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Abstract

Plasma-based accelerators are considered a promising alternative to large and expensive
conventional accelerator structures since the higher field strengths that can be applied
allow for more compact designs. This is of high interest since research in fundamental
physics requires high energies for e.g. the discovery of new particles. Still, a lot of research
must be performed in order to make these setups competitive in areas like energy, charge
and general beam quality.
In the first part of this thesis, we investigate the so-called wakefield acceleration for lep-
tons where a particle beam or a laser pulse drives a plasma wave that has accelerating and
focusing fields for electrons. Within this part, we develop new models for the description
of the cavities in wakefield acceleration that better incorporate properties of the longitu-
dinal electric field, and that are self-consistent. Positron acceleration is generally more
problematic, as their opposite charge renders the field regions used for electron wakefield
acceleration useless. We present a setup driven by both a particle and a laser beam which
allows for the acceleration of positron rings. The proposed setup is investigated using
both analytical methods as well as particle-in-cell simulations. Besides the more general
wakefield investigations, we also look into the inner structure of the accelerated electron
beam in the case of finite emittance. Lastly for this chapter, we examine the influence of
structured plasma in the form of clustered Hydrogen on the acceleration mechanisms in
laser-plasma interaction.
In the second part of this thesis, we study the acceleration of protons by Magnetic Vortex
Acceleration. More specifically, we examine the acceleration of spin-polarized particle
beams that are of interest i.a. for probing the nuclear structure of the proton or polarized
fusion. We start by studying the influence of a density-down ramp at the end of the plasma
target with which the laser pulse interacts on beam quality. Finally, we present a setup
consisting of two laser pulses propagating side-by-side that yields better spin polarization
and beam quality compared to a single-pulse setup.
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Zusammenfassung

Plasma-basierte Beschleuniger werden als aussichtsreiche Alternative zu großen und kosten-
intensiven herkömmlichen Beschleunigern angesehen, da die höheren Feldstärken, die
genutzt werden können, kompaktere Designs erlauben. Dies ist von großem Interesse,
da Forschung in der Fundamentalphysik hohe Energien erfordert, z.B. für die Entdeckung
neuer Teilchen. Dennoch muss weiterhin viel Forschung betrieben werden um die Auf-
bauten in Punkten wie Energie, Ladung und genereller Strahlqualität wettbewerbsfähig
zu machen.
Im ersten Teil dieser Arbeit untersuchen wir die sogenannte Wakefield-Beschleunigung
für Leptonen, bei der ein Teilchen-Strahl oder ein Laserpuls eine Plasmawelle antreibt,
welche beschleunigende und fokussierende Felder für Elektronen aufweist. In diesem Teil
entwickeln wir neue Modelle zur Beschreibung der Kavitäten in der Wakefield-Beschleu-
nigung, welche die Eigenschaften des longitudinalen elektrischen Feldes besser erfassen,
und die selbst-konsistent sind. Positronen-Beschleunigung ist generell problematischer,
da ihre entgegengesetzte Ladung die für Elektronen-Wakefieldbeschleunigung genutzten
Feldregionen unbrauchbar macht. Wir präsentieren einen Aufbau, welcher durch sowohl
einen Teilchen- als auch einen Laserstrahl angetrieben wird, und die Beschleunigung von
Positronen-Ringen ermöglicht. Dieser Aufbau wird sowohl mithilfe analytischer Methoden
als auch mit Particle-in-cell-Simulationen untersucht. Neben den eher generellen Unter-
suchungen zum Wakefield betrachten wir auch die innere Struktur des beschleunigten
Elektronenstrahls im Fall endlicher Emittanz. Schließlich erforschen wir den Einfluss
strukturierten Plasmas in Form von Wasserstoff-Clustern auf die Beschleunigungsmecha-
nismen in der Laser-Plasma-Wechselwirkung in diesem Kapitel.
Im zweiten Teil dieser Arbeit studieren wir die Beschleunigung von Protonen mittels Mag-
netic Vortex Acceleration. Genauer untersuchen wir die Beschleunigung spin-polarisierter
Teilchenstrahlen, die u.a. für die Erforschung der nuklearen Struktur des Protons oder für
polarisierte Fusion von Interesse sind. Wir beginnen mit der Untersuchung des Effekts,
den Dichtegradienten am Ende des Plasma-Targets, mit dem der Laser wechselwirkt, auf
die Strahlqualität haben. Schließlich präsentieren wir einen Aufbau, welcher aus zwei
nebeneinander propagierenden Laserpulsen besteht, und bessere Spin-Polarisation und
Strahlqualität liefert als ein Ein-Puls-Setup.
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Chapter 1

Introduction

The field of particle physics continually requires the acceleration of particles to high
energies. Collisions of such particle beams with a second, counter-propagating particle
beam can induce the creation of secondary particles in order to test the Standard Model
of particle physics [1]. Current accelerator structures like the Stanford Linear Collider
(SLAC) or the Large Hadron Collider (LHC) at CERN are huge in size and expensive
[2, 3]. The reason for their size is the mechanism for particle acceleration. When wanting
to accelerate particles to even higher energies, two options are available, the first being
to increase the strength of the electric field. For a specific material only a certain field
strength may be applied before breakdown occurs. Then, longer acceleration distances
are required. The radiofrequency-based accelerators are limited to field strengths in the
vicinity of a couple 100 MV/m [4, 5]. As the creation of heavier particles requires higher
energy, future plans for circular accelerators (and similarly linear accelerators) would need
to be significantly larger than the 27 km circumference of the LHC.

It is, however, possible to perform particle acceleration also in plasma, a state of matter
where the electrons are separated from the nuclei. This has the advantage that fields
orders of magnitude stronger than achievable in conventional accelerators can be applied
(approx. 100 GV/m), allowing for much shorter accelerator designs [6].

In the case of electron acceleration, one prominent mechanism is the so-called laser-driven
plasma wakefield acceleration (LWFA). It was first proposed by Tajima and Dawson in
1979 in the form that a high intensity laser pulse expels electrons due to its ponderomotive
force and induces a plasma wave [7]. Electrons can be injected and trapped by the plasma
wave. Due to the prevalent fields, the electrons can be accelerated to high energies. Back
then, the required laser intensity could not be obtained from a single pulse. Thus, setups
like beatwave acceleration were suggested that use the interaction of two pulses with one
another [8]. This has changed significantly with the advent of chirped-pulse amplification
[9] which paved the way for higher-intensity lasers that are available today. Another
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2 CHAPTER 1. INTRODUCTION

option is using a particle driver instead of the laser pulse. This particle beam-driven
plasma wakefield acceleration (PWFA) similarly benefits from the excitation of a plasma
wave due to the driver propagating through the plasma [10].

Over the years, the two schemes have been investigated both experimentally and theoret-
ically. Depending on the intensity of the laser (or the density of the driving beam) the
wakefield can reach a non-linear regime [11]. In particular, the laser-plasma parameters
can be chosen in such a fashion that an almost spherical cavity void of electrons is formed.
This is called the “bubble regime”. In the regime it was shown that the energy spectrum of
the accelerated electrons is quasi-monoenergetic and that the bubble can propagate over
several Rayleigh lengths [12–14]. Similarly, for PWFAs the “blowout” regime was found
which is subject to on-going research as well [15, 16].

Both of the wakefield schemes still need to be further optimized, however, to be competi-
tive to facilities like SLAC and LHC. Currently, the record energy achieved using wakefield
acceleration is 8 GeV [17]. Besides the maximum energy, several other aspects are in need
of improvement: not only should the electron bunch be of high energy, but it should also
have the desired charge [18] and be of high quality in the sense that momentum spread of
the particles is minimized. For this reason, several alterations of the wakefield mechanism
have been proposed.

One example is the method of density down-ramp injection where the change in plasma
wave velocity in a density gradient is used for improved injection into the wake [19].
Another interesting mechanism is the so-called Trojan Horse Acceleration [20]. There, a
particle driver first excites a wakefield. Using a laser pulse, atoms inside the cavity can
be ionized. The ionized electrons are “born” directly in the blowout and therefore have
lower momentum spread (i.e. ultra-low emittance in the range of µm mrad).

Another area of active research is the acceleration of ions from laser-plasma interaction
[21, 22]. As ions are significantly heavier than the leptonic electrons, different mechanisms
for acceleration have to be employed due to the generally higher required field strength. In
the near future, facilities like ELI [23] or XCELS [24], that promise currently unparalleled
laser intensities, should significantly push this area of research forward. More specifically,
the acceleration of spin-polarized ion (and also electron) beams is interesting for several
reasons. This includes probing the nuclear proton structure [25] as well as fusion. For the
latter it has been shown in [26] that polarizing the particles can improve upon the cross
section for fusion. While for conventional circular accelerators polarization can be built
up over time via the Sokolov-Ternov effect [27], different methods must be used to obtain
spin-polarized beams from laser-plasma interaction due to the shorter time scale. The
plasma target needs to be pre-polarized for which setups using a 3He or an HCl target
have been proposed [28, 29]. The Helium target has been built at Forschungszentrum
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Jülich and has been first tested at the end of 2021 at GSI Darmstadt; the results are
currently still being evaluated. More work, both theoretically and experimentally, needs
to be done here to optimize the setups for spin-polarization, energy and general beam
quality as currently researchers are essentially limited to gaseous targets. This rules out
several common methods of ion acceleration that utilize solid-state targets [30, 31] and
leaves them with schemes like Magnetic Vortex Acceleration [32, 33]. In particular, the
laser fields can induce strong depolarization of the particle beam which is why research
concerning the optimization of these setups is important.

The present thesis is essentially divided into two parts with respect to acceleration mecha-
nism. The first part is concerned with wakefield acceleration of leptons, specifically models
describing the structure of highly non-linear blowouts for electrons, as well as the accel-
eration of positrons. In the second part, we investigate the acceleration of spin-polarized
proton beams using Magnetic Vortex Acceleration and propose a setup using two laser
pulses for improved results.

1.1 Outline

In the following chapter we will give a rough theoretical basis for the work throughout this
thesis. This includes some basic theory regarding plasma physics, with the focus lying on
wakefield acceleration and ion acceleration. In chapter 3 we then will introduce the basic
notion of particle-in-cell (PIC) simulations which are a valuable tool when – as it is often
the case for these schemes – analytical theory is not sufficient. After that, we will present
the results for our works concerning electron and positron acceleration in chapter 4. In
particular, we will further develop the analytical models that describe the boundary of
the cavity in beam-driven wakefield acceleration as well as an laser-augmented blowout
structure which gives us an option to accelerate positrons. The microscopic structure
of the accelerated electron bunch is also discussed. Lastly, we investigate the role of
clusterized targets for electron acceleration in the scope of an experimental collaboration.

In chapter 5, we then go over to the acceleration of ion beams. More specifically, we study
the acceleration of spin-polarized beams from Magnetic Vortex Acceleration (MVA). Here,
we investigate the effect of density down-ramps on beam quality, and present a setup
consisting of two laser pulses which greatly improves upon single-pulse MVA.

The general results of this thesis are summarized in chapter 6.
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Chapter 2

General theory

Within this chapter we introduce the theoretical foundation necessary for the work fol-
lowing in later chapters. We start by describing relevant aspects of the state of plasma as
well as laser pulses. With both of these described, we go over to the description of excited
plasma waves, more specifically wakefields that are either driven by laser pulses or particle
beams used for electron acceleration. Lastly, we introduce the mechanism of Magnetic
Vortex Acceleration as an example of an ion acceleration scheme which is studied in the
second part of the thesis. Throughout this chapter (and the following), we will be using
the cgs system of units.

2.1 Plasma

Plasma is often called the “fourth state of matter”. Fundamentally, this state is reached
once passing the critical point of a certain material. In this state, the matter is – either
partially or fully – ionized. This leads to a plethora of effects that make plasma worth
studying in the scope of accelerator physics.

The first thing to consider is the effect of the so-called Debye shielding. A single, point-
like particle of charge q will attract particles of opposing charge in a plasma due to the
fact that, in a plasma, the electrons are not bound to the nuclei as they would be in the
gaseous state. This will lead to the test-particles potential being shielded.

To describe this shielding [34], we start from the Poisson equation for the potential ϕ

∇2ϕ = −4π(qδ(r) + e(np − ne)) , (2.1)

where e is the elementary charge. The densities np and ne denote the proton and electron
density, respectively. The delta distribution δ(r) describes the point-like density of the

7
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test particle. We assume that the electrons obey a Boltzmann distribution

ne = n0 exp

(︃
eϕ

kBT

)︃
(2.2)

with n0 being the unperturbed plasma density, kB as Boltzmann’s constant and T as the
electron temperature. If the argument of the exponential function is small, we may Taylor
expand in ϕ, leading to the rephrased Poisson problem(︃

∇2 − 1

λ2D

)︃
ϕ = −4πqδ(r) . (2.3)

Here,

λD =

√︃
kBT

4πn0e2
(2.4)

is the Debye length. The solution to the Poisson equation obtained from a Fourier trans-
form thus is

ϕ =
q

r
exp

(︃
− r

λD

)︃
. (2.5)

Two things must be noted here: firstly, the potential in plasma drops off quicker than the
normal Coulomb potential, where ϕ ∝ r−1. The Debye length is the characteristic length
at which the potential has dropped off to 1/e of the normal Coulomb potential. Secondly,
in order for shielding to occur, we must require that a lot of particles are present in the
plasma. This is often written in form of the condition that the number of particles in the
Debye sphere must be large, i.e. ND ≫ 1. Plasma therefore requires a lot of particles in
order to be actually considered a plasma. Further, plasma exhibits charge differences at
microscopic scales, whereas in the macroscopic picture, it would seem electrically neutral.
For this reason, plasma is also called quasi-neutral.

Another important effect in plasma are oscillations. If we imagine that we displace a slab
of electrons with respect to the ions, we induce an electric field. Without any additional
applied forces, the electrons will swing back due to the ions’ restoring force, thus leading to
oscillatory behaviour. The characteristic frequency, the plasma frequency, can be defined
with the help of the thermal velocity of the electrons,

vth =

√︃
kBT

me

. (2.6)

Dividing the thermal velocity by the previously derived Debye length, we obtain the
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plasma frequency

ωp =
vth
λD

=

√︄
4πn0e2

me

. (2.7)

More precisely, this is the electron plasma frequency. Similarly, we could define an ion
plasma frequency, but in the following, most of the time only the electron frequency is of
interest due to the time scale of the processes at hand. We will therefore simply refer to
it as “the plasma frequency”.
Before going into plasma waves, we will first recapitulate properties of laser pulses as they
are one of the possible drivers for such waves.

2.2 Laser pulses

The second ingredient for the later investigated laser-plasma interaction are laser pulses.
While we will not cover the most basic laser theory here (see, e.g., the book by Svelto for
that [35]), we need to introduce certain aspects of laser pulses that will become relevant
within the scope of our research here.
Laser pulses (or rather, their electric field E) fulfill the wave equation in vacuum [36],

∇2E− 1

c2
∂2E

∂t2
= 0 . (2.8)

In the paraxial ray approximation it is assumed that the phase of the wave mainly varies
in the direction of propagation (here: z). Further assuming that our beam has cylinder
symmetry, the wave equation can be rephrased as

∂2E

∂r2
+

1

r

∂E

∂r
− 2ik

∂E

∂z
= 0 . (2.9)

Here, r denotes the radial coordinate and k the wave number. One possible solution is
that of a Gaussian beam with

E(r, z) = E0
w0

w
exp

[︃−r2
w2

− iπr2

λLR
+ iϕ0

]︃
, (2.10)

E0 being the peak electric field. The parameter

w = w0

√︄
1 +

(︃
z

zR

)︃2

(2.11)

is the beam waist. As visible from the equation, we have a focused beam, i.e. w is
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the smallest at z = 0. There it reaches the focal spot size w0, which is one of the
most commonly used parameters to characterize the capabilities of a laser system. How
quickly the pulse widens depends on the Rayleigh length zR = πw2

0/λL, where λL is
the laser wavelength. The choice of the Rayleigh length will become important in a
later part of our studies (cf. section 4.8). Another important parameter is the radius
of curvature, R = (z2 + z2R)/z. The last parameter of the Gaussian beam is the Gouy
phase tan(ϕ0) = λLz/(πw

2
0). Besides Gaussian beams there are several other solutions to

the wave equation, for example Laguerre-Gaussian modes [37], which can prove useful in
certain applications for acceleration.

As a parameter for the strength of the laser, often the normalized laser vector potential

a0 =
eE0

mecω0

(2.12)

is used. This value can be interpreted in the way that an electric field of strength E0

accelerates an electron to the energy a0mec
2 over the distance λL/(2π). In other cases,

one might be more interested in stating the peak intensity which is related to a0 via

I0 = 1.37 · ℵ ·
(︃

a0
λL [µm]

)︃2

× 1018 Wcm−2 . (2.13)

Here, ℵ denotes the polarization of the laser pulse (ℵ = 1 for linear, ℵ = 2 for circular
polarization). From the parameters at hand, we may also calculate the power of the laser
pulse or – taking into account its duration τ0 – the energy. Depending on the intensity
of the laser pulse, additional effects might need to be considered, e.g. radiation reaction
[38] or the production of electron-positron pairs [39]; these will not be investigated in the
following. Further, it should be noted that the theoretical description of laser pulses is
highly idealized, i.e. pulses are generally not Gaussian. For example, in experiments a
pre-pulse will be present which can be on the time scale of picoseconds and can affect the
plasma dynamics significantly (cf. section 4.8).

2.2.1 Self-focusing

As described in the previous section, Gaussian beams are focused, i.e. their beam waist
varies. This is important as this can influence the effectiveness of the different acceleration
schemes: if the pulse energy is distributed over too wide of an area, no sufficient accel-
eration can occur. We do, however, work with laser pulses propagating through plasma,
where an effect known as self-focusing can occur. In the presence of plasma, the wave
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equation is changed to

∇2E− η2

c2
∂2E

∂t2
= 0 , (2.14)

where η is the refractive index [36]. Whether a wave can propagate through a plasma is
effectively decided by the dispersion relation

ω2
0 = ω2

p + c2k2 . (2.15)

If ω0 > ωp, the wave number k is real and the electromagnetic wave can propagate through
the plasma [40]. By contrast, for ω0 < ωp, the wave becomes evanescent as k is imaginary.
For the case where ω0 = ωp one introduces the critical density

ncr =
ω2
0me

4πe2
. (2.16)

If the plasma density is small compared to ncr we call the plasma underdense, otherwise
it is called overdense. It has to be noted though, that due to the relativistic nature of the
processes that we look at, plasmas can become relativistically underdense [41], which can
drastically change the occurring processes compared to an opaque target.

From the dispersion relation we can also calculate the phase velocity vph and the group
velocity vg of the wave as

vph =
ω0

k
=

√︃
c2 +

ω2
p

k2
, vg =

dω0

dk
=

c2

vph
, (2.17)

which we will need i.a. in our discussion of the positron acceleration scheme in section
4.6. Back to the refractive index, we can approximate

η ≈ 1− ω2
p

2ω2
0

n(r)

n0γ⊥
, (2.18)

where γ⊥ =
√︁

1 + (a20/2) is the transverse relativistic factor. In the two cases that either
intensity decreases or that density increases radially, the refractive index becomes higher
on the central axis. This, in turn, forces the pulse energy to be focused towards the central
axis, which is where the term “self-focusing” originates from. One can then consider the
beam waist evolution in dependence of the laser power [42]. Doing so leads to the notion
of the critical power

Pcr =
mec

5ω2
0

e2ω2
p

, (2.19)



12 CHAPTER 2. GENERAL THEORY

which is often referenced by using the approximate equation Pcr ≈ 17(ω0/ωp)
2GW [43].

In the case where the laser power P matches the critical power Pcr, a balance between
self-focusing and diffraction such that the laser pulse can be guided. Strongly surpassing
the critical power can lead to the filamentation of the laser pulse [44] which can often be
observed in simulations concerning the acceleration of ions.

While self-focusing is an effect generally beneficial for driving wakefields over longer dis-
tances, there are also effects detrimental to focusing in plasma. One of those is the
ionization-induced defocusing [45, 46]. Since the field strength of the lasers that atoms
are subjected to depend on their radial position with respect to the optical axis, ionization
occurs more frequently at the laser center than elsewhere (for a Gaussian mode). This,
in turn, leads to a radial density gradient, which affects the refractive index

η(r, t) =

√︄
1− ne(r, t)

ncr

. (2.20)

For the region of highest electron density, η(r, t) becomes minimal, acting defocusing for
the remaining parts of the pulse. If we want to see when this effect becomes important,
we can follow the derivation presented by Gibbon [46]. It is known from e.g. Born and
Wolf [47] that a light ray’s trajectory r(t) is subject to the differential equation

d

ds

(︃
η(r)

dr

ds

)︃
= ∇η(r) . (2.21)

Here, ds is infinitesimal distance along the trajectory. Again, using the paraxial approxi-
mation and taking ds ≈ dz [48], we can rewrite the problem to

dr

dz
=

k⊥

k(z)
,

dk⊥

dz
= k0∇⊥η(r, z) , (2.22)

where k0 = ω0/c. We introduce the angle θ = k⊥/k∥ and can Taylor expand η(r) for
underdense plasmas. Then we arrive at the equation

dθ

dz
≈ −1

2

∂

∂r

(︃
ne(r)

ncr

)︃
. (2.23)

The total deflection of the beam scales like θI ∝
∫︁
ne(0)/(ncrw0) dz. Since a Gaussian

beam focused in vacuum is also diffraction-limited [46, 49], we have a counteracting θD =

w0/zR. Finally, comparing the two parameters, Gibbon finds that for

ne

ncr

>
λL
πzR

(2.24)
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ionization defocusing becomes important. This effect will be of particular interest in our
discussion of the stability of a positron acceleration scheme in section 4.6.

2.2.2 Ponderomotive force

One last important ingredient for laser-driven wakefield acceleration is the ponderomotive
force which is responsible for expelling the electrons in transverse direction, leaving behind
the cavity. Kruer derives the ponderomotive force in the non-relativistic limit a0 < 1 the
following way [50]: he assumes that the laser field has the form E(r, t) = E(r) sin(ωt),
where ω ⩾ ωp. Further, the plasma is initially at rest (u = 0) and no magnetic field is
present (B = 0). The force equation then is

∂u

∂t
+ u · ∇u = − e

m
E(r) sin(ωt) . (2.25)

In the lowest order in |E|, we have u = ũ with

∂ũ

∂t
= − e

m
E(r) sin(ωt) . (2.26)

Integrating with respect to t and averaging the force equation over rapid oscillations yields

m
∂⟨u⟩t
∂t

= −e⟨E⟩t −m⟨ũ · ∇ũ⟩t . (2.27)

Using the expression for ũ and the product rule of differentiation, Kruer then rearranges
the equation to

m
∂⟨u⟩t
∂t

= −e⟨E⟩t −
1

4

e2

mc2
∇E2(r) , (2.28)

where the ponderomotive force corresponds to the term

Fp = −1

4

e2

mc2
∇E2(r) . (2.29)

A full derivation of the relativistic ponderomotive force can be found in the work by
Quesnel and Mora [51]. There, the final form of the ponderomotive force is

Fp = −mec
2∇γ̄ , (2.30)

with γ̄ being the averaged Lorentz factor of the electron.
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2.3 Plasma waves

Now we can look at the interaction of a laser pulse with a plasma. This interaction will
lead to the excitation of a plasma wave. Depending on the strength of the laser, i.e. how
large the normalized laser vector potential a0 is, we can differentiate various regimes of
wave excitation. As mentioned later, other laser parameters like pulse duration and focal
spot size also determine the regime of plasma wave.

We start by looking at the linear regime, where a0 ≪ 1. Here we can make use of the cold
fluid equations. For simplicity it is assumed that the plasma is initially uniform [11]. If
the electrostatic wakefield ψ introduces a density perturbation δn = n− n0, we can write(︃

∂2

∂t2
+ ω2

p

)︃
δn

n0

= c2∇2a
2

2
,

(︃
∂2

∂t2
+ ω2

p

)︃
ψ = ω2

p

a2

2
. (2.31)

The solution for the density perturbation is of the form

δn

n0

=
c2

ωp

∫︂ t

0

dt′ sin[ωp(t− t′)]∇2a
2(r, t′)

2
(2.32)

and for the electric field one finds

E

E0

= −c
∫︂ t

0

dt′ sin[ωp(t− t′)]∇a2(r, t′)

2
. (2.33)

These plasma waves have a frequency of ωp and are of sinusoidal shape. The parameter
E0 = mecωp/e is the cold, non-relativistic wave breaking field. The solutions are valid if
|E| ≪ E0; otherwise wave breaking needs to be considered.

Now, considering that |E| may exceed E0, we reach the non-linear regime (a0 > 1). This
is accompanied by a steepening of the wave to a sawtooth-like profile as well as an increase
in wavelength. For a peak electric field Emax of the plasma wave, it is

λnonlinear =
2λp
π

Emax

E0

, (2.34)

where λp is the plasma wavelength [42]. In the case of the linear regime the wavelength
would simply correspond to λp. Due to the increase in wavelength, the density pertur-
bations become more spiked. Once they become singular, the point of wave breaking is
reached. The relativistic wave breaking field in 1D scales as

EWB =
√
2(γph − 1)1/2E0 , (2.35)

where γph is the Lorentz factor for the wave moving with phase velocity vph [42]. The
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plasma waves or rather their electric fields are then capable of trapping particles as we
will further describe over the next sections.

2.4 Wakefield acceleration

As seen in the previous section, plasma waves can be excited by laser pulses. The in-
duced wakefields can trap electrons and accelerate them to high energies. Depending on
the parameter range, more or less desirable features for high-quality electron beams are
obtained. As we are going to discuss over the next few sections, there are several types
of wakefield accelerators that can utilize different effects for injection and trapping of
electrons into the wake.

2.4.1 Laser-driven wakefield acceleration

The method of using laser-plasma induced wakefields for particle acceleration was first
introduced by Tajima and Dawson in 1979 [7]. It is aptly called laser-driven plasma wake-
field acceleration or abbreviated to LWFA. For LWFA, a high-intensity (⩾ 1017 W/cm2),
short (⩽ 1 ps) laser pulse penetrates a plasma target and induces a plasma wave. As
described before, the ponderomotive force of the laser pulse pushes electrons in the trans-
verse direction while the ions exert a restoring force. Plasma electrons can then be trapped
in the structure and experience accelerating fields (more on that in section 2.4.3). The
accelerated electrons are usually called “witness beam”.
Different regimes of LWFA can be differentiated mainly by the normalized laser vector
potential a0. Of particular interest is the so-called bubble regime, where a0 > 4, w0 > 2λL

and the pulse fits perfectly into the first half of the plasma period [12, 14]. The “bubble”
(i.e. the cavity) is nearly spherical and exhibits uniform accelerating fields. Further, the
energy spectrum of the electrons in the witness beam is quasi-monoenergetic [13].
Particle acceleration via LWFA has, of course, also its limits. One important example
of a process limiting the acceleration is dephasing. Since the plasma wave evolves with
the laser’s group velocity, the accelerated electrons will experience different parts of the
accelerating field [40]. After some time, they will have reached a decelerating region of
the field. The acceleration distance, after which this occurs has been calculated in several
models for different dimensionality [52]. In 3D, the dephasing length is

Ld =
4

3

ω2
0

ω2
p

√
a0
kp

. (2.36)

Another limiting factor relevant to LWFA is that of pump depletion. When traversing the
plasma, the laser pulse continuously loses energy to the plasma. After propagating the
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pump depletion length, it cannot sustain a wakefield any longer. Again, considering the
three-dimensional, non-linear case [40], the pump depletion length scales like

Lpd =
ω2
0

ω2
p

cτ0 . (2.37)

Beyond choosing the laser and plasma parameters in an optimal fashion for long acceler-
ation distances, there is on-going research on how to e.g. overcome the dephasing limit
by modulating the plasma density profile [53].

2.4.2 Particle beam-driven plasma wakefield acceleration

Besides LWFA, there is also the option to perform wakefield acceleration with a particle-
beam driver instead of a laser pulse. This mechanism is called particle-beam driven plasma
wakefield acceleration or PWFA for short. Here, the Coulomb force of the particle driver
(e.g. consisting of electrons, or protons in the case of AWAKE [54]) takes over the role
of the ponderomotive force in LWFA. The electric field of a relativistic particle beam is
almost completely transverse: The electric field of a single electron in its rest frame is
E ∝ r−2, i.e. radially symmetric. Now, performing a Lorentz transform to the laboratory
frame yields E⊥ = γE∥, meaning that for γ → ∞ we have a mostly transverse electric
field [55].
The particle driver needs to be of high enough density to induce the corresponding plasma
wave. The created structure looks similiar to LWFA, but is not completely the same due
to the differences of the driver [56].
Similar to the case of laser-driven plasma waves, we can differentiate between a linear
and a non-linear regime also for PWFA. The electric field created by a particle beam of
density nb can be calculated via Poisson’s equation ∇·E = −4πenb [42]. We assume that
the driving beam is relativistic (v ≈ c) and has a radius rb that is large compared to the
plasma wavelength, i.e. rbkp ≫ 1. Then, the amplitude of the wakefield is approximately
Emax/E0 = nb/n0. A solution for the transverse wake structure has been obtained for
various beam profiles [10]. Again, with the associated wakefield, electrons can be injected
and accelerated. The particles’ energy gain is, however, limited i.a. by the transformer
ratio [42]. This is the ratio between the energy gained from the wakefield and the energy
that the driver originally has, i.e. Rt = ∆γ/γb. Similar to the laser pulse, the driving
electron beam will be depleted of all its energy after having traversed some characteristic
distance. This depletion length can be optimized, e.g. by tailoring the driver’s axial
profile [42, 57].
The transformer ratio as well as the maximum field strength of the wake can also be
increased by going to the non-linear regime of PWFA, where nb ≈ n0. If rbkp < 1 and
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nb > 1, the wakefield is mainly described by non-linear transverse plasma motion. Since
close to all of the plasma electrons are expelled from the region of the driver, this regime
is also called the “blowout” regime [15], although in some literature the terms “blowout”
and “bubble” are used interchangeably.
PWFA has the advantage that some of the limiting factors of LWFA are not applicable
since the driver consists of massive particles instead of a laser pulse. There are, however,
other effects detrimental to it. One example would be the hosing instability [58]. During
propagation through the plasma, the electrons in the driving beam can start to oscillate
in a collective manner. This behaviour can induce an oscillation of the associated electro-
magnetic fields and thus reduce witness beam quality. In the worst case it can even lead
to the loss of witness beam electrons. Active research to mitigate such instabilities is also
being conducted [59, 60].

2.4.3 Particle trapping

Essential for the acceleration of electrons in wakefields is that they get trapped, i.e. they
are at some point injected into the cavity and do not leave it afterwards. This could be
seen from phase space plots, where trapped electrons should move on closed orbits, while
untrapped electrons do not [11].
The simplest mechanism for electron trapping is the so-called self-injection. For this it
is required that the electron has sufficient initial velocity; otherwise it slips backward in
the plasma wave. For example, a simple condition for trapping was derived by Kostyukov
et al. in [61] based on a phenomenological bubble model. Mathematically, they start by
considering the Hamiltonian

H = c
√︁
m2

ec
2 + (P+ eA/c)2 +mec2a2 + eϕ , (2.38)

where P is the electron’s canonical momentum and A is the vector potential. In order for
the particle to be trapped, there must be a point on its trajectory where the longitudinal
velocity component becomes zero (i.e. the particle does not fall further back in the wave
but gets accelerated to the front instead). Further calculation then yields that the bubble
can trap electrons initially at rest if the bubble radius R is larger than the bubble’s
Lorentz factor γ0. Depending on the models used, slightly or more significantly [62]
deviating trapping conditions are obtained.
Besides self-injection, there are several other mechanisms that can be employed. Usually,
those methods are designed to either trap more electrons than in self-injection or increase
the quality of the witness beam. For example, density-down ramps can be utilized to
change the velocity of the plasma wave which leads to a change in trapping condition
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[19]. Ionization injection is another method for improved trapping: there, the presence of
an additional, heavier element is used to induce localized potential changes [63]. These
can change the momenta of the electrons such that they can be trapped more easily.
Lastly, a scheme for high quality electron beams is the Trojan Horse Acceleration [20]
that we already have mentioned in the introduction: a wakefield is driven by an electron
beam and an additional weak laser beam ionizes atoms in the cavity. The electrons from
ionization then are trapped in the blowout. Since they do not have a large transverse
momentum, the emittance of the witness beam is much lower than usual.

We further investigate the concept of wakefield acceleration in chapter 4, where we also
present further theory for a description of the blowout shape in the non-linear regime.
Something we have omitted here, but will discuss in that chapter as well, is the acceleration
of positrons: since positrons have opposite charge to electrons we cannot simply accelerate
positrons with the same field regions of the wake. For now, we will go over to a basic
introduction about ion acceleration.

2.5 Ion acceleration

The acceleration of ions via laser-matter interaction poses a different set of problems: ions
are significantly heavier than electrons (ca. 1836× already in the case of the lightest ion,
H+). Already for other, heavier leptons like the muon, wakefield acceleration becomes
more complicated as the plasma wave velocity should be matched for high-quality accel-
eration. Thus, while proton wakefield acceleration [64] might be theoretically feasible,
it requires much higher laser intensities than the LWFA of electrons and needs further
optimization.

There are, however, also several other schemes of ion acceleration. One prominent example
is Target Normal Sheath Acceleration (TNSA), where a laser pulse irradiates a thin solid
foil (for example made of Carbon). The laser field will push the electrons in the foil,
creating an electric sheath field due to the shift between electrons and protons [30]. This
field then leads to the acceleration of ions in a directed motion out of the target. Besides
TNSA, there are many other schemes [21, 22, 65, 66] which further aim to improve upon
beam collimation, energy spread, etc. and utilize different target setups. Depending on
the use case, however, not all of these schemes are equally applicable: since we will solely
investigate the acceleration of spin-polarized particles like H+ and 3He in the scope of ion
acceleration in this thesis, solid-state targets are not an option [67]. As discussed later
on, the target already needs to be pre-polarized in order to get a spin-polarized particle
beam. With current methods it cannot be easily done for solid targets, but instead for
gaseous targets.
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Thus, we will investigate the use of Magnetic Vortex Acceleration (MVA) for this project
[32, 33]. As for many of the ion acceleration schemes, there is no full analytical theory
for its description due to the multitude of relevant effects and disparate time scales. The
process of MVA has phenomenologically explained by Park et al. as follows [68]:
The laser pulse propagates through the near-critical density (NCD) target and pushes the
electrons radially outwards. This creates a channel of low electron density with a radius
of

Rch =
λL
π

(︃
ncr

ne

)︃1/3(︃
2

K

P

Pcr

)︃1/6

. (2.39)

The parameter K = 1/13.5 is of geometrical nature [69]. In the wakefield of the laser
pulse some electrons are accelerated, thereby inducing a strong current. A corresponding
return current is formed in the wall of the channel. Together they give rise to a strong
azimuthal magnetic field of strength Bch ≈ 2πeneRchγ

2
e , where γe is the bulk Lorentz

factor of the accelerated electrons [70]. Once the end of the NCD target is reached, the
magnetic field expands transversely. In turn, it displaces the electrons with respect to
the ions inducing longitudinal and transverse electric fields. These fields are then able to
collimate and accelerate ion beams.
The optimal ion energy is reached when the laser energy inside the channel is equal to the
total electron energy after interaction with the laser [71]. The corresponding condition
reads

ne

ncr

=
√
2K

(︃
P

Pcr

)︃1/2(︃
cτ0
Lch

)︃3/2

, (2.40)

where Lch is the channel length. What was neglected here is whether the NCD target has a
density-down ramp. It has been investigated by Nakamura et al. in [72], how the presence
of such a ramp influences the transverse expansion of the magnetic field and accordingly
the attainable ion energy. In section 5.3.1, we study the effects of down-ramps onto the
spin polarization of proton beams.

With this, we have a basic understanding of electron and ion acceleration mechanisms. As
we have especially noted in the section regarding ion acceleration, working with analytical
theories for the regimes at hand is often not possible. We can “circumvent” this problem
by employing numerical simulations. Thus, we introduce the concept of particle-in-cell
simulations in the next chapter.
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Chapter 3

The particle-in-cell method

In order to describe laser-matter interaction, often times analytic calculation does not
suffice due to the complexity of the problem at hand. Therefore, numerical methods are
needed to describe the abundance of – often relativistic – particles. One of the available
options are particle-in-cell (PIC) simulations. Throughout most of the work performed in
the scope of this thesis, PIC simulations have been employed in form of the codes vlpl

and qv3d, both of which have been developed by A. Pukhov [73, 74]. The differences
between the codes vlpl and the quasi-static qv3d will be explained later on. A more
extensive introduction to PIC codes is given in [74], on which this chapter is based.

3.1 From the Vlasov equation to PIC

In order to perform simulations for laser-plasma based setups we i.a. need to solve
Maxwell’s equations

∂E

∂t
= c∇×B− 4πj , (3.1)

∂B

∂t
= −c∇× E , (3.2)

∇ · E = 4πρ , (3.3)

∇ ·B = 0 . (3.4)

One can show that we may reduce the set of equations we need to solve to (3.1) and (3.2),
and use (3.3), (3.4) as initial conditions only [74].

The current density j, which acts as a source term for the electromagnetic fields, could
be described by a single-particle distribution function f(x,p) for each species of particle.

21
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The evolution of this function is given by the Boltzmann-Vlasov equation

∂f

∂t
+

p

γm
∇f +

F

m
∇pf = St , (3.5)

where St incorporates particle collisions [34]. Solving this equation poses a great com-
putational challenge as it is six-dimensional. We can, however, use the so-called finite
element method. The distribution function can be sampled by a set of finite phase-fluid
elements

f(x,p) ≈
∑︂
n

wnS(x− xn,p− pn) . (3.6)

The term S(x,p) is the support function for the n-th element in the phase space (e.g.
a 6D hypercube) and wn is the corresponding weight. With this approximation we can
describe the transport of the phase fluid along the Boltzmann-Vlasov characteristics by
integrating for the centers of the fluid elements, i.e.

dxn

dt
=

pn

γm
,

dpn

dt
= q

(︃
E+

pn

γmc
×B

)︃
+ FSt . (3.7)

In the latter equation, FSt corresponds to the collisional term of the Boltzmann-Vlasov
equation. Therefore, we do not need a grid in the full phase space, but do utilize a grid
in configuration space to solve Maxwell’s equations.

3.2 Maxwell solver

In order to solve Maxwell’s equations there are several numerical schemes. The most
commonly used one is the Yee solver [75]. Depending on the solver different criteria must
be fulfilled in order to ensure numerical stability. The criteria are related to the spatial
grid size and the time step. The choice of these is also important for preventing unphysical
simulations results from occuring. The Courant-Friedrichs-Lewy condition [76] states that

c∆t <

(︃
1

h2x
+

1

h2y
+

1

h2z

)︃−1/2

. (3.8)

Here, hx, hy, hz denote the grid size in the respective dimensions and ∆t is the time step.
The condition ensures that information may only propagate at the speed of light but not
faster.

For most of our simulations presented in the later chapters, we will use an alternative
Maxwell solver: the RIP solver. The short-hand stands for “rhombi-in-plane”; the meaning
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behind this is visible in its full description in [77]. RIP is a z-dispersionless Maxwell
solver which means that several effects linked to numerical dispersion are suppressed by
it. Hereinafter, we refer to it as z-dispersionless, as for most of our simulations z is the
direction of propagation. It was compared by Filipovic et al. to the Yee solver for the
case of relativistic electron bunches in the regime of quantum electrodynamics [78]. There,
RIP was shown to suppress the numerical Cherenkov instability and did not exhibit any
unphysical fields whereas the Yee solver did. Due to the different scheme used, the RIP
solver links the grid size in z-direction to the time step via the condition hz = c∆t. The
stability condition for the RIP solver in vacuum reads

h2z

(︃
1

h2x
+

1

h2y

)︃
< 1 . (3.9)

In the presence of plasma it is modified to

1

h2z
>

1

h2x
+

1

h2y
+
ω2
p

4c2
. (3.10)

The linkage of z- and time step means that the numerical simulation can only be set up in
certain ways, as the time step needs to resolve the fastest oscillations for proper results.

3.3 Boris pusher

For advancing the particles often times the Boris (or “implicit midpoint”) pusher [79] is
used, although there are other available that have their own advantages and disadvantages
[80, 81]. The Boris pusher uses the interpolated electric and magnetic field E,B and
calculates the momentum for the new time step p1 from the old p0 according to the
equation

p1 − p0

τ
= e

(︃
E+

1

c

p1 + p0

2γ1/2m
×B

)︃
. (3.11)

Here γ1/2 is the Lorentz factor taken at half the time step. The scheme is semi-implicit
and can be solved for the final momentum; see e.g. [74] for this. Its main advantage to
simpler particle pushers is that, due to the separated rotation step and B and the advance
in E, it describes relativistic particle motion more correctly.

To summarize the previous section that dealt with certain aspects of the simulation we
will now list the steps performed within a time step of PIC simulations in order (cf. also
Fig. 3.1): The electromagnetic fields are first interpolated from the grid-based values
to the particle positions. The particles are then pushed using the calculated forces. As
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Integrate eqs.
of motion

Fp → vp → xp

Solve fields
ρg, jg → Eg,Bg

Interpolate
Eg,Bg → Fp

Interpolate
xp,vp → ρg, jg

∆t

Figure 3.1: Schematic of the particle-in-cell cycle. The index “p” corresponds to variables
given at the macro-particle position, while the index “g” denotes variables at the grid
position.

the particle movement induces currents, these currents are interpolated to the grid, after
which the fields can be advanced using the Maxwell solver. This process is then repeated
for as many time steps as desired. Depending on the effects to be incorporated into the
simulations, this cycle might be supplemented by other effects like Monte Carlo routines
for effects of quantum electrodynamics or, as in the case of our considerations in chapter
5, a routine for the precession of particle spin.

3.4 Quasi-static codes

While it is only used for one of the publications in the following chapters [82], we should
briefly introduce the concept of quasi-static PIC codes. Due to the very disparate scales in
PIC simulations, numerical heating can become a problem which corresponds to diffusion
in the phase space. A consequence of the heating is that energy is no longer conserved
and unphysical simulation results may arise. This generally limits the time interval that
can be simulated correctly with PIC codes. One possible way to improve upon this is
the so-called quasi-static approximation [83]. There is a plethora of different PIC codes
that utilize this approximation and have different dimensionality or coordinate systems.
For our group, the quasi-static code based on vlpl is called qv3d. It is a 3D code using
cartesian coordinates. In setups like wakefield acceleration, we have two evolution time
scales: the faster scale of the driver, and the slower scale of acceleration. These time
scales will be separated in the quasi-static approximation.
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In his explanation of his code [74], Pukhov first introduces the new coordinates

τ = t , ξ = z − ct . (3.12)

Here, it should be noted for clarity, that different literature introduces the new spatial
coordinate sometimes in different ways: other references might call this variable ζ, or
they might use a different sign convention. Our assumption is that, while propagating a
distance of approximately its own length, the driver changes slowly. Thus, for the plasma
response to the driver, all derivatives with respect to the slow time τ will be neglected.
Advancing from the head to tail of the driver, we can calculate the wakefield at time
τ . With the calculated fields and particle distribution of the surrounding plasma, we can
advance the driver with a large time step. While the quasi-static method allows for higher
performance, it also gives some restrictions, as it cannot describe radiation and particle
trapping.
Writing Maxwell’s equations with respect to the new variable ξ and neglecting slow
changes, we can find the quasi-static equations for the electric and magnetic field (again,
see [74] for an extensive derivation of the equations). A layer of macro-particles is seeded
at the front boundary of the simulation domain after gathering charge density and cur-
rents of the driving beam. The particles move in negative ξ-direction in accordance with
the quasi-static equations of motion. The driver can be advanced in time using the fields
induced by particles traversing the simulation box. Depending on the type of driver, this
evolution needs to be considered differently: for particle beams, the equation of motion
of the particles can be calculated. For a laser pulse, we instead need to solve an envelope
model as the quasi-static code does not incorporate radiation.

With the analytical and numerical foundation for this thesis laid out, we can go over
to the study of wakefields and Magnetic Vortex Acceleration. In the next chapter, we
will first introduce an extensive analytical framework for the description of non-linear
blowouts which will be compared to results from PIC simulations.
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Chapter 4

Wakefield acceleration

With our knowledge from the previous chapter we can look into the first more involved
setups. In the context of wakefield acceleration, it is of interest to describe the shape of the
bubble/blowout and its fields rather well. While there have been simple, phenomenological
models introduced in the past [61, 84], their applicability is quite limited. More recently,
models i.a. by Lu et al. [85] and Golovanov and Thomas [86–88] have been proven to
work for more general plasma profiles with a radial dependence.

In this chapter, we further improve upon the description of blowouts based on these mod-
els. One particular aspect lacking in current models is the description of the longitudinal
electric field: while PIC simulations clearly show a divergence towards the end of the
blowout, analytical models do not incorporate this feature very well. Thus, we start by
“fixing” this divergence as we have presented in our publication [89]. For this, we intro-
duce the general equations and notation used also in the subsequent section concerning
further modeling of PWFAs.

Throughout this chapter we normalize time to the inverse plasma frequency ω−1
p , lengths

to k−1
p = c/ωp, kinetic momenta to mec, energies to mec

2, fields to mecωp/e, charges to
the elementary charge e, masses to the electron rest mass me and potentials to mec

2/e.

The quasi-static wakefield potential is generally given as

ψ = Az − φ , (4.1)

where A and φ are the vector and scalar potential, respectively. The bubble is moving
in z-direction with a velocity V0 ≈ c. Therefore, it makes sense to introduce a co-moving
coordinate system with ξ = z − t. The problem exhibits cylindrical symmetry, thus

B = ∇×A =

(︃
∂Ar

∂ξ
− ∂Az

∂r

)︃
eφ , E = ∇ψ − ez ×B . (4.2)

27
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Specifically, the longitudinal and radial electric fields are of the form

Ez =
∂ψ

∂ξ
, Er =

∂ψ

∂r
+Bφ . (4.3)

The force components then become

Fz = −Ez −
pr
γ
Bφ , Fr = −∂ψ

∂r
−
(︃
1− pz

γ

)︃
Bφ . (4.4)

The plasma profile ρ(r) is assumed to have only radial dependence in the following. The
wakefield potential can then be described as a function of ξ and r,

ψ(ξ, r) =

∫︂ r

0

SI(r
′)

r′
dr′ + ψ0(ξ) . (4.5)

The integral source

SI(x) =

∫︂ x

0

ρ(r)r dr > 0 (4.6)

only depends on the radial coordinate. The term ψ0 in the wakefield potential often is
assumed to vanish in theory and depends on the bubble radius rb(ξ). The argument of
the bubble radius will be left out for a shorter notation in the following. We find that

ψ0(ξ) = −
∫︂ rb

0

SI(rb)

r
dr − SI,bβ(rb)

2
. (4.7)

Further, the parameter β is

β(rb) = 2

∫︂ ∞

0

ϵ dx

1 + ϵx

F0(x) + ϵF1(x)

1 + ϵF1(0)
(4.8)

with bubble radius rb(ξ), relative sheath width ϵ = ∆/rb. Here, ∆ is the thickness of the
electron sheath. We use a function g(y) to describe the shape of the electron sheath at
the bubble boundary. The generalized momenta are

Fn(x) =

∫︂ ∞

x

yng(y) dy . (4.9)
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We further assume that F0(0) = 1. The field components can then be calculated as

Ez(ξ, r) =−
(︃
SI,b

rb
+
SI,bβ

′(rb)

2
+
ρ(rb)β(rb)rb

2

)︃
r′b , (4.10)

Bφ(ξ, r) =− r

2

∂Ez

∂ξ
− Λ(r, ξ) , (4.11)

Er(ξ, r) =
∂ψ

∂r
+Bφ =

SI(r)

r
+Bφ . (4.12)

Here,

Λ(r, ξ) = −1

r

∫︂ r

0

jz(ξ, r
′)r′ dr′ (4.13)

is the integral current density. In total, this gives the following force components:

Fz =− Ez −
pr
γ
Bφ , (4.14)

Fr =− SI(r)

r
−
(︂
1− pz

r

)︂
Bφ . (4.15)

4.1 Homogeneous plasma

In the special case of a homogeneous plasma with ρ(r) = 1 and SI(r) = r2/2, the electric
field components are

Er =
r

2
+Bφ , (4.16)

Ez =− rbr
′
b

2

(︃
1 + β(rb) +

rbβ
′(rb)

2

)︃
. (4.17)

Accordingly, the force components become

Fz =
rbr

′
b

2

(︃
1 + β(rb) +

rbβ
′(rb)

2

)︃
− pr
γ
Bφ , (4.18)

Fr = −r
2
−
(︃
1− pz

γ

)︃
Bφ . (4.19)

If we assume the bubble to be spherically shaped, then we can set rb =
√︁
R2 − ξ2 with

r′b = −ξ/rb. Moreover, we assume that the bubble sheath is thin, thus β = β′ = 0. With
this the electromagnetic fields can be simplified to

Ez =
ξ

2
, Bφ = −r

4
− Λ(r, ξ) , Er =

r

4
− Λ(r, ξ) . (4.20)
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This form is well known from other simplified bubble models. The accelerating and
focusing force components then are

Fz =− ξ

2
+
rpr
4γ

+
pr
γ
Λ(r, ξ) , (4.21)

Fr =− r

4

(︃
1 +

pz
φ

)︃
− 1

2γ2
Λ(r, ξ) . (4.22)

The particles undergo fast betatron oscillations. Therefore we can assume that ⟨rpr⟩ ≈ 0.
After sufficient acceleration, we further have pz ≈ γ, giving us the simplified force terms

Fz ≈ −ξ
2
, Fr ≈ −r

2
, (4.23)

which are – again – well known from simplified bubble models like [61].

4.2 Stretched bubble

A slightly more complicated form of the bubble would be to assume that it is not spherical,
but stretched. We further assume that this bubble has a small amplitude, R ≪ λp, similar
to [90]. To describe a stretched bubble, we set

rb =

√︄
1−

(︃
ξ

b

)︃2

, (4.24)

where b > R. In turn, the longitudinal electric field becomes Ez = aξ with a ∈ (0, 1/2).
In the thin-sheath approximation β = β′ = 0, we further obtain

Bφ = −r
2
a− Λ(r, ξ) , Er =

r

2
(1− a)− Λ(r, ξ) . (4.25)

From this we can again calculate the force to be

Fz = −aξ + rpr
2γ

a+
pr
γ
Λ(r, ξ) , (4.26)

Fr = −r
2

(︃
1− a+ a

pz
γ

)︃
− 1

2γ2
Λ(r, ξ) . (4.27)

As in the case considered before, we are able to assume ⟨rpr⟩ as well as pz ≈ γ. Therefore,
the force components approximately correspond to

Fz ≈ −aξ , Fr ≈ −r
2
. (4.28)
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From the equations (4.28) it becomes clear that the bubble’s elongation leaves the focusing
force unchanged. This holds as long as the electrons are already trapped, perform betatron
oscillations and have high energy. The accelerating force Fz, by contrast, is dependent on
the factor a.

4.3 Bubble ODE

In general, the ordinary differential equation

A(rb)r
′′
b +B(rb)(r

′
b)

2 + C(rb) =
Λ(rb(ξ), ξ)

rb
(4.29)

is solved to obtain an approximation of the electron sheath with radius rb(ξ) surrounding
the bubble. The coefficient functions are

A(rb) =1 +
SI,b

2
+

(︃
ρ(rb)r

2
b

4
+
SI,b

2

)︃
β +

SI,brb
4

β′ , (4.30)

B(rb) =
ρ(rb)rb

2
+
[︁
3ρ(rb)rb + ρ′(rb)r

2
b

]︁ β
4
+
[︁
SI,b + ρ(rb)r

2
b

]︁ β′

2
+ SI,brb

β′′

4
, (4.31)

C(rb) =
SI,b

2rb

[︄
1 +

(︃
1 +

SI,bβ

2

)︃−2
]︄
. (4.32)

An extensive derivation is given by Thomas et al. in [91]. If the sheath thickness ∆ fulfills
∆ ≪ rb and ∆ ≫ 2rb/SI,b, we can simplify the coefficient functions to a great extent,
namely

A(rb) ≈
SI,b

2
, B(rb) ≈

ρrb
2
, (4.33)

C(rb) ≈
SI,b

2rb
, Λ(ξ) = Λ(rb(ξ), ξ) . (4.34)

The approximations would be valid for bubbles with large radii in the range of one plasma
wavelength. For the Trojan Horse regime, however, it is not, as the radius is in the order of
λp/4. Then, SI,b/2 would be in the order of unity. We can compensate this by modifying
the coefficient functions phenomenologically to

A(rb) ≈ 1 +
SI,b

2
, B(rb) ≈

ρrb
2
, (4.35)

C(rb) ≈
SI,b

2rb
, Λ(ξ) = Λ(rb(ξ), ξ) . (4.36)
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Figure 4.1: Simulations results for a bubble in homogeneous plasma that is being driven
by a 1 GeV bi-Gaussian electron driver. The driving beam has peak density (a) |ρe| = 3,
(b) |ρe| = 24, (c) |ρe| = 48. The yellow line corresponds to the solution of the differential
equation that describes the bubble border very well. For all simulations λp = 200 µm.
Source: [89], licensed under CC BY 4.0.

If we assume a non-loaded bubble, i.e. Λ = 0, we can find an analytical approximation to
the ODE solutions, if we consider small |ξ| near the bubble center. Then

rb ≈ R , r′b ≈ 0 , r′′b ≈ −C
A

≈ − SI,b

(2 + SI,b)R
. (4.37)

For the source integral we obtain

SI,b =
R2

2
(4.38)

in the case of homogeneous plasma and finally for the bubble radius

rb ≈ R− 1

1 + 4R−2

ξ2

2R
. (4.39)

Looking at the solution of the ODE (yellow line), we can see that a proper choice of the
parameters ∆ and R leads to an adequate fit of the analytical approximation in the bubble
middle, but the bubble back is not resolved very well (cf. Fig. 4.1). The main problem,
however, is that the longitudinal field bears a divergence at the bubble stern that is not
described by this model since Ez is proportional to r′b, but r′b is very flat (Fig. 4.2).

4.4 Field modulation near bubble back

If we want to consider the longitudinal electric field Ez for a bubble in homogeneous
plasma, a simplified expression can be obtained when a thin electron sheath is assumed,
namely

Ez = −SI,b
r′b
rb
. (4.40)
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Figure 4.2: The longitudinal electric field Ez in dependence of the coordinate ξ (black
line). The data in (a)-(c) is taken from the corresponding PIC simulations at the line
y = 0 µm. The blue line shows the results of the model without the fix applied. It is
clearly visible that the bubble middle is described well but not the back at ξ ⩽ −100 µm.
Source: [89], licensed under CC BY 4.0.

Approximating the field by its lowest order for small values of ξ we find

Ez ≈ E0ξ (4.41)

with

E0 =
1

2 + 8R−2
. (4.42)

Here, |dEz/dξ| ⩽ 1/2, which is the upper limit of large bubbles with R ≫ 1. Similarly,
the derivative is limited by zero (the lower limit for small amplitude bubbles with R ≪ 1).
We find in PIC simulations that this description – while being in good agreement with
the fields in the bubble mid – does not describe the divergence of the electric field at the
bubble back. This can be due to electron currents at the stern which we have neglected
thus far. These would change the decrease of the bubble radius in that region more
significantly.

In order to augment this behaviour, we assume that the field diverges at L = ξ(rb = 0).
We introduce a function

f(ξ) =

(︃
L

L− ξ

)︃1/m

=
1

m

√︂
1− ξ

L

(4.43)

with m ∈ R which shall modify the field such that the divergence is incorporated in the
bubble back while leaving the field in the middle intact. Looking at the limits

lim
ξ→L

f(ξ) = ∞ , f(ξ ≈ 0) ≈ 1 , (4.44)

we find that this function is able to do this. If the parameter m is chosen heuristically from
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Figure 4.3: Longitudinal electric field for the three previously shown cases (a)-(c). The
red line corresponds to the field obtained using the ansatz including the fix with m = 4.
In all of the cases, the model incorporates the divergence towards ξ ⩽ −100 µm very well.
Source: [89], licensed under CC BY 4.0.

the interval m ∈ [3, 4], we find that the function’s influence on the bubble mid is reduced
to a satisfactory extent, while still bearing the divergence seen in PIC simulations.

Thus, the “fixed” fields are

Ez =
E0ξ

4

√︂
1− ξ

L

, Bφ = −r
2

E0(4L− 3ξ)

4L 4

√︂
1− ξ

L

5 , (4.45)

and the corresponding forces (calculated via the general theory) are

Fz ≈ − E0ξ

4

√︂
1− ξ

L

, Fr = −r
2
+

(︃
1− pz

γ

)︃
E0(4L− 3ξ)

4L 4

√︂
1− ξ

L

5 . (4.46)

As we quite clearly see in Fig. 4.3, this fix to our model is able to much better incorporate
the divergence in the longitudinal electric field.

4.5 Self-consistent bubble border calculation

While the ODE (4.29) works very well for describing the bubble boundary in many cases,
solving it has the additional “challenge” that the initial conditions for rb, r′b have to be
obtained from PIC simulations. A much nicer way of solving this equation would be to
do it in a self-consistent manner, i.e. simply by specifying a driver analytically. We have
investigated this in [92].

Again, we start from the ODE for the bubble boundary (4.29) introduced in the previous
sections. In the approximation that the sheath electrons are ultra-relativistic, we have
∆ ≪ rb and ∆ ≫ r−1

b . In this case, we have β ≪ 1 and βr2b ≫ 1. The ODE can then be
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brought into the much simpler form

rb
d2rb
dξ2

+ 2

(︃
drb
dξ

)︃2

+ 1 = 2κ(ξ, rb) , (4.47)

where κ(ξ, r) = 2Λ(ξ, r)/r2. For a vanishing value of r, it follows from the definition of
Λ(ξ, r) that

lim
r→0

κ(ξ, r) = −ρB(ξ, 0) . (4.48)

The function ρB describes the charge density of the beams prevalent in the setup. From
our relativistic approximation we can infer that rb ≫ 1. Because of this, the equation
should be invalid where rb is close to zero. In the following, we describe why it is still
usable here.

For the region along the ξ-axis where no bunches are present, we are able to define a first
integral of the simplified ODE, namely

I0(ξ) = π
r4b
16

[︄
1 + 2

(︃
drb
dξ

)︃2
]︄
= π

R4
b

16
= const. , (4.49)

where in the last step we have used that the bubble has a maximum radius of rb = Rb

and at that position r′b vanishes. In the case that κ ̸= 0, the integral becomes

dI0
dξ

=
π

2
r3b
drb
dξ

κ(ξ, rb) . (4.50)

Integrating the equation above and taking into account that

Ez(ξ) =
rb
2

drb
dξ

, (4.51)

we obtain

I0(ξ)− I0(ξ0) = −2π

∫︂ ξ

ξ0

∫︂ rb

0

Ez(ξ
′)ρB(ξ

′, r′)r′ dr′dξ′ . (4.52)

The expression on the right-hand side approximately corresponds to −
∫︁
jB ·E dV , i.e. the

power of the energy exchange between the bubble’s electric field and the bunch between
ξ0 and ξ. This means, that I0 can be understood as a measure of energy density in
the bubble. For example: for the witness beam and an accelerating field Ez < 0, I0
decreases with ξ. The interpretation of this is that the energy of the bubble is expended
on acceleration. By comparison, for Ez > 0, ξ increases, i.e. the driver pumps the bubble.
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If we introduce the local effective size of the bubble,

Reff(ξ) = 2 (I0/π)
1/4 , (4.53)

and use dimensional values, we obtain

I0 =
m2c5

4πe2
(kpReff)

4

16
. (4.54)

We can further see that

I0(ξ)− I0(ξ0) = P = −
∫︂

j · E dV , (4.55)

i.e. I0 is a power (of the energy loss by the driver or the maximum possible acceleration
power achievable, respectively).

Going back to the ODE, we had remarked that a numerical solution from rb = 0 is difficult
since then the second derivative diverges. In order to circumvent this, we substitute

ψξ(ξ) =
r2b (ξ)

4
. (4.56)

This removes the divergence while not introducing a zero-solution into the equation.
Substituting in the ODE yields

d2ψξ

dξ2
+

1

2ψξ

(︃
dψξ

dξ

)︃2

= κ(ξ, 2
√︁
ψξ)−

1

2
. (4.57)

We now have to define initial conditions to fix the problem of excitation. Since rb(ξ0) = 0,
we set ψξ(ξ0) = 0. Further, we assume that drb/dξ, which means that the solution emerges
at an angle of zero from the axis (this assumption is valid for driver with a longitudinal
density growing continuously from zero). Together with the substituted ODE, we get the
initial conditions

ψξ(ξ0) = 0 ,
1

ψξ

(︃
dψξ

dξ

)︃2 ⃓⃓⃓
ξ0=0

= 0 . (4.58)

Our substituted variable ψξ is defined as positive. Thus, the right-hand side of the ODE
needs to be positive as well. In turn, it follows that bubble excitation may only occur for

κ(ξ, 0) = |ρB(ξ, 0)| >
1

2
. (4.59)

Generally, the solution of this ODE still needs to be obtained numerically. Having calcu-



4.6. POSITRON ACCELERATION IN A TWO-FOLD PLASMA COLUMN 37

lated ψξ(ξ), the other quantities are related via

rb = 2
√︁
ψξ ,

drb
dξ

=
1√︁
ψξ

dψξ

dξ
, Ez =

dψξ

dξ
, (4.60)

I0(ξ) = πψ2
ξ

[︄
1 +

2

ψξ

(︃
dψξ

dξ

)︃2
]︄
. (4.61)

Comparing to PIC simulations, we find that the bubble size is somewhat larger than
expected but that the electric field is better described by the self-consistent model than
solving from the bubble center. Further, the effect of driver density is the following: Since
for weak drivers the assumption rb ≫ 1 does not hold, the agreement to PIC simulations
is inadequate and our model predicts a spherical bubble instead of the physical, elongated
form (not shown here). Increasing the driver density yields much better correspondence
between the model and simulations, as the assumption now holds for a significant part of
the bubble. Thus, we are able to describe bubble shape and accelerating field only using
the driver’s properties. In the publication [92], we further show an analytical solution
to a specific, cylindrical driver which will be left out for reasons of brevity. As stressed
before, for general drivers, we still need to solve the ODE in a numerical manner. From
the obtained solutions we can also derive scaling laws for I0, as well as the optimal plasma
density and deceleration length for a driver of a certain charge and length. Additional,
future work could consider the creation of models for positron or proton drivers which
are not described correctly by our model due to the different excitation physics. A model
describing LWFA in a self-consistent manner would be of interest as well.

4.6 Positron acceleration in a two-fold plasma column

While for electrons a beneficial region for acceleration in the wakefield structure is obvious,
the same is more problematic for positrons. Due to their opposite charge, the positrons
cannot be accelerated by the same field region in the bubble as the electrons were. The
accelerating region for positrons is at the front of the bubble. However, a strong focusing
field is missing there, thus preventing any proper acceleration from happening. In recent
years, several setups for improved positron acceleration have been proposed. Some use
donut-shaped electron drivers in order to create a proper region [93], others use drive
bunches comprised of positrons or hollow plasma targets [94–96]. By Diederichs et al. a
setup consisting of a finite-width plasma column has been proposed [97–100]. The electron
driver creates a wake as usual, but the radius (and accordingly the fields) change due to
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Figure 4.4: Three-dimensional schematic of the setup for positron acceleration. The
particle driver (orange) expels electrons (blue). The second column is ionized by the
ultra-short laser pulse (magenta). The positron ring (red) is placed in the back where the
equilibrium line is found. Source: [101]. © American Physical Society. Reproduced with
permission. All rights reserved.

the fact, that for bubble radii exceeding the column width a different restoring force is
acting. In turn, the bubble shape is changing. This acceleration mechanism was proven to
be rather beneficial for positron acceleration, but some effects like driver evolution were
disregarded in the first PIC simulations.
We have proposed further modification of this setup for a stronger focusing [101]. In
our setup, we use two drivers that ionize a two-fold column structure: First, an electron
driver ionizes a first column of radius r1. With some delay, an ultra-short, weak laser pulse
ionizes a second, wider (r2 > r1) column. Together, they form a structure like it is shown
in Figure 4.4; the corresponding electromagnetic fields can be seen in Figure 4.5. Instead
of a Gaussian positron witness beam, we will place a ring beam in the region where the
focusing force vanishes (from now on referred to as the “equilibrium line”). We will see in
our analytical model that this position coincides with the strongest accelerating field for
that specific radial position.
In order to study our proposed scheme numerically, we use the quasi-static PIC code
qv3d of our group. The advantages of quasi-static codes have been discussed in section
3.4. The simulation domain is of the size 16 × 20 × 20k−3

p , where kp = 2π/λp is the
plasma wave number. In the following, we use λp = 75 × 10−4 cm. The grid size is
hx = hy = hz = 0.05k−1

p (note that for these simulations with qv3d a Maxwell solver
based on the Fourier transform, not RIP, was used).
Initially, the box is filled with unionized Hydrogen gas with density n0 = 2× 1017 cm−3.
The Gaussian-shaped electron driver propagates in z-direction and has dimensions σz =
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Figure 4.5: Results of PIC simulations for the laser-augmented blowout scheme. For
better visibility, a laser pulse with only w0 = 17 µm is used (the later setup uses w0 =
125 µm). Left: The electron density, clipped at 10n0 exhibits a fork-like structure. The
parameters r1, r2 are referred to in the analytical derivation. Middle/Right: the position
of the positron ring coincides with the equilibrium line of the focusing force as well as
with the maximum accelerating gradient. The positron ring position is denoted by the
magenta/black dots. Source: [101]. © American Physical Society. Reproduced with
permission. All rights reserved.

12 µm, σx = σy = 2.4 µm. It has a peak density of 20n0 and the electrons have an initial
momentum of pz = 104mec with 5% longitudinal spread. The electron driver ionizes
the first, smaller plasma column and excites a wakefield. The structure of this wakefield
deviates from the wakefield in homogeneous density; the exact structure will be described
more extensively in the analytical part.

The laser pulse for ionizing the second, wider column is circularly polarized, has a duration
of τ0 = 4.5 fs and a wavelength of λL = 400 nm. In order to obtain a Rayleigh length
in the cm range, we choose a focal spot size of w0 = 125 µm. As the pulse is needed
for the ionization of the second column, a normalized laser vector potential of a0 = 0.025

suffices. A pulse like this could be created at the LWS-20 laser which has 16 TW peak
power and 70-75 mJ pulse energy [102]. The usage of other radii is also possible: in
Fig. 4.5, we show the simulation results for a w0 = 17 µm pulse, although here only for
better visibility of the fork-like structure. Smaller focal spots, however, come at the cost
of a smaller Rayleigh length. Similarly, increasing the pulse length to avoid the ultra-
short regime is possible, but will introduce an unwanted curvature of the ionization front.
Ultra-short pulses further come with the indirect advantage that, due to the typically
used optical parametric chirped-pulse amplification frontends, ionization from pre-pulses
is reduced. We will therefore stay with the duration of 4.5 fs and waist of 125 µm.

For the description of the pulse, the envelope model is used. Tunnel ionization is incor-
porated according to the references [103, 104]. We further consider the refraction of the
laser pulse over the course of the simulations which will be of interest for the stability
discussion later on.
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Right behind the electron driver, the field structure is similar to blowouts in homogeneous
plasma. But, because only a narrow part of the gas is ionized, the fields extend over a
comparatively greater distance. Looking at the focusing force Er − Bφ in the region
ξ = (5 − 7)k−1

p , we see a white line corresponding to a vanishing force (Fig. 4.5). This
region is beneficial for positron acceleration as positrons on this line will be held there by
the surrounding field, while experiencing a new maximum accelerating field Ez. Therefore,
we will place the positron ring at this position. The density of the positron ring is varied
in the range (1 − 80)n0 for the various simulation runs. In all simulations, the initial
radius is 6 µm with a thickness of 1 µm. The momentum of the positrons is pz = 104mec.
Similarly structured positron beams could be created like the hollow electron beams from
Laguerre-Gaussian modes in [105, 106].

In the following we will derive the analytical model in order to describe this laser aug-
mented blowout (LAB) scheme.

4.6.1 Analytical model

We consider a plasma in the quasi-static approximation (with ξ = t− z) with the config-
uration

ρe(0, r) =

⎧⎨⎩−1 , r1 < r < r2

0 , else
, ρi(ξ, r) =

⎧⎨⎩1 , r < r2

0 , else
. (4.62)

Ions in the area [0, r1] begin to attract outer electrons, and a wakefield is created for ξ > 0.
Ions are considered immobile. The general derivation procedure is similar to [87]. The
position ξ = 0 denotes the point where the laser pulse ionizes the plasma ring r1 < r < r2.

As the problem has axial symmetry, such a wakefield can be described by the wakefield
potential ψ and the azimuthal magnetic field Bφ:

ψ = ψ0(ξ)−
∫︂ r2

r

dr′

r′

∫︂ r′

0

r′′(jz − ρ) dr′′ , (4.63)

Bφ =
1

r

∫︂ r

0

[︃
jz +

∂ψ

∂ξ2

]︃
r′ dr′ . (4.64)

The electric field components can be derived via

Ez =
∂ψ

∂ξ
, Er = −∂ψ

∂r
+Bφ . (4.65)

The value of ψ0(ξ) represents some electrons which have been ejected to r ≫ r2 and which
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generate a wakefield. The electrons in the wakefield have a conserved Hamiltonian which
leads to the equation

γ − ψ − pz = 1− ψ(0, r0) , γ =
√︁

1 + p2r + p2z . (4.66)

The initial distribution of the wakefield potential is

ψ(0, r) =

⎧⎨⎩ψ0(0) +
r21
2
ln
(︁
r2
r

)︁
, r1 < r < r2

ψ0(0) +
r21
2
ln
(︂

r2
r1

)︂
+

r21−r2

4
, r < r1

. (4.67)

Electrons satisfy the equations of motion

dpr
dt

=
∂ψ

∂r
+ (pz − 1)Bφ ,

dr

dt
=
pr
γ
, (4.68)

dpz
dt

= −∂ψ
∂ξ

− prBφ ,
dξ

dt
= 1− pz

γ
. (4.69)

In the following, we will present two approximations for the transverse motion; once in
the relativistic case and once for the non-relativistic, small-amplitude case. From the
latter we will obtain the electromagnetic fields of the structure and the corresponding
equilibrium lines.

Transverse motion approximation (relativistic case)

We assume that both the longitudinal derivative ∂ψ/∂ξ of the wakefield potential and the
azimuthal magnetic field Bφ can be neglected. In this case, we have pz = 0, ξ = t and the
electron motion is described by

dpr
dξ

=
∂ψ

∂r
,

dr

dξ
=
pr
γ
. (4.70)

Since the current density jz = 0 vanishes, we are able to write

∂ψ

∂r
= −1

r

∫︂ r

0

r′ρ(ξ, r′) dr′ = −r
2
− 1

r

∫︂ r

0

r′ρe(ξ, r
′) dr′ . (4.71)

For an electron with initial coordinate r0, if inner and outer electrons never cross its
trajectory, the value
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∫︂ r

0

r′ρe(ξ, r
′) dr′ = −r

2
0 − r21
2

= const. (4.72)

Thus, its equation for pr becomes

dpr
dξ

= −r
2
+
r20 − r21
2r

. (4.73)

This motion corresponds to the potential

V (r) =
r2

4
− r20 − r21

2
ln
r

r0
. (4.74)

We introduce the short-hand δr := r − r0 and thus rewrite the equation to

dpr
dξ

= − r21
2r0

− δr

2

(︃
1 +

r20 − r21
r0(r0 + δr)

)︃
. (4.75)

Transverse motion approximation (non-relativistic small-amplitude case)

Let us assume that |δr| ≪ r0 and that the electron motion is non-relativistic. Then we
can neglect the non-linear term in δr and get

d2δr

dξ2
= − r21

2r0
− δr

2r20 − r21
2r20

. (4.76)

The solution with initial conditions δr(0) = 0, dδr/dξ(0) = 0 is

δr = − r21r0
2r20 − r21

[︄
1− cos

(︄√︄
1− r21

2r20
ξ

)︄]︄
. (4.77)

The condition of applicability of this model is

2r21r0
2r20 − r21

≫ r0 , r0 ≫
√︃

3

2
r1 . (4.78)

Under these conditions we can also neglect r1 in the equations of motion and obtain the
simpler equation

δr = − r21
2r0

(1− cos ξ) . (4.79)

The amplitude of oscillations decreases with r0, thus trajectory crossing never happens.
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Let us now assume that this solution is valid for all electrons in the range [r1, r2]. In this
case, for a particular value of ξ, all electrons are located between

rmin = r1(1 + cos ξ) , rmax = r2 −
r21
2r2

(1− cos ξ) . (4.80)

In this range, the electron density can be found as

ρe(ξ, r) = −r0(ξ, r)
r

∂r0
∂r

(ξ, r) , (4.81)

where r0(ξ, r) is the initial coordinate of the electron which ended at the point (ξ, r). This
function can easily be calculated as

r0(ξ, r) =
r +G(ξ, r)

2
,

∂r0
∂r

=
r +G(ξ, r)

2G(ξ, r)
, (4.82)

where we have introduced the function

G(ξ, r) =
√︂
r2 + 2r21(1− cos ξ) . (4.83)

Thus, the density becomes

ρe(ξ, r) =

⎧⎨⎩− [r+G(ξ,r)]2

4rG(ξ,r)
, rmin < r < rmax

0 , else
. (4.84)

Using ρe(ξ, r), we can calculate the distribution of the potentials. First,

Er = −∂ψ
∂r

=
r

2
+

1

r

∫︂ r

0

r′ρe(ξ, r
′) dr′ =

r

2
+

1

r

∫︂ r0(ξ,r)

0

ρe(0, r0)r0 dr0 . (4.85)

There are four areas for Er, namely

Er(ξ, r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r
2
, r < rmin(ξ, r)

r
2
− r20(ξ,r)−r21

2r
, rmin(ξ, r) < r < rmax(ξ, r)

r
2
− r22−r21

2r
, rmax(ξ, r) < r < r2

r21
2r
, r > r2

. (4.86)
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Using the calculated Er, we can also calculate the potential ψ,

ψ(ξ, r) =

∫︂ r2

r

Er(ξ, r
′) dr′ . (4.87)

Here, we assume that the potential is equal to zero at r2. The resulting wakefield in the
different regions then becomes

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r22−r2

4
− r22−r21

2
ln
(︂

r2
rmax

)︂
− r2max−r2min

8

+
2r21(1+cos ξ)

8
ln
(︂

rmax

rmin

)︂
− GI(ξ,rmax)−GI(ξ,rmin)

4
, r < rmin

r22−r2

4
− r22−r21

2
ln
(︂

r2
rmax

)︂
− r2max−r2

8

+
2r21(1+cos ξ)

8
ln
(︁
rmax

r

)︁
− GI(ξ,rmax)−GI(ξ,r

4
, r < rmin < r < rmax

r22−r2

4
− r22−r21

2
ln
(︁
r2
r

)︁
, rmax < r < r2

r21
2
ln
(︁
r2
r

)︁
, r > r2

. (4.88)

Here, we define

GI(ξ, r) =

∫︂
G(ξ, r) dr =

rG(ξ, r)

2
+ r21(1− cos ξ) ln[r +G(ξ, r)] . (4.89)

The accelerating field Ez can be calculated easily via the Panofsky-Wenzel theorem [107],
which states that

∂Ez

∂r
=
∂Er

∂ξ
. (4.90)

Therefore, we first obtain

∂Er

∂ξ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , r < rmin(ξ)

− [r+G(ξ,r)]r21 sin ξ

4rG(ξ,r)
, rmin(ξ) < r < rmax(ξ)

0 , r > rmax(ξ)

(4.91)

and then integrate Ez =
∫︁ r2
r
∂Er/∂ξ dr, yielding

Ez =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− r21 sin ξ

4
ln
[︂√︂

r2(r1−rmin)
r1(r2−rmax)

rmax

rmin

]︂
, r < rmin(ξ)

− r21 sin ξ

4
ln
[︂√︂

r2(G−r)
(G+r)(r2−rmax)

rmax

r

]︂
, rmin(ξ) < r < rmax(ξ)

0 , r > rmax(ξ)

. (4.92)
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We will compare the analytically obtained fields with PIC simulations, but will first
calculate the equilibrium lines.

4.6.2 Equilibrium lines

Let us find the line req(ξ) at which Er turns to zero. There are two such places, the first
one is between rmin(ξ) and rmax(ξ) and is determined by

r2 − r20(ξ, r) + r21 = 0 . (4.93)

To solve this equation, we solve it against r0 by introducing

r = r0 −
r21
2r0

(1− cos ξ) , (4.94)

where we have used the definitions (4.82) and (4.83). Then, we get

r20 − r21(1− cos ξ) +
r41
4r20

(1− cos ξ)2 − r20 + r21 = 0 , (4.95)

r0 =
r1

2
√− cos ξ

(1− cos ξ) . (4.96)

First, we see that the solution can only exist if cos ξ < 0. Secondly, r0 is limited by the
values of r1 and r2. The condition that r0 ⩾ r1 is always true, but r2 imposes another
limitation on ξ,

− cos ξ >

(︄
r2
r1

−
√︄
r22
r21

− 1

)︄2

, (4.97)

or, if we solve for ξ,

arccos

⎡⎣−(︄r2
r1

−
√︄
r22
r21

− 1

)︄2
⎤⎦ < ξ < 2π − arccos

⎡⎣−(︄r2
r1

−
√︄
r22
r21

− 1

)︄2
⎤⎦ . (4.98)

If r2 is sufficiently large, this region will be close to the interval [π/2, 3π/2]. The equilib-
rium line is

req = r1
1 + cos ξ

2
√− cos ξ

. (4.99)
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It is convenient to linearize Er around this line. To do so, we write

∂Er

∂r
(ξ, req) = − 4 cos2 ξ

(1 + cos ξ)(1− 3 cos ξ)
. (4.100)

The focusing gradient can be arbitrarily large for small r. We can also calculate Ez along
the equilibrium line. First of all, we calculate

G(ξ, req) = r1
1− 3 cos ξ

2
√− cos ξ

. (4.101)

In this case,

G(ξ, req)− req = r1
−2 cos ξ√− cos ξ

, G(ξ, req) + req = r1
1− cos ξ√− cos ξ

. (4.102)

Then, the longitudinal electric field Ez becomes

Ez,eq(ξ) = −r
2
1 sin ξ

4
ln

[︃ −4 cos ξ

1− cos2 ξ

r2rmax

r21

]︃
(4.103)

= −r
2
1 sin ξ

4
ln

[︃ −4 cos ξ

1− cos2 ξ

r22
r21

− 2 cos ξ

1 + cos ξ

]︃
. (4.104)

The distribution is symmetrical with respect to ξ = π. The equilibrium line itself does
not depend on the value of r2, but the accelerating field does. Thus, if the highest
possible accelerating gradient is wanted, r2 should be increased. The field scales as Ez,eq ∝
ln(r2/r1), so the scaling is comparatively weak. Further, the scaling is only valid until r2
reaches the radius at which the electrons expelled by the driver are.

4.6.3 Simulation results

If we compare the fields obtained analytically with the ones from PIC simulations, we can
see that they are in good agreement (cf. Fig. 4.6). Along the dashed-dotted line showing
the equilibrium line req(ξ) the positron ring can be accelerated. Since req stays close to
rmin, the acceleration occurs in almost the maximum field possible.

We also observe that the simulation field structure is not symmetric. The structure
from our model, however, is since we neglect that the real oscillation period of electrons
depends on their initial radial position. Taking this into account, the fit between analysis
and simulations can be improved even further.

In order to understand the effect our scheme has on beam quality, we consider the nor-
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Figure 4.6: Comparison of the PIC simulation results with the analytically obtained
radial field Er. The dashed-dotted line corresponds to the equilibrium along which the
positrons are accelerated. The color inversion between the two half planes is due to the
(anti-)symmetry of the fields around x = 0. The vertical line at ξ ≈ 5k−1

p in the PIC
results stems from the fields of the witness beam. Source: [101]. © American Physical
Society. Reproduced with permission. All rights reserved.

malized root-mean-square (rms) emittance, which is defined as

ϵx =
1

mec

√︁
⟨x2⟩⟨p2x⟩ − ⟨xpx⟩2 (4.105)

or with y, py for ϵy. The operator ⟨·⟩ denotes the second central moment of the positron
distribution. The emittance of the witness beam increases over the course of the simulation
(cf. Fig. 4.7). In the beginning ϵx and ϵy grow almost the same, but after approx. 104T0

a significant difference can be seen. Towards the end of the simulation the slope of both
curve flattens around a “saturation point” ϵx ≈ 36 µm, ϵy ≈ 27 µm. The difference
between the two curves seems to indicate the presence of some plasma instabilities.
Additionally, we perform two separate simulations where we displace the positron ring ei-
ther by one transverse or one longitudinal cell initially. The transverse shift only has minor
effects on the final emittance, while a longitudinal displacement shows a more pronounced
increase. Even stronger mismatching of the positron ring size with the plasma setup can
even lead to the defocusing and loss of positrons besides the increase in emittance. The
presented emittance values cannot directly be compared to typical Gaussian-shaped wit-
ness beams due to the inherently different geometry.
The accelerating gradient and the focusing force is shown in Fig. 4.8. The Ez commonly
known from wakefield acceleration can bee seen; the gradient is Ez ≈ 38 GV/m. Changing
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Figure 4.7: Emittance evolution for a 1n0 positron ring (top). The bottom plot shows
the final momentum spectrum after 2 × 104T0. Source: [101]. © American Physical
Society. Reproduced with permission. All rights reserved.

Figure 4.8: Accelerating (top) and focusing (bottom) field for simulations without a
witness beam and with a 10n0 witness beam. The lineouts are taken at the positron
ring’s initial location (dashed lines). The larger-scale behaviour of the fields is shown in
the insets. Source: [101]. © American Physical Society. Reproduced with permission.
All rights reserved.
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the density and/or the dimensions of the witness beam can lead to flattening of the
accelerating field in the surrounding area (see the difference between the lines with and
without witness beam).

For a positron ring with 10n0, we are able to accelerate approx. 15 pC of positrons, while
the driver has a charge of ndriver ≈ 670 pC. After an acceleration over a distance of 24
cm, the mean energy of the witness beam is in the range of 10 GeV. The final energy
spread is 1.7% (cf. Fig. 4.7). Up to 60 pC of witness beam can be accelerated with
this structure; even higher densities lead to beam loading and loss of charge over time.
Further, emittance and energy spectrum will be worsened.

For the stability and feasibility of the scheme, several other factors need to be discussed.
Firstly, dephasing between the laser pulse and the witness bunch could potentially limit
the achievable acceleration length. Our consideration of laser refraction throughout the
simulations is in good accordance with analytical estimates. The laser group velocity can
be approximate as vgr ≈ 1 − n0/(2ncr). For typical lasers with a wavelength of 800 nm
this would correspond to a slip back of the laser by 1.8k−1

p over the acceleration distance
of 24 cm (assuming that the positron bunch moves with vz ≈ c). Accordingly, the entire
field structure would move backwards with the laser, changing the equilibrium position for
transverse focusing to be closer to the central axis. Moreover, the ionization front exhibits
increases curvature over time. Both of the mentioned effects will increase emittance and
could potentially destroy the ring structure altogether after some time. Going to the
shorter wavelength of 400 nm used in simulations, we can improve on the slippage and
thus on the scheme’s stability.

Another effect to be considered is ionization defocusing due to the transverse plasma
profile. Gibbon has derived that this effect becomes important if the condition

n0

ncr

>
λL
πzR

(4.106)

is fulfilled [46]. Here, zR denotes the Rayleigh length. In the case of our simulations,
ionization defocusing would generally need to be considered. However, the LAB scheme
does not rely on very strong fields or small spot sizes (recall that w0 = 125 µm), so
the effect would not be too detrimental in our use case. The laser only needs to be
strong enough to ionize the second column with the larger radius r2 ≫ r1. If, in the case
of ionization defocusing occurring, the width of the second column would increase, this
would even be beneficial for acceleration (cmp. Eq. (4.104)).

Beam head erosion is another effect that could be detrimental to the scheme: over the
course of propagation, the driving beam ionizes the gas, leading to an eroded head. As
shown by Li et al., the rate with which the ionization front moves back over time depends
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on several factors, including the gas species and the Lorentz factor of the bunch [108].
Some options for the mitigation are given by An et al., e.g. decreasing the driver’s
emittance or using a gas with lower ionization threshold [109].

One last effect we might need to consider is the delay of electron driver and laser pulse.
However, simulations where the delay is changed, show that it does not affect the scheme
too much since the initial bubble fields are not too important for the positron dynamics.

In total, the LAB scheme is able to accelerate positrons over distances of tens of centime-
ters even when considering potentially detrimental effects like driving beam evolution and
laser refraction.

4.7 Structured witness beams

Up to now we have mainly been interested in the shape of the blowout boundary and
the corresponding fields. Only in the case of our positron setup, we have investigated
the evolution of the witness beam. We have, however, not looked at the microscopic
structure of the witness beam more closely. We know from the theoretical results that
the bubble/blowout fields act focusing, i.e. ideally all of the particles would be confined
to a singular point. This is obviously not the case. One of the counter-acting effects is
the repelling Coulomb interaction between the electrons of the witness beam. In thermal
equilibrium, both of these effects together should lead to a periodic structure of the
electrons which is called a Wigner crystal in solid-state physics [110]. Structures like this
have been proposed for conventional rf-based ring accelerators [111] and more recently
also for wakefield accelerators. In the original publication by Thomas et al. [112], the
equilibrium structure in the witness beam has been determined taking into account the
retarded Liénard-Wiechert potentials of the electron interaction. There, however, a Taylor
expansion in v/c was used which assumes that the electron velocity is small compared to
the speed of light. This is generally not the case for accelerated electrons and was fixed
in subsequent publications whose results we shall briefly summarize in the following.

4.7.1 Equilibrium slice model

In the first follow-up publication [113] to the results by Thomas et al., the Lagrangian
of a particle in electromagnetic fields known from standard literature like [114] together
with simple wakefield of [61] was used as a basis for the description. If we assume that the
term describing the interaction of the electrons is only a perturbation, we can calculate
the Hamiltonian from the Lagrangian by simply changing the signs of the contributions.
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The Hamiltonian is found to be

H =
n∑︂

i=1

[︄
γi + qiψ(ri)− pi,z +

∑︂
i>j

(︃
1− pi,zpj,z

γiγj

)︃
qiφij

]︄
, (4.107)

where ψ is the wakefield potential and φij is the scalar Liénard-Wiechert potential between
particles i and j. Variables with index j are given at the retarded time tj = t − |ri(t) −
rj(tj)|. If we want to find the energetic minimum of the system, we can use the gradient
of the Hamiltonian

∇i⊥H =
1

2

(︃
xi,0
yi,0

)︃
+
∑︂
j ̸=i

(︃
1− pi,zpj,z

γiγj

)︃
∇i⊥φij

−
∑︂
j ̸=i

φij

[︃
pi,z
γi

(︃
∂

∂pj,z

pj,z
γj

)︃
∂pj,z
∂tj

∇i⊥tj +
pj,z
γj

∇i⊥
piz
γi

]︃
, (4.108)

where ∇i⊥ = ex∂xi
+ ey∂yi . The derivatives of the retarded time are found numerically.

The equilibrium structure was found by using the method of steepest descent which we
will further explain in the scope of our research in the following. It was found that the
electrons in the 2D model will form a hexagonal lattice which is the closest sphere packing
in two dimensions [115]. This is to be expected from the 2D setup, as the electrons all
are placed on the same ξ-position, i.e. most of the relativistic effects can be neglected.
Since the crystalline structure is hexagonal, but the bubble is spherical, some transition
between the different geometries must be found. This is done by introducing so-called
topological defects into the structure, where the number of nearest neighbours is changed
from the usual six. A more extensive discussion of these defects in general can be found
in [116].

4.7.2 Force equilibrium model

Instead of the Hamiltonian-based equilibrium slice model, we can also choose to look at the
equilibrium between the focusing bubble force and the repelling Coulomb interaction. The
fact that this alternative description is possible was already discussed by us in [117, 118].
The force can be written in terms of the Lagrangian as

dpi

dt
=

d

dt
∇vi

L = ∇riL . (4.109)
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Now, we may split the expression into two parts, one describing the external force, the
other the Coulomb interaction:

d

dt
pext,i = ∇riLext,i +∇riLC,i −

d

dt
pC,i , (4.110)

d

dt
pC,i = ∇riLext,i . (4.111)

Finally, the force can be written as

Fi =
d

dt
pext,i −

qi
c

d

dt
A(ri) +

(︃
∇ri −

d

dt
∇vi

)︃
LC . (4.112)

The first two terms in Eq. (4.112) correspond to the Lorentz force of the external fields
acting on the particle, whereas the last term describes the force from interaction with
other particles. As a basis for the retarded Coulomb interaction we will again have to use
the Liénard-Wiechert potentials

Φ(x, t) =

[︃
e

1− β · n

]︃
ret

, A(x, t) =

[︃
eβ

1− β · n

]︃
ret

(4.113)

as the base of our calculations. Following the standard derivation by Jackson [119], we
are able to find that the electromagnetic fields due to Liénard-Wiechert potentials equate
to

E(x, t) = e

[︃
n− β

γ2(1− β · n)3R2

]︃
ret

+
e

c

[︄
n× ((n− β)× β̇)

(1− β · n)3R

]︄
ret

, (4.114)

B(x, t) = [n× E]ret . (4.115)

Here, the index “ret” denotes that the variables are given at the retarded time. The vector
n is the unit vector pointing from the source charge to the observer and R is their distance.
Similarly to the Hamiltonian approach, we will iteratively minimize the force on all the
particles to obtain the equilibrium solution. It is found that in two spatial dimensions the
hexagonal Wigner crystals persist, while in three dimensions the structure differs from
classical (i.e. non-relativistic) close-packing of spheres: due to the relativistic effects in
ξ the electron bunch is elongated in that direction. For a small number of particles, a
single filament in ξ-direction can be observed. Increasing the particle number, not all
particles fit into a single line for energy minimization, thus evading to other directions;
the filament becomes somewhat helical. Further increasing the number of electrons leads
to an “explosion” of the filament and the creation of an ellipsoidal shell. This process
repeats for even more electrons and higher shells are being created. A full description of
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this behaviour and the main influencing parameters is given in the works [117, 118].
The equilibrium configuration is found using the resilient backpropagation (abbrv. Rprop)
algorithm. This algorithm works in a similar fashion to the method of gradient descent.
In gradient descent, the gradient of the function to be minimized tells us the direction of
steepest ascent; going in opposite direction thus leads us closer to the minimum value of
the function. This process is done iteratively, i.e.

X(k+1) = X(k) − α(k)∇f (k) , (4.116)

where X(k) denotes the position vector at the k-th step and α(k) is the step size for that
given iteration. The step size needs to be chosen carefully, as smaller steps take a long
time to lead to convergence, while larger steps could “jump” over a minimum. In Rprop,
the step size is chosen via

α(k+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(α(k)η+, αmax) if ∇f (k) · ∇f (k−1) > 0

max(α(k)η−, αmin) if ∇f (k) · ∇f (k−1) < 0

α(k) else

. (4.117)

Here, η+ = 1.2, η− = 0.5, αmax = 50 and αmin = 10−6 are the standard values which
have been proven to deliver good results for a variety of problems [120]. It is further not
guaranteed that the algorithm actually finds the global minimum of the problem, but
rather one of several local minima.
This can further be investigated by adding small, random steps to the position vectors.
Common methods are i.a. the Metropolis algorithm and simulated annealing [121, 122],
where random steps (following some probability distribution function) are added at any
iteration. This allows the function value to briefly worsen, get out of local minima, and
reach the global minimum in the long run. For the case of structured witness beams,
it was found in [117], that the structures found here actually correspond to the global
minimum.

4.7.3 Effects of finite emittance

In the previously mentioned publications the electrons only carried momentum in ξ-
direction, meaning that the beam’s emittance would vanish completely. This does not
give a physical picture: beams in experiment always exhibit some emittance which should
generally be small for the best results in different applications. For the subject of the
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structured electron bunches the question arises, whether finite emittance will destroy the
periodic structure or whether it is able to persist.
Thus in a separate publication, the same model of [118] was used but for electrons that
carry small, random momenta δpx, δpy in the transverse direction. The mean value and
standard deviation were varied in order to see at which range significant perturbations
become apparent.
In the following, we define the normalized emittance as

ϵ =
p⊥
p∥
βγδ . (4.118)

Here, p⊥, p∥ denote the maximum transverse and longitudinal momentum of the electron
distribution, δ is the witness beam’s transverse diameter. As before, β = v/c refers to the
normalized particle velocity and γ to the corresponding Lorentz factor.
We implement finite emittance by considering anN -electron ensemble of which all the par-
ticles have the same longitudinal momentum p∥ (i.e. in the propagation direction). In the
transverse direction, we give a Gaussian distribution of the momenta. This distribution
will be centered around µp⊥ = 0 MeV/c and has a standard deviation of σp⊥ .
Throughout the simulations, we vary p⊥/p∥ in the range of zero (no emittance, cold beam)
to 10−2. Momentum in the longitudinal direction is fixed to p∥ = 10 MeV/c.
The plasma wavelength is kept at λp = 10−4 m. For a 1 nC electron bunch, the emittance
would be in a range of up to ϵ = 2× 10−5 mm rad.

Figure 4.9: Electric field for a single electron moving in ξ-direction as seen by a test
charge in dependence of the transverse emittance. (a) shows the case of zero/ultra-
low emittance. (b) Increasing the emittance yields a change in the field structure, that
becomes even more pronounced at higher emittance (c). Source: [123]. © Cambridge
University Press. Reproduced with permission. All rights reserved.

Let us first look into a simple setup consisting of only a single electron in the beam
load with vanishing transverse emittance interacting with a test charge. The particle is
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accelerated in ξ-direction and has a velocity close to the speed of light. As in previous in-
vestigations, we need to consider the Liénard-Wiechert potentials: the information about
an electric field due to the presence of another electron needs to be transmitted. This
transmission is limited to the vacuum speed of light c. Therefore, the electric field shows
a cone-like structure. In Fig. 4.9, the logarithmic electric field in the x-y-plane is shown,
i.e. the particle is moving in or out of the plane. This is why we only see one bright
central dot in the case of zero/ultra-low transverse emittance: we are looking directly at
the top of the cone (a). Introducing some tranverse momentum component in, the cone
is tilted to the side due to the radial components in (b), (c). We are now able to see the
cone shape in the cross section. Further, the cone widens, which also leads to a widening
of the whole beam structure once multiple electrons are being considered.

Figure 4.10: Equilibrium distribution for N = 100 electrons using different emittance
((a)-(c): low to high). For higher emittance values the distribution slowly starts to break
up. Source: [123]. © Cambridge University Press. Reproduced with permission. All
rights reserved.

Now, we will investigate the effect of emittance on a structure of N = 100 electrons more
deeply (cf. Fig. 4.10). For the lowest emittance of p⊥ ≈ 10−5p∥ (frame (a)), the structure
is basically indistinguishable from the case of zero emittance: We observe that the central
filament is split up into two parts. This is not a consequence of the finite emittance, but
rather of the amount of electrons that the prevalent forces try to fit into one structure.
As it cannot go into a single filament, it splits up (this is also the reason for the formation
of the electron shells for much larger N). Going to an increased p⊥ ≈ 10−4, we can see
some changes starting to occur (frame (b)). While we still see a similar structure to the



56 CHAPTER 4. WAKEFIELD ACCELERATION

previous case, the lines start to corrugate. This corrugation of the structure is to be
expected from the changes in the electromagnetic fields. Increasing the emittance even
further (e.g. to p⊥ ≈ 10−2p∥ in frame (c)), the structure starts to break apart. The one
feature of the original structure visibly persisting is the elongation in ξ-direction due to
it being the direction of acceleration.

In our parameter scan we observe that the broadening of the crystal structure is linear in
the emittance. This is clearly visible in Fig. 4.11 where we show the change in the mean
distance (note that the axis corresponding to the emittance is given in logarithmic form
there).

Figure 4.11: Mean distance in the equilbrium distribution in dependence of the emit-
tance. Source: [123]. © Cambridge University Press. Reproduced with permission. All
rights reserved.

The corrugation of the structure would prevent the application of it for high-brightness
gamma sources. However, the much higher number of particles in a physical system will
even out some of the effects: for one, the random radial momenta of many particles can
average out for the structure. Moreover, the different shells that arise for a larger amount
of particles will press together the ones inside it, further improving the structure. The
widening of the structure we have observed is similar to changing parameters like the
longitudinal momentum p∥, plasma wavelength λp or the particle number N like it was
done in our previous studies [113, 118]. A next step in the study of the witness beam’s
crystalline structure would be the investigation of its dynamics.
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Figure 4.12: Left: Structure on the image plate with opening angles α, β displayed. The
zoomed-in part shows the finer structure of the central spot for various pulse durations.
Right: Experimentally obtained energy spectrum for different temperatures. Source:
[124], licensed under CC BY 4.0.

4.8 Electron acceleration in clusters

Up to now, the setups we have looked at have consisted of a rather simple plasma target
like a homogeneous plasma. Even in the case of the positron setup, the target is simply
comprised of two plasma columns.
In a separate collaboration with the group of O. Willi, a more complicated target was
used [124]. The target consists of cryogenic Hydrogen which is pumped through a de
Laval nozzle. Depending on backing pressure, Hydrogen temperature and flow, Hydrogen
clusters of different sizes can be created. For a certain parameter set, the distribution of
cluster sizes can be approximated by a log-normal distribution (see [125–127] for more
details on the target).
This target now has several strong differences to the aforementioned ones: one big factor
is the highly localized density of the target. This means that figuring out whether a wake
can be driven (and particles trapped) is harder to figure out than in the homogeneous case.
Further, we will see some effects that we would not observe for simpler targets: a strong
laser pulse is able to rip out many (or all) of the cluster’s electrons, leaving behind an
ionic cluster. Due to Coulomb interaction, these clusters will explode (thus, this process
is aptly named Coulomb explosion). In the experiment, the ARCTURUS laser [128] was
used for the interaction with the Hydrogen clusters. Different parameter scans, varying
the pulse energy or the duration were performed. Further, different temperature and
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Figure 4.13: Opening angle α for the outer ring (a) and β for the central spot (b)
for different temperatures in the energy and pulse duration scan. Source: [124], licensed
under CC BY 4.0.

backing pressure of the cluster source were investigated. The spatial profile of accelerated
electrons was recorded using Imaging Plates (IPs). In all of the cases, a ring-shaped
structure was observed (cf. Fig. 4.12), while the additional central spot was only observed
for some choices of laser-plasma parameters. The electron energies obtained were < 15

MeV. Both the outer ring-structure as well as the opening angle of the central spot are
rather consistent throughout the E- and τ -scans (see Fig. 4.13) and no strong scaling can
be observed. This behaviour was to be explained using simulations.

For our fully electromagnetic PIC simulations, we choose a simulation domain of size
(100 × 46 × 46)λ3L that is moving with the laser pulse (λL = 800 nm). The resolution is
hx = 0.05λL, hy = hz = 0.1λL and ∆t = hx/c. The laser pulse parameters are based on
the experimental values, i.e. a0 = 6.84, w0 = 5 µm, τ = 30 fs. While longer (up to 100 fs)
and/or weaker pulses were considered in experiment, many of those parameter regimes
are computationally unwieldy for 3D-PIC.

In a first simulation, it is assumed that the clusters are placed periodically without any
homogeneous background. The distance between clusters is 3λL in any direction. This
value is approximated from the experimental electron density for 60 nm clusters. The
clusters are simulated as being one cell large and consisting of 104 electrons and 500
protons (macro-particles). The smaller number of particles per cell for protons is chosen
for reasons of computational effort. We inherently assume that the clusters have already
expanded to some extent here, and set the density to be accordingly lower at approx. 5ncr.
We consider the clusters as being already fully ionized. This further reduces computational
load while the electrons still can feel the potentials of the proton clusters. This target
extends over a length of 375λL. Focusing of the pulse is considered; the focal spot is in
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Figure 4.14: Simulations results for the laser pulse propagating through the cluster
ensemble after 300T0. (a) The laser pulse expels electrons from the clusters via pondero-
motive scattering, leaving behind a wakefield-like cavity. (b) Longitudinal momentum
and (c) py-pz phase space of the electrons (clipped for better visibility). Source: [124],
licensed under CC BY 4.0.

the middle of the interaction volume.

The laser pulse rips electrons from the clusters and expels them in the direction transverse
to its propagation. This leaves behind a cavity at the back of the laser pulse which is
reminiscent of a bubble in wakefield. However, only a very minor amount of electrons
is actually wakefield accelerated (see the region x < 250λL in Fig. 4.14b)). As the
accelerating gradient here is rather weak, no high-energy electrons are to be expected
from this acceleration mechanism here.

We can, however, see that most of the electrons are actually accelerated directly by the
laser pulse (see the phase space in Figs. 4.14b) and c)). Here, two mechanisms could
potentially be important: direct laser acceleration (DLA) and ponderomotive scattering.
For high-energy electrons from DLA, it is necessary that they stay in phase with the laser
fields for as long as possible; a discussion about relevant parameters is given by Jirka et al.
in [38]. In this simplified model it is, however, assumed that the plasma is homogeneous
and that it does not change over time. In our case, the inhomogeneities due to plasma
render this approximation useless. Further, the expected energies from DLA would by
orders of magnitude larger than what we observe in both the PIC simulations as well as
the experiment. For the simulations, we also see that the particles quickly lose their energy
again, i.e. they are not effectively accelerated over a longer period of time. This brings us
to the second possible process, ponderomotive scattering. This mechanism is due to the
ponderomotive force of the laser pulse directly pushing electrons outwards. The process
has been analytically considered in publications like [51] and [129]. Experimentally it was
first observed for energies up to a few keV by Monot et al. [130] and to about 100 keV by
Moore et al. [131]. Malka et al. have also used the process of ponderomotive scattering
for an explanation of electrons observed in the MeV range [132].
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From the analytical studies of this mechanism [51, 129], the following approximation for
the scattering angle is given: given an electron initially at rest, i.e. with γ ≈ 1, the angle
is

tan(θ) =

√︁
2(γ − γ0 − 1)/(1 + β0)

γ − γ0(1− β0)
. (4.119)

Here, β0 = v0/c is the normalized velocity as usual. If the electrons have not been
pre-accelerated, as it is the case in our simulations (the motion of the clusters should
be negligible by relativistic standards), the approximation β0 ≈ 0 can be made (and
accordingly γ0 → 1). This leads us to the simplified equation

tan(θ) =

√︃
2

γ − 1
. (4.120)

An approximation not visible from this equation itself we have to make for simplicity’s sake
is, that the electron is initially positioned on the central axis y = 0 and that it experiences
the maximum laser electric field in its focus. In the experiment, the outer ring-structure
was located at about 60◦-80◦. From equation (4.120), we get an energy range of 30 keV up
to 300 keV. We calculate the same for the central spot: there, the measured angles were
16◦ to 30◦, which yields energies of 3 MeV to 12 MeV. This fits the experimentally found
energy spectra quite well. Differences from experiment are likely to be explained i.a. the
positioning of the electrons with respect to the laser. As mentioned above, Eq. (4.120)
assumes the electrons to be on the central axis and in the laser focus. Both of these
assumptions are unlikely to be met by most of the electrons being scattered. Further,
in the experiment there will be some amount of plasma background and clusters present
whereas the formula is generally derived for acceleration in vacuum. The experimental
laser parameters will also be subject to shot-to-shot fluctuations.

For the maximum obtainable electron energy from ponderomotive scattering, another
equation from the publication [129] can be used:

γmax = γ0

[︃
1 +

a20(1 + β0)

2

]︃
. (4.121)

In case of our used parameters this would give γmax ≈ 24.4 which is in good agreement with
experimental and simulation data (cf. Figs. 4.12 and 4.15). We also look into the emission
angles for certain energy ranges in our PIC simulations. Ponderomotive scattering in the
simulations is almost completely radially symmetric which is to be expected from the
form of the ponderomotive force. In Figure 4.14c) the py-pz-plane for electrons with
1.1 ⩽ γ ⩽ 1.5 is shown. There, an additional feature along the line pz = 0 can be
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Figure 4.15: (a) Logarithmic energy spectrum of the electrons in the simulation box after
300T0. (b) Energy spectrum for the same time step. The blue line shows the distribution
of electrons with (20− 160) keV, while the red line shows the distribution of the (6− 12)
MeV electrons. The dashed lines correspond to angles of ±90◦. Source: [124], licensed
under CC BY 4.0.

observed. This stems for the laser’s linear polarization; if we consider circular polarization,
this feature disappears completely, leaving behind a fully symmetric picture. We show
the emission angles for ranges 20 keV ⩽ E ⩽ 160 keV as well as 6 MeV ⩽ E ⩽ 12 MeV at
300T0 in Fig. 4.15. For this plot, the angle is defined as θ = arctan(py/px) which leaves
out the slight asymmetry due to the plane of laser polarization.
In the lower energy range, the electrons form a ring with an ejection angle of slightly
below 90◦ which, again, is in good agreement with the experimental results. For higher
energies, angles in the range 20◦-30◦ are obtained. Note that in the plot both curves are
normalized to 1 for better visbility. In a direct comparison, the forward signal would be
much weaker here.
The angles and energy ranges obtained from this rather basic cluster model already fit the
experimental data quite well. However, the actual physical picture is more complicated:
before the main laser pulse interacts with the plasma target, the pre-pulse will already
rip off some of the clusters’ electrons and lead to partial Coulomb explosion in the target.
The main pulse, arriving some picoseconds after the pre-pulse, will therefore see not a
pure cluster target, but actually a target consisting of some approximately homogeneous
background plus remnants of larger clusters. How important the consideration of pre-
pulses for laser-plasma interaction in clustered targets was already described by Auguste et
al. [133]. If we were to assume that we only have a homogeneous plasma target interacting
with the peak pulse, ponderomotive scattering would still be responsible for most of the
outer-ring electrons. The corresponding density (expanding all the clusters to fill the
whole box) would be in the range 1016-1017 cm−3. In this regime, wakefield acceleration
still is largely negligible (although, a lower number of particles per cell compared to the
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Figure 4.16: Phase space plots for simulations with a finite background density of ne =
5 × 1017 cm−3. (a) shows the x-px-plane, (b) the x-py-plane. Two electron populations,
one from DLA and ponderomotive scattering, the other from wakefield acceleration, are
present. Source: [124], licensed under CC BY 4.0.

simple cluster target have to be used here due to the huge box size). Again, only a few
electrons would be accelerated at the wake’s stern. The absence of any clusters also will
lead to a decrease in the maximum energy.

The process of ponderomotive scattering is present even for longer pulse durations in the
experiment which is why the outer ring-structure is always visible. There, the pre-pulse
still homogenizes the target such that the peak pulse can interact with it and scatter the
electrons outwards. When considering the longer pulses in experiment, the effective a0 is
lowered as the pulse energy is fixed throughout. Thus, the opening angle of the ring only
changes slightly, but the shape of the cavity created by the peak pulse can change quite
drastically. In turn, the trapping condition changes.

This means, that the laser pulse in the experiment neither sees a completely clustered
target nor a completely homogeneous target: as alluded to earlier, it is likely to be an
intermediate state. The pre-pulse will rip out some of the electrons in the clusters and
induce Coulomb explosion. In turn, the clusters will expand, and the density profile will
appear more homogeneous in the picoseconds afterwards. Still, not all clusters will be
ionized completely or be completely ripped apart: some remnants will stay around in the
interaction volume.

We study this with an additional simulation, where we take the clustered target from
before and, on top, add a homogeneous background of ne = 5 × 1017 cm−3. While this
strongly overestimates the experimentally available density, it shows the relevant processes
quite clearly even for our statistical possibilities: as it is visible in Fig. 4.16, more electrons
are now being accelerated at the back of the wake. For even higher densities, the Ex-
gradient driving these electrons would be even stronger. Looking into the x-py-plane, we
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see that these electrons also do not have a very large transverse spread, i.e. they will
mainly contribute to the central spot.
This means that the apparent discontinuity visible on the IPs (strong outer ring, strong
central spot, almost nothing in between) will occur for such an intermediate target. Only
then do we have both the ponderomotive scattering responsible for the outer ring and also
significant LWFA (and partly DLA) contribution to the central spot. A more detailed
discussion about the effects of clusters on LWFA is given by Mayr et al. in [134, 135]. The
clusters introduce highly localized potential difference that can give a kick to the electron
momentum. This kick can be sufficient for the electron to be injected into the wake; how
easily the particles can be injected depends on the clusters’ charge density and diameter.
The process behind this injection is similar to ionization injection [136]. There, however,
different (or more specifically, heavier) particle species are used for injection also utilizing
the local potential changes. Already, the obtained results fit the experimental data quite
well. In theory, the data could be fitted even better if we were to consider a randomized
position of the clusters. It was shown in [135] that this changes the results marginally
and leaves the main features of the scheme intact.
We have seen in this section, that for clusterized targets only the consideration of several
acceleration mechanisms at once gives a complete physical picture and that here the
pre-pulse of the laser plays an important role that is often neglected in other simulations.

This concludes our investigations concerning the wakefield acceleration of leptons, more
specifically electrons and positrons. As we have seen, it is possible to improve upon the
models describing the bubble border in PWFA, even in a self-consistent fashion. The same
theoretical foundation could be transferred to the positron setup which utilized both a
particle and a laser driver for the acceleration of positron rings. Again, the analytical
theory and simulations are in good agreement. Further, it was shown that structured wit-
ness beams in the form of Wigner crystals may persist even for finite emittance, although
further work needs to be done with respect to the dynamics of those. Lastly, we have
seen that structured targets like Hydrogen clusters lead to a plethora of other effects that
need to be considered if the acceleration process is to be fully understood. In the next
chapter, we will investigate the acceleration of spin-polarized proton beams.
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Contributions of the author

In the publication [89] concerning the E-field divergence of the blowout, L.R. and J.T.
worked together on the analytical framework in discussion with A.G. The manuscript
was mainly written by L.R. The self-consistent model of [92] was developed by A.G.
Here, L.R. checked the calculations and consulted A.G. in the writing process. For the
positron setup [101], L.R. conducted the PIC simulations and wrote the manuscript; A.G.
contributed the analytical calculations. In the publication about the Wigner crystals with
finite emittance [123], L.R. wrote the code needed for finding the equilibrium structures
and conducted the simulations. He was the main author of the manuscript in consultation
with J.T. Lastly, for the experimental collaboration [124] concerning Hydrogen clusters,
L.R. was responsible for the theoretical investigation: He conducted the PIC simulations
and found the explanation for the process. L.R. wrote the introduction and the theoretical
part of the paper, whereas B.A. was responsible for the experimental sections.



Chapter 5

Spin-polarized proton beams

So far, when talking about accelerated particles, we have only considered parameters like
the final particle energy, the beam emittance and the beam charge. For some experi-
ments, however, the particle spin can become essential, e.g. when looking at future QCD
experiments [137], examining the nuclear structure of the proton [25] or even polarized
fusion [26].
For conventional accelerators, some spin-related experiments have been looked at i.a. in
[138]. Contrary to that, the research for spin-polarized particles in laser-plasma based
setups has only just begun in the last couple of years [67]. In the following, we give a
brief overview of the relevant effects that need to be considered and what kind of setups
are feasible. Later on, we will specifically discuss the results presented in [139, 140],
that examine further aspects of one specific proton acceleration scheme, Magnetic Vortex
Acceleration. Throughout this chapter, spin is normalized to ℏ/2.

5.1 Spin-related effects

When considering spin in acceleration, there are three main effects that could become
important. Here, we will give a brief explanation of what these effects are and why they
have to be or do not have to be considered. In the end we are going to focus on only one
effect, the spin precession in the presence of electromagnetic fields. An extensive review
on the general topic of spin-polarized particle beams for accelerators was given by Mane
et al. [141]; a discussion with several scaling laws specifically geared towards our studies
has been written by Thomas et al. [142].
In general, the spins in a many-particle system precess uniformly in the presence of com-
pletely homogeneous fields or in the absence of any. Once we add certain electromagnetic
fields and therefore introduce inhomogeneities, the particle spins start to precess differ-
ently over time. As we see in the following section, this behaviour is formalized in the

65
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Thomas-Bargmann-Michel-Telegdi (short: T-BMT) equation.
To quantify this effect, we introduce the notion of the polarization vector

P =
1

N

N∑︂
i=1

si , (5.1)

which averages over all the spin vectors of an N -particle ensemble. If the angle

α = max
i

[︃
arccos

(︃
P0 · si,f

|P0| · |si,f |

)︃]︃
(5.2)

between the final spin vector si,f and the initial polarization P0 stays small, we can ar-
gue that the particle ensemble stays polarized. We will describe in the following sections
respectively which notion of polarization we will use for our calculations (i.e. which par-
ticles count towards the beam). The next sections will introduce three effects/equations
that either describe the change of spin over time or the effect of spin onto the particle
trajectory. For each of the effects we will discuss how relevant they are to our parameter
regime as they occur on disparate time scales.

5.1.1 T-BMT equation

The first equation we need to consider is the aforementioned T-BMT equation. We will
follow the derivation by Jackson [119]. The basis for his derivation of the T-BMT equation
is the idea by Uhlenbeck and Goudsmit about spin: a particle (originally an electron) has
an intrinsic angular momentum named spin s which is linked to the magnetic moment via

µ =
ge

2mc
s , (5.3)

where g is the Landé factor. When the particle is moving through some configuration of
electric and magnetic fields E,B with a velocity v, the spin should precess like

ds

dt′
=

ge

2mc
s×B′ , (5.4)

where variables with an apostrophe are to be understood as being measured in the par-
ticle’s rest frame. We now want a more general description of spin precession in the
relativistic case using four-notation. First, we need to find a spin four-vector S = (S0,S)

that reduces to the common spin-vector s in the particle’s rest frame.
For the zeroth component of the four-vector we have

S ′0 = γ(S0 − β · S) . (5.5)
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In the rest frame, this component should vanish, i.e. UαS
α = 0. Thus, S0 = β · S. The

Lorentz boost between the two systems gives us

S = s+
γ2

γ + 1
(β · s)β , S0 = γβ · s . (5.6)

For the spin evolution, Jackson finds that the covariant notation must be of the form

dSα

dτ
= K1F

αβ +
K2

c2
(SλF

λµUµ)U
α +

K3

c2

(︃
Sβ

dUβ

dτ

)︃
Uα , (5.7)

where τ denotes proper time, Fαβ is the field tensor and theKi, i ∈ {1, 2, 3}, are constants.
To arrive at this equation, he assumed that the equation is linear in spin and in the external
fields. For the four-velocity, the velocity itself and the first derivative with respect to
proper time may be incorporated; higher orders are excluded. In the resting frame, the
equation has to simplify to the known equation. Utilizing the condition dτ (UαS

α) = 0

and allowing for non-electromagnetic forces and field gradients, he finds that K1 = K2

as well as K3 = −1. The comparison to the original equation yields K1 = ge/2mc. The
equation now is of the form

dSα

dτ
=

ge

2mc

[︃
FαβSβ +

1

c2
Uα(SλF

λµUµ)

]︃
− 1

c2
Uα

(︃
Sλ

dUλ

dτ

)︃
. (5.8)

In the absence of gradient forces akin to the Stern-Gerlach force ∇(µ · B) or when the
fields are homogeneous, the translatory motion of the particle is described by

dUα

dτ
=

e

mc
FαβUβ . (5.9)

This finally yields the BMT equation [143]

dSα

dτ
=

e

mc

[︃
g

2
FαβSβ +

1

c2

(︂g
2
− 1
)︂
Uα(SλF

λµUµ)

]︃
. (5.10)

The name of this equation notably has the “T-” missing, although Thomas’ contribution
[144] is already implicitly contained. Using more algebra, the equation can be rewritten
to the form

ds

dt
= −Ω× s (5.11)

with the precession frequency

Ω =
e

mc

[︂
ΩBB− Ωv

(︂v
c
·B
)︂ v

c
− ΩE

v

c
× E

]︂
. (5.12)
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The prefactors contain the Lorentz factor γ and the anomalous magnetic moment a =

(g − 2)/2 of the particle:

ΩB = a+
1

γ
, Ωv =

aγ

γ + 1
, ΩE = a+

1

γ + 1
. (5.13)

This notation of the T-BMT equation is found in most of the publications concerning
spin-polarized particle beams from laser-plasma interaction. The anomalous magnetic
moment of the particles is the difference between the Landé factor g expected from the
Dirac equation and the results from higher-loop corrections [145]. For example, for the
electron, the Dirac equation yields g = 2, but more detailed calculation shows that ae =
(g − 2)/2 ≈ 10−3 and not ae = 0 which would otherwise be expected. The value of the
proton is significantly larger, ap ≈ 1.79.

5.1.2 Stern-Gerlach force

Another effect that could become important for spin-polarized particle beams is the Stern-
Gerlach force. It is most prominently known from the famous experiment [146] that
showed that different particle spins lead to different particle trajectories if said particles
are subject to a magnetic field. This is described by the formula

FSG = ∇(µ ·B) . (5.14)

More generally, a relativistic description of the Stern-Gerlach force is

FSG =

(︃
∇− d

dt
∇v

)︃
(Ω · s) . (5.15)

Here, Ω is the precession frequency that we already have seen in the case of the T-BMT
equation. In order to observe a “split” of the particle ensemble with respect to the prevalent
fields, a high field strength is necessary. Thomas et al. find the following approximations
for the separation distances for electrons (∆e) and protons (∆p) due to the Stern-Gerlach
force in their publication [142]:

∆e ∝ 0.3(2 + 3aγ)λL[µm]−1 γ−1 , ∆p ∝ 0.3

(︃
me

mp

)︃2

λL[µm]−1 γ−1 . (5.16)

Here, it was assumed that the electromagnetic fields exhibit at least some form of homo-
geneity, i.e. the field gradients ∂F = 0 vanish. In the case of electrons, this distance would
be in the µm range, while for protons it would only be in the sub-pm range. Therefore
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they conclude that electron beams could by spin-polarized by the Stern-Gerlach force if
the acceleration distance would be great enough. For protons, Stern-Gerlach does not
seem to deliver any option for beam polarization. Thus, we can generally neglect the
Stern-Gerlach force in our case of laser-plasma based acceleration.

5.1.3 Sokolov-Ternov effect

Lastly, radiative effects may also induce changes in spin polarization. This is described
by the so-called Sokolov-Ternov effect [27]: when synchrotron radiation is emitted due
to electromagnetic fields in a plasma, there are different probabilities for a spin-flip from
down to up (P↑) than from up to down (P↓). In turn, over time, polarization of an initially
unpolarized beam can be built up. The polarization in dependence of time is described
by the equation

P (t) =
P↑ − P↓

P↑ + P↓

[︃
1− exp

(︃
− t

Tpol

)︃]︃
, (5.17)

where P↑, P↓ are the aforementioned probabilities and Tpol is the characteristic time needed
to build up a certain degree of polarization. Again, scaling laws for this effect were derived
by Thomas et al. in [142]. They found that the characteristic time scales for electrons
and protons scale like

Tpol,e =
10−7 s

Te [GeV]2F [TV/m]3
, Tpol,p =

1014 s

Tp [GeV]2F [TV/m]3
. (5.18)

Here Te and Tp correspond to the electron and proton kinetic energy, respectively, while
F denotes the maximum field strength during acceleration.

In the case of plasma-based accelerators, the polarization time for electrons in the GeV
range would be on the order of microseconds, while the duration of laser-particle interac-
tion is typically in the nanosecond range. We can therefore safely disregard contributions
by the Sokolov-Ternov effect in our simulations.

Thus, in the subsequent sections, we will only consider spin precession according to the
T-BMT equation in our simulations. The spin is incorporated as three (sx, sy, sz) further
parameters for the macro-particles and updated during the PIC cycle. Having discussed
the relevant effects, we now go over to a brief summary of what means of acceleration and
types of targets we could use for spin-polarized particle acceleration.
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5.2 Overview of acceleration methods

Depending on what kinds of particles we want to accelerate, we get certain restrictions
what means of acceleration are feasible (or even possible) for highly spin-polarized particle
beams. In the case of electrons, which we will not discuss more deeply, wakefield accel-
eration remains a promising method in both the laser-driven and particle beam-driven
cases. As shown by Wu et al. [29, 147], a pre-polarized HCl target can be used to obtain
electron bunches with ca. 80% polarization.
The main problem for wakefield acceleration is the initial phase: during the time of injec-
tion, the electrons exhibit only low γ, meaning that the spin precession is comparatively
large. In combination with the strong azimuthal magnetic fields Bφ of the bubble this can
lead to a strong decrease in average polarization. Afterwards, in the acceleration phase
with higher γ, the polarization remains largely unchanged as the prefactors of the preces-
sion frequency become smaller. One proposed solution to this is the use of laser pulses
consisting of Laguerre-Gaussian modes instead of Gaussian ones, leading to regions with
lower Bφ. It has to be noted, however, that the final electron beam becomes ring-shaped,
meaning that lower current densities will be achieved.
As already mentioned, the target considered is pre-polarized (a full description of this
process for the HCl can be found in [29], for 3He in [28]). This currently allows for the
highest degree of beam polarization and is feasible for certain types of mixtures. Recently
Nie et al. [148] proposed a setup quite similar to the Trojan Horse regime which leads
to beams with up to 30% polarization from an initially unpolarized target. Once this
approach is further optimized and is applicable for different gas mixtures, it could be the
experimentally more feasible method. The requirement of pre-polarization currently also
rules out solid-state targets in which the spin cannot be as easily aligned as in gaseous
targets [67].
For the acceleration of spin-polarized proton beams different setups could be used. Given
very high laser intensities in the future, proton wakefield acceleration like in [64] could
become possible. Proof-of-concept numerical studies for that were performed by Hützen
et al. [149].
Besides this approach, there are several means of proton acceleration that might be usable,
i.a. Magnetic Vortex Acceleration (MVA), Radiation Pressure Acceleration (RPA) and
others. In the following we will concentrate on the former.

5.3 Magnetic Vortex Acceleration

The effect of laser intensity on spin polarization was already investigated by Jin et al. in
[150]. There, the normalized laser vector potential was varied in the range a0 = 25-100,
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while all other parameters were kept the same. In agreement with the analytical estimates
of [142] it was shown in PIC simulations that increasing the laser intensity is accompanied
by a decrease in beam polarization: for a0 = 25 the beam polarization was approx. 82%,
while for a0 = 100 it dropped to only 56%.

5.3.1 Effects of density down-ramp

In the first studies concerning MVA for spin-polarized particle beams only short gas targets
with a steep density-down ramp at the end were used. In the case of electron wakefield
acceleration it is well known that the shape of the down-ramp can influence witness beam
quality as well as the amount of charge being accelerated. For MVA, down-ramps were
investigated by Nakamura et al. [72].
We have investigated its effect on spin in a separate publication [139]. Here, a simulation
box of size (100×60×60)λL that is co-moving with the laser pulse is used. The laser pulse
of wavelength λL = 800 nm is circularly polarized. Throughout the different simulations,
the pulse length of τ0 = 10λL/c, the focal spot size of w0 = 10λL and the normalized
vector potential a0 = 25 are kept the same. The grid size is chosen as hx = 0.05λL in
propagation direction, and hy = hz = 0.4λL in the transverse direction. The step size is
chosen in accordance with the RIP solver, i.e. ∆t = hx/c.
The target is a pre-polarized (sy = 1) HCl gas with nH = nCl = 0.0122ncr. This Hy-
drogen/Chlorine density corresponds to a near-critical electron density. It starts with an
up-ramp from vacuum of length 5λL, followed by a density plateau with 200λL length.
Finally, the down-ramp length at the target’s end is varied in the range (0− 100)λL.
As described in the general theory, the interaction of the laser pulse with this NCD
plasma leads to Magnetic Vortex Acceleration. For the case of an absent down-ramp, a
well collimated proton beam is created at the target’s end (cf. Fig. 5.1). The proton
energies are comparable to the original setup by Jin et al., where the influence of the
laser intensity was studied. For a0 = 25 and a comparable HCl target (but with 5λL

down-ramp) they obtained Ep ≈ 53 MeV.
For longer ramps, the electromagnetic fields are able to expand transversely due to the
lower density. This behaviour was first described by Nakamura et al. [72]. It leads to
a difference in beam collimation: now the focusing fields are not able to push all the
protons into one well-defined beam. Instead, we observe a “cloud” of protons with lower
peak density (see also Fig. 5.2 for the transverse density). The longer the ramp, the more
pronounced this behaviour gets: in the case of 75λL and 100λL it is difficult to properly
define what protons belong to the final beam.
The reasons for the change in beam structure are two-fold: increasing the ramp lengths
in the simulations leads to an effectively longer interaction volume, leading to increased
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Figure 5.1: Comparison of the beam collimation (top row) and polarization (bottom row)
for various ramp lengths. While the collimation quality quickly decreases, polarization
in the beam remains high even for longer ramps. Source: [139]. © IOP Publishing.
Reproduced with permission. All rights reserved.

dissipation of laser energy. It is difficult to account for this difference in interaction
volume as varying the density leads to the laser pulse experiencing different regimes of
laser-plasma interaction. Secondly, the transverse expansion of the fields creates a wider
channel in the down-ramp region allowing the width of the proton bunch to increase. In
publications like [68, 72] the ramp length was always chosen such that beam collimation
is as good as possible.

For us, however, the main interest lies within the effect of the down-ramp on spin polariza-
tion. From the T-BMT equation we are able to see that the precession frequency should
be smaller than for electrons since |Ω| ∝ m−1. We have to note, however, that the values
for a and γ have changed and therefore the three pre-factors ΩB,ΩE,Ωv have increased
in size. For the calculation of the beam’s polarization we consider particles close to the
central axis. We subdivide the x-direction into several bins and calculate the average ⟨sy⟩
for every bin. As seen from Fig. 5.3, the polarization differs not only over the whole
simulation box but also visibly along the beam itself. The reason for this is that particles
in the front of the beam experience different electromagnetic fields than the particles in
the beam’s back. Let us subdivide the beam into a front, middle and back part. Protons
in the front have been focused into the bunch for the shortest amount of time, since there
the laser pulse has just created the channel and, accordingly, the filament. These protons
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Figure 5.2: Transverse beam profiles for selected ramp lengths in the plane with peak
density. Longer ramps allow a widening of the beam structure, there reducing peak
density. Source: [139]. © IOP Publishing. Reproduced with permission. All rights
reserved.

Figure 5.3: Particle spin (a) and field configuration (b), (c) after 300T0 in the simulation
with 0λL down-ramp. Initially, all protons have sx = 0 and sy = 1. Fields are normalized
with E0 = B0 = mcω0/e. Protons in the accelerated beam maintain high polarization
(notice here that sx → 0), while the surrounding protons differ from the initial polarization
direction quite severely. Source: [139]. © IOP Publishing. Reproduced with permission.
All rights reserved.
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Lramp 0 25 50 75 100

Avg. polarization ⟨sy⟩ 0.81 0.83 0.83 0.83 0.63
npeak [ncr] 0.209 0.126 0.044 0.027 0.025

Table 5.1: Simulation results for the different ramp lengths. For the longest ramps,
75λL and 100λL, the accelerated protons are not well-collimated therefore making the
calculation of an average beam polarization complicated (italicized values). Source: [139].
© IOP Publishing. Reproduced with permission. All rights reserved.

experience a comparatively strong field leading to depolarization. Particles in the beam’s
stern have been propagating through the plasma for a longer time and therefore have
been affected more severely by depolarizing fields. This can be seen quite well in Fig.
5.4: there, the slope at the beam back towards 377λL is steeper than at the beam front
towards 380λL. Protons in the middle part of the beam experience comparatively lower
fields and have been part of the beam for a moderate amount of time, thus leading to a
peak value in polarization there. This is in agreement with the results from [142], where
it was stated that the precession frequency is proportional to the maximum field strength,
i.e.

|Ω| ∝ F := max(|E|, |B|) . (5.19)

The described depolarization in parts of the proton beam already occurs in the absence of
any down-ramp. There, however, beam polarization is generally still pretty high. Looking
at the various simulations with finite down-ramp lengths, we observe an amplification of
the effects described previously, in the case of 100λL leading to the most pronounced drop
in polarization (cf. Table 5.1).

Again, the reasons for depolarization are manifold: firstly, the increase in ramp lengths
leads to a longer interaction volume. Secondly, longer ramps (i.e. flatter slopes) amplify
the differences in fields that the various parts of the proton beam experience. The down-
ramp changes the process of compressing the beam when leaving the plasma. This can be
viewed like in the case of shock waves, where different components having different veloc-
ities being compressed together: depending on the down-ramp more or less protons can
easily be compressed longitudinally. The amplitude of the magnetic field also decreased
in lower densities. It was shown by Nakamura et al. in [72] that

B2 = B1
n1 + n2

2n1

, (5.20)

where 1 and 2 denote the high- and low-density region of the plasma, respectively. This
further shows why the slope in the beam front of the polarization spectrum decreases
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Figure 5.4: Beam polarization (red) and particle number (blue, dashed) in dependence
of the longitudinal position in the case of no down-ramp after 300T0. Source: [139]. ©
IOP Publishing. Reproduced with permission. All rights reserved.

slower than in the back.

For most of the considered ramp lengths, the high polarization of around 80% in the
absence of any ramp is maintained. Only when using a ramp of 100λL length is the
polarization decreasing to approx. 60%. The most visible effect from the simulations,
however, still is the decrease in focusing quality. Thus, as mentioned previously, it is
difficult to even define the beam for very long ramps.

In order to mitigate these effects it might be possible to change the laser-plasma parame-
ters accordingly. However, for large values of a0 depolarization becomes very strong even
for short down-ramps [150]. Both the polarization decrease due to stronger fields as well
as the decrease in long ramps can be explained by the scaling laws derived in [142]. There,
a particle beam is described as depolarized once the angle between initial and final polar-
ization direction is in the range of π/2. This can be expected to occur after the minimum
depolarization time

TD,p =
π

6.6aF
. (5.21)

It has to be noted, however, that the equation above assumes that F is constant which
is not the case for down-ramps. Since the various parts of the proton beam are “born”
at different times. Thus, especially in cases of down-ramps, the experienced fields can be
much weaker. In total, it has become clear from the simulations that as-short-as-possible
plasma targets are desirable for the acceleration of spin-polarized proton beams, although
this will not always be realizable in experiments. For MVA, it has been shown by Sharma
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that the ideal length of a plasma plateau is

Lch = a0cτ0
ncr

ne

K , (5.22)

where K = 13.5 is a geometric factor for 3D [151]. Thus, depending on the target density,
the laser parameters can be chosen to allow for a short plasma slab. For lower a0, we are
also not limited to the here simulated pulse duration τ0. This also leads to a different
time scale over which the MVA structures are built up. In this way, it could be possible
to achieve both a well-collimated and highly polarized proton beam.
A further option would be to partly shield the protons from the laser fields by mounting
a foil in front of the gas target thereby increasing spin polarization. This setup would be
more akin to radiation pressure acceleration [152].
For electrons, it was shown that one could build a mechanical setup in order to filter
out unwanted spin contributions [153]. In theory, something similar for protons may be
realized.
Finally, for longer gas targets, it could be sensible to employ other elements than pro-
posed here. For example, 129Xe can be nuclear-polarized to a high degree as well [154].
Depending on the used elements, the achievable target density might, however, differ.
Therefore, a different regime/process of ion acceleration could occur.

5.3.2 Dual-pulse setup

As we have seen in the last section, it is possible to use MVA in order to accelerate highly
spin-polarized proton beams. While the down-ramp was shown to be of rather minor
consequence for the final beam polarization at least for shorter targets, it is already
clear from studies like [142, 150] that increasing the laser intensity will lead to severe
depolarization. Thus for high energy ions, it is of interest to find a more feasible setup.
Already for the wakefield acceleration of electrons certain laser modes have been proven
to be beneficial for spin polarization: Wu et al. were able to show that using a donut-like
Laguerre-Gaussian mode, it is possible to maintain a higher degree of polarization [29].
There, the main advantage is that the weaker azimuthal magnetic field of the mode leads
to less spin precession than a conventional Gaussian pulse during the electrons’ injection
into the bubble. In the acceleration phase after injection the fields are of lesser concern,
as the pre-factors of the T-BMT equation tend to zero for high γ.
For ions, the situation is somewhat different: firstly, the values of γ reached during accel-
eration are quite different from what is possible to achieve with electrons. This will keep
the precession frequency Ω high for a longer period of time. Secondly, the processes and
their timescales are very different: for ions (in MVA) the channel needs to be created in
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Figure 5.5: Current density in the y-z-plane after t = 427 fs. The two plasma channels
are shown here by the forward moving currents (blue dots in each center) and correspond-
ing return currents (red circles). Additionally, the central filament (blue region around
(0, 0)T ) is formed to to the opposing polarization of the two laser pulses. Source: [140].

order for the filament to form. Then, the strong azimuthal magnetic field is formed which
is detrimental for spin polarization.

Still, it makes sense to look at different laser modes in the context of polarized ions accel-
eration for a different reason. In a separate publication [140], we have utilized two linearly
polarized laser pulses propagating side-by-side. Both laser pulses have anti-parallel phase,
meaning that there is a jump of π between the electric fields of the two. This setup can
be understood as a simplification of the donut modes of Laguerre-Gaussian pulses to a
two-dimensional plane. The two lasers will each create their own plasma channel, i.e.
the MVA process occurs twice at the same time. Therefore, two filaments are created
and two proton bunches are pushed out of the plasma target at the end. However, more
interestingly due to the phase jump, we also will induce a strong longitudinal electric field
in the space between the two pulses. This will introduce a third filament in the center,
out of which the protons will also be pushed at the end (cf. Fig. 5.5). The advantage of
the protons in the third filament is that they are better shielded since they only see part
of the laser fields. As we will see, this will increase the polarization of the final proton
beam.

The study looked at PIC simulations with different laser intensities. The simulation
domain has a size of 120 × 80 × 80λ3L and follows the laser pulses (again, λL = 0.8 µm).
For the grid, we choose hx = 0.05λL (propgation direction), hy = hz = 0.25λL. As before,



78 CHAPTER 5. SPIN-POLARIZED PROTON BEAMS

a0 Epeak [MeV] Emax [MeV] QFWHM [nC] PFWHM[%]

50 (d) 68.5 107.8 1.07 93
75 (d) 98.3 156.1 0.61 84
100 (d) 124.3 181.8 0.76 77

√
2 · 100 (s) 124.8 186.3 0.61 64

Table 5.2: Results for the dual-pulse setup for various laser intensities. The case of
a0 = 25 is excluded here, since no proper peak of the distribution can be defined. The
letters (d), (s) denote whether the dual- or single-pulse setup was used. Source: [140].

the RIP solver necessitates that ∆t = hx/c. Further, we increase the transverse grid size
by 5% per cell for |y|, |z| > 20λL.

The two laser pulses are linearly polarized and exhibit the mentioned jump of π in the
carrier envelope phase. Both of them have the same duration of τ = 26.7 fs and focal spot
size w0 = 4 µm. The normalized laser vector potential is varied in range a0 = 25 − 100

for the different simulation runs. Both pulses are separated by ∆y = 8 µm. At the start
(t = 0 fs), the center of both pulses is placed at x = −16 µm.

As before, we utilize the HCl target with density nH = nCl = 0.0122ncr and ncr =

1.7 × 1021cm−3. The atoms are pre-ionized to H+ and Cl2+. The target starts with an
up-ramp of 4 µm, followed by a plateau at peak density of 200 µm length. The transition
to vacuum is marked by a down-ramp of 4 µm. All protons have been pre-polarized, i.e.
sy = 1. The process visible in the simulations is as described before: each laser pulse
performs its own MVA. Thus, in total, two channels are created. Due to the longitudinal
electric field in the region between the pulses stemming from their phase difference, the
third filament is formed. From now on, we will refer to it as the “central filament”. This
central filament is compressed/focused at the end of the target in the same fashion as the
filaments in conventional MVA.

We have summarized the results for the different simulation runs after 1.3 ps in Table 5.2.
The maximum proton energy obtained of course increases with higher a0. For a0 = 25 per
laser, a maximum energy of Emax ≈ 45 MeV is reached. At a0 = 100, the most energetic
particles have approx. Emax = 182 MeV. In the following, we will only take into account
the protons that have a momentum spread of ±2◦, where θ = arctan(py/px). In all cases
but a0 = 25, we see a well-defined peak in the energy spectrum for those protons (cf. Fig.
5.6). We therefore exclude the results for a0 = 25 from further discussion. For a0 = 50,
the peak around 68.5 MeV is rather narrow. For larger a0, the distributions widen to
some extent. We further have to note, that for a0 = 100 two peaks around 100 MeV
and 150 MeV besides the main peak at 124 MeV show up; this might indicate that the
acceleration mechanism actually consists of several processes working together.
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Figure 5.6: Energy spectra for the various simulation runs with the dual-pulse scheme.
The line “single” corresponds to the single-pulse comparison with a0 =

√
2 · 100. Note

that the plot display the spectra for protons with |θ| ⩽ 2◦. Source: [140].

Figure 5.7: Left: Proton density distribution for the dual-pulse setup with a0 = 100 after
1.1 ps. The colorbar is clipped for better visbility; the highest density is seen towards the
central axis. Center: Average spin in y-direction. The protons in the accelerated central
beam stay better polarized than in the (red) region around it. Right: The accelerating
field acting on the protons at the end of the HCl target. Source: [140].
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Figure 5.8: Angular distribution plotted against the proton energy. The color cor-
responds to the number of particles (clipped at 108). The angle is defined at θ =
arctan(py/px). Source: [140].

Even for the large values of a0, the beams are well collimated. As visible in Fig. 5.7, a well-
defined bunch can be seen. Looking closer, we can see that besides the main density peak,
there are actually two smaller high-density region stemming from the separate channels.
Depending on the choice of laser intensity and plasma density, the accelerated structure
can appear more shock-like. The angular distribution can also be seen in Fig. 5.8.

The charge of the final proton beam is in the range of (0.61−1.07) nC for all simulations.
These numbers refer to the FWHM around the energy peak. No clear trend of the beam
charge in dependence of the laser intensity is recognizable which might be attributed to the
fact that the density is kept the same throughout all the simulations. Better matching laser
and plasma to one another should improve the yield. As known from other publications
on ion acceleration, the amount of accelerated protons should generally increase with a0

for a matched target.

Looking at the beam polarization, we calculate it the following way here: for an N -particle
ensemble, the polarization is P =

√︁
P 2
x + P 2

y + P 2
z where Pj is the average over the spin

components, i.e.

Pj =
N∑︂
i=1

si,j
N

, j ∈ {x, y, z} . (5.23)

As visible in Fig. 5.7, the spin precession in the region of the proton bunch is smaller than
in the region around it. The polarization spectra for the various intensities is displayed
in Fig. 5.9. The general trend, that polarization decreases for rising a0, also holds here.
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Figure 5.9: Polarization spectra for various laser intensities in the dual-pulse setup;
the single-pulse line corresponds to a0 =

√
2 · 100. Note that the apparent polarization

increase towards very high proton energies is just of statistical nature and not physical.
Source: [140].

For a0 = 25, polarization is almost completely negligible. Going to higher intensities
the polarization still is around 93% for particles in the FWHM of the a0 = 50 run. For
a0 = 100, it decreases to 77%. This is in general agreement with the scaling laws of [142],
were it was stated that depolarization time scales with 1/max(|E|, |B|). Note that the
seeming increase in energy towards very high energies in the polarization spectrum (e.g.
for E ⩾ 170 MeV for a0 = 100) must not be interpreted as a physical feature. This actually
stems from the statistics: since only a small amount of particles reaches these energies,
they all have similar spin direction (in the most extreme case: if only one particle was to
be found in that energy bin, it would have perfect polarization, i.e. P = 100%). If we
were to consider a dual-pulse setup using two lasers that are in phase (not shown here), we
would see lower polarization throughout the whole energy spectrum as the proton beam
would consist of particles that would have experienced stronger fields.

The interaction of two laser pulses in a plasma has already been studied in a plethora
of publications [44, 155–157] without the consideration of spin polarization. Dong et al.
solved the equations of two pulses co-propagating in plasma using the slowly varying
envelope model [155]. However, they neglected proton motion which becomes important
for our laser intensities and our scheme. Additionally, the plasma density was assumed to
be low. Nevertheless, it showed that the two channels can attract each other, which can
also be seen for higher densities [156, 157]. Other effects visible in our dual-pulse setup
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have partly been observed already in other MVA-related studies [68, 72].
In order to have a direct overview over the advantages of the dual-pulse scheme over
conventional single-pulse MVA, we have performed further simulations with the same
target interacting with only a single laser pulse. This laser pulse still is linearly polarized
and has the same duration and focal spot size as the pulses in the simulations before. To
accomodate for the difference in energy between the two setups, we use a slightly higher
intensity of

√
2a0.

The simulations show the typical formation process of MVA. Energy-wise the peak value
of 124.8 MeV for a0 =

√
2 ·100 is very close to the 124.3 MeV for the dual-pulse setup with

a0 = 100 (the maximum proton energy is higher for the single pulse). We do see, however,
that the energy spectrum for the single pulse is broader. Further, the angular spread of
the dual-pulse scheme is better. This can be attributed to the two laser fields acting from
both sides on the central beam, leading to better collimation. This is shown quite clearly
in Fig. 5.8. One other interesting aspect visible there is that the single-pulse spectrum is
asymmetric around θ = arctan(py/px) = 0◦ for E > 100 MeV. This kink towards positive
θ-values is absent from the dual-pulse scheme indicating that the two laser pulses are able
to suppress some instabilities.
For the single-pulse scheme, the beam charge is lower at 0.61 nC as well as the beam
polarization at around 64% (for the dual-pulse case it was 0.76 nC and 77%). The
lower polarization likely stems from the better shielding from the fields: protons of the
central filament only see parts of the strong electromagnetic fields therefore leading to
less depolarization. This is not the case for protons in conventional MVA.
The efficiency of the dual-pulse scheme will of course also be influenced by the length
of the density down-ramp. As we have seen in the previous section, shorter targets are
generally preferable for the final beam quality. In particular, for the two pulses, the
transverse expansion of the fields from both channels could lead to them crossing each
other, further reducing quality. In total, however, the dual-pulse schemes seems to be
generally advantageous due to its better spin polarization and its angular spread.

In the future, more analytical work concerning spin-polarized ion acceleration would be
beneficial for further understanding of the processes at hand. Moreover, while the setups
presented promise well-polarized beams with high energy, it would be of great interest to
simplify the polarization process similar to setups like those of Nie et al. [148].
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Chapter 6

Conclusion

In the present thesis we have investigated several particle acceleration mechanisms that
are based on laser-plasma interaction and/or the interaction of energetic particle beams
with plasma.

In the first two chapters we have laid the foundation in plasma theory and particle-in-cell
simulations that we have used in the later chapters. In particular, we introduced the
notion of laser-driven and particle beam-driven plasma wakefield accelerators as well as
Magnetic Vortex Acceleration.

In chapter 4 we improved upon analytical models for the description of beam-driven
setups. In a first step, we introduced a phenomenological function into the analytical
accelerating field that allowed for a better incorporation of its divergence than previous
models. This model still exhibited the crux that the initial conditions for the differential
equation describing the border of the blowout must be obtained from PIC simulations.
A separate model then gave the possibility to describe the structure self-consistently, i.e.
only from the parameters of the driving beam.

Further, we proposed a laser-augmented blowout (LAB) scheme for the acceleration of
positron rings. The mechanism utilized an electron driver for the ionization of a small
plasma column and the excitation of a wake. It was directly followed by a short and weak,
but wide laser pulse that ionized a wider column behind the driver. The resulting field
structure exhibited equilibrium lines along which the transverse force vanishes, while the
accelerating field reaches its maximum for positrons. Placing the positron ring on this
line proved to deliver rather stable acceleration over tens of centimeters. The analyti-
cal derivation of the equilibrium line was found to be in good agreement with the PIC
simulations and the stability of the scheme was discussed extensively.

A further project concerning wakefield acceleration dealt with the inner structure of the
witness beam. Following the assumption that the equilibrium of the focusing wakefield
and the repelling Liénard-Wiechert potentials should give rise to a periodic structure as
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an energetic minimum, we examined the effect of finite emittance onto said structure. It
was found that for smaller momentum spread the structure was only marginally changed,
but that it could be destroyed for higher emittance.
Lastly for the first part of the thesis, electron acceleration from cryogenic, clustered Hy-
drogen was investigated in an experimental collaboration. The experimentally observed
structure on the image plates could be explained as a consequence of several acceleration
mechanisms working together. Moreover, the role of the laser pre-pulse became apparent
for such targets: the pre-pulse already ionized part of the clusters, inducing their Coulomb
explosion. When the main pulse arrives, it interacts with a more homogeneous plasma
in which wakefield acceleration can occur. Further, ponderomotive scattering and direct
laser acceleration of electrons are partly responsible for the electron profile observed in
experiment. In the context of our presented wakefield research, future work could look
into setups feasible for positron acceleration that prove to be even more stable and easier
to experimentally realize. Beyond that, the self-consistent theory for the description of
beam-driven wakefields [92] should be further developed for the laser-driven case where
currently no such theory is available.
In the second part of this thesis, in chapter 5, we investigated the acceleration of proton
beams form the interaction of laser pulses with near-critical density plasma in the form
of Magnetic Vortex Acceleration. While certain aspects of MVA are already well under-
stood, we focused our research on the spin-polarized proton beams, for which only limited
research exists in the context of laser-plasma interaction. In particular, we first simulated
targets with different lengths of density down-ramps to understand their influence of beam
quality. While in most of the cases the spin polarization was not changed significantly,
beam collimation was shown to worsen quite severely due to the transverse expansion of
the electromagnetic fields in the ramp. A further publication made use of two laser pulses
propagating side-by-side through the same target as in the previous study. The two pulses
had a carrier envelope phase difference of π with respect to one another, thus introducing
a strong longitudinal electric field in the space between them. This lead to the creation of
a central filament of accelerated ions which were better shielded from the laser fields and
thereby of higher spin polarization. Further, the presence of the surrounding laser fields
also improved beam collimation compared to the conventional single-pulse MVA.
Of great interest in the research of spin-polarized particle beams besides the comparison
of theory to the first experimental results would be novel setups where polarization can
be more easily obtained. Something similar to the setups by Nie et al., where without a
complicated setup polarization can be obtained [148], would be desirable for protons as
well. Further, analytical theory on the subject of ion acceleration (especially with spin
considered) is currently lacking and should be worked upon in the near future.
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