very good agreement with the particle based simulations). We 
use a quadratic simulation box with periodic boundary conditions (see SI for details) and observe the following 
patterns or nonequilibrium phases: 

 (i) A hunting swarm phase (see Fig. 2(a,e) and movies 1, 5), where both species segregate and form mov-
ing swarms which hunt each other.

 (ii) A clustering phase (see Fig. 2(c,g) and movies 3, 7), where both species form a cluster and the different 
species are mixed.

 (iii,iv) Two phases showing core-shell clustering, where one species forms the inner core and the other one 
forms a corona which may be diffusive (b,f) or rigid and which is strongly localized around the core 
(d,h).

Let us now characterize these phases and the dynamics leading to their emergence in detail.
To see in which parameter regimes each of these patterns prevails, in Fig. 3 we show a slice through the state 

diagram in the plane of the chemotactic cross-species coupling coefficients α < 0ph  and α > 0hp . Here we fix 
α = 1pp  and α = 0hh  so that prey-particles chemo-attract each other whereas the hunter-particles do not, but note 
that the specific values choosen here do not have much impact on the emerging patterns.

Hunting swarms. The green area in Fig. 3(a,b,c) (movies 1, 5) represents the hunting-swarm phase which 
generically occurs if α αhp ph  is large enough, as we will later show using a linear stability analysis. Here the chem-
icals produced by the black-coloured particles in Fig. 2(a) (“prey”) attract the white coloured particles (“hunters”), 
whereas the hunter-produced chemicals repel the prey. This results in a swarm of “prey” pursued by a swarm of 
“hunters”. When two or more prey-swarms collide, the pursuing hunters produce a “cage” of high chemical den-
sity repelling the prey and trapping it temporarily in a small spatial domain. The prey then ’evades’ sidewards to 
escape from the hunter-fronts, forming new swarms moving perpendicular to the original ones (see movies 1, 5).

core-shell clusters. When decreasing αhp (blue domain in Fig. 3(a,b) and movies 2, 6), so that the prey 
chemo-attracts the hunters only weakly, we observe that the prey aggregates and forms dense clusters, surrounded 
by a diffusive corona of hunters. Surprisingly, when staying with a large αhp but decreasing αph instead (red 
domain in Fig. 3(a–c)), so that the hunters are strongly chemo-attracted by the prey, but the prey has only a weak 
tendency to avoid the hunter-produced chemicals, we see the opposite case: Although not attracting each other, 
the hunter-particles form a dense core, surrounded by the prey-particles (red domain in Fig. 3(c) and right panel 
of Fig. 3(d) and movies 4, 8). To see how these remarkable clusters emerge, let us explore the dynamics underlying 

Figure 3. (a) State diagram in the plane spanned by the chemotactic cross coupling coefficients αph and αhp for 
fixed α = 1pp ; α = 0hh . The green domain represents hunting swarms, which are characterized by their ballistic 
motion and their emergence from an oscillatory instability (the black line shows the analytical prediction of the 
transition line), whereas colours for the remaining cluster phases are defined via the value of the mixing 
parameter shown in panel (b) (see text). The state diagram was created with more than 200 evaluated state 
points. (b) Mixing parameter P, counting the average number of black next neighbors per white particle and 
mean particle velocity v at late times discriminating between the individual states: Each point corresponds to a 
parameter set on the dashed line in the parameter plane of panel a. The labels A B C D, , ,  correspond to those 
shown on the dashed line in panel (a). (c,d) Extracts from the simulations underlying Fig. 2 (see movies 1–8).
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their formation. Initially, the prey-particles, which chemo-attract each other aggregate and form very small clus-
ters. While these clusters are forming, the aggregation of prey-particles locally increases the concentration of c p 
resulting in an attraction of hunter-particles, which directly invade the cluster, because α α>hp pp . 
Consequently, as more and more hunters enter the cluster, the density of ch increases in the cluster center, repel-
ling the prey. Since the prey-particles, in turn, couple stronger to their self-produced chemicals than to those 
produced by the hunters α α>pp ph , they do not flee from the cluster but try to stay together. While in the 
simulations underlying Fig. 2, the hunters invade even small prey-clusters, for appropriate initial conditions, we 
can see a proper inside out reversal of comparatively large clusters (movie 9) (species reversal). In each case, the 
result is a counterintuitive pattern consisting of a dense cluster containing mostly hunters surrounded by ring of 
prey-particles.

Dynamical ejections of particle clusters. We have investigated the dynamics of these core-shell clusters 
more precisely. Assuming the diffusion of c p is considerably lower than that of ch and ch is produced very slowly, 
this results in a certain delay effect. A typical course of this process is shown in Fig. 4 (see also movie 10). The 
prey-particles that attract each other initially accumulate and form clusters (Fig. 4(a)). Due to a resulting higher 
concentration of c p, the hunters are also attracted. These hunter-particles then form a surrounding shell, but can-
not immediately invade the prey-cluster as α α>pp hp (Fig. 4(b)). Although slowly, the concentration of ch 
increases with time as more hunter-particles join. At some point a significant concentration of ch is exceeded and 
since α α>ph pp , the prey-particles are ejected outwards from the center of the cluster (Fig. 4(c)). Since the 
chemicals c p produced by the prey diffuses on a much smaller timescale, the hunter-particles still move towards 
each other, form a dense cluster which persists for a while (Fig. 4(d)), before the hunter-cluster dissolves slowly 
and the whole process starts all over again.

irregular aggregation. Finally, when αph, αhp are both small, with α α<ph hp  (orange regime in Fig. 3(a,b) 
and movies 3, 7), prey and hunter particles form clusters containing a seemingly irregular mixture of hunter and 
prey particles (Fig. 3(c), orange). These clusters emerge because we have a chemically mediated prey-prey attrac-
tion and a hunter-by-prey attraction which exceeds the prey-by-hunter-repulsion, so that effectively prey particles 
similarly strongly attract all other particles, leading to a rather irregular aggregation.

Classification. In contrast to the static clusters, structures in the green region of Fig. 3(a) move ballistically 
and hence show a non-vanishing velocity. Figure 3(b) depicts the mean particle velocity v t( ) (see SI for details) at 
late times for parameters chosen along the dashed line in Fig. 3(a), where one can easily see how the velocity in 
regions of hunting swarms exceeds that in other regimes. While the hunting swarm phase, which emerges from 
an oscillatory instability, as discussed further below, can be clearly distinguished from the stationary cluster 
phases, let us define an “order parameter” P to distinguish the remaining cluster phases. We define P as the aver-
age number of black next neighbors (prey) per white particle (hunter), where we denote a neighbor as a particle 
within a distance < + .r 2 0 1ij . Figure 3(b) shows P for parameters chosen along the dashed line in Fig. 3(a). This 
parameter would have a value of 3 for completely irregular and infinitely large dense clusters. For the orange 
domain, where particles aggregate almost irregularly, it has a value > .P 2 5, whereas red means ( . < < .P1 5 2 3) 
and blue means < .P 0 5. Crossover regions between the individual patterns are marked by white domains in 
Fig. 3(a).

Figure 4. Sequence of simulation snapshots showing a cluster ejection which occurs due to chemical delay 
effects. Dimensionless parameters: α = 100pp , α = 0hh , α = −1000ph , α = 10hp , µ = .0 1p , µ = .0 01h , 

= .D 0 5c
p , =D 10c

h , = .D 0 001, = 10  with 500 prey-particles and 2000 hunter-particles.
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Linear Stability Analysis – emergence and Dynamics of patterns at early times
To understand the structure of the state diagram we now introduce a continuum description for the particle 
dynamics and perform a linear stability analysis.

continuum model. The Smoluchowski equation, describing the dynamics of the (non-normalized) proba-
bility ρ tr( , )s  to find a particle of species s at position r at time t reads as follows ( ∈s p h{ , }): 

∑ρ ρ α ρ∂ = ∆ − ∇ ⋅ ∇ .
′∈

′
′D c( )

(5)
t

s s

s p h
ss

s s

{ , }

These deterministic equations are equivalent to the Langevin Equation (1) for point particles ( =V 0). We can 
now also rewrite the evolution equation for the chemical fields as follows: 

µ ρ∂ = ∆ − + .c D c( ) (6)t
s

c
s s

Before carrying out a linear stability analysis, let us solve these equations numerically to test them: Integrating 
Eqs. (5), (6) for a uniform initial state (plus small fluctuations) on a square box of size =L 100box , we indeed find 
the same patterns as in our particle based simulations (Figs. 2(e–h) and 3) (see SI for details regarding these sim-
ulations and the used method to stabilize them).

Linear stability analysis. We now linearize these four coupled equations around the stationary solution 
ρ ρ ρ µ=c( , ) ( , / )0 0 , which represents the uniform disordered phase, and solve them in Fourier Space, to understand 

the dynamics of a small plane wave perturbation with wavenumber q around the uniform phase. We denote the 
dispersion relation of these fluctuations as λ q( ). If λ has a positive real part for some q value, the uniform phase is 
unstable. Calculating λ (see Supplementary Material for details), we find that the uniform phase looses stability if 

µ ρ α α α α< 


+ + 


D Re2 4 , (7)pp ph hp pp0
2

where we have choosen α = 0hh  as in our simulations. While Fig. 3 shows only parameter regimes where the 
uniform phase is unstable, we have performed additional simulations (see SI) which are in close quantitative 
agreement with the prediction of the onset of the instability due to Eq. (7). This holds true both in the regime 
where the instability is stationary and where it is oscillatory. The instability criterion shows that chemo-attractions 
among the prey particles support the emergence of a pattern in competition with diffusion and the potential 
decay of the chemical, whereas cross interactions only support the emergence of a pattern if they, αph and αhp, 
have the same sign.

To understand the transition between static clusters and hunting swarms, we also derive a criterion discrimi-
nating between stationary instability (static clusters, λ is real) and oscillatory instabilities (moving structures, 
complex λ) which reads as follows (see SI): 

α α α− > .2 (8)ph hp pp

This criterion defines the solid black line in Fig. 3(a), which quantitatively agrees with our simulations. It shows 
that an oscillatory instability and hence moving patterns can appear only if αph,αhp have opposite sign, i.e. if one 
species effectively hunts the other one, whereas the other one tries to escape. In this parameter regime where it is 
oscillatory, we have numerically tested the instability criterion (Eq. (7)) to see if it is shifted due to “perturbation 
convection”, see42. We did not find any shift, suggesting that the advective and absolute instability are very close to 
each other in the present case.

In Fig. 5 we show the complete dispersion relation λ q( ) (real and imaginary part) of small plane wave fluctua-
tions around the uniform phase. Here the location of the maxima in λ >qRe[ ( )] 0 define the fastest growing 
mode, typically determining the length scale of the pattern at early times.

Having understood the transition line between the cluster phases and the hunting swarms, let us also explore 
if we can understand how fast the swarms move. To do this, in Fig. 6, we compare the imaginary part of λ (the 
expected speed of the hunting swarm is = → ≈λ λ

v q v( )
q

q

q
Im( ) Im ( )max

max
) with the velocity of the hunting swarms 

in our particle based simulations at early times and find close agreement.

Structure and Growth at Late times
Having explored how the patterns emerge and behave at early times, we now want to explore their structure and 
dynamics also at late times. To do this, we introduce the instantaneous pair-correlation function g r( ) defined as 

∑ρ
δ= −

≠
⟨ ⟩g r r r( ) 1 ( ) ,

(9)i i
id

0

 for an average number density ρ = N
Lid
2

box
2

 with box length =L 250box , total number of particles N2  and ⋅  
denoting the ensemble average. The radially averaged and time averaged pair-correlation function g r( ), where 

=r r , shown in Fig. 7 describes how the density varies as a function of distance from a reference particle at 
which we averaged over all particles of hunters and prey.
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As one can see in the inset of Fig. 7, there is a large peak around =r 2, which is the typical distance between 
two particles ( =R 1 in dimensionless units). We can also find peaks around =r 2 3  and =r 4 caused by the 
next two neighbors. This reflects the fact that the static clusters (blue, orange, red) show a hexagonal packing.

Late-stage dynamics. Once the patterns have emerged, they reach a state where their morphology changes 
only slowly. However, even at late stages the size of the individual structures still increases in time. The swarms 
move ballistically and frequently collide with each other often leading to their break up. They still grow on average, 
ultimately leading to a single swarm at late times. This is because after each collision a new swarm forms rapidly, 
i.e. on timescales before the individual particles which were part of the ‘old’ swarm significantly diffuse away. The 
newly forming swarm rapidly reaches a size exceeding that of its “ancestors”, because it involves particles from 
both swarms which were involved in the collision. To quantify this growth, we consider the time evolution of the 
radial distribution function g r t( , ) and define the length scale L t( )1  of clusters as the smallest value where 

≤g r t( , ) 1, for all >r L1. Thus, the g r( ) shown in Fig. 7 corresponds to a length scale of ≈L 201  (dimensionless 
units). At late-times, we find that ∝ βL t t( )1  follows a power law with an exponent of β ≈ .0 35 (Fig. 8) for the 
(nonmoving) cluster phases, which is close to the value of β = 1

3
 as expected for diffusive growth (in the absence 

of hydrodynamic interactions)43–47. We find a much larger exponent, of β ≈ .0 56 (Fig. 8), for the patterns in the 
green region, which is close to β = .0 5 as expected for ballistic aggregation. This is a consequence of the fact that 
the individual structures move ballistically, collide and merge with each other much faster (but also break up).

As a second measure for the growth of the clusters, we measure the distance between them. To do this, we 
consider the structure factor of the system: 

∫ρ= + −− ⋅S e gk r r( ) 1 d [ ( ) 1] (10)id V

ik r

 and calculate the distance between clusters as the inverse of the first moment of the structure factor48, i.e. as: 

∫

∫
π=



















π

π

−

L t
kS k t k

S k t k
( ) 2

( , )d

( , )d
,

(11)

L

k

L

k2
2 /

2 /

1
cut

cut

where we choose the cutoff wavelength kcut as the first local minimum of S k( )48. Figure 9 shows the structure factor 
for a cluster in the red region of Fig. 3(a) at time =t 250 for small values of k. The peaks that can be seen in the 
inset of Fig. 9 correspond to the distance of two possible lattice planes of the hexagonal structure. The peak at 

= .k 3 3 results from the minimum distance between two particles ≈π
.( )22

3 3
. One finds a huge peak around 

= .k 0 11 with which we can estimate a typical length, ≈ = .πl 57 1
k

2 ; the enormous size of the peak hinges on the 
fact that each of the contributing clusters contains a large number of particles. The k-value where this peak occurs 

Figure 5. Real and imaginary part of the dispersion relation λ, for hunting swarms (green) and static clusters 
(red). Parameters as in Fig. 2(a,d).

Figure 6. Mean particle velocity in the hunting swarm phase, extracted from the simulations underlying 
Fig. 3(a) at early times (red) and reduced imaginary part of λ at the wavenumber corresponding to the fastest 
growing mode, i.e. λ qIm( ( ))max /qmax (blue) as a function of − =a aph hp.
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corresponds to the mean cluster distance, which corresponds to the value of r where g r( ) approaches 1 from 
below (see Fig. 7). This distance grows basically with the same power law as the cluster sizes, as shown in Fig. 8, 
i.e. calculating cluster sizes via L t( )1  and calculating cluster-distances L t( )2  basically leads to the same growth law 
(Fig. 8)49. Thus, there is only one independent macroscopic length scale in the system.

conclusions
Inspired by the generic presence of multi-species chemotaxis in microbiological communities, e.g. in 
macrophage-tumor cell systems, we have proposed and explored a physical minimal model to study the collective 
behaviour beyond the commonly considered one-species limit. We have found that the novel key ingredient of 
our model - the species selective chemical production - leads to interesting behavior: patterns that comprise a 
"hunting swarm” phase consisting of a crowd of particles of one species pursuing the other species, and a phase 
where the two-species self-aggregate in a core-shell structure, which then dissolves abruptly in a dynamic process 
by ejecting the inner particles.

All these patterns could be observed both on the level of a particle-based description (Eqs. (3), (4)) and in a 
continuum model (Eqs. (5), (6)), allowing to analytically understand the transition line between cluster phases, 
which originate from a stationary instability of the uniform phase, and hunting swarms, emerging from an oscil-
latory instability. As a further characteristic difference between these phases, we find that clusters (and the 

Figure 7. Pair-correlation function g r( ) (radial average of g r( )) of a system of =N2 2000 particles at time 
=t 250. The data are averaged over 100 independent ensembles. The dashed line shows a threshold to extract a 

characteristic length scale. Parameters as in Fig. 2(d).

Figure 8. Time-dependent characteristic length scale (a) obtained from the pair-correlation function and (b) 
from the structure factor for structures in the red region (red dotted line) and in the green region (green dotted 
line of Fig. 3(a)). The dashed lines indicate the fitted exponents. Parameters as in Fig. 2(a,d). Panel (c) shows a 
sequence of snapshots from a representative simulation of the hunting swarms which continuously collide, split 
up and grow to a larger size.
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distance between them) grow diffusively ( ∝ .L t t( ) 0 35)43–47,49, whereas hunting swarms grow significantly faster 
( ∝ .L t t( ) 0 56)50.

While the key aim of the present work was to explore a minimal framework illustrating how chem-
ical cross-interactions may lead to complex behavior, it should in principle be possible to realize the present 
model also with (autophoretic) colloidal mixtures, e.g. based on a combination of nonreciprocal repulsive 
thermo-phoretic and attractive chemo-phoretic interactions, which have been confirmed to be non-reciprocal 
in recent experiments29.

Future work might include more specific biological details and could address the effect of confining bounda-
ries or obstacles51–54. Other topics concern additional aligning interactions and their impact on the cluster struc-
ture55–57 and ternary systems describing species of a longer biological food chain.

Data availability
All relevant data are available from the authors upon reasonable request.
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Supplemental Material - Swarm Hunting and Cluster Ejections in Chemically Communicating
Active Mixtures

I. DIMENSIONLESS EQUATIONS

In order to extract the essential parameters controlling the behaviour if the considered model, we non-dimensionalize it and
introduce characteristic units.

A. PDEs for chemotaxis

Every physical quantity is written as a product of a non-dimensional quantity times a normalization constant containing the
units, e.g.

x = x̃ xu , t = t̃ tu (1)

Here, all the quantities with a tilde are dimensionless while those with a subscript ” u ” contain the units. We also introduce the
dimensionless chemical field, c̃p,h = cp,hxd

u, where d denotes the spatial dimension (d = 2 in our case). Eq. (2) in the main text
then reads in dimensionless form as

∂t̃
c̃s

xd
u

=
Dctu
x2
u

∆̃
c̃s

xd
u

− kdtu
c̃s

xd
u

+
k0tu
xd
u

N∑

i=1

δ(r̃− r̃si ) , s ∈ {p, h} , (2)

where we have used that δ(αr) = 1
αd δ(r). Next, we choose x0 = R, where R denotes the (soft) radius of a particle and tu = 1

k0

yielding:

∂t̃c̃
s = D̃c∆̃c̃s − µc̃s +

N∑

i=1

δ(r̃− r̃si ) , (3)

where the normalised coefficients D̃c and µ are then given by: D̃c =
Dc

k0R2 and µ = kd

k0
.

B. Particle ODEs

The same normalization is applied to Eq. (1) in the main text which leads to:

∂t̃r̃
p
i =

tu

γxd+2
u

(
αpp∇̃c̃p(r̃pi , t) + αph∇̃c̃h(r̃pi , t)

)
− ∇̃Ṽ +

√
2Dtu
x2
u

η̃p
i (4)

∂t̃r̃
h
i =

tu

γxd+2
u

(
αhh∇̃c̃h(r̃hi , t) + αhp∇̃c̃p(r̃hi , t)

)
− ∇̃Ṽ +

√
2Dtu
x2
u

η̃h
i , (5)

where ηs
i (t) represents unit-variance Gaussian white noise with zero mean. With the additional definitions of α̃kl =

αkl

γk0Rd+2

and D̃ = D
k0R2 we obtain:

∂t̃r̃
p
i = α̃pp∇̃c̃p(r̃pi , t) + α̃ph∇̃c̃h(r̃pi , t)− ∇̃Ṽ +

√
2D̃η̃p

i (6)

∂t̃r̃
h
i = α̃hh∇̃c̃h(r̃hi , t) + α̃hp∇̃c̃p(r̃hi , t)− ∇̃Ṽ +

√
2D̃η̃h

i . (7)
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We model V using the Weeks-Chandler-Anderson potential, with Ṽ = 1
2

∑
i,j 6=i Ṽij , where the sums run over all particles

and where

Ṽij =

{
4ε̃
[
( σ̃
r̃ij

)12 − ( σ̃
r̃ij

)6
]
+ ε̃ if r̃ij ≤ 21/6σ̃

0 if r̃ij > 21/6σ̃
(8)

Here rij denotes the distance between particle i and j, r̃ij = rij/xu, σ̃ = σ/xu and ε̃ = ε
γk0R2 .

In the following, we omit tildes. The specific value of ε hardly affects our results, so the following independent and relevant
dimensionless parameters remain:

1) effective diffusion constants Dc and D,

2) reduced coupling constants αkl,

3) ratio of decay and production of the chemical µ

4) density of species p,h (which is conserved throughout the dynamics)

II. DESCRIPTION OF NUMERICAL METHODS

A. Numerical methods for solving the equations of the particle-based chemotaxis model

We solve our model Eqs. (3,6,7) by discretizing space and time. We perform simulations in two spatial dimensions (2D) with
periodic boundary conditions. Interactions between the particles are described using the Weeks-Chandler-Anderson potential.
The PDEs (3) for the dynamics of the chemical fields are solved in time with a forward Euler method. This does not impose any
restriction on the timestep dt due to the Courant-Friedrich-Lewy (CFL) condition [1] of the heat equation (Dc

(
dt
dx2 + dt

dy2

)
< 1

4 ,
where dt and dx, dy denote the temporal and spatial discretisations), since the necessary timestep dt for the particle dynamics is
small enough to not violate the above CFL condition. The Laplace operator of the heat term is approximated with central differ-
ences. The particle dynamics of the colloids (Eqs. 6,7) is solved in time with the Euler-Maruyama scheme [2] for incorporation
the noise term. The interactions of the colloids is effectively treated by applying a cell-list summation [3].

In order to speed up the calculations, we make use of cell lists [3], with a minimal image convention. This is motivated by the
fact that the repulsive force caused by the potential V is short ranged and hence we can introduce a cutoff radius rc = 21/6σ.
More explicitly, we consider only interactions within a cutoff radius rc such that the pair interaction Vij = 0 for rij > rc.

Different simulations are performed by varying the diffusion constants D and Dc, the coupling constants αkl and the ratio of
decay and production of the chemical µ.

Typical parameters used in the simulation of the dimensionless Eqs. (3,6,7):

# of particles N 2 ∗ 103
WCA-potential amplitude ε 1
coupling constants −10 < αkl < 10
diffusion constant Dc 1
diffusion constant D 0.001− 1
decay/production of c 0.001 < µ < 1
time step ∆t = 0.001t0
simulation time ∼ 104t0
grid for chemical 250 x 250 grid cells
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B. Numerical methods for solving the equations of the continuum chemotaxis model

In addition to the particle-based simulations, we have also numerically solved the system of the four coupled dimensionless
PDEs of the continuum model, Eqs. (5,6) of the main text as before in two spatial dimensions with periodic boundary conditions.
We use a forward Euler method to propagate the densities ρs and the chemical fields cs in time. The Laplace operator is
approximated with central differences.

1. Repulsion between cells

We must be careful when implementing the chemotactic continuum model, which unlike our particle based equations, neglect
the steric repulsions among the particles, preventing sharp density peaks, destabilizing the simulation. In view of this effect, we
add an additional nonlinear term to the continuum model to effectively describe local repulsions among the particles [4]:

∂tρ
s = D∆ρs −

∑

s′∈{p,h}
αss′∇ · (ρs∇cs

′
) +Ds

rep∇ · (ρs∇(ρp + ρh)) . (9)

Here, Ds
rep with s ∈ {p, h} are dimensionless repulsion coefficients and we assume that the strength of the repulsion is the same

between the two different species, Dp
rep = Dh

rep.

2. Regularization of the density

As a second adjustment of the continuum model, avoiding a blow up [5] we use:

∂tρ
s = D∆ρs −

∑

s′∈{p,h}
αss′∇ ·

(
ρs

1 + κρs
∇cs′

)
+Ds

rep∇ · (ρs∇(ρp + ρh)) , (10)

where κ is a small regularization parameter and κ → 0 leads to the original system. In [5] it was shown that the solutions
of equations of the kind of Eq. (5) of the main text typically have a spiky structure and Eq. (10) can be used to model the
aggregation phenomena.

III. LINEAR STABILITY ANALYSIS

To understand the origin of the observed pattern formation, we perform a linear stability analysis of Eqs. (5,6) of the main
text around the homogeneous solution (ρs, cs) = (ρs0, ρ

s
0/µ) =: (ρs0, c

s
0), s ∈ {p, h}. The PDEs of the density in the continuous

model for two different sorts of particles ρs = ρs(r, t), s ∈ {p, h} read (in dimensionless units)

∂tρ
p = D∆ρp − αpp∇ · (ρp∇cp)− αph∇ · (ρp∇ch) (11)

∂tρ
h = D∆ρh − αhh∇ · (ρh∇ch)− αhp∇ · (ρh∇cp) , (12)

where the corresponding PDEs for the phoretic field cs = cs(r, t), s ∈ {p, h} are given by:

∂tc
s = Dc∆cs + ρs − µcs . (13)

For the linear stability analysis, we consider small perturbations from the homogeneous steady state of the particle density
ρs = ρs0 + δρs and the phoretic field cs = cs0 + δcs.

The resulting linearised system of four equations describes the time-evolution of the deviations of the particle density and the
chemical field from the homogeneous state ρs = ρs0 and cs = ρs0/µ.
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∂tδρ
p = D∆δρp − αppρ

p
0∆δcp − αphρ

p
0∆δch (14)

∂tδρ
h = D∆δρh − αhhρ

h
0∆δch − αhpρ

h
0∆δcp , (15)

∂tδc
s = Dc∆δcs + δρs − µδcs . (16)

Since the linearised equations Eqs. (14-16) do not depend explicitly on time, we perform a Fourier transformation in space and
make a separation Ansatz ρ̂s(q, t) = eλtρ̂s(q), ĉs(q, t) = eλtĉs(q), leading immediately to the following eigenvalue problem
(we set αhh = 0 as in the main text):

λ




δρ̂p

δĉp

δρ̂h

δĉh


 =




−Dq2 αppρ
p
0q

2 0 αphρ
p
0q

2

1 −Dcq
2 − µ 0 0

0 αhpρ
h
0q

2 −Dq2 0
0 0 1 −Dcq

2 − µ







δρ̂p

δĉp

δρ̂h

δĉh


 , (17)

where the stability of the system is determined by the eigenvalues λ of the matrix, as follows:

(a) The steady state is stable, if the eigenvalues of the matrix all have real parts strictly less than zero.

(b) The steady state is unstable, if at least one of the eigenvalues of the matrix has a positive real part.

(c) Otherwise in the marginal case higher order terms determine the stability of the problem.

The four eigenvalues λ of the linearised system are explicitly given by (αhh = 0, ρp0 = ρh0 = ρ0):

λ = −q2

2
(Dc +D +

µ

q2
)± 1

2

√
[q2(Dc +D +

µ

q2
)]2 − 4(Dc +

µ

q2
)Dq4 + 2αppρ0q2 ± 2q2ρ0

√
4αphαhp + α2

pp (18)

For the parameter range under consideration, eigenvalues with non-vanishing imaginary part exist (Im(λ) 6= 0), if the condi-
tion −4αphαhp > α2

pp is fulfilled. In order to develop an instability for long wavelengths (|q| −→ 0), a Taylor series extension
of (18) and an examination where Re(λ) > 0 provides us with the criterion

2Dµ < αppρ0. (19)

If the eigenvalues are real (here, Im(λ) = 0 ⇐⇒ −4αphαhp < α2
pp), then we obtain the following criterion for instability

from calculating Re(λ) > 0:

2Dµ < ρ0

(
αpp +

√
4αphαhp + α2

pp

)
(20)

Altogether, an instability is given, when the following criterion is fulfilled:

2Dµ < ρ0Re
[
αpp +

√
4αphαhp + α2

pp

]
(21)

and this instability is also oscillatory if

−4αphαhp > α2
pp . (22)

If the local repulsions among the particles is taken into account and the linear stability analysis is performed with Eq. (9)
instead of Eq.(5) of the main text, the uniform phase is unstable, when the following criterion is fulfilled:

2µ(D + ρ0Drep) < ρ0Re
[
αpp +

√
4αphαhp + α2

pp − 4µDrep(αph + αhp − µDrep)
]

(23)
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which is then also oscillatory if

−4αphαhp > α2
pp − 4µDrep(αph + αhp − µDrep) . (24)

Since the term µDrep is very small for the considered parameters in Fig. 2 (of the main text), the instability criterion is barely
influenced by this additional Drep-term approximately leading to Eqs. (21,22) again.

Note that the instability criterion, Eq. (21), does not depend on the chemical diffusion constant Dc. Therefore, a faster
alternative to obtain Eq. (21), would be to assume that the dynamics of the chemical is fully enslaved by the motion of the
colloids and relaxes quasi-instantaneously to its steady state, i.e. to assume ∂tc

s = 0. Note however, that only the instability
criterion itself is independently of Dc and not the instability band. In addition, once the instability has emerged, the fact that
∂tc

s 6= 0 is of crucial importance for the phenomenology of the resulting patterns, which can be seen best for the clusters
ejecting their inner particles, which hinge on chemical delay (or memory) effects.

We have numerically tested the instability criterion in the parameter regime where it is oscillatory (i.e. non-vanishing imag-
inary part) to see if it is shifted due to perturbation convection, see [6]. Snapshots of the additional performed simulations are
shown below in Fig. 1. The snapshots are arranged in a row with increasing decay-rate of the chemical µ. Above a certain value,
this rate is too large, such that the concentration of the chemical substances is insufficient and the homogeneous phase is stable.
The dashed line indicates for which µ the instability criterion (Eq. (7)) is fulfilled. As can be seen, this transition line fits well to
the simulations and we did not find any shift, suggesting that the advective and absolute instability are very close to each other
in the present case.

FIG. 1: Snapshots of simulations with different decay-rate µ. The dashed line indicates for which µ the instability criterion is
fulfilled. Parameters used in these simulations: αpp = 1, αhh = 0, αph = −10, αhp = 10, D = 0.01, N = 2000, L = 250
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IV. MEAN PARTICLE VELOCITY

In order to distinguish between the different phases, in particular between the clusters and the hunting swarm phase, we
calculate the mean particle velocity, which is defined as

v(t) =

〈
1

2N

∑

i=1,N
s=p,h

∣∣∣∣
rsi (t+ dt)− rsi (t)

dt

∣∣∣∣

〉
(25)

where we average over all particles of species s ∈ {p, h} and 〈·〉 denotes the ensemble average.

V. DIFFUSION EQUATION IN 3D

To verify that our results do not change qualitatively when solving the diffusion equation in 3D, we have performed additional
simulations for verification. Figure 2 shows an exemplaric simulation snapshot of the particle based model in three dimensions
for a cluster in the blue domain (αhp = 0.01, αph = −10).

FIG. 2: Simulation snapshot of the particle based model in 3D. Left panel shows the diffusion of cp by looking at the cross
section of the chemical field in a plane perpendicular to the z-axis. Right panel shows the prey and the hunters, colored in black
and red, respectively. Parameters as in Fig. 2(b) of the main text.

VI. DESCRIPTION OF THE MOVIES

The movies 1-8 show the time-evolution of the different patterns, hunting swarms, mixed clusters and core-shell clusters, for
the particle-based and the continuum model for the same parameters as used in Fig. 2 of the main text (panels (a-h) corresponding
to the files mov1-mov8). Movie 9 shows a dynamical inside out reversal for an appropriate initial condition, starting with a dense
and comparatively large cluster of prey particles, which is then invaded by the hunter particles. Parameters used for movie 9:
αpp = 1, αhh = 0, αhp = 10, αph = −0.01, µ = 0.001, Dc = 0.1, D = 0.003, ε = 1, 2N = 300 particles and Lbox = 80.
Movie 10 shows clusters ejecting their inner particles that occur starting from a uniform initial state. Parameters used for movie
10: αpp = 100, αhh = 0, αhp = 10, αph = −1000, µp = 0.1, µh = 0.01, Dp

c = 0.5, Dh
c = 10, D = 0.001, ε = 10,

Lbox = 200 with 500 prey-particles and 2000 hunter-particles.
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ABSTRACT: We create single-component photocatalytic bis-
muth vanadate (BiVO4) microswimmers with a spheroidal shape
that move individually upon irradiation without any asymmetriza-
tion step. These particles form active assemblies which we
investigate combining an experimental approach with numerical
simulations and analytical calculations. We systematically explore
the speed and assembly of the swimmers into clusters of up to four
particles and find excellent agreement between experiment and
theory, which helps us to understand motion patterns and speed
trends. Moreover, different batches of particles can be function-
alized separately, making them ideal candidates to fulfill a multitude of tasks, such as sensing or environmental remediation. To
exemplify this, we coat our swimmers with silica (SiO2) and selectively couple some of their modules to fluorophores in a way which
does not inhibit self-propulsion. The present work establishes spheroidal BiVO4 microswimmers as a versatile platform to design
multifunctional microswimmers.

■ INTRODUCTION

Numerous applications have been proposed for catalytic
microswimmers in the recent past. Researchers are currently
probing their potential for sensing,1 drug delivery,2 and
environmental remediation.3 To create an asymmetry in fuel
degradation which is essential for swimming, hemispherical
metal coating is the method of choice in most examples.4 Even
though it is not limited to spheres,5 this process requires
perfect monolayers of particles and therefore limits the
throughput of microswimmer production. Moreover, it
excludes half of the swimmer surface from additional
functionalization. Mostly, potential applications then depend
on further modification with sensing/contrast agents or a drug
to add functionality. This makes complicated and costly
multistep fabrication not suitable for upscaling, which is highly
desired because collective interactions are often a prerequisite
to successfully fulfill a task.
As an alternative approach to create self-propulsion,

researchers have recently developed a modular concept to
microswimming, opening up the possibility of reconfigurable
swimmers that can fulfill multiple tasks because of differently
modified building blocks. One advantage of this approach is
that different and possibly competing functionalities of the
swimmers no longer have to be implemented in a single
particle but can be distributed among their modules. Thus, the
number of fabrication steps on one swimmer particle as well as
the risk of reactions impeding each other decreases. To
overcome these limitations, some material-specific binary
assemblies have already been proposed in the past,6,7 but
mostly, laborious synthetic strategies are required.8

Modular microswimmers can generally be divided into
rigidly bound and dynamic structures, where dynamic
structures bear the clear advantage of reconfigurability.9 After
several examples of the assembly observed in classical Janus
particles10,11 and droplets,12 Niu et al. have constructed ion-
exchange-driven modular microswimmers.13 Here, passive
cargo particles assemble around cationic exchange par-
ticles.14,15 Kei Cheang et al. have assembled magnetic
microspheres into modular swimmers in a Helmholtz coil
setup,16 and also, electric fields have been explored
extensively.17,18 Schmidt et al. in turn have combined
absorbing (active) and nonabsorbing (passive) particles in a
subcritical liquid mixture. Illumination with laser light then
leads to a temperature increase around absorbing particles and
therefore to attraction among different colloids. The so-formed
“colloidal molecules” show directed motion caused by the
response of the nonabsorbing particles to the temperature and
concentration gradient surrounding the absorbing particles.19

All of the mentioned examples consist of spherical particles,
which only become active upon assembly. More examples have
recently been described theoretically20,21 and discussed in
reviews.9,22 A different approach was followed by the Tierno
group, who relied on dominating magnetic interactions.23,24
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In this work, we present microswimmers based on
spheroidal bismuth vanadate building blocks, which self-propel
and self-organize into a variety of active assemblies of different
geometries and speeds. We call them modular swimmers,
although in contrast to the aforementioned examples, single
particles (modules) also show activity and an assembly is not
required for active motion. As a particularly interesting
property, BiVO4 swimmers, which we25 and others26 have
recently introduced, can self-propel without any asymmetriza-
tion of their surface. Instead, these photocatalytic swimmers
show an internal asymmetric distribution of electrons and
holes upon excitation which results in a net propulsion. This
further reduces the number of required preparation steps, and,
accordingly, active swimmers can be obtained without the
throughput-limiting process of hemispherical metal deposition.
In the present work using a combined approach based on
experiments and numerical simulations, we systematically
explore the interactions between single swimmers and how
the resulting aggregates move depending on their conforma-
tion. We modified the particles with a silica shell, which
enables easy functionalization with a variety of entities, such as
fluorophores or positively charged amino groups, and
demonstrate combined swimmers of pristine and function-
alized BiVO4 modules.

■ RESULTS AND DISCUSSION

Characterization of Single BiVO4 Swimmers. BiVO4
microparticles were synthesized via a solvothermal approach.
Figure 1a shows the obtained spheroidal particles, with an
average length of 2.09 ± 0.22 μm, a width of 1.54 ± 0.15 μm,
and an aspect ratio of 1.37 ± 0.13. A histogram with particle
size distribution can be found in Figure S1a. A closer look on
the particles reveals a rough, highly structured surface,
indicating their formation from smaller nano- and microsized
crystals during the synthesis process (see also Figure S1b). As
BiVO4 is an oxidic material, the surface charge in neutral pH
regimes is generally negative for this material. This is proven by
a negative zeta potential of −26.3 mV.
Naturally, BiVO4 appears in three different crystal structures,

of which monoclinic scheelite is the photocatalytically most
active one.27 As can be seen in Figure 1b, the particles
synthesized here are in good agreement with the powder X-ray
diffraction (XRD) pattern of monoclinic scheelite, which is an
important prerequisite for photochemical microswimmers.
Additionally, the absorption spectrum derived by diffuse
reflectance spectroscopy (DRS) in Figure 1c proves absorption
up into the visible range for these particles with a band gap of

2.26 eV, implying that propulsion with ultraviolet (UV) as well
as blue light can be achieved. To prove this, we determined the
speed of single particles under UV and blue excitation.
However, for the following experiments with active assemblies
and functionalized particles, only UV excitation was applied.

Locomotion Mechanism. To induce directed motion, it is
sufficient to immerse these particles in a 0.3% hydrogen
peroxide (H2O2) aqueous solution and excite them with 385
nm UV or 469 nm blue light. Figure 2a shows the reaction

mechanism of H2O2 fuel degradation. Upon excitation, H2O2
reacts with holes in the crystal to produce oxygen and
hydrogen ions. These cations are consumed by the other half-
reaction, where H2O2 reacts with electrons in the crystal to
water. A proton gradient is thus created around the particle
that induces directed motion, which, if compared to pure
Brownian motion, can be distinguished by the faster growth of
its mean-square displacement (MSD) (see Figure S2). It
should be highlighted that these particles do not require any
additional asymmetrization to perform active motion but can
directly be used as single-component swimmers. The reason
for this unique behavior can be twofold: the monoclinic
scheelite crystal structure favors electron−hole separation onto
different facets,28,29 thus spatially separating the oxidation and
reduction half-reactions of H2O2 degradation when excited
with light. Therefore, an intrinsic driving force for a fuel
gradient around the particle is provided.30 Figure 2b shows
trajectories of single spheroidal swimmers at low concentration
and emphasizes that the particles move mainly perpendicular
to their long axis (see also Videos S1 and S2). This strengthens

Figure 1. Material properties of BiVO4 microparticles. (a) SEM image. The spheroidal particles have an average length of 2.09 μm and an average
width of 1.54 μm, which results in an aspect ratio of 1.37. The scale bar is 5 μm. (b) XRD pattern of the particles (black) agrees with the
monoclinic scheelite crystal structure (red) (JCPD 14-688) of BiVO4. (c) Normalized DRS spectrum and Tauc plot show an indirect band gap of
2.26 eV.

Figure 2. Motion mechanism and pattern of single particles. (a)
Mechanism of H2O2 fuel degradation, integrated in a SEM image. The
choice of reduction and oxidation spots in this image is for illustrative
purposes only and does not necessarily represent the actual reaction
distribution. The scale bar is 1 μm. (b) Tracks of single pristine
BiVO4 swimmers under UV illumination for 30 s. The scale bar is 5
μm.
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the assumption that the crystal has a certain orientation within
these particles so that the oxidation and reduction sites are
intrinsically separated. We additionally assume the effect to be
enhanced by the nano- and microstructured appearance of the
particle surface as irregularities on the surface can enhance the
development of a fuel gradient around the particle.
In general, it is also possible to consider environmental

fluctuations or the vicinity of other particles as a potential drive
for directed motion. However, in our previous work about
square-shaped BiVO4 microswimmers, we excluded these
because of the rather large size that minimizes the influence
of random fluctuations and observed particle swimming
behavior upon repeated excitation cycles.25 Here, we have
shown that the particles always move in the same direction in
consecutive excitation cycles, independent of their surround-
ings. Similar particle dimensions and behavior in this work
suggest again a dominant importance of the catalytic
properties.
The speed of these single spheroidal swimmers spreads

between 3 and 6 μm s−1, with an average of 4.20 ± 0.71 μm s−1

for UV light and 4.47 ± 0.57 μm s−1 for blue light (the values
are also summarized in Table 1).

Active Assemblies. If the swimmers are at higher
concentration so that random particle−particle encounters
are more likely, we observe that they attract each other over a
distance of more than two particle radii, leading to self-
propelled assemblies. While these attractions can originate
from different effects, as discussed previously by Wang et al.,3

photochemical swimmers such as ours are mostly subject to
hydrodynamic and chemical-field-induced interactions. As
shown in Figure 2, the overall product of the reaction is
oxygen, while the produced protons are directly consumed in
the oxidation reaction. We speculate that this interplay
contributes to favorable attraction between individual modules.
Additionally, the hydrodynamic flows created by the oxygen
gradient as well as the migrating protons also seem to favorably
influence the attraction.
We observe recurring geometries of swimmers consisting of

up to four modules, which can be seen in Figure 3 (see also
Video S3). In contrast to the work of Perry et al.,31 these active
assemblies do not reconfigure or fluctuate between different
geometries but rather keep on growing over time. The longer
the swimmers are illuminated with UV light, the larger the
modular swimmers get, leading to actively moving agglomer-
ates of many more than four modules. The motility then

decreases strongly, and these active clusters require a separate
consideration which is beyond the scope of this article.
In general, it can be noted that contingent on their

spheroidal shape, the particles mainly attract each other
perpendicularly to their long axis. Although these are single-
component swimmers, their shape introduces favorable
modular conformations without the need to induce them
externally. This represents a strong difference from previous
works where individual modules usually consist of isotropic,
spherical particles.14,16,19

Examples for experimental swimmer trajectories with
reproducible geometries of two, three, and four modules are
displayed in Figure 3a. In the simulation model, these
swimmers produce a chemical field to which they respond
themselves. This results in self-propulsion as well as in an
attraction of other swimmers. The resulting assemblies then
show the same geometries as those in the experiment and
move on similar trajectories (Figure 3b). More experimental
and simulated trajectories can be found in Figure S3.
For swimmers consisting of two modules, only one stable

conformation exists. If three modules are combined into a
swimmer, two different stable conformations are found. First,
we observe a “caterpillar” structure, where all three spheroids
are lined up along their short axis. Second, a “triangle”
assembly is observed, with the third module not being aligned
along the short axis but interacting with the short ends of the
other two modules. This leads to a more compact structure.
Finally, two different conformations with four modules are
observed as well. Analogous to the three modular swimmers, a
caterpillar is formed. A more compact assembly is called the
“rectangle” conformation. It should be noted that especially the
caterpillar structures can only be formed because of the
spheroidal shape of the particles and have only been possible
to be achieved through magnetic interactions earlier.24

Once the particles assemble into modular swimmers, their
motion patterns change compared to those of single swimmers.
As can be seen in all trajectories in Figure 3, we observe a
tendency for curved trajectories of modular swimmer
conformations in both the experiment and simulation.
Moreover, for swimmers consisting of three and four modules,
the trajectory radii of the more compact conformations
(triangle and rectangle) appear to be smaller as compared to
those of elongated caterpillar conformations. An explanation
for this can be found in the forces affecting the swimmer,
which result from the gradient field around it. In addition to a
longitudinal propulsion force, a triangular swimmer also
experiences a torque, which results in a more curved trajectory,
as will be discussed in more detail in the framework of our
theoretical model below (see also Figure S4).
Let us now systematically examine how often the different

modular swimmers occur in our simulations, that is, we assess
the frequency at which certain conformations appear and
evaluate their occurrence after 15 s. The results can be found
in Table 1. As expected, single particles are observed most
frequently, followed by assemblies consisting of two and then
three modules. Swimmers consisting of four modules appear
too rarely to give statistically validated information on the
speed or the ratio between the caterpillar and rectangle
swimmers. As a general trend, we find that larger swimmers
move slower. This is observed in experiments as well as in
simulations, which are in excellent qualitative agreement (see
Figure 4). An explanation can be found in the overall
concentration gradient surrounding a cluster, which is less

Table 1. Mean Speeds and Standard Deviations for Different
Modular Conformations, Retrieved from Experiments
(under UV Excitation) and Simulationsa

number of
modules

mean speed/μm s−1
(experiment)

mean speed/μm s−1
(simulation)

percentage of
swimmers/%

1 4.20 ± 0.71 4.23 ± 0.59 46
2 3.83 ± 0.73 3.92 ± 0.63 23
3-caterpillar 3.70 ± 0.49 3.76 ± 0.85 7
3-triangle 3.32 ± 0.21 3.07 ± 0.59 9
others 15

aWe observe a trend for a decreased speed with an increasing amount
of particles in one swimmer. Also, the percentage of swimmers after
15 s was obtained from simulations. The simulation parameters are as
in Figure 3.
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pronounced for larger clusters. In the caterpillar configuration,
for example, the chemical field produced by the central colloid
attracts both of its neighbors and therefore hardly contributes
to the motion of the cluster. However, it still provides drag and
therefore effectively slows down the assembled swimmer. Note
that in our simulations, we have chosen the same particle
density as in our experiments. When choosing a higher particle
density instead, larger aggregations form faster and are
therefore more frequently present at a given time than for a
low density. At late times, the clusters merge and form larger
and larger clusters, finally resulting in one macrocluster
containing most of the particles in our simulations.
Functionalized Particles and Active Assemblies. A

strong advantage of modular microswimmers in terms of
possible applications is the absence of the need to fit all desired
functionalities into one single particle. Here, we demonstrate a

very versatile functionalization approach for our BiVO4
swimmers. By coating the as-synthesized particles with a thin
shell of silicon dioxide (SiO2), we introduce a coupling
possibility to a variety of different entities. Because of facile and
universal coupling protocols, nontoxic SiO2 has been used for
decades as a carrier material, for example, fluorophores,32

drugs,33 and enzymes.34 Figure 5a shows an exemplary

transmission electron microscopy (TEM) image of a
successfully coated BiVO4 particle. Scanning TEM in
combination with energy-dispersive X-ray spectroscopy
(STEM−EDX) confirms the SiO2 identity of the shell (see
Figure S5), which is around 150 nm thick.
We now modify the silica shell with different functional

groups to demonstrate the functionality of this process. First,
we bind the fluorescent dye rhodamine B (RhB) to distinguish
shelled and pristine swimmers by fluorescence. Figure 5b
confirms the successful coupling to the dye by an additional
peak appearing in the DRS spectrum, which can be identified
as the absorption peak of RhB. The speed of these

Figure 3. Exemplary tracks of modular swimmers after 20 s consisting of two to four particles in experiments and simulations. (a) Experimental
tracks of two, three-caterpillar, three-triangle, four-caterpillar, and four-rectangle particle assembly. The scale bar is 5 μm. Insets represent SEM
images of exemplary assembled particles with the corresponding structure. The inset scale bar is 2 μm. (b) Simulated tracks. The shown box length
is L = 30 μm, and the color shows the concentration of the solute. Simulation parameters: N = 60, Lbox = 100 μm, k0 = 70 s−1, kd = 0.7 × 103 s−1, α/
γ = αr/γ = 80 × 103 μm4 s−1, Dc = 1.4 × 103 μm2 s−1, D = 0.1 μm2 s−1, Dr = 0.1 s−1, and ϵ/γ = 100 μm2 s−1.

Figure 4. Mean speeds of swimmers consisting of one, two, and three
particles under UV excitation. White boxes represent experimental
data, whereas gray boxes show simulated data. Boxes indicate the
interquartile range, the red line is the respective median, and dotted
lines show the maximum and minimum values. For comparison, the
mean values are marked with a blue cross (“×”) and the standard
deviation is displayed in solid black lines. The red cross represents an
outlier data point. The simulation parameters are as in Figure 3.

Figure 5.Material properties of SiO2-coated particles. (a) TEM image
of a SiO2 shell-coated BiVO4 particle. (b) DRS spectra of pristine and
RhB-functionalized swimmers. The band gap remains unaffected by
the functionalization, and the absorption peak of the dye appears.
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functionalized swimmers remains almost unchanged compared
to that of single pristine swimmers at 4.19 ± 0.48 μm s−1,
suggesting a certain porosity of the SiO2 shell. Also, the surface
charge of these swimmers remains negative (zeta potential:
−22.4 mV) as SiO2 commonly has a negative zeta potential at
neutral pH values. Figure 6 shows a mixture of functionalized
and pristine swimmers under the microscope. Whereas in
Figure 6a, all particles optically appear to be the same,
illumination with green light (555 nm) excites RhB and reveals
three fluorescent particles in Figure 6b. If additionally UV light
is turned on, the particles start to move actively and form
assemblies consisting of fluorescent and pristine units, as can
be seen in Figure 6c. See also Video S4 for more examples of
mixed assemblies.
Second, we also modified our silica shell with (3-

aminopropyl)triethoxysilane (APTES) to invert the surface
charge to positive, caused by positively charged amino groups
which lead to a zeta potential of +41.0 mV at neutral pH. By
this, we overcome the limitation to negatively charged
substrates as swimmer environments and broaden the possible
field of application to more complex environments. We
demonstrate successful active motion on positively charged
surfaces (see Figure S6), which would otherwise lead to
attractive forces between particles and the surface and
therefore inhibit active motion.
The formation of combined assemblies with and without

functionality demonstrated here opens up numerous function-
alization opportunities for photochemical microswimmers,
without concerns about numerous fabrication steps that inhibit
upscaling. We envision that these results pave the way for the
development and application of multifunctional modular
swimmers and their theoretical understanding.

■ CONCLUSIONS
To summarize, in this article, we develop modular micro-
swimmers made from BiVO4 that are able to undergo self-
propelled motion without any asymmetrization step in the
manufacturing process, overcoming the throughput limits of
hemispherical metal coating and enabling large-scale micro-
swimmer synthesis. After irradiation with UV light, individual
modules start moving and eventually meet their peers to form
assemblies. We explore their motion experimentally as well as
in numerical simulations, finding excellent agreement between
both. We furthermore apply analytical calculations to under-
stand speed distributions as well as motion patterns of these
active assemblies. The present work broadens the variety of
active components available for modular microswimming,
adding the options of photocatalytic propulsion as well as new
shapes.

In a second part, we demonstrate that the developed
modular microswimmers serve as a useful platform for
implementing functionalities. In particular, we show that
neither the motility nor the formation of assemblies is
inhibited by covering the individual spheroids by a thin silica
layer. This coverage allows multiple functionalizations to
increase the range of capabilities beyond simple self-
propulsion. To exemplify this, we add a fluorescent dye to
improve detection and facilitate discrimination between the
pristine and functionalized modules. We also demonstrate an
inversion of the surface charge from negative to positive by
functionalizing the silica shell with APTES. This enables the
swimmers to move on positively charged surfaces. In the
future, it would be interesting to explore the large-scale
collective behavior of BiVO4 microswimmers, possibly leading
to dynamic clustering,35 and to examine BiVO4 micro-
swimmers with magnetic interactions. Different batches of
modules can then be functionalized with different agents,
paving the way for combining different tasks such as guidance,
drug transport, sensing, or imaging in the final assembly.

■ EXPERIMENTAL SECTION
Synthesis of Bismuth Vanadate Microparticles. The synthesis

is based on a protocol reported previously by Jiang et al. with some
modifications.36 Briefly, 2.5 mL of concentrated nitric acid and 2.78 g
(15 mmol) of dodecylamine were added to 12.5 mL of a 1:1 ethanol/
ethylene glycol mixture under stirring. Then, 2.425 g (5 mmol) of
bismuth nitrate pentahydrate and 0.585 g (5 mmol) of ammonium
metavanadate were added and dissolved. With 2 M NaOH in a 1:1
ethanol/ethylene glycol mixture, the pH was adjusted to 2. Next, the
solution was transferred to a Teflon-lined stainless steel autoclave and
left to ripen for 3 h. Subsequently, it was treated hydrothermally at
100 °C for 12 h. After centrifugation and repeated washing with
ethanol and water, the sample was dried at 60 °C for 12 h and stored
under air.

Silica Coating of Microparticles and Functionalization. To
increase surface reactivity, 100 mg of bismuth vanadate microparticles
was dispersed in 10 mL of 1 M nitric acid and sonicated for 15 min.
After centrifugation, the supernatant was discarded and particles were
redispersed in 10 mL of 0.01 M citric acid. After sonication for 15 min
and centrifugation, 4 mL of deionized water and 4 μL of concentrated
ammonia were added to the particles. In a glass vial, a mixture of 15
mL of ethanol, 4.7 mL of deionized water, and 0.3 mL of concentrated
ammonia were prepared. After adding the particle dispersion to this
vial, 100 μL of tetraethyl orthosilicate (TEOS) was added under
vigorous stirring. After 20 min, another 100 μL of TEOS was added.
After being stirred at room temperature overnight, the dispersion was
centrifuged and washed with ethanol and deionized water before
storing the sample in 1 mL of deionized water.

For functionalizing with rhodamine, 10 mg of RhB isothiocyanate
was dissolved in 10 mL of dimethyl sulfoxide. After adding 8.6 μL of
APTES under stirring, the solution labeled as RITC−APTES was

Figure 6. Microscope snapshots of mixed pristine and RhB-functionalized particles. (a) Particles without green or UV illumination. (b) Particles
under green illumination. The functionalized particles absorb the light and can be detected via fluorescence of the dye. (c) Particles under green
and UV illumination after 45 s. A combined swimmer consisting of a pristine (green trajectory) and a functionalized (blue trajectory) module has
formed. For better recognizability, the concerned fluorescent particle has been marked in (b,c). As the dye bleaches over time, detection becomes
more challenging.
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stirred overnight at room temperature and stored in the dark
afterward. In a glass vial, 0.3 mL of the silica-coated bismuth vanadate
particles was dispersed in 15 mL of isopropanol. After addition of 1.5
mL of concentrated ammonia, 100 μL of TEOS was added dropwise,
followed by 150 μL of RITC−APTES. After being stirred overnight in
the dark, particles were washed with ethanol and water extensively. To
remove excess silica, the sample was centrifuged at 1000 rpm
repeatedly and the supernatant was discarded. The particles were
dispersed in deionized water and stored in the dark at 8 °C.
For functionalizing with APTES, 10 mg of SiO2-shelled BiVO4

particles was dispersed in 10 mL of isopropanol. After addition of 1.5
mL of concentrated ammonia, particles were sonicated for 10 min.
APTES (20 μL) was added under stirring at room temperature, and
the solution was stirred overnight. After washing with ethanol and
deionized water four times, the particles were dispersed in deionized
water and stored under ambient conditions.
Microscopy Experiments. Experiments were conducted on an

inverted Zeiss microscope with a Colibri 7 light source. Spheroidal
BiVO4 particles of a few milligrams were dispersed in deionized water
and sonicated for 3 min. Then, samples were prepared on a 24 × 24
mm glass slide by mixing 6.5 μL of deionized water with 3 μL of 1%
H2O2 and 0.5 μL of BiVO4 dispersion.
For experiments with functionalized/nonfunctionalized particle

mixtures, 6 μL of deionized water, 3 μL of 1% H2O2, and 0.5 μL of the
functionalized and nonfunctionalized particle solutions each were
combined on a 24 × 24 mm glass slide. Samples were illuminated with
a green (555 nm, 50 mW) light-emitting diode (LED) for RhB
excitation and a UV (385 nm, 315 mW) or blue (469 nm, 230 mW)
LED for propulsion.
For experiments with positively charged swimmers, substrates

(cover glasses) were modified with APTES through a gas-phase
reaction to induce a positive charge. Deionized water (6 μL), 3 μL of
1% H2O2, and 1 μL of the particle solution were combined on the
modified glass slide and illuminated with a UV LED for propulsion.
Scanning Electron Microscopy. For scanning electron micros-

copy (SEM) imaging, diluted solutions of BiVO4 microparticles were
drop-cast on aluminum tape-coated sample holders and dried
overnight. The images were obtained using a Zeiss DSM 982
GEMINI electron microscope.
TEM. For TEM imaging, diluted solutions of microparticles were

drop-cast on carbon-coated copper TEM grids and dried under
vacuum overnight. Images were taken on an FEI Tecnai F30
microscope (300 kV). The same device was used for STEM.
Powder X-ray Crystallography. XRD patterns were acquired

using a Bruker 2D phaser in a 2θ range of 10−100°, where
symmetrical scans were performed. The microparticles were dispersed
in ethanol and drop-cast on a Si wafer.
DRS. DRS measurements were recorded in diluted aqueous particle

solutions using a Cary 60 spectrophotometer (Agilent Technologies).
Video Evaluation. Videos were tracked with the Fiji plugin

TrackMate,37 and the resulting trajectory files were processed with a
MATLAB script and with the help of the msdanalyzer function
package.38 For single particles as well as each assembly configuration,
the averaged instantaneous speeds over at least 400 frames (10 s)
were calculated for at least 20 independent trajectories from different
sessions. The average of these speeds was calculated to determine the
mean speed of a specific assembly conformation. The MSD curves
were calculated with the msdanalyzer function as well, and the
weighted average of several curves was determined for the MSD.
Model. To model our experimental findings, we consider an

ensemble of N overdamped spheroidal colloids at position ri and with
orientation u i in two spatial dimensions, where i is the particle index.
The photochemical reaction on the particles causes an asymmetric
internal distribution of electrons and holes, and hence, a chemical
concentration field (or “solute”) c(r, t) is asymmetrically produced
(catalyzed) with a rate k0 (see Figure 7) to which all colloids in the
system respond. Effectively, the production occurs predominantly
along one of the long sides of the spheroids which causes both self-
propulsion and cross-interactions among the particles such that no
explicit self-propulsion term is required in our equations of motion

(similar to that in ref 39). To describe the dynamics of the particle
motion, we use Langevin equations (i = 1, ..., N) coupled to the self-
produced chemical field c(r, t)40−43
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Here, D is the diffusion coefficient of the particles, Dr is the effective
rotational diffusion rate around the short axis of the particles, ηi(t)
and ξi(t) represent unit-variance Gaussian white noise with zero
mean, and ∇u i is the gradient on the unit circle (see refs 44 and 45).
The matrices fT and fR represent the translational and rotational
friction tensors determined by the Perrin coefficients for a spheroid46

and the Stokes friction coefficient γ of a sphere of an equivalent
volume, respectively. The coupling coefficient of the particles to the
solute is denoted as α, where α > 0 leads to phoretic attraction and α
< 0 results in phoretic repulsion among the colloids. In addition, V
accounts for steric repulsions among the spheroids, represented by
Weeks−Chandler−Anderson (WCA) repulsions here.

Details on the Implementation. For simplicity, we approximate
each spheroidal colloid as a rigid body of m partly overlapping
spheres, called “segments” in the following (see Figure 7). To describe
the steric repulsions, we let all segment−segment pairs belonging to
different particles interact through a repulsive WCA potential
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if rij,kl ≤ 21/6σ and 0

otherwise. Here, ϵ determines the strength of the potential, rij,kl
denotes the Euclidean distance between segment k of particle i and
segment l of particle j, rc = 21/6σ indicates a cutoff radius beyond
which the potential energy is 0, and σ = 2R is the segment diameter.

The solute c(r, t) is produced on one long side of the particles
(yellow marked segments at position ri,k′ in Figure 7). The dynamics
of c follows a diffusion equation (diffusion coefficient Dc), with
additional (point) sources. In addition, we also use a sink term to
describe a possible decay (e.g., due to bulk reactions) of the solute.
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The system of equations (eqs 1, 2) is numerically solved in two
spatial dimensions (2D) with periodic boundary conditions.

Mean Velocity. The averaged velocities of the “molecular
swimmers” consisting of one to three particles were calculated by
averaging over at least 30 independent trajectories with a minimum
time of 10 s and a sampling rate of 40/s (see Table 1). The relatively
large standard deviation is due to the rather short trajectory length
which has been used, in analogy to our experiments, to calculate the
mean speed.
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https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01568.

Figure 7. Schematic of the implementation of the model: two
spheroidal colloids constructed by an arrangement of partly
overlapping spheres with radius R and segment−segment distance
rij,kl. The solute is produced on one long side of the colloids (yellow
marked segments).
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Additional characterization, size distribution histogram,
zoomed-in SEM image, MSD data, additional assembly
trajectories, analytic prediction of swimming velocities,
STEM−EDX analysis, and snapshots of positively
functionalized swimmers (PDF)
Motion pattern of single ellipsoid particles (0.3% H2O2,
100% UV illumination) (AVI)
Simulated motion pattern of single ellipsoid particles
and assembly (activation after 3 s) (AVI)
Motion of different active assemblies (0.3% H2O2, 100%
UV illumination) (AVI)
Formation and motion of functionalized active assem-
blies (0.3% H2O2, 100% green illumination, 100% UV
illumination) (AVI)
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Table S1: Content of supporting videos.

No. Title
1 Motion pattern of single ellipsoid particles
2 Simulated motion pattern of single ellipsoid particles and assembly
3 Motion of different active assemblies
4 Formation and motion of functionalized active assemblies
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Size Distribution

Size distributions of particle length and width as well as a zoomed-in SEM image are dis-

played here to further illustrate the particle dimensions and the topology of their surface.

(a) (b)

Figure S1: a) Size distribution of as-synthesized BiVO4 spheroids in length and width. b)
Zoom-in SEM image of BiVO4 spheroids. The structured surface is a sign for the assembly
of these spheroids out of smaller crystallites during the synthesis process. Scale bar is 2 μm.

Comparison to Brownian Motion

For comparison, the average speed and mean-squared displacement (MSD) was calculated

for the single spheroidal particles immersed in deionized water when no excitation by UV or

blue light is present. The mean speed for these settings was calculated to be 3.49±0.54 µm/s.

Figure S2 shows the mean MSD curves of the particles in Brownian (blue) and directed (red)

motion under UV light. The active component of the particle motion when excited with UV

light is clearly shown by the non-linear shape of the red curve in Figure S2a. For better

visualisation, Figure S2b shows the same data in a log-log plot. On very short timescales,

both plots can be described as MSD ∝ τ . For slightly longer timescales, the ballistic red

curve follows MSD ∝ τ 2 whereas the slope of the Brownian blue curve remains unchanged.
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(a)

∝

∝
2

(b)

Figure S2: Mean MSD curves of particles in Brownian (blue) and directed motion under UV
light (red). a) With standard deviations as error area. b) As log-log plot with ∝ τ and ∝ τ 2

guides.
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Trajectories of Assemblies

(a)

(b)

(c)

(d)

(e)

Figure S3: Additional trajectory examples of assemblies with 2-4 building blocks from ex-
periments and simulations (30 x 30 μm area). Scale bar is 2 μm.

S4

76 8 Scientific publications



Analytic prediction of swimming velocities

Figure S4: Model for the forces. The forces acting on the individual particles are indicated
by red arrows for the caterpillar (a) and the triangle (b) assembly.

Each particle produces a chemical concentration field c(r) = k0
Dc
K0(

√
kd
Dc
r) (in two di-

mensions), where K0(x) is a Macdonald function, r describes the radial distance from the

production source, diffusion coefficient Dc, production rate k0 and decay rate kd. This con-

centration field results in a force F (r) = α∂rc acting on the particles, such that the force on

particle i reads (indicated by red arrows in Fig. S4)

Fi =
N∑

j=1

rj,k′ − ri
|rj,k′ − ri|

F (|rj,k′ − ri|), (S1)

where ri is the position of particle i and rj,k′ is the position of the production source of

particle j (for simplicity we assume that the solute is produced only at the location of a

single segment rj,k′ which is shifted by a distance w/4 from the particle center, as shown in

Fig. S4). The sum of these forces FCOM =
∑Nm

i=1 Fi is decisive for its velocity, where the sum

runs over all Nm modules of the assembly. We now demonstrate an approximation for the

analytical calculation of the swimming speeds for the modular swimmer shown in Fig. S4.

In particular we approximate the overall Stokes drag for an aggregate by the sum of bulk

Stokes drag contributions of the individual spheroids. In the coordinate system of the center

of mass of the assembly in panel (a), the coordinate vectors of the three spheroidal particles
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with width w = 1.5µm and length l = 2µm read:

r1 = (−w, 0.0),

r2 = (0, 0, 0),

r3 = (w, 0, 0),

r1,k′ = r1 + (w/4, 0, 0),

r2,k′ = r2 + (w/4, 0, 0),

r3,k′ = r3 + (w/4, 0, 0).

From that we can estimate the force FCOM acting on the modular swimmer (blue arrows in

Fig. S4) whose velocity can than be calculated as:

|v| = |FCOM |
Nmγ

=
2.71Fs

3γ
=

2.71vs
3

= 3.79
µm

s
. (S2)

Here we have used the relation vs = Fs

γ
, where Fs is the strength of the self-propulsion of a

single particle with the mean velocity vs = 4.2µm
s

obtained from the experiment and γ is the

Stokes friction coefficient.

For the structure in panel (b) of Fig. S4 we have

r1 = (−w/2,−(l + w)/6, 0),

r2 = (w/2,−(l + w)/6, 0),

r3 = (0, (l + w)/3, 0),

r1,k′ = r1 + (w/4, 0, 0),

r2,k′ = r2 + (w/4, 0, 0),

r3,k′ = r3 + (0,−w/4, 0)

and can thus determine the velocity of the “triangle” assembly to
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|v| = |FCOM |
Nmγ

=
2.09Fs

3γ
=

2.09vs
3

= 2.93
µm

s
. (S3)

Here the forces additionally lead to a torque, which is determined by

M =
Nm∑

i=1

ri × Fi = (0, 0, 1.07Fsµm). (S4)

and which leads to the rather curved trajectory of the triangle conformation.
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STEM-EDX Analysis

(a)

(b)
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(c)

(d)

Figure S5: EDX data of SiO2-coated BiVO4 particles. a) STEM image with designated areas
1-3 for EDX measurements. b) EDX spectrum of specimen support, c) EDX spectrum of
particle shell, d) EDX spectrum of the particle core and shell.
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Positively functionalized swimmers

By functionalizing the silica shell of our BiVO4 particles with (3-aminopropyl)triethoxysilane

(APTES), we enable motion on positively charged substrates, which would otherwise lead to

attraction between the swimmer and the surface. The surfaces (cover glasses) were positively

functionalized by coating them with APTES as well. When immersed in a solution containing

hydrogen peroxide and irradiating them with UV light, the particles move actively and do

not stick to the surface, as can be seen in Figure S6.

Figure S6: Snapshots of APTES-functionalized swimmers actively moving on a positive
substrate under UV illumination after 1, 3 and 10 seconds. Normally, oxidic particles like
BiVO4 and SiO2 have a negative zeta potential and therefore show no motion on positive
substrates.
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ARTICLE

Active droploids
Jens Grauer1,4, Falko Schmidt 2,4, Jesús Pineda 2, Benjamin Midtvedt2, Hartmut Löwen1,

Giovanni Volpe 2 & Benno Liebchen3✉

Active matter comprises self-driven units, such as bacteria and synthetic microswimmers,

that can spontaneously form complex patterns and assemble into functional microdevices.

These processes are possible thanks to the out-of-equilibrium nature of active-matter

systems, fueled by a one-way free-energy flow from the environment into the system. Here,

we take the next step in the evolution of active matter by realizing a two-way coupling

between active particles and their environment, where active particles act back on the

environment giving rise to the formation of superstructures. In experiments and simulations

we observe that, under light-illumination, colloidal particles and their near-critical environ-

ment create mutually-coupled co-evolving structures. These structures unify in the form of

active superstructures featuring a droplet shape and a colloidal engine inducing self-

propulsion. We call them active droploids—a portmanteau of droplet and colloids. Our results

provide a pathway to create active superstructures through environmental feedback.

https://doi.org/10.1038/s41467-021-26319-3 OPEN
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Active matter consists of microscopic objects which are
capable of self-propulsion, such as motile microorgan-
isms, like Escherichia coli bacteria1, and synthetic colloidal

microswimmers, like autophoretic Janus colloids2,3. In contrast to
equilibrium systems, active-matter systems evade the rules of
equilibrium thermodynamics by continuously dissipating the
energy obtained from their environment and converting part of it
into a persistent motion at the level of individual constituents.
Thus, the environment acts as a persistent free-energy source that
emancipates active systems from the fundamental constraint of
entropy maximization (or free-energy minimization) and induces
a rich phenomenology, which is fundamentally beyond equili-
brium physics. This includes, in particular, the spontaneous
emergence of spatiotemporal patterns3,4, e.g., through
liquid–liquid phase separation5–7, which illustrates the remark-
able fact that driving systems far away from equilibrium often
creates structures, not chaos.

Two key examples of self-driven agents are active colloids8 and
active droplets9,10. These are ideal model systems providing fun-
damental insights into the principles that govern the dynamical
behavior of self-organized structures11,12. Active colloids catalyze
reactions on part of their surface resulting in self-propulsion and
collective self-organization as, e.g., living clusters2,13–18, swarms,19,20

and phase-separating macrostructures21. Active droplets exhibit
complex dynamical behavior down to the level of individual dro-
plets, where, e.g., chemical reactions drive them out of equilibrium
and can influence the droplet formation process through growth
suppression22 or spontaneous droplet division23. Recent studies
have also demonstrated internally propelled droplets, where a dense
suspension of motile bacteria encapsulated in an emulsion droplet is
able to transfer activity to the droplet, making it active24,25.

In all these examples, and other typical active-matter systems,
the environment serves as a continuous free-energy source which
can also mediate effective interactions between active agents, such
as hydrodynamic interactions synchronizing filaments26 or
interactions based on visual perception27, acoustic signals28, or
chemical fields29—but it does not typically show intrinsic
dynamics that adapts to the dynamics of the active agents. In
contrast, biological systems often feature a two-way coupling with
their environment, which is involved, e.g., in homeostasis, gene-
expression regulation, and structure formation30,31, calling for
synthetic realizations to enable a controllable exploration of two-
way feedback coupled systems.

Here, we experimentally realize and theoretically model a
versatile feedback loop between light-activated colloids and their
near-critical environment. This leads to structure formation both
on the level of the colloids and their environment and results in
the formation of a new type of self-propelling superstructures.

As these active superstructures combine droplets and colloids,
we name them active droploids. To realize this feedback loop and
the corresponding structure formation processes in the environ-
ment, we suspend a mixture of colloids in a near-critical solvent.
When illuminated by laser light, these colloids absorb the light,
locally heat up their surrounding environment and induce a local
phase separation, which leads to the emergence of droplets
around the colloids (see Fig. 1a). In turn, these droplets encap-
sulate the colloids, which under confinement interact non-
reciprocally and form self-assembled colloidal engines, which
finally drive the droploid superstructures, making them active
(see Fig. 1a). Note that, crucially, both the colloids and the dro-
plets continuously evolve in time, rather than adiabatically fol-
lowing the respective other component, which is fundamental to
the droploids’ structure formation and self-propulsion ability.
Our findings offer a novel route to create superstructured soft
active materials whose size and motility is controllable by laser
light. Since it is based on the two-way interaction between

colloidal particles and a near-critical environment, the involved
mechanism of colloidal self-encapsulation and activation might
also serve as a useful framework to recreate and explore aspects of
fundamental biological processes in a well-controllable synthetic
colloidal minimal system. Examples might comprise, e.g., pro-
cesses which are involved in the compartmentalization of the
cytoplasm and the formation of membrane-free organelles, which
share various features with liquid droplets and do not need a
stabilizing lipid bilayer to maintain themselves.

Results
Experimental observations of active droploids. We study a
system of hydrophilic colloidal particles (radius R= 0.49 μm)
quasi-two-dimensionally confined between two glass slides
separated by a distance smaller than two particle diameters. These
particles are immersed in a near-critical water–2,6-lutidine mix-
ture, which has a critical lutidine composition cLc ¼ 28:4% and a
lower critical temperature Tc= 34.1 °C32. In this work, we use a
slightly off-critical composition (29.4–32.4%) to ensure the for-
mation of water-rich droplets around the hydrophilic particles
when the mixture’s temperature locally exceeds Tc. We fix the
temperature of the sample at T0= 32.5 °C < Tc using a water
heatbath and a feedback temperature controller (see experimental
setup in Supplementary Fig. 2).

We use two species of hydrophilic particles: light-absorbing
and non-absorbing particles. In the absence of an external light
source, both species perform passive Brownian motion with a
diffusion coefficient of D= 0.012 ± 0.002 μm2 s−1 and are homo-
geneously distributed in the sample chamber (Fig. 1b). The non-
absorbing particles are less hydrophilic than the absorbing ones.

Under illumination with a defocused laser beam (Λ= 1070 nm,
I= 142 μW μm−2, beam waist w= 100 μm), light-absorbing
particles raise the temperature of the surrounding liquid slightly
above Tc, thus altering their local environment by inducing a local
demixing of the liquid. This leads to the creation of local
gradients of the mixture’s temperature and composition, which
phoretically attract other particles present nearby33–36. In
particular, this generates a non-reciprocal effective attraction of
the non-absorbing particles by the absorbing ones leading to
ballistically moving active molecules (Fig. 1c), Janus-dimers being
the simplest example36.

At comparatively large light intensities, where the system of
active colloids induces local temperatures exceeding the critical
temperature (i.e., T≫ Tc, Fig. 1d), we observe a stronger feedback
between the particles and the environment: the absorbing colloids
induce phase separation in their vicinity, which leads to the
confinement of the active colloidal molecules within water-rich
droplets immersed in a lutidine-rich background. Remarkably, we
observe that these droplets can adopt the mobility of the active
molecules which they comprise. This occurs because the colloidal
molecules contained within a droplet constantly alter their local
environment causing the droplet to follow the molecules’ motion.
Moreover, we find that the molecules’ direction inside the droplet
is reversed leading now with absorbing particles in front due to
the local changes in composition37. In this state, we observe the
emergence of active droploids. Once formed, these active
droploids move, collide, and merge with each other and
consequently grow over time (Fig. 1e), until they eventually all
coalesce into a large active droploid (Fig. 1f).

Model and simulations. Let us now build a minimalist theore-
tical model to identify the key ingredients and mechanisms
determining the experimental observations described in the pre-
vious section. This model describes the combined dynamics and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26319-3

2 NATURE COMMUNICATIONS | (2021)12:6005 | https://doi.org/10.1038/s41467-021-26319-3 | www.nature.com/naturecommunications

86 8 Scientific publications



feedback between the near-critical mixture and the colloidal
particles.

The state of the mixture is defined by the order parameter field
ϕ(r, t), which represents the relative concentration difference
between the two phases of the mixture: phase A (2,6-lutidine) and
phase B (water). Thus, we have ϕ= 0 in regions where A and B
are homogeneously mixed, and ϕ= ±1 in pure A and B regions,
respectively.

The dynamics of the colloids is modeled as overdamped
Brownian particles at positions rsi ðtÞ following Langevin dynamics
(i= 1,…,N, where N is the number of particles and s∈ {a, na} for
absorbing and non-absorbing particles, respectively)

γ∂tr
s
i ðtÞ ¼ βs∇ϕþ αs∇ð∇ϕÞ2 � ∇ri

V þ
ffiffiffiffiffiffi
2D

p
γηsi ; ð1Þ

where D is the translational diffusion coefficient of the particles, γ
is the Stokes drag coefficient (assumed to be the same for both
equally sized species), ηsi ðtÞ represents Gaussian white noise with
zero mean and unit variance, and V accounts for steric repulsions
between the colloids, represented by Weeks-Chandler-Anderson
(WCA) interactions38. The coupling to the composition field ϕ(r,
t) (environment) is described by the first two terms on the RHS of
Eq. (1). The first term describes the net effect of wetting, i.e., the
fact that hydrophilic particles (βs < 0) are attracted by water-rich
droplets, whereas hydrophobic particles (βs > 0) tend to remain
outside of these regions (see Supplementary Fig. 3). The second
term, which is proportional to ∇(∇ϕ)2, induces motion towards
interfaces (where (∇ϕ)2 is large) essentially for the non-absorbing
particles. This term describes the tendency of the weakly
hydrophilic particles to move towards the water–lutidine interface
in order to reduce the interfacial area of the water–lutidine
interface and hence the total interfacial free energy of the system.

To model the phase separation dynamics induced by the light-
absorbing particles, we use the Cahn-Hilliard equation39 taking

into account an inhomogeneous temperature distribution T(r, t)
as induced by the light-absorbing particles

∂tϕðr; tÞ ¼ M∇2 aðT � TcÞϕþ bϕ3 � κ∇2ϕþ As ∑
s2fa;nag

δðr� riÞ
� �

;

ð2Þ
where M is the inter-diffusion constant of the mixture, and Tc is
the critical temperature, with constants a < 0 and b, κ > 0 such
that the fluid demixes at locations where T > Tc. To describe the
net effect of the accumulation of water at the hydrophilic surfaces
of the colloids, we include a (point-like) source term for the
solvent-composition at the position of each particle. The
coefficients Aa and Ana are chosen such that they account for
the strong and weak hydrophilicity of the absorbing and non-
absorbing particles, respectively. As a result, the water concentra-
tion slightly increases at the location of each particle. Note that
this increase alone cannot initiate phase separation, but it biases
the location where water-rich droplets occur once phase
separation takes place.

The two-way coupling between the nonequilibrium system of
particles and its environment is controlled by the mixture
concentration and the energy supply. The former is given by the
order parameter field ϕ(r, t), described above. The latter depends on
the density of absorbing particles ρa and the light intensity I(r), and
involves a suitable source term for the absorbed power per unit
volume α0

ρcp
IðrÞ � k0δðr� riÞ, where α0 is the optical absorption

coefficient, ρ is the density of the mixture, cp is the specific heat at
constant pressure, and k0 is the strength of the light source at the
particle position ri40. The inhomogeneous temperature field is then
to be calculated from the heat equation as

∂tTðr; tÞ ¼ DTΔT þ k0 ∑
absorb:

δðr� riÞ � kdðT � T0Þ ð3Þ
with diffusion constant DT. Here, the decay rate kd describes the

Fig. 1 Active droploid formation and growth. a Schematic of the light-induced two-way coupling (feedback loop) between the colloids and their
environment which results in active droploids. b–f Experiment and g–k simulation of the formation and growth of active droploids. b, g Single particles of
two species, light-absorbing (black) and non-absorbing (white), are immersed in a near-critical mixture and, at low temperature, behave as passive
particles in a standard liquid. c, h Upon illumination, absorbing particles heat up the surrounding liquid, providing phoretic forces that bring and hold
particles together to form small colloidal molecules that move in the direction of the red arrows. d, i Eventually, local phase separation leads to water-rich
droplets (blue shading) surrounding absorbing particles and colloidal molecules. e, j Over time, the active droploids move together with their active
molecules (direction indicated by the red arrows), grow in size, and f, k eventually coalesce together to form even larger active droploids. The light
irradiation is I= 150 μW μm−2, composition ϕ0= 0.05 and initial temperature T0= 32.5 °C (and λ= 0.025 in simulations, see ‘Methods’ for other
parameter values). Videos of experiment (Supplementary Movie 1) and simulation (Supplementary Movie 2) are provided in SI.
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coupling of the sample to an external water heatbath stabilizing the
temperature (see SI for a detailed description of the experimental
setup and methods for the equations of motion). Overall, this
permits us to introduce a concise measure of the energy input under
the approximation that the adsorbed energy scales linearly with the
density of the absorbing particles and the irradiated light intensity as
λ ¼ ρak0

T0kd
.

Using the model we have described, we can investigate the
complex dynamics involved in the formation of droplets and
molecules including the involved feedback loop between the
colloids and their near-critical environment. In particular, we are
able to replicate in simulations all experimentally observed states,
i.e., from passive disperse particles to ballistically moving active
droploids (Fig. 1g–k).

Phase diagram. By continuously altering their local environment,
absorbing particles create feedback loops that, depending on the
criticality of the environment and the energy input to the system,
induce assembly and disassembly of colloidal molecules and
determine the dynamics of the colloid–droplet superstructure. To
gain a systematic overview of the possible states achievable by this
system, we now determine the full nonequilibrium state-diagram
as a function of the composition order parameter ϕ0 (see also
phase diagram in Supplementary Fig. 1) and of the measure of the
energy input into the system λ (see previous section). The
resulting phase diagram after 30 s of light illumination is shown
in Fig. 2 for ϕ0 > 0 (i.e., at supercritical 2,6-lutidine concentra-
tions, cL > cLc , leading to water-rich droplets in a lutidine-rich
background). Similar and symmetric results can be observed for
ϕ0 < 0 (i.e., cL < cLc , where lutidine-rich droplets emerge in a
water-rich background). Note that the different structures can
dynamically move, coalesce, and grow over time (see also Fig. 3),
but determining the different phases at much later times quali-
tatively produces the same phase diagram (see Supplementary
Fig. 5).

As can be seen in Fig. 2a, we identify four distinct states
differing in their level of activity and in the presence of droplets.
At low energy input and at concentrations far away from the
critical composition, we observe a disordered phase (purple
region in Fig. 2a), which is characterized by randomly dispersed
Brownian particles essentially behaving as passive particles at
thermodynamic equilibrium (Fig. 2b, purple frame). Increasing
the energy input, we observe an active molecules’ phase (yellow
region in Fig. 2a), where active and passive colloids come together
to form active colloidal molecules (Fig. 2b, yellow frame).

The remaining two phases of the phase diagram are located at
even higher energy inputs. In these cases, the temperature around
absorbing particles and active colloidal molecules significantly
exceeds the critical temperature (T > Tc), which induces a local
phase separation of the mixture and results in the formation of
water-rich droplets surrounding the absorbing particles and
colloidal molecules. Subsequently, nearby colloids are absorbed
into the droplet due to their own hydrophilicity, so that the
colloidal molecules inside the droplets grow in size over time.
This procedure permits a good observation of the influence of
colloids on their environment, which deform the interface when
entering the droplet or while moving alongside it (see Fig. 4a, b),
which has also been observed for vesicles41. At a moderate energy
input, we observe the active droploids’ phase in our phase
diagram (green region in Fig. 2a): the active colloidal molecules
contained within a droplet manage to propel the droplet (Fig. 2b,
green frame); thus, the droplets become active by themselves.
Thus, active colloidal molecules contained inside a droplet act as
internal motors that propel the droplet. Over time, these active
droploids can collect other molecules and droplets, thereby
growing in size and possibly altering their speed and direction of
movement (see Supplementary Movies 1 and 2). The speed and
growth process of the droplets can be controlled by light intensity
as discussed in the following section.

At even higher energy inputs (achievable either by increasing the
light intensity or by a higher density of absorbing particles), the

Fig. 2 Nonequilibrium phase diagram. a Phase diagram as a function of the net energy input λ and the averaged relative concentration difference from the
critical point ϕ0. The evaluated state points from the experiment (red) fitted with λ= CIρa and C= 1 × 10−4 μm4 μW−1, and the simulations (black) are
indicated by crosses (purple region - disordered phase), triangles (yellow region - active molecules), filled circles (green region - active droploids), and
empty circles (blue region - droplets with particles at the interface). Dashed lines indicate approximate boundaries between phases and serve as a guide to
the eye. The quantitative criteria for the phases and the corresponding colors are given in the SI. The red-bordered numbers mark reference points that
relate to different scenarios discussed in the main text. b Typical snapshots from experiments (top) and simulations (bottom) of the phases I–IV as
indicated in the state diagram. Magnified concentration profiles of the composition in phases III (c) and IV (d) show that the gradient at the interface
steepens as temperature locally increases from T1 > Tc (active droploids, phase III) to T2 > T1 (immotile droploids, phase IV). Simulation parameters can be
found in ‘Methods’.
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induced temperatures greatly exceed the critical temperature
(T≫Tc) and result into a large phoretic gradient close to the
interface of the droplet (Fig. 2d) compared to active droploids where
the gradient is more moderate (Fig. 2c). Because the dynamics of the
particles is mainly controlled by the interaction of their surface with
the local composition of the mixture, non-absorbing particles, which
are less hydrophilic than their absorbing counterpart, move towards
the droplet’s interface to reduce the total interfacial area of the
system (Fig. 2b, blue frame). Consequently, the existing colloidal
molecules break up with absorbing particles remaining at the center
of the droplet and non-absorbing particles decorating its interface.
The ensuing loss of motility characterizes this phase as the immotile
droploids’ phase (blue region in Fig. 2a).

Overall, the dynamics shown by this phase diagram shows that
absorbing particles continuously alter their local environment,
and, in turn, their behavior is affected by the environment. This
feedback induces both assembly and disassembly of active

colloidal molecules and, therefore, determines the ensuing activity
of the whole system of colloids and droplets.

Characterization and control of droplet dynamics and growth.
By tuning the external energy input and the mixture’s criticality,
we can control the degree of interaction between active colloids
and their local environment, which determines the overall state of
the system (Fig. 2) as well as its evolution over time.

We start by characterizing the overall growth of our system
(Fig. 3a). At early times, the system is characterized by nucleation
and formation of droplets initiated by light-absorbing particles. In
this initial process, the droplets slowly grow over time as
additional colloidal molecules diffuse from the bulk phase and
contribute to the local heating that creates the droplet. The
dominant growth process is therefore diffusion-limited and a
droplet diameter L � t

1
2 is expected7.

Fig. 3 Droplet velocity and growth over time. a Average size of active droploids (green) and immotile droplets (blue) over time calculated from
experiments (dotted) and simulations (solid) for ϕ0= 0.05. The shaded area represents the standard deviation. The inset shows the delay in the formation
of an immotile droplet at early times for an off-critical composition of ϕ0= 0.25. b Mean (and shaded standard deviation) of the total traveled distance of
an active droploid over time measured from experiments (dotted) and simulations (solid). c Simulated active droploid velocity over time. d Velocity
distribution of active droploids in experiments (left) and simulations (right). e Simulated mean velocity of active droploids after 30 s of light illumination
(black curve) and fraction of non-absorbing particles located at the interface of the droplets Nint

na=Nna (gray curve simulations, gray dots experimental data
fitted with λ= CIρa and C= 3 × 10−4 μm4 μW−1) as a function of the energy input λ for ϕ0= 0.05. Note that the fitting factor C is different here than in
Fig. 2 because the present measurements are based on a fixed concentration of ϕ0= 0.05, whereas those in Fig. 2 have been taken at various
concentrations up to ϕ0= 0.2. The full list of simulation parameters is provided in the ‘Methods’ section.

Fig. 4 Examples of droplet behavior. a–e Experimental snapshots (highlighting the segmentation of the droplets), and f–j simulated snapshots
(background displays the relative concentration ϕ) of various behaviors: a, f Clusters of colloids deforming the boundary of the droplet at λ= 0.03. b, c and
g, h Accumulation of absorbing particles in an off-critical supersaturated background phase (ϕ0= 0.2 in experiments, ϕ0= 0.25 in simulations) leading to
an explosive formation of droplets within a very short time at λ= 0.095 (Supplementary Movies 3 and 4). d, e and i, j Formation of size-stabilized droplets
around absorbing particles with periodic light illumination (on and off for 10 s each, Supplementary Movies 5 and 6) at λ= 0.025. Other simulation
parameters can be found under ‘Methods’.
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Using a composition of ϕ0= 0.25 (marked with a red-bordered
1 in Fig. 2) which is far away from the critical composition, we
observe that droplets form only after a significant initial delay.
For off-critical compositions, the bulk phase is already super-
saturated and a considerable (free-energy) barrier emerges,
separating the mixed phase from complete phase separation
(see Supplementary Fig. 1b). Consequently, a large accumulation
of absorbing particles is required to provide sufficient local energy
to overcome this barrier and cause nucleation, resulting in a
ballistic formation of a droplet. This means that droplets do not
form immediately, but with a slight time delay, and then grow
rapidly in size. The size of such a droplet is shown in the inset of
Fig. 3a, where it takes 8 s after the critical temperature has already
been exceeded to allow the formation of a droplet. We observe
such an explosive droplet formation both in experiments (Fig. 4b,
c and Supplementary Movie 3) and in simulations (Fig. 4g, h and
Supplementary Movie 4). Droplet nucleation can be further
delayed if other nearby absorbing particles also form clusters or
even droplets, which then compete with each other as the
concentration of the droplet’s phase (here water) is locally
decreased inside the bulk mixture.

For concentrations around ϕ0= 0.05 (marked with a red-
bordered 2 in Fig. 2a), after the droplets have formed, we observe
a transition from nucleation and growth to coarsening. Such a late-
time coarsening regime is expected, determined by Brownian
coalescence of droplets and diffusion-limited coarsening. For
Brownian coalescence, small droplets collide with each other and
fuse to form larger droplets, reducing the overall interface. For
diffusion-limited coarsening, the dominant growth process is given
by the transport of droplet-forming molecules from small droplets
into large droplets growing by diffusion from the bulk phase. For
both coalescence and coarsening, L � t

1
3 is expected7,42–47, which we

can also find in our experiments (L ~ t0.35) and simulations
(L ~ t0.31) by measuring the average size of non-moving droplets
over time (blue curves in Fig. 3a), and that are passive because, either
the number of non-absorbing particles is small, or these particles are
concentrated at the droplet’s interface.

The picture is different if the droplets feature ballistic movement
driven by the presence of active colloidal molecules within the
droplets themselves. In fact, the self-propulsion of active droploids
accelerates the growth process described above. We observe that the
size of active droploids grows as L ~ t0.42 (marked with a red-
bordered 3 in Fig. 2a and shown in Fig. 3a), which is significantly
faster than the observed L ~ t0.31 growth law for passive droploids.
The accelerated growth is a direct consequence of the ballistic
motion of the active droploids which allows them to recruit
additional colloids faster than the passive droploids. This can be
easily seen by measuring the total distance traveled in time by an
active droploid (shown in Fig. 3b for experiment and simulation),
revealing that the ballistically moving active droploids are able to
cover a comparatively large area allowing them to efficiently collide
and fuse. The enhanced growth process is depicted by the average
size of the droplet domain in the experiments and the simulations in
Fig. 3a (green curves), which is close to the expected L � t

1
2 growth

law for ballistic aggregation48,49. As shown in Fig. 3c, the active
droploids slow down at later times. Ultimately, they would reach a
state where light-absorbing and non-absorbing particles form a
major cluster of almost randomly arranged particles within the
droplet shell, resulting, for statistical reasons, in a reduced self-
propulsion36. The growth of the colloidal clusters within the droplet
shells also enhances the temperature locally, which increases the
degree of demixing and provides a further reason for the slow-down
of the droploids.

Since the self-propulsion of a droploid is determined by the
number and composition of the contained colloidal molecules, we

have explored the velocity distribution of the active droploids in
our experiments and simulations (Fig. 3d), revealing, in
particular, a small positive skewness of the distribution in both
cases, indicating a tail towards large velocities.

Furthermore, we can additionally control the droplet velocity
by light intensity. In the parameter regime in which active
droploids can be found (Fig. 2, phase III, 0.023 < λ < 0.048), an
increase in light intensity leads to an increase in droplet speed
(Fig. 3e). For increasing intensities, however, the velocity reduces
as the resulting temperature in the sample increases and non-
absorbing particles accumulate at the water–2,6-lutidine interface
(transition from green to blue in the state diagram in Fig. 2a).
Consequently, molecules inside the droplet slowly dissolve. We
can characterize this transition counting the number of non-
absorbing particles located at the interface N int

na as a fraction of the
total number of non-absorbing particles Nna (see gray line in
Fig. 3e). Between λ= 0.037 and 0.045, the fraction of non-
absorbing particles at the interface significantly increases from
N int

na=Nna ¼ 0:15 to 0.35, whereas the growth in the droplet’s
velocity has slowly decreased with reaching its maximum velocity
of v= 2 μm s−1 at λ= 0.038. For larger values of λ, the number of
non-absorbing particles at the interface is sufficiently large to
rapidly decrease the droplet’s velocity and finally reach a value
similar to that of immotile droplets (v < 0.8 μm s−1).
While droplet speed and the growth of droplets can be accelerated

by increasing the laser intensity, the growth process can also be
arrested by periodic light illumination. Employing periodic illumina-
tion, where the light is alternately switched on and off for a duration
of 10 s (0.1Hz), we show that the further growth of droplets can be
slowed down and even arrested (Fig. 4d, e and Supplementary
Movie 5), which is in good agreement with simulations (Fig. 4i, j and
Supplementary Movie 6). During times of no illumination,
temperatures quickly drop below Tc, droplets dissolve and colloidal
molecules disassembly as their constituent particles diffuse apart.
Upon illumination, this process is reversed and colloid–droplet
superstructures reappear. This shows that by adjusting light
illumination, we achieve temporal and spatial control over the
system of colloids and droplets.

Discussion
Our results show that a two-way coupling between the motion of
colloidal particles and the dynamics of their environment creates
a route towards a novel class of active superstructures. These
structures hinge on mutually coupled structure formation pro-
cesses of the colloids, which form an engine, and the surrounding
solvent, which phase separates in regions of high colloidal density
and encapsulates the engine within a droplet shell. Our results
create a bridge between the physics of active colloids and droplets
and provide fundamental insights into the role of feedback for the
emergence of ordered active superstructures, which opens up new
possibilities for active-matter research to investigate two-way
feedback loops in other systems and to create light-activated
biomimetic materials.

Methods
Experimental setup. We consider a suspension of colloidal particles in a critical
mixture of water and 2,6-lutidine at the critical lutidine mass fraction cLc = 0.286
with a critical temperature at Tc= 34.1 °C50 (see Supplementary Fig. 1a). The light-
absorbing particles consist of silica microspheres with light-absorbing iron-oxide
inclusions (microParticles GmbH), while the non-absorbing particles consists of
equally sized plain silica microspheres (microParticles GmbH). Both particle
species possess the same radius (R= 0.49 ± 0.03 μm) and have similar density
(ρ ≈ 2 g cm−3). The suspension is confined in a sample chamber quasi-two-
dimensionally between a microscope slide and a cover slip, where the particles are
sedimenting to due to gravity. We use spacer particles (silica microspheres,
microParticles GmbH) with a radius R= 0.85 ± 0.02 μm for constant separation
but with a concentration c≪ 5%, in order to not interfere with the observed
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phenomena. We have treated our glass surface prior with NaOH solution (c= 1
mol) creating a smooth hydrophilic layer on top. Surprisingly, we found that a
particle solution prepared at cLc in such a sample chamber behaved off-critical (i.e.,
nucleation of droplets). By adding about 2% more water to the mixture critical
behavior returned (i.e., spinoidal demixing). We expect that the hydrophilic sur-
faces of the sample chamber reduced the bulk concentration of water for which we
have compensated.

A schematic of the setup is shown in Supplementary Fig. 2. The particle motion
is captured by digital video microscopy at 12 fps. Using a two-stage feedback
temperature controller50,51, the sample’s temperature is kept near-critical at
T0= 32.5 °C, where water and 2,6-lutidine are homogeneously mixed. Under these
conditions, the microspheres of both species are passive immotile Brownian
particles performing standard diffusion (Fig. 1b, g). The sample is illuminated from
above using a defocused laser of wavelength Λ= 1070 nm at varying intensities.
The increase of temperature surrounding the light-absorbing particles is rather
small (ΔT ≈ 2 °C) such that they still behave as non-active Brownian particles.

The segmentation of the droploids is made using a deep neural network
implemented and trained using DeepTrack 2.052 (see details in SI and also
Supplementary Movie 7).

Details on the simulation model. To model our experimental findings, we con-
sider an ensemble of N overdamped spheroidal colloids at position ri immersed in a
near-critical water–lutidine mixture, described by the Cahn-Hilliard equation,
which can be derived from the total free-energy functional

F ½ϕ� ¼
Z

dr
a
2
ðT � TcÞϕ2 þ

b
4
ϕ4 þ κ

2
ð∇ϕÞ2 þ ∑

N

i¼1
ϕV s

co

� �
ð4Þ

where Tc is the critical temperature of the composition, with constant a < 0 and b,
κ > 0 such that the fluid demixes, where T > Tc. Here we describe the coupling of
the hydrophilic particles to the concentration of the mixture with an external
potential which we approximate with V s

coðjr� rijÞ � Asδðr� riÞ, where s∈ {a, na}
for absorbing and non-absorbing particles, respectively. The evolution of the
conserved order parameter ϕ (composition of the two components) is then given
by the Cahn-Hilliard equation

∂tϕ ¼ MΔ
δF ½ϕ�
δϕ

ð5Þ

∂tϕ ¼ M∇2 aðT � TcÞϕþ bϕ3 � κ∇2ϕþ Aa ∑
absorb:

δðr� riÞ þ Ana ∑
non�abs:

δðr� riÞ
� �

ð6Þ

where M is the inter-diffusion constant of the mixture. We describe the impact of
the hydrophilicity of the light-absorbing and non-absorbing particles on the
dynamics of the fluid with an additional term including a δ-function at the particle
positions, whose strength is given by Aa and Ana, respectively. The inhomogeneous
temperature field produced by the light-absorbing particles with rate k0 is to be
calculated from the heat equation

∂tTðr; tÞ ¼ DTΔT þ k0 ∑
absorb:

δðr� riÞ � kdðT � T0Þ ð7Þ
with decay rate kd and diffusion constant DT. We can then phenomenologically
describe the motion of the light-absorbing and non-absorbing particles rsi ðtÞ
(i= 1,…,N, s∈ {a, na})

γ∂tr
s
i ðtÞ ¼ βs∇ϕþ αs∇ð∇ϕÞ2 � ∇ri

V þ
ffiffiffiffiffiffi
2D

p
γηsi ð8Þ

where D is the translational diffusion coefficient of the particles, γ is the Stokes drag
coefficient (assumed to be the same for both species) and ηsi ðtÞ represents unit-
variance Gaussian white noise with zero mean. Here, the first term describes the
attraction into water-rich regions, caused by the particles’ hydrophilicity, where the
second term describes the tendency of the particles to attach themselves to the
interface of the two components. In addition, V accounts for excluded volume
interactions among the particles which all have the same radius R and which we
model using the Weeks-Chandler-Anderson potential V ¼ 1

2∑i;j≠iVij where the

sums run over all particles and where Vij ¼ 4ϵ ð σrijÞ
12 � ð σrijÞ

6
h i

þ ϵ if rij ≤ 21/6σ and

zero else. Here ϵ determines the strength of the potential, rij denotes the distance
between particles i and j, rc= 21/6σ indicates a cutoff radius beyond which the
potential energy is zero and σ= 2R is the particle diameter.

Simulation parameters. In the simulation model we measure the distance in units of
1 μm and the time in units of 1 s and match the parameters such as diffusion constants,
particle radius and typical velocity of the particles with the experiment. In all our
simulations we use for the Cahn-Hilliard equation M= 102 μm2 s−1, a=−2.5 K−1,
b= 50, κ=−5 μm2, Aa= 2.5 μm2, Ana= 1.5 μm2, for the dynamics of the heat
equation k0= 60 × 103 Kμm2 s−1, kd= 0.5 × 103 s−1, DT= 104 μm2 s−1, T0= 32.5 °C,
and for the Langevin equation of the particles βa/γ=−0.5 × 103 μm2 s−1, βna/γ=
−0.2 × 103 μm2 s−1, αa/γ= 0, αna/γ= 1.5 × 103 μm4 s−1, D= 0.1 μm2 s−1, and
ϵ/γ= 100 μm2 s−1.

Additionally we used in Fig. 1 Lbox= 50 μm, Na= 15, Nna= 25, ϕ0= 0.05, and
in Fig. 3 Lbox= 200 μm, Nna= 160, ϕ0= 0.05, and k0= 80 × 103 Kμm2 s−1,

Na= 200 (active droploids) and k0= 50 × 103 Kμm2 s−1, Na= 800 (immotile
droplets) and in Fig. 4i, j we have Lbox= 100 μm, Na=Nna= 160, ϕ0= 0.05 and
k0= 25 × 103 Kμm2 s−1.

Data availability
All data are available from the corresponding author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
authors upon reasonable request.
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Supplementary Figure 1. Phase diagram of the water–2,6-lutidine mixture and characteristic free energy. a The
water–2,6-lutidine mixture features a lower critical point at Tc = 34.1◦ and cLc = 28.4%, where the binodal (solid line) and
the spinodal (dotted line) coincide. Upon heating, two phases with different concentrations occur, which are separated by a
pronounced interface (blue: water-rich phase; green: lutidine-rich phase). Between the binodal and the spinodal droplets of the
lower concentrated phase grow in the higher concentrated phase, continuously throughout the sample. Above the spinodal line,
spinodal decomposition occurs, where both phases form symmetrical structures. b Schematic illustration of the free energy
profile f(φ) = a

2
(T − Tc)φ

2 + b
4
φ4 of a binary mixture as a function of the composition φ. A free energy barrier of height ∆f

located at φ = 0 must be crossed during a transition from φ0 (water-rich region) to φ > 0 (lutidine-rich region).

94 8 Scientific publications



3

T-control

BS

F

O

sample

DVM

1070 nm 

laser

camera

LED

32.5oC

Supplementary Figure 2. Schematic of the experimental setup. The setup is a home-made version of an inverted
microscope setup. The sample is confined in a quasi-2D space between a coverslip and a microscopic slide and separated by
spacer particles (R = 0.85± 0.02µm microParticles GmbH). A defocused laser (λ = 1070 nm) heats up light-absorbing colloids
and causes local demixing of the near-critical mixture. The sample’s temperature is fixed close to the critical temperature at
T0 = 32.5◦C using a two-stage controller system consisting of a copper-plate heat exchanger with a water bath (T100, Grant
Instruments) and of two Peltier elements attached to the objective (O) in feedback with a temperature controller (TED45,
Thorlabs). A background light source (LED) is coupled to the laser beam path using a 50:50 beamsplitter (BS) and illuminates
the whole sample area. The scattered light is collected with a 100x oil-immersion objective (O, NA=1.30) and imaged onto a
camera where the laser is blocked by a filter (F). Using digital video microscopy (DVM) the particle’s motion is being tracked
and analyzed.

Supplementary Figure 3. Influence of wetting properties on particle behaviour. Whereas hydrophilic absorbing particles
(black) are immersed inside water-rich droplets, hydrophobic non-absorbing particles (green) remain outside these regions. Scale
bar represents 5µm.
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Supplementary Figure 4. Quantitative phase characterization. To distinguish between the different phases and the colors
in Fig.2a we calculate the area with higher water concentration around the particles (where φ < 0) and use a threshold criterion
ADroplet > 8πr2 (or (ADroplet − 4πr2)/(4πr2) > 1) to distinguish phases II and III (active and immotile droploids) from the
other ones. This criterion requires that the water-rich area is larger than the area covered by a typical number of 8 colloids
within a droplet at the time instance where the snapshots are evaluated. To distinguish phases II and III we calculate the
mean particle velocity which indicates whether the appearing structures are active or passive. When the mean velocity clearly
exceeds that of passive Brownian particles (v > 0.8µms−1, for the used sampling rate) we call the resulting structures active
droploids (phase II). The data points shown here for different values of φ0 and λ correspond to those from the phase diagram
in Fig. 2a.
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Supplementary Figure 5. Time-evolution of phase boundaries: Phases as a function of the net energy input λ and the time
for a fixed averaged relative concentration difference from the critical point φ0 = 0.1. We find the same phases at all times and
observe a slight evolution of the phase boundaries over time. The evaluated state points are indicated by crosses (disordered
phase), triangles (active molecules), filled circles (active droploids), and empty circles (immotile droplets with particles at the
interface). The quantitative criteria for the phases are given in Supplementary Fig. 4.
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SUPPLEMENTARY METHODS

Droplet Segmentation

A deep-learning-based approach is used to detect the droplets and follow their morphology over time. Since
droplets are never overlapping, the method is built around a binary classification of each pixel in an image into
either background or droplet. The network architecture used to perform this task is similar to the U-Net [1], with
a down-sampling step and a up-sampling step, and skip-connections there between (Supplementary Fig. 6a). The
network was trained using simulated image-label pairs, generated by the deep learning framework DeepTrack 2.0 [2].
Examples are shown in Supplementary Fig. 6b-d.

Notably, the label was not constructed as a binary image directly, but as the distance transform of that binary
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Supplementary Figure 6. Overview of the deep-learning approach used to track and segment the droplets. a The
neural network architecture with an example input and output. The depth of the neural network was chosen as to give it
a sufficient receptive field to analyze big droplets. Instance normalization is used to help propagate information deeper into
the network. b-d Example simulated training images. The images are constructed by merging experimental backgrounds and
droplets simulated by approximating the optical transfer function. e-g Training labels corresponding to the images in b-d.
The labels are constructed by taking the distance transform of the binary image where the background is 0 and pixels inside a
droplet are 1.
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image, as can be seen in Supplementary Fig. 6e-g. In the experimental images, the inside of a droplet is essentially
indistinguishable form the outside, and its classification can only be inferred from the surrounding droplet edges. As
such, classifying the center of droplets becomes more difficult the larger the droplet is, because the information is
further away in the image. We found that using the distance transform instead of the binary image helped the network
learn to correctly detect the center of larger droplets, presumably because mistakes are punished more harshly in the
training process.

Since the network is now trained on a regression problem, we use mean absolute error as loss function. Moreover,
we used the Adam optimizer, with a learning rate of 0.0001. The network was trained for 100 epochs, each of which
consisted of 1024 unique training samples split into batches of 8. Note that new training data was continuously
generated during training.

A binary classification can be restored by thresholding the network output, from which individual droplets are
detected using by finding connected regions of positive classification. Since the droplets are large and well separated,
they are easily traced over time by their centroid.

Supplementary Figure 7 demonstrates the tracking of the network by showing input images next to the same image
with the segmentation of each droplet overlaid, for a series of images taken from a experimental video. The images
were chosen to demonstrate the correctness of the method in a few common scenarios, such as the merging of two
droplets, the emergence of new droplets as well as densly populated images. The full tracked video is available as

Supplementary Figure 7. Example tracked droplets. A few tracked frames from an experimental video, demonstrating the
tracking using the deep learning approach. The top row shows raw images fed to to the tracking algorithm, while the bottom
row shows the same images with the binary segmentation overlaid. The colors represent individual droplets and are consistent
over time to show that the cells are correctly traced.
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supplementary material (see Supplementary Movie 7).
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Communicating active agents find food using machine learning

Jens Grauer,1 Hartmut L owen,1 Benno Liebchen,2, ∗ and Fabian Jan Schwarzendahl1, †
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Many biological and syn he ic self-propelled swimmers perform chemo axis  o move  owards and
s ay a high nu rien concen ra ions. Similarly,  he mu ual communica ion, called quorum sensing,
is an impor an process  ha regula es  heir behaviour in response  o  he densi y of neighboring
par icles. Here, we use smar ac ive agen s equipped wi h a machine learning algori hm  o find  he
op imal naviga ion s ra egy. We s udy a sys em of communica ing ac ive par icles whose  ask is
 o consume a nu rien field as efficien ly as possible. Depending on  he par icle densi y and  he
consump ion ra e we find  hree op imal s ra egies  ha can be classified as: a ”uni ing s ra egy”,
where all agen s coopera ively accumula e  oge her; a ”spreading s ra egy”, where par icles s ay
separa ed from each o her; and an ”adap ive s ra egy”, where par icles adap ively decide whe her
 o follow or s ay away from o hers. Our work demons ra es  he po en ial of ac ive sys ems equipped
wi h ar ificial in elligence for fu ure applica ions.

Living organisms ranging from bacteria at the mi-
croscale to schools of fish at the macroscale swarm and
cooperate in order to efficiently find nutrients. Animals
with territories have designated grounds for finding nu-
trients, in which they are alone and tent to avoid each
other. These two collective strategies for the search for
nutrition can be classified as: (i) uniting, where all organ-
isms swarm together (Fig. 1 a); and (ii) spreading, where
organisms stay well separated (Fig. 1 b). Interpolating
between these two strategies we can imagine an adaptive
strategy (iii), where organisms group into loose swarm
while individuals stay locally separated (Fig. 1 c). An-
imals developed these strategies cooperatively through
communication and evolutionary pressure. Inspired by
that, here we apply a machine learning algorithm where
active agents communicate in order to efficiently find and
consume nutrients and thereby employ the strategies (i)-
(iii).

Active particles have been studied extensively, and re-
cently also machine learning algorithms have been ap-
plied to active particles [1]. Examples are microswimmers
that learn a complex flow field [2–7], gliders navigating
in turbulent flow [8, 9], learning to swim at low Reynolds
number [10], learning chemotaxis [11, 12], learning flock-
ing of a collection of agents [13] or learning optimal paths
in flow [14–17] or force fields [18–20]. Experimentally,
there are a number of active particle systems [21] which
recently have been equipped artificial visual perception
[22] and reinforcement learning [23]. These active par-
ticles give a motivation to applications such as targeted
drug delivery, minimal invasive surgery [24–27] or decon-
tamination of polluted water [28]. Related to the latter,
there have been a number of studies of microswimmers
in chemical fields. Whether synthetic or biological, these
can sense the concentration of a chemical and move along

∗ benno.liebchen@pkm.tu-darmstadt.de
† Fabian.Schwarzendahl@hhu.de
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FIG. 1. Collec ive s ra egies for  he search of nu rien s. a
uni ing s ra egy: all agen s behave coopera ively and swarm
 oge her. b adap ive s ra egy:  he agen s ei her follow o hers
or avoid  hem depending on  he environmen . c spreading
s ra egy:  he agen s behave aversely and s ay well separa ed.

its gradient [29, 30]. Signaling microswimmers use this
ability and produce certain chemicals to communicate
based on quorum sensing mechanism [31–35].

In this letter we equip active agents with a deep re-
inforcement learning algorithm, where agent’s goal is
to consume a nutrient field as efficiently as possible.
Thereby, the agents communicate through a quorum
sensing field. Depending on the density of agents and
their consumption rate of the nutrient field, they em-
ploy the strategies (i)-(iii). Moreover, they also adapt
dynamically to new situations switching between (i)-(iii)
depending on changes in the nutrient field.

We consider an ensemble of N (artificial or biological)
overdamped colloids located in a Gaussian random nu-
trient field c(r, t). Independent starting configurations
are produced by placing all agents randomly in the sim-
ulation box and generating a Gaussian random field us-
ing the power spectrum realization method [36–38]. The
particles move with constant speed v0 along their orienta-
tions pi = (cos θi, sin θi) in a two-dimensional simulation
box of size L×L with periodic boundary conditions. The
main task of the particles is to consume nutrients as effi-
ciently as possible by reducing the nutrient field at rate
kdc(ri, t) at their position ri(t). Here, the consumption
rate is proportional to the local concentration of the nu-
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FIG. 2. Schema ic of  he Quorum sensing s ra egy model. The consuming par icles (red do s) move in a nu rien concen ra ion
(colorcoded field) and communica e wi h each o her by producing a Quorum sensing field (illus ra ed by whi e circles around
 he par icles). Each par icle feeds i s local concen ra ion in o a neural ne work. The ne work will predic  wo values for α and
β  ha de ermine  he alignmen of  he agen along ∇ρ and ∇c.

trients, which allows particles to consume larger amounts
when they are at locations of higher concentration. The
dynamics of the nutrient concentration field follows a dif-
fusion equation (with diffusion coefficient Dc), with addi-
tional sink terms describing the consumption of the par-
ticles

ċ(r, t) = Dc∆c(r, t)− kd

N∑

i=1

c(ri, t)δ(r− ri) . (1)

The particles can orient on the basis of two quantities.
On the one hand, via the nutrient concentration field it-
self, by responding to it via chemotaxis and swimming
up the concentration gradient. On the other hand, we
assume that the particles can communicate with each
other by producing signaling molecules to which the oth-
ers respond by quorum sensing mechanisms. Similar to
Eq. (1), this can be described by another diffusion equa-
tion with additional point sources, which take into ac-
count the production of signaling molecules by the parti-
cles. Also, we consider a sink term that models possible
degradation of the molecules by chemical processes or
other reactions

ρ̇(r, t) = Dρ∆ρ(r, t) + λ
N∑

i=1

δ(r− ri)− µρ(r, t) . (2)

Here, Dρ is the diffusion coefficient of the quorum sensing
field, the particles produce signaling molecules with rate
λ, which evaporate with rate µ. Assuming the dynamics
of the signaling molecules ρ is fast, i.e. ρ̇ = 0, the steady

state profile in two dimensions is

ρ =
λ

Dρ
K0(κr) (3)

where K0(x) is the modified Bessel function of second

kind and κ =
√

µ
Dρ

.

The following equations describing the dynamics of the
particles thus depend on the nutrient concentration field
c(r, t) as well as the field of quorum sensing molecules
ρ(r, t)

ṙi(t) = v0pi, (4)

θ̇i(t) = α(c)pi ×∇ρ+ β(c)pi ×∇c, (5)

where a × b = a1b2 − a2b1 and ri(t) is the i’s particles
position. The particles steer towards high particle den-
sity locations with a strength α(c) > 0. The opposite
happens for α(c) < 0, with particles moving away from
locations with high concentrations of signaling molecules.
This faces the second term, with which particles swim up
the nutrient concentration field with strength β(c) > 0.
We measure time in units of t0 = 1

10 µ and length

in units of l0 =
Dρ

100v0
. The simulation parameters are:

Dρ

l02/t0
= 10, λl0t0 = 1, Dc

l02/t0
= 0.0001, and v0

l0/t0
= 0.1

Here we use Q-learning [39], a variant of reinforce-
ment learning (RL), to find the optimal quorum sensing
strategy for α(c) and β(c). The RL agents interact with
their environment by determining their states st and per-
forming actions at to maximize their expected rewards.

The discounted future reward is Rt =
∑T

t′=t γ
t′−trt′ =
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rt + γRt+1, where T is the last time step, rt is the re-
ward when moving from state st to state st+1 and the
discount factor γ (γ=0.9 in our model) weights the im-
portance of future rewards compared to immediate ones.
For each agent we define the state st as the local con-
centration of the nutrient field at its position c(ri, t).
After each time interval ∆t/t0 = 100, an agent arrives
at the next state st+1 and chooses a new action at+1,
that is, new values for α and β. These control the direc-
tion in which they move with α deciding on a movement
towards (or away from) neighboring particles and β en-
forcing alignment along higher concentrations of c(r, t).
To this end, different actions are chosen during training
with αt0/l0

3 ∈ [−5, 5] and βt0/l0
3 ∈ [0, 5], in steps of 1

and 0.5, respectively. Within each of 5000 episodes with
simulation time tmax/t0 = 2000, a new Gaussian random
nutrient field is generated and the agents are placed ran-
domly in the simulation box. We let the agents train to
estimate values for state-action pairs Qπ(s, a) that indi-
cate the expected sum of discounted future rewards when
starting in state st = s, performing action at = a and fol-
lowing policy π:

Qπ(s, a) =
∑

s′,r

P (s′, r|s, a)
∑

a′
π(a′|s′)[r + γQπ(s′, a′)] . (6)

Given the dynamics of the environment, P (s′, r|s, a) de-
notes the transition probability into each possible pair
of next state s′ with reward r when performing action a
in state s. An agent is rewarded the more it consumes:
r = C/(kd∆t) − 1, where C is the total amount of con-
sumed nutrients of an agent during time ∆t. The policy
π(a|s) maps the state-action pair to the probability of
taking action a in state s. In Q-learning, the optimal pol-
icy consists in always taking the action a with the largest
Q-value max

a
Q(s, a). During training, the agents follow

an ε-greedy policy to ensure a sufficient exploration of the
environment. This means that a random action is chosen
with probability ε, while the action with the highest Q-
value is chosen with probability 1− ε. Over the episodes,
ε is decreased linearly starting from 1 down to 0.01.

Since in simple Q-learning the size of the state-action
space is limited and we need to handle the large number
of possible states (i.e. nutrient concentrations c(r, t)), we
approximate the Q-values by an artificial neural network
Q(s, a; θ) (called deep Q-network (DQN)) [40]. Here θ
describes the parameters of the neural network (weights
and biases) that are adjusted during training to minimize
the difference of the DQN’s output and the right-hand
side Eq. (6). This is achieved by storing all transitions
{st, at, st+1, rt} during an episode and using experience
replay to train the neural network. We use the mean
squared error as a loss function, i.e. the mean value of
the difference (rt + γmax

a
Q(st+1, a; θ) − Q(st, at; θ))

2 is

calculated over all transitions of an episode. An Adam
optimizer [41] with a learning rate of 0.01 and a learn-
ing rate decay of 0.05 is applied to update the network
parameters. The DQN has an input layer with a single
neuron and two hidden layers, each with 256 neurons,
using a ReLU activation function [42]. The output layer
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FIG. 3. S a e diagram of learned quorum sensing s ra egies.
The ac ive agen s employ differen s ra egies depending on
 he agen densi y N/L2 and  heir consump ion ra e k0. Uni -
ing s ra egy (blue do s):  he agen s behave coopera ively and
congrega e, wi h α > 0 for all nu rien concen ra ions; adap-
 ive s ra egy (green do s): depending on  he local nu rien 
concen ra ion,  he agen s ei her follow o hers or avoid  hem;
spreading s ra egy (red do s):  he agen s behave aversely and
avoid each o her, wi h α < 0 for all nu rien concen ra ions.

consists of one output neuron for every action with a lin-
ear activation function. In our RL algorithm we trained
the neural network with the help of TensorFlow [43].
The RL algorithm can be successfully applied, allowing

the agents to maximize the consumed amount of nutri-
ents. To obtain a systematic overview of the possible
strategies that the particles employ, we determine the
full state diagram as a function of the consumption rate
kd and particle density N/L2. We identify the three dif-
ferent strategies (i)-(iii) that differ at the level of align-
ment along the nutrient field and the quorum sensing
field (see also Fig. 1 and Supplementary Movie). For
low consumption rates we find a ”uniting strategy” (blue
dots in Fig. 3), where the particles always follow the self-
produced quorum sensing field and try to aggregate. This
means that the particles always align their orientation
towards higher particle concentration (see blue curves
corresponding to kdt0/l0 = 0.001 with α(c) > 0 for all
concentrations in Fig. 4). This effect is especially dom-
inant at low concentrations, since in this case it is prof-
itable for a particle to change local position as quickly as
possible and follow the signal of high particle accumula-
tions, which have found areas with high concentrations.
In addition, the particle uses the nutrient field itself to
navigate. However, as can be seen in Fig. 4, the influ-
ence by β(c) is small at low concentrations, guaranteeing
that particles do not get stuck in local maxima. Once
particles reach areas of high nutrient concentration, this
behavior changes. The particle orientation is now deter-
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ior in which  he agen s a  emp  o avoid accumula ion bu 
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(red - spreading).

mined by the local gradients of the nutrient field, as can
be seen from the increase in β(c) in Fig. 4. Once par-
ticles have reached the global maximum, they no longer
need guidance from other particles and the influence of
the quorum sensing molecules decreases.

For very large consumption rates and with increas-
ing particle density, the exact opposite occurs with a
”spreading strategy” by which the particles avoid each
other (red dots in Fig. 3). As can be seen in Fig. 4,
the particles permanently choose α < 0, which causes

them to stay away from each other. Nevertheless, they
are still able to follow increasing nutrient concentrations.
Since the consumption rate of the particles is high, they
also do not easily get lost in local maxima anymore (be-
cause these are directly annihilated) and β is increased
even for small concentrations c (compared to the uniting
strategy).
Between these two strategies, another strategy in the

state diagram in Fig. 3 can be observed, which turns out
to be a mixture of the previous two in the form of an
”adaptive strategy”. Here, the local nutrient concentra-
tion at the position of the particles decides whether they
move towards each other or try to avoid each other. At
small nutrient concentrations, the particles orient along
the gradient of the quorum sensing field ρ, similar to
the uniting strategy. However, this effect is smaller in
the adaptive strategy, where an excessive accumulation
of particles leads to an immediate degradation of c at
exclusively a single location. If the particles are at lo-
cations of high nutrient concentration, they adapt their
behavior and try to keep distance to neighboring par-
ticles (see change of sign in α for kdt0/l0 = 0.007). In
this region for moderate consumption rates (green dots in
Fig. 3), the particles decide, depending on the local con-
centration c(r, t), whether to move towards neighboring
particles or to avoid them.
In conclusion active particles were equipped with a ma-

chine learning algorithm that enables them to coopera-
tively consume a nutrient field. Thereby, they learn three
different strategies (”uniting”, ”spreading”, ”adaptive”)
depending on their density and their ability to consume
nutrients. These results could be applied to help mi-
crorobots in finding efficient strategies to decontaminate
polluted water [28].
In the future, it would be interesting to realize this in

an experimental setting. As a first step, one could use
externally controlled microswimmers such as in [33] or
macroscopic robots [44], where the nutrient and quorum
sensing field are simulated. In the approach used here,
the particles sense only the local concentration of the
nutrient field, which is a minimal amount of information
about their environment. Extending the information that
particles receive to include also the orientations of other
particles, could give rise to additional strategies such as
flocking [13] and might increase the nutrient consumption
efficiency. A different path to improving the efficiency of
nutrient consumption is to control the quorum sensing
depending on the state of the particles or the amount of
consumed nutrient.
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Strategic spatiotemporal vaccine 
distribution increases the survival 
rate in an infectious disease 
like Covid‑19
Jens Grauer1, Hartmut Löwen1 & Benno Liebchen2*

Present hopes to conquer the Covid‑19 epidemic are largely based on the expectation of a rapid 
availability of vaccines. However, once vaccine production starts, it will probably take time before 
there is enough vaccine for everyone, evoking the question how to distribute it best. While present 
vaccination guidelines largely focus on individual‑based factors, i.e. on the question to whom vaccines 
should be provided first, e.g. to risk groups or to individuals with a strong social‑mixing tendency, 
here we ask if a strategic spatiotemporal distribution of vaccines, e.g. to prioritize certain cities, can 
help to increase the overall survival rate of a population subject to an epidemic disease. To this end, 
we propose a strategy for the distribution of vaccines in time and space, which sequentially prioritizes 
regions with the most new cases of infection during a certain time frame and compare it with the 
standard practice of distributing vaccines demographically. Using a simple statistical model we find 
that, for a locally well‑mixed population, the proposed strategy strongly reduces the number of 
deaths (by about a factor of two for basic reproduction numbers of R

0
∼ 1.5− 4 and by about 35% for 

R
0
∼ 1 ). The proposed vaccine distribution strategy establishes the idea that prioritizing individuals 

not only regarding individual factors, such as their risk of spreading the disease, but also according to 
the region in which they live can help saving lives. The suggested vaccine distribution strategy can be 
tested in more detailed models in the future and might inspire discussions regarding the importance of 
spatiotemporal distribution rules for vaccination guidelines.

The Covid-19 pandemic 2019/20201–5 has led to more than 40 million infections and 1 million deaths worldwide 
(October 2020)6,7 and an unprecedented social and economic cost which comprises a sudden rise of the number 
of unemployments by more than 20 million in the USA alone, and a damage of trillions of dollars at the stock 
market and in the worldwide real  economy8. This situation challenges politicians to decide on suitable measures 
and researchers to explore their efficiency, based on models allowing to forecast and compare the evolution of 
infectious diseases (like Covid-19) when taking one or the other action.

Available measures to efficiently deal with epidemic outbreaks at low infection numbers include a rig-
orous contact-tracing (e.g. based on “Corona-Apps”9) and -testing combined with quarantine of infected 
 individuals10–13. Strict travel restrictions preventing an infectious disease from entering disease-free regions (or 
to die out  locally14) present an alternative  measure15,16, whereas travel reductions by less than ∼ 99%17 slow down 
the spreading of the disease only  slightly17–19.

At higher infection numbers, the only way to avoid an explosion of contagions is to reduce the contact rate 
through measures that largely influence the everyday life of the population, such as social  distancing11,13,20–23 and 
lock-down13,24. If a population does not persistently reduce the contact rate to the point where infection rates 
decrease (this requires a contact reduction of > 60% for a basic reproduction number of R0 = 2.522), the majority 
of its members must endure the disease—until it finally reaches herd  immunity25.

The main hope which remains at such stages rests on the rapid discovery and admission of  vaccine26,27 (or 
 antibodies28) to accelerate reaching herd immunity. However, while every day where an infectious disease like 
Covid-19 is active may cause thousands of additional deaths, even after admission, it may take months until suf-
ficient vaccine is available to overcome an infectious disease. Therefore it is important to strategically distribute 
the available vaccines such that the number of deaths remains as small as possible. Surprisingly, both official 
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vaccination guidelines, e.g. for pandemic  influenza29,30, and previous works on vaccine  distribution31–33, focus 
on the question to whom vaccine should be mainly provided, e.g. to prioritize individuals by age or disease 
risk, and leave the quest for a suitable spatial and temporal vaccine distribution aside. (Other works  like34 ask 
for the optimal vaccine production rate.) This results in the common practice of simply distributing vaccines 
proportionally to the population  density35.

In the present work we propose alternative strategies for the spatiotemporal distribution of gradually produced 
vaccines, which hinge on the idea that the number of deaths due to a spreading infectious disease is controlled 
by the bi-linear incidence rate βSI36, which increases linearly in the number of susceptibles S and infections I, 
with β being the transmission coefficient, not by population density. With the “infection weighted strategy” 
(see Fig. 1b,e), the available vaccine is distributed proportionally to the calculated bi-linear incidence rate. 
This strategy can be further improved by sequentially prioritizing the regions (cities) with the highest bi-linear 
incidence rate, and correspondingly the highest number of new infections in a certain time frame (see Fig. 1c,f 
and the Supplementary Movie); that is by exclusively providing, or “focusing”, all available vaccines to those 
regions (“focusing strategy”). To compare the infection weighted and focusing strategy with the “demographic” 
vaccine distribution practice, we develop a simple statistical model describing the time-evolution of an epidemic 
outbreak (such as Covid-19) and its response to vaccination. As our central result, we find that the number of 
deaths resulting from infections occurring after the onset of vaccine production is generally lower, i.e. for the all 
considered initial reproduction numbers ( R0 ∼ 1− 4 ) and vaccine production rates as well as in the absence 
and in the presence of additional social distancing rules, when following the focusing strategy rather than the 
demographic distribution practice. In fact, for sufficiently inhomogeneous infection patterns, the focusing strat-
egy reduces the number of deaths by more than a factor of two, for a large range of basic reproduction numbers 
R0 and vaccine production rates. The difference is largest for R0 ∼ 2− 3 , i.e. it features a peak in this range, as 
might be typical for Covid-19 if no additional measures are in action, but even for R0 ∼ 1 the focusing strategy 
significantly increases the survival probability.

Figure 1.  Schematic illustration of the proposed spatiotemporal vaccine distribution strategies and of the 
simulation model. (a) shows the standard “demographic strategy”, where vaccines (dosage needles) are 
continuously distributed among all regions (e.g. cities) proportionally to their population density (dots 
represent groups of individuals). (b) shows the “infection weighted” strategy, where vaccines are distributed 
proportionally to the local bi-linear incidence rates (red and orange dots) and (c) shows the “focusing strategy” 
where at early times (clocks; transparent syringes show the vaccine distribution at later times) only the region 
with the largest bi-linear incidence rate receives vaccines, until the rate of a second region catches up and also 
receives vaccines. (d)–(f) show typical simulation snapshots for an inhomogeneously distributed population 
with a “city size distribution” following Zipf ’s law, taken 56 days after the onset of vaccination when following 
the demographic strategy, the infection weighted strategy or the focusing strategy, respectively. The legend below 
shows the states in our model.
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Model
To explore the impact of the spatiotemporal vaccine distribution on the disease-evolution in detail, we now intro-
duce a computational model, which is based on Brownian agents and allows deriving a (nonuniform) statistical 
mean-field model as we will discuss below. Both models are expected to apply to situations where the population 
is locally well-mixed. The model describes the dynamics of N agents moving randomly in continuous space in 
a box of size L× L with periodic boundary conditions. The agents represent groups of individuals and have an 
internal state variable, which is inspired by the SIR  model37–39 and its  variants40–44. We use colors (see legend 
in Fig. 1) to represent the possible states in our simulations, which refer to individuals which are “susceptible” 
(grey), “infected with weak symptoms” (orange), “infected with significant symptoms” (red), “recovered” (green) 
and “vaccinated” (blue). Infected agents (orange and red) have an inner clock; they remain symptom free for 
a latency time tL and then show mild (orange) or significant (red) symptoms for a duration tD − tL . After an 
overall disease duration of tD they either recover with a survival probability so,r (green) or die with probability 
1− so,r (black), where the indices refer to agents with mild (orange) and significant symptoms (red), respectively. 
To model the infection dynamics we describe the spatial motion of an agent with position ri(t) using Brown-
ian dynamics ṙi(t) =

√
2Dηi(t) , where D is the diffusion coefficient controlling how fast agents move and ηi(t) 

represents Gaussian white noise with zero mean and unit variance. We assume that all infected agents (orange 
and red) are infectious, both in the latent phase and afterwards (as for Covid-19) and infect a fraction of βo + βr 
of those susceptible agents (grey) which are closer than a distance Rc ; here, indices refer to mild (orange) and 
significant (red) symptoms. Agents showing significant symptoms (red) do not move but can infect “visitors” if 
actively approaching them.

To connect the suggested model with standard mean-field descriptions for infectious diseases, we now deduce 
a continuum model from the Langevin equations describing the agent dynamics. The resulting model can be 
viewed as a generalization of standard mean-field models such as the SIR and the SEIR model to inhomogeneous 
situations and cases where mild and strong infections coexist (as for Covid-19). Let us now consider continuous 
variables (fields) representing the local mean number density of susceptible agents S(r, t) , exposed agents E(r, t) 
(infected but not yet diseased), infected agents which are free of symptoms (or have mild symptoms) F(r, t) , 
infected agents with symptoms I(r, t) , recovered (immune) agents R(r, t) and victims V(r, t) . In the absence of 
social forces (pair attractions, social distancing), the following equations follow by translating Langevin equa-
tions to Smoluchowski  equations45 and coupling them via suitable reaction terms:

Note here that the exposed state explicitly shows up as a dynamical variable at the continuum level, but only 
implicitly in our agent-based simulations where infected agents have an inner clock and are in the latent phase 
before showing (mild) symptoms. In the above equations, β ′ is the effective contact rate, i.e. 1/β ′ is the mean 
time between infectious contacts; α = 1/tL is the rate to switch from the exposed (latent) state to the infected 
state, δ = 1/(tD − tL) is the recovery rate and ν′(r, t) is the spatiotemporal vaccination rate which is linked to the 
constant total vaccination rate in the agent-based model via ν =

∫
dr ν′(r, t) . The number r is the ratio of infec-

tions proceeding symptom free (or with mild symptoms) and ρ0 = N/L2 is the mean agent density. Finally, D is 
the diffusion coefficient and f(r) = −∇rU/γ is the reduced force due to the external potential which we use to 
create a density profile mimicking a typical city size distribution. The overall density converges to a Boltzmann 
distribution S + E + F + I + R + V = Nexp[−U(r)/(kT)]/

∫
exp[−U(r)/(kT)]dr , yielding the conservation 

law 
∫
(S + E + F + I + R + V) dr = N which can be viewed as an expression of the conservation of the overall 

number density (or the number of agents) in the coarse of the dynamics.
Numerically solving this model by using finite difference simulations now allows us to further test the 

spatiotemporal vaccination strategies. In our simulations we start with the initial state E = F = R = V = 0 
and S = 1− ǫ , I = ǫ where ǫ(r, t) represents a small perturbation of the unstable steady state (e.g. 
E = F = I = R = V = 0, S = 1 for U = 0 ), which represents the population before the emergence of the dis-
ease. The results of these simulations confirm that the spatiotemporal distribution of continously distributed 
vaccines plays an important role; also here, the infection-weighted strategy and the focusing strategy strongly 
increase the number of survivors as compared to the demographic distribution.

Results
We now perform numerical simulations of both the proposed agent based model and the statistical mean-
field model which both lead to consistent results. For the agent based model we perform Brownian dynamics 
 simulations46–51 starting with 2× 10−3N  randomly distributed initial infections and an initial reproduction 
number R0 = 2.5 such that infection numbers exponentially increase over time. Let us assume that vaccine pro-
duction starts after some initial transient and then allows to transfer ν individuals per day from the susceptible to 
the immune state. (Note that the duration of the initial transient is unimportant in our simulations, if vaccination 
starts long before herd immunity is reached.) Now considering the time-evolution of the percentage of infected, 
dead and recovered individuals of a given population, and distributing the available vaccines proportionally to 

Ṡ(r, t) = −β ′(E + F + I)S/ρ0 + D∇2S −∇ · (Sf)− ν′

Ė(r, t) = β ′(E + F + I)S/ρ0 − αE + D∇2E −∇ · (Ef)
Ḟ(r, t) = αrE − δF + D∇2F −∇ · (Ff)
İ(r, t) = α(1− r)E − δI −∇ · (If)
Ṙ(r, t) = δ(soF + sr I)+ D∇2R −∇ · (Rf)+ ν′

V̇(r, t) = δ(1− sr)I + δ(1− so)F
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the population density (bronze curves in Fig. 2), we observe an infection maximum (panel a) about 30 days (two 
infection cycles) after the onset of vaccine production, i.e. when about 22% of the population have received vac-
cines and 2% of the population is infected. When distributing the available vaccines proportionally to the local 
bi-linear incidence rate βSI instead, which according to İ ∝ βSI refers to the number of new infected cases in a 
given time frame (“infection weighted strategy”), notably, the infection maximum occurs an entire infection cycle 
earlier (silver curve in panel a). Here the infection number peaks when only 11% of the population has received 
vaccines and only 1% is infected. However, the infection weighted strategy is not optimal but can be further 
improved by exclusively providing all available vaccines to the region (e.g. a city) with the highest incidence rate 
(“focusing strategy”). This means that initially only a single region receives vaccines until the number of new 
infected individuals in a second region catches up and both regions simultaneously receive vaccines, until a third 
region catches up and so on. Following this “focusing strategy” the infection peak further shifts to earlier times 
(golden curve in panel a) and occurs when only 0.6% of the population is infected. Importantly, the resulting 
fraction of deaths reduces by more than a factor of two when following the infection weighted strategy (silver) 
rather than the demographic strategy (bronze). It almost halves again when following the focusing strategy 
instead (gold). This shows that the precise spatial and temporal order of vaccine donation controls the number 
of survivors from an infectious disease.

We now complement these results by numerical solutions of the statistical mean-field model equations by 
finite-difference simulations. As in our particle based simulations we find that the focusing strategy is generally 
better than the infection-weighted strategy and the demographic vaccine distribution strategy. The results of the 
agent-based simulations and the continuum simulations show a close quantitative agreement (not shown for the 
uniform system; see Fig. 4 for an exemplaric quantitative comparison in the presence of “cities”.).

To systematically explore the robustness of these findings we now repeat our simulations for different vaccine 
production rates and initial reproduction numbers. Figure  3 shows that the resulting fraction of deaths, counted 
once the disease is gone, is generally highest for the demographic strategy (bronze) and lowest for the focusing 
strategy (gold). Mathematically, this is because vaccination is most efficient at locations where it maximally 
inhibits the development of new cases of infections, which holds true independently of the specific parameter 
regime. The differences among the individual strategies is comparatively large if vaccine is produced fast enough 

Figure 2.  Competition of spatiotemporal vaccine distribution strategies regarding the time evolution of the 
fraction of infected individuals (a), the fraction of deaths (b), and of recoveries and vaccinations (c). Dashed 
red lines show simulation results without vaccination and bronze, silver (or grey) and gold show results for the 
demographic vaccine distribution strategy, the infection weighted strategy and the focusing strategy respectively. 
The blue line in panel (c) shows the vaccinated fraction of the population and vertical blue lines mark the 
onset of vaccination; the specific time of which is unimportant (see text). Panels on the right show simulation 
snapshots taken 14 days after the onset of vaccine production; insets magnify extracts of these snapshots. 
Parameters: Disease duration tD = 14 days ; latency time tL = tD/3 , survival probability sr = 0.965, so = 0.99 , 
total vaccination rate ν = 0.1N/tD and initial reproduction number R0 = 2.5 . (The latter is based on 
D = 102R2

c /tD , βo = 0.3 , βr = 0.1 ; see “Methods”); L = 500Rc ; curves are averaged over 100 random initial 
ensembles with N = 6000.
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to allow vaccinating at least about 1% of the population per day and at reproduction rates around R0 ∼ 2− 3 . 
The latter value might be sensible for Covid-19. However, even for slower vaccine production or for R0 ∼ 1− 2 
(as typical for influenza), several percent of deaths can be avoided in our simulations by strategically distributing 
the available vaccines in space and time.

To further explore the applicability-regime of the focusing strategy, we now combine it with social distancing 
rules, which reduce the effective reproduction number to Rt ∼ 1 . We implement the latter as a phenomenologi-
cal repulsive three-body interaction among the agents (see “Methods” for details) which prevents them from 
aggregating in groups of more than two individuals. Also here, the resulting deaths fraction (Fig. 4a) saturates 
significantly earlier when following the focusing strategy (gold) rather than the demographic strategy (bronze). 
The difference in deaths numbers among the three different vaccination strategies is almost identical to our cor-
responding results at R0 ∼ 1 but without social distancing (Fig.3b).

Figure 3.  Fraction of deaths as a function of the vaccine production rate (left) and the initial basic reproduction 
number (right) for the demographic strategy (bronze), the infection-weighted strategy (silver) and the focusing 
strategy (gold). Results without vaccination (black) are shown for comparison. The results are based on the 
agent-based model; the statistical mean-field equations lead to very similar graphs. Parameters are shown in the 
key; remaining ones are as in Fig. 2.

Figure 4.  Competition of spatiotemporal vaccination strategies (a) in the presence of social distancing which is 
activated after 14 days (black vertical line) and reduces the reproduction number to R ≈ 1 (b) for a population 
density distribution following Zipf ’s law. Colors and parameters are as in Fig. 2 but we have N = 12000 , 
L = 700 , R0 = 2.7 (which is based on D = 103R2

c /tD and βo = 0.05 , βr = 0.017 ) and ν = 0.05N/tD . Inset: 
Analogous results for the mean-field model using same parameters as in the agent-based model and a 140 × 
140-grid with each grid point corresponding to a spatial area of 5Rc × 5Rc (c) assuming a delay of 2 (dotted 
golden curve) and 7 (dashed golden curve) days in the registration of the cases of infection. Parameters are as in 
Fig. 4b.
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Finally, we explore a possible impact of a nonuniform population distribution (city structure) on the proposed 
vaccination strategies. We create a population with a spatial density distribution following Zipf ’s law which 
closely describes the city size distribution in most  countries52 as P̃c(s > S) ∝ 1/S , where P̃c(s) is the probability 
that a city is larger than S. To generate a population featuring a corresponding population distribution, we add 
an external potential U to the equation of motion of the agents (see “Methods” for details). Following statistical 
mechanics, the resulting population density follows Boltzmann’s law P(r) ∝ exp[−U(r)/(kT)] where P(r) is the 
probability that an agent is at position r and kT = γD is the effective thermal energy of the agents, controlling 
how often agents leave a “city” (minimum of U). Now matching Boltzmann’s distribution with Zipf ’s law yields 
a construction rule for U (see “Methods”) to create a population pattern featuring a characteristic city-size 
distribution. Our resulting simulations, shown in Fig. 4b, and in the Supplementary Movie (for N = 55.000 
agents), demonstrate that the focusing strategy and the infection weighted-strategy again halve the number of 
deaths compared to the demographic strategy. Here, the former two strategies are comparatively close to each 
other regarding the number of resulting deaths, which indicates that in strongly inhomogeneous populations a 
suitable spatial vaccine distribution rule might be even more important than the precise temporal sequence of 
vaccine donation. While in the previous simulations we assumed an immediate registration of infected persons, 
we have tested the strategies when the time scale for registration of infections is delayed by up to seven days 
(dashed and dotted golden curves in Fig. 4c). Even in the presence of such a delay, we obtain a reduced number 
of deaths when following the focusing strategy.

To further test the robustness of these findings, we have performed continuum simulations of our statistical 
mean-field model, which leads to close quantitative agreement with the particle based simulations (Fig. 4b). 
Typical snapshots of the infection pattern 56 days after the onset of vaccination are shown in Fig. 5. These 
figures show a clear reduction of the infection number in all infection hotspots for the focusing strategy (panel 
c) as compared to the infection weighted strategy (b) and in particular compared to the demographic vaccine 
distribution practice (a).

Discussion
Our findings establish the idea that the optimal vaccine distribution depends not only on individual-based fac-
tors (who first) but also on the spatiotemporal distribution (e.g. where to provide vaccines first). In particular, 
our results have shown that by sequentially prioritizing spatial regions (cities) with the highest local bi-linear 
incidence rates, the proposed “focusing strategy” significantly reduces the number of deaths compared to the 
standard practice of distributing vaccines demographically. Specifically for locally well-mixed populations, initial 
reproduction numbers R0 ∼ 1.5− 4 and a sufficiently inhomgeneous infection pattern, and if vaccine produc-
tion starts long before the population reaches herd immunity, our simulations reveal that the focusing strategy 
can reduce the number of deaths by more than a factor of two (and for R0 ∼ 1 by up to about 35% ). These find-
ings should be further tested in detailed models in the future e.g. to explore the impact of the proposed strategy 
also in situations where the population is not locally well-mixed and to combine the suggested spatiotemporal 
distribution strategy with individual-based factors such as the the prioritization of risk groups, individuals with 
a strong social mixing tendency or with jobs of systemic relevance. Finally, it should be noted that its applicabil-
ity hinges on a reasonably detailed knowledge e.g. of the actual local infection numbers and the relevant delay 
times in the communication of tests.

Methods
Simulation details. To calculate the spatial dynamics of the agents in our model, we solve Langevin equa-
tions ṙi(t) =

√
2Dηi(t) with i = 1, ..,N using Brownian dynamics simulations involving a forward Euler time-

stepping algorithm and a time-step of dt = 0.0028 days which amounts to about 4 minutes. After each timestep 
we check for each infected agent (red or orange) which susceptible agents (grey) are closer than Rc . We then 
change the state of the latter agents to an infected state with a transmission rate of β̃o = 3β̃r = 0.0075/dt (Figs. 2, 
3, 4a), corresponding to infections with mild symptoms (orange) and significant symptoms (red), respectively. 

Figure 5.  Snapshots of the infection patterns 56 days after the onset of vaccination, based on the statistical 
mean-field model. Colors show the density of exposed agents E(r, t) . Parameters are as in Fig. 4b.
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These rates yield βo = 3βr = 0.3 for the corresponding fractions of contacts which lead to infections. See Table 1 
for a list of the simulation parameters which we use in the present work.

Additional simulations. In order to demonstrate that the obtained results do not depend on the details of 
our simulations, but are rather to be understood as a generic outcome, we have performed additional simula-
tions based on a different particle based model. In particular, we have investigated active underdamped particles, 
which feature inertia, unlike the Brownian agents considered in our model, and move in a box of size L× L with 
periodic boundary conditions. We have have also tested this with hard-wall boundary conditions and find simi-
lar results (not shown here). In these simulations each particle has an internal drive, represented by an effective 
self-propulsion force FSP,i = γt v0u(θi) , where u(θi) = (cos(θi), sin(θi)) is the direction of self-propulsion. The 
behavior of the particles with masses m and moments of inertia I is now substantially different and the underly-
ing equations for the velocities vi and orientations θi are

where ηi(t), ξi(t) represent Gaussian white noise of zero-mean unit variance and γt , γr are are translational and 
rotational drag coefficients. In the simulations we again obtain a significantly reduced number of deaths when 
applying the focusing strategy as shown in Fig. 6a (with m/γt = I/γr = 103/tD , v0 = 50Rc/tD).

In addition, we carried out further simulations in which we tested the strategies in a structured population 
in which individuals differ from each other. For this purpose we assigned different mobilities to the agents and 
modeled two groups of individuals within the population, one with very low mobility ( D = 5× 102R2

c /tD ) and 

(1)m
dvi(t)

dt
=− γtvi −∇riU + FSP,i +

√
2Dγtηi ,

(2)I
d2θi(t)

dt2
=− γr

dθi

dt
+

√
2Dγrξi ,

Table 1.  Typical simulation parameters.

Disease duration tD 14 days

Latency time tL tD/3

Vaccination rate ν 0.1N/tD

Initial reproduction number R0 2.5–3

Survival probability sr 96.5%

Survival probability so 99%

Effective contact rate β ′ R0/tD

Diffusion coefficient D 102–103R2
c /tD

Number of agents N 6.000–55.000

Simulation box length L 500–700Rc
Strength of “city” potential a Dγ /2

“City radius” Rmin ,Rmax 20, 80Rc

Figure 6.  Fraction of deaths over time for (a) active particles with inertia and self-propulsion and (b) particles 
with different mobilities.
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the other with very high mobility ( D = 2× 103R2
c /tD ). The number of deaths is shown in Fig. 6b, where it can 

be clearly seen how this number is significantly reduced when the focusing strategy is applied.

City size structure. To generate a population density distribution with a structure which is typical for 
cities, we add an external potential landscape U(r) to the Langevin equations describing the dynamics of the 
agents, i.e. ṙi(t) =

√
2Dηi(t)−∇riU(ri)/γ . Here γ is an effective “drag” coefficient determining the strength 

of the response of the agents to U. We now create U as a superposition of Gaussians, U(r) =
∑

j ae
−

(r−rj)
2

2σ2j  , 
each of which leads to a population density maximum around rj , which represents the center of city j. Here a 
is the strength (amplitude) of the reduced potential which we choose as a = Dγ /2 = kT/2 and σj defines the 
radius of city j, which we choose randomly from a distribution P(σ ) = 1

σ
1

ln(Rmax/Rmin)
 where Rmin = 20Rc and 

Rmax = 80Rc are the minimal and the maximal possible “city radius” in the simulations underlying Fig.4b. We 
randomly distribute the city centers rj within the simulation box.

Social distancing. To effectively model social distancing in a simple way, we phenomenologically add 
repulsive excluded volume interactions among the agents which prevent that groups of more than two agents 
form. That is, we choose U = 1

2

∑

k,l �=k Vklνkl where the sums run over all agents and where Vkl represents the 

Weeks-Chandler-Anderson interaction potential among agents k,  l, i.e. Vkl = 4ǫ
[
( d
rkl
)12 − ( d

rkl
)6
]
+ ǫ if 

rkl ≤ 21/6d and Vkl = 0 otherwise. Here rkl denotes the distance between agents k and l and rcut = 21/6d repre-
sents a cutoff radius beyond which the interaction potential is zero; ǫ controls the strength of the potential and 
is chosen such that ǫ/γ = D . In our simulations at each timestep we choose νkl = 1 if at least one of the agent k 
and l has a “neighbor” at a distance closer than d = 3Rc and otherwise we choose νkl = 0 . In addition, we add a 
weak pair attraction of strength D/10 and range d = 3Rc to our simulations to support the formation of pairs. 
That way, agents can form pairs but there is a significantly reduced probability that they form triplets or larger 
groups.

Relation of reproduction number to simulation parameters. Here we relate the effective repro-
duction number Re(t) , which is the average number of infections caused by an infected agent at time t, with 
the microscopic parameters in our simulation. For this purpose, let us first consider the area A(t) covered by 
a Brownian agent with radius Rc and diffusion coefficient D over a time t. This area is known as the Wiener 
 sausage53 and reads

where J0(y) and Y0(y) are the 0-th Bessel functions of the first and second kind. Now denoting the agent density 
of susceptible agents with ρS , the average number of (possibly infectious) contacts during a time τ is A(τ )ρS . 
Thus, if agents are infectious over an overall time of tD and the fraction of contacts which lead to infections with 
significant (mild) symptoms is βr ( βo ), we obtain the following expression for the (spatially averaged) effective 
reproduction number Re:

where Re(t = 0) = R0 . This expression links the reproduction number with the microscopic simulation param-
eters and reveals that the reproduction number at time t is proportional to the average density of susceptible 
agents at time t.

Supplementary movie. The movie shows the time-evolution of the modeled infection pattern for 
N = 55.000 agents and its response to the proposed spatiotemporal vaccine distribution strategies. Parameters 
are as in Fig.4b and the population distribution in the movie follows a typical city size structure (Zipf ’s law).

Code availability
The source code of the model has been deposited in a recognized public source code repository (Zenodo, http://
doi.org/10.5281/zenod o.41220 12).
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Mutation induced infection waves 
in diseases like COVID‑19
Fabian Jan Schwarzendahl1*, Jens Grauer1, Benno Liebchen2 & Hartmut Löwen1

After more than 6 million deaths worldwide, the ongoing vaccination to conquer the COVID‑19 disease 
is now competing with the emergence of increasingly contagious mutations, repeatedly supplanting 
earlier strains. Following the near‑absence of historical examples of the long‑time evolution of 
infectious diseases under similar circumstances, models are crucial to exemplify possible scenarios. 
Accordingly, in the present work we systematically generalize the popular susceptible‑infected‑
recovered model to account for mutations leading to repeatedly occurring new strains, which we 
coarse grain based on tools from statistical mechanics to derive a model predicting the most likely 
outcomes. The model predicts that mutations can induce a super‑exponential growth of infection 
numbers at early times, which self‑amplify to giant infection waves which are caused by a positive 
feedback loop between infection numbers and mutations and lead to a simultaneous infection of 
the majority of the population. At later stages—if vaccination progresses too slowly—mutations can 
interrupt an ongoing decrease of infection numbers and can cause infection revivals which occur as 
single waves or even as whole wave trains featuring alternative periods of decreasing and increasing 
infection numbers. This panorama of possible mutation‑induced scenarios should be tested in more 
detailed models to explore their concrete significance for specific infectious diseases. Further, our 
results might be useful for discussions regarding the importance of a release of vaccine‑patents to 
reduce the risk of mutation‑induced infection revivals but also to coordinate the release of measures 
following a downwards trend of infection numbers.

The COVID-19  pandemic1,2 has led to more than 500 million  infected3 and more than 6 million  death3 worldwide 
until the beginning of Mai 2022. During the course of the pandemic the SARS-CoV-2 virus has mutated into 
various different  strains4,5, some of which have led to an increased infection  rate6–8 as compared to the original 
 strain2 (Wuhan 2019). Examples are the variants B.1.1.7 and B.1.351, which have driven a strong rise of infection 
numbers in the United Kingdom and South  Africa9,10 in late  202011,12 and the P.1 mutation which has induced 
an infection wave in  Brazil13 in early 2021.

The availability and ongoing vaccine production gives hope to slowly gain control of the  disease14–16. However, 
before herd immunity (if at all achievable) is finally reached worldwide it will take many month or even years, 
which the virus will exploit to mutate into a range of new strains. Thus, at the timescale of months or years a 
race is looming ahead between the occurrence of new mutations and the adaption and mass-production of exist-
ing vaccines to get these mutations under control. In particular, this makes it questionable if the present (and 
future) vaccination programs are sufficiently effective to ultimately get diseases like COVID-19 under control. 
It is therefore important to understand possible mutation-induced long-time disease-evolution scenarios e.g. 
in view of the ongoing discussions regarding the release of patents to accelerate worldwide vaccination but also 
regarding requirement of measures like social distancing once the infection numbers show a downwards trend.

Notably, historical examples to assess possible long-time consequences of mutation cascades are scarce, since 
particularly severe mutations have traditionally led to a rapid death of infected individuals eliminating these 
mutations. Thanks to modern medical treatment based e.g. on extracorporeal membrane oxygenation support 
or artificial aspiration, however, such a self-elimination of severe mutations is largely absent. Notably, besides the 
positive effect of immediately saving many lives, these treatments also have the side effect of inducing a poten-
tially disastrous self-amplification of mutations and infection-rates. Here we are interested in particular in the 
effects of mutations on the spreading of an infectious disease in phases where (i) mutations can serve as seeds 
for further mutations some of which are even more infectious than the strain from which they have emerged 
and (ii) mutation rates are either constant or higher when infection numbers are high. Both factors together can 
generally lead to a positive feedback loop between infection numbers and mutations suggesting severe long-time 
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mutation-induced effects for the disease evolution. Actual data for COVID-19 mutations show, in fact, early 
signatures supporting such a possible self-amplification scenario during some phases of the disease: They reveal 
an initial constant and a subsequent nonlinear growth of the relevant infection rate (Fig. 1a). For future pandem-
ics, it would be highly important to understand the possible long-time consequences of such a self-amplification 
mechanism and how fast vaccination has to progress worldwide in order to suppress the most dramatic ones. 
However, following the scarcity of useful historical examples illustrating the possible consequences, we have to 
rely on models to explore the possible impact of mutations on the long-time evolution of the disease dynamics, 
in particular also in the presence of vaccination and other actions counteracting the self-amplification mecha-
nism. To provide a concrete starting point for such an exploration, in the present work, we develop a statistical 

Figure 1.  The statistics of mutation formation and its impact on the course of an epidemic. (a) Reproduction 
number for different COVID-19 mutations as a function of the their emergence time (for details see “Methods”). 
Green dashed line shows a linear fit to initial constant growth. (b) For a constant mutation rate (middle panel, 
green background) an ensemble average of the multi component description with many infection strains In(t) 
leads to multiple infection waves of the global infection number I(t). Beyond the constant mutation rate, if the 
mutation rate is coupled to the infection number (right panel, red background), the ensemble average produces 
a hidden singularity, as manifested by the giant infection wave. Only one representative realization of the multi 
component description is shown in the blue frames. The left panel (yellow background) indicates the different 
levels of description starting from multi components leading to an effective mean field by coarse graining.
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minimal model to predict possible mutation-induced effects for the long-time evolution of infectious diseases 
like COVID-19. We first develop a stochastic multi-strain generalization of the popular susceptible-infected-
recovered (SIR) model to account for the random occurrence of mutations and then use the coarse-graining 
concept of statistical physics to derive an effective mean-field model enabling general predictions of the most 
likely scenarios for a given scenario (characterized by parameters such as the mutation and the vaccination rate). 
See Fig. 1b for an schematic illustration of our approach.

One generic prediction of our model is that mutations induce an explosive super-exponential growth of the 
infection numbers rather than the ordinary and much discussed normal exponential growth, in phases where 
the population is far away from herd immunity. At later phases, when a population comes close enough to herd-
immunity that the reproduction number drops below one ( R < 1 ) and infection numbers subsequently decrease 
to a very low level, mutations can raise the reproduction number to R > 1 inducing a new infection wave, which 
is followed by a whole train of further waves. This scenario occurs even for a constant mutation rate (Fig. 1b). If 
the mutation rate increases with the number of infections, as generally expected and discussed above, their effect 
is even more dramatic: then, mutations occur at a self-accelerating pace and continuously prevent the population 
from reaching herd-immunity by persistently enhancing the effective reproduction number of the disease. As a 
result the infection dynamics approaches a hidden singularity and displays signatures of a critical dynamics. That 
is, infection numbers grow extremely fast, giving a giant infection wave, such that the majority of the population 
is infected at the same time (see the values on the vertical axis in Fig. 1b), which would massively overstrain any 
existing medical system. Finally, in phases where vaccination of the population takes place and is sufficiently 
effective to suppress the hidden singularity and hence the explosive self-acceleration of infection numbers, our 
model predicts the possibility of mutation-induced infection wave trains, as in the case of constant vaccination, 
illustrating once more the possible dramatic consequences following from the fact that herd-immunity is not 
necessarily a permanent state in the presence of mutations. To see how these predictions come about, let us now 
discuss our general modelling approach in detail. Based on this approach we will then discuss our results for a 
constant mutation rate model and a model that goes beyond a constant mutation rate.

Model
To describe the impact of mutations on the infection dynamics within a simple statistical framework, we first 
generalize the popular susceptible-infected-recovered (SIR)  model17–37, which has been intensively explored in 
the context of the COVID-19  pandemic38–49. While some recent works have generalized this model to account 
for two different infectious  strains50,51, here we allow for the continuous emergence of new strains with a rate ν , 
which in general depends on the present infection number. Denoting the fraction of susceptible and recovered 
individuals with S and R respectively and the fraction of individuals which is infected with strain n as In , this 
leads use to the following dynamical equations:

 Here, γ is the inverse of the average disease duration, i.e. the recovery/death rate and βn is the infection rate of 
strain n, which we randomly choose from a certain characteristic distribution. As an initial state, we assume that 
initially (time t = 0 ) we have only a single infectious strain with a low positive infection number such that only 
I0 � 0 whereas In =0 = 0 for n = 1, 2...

To allow predicting the average (or most likely) result of the infection dynamics we now coarse grain this 
model, essentially by averaging over many strains and disease-realizations (see “Methods” section for technical 
details), which leads to the following effective model:

 Here, I is the overall infection number (all strains together) and β(t, I) is the average infection rate, which can 
depend on the overall infection number, depending on the underlying mutation statistics (see “Methods”).

Results
Let us now explore the impact of mutations on the disease evolution by comparing numerical simulations of 
the multi-component model with analytical predictions based on the mean-field model (Fig. 1b). To allow 
distinguishing between direct effects of mutations from the prevailing (and most infectious) strain and indirect 
effects due to the self-accelerating mutation cascade which we have described in the introduction and which 
may or may not become effective in reality, depending on the actual mutation rate and other parameters, we will 

(1)Ṡ = −
∑

n

βnSIn,

(2)İn = βnSIn − γ In,

(3)Ṙ =
∑

n

γ In.

(4)Ṡ = −β(t, I)SI ,

(5)İ = β(t, I)SI − γ I ,

(6)Ṙ = γ I ,
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sequentially follow on the cases of (i) a constant mutation rate µ leading to the emergence of new strains in our 
simulations with a constant rate and (ii) a mutation rate which depends on the present infection number µ(I).

Constant mutation rate. Mutation-driven infection dynamics. Let us assume that the infection rate βn 
of a newly occurring virus-strain is randomly selected from a normal distribution p with standard deviation σ 
centered around the infection rate of the presently prevailing strain:

 Here βmax,n−1 denotes the largest infection rate of all currently existing strains. This distribution, the average 
of which moves towards higher values in the course of a disease, is motivated by the fact that newly occurring 
mutations typically become visible only if they have a higher (or at least not much lower) infection rate than 
the currently prevailing ones. Coarse graining this mutation statistic (see “Methods”: “Details on model beyond 
constant mutation rate”) yields an the following average infection rate for our mean-field model

where µ is the constant mutation rate and β0 is the initial infection rate. That is, coarse graining the distribution 
(7) leads to a constant increase of the infection rate with time.

Let us first explore the disease evolution at early times when the majority of the population is susceptible, 
such that S(t) ≈ 1 . Then Eq. (5) reduces to

Now using Eq. (8) we find

 Thus, the fraction of infected individuals does not grow exponentially as in the standard SIR model but even 
faster. Following Eq. (10) if the mutation rate is high enough that tµ ≫ 2(β0 − γ ) long before herd-immunity 
is reached, the infection dynamics generically converges towards I(t) ∝ eµt

2 , which is completely mutation-
driven. To test this prediction, we now numerically solve the full multi-component model and show the overall 
I(t) =

∑

n In(t) in Fig. 2a. Notably, the result is close to the analytical prediction of the mean-field model and 
shows an even slightly larger growth.

Clearly, the predicted (super)exponential growth of the infection numbers can not continue forever but has 
to saturate once the population reaches herd-immunity either by collectively going through the infection or 
through vaccination. Once herd-immunity is reached, the infection numbers are normally expected to monot-
onously decrease, as predicted by the standard SIR model. However, numerical solutions of our mean-field 
model show that after a phase where the population recovers and infection numbers decay to a very low level, 
they can rapidly grow again (Fig. 2b). This sequence of decreasing and increasing infection numbers can even 
repeat for many times, leading to an infection wave-train. The maxima of the wave-trains follow a scaling law 
of Imax ∼ 1/(β0 + µtmax)

2 (see SI for derivation), which is shown in Fig. 2c. The prediction of wave trains is 
also confirmed by numerical solutions of the multi-component model, but somewhat weakened, because the 
individual strains can show waves occurring at individual “frequencies”. Let us now ask about the mechanism 
leading to these infection waves. They are induced by the nonlinear coupling of the infected and susceptible. 
First, the number of infected people grows, when the term βS in Eq. (5) is large enough. At a certain point, the 
number of susceptible is too small and the saturation effect from the recovery rate γ in Eq. (5) takes over such 
that the number of infected decreases. However, the infection rate β continues growing with time, such that βS 
can become large enough to induce a second wave. This feedback continues on multiple times giving rise to the 
oscillatory behavior shown in Fig. 2b. One a more intuitive level, these considerations show that in the presence 
of mutations herd-immunity is not necessarily a persistent state of a population and that strongly decreasing 
infection numbers are not an overall reliable sign that the population has overcome the disease. From a socio-
political viewpoint each growth phase within such wave trains might evoke (nonpharmaceutical) interventions, 
creating an immense mental burden on the population.

Phase diagram. To see how strong measures have to be taken to prevent such an infection wave train (or a 
super-exponential growth) in the first place, we now systematically vary the parameters in the model to create a 
state diagram providing a systematic overview on the possible scenarios. It turns out that there are three dimen-
sionless control parameters in our system (see SI), one of which is the initial infection number and the other 
two ones are the effective reproduction number S0β0/γ and a dimensionless mutation rate µ/β2

0 . Varying both 
parameters systematically and solving the mean-field mutation susceptible-infected-recovered (MSIR) model 
for each parameter combination we obtain the phase diagram shown in Fig.  2e, which shows four qualitatively 
different epidemic courses: a lethargic phase, which is characterized by an exponential decay, multiple waves, 
super exponential wave, and a rebound, with an initial local minimum and a proceeding super exponential 
increase. The occurrence of these states in parameter space is summarized in Fig. 2d. At large reproduction 
number the dynamics is “super exponential” (green domain) for any positive mutation rate. When decreasing 
the reproduction number, depending on the mutation rate, one reaches the regime of “multiple waves” which we 
have previously discussed (pink) or a “rebound” phase (blue) where infection numbers initially decrease, pass 

(7)p(βn) =
1√
2πσ

Exp

(

−
(βn − βmax,n−1)

2

2σ 2

)

,

(8)β = β0 + µt

(9)İ = β(I , t)I − γ I .

(10)I(t) = I0exp

[

1

2
t(2β0 − 2γ + tµ)

]

.
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a minimum and then increase to reach a single maximum before finally decreasing (Fig. 2e). For even lower 
mutation rates, the population is in the “lethargic” regime, where the infection numbers monotonously decrease.

Nonpharmaceutical interventions, vaccination, and immune escape. In practice the goal is of course be to apply 
appropriate measures to safely reach the lethargic regime in Fig. 2d and not to end up in the multiple wave or 
rebound regime where the evolution of infection numbers show a promising initial trend but a severe evolu-
tion at later times. To understand the impact of nonpharmaceutical interventions, we reduce the reproduction 
 number38–40,42,52,53, from R0 to a reduced reproduction number including measures R0,int at a time tint in our sim-
ulations and numerical solutions of the MSIR model. Starting in the super exponential wave regime ( R0 = 1.5 ) 
we apply interventions during the rise of a first wave (see Fig. 3a). By including weak measures ( R0,int = 1.3 ), 

Figure 2.  Power law dependence of infection dynamics, phase diagram and state classification for constant 
mutation rate. (a) Fraction of infected people I at short times t for the coarse grained MSIR, multi component 
MSIR and the early time approximation Eq. (10). ( I0 = 10−5 , R0 = 1 , µ/β2

0 = 0.05 ). (b) Long time wave pattern 
of fraction of infected people for coarse grained MSIR and multi component MSIR approach. ( I0 = 10−5 , 
R0 = 1 , µ/β2

0 = 0.2 ). (c) Scaling of maxima of infections for coarse grained MSIR and multi component MSIR 
approach. ( I0 = 10−5 , R0 = 1 , µ/β2

0 = 0.2 ). (d) Phase diagram for our coarse grained infection dynamics 
showing the occurrence of four different courses of the pandemic for varying mutation rate and reproduction 
number ( I0 = 2× 10−4 ). (e) Different courses of infections during an epidemic: lethargic, multiple waves, super 
exponential, and rebound.

Figure 3.  Nonpharmaceutical interventions, vaccinating, and immune escape. (a) Infections as function of 
time for a super exponential wave. Measures are taken by reducing the reproduction number to R0,int at time 
tint . Inset: zoom in to the early time regime (black line has no interventions, R0 = 1.5 , µ/β2

0 = 0.004 , tint = 10.5 
weeks). (b) Infections as function of time for a wave like pandemic course. Measures are taken by reducing the 
reproduction number to R0,int at time tint (black line has no interventions, R0 = 1 , µ/β2

0 = 10−3 , tint = 210 
weeks). (c) Infections as function of time of different vaccination rates α (black line has no vaccination, R0 = 1 , 
µ/β2

0 = 10−3 , I0 = 2× 10−4 ). (d) Infections as function of time of different immune escape rates ω (black line 
has no immune escape, R0 = 1.2 , µ/β2

0 = 2 , I0 = 2× 10−4).
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the maximum of infections decreases as intended, however, the wave needs a longer time to decay, implying a 
longer period of restrictions for the public. Lowering the reproduction number to R0,int = 0.9 , results in the 
appearance of a second and third intervention-mutation induced wave. These waves are enabled by the increased 
infection rate and the fact that due to the interventions there are more susceptible at a later point in time, where 
they can facilitate the growth of infections. Here, the situation would be particularly confounding to the public, 
since it was subjected to measures to decrease the number of infections in the first place; however, this results in 
more waves and a likely extension of the period of interventions. On the other hand, a strong reduction of the 
reproduction number ( R0,int = 0.7 ) gives a fast decay of infections, as intended. Of course the situation changes 
when we start from an infection dynamics with multiple waves ( R0 = 1 ) and apply measures during the rise of 
the second wave (see Fig. 3b). As expected, strong measures ( R0,int = 0.8 ) have the intended effect of eliminating 
the epidemic. On the other hand, if the measures are slightly weaker ( R0,int = 0.85 ), the infections first decrease, 
but then lead to a second intervention-mutation induced delayed wave, which is stronger in magnitude than the 
first wave. Again, this wave is induced by the growing infection rate and the enhanced number of susceptible 
individuals due to interventions. To decision makers and the public this type of wave could likely appear as 
unexpected. However, note that at least the overall number of recovered people at the end of our the epidemic is 
decreasing with stronger interventions, meaning that if only the cumulative number of infections is considered 
every reduction of R0 is useful.

Specifically for COVID-19 vaccines have become available and their continuous production gives hope to 
get the disease under control. However, one and half a years after vaccines have first become available only 
about 67% of the worldwide population has been fully vaccinated (early Mai 2022), leaving much time for the 
emergence of highly infectious mutations. Vaccinations effectively reduce the number of susceptible in the SIR 
 model14, such that we modify Eq. (4) as

with a vaccination rate α . Note that a more realistic model for vaccination would also account for a time depend-
ent roll out. We investigate the effect of vaccination on the infection dynamics for a situation leading to multiple 
waves (see Fig. 3c). Following Fig. 3c vaccinations have a clear effect; they have to be applied fast enough to 
significantly reduce the number of infections and temper the train of waves. This further shows the importance 
of manufacturing and distributing vaccinations as fast as possible.

When newly mutated strains arise the possibility of an immune escape increases, where a recovered indi-
vidual does not stay immune against the new strain. Let us therefore now include a term which accounts for an 
effective immune escape in our model in the form of a transition from recovered to susceptible. Explicitly we 
modify Eqs. (4)–(6) to read

where ω is the immune escape rate. The transition rate between susceptible and recovered introduces two new 
effects. First, this term leads to a positive feedback loop between the number of susceptible and recovered 
individuals which induces infection waves (see Fig. 3d), which can also be seen from a linear stability analysis 
(see SI) of Eqs. (12)–(14). Second, the infected population fraction saturates to a nonzero steady state, due to a 
replenishment of susceptibles (see also SI).

Beyond constant mutation rate. As a second possible scenario, let us now assume that the mutation rate 
is coupled to the infection number, such that mutations are more likely in phases where the infection numbers 
are large. To account for this effect in our model, we assume that new (relevant) mutations occur with a prob-
ability of p0In−1 from the most infectious strain where p0 is constant and also that the infection rates of new 
strains follow from a random walk with a mutation-induced bias as βn = βn−1 +�β (see “Methods” for details). 
Coarse graining the biased random walk yields a mean field infection rate which evolves as

with a mutation rate � . Intuitively, this means that new mutations occur in our mean-field model with a rate 
which is proportional to the present infection number.

Mutation-induced dynamics. At early times, where S ≈ 1 we obtain again Eq. (9), which yields together with 
Eq. (15)

where δ1 and δ2 are constants that are given in the SI. Importantly, the infections in Eq. (16) do not grow expo-
nentially, but there is an explosive super exponential growth, which asymptotically has a scaling behavior fol-
lowing Isc(t) ∼ 1/|t − tc|2 with a critical time tc (see SI for explicit expression). Crucially, this giant infection 

(11)Ṡ = −β(I , t)SI − α,

(12)Ṡ = −β(t, I)SI + ωR,

(13)İ = β(t, I)SI − γ I ,

(14)Ṙ = γ I − ωR,

(15)β(t) =
∫ t

0
�I(t ′)dt ′,

(16)I(t) = −
δ1

�
[

1+ cosh
(

2 ln δ2 + t
√
δ1
)] ,
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wave qualitatively differs from the comparatively mild super-exponential behaviour which we have encountered 
for the case of a constant mutation rate in that it leads to a much more extreme self-acceleration of the infection 
numbers. As a result, the infection numbers peak only at extremely high values where a large fraction of the 
population is infected at the same time (see Figs. 1b and 4a). Clearly, such an explosive growth would be inter-
rupted at some point as the population approaches herd immunity. To quantify to which extend the predicted 
explosive growth would occur before herd-immunity causes significant deviations, we consider the expression 
min(ln(Isc)− ln(I)) , which quantifies how closely the fraction of infections approaches the underlying (idealized) 
power law dependence in the presence of saturation effects. We find that for large mutation rates the power-law 
dependence is strong for any reproduction number (Fig. 4b) and weakens for lower mutation rates. Remarkably, 
the explosive growth depends only weakly on the reproduction which is the parameter that is controllable due 
to interventions. After the initial super-exponential increase of infections the saturation effects from people 
recovering induce a maximum and a succeeding decrease in infection numbers.

Phase diagram. Depending on the basic reproduction number and the mutation rate the MSIR model predicts 
four distinct courses summarized in the phase diagram Fig. 4c, which has been obtained analytically (see SI). 
We find a lethargic regime characterized by an exponential decay (purple regime, Fig. 4d); an explosive regime 
(cyan regime); a rebound regime (dark yellow) where we have a minimum followed by a mutant induced super 
exponential increase; and weak rebound (red) leading to an infection maximum which is smaller than the initial 
fraction of infected individuals. Generally, the explosive (or super exponential) regime occurs for reproduction 
numbers R0 > 1 and any positive mutation rate, whereas the other three regimes occur for R0 < 1 . For low 
mutation rate and R0 < 1 the epidemic is in the desired lethargic regime, increasing the mutation rate leads to a 
small region of weak rebound which then transitions to a rebound dynamics.

Nonpharmaceutical interventions, vaccination, and immune escape. To explore the efficiency of measures which 
effectively reduce the reproduction number, we again change the reproduction number R0 to a value of R0,int at 
time tint . Now starting from the explosive (super exponential) regime ( R0 = 1.2 ) we decrease the reproduction 

Figure 4.  Scaling law of short time infection dynamics, Phase diagram and state classification of approach 
beyond constant mutation rate. (a) Infections as function of reduced time |t − tc| where tc is the critical time at 
which the infections diverge (see SI for details). We show the scaling law, coarse grained MSIR and our multi 
component MSIR approach. ( R0 = 2 , �/β2

0 = 2× 104 , I0 = 10−4 ). (b) Deviation of the fraction of infections 
at short times from our corse grained MSIR approach to the a 1/|t − tc|2 scaling by using min(ln(Isc)− ln(I)) . 
Mutation rate and reproduction number are varied ( I0 = 2× 10−4 ). (c) Phase diagram of our coarse grained 
MSIR approach showing the occurrence of four different courses of the pandemic for varying mutation rate and 
reproduction number ( I0 = 2× 10−4 ). (d) Example plots of the infections as function of time for four different 
courses of the pandemic: lethargic, super exponential wave; rebound, and weak rebound.
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number during the rise of the wave (Fig. 5). Strong measures yielding R0,int = 0.7 or R0,int = 0.8 ) induce an 
immediate decay of the infection numbers as desired. However, weak measures, leading to R0,int = 1 only delay 
the occurrence of the infection maximum but hardly change the value of I at the peak. Hence, it is clear that 
measures need to be strong enough to have a significant effect, while weak measures only delay the infection 
number explosion.

We finally ask how fast vaccination would have to progress in order to suppress a mutation-induced explo-
sion of infection numbers or a mutation-induced rebound at initial reproduction numbers smaller than 1. 
Vaccinations effectively reduce the number of susceptibles by a vaccination rate α (see also Eq. 11). If we start in 
the explosive (super exponential) regime, a high vaccination rate is needed to interrupt the rapid growth of the 
infection numbers (Fig. 5b): while small vaccination rates ( α/β0 = 0.01 ) merely shift the infection maximum 
to a later time, while having little change in the number of infections, larger vaccination rates ( α/β0 = 0.025 ) 
effectively suppress the explosion of infection numbers. Therefore, to prevent possible mutation-induced long-
time consequences it is imperative to maximize vaccine production worldwide. Enhancing vaccine production 
is particularly important in countries with a weak healthcare system, which face the threat of being overloaded 
by COVID-19  cases54–59.

Newly mutated strains allow for an immune escape of the virus, effectively representing a transition of 
recovered individuals to susceptible ones with an immune escape rate ω (see also Eqs. (12)–(14)). This leads to 
a continued recovery of the number of susceptibles and drives the population away from herd immunity, which 
in turn can cause new infection waves (see Fig. 5c), that can also be predicted using a linear stability analysis (see 
SI). Further, we find that the number of infected saturates to a nonzero steady state (see also SI).

Discussion
Inspired by the ongoing COVID-19 disease and the continued emergence of new mutations supplanting pre-
ceding ones, in the present work we have developed a stochastic multistrain generalization of the popular SIR 
model. Combining this model with coarse graining concepts from statistical physics has allowed us to predict a 
panorama of possible scenarios for the mutation-controlled evolution of infectious diseases.

In particular, our approach suggests that mutations can induce a super-exponential growth of infection 
numbers in populations which are highly susceptible to the disease (e.g. because they are far from reaching herd 
immunity). As compared to the standard exponential growth, interrupting such an super-exponential growth 
is much more difficult and requires stronger and stronger measures as the disease evolves. In practice, such a 
super-exponential growth may occur e.g. if measures are applied too late, or if vaccines suddenly become inef-
fective against mutations.

One particularly severe form of such an super-exponential growth can occur if the mutation rate of a virus is 
proportional to the current number of infections. For this case our model predicts a giant infection wave, which 
is based on a positive feedback loop between the mutation-rate and the infection number causing a massive-self 
acceleration of the latter resulting in a state where the majority of the population gets infected at the same time. 
Clearly, such a situation would not only massively overstress any existing health system but once in action it 
would hardly be interruptable through vaccination.

At later stages of an infectious disease, where the population approaches herd immunity and the infection 
numbers decrease, an obvious political reaction would be to release measures. However, our simulations suggest 
that mutations can drive new infection waves even after a longer downwards trend. Such waves can even self-
repeat and lead to a pattern of repeated phases of strongly decaying and increasing infection numbers provoking 
an endless sequence of renewed non-pharmaceutical interventions.

Since our work is on a conceptual basis we did not include explicit data to model COVID-19. However, the 
panorama of mutation induced phenomena which we have identified might inspire detailed modeling works 
to test them for specific infectious diseases such as COVID-19. Further, our results could be applied to diseases 
in the animal world such as the avian  influenza60. These results might also be useful for discussions regarding 

Figure 5.  Nonpharmaceutical interventions, vaccinating, and immune escape. (a) Infections as function of 
time for a super exponential wave. Measures are taken by reducing the reproduction number to R0,int at time 
tint (black line has no intervention. R0 = 1.2 , �/β2

0 = 50 , I0 = 2× 10−4 , tint = 3.85 weeks). (b) Infections 
as function of time of different vaccination rates α (black line has no vaccination. R0 = 1.2 , �/β2

0 = 50 , 
I0 = 2× 10−4 ). (c) Infections as function of time of different immune escape rates ω (black line has no immune 
escape. R0 = 1.2 , �/β2

0 = 2 , I0 = 2× 10−4).
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the importance of a release of vaccine-patents to reduce the risk of mutation-induced infection revivals and to 
coordinate the release of measures following a downwards trend of infection numbers.

Methods
Basic reproduction number of COVID‑19 mutants. The basic reproduction numbers where extracted 
from: original  variant61, B.1.1.7 (α)11, B.1.351 (β)62, P.1 (γ)13, B.1.617.2 (δ)63, and B.1.1.529 (o)64. The time point 
at which a variant has reached 5% in the sequenced genomes reported  in4 (https:// nexts train. org/ ncov/ global) is 
used as the emergence time.

Details on constant mutation rate. We assume that the new infection rates βn are drawn from a Gauss-
ian distribution, whose mean is the largest current infection rate. Explicitly we have

where βmax,n−1 denotes the maximal infection rate of the current strains, βn is the infection rate of the newly 
mutated strain, σ is the standard deviation of the distribution, and new strains are produced at a rate m (in our 
multi component simulations we use β0/γ = 1 , σ = 2× 10−4 , m/γ = 2 , and the new strain obtains an initial 
In(0) = 10−7).

To coarse grain this mutation model, we assume that the infections immediately assume the maximal infec-
tion rate of the newly mutated strain βmax,n . It follows that the mean infection rate is dominated by βmax,n , since 
all other infections grow exponentially slower. This reduces our multicomponent model to an effective one 
component model with the infection rate βmax,n . To determine βmax,n we compute

where m is the number of times drawn from the distribution Eq. (17). Explicitly, Eq. (18) yields

where erf−1(∗) is the inverse error function and can here be approximated by a negative constant −C1 . We now 
write the standard deviation as σ = µ∗τ , with a mutation rate µ∗ and mutation timescale τ , giving

which is a discretized version of β̇ = µ , and equivalent to our coarse grained constant mutation rate model.

Details on model beyond constant mutation rate.  For the model beyond constant mutation rate 
the infection rates perform a biased random walk. Given an infection rate βn it will mutate with a probabil-
ity p0 and not mutate with probability 1− p0 . Furthermore, this strain has In infections, which are all able to 
mutate, giving a total mutation probability of 1− (1− p0)

In = p0In +O(p20) . A mutation gives a new strain In 
with an increased βn = βn−1 +�β (in our multi component simulations we use β0 = 0.1 , γ = 0.1 , �β = 0.03 , 
p0 = 2× 10−4 , and the new strain obtains an initial In(0) = 10−6).

To coarse grain, we assume that the expectation value of the infection rate 〈βn〉 is proportional to the mutation 
probability. Then a new mutation has the expectation value �βn+1� = p0In and the old strain has �βn� = 1− p0In . 
Computing the difference gives

which is a discretization of β̇ = �I , which is our coarse grained model beyond a constant mutation rate.
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I. MAXMIMUM OF WAVES IN THE CONSTANT MUTATION RATE MODEL

To obtain some analytical an understanding of the scaling of the maxima in the constant mutation model, we start
by considering the equations of susceptible and infections which read

Ṡ = −(β0 + µt)SI, (S1)

İ = (β0 + µt)SI − γI, (S2)

where the recovered R follow from S + I +R = 1. Redefining the time variable t′ = (β0 + µt) yields

µṠ = −t′SI, (S3)

µİ = t′SI − γI, (S4)

(S5)

where the dot now denotes derivatives with respect to t′. Maxima can be found using İ = 0, which is explicity

S∗t′∗ = γ (S6)

where S∗ are the susceptible at the maximum and t′∗ is the time at which the maximum appears. Taking a derivate
of S∗ with respect to t′∗ gives

Ṡ∗ = − γ

(t′∗)2
, (S7)

which is only valid between maxima. Since the susceptible decay monotonically in time, we assume that the S∗ also
decays monotonically with

Ṡ∗ ∼ −S∗t′∗I∗, (S8)

where I∗ are the infected a the maximum. Using Eq. (S7) and Eq (S8) then yields the scaling

I∗ ∼ µ

(β + µt′∗)2
. (S9)

II. MATHEMATICAL ANALYSIS OF PHASE DIAGRAM IN BEYOND CONSTANT MUTATION
RATE APPROACH

The dynamical equations of our model which goes beyond a constant mutation rate are given by

Ṡ = −βSI, (S10)

İ = βSI − γI, (S11)

β̇ = λI, (S12)

(S13)
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where R follows from S + I +R = 1. Dividing Eq. (S10)-(S11) by Eq. (S12) gives

dS

dβ
= −βS

λ
, (S14)

dI

dβ
=
βS

λ
− γ

λ
, (S15)

where β reparameterises time. Equation (S14) is solved by

S = S0e
β20−β2

2λ , (S16)

with initial susceptible S0 and initial infection rate β0. Equation (S15) can be rewritten as

dI =
βS

λ
dβ − γ

λ
dβ (S17)

= −dS − γ

λ
dβ, (S18)

where we used Eq. (S14). Integrating then yields

I − I0 = S0 − S −
γ

λ
(β − β0) (S19)

To obtain the phase diagram shown in the main text, we need to look for the extrema of the infections. Extrema of
I are given by the condition İ = 0 which explicitly read

S∗β∗ − γ = 0, (S20)

where S∗ are the susceptible at the extremum and β∗ is the infection rate at the extremum. Using Eq. (S16) gives

γ

β∗
= S0e

β20−(β∗)2

2λ , (S21)

which is solved by

β∗ = −i
√
λ

(
W

(
− γ2

λS2
0

e−
β20
λ

))1/2

(S22)

where W (∗) is the Lambert function. The argument in the Lambert function of Eq (S22) is smaller than zero. This
gives rise to two solutions, implying two extrema of the infections. Explicitly the extrema I∗ can be found by using

I∗ = I0 + S0 −
γ

β∗
− γ

λ
(β∗ − β0) , (S23)

together with Eq (S22). Furtermore, to determine maxima and minima we can use

Ï|S∗β∗=γ = (I∗)2S∗(λ− (β∗)2) (S24)

such that the sign of (λ− (β∗)2) decides between minimum and maximum.

III. CRITICAL SHORT TIME BEHAVIOR IN BEYOND CONSTANT MUTATION RATE APPROACH

At small times we can approximate the number of susceptible people by S ≈ 1, which gives the set of equations

İ = β[I]I − γI, (S25)

β̇ = λI, (S26)

with the initial condition β(0) = β0. By changing the initial condition of Eq.(S26) to β(0) = β0 − γ we can rewrite
Eq.(S25) as

dlnI

dt
= S0β[I]. (S27)
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We now use the transformation ω = lnI, giving

dω

dt
= S0β [eω] (S28)

β̇ = λeω. (S29)

Taking a derivatite of Eq.(S28), gives

d2ω

dt2
= S0β̇ = S0λe

ω, (S30)

which has initial conditions ω(0) = ln(I(0)) and ω̇(0) = β − γ and can be solved explicitly. Putting back the
transformation, we arrived at the following expression for the number of infected people

I(t) = − δ1

λ
[
1 + cosh

(
2 ln δ2 + t

√
δ1
)] , (S31)

with δ1 = −2I0λ+ (γ − S0β0)
2

and δ2 = −
√
γ−S0β0+

√
δ1√

−γ+S0β0+
√
δ1

. Equation (S31) has poles at

tc =
−2 log(δ2) + iπ(2k − 1)√

δ1
, (S32)

where k is an integer and the physically relevant critical time tc is given by k yielding the smallest positive tc.
Expanding Eq. (S31) around the critical time tc gives

I(t) =
2

λ

1

(t− tc)2
. (S33)

IV. INDEPENDENT PARAMETERS OF COARSE GRAINED MSIR MODEL

The equations of our constant mutation rate coarse grained model are

Ṡ = −βSI, (S34)

İ = βSI − γI, (S35)

β̇ = µ. (S36)

From the condition S + I +R = 1 it then follows that R(t = 0) = 1− I0−S0, such that we have three parameters I0,
S0 and β0 for the initial condition. Additionally, we have the parameters µ and γ, making our parameter space five
dimensional.

We continue considering the units of each parameter and variable which are [S] = 1, [I] = 1, [β] = 1/time,
[β0] = 1/time, [γ] = 1/time and [µ] = 1/time2. By nondimensionalizing Eq.(S34)-(S36) we find

Ṡ = −βSI, (S37)

İ = βSI − I, (S38)

β̇ = µ/β2
0 . (S39)

with S = Sβ0/γ, and I = Iβ0/γ. The parameter space then reduces to three dimensions where the nondimensional
parameters are the initial infected I0, the basic reproduction number S0β0/γ and the mutation rate µ/β2

0 . The
calculation for our model that goes beyond a constant mutation rate is analogous, with the resulting nondimensional
mutation rate λ/β2

0 .

V. ESCAPE OF IMMUNITY

A. Steady state

In the steady state the equations including immune escape read

0 = −β(t, I)SI + ωR, (S40)

0 = β(t, I)SI − γI, (S41)

0 = γI − ωR. (S42)
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Solving Eqs.(S40)-(S42) together with S + I +R = 1, yields

S =
γ

β
, (S43)

I =
1− γ

β

1 + γ
ω

, (S44)

R =
γ

ω

1− γ
β

1 + γ
ω

. (S45)

(S46)

In the long time limit β becomes very large for both mutation models, such that γ/β is effectively zero and we find

S∞ = 0, (S47)

I∞ =
1

1 + γ
ω

, (S48)

R∞ =
1

1 + ω
γ

, (S49)

(S50)

which shows a nonzero steady state solution for the infected.

B. Infection waves from linear stability

We start by considering our coarse grained beyond constant mutation rate model with immune escape, which reads

Ṡ = −βSI + ωR, (S51)

İ = βSI − γI, (S52)

Ṙ = γI − ωR, (S53)

β̇ = λI. (S54)

We now linearize the system of equations (S51)-(S54) around the state S = S0 + δS, I = I0 + δI, R = R0 + δI and
β = β0 + δβ, where we neglect term of δ2. This results in the following system of equations

d

dt



δS
δI
δR
δβ


 =



−β0I0 −β0S0 ω −S0I0
β0I0 β0S0 0 S0I0

0 γ ω 0
λ 0 0 0




︸ ︷︷ ︸
=M



δS
δI
δR
δβ


 , (S55)

where we defined the stability matrix M. In Fig. S1 we show the imaginary part of the four eigenvalues of M as a
function of the rate of immunity escape ω, which are nonzero. Therefore, we expect the system to show oscillations,
which are the infection waves shown in Fig. 5(c) (main text). Note that the oscillations are induced by the escape of
immunity and are also present with a constant β or a constant mutation rate.

VI. VACCINATION WITH NON-CONSTANT ROLLOUT

Vaccinations are typically not distributed in the public with a constant rate, as assumed in our main text. The
vaccination rate is for example influenced by the rate of production and the willingness of the public to get vaccinated.
To see what effect a non constant rollout has, we assume the following dynamic infection rate

αeff =
α0√
2π
e−(t−tmax)

2/(2w2), (S56)

where we chose the time of maximal vaccination tmax = 5 weeks, the width of the distribution to be w = 2 weeks and
α0 is the bare vaccination rate.
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FIG. S2. (Top) Infections as function of time of different α0. (Black line has no vaccination. R0 = 1.2, λ/β2
0 = 50, I0 = 2×10−4).

(Bottom) Effective infection rate as function of time for different α0.

In Fig. S2(Top) we show the infected as a function of time with the vaccination rollout specified in Eq.(S56) (see
Fig. S2(Bottom)) for our beyond constant mutation rate model. The resulting infected show a behavior that is
very similar to the constant vaccination rate model shown in our main text Fig. 5(b). Hence we conclude that the
vaccination rollout Eq. (S56) does not induce qualitative changes.

VII. DYNAMICS OF THE INFECTION RATE

A. Constant mutation rate

In our multi component model we constantly draw a new infection rates βn, which evolve according to the distribu-
tion Eq. 7 (main text). In Fig. S3 we show the evolution of the infection rate with time, which shows a linear increase
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FIG. S4. Infection rates βn as function of time for our multi component model beyond a constant mutation rate.

of the mean infection rate. This behavior is consistent with the linear increase of our coarse grained infection rate.

B. Beyond constant mutation rate

For our multi component model that goes beyond a constant mutation rate, the infection rates βn evolve according
to a biased random walk (see also Methods). Figure S4 shows the infections rate βn as a function of time. We find a
very broad distribution, whose mean increases with time.

We also study the coarse grained infection rate β(t) =
∫ t
0
λI(t′)dt′ of our beyond constant mutation rate model.

In Fig. S5 we show the infection rate together with the infected for the four different phases that we find in the
pandemic. A lethargic (Fig. S5(a)) behavior shows an almost constant mutation rate. The explosive (Fig. S5(b)) and
rebound (Fig. S5(c)) phases show a strong sudden increase of the infection rate that coincides with the strong increase
in infections. Finally the weak rebound (Fig. S5(d)) has a small constant increase of the infection rate.

8.6 Sci. Rep. 12, 9641 (2022) 139



7

0 20 40

t/weeks

0.0000

0.0005

Ø

+1

0 20

t/weeks

0

500Ø

0 10

t/weeks

0

1000

2000

Ø

0 500 1000

t/weeks

1.0

1.1Ø

0 10

t/weeks

10°1

10°4

10°7

10°10

10°13

I

0 20 40

t/weeks

10°7

10°4

I

0 20

t/weeks

10°5

10°1

I

0 500 1000

t/weeks

10°4

I

lethargic

rebound

explosive

weak rebound

(a)

(c)

(b)

(d)

FIG. S5. Coarse grained infection rate (bottom) and infected (top) as a function time for the four different phases: (a)lethargic,
(b) explosive, (c) rebound and (d) weak rebound.

140 8 Scientific publications



141

9 Summary

In this thesis I have used agent-based models to study collective effects in various
systems of active matter. First, inspired by the diversity of multi-species chemo-
taxis among microorganisms, a generic model in which each species produces its
own chemical concentration field was studied in Paper I. This species selective
production leads to interesting collective behavior as it is not known from the
one-species limit. Using a particle-based description and a continuous model, the
different phases were analyzed, which include a “hunting-swarm” phase and several
complex cluster phases. In principle, it should be possible to realize and observe
such a behavior with artificial particle mixtures, if they interact through a combi-
nation of non-reciprocal attractive and repulsive forces, e.g., via thermophoresis or
diffusiophoresis.

Subsequently, the autophoretic behavior of spheroidal photocatalytic microswim-
mers was investigated in Paper II. Bismuth vanadat (BiVO4) can be used to
overcome the conventional asymmetrization step in order to provide colloidal par-
ticles with self-propulsion. With the help of a simulation model and analytical
calculations, the velocities and particle trajectories of the formed assemblies can
be understood. In the future, it would be interesting to extend the simulations to
high particle densities in order to study the collective behavior on larger scales.
Similarly, the simple fabrication method may allow the microswimmers to be coated
with additional functional materials, giving them further capabilities beyond the
self-propulsion mechanism.

In Paper III, a two-way coupling between light-activated colloidal particles
and a near-critical environment was studied. The mutual feedback results in
novel structures comprising a colloidal engine enclosed by a liquid droplet. We
name them “active droploids”, a portmanteau of droplet and colloids. Size and
motility of these active structures can be controlled by light intensity. This two-way
coupling between droplets and colloids could provide valuable insights into the role
of feedback in future active matter research.

In a further work described in Chapter 4, an easy to apply method was studied
to anneal interfacial colloidal crystals. Using a conventional loudspeaker, standing
waves are generated that provide more surface area for the colloidal particles and
enable accelerated grain growth. Simulations can be used to track the particle
motions and unveil the annealing process. Due to the simple but efficient method,
this work could be interesting not only for the study of crystallization phenomena
but also for the field of surface pattern production.
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In Paper IV, active agents were equipped with artificial intelligence. We
intentionally kept the information flow simple and only allowed the particles to
know the local concentration at which they are located. Using a deep Q-learning
algorithm, the particles learn to consume a nutrient field as efficiently as possible.
Depending on agent density, consumption rate but also local concentration of the
nutrient field, the agents apply different strategies in which they either unite and
move towards each other or stay separated. This link between active particles and
machine learning could open up new possibilities in this rapidly developing field
of research. Furthermore, these results could be used for microrobots in finding
efficient strategies to decontaminate polluted water.

In the last two papers, methods from statistical mechanics were used to mathe-
matically model infectious diseases. In Paper V, we encouraged the idea of an
optimal vaccine distribution strategy during a pandemic which is based not only
on individual factors (who should be vaccinated first), but also on a distribution
dependent on time and space (where and when should be vaccinated first). Sequen-
tially prioritizing the locations with the highest bilinear incidence rate significantly
reduces the number of deaths compared to the common practice of distributing
vaccines demographically. As a further step, it would be useful to validate these
results in more detailed models and examine impeding factors, such as inaccurate
knowledge of current infection numbers or delays in communicating test results.

By generalizing the classical SIR model, the influence of the repeated occurrence
of new strains in a pandemic was investigated in Paper VI. The developed
multistrain SIR model allows the evaluation of different scenarios in which the
contagion dynamics is controlled by mutations. A notable finding was the mutation-
driven occurrence of super-exponential growth in infection numbers, different from
the usual exponential growth in the classical SIR model. This is particularly
severe when assuming that the mutation rate is proportional to infection numbers.
Also, the simulations predicted that mutations can lead to recurrent waves of
infection even when infection numbers have long been on a downward trend. These
findings should be tested in more detailed models, possibly including data specific
to Covid-19.
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