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Abstract

How the various parts of the brain are mutually connected can be expressed through the con-
cepts of the structural connectivity (SC) and the functional connectivity (FC). Here, the SC de-
scribes how different brain areas are interlinked by anatomical connections that facilitate the
propagation of electrical signals. Alternatively, the FC reflects which distinct brain regions are
consistently and synchronously co-activated. The structure-function relationship as determined
by the correlation coefficient between the SC and FC is moderate at best. Hence, many neu-
roimaging studies have investigated how these two types of connectivity can be better associ-
ated to one another.

Some of these studies employ dynamical whole-brain models. These models aim to replicate
the FC as best as possible given the information stored in the SC. Indeed, dynamical whole-
brain models have been shown to explain an amount of variance that exceeds straightforwardly
correlating the SC and FC. Furthermore, studies suggest that these models are promising can-
didates for future clinical applications. However, the high computational loads associated with
dynamical whole-brain models require the modeled system to be low-dimensional, while the
SC and the FC are typically derived from high-dimensional magnetic resonance imaging (MRI)
data. Hence, the dimensionality of the MRI images must be reduced.

A so-called brain atlas or parcellation dividing the brain into a (low) number of brain regions
may be used for this purpose. Many brain atlases have been constructed on a variety of meth-
ods and neurobiological data reflecting brain organization. It has been shown that a change of
parcellation may considerably alter the results of analyses involving only empirical data. Nev-
ertheless, a systematic assessment of the effect of the brain atlas on dynamical whole-brain
modeling results is lacking. This thesis contains such an investigation.

The first study of this thesis shows that a change of brain parcellation can considerably alter
the accuracy with which the dynamical whole-brain models are able to replicate the FC. It also
shows that this parcellation-induced variance in the validity of the models can be explained by
group-averaged deviations in the network properties of the empirical connectomes, i.e. the SC
and FC that are derived from MRI data. In contrast, the within-parcellation, between-subject
variations in the quality of model fit could not be explained by the inter-individual differences in
those network properties. In short, the study shows that the dynamical whole-brain modeling
results are susceptible to the technique used to construct a particular parcellation, and identifies
deviations in the network properties of the empirical SC and FC as the cause for this sensitivity.

The second study additionally shows that the parcellation influences the reliability and the sub-
ject specificity of the modeling results to a higher degree than what is observed for the empirical
FC. In addition, it shows that the FC generated by a dynamical whole-brain model can share
subject-specific connectivity patterns with both the empirical SC and FC after model fitting.
Moreover, it is shown that the acquired results critically depend on the exact implementation
of the modeling paradigm. Hence, the study shows that not only the parcellation but also the
model implementation can affect the reliability and subject specificity of the modeling results.
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VI ABSTRACT

The results comprising this thesis are highly relevant given the current focus on the personal-
ization and the clinical application of dynamical whole-brain models. They provide a possible
explanation for the personalized fits of the models to the empirical data. More importantly, they
show that the choice of the brain parcellation could be more important for findings involving
these models than for straightforward analyses of the empirical SC and FC. Finally, the thesis
presents information that could be used by future dynamical whole-brain modeling studies for
the appropriate, well-informed selection of the brain atlas.
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Chapter 1

Thesis overview

One frequently studied aspect of the human brain is its large-scale connectivity, which encom-
passes the entirety of connections throughout the central nervous system (Popovych et al.,
2019; Suárez et al., 2020). This property can be investigated from the diverging viewpoints
of the structural connectivity (SC) and the functional connectivity (FC). The SC is the anatom-
ical interpretation of the concept of connectivity as it characterizes how different parts of the
brain are physically connected by axon bundles that facilitate the transmissions of electrical
signals (Maier-Hein et al., 2017; Sotiropoulos & Zalesky, 2019; Yeh et al., 2021). Alternatively,
the FC identifies whether distinct brain areas are activated concurrently and hence form an ap-
parent functional connection (Bolt et al., 2017; van den Heuvel & Hulshoff Pol, 2010). In other
words, the SC indicates whether any two regions within the brain are physically connected,
whereas the FC reflects the extent to which they exhibit synchronized co-activations and thus
are connected from a functional perspective.

The SC and the FC, also referred to as the structural and functional connectome, respectively,
exhibit a correspondence that is moderate at best: At most half of the variation in the FC can
be accounted for by correlating it with the SC (Honey et al., 2009; Suárez et al., 2020). Three
main classes of models have been used to explain the residual amounts of variance in both con-
nectomes: statistical, communication and dynamical whole-brain models (Suárez et al., 2020).
The statistical models aim to link the SC to the FC via multivariate and non-linear regression
models (Messé et al., 2014; Mišić et al., 2016; Suárez et al., 2020), whereas the communica-
tion models use concepts from network science and telecommunication research to tighten the
gap between both types of connectomes (Crofts & Higham, 2009; Goñi et al., 2014; Graham &
Rockmore, 2011; Mišić et al., 2015; Suárez et al., 2020). The dynamical whole-brain models as
the third model type link SC and FC through a biophysically-inspired procedure: They replicate
the FC by simulating brain activity on the basis of the structural connectome (Breakspear, 2017;
Honey et al., 2007; Sanz-Leon et al., 2015; Suárez et al., 2020).

Dynamical whole-brain models are well-studied (Suárez et al., 2020). They have indeed been
shown to explain an additional amount of variance beyond the direct correlation between the
SC and the FC (Honey et al., 2009). In addition, they have demonstrated that resting-state
brain activity, which is observed when a subject is neither performing a predefined task nor
receiving a specific stimulus (B. B. Biswal, 2012), is associated with a maximally metastable
brain state (Deco et al., 2017). They have furthermore shown the importance of an appropriate
amount of system noise and fitting signal transmission efficiency and latency for the proper
functioning of the brain at rest (Ghosh et al., 2008; Deco et al., 2009). More recently, they also
have been used to investigate neurobiological phenomena and neuropsychiatric diseases at a
personalized level (Aerts et al., 2020; Deco & Kringelbach, 2014; Hahn et al., 2019; Iravani et al.,
2021; Jirsa et al., 2017; Ritter et al., 2013). In fact, the results of dynamical whole-brain models
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2 CHAPTER 1 - THESIS OVERVIEW

have been used to distinguish clinical patients from healthy subjects with an accuracy that could
outperform classification paradigms that make use of purely empirical data (Zimmermann, Perry,
et al., 2018). Hence, besides narrowing the gap between the SC and the FC, dynamical whole-
brain models may have a clinical application as well.

However, the computational loads associated with the simulations of dynamical whole-brain
models impose a constraint on their design: The modeled system must be relatively low-
dimensional in order to keep the calculations tractable (Popovych et al., 2019). In contrast, the
SC and the FC are often derived from high-dimensional magnetic resonance imaging (MRI)
data in the form of diffusion-weighted MRI (dwMRI) and functional MRI (fMRI) sequences,
respectively (Bandettini et al., 1993; B. Biswal et al., 1995; van den Heuvel & Hulshoff Pol,
2010; Maier-Hein et al., 2017; Sotiropoulos & Zalesky, 2019; Yeh et al., 2021). Hence, the
dimensionality of the MRI data must be reduced for the model simulation computations to be
evaluable. One reduction method relies on so-called brain atlases or parcellations that partition
the brain into a limited number of brain areas or regions by considering neurobiological data
reflecting brain organization (Amunts & Zilles, 2015; Eickhoff, Yeo, & Genon, 2018; Eickhoff,
Constable, & Yeo, 2018). This biological basis has the additional advantage that the resulting
structural and functional connectomes can be more interpretable with regard to the neurosci-
entific context than when they are reconstructed through data-driven dimensionality reduction
techniques; see Ayesha et al. (2020) for a review on such data-driven approaches.

A large number of parcellations exists nowadays, and they all have been constructed on the
basis of different methodologies and principles of brain organization (Amunts & Zilles, 2015;
Eickhoff, Yeo, & Genon, 2018; Eickhoff, Constable, & Yeo, 2018; de Reus & van den Heuvel,
2013; Thirion et al., 2014). Two examples are the Schaefer parcellation, which has been con-
structed by maximizing the intra-regional homogeneity of the voxel-wise FC (Schaefer et al.,
2018), and the von Economo-Koskinas atlas, which is based on spatially localized differences
in the cytoarchitecture of the cerebral cortex (von Economo & Koskinas, 1925). The vastly vary-
ing parcellation techniques may have considerable effects on the resulting brain regions and
thus on the region-based SC and FC that are reconstructed through the use of brain atlases (Ar-
slan et al., 2018; Thirion et al., 2014). Indeed, a change of parcellation may substantially affect
the network structures of the SC and the FC and the relation between both types of connectiv-
ity (Arslan et al., 2018; Messé, 2020; J. Wang et al., 2009; Zalesky et al., 2010; Zimmermann,
Griffiths, et al., 2018). However, even though dynamical whole-brain models are constructed
and validated on the basis of the SC and the FC, respectively (Popovych et al., 2019; Suárez
et al., 2020), the effect of the brain atlas on their results remains relatively unexplored. Notably,
some studies have shown that the choice of parcellation indeed may influence the modeling re-
sults (Jung et al., 2021; Popovych et al., 2021; Proix et al., 2016), but a thorough investigation
is currently lacking. This thesis provides such a systematic assessment of the influence of the
parcellation on dynamical whole-brain modeling outcomes.

First, the concepts underlying the individual studies of this thesis are explained. This theoret-
ical background generally discusses reported brain parcellation techniques and includes a list
of the publicly available brain atlases used throughout this thesis (Section 2.1: Brain atlases
or parcellations). In addition, the different types of large-scale brain connectivity are described
in more detail. This explanation also includes a brief statement on the MRI data used for their
reconstruction and a commentary on the relationship between the SC and the FC (Section 2.2:
Brain connectivity). Furthermore, a comprehensive elaboration on the general idea behind dy-
namical whole-brain models is included, where a particular focus is put on how this concept
is implemented in the studies of this thesis (Section 2.3: Dynamical whole-brain models). The
theoretical background also comprises a brief introduction to graph theory, as one of the individ-
ual studies uses this mathematical framework to explain parcellation-induced differences in the
modeling results (Section 2.4: Graph theory). An explanation on principal component analysis
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is given as well, because this dimensionality reduction method is used in that same study (Sec-
tion 2.5: Principal component analysis). Finally, the intraclass correlation is introduced and
discussed, since it is used to characterize the reliability of the modeling results (Section 2.6:
Intraclass correlation).

Subsequently, the two studies of this thesis are presented (Chapter 3 and Chapter 4). The first
study entitled ”Parcellation-induced variation of empirical and simulated brain connectomes at
group and subject levels” (Chapter 3) addresses how the brain atlas affects the accuracy with
which dynamical whole-brain models can replicate the FC. It shows that the correspondence
between the FC derived from fMRI data and the one simulated by the models can vary consid-
erably when the parcellation is changed. Additional analyses demonstrate that this parcellation-
induced variance may be independent of the exact implementation of the dynamical whole-brain
modeling paradigm. Furthermore, the effect of the brain atlas on the modeling results cannot
be explained by a mere dependence on the granularity (number of parcels included in the brain
atlas). Eventually, graph-theoretical measures extracted from the MRI-based SC and FC are
shown to explain most of the group-averaged, parcellation-induced differences in the modeling
results. However, the variations in the modeling results observed between individual subjects
cannot be explained by the inter-individual differences in those same measures at the level of
a single parcellation. In sum, the study not only demonstrates that the modeling results are
sensitive to the method on which a brain atlas is based, but additionally identifies parcellation-
induced divergences in the network properties of the empirical SC and FC as the origin of this
sensitivity.

The second study (”Reliability and subject specificity of personalized whole-brain dynamical
models”; Chapter 4) investigates how reliable and subject specific the modeling results are.
The results show that both the reliability and the subject specificity of a diversity of modeling
results (among others the FC simulated by the models) are relatively sensitive to the choice
of parcellation when compared to the MRI-based FC. In addition, they demonstrate that, af-
ter model fitting, the FC generated by dynamical whole-brain models can share subject-specific
connectivity patterns with both the SC and the FC that are reconstructed from MRI data. Finally,
it is demonstrated that the model implementation can have significant effects on the acquired
results. The amount of model personalization exerts a particular influence in this respect. Taken
together, the study illustrates that the reliability and the subject specificity of the modeling re-
sults are not only susceptible to the choice of parcellation, but are also influenced by the exact
implementation of the dynamical whole-brain modeling concept.

As generally discussed in Chapter 5, these results are highly relevant given the contempo-
rary attention on the personalization of dynamical whole-brain models and their clinical appli-
cation (Aerts et al., 2020; Bansal et al., 2018; Iravani et al., 2021; Zimmermann, Perry, et al.,
2018). They start to mechanistically explain how the personalized fits of the models are estab-
lished. Future investigations can build on these results in order to unravel the full mechanism
of this process, which may then be used to formulate best practices when distinguishing clini-
cal patients from healthy subjects through modeling results. The findings also indicate that the
brain atlas can have a larger effect on the dynamical whole-brain models than on the empirical
connectomes. It may therefore be worthwhile to sample any findings involving these models
for multiple parcellations to investigate whether those results critically depend on the particu-
lar choice of the brain atlas. Notably, the findings presented in this thesis do not propose that
a specific parcellation suits the dynamical whole-brain modeling paradigm best. Instead, they
provide additional information that can be used alongside other considerations (e.g., the parcel-
lation technique) in the proper, well-informed selection of the brain atlas for the study at hand;
see also the conclusion of Chapter 6.





Chapter 2

Background theory

The individual studies included in this thesis rely on concepts that may not be well known to the
broader scientific audience. This general introduction therefore provides the theoretical back-
ground required to interpret the results presented in this thesis. First, a definition of the brain
atlas or parcellation is included, which is complemented by a general discussion on the var-
ious techniques that have been used to delineate distinct brain regions and by an inventory
of the publicly available parcellations used in the studies comprising this thesis (Section 2.1:
Brain atlases or parcellations). Subsequently, the structural connectivity (SC) and the functional
connectivity (FC) are explained in more detail, where specific attention is paid to the types of
magnetic resonance imaging (MRI) data used for their derivations and to the relationship that
the SC and the FC have with respect to one another (Section 2.2: Brain connectivity). The
introductions of these topics allow for the presentation of the general idea behind dynamical
whole-brain modeling, which is followed by the descriptions of the models that return in this the-
sis (Section 2.3: Dynamical whole-brain models). Two brief explanations on graph-theoretical
analysis and principal component analysis are also included as these two analysis methods are
used in the first study of this thesis (Chapter 3) to explain the variance observed in the mod-
eling results (Section 2.4: Graph theory; Section 2.5: Principal component analysis). Finally,
the intraclass correlation is introduced and discussed, because it is used in the second study of
this thesis (Chapter 4) to characterize the reliability of a variety of modeling results (Section 2.6:
Intraclass correlation).

2.1 Brain atlases or parcellations

The organization of the brain is one of the main topics in neuroscience, and is considered at
multiple levels. Studies exploring microscopic brain organization, for instance, have shown
that different types of neurons exhibit specific connectivity patterns with respect to one an-
other (Tremblay et al., 2016; Pfeffer et al., 2013). Likewise, the large-scale organization of
the entire human brain has also been investigated frequently (Eickhoff, Yeo, & Genon, 2018;
Eickhoff, Constable, & Yeo, 2018). Brain atlases or parcellations are the results of these macro-
scopic brain mapping studies: They indicate which parts of the human brain are homogeneous
with respect to one of its many features (Fig. 2.1A). A variety of neurobiological data can be
used to construct parcellation schemes, and the homogeneity of the selected data type can
be characterized through diverging paradigms as well (Amunts & Zilles, 2015; Eickhoff, Yeo, &
Genon, 2018; Eickhoff, Constable, & Yeo, 2018). This section includes a general discussion
on those different parcellation techniques, and lists the brain atlases used in the studies of this
thesis.
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6 2.1. BRAIN ATLASES OR PARCELLATIONS

2.1.1 Methods for brain parcellations

Neurobiological data reflecting brain organization

Parcellations of the human brain have been derived by considering either post-mortem brain
tissue or MRI data (Amunts & Zilles, 2015; Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, &
Genon, 2018). The former was the primary source of information for the earliest brain mapping
studies, which reported specific positions on the cortical surface where the histology of the
cerebral cortex strongly changed (Brodmann, 1909; Campbell, 1905; von Economo & Koskinas,
1925; Flechsig, 1920; Smith, 1907). Even though nowadays new parcellations are still derived
from ex-vivo brain tissue (Amunts et al., 2020), the advent of MRI provided the human brain
mapping community with new avenues to explore (Eickhoff, Constable, & Yeo, 2018; Eickhoff,
Yeo, & Genon, 2018). Despite having a spatial resolution that is too coarse for the delineation
of brain regions on the basis of diverging cellular and molecular properties (Edlow et al., 2019;
Stucht et al., 2015), MRI images indeed were found to have considerable advantages over
the histological data that can perform such delineations. For instance, a parcellation derived
from MRI data may be based on more subjects as the images can be acquired and analyzed
faster than post-mortem human brains can be sliced, stained and scrutinized (Amunts & Zilles,
2015; Eickhoff, Yeo, & Genon, 2018). In addition, the non-invasiveness of MRI facilitates the
construction of brain parcellations that reflect the functional differentiations of brain regions in
alive and healthy subjects (Dadi et al., 2020; Huth et al., 2015, 2016).

The neurobiological markers derived from post-mortem brain tissue or MRI images can reflect
either a structural or a functional aspect of brain organization. Here, the structural viewpoint

Fig. 2.1. (A) A brain atlas divides the brain into several brain regions depending on the parcellation method. (B)Gen-
eral options when selecting the neurobiological data for a brain parcellation. In addition, example data types are
provided where ”calcium imaging” is highlighted in gray as it may be used in animal but not human brain mapping
studies (Amunts & Zilles, 2015; Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018; Grienberger &
Konnerth, 2012; Kleist, 1934). (C) Illustration of the boundary detection method for the delineation of brain regions.
A slice of cortex is drawn with above and below characterizations of the densities of the hypothetical receptors A
(red) and B (blue), respectively, along the cortical surface, where brighter colors correspond to higher densities. The
boundaries between brain regions are depicted by the green dotted lines marking the positions where either one of
the two receptor densities exhibits a spatially localized gradient.
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encompasses physical features of the brain, such as neuron and receptor densities when ex-
amining ex-vivo brain tissue (Amunts & Zilles, 2015; Amunts et al., 2020) and cortical folding
patterns when considering MRI images (Auzias et al., 2013, 2016; Desikan et al., 2006; De-
strieux et al., 2010; Faillenot et al., 2017; Frazier et al., 2005; Goldstein et al., 2007; Gousias
et al., 2008; Hammers et al., 2003; Makris et al., 2006; Rolls et al., 2015; Tzourio-Mazoyer et
al., 2002). On the other hand, the brain’s functional organization describes the coordination
of brain activity, and can be captured by e.g. function mapping: the identification of brain ar-
eas associated with a particular cognitive function through the inspection of spatial activation
patterns (Dadi et al., 2020; Huth et al., 2015, 2016; Kleist, 1934). Furthermore, even though
it cannot be used in human subjects due to its invasiveness, calcium imaging may be used to
investigate the functional organization of the brain at a cellular level in animal studies (Ju et al.,
2021); see Grienberger & Konnerth (2012) for a review.

The previous examples of neurobiological data only considered local structural or functional
properties: Cortical folding patterns, cytoarchitectural differences and function mappings are all
spatially constrained to one particular part of the brain. However, brain parcellations may not
only be derived from local, but also from connectivity data reflecting the relation between spa-
tially separated parts of the brain. This is explicitly demonstrated by the many brain mapping
studies that constructed parcellations on the basis of the structural and the functional connec-
tivity patterns derived from MRI data (Craddock et al., 2012; Fan et al., 2016; Gordon et al.,
2016; Joliot et al., 2015; Schaefer et al., 2018; Shen et al., 2013; Urchs et al., 2019); see also
Section 2.2: Brain connectivity. Structural connectivity may also be evaluated from brain tissue
using axon tracers (Saleeba et al., 2019), and, even though it is unfit for investigating the human
brain, calcium imaging has been used to create brain maps of the functional connectivity in the
fruit fly Drosophila (Mann et al., 2017).

In sum, the neurobiological data used for the construction of parcellations generally involve ei-
ther brain tissue samples orMRI images, reflect either structural or functional aspects of brain or-
ganization, and consider either local properties or connectivity patterns (Amunts & Zilles, 2015;
Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018). These notions have been
summarized in Fig. 2.1B, which schematically shows different types of neurobiological data that
can reflect brain organization. Notably, parcellations can also be constructed using a method-
ology that combines a multitude of these data types (Glasser et al., 2013).

Brain region delineation via boundary detection and clustering

Given a particular type of neurobiological data, two methods can be employed to delineate brain
regions: boundary detection and clustering (Eickhoff, Yeo, & Genon, 2018). The former involves
the identification of spatially localized changes in the selected data (Amunts & Zilles, 2015;
Eickhoff, Yeo, & Genon, 2018). Fig. 2.1C provides a schematic illustration of this technique.
The boundaries between brain regions are drawn at those positions where the densities of the
hypothetical receptors A and B exhibit strong gradients (Fig. 2.1C). As a consequence, three
brain regions can be distinguished: Region 1 is characterized by high and low densities, and
region 3 by low and high quantities of the receptors A and B, respectively, whereas region 2 has
high expressions for both (Fig. 2.1C).

In contrast, clustering or factorization algorithms define the brain regions by considering sim-
ilarities rather than strong, localized differences (Eickhoff, Yeo, & Genon, 2018). Various un-
supervised learning algorithms from the field of pattern recognition and machine learning have
been used to construct brain atlases through this principle (Bishop, 2006; MacKay, 2003). For
example, brain parcellations have been constructed by applying non-negative matrix factoriza-
tion to structural covariance data (Varikuti et al., 2018) and k-means clustering to functional
connectivity data (Joliot et al., 2015).



8 2.1. BRAIN ATLASES OR PARCELLATIONS

Brain regions can thus be delineated by considering strong and local gradients (boundary de-
tection) or by maximizing the within-region and minimizing the between-area similarity (cluster-
ing) with regard to a particular brain feature (Amunts & Zilles, 2015; Eickhoff, Yeo, & Genon,
2018). Similar to parcellation methods combining different types of neurobiological data, brain
atlases may also be constructed through a paradigm combining boundary detection and clus-
tering (Schaefer et al., 2018).

2.1.2 Brain atlases used in the studies of this thesis

Parcellations have thus been constructed on the basis of a vast variety of approaches. How-
ever, the dynamical whole-brain models could only be simulated for a restricted number of
parcellations given the computational demand associated with the model simulations; see Sec-
tion 5.3.1: Computational costs for a discussion. Below, the parcellations used in the individual
studies of this thesis are listed alphabetically, and are provided with a short statement on their
derivations to enhance the interpretability of the results and to place them within the general
framework discussed above (Section 2.1.1: Methods for brain parcellations). These particular
brain atlases were selected to harmonize between parcellations derived from functional and
structural data. More details of these parcellations are included in the Supplementary Method
of Chapter 3.

AAL atlas The Automated Anatomical Labeling (AAL) atlas considered cortical folding pat-
terns that were detected using the sulci delineation software Voxeline (Diallo et al., 1998). The
initial version of the parcellation counted 90 cortical areas (Tzourio-Mazoyer et al., 2002) and
26 cerebellar regions that were adopted from Schmahmann et al. (1999). A second version
of the atlas was generated by implementing a new subdivision of the orbitofrontal cortex (Chi-
avaras & Petrides, 2000; Chiavaras et al., 2001), which resulted in a whole-brain parcellation
consisting of 120 parcels in total (Rolls et al., 2015). Additionally, more detailed parcellations of
the anterior cingulate cortex and several subcortical regions were adopted, which yielded the
third version of the AAL atlas comprising 170 parcels (Rolls et al., 2020).

Brainnetome atlas The Desikan-Killiany atlas was used as a starting point (Desikan et
al., 2006; Fan et al., 2016); see below. Subsequently, spectral clustering was applied to the
structural connectivity data of 40 subjects to create this parcellation consisting of 210 cortical
parcels (Fan et al., 2016).

Craddock parcellations The functional connectivity data of 41 subjects were subjected to
spectral clustering (Shi & Malik, 2000; von Luxburg, 2007). The result comprised 44 parcella-
tions that can contain 10 to 1,000 parcels (Craddock et al., 2012).

Desikan-Killiany atlas Desikan et al. (2006) considered the cortical folding patterns of 40
subjects for the generation of this parcellation. The atlas consists of 70 gyral-based parcels (De-
sikan et al., 2006).

Destrieux atlas The atlas was generated by investigating the curvature and convexity values
of the cortical folding patterns of 12 subjects while taking into account prior labeling probabil-
ities and neighboring labels (Destrieux et al., 2010). The resulting parcellation counted 150
parcels (Destrieux et al., 2010).

Harvard-Oxford atlas The 96 cortical brain regions in this parcellation were delineated prob-
abilistically using the cortical folding patterns of 37 subjects (Desikan et al., 2006; Frazier et
al., 2005; Goldstein et al., 2007; Makris et al., 2006). The parcellation covers the cerebral cor-
tex, can include subcortical areas, and has been constructed using multiple probability thresh-
olds (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 2007; Jenkinson et al., 2012;
Makris et al., 2006).
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MIST parcellations TheMultiresolution Intrinsic Segmentation Template (MIST) parcellations
were derived by applying hierarchical agglomerative clustering to the functional connectivity
data of 198 subjects (Urchs et al., 2019). The resulting whole-brain parcellations have 7 to 444
parcels (Urchs et al., 2019).

Schaefer parcellations The Schaefer parcellations were constructed by considering the
functional connectivity data of 1489 subjects from the Brain Genomics Superstruct Project
(A. J. Holmes et al., 2015; Schaefer et al., 2018). A gradient-weighted Markov Random Field
model implementing both boundary detection and clustering was applied to the data to generate
several cortical parcellations that contained 100 to 1,000 parcels (Schaefer et al., 2018).

Shen 2013 parcellations Multigraph K-way clustering, a method related to the K-way nor-
malized cut algorithm from Yu & Shi (2003), was applied to the functional connectivity data
of 79 subjects (Shen et al., 2013). The forthcoming parcellations counted 100, 200 and 300
parcels (Shen et al., 2013).

von Economo-Koskinas atlas von Economo & Koskinas (1925) created this brain parcel-
lation by detecting gradients in the cytoarchitecture of 20 human brains post-mortem. The at-
las has been digitized and made publicly available by Scholtens et al. (2018). Recently, the
same group has publicly released digitizations of other historical parcellations (Pijnenburg et
al., 2021).

2.2 Brain connectivity
Dynamical whole-brain models have been designed to tighten the gap between the SC and the
FC of the brain (Honey et al., 2007). Hence, in order to interpret the results of the model simu-
lations, there first must be an understanding of what the SC and the FC entail in principle. This
section provides this background information, and additionally explains how the structural and
the functional connectomes can be derived from diffusion-weighted MRI (dwMRI) and functional
MRI (fMRI) data, respectively. Finally, the relationship between the SC and the FC is discussed
in detail, where an explicit statement is provided as to why (non-linear) dynamical whole-brain
models are well suited to investigate this relationship.

2.2.1 Structural connectivity
The structural connectome reflects how the brain is internally wired by physical connec-
tions (Sporns et al., 2005). The SC at the microscopic scale, for instance, considers the
axonal projections between individual neurons in microcircuits (DeFelipe, 2010; Kadirvelu et
al., 2017; Verstraelen et al., 2018; Sporns et al., 2005). A courser consideration of the struc-
tural connectome yields its mesoscopic variant, which exhibits specific connectivity patterns
with respect to the different layers of the cerebral cortex (Douglas & Martin, 2004; Felleman &
Van Essen, 1991; Olivas et al., 2012; Sporns et al., 2005). However, dynamical whole-brain
models consider the macroscopic SC that may characterize how entire brain regions are con-
nected by white matter fiber tracts as illustrated in Fig. 2.2A (Ambrosen et al., 2020; Bastiani &
Roebroeck, 2015; Craddock et al., 2013; Sporns et al., 2005). These fibers constitute bundles
of axons, and hence facilitate the transmission of electrical signals across the entire cortical
space (Fields, 2010). The macroscopic SC can thus be viewed as a representation of the
physical framework that the brain may employ to coordinate its activity at a larger spatial scale
in order to process information and undertake appropriate action as a response.

This macroscopic version of the SC can be derived from dwMRI sequences (Behrens et al.,
2003; Conturo et al., 1999; Le Bihan, 2003). This type of MRI data exploits the anisotropic
diffusion of water in the axons of neurons (Jbabdi et al., 2015; Le Bihan et al., 1988; Makris et
al., 1997). Fig. 2.2C illustrates this concept: In the axon, the water molecules predominantly
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diffuse along the axis of the cell membrane, whereas their movements are not as directionally
restricted in the cell body of a neuron. If many axons are aligned, as is the case in white
matter fiber tracts (Abdollahzadeh et al., 2019), this principle leads to detectable signals that can
be used by so-called tractography algorithms to reconstruct those fibers throughout the entire
brain (Fillard et al., 2011; Yeh et al., 2021; Zhan et al., 2015). Importantly, these algorithms can
infer the presence of connections but are not able to specify the directionality of information
flow, and hence are considerably limited in this respect (Kale et al., 2018).

The results of the tractography comprise a predefined number of reconstructed white matter
fibers or streamlines (Tournier et al., 2019; Yeh et al., 2021). This information can be com-
pressed by using a brain atlas. Given a particular parcellation with N brain regions, such a
compression would produce two N × N matrices. The first, named the counts or SC matrix,
contains the number of streamlines connecting the individual pairs of brain regions, and the
other, called the path length (PL) matrix, accommodates the average lengths of those stream-
lines (Tournier et al., 2019; Yeh et al., 2021). The dynamical whole-brain models are constructed
on the basis of this compressed information: They use the elements of the SC and PL matrices
as proxies for the efficiencies and latencies with which signals are transmitted between the brain

Fig. 2.2. (A-B) Illustrations explaining (A) the structural connectivity (SC) and (B) the functional connectivity (FC)
of the brain. The SC considers the white matter fiber tracts physically facilitating the transmission of electrical
signals between brain regions, whereas the FC reflects statistical dependencies betwixt the regional activities.
(C) Schematic depiction of isotropy and anisotropy in a neuron. In the axon, the (water) molecules diffuse pre-
dominantly along the direction of the fiber (anisotropy), while their movements are not so restricted in the cell body
(isotropy). (D) Illustration explaining the origin of the blood-oxygen-level-dependent (BOLD) signal. First, (1) neurons
are activated. As a consequence, (2) they start to consume energy. Eventually, (3) continued activation necessi-
tates the oxygen-demanding production of new energy which requires oxygenated blood to flow into the activated
brain region. (E) Demonstration of how the SC can be derived from the FC in a system that can be modeled via
a (linear) multivariate Gaussian process. The example system is an adaptation of the mass-spring system shown
in Das et al. (2017). Five masses are coupled by identical springs as depicted in the top panel, and are perturbed
by Gaussian white noise. Simulations of this system yield the positions of these masses over time (fragments of
these traces are shown in the top panel), which can be correlated to yield the correlation matrix shown on the bottom
left. Inversion of this matrix yields the precision matrix shown on the bottom right, which only reflects conditional
statistical dependencies.
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regions, respectively; see Section 2.3: Dynamical whole-brain models. Since the tractography
algorithms cannot infer the directionality of the connections from the dwMRI sequences, the SC
and PL matrices are symmetric, and so the models assume that information flows from brain
region A to area B with the same efficiency and latency as for the reversed direction.

2.2.2 (Resting-state) functional connectivity

The functional connectome is conceptually distinct from the SC, because it does not consider
physical connections but statistical dependencies between activities instead (Craddock et al.,
2013; van den Heuvel & Hulshoff Pol, 2010; Rogers et al., 2007). In other words, the FC re-
flects how similar the activation patterns of two brain regions are over time (Fig. 2.2B). Even
though this correspondence can be evaluated through a number of analyses, it traditionally in-
volves calculating the correlation coefficient between the activity time series (Farahani et al.,
2019; Marrelec et al., 2016; H. E. Wang et al., 2018). In fact, it has been argued that this
approach is a suitable choice when fMRI data are used for the inference of the functional con-
nectome (H. E. Wang et al., 2014), as is the case throughout this thesis. Albeit the FC might
change over time (Brovelli et al., 2017; Heitmann & Breakspear, 2018; Hutchison et al., 2013;
Preti et al., 2017), it currently is not clear which analytical procedures applied to fMRI data yield
time-dependent FC fluctuations that actually reflect neurobiologically-relevant brain state vari-
ations (Hindriks et al., 2016; Honari et al., 2019; Leonardi & Van De Ville, 2015; Lurie et al.,
2020; Zhang, Baum, et al., 2018). Because of this ongoing debate, the functional connectome
is assumed to be static in this thesis.

The FC of the brain can thus be derived from fMRI sequences. That is because fMRI mea-
sures the amount of oxygenated blood that may serve as a proxy for the activity of a brain re-
gion (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). The theoretical principle
linking oxygenated blood to brain activity is captured by the concept of the blood-oxygen-level-
dependent (BOLD) response illustrated in Fig. 2.2D. When a group of nerve cells becomes
activated and starts to generate action potentials, the individual neurons start to consume more
energy (Fig. 2.2D; Attwell & Laughlin, 2001; Harris et al., 2012). As a consequence, addi-
tional energy in the form of adenosine triphosphate (ATP) must be generated within the cells,
which requires oxygenated blood to flow to the activated brain area (Fig. 2.2D; Schmidt-Rohr,
2020; Vergara et al., 2019). These indirect measurements of neural activity and the relatively
low sampling rates (∼1 s per brain volume) are the main disadvantages of fMRI, whereas the
benefits are its spatial resolution (voxels are approximately 2 mm × 2 mm × 2 mm) and its
non-invasiveness (Uğurbil et al., 2013).

Dynamical whole-brain models often consider the FC corresponding to resting-state brain dy-
namics, which is observed when the subject is neither performing a particular task nor receiving
a specific stimulus (B. B. Biswal, 2012; Deco et al., 2011; Popovych et al., 2019; Suárez et al.,
2020). In fact, throughout this thesis, the FC is assumed to have been derived from resting-state
data unless explicitly specified otherwise. Even though this type of brain activity was historically
thought to merely constitute unstructured noise, there nowadays is consensus that it actually
reflects ongoing mental processes (van den Heuvel & Hulshoff Pol, 2010; Deco et al., 2011;
Cabral et al., 2014; Popovych et al., 2019). Resting-state fMRI data can even portray activa-
tion patterns that are similar to those found in task-based settings, presumably because those
mental processes require a careful coordination of brain activity (B. Biswal et al., 1995; Cole
et al., 2014; Bolt et al., 2017). Furthermore, considering the brain activity at rest has practical
advantages over the investigation of task-induced dynamics. As they can be acquired in the
absence of an experimental paradigm, resting-state data can be sampled more readily than
task-based brain activity, which necessitates the engagement of a subject with a predefined
task or stimulus (M. D. Fox & Greicius, 2010; Lv et al., 2018; Popovych et al., 2019; Smitha et
al., 2017). Additionally, the FC associated with a specific experimental design could strongly
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rely on the task at hand, and may thus be less generalizable and reusable than the functional
connectome obtained from resting-state data (Popovych et al., 2019; Smitha et al., 2017).

The (resting-state) fMRI data is 4-dimensional as it constitutes 3-dimensional brain volumes
sampled at several consecutive time points. To derive the region-based FC from the time series,
a parcellation can be used to pool the BOLD signals of all the voxels comprising a particular brain
region together for every individual time point by calculating, e.g., the mean or first eigenvariate
of the BOLD signals across those voxels (Jenkinson et al., 2012). This operation yields N
time series where N is the number of brain regions in the considered parcellation. The FC
may then be calculated from these temporal activation patterns by determining their statistical
dependencies through a selectedmeasure (H. E.Wang et al., 2014). The final result is theN×N
FC matrix describing the extent to which the individual pairs of brain regions are co-activated.

2.2.3 Correspondence between structural and functional connectivity
The SC and the FC of the human brain exhibit a linear relationship that explains a moderate
amount of the variance (<50%) in the connectomes at best (Honey et al., 2009; Suárez et al.,
2020). This discrepancy between the SC and the FC matrices may be induced by the emer-
gence of correlations between pairs of brain regions that do not exhibit a structural connection
but are physically connected to a common source (Das et al., 2017). When a system can be
modeled via a multivariate Gaussian process in the form of the well-known Ornstein-Uhlenbeck
model (Bishop, 2006; Galán, 2008; Saggio et al., 2016), and a sufficiently large number of
samples is available, these indirect functional connections can be removed by inverting the FC
(correlation) matrix to yield the precision matrix which only contains the direct or conditional
statistical dependencies (Das et al., 2017; Dawid, 1979; Dempster, 1972); see Fig. 2.2E for
an illustration. Comparing the SC reconstructed from dwMRI images with the functional preci-
sion matrix derived from fMRI sequences can indeed tighten the link between the structural and
the functional connectomes, but the relationship nevertheless remains imperfect even if many
hours of resting-state data are used for the calculations (Liégeois et al., 2020; Marrelec et al.,
2016). These findings therefore suggest that the relationship between the SC and the FC may
not be accurately described by a multivariate Gaussian process in the form of a linear dynamical
system (Bishop, 2006).

Three types of models have been proposed to explain the remaining variability in the empirical
data. Some studies have used (multivariate) statistical models to provide a tighter link between
the SC and the FC (Deligianni et al., 2016; Messé et al., 2014; Mišić et al., 2016; Suárez et
al., 2020; Vázquez-Rodríguez et al., 2019). Others have used principles from network and
telecommunication science to achieve the same goal (Avena-Koenigsberger et al., 2018; Crofts
& Higham, 2009; Goñi et al., 2014; Graham & Rockmore, 2011; Mišić et al., 2015). However,
this thesis considers the third class of dynamical whole-brain models that replicate the FC by
simulating resting-state brain dynamics on the basis of the SC (Deco & Kringelbach, 2014;
Popovych et al., 2019; Suárez et al., 2020). These models are well suited to investigate the
non-linear interactions that presumably underlie the relationship between the SC and the FC
(see above), because they may incorporate a wide variety of non-linearities; see below.

2.3 Dynamical whole-brain models
The first studies investigating dynamical whole-brain models were published more than a
decade ago (Honey et al., 2007; Ghosh et al., 2008; Honey et al., 2009). Ever since, these
models have been used to study a wide variety of aspects regarding the human brain. For
example, they demonstrated that proper resting-state brain dynamics require an appropriate
amount of system noise as well as a fitting coupling strength and delay in the transmission
of signals between brain regions (Deco et al., 2009, 2011; Ghosh et al., 2008). Eventually,
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these investigations led to the conclusion that the brain at rest is characterized by a state
of maximal metastability (Deco et al., 2012; Deco & Jirsa, 2012; Deco et al., 2017). Whole-
brain models were also used to study the temporal variations of the FC discussed in Section
2.2.2 (E. C. A. Hansen et al., 2015), and some recent studies even embedded additional region-
specific information (beyond the regional connectivity profiles included in the SC and FC) in the
models to explain a variety of neurobiological phenomena (Deco, Cruzat, et al., 2018; Deco et
al., 2019, 2021; Demirtaş et al., 2019; Kringelbach et al., 2020).

There is a growing body of evidence that dynamical whole-brain models may not only be used
to study general neurobiological principles underlying brain functioning, but that they can also
be a personalized representation of the (resting-state) brain dynamics of a particular individ-
ual (Bansal et al., 2018). This is explicitly demonstrated by one study that used the toolbox
of The Virtual Brain (Jirsa et al., 2017; Ritter et al., 2013; Sanz-Leon et al., 2015) to show the
predictive capacity of dynamical whole-brain modeling results outperforming that of the empir-
ical connectomes when distinguishing between healthy subjects and patients with Alzheimer’s
disease (Zimmermann, Perry, et al., 2018). Furthermore, the models have been used to iden-
tify attention deficit hyperactivity disorder (ADHD) patient subtypes (Iravani et al., 2021), and
to estimate the impact of tumor resection on brain dynamics (Aerts et al., 2020). In sum, even
though dynamical whole-brain models were initially designed to understand general aspects
of the brain by investigating its structure-function relationship, they nowadays are also used to
identify differences between individuals corresponding to distinct cohorts.

Fig. 2.3 schematically depicts the general analysis pipeline associated with dynamical whole-
brain models. Prior to the modeling, the brain is divided into N brain regions by a particular

Fig. 2.3. The various stages in dynamical whole-brain modeling. (A) A network graph is constructed on the basis of
the (empirical) structural connectivity (SC). In this graph, the nodes represent the brain regions, and are connected
by weighted edges as prescribed by the SC matrix. This matrix is symmetric when it is derived from MRI data (Sec-
tion 2.2.1: Structural connectivity), and so the edges are undirected. (B) The mean-field activities of all brain regions
are modeled via a particular model of local dynamics that includes a coupling term enabling connected brain regions
to interact. Subsequently, the model is simulated in order to sample the (simulated) activity time traces of each
individual region. (C) A functional connectivity (FC) matrix is calculated from the simulated activities by following
the same procedure used to derive the empirical FC from the (empirical) BOLD signals. (D) Finally, the model is
validated by determining the similarity between the simulated and the empirical FC.
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parcellation, and the corresponding N × N empirical SC and empirical FC matrices are de-
rived from dwMRI and fMRI data, respectively. Subsequently, a network graph is constructed
on the basis of the empirical SC (Fig. 2.3A). The nodes of this graph represent the individual
brain regions, and pairs of nodes are connected by edges if the corresponding element of the
empirical SC is non-zero. These edges are undirected because the empirical SC matrix is sym-
metric (Section 2.2.1: Structural connectivity), and are assigned a weight that is equal to the
value of their associated elements in the empirical SCmatrix; see the example of the connection
between brain regions 1 and 2 in Fig. 2.3, which has a weight of 3. The constructed structural
network includes all the connections that the model can use to coordinate the activities of the
individual brain regions.

Then, the mean-field activities of all brain regions are sampled by simulating the dynamics of the
network model (Fig. 2.3B). Here, a single set of differential equations with a known dynamical
behavior is used to describe the local dynamics of each individual brain region. Such systems
of equations summarize the complex interactions between the many neurons within those re-
gions through a few state variables; see below for examples. When implementing these local
models in dynamical whole-brain models, a coupling term is added to the equations to enable
the (mean-field) activities of distinct brain regions to interact in accordance with the constructed
structural network. Hence, dynamical whole-brain models are network models that mimic how
the regional activities following a well-defined pattern in isolation affect one another when (struc-
tural) connections are added.

Next, the simulated FC is calculated from the (simulated) activity time traces by employing
the same procedure that was used to derive the empirical FC from the regional BOLD sig-
nals (Fig. 2.3C; Section 2.2.2: (Resting-state) functional connectivity). Finally, the simulated
and the empirical FC are compared by calculating an index of the similarity (e.g., the Pearson
correlation coefficient) between them (Fig. 2.3D). This index indicates how well the model is
able to replicate the empirical FC and can thus be regarded as a measure of the validity of the
model. Dynamical whole-brain models can have a number of free parameters, and the set-
tings of these parameters may influence the network dynamics and incidentally (the similarity
between the empirical and) the simulated FC. Therefore, in order to provide a definite estimate
of the fit of the model to the empirical data, the free parameters of the models should first be
optimized such that the similarity index is maximized.

Dynamical whole-brain modeling studies have proposed a vast variety of models for local dy-
namics that can have diverging conceptual underpinnings and interpretations (Abeysuriya et
al., 2018; Bick et al., 2020; Deco et al., 2012, 2013; Deco, Ponce-Alvarez, et al., 2014; Deco
et al., 2017; Ghosh et al., 2008; E. C. A. Hansen et al., 2015). However, two of these models
return in both studies of this thesis, which are the Kuramoto model of coupled phase oscilla-
tors (Cabral et al., 2011; Kuramoto, 1984; Ponce-Alvarez et al., 2015; Popovych et al., 2021) and
a system of coupled Wilson-Cowan neural mass models (Abeysuriya et al., 2018; Deco et al.,
2009; Muldoon et al., 2016; Wilson & Cowan, 1972). These models are therefore introduced
and examined in more detail below. The second study of this thesis also makes use of the
(linear) Ornstein-Uhlenbeck model that was mentioned in Section 2.2.3: Correspondence be-
tween structural and functional connectivity. With respect to this model, it nevertheless suffices
to mention that it simply describes the (linear) diffusion of noise over the (anatomical) network
structure; see Bishop (2006) and Galán (2008) for more details on this model, and Saggio et al.
(2016) for its analytical solution in the context of dynamical whole-brain modeling.

2.3.1 Kuramoto model

Oscillations are omnipresent in the brain. They can be found in the collective activities of large
neuronal ensembles (Baria et al., 2011; Cohen, 2017; Scheeringa et al., 2016) as well as in the



CHAPTER 2 - BACKGROUND THEORY 15

fluctuating membrane potentials of individual nerve cells (Stiefel & Ermentrout, 2016). These
oscillation generating (populations of) neurons may be connected by synapses, which leads
to the formation of networks of coupled neural oscillators. Then, the Kuramoto model may
be used to approximate the (phase) dynamics of such networks (Bick et al., 2020; Cumin &
Unsworth, 2007; Breakspear et al., 2010). After all, this dynamical model was designed to study
synchronization in any system of coupled (phase) oscillators (Acebrón et al., 2005; da Fonseca
& Abud, 2018; Kuramoto, 1984; Strogatz, 2000); for a comprehensive review see Rodrigues et
al. (2016).

The Kuramoto model describes the dynamics of an individual oscillator i ∈ {1, ..., N} in a net-
work of N oscillators by considering only its phase φi(t) as a function of time t. In dynamical
whole-brain models, the phase of each oscillator follows the dynamic equation (Cabral et al.,
2011; Popovych et al., 2021)

dφi(t)

dt
= φ̇i(t) = 2πfi + σνi(t) +

N∑
j=1

Cij sin (φj(t− τij)− φi(t)) . (2.1)

The first term on the right hand side of this equation indicates that oscillator i has an intrinsic or
natural frequency fi, which means that it oscillates with that particular frequency in the absence
of any perturbations. The second term characterizes that the phase of the oscillator is perturbed
by noise with an intensity of σ through the stochastic variable νi(t). The third and final term
defines how the oscillator is coupled to all other oscillators in the network. Here, the phase of
oscillator j influences that of the considered oscillator i after a delay of τij and with a strength of
Cij . This is different from the original model proposed by Kuramoto (1984), where the network is
fully and homogeneously connected. This divergence from the original formulation is required to
implement the prior information included in the SC into the network model. Here, the empirical
SC and PL matrices can be used for the derivation of the coupling strengths Cij and delays τij ,
respectively (Section 2.2.1: Structural connectivity).

It must bementioned here that dynamical whole-brainmodels based on the Kuramotomodel dis-
regard the neurophysiological principles underlying neural oscillations. Indeed, the Kuramoto
model is an abstract model that can be used to study (de)synchronization in any network of
coupled phase oscillators (Kuramoto, 1984). However, this high level of abstraction is achieved
by simply assuming the existence of the oscillations and ignoring their origin (Eq. 2.1). In re-
ality, neural oscillations typically emerge from the interplay between neurons through a va-
riety of mechanisms (Tiesinga & Sejnowski, 2009; Vijayan & Kopell, 2012; Viriyopase et al.,
2016). Moreover, the Kuramoto model presumes that the activities of the brain regions oscil-
late with a fixed natural frequency (Eq. 2.1). This aspect of the model deviates fundamentally
from the finding that neural oscillations may vary considerably in terms of time scale (Buzsáki,
2006), which may be caused by the involvement of distinct inhibitory neuron subtypes in these
rhythms (J. W. M. Domhof & Tiesinga, 2021; Kopell et al., 2000).

Alternatively, dynamical whole-brain models may be based on biologically-plausible models for
local dynamics. These models explicitly consider the interactions between the activities of sep-
arate (ensembles of) neurons. As a consequence, the network dynamics enjoy a stronger
neurobiological motivation, but they may also be more complex. Examples of such biologically-
realistic models include the Jansen-Rit model (Jansen et al., 1993; Jansen & Rit, 1995), the
(reduced) Wong-Wang model (Deco, Ponce-Alvarez, et al., 2014; Wong & Wang, 2006) and
the Wilson-Cowan model considered in this thesis and described in more detail below (Wilson
& Cowan, 1972).

2.3.2 Wilson-Cowan model
Fig. 2.4A shows the network architecture that is typically employed when the Wilson-Cowan
model characterizes the regional dynamics in a dynamical whole-brain model (Abeysuriya et
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al., 2018; Deco et al., 2009; Hellyer et al., 2016; Messé et al., 2014). Given a network of N
brain regions, the variables Ei(t) and Ii(t) represent the collective activities of all the excitatory
and inhibitory neurons in brain region i ∈ {1, ..., N}, respectively (Wilson & Cowan, 1972).
These variables can be interpreted as the average firing rates of the neuron ensembles, i.e.
the proportion of excitatory and inhibitory cells generating an action potential within a unit of
time, respectively. In the studies of this thesis, the activity of an individual brain region i is then
modeled via the coupled differential equations

µEĖi(t) = −Ei(t) + κS

 N∑
j=1

CijEj (t− τij)− wEIIi(t) + Ib

+ σνi(t) and (2.2)

µI İi(t) = −Ii(t) + κS (wIEEi(t)) + σνi(t), (2.3)

where µE = µI = 20 ms determine the time scales of the excitatory and inhibitory dynamics,
respectively. The first terms in the right hand sides of Eqs. 2.2 and 2.3 (−Ei(t) and −Ii(t),
respectively) characterize that the activities of both populations decay in the absence of any
input. Their last terms (σνi(t) for both expressions) indicate that both neuronal ensembles
receive the same noise with intensity σ.

The middle terms in both equations define the inputs arriving at the separate populations. The
pool of inhibitory neurons only receives an excitatory input from the excitatory cells located in the
same brain region that is scaled by a factor wIE = 0.6 (Eq. 2.3; Fig. 2.4A). In contrast, a number
of inputs arrive at the excitatory cells. One of these inputs is a constant background input Ib.
In addition, they receive an inhibition from the inhibitory cells located in the same region that is
scaled by a factor wEI = 1.5. Furthermore, the excitatory cells residing in the same area of the
brain excite one another, and this excitation is scaled by a factor Cii = wEE = 1.0. Moreover,
the excitatory cells in any other brain region j can excite those located in brain region i after
a delay of τij and with a strength of Cij . Fig. 2.4A schematically depicts these connectivity
patterns for three brain regions. The sums of the inputs elicit a change in the activations of the
individual pools of neurons via the non-linear, sigmoid-shaped activation function

S(x) = 1

1 + exp (−λ(x− γ))
− 1

1 + exp(λγ)
, (2.4)

where λ = 20.0 and γ = 0.3 determine the width and the position of its inflexion point, re-
spectively. This function satisfies S(0) = 0 for any combination of λ and γ, and κ = (1 +
exp(λγ))/ exp(λγ) ensures that κS(x) = 1 as x→ ∞.

In the absence of inter-regional coupling and noise, the model described by Eqs. 2.2 - 2.4 and

Fig. 2.4. (A) Schematic of a dynamical whole-brain model that uses the Wilson-Cowan model for local dynamics
and comprises three brain regions. The input details are only shown for the region in the middle. Arrows and
dots represent excitatory and inhibitory interactions, respectively. Eqs. 2.2 - 2.3 and the associated text explain the
depicted symbols. (B) Sample activity time series of the excitatory (Ei(t), solid lines) and inhibitory (Ii(t), dashed
lines) neuron populations for distinct settings of the constant background input arriving at the excitatory population
Ib in the absence of inter-regional coupling and noise.
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associated parameter values exhibits the behavior displayed in Fig. 2.4B. If the background
input Ib is too low and too high, the model converges to a low and high activity state, respec-
tively (Fig. 2.4B, orange and purple). However, between these states, the model produces oscil-
lations (Fig. 2.4B, green). These oscillations have an alpha-band (∼10 Hz) frequency (Foster et
al., 2017), which is the predominant frequency in the electroencephalography (EEG) measuring
large-scale fluctations in the electrical potentials of the resting human brain (Fraga González et
al., 2018; Spitoni et al., 2013). Even though the Wilson-Cowan model may also feature multi-
stability and hysteresis besides the oscillatory behavior (Wilson & Cowan, 1972), the model was
designed to generate these (alpha-band frequency) oscillations because these rhythms have
been associated with the BOLD signals captured by fMRI data (Mayhew et al., 2013; Scheeringa
et al., 2016)

It should be noted that the exact implementation of theWilson-Cowanmodel in dynamical whole-
brain models may vary between studies (Abeysuriya et al., 2018; Daffertshofer & vanWijk, 2011;
Deco et al., 2009; Hellyer et al., 2016; Messé et al., 2014; Muldoon et al., 2016). Furthermore,
recent studies suggest that the model described by Fig. 2.4A and Eqs. 2.2 - 2.4 may not be
entirely accurate from a biophysical point of view: Inhibitory neurons have been shown to inhibit
one another and to form long-range connections (Melzer & Monyer, 2020; Pfeffer et al., 2013).
However, as this thesis focuses on the influence of the parcellation on dynamical whole-brain
modeling results, the model is formulated with the objective to enhance its comparability with
the pre-existing literature. Hence, it is based on the model by Deco et al. (2009), which regularly
also forms the basis for other dynamical whole-brain models using the Wilson-Cowan model as
the model for local dynamics (Abeysuriya et al., 2018; Hellyer et al., 2016; Messé et al., 2014)

2.4 Graph theory
The previous section already demonstrated that the SC and FC may be represented by network
graphs. In such graphs, the brain regions are portrayed by the network nodes or vertices that
are connected to one another by edges as prescribed by the considered connectivity matrix;
see Fig. 2.3A for an example. Consequently, concepts from the mathematical field of graph
theory may be used to study these networks and characterize them in terms of a variety of net-
work properties (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). Such graph-theoretical
statistics have, for example, been used to better understand how neuropathologies affect brain
functioning (Bullmore & Sporns, 2009; Guye et al., 2010; Z. Wang et al., 2021). In this sec-
tion, the main classes of network properties that are frequently used to study brain networks
are discussed globally. In particular, the properties of node centrality, functional integration and
functional segregation are introduced (Rubinov & Sporns, 2010). Additionally, each of these
brief introductions is accompanied by concrete examples of graph-theoretical measures reflect-
ing that specific network property. Here it should be noted that some of these metrics are also
used in one of the studies of this thesis to explain the observed parcellation-induced variations
in the modeling results (Chapter 3).

2.4.1 Centrality of network nodes

Individual nodes may play specific roles in a network; in fact, one vertex may be more im-
portant for its functioning than another. The concept of centrality provides a ranking of the
influences that the individual nodes can have on (the dynamics of) the network (Borgatti, 2005;
Borgatti & Everett, 2006). Here, relatively important nodes or brain regions are supposed to
promote the integration of information distributed throughout the (brain) network and to pro-
tect network functioning from improper behavior following small network architectural changes
or even degradation (Rubinov & Sporns, 2010). Experimental studies have demonstrated a
practical implication of this theoretical notion: Deviations in node centrality have indeed been
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associated with neurological diseases (Lynall et al., 2010; Rubinov et al., 2009). Interestingly,
these empirical findings received additional theoretical support from an investigation wielding
dynamical whole-brain models (Cabral et al., 2012).

The centrality measure that is perhaps most often used in brain network research is the nodal
degree (Rubinov & Sporns, 2010). It is the sum of all the connections that link a particular vertex
to the rest of the network (Diestel, 2012; Rubinov & Sporns, 2010). However, the centrality may
also be expressed in terms of shortest paths or geodesics, i.e. the combinations of network
edges that minimize the costs of traveling between any two nodes in the network (Cherkassky
et al., 1996; Rubinov & Sporns, 2010). One measure expressing the centrality in terms of
geodesics is the closeness centrality of a node, which is the reciprocal of the average length
of all shortest paths connecting that node to the other vertices in the network (Freeman, 1978;
Rubinov & Sporns, 2010). Another example is the nodal betweenness centrality, which is the
fraction of all shortest paths in a given network that involve the considered vertex (Brandes,
2001; Freeman, 1978; Rubinov & Sporns, 2010). Of these three measures, the degree and
closeness centrality are used in the first study of this thesis (Chapter 3).

2.4.2 Functional integration

Measures of functional integration reflect the extent to which a (brain) network facilitates the swift
assimilation of segregated flows of information (Latora & Marchiori, 2001; Rubinov & Sporns,
2010; Watts & Strogatz, 1998). Indeed, information may be distributed over spatially separated
parts of the brain. For instance, the area of the cerebral cortex that processes visual information
is located in the occipital lobe based at the rearmost part of the brain (Tong, 2003). Concurrently,
somatosensory input is processed in a portion of the brain adjacent to the central sulcus that
can be found approximately in the middle of the anterior-posterior axis (Sanchez-Panchuelo et
al., 2010). It has been proposed that the assimilation of different types of (sensory) information
could underlie higher-order cognitive functions (Oizumi et al., 2014; Toker & Sommer, 2019).
In fact, experimental findings suggest that the capacity of the brain for functional integration is
related to the intelligence scores of individual subjects (van den Heuvel et al., 2009).

In brain network research, the ability of a network to quickly integrate diverse streams of func-
tional information is typically reflected by two measures (Rubinov & Sporns, 2010). The first, the
characteristic path length, is calculated as the mean length of all shortest paths in the network,
and a larger value for this quantity indicates a lower capacity for fast assimilation (Watts & Stro-
gatz, 1998). The second, the (global) efficiency, is the mean across the inverted lengths of all
geodesics; here, a higher efficiency reflects an increased ability to quickly integrate distributed
information (Latora & Marchiori, 2001). It has been argued that the efficiency outperforms the
characteristic path length when considering brain networks (Achard & Bullmore, 2007). Never-
theless, both measures are used in the first study of this thesis (Chapter 3).

2.4.3 Functional segregation

As discussed in the previous paragraph, information indeed may be distributed across the
brain (Tong, 2003; Sanchez-Panchuelo et al., 2010), and the network architecture may reflect
this segregation as well. Visual information, for instance, is initially relayed the to primary vi-
sual cortex, but is ultimately processed by the ensemble of neighboring brain regions (Freud
et al., 2016). Measures of functional segregation characterize the extent to which the (brain)
network consists of separate clusters of nodes, where many and few connections are found
between nodes belonging to the same and different clusters, respectively (Rubinov & Sporns,
2010, 2011; Watts & Strogatz, 1998). The amount of functional segregation in a brain network
can thus be interpreted as the degree to which the brain regions can be divided into groups that
presumably perform specific tasks (Rubinov & Sporns, 2010).
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In brain network studies, functional segregation is typically characterized by the clustering co-
efficient or the modularity (Rubinov & Sporns, 2011; J. Wang et al., 2009; Zalesky et al., 2010),
although the transistivity may also be used for this purpose (Rubinov & Sporns, 2010). The
clustering coefficient is defined at the nodal level and can be interpreted as the portion of the
neighbors of the considered node that also connect to each other (Onnela et al., 2005; Rubinov
& Sporns, 2010; Watts & Strogatz, 1998). Calculating the mean across the nodal clustering
coefficients then yields a measure representing how connectivity is clustered around the indi-
vidual nodes of the network on average (Rubinov & Sporns, 2010). When the nodal clustering
coefficients are instead collectively normalized, the transistivity is obtained (Newman, 2003;
Onnela et al., 2005; Rubinov & Sporns, 2010). In contrast to the clustering coefficient and tran-
sistivity, the modularity is calculated for the entire network and not on a nodal basis (Newman
& Girvan, 2004; Rubinov & Sporns, 2010, 2011). It aims to divide the network nodes into a
number of modules so that the connectivity within and between modules is maximized and min-
imized, respectively (Newman & Girvan, 2004; Rubinov & Sporns, 2010, 2011). Finding the
exact optimal modular structure quickly becomes computationally intractable as the number of
nodes increases, and so this optimization problem is typically solved by algorithms specifically
designed for this purpose (Blondel et al., 2008; Danon et al., 2005; Newman, 2006). In the first
study of this thesis, only the clustering coefficient and themodularity are considered (Chapter 3).

2.5 Principal component analysis
Nowadays, neuroscience research often involves the analysis of high-dimensional datasets
comprising many samples that all consist of multiple variables (Pang et al., 2016). In animal
studies, for example, calcium imaging can be used to simultaneously record the activity of thou-
sands of nerve cells on a vast number of points in time (Ohki et al., 2005; Stosiek et al., 2003).
Depending on the research question, it may be helpful to reduce the dimensionality of such
datasets prior to further analyses in order to enhance the interpretability of the forthcoming re-
sults (Pang et al., 2016). Such dimensionality reductions can be performed using techniques
from the field of pattern recognition and machine learning (Bishop, 2006).

Principal component analysis is one of these techniques (Ayesha et al., 2020; Bishop, 2006;
Pang et al., 2016). It is rather well known and often used by the neuroimaging community (Finn
& Bandettini, 2021; Thirion et al., 2014; Zhan et al., 2015). It aims to construct a set of mutually
orthogonal axes within the feature space of the dataset, where each subsequent axis is a linear
combination of the original variables and explains asmuch as possible of the remaining variance
in the data (Hotelling, 1936; Pearson, 1901; Stewart, 1992); see Fig. 2.5 for an illustration.
This goal is achieved by calculating the covariance matrix for the dataset and subsequently
determining and normalizing the eigenvalues and eigenvectors of that matrix (Bishop, 2006).
In one of the studies of this thesis, this is done numerically by making use of the relationship
between singular value decomposition and principal component analysis; see Wall et al. (2003)
and Chapter 3 for details. Ultimately, the actual reduction of the dimensionality is then attained
by only considering the first (few) principal component(s) in further analyses (Ayesha et al.,
2020; Pang et al., 2016).

2.6 Intraclass correlation
The reliability of a metric essentially characterizes its consistency across different measure-
ments that were performed under similar if not equal conditions. In neuroimaging studies, for
instance, the investigation of the reliability of a particular observable often involves the acquisi-
tion of data for the same subject at different moments in time (Shehzad et al., 2009; Muldoon et
al., 2016; Noble et al., 2017, 2019; Taxali et al., 2021). Then, the intraclass correlation (ICC) can
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be used to quantify the reliability of the considered measure, because it may reflect the inter-
individual variability of the measure relative to the total variance; see below (Fig. 2.6; Bartko,
1966; G. Chen et al., 2018; Noble et al., 2019; Shrout & Fleiss, 1979). Numerous neuroimag-
ing studies used the ICC to characterize the reliability of the empirical FC derived from fMRI
data (Birn et al., 2013; Noble et al., 2017, 2019; Pannunzi et al., 2017; Shehzad et al., 2009;
Taxali et al., 2021; Zhang, Baum, et al., 2018). Also the second study of this thesis employs
this statistic in order to estimate the reliability of the modeling results (Chapter 4).

Although the ICC has different forms depending on the number of confounds to account for, the
second study of this thesis uses its most simple variant characterizing the absolute agreement
in the considered metric (G. Chen et al., 2018; Noble et al., 2017, 2019); see Chapter 4 for
a justification of this selection. This form of the ICC can be calculated by making use of the
analysis of variance (ANOVA) framework (McGraw & Wong, 1996; Shrout & Fleiss, 1979). In
this analysis, the observable x is modeled via the relationship

xs,m = µ+ as + εs,m, (2.5)

where xs,m is the observable determined using measurementm of subject s, and µ is the mean
over all measurements of all subjects. Additionally, as is the effect induced in the observable by
subject s, and εs,m is the residual noise included in the measurement. The ICC reflecting the
absolute agreement in x (ICC(1, 1)) then follows the expression (G. Chen et al., 2018; Noble
et al., 2019)

ICC(1, 1) =
σ2a

σ2a + σ2ε
, (2.6)

where σa and σε are the ”true” standard deviations of a and ε, respectively. These standard
deviations and hence the ICC can be estimated from the data at hand using the procedures
described in Liljequist et al. (2019), which were also employed in the second study of this the-
sis (Chapter 4).

Cicchetti & Sparrow (1981) suggested to interpret the ICC either as being ”poor” (ICC(1, 1) <
0.40; Fig. 2.6A), ”fair” (0.40 ≤ ICC(1, 1) < 0.60; Fig. 2.6B), ”good” (0.60 ≤ ICC(1, 1) < 0.75;
Fig. 2.6C) or ”excellent” (ICC(1, 1) ≥ 0.75; Fig. 2.6D). These classifications were adopted by

Fig. 2.5. Principal component analysis applied to a three-dimensional toy dataset. (A) Individual data points (blue
dots) projected in a three-dimensional space. Principal component analysis yields the three (mutually orthogonal)
principal components represented by the colored lines. The legend explains the color coding. (B) Percentages of
variance explained by the individual principal components shown in panel A. In order to reduce the dimensionality
of the depicted dataset, only the first principal component could be considered in further analyses since it explains
most of the variance in the data (>90%).

.
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Fig. 2.6. Illustration of the concept behind the intraclass correlation (ICC). For each panel, a toy data set was
generated that comprised 20 subjects, which all had 15measurements of a hypothetical quantity. The subject means
are the same for all panels, and were sampled from a Gaussian distribution with a mean of zero and a standard
deviation of σa = 1.00. The individual measurements were sampled using those subject means and a residual
standard deviation of (A) σε = 2.00, (B) σε = 1.00, (C) σε = 0.75 and (D) σε = 0.10. Individual measurements
are plotted as blue circles. The titles display the ICCs associated with the individual panels as calculated through
Eq. 2.6.

the second study of this thesis as well (Chapter 4). Nonetheless, another interpretation has
been proposed by Koo & Li (2016).
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Abstract
Recent developments of whole-brain models have demonstrated their potential when investi-
gating resting-state brain activity. However, it has not been systematically investigated how
alternating derivations of the empirical structural and functional connectivity, serving as the
model input, from MRI data influence modeling results. Here, we study the influence from one
major element: the brain parcellation scheme that reduces the dimensionality of brain networks
by grouping thousands of voxels into a few hundred brain regions. We show graph-theoretical
statistics derived from the empirical data and modeling results exhibiting a high heterogene-
ity across parcellations. Furthermore, the network properties of empirical brain connectomes
explain the lion’s share of the variance in the modeling results with respect to the parcellation
variation. Such a clear-cut relationship is not observed at the subject-resolved level per parcel-
lation. Finally, the graph-theoretical statistics of the simulated connectome correlate with those
of the empirical functional connectivity across parcellations. However, this relation is not one-
to-one, and its precision can vary between models. Our results imply that network properties of
both empirical connectomes can explain the goodness-of-fit of whole-brain models to empirical
data at a global group but not a single-subject level, which provides further insights into the
personalization of whole-brain models.

3.1 Introduction
The structure-function relationship in the human brain has been a topic of interest in many neu-
roimaging studies (Suárez et al., 2020). Here, the structural connectivity (SC) and functional
connectivity (FC), which reflect the physical connections and patterns of synchronized coactiva-
tion throughout the brain, respectively, do not exhibit a perfect association (Honey et al., 2009).
One effort to close this gap in the structure-function relationship involves the employment of
dynamical whole-brain models that use SC as prior knowledge to simulate resting-state brain
activity (Honey et al., 2009). These models indeed successfully explain an additional amount of
variance beyond the direct comparison of SC and FC (Honey et al., 2009). They also demon-
strate that the brain at rest operates at a state of maximal metastability (Deco et al., 2017).
Other studies even suggested that the vast parameter space of the models can be exploited to
reproduce resting-state brain activity on a personalized level (Ritter et al., 2013; Sanz-Leon et
al., 2015; Zimmermann, Perry, et al., 2018).

Throughout the past decade, the workflow associated with dynamical whole-brain models inves-
tigating resting-state brain activity has matured (Bansal et al., 2018; Deco et al., 2011; Popovych
et al., 2019). When these models are derived and validated using magnetic resonance imag-
ing (MRI) data, region-based SC and FC are typically calculated from diffusion-weighted MRI
(dwMRI) and functional MRI (fMRI) sequences, respectively, so that the computations remain
tractable (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992; Popovych et al., 2019;
Yeh et al., 2021). The reconstruction of these connectomes requires the use of a so-called brain
parcellation or brain atlas, which describes which voxels should be included in which brain re-
gion. Over the years, many brain atlases have been constructed upon conceptually distinct
underpinnings, where each of these methodologies incorporates its own biological knowledge
and assumptions (e.g. the number of parcels or granularity) into the parcellation (Amunts &
Zilles, 2015; Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018).

Because region-based SC and FC are reconstructed on the basis of a particular brain parcel-
lation, it to a large extent determines the SC and FC matrices. The used brain parcellation
may thus exert a substantial influence on the results of region-based neuroimaging studies.
Earlier works examined the influence of parcellations on graph-theoretical measures derived
from region-based SC and FC (J. Wang et al., 2009; Zalesky et al., 2010) and on direct SC-FC
comparisons (Messé, 2020). The impact of the granularity of a brain atlas on modeling results
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was also investigated for the Desikan-Killiany atlas (Desikan et al., 2006) and variations of it,
wherein the brain regions were split into a number of smaller subregions (Proix et al., 2016).
Nevertheless, a systematic investigation of the influence of the brain parcellation is, to the best
of our knowledge, currently lacking when it comes to dynamical whole-brain models replicating
resting-state brain activity.

Here, we investigate this influence by using the methodology outlined in Fig. 3.1. We first ex-
tracted the SCs and FCs, henceforth referred to as the empirical SCs and empirical FCs, respec-
tively, from the MRI data of 200 healthy subjects using 19 freely available state-of-the-art brain
parcellations (Fig. 3.1, green). We constructed the models corresponding to the SC and two
qualitatively different models for the local dynamics of individual brain regions that were based
on phase oscillators and a neural mass model (Fig. 3.1, blue). By comparing between the two
models, we could evaluate whether any observed effects were model-dependent. The resting-
state brain activity was individually simulated for every combination of parcellation, model and
subject. Then FCs were derived from the simulated brain activity, which will henceforth be re-
ferred to as simulated FCs. The correlations between the simulated and empirical FCs were
calculated and maximized through model parameter variations to quantify how well the mod-
els could reproduce the empirical FCs (Fig. 3.1, blue). Finally, we compared the maximized
correlations or goodness-of-fits with graph-theoretical measures calculated from the empirical
SC and FC (Fig. 3.1, red and orange), so that any observation regarding the modeling results
could be interpreted in terms of the properties of the empirical networks used to construct and
validate our models.

We found large deviations in the goodness-of-fit as brain parcellations vary. In addition, most
of the group-averaged interparcellation variance in the goodness-of-fit could be attributed to
variations in the graph-theoretical metrics. Such a well-pronounced relationship was practically
absent when we considered within-parcellation, interindividual differences. Finally, we show
that the models (inaccurately) map the empirical SC to a simulated functional network that has
similar network properties as the empirical FC. Our investigation therefore illustrates how the
results produced by a dynamical whole-brain modeling workflow are influenced by the brain par-
cellation, and reveals some of its current limitations and open issues. The reported results are
relevant when considering personalized models of resting-state brain dynamics in the frame-
work of precision medicine.

3.2 Materials and methods
In this study, we systematically investigated the influence of the brain atlas on the validation of
dynamical whole-brain models by using the methodology outlined in Fig. 3.1. First, we extracted
the empirical SC and FC matrices corresponding to a particular parcellation from the dwMRI
and fMRI data, respectively (Fig. 3.1, green). The result of the empirical SC reconstruction
comprised two matrices: one with the number of streamlines and one with the average length of
the streamlines between each pair of brain regions, which are referred to as the actual structural
connectivities (SCs) and the path lengths (PLs), respectively. The empirical FCmatrix contained
the Pearson correlation coefficients across the BOLD response time series extracted from the
fMRI data.

Subsequently, the empirical SC and PL matrices were fed to the model as prior knowledge,
while the empirical FCmatrix was comparedwith the simulated FCmatrix produced by themodel
simulations (Fig. 3.1, blue). Twomodels (a phase oscillator and a neural massmodel) were used
for the acquisition of the simulation results, and we simulated both models for a broad range
of global parameter settings to maximize the fit between the empirical and simulated FC. We
also extracted some graph-theoretical metrics from the empirical SC and PL and the empirical
and simulated FC matrices (Fig. 3.1, red). To be specific, we determined the degree distribution
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and the modularity of the empirical SC and both types of FC to characterize their centrality and
segregation, respectively. In addition, we calculated the closeness centrality distribution and the
global efficiency of the PLmatrix as representations of its centrality and integration, respectively.
The latter two metrics calculated from the PL matrix are based on the streamline path lengths
between brain regions and allow a natural interpretability of the obtained quantities (see below).
Furthermore, we calculated the clustering coefficients from the empirical SC and FC and the
characteristic path lengths from the empirical PL and FC matrices. These latter two metrics can
also be used to compare our results with the literature investigating the influence of the brain
parcellation on graph-theoretical metrics extracted from empirical SC and FC (J. Wang et al.,
2009; Zalesky et al., 2010).

Finally, we sought to find correlations between the model simulation results and the extracted
graph-theoretical metrics using univariate and multivariate regression approaches (Fig. 3.1, or-
ange). In the remainder of this section, we discuss the procedures employed at each step
in detail. The source code of our analyses and connectome data have been made avail-
able elsewhere (https://jugit.fz-juelich.de/inm7/public/parcellation-modelling and https://doi.org/
10.25493/81EV-ZVT; J. W. M. Domhof et al., 2021; J. Domhof, 2021).

3.2.1 Extraction of empirical connectomes

Empirical connectomes were extracted for 200 (96 males, age 28.5 ± 3.5 years) healthy, un-
related subjects from the HCP S1200 release dataset (http://www.humanconnectomeproject
.org) (Van Essen et al., 2013, 2012) using 19 different brain parcellations. The local ethics
committee of the HCP WU-Minn gave its approval for the study and written, informed consent
was given by all subjects. Here, we discuss the extraction of empirical SC and PL from dwMRI
data and empirical FC from fMRI data, and present the brain atlases for which we extracted the
region-based connectomes.

SC extraction from dwMRI

For the extraction of the empirical SCmatrices from dwMRI data, we used a workflow developed
in-house which consisted of four stages: (1) preprocessing of dwMRI images, (2) calculation

Fig. 3.1. Summary of the methods used in this study. Connectome extraction (green) comprises the construction
of the empirical structural (SC) and functional connectivity (FC) from the diffusion-weighted (dwMRI) and functional
magnetic resonance imaging (fMRI) data, respectively. Both connectomes serve as input for the modeling stage
(blue), where the model parameters are optimized to maximize the correlation between simulated and empirical
data (dotted arrow). Graph-theoretical metrics were extracted from the empirical and simulated connectomes (red)
and regressed with the model fitting results (orange).

https://jugit.fz-juelich.de/inm7/public/parcellation-modelling
https://doi.org/10.25493/81EV-ZVT
https://doi.org/10.25493/81EV-ZVT
http://www.humanconnectomeproject.org
http://www.humanconnectomeproject.org


CHAPTER 3 - STUDY 1: PARCELLATIONS AND QUALITY OF MODEL FIT 27

of the whole-brain tractography (WBT), (3) transformation of the atlas images and (4) recon-
struction of the empirical SC. The workflow included functions from the ANTs (Tustison et al.,
2010), FreeSurfer (Dale et al., 1999), FSL (Jenkinson et al., 2012) and MRtrix3 (Tournier et al.,
2019) software packages. Computations were performed on the JURECA high-performance
computing cluster (Jülich Supercomputing Centre, 2018).

(1) In the preprocessing stage, we used FreeSurfer functions to perform the following opera-
tions on the T1-weighted images: bias field correction, tissue segmentation, cortical (surface)
reconstruction, volume-surface conversion, and surface deformation. We also used FreeSurfer
functions to correct the dwMRI images with regard to head motions and eddy current distor-
tions, while MRtrix3 functions were employed to denoise them and perform bias field correc-
tion. The dwMRI images were then registered to the T1-weighted images using the linear and
non-linear transformation functions included in FSL; afterwards, tissue segmentation was per-
formed for these images as well. (2) Subsequently, WBT was calculated using exclusively
MRtrix3 functions. A multi-shell, multi-tissue constrained algorithm (Jeurissen et al., 2014) es-
timated the response functions for spherical deconvolution, which were subsequently used to
determine the fiber-oriented distributions from the dwMRI data. The WBT was then completed
through a second-order integration over the fiber-oriented distributions using a probabilistic al-
gorithm (Tournier et al., 2010), where we used 10M streamlines and the following other tracking
parameter settings: step size = 0.625 mm, angle = 45o, min. length = 2.5 mm, max. length
= 250 mm, FOD amplitude for terminating tract = 0.06, max. attempts per seed = 50, max.
number of sampling trials = 1000, and down-sampling = 3 mm. (3) Next, the images of the
brain atlases used in this study (see below) were linearly and non-linearly transformed from
the standard space (in which they were all sampled) to the native space using FSL functions.
(4) Finally, we reconstructed the empirical SCs and PLs for all pairs of parcels included in a
particular parcellation by using the MRtrix3 function tck2connectome.

FC extraction from fMRI

To construct the empirical FC matrix, BOLD signals of the resting-state brain activity were first
extracted from fMRI data that were preprocessed using the ICA-FIX approach as provided by
the HCP repository (Griffanti et al., 2014), which eliminated the motion parameter but not the
global signal effect from the images. Here, the brain atlas images were used to calculate the
mean voxel intensity across each parcel per volume resulting in one BOLD signal time series
per parcel. Individual time series were linearly detrended and z-scored before we constructed
the empirical FCmatrix by calculating the Pearson correlation coefficients across the time series
for each pair of parcels. Four resting-state fMRI sessions were available in the HCP dataset for
every subject (two phase encoding directions scanned on two days), each one comprising 1,200
volumes sampled with a repetition time of 720 ms. We thus calculated four different empirical
FCs per subject that were used for the validation of our models.

Brain parcellations

In our study, we performed the whole workflow outlined in Fig. 3.1 for the 19 parcellations in-
cluded in Table 3.1. As the aim of this study is to compare the modeling results for a variety of
brain atlases, we ensured their comparability such that only cortical areas were considered and
that all parcellations had similar volumes and were sampled to the MNI152 non-linear template
space (Grabner et al., 2006). For more details on the preprocessing of the used atlases; see
the Supplementary method.

3.2.2 Graph-theoretical analysis of empirical connectomes

The empirical SC, PL and both the empirical and simulated FC matrices were subjected to
graph-theoretical analyses in order to extract data variables portraying the properties of the
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networks they represent. In these analyses, the connectivity matrices represented a (network)
graph in which the brain regions were the nodes and the individual matrix elements were undi-
rected weighted edges between them. Since self-connections inferred from the empirical SC
and FC extraction procedures did not influence the model simulation results (see below), we
removed them from the connectivity matrices prior to the graph-theoretical analyses by setting
their diagonal elements to 0. From the empirical SC and both types of FC matrices, we ex-
tracted the (weighted) degree distribution and the modularity. We selected these measures
because they characterized respectively the network centrality and segregation (Rubinov &
Sporns, 2010) when only the signal transmission efficiencies within the network were taken into
account. The PL matrix may also provide information about the network properties from the
point of view of signal transmission latencies. Here, we used the closeness centrality distribu-
tion and the global efficiency as indicators of network centrality and integration, respectively.

The degree for empirical SC and both types of FC and closeness centrality for empirical PL in-
dicate how strongly and how quickly a node may influence the network dynamics, respectively.
Accordingly, the global efficiency describes (for empirical PL) how quickly signals may be inte-
grated throughout the network, and the modularity portrays (for empirical SC and both types of
FC) to what extent the network is segregated into separate modules that have many or strong

Table 3.1. Overview of the used brain parcellation schemes with the index for reference in this study, the number of
parcels after image processing, and associated publications. In addition to this table, we have included a Supple-
mentary data sheet that includes (a number of statistics of) the connectomes that were extracted through the use of
these parcellations.

Index Name No. of
parcels Refs.

1

MIST

31

Urchs et al. (2019)2 56
3 103
4 167

5

Craddock

38

Craddock et al. (2012)6 56
7 108
8 160

9 Shen 2013 79 Shen et al. (2013)10 156

11 Schaefer 100 Schaefer et al. (2018)12 200

13 Harvard-Oxford 48 Frazier et al. (2005); Desikan et al. (2006);
Makris et al. (2006); Goldstein et al. (2007)14 96

15 Desikan-Killiany 70 Desikan et al. (2006)

16 von Economo-Koskinas 86 von Economo & Koskinas (1925); Scholtens
et al. (2018)

17 AAL (version 2) 92 Tzourio-Mazoyer et al. (2002); Rolls et al.
(2015)

18 Destrieux 150 Destrieux et al. (2010)

19 Brainnetome 210 Fan et al. (2016)
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intramodular and few or weak intermodular connections.

Besides the modularity and the global efficiency, we also calculated the clustering coefficient
as a measure of segregation from the empirical SC and FC and the characteristic path length
as a measure of integration from the empirical PL and FC matrices. Even though the modular-
ity and global efficiency are more state-of-the-art techniques, the calculation of the clustering
coefficient and characteristic path length enabled the comparison of our study with the litera-
ture investigating the influence of the brain parcellation on the graph-theoretical measures of
empirical SC and FC (J. Wang et al., 2009; Zalesky et al., 2010).

In the remainder of this section, we explain in detail how and why these particular metrics were
calculated. Any calculations were carried out using the Python programming language (Python
Software Foundation, https://www.python.org/) in combination with the SciPy (Virtanen et al.,
2020), NumPy (van der Walt et al., 2011) and NetworkX (Hagberg et al., 2008) modules.

Degree distribution

Let a symmetric N ×N coupling matrixW determine how the N network nodes are connected
by undirected, weighted edges. Here, the assumption of symmetry is justified because the em-
pirical SC and empirical and simulated FC matrices inferred from WBT and (simulated) BOLD
signal time series correlations, respectively, are symmetric as well. The degree dj of node j can
be calculated by taking the sum over the jth row ofW leading toN values for the entire network
corresponding to the number of parcels included in the used brain parcellation. We actually
used the degree as opposed to other measures of centrality because of this simple summa-
tion: It makes the degree distribution easy to calculate and straightforwardly interpretable with
respect to the neurobiology of the brain (Rubinov & Sporns, 2010). The degrees could be di-
rectly calculated from the empirical SC matrices. The empirical and simulated FCs were first
thresholded at 0, and the Fisher Z-transforms (Fisher, 1921, 1915) of the positive elements were
subsequently calculated before determining the degrees.

To compare the degree distributions across parcellations, we fitted them to the gamma
(Gamma(x|k, θ)) parametric probability distribution. The gamma distribution is defined for
positive real numbers (x > 0) by the following equation:

Gamma(x|k, θ) = 1

θkΓ(k)
xk−1 exp

(
−x
θ

)
, (3.1)

where Γ(x) represents the gamma function and k and θ are free parameters commonly referred
to as the shape and scale parameter, respectively. The former determines to what extent the
distribution function has a shape resembling an exponential decay or a bell curve, and the latter
scales the probabilities with respect to the x-axis (see Fig. S3.1 in the Supplementary Results for
an illustration). The fitting result for SC and FC matrices comprised the fitted shape and scale
parameters denoted byDegreeSC/FC

shape andDegreeSC/FC
scale , respectively. In addition to these fitted

parameters, we also calculated the Kolmogorov-Smirnov statistics between the fitted cumulative
gamma distributions and the cumulative empirical degree distributions, and the mean and the
standard deviation of the degree.

We used the gamma distribution to characterize the degree distribution for several reasons.
First, we acknowledge that the degree can practically assume semi-infinite values because it
cannot be smaller than zero for the empirical SC as well as for the thresholded and Fisher
Z-transformed empirical and simulated FC. Then, modeling the distribution by the gamma dis-
tribution is more applicable to this situation than, for example, by the Gaussian distribution. In
particular, the shape parameter of the gamma distribution may reflect the variable concentra-
tions of degrees close to zero that are observed for the different parcellations; see the Sup-
plementary data sheet. Second, studies investigating the influence of the brain parcellation
on graph-theoretical measures extracted from empirical SC and FC have used the truncated

https://www.python.org/
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power lawmodel to characterize degree distributions (J. Wang et al., 2009; Zalesky et al., 2010).
The truncated power law model essentially is an unnormalized version of the gamma distribu-
tion (see J. Wang et al., 2009; Zalesky et al., 2010; and Eq. 3.1). Therefore, the parameters
of the gamma distribution and the truncated power law model are practically the same. Using
the gamma distribution to characterize the degree distribution thus enhances the comparability
of our study with the literature. Nevertheless, we deviate from the use of the (unnormalized)
truncated power law model as the normalization condition enables the comparison of the fitting
errors between the empirical and fitted distributions across parcellations. The latter is our third
and final reason to use the gamma distribution to model the degree distributions. In sum, the
gamma distribution suits the problem at hand given that the degrees can only assume values
larger than or equal to 0. In addition, it enables the comparison of all the fitting results across
parcellations, and enhances the comparability of our results with the literature.

Modularity

The modularity of a network was obtained by maximizing its expression (Rubinov & Sporns,
2011):

Modularity =
1

w+

N∑
i=1

N∑
j=1

(W+
ij − e+ij)δMi,Mj −

1

w+ + w−

N∑
i=1

N∑
j=1

(W−
ij − e−ij)δMi,Mj . (3.2)

Here i and j both represent the number of a particular network node. Additionally,W+
ij andW

−
ij

are the positive and negative elements of W respectively (i.e. if Wij > 0 then W+
ij = Wij and

W−
ij = 0; otherwise W+

ij = 0 and W−
ij = −Wij). Then w± represents the total sum over W±

ij ,
and e±ij is defined by

e±ij =

∑N
j=1W

±
ij

∑N
i=1W

±
ij

w± . (3.3)

Finally, Mi denotes the module to which node i belongs and δMi,Mj is the Kronecker delta,
meaning δMi,Mj = 1 ifMi =Mj and δMi,Mj = 0 otherwise. By changing the modular structure of
the network (i.e. changingMi), the modularity can be maximized. Since evaluating all possible
module configurations is too computationally expensive, we used the Louvain algorithm to solve
this optimization problem (Blondel et al., 2008).

The modularity was selected from other measures of segregation (e.g. the clustering coeffi-
cient and local efficiency) because of its more sophisticated design especially in light of the
negative correlations an FC matrix can have (Rubinov & Sporns, 2011, 2010). Additionally,
it allows for an in-depth examination of the modular network structure after the maximization
has been performed, for instance, to determine the strength of community structure for a given
network (Newman & Girvan, 2004).

Closeness centrality

Signals propagating throughout the network from one node to another can traverse several
edges that have associated weights representing the cost of crossing them. The minimal cost
of traveling between nodes i and j is termed the shortest path length lij . For the empirical
PL matrix, the calculated shortest path length literally estimated the minimal distance that the
signals have to cover along the white matter fibers connecting two brain regions. The closeness
centrality Lj of node j is then defined as the inverse of the mean shortest path length between
that node and all other nodes in the network (Rubinov & Sporns, 2010):

Lj =
N − 1∑N
i=1 lij

, where lii = 0. (3.4)

We calculated the closeness centrality for all nodes to determine the network’s closeness
centrality distribution. Subsequently, we fitted this distribution to the gamma probability distri-
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bution (Eq. 3.1) because also the closeness centrality could not assume values below 0, which
resulted in the fitted gamma distribution shape and scale parameters denoted by Centr.PL

shape

and Centr.PL
scale, respectively. Just as with the degree distribution, we also calculated the

Kolmogorov-Smirnov statistics between the fitted cumulative gamma distributions and the cu-
mulative empirical closeness centrality distributions, and the mean and the standard deviation
of the closeness centrality.

Also the degree or betweenness centrality could have been used to analyze the empirical PL
matrix (Rubinov & Sporns, 2010). Nevertheless, we selected the closeness centrality as op-
posed to these alternatives. The degree calculated on the basis of the empirical PL does not
have the same neurobiological interpretation as with the empirical SC and both types of FC
(see above). The betweenness centrality has the disadvantage that it discards any information
about the shortest path lengths themselves (Rubinov & Sporns, 2010).

Global efficiency

The global efficiency of a network was also defined in terms of the shortest path lengths (Rubinov
& Sporns, 2010):

Efficiency =
1

N

N∑
i=1

∑N
j=1 l

−1
ij

N − 1
, where lii = 0. (3.5)

It can thus be interpreted as the mean of the inverted shortest path lengths across all pairs of
network nodes. An alternative measure of integration is the characteristic path length (Rubinov
& Sporns, 2010), but it has been argued that global efficiency may be superior when investigat-
ing brain networks (Achard & Bullmore, 2007).

Clustering coefficient

For weighted graphs, which we consider in our study, several variants of the clustering co-
efficient exist. We use the expression of the clustering coefficient proposed by Onnela et al.
(2005):

Cluster =
1

N

N∑
i=1

∑N
j=1

∑N
k=1(Wij

ˆ Wik
ˆ Wjk

ˆ )1/3

di(di − 1)
. (3.6)

Here, Wij
ˆ = Wij/max(W) are the elements of the connectivity matrix normalized by their

maximum and di represents the degree of node i.

The clustering coefficient is a rather simple measure of segregation and its expression has not
been optimized for FC matrices. Therefore, we consider the modularity to be a more accurate
statistic for network segregation. Nevertheless, as previous work studying the influence of brain
parcellations on graph-theoretical measures extracted from empirical connectomes included
this measure (J. Wang et al., 2009; Zalesky et al., 2010), we have added it to our calculations.
We calculated the clustering coefficient from the empirical SC matrix and from the thresholded
and Fisher’s Z-transformed empirical FC matrix (see also the case with the degree).

Characteristic path length

The characteristic path length is obtained by averaging the shortest path length across all pairs
of nodes (Rubinov & Sporns, 2010):

Char. PL =
1

N

N∑
i=1

∑N
j=1 lij

N − 1
, where lii = 0 (3.7)

Analogous to the modularity and the clustering coefficient describing the network segregation,
the global efficiency and the characteristic path length are both measures of network integra-
tion. As mentioned above, the global efficiency is superior in brain network research (Achard
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& Bullmore, 2007). However, we also included the characteristic path length to ameliorate the
comparability of our work with other studies investigating the influence of the brain parcella-
tion on region-based SC and FC by means of this metric (J. Wang et al., 2009; Zalesky et al.,
2010). We calculated the characteristic path length associated with the structural connectivity
by using the PL matrix. For the functional connectivity we used the thresholded and Fisher
Z-transformed empirical FC matrix with inverted elements. The latter inversion was done after
the Z-transformation to convert the functional association strengths to estimations of the link
lengths, where link strengths and lengths are inversely related (Rubinov & Sporns, 2010).

3.2.3 Model simulations

In the modeling stage of our workflow, the brain was once again seen as a network of brain
regions (network nodes) parcellated according to a given brain atlas. We subsequently used
a system of coupled oscillators to model the collective dynamics of the mean-field activities of
the individual brain regions. The coupling between network nodes was defined by the extracted
empirical SC, where the SC matrix determined how strongly one region influenced the other.
The PL matrix was used to evaluate the latency in the signal propagation between the nodes.
By simulating the dynamics of the whole-brain models, we sampled the activity time series of
the N nodes included in the network. We subsequently correlated these time series with one
another and constructed a simulated FC matrix. Finally, the similarity between the simulated
and the empirical FC matrices was quantified by vectorizing the upper triangular parts of both
matrices excluding the diagonal and subsequently calculating the Pearson correlation coeffi-
cient between the resulting two vectors. By exploring the parameter space of the model via a
grid search, the maximal similarity between the empirical and simulated FC matrices could be
found, which is henceforth also referred to as the goodness-of-fit of the model.

In this study, we modeled the local dynamics of the brain regions from different perspectives by
considering two different models. The first model was the Kuramoto system of coupled phase
oscillators (Kuramoto, 1984), and the other was an ensemble of Wilson-Cowan type neural
mass models (Wilson & Cowan, 1972). These two models were chosen because of their major
conceptual differences, which increased the likelihood of finding cross-model deviations. These
models have also been used in previous studies investigating the brain’s structure-function rela-
tionship by dynamical whole-brain models (Deco et al., 2009; Messé et al., 2014; Ponce-Alvarez
et al., 2015).

Phase oscillator model

In the Kuramoto model (Kuramoto, 1984), the mean-field activity of brain region i ∈ {1, 2, ..., N}
(N is the number of brain regions in a given parcellation) is assumed to oscillate with a region-
specific frequency fi, and the dynamics of its phase φi(t) are governed by the differential equa-
tion

φ̇i(t) = 2πfi +

N∑
j=1

Cij sin(φj(t− τij)− φi(t)) + σpνi(t). (3.8)

Here νi(t) is independent Gaussian white noise with zero mean and unit variance, and σp = 0.17
is the noise intensity. Furthermore, Cij and τij represent the individual coupling strength and
delay values between brain regions, respectively. These were derived from the empirical SC
and PL matrices via

Cij =

{
0 if i = j

G · SCij

N⟨SC⟩ otherwise
and τij =

{
0 if i = j

τ · PLij

⟨PL⟩ otherwise
. (3.9)

Here, the operator ⟨·⟩ returns the mean over all elements of the matrix, and G and τ are scaling
factors referred to as the global coupling and global delay.
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Although the Kuramoto model has been used in different paradigms in relation to large-scale
whole-brain models (e.g., Messé et al., 2014 vs. Ponce-Alvarez et al., 2015), we adopted the
approach wherein the ultra slow phase dynamics of the BOLD signals was directly modeled by
φi(t). Then the simulated BOLD signals cos(φi(t))were used for the calculation of the simulated
FCmatrix. The region-specific oscillation frequencies fi in the range [0.01, 0.1] Hz were derived
from the empirical BOLD signal time series via spectral density estimation. For this analysis,
we subjected those signals to Welch’s method (welch function implemented in the SciPy mod-
ule; Virtanen et al., 2020) while using a 1,024 time points long Hamming window function with
95% (972 time points) overlap between segments. We used the frequencies corresponding
to the largest peaks in the spectra and heterogenized them a little by adding Gaussian white
noise with zero mean and 0.002 Hz standard deviation. Finally, G and τ were considered to be
free parameters and were optimized in order to maximize the similarity between empirical and
simulated FC.

Neural mass model

The neural mass model used in this study was a Wilson-Cowan model (Wilson & Cowan, 1972)
adapted from the paper by Deco et al. (2009). It models the interaction between the excitatory
and inhibitory neuron ensembles of the ith brain region, where their mean firing rates Ei(t) and
Ii(t), that is, the proportion of cells firing within a unit of time, respectively, are modeled via the
following coupled differential equations:

µEĖi(t) = −Ei(t) + κS

 N∑
j=1

CijEj(t− τij)− cEIIi(t) + Ib

+ σnνi(t) and (3.10)

µI İi(t) = −Ii(t) + κS (cIEEi(t)) + σnνi(t). (3.11)

In these equations, µE and µI are the decay time constants of the excitatory and inhibitory
activity, respectively. Both populations received the same zero-mean, independent Gaussian
white noise of intensity σn. Parameters cEI and cIE regulate the inhibition of the excitatory cells
by the inhibitory pool and the excitation of the inhibitory cells by the excitatory pool, respectively.
S(x) is a sigmoid function defined by

S(x) = 1

1 + exp(−λ(x− γ))
− 1

1 + exp(λγ)
, (3.12)

where λ and γ determine its width and the position of its inflexion point, respectively. Additionally,
Ib is a constant external input to the excitatory neurons, and κ = (1 + exp(λγ))/ exp(λγ) scales
S(x) such that κS(x) = 1 as x → ∞. Finally, Cij and τij have the same interpretations and
similar associated expressions as with the Kuramoto model (Eq. 3.9):

Cij =

{
cEE if i = j

G · SCij

N⟨SC⟩ otherwise
and τij =

{
0 if i = j

τ · PLij

⟨PL⟩ otherwise
, (3.13)

where cEE is a parameter scaling the self-excitation of the excitatory pool.

We set the model parameters to the values listed in Table 3.2. As for the Kuramoto model,
parameters G and τ were regarded as free parameters and were varied to maximize the simi-

Table 3.2. Parameter settings of the neural mass model.

Parameter Value Parameter Value Parameter Value

µE 20 ms λ 20.000 cEE 1.000
µI 20 ms γ 0.300 cEI 1.500
Ib 0.100 σn 0.002 cIE 0.600
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larity between the empirical and simulated FC matrix. The considered parameter configurations
resulted in a low activity state of disconnected nodes (G = 0) and generation of limit-cycle os-
cillations with an alpha-band frequency when the individual regions were coupled (G > 0). The
modeled alpha oscillations have been shown to be dominant in EEG of human resting-state
brain activity (Fraga González et al., 2018; Spitoni et al., 2013) and to interact with BOLD re-
sponses (Mayhew et al., 2013).

Simulating the neural mass model yielded neuronal signal time series that are not directly
comparable with the empirical BOLD responses extracted from fMRI data. To account for
this, the neuronal signals of the excitatory pool were converted to BOLD responses by the
Balloon-Windkessel model from Friston et al. (2003), a procedure that has also been used
elsewhere (Havlicek et al., 2015). The resulting (simulated) BOLD signals were subsequently
used to construct the simulated FC matrix.

Implementation, simulation and parameter variation

The Python (Python Software Foundation, https://www.python.org/) and C++ (Standard C++
Foundation, https://isocpp.org/) programming languages were selected for the implementa-
tion of the model simulations; here, we also used the SciPy (Virtanen et al., 2020) and
Numpy (van der Walt et al., 2011) modules. Simulation and analysis computations were
carried out on the JURECA high-performance computing cluster (Jülich Supercomputing Cen-
tre, 2018). The temporal integration of both models as well as the neuronal to BOLD signal
conversion followed Heun’s method. For both models, we optimized the free parameters by
simulating the models using a dense grid of 64 × 48 parameter points for the global coupling
and delay, respectively, and subsequently selecting the parameters maximizing the correlation
between the empirical and simulated FC (goodness-of-fit). Regarding the phase oscillator
model, the global coupling and delay were varied using G ∈ {0.000, 0.015, 0.030, ..., 0.945}
and τ ∈ {0 s, 1 s, 2 s, ..., 47 s}. For every parameter setting, we then simulated 70 min of
network dynamics with a 60-ms integration time step and disregarded the first 10 min so
that the initial conditions did not influence the results. For the neural mass model we used
G ∈ {0.000, 0.018, 0.036, ..., 1.134} and τ ∈ {0.0 ms, 1.5 ms, 3.0 ms, ..., 70.5 ms} for the global
coupling and delay, sampled 510 s of network activity with an integration step size of 2 ms and
removed the first 150 s prior to analysis. The differences in the simulation parameters (simu-
lated time and integration time step size) between both models were adapted to the ultra-slow
timescale and alpha frequency oscillations of the phase oscillators and the neural mass model,
respectively. The simulations above were performed individually for each combination of the
200 subjects, the 2 models and the 19 considered parcellations listed in Table 3.1.

3.2.4 Analysis

Analysis of interparcellation variations

We observed differences across brain parcellations when examining the graph-theoretical mea-
sures and goodness-of-fit. We determined whether these deviations were consistent across
subjects; in other words, we assessed whether altering the parcellation changes the patterns
of the values across all subjects. To this end, we gathered the values of the considered graph-
theoretical measure for the individual subjects into separate data vectors for each parcellation
and calculated the Pearson correlation coefficient corresponding to each pair of vectors and
thus parcellations. The same approach was used to investigate goodness-of-fit correlations
across subjects for different models, where separate data vectors were constructed for every
combination of brain atlas and model for local dynamics to also assess the effect of the model
in this respect.

Then, we studied whether covariations between the graph-theoretical metrics and the good-
ness-of-fit existed by combining principal component analysis with ordinary least squares re-

https://www.python.org/
https://isocpp.org/
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gression. We built a dataset with the granularities (number of parcels N ), the median values
across subjects of 13 considered graph-theoretical measures extracted from the empirical SC,
PL and FC matrices and the Pearson correlation coefficient between the empirical SC and em-
pirical FC such that we obtained a 15 × 19 matrix in which each row was associated with one
of those statistics and each column held the values of those metrics for a particular parcellation
from Table 3.1. The dataset was z-scored to ensure the comparability of the individual metrics
to one another and subsequently decomposed into the scores and loadings corresponding to
the principal components (PCs) through the use of singular value decomposition as performed
by the linalg.svd function in NumPy (van der Walt et al., 2011). Finally, the scores of the PCs
were regressed with the median values of the goodness-of-fit across subjects for every brain
atlas for both model types separately. Here, we considered both a univariate and multivariate
approach, in which we used the scores of only the first PC and those of multiple PCs, respec-
tively, to explain the variance in the goodness-of-fit for varying brain parcellation via ordinary
least squares regression.

Detection of within-parcellation, between-subject correlations

We checked whether the covariations found between the group-averaged graph-theoretical
measures and the goodness-of-fit across parcellations were also present when considering
intraparcellation, interindividual variations. Hence, we investigated whether graph-theoretical
metrics could also explain interindividual differences when considering a specific parcellation
in isolation. First, we wielded the same approach from the previous paragraph for this investi-
gation. For each brain atlas, we built a 14 × 800 data matrix, in which each row corresponded
to one of the data variables mentioned in the previous paragraph excluding the granularity and
each column held the values of these statistics for a specific subject and fMRI session pair. For
the HCP dataset used in our study, four resting-state fMRI sessions were available for each
subject, which led to the 200 (subjects) × 4 (fMRI sessions) = 800 columns in the datasets. In
order to keep the matrix dimensions the same also for the SC matrices, the same SC character-
istics were repeated in the dataset for the individual fMRI sessions per subject. We calculated
the z-scored dataset, extracted the first PC and regressed its scores with the goodness-of-fits
of the individual subjects.

We also checked whether a multivariate approach could substantially improve the explained
interindividual variance in the goodness-of-fit across subjects for a given brain parcellation. To
do so, we directly regressed the z-scored dataset with the goodness-of-fits of the individual
subjects and sessions via (multivariate) ordinary least squares regression for the two models
separately.

3.3 Results
In this study, we investigated the effect of the brain atlas on the goodness-of-fit of dynamical
whole-brain models. For this inquiry, we first extracted the empirical SC, PL, and FC matrices
from the dwMRI and fMRI data of 200 subjects included in the HCP S1200 release dataset using
the 19 parcellations in Table 3.1 and subsequently subjected them to graph-theoretical analyses.
Next, we sampled the modeling results associated with those empirical SC and FC matrices for
the Kuramoto system (Eq. 3.8 - Eq. 3.9) of coupled phase oscillators (Kuramoto, 1984) and the
ensemble (Eq. 3.10 - Eq. 3.13) of Wilson-Cowan type neural mass models (Wilson & Cowan,
1972). Finally, we investigated through principal component analysis and linear regressions
whether differences in network properties could explain the variance in modeling results.

3.3.1 Parcellation-induced heterogeneity of empirical connectomes
We found a high variability in the graph-theoretical network properties of the empirical SC for
varying parcellations (Fig. 3.2). Note, however, that the shape and scale parameters of the de-
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gree distributions of the empirical SC should be considered with some reservation as they may
not fully capture all differences in these distributions across parcellations; see Supplementary
data sheet. Nevertheless, we on average obtained better fit with the gamma distribution for all
approximated network metrics than with the Gaussian distribution.

The shape parameter of the degree distribution of the empirical SC, for instance, had a me-
dian value ranging from 1.1 for the von Economo-Koskinas atlas (atlas index 16) to 8.1 for the
Craddock parcellation with 56 parcels (atlas index 6) (Fig. 3.2A). Its scale parameters exhib-
ited an opposing trend with respect to the variation of the parcellation when compared to the
shape parameters: Relatively large values for the shape parameter were accompanied by rel-
atively small values for the scale parameter when considering an individual atlas (Fig. 3.2B).
This opposing trend was also observed for the shape parameter and scale parameters de-
scribing the closeness centrality distribution of the empirical PL matrix (Fig. 3.2E-F). The mod-
ularities derived from the empirical SC matrix showed an increasing trend when the number
of parcels grew (Fig. 3.2C). On the other hand, the clustering coefficients showed an oppos-
ing trend (Fig. 3.2D). This is a rather striking observation, because both measures reflect net-

Fig. 3.2. Heterogeneity of graph-theoretical properties of empirical structural networks across parcellations. (A-
D) Statistics extracted from the structural connectivity (SC) matrices, which are the shape (A) and scale (B) param-
eters of the degree distributions, the modularities (C) and the clustering coefficients (D). (E-H) Statistics extracted
from the path length (PL) matrices, which are the shape (E) and scale (F) parameters of the closeness centrality
distributions, the global efficiencies (G) and the characteristic path lengths (H). Dots and lines depict the medians
and interquartile ranges across subjects, respectively. The atlas indices on the vertical axes correspond to those in
Table 3.1 which contains the information about the used parcellations. Abbreviations: Centr. = closeness centrality,
Char. PL = characteristic path length.
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work segregation. However, the modularity is calculated through a consideration of the en-
tire network (Eq. 3.2), whereas the clustering coefficient is determined on a node-by-node ba-
sis (Eq. 3.6). These findings therefore demonstrate that parcellations with higher granulari-
ties may yield structural networks that contain more pronounced subnetworks, but have fewer
triplets of nodes that are strongly interconnected. The decreasing trend of the (raw) clustering
coefficient with increasing granularity was also observed in other studies investigating the em-
pirical SC (Zalesky et al., 2010). Simple dependencies on the granularity were found neither
for the parameters of the degree distribution (Fig. 3.2A-B) nor for the graph-theoretical metrics
derived from the empirical PL matrix (Fig. 3.2E-H).

Analogous to the modularity and the clustering coefficient, the global efficiency and character-
istic path length of the PL matrix also exhibited opposing trends (Fig. 3.2G-H). These opposing
trends were expected: Longer characteristic path lengths reflect slower integration of signals
throughout the network, which agrees with a lower global efficiency. In addition to the fitted
gamma distribution parameters of the degree and closeness centrality distributions shown in
Fig. 3.2A-B and Fig. 3.2E-F, respectively, we also calculated the means and standard devia-
tions of the degrees and closeness centralities and the Kolmogorov-Smirnov statistics charac-
terizing the qualities of the gamma distribution fittings; these are included in the Supplementary
results (Fig. S3.2A-F).

The shape parameter of the degree distribution of the empirical FC matrix exhibited similar vari-
ations across parcellations when compared to its structural counterpart (Fig. 3.2A vs. Fig. 3.3A),
though using the Craddock parcellation with 38 parcels (atlas index 5) and the Schaefer par-
cellation with 100 parcels (atlas index 11) did result in some notably larger values for this statis-
tic (Fig. 3.3A). The scale parameter, on the other hand, seemed to mostly depend on the gran-
ularity (number of brain regions) of the parcellations (Fig. 3.3B). Just as with the SC matrix, the
modularity and the clustering coefficient of the FC matrix exhibited opposing trends, and again
appeared to mostly depend on the granularity (Fig. 3.3C-D). The characteristic path length cal-
culated from the empirical FC did not exhibit such a general trend (Fig. 3.3E). We also calculated

Fig. 3.3. Heterogeneity of graph-theoretical properties of the empirical functional connectivity (FC) across parcella-
tions. (A-E) Statistics extracted from the empirical FC matrices, which are the shape (A) and scale (B) parameters of
their degree distributions, their modularities (C), their clustering coefficients (D), and their characteristic path lengths
(E). (F) Pearson correlation coefficients corresponding to the structure-function relationship between the upper tri-
angular parts (excluding diagonal) of the empirical SC and FC matrices. Dots and lines depict the medians and
interquartile ranges across subjects, respectively. The atlas indices on the vertical axes correspond to those in Ta-
ble 3.1, which contains the information about the used parcellations. Abbreviations: Char. PL = characteristic path
length.
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the strength of the structure-function relationship as given by the Pearson correlation coefficient
between the empirical SC and FC matrices (ρSC,FC). It seemed to demonstrate similarities with
the scale parameters of the degree distributions of the empirical SC and the scale parame-
ters of the closeness centrality distributions and the global efficiencies of the PL matrix as the
parcellation varies (Fig. 3.2B,E,F, Fig. 3.3D).

So far, we observed trends for some graph-theoretical statistics that exhibited large dependen-
cies on the parcellation granularity. We therefore investigated this effect in more detail. The
literature shows that (graph-theoretical) statistics extracted from empirical SC and FC may be
inversely related to the number of parcels included in a parcellation (Messé, 2020; Zalesky et
al., 2010). We therefore plotted the median of each considered measure as a function of the
inverted number of parcels for each parcellation, which revealed high dependencies on the
granularity for some statistics (Fig. 3.4A-N). Indeed, the modularity and clustering coefficient
reflecting the segregation of the empirical SC and FC are highly influenced by the parcellation

Fig. 3.4. Scatterplots of all the measures shown in Fig. 3.2 (A-H), Fig. 3.3 (I-N) and Fig. 3.6A (O-P) as a function of
the inverse of the number of parcels included in the considered parcellations. Each dot corresponds to a particular
atlas and the dashed lines show the least squares linear regressions between these points. The coefficients of
determination are also displayed in each plot. Abbreviations: Centr. = closeness centrality, Char. PL = characteristic
path length, Num. = number of.
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granularity (Fig. 3.4C,D,K,L). The structure-function relationship ρSC,FC is also governed by the
number of regions to a large extent (Fig. 3.4N), which is in agreement with the results of Messé
(2020). However, most of the other network properties only weakly to moderately correlate with
parcellation granularity. In addition to the inverted relationship, we checked whether the gran-
ularity effect could be modeled better by a linear dependence on the number of parcels. The
opposite was true: A linear treatment of the granularity effect did not lead to higher explained
variances, and for many measures it even resulted in lower coefficients of determination.

To investigate how the considered measures depend on the parcellations beyond the granular-
ity effect, we regressed this effect out by fitting the data to an inverse relationship (y = a/N + b)
and examined the residuals. As expected, the residuals of the modularities and clustering co-
efficients exhibited differences between brain atlases that had a lower scale than the raw data;
see for example Fig. 3.4C,D,K,L vs. Fig. S3.5C,D,K,L in the Supplementary results. The other
residuals still exhibited differences across parcellations of the same magnitude; see Fig. S3.3,
Fig. S3.4, and Fig. S3.5A-N in the Supplementary results. In sum, even though the granu-
larity of a parcellation can greatly influence some of the network statistics extracted from the
empirical data, the observed parcellation-induced deviations typically go beyond such a simple
relationship. We further analyze this dependence below (Interparcellation variations of empirical
connectomes and modeling results).

Subsequently, we investigated how the graph-theoretical network properties of the individual
subjects correlated between each pair of the considered brain atlases; see Materials and meth-
ods (Analysis) for details of this analysis. Following this procedure, we evaluated whether the
interindividual differences in the empirical network statistics exhibited similar patterns between
the parcellations used for the extraction of the empirical connectomes. We found that these
correlations were highest for the global efficiency and characteristic path length of the empirical
PL matrix (Fig. 3.5D), for the modularity, clustering coefficient and characteristic path length
of the empirical FC matrices (Fig. 3.5F,G), and for the correlation between empirical SC and
FC (Fig. 3.5G). Such correspondences were generally lower for the parameters of the degree
and closeness centrality distributions (Fig. 3.5A,C,E), and the modularity and clustering coeffi-
cient of the empirical SC (Fig. 3.5B). These network metrics of the corresponding connectivity
matrices are thus sensitive to a selected brain parcellation. At the individual level, network seg-
regation properties of the empirical FC and network integration statistics thus seemed to be
influenced much less by the brain parcellation than measures reflecting the centrality and the
network segregation of empirical SC.

3.3.2 Parcellation-induced heterogeneity of modeling results

In this section we present the results of the model simulations for all brain atlases in Table 3.1
and the two considered whole-brain models of coupled phase oscillators (Eq. 3.8 - Eq. 3.9)
and neural mass models (Eq. 3.10 - Eq. 3.13). For each combination of subject, parcella-
tion and model, the optimal values of the global coupling and delay parameters were found by
maximizing the Pearson correlation between the empirical and simulated FC matrices, which
provided the goodness-of-fit of the model illustrated in Fig. 3.6A for both models. For vary-
ing parcellations we observed a high variability of the fitting results, implying that the extent
of correspondence between simulated and empirical FC strongly depended on the selected
parcellation. Here, the MIST parcellation with 31 parcels, the Desikan-Killiany atlas, the von
Economo-Koskinas atlas, and the AAL atlas yielded the highest goodness-of-fits independently
of the model type (Fig. 3.6A, atlas indices 1, 16, 17 and 18, respectively). Interestingly, the in-
terindividual variance of the goodness-of-fit had approximately the same range as the structure-
function relationship between the empirical SC and FC matrices (Fig. 3.3). It also appeared as
if the patterns of the goodness-of-fit versus parcellations were similar to each other for different
models (Fig. 3.6A).
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To quantify the mentioned similarity, we considered the medians of the goodness-of-fit calcu-
lated over all subjects corresponding to the phase oscillators and regressed them across par-
cellations with those of the neural mass model. This resulted in a regression with a coefficient of
determination of 0.88 (Fig. 3.6C), suggesting a model-independent impact of a given brain par-
cellation on the (group-averaged) goodness-of-fit. As with the graph-theoretical measures, we
investigated the effect of granularity on the goodness-of-fit by plotting its median across subjects
against the inverse of the number of parcels included in the parcellations. The corresponding
plots exhibited moderate correlations (Fig. 3.4O-P), where the impact of granularity on the fitting
results for the phase model is much smaller than that for the neural mass model. To quantify
the parcellation-induced influence on the goodness-of-fit beyond the dependence on the gran-
ularity, the effect of the (inverted) granularity was regressed out. The residual goodness-of-fits

Fig. 3.5. Cross-correlations across subjects of the network statistics derived from the empirical structural and func-
tional connectomes for different parcellations. The correlations between parcellations were calculated for (A) the
shape (upper triangle) and scale (lower triangle) parameters of the degree distributions of the empirical SC matrix,
(B) the modularities (upper triangle) and clustering coefficients (lower triangle) of the empirical SC, (C) the shape
(upper triangle) and scale (lower triangle) parameters of the closeness centrality distributions of the empirical PL
matrix, (D) the global efficiencies (upper triangle) and characteristic path lengths (lower triangle) of the empirical PL
matrix, (E) the shape (upper triangle) and scale (lower triangle) parameters of the degree distribution of the empirical
FC matrix, (F) the modularities (upper triangle) and clustering coefficients (lower triangle) of the empirical FC, and
(G) the characteristic path lengths of the empirical FC (upper triangle) and the Pearson correlation between the em-
pirical SC and FC (lower triangle). The atlas indices correspond to those in Table 3.1 which contains the information
about the used parcellations. Abbreviations: Centr. = closeness centrality, Char. PL = characteristic path length.
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exhibited variations across parcellations that had similar magnitudes as the original data; see for
example Fig. 3.4O-P vs. Fig. S3.5O-P in the Supplementary results. In addition, the agreement
between models was further enhanced; see Fig. 3.6C vs. Fig. S3.6C. In conclusion, the gran-
ularity influences the goodness-of-fit to a limited extent, implying that the parcellation-induced
deviations cannot exclusively be explained by this quantity.

The goodness-of-fit was also correlated across individual subjects between the considered par-
cellations and models to evaluate how similar the patterns of the model fitting over all subjects
were for different parcellations and models; see Materials and methods (Analysis) for details of
this analysis. The results showed relatively high correspondence of the fitting patterns across
individual subjects for many of the parcellation combinations for the same as well as for differ-
ent models, which is illustrated in Fig. 3.6B. Nevertheless, we also observed generally lower
correlations for the Schaefer and also the Harvard-Oxford atlases, both within and across mod-
els (Fig. 3.6B, atlas indices 11-14). Note that we did not find such clear, generally decreased
values when considering the correlations of the empirical graph-theoretical statistics across par-
cellations (Fig. 3.5). For the empirical FC matrices, the Craddock atlas with 38 parcels could
however be distinguished in this respect (Fig. 3.5E-F, atlas index 5), and only a slight indica-
tion of a lower correlation could be found for the scale parameter of the degree distribution
of the empirical FC for the Schaefer atlas with 100 parcels and Harvard-Oxford atlas with 48
parcels (Fig. 3.5E, atlas indices 11 and 13).

Taken together, the modeling results as represented by the goodness-of-fit between empirical
and simulated FC showed pronounced heterogeneity with respect to the variation of the brain
atlas. Additionally, we found that the intersubject variability of the fitting results exhibited similar

Fig. 3.6. Goodness-of-fit of the whole-brain models based on coupled phase oscillators and neuronal mass models
and their interrelations for the considered parcellation schemes. (A) Maximized correlations (goodness-of-fit) be-
tween the empirical and simulated FC matrices for the brain parcellation schemes and models investigated in this
study as indicated on the vertical axes. Dots and lines depict the medians and interquartile ranges across subjects,
respectively. (B) Correlations across subjects of the goodness-of-fit of the model between the considered parcel-
lations and models. Table 3.1 contains the parcellation information corresponding to the atlas indices used in the
plots. (C) Scatterplot of the medians of the goodness-of-fit corresponding to the phase oscillator (x-axis) and neural
mass model (y-axis) across subjects. Each dot corresponds to a particular parcellation, the purple line portrays the
linear regression between both types of goodness-of-fit and the black dashed line corresponds to x = y.
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Fig. 3.7. Relationship between the interparcellation variations of the empirical graph-theoretical metrics and the
goodness-of-fit. (A) Cross-correlations among the inverted granularities, the graph-theoretical measures of the
empirical connectomes (network properties depicted in Fig. 3.2 and Fig. 3.3), the structure-function relationship and
the goodness-of-fit of the models to the empirical data. The correlation was calculated across parcellations between
the median values over all subjects. Significant correlations are highlighted by colors (p<0.05, two-sided, Bonferroni
corrected). (B) Loadings of the first (PC1) and the second (PC2) principal components of the group-averaged graph-
theoretical metrics, that is, the contributions of the original empirical data variables to PC1 and PC2. (C)Regressions
of the PC1 scores with the medians of the goodness-of-fit between empirical (eFC) and simulated (sFC) functional
connectivity. The medians were calculated across subjects for each considered parcellation for the phase oscillator
(red) and the neural mass model (blue) as indicated in the legend together with the fraction of the explained variance.
The symbols stand for the individual parcellations from Table 3.1. (D) Cumulative amount of explained variance in
the group-averaged graph-theoretical measures as a function of the number of included PCs. (E) Fraction of the
interparcellation variance of the goodness-of-fit being explained by the (multivariate) linear regression model as a
function of the number of PCs included in the model. Other abbreviation: a.u. = arbitrary unit, cumul. = cumulative,
expl. = explained, var. = variance.
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patterns for most of the considered parcellations, although we also observed some exceptions
for which this correspondence is limited (the Schaefer and Harvard-Oxford atlases).

3.3.3 Interparcellation variations of empirical connectomes and modeling re-
sults

To understand the effects observed at the group level, the patterns of the extracted graph-
theoretical statistics across parcellations (Fig. 3.2, Fig. 3.3, median values) were compared
with one another and with those obtained for the goodness-of-fit of both models (Fig. 3.6A, me-
dian values). Significant correlations were observed for some of the tested combinations, which
are shown in Fig. 3.7A. This in particular concerned the correlations of the inverted number of
parcels with the subject medians of the modularities and clustering coefficients of both the em-
pirical SC and FC, the scale parameters of the degree distributions of the empirical FC, and
the correlations between empirical SC and FC (Fig. 3.7A, top row/first column). In such a way
the dependencies of these measures on granularity were demonstrated, which were already
observed in Fig. 3.4. Furthermore, the scale parameters of the degree distributions of the em-
pirical SC and the structure-function relationship between the empirical SC and FC exhibited
significant correlations with the fitting results for both models. Interestingly, the modularity of
the empirical FC significantly anti-correlated with fitting results for the neural mass model (i.e.,
smaller modularity implies better fitting), but not for the phase model (Fig. 3.7A).

We thus found that the network properties of the empirical connectomes (Fig. 3.2, Fig. 3.3) and
the quality of the model validation as given by the goodness-of-fit of the simulated FC to the em-
pirical FC (Fig. 3.6) in some cases demonstrated a pronounced and significant correlation with
one another across parcellations (Fig. 3.7A). To quantify this relationship further, we combined
principal component analysis with ordinary least squares linear regression to take into account
the contributions from all graph-theoretical statistics; see Materials and methods (Analysis) for
details of this analysis. The first principal component (PC1) extracted from the group-averaged
graph-theoretical statistics was found to explain 48% of the variance in the data variables across
parcellations (Fig. 3.7D), and the signs of its relative loadings (Fig. 3.7B) were in accordance
with previous results (see e.g., Fig. 3.7A). Subsequently, we regressed the PC1 scores with the
medians of the goodness-of-fit calculated across subjects for every brain atlas. We found that
this PC explained about 19% and 49% of the interparcellation variance in the goodness-of-fit for
the phase oscillators and the neural mass models, respectively (Fig. 3.7C). We again observed
stronger contribution of empirical data to the fitting results of the neuronal mass model; see also
Fig. 3.4O,P.

The second principal component (PC2) explained an additional 35% of the variance in the data
variables (Fig. 3.7D). We included this component in the linear regression model, which made
it multivariate. This improved the association between the data variables and the goodness-
of-fit to 77% and 81% of explained variance for the phase oscillator and neural mass model,
respectively (Fig. 3.7E). Including more principal components in the linear regression model led
to an even better explanation of the goodness-of-fit variance by the empirical data (Fig. 3.7D,E).
Note, however, that using too many PCs in the regression may lead to an overfitting for the con-
sidered 19 parcellations. Finally, we investigated the effect of the granularity on these results by
regressing this effect out of all the quantities used in this investigation while following the same
procedure as described above. The results of this inquiry are shown in Fig. S3.7 in the Supple-
mentary results, and they demonstrate that after the removal of the granularity effect already
the first principal component sufficed to get approximately the same associations between the
data variables and the goodness-of-fit as observed in Fig. 3.7 for 2 PCs. Also the difference
between models was inverted and reduced.

With these results, we demonstrated that most of the interparcellation variation observed in the
modeling results at the group level (Fig. 3.6A) could be explained by the network properties
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Fig. 3.8. Relationship between the interindividual variations of the empirical graph-theoretical metrics and model-
ing results for different parcellations. (A) Amounts of within-parcellation, between-subject variance in the modeling
results (goodness-of-fit to empirical data) being explained via multivariate ordinary least squares linear regression
utilizing the z-scored graph-theoretical statistics of the empirical connectomes per parcellation. Modeling results
were sampled by using the systems of coupled phase oscillators (red) and neural mass models (blue). (B-C) Re-
gression coefficients corresponding to the data variables (network properties) depicted in Fig. 3.2 and Fig. 3.3 for
four selected brain parcellations as indicated in the legend and for the phase oscillators (B) and the neural mass
models (C) leading to the regression results in panel A. The abbreviations MIST (103), Shen (156), Sch. (100),
and EK (86) correspond to the parcellations in Table 3.1 and in panel A with indices 3, 10, 11, and 16, respectively.
(D) Pearson correlation coefficients across the regression coefficients per pair of brain parcellation and model type.
Table 3.1 contains the parcellation information corresponding to the atlas indices. Abbreviations: coef. = coefficient,
corr. = correlation.
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of and the relationship between empirical SC and FC used to inform and validate the models.
Furthermore, we showed which metrics derived from the empirical connectomes contributed
positively and negatively to the goodness-of-fit of the simulated FC produced by the model to
the empirical FC (Fig. 3.7B). Lastly, our results confirm that the parcellation exerts an influence
on the graph-theoretical measures and the goodness-of-fits that can only partially be explained
by the granularity. This especially becomes evident when considering the high PC1 loading of
the inverse of the number of parcels in relation to the relatively low association of this PC with
the modeling results (Fig. 3.7B,D); see also Fig. S3.7 in the Supplementary results, where the
granularity was regressed out.

3.3.4 Interindividual differences of empirical connectomes and modeling re-
sults

As shown above, the group averages of the graph-theoretical statistics and the modeling results
obtained using different brain atlases tightly related to one another (Fig. 3.7). Nevertheless,
as dynamical whole-brain models seem to be a promising model-based approach for studying
interindividual differences (Ritter et al., 2013; Sanz-Leon et al., 2015; Zimmermann, Perry, et al.,
2018), we investigated whether the within-parcellation, between-subject variances observed in
ourmodeling results could also be attributed to variations of the data variables extracted from the
empirical SC and FC. To do so, we adopted the approach from the previous section, where, for
each individual parcellation, we built a separate dataset containing the corresponding graph-
theoretical network properties; see Materials and methods (Analysis) for details. Using this
dataset, we initially checked how individual empirical graph-theoretical statistics correlated with
the interindividual variability of the goodness-of-fit, and found no clear correspondences except
for the structure-function relationship ρSC,FC (Fig. S3.8). It is interesting to observe here, that
ρSC,FC correlated negatively with the goodness-of-fit of the models to the empirical data for
most of the considered parcellations. Given that this bivariate approach did not yield positive
results in the form of clear (anti)correlations for the investigated network metrics, we resorted
to multivariate analyses.

As before, we calculated the PC1 of the consequent dataset of z-scored individual data vari-
ables (network properties) and subsequently regressed the PC1 scores with the corresponding
goodness-of-fits of the model across individual subject-session pairs for every one of the con-
sidered brain atlases. The obtained results showed that the amount of variance in the modeling
results across subjects explained by PC1 was low (<3%; see Fig. S3.9A in the Supplementary
results), even though the data variables extracted using different parcellations exhibited similar
co-variations as reflected by the PC1 loadings and corresponding correlations, which exhibited
some form of clustering (Fig. S3.9B-C). Because of the weak explanatory power observed at
this approach (Fig. S3.9A), the used methodology based on the principal component analysis
of network properties of empirical connectomes might be inappropriate to assess interindividual
differences in the model validation.

We therefore employed a different approach, where the z-scored data variables representing the
network properties of empirical SC and FC were directly regressed with the z-scored goodness-
of-fits of themodels across individual subjects viamultivariate ordinary least squares regression.
The regression results obtained for individual parcellations indicated a variable amount of ex-
plained between-subject variance in the goodness-of-fit for different parcellations (Fig. 3.8A).
The strongest influences of the empirical connectomes on the interindividual variations in the
goodness-of-fit were observed for the von Economo-Koskinas, AAL and Brainnetome atlases
(indices 16, 17, and 19 in Fig. 3.8A, respectively), which however still did not exceed 40% of
explained variance. For other parcellations based on, for example, the Schaefer or Harvard-
Oxford atlases (indices 11-14 in Fig. 3.8A), the results of the model fitting for an individual sub-
ject practically did not depend on the network properties of the used empirical connectomes.
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Fig. 3.9. Relationship between the graph-theoretical statistics of empirical and simulated FC matrices at the group
level. Network properties of the simulated FCs providing the best fits to the empirical FC and the scatterplots of
the corresponding median values calculated across subjects are illustrated for phase oscillator model (A-F) and
neural mass model (G-L). The shape (A, E, I, M) and scale (B, F, J, N) parameters of the degree distributions,
the modularities (C, G, K, O) and the characteristic path lengths (D, H, L, P) are depicted for the parcellations in
Table 3.1, where dots and lines in panels A-D and I-L depict the medians and interquartile ranges across subjects,
respectively. Symbols, colored and black lines in the scatterplots (E-H) and (M-P) of the simulated network metrics
versus empirical ones stand for individual parcellations, regression lines and the diagonal x = y, respectively.
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Interestingly, in most cases the phase oscillators exhibited a somewhat stronger dependence
on the considered data variables (Fig. 3.8A, red bars), which contrasts with the interparcella-
tion variation of the medians (Fig. 3.7E). We observed low consistency between parcellations
and between models regarding the regression coefficients assigned to the corresponding data
variable by this multivariate regression analysis (Fig. 3.8B-C). This is reflected by the Pearson
correlations across the coefficients per model and parcellation pair illustrated in Fig. 3.8D, which
shows a clustering that is inconsistent across models.

Taken together, these results demonstrated that the contributions of the graph-theoretical statis-
tics derived from the empirical connectomes to the interindividual differences in the modeling
results were limited.

3.3.5 Network properties of simulated functional connectomes

We established that between-parcellation variances in the model fitting results could largely
be explained by the variation of the network properties taken from the empirical SC and
FC (Fig. 3.7). However, we also found that such a relationship was hardly applicable to
the explanation of the intraparcellation, between-subject variations. In this case, for any parcel-
lation, the interindividual differences in the goodness-of-fit only weakly to moderately correlated
with the graph-theoretical properties of empirical networks for individual subjects (Fig. 3.8).

Here we evaluate how similar the empirical FC matrices were in terms of the graph-theoretical
statistics to the simulated ones that provided the best fits based on Pearson’s correlation. To
do so, the simulated FC matrices were subjected to the same graph-theoretical analyses as the
empirical FCs; see Fig. 3.9A-D,I-L for results. The medians of the network properties calculated
across subjects for the empirical and simulated FCs were correlated with each other over all
considered parcellations. The results showed that relationships between the network proper-
ties of the empirical and simulated FCs existed, which indicated that the models on average
preserved most of the considered network properties of the empirical functional connectome;
only the characteristic path length exhibited low coefficients of determinations for both mod-
els (Fig. 3.9E-H,M-P). The results for the clustering coefficient have not been shown in Fig. 3.9
as they resembled those of the modularity. We also found that the empirical and simulated func-
tional networks agreed with each other to very different extents for the two considered models
except for the shape parameter of the degree distribution (Fig. 3.9E,M). More variance in the
scale parameters of the degree distributions of the simulated FC across parcellations could be
explained by that of the empirical FC when the phase oscillators rather than the neural mass
models were used for the generation of the former (Fig. 3.9F,N). The opposite is true for the
modularity and characteristic path length; here, the neural mass model led to more explained
variance (Fig. 3.9G-H,O-P). From these results, we can conclude that the accuracy of the trans-
formation of the empirical SC to simulated FC by the considered dynamical whole-brain models
can depend on the model used for the simulation of the local mean activity of the brain regions.
These findings furthermore indicated that, even though different models may lead to compara-
ble goodness-of-fits (Fig. 3.6C), the correspondence of the network structures of the simulated
FCs to those of the empirical ones may vary considerably across models.

Finally, we investigated how the latter analysis performed at the level of individual subjects and
individual parcellations. Hence, we correlated the network properties derived from the empir-
ical and simulated FCs across subjects for each individual parcellation. The obtained results,
illustrated in Fig. 3.10A-D, revealed that the highest correspondences between the network
properties of the empirical and simulated FC could be found for the modularity and charac-
teristic path length (Fig. 3.10G-H). No general patterns could be found as to which model led
to higher explained variances between empirical and simulated FC (Fig. 3.10E-H). Still, we ob-
served relatively large deviations of the explained variance between the two considered models
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Fig. 3.10. Relationship between the graph-theoretical statistics of empirical and simulated FCmatrices at the subject
level. (A-D) Scatterplots of the shape (A) and scale (B) parameters of the degree distributions, the modularities
(C) and the characteristic path length (D) of the empirical and simulated (by neural mass model) FCs within a
single parcellation as given by the von Economo-Koskinas atlas (index 16 in Table 3.1). Every dot represents a
subject-session pair, the colored lines depict the ordinary least squares linear regression solution and the black lines
correspond to x = y. (E-H) Proportion of intersubject variance of the network properties of the best-fit simulated
FCs generated by the phase oscillators (red) and the neural mass model (blue) that is explained by the network
properties of the empirical FCs for a given parcellation indicated on the horizontal axes. Table 3.1 contains the
parcellation information corresponding to the atlas indices used in the plots. Other abbreviations: expl. = explained,
var. = variance.
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for the individual parcellations, where the largest differences between the models could reach
around 20% of explained variance (Fig. 3.10E-H, differences between red and blue bars).

These results show that network properties of the empirical and simulated FCs could be a good
measure of the model validation, and allow to distinguish different models at the level of indi-
vidual subjects (Fig. 3.10) as well as at the group level (Fig. 3.9). This seemed not to be the
case for the correlative model fitting, where the models were practically indistinguishable at the
group level and could be differentiated only at the subject levels. The latter claim can be seen
in the amount of variance in the goodness-of-fit that is explained by the network properties de-
rived from the empirical data when comparing between- and within-parcellation variations (see
Fig. 3.7, Fig. 3.8).

3.4 Discussion
In this study, we used a selection of 19 parcellations constructed through 10 different ap-
proaches. They were selected with an attempt to balance between parcellations derived from
functional data, comprising the atlases described by Craddock et al. (2012), Shen et al. (2013),
Schaefer et al. (2018), and Urchs et al. (2019), and structural information, constituting the other
parcellations included in Table 3.1. Furthermore, the investigated parcellations were compiled
using distinct methodologies such as boundary detection algorithms, histological stainings, and
diverse clustering approaches (see the Supplementary method for details). While more brain
parcellations are available in the literature and were used for data-driven analyses (Dadi et al.,
2020; Messé, 2020; Schaefer et al., 2018), the tested parcellations and the variation regarding
the number of parcels in them are representative for the state-of-the-art brain parcellations, and
can support the derived conclusions concerning the reported relationship between the model
simulation results and the empirical data.

3.4.1 Influence of parcellation on graph-theoretical statistics and goodness-of-
fit

Significant (anti)correlations were found across parcellations when comparing the parcellation
granularity with individual graph-theoretical statistics and the goodness-of-fit of the whole-brain
models (Fig. 3.7). This clearly evidenced the granularity substantially affecting the network
properties of the empirical FC and SC and the model fitting results regardless of the method
used to construct the parcellation. Still, as the parcellation varied, graph-theoretical statistics as
well as the goodness-of-fit exhibited pronounced variations (Fig. 3.2, Fig. 3.3, Fig. 3.4, Fig. 3.6)
that persisted after we corrected for the effect of the granularity (Fig. S3.3, Fig. S3.4, Fig. S3.5,
Fig. S3.6). We were not able to reliably distinguish between results derived from e.g. function-
ally and structurally derived parcellations, even after the granularity correction was performed.
Hence, as parcellation-induced variances in the goodness-of-fit were shown to be related to the
variations in the empirical SC and FC, the question still remains how the parcellations induce
the pronounced differences in the graph-theoretical statistics.

The reported parcellation-induced variances emphasize the importance of a well-advised selec-
tion of the parcellations in region-based neuroimaging studies using graph-theory or whole-brain
models to analyze the data. A recent study by Messé (2020) already showed this to be true
when examining the structure-function relationship of the brain from a statistical perspective.
Also studies by J. Wang et al. (2009) and Zalesky et al. (2010) demonstrated the prominent
influence the brain parcellation may have on the network properties of the empirical FC and
SC, respectively. Our study added further modern graph-theoretical measures to the analysis
for both empirical SC and FC as well as simulated FC. In sum, these findings can complement
other considerations (e.g., the biological interpretation of the atlas) in the selection of the proper
parcellation for the study at hand. After all, the question concerning an optimal parcellation is a
difficult problem given many possible parcellation techniques and optimization criteria.
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3.4.2 Important factors with respect to model fitting

We found that most of the interparcellation variance in the goodness-of-fit at the group level
could be explained by the graph-theoretical statistics derived from the empirical SC and
FC (Fig. 3.7). By examining the PC1 and PC2 loadings in Fig. 3.7B, the graph-theoretical
measures associated with a high goodness-of-fit can be identified. Here, the PC1 loadings
clearly reflected the effect of granularity in the graph-theoretical statistics, and demonstrated
that a finer granularity leads to a lower goodness-of-fit. The loadings of PC2, which explained a
large amount of variance in the modeling results for both models, did not exhibit such a general
relation. The parameters of the degree and closeness centrality distributions as well as the
global efficiency are heavily loaded onto this PC. Here, the shape parameters of all the fitted
gamma distributions exhibited negative loadings, implying that a small shape parameter leads
to a high goodness-of-fit (see also Fig. S3.7). Given Eq. 3.1 and Fig. S3.1, this implies that the
modeling workflow prefers that most nodes have a low centrality and a select few nodes have
a high centrality for the empirical SC as well as FC, because then the density is high close to
0 and decreases with incrementing degree. The positive PC2 loading of the global efficiency,
furthermore, implies that the whole-brain models can replicate the functional networks better if
the structural networks facilitate the integration of signals.

The network architecture of the brain itself is believed to comprise amulti-level modular structure
and a heterogeneity with respect to the degree of individual nodes (Avena-Koenigsberger et al.,
2018; van den Heuvel & Sporns, 2019). Although the modularity did not exhibit a strong rela-
tionship with the goodness-of-fit other than their shared dependence on the granularity (Fig. 3.7,
Fig. S3.7), our results show that dynamical whole-brain models indeed favor such a heterogene-
ity in the degree distribution. After all, the goodness-of-fit was ameliorated by a higher diversity
with regard to the degree distribution in the SC and FC (as illustrated in Fig. S3.10A-E).

3.4.3 Within-parcellation, between-subject variances and the personalization of
whole-brain models

Previous studies suggested that dynamical whole-brain models are able to simulate the resting-
state brain activity on a personalized level (Bansal et al., 2018; Deco et al., 2017; Ritter et
al., 2013; Sanz-Leon et al., 2015; Zimmermann, Perry, et al., 2018). How this personaliza-
tion is achieved is not known. In this study, we have provided evidence that interindividual
differences in the goodness-of-fit do not reliably relate to the subject-specific deviations in the
graph-theoretical measures (Fig. 3.8, Fig. S3.9). In addition, we have shown that the network
structures of the simulated FC map onto those of the empirical FC when considering group-
averages, but not within-parcellation, interindividual variances (Fig. 3.9, Fig. 3.10). Taken to-
gether, the personalization of whole-brain models does not seem to use subject-specific devi-
ations in the network properties. How personalization of whole-brain models then actually is
achieved requires further investigation.

To account for the interindividual variations of the modeling results, other data variables may
for example be considered out of the class of the considered network properties. In such inves-
tigations, special attention must be paid to the limitations in the reconstruction of the structural
connectome. Studies namely have shown substantial amounts of inaccuracies (e.g., false pos-
itives or negatives) infecting the empirical SC when it is extracted from dwMRI data (Bassett
et al., 2011; Lindquist, 2020; Maier-Hein et al., 2017; Schilling et al., 2019; Sotiropoulos & Za-
lesky, 2019). These inaccuracies can have a systematic effect on the network properties of
the empirical SC (Zalesky et al., 2016). In order to reduce these inaccuracies, the whole-brain
tractography should be calculated with high density by state-of-the-art techniques, as we did in
this study, which can enhance its reproducibility (Roine et al., 2019).

The patterns of the intersubject differences in the graph-theoretical statistics and the modeling
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results may vary across parcellations (Fig. 3.5, Fig. 3.6B), which implies that the network struc-
tures of the empirical connectomes and the modeling results depend on the used parcellation
also at the level of individual subjects. This is a relevant implication as it may have conse-
quences for computational modeling studies investigating clinical traits (Cabral et al., 2012;
Saenger et al., 2017). Observed differences between groups and individual subjects may devi-
ate when another parcellation is used and may therefore reflect artefacts induced through the
use of a particular parcellation rather than actual deviations in the structure-function relationship
of distinct cohorts, as also discussed by Betzel & Bassett (2017).

3.4.4 Perspectives and outlook
Further brain parcellations, datasets, models, and (graph-theoretical) analyses variations might
be considered to verify and confirm the obtained results, especially when more computation-
ally powerful resources become available. In the end, the simulations and optimizations of
dynamical whole-brain models are computationally costly. The computational costs also inhibit
the estimation of biases in the model simulation results via, for example, null models. Future
studies should be devoted to devising strategies that could estimate these biases without a full
evaluation of the model dynamics through simulations.

Related to these computational costs is the notion that our results can contribute to the devel-
opment of informed expectations concerning the quality of the model validation for a given brain
parcellation. For this, a few network properties of the empirical connectomes calculated for this
parcellation can be examined before running time and resource consuming model simulations.
Additionally, this concept may be exploited to distinguish between data-induced and model-
induced deviations in the modeling results. Such an investigation may estimate to what extent
the empirical data already predicted the differences in modeling results between, for example,
healthy and clinical cohorts; the contribution of the model is consequently represented by the
remaining between-group variance.

Finally, the inaccurate mappings of empirical SC to simulated FC by both tested models for
local, mean-field activity highlight their current limitations with respect to the replication of em-
pirical resting-state brain dynamics. How well other types of models can replicate the empirical
FC on the basis of the empirical SC remains to be seen and should be investigated further.
Such an investigation would typically comprise the application of the framework of this study to
other model types such as the Jansen-Rit model (Jansen et al., 1993; Jansen & Rit, 1995), the
(reduced) Wong-Wang model (Deco & Kringelbach, 2014; E. C. A. Hansen et al., 2015; Wong
& Wang, 2006), different types of limit-cycle oscillators (Deco, Cabral, et al., 2018; Deco et al.,
2017; Ghosh et al., 2008) and a more recently developed neural mass model that incorporates
plasticity dynamics (Abeysuriya et al., 2018). Taken together, this implies that, even though
the tested models yield results that are related to the empirical data in terms of more than one
statistic, they are far from perfect and hence there is room for improvement.
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Supplementary data sheet
Every datasheet contains nine plots. The top row contains examples of the structural connec-
tivity, path length and functional connectivity matrices (from left to right). These examples were
constructed using the same subject of the HCP dataset. Modularity and modular structure were
calculated from the structural and functional connectivity matrices and subsequently matrix rows
and columns were sorted on the basis of these results. The modularity index and the number
of modules are also displayed within the structural and functional connectivity matrices and the
global efficiency calculated from the PL matrix is displayed in that matrix. The middle row con-
tains the densities of the individual elements of the corresponding matrices calculated across
the 200 subjects from the HCP dataset used in this study. The bottom row shows (from left to
right) the degree distribution of the empirical SC matrix, the closeness centrality of the empiri-
cal PL matrix and the degree distribution of the empirical FC matrix. These distributions were
calculated across the 200 subjects from the HCP dataset used in this study. In addition, the
gamma and normal distributions that best fitted the empirical distribution at hand are drawn into
the plots. The legends explain which line corresponds to which distribution. Additionally, they
also display the Kolmogorov-Smirnov statistic (in parentheses), which characterises the quality
of the fit of the parametric distribution to the empirical data as reflected by the distance between
the cumulative distribution functions. A lower value of this statistic implies a better fit.
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MIST
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CraddockSCorr2Level
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Shen2013
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Schaefer17Networks



CHAPTER 3 - STUDY 1: PARCELLATIONS AND QUALITY OF MODEL FIT 59

HarvardOxfordMaxProbThr0
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Structural atlases
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Supplementary method
Table 3.1 includes the parcellation schemes that are compared with one another in this study.
Here, we provide a summary on the construction of the parcellation schemes, i.e. what method-
ology was applied to what type of data to construct them. Additionally, we disclose how we
modify each brain parcellation image for the purpose of enhancing the comparability between
parcellations. These modifications typically comprise the following five steps:

• checking whether the image was sampled to MNI152 non-linear template space,
• ensuring that its spatial resolution was 1 mm (resolution of dwMRI images in the HCP
dataset) and that its coordinates were compliant with FSL standards,

• performing any transformations to warp the image to the MNI152 non-linear template
space,

• removing any cerebellar and subcortical regions and
• down-sampling the image to a 2 mm spatial resolution (resolution of the fMRI data in the
HCP dataset).

In order to ease the procedures required in any of these steps, FreeSurfer’s recon_all function
is applied to acquire the tissue segmentation result corresponding to the MNI152 non-linear
template image. From the results of this tissue segmentation, we compile a grey matter mask
spanning both hemispheres which we dilute with a 3 mm box kernel. Subsequently, we ensure
that the diluted mask is compliant with FSL standards.

MIST atlas parcellations (Urchs et al., 2019)

In order to construct these whole-brain, volume-based parcellations, the functional connectivity
data from 198 subjects was clustered using a hierarchical agglomerative clustering algorithm.
In this study, we use the 36, 64, 122 and 197 parcels variants of the atlas. However, the com-
parability enhancing image modifications left respectively 31, 56, 103 and 167 parcels in the
images. The details of these modifications are described below.

1. The parcellation images are in the MNI152 non-linear template space.
2. The images have a resolution of 3 mm. To correct for this mismatch, we

• reorient the images to FSL’s standard orientation,
• make a 3 mm resolution variant of the MNI152 non-linear template image by down-
sampling the 1 mm resolution original,

• co-register the parcellation images to this 3 mm variant,
• linearly transform the 3 mm resolution MNI152 non-linear template image to its 1 mm
resolution original and

• warp the parcellation images to obtain their 1 mm variant.
3. As the parcellation images are now already in the appropriate MNI152 non-linear template

space, we are not required to perform any additional transformations.
4. The parcellation images contain cerebellar and subcortical regions, which are eliminated

by multiplying the atlas images with the diluted grey matter mask (see above) and sub-
sequently removing invaluable labels from the parcellation images; here, the total volume
occupied by a parcel is required to be at least 500 voxels.

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Craddock atlas parcellations (Craddock et al., 2012)

In order to construct these whole-brain, volume-based parcellations, the functional connectivity
data from 41 subjects was clustered using a spectral clustering algorithm. We consider the
parcellations that were realised by applying a two-level group clustering scheme to the spatial
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correlations between functional connectivity maps. We take the 40, 60, 120 and 180 parcels
variants and modify them to enhance their comparability; respectively 38, 56, 108 and 160
parcels still remain in the parcellation images after these modifications. The details of these
modifications are described below.

1. The parcellation images are in the MNI152 non-linear template space.
2. The images have a resolution of 4 mm. To correct for this mismatch, we

• first dilute the images with a 12 mm box kernel to account for the rather poor resolu-
tion,

• reorient the images to FSL’s standard orientation,
• make a 4 mm resolution variant of the MNI152 non-linear template image by down-
sampling the 1 mm resolution original,

• co-register the parcellation images to this 4 mm variant,
• linearly transform the 4 mm resolution MNI152 non-linear template image to its 1 mm
resolution original and

• warp the parcellation images to obtain their 1 mm variant.
3. As the parcellation images are now already in the appropriate MNI152 non-linear template

space, we are not required to perform any additional transformations.
4. The parcellation images contain cerebellar and subcortical regions, which are eliminated

by multiplying the atlas images with the diluted grey matter mask (see above) and sub-
sequently removing invaluable labels from the parcellation images; here, the total volume
occupied by a parcel is required to be at least 500 voxels.

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Shen 2013 atlas parcellations (Shen et al., 2013)

In order to construct these whole-brain, volume-based parcellations, the functional connectivity
data from 79 subjects was clustered using a multigraph k-way clustering algorithm. In this study,
we take the 100 and 200 parcels variants and modify them to enhance their comparability;
respectively 79 and 156 parcels still remain in the parcellation images after these modifications.
The details of these modifications are described below.

1. The parcellation images are in the MNI152 non-linear template space.
2. The images have a resolution of 1 mm, but the coordinates and folding patterns are not

consistent with the MNI152 non-linear template. To correct for these mismatches, we
• first dilute the images with a 3 mm box kernel to account for the incompatible folding
patterns,

• reorient the images to FSL’s standard orientation,
• co-register the parcellation images to the 1 mm MNI152 non-linear template image.

3. As the parcellation images are now already in the appropriate MNI152 non-linear template
space, we are not required to perform any additional transformations.

4. The parcellation images contain cerebellar and subcortical regions, which are eliminated
by multiplying the atlas images with the diluted grey matter mask (see above) and sub-
sequently removing invaluable labels from the parcellation images; here, the total volume
occupied by a parcel is required to be at least 500 voxels.

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Schaefer atlas parcellations (Schaefer et al., 2018)

Voxels were grouped together by applying a gradient-weighted Markov Random Field to the
functional connectivity data from 1489 subjects. The result was published as a cortical, surface-
based atlas. In this study, we use the 100 and 200 parcels variants. Because the parcellations
are surface-based, we sample these parcellations in the volumetric MNI152 non-linear template
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space using the results from the recon_all function that was applied to the MNI152 non-linear
template image. The rest of the parcellation image modifications is described below.

1. The parcellation images are already in the right standard space, because the atlas is
sampled through the use of the MNI152 non-linear template image.

2. The spatial resolution is correct, but the coordinates are not consistent with FSL stan-
dards.The parcellation images are assigned the right coordinates through the use of the
results from the recon_all function.

3. As the parcellation images are now already in the appropriate MNI152 non-linear template
space, we are not required to perform any additional transformations.

4. The parcellation images do not contain cerebellar or subcortical regions; still, the parcels
are thinner than the other parcellation images and are therefore diluted with a 3 mm box
kernel to ensure they cover a similar cortical volume.

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Harvard-Oxford atlas parcellations (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al.,
2007; Makris et al., 2006)

In order to construct these volumetric parcellations, the cortical folding patterns of 37 subjects
were analysed using semi-automated tools developed by the Harvard-Center for Morphomet-
ric Analysis. We use the maximum probability, 0% threshold, cortical variants with 48 (without
hemispheric separation) and 96 (with hemispheric separation) parcels. The details of the mod-
ifications applied to these parcellations are listed below.

1. The parcellation images are in the MNI152 non-linear template space.
2. The images have a resolution of 1 mm and their coordinates are consistent with the

MNI152 non-linear template.
3. The parcellation images are already in the appropriate MNI152 non-linear template space.
4. The parcellation images do not contain cerebellar and subcortical regions. Still, parcels

occupy a relatively large cortical volume. To correct for this, we multiply the parcellation
images with the diluted grey matter mask (see above).

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Desikan-Killiany atlas (Desikan et al., 2006)

The structural MRI data of 40 subjects were analysed by a registration procedure that aligns
the cortical folding patterns to create this surface-based parcellation. Because the parcellation
is surface-based, the same procedures as described for the Schaefer atlas are applicable here.

Von Economo-Koskinas atlas (Scholtens et al., 2018; von Economo & Koskinas, 1925)

20 human brains were analysed using histological tools in order to identify strong, spatial gradi-
ents regarding cytoarchitectonic properties. These gradients were then assumed to represent
the boundaries of cortical regions. The original parcellation has been digitised and is available
as a surface-based parcellation. Because the parcellation is surface-based, the same proce-
dures as described for the Schaefer atlas are applicable here.

AAL atlas (version 2) (Rolls et al., 2015; Tzourio-Mazoyer et al., 2002)

The structural MRI data of 1 subject was analysed by a boundary detection algorithm called Vox-
eLine to create this volume-based parcellation. The original parcellation contains 120 parcels,
but after we modified its image in order to enhance comparability only 92 cortical parcels re-
mained. The details of these modifications are described below.
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1. The parcellation image is not in the MNI152 non-linear template space, but in the Colin27
linear template space.

2. As the atlas is not in the MNI152 non-linear template space, checking its coordinates and
resolution is irrelevant.

3. Since the atlas is not in theMNI152 non-linear template space, it first has to be transformed
to it. In order to do this we

• reorient the parcellation and its original template image to FSL standards,
• extract the brain from the original template image by multiplying it with its mask,
• decrease the spatial resolution of the original template to 2 mm to ease the non-linear
transformation to the MNI152 non-linear template space,

• co-register the original template brain with the MNI152 non-linear template brain im-
age with 2 mm resolution,

• non-linearly transform the original template brain to the MNI152 non-linear template
brain image with 2mm resolution,

• warp the parcellation image to the MNI152 non-linear template space with 2 mm
resolution,

• co-register the MNI152 non-linear 2 mm template brain with its 1 mm variant and,
finally,

• warp the parcellation image to the 1 mm MNI152 non-linear template space.
4. The parcellation image contains cerebellar and subcortical regions, which are eliminated

by multiplying the atlas images with the diluted grey matter mask (see above) and sub-
sequently removing invaluable labels from the parcellation images; here, the total volume
occupied by a parcel is required to be at least 500 voxels.

5. The parcellation images are down-sampled to a spatial resolution of 2 mm.

Destrieux atlas (Destrieux et al., 2010)

The structural MRI data of 12 subjects was analysed in order to divide the brain into gyral and
sulcal regions. This division was performed through a consideration of surface curvature and
convexity values as well as prior labelling probabilities and neighbouring labels. The parcellation
is surface-based and therefore the same procedures as described for the Schaefer atlas are
applicable here.

Brainnetome atlas (Fan et al., 2016)

The structural connectivity data from 40 subjects was clustered using a spectral clustering algo-
rithm to create this parcellation. We use the surface-based cortical version of the parcellation.
Because the parcellation is surface-based, the same procedures as described for the Schaefer
atlas are applicable here.
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Supplementary results

Fig. S3.1. (A)Gamma probability distribution function for fixed scale parameter θ = 0.5 and varying shape parameter
k. Blue, orange and green correspond to k = 1, k = 4 and k = 7, respectively. (B) Gamma probability distribution
function for fixed shape parameter k = 4 and varying scale parameter θ. Blue, orange and green correspond to
θ = 0.2, θ = 0.5 and θ = 1.0, respectively.
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Fig. S3.2. (A-C) Kolmogorov-Smirnov (KS) statistics of the fit of the gamma distribution to the empirical degree
distribution of the structural connectivity (SC) (A) and the mean (B) and the standard deviation (C) of that type of
degree. (D-F) Same quantities as in panel A to C but for the closeness centrality of the path length (PL) matrix.
(G-I) Same quantities as in panel A to C but for the degree of the functional connectivity (FC) matrix. Dots and lines
depict the medians and interquartile ranges across subjects, respectively, and the atlas indices on the vertical axes
correspond to those in Table 3.1 which contains the information about the used parcellations. Abbreviations: centr.
= closeness centrality.
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Fig. S3.3. (A-D) Statistics extracted from the structural connectivity (SC) matrices, which are the shape (A) and scale
(B) parameters of the degree distributions, the modularities (C) and the clustering coefficients (D). (E-H) Statistics
extracted from the path length (PL) matrices, which are the shape (E) and scale (F) parameters of the closeness
centrality distributions, the global efficiencies (G) and the characteristic path lengths (H). Dots and lines depict the
medians and interquartile ranges across subjects, respectively. The atlas indices on the vertical axes correspond to
those in Table 3.1 which contains the information about the used parcellations. The difference between these plots
and those shown in Fig. 3.2 is that here the effect of granularity has been regressed out. Abbreviations: Centr. =
closeness centrality, Char.PL = characteristic path length.
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Fig. S3.4. (A-E) Statistics extracted from the empirical FC matrices, which are the shape (A) and scale (B) parame-
ters of their degree distributions, their modularities (C), their clustering coefficients (D) and their characteristic path
lengths (E). (F) Pearson correlation coefficients corresponding to the structure-function relationship between the
upper triangular parts (excluding diagonal) of the empirical SC and FC matrices. Dots and lines depict the medians
and interquartile ranges across subjects, respectively. The atlas indices on the vertical axes correspond to those
in Table 3.1 which contains the information about the used parcellations. The difference between these plots and
those shown in Fig. 3.3 is that here the effect of granularity has been regressed out. Abbreviations: Char.PL =
characteristic path length.
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Fig. S3.5. Same as Fig. 3.4, though with the difference that in these plots the measures are plotted as functions of
the number of parcels instead of its inverse and that the granularity effects displayed in Fig. 3.4 have been regressed
out. Each dot corresponds to a particular atlas. Abbreviations: Centr. = closeness centrality, Char.PL = characteristic
path length.
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Fig. S3.6. (A) Maximised correlations (goodness-of-fit) between the empirical and simulated FC matrices for the
brain parcellation schemes and models investigated in this study as indicated on the vertical axes. Dots and lines
depict the medians and interquartile ranges across subjects, respectively. (B) Correlations across subjects of the
goodness-of-fit of the model between the considered parcellations and models. Table 3.1 contains the parcellation
information corresponding to the atlas indices used in the plots. (C) Scatter plot of the medians of the goodness-of-fit
corresponding to the phase oscillator (x-axis) and neural massmodel (y-axis) across subjects. Each dot corresponds
to a particular parcellation, the purple line portrays the linear regression between both types of goodness-of-fit and
the black dashed line corresponds to x = y. The difference between these plots and those shown in Fig. 3.6 is that
here the effect of granularity has been regressed out.
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Fig. S3.7. (A) Cross-correlations among the graph-theoretical measures of the empirical connectomes (network
properties depicted in Fig. 3.2 and Fig. 3.3), the structure-function relationship and the goodness-of-fit of the models
to the empirical data. The correlation was calculated across parcellations between the median values over all
subjects. Significant correlations are highlighted by colours (p<0.05, two-sided, Bonferroni corrected). (B) Loadings
of the first (PC1) principal component of the group-averaged graph-theoretical metrics, i.e. the contributions of the
original empirical data variables to PC1. (C) Regressions of the PC1 scores with the medians of the goodness-of-fit
between empirical (eFC) and simulated (sFC) functional connectivity. The medians were calculated across subjects
for each considered parcellation for the phase oscillator (red) and the neural mass model (blue) as indicated in the
legend together with the fraction of the explained variance. The symbols stand for the individual parcellations from
Table 3.1. (D) Cumulative amount of explained variance in the group-averaged graph-theoretical measures as a
function of the number of included PCs. (E) Fraction of the interparcellation variance of the goodness-of-fit being
explained by the (multivariate) linear regression model as a function of the number of PCs included in the model. The
difference between these plots and those shown in Fig. 3.7 is that here the effect of granularity has been regressed
out. Other abbreviation: a.u. = arbitrary unit, cumul. = cumulative, expl. = explained, var. = variance.
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Fig. S3.8. Pearson correlation coefficients between the goodness-of-fit and the empirical data variables shown
in Fig. 3.2 and Fig. 3.3 across subjects per parcellation for the phase oscillator (A) and the electrical model (B).
Table 3.1 contains the parcellation information corresponding to the atlas indices used in the plots. Abbreviations:
coef. = coefficient, corr. = correlation.
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Fig. S3.9. (A) Amounts of within-parcellation, between-subject variance in the modeling results being explained
by the combination of principal component analysis with univariate, ordinary least squares linear regression (same
approach as in Fig. 3.7B-E) per parcellation. Modeling results are sampled by using the coupled phase oscillators
(red) and neural mass models (blue) and comprise the maximised correlation coefficients between the upper trian-
gles of the empirical and simulated functional connectivity matrices excluding the diagonals. (B) Loadings of the first
principal component (PC1) corresponding to the data variables depicted in Fig. 3.2 and Fig. 3.3 for a selection of 4
brain parcellation schemes. The abbreviations ”Shen (79)”, ”Sch. (100)”, ”HO (96)” and ”EK (86)” correspond to the
parcellations in Table 3.1 with indices 9, 11, 14 and 16, respectively. (C) Absolute values of the Pearson correlation
coefficients across the loadings per pair of brain parcellation. Table 3.1 contains the parcellation information corre-
sponding to the atlas indices used in the plots. Other abbreviations: abs. = absolute value, coef. = coefficient, corr.
= correlation.
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Fig. S3.10. (A) Characteristic degree distributions of the connection strength (CS) matrices for a selection of 4 par-
cellation schemes. (B-D) Same as panel A but here the empirical (emp. FC, D) and simulated functional connectivity
matrices corresponding to the phase oscillator (phase FC, B) and neural mass (neural FC, C) models that provided
the best fit are considered. Distributions are shown as normalised probability density functions and are constructed
using the medians of their corresponding parameters across subjects. Coloured texts denote the median maximised
correlation coefficients. (E) Relative variances included in the degree distributions. Bars and errorbars depict the
medians and interquartile ranges across subjects. The abbreviations ”Shen (79)”, ”Sch. (100)”, ”HO (96)” and ”EK
(86)” correspond to the parcellations in Table 3.1 with indices 9, 11, 14 and 16, respectively.
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Abstract
Dynamical whole-brain models were developed to link structural (SC) and functional connec-
tivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical
regimes of the brain and how these relate to behavioral, clinical and demographic traits. How-
ever, there is no comprehensive investigation on how reliable and subject specific the modeling
results are given the variability of the empirical FC. In this study, we show that the parameters
of these models can be fitted with a ”poor” to ”good” reliability depending on the exact imple-
mentation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model
personalization leads to increasingly reliable model parameters. In addition, we observe no
clear effect of the model complexity evaluated by separately sampling results for linear, phase
oscillator and neural mass network models. In fact, the most complex neural mass model often
yields modeling results with ”poor” reliability comparable to the simple linear model, but demon-
strates an enhanced subject specificity of the model similarity maps. Subsequently, we show
that the FC simulated by these models can outperform the empirical FC in terms of both relia-
bility and subject specificity. For the structure-function relationship, simulated FC of individual
subjects may be identified from the correlations with the empirical SC with an accuracy up to
70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain
parcellations and 6 modeling conditions and show that the parcellation-induced effect is much
more pronounced for the modeling results than for the empirical data. In sum, this study pro-
vides an exploratory account on the reliability and subject specificity of dynamical whole-brain
models and may be relevant for their further development and application. In particular, our
findings suggest that the application of the dynamical whole-brain modeling should be tightly
connected with an estimate of the reliability of the results.

4.1 Introduction
The neuroscientific literature generally distinguishes between three types of macroscopic con-
nectivity in the human brain: the structural (SC), functional (FC) and effective connectivity (Deco,
McIntosh, et al., 2014; Robinson, 2012). Here, the SC assumes an anatomical viewpoint and
reflects how different parts of the brain are connected via axonal projections bundled into white
matter fibers (Maier-Hein et al., 2017; Sotiropoulos & Zalesky, 2019; Yeh et al., 2021). FC, on the
other hand, uses synchronized co-activations as proxies for stable functional connections (Bolt
et al., 2017; Deco et al., 2013; van den Heuvel & Hulshoff Pol, 2010). Finally, effective connec-
tivity considers the causality or the directionality of the information flow between various parts
of the brain (Friston, 2011; Gilson et al., 2016; Robinson et al., 2014; Valdes-Sosa et al., 2011).
Studies have shown that SC and FC exhibit a complex relationship, which is demonstrated by
the relatively low correlations between them, and many approaches have been proposed to
infer the FC from the SC or vice versa (Honey et al., 2009; Larson-Prior et al., 2013; Saggio et
al., 2016; Suárez et al., 2020; Woolrich & Stephan, 2013).

Dynamical whole-brain models are one of the main methodologies used to link SC and FC
together into one comprehensive framework (Breakspear, 2017; Deco et al., 2011; Popovych
et al., 2019; Sanz-Leon et al., 2015; Suárez et al., 2020). These models explain an additional
amount of variance beyond a direct correlation between SC and FC, and have been used to
study the dynamical properties of the resting-state human brain (Deco et al., 2017; Ghosh et al.,
2008; Honey et al., 2009). Moreover, the models can be employed to study the mechanisms
underlying neurobiological phenomena and neural disorders at a personalized level and suggest
an approach for hypothesis testing in silico (Deco et al., 2019; Deco & Kringelbach, 2014; Hahn
et al., 2019; Jirsa et al., 2017; Ritter et al., 2013; Zimmermann, Perry, et al., 2018).

Studies have assessed how varying preprocessings of magnetic resonance imaging (MRI) data
influence the results of dynamical whole-brain models. They showed that the models are sen-
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sitive to variations in the pipelines reconstructing the SC and the FC from diffusion-weighted
MRI (dwMRI) and resting-state functional MRI (fMRI) images, respectively (Aquino et al., 2022;
Jung et al., 2021), and how the model fitting may depend on the properties of the empirical data
used for model derivation and validation (Chapter 3; Popovych et al., 2021). Nevertheless, the
methodological aspects of the (test-retest) reliability and the subject specificity of the modeling
results and their relation to the empirical data have not been extensively investigated so far.
In contrast, the reliability of the FC derived from fMRI data, which is used for model validation,
has been scrutinized in many studies over a period longer than a decade (Birn et al., 2013;
Noble et al., 2017, 2019; Pannunzi et al., 2017; Shehzad et al., 2009; Van Dijk et al., 2010). Its
subject specificity reflected by, for example, fingerprinting analysis has received much attention
as well (Amico & Goñi, 2018; Finn et al., 2015; Li et al., 2021; Peña-Gómez et al., 2018; Sarar
et al., 2021; Waller et al., 2017). Also the subject specificity of the empirical structure-function
relationship has been considered in the literature (Messé, 2020; Zimmermann, Griffiths, et al.,
2018). Hence, comprehensive assessments of the reliability and the subject specificity of the
modeling results and their relation with the empirical data are due.

This study therefore critically assesses the reliability and subject specificity of the results of the
model validation and their relations with the empirical connectomes across a wide variety of
conditions for model construction such as model definition and wielded parcellation. In short,
it demonstrates that the results of the model fitting may be more reliable and subject specific
than the empirical data. However, our results also show that this finding highly depends on
the modeling conditions. In fact, for some of the tested circumstances we found a reliability and
subject specificity that are substantially lower for themodeling results than for the empirical data.
Moreover, we explicitly show that the models can integrate various types of subject-specific
information extracted from empirical data into their output. This makes our study relevant for
application, especially, given the current focus on the involvement of dynamical whole-brain
models in clinical investigations, for example, in the framework of precision medicine.

4.2 Materials and methods
In the current study, we assessed the reliability and the subject specificity of the fits of the
dynamical whole-brain models to the empirical FC. We first constructed such models on the
basis of the empirical SC derived from dwMRI data (Fig. 4.1). Subsequently, we independently
fitted them to different realizations of the empirical FC (the FC derived from resting-state fMRI
data) of individual subjects by optimizing the (global) model parameters through a grid search
paradigm (Fig. 4.1). By doing so, we obtained the optimal model parameters that were used by
the models to generate the associated simulated FCs that provided the best fits of the model to
these separate realizations of empirical FC.

We subsequently calculated the intraclass correlation (ICC) of the individual optimal model pa-
rameters as characterizations of their reliability. Additionally, we calculated the same quantity
for the individual (undirected) edges of the empirical and fitted simulated FCs, and inspected the
distribution of these ICCs across connections to examine the reliabilities of those connectomes.
We also computed the single-modal connectome correlations, where different realizations of the
empirical and the fitted simulated FCs were separately compared with each other for the same
subject (within-subject) or different subjects (between-subject) to determine how variable the
connectivity patterns are for the same and different subjects (Fig. 4.1, blue arrows). Further-
more, we determined the within- and between-subject, cross-modal connectome correlations
to study how the different types of connectivity related to one another. Here we named the
correlations calculated between the empirical SC and both types of FC (empirical and simu-
lated) the structure-function correlations (Fig. 4.1, red arrows), and those computed between
the empirical and the simulated FC the model-fit correlations (Fig. 4.1, brown arrows). Finally,
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we considered all values of similarity (Pearson correlation) between the empirical and simulated
FC established at the model validation by the parameter grid search, which are referred to as a
similarity map. We examined how the similarity maps relate to one another within and between
subjects.

We repeated our calculations using 8 distinct parcellations for the reconstruction of the empirical
SC and FC from the MRI data to determine whether a change of brain atlas could critically alter
the conclusions. In addition, we repeated our computations for 6 distinct dynamical whole-
brain model implementations to investigate whether varying model personalization and model
complexity may yield qualitatively different results.

Below we describe the wielded procedures in detail. The code used for the simulation of the
brain network dynamics, the analysis and the visualization can be found here: https://jugit.fz
-juelich.de/inm7/public/specificity-modeling.

4.2.1 Empirical connectomes

In this work, we used the empirical connectomes that we have already published else-
where (J. W. M. Domhof et al., 2021). This repository contains the empirical SC and FC
matrices of 200 healthy, unrelated subjects (96 males, 104 females, aged 28.5 ± 3.5 years)
from the Human Connectome Project (HCP) S1200 release dataset (Van Essen et al., 2012,
2013). The local ethics committee of the HCP approved the study, and the informed consent
of all subjects was collected. The connectomes were reconstructed for 19 different parcellation
schemes, where the original parcellation images were first modified to increase the compara-
bility of results across brain atlases. In particular, the modifications ensured the images only
included cortical parcels and were sampled to the MNI152 non-linear template space (Grabner
et al., 2006).

Fig. 4.1. Schematic illustration of the methodology used in this study. The empirical structural connectivity (SC) and
the empirical functional connectivity (FC) were calculated from dwMRI and resting-state fMRI data, respectively. Dy-
namical whole-brain models were used to sample the simulated FCmatrices that replicated each individual empirical
FC as close as possible for every fMRI session by using the optimal model parameter configuration psubject,session.
This particular configuration was obtained by validating the model (fitting simulated FC to empirical FC) using a grid
search in the parameter space. Subsequently, the upper triangles of the empirical SC, empirical FC and the cor-
responding fitted simulated FC matrices were correlated between different resting-state fMRI sessions or subjects
to determine their similarities. Here, a distinction was made between three types of correlations. (1) The correla-
tions evaluated between the same type of FC were named single-modal correlations (blue arrows). (2) Cross-modal
structure-function correlations (red arrows) were calculated between the empirical SC and the empirical or simulated
FC. (3) Cross-modal correlations between the empirical and simulated FC were termed model-fit correlations (brown
arrows). All sessions participate in within- and between-subject comparisons, but arrows in the figure are only fully
shown for session 2 of subject 1 (center column of simulated and empirical FC).

https://jugit.fz-juelich.de/inm7/public/specificity-modeling
https://jugit.fz-juelich.de/inm7/public/specificity-modeling
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We used the empirical connectomes of 8 representative parcellations out of the available 19
brain parcellations in order to put more emphasis on varying the parcellation method rather
than the granularity. Table 4.1 displays the final selection of parcellations. Below we provide a
brief explanation on the derivation of the empirical SC and FC from the dwMRI and fMRI data,
respectively. For a detailed description of the connectome data, we refer to the data descriptor
included in the repository (J. W. M. Domhof et al., 2021) and to the associated paper (Chapter 3).

Empirical structural connectivity

The reconstruction of the empirical SC matrices from dwMRI data was carried out by a workflow
developed in-house (Jung et al., 2021). The pipeline can be regarded as a wrapper around
functions included in the software packages of ANTs (Tustison et al., 2010), FreeSurfer (Dale
et al., 1999), FSL (Jenkinson et al., 2012) and MRtrix3 (Tournier et al., 2019), and is publicly
available (https://github.com/inm7/vbc_dwmri). The result of the reconstruction consisted of the
empirical SC matrix with the number of streamlines between all pairs of brain regions and the
empirical path length (PL) matrix, which included the average lengths of those streamlines. For
the details of the reconstruction process, we refer to the above repository hosting the workflow,
to the data descriptor of the data repository (J. W. M. Domhof et al., 2021) and to the associated
paper (Chapter 3).

In addition to the subjects’ own (personalized) empirical SC and PL matrices, we also derived
their grand-averages per parcellation, which is a common practice in modeling studies (Aquino
et al., 2022; Cabral et al., 2011; Deco, Cruzat, et al., 2018; Donnelly-Kehoe et al., 2019; Iravani et
al., 2021; Messé et al., 2014, 2015). However, by a straightforward averaging, the unconnected
brain regionsmay bias the grand-averaged path lengths to lower values. Instead, we considered
each edge of the empirical SC and PL matrices separately, and determined the medians of the
connected edges across subjects. This variation from a straightforward averaging does not
yield qualitatively different empirical SC matrices, but yields a more accurate estimation of the
grand-averaged physical distance the signals have to travel; see supplementary Fig. S4.1 for
illustration.

Empirical functional connectivity

The empirical FC matrices were calculated from the ICA-FIX preprocessed resting-state fMRI
data as included in the HCP dataset (Griffanti et al., 2014). First, the mean intensity of the
resting-state blood-oxygen-level-dependent (BOLD) signal was calculated across all voxels of

Table 4.1. Names and abbreviations of the brain parcellations used in this study together with the number of cortical
parcels and associated publications. The top and bottom blocks correspond to parcellations derived using data
reflecting structural and functional brain organization, respectively.

Name (abbreviation) Parcels References

Desikan-Killiany (DK) 70 (Desikan et al., 2006)

von Economo-Koskinas (EK) 86 (Scholtens et al., 2018; von Economo & Koski-
nas, 1925)

AAL (version 2) (AAL) 92 (Rolls et al., 2015; Tzourio-Mazoyer et al., 2002)

Harvard-Oxford (HO) 96 (Desikan et al., 2006; Frazier et al., 2005; Gold-
stein et al., 2007; Makris et al., 2006)

Shen 2013 (Shen) 79 (Shen et al., 2013)
Schaefer (Sch.) 100 (Schaefer et al., 2018)
MIST (MIST) 103 (Urchs et al., 2019)
Craddock (CD) 108 (Craddock et al., 2012)

https://github.com/inm7/vbc_dwmri
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a given brain region included in the considered parcellation, which resulted in one BOLD signal
time series for each parcel. The resulting BOLD signals were recently published in a separate
dataset as well (J. W. M. Domhof et al., 2022). Subsequently, the time series were linearly
detrended and z-scored. Eventually, the empirical FC was derived from the time series by cal-
culating the Pearson correlation coefficients across the time series for all pairs of brain regions.

For all considered subjects, the HCP dataset provided 4 resting-state fMRI sessions (left-to-
right and right-to-left phase encoding directions scanned on 2 days) comprising 1200 volumes
each (TR = 720 ms). We thus calculated 4 different realizations of the empirical FC per subject.
These separate instances of the empirical FC for every individual subject enabled us to estimate
the reliability of the empirical FC and hence that of the corresponding fitted simulated FC and
the respective fitted model parameters as well.

4.2.2 Simulated functional connectivity
After the acquisition of the empirical connectomes, the simulated FC matrices were generated
by dynamical whole-brain models. In these models, the brain was considered to be a network
of nodes corresponding to the brain regions included in a particular parcellation. The mean-field
activities of the brain regions were subsequently described by models for local dynamics that
interact with one another according to the connectivity profile prescribed by the empirical SC.
Here, the empirical SC and PL matrices were used to determine the strengths of the network
connections and their associated time delays of signal propagation, respectively.

We performed our simulations for 6 different dynamical whole-brain model implementations to
study how the distinct facets of model personalization and model complexity affect the results.
The influence of model personalization was studied by considering multiple versions of the
Kuramoto model of coupled phase oscillators (Kuramoto, 1984). In particular, the model could
be constructed either on the basis of the grand-averaged or the personalized empirical SC, and
could be simulated using either group-averaged or subject-specific region-specific oscillation
frequencies; see below. Taken together, we considered the Kuramoto model
(1) using averaged empirical SCs and averaged frequencies,
(2) using personalized empirical SCs and averaged frequencies,
(3) using averaged empirical SCs and personalized frequencies and
(4) using personalized empirical SCs and personalized frequencies.

The first and the last modeling conditions define the least and the most personalized models
considered, respectively.

The influence of model complexity was studied using three different models with similar per-
sonalizations (personalized SC). As the least complex model, we employed (5) a fully linear
model. In addition, we used the results of the Kuramoto model that was simulated using the
group-averaged frequency profiles (case (2) above) as a moderately complex model. Further-
more, we used (6) a Wilson-Cowan neural mass model (Wilson & Cowan, 1972), which has the
most complex model description and implementation among all models wielded in this study. As
mentioned above, these models were all constructed on the basis of the personalized empirical
SC and PL matrices, but there were no other personalized data included in them.

The non-linear models have two free parameters: the global coupling G and the global delay τ ;
see below. We simulated the models, which yielded the activity time series of allN brain regions
(network nodes), for broad ranges of these parameters sampled from a dense grid in the (G, τ)-
parameter space. Subsequently, we derived the simulated FC from the sampled time series
via the same procedure that we wielded to construct the empirical FC from the empirical BOLD
signals. Conversely, the considered linear model had an analytical solution in which the global
coupling is the only (relevant) free parameter (Saggio et al., 2016). Hence, we determined the
simulated FC of the linear model via that solution for a broad range of global coupling values.
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The correspondence between the empirical and the simulated FC matrices was then quantified
by comparing both matrices through the Pearson correlation coefficient. Hence, we determined
the similarity between the empirical and simulated FC as a function of the model parameters

ψ(G, τ) = corr[FCemp.,FCsim.(G, τ)]. (4.1)

Here, FCemp. and FCsim.(G, τ) are vectors containing the upper triangular elements of the
empirical FC and the simulated FC, respectively. In the case of the linear model, the delay
parameter τ was dropped from Eq. 4.1. The function ψ(G, τ) is henceforth also referred to as
the similarity mapping mentioned above.

For every individual realization of the empirical FC, we selected the parameter setting and
associated simulated FC that provided the best fit of the model with that particular empirical
FC (Fig. 4.1). In other words, for the four realizations of the empirical FC of every subject (four
resting-state fMRI sessions per HCP subject), we acquired the four simulated FCs and the ac-
companying optimal model parameter settings that resulted in the highest value of the similarity
ψ(G, τ). The actual maximum value of Eq. 4.1 is subsequently referred to as the goodness-of-
fit. The selected optimal model parameter configurations and the corresponding fitted simulated
FC matrices were subjected to further analyses together with the empirical connectomes. Be-
low we describe the models used in this study in more detail and provide an explanation on their
implementation and simulation.

Linear model

As a linear model, we used the well-known Ornstein-Uhlenbeck model approximating the diffu-
sion of noise over the anatomical structure (Galán, 2008). Saggio et al. (2016) demonstrated
that this model has an analytical solution, as it gives rise to the covariance matrix K via the
equation

K = −
σ2L
2

(
−I+G · SC

)−1 . (4.2)

Here, σL is the intensity of the noise, G is the global coupling parameter and I is the identity
matrix. Additionally, SC is the personalized empirical SC matrix normalized by the maximum
of its eigenvalues. This normalization makes the global coupling parameter range more com-
parable across subjects and parcellations as it ensures that G = 1 coincides with the critical
coupling; for G ≥ 1 the solution loses its stability (Saggio et al., 2016). The derived covariance
matrix was converted to a (functional connectivity) correlation matrix by using the definition of
the Pearson correlation coefficient ρX,Y = covX,Y / (σXσY ). Evidently, the noise parameter
σL then becomes irrelevant, and hence the global coupling parameter G remains the only free
parameter. We determined the simulated FC for a broad range of values for this parameter
to maximize the fit between the simulated and the empirical data as given by Eq. 4.1 (without
delay parameter); see below for details on this variation.

Kuramoto phase oscillator model

The Kuramoto model approximated the phase dynamics of themean-field activity of brain region
i ∈ {1, 2, ..., N} (N being the number of brain regions in a particular brain atlas), where the
corresponding phase φi(t) was governed by the differential equation

φ̇i(t) = 2πfi +
N∑
j=1

Cij sin(φj(t− τij)− φi(t)) + σpνi(t). (4.3)

Here, fi is a region-specific natural frequency, and νi(t) is zero-mean Gaussian white noise
with an intensity σp = 0.17. In addition, the individual coupling strengths and delays were
characterized by Cij and τij , respectively. They were determined from the personalized or
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grand-averaged empirical SC and PL matrices:

Cij =

{
0 if i = j

G · SCij

N⟨SC⟩ otherwise
and τij =

{
0 if i = j

τ · PLij

⟨PL⟩ otherwise
, (4.4)

where ⟨·⟩ returns the mean over all the elements in the matrix, and G and τ are the free pa-
rameters of the global coupling and delay scaling the individual coupling strengths and delays,
respectively. The normalizations of the empirical SC and PL matrices by their mean values en-
sured that the coupling and delay parameter values were within similar ranges across subjects
and parcellations. Other studies used a similar approach (Deco et al., 2017, 2019).

In our study, φi(t) directly modeled the ultra-slow phase dynamics of the BOLD signals, which is
similar to the paradigm described by Ponce-Alvarez et al. (2015) but different from Messé et al.
(2014). The signal cos(φi(t)) then was considered as a proxy for the simulated BOLD signals,
and hence used to construct the simulated FC. We determined the simulated FC for a broad
range of the parameters G and τ , which are sampled on a dense grid in the parameter space,
to maximize the fit between the simulated and the empirical data; see below for details on this
variation.

The oscillation frequencies fi were determined via spectral density estimations calculated from
the empirical BOLD time series. To better estimate the frequency spectra of a given subject,
we first concatenated the four z-scored BOLD signals of the individual fMRI data acquisitions.
The concatenated signals were analyzed using Welch’s method (welch function in the SciPy
module; Virtanen et al., 2020), where we used a Hamming window function of 1024 time points
and 95% overlap between segments (972 time points). We then used the peak frequencies
within the [0.01, 0.10] Hz frequency range; see supplementary Fig. S4.2 for the distributions of
the frequencies across all regions and subjects that were obtained by following this procedure
for each individual parcellation. We added Gaussian white noise with zero mean and 0.002 Hz
standard deviation to make the peak frequencies more heterogeneous and to avoid duplicate
frequencies due to discretization of the frequency values. Following this approach, a vector of
frequencies was obtained for each subject separately reflecting the peak BOLD frequencies of
the N individual brain regions. Two considered versions of the phase oscillator model used
these subject-specific frequencies. We also repeated our calculations while using the same
group-averaged, region-specific frequencies for all subjects. These frequencies were calculated
as the median frequencies of the brain regions across subjects and correspond to two other
considered versions of the phase oscillator model.

Neural mass model

We used a neural mass model similar to the one used by Deco et al. (2009), which was an
adaptation of the model described by Wilson & Cowan (1972). The activity of brain region i was
modeled by pooling the activities of the excitatory and inhibitory neurons in that region together
into the variables Ei(t) and Ii(t), respectively. The temporal dynamics of these activities were
governed by the equations

µEĖi(t) = −Ei(t) + κS

 N∑
j=1

CijEj(t− τij)− cEIIi(t) + Ib

+ σnνi(t) and (4.5)

µI İi(t) = −Ii(t) + κS (cIEEi(t)) + σnνi(t), (4.6)

where µE = µI = 20ms represented the decay time constants of the excitatory and inhibitory ac-
tivity, respectively. The same independent Gaussian white noise with a mean of zero and an in-
tensity of σn = 0.002was received by both neuronal populations. cEI = 1.5 and cIE = 0.6 scaled
the inhibition of the excitatory neurons by the inhibitory population and the excitation of the in-
hibitory neurons by the excitatory pool, respectively. Parameter κ = (1 + exp(λγ)) / exp(λγ)
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scaled the sigmoid function

S(x) = 1

1 + exp(−λ(x− γ))
− 1

1 + exp(λγ)
(4.7)

so that κS(x) = 1 as x → ∞. Here, λ = 20.0 and γ = 0.3 were the parameters determining
the width and the position of the inflexion point of S(x), respectively. Finally, Ib = 0.10 was a
constant external input arriving at the excitatory population, and Cij and τij were the individ-
ual coupling strengths and delays, respectively. Different from the Kuramoto model (Eq. 4.4),
they were only derived from the personalized (hence not grand-averaged) empirical SC and PL
matrices via

Cij =

{
cEE if i = j

G · SCij

N⟨SC⟩ otherwise
and τij =

{
0 if i = j

τ · PLij

⟨PL⟩ otherwise
. (4.8)

In this equation, the parameter cEE = 1.0 regulated the self-excitation of the excitatory neurons,
andG and τ are the global coupling and delay parameters, respectively. These were considered
as the free parameters of the model and required optimization; see below.

The model exhibited limit-cycle oscillatory behavior in the alpha frequency band when the brain
regions were coupled in a network by a sufficiently large coupling parameter G > 0, and
remained at a low activity state when the network was disconnected (G = 0). The mod-
eled oscillations had alpha-band frequencies on purpose: Alpha oscillations have been asso-
ciated with BOLD responses (Mayhew et al., 2013), and they dominate in human resting-state
EEG (Fraga González et al., 2018; Spitoni et al., 2013).

The activities of the two neuron populations were sampled by simulating the model. However,
as the fluctuations in the modeled neuronal activity took place on a much shorter time scale
(∼10 Hz) than the BOLD dynamics (<0.1 Hz), the simulated time series cannot be compared
directly with the empirical BOLD signals. Instead, a Balloon-Windkessel model (Friston et al.,
2003) was employed to convert the activities of the excitatory population to BOLD-like responses
which were then used to construct the simulated FC matrix.

Model implementation and simulation

The models were implemented using the Python (Python Software Foundation, https://www
.python.org) and C++ (Standard C++ Foundation, https://isocpp.org) programming languages,
where we also made use of the SciPy (Virtanen et al., 2020) and NumPy (van der Walt et al.,
2011) modules for Python. The extensive computations required to evaluate the model simula-
tions and their subsequent analyses were performed on the JURECA high-performance com-
puting cluster (Jülich Supercomputing Centre, 2018). The temporal integrations of the phase
oscillator, neural mass and Balloon-Windkessel models were implemented according to Heun’s
method.

The linear model only required optimization of the global coupling parameter. This parameter
was varied using the collection of global coupling values described by

G ∈ {0.0005, 0.0010, 0.0015, ..., 1.0000}. (4.9)

Because the model had an analytical solution, the correlation matrix could directly be calculated
from the empirical SC matrix using Eq. 4.2, and no computationally intensive model simulations
were needed for this model.

We maximized the correspondence between the empirical and simulated FC for both the phase
oscillator and the neural mass models by evaluating a dense grid search of 64 × 48 different
parameter values for the global couplingG and delay τ , respectively. The phase oscillator model
was simulated for the collection of global parameter values described by

G ∈ {0.000, 0.015, 0.030, ..., 0.945} and (4.10)

https://www.python.org
https://www.python.org
https://isocpp.org
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τ ∈ {0 s, 1 s, 2 s, ..., 47 s}. (4.11)

We simulated 70minutes of phase dynamics in steps of 60ms, and the first 10minutes were dis-
regarded as transient. When considering the neural mass model, the dense grid corresponded
to all combinations between the collections of global coupling and delay values described by

G ∈ {0.000, 0.018, 0.036, ..., 1.134} and (4.12)

τ ∈ {0.0 ms, 1.5 ms, 3.0 ms, ..., 70.5 ms}. (4.13)

Also the configuration of the temporal integration was different for this model. For every pa-
rameter setting, 510 s of network activity were simulated in steps of 2 ms, and we omitted the
first 150 s. These diverging simulation conditions were adapted to the alpha-frequency and
ultra-slow time scales of the neural mass and the phase oscillator model, respectively.

The simulations above were performed individually for each combination of the 200 subjects,
the 8 parcellations listed in Table 4.1 and the 6 model implementations; see above. These
simulation conditions accumulated to over 15M model simulations used for the model validation
(fitting) against empirical data on a dense parameter grid. Out of these simulations several
optimal parameter settings of the closest correspondence between the simulated and empirical
data were selected for further analysis of reliability and subject specificity: 4 (fMRI sessions) ×
8 (parcellations) × 6 (models) × 200 (subjects) = 38,400 parameter points and the respective
simulated FCs generated by the models for these parameters.

4.2.3 Reliability and subject specificity

As mentioned above, for every parcellation we acquired the empirical SC and FC of S = 200
individuals, whereM = 4 different realizations of the empirical FC were available for each sub-
ject. Furthermore, after the simulations of a given model we additionally had to our disposal
the 200 × 4 = 800 optimal model parameter configurations and the associated simulated FC
matrices that provided the best replications of the individual empirical FC matrices. We sub-
sequently performed additional analyses to evaluate the reliability and the subject specificity
of the empirical data and the modeling results. We performed the analyses independently for
each combination of the 8 parcellations listed in Table 4.1 and the 6 model implementations
described in ”Simulated functional connectivity” to estimate their influence on the results.

Intraclass correlation

We first used the intraclass correlation (ICC) to characterize the reliability of the model pa-
rameters of the global coupling and delay as well as the connectomes. In the latter case, the
ICCs were calculated for the weights (correlation coefficients) of every N(N − 1)/2 undirected
edges of the functional connectomes (empirical and simulated). The calculated ICC reflects
the between-subject variance of these quantities relative to the total variance (between- and
within-subject), and was given by the following expression (G. Chen et al., 2018; Liljequist et
al., 2019; Noble et al., 2019; Shrout & Fleiss, 1979):

ICC =
σ2subject

σ2subject + σ2ϵ
. (4.14)

Here, σ2subject is the variance of the considered quantity (parameter or connectome edge weight)
that is related to the variance among the subjects, and σ2ϵ is the residual variance induced by
the different fMRI acquisitions; see ”Empirical functional connectivity”. Such an implementation
of the ICC has been recommended for the case when no convincing argument can be made
that the residual noise contains additional consistent effects (G. Chen et al., 2018; Noble et al.,
2019). We wielded the equations proposed by Liljequist et al. (2019) in order to calculate the
ICC directly from the data.



CHAPTER 4 - STUDY 2: ATLASES, RELIABILITY AND SUBJECT SPECIFICITY 89

Connectome correlations

We also examined the single- and cross-modal connectome correlations within and between
subjects. Here, we first vectorized the off-diagonal upper triangles of the individual connectivity
matrices corresponding to all subjects and realizations (according to the different fMRI sessions)
of the FC. Subsequently, we calculated the Pearson correlation coefficients between the result-
ing vectors, where we distinguished between three types of correlations (Fig. 4.1). The first type
is the single-modal correlations comprising the correlations between FCs of the same modality,
i.e. empirical FC vs. empirical FC or simulated FC vs. simulated FC (Fig. 4.1, blue arrows).
The second type is the structure-function correlations, where the cross-modal correlations of
the empirical SC with the empirical or the simulated FC were calculated (Fig. 4.1, red arrows).
When a model was constructed on the basis of a grand-averaged SC, the structure-function
correlations nevertheless involved the correlations between the empirical or simulated FC and
the personalized SC matrix of the subject to compare with the personalized simulations. The
third type is the model-fit correlations consisting of the correlations between the empirical and
the simulated FC (Fig. 4.1, brown arrows). The calculated correlations quantified the extent to
which the connectomes of the same or different modalities had similar patterns for the same or
different subjects.

On top of these three different types of correlations, we distinguished between within- and
between-subject correlations. Here, the between-subject correlations included all correlations
calculated between two different subjects (Fig. 4.1). In addition, the within-subject correlations
included the correlations computed between the connectomes of the same subject (Fig. 4.1).
However, the correlations calculated for the same subject and the same FC realization (fMRI
session) equal one in the case of the single-modal correlations, and they correspond to the
goodness-of-fit values for the model-fit correlations which means that they are maximized and
may thus bias the results; see the section ”Simulated functional connectivity” above. They were
therefore omitted from the analyses. Table 4.2 clarifies how many distinct values each type
of correlation comprised. The within- and between-subject correlations were used to subse-
quently characterize the reliability and the subject specificity of the (cross-modal) connectome
correlations.

Within-subject correlations

The models were fitted to the empirical data by maximizing the similarity between the connectiv-
ity patterns of the empirical and simulated FC (Eq. 4.1). We therefore investigated the reliability
of the empirical and simulated FCs, that is, the reproducibility of the connectivity patterns for the
same subject. The approach based on the calculation of the ICC (Eq. 4.14) quantified the relia-
bility of each individual FC edge in isolation, but did not reflect whether the entire patterns of the
functional connections were congruent. Such a reliability of the connectome patterns was char-
acterized in this study by the within-subject single-modal connectome correlations (Fig. 4.1).
For the empirical FC, these correlation coefficients reflected how similar the connectivity pat-
terns were to one another when the fMRI data used for their construction were sampled for the
same subject but on different days or with different phase encodings. Analogously, for the sim-
ulated FC, these correlations characterized the replicability of the simulated connectome under

Table 4.2. Number of distinct values comprising each type of connectome correlation for S subjects that each have
M distinct empirical FC realizations.

Between-subject Within-subject
Single-modal S · (S − 1) ·M2/2 S ·M · (M − 1)/2

Structure-function S · (S − 1) ·M S ·M
Model-fit S · (S − 1) ·M2 S ·M · (M − 1)
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(potential) variations of the empirical FC. By comparing the replicability of the empirical and sim-
ulated FCs, we may evaluate whether the considered simulation condition (model, parcellation,
etc.) led to an intra-subject variability of the simulated FC that is either enhanced or reduced
relative to that of the empirical FC.

Specificity index

Asmentioned above, the within-subject, single-modal correlations characterized whether model
fits are realized through converging connectivity patterns of simulated FC. However, these pat-
terns may be more similar in general, that is, also across different subjects. We therefore calcu-
lated the specificity index Specificity, where the mean between-subject correlation Corrbetween

was subtracted from the mean within-subject correlation Corrwithin

Specificity = Corrwithin − Corrbetween, (4.15)

which is similar to the approach of Amico &Goñi (2018) and Zimmermann, Griffiths, et al. (2018).
The specificity index reflects whether connectomes are indeed reproduced better (more similar
to each other) within than between subjects and can be used to quantify the subject specificity.
In practice, it fluctuates around zero when the considered type of correlation is not subject
specific, and is (significantly) larger than zero when it is subject specific.

To assess the variations in this specificity index, we bootstrapped both mean correlations 50,000
times. Here, one bootstrap involved the resampling of the vectors containing all within- and
between-subject correlations with replacement and the subsequent calculation of the means
from the resampled vectors. The specificity index was then calculated for each bootstrap so that
its 95% confidence interval could be constructed. If the lower bound of this interval was larger
than zero, the within-subject correlations were significantly larger than the between-subject
ones, and the considered relation was considered significantly subject specific. We performed
this analysis separately for the single-modal, structure-function and model-fit correlations.

Connectome fingerprinting

We also adapted the fingerprinting analysis from Finn et al. (2015) to provide an additional
measure for the subject specificity (or subject identifiability). The rationale behind this analysis
is that a connectome is subject specific if a single subject can be identified from the full co-
hort on the basis of the connectome (cross-modal) correlations. For one particular connectivity
matrix, we first evaluated either the single-modal, structure-function or model-fit correlations.
Subsequently, we determined whether the maximum of these correlations involved a within-
subject or a between-subject correlation, which implied a correct and false identification of the
subject, respectively. By repeating this procedure for all connectivity matrices of that modality,
we could determine the portion of correct identifications or fingerprinting accuracy. In addition
to the fingerprinting accuracy, we calculated the fingerprinting confidence. Here, we first de-
termined which subject provided the next highest correlation coefficient for each identification
attempt. Subsequently, we subtracted these correlation coefficients from the maxima. Finally,
we calculated the fingerprinting confidence by averaging these differences across all identifica-
tion attempts. The fingerprinting confidence thus characterizes how dissimilar the next closest
connectomes are to the identified connectivity matrices. In other words, larger fingerprinting
confidences indicate facilitation of (correct) subject identification.

When using the structure-function correlations, a subject could be identified by the strongest
correspondence between a given (empirical or simulated) FC and all empirical SC with known
subjects. However, the analysis could also be performed using the opposite directionality, i.e.
comparing one empirical SC with the empirical or simulated FC matrices of all subjects. Anal-
ogously, model-fit correlations were used to identify subjects by correlating one empirical FC
with all simulated FC or by correlating one simulated FC with all empirical FC.
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Inter- and intra-individual correspondences of the similarity maps

We also investigated how the similarity maps (Eq. 4.1) calculated between the empirical and
simulated FC during the parameter grid search may relate to one another within and between
subjects. In other words, we investigated how strongly these mappings change across subjects
and across different empirical FC realizations of the same subject. For this analysis, we simply
calculated the within- and between-subject correlations of these maps across all tested parame-
ter settings, and inspected their distributions. Furthermore, we calculated the specificity indices
and fingerprinting accuracies corresponding to these correlations analogous to the single-modal
connectome correlations; see above.

4.3 Results
In this study, we used the empirical SC and FC matrices of 200 healthy subjects that were
constructed on the basis of the 8 parcellations listed in Table 4.1. The empirical SCs were
then used to construct dynamical whole-brain models that were based on the 6 distinct model
implementations described in ”Simulated functional connectivity” (Materials and methods). We
optimized the free model parameters so that the similarity between the simulated FC and the
empirical FC (Eq. 4.1) was maximized. Examples of this similarity as a function of the model
parameters are shown in supplementary Figs. S4.3-S4.10, which are examples of similarity
maps. These similarity maps provide information that may help the interpretation of our other
findings; see below. For instance, themaps can havemultiple regions of high similarity within the
parameter space, in particular, when the neural mass model is considered. The latter indicates
that the global optimum may be unstable, which could considerably impact the reliability of the
fit of the model to the empirical FC.

This maximization procedure was performed individually for each combination of subject, empir-
ical FC (4 realizations per subject), model implementation and parcellation. The corresponding
goodness-of-fit values are shown in supplementary Fig. S4.11 for every combination of par-
cellation and model individually. In addition, the distributions of the optimal model parameter
settings are shown in supplementary Figs. S4.12-S4.19. Subsequently, we investigated the re-
liability and the subject specificity of the empirical data and the modeling results by performing
the analyses described in ”Reliability and subject specificity” in Materials and methods.

4.3.1 Reliability of model parameters

We first investigated the reliability of the optimal model parameters by examining the distribu-
tions of their absolute differences between different subjects (inter-subject) and between dif-
ferent empirical FC realizations of the same subject (intra-subject). These distributions often
appeared to be shifted closer to zero when the differences were calculated within subjects than
between subjects (Fig. 4.2A-B; Fig. 4.3A-B). This might be an initial indication that the parame-
ter variability between subjects is larger than the one within subjects. We further quantified this
observation by computing the ICCs (Eq. 4.14) reflecting the variance between subjects relative
to the total variance of the fitted model parameters. The results showed that the reliability of the
coupling and delay parameters could range from ”poor” to ”good” depending on the atlas and
model implementation (Fig. 4.2C-D; Fig. 4.3C-D).

We draw a specific attention to the positive influence of model personalization on the reliabil-
ity of the fitted model parameters: Simulating the phase oscillator model using subject-specific
frequency profiles yielded higher reliability than using group-averaged frequency profiles prac-
tically irrespective of whether the group-averaged or personalized SC was used (Fig. 4.2C-D,
green vs. red and orange). However, when considering the phase oscillator model simulated
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Fig. 4.2. Reliability of modeling results for varying personalization of the phase oscillator model. (A-B) Absolute
differences (diffs.) of (A) the optimal coupling parameters and (B) the optimal delay parameters for the AAL atlas,
which is also highlighted in yellow in panels C to E. The extent of the model personalization as given by the combina-
tions of the subject-specific or group-averaged natural frequencies (freqs.) and SC is reflected by color as indicated
in the legend. Left and right boxes of the same color in the plots correspond to inter- and intra-individual differences
per model implementation, respectively. The differences were normalized using the maximum across all (inter- and
intra-subject) parameter differences per model. (C-D) Intraclass correlations (ICCs; Eq. 4.14) of (C) the coupling
parameters and (D) the delay parameters for all the atlases considered in this study (Table 4.1). The labels ”poor”,
”fair”, ”good” and ”excellent” correspond to those proposed by Cicchetti & Sparrow (1981). The vertical dashed black
lines separate the brain atlases constructed on the basis of structural data (left blocks) from those based on func-
tional data (right blocks). (E) Distributions of the ICCs of individual functional connections, edges of the empirical
(gray) and simulated functional connectome for all the atlases considered in this study. Plus and minus signs at the
top of the plot signify significantly increased and decreased ICC distributions for the respective simulated FC with
respect to the one for the empirical FC, respectively (p<0.05, two-sided Wilcoxon paired signed-rank test, Bonferroni
corrected). (F) Scatter plot of the intraclass correlations (ICCs) calculated from and averaged across simulated FC
edges (simulated ICC, vertical axes) and their predicted values obtained from a linear regression with the ICCs of
the model parameters (predicted ICC, horizontal axes). The plotted symbols represent parcellations and models
as indicated in the legend. The dashed black line represents x = y for comparison. (G) Regression coefficients
corresponding to the results shown in panel F.
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using group-averaged frequencies, the model parameters were also fitted with higher reliabil-
ity when the personalized instead of the group-averaged SCs were used for model construc-
tion (Fig. 4.2C-D, dark vs. light green). Hence, model personalization appears to promote the
reliability of the model fit to the empirical data.

More complex models seemed to yield a reliability of the model parameters that was less variant
across parcellations, and higher model complexity was not immediately more reliable at the
same level of personalization (Fig. 4.3C-D). In addition, the linear model fitted the coupling
parameter with higher reliability than the non-linear models in most cases (Fig. 4.3C-D). We
however verified whether this could be explained by the absence of the signal latency in the
network of the linear model. Hence, we considered the non-linear models with zero global
delay τ = 0 in Eq. 4.4 and Eq. 4.8. Subsequently, we determined the optimal coupling parameter
values under this constraint and calculated their ICCs. The results of this investigation confirmed
that model complexity did not exert an influence on the reliability of the coupling parameter
in isolation that was consistent across parcellations (supplementary Fig. S4.20). Hence, the
model complexity per se does not seem to systematically influence the reliability of the fitted
model parameters.

We checked whether our results critically depended on the choice of the intraclass correlation
for the characterization of the reliability of the optimal model parameters. For this investigation,
we calculated the (non-parametric) test-retest Spearman correlation coefficient of the optimal
model parameters. The results showed a strong covariation across parcellations and model im-
plementations (supplementary Fig. S4.21; see figure caption for specifics), which indicated that
our results did not qualitatively depend on the intraclass correlation as the reliability measure.

Taken together, these findings demonstrate that whole-brain dynamical models can be fitted to
the empirical FC with a ”poor” to ”good” reliability depending on the implementation of themodel-
ing paradigm. Furthermore, we explicitly demonstrated the positive influence of the model per-
sonalization on the reliability of the fitted model parameters. Moreover, higher model complexity
reduces the parcellation-induced variations in the reliability of the optimal model parameters, but
it cannot credibly be associated with systematic tendencies (enhancement or reduction) of the
parameters’ reliability.

4.3.2 Reliability of functional connectivity edges

We also examined the reliability of the empirical and the simulated FC. First, we calculated
the ICCs of all empirical and simulated FC edges (individual functional connections between
brain regions) and inspected their distributions. The ICCs of the empirical functional connec-
tions remained approximately at the same (”fair”) level across parcellations (Fig. 4.2E, gray).
In contrast, the edge reliability of the simulated functional connectomes varied considerably
across parcellations, and ranged from ”poor” to ”good” (Fig. 4.2E; Fig. 4.3E). These findings
indicate that the reliability of the empirical FC is rather stable across parcellations, while that of
the simulated FC is more sensitive to the utilized brain parcellations.

Additionally, we found that the conclusions derived for the reliability of the fitted model parame-
ters (Fig. 4.2C-D; Fig. 4.3C-D) can also be confirmed for the FC edges. Indeed, model person-
alization often led to an increase in the reliability of the connectome edges (Fig. 4.2E). The sim-
ulated FCs of the phase oscillator model using subject-specific regional frequencies clearly ex-
ceeded the empirical FC in terms of edge reliability for all considered structurally-derived atlases
irrespective of the personalization of the empirical SC, and reached the ”good” level (Fig. 4.2E,
red and orange). We regressed the ICCs of the optimal model parameters with the mean ICCs
of all simulated FC edges and found that this linear regression could explain 78% of the vari-
ance for the phase oscillator model (Fig. 4.2F). The regression coefficients demonstrated a high
contribution of the global coupling to the reliability of the simulated FC edges as compared to
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Fig. 4.3. Reliability of modeling results for varying model complexity with similar model personalization. The model
implementations (2), (5) and (6) are considered; see ”Simulated functional connectivity” in Materials and methods.
Here (5) the linear model (blue) corresponds to a low complexity, (2) the phase oscillator model (green) to a moderate
complexity and (6) the neural mass model (purple) to a high complexity. (A-B) Absolute differences (diffs.) of (A)
the optimal coupling parameters and (B) the optimal delay parameters for the AAL atlas, which is also highlighted in
yellow in panels C to E. Left and right boxes of the same color in the plots correspond to inter- and intra-individual
differences per model implementation, respectively. The differences were normalized using the maximum across all
(inter- and intra-subject) parameter differences per model. The results of the delay parameter are not shown for the
linear model as this model did not include this parameter (Eq. 4.2). (C-D) Intraclass correlations (ICCs; Eq. 4.14)
of (C) the coupling parameters and (D) the delay parameters for all the atlases considered in this study (Table 4.1).
The labels ”poor”, ”fair”, ”good” and ”excellent” correspond to those proposed by Cicchetti & Sparrow (1981). The
vertical dashed black lines separate the brain atlases constructed on the basis of structural data (left blocks) from
those based on functional data (right blocks). (E) Distributions of the ICCs of the empirical (gray) and simulated
functional connectome edges for all the atlases considered in this study. Plus and minus signs at the top of the plot
signify significantly increased and decreased ICC distributions for the respective simulated FC with respect to the
one for the empirical FC, respectively (p<0.05, two-sided Wilcoxon paired signed-rank test, Bonferroni corrected).
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the optimal delay parameter (Fig. 4.2G). Moreover, the positive intercept of the regression also
indicated that the reliability of the simulated FC edges was enhanced by the personalized phase
oscillator model as compared to that of the optimal model parameters (Fig. 4.2G).

In addition, as for the reliability of the optimal model parameters, we again observed that en-
hanced model complexity (e.g., for the neural mass model) led to a reliability of the simulated FC
edges that varied less across parcellations (Fig. 4.3E). On the other hand, the reliability of the
simulated FC generated by the linear model varied considerably and significantly exceeded that
of the empirical FC for the Desikan-Killiany, von Economo-Koskinas and AAL atlases (Fig. 4.3E).
We also compared the reliability (ICC values) of the optimal model parameters and the simu-
lated FC edges of the models in Fig. 4.3 by linear regression and found no consistent, strong
dependencies across models (not shown).

In sum, the variation of the reliability of the simulated FC edges with respect to the extent of
model personalization and the brain parcellation well agrees with that of the optimal model
parameters (Fig. 4.2F). Evidently, the observed relationship between these two types of model
reliability implies that they exhibit similar variations across model personalization, where an
enhancement of the latter led to an improvement of the reliability of the simulated FC, possibly
outperforming that of the empirical FC. Furthermore, higher model complexity has a positive
effect on the consistency of the reliability of the simulated FC across parcellations, but it may
not contribute to an enhancement of the reliability of individual FC edges, and a simple linear
model sometimes performed better (Fig. 4.3E).

We also checked whether the different ICCs (Fig. 4.2C-E; Fig. 4.3C-E) could be related to the
goodness-of-fits of the model to the empirical data. With regard to the reliability of the optimal
model parameters, the tested regressions varied considerably across models in terms of the
relationship (positive vs. negative) as well as variance explained (supplementary Fig. S4.22A-
G). Hence, the goodness-of-fit is not a good predictor for the reliability of the model parameters
when considering a particular modeling condition (parcellation and model implementation) at
random. Additionally, the edge-wise reliability of the simulated FC exhibited a positive correla-
tion with the quality of the model fit for all considered models, though also with varying fractions
of explained variance (supplementary Fig. S4.22H-K).

4.3.3 Reliability and subject specificity of functional connectivity patterns

Several modeling conditions yielded simulated FCs with edges’ reliability being lower than for
the empirical FC (Fig. 4.2E; Fig. 4.3E). We therefore investigated whether the whole connectiv-
ity patterns of the simulated FCs were nevertheless similar given that they were fitted to different
empirical FCs of the same subject. For this purpose, we evaluated the within-subject, single-
modal connectome correlations (Fig. 4.1, blue arrows). A considerable number of the modeling
conditions and subjects yielded simulated FC matrices that had strongly diverging connectivity
motifs, which is reflected by low intra-subject correlations between simulated FCs compared to
the empirical FCs (Fig. 4.4A-B). In particular, increased model complexity led to more dissim-
ilar simulated FCs for most parcellations, especially, for the functionally-derived parcellations,
where strong bimodalities were elicited in the within-subject, single-modal correlation distribu-
tions (Fig. 4.4B). Enhancing the model personalization could reduce or smooth these bimodali-
ties (Fig. 4.4A). Hence, the fit of the model to the empirical data could on average enhance the
within-subject variability of the empirical FC depending on the particular combination of model
implementation and parcellation (Fig. 4.4A-B, minus signs on top of the plots).

We also checked whether the within-subject, single-modal correlations could be related to the
goodness-of-fit of the model to the empirical data. Here, we found strong relationships between
these two quantities for the non-linear models (supplementary Fig. S4.22M-O), but not for the
linear model (supplementary Fig. S4.22L). This indicates that the FC patterns simulated by
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Fig. 4.4. Impact of the brain atlas, model personalization and model complexity on the reliability and subject speci-
ficity of the connectivity patterns of the empirical (gray) and simulated FC. (A-B) Distributions of the within-subject,
single-modal correlations (corrs.) as a reliability measure of the empirical and simulated FC patterns for the var-
ious parcellations considered in this study (Table 4.1) and for varying levels of (A) model personalization and (B)
model complexity. The extent of model personalization as given by the combinations of the subject-specific or
group-averaged natural frequencies (freqs.) and SC is indicated in the legend shown in the lower left corner of the
plot. Analogously, the level of model complexity as reflected by the linear (least complex), phase oscillator (moder-
ately complex) and neural mass (most complex) models with similar personalization levels is indicated in the legend
shown in the lower right corner. The vertical dashed black lines separate the brain atlases constructed on the basis
of structural data (left blocks) from those based on functional data (right blocks). Plus and minus signs at the top
of the plots indicate significantly increased and decreased within-subject correlation distributions for the respective
simulated FC with respect to the one for the empirical FC (gray; panel B), respectively (p<0.05, two-sided Wilcoxon
paired signed-rank test, Bonferroni corrected). (C) Specificity indices (Eq. 4.15) calculated from the single-modal
correlations of the empirical FC and the simulated FC. The symbols and shaded areas mark the medians and the
(Bonferroni corrected) 95% confidence intervals across the 50,000 bootstrapped specificity index estimations, re-
spectively. (D-E) Fingerprinting accuracy when identifying individual subjects by comparing one of their empirical
(simulated) FCs against all other empirical (simulated) FCs for varying levels of (D) model personalization and (E)
model complexity.
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non-linear models can exhibit higher within-subject similarity when they are fitted better to the
empirical FC, but also that such a relationship is not evident for the linear model.

For most modeling conditions, we nonetheless observed that the simulated FC matrices had
connectivity patterns that were significantly more similar to one another than those of the em-
pirical FC (Fig. 4.4A-B, plus signs on top of the plots). We investigated whether these enhance-
ments of the within-subject, single-modal correlations were realized by a general increase in
the similarity of the connectivity patterns, that is, both within and between subjects. We there-
fore calculated the (single-modal) specificity indices (Eq. 4.15) and fingerprinting accuracies
to determine the gain of the within- relative to the between-subject, single-modal correlations.
We observed that enhanced model personalization induced a clear increase in the specificity
index and the fingerprinting accuracy, where both these specificity measures could exceed
those of the empirical FC (Fig. 4.4C-E). Fingerprinting confidences were also increased for
stronger model personalization and apparently exceeded those of the empirical FC (supple-
mentary Fig. S4.23A), which resulted in a precise and robust subject identification. On the
other hand, the least personalized model with the averaged frequencies and SC exhibited an
extremely low subject specificity, fingerprinting accuracy and confidence (Fig. 4.4C-D and sup-
plementary Fig. S4.23A, dark green) at a relatively high reliability as given by the intra-subject
correlation of simulated connectomes (Fig. 4.4A, dark green).

Conversely, varying the model complexity did not result in differences of the specificity indices
that were consistent across parcellations (Fig. 4.4C, blue, light green and purple). The same
observation held for the fingerprinting accuracies of the non-linear models, but not for those of
the linear model, which were enhanced relative to the non-linear models of the same personal-
ization and could exceed those of the empirical FC in some cases (Fig. 4.4E). Interestingly, the
fingerprinting confidences of the linear model were systematically much lower than those for the
neuronal mass model and in many cases also lower than for the empirical FC (supplementary
Fig. S4.24A). Therefore, subject identification by a simple linear model is less erroneous but
also less robust than by more complex non-linear models. Hence, model personalization (but
not model complexity) had a positive effect on both single-modal subject specificity measures
(specificity index and fingerprinting accuracy) that was consistent across parcellations.

In sum, most of the model implementations yielded within-subject, single-modal correlations of
the simulated FC that were significantly enhanced relative to the empirical FC. However, these
significant enhancements actually reflected a general increase in both the within- and between-
subject single-modal correlations such that the specificity index remained comparable with that
of the empirical data. This is in particular true for the linear and non-linear models with a low
and moderate extent of personalization (Fig. 4.4). Only an enhanced model personalization
can lead to much improvement of both the subject specificity and the subject identifiability of
the simulated FC as a modeling result (Fig. 4.4).

4.3.4 Subject specificity of cross-modal connectome correlations

So far we observed that dynamical whole-brain models produce simulated FCs with a particu-
lar subject specificity. We subsequently investigated the extent to which these subject-specific
connectivity patterns agree with those of the empirical SC and FC by determining the specificity
indices and fingerprinting accuracies corresponding to the structure-function and model-fit cor-
relations (Fig. 4.1, red and brown arrows). We observed that the empirical structure-function
relationship was only significantly subject specific for the functionally-derived atlases, although
being very small (Fig. 4.5D, gray). Model personalization through the use of the personalized
SC yielded simulated FCs that had structure-function specificity indices significantly higher than
zero for all functionally-derived parcellations as well as for some of the structurally-derived at-
lases (Fig. 4.5A, light green and orange). Conversely, deriving themodels from a grand-average
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Fig. 4.5. Impact of the brain atlas, model personalization and model complexity on the subject specificity of the
structure-function relationships being the correlations between the empirical SC and the empirical and simulated
FC. (A) Specificity indices (Eq. 4.15) of the cross-modal correlations of the empirical SC with the simulated FC
for the parcellations considered in this study; see Table 4.1. The extent of model personalization as given by the
combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC is indicated in the legend
(bottom left). The vertical dashed black line separates the brain atlases constructed on the basis of structural data
(left block) from those based on functional data (right block). The symbols and error bars mark the medians and
the (Bonferroni corrected) 95% confidence intervals across the 50,000 bootstrapped specificity index estimations,
respectively. Asterisks indicate whether the lower bounds of these confidence intervals are higher than zero. (B-
C) Fingerprinting accuracies determined by (B) identification of one simulated FC from all empirical SC based on
the largest correlation between them and (C) by identification of one empirical SC from all simulated FC of the same
modality for the parcellations considered in this study. (D-F) Same as panels A to C, but for varying levels of model
complexity as reflected by the linear (least complex), phase oscillator (moderately complex) and neural mass (most
complex) models with similar personalization levels and indicated in the legend shown in the lower right corner. The
results for empirical FCs are also shown (gray).
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SC resulted in structure-function specificity indices indistinguishable from zero (Fig. 4.5A, dark
green and red). This finding indicated that models constructed on the basis of a personalized
SC can embed subject-specific aspects from these structural connectomes into the simulated
FC that in fact was fitted to the empirical FC. The fingerprinting accuracies further supported this
claim (Fig. 4.5B-C). We also observed that the magnitude of the structure-function specificity
indices were much lower than for the single-modal case (Fig. 4.4C vs. Fig. 4.5A,D).

Model personalization through the use of subject-specific frequency profiles induced a nega-
tive effect on the subject specificity of the structure-function relationship (Fig. 4.5A-C, orange
vs. light green), which is very different from the single-modal FC correlations (Fig. 4.4). Model
complexity did not seem to exert a clear effect on the structure-function subject specificity when
considering the non-linear models (Fig. 4.5D-F). In addition, the fingerprinting accuracies hint to-
wards a particular directionality of the structure-function fingerprinting concept when considering
the non-linear models: The identification of the simulated FC from the empirical SC (Fig. 4.5B,E)
resulted in much higher accuracies than the inverted case (Fig. 4.5C,F). Simultaneously, the
fingerprinting confidences were mostly lower for the former than for the latter case (supple-
mentary Fig. S4.23B-C and Fig. S4.24B-C). Interestingly, the subject specificity with which the
simulated FCs incorporate the empirical SC patterns is larger for the functionally- than for the
structurally-derived parcellations (Fig. 4.5).

The latter observation regarding the impact of parcellations was also true for the specificity
indices and fingerprinting accuracies of the other considered models, in particular, the linear
model that exhibited enhanced specificity relative to those of the non-linear models (Fig. 4.5D-
F, blue). However, there appeared to be a less pronounced directionality with respect to the
identification of individual subjects for the linear model. In this modeling case, the simulated FC
can be identified from empirical SC, and also empirical SC can be identified from the simulated
FC with high accuracy (Fig. 4.5E-F, blue). Such a simple model thus established very strong
connections between empirical SC and simulated FC such that the connectome identification
in both directions becomes equally possible.

Subsequently, we performed the same analyses for the model-fit correlations (Fig. 4.1, brown
arrows). Even though the specificity indices of these correlations were significantly larger than
zero for all tested modeling conditions (supplementary Fig. S4.25A), the values of the specificity
indices and the fingerprinting accuracies determined from the model-fit correlations were rela-
tively low (supplementary Fig. S4.25B-C). Thus, the models were not fitted so subject specific to
the empirical data that individual subjects can be identified from their model-fit correlations with
great accuracy. Model personalization but not model complexity could have a positive influence
on the subject specificity of the model-fit correlations, although this effect was little consistent
across both measures of subject specificity (supplementary Fig. S4.25A-C).

4.3.5 Subject specificity of similarity maps

Finally, we investigated how the model personalization may lead to the enhanced reliabilities of
themodel parameters. We hypothesized that model personalization has an effect on the similar-
ity mappings (Eq. 4.1) that characterize the agreement between the empirical and simulated FC
patterns as a function of the model parameters. Hence, we evaluated how well these similarity
maps corresponded to one another between subjects and between distinct empirical FC realiza-
tions of the same subject by calculating their within- and between-subject correlations across pa-
rameter settings. The results showed that model personalization did not alter the within-subject
correlations of the similarity maps consistently across parcellations, and correlation-based re-
liability of the similarity maps was very high for most of the parcellations (Fig. 4.6A). On the
other hand, the influence of enhanced personalization on the specificity index and fingerprint-
ing accuracy was positive for all atlases (Fig. 4.6B-C). Combined, these findings suggest that
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Fig. 4.6. Influence of parcellation and personalization of the phase oscillator model on the correspondences of the
similarity mappings (Eq. 4.1). (A) Distributions of the within-subject correlations of the similarity maps calculated
across parameter settings for the various parcellations considered in this study (Table 4.1). The extent of the model
personalization as given by the combinations of the subject-specific or group-averaged natural frequencies (freqs.)
and SC is indicated in the legend. The vertical dashed black line separates the brain atlases constructed on the ba-
sis of structural data (left block) from those based on functional data (right block). (B) Specificity indices (Eq. 4.15)
calculated from the similarity mapping correlations. The symbols and shaded areas mark the medians and the
(Bonferroni corrected) 95% confidence intervals across the 50,000 bootstrapped specificity index estimations, re-
spectively. (C) Fingerprinting accuracy when identifying individual subjects by comparing the similarity mappings of
one particular empirical FC with one another.
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model personalization strongly enhanced subject-specific properties of the similarity maps that
became less comparable across (but not within) subjects.

Given our previous findings, one might suspect that model complexity would then exert no
consistent effect on the subject specificities of the similarity mappings (Eq. 4.1). However, we
actually found that the distributions of the within-subject similarity map correlations could diverge
considerably between model complexities depending on the parcellation (Fig. 4.7A). Moreover,
the specificity indices of the similarity maps of the most complex model (the neural mass model)
exceeded those of the less complex ones for all parcellations except for the Harvard-Oxford and
Schaefer atlases (Fig. 4.7B), which are also characterized by a higher variability of the intra-
subject correlations (reliability) of similarity maps (Fig. 4.7A). The fingerprinting accuracies of
the similarity mappings were also increased for incrementing levels of model complexities for
all atlases (Fig. 4.7C). These findings indicate that higher model complexity could lead to an
enhanced subject specificity with respect to the similarity maps (Fig. 4.7B-C).

Analogous to the ICC of the model parameters (Fig. 4.3; supplementary Fig. S4.20), we veri-
fied whether these enhancements for more complex models could be explained by the absence
of the signal latency in the network of the linear model. Again, we considered the non-linear
models with zero global delay τ = 0 in Eq. 4.4 and Eq. 4.8. Subsequently, we determined the
similarity maps under this constraint and calculated the specificity indices and fingerprinting ac-
curacies from the correlations between these one-parameter (global coupling) similarity maps.
The results of this analysis showed that the ordering of the specificity index and fingerprint-
ing accuracy for varying model complexity was preserved (supplementary Fig. S4.26). Hence,
enhanced model complexity indeed yields similarity maps that are more subject specific.

We also checked whether the different types of specificity indices (single-modal, structure-
function, model-fit, similarity maps) could be related to the goodness-of-fits of the model to the
empirical data. Even though the tested relationships varied considerably in terms of variance
explained, almost all of them were negative (supplementary Fig. S4.27). This indicates that a
higher goodness-of-fit is more likely to reflect a less subject-specific model fit.

4.4 Discussion
In this study, we showed that dynamical whole-brain models may be fitted to the empirical data
with a reliability ranging from ”poor” to ”good” depending on the exact implementation of the
dynamical whole-brain modeling paradigm and brain parcellation utilized (Fig. 4.2; Fig. 4.3).
Subsequently, we showed that the fits of the models might be established through diverging or
converging simulated FC patterns, where the variability of the empirical data (FC) used for the
model validation can either be enhanced or suppressed by the fitting process. We also demon-
strated that simulated FC represented by individual edges or the entire connectivity patterns
can be more reliable and subject-specific than the empirical FC (Fig. 4.2; Fig. 4.3; Fig. 4.4). We
additionally demonstrated that the simulated FC may exhibit correlations with the empirical SC
and empirical FC that exhibit significant subject specificity (Fig. 4.5; supplementary Fig. S4.25).

We observed that model personalization positively influences the reliability and subject speci-
ficity of the modeling results (Fig. 4.2; Fig. 4.4; Fig. 4.5; Fig. 4.6; supplementary Fig. S4.25).
Furthermore, model complexity often did not affect the reliability or the subject specificity con-
sistently across parcellations and measures when the fitted model parameters and simulated
FCs were considered. A simple linear model can in some cases have enhanced reliability and
subject specificity relative to more complex, non-linear models. Nevertheless, the similarity
mappings were more subject specific for more complex models consistently for almost all con-
sidered parcellations (Fig. 4.7). We sampled all our results for 8 distinct, state-of-the-art brain
atlases and demonstrated the pronounced parcellation-induced variation in the modeling results



102 4.4. DISCUSSION

Fig. 4.7. Influence of parcellation and model complexity with similar model personalization on the correspondences
of the similarity mappings (Eq. 4.1). (A) Distributions of the within-subject correlations of the similarity maps cal-
culated across parameter settings for the various parcellations considered in this study (Table 4.1). The linear
model (blue) corresponds to a low complexity, the phase oscillator model (green) to a moderate complexity, and
neural mass model (purple) to a high complexity. The vertical dashed black line separates the brain atlases con-
structed on the basis of structural data (left block) from those based on functional data (right block). (B) Specificity
indices (Eq. 4.15) calculated from the similarity mapping correlations. The symbols and shaded areas mark the
medians and the (Bonferroni corrected) 95% confidence intervals across the 50,000 bootstrapped specificity index
estimations, respectively. (C) Fingerprinting accuracy when identifying individual subjects by comparing the similar-
ity mapping of one particular empirical FC with one another.
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relative to the purely empirical results. Here, we discuss these findings in the broader scientific
context and emphasize their relevance.

4.4.1 Reliability of modeling results
Even though the (test-retest) reliability has been actively investigated for the empirical FC (Birn
et al., 2013; Noble et al., 2017, 2019; Pannunzi et al., 2017; Shehzad et al., 2009; Van Dijk et al.,
2010), the literature lacks a comprehensive assessment of it for dynamical whole-brain models.
One study nevertheless demonstrated their ”excellent” reliability for multiple realizations of the
empirical SC (but not FC) for the same subject (Cicchetti & Sparrow, 1981; Muldoon et al., 2016),
while another considered the within-subject correspondences of the fitted model parameters
for only one subject, one parcellation and one type of model (Donnelly-Kehoe et al., 2019).
Our study provided a comprehensive investigation of the reliability of the modeling results for
a cohort of 200 subjects by considering the ICCs of several realizations of the optimal model
parameters and simulated FCs fitted to the corresponding different realizations of the empirical
FCs for the same subject. The obtained results demonstrated that the reliability of the simulated
FC can be larger (and also smaller) than that of the empirical FC depending on the parcellation
and exact model implementation (Fig. 4.2; Fig. 4.3). Here, our findings of the ”fair” reliability
of the empirical FC agreed with the literature (Noble et al., 2017, 2019). As a next step, future
studies may investigate how the simultaneous variation of the empirical SC and FC impacts the
reliability of dynamical whole-brain modeling results. Our study and the study by Muldoon et al.
(2016) may be used as a starting point for such an investigation, where our study in particular
could be exploited for the selection of the modeling conditions to consider.

The results of this study, however, primarily suggest that the use of dynamical whole-brain
models should be tightly connected with an estimate of the reliability of their results in order
to enhance the interpretability of the observations. Despite the reported enhanced reliability
of the modeling outcomes, our findings clearly indicate that the ICCs of the modeling results
depend highly on the exact implementation of the dynamical whole-brain modeling paradigm.
In fact, the reliability of the simulated FC edges was lower than that of the empirical FC edges
when considering many of the tested conditions (Fig. 4.2; Fig. 4.3). Moreover, the model pa-
rameters often exhibited ”poor” reliability, which may also sometimes be the case for simulated
FC, indicating they exhibit substantial variance for distinct empirical FC realizations of the same
subject. We frequently observed such an unreliability and unspecificity for little personalized
models with e.g., the group-averaged SC that is widely used in the literature. In the absence
of other personalized factors, e.g., subject-specific natural frequencies, such models are hardly
reliable and specific. These results are of importance for the neuroscientific conclusions de-
rived from the dynamical whole-brain modeling practices published in the literature, which we
adapted and used in this study; see below. They therefore raise the question how reliable
published dynamical whole-brain modeling studies actually are.

The literature on dynamical whole-brain modeling is highly heterogeneous with respect to both
the reconstruction of the empirical SC and FC from empirical MRI data as well as the model
implementations. We, for instance, only covered three of many possible model descriptions
that have regularly been used in the whole-brain modeling literature, which also included the
(Landau-Stuart) limit-cycle oscillator model (Deco et al., 2017; Ghosh et al., 2008), the (reduced)
Wong-Wang model (Deco, Ponce-Alvarez, et al., 2014; Wong & Wang, 2006) and other (more
complex) biophysically-oriented models (Abeysuriya et al., 2018; Bick et al., 2020; Deco & Jirsa,
2012; E. C. A. Hansen et al., 2015; Honey et al., 2007; Naskar et al., 2021). Hence, the method-
ological procedures may vary considerably between dynamical whole-brain modeling studies,
and for most of these variations it is still unclear whether they produce reliable modeling results.
This notion further strengthens our recommendation that dynamical whole-brain modeling stud-
ies should explicitly estimate the reliability of the reported results. A consistent reporting of the
reliability of results may also help identify best practices in dynamical whole-brain modeling.
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4.4.2 Subject specificity of simulated functional connectivity patterns

Various studies validated the dynamical whole-brain models on the basis of a variety of statis-
tics (Cabral et al., 2011; Deco et al., 2013, 2017, 2019; E. C. A. Hansen et al., 2015; Naskar
et al., 2021). Nevertheless, the correlation between the empirical and simulated FC still seems
to be the current state-of-the-art in whole-brain modeling (Abeysuriya et al., 2018; Aquino et
al., 2022; Naskar et al., 2021; Saggio et al., 2016), and so we used this particular measure for
model validation as well. However, by computing the within-subject, single-modal correlations,
we demonstrated that this model fitting procedure can yield strongly diverging simulated FC
patterns depending on the model implementation and parcellation (Fig. 4.4). Moreover, even
when simulated FCs had similar connectivity motifs across different empirical FC realizations of
the same subject, this could still reflect an unspecific increase in both the within- and between-
subject single-modal correlations (Fig. 4.4).

On a positive note, the reliability and subject specificity of the model parameters and simulated
FC can essentially be improved by enhancing the model personalization. Furthermore, the cor-
respondences between the simulated FC and the empirical SC were subject specific, that is,
their specificity indices were statistically distinguishable from zero, only if the personalized em-
pirical SCwas used for model construction (Fig. 4.5). Hence, this result demonstrated that some
of these subject-specific SC patterns are embedded in the simulated FC after the model simu-
lations. We also found that the model-fit correlations can be significantly subject-specific (sup-
plementary Fig. S4.25). The dynamical whole-brain models thus seem to have the ability to
integrate connectivity patterns from both the (personalized) empirical SC and FC, which may
(in part) explain how they replicate resting-state brain activity at a personalized level (Bansal et
al., 2018; Deco et al., 2017; Jirsa et al., 2017; Ritter et al., 2013; Sanz-Leon et al., 2015), and
how they yield good subject classification results (Iravani et al., 2021; Zimmermann, Perry, et
al., 2018).

Nevertheless, our results merely showed that model construction on the basis of the person-
alized empirical SC can introduce subject-specific subtleties in the simulated FC; they do not
explicitly reveal to which (clinical) purposes this may be beneficial other than subject identi-
fication (Fig. 4.4; Fig. 4.5). Furthermore, the specificity indices of the structure-function and
model-fit correlations involving a simulated FC had comparable and small scales, especially
when comparing them to the much higher single-modal specificity indices (Fig. 4.4). This indi-
cates that the models do not straightforwardly map the empirical SC to the simulated FC with
high specificity. We therefore propose that the simulated FC assimilating a diversity of person-
alized information should be regarded as a separate connectome modality together with the
empirical SC and empirical FC.

For the single-modal and structure-function correlations, we could apply the subject specificity
analyses also to purely empirical data. Here, the specificity indices of the empirical structure-
function relationship (Fig. 4.5) roughly agree with the study by Zimmermann, Griffiths, et al.
(2018). In addition, we identified individual subjects based on the structure-function correla-
tions by identifying one FC (empirical or simulated) from all empirical SC and by identifying one
empirical SC from all FC. For the empirical FC, we found the computed fingerprinting accuracies
resembling the results reported by Messé (2020). Also the identification of one FC from all SC
manifested much higher success rates than vice versa when considering the non-linear mod-
els (Fig. 4.5). The latter result agrees with the problematic inference of the empirical SC from
the empirical FC reported by Honey et al. (2009). The linear model was particularly different
from the non-linear models with respect to the structure-function correlations. In particular, it
exhibited large values of the structure-function specificity index, and could have enhanced fin-
gerprinting accuracy irrespective of whether one simulated FC was identified from all empirical
SC or the other way around (Fig. 4.5). Such a rigid connection between structure and function,
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which may impair the flexibility of a variety of functions emerging from the same structure, was
observed neither in the brain (Deco et al., 2011; E. C. A. Hansen et al., 2015; Honey et al., 2009;
Ponce-Alvarez et al., 2015) nor in the non-linear models considered in this study.

Also the fingerprinting accuracies for the single-modal correlations of the empirical FC (Fig. 4.4)
are in agreement with the literature (Finn et al., 2015; Li et al., 2021). However, the latter were
rather variable across parcellations with a difference of up to 20% (Fig. 4.4). Even though the
atlas granularity is known to influence the fingerprinting accuracy (Li et al., 2021; Peña-Gómez
et al., 2018), we minimized this effect by selecting parcellations that contained roughly the same
number of parcels. Our study therefore demonstrates the considerable effect of the parcellation
technique in isolation on the fingerprinting analysis, which has not been assessed previously.
With respect to the fingerprinting analysis, we also acknowledge that the limited number of
subjects used in our study may lead to some positive bias in the fingerprinting accuracy (Li et
al., 2021; Waller et al., 2017). Nevertheless, as we performed the same fingerprinting analysis
for different modalities, this bias (if any) should be included in all results and hence does not
render the comparison invalid.

4.4.3 Model implementations

Enhancedmodel personalization influenced the within-subject correlations of the similarity maps
mildly at best, while it increased the specificity indices of these mappings (Fig. 4.6). Given
Eq. 4.15, this implies a decrease in the correspondence of the similarity maps across sub-
jects. Qualitatively, the latter finding agrees with the similarity maps shown in supplementary
Figs. S4.3-S4.10 as well. The observed decrease in the inter-subject correspondence of the
similarity mappings can also induce additional variation in the location of the maxima of these
similarity mappings (optimal model parameters) between subjects. This is explicitly demon-
strated by the enhancements of the between-subject variance in the optimal model parameters
for enhanced model personalization (Fig. 4.2). Despite the relatively untouched within-subject
correlations of the similarity maps, increased model personalization also somewhat enhanced
the within-subject variance of the optimal model parameters, but not as much as the between-
subject variance (Fig. 4.2). Given Eq. 4.14, this then leads to the higher ICC for enhancedmodel
personalization. Taken together, we discovered that the higher reliability of the model param-
eters for more personalized dynamical whole-brain models is induced by a decrease in the
comparability of the similarity maps between subjects. Future studies should confirm whether
enhanced model personalization indeed improves the differentiability of modeling results across
subjects in, for example, classification studies.

We sampled our results for 6 different model implementations that were based on two non-
linear models and one linear model, which were all adapted from the literature (Deco et al.,
2009; Galán, 2008; Ponce-Alvarez et al., 2015; Saggio et al., 2016). Here, we note that not
all parameters of the considered models can straightforwardly be interpreted and associated
with brain dynamics. We therefore consider them in the first approximation as model properties
that may influence the quality of the model validation, reliability and specificity. Moreover, the
literature also inspired the use of the grand-averaged and personalized empirical SCs for model
construction and the wielding of the subject-specific frequency profiles in the simulations of the
phase oscillator model. Iravani et al. (2021) and Zimmermann, Perry, et al. (2018), for instance,
constructed their models on the basis of group-averaged and personalized empirical SCs, re-
spectively, before using the modeling results for subject classifications. In addition, several re-
cent studies embedded additional region-specific and potentially subject-specific data (among
others, regional frequency profiles) in the dynamical whole-brain modeling workflow (Chap-
ter 3; Deco, Cruzat, et al., 2018; Deco et al., 2019; Demirtaş et al., 2019; Donnelly-Kehoe et
al., 2019; Jung et al., 2021; Kringelbach et al., 2020; Popovych et al., 2021). The investigation
presented in this study may be extended by considering, for example, limit-cycle models (Deco
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et al., 2017), where the additional model parameters controlling the oscillator amplitudes can
be varied for further model personalization. A recent study also demonstrated that subject-
and region-specific data can be incorporated into a neural mass model (Demirtaş et al., 2019),
indicating that model personalization is in active investigation nowadays.

The two non-linear models (the Kuramoto and Wilson-Cowan models) were selected for three
particular reasons. First, both models have frequently been used in previous investigations in-
volving dynamical whole-brain models (Abeysuriya et al., 2018; Daffertshofer & van Wijk, 2011;
Deco et al., 2009; Hellyer et al., 2016; Jung et al., 2021; Messé et al., 2014; Muldoon et al.,
2016; Ponce-Alvarez et al., 2015; Popovych et al., 2021). Second, their dynamical behaviors
under different parameter conditions can be understood and controlled well, because they are
sufficiently reduced in terms of complexity and provided with good documentation (Kuramoto,
1984; Wilson & Cowan, 1972). Third, their underlying concepts and implementations in whole-
brain modeling studies diverge considerably, which makes it more probable that differences
are found between models. In particular, published studies used the Kuramoto model (just
like a network of Landau-Stuart limit-cycle oscillators) to model the BOLD signal dynamics di-
rectly from the empirical SC (Chapter 3; Deco et al., 2017; Deco, Cabral, et al., 2018; Deco et
al., 2019; Jung et al., 2021; Ponce-Alvarez et al., 2015; Popovych et al., 2021), whereas the
Wilson-Cowan model requires a haemodynamic conversion model since it specifically models
interactions between neural masses. However, the modeling of BOLD signal variations directly
from the empirical SC does not reflect the neural dynamics underlying the BOLD signal, and
hence future studies could check whether a transformation of the empirical SC matrix might be
more appropriate in this case.

Furthermore, there were two reasons for the selection of the linear model. First, its analytical
solution ensured that we could estimate the reliability of its global coupling parameter in the
absence of any specifications associated with model simulations (Saggio et al., 2016). We ac-
tually found this reliability to be at about the same level as those of the global couplings of the
non-linear models if signal latency was disregarded (supplementary Fig. S4.20). Second, as
mentioned in Materials and methods, the model reflects the diffusion of noise across the em-
pirical SC (Galán, 2008; Saggio et al., 2016). This process can be seen as a (linear) scaling of
the direct dependencies included in the empirical SC to indirect dependencies, which are more
compatible with the definition of the FC (Das et al., 2017; Liégeois et al., 2020). In most cases,
we observed that model complexity did not exert a particular increasing or decreasing influence
on the reliability or subject specificity of the results of the model fitting (Fig. 4.3; Fig. 4.4; supple-
mentary Fig. S4.25). Also, there were no particular differences with respect to the goodness-
of-fit (supplementary Fig. S4.11). In other words, with regard to (the reliability and specificity
of) the wielded model fitting procedure, the Kuramoto and neural mass models in fact do not
seem to outperform the linear model. On the contrary, the linear model sometimes demon-
strated stronger reliability and subject-specificity than the non-linear models with the same level
of personalization. However, the similarity mappings of more complex models appeared to
exhibit much enhanced subject specificity as reflected by both the specificity index and the fin-
gerprinting accuracy (Fig. 4.7). Also the results obtained for the structure-function relationship
indicated that complex non-linear models can deliver more realistic results as discussed above.
Therefore, the non-linear models appeared to have an increased potential in terms of modeling
structure-function interactions and preserving and enhancing the reliability and subject speci-
ficity of empirical data as well as model personalization. However, the presented results may
also indicate that the model validation procedure of fitting static empirical and simulated FCs is
suboptimal in spite of being state-of-the-art as discussed above. Future studies may therefore
scrutinize the influence of the model fitting procedure on the reliability and subject specificity of
dynamical whole-brain modeling results and propose concrete procedures on how to improve
this reliability. In particular, they could investigate whether multimodalities or degeneracy in the
similarity maps, which can be observed in supplementary Figs. S4.3-S4.10 for some combina-
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tions of parcellation and model, can affect the reliability and specificity of the model and should
therefore be considered more explicitly when selecting the optimal model parameters. Alterna-
tively, they could examine whether a completely different model fitting strategy, such as fitting
the models on the basis of the dynamics of the FC (Brovelli et al., 2017; E. C. A. Hansen et
al., 2015; Heitmann & Breakspear, 2018; Hutchison et al., 2013; Kong et al., 2021; Preti et al.,
2017), yields more reliable results.

4.4.4 Atlas variation
A vast number of methods for parcellating the brain have been proposed in the literature (Amunts
& Zilles, 2015; Eickhoff, Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018). A lot of atten-
tion was devoted to the effect that the brain parcellation may have on the analyses of empirical
data (Albers et al., 2021; Arslan et al., 2018; Messé, 2020; J. Wang et al., 2009; Zalesky et al.,
2010) and recent modeling results (Chapter 3; Jung et al., 2021; Popovych et al., 2021). In this
study, we put more emphasis on varying the parcellation method rather than the granularity
(number of parcels included in the atlas) when investigating the effect of the parcellation on the
modeling results. Previous studies support this focus: Even though granularity is a determining
factor when considering statistical analyses of empirical data (Messé, 2020; J. Wang et al.,
2009; Zalesky et al., 2010), parcellation-induced variations in the modeling results could not
be explained by only considering this property of the parcellations. Instead, variations in the
model fitting quality were primarily related to graph-theoretical network properties extracted from
the empirical connectomes (Chapter 3) and to other data variables reflecting some statistical
properties of the empirical data (Popovych et al., 2021).

In the variation of the parcellations, we balanced between parcellations derived from structural
and functional data. Here, the included functionally-derived parcellations presumably optimize
the regional homogeneity with respect to the voxel-wise FC (Craddock et al., 2012; Schaefer
et al., 2018; Shen et al., 2013; Urchs et al., 2019). In contrast, the structurally-derived atlases
have not been designed to do the same for the SC, but may for example follow the anatomical
folding patterns of the cortex (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 2007;
Makris et al., 2006; Rolls et al., 2015; Scholtens et al., 2018; Tzourio-Mazoyer et al., 2002;
von Economo & Koskinas, 1925). Our results portrayed distinctions between these structurally-
and functionally-derived parcellations, especially when considering the structure-function corre-
lations of the empirical SC with the simulated FC (Fig. 4.5). The reliability and the (single-modal)
subject specificity of the simulated FC also demonstrated opposite tendencies for different par-
cellation groups, where the former is enhanced for the structurally-derived parcellations, while
the latter is larger for the functionally-derived parcellations (Fig. 4.2; Fig. 4.3; Fig. 4.4). These
distinctions between the structurally- and functionally-derived brain atlases demonstrate that
the parcellation technique has a systematic impact on the modeling results, which can be or-
ganized according to particular parcellation principles. Even though relationships were found
between the goodness-of-fits and the subject specificities across parcellations, the quality of
these associations was rather variable across models (supplementary Fig. S4.27). Hence, the
precision with which the reliability and subject specificity can be estimated from the goodness-
of-fit, which is a proxy for the network properties of the empirical connectomes (Chapter 3) as
well as the empirical structure-function relationship and other statistical properties (Popovych
et al., 2021), is highly model-dependent.

We also observed notable model-dependent, parcellation-induced differences in the within-
subject correlations of the similarity maps (Fig. 4.6; Fig. 4.7); see, for instance, the elongated
boxes shown in Fig. 4.6 and Fig. 4.7 for the Schaefer atlas relative to the other parcellations.
Since we found the reliability and specificity of the empirical FC to be relatively stable across
parcellations (Fig. 4.2; Fig. 4.3; Fig. 4.4), we conclude that dynamical whole-brain models are
sensitive to the choice of brain atlas; see also Chapter 3 and Popovych et al. (2021). In particu-
lar, these results imply that, even though the model is constructed from the same empirical SC,



108 4.4. DISCUSSION

variations of the empirical FC for the same subject may lead to considerably different similarity
maps depending on the atlas (and model). We do not suggest that this is necessarily a negative
facet of a particular brain atlas. When such parcellations are used for model construction, the
fitted models may, for instance, characterize the distinct brain states or other information stored
in the different resting-state empirical FC realizations of the same subject that are obscured by
other parcellations (for a discussion, see Finn & Rosenberg, 2021; Finn, 2021). The negative
relationships between the goodness-of-fits and specificity indices support this notion (supple-
mentary Fig. S4.27), because these findings indicate that a better fit of the model to the empirical
data is, in fact, more likely to reflect a more generic (hence not subject-specific) fit. All things
considered, our study clearly demonstrates that the proper selection of the brain parcellation ap-
pears to be even more important for research using dynamical whole-brain models than studies
straightforwardly analyzing the empirical data.

In sum, we extensively assessed the (test-retest) reliability and the subject specificity of the
modeling results and their relation to the empirical data. We showed that the model parameters
may be fitted to the empirical data with a reliability ranging from ”poor” to ”good” depending on
the implementation of the dynamical whole-brain modeling paradigm. In addition, we demon-
strated that more personalized models yield increasingly reliable and subject-specific modeling
results. For some modeling conditions, we even found that the modeling results were more
reliable and subject specific than the results only involving empirical data. We additionally illus-
trated that the simulated FC may concurrently adopt subject-specific connectivity patterns from
both the empirical SC and the empirical FC through the model fitting procedure, which could
support considering simulated FC as a separate connectome modality. Finally, we sampled all
our findings for 8 state-of-the-art parcellations and demonstrated the substantial impact that a
change of parcellation can have on themodeling results, which by far exceeded the parcellation-
induced deflections in the results of the empirical data. Taken together, our findings provide an
exploratory account on relevant methodological aspects of dynamical whole-brain modeling re-
sults. They contribute to the mechanistic understanding of (the personalization of) these models
and reveal best practices. Hence, the presented results can be relevant for application of the
whole-brain dynamical models and their further development.
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Supplementary figures

Fig. S4.1. Effect of a straightforward averaging of the empirical structural connectivity (SC) and path length (PL)
matrices across subjects, and the grand-average approach proposed in this study; see ”Empirical structural connec-
tivity” in Materials and methods. The displayed connectomes were reconstructed using the von Economo-Koskinas
atlas. (A-B)Group-averaged SC matrices derived (A) by taking the median of only the connected edges across sub-
jects and (B) by straightforward averaging (median across connected and disconnected edges). Individual edges
have been normalized by their maximum value across the group-averaged edges (edge that has the most influence
on the group-averaged network dynamics). Diagonals are colored black, since they were not used for the model
simulations. (C) The SC matrix shown in panel B subtracted from the one displayed in panel A. Note the substantial
difference in scaling of the colors with respect to panels A and B as indicated by the color bars. (D-F) Examples
of distributions of the path lengths of three distinct edges across subjects and their grand-averages over subjects.
The lines depict the different types of group-averages as indicated in the legend. The medians calculated over all
connected edges (green lines) were used in this study as proxies of the grand-averaged path lengths.
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Fig. S4.2. Distributions of the natural frequencies determined from the blood-oxygen-level-dependent (BOLD) time
series across all subjects and regions for the different parcellations considered in this study. Each plot corresponds
to the parcellation described by the abbreviation included in the title; see Table 4.1.
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Fig. S4.3. Examples of the similarity maps ψ(G, τ) (Eq. 4.1) as a function of the global coupling G and delay τ
parameter for three subject-session pairs when the Desikan-Killiany atlas (Table 4.1) was used for the reconstruction
of the empirical connectomes. Each row corresponds to a different model as indicated by the labels on the left side
of the plots. The black dotted lines in the plots of the linear model indicate the critical coupling G = 1; see ”Linear
model” in Materials and methods. The red circles in the plots of the non-linear models indicate the locations of the
maxima. The first column corresponds to the first subject and the first day of fMRI data sampling, the second to the
second subject and the first day of data sampling and the third to the second subject and the second day of data
sampling. Hence, the first two columns may be compared for inter-subject variability, while the second and third
may be checked for intra-individual differences. The fMRI data corresponding to the left-to-right phase-encoding
direction were used for the acquisition of these plots. Abbreviations: a.u. = arbitrary unit, freqs. = frequencies, osc.
= oscillator.
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Fig. S4.4. Same as Fig. S4.3 but for the von Economo-Koskinas atlas (Table 4.1).
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Fig. S4.5. Same as Fig. S4.3 but for the AAL atlas (Table 4.1).
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Fig. S4.6. Same as Fig. S4.3 but for the Harvard-Oxford atlas (Table 4.1).
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Fig. S4.7. Same as Fig. S4.3 but for the Shen atlas (Table 4.1).
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Fig. S4.8. Same as Fig. S4.3 but for the Schaefer atlas (Table 4.1).
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Fig. S4.9. Same as Fig. S4.3 but for the MIST atlas (Table 4.1).
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Fig. S4.10. Same as Fig. S4.3 but for the Craddock atlas (Table 4.1).
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Fig. S4.11. Distribution of the goodness-of-fit values of the different model implementations as indicated in the
legend and for the various parcellations used in this study as indicated on the horizontal axis (Table 4.1). Dots
depict the means. The dashed black line separates the brain atlases constructed on the basis of structural data (left
block) from those based on functional data (right block). Abbreviation: freqs. = (natural) frequencies.
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Fig. S4.12. Distributions of the optimal parameter settings for the Desikan-Killiany atlas (Table 4.1). (A) Distribution
of the optimal coupling parameter for the linear model that was constructed using the personalized empirical struc-
tural connectivity (SC). (B) Distributions of the optimal coupling and delay parameters for the neural mass model
that was constructed using the personalized empirical structural connectivity (SC). (C-F) Distributions of the optimal
coupling and delay parameters for the phase oscillator model using group-averaged frequencies (C-D) and subject-
specific frequencies (E-F). Models were constructed either on the basis of (C,E) the grand-averaged or (D,F) the
personalized empirical SC.
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Fig. S4.13. Same as Fig. S4.12 but for the von Economo-Koskinas atlas (Table 4.1).
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Fig. S4.14. Same as Fig. S4.12 but for the AAL atlas (Table 4.1).
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Fig. S4.15. Same as Fig. S4.12 but for the Harvard-Oxford atlas (Table 4.1).
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Fig. S4.16. Same as Fig. S4.12 but for the Shen atlas (Table 4.1).
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Fig. S4.17. Same as Fig. S4.12 but for the Schaefer atlas (Table 4.1).
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Fig. S4.18. Same as Fig. S4.12 but for the MIST atlas (Table 4.1).
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Fig. S4.19. Same as Fig. S4.12 but for the Craddock atlas (Table 4.1).
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Fig. S4.20. Reliability of the coupling parameter for models with varying model complexity and similar model per-
sonalization when signal latency is disregarded in the models; see ”Simulated functional connectivity” in Materials
and methods. The plot shows the intraclass correlations (ICCs; Eq. 4.14) of the optimal coupling parameter G for all
the atlases considered in this study (Table 4.1) under the constraint where the delay parameter is set to τ = 0. The
linear model (blue) corresponds to a low complexity, the phase oscillator model (green) to a moderate complexity
and neural mass model (purple) to a high complexity as indicated in the legend. The labels ”poor”, ”fair”, ”good” and
”excellent” correspond to those proposed by Cicchetti & Sparrow (1981). The vertical dashed black line separates
the brain atlases constructed on the basis of structural data (left block) from those based on functional data (right
block). The ICCs of the coupling parameters corresponding to the linear model are the same as those shown in
Fig. 4.3C.
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Fig. S4.21. Reliability of the model parameters as reflected by the test-retest Spearman correlation coefficient. First,
vectors containing the 200 optimal coupling (delay) parameters of all subjects were constructed separately for all 4
individual fMRI data acquisition conditions; see ”Empirical functional connectivity” in Materials and methods. Sub-
sequently, the (test-retest) Spearman correlation coefficient between these vectors was calculated across subjects
for all 6 combinations of these 4 vectors corresponding to the different fMRI sessions. (A-B) Test-retest Spearman
correlation coefficients (Spearman’s ρ) of (A) the optimal coupling parameters and (B) the delay parameters for all
the atlases (Table 4.1, horizontal axis) and models (colors). The legend indicates the color coding of the models
in the plots. The vertical dashed black lines separate the brain atlases constructed on the basis of structural data
(left blocks) from those based on functional data (right blocks). Bars indicate the means, and the error bars the
minimum and maximum values across the 6 combinations of fMRI data acquisition conditions. No data is available
for the delay parameter of the linear model, since this model did not consider signal propagation latency (Eq. 4.2).
(C-D) Scatter plot of the intraclass correlations (ICCs) and the test-retest Spearman correlations of (C) the optimal
coupling and (D) the delay parameter. The plotted symbols represent parcellations and models as indicated in the
legend. The dashed black lines represent x = y for comparison. The gray solid lines represent the linear regres-
sions between the measures, which explain the amounts of variance (R2) that are depicted in the separate plots.
Abbreviations: freqs. = (natural) frequencies, osc. = oscillator.
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Fig. S4.22. Relation between the parcellation-induced variances in the reliability measures and the goodness-of-
fit for four models considered in this study. (A-D) Scatter plots of the intraclass correlation (ICC) of the coupling
parameter (Fig. 4.2C; Fig. 4.3C) against the mean goodness-of-fit of the model to the empirical FC (Fig. S4.11, dots)
for (A) the linear model, (B) the neural mass model, (C) the phase oscillator model simulated using group-averaged
frequencies and (D) the phase oscillator model simulated using subject-specific frequencies (freqs.). All models
were constructed on the basis of the personalized empirical SC. Symbols represent individual parcellations, dotted
lines reflect the linear regressions between the plotted quantities, and the variances explained by these regressions
are shown at the bottom left corners of the plots. (E-G) Similar to panels B to D, but here the ICC of the delay is
considered (Fig. 4.2D; Fig. 4.3D). As the linear model does not incorporate delay (Eq. 4.2), no ICC of the delay
parameter and hence no plot is available for this model. (H-K) Similar to panels A to D, but here the mean edge ICC
is considered (Fig. 4.2E; Fig. 4.3E). (L-O) Similar to panels A to D, but here the mean within-subject, single-modal
correlations (corrs.) are considered (Fig. 4.4A-B).
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Fig. S4.23. Fingerprinting confidences for the various parcellations (Table 4.1) and fingerprinting analyses consid-
ered in the study while investigating varying (phase oscillator) model personalization. (A) Fingerprinting confidence
when identifying individual subjects by comparing one of their empirical (simulated) FCs against all other empiri-
cal (simulated) FCs by the single-modal connectome correlation. The extent of the model personalization as given
by the combinations of the subject-specific or group-averaged natural frequencies (freqs.) and SC is indicated in
the legend. Less personalization corresponds to the model simulated using group-averaged frequency profiles and
constructed on the basis of grand-averaged (dark green) and personalized empirical SC (light green). Then, more
personalization relates to the versions of the phase oscillator model simulated using subject-specific frequency pro-
files and constructed on the basis of the grand-averaged (red) and personalized (orange) empirical SC. Results
involving the empirical FC are colored gray. (B-C) Fingerprinting confidences determined by (B) correlating one FC
(empirical or simulated) with all empirical SC and (C) by correlating one empirical SC with all FC of the samemodality
(empirical or simulated) for the parcellations considered in this study. (D-E) Fingerprinting confidences determined
by (D) correlating one simulated FC with all empirical FC and (E) by correlating one empirical FC with all simulated
FC.
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Fig. S4.24. Fingerprinting confidences for the various parcellations (Table 4.1) and fingerprinting analyses consid-
ered in the study while varying model complexity and keeping the same level of model personalization. (A) Finger-
printing confidence when identifying individual subjects by comparing one of their empirical (simulated) FCs against
all other empirical (simulated) FCs by the single-modal connectome correlation. The linear model (blue) corresponds
to a low complexity, the phase oscillator model (green) to a moderate complexity and neural mass model (purple) to a
high complexity as indicated in the legend. Results involving the empirical FC are colored gray. (B-C) Fingerprinting
confidences determined by (B) correlating one (empirical or simulated) FC with all empirical SC and (C) by corre-
lating one empirical SC with all FC of the same modality (empirical or simulated) for the parcellations considered in
this study. (D-E) Fingerprinting confidences determined by (D) correlating one simulated FC with all empirical FC
and (E) by correlating one empirical FC with all simulated FC.
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Fig. S4.25. Impact of the brain atlas and model implementation on the subject specificity of the model-fit correlations
being the correlations between the empirical and the simulated FC. (A) Specificity indices (Eq. 4.15) of the cross-
modal correlations of the empirical FC with the simulated FC for the parcellations considered in this study (Table 4.1).
The legend indicates the color coding with respect to the various models considered in this study. The vertical
dashed black line separates the brain atlases constructed on the basis of structural data (left block) from those
based on functional data (right block). The bars and error bars mark the medians and the (Bonferroni corrected) 95%
confidence intervals across the 50,000 bootstrapped specificity index estimations, respectively. (B-C) Fingerprinting
accuracies determined by (B) correlating one simulated FC with all empirical FC and (C) by correlating one empirical
FC with all simulated FC for the various parcellations considered in this study.
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Fig. S4.26. Influence of parcellation and model complexity with similar model personalization on the correspon-
dences of the similarity mappings (Eq. 4.1) when signal latency is disregarded in the model, that is, the delay
parameter is set to τ = 0; see ”Simulated functional connectivity” in Materials and methods. (A) Distributions of the
within-subject correlations of the similarity maps calculated across parameter settings for the various parcellations
considered in this study (Table 4.1). The linear model (blue) corresponds to a low complexity, the phase oscillator
model (green) to a moderate complexity and neural mass model (purple) to a high complexity. The vertical dashed
black line separates the brain atlases constructed on the basis of structural data (left block) from those based on
functional data (right block). (B) Specificity indices (Eq. 4.15) calculated from the similarity mapping correlations.
The symbols and shaded areas mark the medians and the (Bonferroni corrected) 95% confidence intervals across
the 50,000 bootstrapped specificity index estimations, respectively. (C) Fingerprinting accuracy when identifying
individual subjects by comparing the similarity mapping of one particular empirical FC with one another.
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Fig. S4.27. Relation between the parcellation-induced variances in the specificity indices and the goodness-of-fit for
four models considered in this study. (A-D) Scatter plots of the mean single-modal specificity index (Fig. 4.4) against
the mean goodness-of-fit of the model to the empirical FC (Fig. S4.11, dots) for (A) the linear model, (B) the neural
massmodel, (C) the phase oscillator model simulated using group-averaged frequencies and (D) the phase oscillator
model simulated using subject-specific frequencies. All models were constructed on the basis of the personalized
empirical SC. Symbols represent individual parcellations, dotted lines reflect the linear regressions between the
plotted quantities, and the variances explained by these regressions are shown at the bottom left corners of the plots.
(E-H) Similar to panels A to D, but here the mean structure-function specificity indices are considered (Fig. 4.5). (I-
L) Similar to panels A to D, but here the mean model-fit specificity indices are considered (Fig. S4.25). (M-P) Similar
to panels A to D, but here the mean specificity indices of the similarity map correlations are considered (Fig. 4.6;
Fig. 4.7).





Chapter 5

Overarching discussion

The two studies of this thesis have demonstrated how parcellations may influence distinct as-
pects of the dynamical whole-brain models.

The first study (Chapter 3) not only assessed how the parcellation influences the quality of
model fit, but also investigated whether the parcellation-induced differences in this goodness-
of-fit can be explained by statistics characterizing the network architectures of the empirical SC
and FC. First, it was shown that a change of parcellation can considerably alter the network
properties of the empirical structural and functional connectomes that are derived from dwMRI
and fMRI data, respectively (Fig. 3.2, Fig. 3.3). Additionally, the consideration of a different
parcellation could substantially affect the fit of the model to the empirical data as quantified
by the maximized Pearson correlation coefficient calculated between the empirical and simu-
lated FC (Fig. 3.6). For most of the computed network properties and qualities of model fit, the
between-parcellation variance did not reflect a simple dependence on the granularity, that is,
the number of parcels included in a parcellation (Fig. 3.4). Subsequently, it was shown that
the model fitting qualities and graph-theoretical measures could be associated well to one an-
other when considering group-averaged inter-parcellation differences (Fig. 3.7). Conversely,
the within-parcellation, between-subject variations of the network properties and modeling re-
sults did not exhibit the same evident relationship (Fig. 3.8). Finally, the study showed that the
network properties calculated from the empirical FC and the simulated FC may correlate with
one another at both the level of the group and the individual subjects (Fig. 3.9, Fig. 3.10).

In the second study (Chapter 4), the reliability and the subject specificity of the modeling results
and their dependence on the parcellation were evaluated. First, it was shown that the modeling
results can be significantly more reliable than the empirical functional connectome (Fig. 4.2;
Fig. 4.3). The reliability of the simulated FC could also be related to the reliabilities of the model
parameters that were used for its generation (Fig. 4.2). Subsequently, it was demonstrated
that the subject specificity of the simulated FC could exceed that of the empirical FC (Fig. 4.4).
Interestingly, the cross-modal correlations between the simulated FC and the empirical SC that
may be used for model construction could exhibit significant subject specificity as well, and were
even shown to exceed the empirical structure-function relationship in this respect (Fig. 4.5). In
addition, the cross-modal correlations between the simulated FC and the empirical FC used
for model validation were also significantly subject specific (Fig. S4.25). All these findings de-
pended critically on the model implementation and parcellation. Here, more personalized mod-
els yielded more reliable and subject-specific modeling results, and a change of parcellation
could affect the modeling results to a much higher extent than the findings only involving em-
pirical data (Chapter 4).

The results are generally discussed below. First, the relevance of these findings is empha-
sized (Section 5.1: Relevance of the results). Subsequently, the results are related to the many
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variations of the dynamical whole-brain modeling workflow that have been reported in the litera-
ture (Section 5.2: Deviations in the dynamical whole-brain modeling workflow). This is followed
by a discussion on the limitations of the models and the opportunities that may be explored in
future investigations (Section 5.3: Limitations and opportunities). Finally, a discussion on the
proper selection of the brain parcellation is provided (Section 5.4: The proper selection of the
brain parcellation).

5.1 Relevance of the results
5.1.1 What the variation of the parcellations reveals about dynamical whole-

brain models
The first study of this thesis (Chapter 3) complements the existing literature that investigates
how the parcellation affects the empirical structural and functional connectomes and the dynam-
ical whole-brain modeling results (Arslan et al., 2018; Popovych et al., 2021; Proix et al., 2016;
J. Wang et al., 2009; Zalesky et al., 2010). In particular, Chapter 3 included parcellation-based
graph-theoretical statistics and goodness-of-fit values that have not been reported previously.
In addition, the study showed that some of the calculated network properties exhibited a pro-
nounced relationship with the number of brain regions independently of the construction method
of the parcellation (Fig. 3.4). Furthermore, it was explicitly shown that the other graph-theoretical
measures and the goodness-of-fits could still vary considerably across parcellations after the
granularity effect was regressed out of the results (Fig. S3.5).

The first study also demonstrated the sensitivity of the model fitting quality to distinct aspects of
the empirical structural and functional networks. Only two principal axes in the feature space
spanned by all extracted graph-theoretical measures could describe most of the parcellation-
induced variations in the network properties (Fig. 3.7), which incidentally indicates a high amount
of covariance among those different network properties under varying parcellation conditions.
In turn, these two principal components could also explain a large portion of the parcellation-
induced variance with regard to the quality of model fit (Fig. 3.7). Examining the loadings of
these principal components subsequently revealed that the models prefer a heterogeneity in
the nodal centralities of the empirical structural and functional networks (Fig. 3.7). In addition,
they seem to favor an empirical SC that has a high potential for functional integration, and to
have a slight preference for lower amounts of segregation in both the structural and functional
connectomes (Fig. 3.7). These preferences may provide an insight into the mechanism that
dynamical whole-brain models employ to link the empirical SC and FC together into one frame-
work.

Subsequently, the second study of this thesis (Chapter 4) showed that the reliability of the FC
simulated by dynamical whole-brain models can be considerably altered when the parcellation
is varied. In particular, the simulated FC matrices were sampled more reliably when the struc-
tural parcellations were considered rather than the functional brain atlases (Fig. 4.2; Fig. 4.3).
Furthermore, the second study also demonstrated that the subject specificities of the simulated
FC and its cross-modal correlations with the empirical connectomes can be highly influenced
by the choice of parcellation (Chapter 4). In contrast to the reliability, the use of the structural
parcellations yielded modeling results that were less subject specific than when functional brain
atlases were used to reconstruct the empirical connectomes (Fig. 4.4; Fig. 4.5). Hence, these
results seem to hint towards a trade-off between reliability and subject specificity when select-
ing the brain parcellation in dynamical whole-brain modeling paradigms, which could be related
to the discussion on the reliability and the predictive capacity of empirical functional connec-
tomes by Finn & Rosenberg (2021). Also, it should be noted that the reliability and the subject
specificity of the results that involved purely empirical data were in agreement with similar in-
vestigations reported in the (empirical) literature (Finn et al., 2015; Messé, 2020; Noble et al.,
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2019; Li et al., 2021; Van Dijk et al., 2010; Zimmermann, Griffiths, et al., 2018). Furthermore,
they were relatively stable across parcellation conditions when compared to the reliability and
subject specificity of the modeling results (Fig. 4.2; Fig. 4.3; Fig. 4.4; Fig. 4.5).

In sum, the findings presented in Chapter 3 and Chapter 4 emphasize the importance of a well-
informed choice of the parcellation in dynamical whole-brain modeling studies that is further
discussed below (Section 5.4: The proper selection of the brain parcellation).

5.1.2 How the dynamical whole-brain model implementation shapes the results

The studies of Chapter 3 and Chapter 4 demonstrated that the model fitting quality can be
rather stable across different models for local dynamics. The goodness-of-fits of the two non-
linear model implementations considered in the first study, for example, correlated well with one
another across parcellations, and their linear regression almost coincided with the ideal situation
of x = y (Fig. 3.6). Interestingly, removing the granularity effect from the fitting qualities of both
models resulted in an even stronger relationship between them (Fig. S3.6). Using a different
personalization of the phase oscillator model also did not result in very strong deviations with
regard to the fitting coefficients (Fig. S4.11). These findings agree with a study that shows
resemblances in the goodness-of-fits of the phase oscillator and a (Landau-Stuart) limit-cycle
oscillator model (Deco et al., 2019; Popovych et al., 2021).

Even though the model fitting quality remains approximately the same when the model imple-
mentation varies, the network architecture of the simulated FC can still be considerably different
for distinct models. This is explicitly shown by the graph-theoretical analysis of the simulated
FC included in the first study of this thesis (Chapter 3). Indeed, not all network properties of
the empirical and simulated functional connectomes could be related to one another (Fig. 3.9).
Furthermore, the established relationships between the graph-theoretical measures of the em-
pirical and simulated FC could be inaccurate and inconsistent across models (Fig. 3.9). In sum,
although the selection of the model for local dynamics might not alter the goodness-of-fit, it can
affect the network structure of the corresponding simulated FC to a large extent.

The proper selection of the model implementation is also non-trivial when considering the relia-
bility and the subject specificity of the modeling results. The second study of this thesis showed
that the FCs generated by the phase oscillator model could exhibit considerably higher reliability
than those simulated by the neural mass model depending on the amount of model personaliza-
tion of the former (Fig. 4.2; Fig. 4.3). In addition, the subject specificity of the modeling results
could also be controlled well by the amount of personalized information embedded in the simu-
lations of the dynamical whole-brain model (Fig. 4.4). A more personalized model could even be
fitted more specifically to the empirical FC than its less personalized variant (Fig. S4.25). More-
over, it was shown that the model parameter spaces could be personalized when additional
subject-specific information was used in the model simulations (Fig. 4.6). Hence, the exact im-
plementation of the dynamical whole-brain modeling concept determines to a large extent the
within- and between-subject reproducibility of the results.

Taken together, the choice of model implementation might not have consequences for the qual-
ity of the fit of the model to the empirical data. It is difficult, however, to generalize this statement
for all models for local dynamics as a vast variety of dynamical whole-brain models have been
reported in the literature; see Section 5.2: Deviations in the dynamical whole-brain modeling
workflow. Moreover, the results presented in this thesis clearly demonstrate that the simulated
FC can vary considerably across different model implementations in terms of its network archi-
tecture shared among subjects and its inter- and intra-individual differences. Hence, the exact
implementation of the dynamical whole-brain modeling paradigm should be selected conscien-
tiously.
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5.2 Deviations in the dynamical whole-brain modeling workflow
5.2.1 Varying preprocessings of magnetic resonance imaging data
Two recent studies assessed how susceptible the dynamical whole-brain modeling results are
to divergent dwMRI and fMRI data preprocessings (Aquino et al., 2022; Jung et al., 2021). Here,
Jung et al. (2021) investigated how a variation of the number of streamlines that is used in the
reconstruction of the SC can affect the fitting quality of dynamical whole-brain models. Inter-
estingly, the optimal streamline count that maximized the goodness-of-fit was different for the
two parcellations considered in that study (Jung et al., 2021). Furthermore, Aquino et al. (2022)
showed that the fit of the dynamical whole-brain models to the empirical FC may be largely de-
termined by fMRI signal fluctuations that involve a large portion of all the voxels constituting a
volumetric brain image (also known as the global signal; Liu et al., 2017). Even though the con-
clusions of Aquino et al. (2022) were only based on one parcellation, the studies by Jung et al.
(2021) and Aquino et al. (2022) clearly indicate that dynamical whole-brain modeling research
could benefit greatly from an optimized and standardized MRI data preprocessing pipeline.

In spite of the present absence of such standardized pipelines, the quality of the work included
in this thesis was ensured by the state-of-the-art tools and insights that were used to prepro-
cess the dwMRI and fMRI data. The empirical connectomes used in the studies of this thesis,
for instance, were reconstructed from MRI data collected by the Human Connectome Project
(HCP) (Van Essen et al., 2012, 2013), which presumably are of high quality (Marcus et al.,
2013). In addition, the data preprocessing steps were in agreement with published sugges-
tions (Glasser et al., 2013; Salimi-Khorshidi et al., 2014; Tournier et al., 2019), and were per-
formed by state-of-the-art software packages that are widely used and publicly available (Dale
et al., 1999; Jenkinson et al., 2012; Tournier et al., 2019; Tustison et al., 2010); see also the
data descriptor of J. W. M. Domhof et al. (2021). Additionally, as discussed in Chapter 3, the
SC and PL matrices of individual subjects were reconstructed through whole-brain tractography
calculations that sampled a rather high number of 10 million streamlines. Recent literature in-
deed argued that performing the tractography with such high streamline densities should benefit
the accuracy of the resulting structural connectome, which potentially contains false positives
and negatives (Bassett et al., 2011; Lindquist, 2020; Maier-Hein et al., 2017; Roine et al., 2019;
Schilling et al., 2019; Sotiropoulos & Zalesky, 2019).

Additionally, the images of the parcellations used in this thesis were modified before they were
used in the reconstructions of the empirical connectomes from the preprocessedMRI data. That
is because the considered brain atlases were published in inconsistent formats. The Desikan-
Killiany and Destrieux atlases (Desikan et al., 2006; Destrieux et al., 2010), for example, have
been included as (cortical) surface-based parcellations in FreeSurfer (Dale et al., 1999), while
the AAL parcellation (Rolls et al., 2015; Tzourio-Mazoyer et al., 2002) is provided as a volu-
metric image sampled in the Colin27 template space (C. J. Holmes et al., 1998). Therefore,
the parcellation images were homogenized so that they all covered the same area of cortical
grey matter, and were all sampled in the MNI152 non-linear template space (Grabner et al.,
2006). The adjustments applied to the atlas images are listed in the Supplementary method of
Chapter 3, and increased the likelihood that any observed parcellation-induced deviations were
indeed related to differences in the method for brain atlas construction.

5.2.2 Reported models for local dynamics
The Kuramoto model of coupled phase oscillators (Kuramoto, 1984) and the Wilson-Cowan
model (Wilson & Cowan, 1972) were selected for the sampling of the results presented in both
studies of this thesis because of three reasons. In broad strokes, these three reasons are
already listed in the second study of this thesis, where also a justification for the use of the
(linear) Ornstein-Uhlenbeck model is included (Section 4.4.3: Model implementations). First of
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all, these two models are well known (Breakspear et al., 2010; Breakspear, 2017), and have
been used in previous investigations involving dynamical whole-brain models (Deco et al., 2009;
Messé et al., 2014; Ponce-Alvarez et al., 2015). Second, they are conceptually distinct. The
phase oscillator model can be used to describe any system of coupled phase oscillators, but is
not biophysically-realistic in the sense that it approximates the neuronal interactions underlying
brain dynamics (Acebrón et al., 2005; da Fonseca & Abud, 2018; Kuramoto, 1984; Strogatz,
2000). Conversely, the Wilson-Cowan model was designed to explicitly model the interplay
between large groups of excitatory and inhibitory neurons, and thus enjoys a higher biologi-
cal relevance (Wilson & Cowan, 1972). Finally, both models are sufficiently reduced in terms
of complexity so that their dynamical behaviors can be understood and controlled well: The
Kuramoto and Wilson-Cowan model use only one and two state variables per brain region,
respectively, and their dynamics under different parameter conditions have been documented
meticulously (Kuramoto, 1984; Wilson & Cowan, 1972).

The literature reports numerous models for local dynamics that can be used to investigate spe-
cific properties of the human brain. The Kuramoto model of coupled phase oscillators (Ku-
ramoto, 1984), for instance, is well suited to investigate (temporal) synchronization patterns in
the brain at rest (Cabral et al., 2011; Ponce-Alvarez et al., 2015). Additionally, theWilson-Cowan
model (Wilson & Cowan, 1972) can be used to effectively model the interactions between the
excitatory and inhibitory neuron populations located in a particular brain region, which enhances
the interpretability of results within the (neuro)biophysical context; see Section 2.3: Dynamical
whole-brain models and Deco et al. (2009). Furthermore, a Landau-Stuart limit-cycle oscilla-
tor (Panteley et al., 2015), which is the normal form of a supercritical Hopf-bifurcation limit-cycle
oscillator (Kuznetsov, 1998), can approximate the dynamics associated with individual brain
regions transitioning from a noisy to an oscillatory behavior (Deco et al., 2017; Deco, Cabral,
et al., 2018; Deco et al., 2019). Another example is the (reduced) Wong-Wang model (Deco,
Ponce-Alvarez, et al., 2014; Wong & Wang, 2006), which may be used to explain variations in
the FC over time (Deco et al., 2013; E. C. A. Hansen et al., 2015). A comparative analysis of
the performances of many models for local dynamics was carried out by Messé et al. (2014)
and Messé et al. (2015).

The dynamical whole-brain modeling concept hence is highly flexible in terms of the (mathe-
matical) model descriptions and implementations. Recent endeavors exploited this flexibility
in order to explain a variety of biophysical phenomena. A number of studies, for example,
incorporated auxiliary region-specific data aside from the empirical SC and FC in the model
simulations (Deco, Cruzat, et al., 2018; Deco et al., 2019; Demirtaş et al., 2019; Kringelbach
et al., 2020). Chapter 4 indicated that this embedding can majorly influence the FC simulated
by the models. Furthermore, one study extended the Wilson-Cowan model with a simple plas-
ticity rule (Hellyer et al., 2016; Vogels et al., 2011) to investigate whether plasticity mecha-
nisms may stabilize dynamical whole-brain modeling results (Abeysuriya et al., 2018). After
all, such mechanisms of synaptic plasticity have been shown to adjust the strengths of the
connections between individual neurons so that the desired pattern of neuronal activation is es-
tablished (Cooke & Bliss, 2006; K. Fox & Wong, 2005; Hofer et al., 2006). Analogously, Naskar
et al. (2021) expanded the model of Deco, Ponce-Alvarez, et al. (2014) with a kinetic receptor
binding model (Destexhe et al., 1994a,b) to determine the role that neurotransmitter kinetics
may play in resting-state brain dynamics. It is not clear whether the findings presented in this
thesis also generalize to such more sophisticated dynamical whole-brain models that integrate
processes with varying time scales.

5.2.3 Alternative strategies for model validation

The validity of the models can be assessed through a variety of methods. For instance, the
resemblance between the empirical and simulated functional connectomes may be quantified
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by different similarity measures. Indeed, the agreement of the model with the empirical data
can be characterized by, among others, the Pearson correlation, the (Euclidean) distance, the
Spearman correlation or the mutual information between the simulated and the empirical FC.
In addition, several studies validated their dynamical whole-brain models on the basis of other
paradigms than the similarity between the (static) empirical and simulated functional connec-
tomes. When the variations of the empirical FC over time are investigated (Brovelli et al., 2017;
Heitmann & Breakspear, 2018; Hutchison et al., 2013; Preti et al., 2017), for example, the em-
pirical FC is no longer assumed to be static, and hence the dynamics of the empirical and
simulated FC should be compared instead (Deco et al., 2013, 2017, 2019; E. C. A. Hansen
et al., 2015). Moreover, just like in the first study of this thesis (Chapter 3), some dynamical
whole-brain modeling studies used network properties extracted from the simulated functional
connectome for the estimation of the model’s performance (Cabral et al., 2012; Naskar et al.,
2021).

In this thesis, the validation of the dynamical whole-brain models primarily involved the cal-
culation of the Pearson correlation coefficient between the empirical and simulated FC. The
literature provides two arguments to support this approach. First, it currently is still debated
whether the time-dependent fluctuations of the empirical FC derived from fMRI data accurately
capture (temporal) brain state variations (Hindriks et al., 2016; Honari et al., 2019; Leonardi &
Van De Ville, 2015; Lurie et al., 2020; Zhang, Baum, et al., 2018). Throughout this thesis, it was
therefore assumed that the functional connectome is static (Section 2.2.2: (Resting-state) func-
tional connectivity). Because of this assumption, it was considered inappropriate to validate the
models on the basis of the dynamics of the empirical and simulated FC and the resemblances
between these kinetics. Second, the (Pearson) correlation between the (static) empirical and
simulated FC has been used for model validation by many dynamical whole-brain modeling
studies, and still seems to be the current standard (Abeysuriya et al., 2018; Aquino et al., 2022;
Naskar et al., 2021). It therefore seemed appropriate to follow this standard as the primary
measure for the validity of the model, especially since the main interest of this thesis is the influ-
ence of the parcellation rather than the effect of the model validation paradigm on the modeling
results. However, it should be noted here that, in the first study of this thesis (Chapter 3), the
network properties of the simulated FC were also used as a secondary measure for the ability of
the models to reproduce the empirical FC. Additionally, as discussed in the second study (Sec-
tion 4.4.3: Model implementations), the wielded static fitting of the simulated to the empirical
FC may not be optimal since it could not capture the subject-specific subtleties in the parameter
spaces of more complex models; see, for example, Fig. 4.3 vs. Fig. 4.7.

5.3 Limitations and opportunities
5.3.1 Computational costs
The dynamical whole-brain modeling paradigm bears high computational loads that arise from
the vast number of calculations associated with the model simulations. After all, these simula-
tions should first comprise an adequate amount of time T so that the corresponding simulated
FC can be estimated accurately (Birn et al., 2013; H. E. Wang et al., 2014). Second, the size
of the integration time step ∆t should be be sufficiently small in order to approximate the dy-
namics at the individual network nodes with acceptable precision (Kim, 2014). Furthermore, it
must be evaluated how the activities of the N individual brain regions influence one another
at every single time step (Section 2.3: Dynamical whole-brain models). Hence, the number
of computations required to simulate a dynamical whole-brain model increases proportionately
with N2T/∆t when only one configuration of the model is considered in isolation.

However, the models also have some free parameters that require optimization, and these op-
timizations often involve grid searches (Deco et al., 2009; Zimmermann, Perry, et al., 2018;
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Iravani et al., 2021). In grid searches, the individual free parameters are varied using prede-
fined collections of values, and the model is simulated for all combinations of values between
these collections. In the studies of this thesis, for instance, the global coupling and delay of
the non-linear network models were varied using 64 and 48 different values, respectively, and
hence the model was simulated for all their 64 × 48 = 3,072 combinations (Chapter 3; Chap-
ter 4). Evidently, the computational costs accumulate with every additional model parameter
configuration that is included in the grid search.

Even though the work presented in this thesis benefited greatly from computational resources
provided by the Jülich Supercomputing Centre on the supercomputer JURECA (Jülich Super-
computing Centre, 2018), the computational load still imposed its limitations on the results. The
simulations of the neural mass model, for example, were constrained in terms of the simulated
time, which was a consequence of the relatively low integration step size that was required to
precisely approximate the network dynamics of that model. Indeed, the model was designed so
that the individual brain regions generated (alpha) oscillations with an oscillatory period of ap-
proximately 1/10 Hz= 100ms; see Section 2.3: Dynamical whole-brain models. Consequently,
an integration step size of 2 ms was used in the simulations of this model in order to accurately
sample (the interactions between) the activities of the individual network nodes (Chapter 3;
Chapter 4). Preparatory investigations of the neural mass model prior to the large-scale sam-
pling of modeling results revealed that time steps of 1 ms and 5 ms did not qualitatively change
the modeling results. In addition, further increasing the time step to, e.g., 10 ms did not seem
proper as the simulations then only sampled the activities of the brain regions on 100 ms/10 ms
= 10 time points per oscillation. These two notions indicated that the 2 ms integration step size
was indeed appropriate. Additional exploratory inquiries demonstrated that increasing the simu-
lated time eligible for analyses, which was T = 510 s− 150 s= 360 s in both studies (Chapter 3;
Chapter 4), also did not qualitatively alter the observations for the neural mass model.

The high computational load of the dynamical whole-brain modeling paradigm also limited the
amount of results presented in this thesis in terms of both the numbers and the sizes of the par-
cellations considered (Chapter 3; Chapter 4). As indicated above, a rise in the number of brain
regions quadratically increases the computational costs of the model simulations. Therefore, it
is computationally unfeasible to sample modeling results for many large parcellations, that is,
brain parcellations delineating a relatively high number of brain regions. Notably, studies as-
sessing the influence of the brain atlas on analyses involving purely empirical data do not seem
to suffer from this limitation (Albers et al., 2021; Arslan et al., 2018; Messé, 2020; Zalesky et al.,
2010).

The computationally intensive simulation calculations were a constraining factor with respect to
the model parameter optimizations as well. In both studies of this thesis, the other (non-linear)
model parameters were set to the same fixed values for all subjects so that only the global
coupling and delay parameters required optimization (Chapter 3; Chapter 4). Future dynami-
cal whole-brain modeling studies, however, may benefit from a (subject-specific) fitting of other
model parameters. After all, the second study of this thesis showed that more personalized
models can be fitted to the empirical data with higher subject specificity than less personalized
ones (Chapter 4). Moreover, it has been demonstrated that parameters reflecting the individu-
alized neural excitation-inhibition balance may be used to distinguish patients with Alzheimer’s
disease from healthy subjects (Zimmermann, Perry, et al., 2018); see below.

Nevertheless, optimizing many model parameters via grid searches is computationally in-
tractable. Indeed, from the discussion on the grid search above it follows that the number of
parameter configurations to test increments tremendously with every additional free parameter
that is included in the grid search if the density of the grid remains unaltered. Instead, the model
parameters may also be optimized by employing dedicated, model-free optimization methods
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that aim to find the optimal model parameter configuration while simulating the model as few
times as possible. Examples of such algorithms include the Nelder-Mead algorithm (Nelder &
Mead, 1965), particle swarm optimization (Eberhart & Kennedy, 1995; Kennedy & Eberhart,
1995), the covariance matrix adaptation evolution strategy (N. Hansen & Ostermeier, 1996)
and Bayesian optimization (Jones et al., 1998; Snoek et al., 2012). Recently, a study assessed
the performances of these four optimization schemes with regard to the dynamical whole-
brain modeling workflow, and demonstrated that the latter two methods yield particularly good
results (Wischnewski et al., 2022).

5.3.2 Personalization of the models

Several studies have demonstrated that the empirical FC of individuals can be highly subject
specific (Amico & Goñi, 2018; Finn et al., 2015; Gratton et al., 2018; Li et al., 2021; Peña-
Gómez et al., 2018; Sarar et al., 2021; Taxali et al., 2021; Waller et al., 2017), but it is not
known how the personalization of that connectome is actually established. So far, it has been
revealed that the empirical functional connectomes of a group of subjects share a common
architecture, and that subject-specific deviations from this principal structure are stable in spite
of daily variations (Amico &Goñi, 2018; Gratton et al., 2018). In addition, the empirical structure-
function relationship (i.e., the correlation between the empirical SC and FC) may be significantly
subject specific as well (Messé, 2020; Zimmermann, Griffiths, et al., 2018). However, the subject
specificity of that relationship is considerably lower than that of the empirical FC itself (see, e.g.,
Messé, 2020 vs. Finn et al., 2015), and hence it is unclear to what extent the former contributes
to the latter.

Dynamical whole-brain models may be a valuable tool for studies investigating the high subject
specificity of the empirical FC and its underlying mechanism. After all, many model parameters
can either be set to a fixed value for all subjects or derived from individualized empirical data.
Then, by comparing the modeling results across different personalization conditions, it can be
estimated how the personalization of a particular model parameter contributes to the subject
specificity of the empirical FC. The second study of this thesis showcased this approach by using
subject-specific regional frequency profiles and empirical SC matrices as well as their group-
averages in the simulations of the phase oscillator model (Chapter 4). The results of this study
demonstrated that the subject specificity of the simulated FC can indeed be enhanced (Fig. 4.4),
and that the fit of the model to the empirical FC may be more subject specific when a more
personalized model is considered (Fig. S4.25).

The results of the second study also provide new information about (the personalization of) dy-
namical whole-brain models that may affect the interpretation of contemporary modeling results.
First, they provide a nuanced perspective on the notion that the models can approximate the
resting-state brain dynamics of individual subjects at a personalized level (Aerts et al., 2020;
Bansal et al., 2018; Deco et al., 2017; Ritter et al., 2013; Sanz-Leon et al., 2015). On the one
hand, the results presented in Chapter 4 confirm the premise of the modeling results being sub-
ject specific (Fig. 4.4; Fig. S4.25). On the other hand, the same findings also show that the
correspondence between the simulated and the empirical FC is far less subject specific than
the (single-modal) correspondence among the empirical functional connectomes (Fig. 4.4 vs.
Fig. S4.25). Hence, instead of being an accurate, individualized reproduction of the empirical
FC itself, the simulated FC appears to merely adopt certain subject-specific aspects from the
empirical FC.

Second, the results of Chapter 4 indicate that the degree of model personalization can have
consequences for studies comparing optimal parameter settings across (groups of) sub-
jects (Donnelly-Kehoe et al., 2019; Iravani et al., 2021; Zimmermann, Perry, et al., 2018).
The mappings of the similarity between the empirical and simulated FC that are sampled by the
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grid search exhibit decreasing between-subject correspondences for an increasing amount of
model personalization (Fig. 4.6) In other words, the parameters of more personalized models
can become less comparable in the sense that the same parameter setting in divergent mod-
els can yield simulated FCs exhibiting vastly different similarities with the empirical FCs. The
extent to which this between-subject comparability of the similarity maps has to be preserved
is unclear, and the answer to this question may depend on the goal of the study at hand.
Until this matter is resolved by future investigations, studies comparing fitted parameter values
across subjects should therefore explicitly report the extent to which the wielded models are
personalized in order to safeguard the appropriate interpretation of the results.

5.3.3 Differentiation of clinical patients from healthy cohorts

Currently, there is a strong focus on the prediction of behavioral, clinical and demographic sub-
ject traits from various type of MRI data (Arbabshirani et al., 2017; Rashid et al., 2020; Yoo et
al., 2018; Zhang, Dougherty, et al., 2018). The empirical FC derived from (resting-state) fMRI
sequences, for instance, has been used as a predictor for autism spectrum disorder (Hull et al.,
2017). That type of connectivity may also be utilized to discriminate between healthy controls
and patients suffering from schizophrenia and Parkinson’s disease (Y. Chen et al., 2015; Kot-
taram et al., 2018; Pläschke et al., 2017). In addition, behavioral characteristics of individual
subjects like cognition and emotion have been successfully related to inter-individual differences
in the empirical resting-state and task-based functional connectomes (Finn & Bandettini, 2021).
Demographic examples include the prediction of age and sex from the empirical FC and struc-
tural brain images (Dinsdale et al., 2021; La Corte et al., 2016; Pläschke et al., 2017; Zhang,
Dougherty, et al., 2018).

Recent advances have shown that also dynamical whole-brain models may be used to detect
behavioral and clinical traits. Iravani et al. (2021), for instance, used the dynamical whole-brain
modeling paradigm to distinguish between healthy controls and individuals with attention deficit
hyperactivity disorder (ADHD). Moreover, the models enabled the identification of distinct sub-
types expressing particular phenotypical behaviors within the full cohort of ADHD subjects (Ira-
vani et al., 2021). A different study used between-group differences in the parameters providing
the best fit of the model to empirical data to discriminate between healthy subjects and patients
suffering from Alzheimer’s disease (Zimmermann, Perry, et al., 2018). The latter study even
provided evidence that dynamical whole-brain modeling results may outperform empirical con-
nectomes when predicting the clinical statuses of individual subjects (Zimmermann, Perry, et
al., 2018).

It is unclear what specific aspects of the dynamical whole-brain models facilitate the reported
identification of clinical subgroups and improved predictive capacity relative to classification
studies that exclusively use empirical data. Nevertheless, the second study of this thesis (Chap-
ter 4) seems to give valuable information that can be used when investigating this mechanism.
The results of that study, for instance, showed that the modeling results can be sampled with a
higher reliability than the empirical FC depending on the parcellation and the exact implementa-
tion of the dynamical whole-brain modeling paradigm (Fig. 4.2; Fig. 4.3). In other words, when
compared to the empirical FC to which the model is fitted, the modeling results in the form of
the (fitted) simulated FC or model parameter configuration can exhibit increased within-subject
consistency relative to the inter-individual variability. Follow-up investigations demonstrated
that the dynamical whole-brain models can realize these enhanced reliabilities by integrating
the inter-individual differences included in a variety of sources (Fig. 4.5; Fig. 4.6; Fig. S4.25).
Furthermore, the increased reliability also leads to simulated FCs that are more subject specific
than their empirical counterparts (Fig. 4.4). Whether these enhancements of the reliability and
the subject specificity indeed could contribute to a high predictive capacity should however be
confirmed by additional investigations.
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Finally, it should be noted that the computational load associated with dynamical whole-brain
models (Section 5.3.1: Computational costs) drastically constrains the extent to which model-
ing results can be employed in prediction studies. That is because machine learning paradigms
require large sample sizes in order to avoid inflated and uncertain classification accuracies (Pol-
drack et al., 2020; Varoquaux, 2018). Studies predicting characteristics of individuals from
modeling results should hence have access to suitable computational infrastructures like the
JURECA high-performance computing cluster (Jülich Supercomputing Centre, 2018), so that
modeling results can be sampled for an acceptable number of subjects (Chapter 3; Chapter 4;
Jung et al., 2021; Popovych et al., 2021; Zimmermann, Perry, et al., 2018). If appropriate com-
puting power is not available, the number of calculations can be reduced by using alternative
modeling strategies. For instance, instead of constructing one model for every individual sub-
ject, Iravani et al. (2021) constructed a single model based on the group-averaged empirical
SC matrix. Consequently, the model simulations did not include one grid search per subject,
but merely comprised one grid search for the entire cohort. Evidently, the computational costs
are considerably reduced by such an approach, but this reduction comes at the expense of the
degree of model personalization (Section 5.3.2: Personalization of the models), and hence also
affects the reliability of the modeling results as demonstrated in Chapter 4. Future investiga-
tions should therefore study the effect of model personalization on the conclusions of (clinical)
prediction studies.

5.4 The proper selection of the brain parcellation
5.4.1 The importance of a well-informed selection of the brain atlas
The two studies comprising this thesis clearly demonstrate that the choice of parcellation is far
from trivial in dynamical whole-brain modeling studies. First of all, the quality of the fit of the
model to the empirical data may strongly diverge when the parcellation differs (Fig. 3.6). Sec-
ond, the parcellation largely determines how well the goodness-of-fit can be related to network
properties calculated from the empirical connectomes when considering the within-parcellation,
between-subject variations of these quantities (Fig. 3.8). Moreover, while a change of parcel-
lation seems to have almost no effect on the reliability of the empirical FC, the atlas appears
to be a determining factor with respect to the reliability of the modeling results (Fig. 4.2). Like-
wise, the subject specificities of the single-modal and cross-modal correlations involving the
simulated FC may also be particularly affected by a change of parcellation (Fig. 4.4; Fig. 4.5;
Fig. S4.25). The latter finding implies that the brain atlas can even influence the extent to which
the simulated FC adopts subject-specific connectivity patterns from the empirical SC and the
empirical FC that are used for model construction and validation, respectively.

Future investigations that make use of dynamical whole-brain models may exploit the results
presented in this thesis for a well-informed selection of the brain atlas. In addition, the findings
reveal potential issues that may arise when the parcellation is poorly chosen. For instance, the
second study of this thesis as well as the literature show that the modeling results seem to be
rather reliable when the empirical connectomes are reconstructed on the basis of a structurally-
derived parcellation (Fig. 4.2; Cammoun et al., 2012; Donnelly-Kehoe et al., 2019; Muldoon et
al., 2016; Tzourio-Mazoyer et al., 2002). Conversely, this reliability appears to be lower for a
functionally-derived atlas (Fig. 4.2). In other words, the results presented in this thesis indicate
that a change of parcellation may lead to conflicting conclusions, which is in agreement with
recent work (Jung et al., 2021).

Because of this pronounced influence of the parcellation on various aspects of modeling stud-
ies, inquiries involving dynamical whole-brain models should declare explicitly why a particular
parcellation was used to sample the reported results. In particular, the granularity and the con-
struction method of the parcellation are important factors to consider in this respect; see below.
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In addition, it is highly recommended that modeling studies discuss or even examine whether
their messages are critically dependent on the selected brain atlas.

5.4.2 Parcellation method, granularity and empirical connectomes

The neurobiological basis of a brain atlas can be a motivation to select a particular parcella-
tion. As discussed in Section 2.1: Brain atlases or parcellations, brain atlases can be derived
from various types of biological data reflecting the brain’s spatial organization (Eickhoff, Con-
stable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018). The Desikan-Killiany, Destrieux and von
Economo-Koskinas atlases, for instance, divide the brain into areas based on structural infor-
mation such as cortical folding patterns and cytoarchitecture (Desikan et al., 2006; Destrieux et
al., 2010; von Economo & Koskinas, 1925). Alternatively, brain regions have also been delin-
eated on the basis of functional aspects of brain organization, which include cortical patterns of
functional connectivity (Schaefer et al., 2018) and function mappings (Dadi et al., 2020). One
particular parcellation was even constructed by considering both structural and functional brain
features (Glasser et al., 2016). These conceptual differences between brain atlases may lead to
varying neurobiological interpretations of observations, and hence could be a reason to prefer
one parcellation over another.

However, the notion that atlases may be based on divergent principles of brain organization
does not only have semantic consequences, but can actually result in empirical connectomes
with varying network architectures. The first study of this thesis plainly demonstrated that the
parcellation can have a prominent effect on graph-theoretical measures extracted from the em-
pirical SC and the empirical FC (Fig. 3.2; Fig. 3.3), which is in accordance with the literature (Ar-
slan et al., 2018; J. Wang et al., 2009; Zalesky et al., 2010). Moreover, many of the calculated
network properties did not exhibit a simple dependence on the number of parcels (Fig. 3.4),
which indeed indicates that the construction method of the parcellation can substantially influ-
ence the empirical structural and functional connectomes. One study investigating the empirical
FC presented qualitatively similar observations in the sense that granularity does not explain all
differences in the network properties between parcellations (Arslan et al., 2018).

Nevertheless, the number of brain regions included in a parcellation influences the results of
analyses involving purely empirical data as well. For example, the correspondence between
the empirical SC and the empirical FC can be related well to the number of parcels of a brain
atlas (Messé, 2020), which is congruent with the results presented in this thesis (Fig. 3.4). Like-
wise, some network properties extracted from empirical connectomes are strongly related to
the parcellation granularity (Arslan et al., 2018; Zalesky et al., 2010). The first study of this
thesis agrees with the latter observation for some of the calculated graph-theoretical mea-
sures (Fig. 3.4).

In sum, the results of this thesis agree with the literature that both the granularity and parcellation
method can considerably alter the empirical SC, the empirical FC and their relationship.

5.4.3 Considerations for the selection of the parcellation in modeling studies

The modeling results are sensitive to the parcellation method as well, and this sensitivity may be
even higher than for the empirical results. The quality of the fit of the model to the empirical FC,
for example, varied considerably across parcellations, and this variation could not be explained
by only considering the parcellation granularity (Fig. 3.4; Fig. 3.6; Fig. 3.7). Recently reported
modeling results seem to agree with these findings (Popovych et al., 2021). Consequently, the
second study of this thesis used a selection of brain atlases that had similar numbers of parcels
and were constructed on a variety of biological data and parcellation techniques (Chapter 4).
It showed that, in terms of their reliability and subject specificity, the modeling results and the
empirical data were highly and weakly affected by a change of brain atlas, respectively (Fig. 4.2;



148 5.4. THE PROPER SELECTION OF THE BRAIN PARCELLATION

Fig. 4.4). Furthermore, some of the results exhibited clear distinctions between the structurally-
and the functionally-derived parcellations (Fig. 4.2; Fig. 4.4; Fig. 4.5; Fig. S4.25).

Nevertheless, the influence of the granularity on the modeling results is not negligible. Fig. 3.4
indeed demonstrated that almost half of the parcellation-induced variance in the model fitting
quality could be explained by the reciprocal of the number of parcels when the neural mass
model was considered. However, this portion was much lower for the phase oscillator model:
With respect to this model, the granularity could only explain a fifth of the between-parcellation
variance in the goodness-of-fit (Fig. 3.4). Hence, these results indicate that, analogous to the
empirical structure-function relationship (Messé, 2020), the quality of model fit may exhibit a
dependency on the number of parcels that is inversely proportional. Nonetheless, the strength
of this association may vary between dynamical whole-brain model implementations.

Taken together, analogous to investigations involving purely empirical data (see above), model-
ing studies should deliberately consider which brain atlas best fits their investigation in terms of
both the granularity and the construction method of the parcellation. Admittedly, relatively small
parcellations substantially cut the computational costs of the model simulations (Section 5.3.1:
Computational costs), and yield high model fitting qualities (Chapter 3). However, because
small parcellations contain a low number of parcels, the included brain regions cover rather
large portions of the cerebral cortex, and may therefore oversimplify the organization of the
brain (Eickhoff, Constable, & Yeo, 2018). Furthermore, as discussed above, the construction
method of a brain atlas can be a determining factor with regard to relevant methodological con-
siderations like the reliability and interpretability of results, and should hence be considered in
addition to the granularity of the parcellation.

In conclusion, the selection of the parcellation for a dynamical whole-brain modeling study
should be carefully deliberated. It could involve a compromise between various methodological
facets like the computational load of the simulations, the neurobiological interpretation of the
results and the reliability of the simulated data.
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Chapter 6

Conclusion

Brain atlases or parcellations divide the brain into several areas based on particular facets of
its spatial organization (Section 2.1: Brain atlases or parcellations). The delineated brain re-
gions can subsequently be used to reconstruct the region-based structural (SC) and functional
connectivity (FC), which characterize how the individual brain areas are coupled to one another
by anatomical connections and synchronized co-activations, respectively (Section 2.2: Brain
connectivity). Nevertheless, because brain atlases can be based on a wide variety of neurobi-
ological data and parcellation techniques (Amunts & Zilles, 2015; Eickhoff, Constable, & Yeo,
2018; Eickhoff, Yeo, & Genon, 2018), the network architectures of the empirical structural and
functional connectomes may vary considerably when different parcellations are used for their
derivations from MRI data (Chapter 3; Arslan et al., 2018; J. Wang et al., 2009; Zalesky et al.,
2010). Yet, even though dynamical whole-brain models have been used to study the relation-
ship between the empirical SC and empirical FC from a biophysical perspective (Section 2.3:
Dynamical whole-brain models), there has been no systematic investigation as to whether the
parcellation-induced differences in the empirical connectomes can also lead to substantial vari-
ations in the modeling results. This thesis therefore assessed the influence of the brain atlas
on various aspects of the dynamical whole-brain models.

First, it was examined how a variation of the parcellation affects the goodness-of-fit that char-
acterizes how well a model replicates the empirical FC. The results of this investigation showed
that a change of the brain atlas can indeed drastically alter the model fitting quality (Fig. 3.6).
Moreover, the observed group-averaged, between-parcellation variations in the goodness-of-fit
were related to parcellation-induced differences in the network properties of the empirical con-
nectomes (Fig. 3.7). Furthermore, the network properties of the simulated FC providing the
best fit of the model to the empirical FC can exhibit considerable variations across parcella-
tions as well (Fig. 3.9). Taken together, these findings showed that a change of brain atlas may
drastically impact the modeling results at a global group level.

In addition, other findings presented in this thesis showed that the parcellation can also influence
how the modeling results of individual subjects relate to one another. For example, the patterns
of the goodness-of-fit values across subjects could vary substantially between pairs of parcel-
lations (Fig. 3.6). Additionally, the relationships between the network properties and the model
fitting qualities of individuals were rather variable across brain atlases (Fig. 3.8). Furthermore,
the reliability of the modeling results depended very much on the choice of the parcellation as
well (Fig. 4.2; Fig. 4.3), and also the subject specificity of the simulated FC varied considerably
across brain atlases (Fig. 4.4). Moreover, the parcellation could largely determine the extent
to which the simulated FC adopted subject-specific connectivity patterns from the empirical SC
and the empirical FC (Fig. 4.5; Fig. S4.25). Finally, it should be noted that the brain atlas often
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exercised a larger influence on the modeling results than on findings involving purely empirical
data (Fig. 4.2; Fig. 4.3; Fig. 4.4; Fig. 4.5).

In sum, the parcellation influences the modeling results at the global group as well as the single-
subject level. Moreover, the effect of the parcellation can be much more pronounced for results
related to dynamical whole-brain models than for findings directly calculated from the empirical
data. The proper selection of the brain parcellation thus seems to be particularly important for
studies using these models. Such studies should hence carefully contemplate on which parcel-
lation to use for the sampling of their results, and subsequently document their considerations
with respect to the chosen brain atlas meticulously. As discussed in Section 5.4: The proper
selection of the brain parcellation, the appropriate selection of the parcellation for modeling
studies might in the end involve a compromise between distinct methodological aspects such
as the reliability, the subject specificity and the neurobiological interpretability of the modeling
results and the computational costs required to acquire them.
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ADHD . . . . . . . . . . . . . . . . . attention deficit hyperactivity disorder

ANOVA . . . . . . . . . . . . . . . . analysis of variance

ATP . . . . . . . . . . . . . . . . . . adenosine triphosphate

BOLD . . . . . . . . . . . . . . . . . blood-oxygen-level-dependent

DK . . . . . . . . . . . . . . . . . . . Desikan-Killiany

dwMRI . . . . . . . . . . . . . . . . diffusion-weighted MRI

EEG . . . . . . . . . . . . . . . . . . electroencephalography

EK . . . . . . . . . . . . . . . . . . . von Economo-Koskinas

FC . . . . . . . . . . . . . . . . . . . functional connectivity

fMRI . . . . . . . . . . . . . . . . . . functional MRI

HCP . . . . . . . . . . . . . . . . . . Human Connectome Project

HO . . . . . . . . . . . . . . . . . . . Harvard-Oxford

ICC . . . . . . . . . . . . . . . . . . intraclass correlation
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MRI . . . . . . . . . . . . . . . . . . magnetic resonance imaging
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PL . . . . . . . . . . . . . . . . . . . path length

SC . . . . . . . . . . . . . . . . . . . structural connectivity

Sch. . . . . . . . . . . . . . . . . . . Schaefer

Shen . . . . . . . . . . . . . . . . . Shen 2013

WBT . . . . . . . . . . . . . . . . . . whole-brain tractography
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Materials and methods

Fig. S4.27 (p. 135) Relation between the parcellation-induced variances in
the specificity indices and the goodness-of-fit for four
models considered in this study
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