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Abstract

The analysis of microstructurally distinct cytoarchitectonic areas in the human brain

provides the foundation to associate functional, physiological, genetic, molecular, and

connectivity data with anatomically well-defined entities. Cytoarchitecture encom-

passes characteristic properties of neuronal cell distributions, including their shape,

size, and spatial organization. High-resolution microscopic scans of cell-body stained

histological brain sections enable the detailed analysis of these cytoarchitectonic prop-

erties, and thereby the brain’s parcellation into structurally defined areas. The high

inter-individual variability between brains necessitates the analysis of multiple brains

to obtain a general picture of the human cytoarchitectonic organization. Modern

high-throughput scanners enable the acquisition of microscopic image data on a

large scale. However, established cytoarchitecture analysis methods are infeasible

to handle the steadily increasing volume of data. This motivates the development

of methods for the automated classification of cytoarchitectonic brain areas. Previ-

ous works on automated cytoarchitecture classification demonstrated the potential

of deep learning methods to address this challenging task.

This work addresses automated cytoarchitectonic brain mapping at large scale. It

introduces a deep learning method for interactive classification of individual brain

areas across large series of histological brain sections. The method exploits the

limited local variability of individual brain areas and requires minimal annotations. It

integrates well with existing brain mapping workflows and provides the first practical

method to support cytoarchitectonic mapping in large series of sections. Results of

the presented workflow provide the foundations for creating 3D reconstructions of

individual brain areas at previously unachieved spatial resolution.

The developed workflow focuses on the interactive application of deep learning

for supporting cytoarchitectonic mapping. As a step towards fully automated brain

mapping at large scale, this work further explores deep learning methods for classi-

fying many different brain areas in multiple brain samples. It introduces a super-

vised contrastive learning method that learns to extract cytoarchitectonic features

from large microscopic image datasets. Comprehensive evaluations demonstrate that

learned features capture meaningful neuroanatomical properties and enable the ac-

curate prediction of different cytoarchitectonic areas.

Finally, this work introduces a framework for cytoarchitectonic mapping using

graph neural networks. It models the task as a node classification problem in a graph,

enabling efficient integration of local cytoarchitectonic features with topological and

contextual information. The approach takes inspiration from existing brain mapping

workflows and achieves significantly improved classification performance.
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1 Introduction

Understanding the human brain is one of humanity’s greatest endeavors. Studying

its functional and structural organization is the key to a deeper understanding of

the mechanisms that enable us to perform complex cognitive tasks. Extending our

knowledge on the structure of healthy brains will further enable us to better un-

derstand the effects of neurodegenerative diseases like Parkinson’s and Alzheimer’s

disease.

Brain atlases are essential tools used in modern neuroscience (Amunts et al., 2015).

Similar to how geographical atlases consolidate information on various geographic

features and political boundaries, brain atlases integrate information on structural

and functional brain organization into a spatial reference framework. They provide

orientation, enable localization, and empower the discovery of underlying structural

principles.

Cytoarchitecture describes the characteristics of neuronal cell distributions, which

can be analyzed in microscopic scans of cell-body stained histological sections ac-

quired from postmortem human brains. Analysis of cytoarchitecture enables the seg-

regation of the human brain into architecturally distinct areas, which are indicators

for connectivity and function (Zilles et al., 2015). As such, creating cytoarchitectonic

brain atlases is crucial to identify functional, genetic, physiological, molecular, and

connectivity data with microstructurally defined entities (Amunts et al., 2015).

The high inter-individual variability between different brains (Von Economo, 1925)

makes it necessary to consider multiple brains for the creation of a cytoarchitectonic

brain atlas. The established method for mapping cytoarchitectonic brain areas in

histological sections (Schleicher et al., 1999) is precise and reliable, but incurs a

significant manual overhead, preventing its application to many sections and brain

samples. This limitation motivates the development of methods that provide a higher

degree of automation and thereby enable handling the ever-growing amount of image

data available from high-throughput microscopy.

Previous work on automated cytoarchitecture analysis (Spitzer et al., 2017, 2018b;

Spitzer, 2020) has demonstrated that deep learning methods have the potential to

enable automated cytoarchitectonic brain mapping. In recent years, deep learning

methods have been successfully applied to achieve promising results in a variety of

different tasks, ranging from image classification (Krizhevsky et al., 2012) and seg-

mentation (Ronneberger et al., 2015), over natural language processing (Vaswani

1



1 Introduction

et al., 2017; Devlin et al., 2018; Brown et al., 2020) and protein structure pre-

diction (Jumper et al., 2021) to playing Go (Silver et al., 2016) and controlling

autonomous agents in virtual environments (Mnih et al., 2013; Vinyals et al., 2019).

In this thesis, we aim to take the next step towards automated cytoarchitectonic

brain mapping at large scale. Building upon the work by Spitzer et al. (2017, 2018b)

and Spitzer (2020), we aim to develop deep learning algorithms that are capable of

identifying many cytoarchitectures in many sections from multiple human brains.

1.1 Problem statement & objectives

This thesis describes novel methods for automated cytoarchitectonic brain mapping

based on high-resolution microscopic scans of histological human brain sections at

large scale. It builds upon existing work by Spitzer et al. (2017, 2018b) and Spitzer

(2020), who demonstrated the feasibility of deep learning for classifying cytoarchi-

tectonic areas from the visual system. We aim to extend this foundational work by

focusing on large-scale applications that consider large series of brain sections from

multiple brains and more brain areas from different parts of the human brain. We

further aim to provide methods to actively support the mapping workflow and en-

able large-scale analyses that are not possible using established methods (Schleicher

et al., 1999). While optimizing the classification performance of developed methods

is a major aspect of this work, we also examine how the developed methods make

decisions and behave in different practically relevant application scenarios.

Based on the above problem statement, we formulate the following objectives:

• Implement a practically applicable workflow for interactive mapping

of individual brain areas in large series of sections. Available methods

for cytoarchitectonic mapping (Schleicher et al., 1999) are too time and labor

intensive to be applied to large series of histological brain sections. To ad-

dress this shortcoming, we evaluate specifically designed deep learning models

that achieve high classification performance across large series of sections with

minimal human interaction.

• Develop deep learning models for large-scale classification of many

different brain areas. Spitzer et al. (2017, 2018b) and Spitzer (2020) have

demonstrated the feasibility of deep learning for mapping a small set of cytoar-

chitectonic areas from the visual system. We use contrastive learning to extend

this work to a significantly larger number of brain areas, representing the first

step towards automated cytoarchitectonic mapping at the whole-brain level.

• Enable efficient integration of topological and contextual informa-

tion into the classification. Existing approaches for automated cytoarchi-

2



1.2 Outline

tectonic mapping base their predictions on local information extracted from

high-resolution image patches. We reformulate the task into a graph node

classification problem and apply graph neural network methods to integrate

comprehensive topological and contextual information into the classification

process.

1.2 Outline

Following this introduction, Chapter 2 provides foundations on structural brain orga-

nization and deep learning. Section 2.1 introduces the basics of the macroscopic and

microscopic structure of the human brain (Section 2.1.1), and provides an overview of

brain imaging (Section 2.1.2), brain atlases (Section 2.1.3) and cytoarchitecture (Sec-

tion 2.1.4). Section 2.2 introduces deep learning methods (Sections 2.2.1 to 2.2.6)

relevant to this thesis and gives an overview of exiting work on cytoarchitecture

analysis with deep learning (Section 2.2.7).

Chapter 3 describes the data used in the scope of this thesis. Section 3.1 sum-

marizes the histological processing protocol that is applied to acquire microscopic

images of histological brain sections. An overview of the acquired image data and

derived data is given in Sections 3.2 and 3.3.

Chapter 4 details the hardware (Section 4.1) and software (Section 4.2) used to con-

duct computational experiments. Section 4.3 describes challenges and implemented

solutions regarding the storage and efficient access of the large image datasets.

Chapters 5 to 7 introduce and evaluate three methods for automated identification

of cytoarchitectonic brain areas in histological human brain sections. The methods

address different challenges of automated cytoarchitectonic brain mapping:

• In Chapter 5, we present a method for interactive mapping of individual cy-

toarchitectonic areas. The method provides a practical workflow for automated

brain mapping across many sections. We propose local segmentation models,

specialized deep learning models that trade generalizability for accuracy by

focusing on a specific area and specific brain region. The performance of lo-

cal segmentation models is evaluated for different brain areas and different

brains. We demonstrate the practical relevance of the method by computing

high-resolution reconstructions of cytoarchitectonic areas and verifying their

anatomical plausibility. We further present a developed web interface that al-

lows the application of the method without requiring advanced technical knowl-

edge.

• Chapter 6 addresses the task of training a deep learning model for accurate

prediction of many cytoarchitectonic areas in multiple brains. We adapt the

3
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idea of contrastive learning, which has been shown to achieve promising results

for image analysis tasks (Chen et al., 2020; Khosla et al., 2020), and apply it

to extract cytoarchitectonic features from high-resolution image patches. We

evaluate the method in different application scenarios, analyze the behavior of

trained models, and identify limitations of the approach.

• In Chapter 7, we propose a method that mimics existing brain mapping work-

flows by integrating 3D brain topology and contextual information into the clas-

sification process. Building upon the results from Chapter 6, we model brain

mapping as a node classification task in an attributed graph that represents the

cortical surface of a reconstructed brain. We address the newly formulated task

using graph neural networks. We study and discuss the performance of graph

neural networks in combination with different types of contextual features.

Finally, Chapter 8 discusses the methods and results presented in this thesis and

identifies future research directions. The glossary lists abbreviations, mathematical

notation, and terms used in this thesis.

4



2 Background

2.1 Human brain organization

This section gives an overview of the anatomical structure of the human brain, its

cytoarchitectonic organization, and analysis techniques, with a focus on aspects that

are relevant in the scope of this thesis. Further information on the presented topics

can be found in Von Economo (1925), Creutzfeldt (1995), Zilles et al. (2012), Zilles

et al. (2013), Zilles et al. (2015), and Trepel (2017).

2.1.1 Human brain structure at multiple scales

The human brain can be grossly subdivided into the brainstem, cerebellum, and

cerebrum, of which the latter is of particular interest in the scope of this thesis (Fig-

ure 2.1). The cerebrum consists of two hemispheres. They are connected by a strong

bundle of nerve fibers (the corpus callosum), enabling information exchange between

hemispheres. The surface of the cerebrum is heavily folded (gyrification), which

significantly increases the surface area and limits the volume occupied in the skull.

Fissures (inward folds) are referred to as sulci, while convolutions (outward folds)

are referred to as gyri. Using sulci and gyri as anatomical landmarks, the surface of

the cerebrum can be subdivided into lobes: The occipital lobe, the parietal lobe, the

temporal lobe, and the frontal lobe. While some primary gyri and sulci (e.g., the

parieto-occipital sulcus separating parietal and occipital lobes, or the central sulcus

separating parietal and frontal lobes) can be found in every individual, there is a

generally high variability in the gyrification across individuals.

The cerebrum can be subdivided into two types of tissue, which are referred to

as gray matter and white matter. The gray matter is primarily composed of nerve

cells (neurons), which receive or emit chemical and electrical signals. In contrast, the

white matter is composed of thin nerve fibers, which enable transmission of signals

between neurons in different parts of the gray matter. Together, they form a complex

network of interconnected neurons, enabling the brain to function.

The cerebral gray matter can be subdivided into subcortical gray matter and cor-

tical gray matter. Subcortical gray matter is located inside the cerebrum, where it

forms structurally distinct clusters (nuclei). Examples for subcortical nuclei are the

thalamus and the amygdala.
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Figure 2.1: Structural subdivision of the human brain across multiple scales.
Left: Schematic illustration of macroscopic brain structure. The cerebrum is char-
acterized by its highly convoluted surface, consisting of sulci and gyri. Some of
them (e.g., the central sulcus) define anatomical landmarks, which subdivide the
cerebrum into lobes. Image modified from https://pixabay.com, under CC0 licence.
Right: Coronal brain section from B20 (Amunts et al., 2013) with annotations of
important anatomical structures. Red and blue boxes show patches extracted from
the cortex which illustrate the composition of the cortex across different scales. An-
notated orientation axes introduce anatomical directions (left to right, posterior to
anterior, inferior to superior, lateral, medial). Image from brain B20 (Chapter 3).

The focus of this work lies on the cortex, a thin ribbon of gray matter that extends

across almost the entire surface of the cerebrum. Depending on the location in the

brain, the cortical ribbon has a thickness of 2 mm to 4 mm (Von Economo, 1925;

Zilles et al., 2012). The outwards facing boundary of the cortex is referred to as

pial boundary, while the boundary between cortex and white matter is referred to as

gray-white matter boundary. The cellular architecture of the cortex is characterized

by cortical layers (lat. lamina, laminae), which extend approximately parallel to

the brain surface, and by the arrangement of cells into vertical cortical columns.

Approximately 96% (Blinkov et al., 1968; Stephan et al., 1975) of the cortical surface

(the isocortex) is composed of six cortical layers, while the remaining regions (the

allocortex) show higher variability in layer composition. In the isocortex, cortical

layers are numbered with Roman numerals, starting with layer I at the pial boundary

and increasing towards layer VI at the gray-white matter boundary.

While the isocortex shows an overall six-layered structure, there are regional dif-

ferences in the distribution, orientation, size, and type of neurons in the individual
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2.1 Human brain organization

cortical layers. These characteristic properties define the cytoarchitecture of the cor-

tex. Based on cytoarchitecture, the cortex can be subdivided into cytoarchitectonic

areas with similar cytoarchitectonic patterns.

2.1.2 Neuroimaging

Neuroimaging techniques enable the study of the structural and functional organiza-

tion of the human brain. Imaging techniques like magnetic resonance imaging (MRI)

and computed tomography (CT) are applicable in living organisms (in-vivo) and

are nowadays routinely applied in hospitals, where they enable non-invasive imaging

of different organs to aid diagnosis. Other in-vivo imaging techniques can capture

dynamic processes inside an organism. For example, functional magnetic resonance

imaging (fMRI) measures the functional activity in different regions of the brain to

give insights into the involvement of different brain regions when performing different

tasks.

In-vivo imaging techniques play an essential role in medical diagnosis and research.

However, their maximum spatial resolution (i.e., the physical size that each voxel or

pixel represents) ranges from several millimeters per voxel down to several hundred

micrometers per voxel (Duyn, 2012), which is not sufficient to capture the fine mi-

crostructural patterns that are relevant for identifying cytoarchitectonic areas. Re-

search on the cellular organization of the human brain thus relies on ex-vivo imaging

approaches, which operate on tissue that has been removed from a living organism.

The microstructural analysis of whole human brains is performed by cutting post-

mortem human brains acquired through body donor programs into thin histological

brain sections (Amunts et al., 2013, 2020). The resulting brain sections can be ana-

lyzed using various imaging techniques to highlight specific properties of the tissue.

For example, brain tissue can be stained for neuronal cell bodies to highlight the

cellular composition, which enables the identification of cytoarchitectonic areas. Al-

ternative techniques include polarized light imaging (PLI) for analyzing nerve fiber

distributions, receptor autoradiography for analyzing chemical receptor densities, or

immunohistochemistry for the analysis of different cell types. Prepared histological

brain sections can be imaged using high-resolution microscopes, which provide image

data with significantly higher resolution than in-vivo methods.

The ability to capture different structural properties at high spatial resolution

makes brain analysis based on histological brain sections an indispensable tool for

brain research. These advantages come at the cost of more complicated, time-

consuming, and error-prone image acquisition workflows, less control over the study

population, and sometimes incomplete knowledge on non-diagnosed pathologies. In

addition, 3D reconstruction methods need to be applied to recover the original 3D

structure of the brain from the imaged brain sections. Nevertheless, microscopic
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analysis of histological brain sections remains the gold standard for cellular brain

analysis, as it is the only method capable of providing the necessary details for mi-

crostructural analyses.

2.1.3 Human brain atlases

Atlases of the human brain represent important tools for neuroscience research and

clinical applications. Similar to geographical atlases, brain atlases embed different

types of information (e.g., from different imaging methods) into a reference coordinate

system, enabling localization, navigation, and correlation of different data modalities.

A brain atlas allows studying relationships between different imaging modalities,

e.g., the relationship between brain structure and associated function. In clinical

applications, atlases containing information on structural and functional areas in the

brain can enable better planning of surgical operations, e.g., to estimate the effect of

removing a malign tumor in a specific brain region.

Brain atlases come in different variants, each having its focus, advantages, and

shortcomings1. One major aspect distinguishing different brain atlases is the data

modality they are based on, e.g., MRI (Collins et al., 1994; Evans et al., 2012;

Jenkinson et al., 2012; Van Essen et al., 2013), fMRI (Jenkinson et al., 2012), or

histology (Schleicher et al., 2005; Zilles et al., 2010; Amunts et al., 2013; Ding et al.,

2016; Amunts et al., 2020). The underlying modalities of an atlas determine what

kind of analyses can be conducted using the atlas information. The widespread avail-

ability and adaptation of MRI scanners makes it possible to base atlases on large and

controlled subject populations, allowing them to capture inter-individual variability.

However, the limited spatial resolution of MRI limits the use of MRI atlases for fine-

grained analysis. In comparison, histology-based cytoarchitectonic atlases (Amunts

et al., 2013; Ding et al., 2016; Amunts et al., 2020) provide detailed information on

cellular architecture, but require histological processing and can thus only be created

based on a much smaller number of subjects. The automation of cytoarchitecture

analysis at large scale addressed in this thesis represents an important step towards

the creation of cytoarchitectonic atlases based on larger numbers of subjects.

When working with brain atlases, it is important to take the coordinate space of

atlas data into account. Atlases defined in different spaces (i.e., using different co-

ordinate systems) must be aligned before their relationship can be investigated. In

practice, reference spaces (also called template spaces) enable interoperability be-

tween atlases (Holmes et al., 1998; Fonov et al., 2011). Software toolboxes (Eickhoff

et al., 2005; Avants et al., 2009; Fischl, 2012; Jenkinson et al., 2012) offer tools to

transform data into reference spaces or directly provide atlases in different reference

spaces. The following sections list several human brain atlases used in this work.

1Amunts et al. (2015) provide a concise overview of standard brain atlases and their properties.
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1.0

0.0 hOc1 hOc2

Figure 2.2: Probabilistic cytoarchitectonic maps of areas hOc1 (left) and hOc2

(right) from the Julich-Brain probabilistic cytoarchitectonic atlas (Amunts et al.,
2020). Colors encode the probability of an area being present at the respective lo-
cation in the brain. Probabilistic maps are computed by superimposing annotations
from 23 postmortem brains in a reference space. Images taken from the Julich-Brain
viewer (Mohlberg et al., 2012).

The Julich probabilistic brain atlas

Julich-Brain (Amunts et al., 2020) is a probabilistic atlas of the human brain (Fig-

ure 2.2). It is based on annotations of cytoarchitectonic areas in histological sections

of 23 postmortem brains. The annotations were transformed into a reference space,

where they were superimposed to create probabilistic maps of cytoarchitectonic areas.

Each voxel of a probabilistic map specifies the probability of an area being present

at the respective location. The aggregation across multiple subjects bridges the gap

between subject-specific and subject-independent maps, which allows making more

general and statistically profound statements on cytoarchitecture. As new areas and

subjects are integrated, the statistical reliability of the atlas improves. Thus, the

development of automated mapping methods contributes to improving probabilistic

atlases.

The BigBrain cytoarchitectonic atlas

BigBrain (Amunts et al., 2013) is an ultrahigh-resolution 3D model of an adult

human brain with an isotopic resolution of 20 µm per voxel (Figure 2.3). It was

created by reconstructing 7404 microscopic images of cell-body stained histological

brain sections into a consistent 3D volume. Its high resolution and anatomical detail

enable the integration of multimodal data with the underlying microstructure. The

3D context available for BigBrain further allows the analysis of structures that cannot

be studied to a satisfactory degree in two-dimensional microscopic images.
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Figure 2.3: BigBrain (Amunts et al., 2013) high-resolution cytoarchitectonic hu-
man brain atlas, created by 3D reconstructing 7404 microscopic images of cell-body
stained histological brain sections into a consistent 3D volume (20 µm per voxel).
The top-left image pane shows the original coronal image plane. Top-right and
bottom-left image panes show sagittal and horizontal virtual cross-sections through
the reconstructed brain volume, respectively. The bottom-right pane shows a 3D
view of the reconstructed volume. Image taken from the EBRAINS Interactive Atlas
Viewer (https://atlases.ebrains.eu/viewer).

The Allen Adult Human Brain Atlas

The Allen Adult Human Brain Atlas (AAHA) (Ding et al., 2016) is a multimodal

human brain atlas. It comprises MRI and diffusion weighted MRI (DWI) measure-

ments of an adult human brain before sectioning, as well as microscopic scans of

1356 histological brain sections with a thickness of 50 µm. 679 of these sections were

stained for cell bodies using Nissl staining and subsequently digitized at 1 µm/px reso-

lution. Anatomical structures (including cytoarchitectonic areas) were then digitally

annotated in a subset of 106 unevenly spaced sections.

2.1.4 Cytoarchitecture

Cytoarchitecture describes the spatial organization of neuronal cells, including the

distribution, orientation, and type of the cells. It provides an important microstruc-

tural reference for connectivity and function and represents a key aspect for the

creation of human brain atlases (Eickhoff et al., 2007; Amunts et al., 2015).
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2.1 Human brain organization

Figure 2.4: Lateral view on one of the first cytoarchitectonic maps of the human
brain, published by Korbinian Brodmann in 1909. Microstructurally distinct cytoar-
chitectonic areas are marked by different patterns and numbered. The numbering
scheme introduced by Brodmann is partly still used today (Table 3.2). Image from
Brodmann (1909, p. 131).

Cytoarchitectonic areas

As mentioned in Section 2.1.1, the isocortex is almost everywhere comprised of six

cortical layers. Cortical layers are identified by Roman numerals I to VI, starting

with layer I at the pial boundary. The layers of the isocortex differ in their cellular

composition (Figure 2.5). Although the composition varies strongly in different re-

gions of the brain (which is the basis for the distinction of cytoarchitectonic areas)

and across brains, several characteristic organizational principles can be observed for

each layer (Von Economo, 1925; Zilles et al., 2012):

Layer I (molecular layer) This outer cortical layer contains only few scattered neu-

rons and consists primarily of dendrites originating from neurons in deeper

layers.
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Layer II (outer granular layer) This layer is comprised of small and densely packed

pyramidal cells. Pyramidal cells are named based on their characteristic trian-

gular shape.

Layer III (outer pyramidal layer) This layer consists of small to medium-sized pyra-

midal cells, which increase in size towards deeper layers and are less densely

packed compared to layer II.

Layer IV (inner granular layer) This layer contains densely packed cells and is com-

prised of granular cells, small pyramidal cells, and fusiform cells. The latter

cell type summarizes different cell types with varying (polymorph) appearances.

Layer IV can often be further subdivided into multiple sublayers, especially in

sensory areas. Sublayers are denoted by a letter suffix, e.g., layer IVa, IVb,

IVc.

Layer V (inner pyramidal layer) This layer is characterized by large pyramidal cells

and a medium cell packing density.

Layer VI (fusiform layer) The deepest layer contains cells of varying appearance

(fusiform cells), as well as few larger pyramidal cells. The cell density decreases

as the cortex transitions into white matter.

The analysis of regional differences in the specific cellular and laminar composition

in the cortex allows its subdivision into cytoarchitectonic areas. This process of

subdividing the cortex into distinct areas is referred to as cytoarchitectonic brain

mapping2. A pioneer of cytoarchitectonic analysis was Korbinian Brodmann, who

formulated criteria for the classification of cytoarchitectonic areas and proposed one

of the most influential cytoarchitectonic maps of the human brain (Brodmann, 1909,

Figure 2.4). His work provides the basis for many subsequent works (Vogt et al.,

1919; Von Economo, 1925; Amunts et al., 2015). The analysis of cytoarchitectonic

areas has become an active field of research, intending to improve our understanding

of the brain’s microstructural organization (Amunts et al., 2015; Zilles et al., 2015;

Amunts et al., 2020).

Structure and function

Cytoarchitectonic areas are correlated with specific brain functions (Eickhoff et al.,

2007; Zilles et al., 2012): Primary sensory areas directly receive sensory signals from

the corresponding sensory organs, e.g., the primary visual and auditory areas for

processing of external visual and auditory stimuli, respectively. In contrast, higher

2In this work, the term brain mapping refers to cytoarchitectonic brain mapping, if not mentioned
otherwise.
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2.1 Human brain organization

Figure 2.5: Image patches extracted from different cytoarchitectonic areas. Black
lines delineate the borders between cortical layers. Cytoarchitectonic areas are char-
acterized by their cellular composition, e.g., the size, shape, and distribution of cells,
and their arrangement into cortical layers (Amunts et al., 2020). Red arrows mark
the characteristic stripe of Gennari within layer IV of visual area hOc1, which results
from a high density of nerve fibers entering the visual system. Red circles indicate the
position of some Betz giant cells in the primary motor area 4a, which project into the
spinal cord to control motor functions. Image patches and cortical layer annotations
for hOc1, hOc4d, FG1, 7P and 4a are based on EBRAINS datasets (Dickscheid et al.,
2021a,b,c,d,e).

unimodal sensory areas interpret signals arriving from the corresponding lower-level

areas. Multimodal association areas connect to other multimodal association areas

to combine various levels of sensory information. In addition, some multimodal

association areas are connected to motor areas, allowing the initiation of movement

in reaction to inner or outer stimuli (Zilles et al., 2012).

While an extensive description of all characteristic properties found in cytoarchi-

tectonic areas is beyond the scope of this thesis, the following examples introduce

some principles that illustrate how cytoarchitecture expresses in different areas:

The primary visual cortex hOc1 (Figure 2.5, left) is an area located in the posterior

occipital lobe (Figure 2.1). It is the first cortical area to process visual stimuli received

from the eyes. The primary visual cortex is characterized by the stripe of Gennari,

a visible bright ribbon that forms a sublayer in cortical layer IV (see red arrows in

Figure 2.5). This stripe is formed by a high density of nerve fibers entering this layer

to transmit visual stimuli and by densely packed granular cells. In general, primary
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sensory areas show a strongly expressed layer IV, where most external stimuli enter

the cortex (Zilles et al., 2012).

The primary motor cortex (Figure 2.5, right) receives signals from multimodal

association areas to initiate movement. Here, layer IV does not exist in the adult

brain (Zilles et al., 2012), as the motor cortex does not receive immediate external

stimuli. Instead, layer V, representing the main system for outgoing signals (Zilles

et al., 2012), is strongly expressed in the motor cortex. It contains the Betz giant

cells (see red circles in Figure 2.5), large pyramidal cells with a diameter of up to

100 µm that project into the spinal cord.

While most cytoarchitectonic areas do not express as clear and interpretable cy-

toarchitectonic features as the primary visual and the primary motor cortex, these

examples illustrate the relationship between the cellular organization of cytoarchitec-

tonic areas, their function, and their connectivity. The study of these relationships

motivates the systematic and large-scale analysis of cytoarchitectonic areas in the

human brain.

Challenges of cytoarchitectonic brain mapping

Cytoarchitectonic areas are defined by complex microstructural patterns, which can

typically only be identified and correctly classified after intensive training. Their

complexity makes mapping of cytoarchitectonic areas a challenging and thereby time

and labor-intensive task. In addition, the variability between subjects (i.e., brains)

introduces another dimension of complexity. The appearance of individual brain ar-

eas can vary greatly between individuals (Amunts et al., 2000). The variance can

be attributed to slightly different histological processing procedures and the inherent

inter-subject variability that makes every human’s brain unique. Researchers study-

ing cytoarchitectonic areas need to adapt to this variability, and it has to be expected

that the same is true for algorithmic approaches.

Another challenge results from the sectioning process, which projects the three-

dimensional structure of the brain onto a series of independent two-dimensional

planes (i.e., images). These isolated images cannot capture the full three-dimensional

structure of the original brain volume. This effect becomes clear when considering the

phenomenon of obliquely cut regions (short oblique cuts). Oblique cuts are regions of

the cortex where the angle between the plane by which the brain was cut (the cutting

plane, which is equivalent to the image plane) and the local normal vector of the brain

surface are not aligned. This issue is schematically illustrated in Figure 2.6 (left):

When the normal vector of the brain surface and the cutting plane align (green line),

all cortical layers and their proportions are properly captured in the projection. How-

ever, as the angle between the cutting plane and the normal vector increases, some

layers are not covered in the projection, and their relative proportions are skewed
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Figure 2.6: Illustration of the oblique cut issue occurring in serially cut brain sec-
tions. Left: Schematic illustration of the isocortex with its six cortical layers. De-
pending on the angle of the cutting plane (A, B, C) relative to the normal vector of
the brain surface (arrows), the proportion of individual layers is captured well (A), or
is increasingly distorted (B, C). If the cutting angle is too oblique, the laminar com-
position of the isocortex cannot be classified correctly. Right: Real-world examples
of non-oblique (top row) and oblique (bottom row) cuts from two brains (B01 and
B20). Non-obliquely cut tissue appears as a well-shaped band with approximately
parallel pial boundary and gray-white matter boundary, while obliquely cut tissue
often appears as degenerated “bulges” with variable shape.

(blue and red lines). Figure 2.6 (right) shows real-world examples of this problem:

Non-obliquely cut regions of the cortex (top row) appear as a well-shaped band with

approximately parallel pial boundary and gray-white matter boundary. In contrast,

obliquely cut regions (bottom row) are often expressed as degenerated “bulges” with

variable shapes.

The problem of obliquely cut tissue was already described early by Von Economo

(1925), who identified them as an inherent shortcoming of the serial brain section-

ing method that could only be overcome by using more sophisticated and complex

sectioning techniques. In practice, such ambiguities are resolved by taking context

information into account, e.g., by inspecting adjacent sections or regions within the

same sections with less oblique cutting angles.

Observer-independent brain mapping

Analyzing cytoarchitectonic areas using non-systematic microscopic analysis methods

is susceptible to errors arising from the subjective perception of the person performing
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Figure 2.7: Observer-independent method for cytoarchitectonic boundary detec-
tion as proposed by Schleicher et al. (1999). A: Cortical traverses along the cortical
ribbon are computed based on delineations of the layer I/II boundary and the gray-
white matter boundary in a selected region of interest. Sampling the GLI along the
traverses results in cortical profiles, which characterize the cellular composition in
relation to the depth at each position along the cortex. B: Statistically significant
changes of the cellular composition are detected by blockwise comparison of adjacent
profiles. Profiles are compared based on the Mahalanobis distance (Mahalanobis,
1936). Peaks in the Mahalanobis distance indicate significant changes of cytoarchi-
tecture and thereby possible boundaries between cytoarchitectonic areas. C: Average
GLI profile of area Fp1, which is enclosed by traverses 59 and 123. The average pro-
file can be interpreted as a “fingerprint” of the area. Figure reproduced from Bludau
(2011) by permission of the author.

the analysis (personal bias). To address this issue, Schleicher et al. (1999) propose

an observer-independent method for identifying possible cytoarchitectonic boundaries

in a reproducible manner (Figure 2.7). This method is considered the current gold

standard for delineation of cytoarchitectonic areas and represents a reference for

automated brain mapping methods.

The method proposed by Schleicher et al. (1999) aims to detect significant changes

in the cellular composition of the cortex, as these are indicators for areal borders. In

a first step, the method extracts cortical traverses between the layer I/II boundary

(i.e., the boundary between cortical layers I and II) and the gray-white matter bound-

ary. Delineations of the layer I/II boundary and the gray-white matter boundary

need to be provided manually. The cortical traverses are constructed by integrating
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equidistant points in the cortex through a Laplacian potential field (Jones et al.,

2000) between the two delineations (Figure 2.7, A).

The constructed cortical traverses are used to sample from the gray level index

(GLI) (Schleicher et al., 1999). The GLI encodes the local relative fraction of neu-

ronal cell bodies in the cortex. It is computed by segmenting cell bodies in micro-

scopic images at 1 µm/px resolution and computing the volume fraction of cell bodies

in 16 px × 16 px windows. The resulting GLI is a gray-level image with 16 µm/px

resolution. The sampling of the GLI with the cortical traverses results in one cortical

profile per cortical traverse. A cortical profile characterizes the cellular composition

at a specific position in the cortex (Figure 2.7, C).

The created cortical profiles are used to detect statistically significant changes in

the cellular composition, which indicate possible borders between cytoarchitectonic

areas (Figure 2.7, B). To achieve this, each profile is condensed into a 10-dimensional

feature vector encoding its central moments and their derivatives. The resulting

feature vectors are compared using the Mahalanobis distance (Mahalanobis, 1936).

The comparison is performed blockwise to increase the robustness of the detection

step. Statistically significant changes are detected using a t-test with Bonferroni

correction.

The presented method has been successfully applied in a range of different stud-

ies (Amunts et al., 2020). However, it relies on a manual pre-localization of areal

boundaries, as well as precise manual delineations of the layer I/II boundary and the

gray-white matter boundary to compute the cortical traverses. These requirements

limit the applicability for brain mapping at a large scale (i.e., when considering large

numbers of cytoarchitectonic areas and brain sections) and motivate the development

of automated methods pursued in this thesis.

2.2 Deep learning methods

Deep learning is a machine learning method that has been shown to perform well in

tasks involving the analysis of high-dimensional and complex data. Its good perfor-

mance for image analysis tasks (Krizhevsky et al., 2012; Ronneberger et al., 2015;

Redmon et al., 2016) makes deep learning a promising technique for automated cy-

toarchitecture classification (Section 2.2.7).

This section introduces the deep learning methods that are used in the scope of

this thesis. It gives an overview of relevant concepts and methods, with a particular

focus on their role for the classification of cytoarchitectonic areas. A comprehensive

discussion of fundamental and advanced deep learning methods can be found in

Goodfellow et al. (2016).
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Deep learning has a long history3, which dates back much longer than the rather

recent works (Krizhevsky et al., 2012) that led to the large interest and widespread

adoption of deep learning. The “perceptron” proposed by Rosenblatt (1958) can be

seen as one of the earliest predecessors of modern deep learning algorithms. It was the

first model to adjust its parameters by looking at example inputs and thereby “learn”

how to solve given problems. Building upon this pioneering work, Fukushima et al.

(1982) proposed the “neocognitron”, a hierarchical, multi-layer neural network that

forms the foundation for modern convolutional neural networks (CNNs), which are

successfully used for image analysis tasks (Section 2.2.3). Another important mile-

stone in the history of deep learning is marked by the proposal of the backpropagation

algorithm by Rumelhart et al. (1986), which enables training of deep neural networks

with multiple layers. After two periods of active research in the 1940s-1960s (Mc-

Culloch et al., 1943; Hebb, 1949; Rosenblatt, 1958) and 1980s-1990s (Rumelhart

et al., 1986), deep learning and its predecessors were largely ignored. This phase of

widespread inactivity in the field (also referred to as “AI winter”) ended with the in-

troduction of efficient and thereby practically applicable training techniques (Hinton

et al., 2006; Krizhevsky et al., 2012), as well as the increasing availability of large

datasets (Russakovsky et al., 2015) and computational resources (Krizhevsky et al.,

2012; Abadi et al., 2016; Al-Rfou et al., 2016; Paszke et al., 2019). In recent years,

the ongoing renaissance of deep learning led to breakthroughs in application areas

such as image classification (Krizhevsky et al., 2012; Dosovitskiy et al., 2020), image

segmentation (Long et al., 2015; Ronneberger et al., 2015), object detection (Red-

mon et al., 2016), autonomous driving (Grigorescu et al., 2020), natural language

processing (Vaswani et al., 2017; Devlin et al., 2018; Brown et al., 2020), image

generation (Goodfellow et al., 2014; Ramesh et al., 2021), protein structure predic-

tion (Senior et al., 2020; Jumper et al., 2021), or control of autonomous agents in

virtual environments (Mnih et al., 2013; Silver et al., 2016; Vinyals et al., 2019).

In 2018, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun were awarded the ACM

A.M. Turing Award for their major contributions to the field of deep learning, demon-

strating the important role of deep learning for the field of computer science.

2.2.1 Supervised training of deep neural networks

Supervised machine learning algorithms aim to recover the relationship between an

input and an output variable based on a set of examples consisting of inputs and

corresponding outputs. Typical supervised learning tasks are classification, where

3The presented summary provides a brief, but in no way complete overview of selected milestones
in the history of deep learning. Cited references provide examples of influential work in the
field, but should not be seen as a complete list of all relevant publications. See Goodfellow et al.
(2016) for a more detailed discussion of deep learning history.

18



2.2 Deep learning methods

the goal is to assign a given data sample (e.g., an image) to a specific class (e.g.,

the type of object visible in an image), or regression, where the goal is to predict

a continuous value for each data sample (e.g., price, temperature). Cytoarchitec-

tonic mapping can be modeled as a classification task (Spitzer et al., 2017, 2018b):

Given an image, a supervised machine learning algorithm is tasked to predict the

corresponding cytoarchitectonic area. Their ability to learn complex relationships

from examples makes supervised learning methods well suited for cytoarchitecture

classification. This section focuses on the supervised learning setting. A discussion

of other learning paradigms is given in Section 2.2.4.

Supervised learning can be formulated as an optimization problem

arg min
θ∈Θ

E(x,y)∼X [l(f(x; θ) ,y)] (2.1)

where f is a function (also referred to as model) parameterized by θ ∈ Θ that maps

an input4 x to a prediction ŷ = f(x; θ), l is a loss function measuring the error

between a prediction ŷ and the target value y (also known as groundtruth or labels),

and X is the joint data distribution of input samples x and corresponding target

values y. The expected loss in Equation 2.1 is estimated by the mean over a training

dataset X = {(xi,yi) | 1 ≤ i ≤ n} containing n samples from X :

θ̂ = arg min
θ∈Θ

L(X; θ) = arg min
θ∈Θ

1

n

n
∑

i=1

l(f(xi; θ) ,yi) (2.2)

In machine learning, the optimization phase is referred to as training or learning

phase, and the model is said to learn how to solve the given task.

The term “deep learning” summarizes a group of machine learning algorithms that

are based on deep neural networks. Formally, a deep neural network is a differen-

tiable non-linear functional mapping that is parameterized by a set of parameters θ.

Deep neural networks are often conceptualized and communicated as compositions

of so-called layers (Section 2.2.2). A layer is a smaller functional module that ap-

plies a parameter-dependent transformation to the incoming data before passing it

on to the next layer. Different kinds of layers are used for different tasks, application

scenarios, and different kinds of data (e.g., images, graphs). The layer composition

of a deep neural network is referred to as its architecture (Section 2.2.3), and the

number of layers is referred to as depth. A goal of deep learning research is to find

suitable architectures and training strategies for different tasks. The performance

of different architectures and training strategies is assessed using evaluation met-

4For sake of brevity, this section assumes vector-valued input and output variables. However, all
definitions apply to higher-dimensional data (e.g., images) as well.
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rics (Section 2.2.1), which measure how well a deep neural network performs for a

given task.

This section introduces optimization procedures, loss functions, and evaluation

methods for supervised deep learning, with a focus on methods used in this work.

Sections 2.2.2 and 2.2.3 describe neural network layers and architectures used in this

thesis. Sections 2.2.4 and 2.2.5 introduce unsupervised learning and visual represen-

tation learning methods relevant to this work. Section 2.2.6 details technical aspects

of deep neural networks training. Section 2.2.7 discusses existing applications of deep

learning for cytoarchitecture analysis.

Optimization

The optimization problem in Equation 2.2 is typically solved using gradient descent

or one of its variants (Sutskever et al., 2013; Kingma et al., 2014). Although gradient

descent is not guaranteed to find global minima for non-convex optimization prob-

lems5, it has been successfully applied in many deep learning applications and has

become the de-facto standard for training deep neural networks. Intuitively, gradient

descent is often described using the metaphor of a ball rolling down a hill and into

a valley, always following the direction of the steepest slope (the negative gradient

direction). Here, the ball stands for a position in the parameter space, the hill rep-

resents the image space of the loss function (also referred to as loss landscape), and

the valley represents a (local) minimum of the loss function. In its basic formulation,

gradient descent iteratively updates the parameters θ by making small adjustments

in the direction of the negative gradients of the loss function L with respect to the

parameters θ

θ(i+1) = θ(i) + ∆θ(i+1), (2.3)

with ∆θ(i+1) = −λ∇θL
(

X; θ(i)
)

(2.4)

= −λ
1

n

n
∑

j=1

∇θ l
(

f
(

xj; θ
(i)
)

,yj

)

, (2.5)

where θ(i) specifies the parameter configuration at iteration i, starting from a ran-

dom (He et al., 2016a) initial parameter configuration θ(0). λ ∈ R
≥0 is referred to

as the learning rate and specifies the step size taken in each iteration. The learning

rate is often adjusted over the course of the training using different strategies. For

example, the learning rate is often decreased as the training progresses. The intuition

5In most cases, training a deep neural network poses a non-convex optimization problem. One
reason for this is that deep neural network are often non-identifiable, i.e., there are different
parameter configurations that result in equivalent models and consequently multiple local min-
ima (Goodfellow et al., 2016).
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behind this strategy is to take large steps early on to explore the loss landscape, while

taking smaller steps later during training to descent into a good (local) minimum.

The learning rate is an example for a hyperparameter. The term hyperparameter

summarizes all parameters that control the behavior of the deep neural network

model or the training procedure, but are not included in θ and are thus not updated

during training. The type and number of layers defining the architecture of a deep

neural network are other examples for hyperparameters.

Stochastic gradient descent In practice, computing the gradients in Equation 2.3

across the entire dataset X is often computationally expensive and not feasible for

large datasets. Stochastic gradient descent (SGD)6 (Robbins et al., 1951; Kiefer

et al., 1952) addresses this issue by estimating gradients based on batches B ⊂ X

with batch size b = |B|. The batch size b is typically chosen to be relatively small

compared to the total dataset size n. It can be held fixed as the dataset size grows,

enabling the processing of datasets containing many samples.

When training with SGD, the dataset X is subdivided into ⌈n/b⌉ disjoint batches,

which are processed sequentially to update the model parameters (Equation 2.3).

One pass through the dataset is referred to as an epoch, and training encompasses

multiple epochs. The composition of batches is randomized between epochs (e.g.,

by shuffling the training dataset after each epoch). The size of the batches is a

hyperparameter.

In addition to its computational benefits, the stochastic nature of SGD can pos-

itively affect the convergence behavior (Goodfellow et al., 2016). In practice, esti-

mating the gradient-based on a batch of data often approximates the global gradient

(i.e., the gradient with respect to to the entire training dataset) sufficiently well.

Thus, SGD can perform more gradient updates than gradient descent in a given time

frame and achieve faster convergence.

Backpropagation The ability to efficiently compute the gradients of a loss function

with respect to the parameters of a deep neural network is crucial for the application

of gradient-based optimization methods. The backpropagation algorithm proposed

by Rumelhart et al. (1986) allows the computation of gradients in a deep neural

network by recursive application of the chain rule. The algorithm comprises two steps:

In the forward pass, input examples are passed forward through the layers of the deep

neural network, while storing all intermediate layer outputs for subsequent gradient

computation. In the following backward pass, gradients are recursively computed,

starting from the last layer and moving backwards towards the first layer.

6SGD is sometimes also referred to as minibatch SGD, which emphasizes that gradient estimation
is based on (mini)batches of data.
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Computing the gradient for a deep neural network involves many mathematical

operations. Thus, the recursive application of the chain rule performed by the back-

propagation algorithm leads to many multiplications. The vanishing gradient problem

arises when these multiplications include small values. The repeated multiplication of

small values results in small gradient updates (Equation 2.5) and thus to extremely

slow convergence. The related exploding gradient problem arises when the multi-

plications include too large values, as this leads to divergence of the optimization7.

The use of adequate activation functions (Section 2.2.2) or normalization layers (Sec-

tion 2.2.2) is crucial to mitigate these problems. A comprehensive discussion of the

backpropagation algorithm can be found in (Goodfellow et al., 2016).

SGD with Nesterov momentum Training with SGD can lead to large variations in

the gradients that are used to update the model parameters. In particular, training

with small batch sizes (which is often required due to memory limitations) can lead

to noisy estimates of the gradients and consequently poor optimization performance.

Momentum (Polyak, 1964) is a technique that aims to prevent sudden changes of

the gradient direction between iterations, reducing the negative effect of noisy gra-

dients and accelerating training. Speaking in the metaphor of a ball rolling down

a hill, momentum adds a certain amount of inertia to the ball, preventing it from

uncontrolled movements into various directions and from getting stuck in small local

valleys. Using a momentum factor µ ∈ [0, 1], the update vector in Equation 2.5

becomes

∆θ(i+1) = −λ∇θL
(

B; θ(i)
)

+ µ∆θ(i). (2.6)

Thus, each update is influenced by the gradients, as well as the update direction

∆θ(i) of the previous iteration.

Nesterov momentum (Sutskever et al., 2013) is a variant of momentum inspired by

Nesterov’s accelerated gradient method (Nesterov, 1983), which changes the update

vector to

∆θ(i+1) = −λ∇θL
(

B; θ(i) + µ∆θ(i)
)

+ µ∆θ(i). (2.7)

Compared to standard momentum (Equation 2.6), gradient descent with Nesterov

momentum takes a step µ∆θ(i) before evaluating the gradient of the loss function.

This can be interpreted as taking a SGD step and then correcting the update based on

the gradients at the new position. Nesterov momentum has been shown to stabilize

training and accelerate convergence (Sutskever et al., 2013).

7In practice, vanishing and exploding gradients often result in underflows and overflows of floating-
point data types, respectively.
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Regularization Overfitting is a phenomenon observed when a model (e.g., a deep

neural network) fits the training data well, but is unable to generalize to new data.

It becomes a particular challenge when the available training dataset is small, as

a model may fail to capture underlying relationships in the data when the sample

size is too small. Regularization techniques can counter overfitting and improve the

generalizability of models to unseen data. L2 regularization (also referred to as weight

decay) is often used to train deep neural networks (Goodfellow et al., 2016). It works

by adding a regularization term to the loss function to prevent the magnitude of the

parameters θj ∈ θ from growing indefinitely and fitting the training data perfectly:

Lwd(B; θ) = L(B; θ) + ω
∑

θj∈θ

∥

∥θj
∥

∥

2

2
. (2.8)

The weight decay factor ω ∈ R
≥0 controls the impact of the regularization term.

Layer-wise adaptive rate scaling (LARS) SGD enables the training with batches

that are significantly smaller than the entire training dataset. Hardware for training

deep neural networks (Section 2.2.6) enables the parallel processing of training sam-

ples in a batch. Thus, using large batch sizes (e.g., as large as the available memory

permits) enables the efficient use of available hardware resources. As a larger batch

size leads to fewer training updates per epoch, Goyal et al. (2017) propose to increase

the learning rate λ linearly with the batch size. However, training with large learning

rates can lead to unstable training behaviour (Goyal et al., 2017; You et al., 2017).

Layer-wise adaptive rate scaling (LARS) addresses this problem by computing a

separate local learning rate λj for each parameter θj ∈ θ:

θ
(i+1)
j = θ

(i)
j + ∆θ

(i+1)
j (2.9)

with ∆θ
(i+1)
j = −λ

(i)
j ∇θj

L
(

B; θ(i)
)

, (2.10)

λ
(i)
j = λ η

∥

∥

∥
θ
(i)
j

∥

∥

∥

2
∥

∥

∥
∇θj

L
(

B; θ(i)
)∥

∥

∥

2

. (2.11)

The trust factor η ∈ [0, 1] adds additional control over how much the parameters

can change per iteration. You et al. (2017) report that the ratio between parameter

and gradient magnitudes can vary strongly for different parameters and different

layers, leading to instabilities if the learning rate is too high. The local learning rate

rescaling mitigates this effect and stabilizes training with large batch sizes. It can be

combined with other optimization techniques, e.g., L2 regularization or momentum.
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Data augmentation Supervised machine learning methods depend on the avail-

ability of large labeled training datasets (e.g., data samples and associated labels).

Labeling datasets is time and labor-intensive and often requires domain knowledge.

Data augmentation softens the requirement for large labeled datasets: It randomly

transforms the available data and thus artificially creates additional training samples.

This approach is particularly useful for image data, as images can be transformed in

various ways that preserve their semantic meaning (i.e., the class a sample belongs

to). Typical examples for image data augmentation involve rotation, mirroring, or

pixel intensity modification. The transformation parameters (e.g., rotation angle)

are randomly and independently determined for each data sample during training.

When designing a data augmentation pipeline, it is important to consider the

data and the given task. Data augmentations aim to mimic variations that can be

realistically expected in the natural data distribution X . It is necessary to ensure

that the relationship between the input and the corresponding label is preserved after

the transformation. For example, a model aiming to classify images of digits (like

in the popular MNIST dataset, LeCun et al., 1998) should not be trained with too

strong random rotation, as it can potentially alter the semantic meaning of the image

(e.g., change the digit “6” to “9” and vice-versa).

Loss functions

A loss function measures how well a given deep neural network performs for a given

task. Minimizing8 the loss function using a suitable optimization algorithm (Sec-

tion 2.2.1) thus reduces the prediction error of a model. The choice of the specific

loss function depends on the given task.

The categorical cross-entropy loss is a loss function for multi-class classification

tasks (e.g., classification or segmentation of images). Here, the task is to assign each

data point to one of c predefined classes. In this setting, the groundtruth y ∈ R
c

and the model prediction ŷ ∈ R
c are modelled as c-dimensional vectors representing

discrete pseudo-probability distributions over c classes, with y(i) and ŷ(i) depicting

the true and predicted probability of a sample to belong to the i-th class (1 ≤ i ≤ c),

respectively. ŷ is typically normalized using the softmax function

softmaxi(ŷ) =
exp (ŷ(i))

∑c
j=1 exp (ŷ(j))

. (2.12)

8Since a loss function measures the disagreement between predicted and target output, it is min-
imized during training. In contrast, a reward function would measure the agreement between
the two and thus would need to be maximized.
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2.2 Deep learning methods

The result can be interpreted as a probability distribution over c classes. The

groundtruth y is represented as a one-hot encoded vector with

y(i) =

{

1 i = j

0 i 6= j
, (2.13)

where j denotes the class of the respective sample. Similar to the output of the

softmax function, y can be interpreted as a discrete probability distribution over c

classes, where all probability mass is concentrated on the true class j. The categorical

cross-entropy is then defined as the expected negative log-likelihood of the prediction

ŷ under the discrete data distribution y:

lCE(ŷ,y) = −Ey [log (ŷ)] = −
c

∑

i=1

y(i) log (ŷ(i)) . (2.14)

The above definition assumes that each sample x gets mapped to one corresponding

output y. However, some applications require loss computation considering multiple

output variables. One prominent example is image segmentation, where the task is

to assign each pixel of an input image to one of c defined output classes. In such

cases, the loss is computed by averaging across all pixels.

Performance evaluation

Performance evaluation methods enable the comparison of different machine learning

methods. In deep learning research, this includes the comparison of network archi-

tecture and training strategies (e.g., loss function or optimization technique). Super-

vised machine learning methods are evaluated based on their prediction performance.

Performance is typically assessed on a test set Xte =
{(

x
te
i ,y

te
i

)

| 1 ≤ i ≤ nte

}

. Sim-

ilar to the training dataset, it consists of examples and corresponding labels. The

test set is an independent dataset (i.e., it contains samples that were not used for

training) and allows to assess the generalizability of a model to unseen data. Assess-

ing the generalizability is crucial to estimate how a model will perform in practical

applications.

This section focuses on the evaluation of supervised methods. The lack of labels

makes the performance of unsupervised methods (Section 2.2.4) more difficult to

quantify. Features learned by unsupervised methods can be clustered and visualized

to investigate the learned features. Similarly, training a supervised classifier based

on such features can help to assess their performance.

Confusion matrix A confusion matrix is a tool to analyze the classification perfor-

mance on a dataset. Given a test dataset, the confusion matrix entry in row i and
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column j (1 ≤ i, j ≤ c) specifies how many samples belonging to class i are classified

as class j:

CM(i, j) = |
{(

x
te
k ,y

te
k

)

∈ X
te | arg maxyte

k = i ∧ arg max ŷte
k = j

}

|. (2.15)

The confusion matrix can be used to calculate different performance metrics.

Metrics In machine learning, metric9 refers to a function that quantifies the perfor-

mance of a trained model. The value of a metric allows the comparison of different

models (e.g., different architectures or training strategies). They are conceptually

similar to a loss function in that they both measure the performance of a model.

Compared to a loss function, however, metrics are not optimized during training and

do not need to be differentiable. The here discussed metrics for supervised machine

learning algorithms quantify the agreement of a model’s predictions and the expected

labels.

Many metrics can be conveniently computed based on the confusion matrix intro-

duced in the last section: The accuracy is defined as the fraction of correctly classified

samples. It can be computed from the confusion matrix as the ratio between the sum

of diagonal entries and the sum of all entries:

accuracy(CM) =

∑c
i=1 CM(i, i)

∑c
i=1

∑c
j=1 CM(i, j)

(2.16)

The accuracy is easy to interpret, but it needs to be used with care when deal-

ing with imbalanced datasets. In an imbalanced dataset, some classes may occur

significantly more frequently than others. A prominent example for this effect can

be found in the diagnosis of rare diseases: If the vast majority of patients do not

suffer from a specific disease (e.g., 99.9%), a practically useless classifier that always

predicts “negative” (i.e., no disease) achieves 99.9% accuracy due to the high class

imbalance in the data. In such cases, other metrics are better suited to understand

a model’s performance.

Precision (also referred to as positive predictive value) measures the ratio between

correctly classified samples from a class k (1 ≤ k ≤ c) and the number of samples

predicted as belonging to class k:

precisionk(CM) =
CM(k, k)

∑c
i=1 CM(i, k)

(2.17)

9Metrics in the context of machine learning typically measure a notion of the difference between
the predicted and groundtruth values. By that, they are conceptually similar to metrics in the
mathematical sense, but they do not necessarily satisfy the mathematical definition of a metric.
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Recall (also referred to as true positive rate) measures the ratio between correctly

classified samples from class k and the number of samples belonging to this class:

recallk(CM) =
CM(k, k)

∑c
i=1 CM(k, i)

(2.18)

Precision and recall answer different questions: Precision measures how likely a

sample belongs to class k if a model assigns it to class k. Recall measures how likely

a sample is assigned to class k if it belongs to class k. Therefore, precision and recall

can give contradicting results (e.g., precision can be high, but recall is low, and vice-

versa). Combined metrics can be used if the considered application does not indicate

which metric to prefer over another. Combining multiple metrics can be useful in

practice, as a single value allows easier comparison of different methods.

The F1-score (also referred to as Dice-score or Sørensen-Dice-score) is computed

as the harmonic mean between precision and recall:

F1k(CM) = 2
precisionk(CM) recallk(CM)

precisionk(CM) + recallk(CM)
(2.19)

The F1-score has a range of [0, 1]. Higher values indicate higher precision and recall

and hence better model performance.

Equation 2.19 computes the F1-score on a per-class basis, allowing the performance

analysis for specific classes. The macro F1-score is obtained by averaging the F1-

scores of all classes:

F1(CM) =
1

c

c
∑

k=1

F1k(CM) . (2.20)

Each class contributes equally to the computational of the macro-F1 score, which

mitigates the effect of class imbalance in the dataset.

Ablation studies The process of training a deep neural network involves many de-

grees of freedom: The layers defining the architecture of a deep neural network, the

optimizer, the learning rate policy, and many other components involved during train-

ing can be freely chosen from a large pool of methods. When developing new deep

learning methods, it is therefore important to systematically evaluate the influence

of newly introduced components or changes made to established training protocols.

Ablation studies comprise the systematic addition or removal of components (e.g.,

new layers) to investigate their performance impact.
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2.2.2 Neural network layers

Deep neural networks are composed of layers. A layer is a differentiable and often

parameterized function. It applies a transformation to incoming data and passes

it on to the next layer. The layer composition (i.e., their type and how they are

connected) determines the architecture of a deep neural network.

The universal approximation theorem (Cybenko, 1989) provides an important the-

oretical foundation for the application of deep neural networks. It states that a deep

neural network composed of at least two fully-connected layers (Section 2.2.2) with

finite dimensions can approximate any Borel measurable function arbitrarily well.

The immediate practical implications of this theorem are limited, as it allows no rea-

soning about the efficiency of such an approximation. However, it shows that deep

neural networks composed of an alternating series of linear and non-linear functions

are universal function approximators. This is a crucial insight: It demonstrates that

deep neural network constructed from relatively simple “building blocks” (i.e., lay-

ers) can approximate complex non-linear functions, which makes them applicable for

complex tasks (e.g., image analysis).

The interpretation of layers as basic building blocks for complex model architec-

tures provides an effective way to conceptualize and communicate the structure of

deep neural networks. Software frameworks for deep learning (Abadi et al., 2016;

Paszke et al., 2019) adopt this concept by allowing users to define deep neural net-

work from pre-defined layers.

The type of data (e.g., vector-valued data, images, graphs) used for a given task

determines which types of layers are predominantly used to address the task. The

following sections introduce layers that are used in the scope of this work. It intro-

duces general-purpose layers, layers for image data, and layers for graph-structured

data.

General purpose layers

Fully-connected layers A fully-connected layer consists of a linear transformation,

followed by a non-linear activation function. Given an input vector x ∈ R
di , a

fully-connected layer is defined as

FC(x;W, b) = σ(Wx + b) , (2.21)

where W ∈ R
do×di is a weight matrix, b ∈ R

do is a bias term, and do determines

the output dimension of the layer. The output dimension is also referred to as the

number of features that the layer learns.

The non-linear activation function σ prevents a series of fully-connected layers from

collapsing into a linear transformation. The universal approximation theorem (Cy-
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Figure 2.8: Activation functions for deep neural networks. The gradient of the
sigmoid function is close to zero for most inputs, making it prone to suffer from the
vanishing gradient problem (Section 2.2.1). The ReLU and leaky ReLU functions
have a positive gradient for the entire positive half-line. In addition, the leaky ReLU
has small positive gradients for the negative half-line.

benko, 1989) shows that the combination of linear transformations with non-linear

activation functions is crucial for the representational capacity of deep neural net-

work.

Fully-connected layers were proposed in the earliest works on deep learning (Rosen-

blatt, 1958; Fukushima et al., 1982) and have been studied extensively since. Models

consisting of multiple fully-connected layers are referred to as multi-layer perceptrons

(MLPs).

Activation functions An activation function (also referred to as non-linearity) is

a non-linear function. In combination with linear transformations (e.g., in a fully-

connected layer), an activation function σ breaks the linearity of a deep neural net-

work. This is crucial to enable the learning of complex non-linear relationships in

the data (Cybenko, 1989).

The sigmoid function

sigmoid(x) =
1

1 + exp (−x)
. (2.22)

is one of the earliest practically applied activation functions. It is applied indepen-

dently to all elements of the input vector x ∈ R
di . The gradient of the sigmoid

function is close to zero for a wide range of input values (Figure 2.8), which makes

it prone to suffer from the vanishing gradient problem (Section 2.2.1).
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The softmax function (Equation 2.12) is used to normalize a vector. The result

can be interpreted as a categorical probability distribution over a set of classes. It is

typically used as the final operation in deep neural networks for classification, e.g.,

as input for the categorical cross-entropy loss (Section 2.2.1).

The rectified linear unit (ReLU) activation function (Hahnloser et al., 2000)

ReLU(x) = max (0, x) (2.23)

is one of the most popular activation function used in modern deep neural network

architectures. Compared to the sigmoid function, its gradient is one for the en-

tire positive half-line, making it less prone to suffering from the vanishing gradient

problem (Figure 2.8). The leaky ReLU activation function is a variant of the ReLU

activation function:

LeakyReLU(x) = max (0, x) + αmin (0, x) , (2.24)

where α ∈ R
>0 is a positive slope. Leaky ReLU maps negative values to small

negative values, which ensures that the gradient of the activation function is always

non-zero (Figure 2.8).

Batch normalization layers Batch normalization (Ioffe et al., 2015) aims to sta-

bilize the training process to enable faster learning with higher learning rates. The

idea of the batch normalization is to normalize the output of each layer before pass-

ing it on to the next layer. This ensures that the distribution of input values each

layer receives remains approximately fixed during training. Batch normalization has

shown to result in more stable and faster training (Ioffe et al., 2015).

Batch normalization computes normalization statistics based on all samples in a

batch of training samples. Given a batch of training samples

B =
{

xj ∈ R
di | 1 ≤ j ≤ b

}

(2.25)

with batch size b = |B|, batch normalization is defined as

BN(x;γ, β) = γ
(x− µBN)

σBN

+ β, (2.26)

with µBN =
1

b

b
∑

j=1

xj, (2.27)

σ
2
BN =

1

b− 1

b
∑

j=1

(

xj − µBN

)2
. (2.28)
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All operations are applied elementwise. The statistics µBN and σBN estimate the

mean and standard deviation of the samples in the batch B. Mean and standard

deviation are used to normalize the data. The parameters γ and β are trainable,

allowing the layer to recover the identity function if needed (by setting γ = σBN and

β = µBN). When applying batch normalization to high dimensional data (e.g., im-

ages), the estimation of mean (Equation 2.27) and standard deviation (Equation 2.28)

is performed by averaging over the spatial dimensions of the data (e.g., height and

width for images).

One caveat of batch normalization is the dependence on the batch size to obtain

estimates of the batch statistics µBN and σBN . The batch size needs to be sufficiently

large to enable reliable estimation of mean and standard deviation. Training with

large batch sizes can be computationally expensive, especially when dealing with

high-dimensional data like images.

After training, the dependence on the batch composition is undesirable, as results

may differ depending on the samples included in a batch. To overcome this limita-

tion, batch normalization behaves differently during inference compared to training.

Instead of computing batch statistics on the actual batch, statistics are accumu-

lated during training using an exponential moving average. During inference, these

accumulated statistics are then used in place of µBN and σBN .

Batch normalization is typically applied between the linear operation and the ac-

tivation function of a layer. For example, a fully-connected layer with batch normal-

ization takes the form

FCBN(x;W,γ,β) = σ(BN(Wx;γ, β)) . (2.29)

Note that the bias b of the fully-connected layer can be omitted when batch nor-

malization is used, as the bias vector β of the batch normalization layer models the

same effect.

Dropout Dropout (Hinton et al., 2012) is a regularization technique to improve the

robustness of deep neural networks and to reduce overfitting. It works by setting

random entries of an input vector x ∈ R
di to zero, effectively preventing propagation

of information through these entries:

dropi(x; p) =

{

x(i) pi = 0

0 pi = 1
. (2.30)

The values pi ∈ {0, 1} are sampled from a Bernoulli distribution with dropout prob-

ability p and determine which entries are set to zero. Dropout is independently

computed for each data sample and training iteration. By randomly disabling parts
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of the deep neural network, each training iteration effectively uses a slightly differ-

ent “subnetwork” of the model. Training with dropout is thus related to ensemble

methods (Goodfellow et al., 2016).

Dropout is typically only applied during training. During inference, dropout does

not set values to zero, but all output values are scaled by a factor 1 − p. This

correction ensures that the expected output values are identical during training and

inference (Hinton et al., 2012).

In addition to its role as a regularization technique, dropout allows uncertainty

estimation of deep neural networks (Gal et al., 2016).

Skip connections Skip connections enable the propagation of information through

a deep neural network without passing through all layers of the model. They provide

“shortcuts” through a model and have been shown to improve performance (Ron-

neberger et al., 2015; He et al., 2016a; Huang et al., 2017).

Residual connections (He et al., 2016a,b) are used by the ResNet architecture

(Section 2.2.3). A residual connection adds the output of a function h (e.g., one or

multiple layers) to its input x:

skipadd(x) = h(x) + x (2.31)

Similarly, the dense connection (Huang et al., 2017) of the DenseNet architecture

(Section 2.2.3) uses concatenation:

skipcat(x) = h(x) ||x (2.32)

Residual and dense connections skip few layers (i.e., h encompasses one or few

layers). Architectures like the U-Net (Section 2.2.3) use long-range skip connections,

where h encompasses many layers.

The use of skip connections can stabilize the training behavior of deep neural

networks. For example, they can make training less prone to the vanishing gradi-

ent problem (Section 2.2.1), as skip connections provide alternative paths for the

gradients to “flow” through (He et al., 2016b).
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Layers for image data

This section introduces layers for processing of image data10. We model an image

X ∈ R
h×w with height h and width w as a two-dimensional array11. Entries of

the array represent the intensity values at the respective pixel positions. We use

the function notation to specify the intensity values at certain pixel positions, i.e.,

X(i, j) ∈ R denotes the intensity value of a pixel at row 1 ≤ i ≤ h and column

1 ≤ j ≤ w. Following this convention, we model a multi-channel image (e.g., a RGB

image) with c channels as a three-dimensional array X ∈ R
h×w×k, where X(i, j, k) ∈

R specifies the intensity value at row 1 ≤ i ≤ h, column 1 ≤ j ≤ w, and channel

1 ≤ k ≤ c.

In most cases, the output of an image processing layer is itself an image, denoted

by Y . Depending on the layer, the height, width, and number of channels of the

output image can differ from those of the input image.

Convolutional layers Convolutional layers are the most important layers for pro-

cessing image data12. A convolutional layer applies a discrete convolution of an input

image X with a set of nK filters K =
{

Kk ∈ R
u×u×c | 1 ≤ k ≤ nK

}

(also referred to

as kernels), where u denotes the size of a filter13 and c denotes the number of channels

in an input image X ∈ R
h×w×c. Simply speaking, a convolutional layer computes a

weighted average across a neighborhood of pixels at pixel position 1 ≤ i ≤ h and

1 ≤ j ≤ w, where the weights of the average are trainable parameters specified by

the filters K:

Y (i, j, k) = (X ∗ K)(i, j, k) (2.33)

=
∑

i
′

∑

j
′

∑

k
′

X
(

i− i′, j − j′, k′
)

Kk

(

1 + i′ +
u

2
, 1 + j′ +

u

2
, k′

)

, (2.34)

where −u
2
≤ i′, j′ ≤ +u

2
, 1 ≤ k′ ≤ c, 1 ≤ k ≤ nK , and ∗ denotes the discrete

convolution of an image X with nK filters. The number of filters is a hyperparameter

10All layers presented in this section can be applied to images, as well as any other kind of data
that is organized on a regular grid, e.g., 3D volumes. However, for brevity, we restrict our
descriptions to the 2D case.

11In signal processing, images are typically modelled as functional mappings from a two-dimensional
coordinate space to an image space (e.g., intensity values). In this work, we model images as
arrays, resembling the conventions of programming languages (e.g., Python) or deep learning
software frameworks (Abadi et al., 2016; Paszke et al., 2019). This approach allows us to define
operations in a way that closely follows their implementation in software.

12This section focuses on aspects of convolutional layers that are relevant in the scope of this thesis.
Goodfellow et al. (2016) provide a comprehensive overview of convolutional layers and discuss
additional variants, properties, and neuroscientific foundations.

13While non-square filters are possible, we restrict the definition to square kernels to simplify
notation.
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convolution

size 3x3, stride 1x1

padded convolution

size 3x3, stride 1x1

padding 1

strided convolution

size 3, stride 2x2

dilated convolution

size 3x3, stride 1x1

dilation 1

pooling

size 2x2, stride 2x2

input (8x8) out (6x6)

1st step

2nd step

last step

input (8x8) out (3x3)

1st step

2nd step

last step

input (8x8) out (4x4)

1st step

2nd step
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input (8x8) out (4x4)

1st step

2nd step

last step

input (8x8) out (8x8)

1st step

2nd step

last step

Figure 2.9: Illustration of different convolution operations. The first, second, and
last steps of each operation are shown to illustrate the underlying principle. Com-
putational dependencies between input and output pixels are shown in blue. Pixels
added by padding are shown in gray. An input image of 8× 8 pixels results in differ-
ently shaped output images depending on the type of applied convolutional operation.
A single-channel input image is shown to improve visualization, but principles are
directly applicable to multi-channel images. Note that in this example, strided con-
volution does not consider all pixels of the input image, which should generally be
avoided in practice by proper tuning of image shapes.

of the layer, which specifies the number of channels for Y . Similar to hand-crafted

linear filters used in image analysis (e.g., the Sobel filter, Kanopoulos et al., 1988),

each filter can extract specific features from the incoming image. However, compared

to hand-crafted filters, the filters K are optimized during the training of a deep

neural network. This allows convolutional layers to learn the extraction of task-

specific features. Based on the idea that each filter extracts specific features from

the incoming image data, the output channels of a convolutional layer are referred

to as feature maps. Figure 2.9 illustrates the working principles of different types

of convolutional operations. A comprehensive overview of convolutional operations,

as well as associated arithmetics and visualization, can be found in Dumoulin et al.

(2018).

The application of multiple convolutional layers in a row enables the extraction of

deep feature hierarchies. By using the feature maps produced by a convolutional layer

as input for a second convolutional layer, the second layer can build upon the features

extracted by the first layer to extract more complex features. Stacking a series of

multiple convolutional layers on top of each other thus enables the extraction of
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2.2 Deep learning methods

features with increasing complexity. Architectures constructed this way are referred

to as CNNs and have become the state-of-the-art method for many tasks involving

images. It has been shown that early layers (i.e., close to the input) of CNNs tend

to extract primitive features like edges, while later layers tend to learn increasingly

more abstract features like corners or parts of objects (Goodfellow et al., 2016).

Equation 2.34 assumes that the output image Y has the same spatial dimensions

h and w as the input image X. However, this is only true when padding is applied.

Padding artificially increases the spatial dimensions of the input image X before

performing the convolution operation to prevent issues at the borders of the image,

where some pixels “outside” the input image (i.e., i < 1, i > h, j < 1 and/or j > w)

are required for the computation. Pixels added by padding are typically chosen to

be constant (e.g., zero-padding) or are created by mirroring or replicating the border

pixels. Padding has the advantage of keeping the spatial size of images constant when

applying a series of convolutional layers, which is crucial to building deep network

architectures. However, padding can also introduce artifacts at the borders of feature

maps, which is particularly problematic in image segmentation tasks. In such cases,

padding can be omitted, resulting in a (typically small) reduction of the feature map

size with each convolutional layer.

The convolutional operator in Equation 2.34 applies a discrete convolution at each

position in the image. As described previously, this operation does not reduce the size

of the image when padding is used, or only slightly if no padding is used. Applying a

series of convolutional layers in a CNN can thus become computationally expensive,

especially for large images. Strided convolution overcomes this issue by computing

convolutions on a coarser grid. It can be defined as

(X ∗s K)(is, js, k) = (X ∗ K)(s · is, s · js, k) (2.35)

with 1 ≤ is ≤
h
s
, 1 ≤ js ≤

w
s
, 1 ≤ k ≤ nK , and s ∈ N denoting the stride parameter.

Consequently, a convolution with stride s reduces the height and width of the input

image by the factor 1
s
, which can reduce computational and memory requirements of

subsequent computations.

Dilated convolutions14 introduce a dilation rate d ∈ N, which defines a spacing (or

“gaps”) between the entries of a convolutional kernel. This “inflation” step widens the

filters without increasing the number of parameters, enabling dilated convolutional

layers to capture more context in the input. Dilated convolution with filter size

u and dilation rate d is equivalent to performing regular convolution with filters

14Dilated convolutions are sometimes also referred to as atrous convolutions, derived from the
French term “à trous”, which means “with holes”.
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Kd
k ∈ R

ud×ud×c of size ud = u + (u− 1)(d− 1) with15

Kd
k

(

i, j, k′
)

=

{

Kk

(

1 + i−1
d
, 1 + j−1

d
, k′

)

d | (i− 1) ∧ d | (j − 1)

0 otherwise
(2.36)

with 1 ≤ i, j ≤ ud and 1 ≤ k′ ≤ c. For efficiency, practical implementations do not

perform multiplication with zero entries in the filter. Regular convolutional can be

regarded as dilated convolution with d = 1. Dilated convolutions can be combined

with strided convolutions.

Convolutions are linear operations. Similar to fully-connected layers, they are

combined with non-linear activation functions (Section 2.2.2) to model non-linear

relationships. A convolutional layer takes the form

conv(X;K, b) = σ(X ∗K + b) , (2.37)

where σ is an activation function (e.g., ReLU) and b ∈ R
nK is a vector containing one

bias term per feature map. K and b are trainable parameters of the convolutional

layer.

The number of parameters of a convolutional layer is solely determined by the

filter size u and the number of filters per kernel nK . Thus, the parameter count is

independent of the number of input values (e.g., pixels). This property has made

convolutional layers the predominant layer type for image processing. In comparison,

the number of parameters of a fully-connected layer depends on the number of input

values. This dependence makes fully-connected layers impractical for image process-

ing, as the number of pixels grows quickly with the height and width of an image.

This issue becomes even more severe for higher-dimensional data like 3D volumes.

Convolutional layers manage to keep the number of parameters independent of the

input size by leveraging the concept of parameter sharing. It describes the idea of

reusing the same set of parameters across multiple locations in the input image. The

underlying assumption is that if a filter can extract a certain feature (e.g., an edge),

this extraction step is independent of the specific location in the image and can be

applied at arbitrary locations.

Convolutional layers further leverage the concept of sparse interactions to limit

the number of parameters. The underlying assumption of sparse interaction is that

meaningful features can be extracted by considering only a small set of input pixels

at each location. As a result, filters in convolutional layers are typically small (e.g.,

3 × 3 pixels) and capture only local features. More complex features can then be

extracted by stacking multiple convolutional layers on top of each other, with each

layer extracting more complex features than the previous one.

15
a | b denotes that a divides b, i.e., a | b ⇔ b mod a = 0.
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Pooling layers Pooling layers reduce the size of images and feature maps. Reducing

the size of images and feature maps is required to make processing large images

computationally feasible. In addition, condensing extracted features allows to create

low dimensional representations of input images.

Similar to convolutional layers, pooling layers aggregate a small subset of pixels into

a single pixel (Figure 2.9). However, pooling layers typically do not have trainable

parameters and do not contribute to the total number of parameters of a deep neural

network.

A pooling layer is generally defined as

pool(X)
(

ip, jp, k
)

= agg
({

X
(

p · ip + i, p · jp + j, k
)

| 1 − p ≤ i, j ≤ 0
})

, (2.38)

with 1 ≤ ip ≤ h
p

and 1 ≤ jp ≤ w
p
. The pool size p ∈ N determines how many pixels

are aggregated at each position and consequently the factor by which the image is

resized. Typical choices for the aggregation function agg are maximum (max-pooling)

or mean (average-pooling).

Global average pooling (GAP) is a special kind of pooling: Here, the pool size p in

each dimension is set equal to the height h and width w of the incoming image. This

effectively removes the spatial dimension of the image, resulting in a vector with k

entries. The aggregation of the spatial dimensions significantly reduces the number

of values to be processed, making it feasible to process the output of GAP using

a fully-connected layer. GAP is typically applied in CNN architectures for image

classification, which consist of several convolutional layers for feature extraction,

followed by GAP to reduce the extracted feature maps into a vector, and finally one

or more fully-connected layers to perform the classification.

Layers for graph data

Many real-world tasks can be modeled using graphs, including combinatorial opti-

mization (e.g., the traveling salesman problem), shortest path computation (Dijkstra,

1959), protein-protein interaction prediction (Zitnik et al., 2017), and social network

analysis (Zachary, 1977). In Chapter 7, we model brain mapping as a node classifi-

cation problem in a graph representing the brain surface.

A graph is defined16 as a tuple G = (V , E), where V = {vi | 1 ≤ i ≤ nV} describes

a set of nV nodes (or vertices) and E is a set of edges connecting nodes. An edge

going from node u ∈ V to v ∈ V is denoted as (u, v) ∈ E . A graph with (u, v) ∈ E ⇔

(v, u) ∈ E is called undirected. The neighborhood of a node vi is defined as the set of

all nodes that are directly connected to the node, i.e., N (i) =
{

vj ∈ V |
(

vi, vj
)

∈ E
}

.

The number of neighbors deg(vi) = |N (i)| of a node vi is referred to as the degree

16Our notation for graphs largely follows the notation used in Hamilton (2020).
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of a node. Going further, the k-hop neighborhood of a node vi contains all nodes

that can be reached from vi by travelling along at most k edges (hops). It can be

recursively defined as

Nk(i) = N (i) ∪
⋃

vj∈N(i)

(Nk−1(j) \ {vi}) , (2.39)

with N1(i) ≡ N (i).

The connectivity between nodes can be represented using an adjacency matrix

A ∈ {0, 1}nV×nV , with A(i, j) = 1 ⇔
(

vi, vj
)

∈ E and A(i, j) = 0 ⇔
(

vi, vj
)

/∈ E .

The adjacency matrix of an undirected graph is symmetric.

Nodes and/or edges of a graph can have features (also referred to as attributes).

Node features17 are denoted as FV =
{

xvi
| vi ∈ V

}

, where xvi
∈ R

di describes the

feature vector associated with node vi.

Graph neural networks Graph neural networks (GNNs) (Scarselli et al., 2008) are

a class of deep neural networks for processing graph data18. Fully-connected layers

have no direct way to incorporate the neighborhood information encoded in a graph,

and convolutional layers can only operate on data defined on a regular grid19. In

comparison, GNNs take neighborhood relations, as well as node and edge features

into account.

Graph convolutional networks (GCNs) are a group of GNN architectures that

generalize the idea of convolutional layers to the arbitrary neighborhood structure of

graphs. GCNs can be grouped into two categories: spectral and spatial GCNs.

Spectral GCNs (Bruna et al., 2014; Defferrard et al., 2016) compute an eigenbasis

from the adjacency matrix of a given graph to transform it into the spectral domain.

Convolutions are then implemented as a multiplication in the spectral domain. One

drawback of spectral GCNs is that the eigenbasis of graphs used during training and

inference must be identical. As the eigenbasis is determined by the adjacency matrix,

which encodes the topology of the graph, spectral GCN can only be applied to graphs

that share the same topology as the training graph. This property makes spectral

GCNs a transductive approach. In addition, the eigenvalue decomposition performed

by GCNs can be computationally expensive. Approximations (Defferrard et al., 2016)

17We do not introduce notation for edge features because they are not used in the scope of this
work. Also, while the definition depicts the node features to be vectors, any kind of data (e.g.,
images) could technically be used as node features.

18Hamilton (2020) provides a comprehensive overview of GNNs and other methods for machine
learning on graphs. This section focuses on aspects that are most relevant in the scope of this
thesis.

19Note that images can be regarded as graphs with a specific topology on a regular grid.
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can reduce the computational requirements, but the application of spectral GCNs to

large graphs remains challenging.

Spatial GCNs (Hamilton et al., 2017; Kipf et al., 2017; Veličković et al., 2018)

operate directly in the graph domain. As a result, spatial GCNs are not restricted

to graphs of a specific topology. This property makes them an inductive approach.

They can be applied to new graphs during inference.

The layers of a spatial GCN can be modelled using the message passing (Gilmer

et al., 2017) framework:

mp
(

xvi
; θmsg, θupd

)

= upd
(

xvi
,msg

(

xvi
; θmsg

)

; θupd
)

, (2.40)

with msg
(

xvi
; θmsg

)

= agg
(

{

xvi

}

∪
{

xvj
| vj ∈ N (i)

}

; θmsg

)

. (2.41)

The message passing framework iteratively updates the features of all nodes vi ∈ V in

a graph G based on their respective neighborhood. A message passing layer comprises

two steps: message creation and node update20. A message msg
(

xvi
; θmsg

)

is created

by aggregating the features of all neighbors N (i) of a node vi. The aggregation

function “agg” (parameterized by θmsg) is required to be invariant to permutations

of the input, as no specific order can be imposed on the set of nodes. The cre-

ated message is used to update the features of vi using an update function “upd”,

which is parameterized by θupd. The aggregation function and the update function

are typically implemented using general-purpose neural network layers (e.g., fully-

connected layer layers). Thus, they can be optimized using the backpropagation

algorithm (Section 2.2.1).

One message passing layer (i.e., one update step) updates the features of all nodes

based on their direct neighborhoods. By stacking k message passing layers on top of

each other, a GCN can compute features based on the k-hop neighborhood Nk(i) of

vi. A k-layer GCN recursively computes an output graph21

G(k) =
(

V , E ,F (k)
V

)

, (2.42)

with F (k)
V =

{

mpk

(

x
(k−1)
vi

; θ(k)msg, θ
(k)
upd

)

|x(k−1)
vi

∈ F (k−1)
V

}

, (2.43)

where G(0) =
(

V , E ,F (0)
V

)

is an input graph with nodes V , edges E , and node features

F (0)
V =

{

x
(0)
vi

| vi ∈ V
}

.

20Software frameworks for training of GNNs enable the definition of GNN layers by implementing
functions for message creation and node update (Fey et al., 2019).

21We only consider GCNs that leave the graph topology (i.e., nodes and edges) unchanged. De-
pending on the task, GCNs can alter the topology of a graph (e.g., for graph generation or graph
reconstruction).
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Figure 2.10: Illustration of GCN feature aggregation in an undirected graph. The
output features of a selected node (red) are computed by iteratively including a larger
neighborhood around the node. The numbers inside the nodes indicate how many
GCN layers need to be applied to incorporate features of the respective nodes for
feature computation of the selected node. White nodes are not considered for feature
computation at the respective layer.

Figure 2.10 illustrates the message propagation in a GNN with three layers (i.e.,

three message passing layers): The first layer updates the features of a selected

node (red) based on its immediate neighborhood (blue). After the second layer, the

features of the selected node are effectively computed based on its 2-hop neighborhood

(blue and green nodes). The third layer repeats this process to effectively incorporate

features from the 3-hop neighborhood (blue, green, and orange nodes).

Training a GCN is performed largely analogous to training other deep neural net-

works. To create a batch of b samples for a training iteration (e.g., Equation 2.3), a

subgraph of the original graph is created. Given a batch BV ⊂ V of nodes, a subgraph

GB =
(

VB, EB,FVB

)

VB = BV ∪
⋃

vi∈BV

Nk(i)

EB = {(u, v) ∈ E | u ∈ VB ∧ v ∈ VB}

(2.44)

is created, which contains all nodes and edges required for computing output features

for BV using a k-layer GCN.

GCNs can be applied to address different tasks. In node classification tasks, a

GCN aims to classify the individual nodes of a graph. In comparison, a GCN for
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Figure 2.11: Subgraph sampling methods for GNN training. Without subsampling,
the entire k-hop neighborhood of a selected node (red) is included in the sampled
subgraph. SAGE samples a fixed number (here three) of neighbors per node, which
limits the computational requirements and improves robustness to varying graphs.
GAT assigns trainable weights (i.e., attention) to neighboring nodes, indicated by
edges with varying width. It additionally applies dropout to the learned attention
coefficients, resulting in a stochastic neighborhood sampling similar to that employed
by SAGE.

graph classification analyzes the structure and features of an entire graph to assign

a single label to the graph as a whole. Other tasks involve graph generation, graph

representation learning, and graph reconstruction (Wu et al., 2020). In this work, we

focus on node classification tasks.

Layers used in GCNs differ in how they implement aggregation and update in the

message passing framework. The following sections introduce layers used in the scope

of this work.

SAGE SAGE (SAmple and aggreGatE) (Hamilton et al., 2017) is one of the first

methods employing the subgraph sampling scheme described in Equation 2.44, en-

abling its application to large graphs. SAGE further introduces a stochastic neigh-

borhood sampling procedure (Figure 2.11). The stochastic neighborhood sampling

creates batches GB by sampling fixed-size neighborhoods around each node rather

than using the full neighborhood N (i). The subsampling ensures that the degree

of nodes in the constructed subgraph does not exceed a predefined upper bound.

This approach prevents the creation of large subgraphs in cases where G is densely

connected (i.e., has a high average node degree) and limits the computational and

memory requirements.

Hamilton et al. (2017) evaluate multiple possible aggregations functions to be used

in the message passing framework, all of which follow a similar pattern. SAGE with
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mean aggregation takes the following form:

aggSAGE

(

xvi

)

=
1

|N (i)|

∑

vj∈N(i)

xvj

updSAGE

(

xvi
;W, b

)

= FC
(

xvi
|| aggSAGE

(

xvi

)

;W, b
)

(2.45)

Messages are constructed by averaging features of neighboring nodes. Averaged

features are then concatenated with the node features xvi
and passed through a

fully-connected layer with W ∈ R
do×2di and b ∈ R

do . The concatenation operation

serves as a skip-connection (Section 2.2.2), which enables efficient propagation of

information through the network and improves performance (Hamilton et al., 2017).

Graph Attention Network (GAT) The mean aggregation used in SAGE assigns

equal weights to all neighbors of a node. However, attention mechanism have been

shown to improve the performance of deep neural networks in a variety of set-

tings (Vaswani et al., 2017; Dosovitskiy et al., 2020). Attention adaptively assigns

different weights to different samples of the input, enabling a neural network layer to

“attend” to certain samples more than to others (Figure 2.11). Graph attention net-

works (GATs) (Veličković et al., 2018; Brody et al., 2021) apply the idea of attention

to GCNs. They compute a weighted average

aggGAT

(

xvi

)

=
1

|N (i)|

∑

vj∈N(i)

αijxvj

updGAT

(

xvi
;W, b

)

= FC
(

xvi
|| aggGAT

(

xvi

)

;W, b
)

(2.46)

with

αij =
exp

(

e
(

xvi
,xvj

))

∑

vk∈N(i) exp
(

e
(

xvi
,xvk

)) , (2.47)

e
(

xvi
,xvj

)

= a
⊤ LeakyReLU

(

W
(

xvi
||xvj

))

, (2.48)

W ∈ R
do×2di , and b ∈ R

do . To compute the output features for a node vi, a GAT layer

computes attention coefficients αij ∈ [0, 1] for each neighbor vj ∈ N (i) of vi. The

computed attention coefficients determine how much attention the layer attributes

to each neighbor. The vector a ∈ R
do is a trainable parameter.

Veličković et al. (2018) propose to apply dropout (Section 2.2.2) to the attention

coefficients αij during training (Figure 2.11). Thus, features are computed based

on stochastic neighborhoods. This approach has a similar effect as the sampling

procedure of SAGE.
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Figure 2.12: U-Net architecture for semantic image segmentation proposed by Ron-
neberger et al. (2015). The model is composed of an encoder comprised of convo-
lutional layers and pooling layers, and a decoder comprised of convolutional layers
and upsampling operations. The encoder extracts features with decreasing spatial
resolutions from the incoming image. The decoder increases the spatial resolution to
create the final segmentation output. Long-range skip-connections facilitate efficient
information propagation and allow the model to combine detailed features in the en-
coder with complex features in the decoder through concatenation. The numbers in
the blocks denote the filter count in the respective convolutional layer. The encircled
“c” denotes concatenation along the feature dimension.

2.2.3 Neural network architectures

The layer composition of a deep neural network (i.e., type, number, and connection of

layers) defines its architecture. The following sections introduce deep neural network

architectures that provide the basis for the architectures used in this work.

Documenting neural network architectures Documenting deep neural network

architectures is a crucial aspect of deep learning research (e.g., in scientific publi-

cations). Textual descriptions of an architecture (e.g., filter size, number of filters)

can be difficult to understand, especially for architectures with complex connectivity

(e.g., using skip-connections). Block diagrams allow documenting model architec-

tures concisely and completely. In a block diagram, each layer (or a composition of

multiple layers) is represented as a block. Blocks are annotated with text describing

the parameters of layers. Connections between layers (i.e., which layer receives input

from which layer) are visualized using arrows.

We use block diagrams to visualize and describe different architectures. An exam-

ple for a block diagram is shown in Figure 2.12.

U-Net

The U-Net (Ronneberger et al., 2015) is an encoder-decoder architecture (Figure 2.12)

for image segmentation tasks, where the task is to assign all image pixels to the cor-

responding class. The encoder part of the model receives an input image and passes
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it through a series of convolutional layers (Section 2.2.2), interleaved with pooling

layers (Section 2.2.2) to reduce the spatial resolution of feature maps. Consecutive

convolutional layers with identical parameterization (e.g., same number of filters) are

often visualized as a block (Figure 2.12).

The result of the encoder is passed on to the decoder. The decoder consists of

convolutional layers, interleaved with upsampling operations to increase the spatial

resolutions of feature maps. The upsampling is implemented by image resizing (e.g.,

nearest-neighbor), followed by a convolutional layer.

The encoder-decoder design leads to a loss of detail in the extracted feature maps,

which hinders the creation of detailed segmentations. The U-Net employs long-range

skip-connections (Section 2.2.2) between the encoder and the decoder to mitigate this

effect. Feature maps from the encoder are passed over and concatenated to feature

maps of the decoder. The skip-connections allow the U-Net to combine fine image

details available in the encoder with complex feature representations in the decoder,

which ultimately leads to high-resolution segmentations.

The name “U-Net” originates from the encoder-decoder architecture: The encoder

reduces the spatial resolution (i.e., the downward path), while the decoder increases

it again (i.e., the upward path).

Residual networks

The depth of a deep neural network determines its ability to learn complex feature

hierarchies, which is crucial for image classification tasks (He et al., 2016a). However,

He et al. (2016a) observed that deep architectures often obtain lower classification

performance than shallower models, even though deeper models should theoretically

be able to recover the behavior of shallower models by learning the identity function

in some layers. This degradation problem limits the use of model architectures with

many layers.

He et al. (2016a,b) propose residual connections to address the degradation prob-

lem. The resulting family of architectures is called residual networks (ResNets).

ResNets were the first architecture type that allowed training deep neural networks

with many (e.g., 50, 101, 151, 200) layers and significantly improved the performance

for image classification tasks.

A residual connection is a skip-connection (Section 2.2.2) that adds the input of a

layer to its output:

g(x) = x + f(x) (2.49)

⇔ g(x) − x = f(x) (2.50)
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Figure 2.13: ResNet architectures (He et al., 2016a) used in this work. Each model
consists of a downsampling block, which reduces the size of input images by strided
convolutions. It follows a series of residual blocks. ResNet18 uses default residual
blocks comprising two convolutional layers with a residual connection. ResNet50 and
ResNet101 use bottleneck residual blocks comprising three convolutional layers with
a residual connection. The output of the model is obtained by reducing the output of
the residual blocks using GAP. The resulting vector can be used for classification or
other tasks. When the number of convolutional filters changes between two blocks,
the first convolutional layer of the second block uses a stride of two to reduce the
feature map dimensions. Numbers in the blocks denote the number of filters in the
respective convolutional layer. The encircled “+” denotes addition.

Here, g(x) is a residual layer with input x, and f(x) comprises one or multiple neural

network layers. As shown in Equation 2.50, the layer f(x) learns the residual between

the input and the output of the residual layer. Residual layers can approximate the

identity function by driving the weights of f(x) towards zero, which is easier than

approximating the identity mapping directly (He et al., 2016a). This property enables

the efficient training of deeper models and mitigates the degradation problem. The

skip-connections also function as “shortcuts” between layers and can improve the

stability of the gradient propagation (He et al., 2016b).

He et al. (2016a) propose different model architectures based on residual connec-

tions. Figure 2.13 visualizes three ResNet architectures that are used in this work:

ResNet18, ResNet50, and ResNet101. The number in the name specifies the number

of layers that make up the model. All models start with a common downsampling

block, which reduces the size of input images by strided convolutions. After the

downscaling follows a series of residual blocks. ResNet18 uses default residual blocks,
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Figure 2.14: DenseNet architecture (Huang et al., 2017) used in this work. A
DenseNet is composed of dense blocks and transition blocks. Each layer in a dense
block receives the output of all preceding layers in the same block as input. Transition
blocks reduce the number and spatial dimension of feature maps. Numbers in the
blocks denote the number of filters in the respective convolutional layer. The encircled
“c” denotes concatenation along the feature dimension.

each comprising two convolutional layers with a residual connection. ResNet50 and

ResNet101 use bottleneck residual blocks, which consist of three convolutional layers

with a residual connection, where the first two convolutional layers use a reduced

number of filters. When the number of convolutional filters changes between blocks,

the first convolutional layer after the change uses a stride of two to reduce the spatial

dimension of the feature maps. Finally, GAP reduces the output of residual blocks

into a vector, which can then be used for classification or other tasks. Following He

et al. (2016b), the ResNets used in this work use pre-activated residual connections,

which means that residual connections originate between the convolutional operation

and batch normalization.

Densely connected networks

The densely connected network (DenseNet) (Huang et al., 2017) is an architecture

for image analysis tasks. A DenseNet employs dense blocks composed of a series of

convolutional layers, where each layer receives the output of all preceding layers in

the same block as input. The layers of each block are therefore densely connected.

The intuition behind this design is that each new layer can focus on extracting new

features from the incoming data, without the need to “remember” and retain relevant

input features.

Figure 2.14 illustrates the DenseNet121 architecture proposed by Huang et al.

(2017), which is used in this work. It is comprised of four dense blocks, interleaved

with transition blocks. A dense block is defined by a growth rate k and a bottleneck

size b. In a dense block, feature maps are repeatedly passed through bottleneck layers

with b filters and feature extraction layers with k filters, where the input for each

46



2.2 Deep learning methods

layer comprises the output of all preceding layers in the block. For DenseNet121,

the growth rate is k = 32 and the bottleneck size is b = 4k = 128. The transition

blocks reduce the number of features in the feature maps and reduce their spatial

dimensions using average pooling. The final output is obtained by using GAP to

reduce the output of the last dense block into a vector.

Graph neural networks

GNN architectures are constructed by stacking multiple GCN layers. This is possible

since the result of a GCN operation is itself a graph, which can be processed by

following layers (Equation 2.42). While it is possible to mix different kinds of GCN

layers within a single model (e.g., SAGE and GAT layers), it is common practice to

construct GNN architectures from only one type of layer (You et al., 2020). Each

layer can use a different parameterization, for example, to change the dimension of

output features. It can further be beneficial to add pre-processing or post-processing

layers (You et al., 2020). Pre- and post-processing layers are typically implemented

using fully-connected layers, which do not take the graph structure into account, but

can be useful to prepare features for following GCN layers, or to map the result of

several GCN layers to a task-specific output space (e.g., for classification).

Compared to the field of image processing, for which strong baseline architectures

(e.g., ResNet50) have been established in recent years, the field of graph processing

has not yet established such standard architectures. While there have been some

efforts (You et al., 2020) to systematically study the design space of GNNs, it remains

necessary to identify a suitable GNN architecture for a specific task.

2.2.4 Beyond supervised machine learning

Supervised machine learning enables the training of models for specific tasks. How-

ever, the costs for labeling the required training data can be significant. This gives

rise to alternative approaches that require much less or no labeling, but are still

directly or indirectly useful for solving certain practical tasks.

Unsupervised learning methods do not require any labels, making them attrac-

tive for the analysis of large, unlabeled datasets that can be acquired inexpensively

(e.g., by scraping the web for images). Examples for unsupervised learning involve

clustering algorithms (e.g., k-means clustering (Lloyd, 1982) or hierarchical cluster-

ing (Ward Jr, 1963)) or principal component analysis (PCA) (Pearson, 1901). While

unsupervised approaches can uncover semantically meaningful structures in the data,

they typically require further processing steps to make them useable for practical

applications (e.g., assigning meaningful labels to clusters or training a supervised

classifier on top of principal component projections).
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The transition between supervised and unsupervised methods is not strict. Semi-

supervised learning describes methods that work with datasets consisting of a small

number of labeled examples and a large number of unlabeled examples. Semi-

supervised methods belong to a larger group of weakly supervised methods, which

can work with incomplete, noisy, or imprecise labels.

Self-supervised learning (SSL) is a special case of semi-supervised learning (Jing

et al., 2019). Instead of optimizing a deep neural network to directly solve a given

downstream task (i.e., a task that has practical relevance) using supervised learning,

a model is instead tasked to solve an auxiliary task (also referred to as pretext task).

An auxiliary task is a task for which labels can be easily acquired, and that can only

be solved by learning concepts that are also useful for solving the downstream task.

Auxiliary tasks are constructed by exploiting known structures in the data. Jigsaw

puzzles (Noroozi et al., 2016), geometric transformation prediction (Gidaris et al.,

2018) and context prediction (Doersch et al., 2015) are examples of auxiliary tasks for

image classification. These auxiliary tasks are based on the assumption that solving

the respective auxiliary task emphasizes the extraction of visual features, which can

then be used to improve the performance for downstream tasks.

After a model has learned to solve an auxiliary task, its trained parameters can be

used to initialize the parameters of a second model. This model is then trained on a

downstream task using supervised learning. Compared to supervised learning from

scratch, the model does not need to learn how to extract all required features from

the limited labeled dataset. It can instead restrict itself to finetune the parameters

for the given task. Finetuning can improve prediction performance with significantly

fewer training samples. This makes it attractive for application scenarios with limited

access to labeled data.

Transfer learning is an approach that is conceptually similar to SSL. Here, a model

is first pre-trained on a different labeled dataset, which is typically larger than the

available task-specific dataset. The ImageNet dataset (Russakovsky et al., 2015),

consisting of over 14 million photos from 20 000 classes, is often used for pre-training.

Most established deep learning software frameworks (Abadi et al., 2016; Paszke et

al., 2019) make parameters of models trained on ImageNet easily available for many

model architectures. Similar to SSL, transfer learning can improve prediction perfor-

mance on downstream tasks and soften the requirements for large labeled datasets.

2.2.5 Visual representation learning

Learning good representations of images is of central importance for image analysis

tasks (e.g., image classification, segmentation, or object detection). Visual represen-

tation learning aims to find a functional mapping from images to feature vectors in a

low-dimensional feature space. Feature vectors encode relevant image features (e.g.,
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textures or objects) in a compact form and provide the basis for different applica-

tions. For example, feature vectors may be used to classify images or find meaningful

clusters in the data.

Visual representation learning is related to dimensionality reduction techniques,

which also aim to identify relevant features and reduce the data dimensionality. For

example, PCA (Pearson, 1901) linearly projects data points into a lower-dimensional

feature space, making it an (admittedly simple) form of visual representation learning.

The challenge of visual representation learning lies in the definition of a learning

objective (i.e., loss function) that promotes the extraction of useful features. Defining

an adequate objective is particularly difficult when no labels are available to guide

the learning process. Here, SSL methods can enable learning of meaningful features

by defining auxiliary tasks that do not rely on labeled samples (Section 2.2.4).

The following sections introduce contrastive learning methods for visual represen-

tation learning. Contrastive visual representation has recently been shown to obtain

good results for tasks like image classification and object detection (Chen et al.,

2020). It provides the basis for the cytoarchitecture classification method presented

in Chapter 6.

Contrastive representation learning

Hadsell et al. (2006) propose to use contrastive learning for visual representation

learning. Unlike most other loss functions (e.g., categorical cross-entropy), which con-

sider each data point in a dataset in isolation, contrastive learning uses a contrastive

loss to compare (or contrast) multiple data points to each other. The contrastive

loss measures the distance22 between the features of different data points and is con-

structed such that the distances between “similar” data points are minimized, and

the distances between “dissimilar” data points are maximized. Optimizing a differ-

entiable function (e.g., a neural network) using the contrastive loss thus “encourages”

it to map similar data points to nearby points in the feature space, while dissimilar

points are mapped to different regions of the feature space. This disentanglement of

data points in the feature space enables efficient classification or clustering. Hadsell

et al. (2006) illustrate this idea by the analogy of a spring model, in which similar

data points are pulled together, and dissimilar data points are pushed apart in the

feature space (Figure 2.15). The definition of “similarity” and “distance” between

data points depends on the given task and is a major aspect differentiating existing

contrastive learning methods.

In recent years, several methods (van den Oord et al., 2019; Caron et al., 2020;

Chen et al., 2020; He et al., 2020; Hénaff et al., 2020; Jain et al., 2020; Khosla et al.,

2020) have adapted contrastive learning for visual representation learning to improve

22The term “distance” does not necessarily refer to the Euclidean distance.
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Figure 2.15: Illustration of contrastive representation learning. The circles represent
data points. Colors indicate the similarity of the data points (i.e., points with the
same color are considered similar). The definition of similarity depends on the specific
method, e.g., based on data augmentation (Chen et al., 2020) or class labels (Khosla
et al., 2020). Left: Before training, data points are scattered randomly in the feature
space. The contrastive training optimizes the feature space (e.g., by optimizing the
parameters of a deep neural network) to map similar data points to similar locations
and dissimilar data points to dissimilar locations. Hadsell et al. (2006) illustrate
this idea using the analogy of a spring system with repelling (red) and attracting
(green) forces. Only a subset of possible connections between data points is drawn
here to ensure clarity. Right: After training, the data points in the feature space
are organized into clusters based on their similarity relationship. The learned feature
space enables the separation of the data points (e.g., using a linear classifier) or data-
driven exploration using clustering.

the performance of deep neural networks in different downstream tasks (e.g., clas-

sification or object detection). Most of these methods follow a common underlying

approach, which consists of two stages (Figure 2.16): In the pre-training stage, a deep

neural network is trained using contrastive learning to extract good visual represen-

tations. This stage aims to find a model parameterization that enables the mapping

of images to compact feature vectors capturing relevant image features. In the fol-

lowing finetuning stage, the pre-trained model is used for a given downstream task

(e.g., image classification). This can be achieved in multiple ways, e.g., by training

a linear classifier on feature vectors (which is called linear evaluation), or by using

the pre-trained parameters as initialization for a classification model (Section 2.2.4).

50



2.2 Deep learning methods
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Figure 2.16: Illustration of the two-stage training workflow for contrastive learning.
In the pre-training stage, an encoder model fE maps an image X to a feature vector
h ∈ R

dh . A projector model fP then maps the feature vector to a projection space,
where the resulting vectors z ∈ R

dz are used to compute and optimize a contrastive
loss function. In the following finetuning stage, a linear classifier fC is trained based
on features h extracted by the encoder fE.

This two-stage approach decouples feature learning from the downstream task and

has shown to achieve good performance for different applications (Chen et al., 2020).

Self-supervised contrastive learning

Parts of the success of contrastive learning methods can be attributed to the up-

coming of self supervised contrastive learning methods. These methods perform

contrastive visual representation learning without relying on annotated image data

(i.e., class labels), making them applicable to very large image datasets.

The SimCLR method (Chen et al., 2020) is an important self supervised contrastive

learning method. SimCLR exploits data augmentation to define the similarity rela-

tionship between images: In a first step, two views X̃i and X̃j(i) are created by

applying two different data augmentation operations to an image Xi . j(i) specifies

the index of the respective other view in a batch of training samples. The assump-

tion is that two views created from the same source image can be considered similar

because the data augmentation operation varies irrelevant image features and keeps

relevant features intact. SimCLR optimizes a contrastive loss function to map views

of the same source image (i.e., “similar” samples) to similar regions of the feature

space and views from different source images to different regions of the feature space.
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Chen et al. (2020) show that their approach achieves superior linear evaluation clas-

sification performance compared to other SSL approaches or learning from scratch.

SimCLR and other contrastive learning methods (Wu et al., 2018; van den Oord

et al., 2019; He et al., 2020; Hénaff et al., 2020) use the normalized temperature-

scaled cross-entropy (NT-Xent) loss, also referred to as InfoNCE loss. In the case of

SimCLR, the NT-Xent loss is computed by sampling a batch of b images

B = {Xi, · · · , Xb} , (2.51)

from which a batch

B̃ =
{

X̃1, · · · , X̃b, X̃j(1), · · · , X̃j(b)

}

(2.52)

containing 2b views is derived. The NT-Xent loss is then defined as

Lssl
(

B̃

)

=
2b
∑

i=1

lssl(i) (2.53)

with lssl(i) = − log
exp

(

sim
(

zi, zj(i)

)

/τ
)

∑2b
k=1 Ii 6=k exp(sim(zi, zk) /τ)

, (2.54)

where zi ∈ R
dz (1 ≤ i ≤ 2b) are computed as

zi = fP

(

fE

(

X̃i

))

. (2.55)

Both fE and fP are deep neural networks. The encoder

fE

(

X̃i

)

= hi ∈ R
dh (2.56)

maps an image X̃i to a feature vector hi ∈ R
dh . The projection head

fP (hi) = zi ∈ R
dz (2.57)

then maps the feature vector hi to a projection space where the contrastive loss

is computed. Chen et al. (2020) found that using the projection head to project

feature vectors to a lower-dimensional space before computing the contrastive loss

leads to better performance compared to computing the contrastive loss directly on

the feature vectors. sim(u,v) is a function that measures the similarity or “distance”

between two vectors u and v. A typical example is the cosine similarity

sim(u,v) =
〈u,v〉

‖u‖2 ‖v‖2
, (2.58)
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which measures the cosine of the angle between two vectors. The temperature

τ ∈ [0, 1] controls the balance between positive and negative pairs: Higher values

emphasize the similarity of positive pairs, while lower values emphasize the dissimi-

larity of negative pairs.

The vectors zi and zj(i) in the numerator represent a positive pair of data points,

i.e., data points that should be mapped to similar feature representations. The de-

nominator sums up the similarity between zi and all other samples, referred to as

negative pairs. Maximizing the numerator and minimizing the denominator conse-

quently encourages the deep neural networks fE and fP to produce similar feature

vectors for similar samples and dissimilar feature vectors for dissimilar samples.

SimCLR uses samples within a batch to create negative pairs. As a result, SimCLR

relies on a sufficiently large batch size to provide enough negative examples. Using

large batch sizes can be technically challenging, in particular when the size of each

sample (i.e., image) is also large.

After the pre-training stage with contrastive learning, SimCLR discards the projec-

tion head fP and uses the encoder fE to produce features for the following finetuning

stage. Chen et al. (2020) use the linear evaluation protocol to evaluate the quality

of learned features. Here, a linear classifier fC is trained to perform a downstream

task (e.g., classification) based on the learned features. Figure 2.16 illustrates this

two-stage training workflow.

The idea behind SimCLR is representative for many other contrastive learning

approaches. Other approaches mainly differ in the way they define similarity (Hénaff

et al., 2020) or how negative pairs are created (van den Oord et al., 2019; He et al.,

2020). For example, the momentum contrast approach proposed in He et al. (2020)

maintains a queue of past training batches, which are used to provide negative pairs

for the contrastive loss. This approach addresses one of the shortcomings of SimCLR,

which depends on the use of large batch sizes to provide a sufficient amount of

negative pairs for training. Another example is given by van den Oord et al. (2019),

who consider two non-overlapping patches as similar if they were extracted from the

same image. Like SimCLR, they create negative examples from other images in the

same batch.

Supervised contrastive learning

Many contrastive learning methods (van den Oord et al., 2019; Chen et al., 2020; He

et al., 2020; Chen et al., 2021) do not rely on class labels and can thus be regarded as

SSL approaches. For example, SimCLR (Chen et al., 2020) defines similarity solely

based on data augmentation, so the contrastive pre-training does not rely on class

labels.
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Khosla et al. (2020) point out that the data augmentation-based similarity rela-

tionship proposed by Chen et al. (2020) has a high risk of producing false-negative

pairs. SimCLR does not take class labels into account, so different images belonging

to the same class (e.g., containing the same object) are considered dissimilar. A

model trained using the SimCLR framework might map images containing the same

class to feature vectors in distant regions of the feature space, which can negatively

affect the downstream task performance.

Khosla et al. (2020) propose supervised contrastive learning, which combines a

contrastive loss with a supervised training strategy. Using the notation from Equa-

tion 2.54, the supervised contrastive loss is defined as

Lssl+
(

B̃

)

=
2b
∑

i=1

lssl+(i) , (2.59)

with lssl+(i) = −
1

2nci
− 1

2b
∑

j=1

Ii 6=jIci=cj
log

exp
(

sim
(

zi, zj

)

/τ
)

∑2b
k=1 Ii 6=k exp(sim(zi, zk) /τ)

, (2.60)

where ci is the class of the image with index i and nci
is the number of samples in

the batch belonging to ci. In this supervised variant of the contrastive loss used by

SimCLR (Chen et al., 2020), two views are similar if they are created from the same

source image (just like in SimCLR) or if they belong to the same class. This approach

addresses the issue of false-negative pairs that can occur in SSL approaches, at the

cost of requiring class labels. Note that the definition does not need to explicitly

model the similarity relationship of views, as views created from the same source

image share the same label and are thus considered similar based on the class labels.

Khosla et al. (2020) show that training with Equation 2.59 leads to significantly

improved performance over training with categorical cross-entropy. They also demon-

strate that training with supervised contrastive loss is less sensitive to changes in the

hyperparameter configuration (e.g., the learning rate, the optimizer, the kind of data

augmentation), making it easier to find a suitable hyperparameter configuration for

a given task. Finally, they proof that Equation 2.59 is a generalization of the triplet

loss (Weinberger et al., 2009), which is an alternative to categorical cross-entropy for

learning robust representations in supervised settings (Khosla et al., 2020). Along

these lines, Marrakchi et al. (2021) showed that supervised contrastive learning helps

to mitigate class imbalance and achieve improved performance compared to training

with categorical cross-entropy.
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2.2.6 Technical aspects

The growing availability of powerful compute resources played an important role in

the recent advent of deep learning (Krizhevsky et al., 2012; Goodfellow et al., 2014).

In particular, the availability of graphics processing units (GPUs) has gained signif-

icant importance for the development and application of deep learning algorithms.

GPUs were initially developed for computer graphics applications (e.g., 3D render-

ing or video games). Their ability to apply a computing operation to different data

points in parallel (single instruction, multiple data (SIMD) architecture) facilitates

high-performance rasterization of 3D scenes. The same property can be exploited to

perform many operations used in deep neural networks (e.g., matrix multiplications

or convolutions) in an optimized way. Their availability as a standardized and rel-

atively cheap consumer product led to the widespread adoption of GPUs for deep

learning applications in research and industry. Software frameworks for deep learn-

ing (Abadi et al., 2016; Al-Rfou et al., 2016; Paszke et al., 2019) support the use of

GPUs, mostly without requiring the user to deal with GPU programming. Modern

GPUs even provide dedicated hardware units for deep learning, e.g., the tensor cores

of NVidia GPUs.

The training phase is the most time-intensive part of developing a deep learning

model. Suitable model architectures and hyperparameters for a given task must

typically be identified using trial-and-error. The iterative development workflow

relies on the ability to train models in reasonable time frames.

Training a model on a large dataset can require several days or weeks of computa-

tion when using a single GPU, which significantly slows down the development pro-

cess. Distributed deep learning (DDL) enables the training of deep neural networks

using multiple GPUs that are installed in the same or different interconnected com-

pute nodes. It allows combining the computational power and the memory of multiple

GPUs, which is crucial to use large model architectures, large batch sizes, large image

sizes, and to reduce the total training time. DDL can be implemented using differ-

ent parallelization paradigms, the two most important being model parallelism and

data parallelism (Figure 2.17). Data parallel training works by subdividing a batch

of samples that might not fit into the memory of a single GPU into equally sized

sub-batches. The sub-batches can be processed independently by multiple GPUs.

In the backpropagation step, the gradients computed by each GPU (Equation 2.5)

are averaged before updating the model parameters (Equation 2.3). This approach

virtually combines the computational power and memory of the available GPUs. The

gradient averaging step incurs a communication overhead, so performance does not

necessarily scale linearly with the number of used GPUs.

Model parallel training instead distributes the layers of a deep neural network

across GPUs. For example, a model can be distributed by storing and computing
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Figure 2.17: Schematic illustration of different DDL approaches. Without DDL
(left), all samples of a batch are processed by all layers of a model on one GPU.
Using data parallelism (middle), each GPU processes a subset of samples in a batch
in parallel. Gradients computed per GPU are averaged across GPUs during the
backpropagation step. Using model parallelism (right), each GPU computes the
output of a subset of layers, requiring inter-GPU communication at points where the
model was split.

half of the model’s layers on one GPU each. The first GPU takes the input and

passes it through the first half of layers. The obtained intermediate results are

transferred to the second GPU, which uses them to compute the final output. Model

parallel training combines the memory of multiple GPUs. However, the temporal

dependence of the computations (i.e., earlier layers have to be computed before later

layers) prevents a compute time reduction when using naive model parallelism23.

Pipelining methods (Huang et al., 2019) can mitigate this effect through efficient

scheduling of computations.

Large models that occupy more than the accumulated memory capacity of all

available GPUs can be trained using gradient checkpointing (Chen et al., 2016b).

Gradient checkpointing is a strategy that reduces the memory requirements for neu-

ral network training at the cost of increased runtime. Gradient computation using the

backpropagation algorithm relies on intermediate results from the forward pass. By

default, these results are kept in memory after they are computed. Gradient check-

pointing designates specific intermediate results as checkpoints and discards all but

23The AlexNet (Krizhevsky et al., 2012) is an example for a model architecture that is explicitly
designed to benefit from model parallelism. The model consists of two branches of layers, which
can be computed largely independent on separate GPUs.
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these results after the forward pass. During the backward pass, discarded results are

recomputed from the stored checkpoint results. As a result, gradient checkpointing

enables the training of large models that would otherwise not fit into memory.

2.2.7 Deep learning for cytoarchitecture analysis

Deep learning has already been successfully applied for different cytoarchitecture

analysis tasks.

Atzeni et al. (2018) proposed a probabilistic framework to combine CNNs with an

atlas registration approach for segmenting different tissue types in histological brain

sections. They demonstrate that their method can reliably identify white matter, ven-

tricles, the brainstem, subcortical and cortical gray matter in images of the AAHA.

However, they note that their method is not able to distinguish more subtle subdi-

visions of those classes, in particular detailed cytoarchitectonic areas (Atzeni et al.,

2018). In addition, the high computational requirements of the method force it to op-

erate at a resolution of 250 µm/px, which is not sufficient to identify cytoarchitectonic

areas.

Wagstyl et al. (2020) present a method for automatic segmentation of cortical layers

in the 3D BigBrain model using a one-dimensional CNN. They propose to compute a

set of traverses through the cortex, each running perpendicular to both pial boundary

and gray-white matter boundary. Voxel intensities are then sampled along these

traverses, resulting in profiles characterizing the laminar composition at different

positions in the cortex. Using a set of labels created from manual annotations,

they then train a one-dimensional CNN to segment cortical layers in the BigBrain

model. The resulting cortical layer atlas facilitates structural analysis of layers in the

BigBrain model (Wagstyl et al., 2020).

The work by Wagstyl et al. (2020) is an important example of how deep learning

can help to analyze cytoarchitecture at a large scale. Their method exploits the avail-

ability of the precise 3D reconstruction provided by the BigBrain model. However,

the development of analysis methods that can be applied to incomplete series of 2D

microscopic scans remains a challenge. Furthermore, the classification of cytoarchi-

tectonic areas relies on the ability to identify individual cells and thus requires image

data at an even higher resolution than currently provided by the BigBrain model.

Spitzer et al. (2017) were the first to investigate deep learning for automatic classi-

fication of cytoarchitectonic areas. They formulate cytoarchitecture classification as

a segmentation problem, with the goal to assign each pixel in an input image to the

corresponding cytoarchitectonic area. To handle the large amounts of high-resolution

image data that need to be analyzed to address this task, their processing pipeline

operates on rectangular patches extracted from whole-slide images. Image patches

are extracted at a resolution of 2 µm/px and with a size of approximately 2000×2000
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pixels. The large size and high resolution of each image patch ensure that details of

the cellular composition across the whole extent of the cortex can be captured and

used for classification. Spitzer et al. (2017) propose a modified U-Net architecture

that is capable of handling such large image patches. For their experiments, they use

a dataset of 111 cell-body stained histological human brain sections with annotations

of 13 cytoarchitectonic areas from the visual system of the human brain.

Their work revealed how challenging cytoarchitectonic mapping is as an image

segmentation problem. Spitzer et al. (2017) show that the inclusion of additional

input information extracted from the probabilistic Julich-Brain atlas can considerably

improve the prediction performance, as it helps to disambiguate complex patterns in

the image data.

Building upon this work, Spitzer et al. (2018b) propose a SSL task to learn mean-

ingful visual representations and thus improve the prediction performance. They

define an auxiliary task by exploiting the 3D reconstruction of the BigBrain dataset:

Given two images patches extracted from two positions within the cortex of the

BigBrain model, a CNN is tasked to predict the geodesic distance between the two

patches along the brain surface, as well as the position of the respective patches in

the BigBrain reference space. This auxiliary task exploits that close locations in

the cortex are more likely to come from the same or similar cytoarchitectonic areas

than spatially distant locations. Thus, it can be assumed that a model trained to

predict patch location and distances between patch pairs learns features that are also

relevant for the downstream task of classifying cytoarchitectonic areas. Results pre-

sented by Spitzer et al. (2018b) show that models that were pre-trained in this way

achieve superior performance compared to models that were trained from scratch.

These results indicate that the proposed SSL task enables learning of meaningful

cytoarchitectonic features. In a follow-up work (Spitzer et al., 2018a), the authors

show that learned features even tend to form anatomically meaningful clusters (e.g.,

corresponding to different lobes).

The methods presented in this thesis build upon these foundations to classify more

cytoarchitectonic areas, improve the classification accuracy, and develop practical

methods for large-scale cytoarchitectonic mapping.
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This chapter introduces the data used in this thesis. Section 3.1 details the processing

protocol for acquiring the microscopic images. Section 3.2 introduces used datasets.

Section 3.3 gives an overview of annotated cytoarchitectonic areas.

3.1 Histological processing of human brain sections

Analysis of high-resolution microscopic scans of cell body stained histological whole-

brain sections is considered the gold standard for identifying cytoarchitectonic areas.

This method provides high resolution and high contrast for neuronal cell bodies,

enabling the study of subtle variations in the cortical cytoarchitecture. The steps

required to prepare microscopic scans are detailed in the following.

This work uses microscopic images acquired from postmortem human brains. The

brains are part of the brain collections of the Institute of Neuroscience and Medicine

(INM-1) at Forschungszentrum Jülich (FZJ) (Germany) and the Cécile and Oskar

Vogt Institute for Brain Research at University Hospital of Heinrich-Heine University

Düsseldorf (Germany). The brains were obtained through the body donor programs

of the anatomical institutes of the universities of Düsseldorf, Rostock, and Aachen.

All brain samples were acquired in accordance with legal and ethical regulations and

guidelines. The studies carried out require no ethical approval. All body donors have

signed a declaration of agreement.

The autopsies were performed within 24 hours after death1. After extraction from

the skull, the brains were chemically fixated (e.g., using formalin) to limit shape

distortions. Brains were then embedded in paraffin to prepare them for the sectioning

process. Each brain was sectioned into 6000-7500 coronal histological sections with

a thickness of 20 µm each. Every 15th section was mounted on a glass slide and

stained for cell bodies. For one brain (B20), all obtained sections were mounted and

stained. A modified silver staining (Merker, 1983) was used to stain neuronal cell

bodies, enabling the analysis of the neuronal cell distribution.

Prepared sections were digitized using high-throughput light-microscopic scanners

(TissueScope HS, Huron Digital Pathology Inc.). The resulting microscopic scans

have a resolution of 1 µm/px, allowing analysis of the shape of individual cells and

1A detailed description of the processing protocol is given in Amunts et al. (2000).
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Table 3.1: List of brains used in experiments. Each brain is identified by an integer.
The table lists the age of death and gender of the brain donors and the fresh weight
of each brain after autopsy. The shrinkage factor specifies the ratio between the fresh
brain volume and the volume after histological processing. The number of sections
specifies how many sections are available as microscopic images.

Brain Age (years) Gender Fresh weight (g) Shrinkage # Sections
B01 79 F 1350 1.933 471
B03 69 M 1360 2.129 509
B04 75 M 1349 2.153 497
B05 59 F 1142 2.056 454
B06 54 M 1757 2.446 479
B07 37 M 1437 2.024 489
B10 85 F 1046 1.671 493
B12 43 F 1198 2.062 467
B20 65 M 1392 1.931 7404

their distribution. Images have a median size of 77 000 px × 105 000 px, with a max-

imum size of up to 95 000 px × 136 000 px.

3.2 Brain samples & datasets

The experiments conducted in this work use data from nine postmortem adult human

brains (Figure 3.1) provided by the INM-1, which were acquired using the protocol

described in Section 3.1. Each brain is identified by an integer, which is denoted as B

(e.g., B01 for the brain with identifier 1). Table 3.1 lists the age of death and the

gender of the donor, the fresh weight of the brain after the autopsy, the volumetric

brain shrinkage factor, and the number of available microscopic images for each

brain. The shrinkage factor is defined as the ratio between the volume of a brain

before and after histological processing. Histological processing leads to shrinkage

of the brain tissue. The tissue shrinkage needs to be considered when computing

geometric measures (e.g., distances, areas, or volumes) in processed postmortem

brains. Approximately every 15th brain section was digitized. For B20, all obtained

sections were digitized. B20 comprises the sections that were used to create the

BigBrain model (Amunts et al., 2013).

We denote a microscopic scan of a histological brain section as image

SB

s ∈ [0, 255]h
B

s×w
B

s . (3.61)

Here, B denotes the brain sample the section belongs to (e.g., B01). The section

number s ∈ N identifies a specific microscopic image in the section stack. Section
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Figure 3.1: Microscopic images of coronal histological brain sections from compara-
ble locations in the occipital lobe of nine postmortem human brains. The examples
illustrate the variability between different brains with respect to staining and tissue
morphology. Brains B05 to B20 were imaged including the cerebellum, which is visi-
ble in the lower half of each image.

numbers increase from the posterior pole to the anterior pole. The height (number

of rows) and width (number of columns) of an image are denoted as hBs and wB

s,

respectively.

Tissue segmentation

The tissue of the cerebrum can be subdivided into gray matter and white matter

tissue (Section 2.1). We segment the microscopic images (Figure 3.2, A) into gray

matter, white matter, and background. The latter comprises the surrounding mi-

croscopy slide on which the tissue is mounted. Tissue segmentations allow targeted

processing of specific tissue classes, for example exclusion of background or analysis of

gray matter tissue. Compared to cytoarchitectonic areas, which are defined by subtle

variations of cytoarchitecture, tissue classes show distinct intensity distributions and

are relatively easy to segment.
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Figure 3.2: Intermediate results of the tissue segmentation procedure for section
1201 of B01. A: Original microscopic image of a histological brain section. B: Seg-
mentation into tissue (white) and background (black). C: Contrast enhanced input
image with improved separability of cortex and white matter. D: Final segmentation
into background (black), white matter (white) and gray matter (gray). Cortex and
white matter are separated by morphological active contours (Márquez-Neila et al.,
2014). Intensity histograms show the respective pixel intensity distribution of the
original image (A), after smoothing for background-tissue segmentation (B), and af-
ter contrast enhancement for gray-white matter segmentation (C). Red lines mark
the threshold between background and tissue.

Tissue segmentation is performed on downscaled images (64 µm/px). Pixels are

first segmented into background and tissue pixels (Figure 3.2, B). Background and

tissue show distinct intensity distributions and are thus approximately separable by

intensity thresholding. The threshold is determined per section by searching for local

minima in the intensity histogram of the image (256 bins). The intensity histogram

is smoothed using a median filter (size 3) and a mean filter (size 5) to make the

process robust against noise. If more than one minimum is found, the one closest to

the Otsu threshold (Otsu, 1979) is used.

Tissue pixels are then separated into gray matter and white matter. The separation

is performed by morphological active contours (Márquez-Neila et al., 2014), a variant

of the Chan-Vese segmentation method (Chan et al., 1999), which is is suitable for

segmenting images without well-defined borders. Before segmentation, the image

contrast is enhanced to emphasize the intensity difference between gray matter and
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white matter. We first apply a minimum filter, a maximum filter, and a mean filter

(each with size 5). The contrast is then enhanced using contrast limited adaptive

histogram equalization (CLAHE, Pizer et al., 1987) with kernel size 250, followed

by Gaussian blurring (standard deviation 1). The result is again filtered using a

minimum, a maximum, and a mean filter (size 5). The obtained segmentation masks

are cleaned using morphological operations to remove small objects and holes from

the masks (Figure 3.2, D). Particular care is taken to prevent tight sulci from being

closed during segmentation or the subsequent cleaning. This step is important to

retain the shape of the cortical ribbon.

The described tissue segmentation procedure is applied for all brains but B20.

Here, Lewis et al. (2014) provide a publicly available tissue segmentation for the 3D

BigBrain model, which we transform onto the microscopic images of B20 (Section 3.2).

The quality of the resulting tissue segmentations is comparable to that obtained using

the above procedure.

We visually inspect the segmentation results for all considered sections to evaluate

their quality. The segmentations are sufficient to approximately locate the cortex

in the microscopic images (Section 5.1.2) and recover its three-dimensional struc-

ture (Section 7.1.1). More elaborate approaches (e.g., based on machine learning)

could potentially improve the segmentation quality, but the described procedure is

sufficient for the considered use cases.

Rigid alignment of brain sections

Cutting a brain into thin histological sections inevitably introduces physical deforma-

tions of the tissue. Accurate reconstruction of its original 3D shape from individual

serial sections relies on complex, nonlinear reconstruction strategies (Amunts et al.,

2013). Fully automated methods for precise 3D brain reconstruction that can be

reliably applied to whole human brain sections are not available. We thus rely on an

approximate linear alignment of brain sections, which is easier to obtain and provides

sufficient precision for the use cases presented in this work (Sections 5.1.2 and 7.1.1).

We compute linear transformations to approximately align consecutive brain sec-

tions. A linear transformation

Φ(x;M) = Mx (3.62)

transforms a homogeneous coordinate x ∈ R
3 by multiplication with a linear trans-

formation matrix M ∈ R
3×3. Registration methods estimate the parameters of M

such that Φ maps points from one image2 to approximately corresponding points in

2We consider the 2D case (i.e., images), but the approach is also applicable to higher-dimensional
data (e.g., 3D volumes).
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Figure 3.3: Rigid alignment of the consecutive histological sections 1006 and 1021
from B01. Sections are linearly aligned by feature-based image registration as de-
scribed in Dickscheid et al. (2019). A+B: Prominent features (colored dots) are
detected using a SURF feature detector (Bay et al., 2006). Features are matched us-
ing k-nearest neighbor matching and the RANSAC algorithm (Fischler et al., 1981).
Matched points are indicated with colored lines connecting features detected in both
sections. These matches are used to compute a rigid transformation that aligns the
two sections. Only 30 of the found matches are shown in this example for better
visibility. C: Sections that were aligned relative to section 1021 using the computed
rigid transformation. Section 1006 and 1021 are encoded in the red and blue channels
of the image, respectively.

a second image. Depending on the use case, the transformation can be restricted

to specific geometric transformations. For example, rigid (or Euclidean) transfor-

mations include rotation and translation, while affine transformations additionally

include reflection (mirroring), scaling, and shearing. Rigid transformations preserve

angles and distances. Affine transformations preserve lines and length ratios.

Linear transformations are generally not sufficient to accurately reconstruct a

brain’s 3D shape from individual sections. However, a linear alignment is consid-

erably easier to achieve than a precise nonlinear reconstruction. The provided pre-

cision is sufficient for our use cases, which include identification of approximately

corresponding regions (Section 5.1.2) and creation of coarse 3D brain reconstruc-

tions (Section 7.1.1).

We estimate the parameters of a linear transformation Φs→t between each pair

of consecutive brain sections s and t, such that each point in s is mapped to the

approximate corresponding point in t. Dickscheid et al. (2019) describe a feature-

based image registration method for approximate alignment of histological brains

sections, which we adapt to compute a rigid alignment between consecutive brain

sections.

Images are downscaled to 64 µm/px resolution and smoothed using a median filter.

A SURF feature detector (Bay et al., 2006) is applied to detect prominent features in

both images. Potentially corresponding features are detected using k-nearest neigh-

bor matching. The RANSAC algorithm (Fischler et al., 1981) then determines a
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robust set of matches. Finally, a rigid transformation is estimated from the detected

matches using least-squares fitting.

We assess the alignment quality by inspecting overlays of aligned consecutive sec-

tions (Figure 3.3, C). In most cases, rigid transformations are sufficient to approxi-

mately align consecutive sections. A few brain sections were imaged from the “wrong”

side, resulting in mirrored images. We identify these images during the quality con-

trol and resolve the issue by aligning them using affine transformations.

Note that transformations between all pairs of adjacent sections enable transfor-

mations between arbitrary pairs of sections, as the expression Φs→s
′′ = Φs→s

′ ◦Φs
′
→s

′′

can be recursively applied for arbitrary s < s′ < s′′ and Φt→s = Φ−1
s→t holds for

arbitrary choices of s and t.

Data from the Julich-Brain atlas

We use the Julich-Brain probabilistic atlas (Amunts et al., 2020) to project proba-

bilistic cytoarchitectonic maps (Figures 2.2 and 3.4) and canonical spatial coordinates

onto the histological brain sections. The projected data provides input features for

the cytoarchitecture classification method proposed in Chapter 7.

The Julich-Brain atlas was created from annotated cytoarchitectonic areas in 23

human brains (Section 2.1.3). The individual sections were reconstructed3 to cre-

ate a 3D volume for each brain. The reconstruction comprises linear and nonlinear

alignment of consecutive sections, followed by a volume-based elastic 3D registra-

tion (Hömke, 2006) to MRI volumes that were acquired prior to cutting. The re-

construction workflow is used to create three-dimensional maps of cytoarchitectonic

areas for each brain, which are then projected (Operto et al., 2008) into the MNI-

Colin27 (Holmes et al., 1998) and the ICBM152casym (Fonov et al., 2011) reference

spaces (Section 2.1.3). The transformed maps are superimposed to create probabilis-

tic maps (Figures 2.2 and 3.4).

The brain samples considered in this work (Section 3.2) represent a subset of the

brains that were used to create Julich-Brain. Thus, the above reconstruction workflow

allows transforming data from the three-dimensional reference spaces onto individual

histological sections and vice versa. We exploit this relationship to project data

defined in the MNI-Colin27 space onto the histological sections. The MNI-Colin27

reference space is created from MRI measurements of a single subject.

Cytoarchitectonic probabilistic maps We project the probabilistic maps of the

Julich-Brain atlas (Figure 2.2) from the MNI-Colin27 reference space onto the his-

tological brain sections. This step allows associating each pixel in an image with a

prior probability distribution over the cytoarchitectonic areas that might occur at

3A detailed description of the reconstruction workflow is given in Amunts et al. (2020).
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Figure 3.4: Probabilistic map of area hOc1 projected from the Julich-Brain proba-
bilistic atlas (Amunts et al., 2020) onto the histological section 1201 of B01. Bright
values indicate locations where the occurrence of hOc1 is likely. The spatial precision
is limited but can serve as a prior for cytoarchitecture classification (Spitzer et al.,
2017). Figure 2.2 (left) shows the corresponding three-dimensional probabilistic map
in the MNI-Colin27 space.

the respective location (Figure 3.4). Spitzer et al. (2017) describe how prior informa-

tion from probabilistic maps can be exploited to provide CNNs for cytoarchitecture

classification with additional information. We adapt this idea and project proba-

bilistic maps of 152 cytoarchitectonic areas from Julich-Brain onto the histological

brain sections. The projected probabilistic maps for a section s from brain B are

represented as an image

P B

s ∈ [0, 1]h
B

s×w
B

s×152 (3.63)

with 152 channels, where each channel represents the probabilistic map of a specific

cytoarchitectonic area.

Canonical spatial coordinates Information on the spatial location of an image

patch in the brain can help to disambiguate cytoarchitectonic patterns. For example,

an image patch from the anterior part of the brain will never show visual areas,

as these are located in the posterior part of the brain. Using spatial locations in

algorithmic approaches relies on a well-defined coordinate system that is consistent

across all considered brains. We use the correspondence between the histological
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sections and the MNI-Colin27 space to define such a consistent canonical coordinate

system across brains.

We define a coordinate system by assigning a 3D coordinate to each voxel of the

MNI-Colin27 space. The coordinate system follows the RAS coordinate convention

(i.e., the three axes correspond to the left to right, posterior to anterior, and inferior to

superior directions, respectively). Coordinates are normalized to the range [−1,+1].

We then project the defined coordinates onto the histological brain sections of each

considered brain. The projected canonical coordinates for a section s from brain B

are represented as an image

RB

s ∈ [−1,+1]h
B

s×w
B

s×3 (3.64)

with 3 channels, where each channel represents a spatial dimension in RAS coor-

dinate convention. The projected coordinates enable identification of anatomically

corresponding points in different brains (e.g., RB

s(i, j) ≈ RB
′

s
′

(

i′, j′
)

), even in cases

where the brain-specific location parameters (e.g., s, i, j and s′, i′, j′) differ.

3D reconstruction of the BigBrain

BigBrain (Amunts et al., 2020) is a high-resolution human brain atlas created by

reconstructing 7404 histological sections into a consistent 3D brain model (Sec-

tion 2.1.3). The histological sections from which the BigBrain model was originally

created were rescanned at 1 µm/px resolution. These sections form the B20 dataset

used in this work. The known correspondence between the B20 dataset and the 3D

BigBrain model enables the transformation of data from the 3D BigBrain space onto

the histological sections of B20, and vice-versa.

3.3 Annotations of cytoarchitectonic brain areas

Annotations of cytoarchitectonic areas are required for supervising the training of

deep neural networks for automatic cytoarchitecture classification (Spitzer et al.,

2017, 2018b). Borders between adjacent cytoarchitectonic areas are identified by

the method described in Section 2.1.4 (Schleicher et al., 1999). The annotations

used in this work were acquired over multiple decades in the scope of the Julich-

Brain (Amunts et al., 2020) project.

In practice, areas are often annotated in the scope of research projects that consider

one or a few areas. Cytoarchitectonic areas are typically annotated in every 15-60th

section. However, the subset of considered sections varies between areas. Areas

are typically annotated in sections where cytoarchitecture can be reliably identified,

which can vary depending on an area’s location, size, the presence of histological
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Figure 3.5: Annotations of cytoarchitectonic areas in section 1201 of B01. Cy-
toarchitectonic areas are denoted by colors. Sections are typically only partially
annotated. In this section, areas in the upper half of the section are not mapped.
Pixels in this region might belong to known regions that were not mapped in this
particular section or to areas for which no nomenclature exists yet.

artifacts, or the local cutting angle (Section 2.1.4). Thus, sections are mostly partially

annotated. Parts of the cortex without annotations can belong to 1) an area that was

not annotated on the respective section (e.g., because a section was not used to study

a specific area) or to 2) a completely new area (i.e., an area for which no nomenclature

has been established yet). In addition, not all mapping projects use the same subset

of brains, and all brains contain only a subset of areas. These preconditions need to

be taken into account when designing algorithmic cytoarchitecture analysis methods.

Annotations of cytoarchitectonic areas are represented as contours of their outer

boundaries. Contours can be rasterized to create segmentation masks of cytoarchi-

tectonic areas (Figure 3.5). We algorithmically check contours for typical errors (e.g.,

overlapping and self-intersecting contours) and resolve them manually. The anno-

tations are then visualized as overlays for the respective brain sections (similar to

Figure 3.5) and visually inspected to spot and resolve remaining issues.

This work considers 113 cytoarchitectonic areas (Table 3.2). The set of all con-

sidered areas is denoted as A. We use A ∈ A as placeholder for a cytoarchitectonic

area.

Figure 3.6 quantifies the annotations used for our work. In total, the dataset

consists of 2219 annotated sections from 9 brains. About 75% of the areas are

mapped in 6 or more brains, while about 9% are mapped in only four brains. The

number of sections with at least one annotation ranges from 145 (B12) to 326 (B07)
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Table 3.2: List of 113 cytoarchitectonic areas used in this work, grouped by their
macroanatomical location. Areas are denoted by the Julich-Brain nomenclature, e.g.,
hOc1 for human occipital area 1 or FG1 for fusiform gyrus area 1. Corresponding
publications are given where available. For yet unpublished areas, the name of the
responsible investigator at the Cécile and Oskar Vogt Institute for Brain Research is
given. *hOc1,hOc2,hOc3v and hOc5 in B20 were annotated by Kai Kiwitz.

occipital lobe

hOc1, hOc2 Amunts et al. (2000)*
hOc3v, hOc4v Rottschy et al. (2007)*
hOc3d, hOc4d Kujovic et al. (2013)
hOc4la, hOc4lp, hOc5 Malikovic et al. (2016)*
hOc6 Richter et al. (2019)
parietal lobe

OP1, OP2, OP3, OP4 Eickhoff et al. (2006)
1, 2, 3a, 3b Geyer et al. (1999)
5l, 5m, 5Ci, 7PC, 7A, hIP3 Scheperjans et al. (2008)
PF, PFcm, PFm, PFop, PFFt, PGa, PGp Caspers et al. (2006)
hIP1, hIP2 Choi et al. (2006)
hIP4, hIP5, hIP6, hIP7, hIP8, hPO1 Richter et al. (2019)
temporal lobe

FG1, FG2 Caspers et al. (2013)
FG3, FG4 Lorenz et al. (2017)
Te10, Te11, Te12 Morosan et al. (2001)

Rademacher et al. (2001)
Te21, Te22, Te3, Te4, Te5, Ti1, Ti2 Zachlod et al. (2020)
frontal lobe

4a, 4p Geyer et al. (1996)
6d1, 6d2, 6d3 Sigl (2018)
6v1, 6v2, 6r1 Jeanette Stangier (unpublished)
6mp, 6ma Ruan et al. (2018)
11a, 11p, 13 Henssen et al. (2016)
Fo4, Fo5, Fo6, Fo7 Wojtasik (2020)
ifj1, ifj2, ifs1, ifs2, ifs3, ifs4 Bradler (2015)
8a, 8b, 8c, 8d Jonas Hansel (unpublished)
sfs1, sfs2, fms1, mfg1 Ariane Bruno (unpublished)
44, 45 Amunts et al. (1999)
OP5, OP6, OP7 Nina Unger (unpublished)
OP8, OP9 Martin Saal (unpublished)
limbic lobe

25a, 25p, s24a, s24b, s32, p24a, Palomero-Gallagher et al. (2015)
p24b, pv24c, pd24cd, pd24cv, p32
insula

Ig1, Ig2, Id1 Kurth et al. (2010)
Ig3, Id2, Id3, aId1, aId2, aId3, aIa Julian Quabs (unpublished)
Iad1 Grodzinsky et al. (2020)
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3 Microscopic image datasets

Figure 3.6: Statistics on annotated cytoarchitectonic areas. Top: Number of areas
compared to the number of brains they are mapped in (e.g., 10 areas were mapped
in four brains, 37 areas were mapped in six brains). Middle: Number of sections
containing at least one annotated area across different brains. Bottom: Number of
unique annotated areas across different brains.

sections. The number of different areas mapped in a particular brain ranges from 38

(B12) to 106 (B10).
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Tasks that can be solved with established tools on small to medium size image

datasets (e.g., resizing of photos) become technically demanding when dealing with

terabyte-scale image datasets, where both the quantity and the individual size of

images are large (Amunts et al., 2021). Analyzing large high-resolution microscopic

images puts high demands on hardware, software, and data storage. This chapter de-

scribes the used hardware (Section 4.1), software (Section 4.2), and data management

concepts (Section 4.3).

4.1 Hardware infrastructure

4.1.1 High-performance computing systems

The experiments presented in this work were performed on the supercomputers JU-

RECA (Jülich REsearch on Exascale Cluster Architectures) (Krause et al., 2018)

and its successor JURECA-DC (Jülich REsearch on Exascale Cluster Architectures

- Data Centric module) at the Jülich Supercomputing Centre (JSC) at FZJ, Ger-

many (Table 4.1). JURECA was decommissioned at the end of 2020 and succeeded

by JURECA-DC.

The JURECA system provided 1872 compute nodes (two Intel Xeon E5-2680 v3

Haswell CPUs per node, 2 × 12 cores à 2.5 GHz with hyperthreading, 128 to 512 GB

memory). 75 of these nodes were equipped with two NVidia K80 GPUs each (2×4992

CUDA cores, 2 × 24 GB GDDR5 memory).

The JURECA-DC system provides 768 compute nodes (two AMD EPIC 7742,

2 × 64 cores à 2.5 GHz with hyperthreading, 512 to 1024 GB memory, InfiniBand

HDR100 interconnect). 192 of these nodes (so called accelerator nodes) are equipped

with four NVidia A100 GPUs each (4 × 6912 CUDA cores, 4 × 432 tensor cores,

4 × 40 GB HBM2e memory).

4.1.2 Distributed file systems

JUST (Jülich Storage Cluster) is a high-performance storage system available at the

JSC (Graf et al., 2021). It is connected to the supercomputer JURECA-DC (and
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Table 4.1: Configuration of the supercomputer systems at JSC that were used for
this work. JURECA was decommissioned at the end of 2020 and succeeded by
JURECA-DC.

JURECA JURECA-DC
# nodes (w. GPUs) 1872 (75) 768 (192)
CPU Intel Xeon E5-2680 v3 Haswell AMD EPIC 7742
CPUs/node 2 2
cores/CPU (virtual) 12 (24) 64 (128)
CPU clock 2.5 GHz 2.5 GHz
RAM/node 128 GB 512 GB
GPU NVidia K80 NVidia A100
GPUs/node 2 4
GPU memory 2 × 24 GB GDDR5 4 × 40 GB HBM2e
CUDA cores 2 × 4992 4 × 6912
tensor cores - 4 × 432

previously to JURECA). JUST provides a total storage capacity of about 140 PB1

and a nominal peak bandwidth of 380 GB/s. It comprises multiple storage layers with

different performance characteristics and storage capacity. JUST runs the General

Parallel File System (GPFS) by IBM, a high-performance distributed file system.

The HPST (High Performance Storage Tier) is a storage layer of JUST that is of

particular interest for this work. It is composed of 110 IME-140 servers by DataDi-

rect Network (DDN), offering a total capacity of approximately 2.2 PB and a total

bandwidth of 2 TB/s. Compared to other storage layers of JUST, which are primar-

ily based on mechanical storage disks, HPST is based on NVMe flash storage. This

makes it well suited for file access patterns that result in suboptimal performance on

mechanical disks.

4.2 Software

The experiments presented in this work are conducted using the specifically devel-

oped software framework ATLaS (Automatic Tissue Labeling System)2. ATLaS of-

fers functionality for training deep neural networks, creating predictions, evaluating

results, parallel processing of images, and visualizing different kinds of data. It was

designed to address the unique challenges of applying deep learning for cytoarchi-

tecture classification in large-scale microscopy datasets. In particular, the software

is optimized to efficiently use the supercomputer resources described in Section 4.1.

1As of Q1 2022. JUST is frequently expanded.
2
https://jugit.fz-juelich.de/c.schiffer/atlas
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Table 4.2: List of important Python libraries used by the ATLaS framework.

package description reference
numpy numerical computing Harris et al. (2020)
scipy numerical computing Virtanen et al. (2020)
pandas tabular data analysis Wes McKinney (2010)
PyTorch deep learning Paszke et al. (2019)
PyTorch-Geometric deep learning (GNNs) Fey et al. (2019)
TensorFlow deep learning Abadi et al. (2016)
scikit-image image processing van der Walt et al. (2014)
OpenCV image processing Bradski (2000)
scikit-learn machine learning Pedregosa et al. (2011)
mpi4py parallel processing Dalcin et al. (2011)
numba parallel processing Lam et al. (2015)
h5py file access Collette (2013)
pytiff file access Glock (2020)
matplotlib visualization Hunter (2007)
seaborn visualization Waskom (2021)

The framework is easily extensible and builds upon popular deep learning software

frameworks (Abadi et al., 2016; Paszke et al., 2019).

4.2.1 Software libraries

ATLaS and its accompanying software libraries are implemented in the Python pro-

gramming language (Van Rossum, 1995). The availability of many software packages

for scientific computing, machine learning, parallel processing, and image processing

makes Python the language of choice for many projects involving deep learning. Ta-

ble 4.2 lists the most important software libraries used by ATLaS.

4.2.2 Training pipeline implementation

ATLaS implements the training pipeline for deep neural networks used in this work.

The pipeline encompasses continually reading data from disk, preprocessing it, and

transferring it to a GPU, where it is used to repeatedly update the model parameters.

The processing pipeline is parallelized using Message Passing Interface (MPI), a

software library3 for implementing parallel applications (Message Passing Forum,

1994). MPI allows exchanging data between processes running on the same or dif-

ferent compute nodes, making it a flexible tool to implement parallel algorithms. It

3To be precise, MPI is a software specification. However, the term “MPI” is often used synony-
mously for a specific library (e.g., OpenMPI ) that implements the MPI specification.
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training stage

•receive data

•transfer to GPU

•parameter update

data stage

•read data

•data augmentation

•transfer to masters

shared distributed le system

node 1 node 2

worker process

controller process

GPU (training)

data transfer

gradient average

Figure 4.1: Data processing and training pipeline implemented by the ATLaS frame-
work. The pipeline is parallelized with a controller-worker communication scheme
that is implemented using MPI. Controller processors are each assigned one GPU and
coordinate the training process of the deep neural network. The remaining processes
are evenly distributed among controller processes as worker processes, designated
to read data, perform data augmentation, and transfer the resulting data to their
respective controller. DDL is implemented using data parallelism, so gradients are
averaged across all GPUs participating in the training. This example shows two
compute nodes, but the pipeline can be scaled to arbitrary numbers of nodes.

offers different communication patterns, including point-to-point communication and

collective operations (e.g., one-to-all or all-to-one). Most MPI implementations are

written in the C programming language but can be used from Python through the

mpi4py library (Dalcin et al., 2011).

The pipeline can be subdivided into the data stage and the training stage. (Fig-

ure 4.1). It is parallelized using a controller-worker parallelization scheme4, where

several worker processes perform a computational task and send the results to one

or multiple designated controller processes.

Controller processes are responsible for coordinating the training stage: They re-

ceive data from their assigned worker processes, transfer the data to a GPU, and coor-

dinate all aspects related to the training process. The training stage uses the PyTorch

framework (Paszke et al., 2019) and its built-in DDL module. It efficiently imple-

ments gradient averaging using a bandwidth-optimal ring-reduce algorithm (Patara-

suk et al., 2009) available in the NVIDIA Collective Communication Library (NCCL)

4Also known as master-worker communication scheme.
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library. The number of controller processes is set to be equal to the number of avail-

able GPUs, so each controller controls exactly one GPU.

All non-controller processes are equally distributed among the controller processes

and designated as worker processes. Worker processes execute the data stage, which

comprises reading training data from disk, applying data augmentation, and assem-

bling individual images into batches before sending them to their respective controller

process.

4.2.3 Implemented performance optimizations

The training pipeline implemented by ATLaS is optimized for high throughput, which

is required to ensure optimal resource utilization and enable training in practically

feasible time frames (e.g., several hours compared to days or weeks). It thus allows

resource-efficient and flexible experimentation.

Wherever possible, ATLaS uses functions from established software libraries, as

they are typically already highly optimized. Outgoing from an initial implementation

that follows established best-practices (e.g., following PyTorch, Paszke et al., 2019),

we identified and addressed bottlenecks encountered when processing large datasets.

We use runtime and memory profilers to iteratively optimize the implementation. In

the following, we list examples for implemented performance optimizations.

Image patches used for cytoarchitecture classification are considerably larger than

images used in many other image analysis tasks (Russakovsky et al., 2015). The

large patch size increases the computational requirements for reading, transforming,

and transferring images.

ATLaS implements the storage-related performance optimizations discussed in Sec-

tion 4.3. For example, it caches open file handles and associated metadata to mini-

mize the overhead for opening files and optimize the read performance.

Image transformations (e.g., for data augmentation, Section 2.2.1) are carefully

selected and optimized to use the most efficient available implementation for the used

image size. If necessary, we specifically optimize and parallelize transformations for

which no optimized implementations are available. For example, we implemented an

optimized gamma augmentation (Section 6.1.3) based on numba (Lam et al., 2015).

The MPI-based implementation of the worker-coordinator communication inte-

grates well with high-performance computing (HPC) environments, which often pro-

vide optimized software and hardware configurations for MPI-based programs. AT-

LaS implements MPI-based asynchronous worker-coordinator communication and

thread-based asynchronous5 CPU-to-GPU data transfer. The data transfer is thus

5The thread-based parallelization is not negatively affected by the global interpreter lock (GIL) of
the cPython interpreter. The CPU-to-GPU communication releases the GIL and is performed
in parallel to the main thread.
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performed in parallel to data preprocessing and the actual training and induces min-

imal overhead.

The training pipeline often requires large amounts of auxiliary data to be kept in

memory, for example, to determine sampling locations for image patches. Auxiliary

data is typically used by all worker processes, but providing each process with its own

copy of the data is technically impossible due to memory limitations. Instead, ATLaS

uses the shared memory feature introduced in version 3 of the MPI specification. It

allows sharing data among processes on the same compute node, which drastically

reduces the memory requirements.

4.3 Data management

This section describes the implemented data management concept. A suitable data

management concept enables fast access to the image data that is used for train-

ing deep neural networks. We first describe the preconditions (Section 4.3.1), which

are determined by the image acquisition workflow (Section 3.1). We then detail

the requirements for data management (Section 4.3.2), encountered technical chal-

lenges (Section 4.3.3), and implemented solutions (Section 4.3.4).

4.3.1 Preconditions

Following the histological processing steps described in Section 3.1, brain sections

are scanned using high-throughput light-microscopic scanners. The scanners store

each scanned image in a BigTIFF image file. The BigTIFF format is a variant

of the Tagged Image File Format (TIFF) image format (.tif or .tiff file extension).

Compared to standard TIFF, BigTIFF supports images larger than 4 GB. At highest

resolution of 1 µm/px, the median size of of an image is approximately 7.5 GB. Images

are stored as gray level (i.e., single-channel) images with a color depth of one byte

per pixel (256 colors).

Each image contains an image pyramid, which consists of multiple versions of

the image with decreasing resolution and size. An image pyramid allows accessing

downscaled versions of the original image, facilitating visualization and analysis tasks

that do not rely on the full resolution. The multi-page feature of TIFF allows storing

all levels of the image pyramid in a single file. A file contains pyramid levels with 1,

4, 16 and 64 µm/px resolution, resulting in median file size of approximately 10 GB.

The image datasets considered in this work require approximately 79 TB of storage

space. The many scanned sections of B20 contribute most to these storage require-

ments (54 TB), while the other brains use on average 3.1 TB each. Images are stored

on the file systems of the JSC (Section 4.1.2).
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4.3.2 Requirements

The large image size prevents most algorithms from operating on whole images. Even

in cases where storing whole images in system memory is technically possible (e.g.,

on HPC systems), most analysis methods cannot directly process images of that size.

Thus, it is common practice (Ronneberger et al., 2015; Spitzer et al., 2017) to extract

smaller image patches from whole images and individually feed them to an analysis

method. Spitzer et al. (2017) adopt this patchwise processing scheme for their work

on cytoarchitecture classification, and the methods proposed in this work also resort

to performing image analysis on image patches.

Deep neural network training requires many image patches to be read from differ-

ent locations and different microscopic images. If the time it takes to create, aug-

ment (Section 2.2.1), and transfer a batch of training examples (i.e., image patches)

exceeds the time for processing a batch, the training process becomes bottlenecked

by the data generation pipeline. A bottleneck situation must be avoided to optimize

resource usage and enable training in reasonable time frames.

4.3.3 Technical challenges

High-frequency random access for reading image patches Extracting image

patches from whole images could be efficiently implemented by reading the whole

images into system memory and extracting image patches from there. However, the

memory requirements make this approach technically infeasible for multi-terabyte

datasets. Instead, image patches need to be read directly from files on disk.

The locations from which image patches are extracted are randomly determined

during training. The resulting file access pattern appears as a random access pattern,

which has several practical implications:

• The random access pattern prevents caching, as neither spatial nor temporal

locality can be exploited to improve performance.

• Distributed file systems based on mechanical disks are not optimized for a large

amount of relatively small random read operations (Pumma et al., 2017; Oden

et al., 2019).

• The overhead associated with each read operation becomes overwhelming for

many read operations.

In combination, the above implications of the random access pattern lead to poor

read performance.
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Figure 4.2: Storage layout for two-dimensional data with sequential and chunked
memory layout. Each square represents an element of a 2D array (e.g., an image),
stored in the order indicated by the arrows. The sequential layout (left) stores ele-
ments sequentially along rows. This makes access to contiguous rows efficient (A),
but access to columns (B) or 2D patches (C) requires more seek and read operations.
In comparison, the chunked memory layout (right) stores specific chunks of data
(here 3 × 3 elements) sequentially. Depending on the access pattern, reading data
from a chunked memory layout can require less seek and read operations, making it
more efficient and flexible.

Patchwise file access A typical way of representing images in a machine-readable

format is to store all pixel values in a contiguous memory layout (Figure 4.2), where

the pixels of each row6 are stored sequentially. This layout is efficient to read contigu-

ous parts of a row (Figure 4.2, A) or multiple consecutive rows, as these actions can

be achieved by a few file system operations (i.e., one seek operation to find the start-

ing pixel and one read operation to read the desired number of pixels). However, it

is not efficient for reading columns or 2D patches spanning multiple rows (Figure 4.2,

B, C). As the data of a patch is not contiguous in memory, one pair of seek- and

read-operations has to be performed for each row of a patch, resulting in many file

system operations. The access pattern of an application has to be taken into account

for choosing an appropriate data storage layout.

6In the row major ordering, elements of a row are stored sequentially, while in the column major
ordering, elements of a column are stored sequentially. Row major ordering is predominantly
used in the C programming language, while column major ordering is used in the Fortran
programming language.
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Physical resolution mismatch The microscopic image data has a resolution of

1 µm/px. However, existing methods for cytoarchitecture classification (Spitzer et

al., 2017, 2018b), as well as the methods proposed in this work, use a resolution of

2 µm/px. Using a lower resolution represents a compromise between the provided de-

tail and the computational resources required to process the images. Image patches

at 2 µm/px resolution still provide sufficient detail on the cellular distribution, while

reducing the amount of data per patch by 75% compared to 1 µm/px resolution.

However, the available BigTIFF images do not contain a pyramid level with 2 µm/px

resolution (Section 4.3.1). While it would be possible to downscale 1 µm/px patches

on-demand during training, this would introduce a significant computational over-

head and introduce a potential bottleneck in the data processing pipeline.

Handling of many files Patchwise training requires repeated access to a large num-

ber of files. Opening and closing each file for each read access becomes computation-

ally infeasible, as every open and close operation incurs an overhead. This overhead

becomes significant when many open and close operations are performed. Thus, file

handles need to be kept open for the duration of the training. This approach avoids

the negative performance impact of repeated open and close operations. However,

each open file handle also occupies a certain amount of system memory and con-

tributes to the memory footprint of an application. The memory requirements of an

open file handle depend on the file type. Complex and metadata-rich file types can

require several megabytes of memory per file to store the underlying data structures.

This effect is particularly severe for parallel applications, as each process has to

keep all file handles open. Here, the memory requirements scale with the number

of file handles and the number of processes. For example, consider an application

running 64 processes on one compute node, each keeping handles of 1800 image

files open7. If each file handle requires 1 MB of memory, the file handles across all

processes require approximately 112 GB of memory. Storing the file handles thus

requires a significant amount of memory.

4.3.4 Implemented solutions

We address the above challenges by implementing a carefully designed data format

based on Hierarchical Data Format 5 (HDF5) (The HDF Group, 1997). HDF5 is a

hierarchical file format for storing scientific data (e.g., time series, images, volumes,

or high-dimensional arrays). Similar to a file system with files and folders, HDF5

allows to hierarchically organize datasets in different groups, to which additional

attributes (e.g., metadata) can be assigned. It is thus well suited to store complex

7Numbers are chosen to reflect a realistic experiment from Chapter 6.
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hierarchical data. In addition, HDF5 provides fine-grained control over the internally

used data storage layout.

The data format is constructed in the following way: First, the highest resolution

pyramid level of each microscopic image (1 µm/px) is downscaled to a resolution of

2 µm/px using cubic interpolation. This step addresses the issue of non-matching

physical resolutions and ensures that training image patches can be efficiently read

at the desired resolution of 2 µm/px.

The downscaled images are stored in HDF5 files. However, images belonging to the

same brain are stored as datasets in a single HDF5 file rather than storing each image

in a separate file. The number of brains is significantly smaller than the number of

brain sections, so this approach significantly reduces the number of file handles that

need to be kept open by each process. Issues arising from handling too many files

are mitigated this way, as the memory overhead is significantly reduced.

HDF5 allows storing data with a chunked memory layout (Figure 4.2, right), which

reduces the number of read operations to read rectangular image patches. The chunk

size has to be adapted to the application’s requirements, as both too small and too

large chunk sizes can lead to poor performance. The images used in our experiments

are stored with a chunk size of 2048 × 2048, which matches the typical patch size

used in our experiments and has shown to work well in practice.

Using a chunked memory layout, combining multiple image files into a few large

files, and reducing the image resolution improved the performance. However, the

high-frequency random read access pattern regularly overloaded the available file

system infrastructure (Section 4.1.2). This issue manifested as extremely variable

read access times, ranging from a few milliseconds to several minutes to read a single

relatively small image patch. Using the profiling tool darshan (Carns et al., 2011)

and the Linux tool strace, we found that the majority of read requests that caused the

high file system load were caused by a large number of small metadata read requests

issued by the HDF5 library. This issue was primarily addressed by storing the HDF5

files on the HPST file system (Section 4.1.2). The flash-based HPST does not suffer

from significantly degraded performance when being confronted with high-frequency

random read requests.

We use the split storage mechanism of HDF5 to further reduce the performance

impact of the metadata requests. In contrast to the default storage mechanism of

HDF5, which stores both metadata (e.g., the structure of the file) and user data in

the same file, the split mechanism stores metadata and user data in separate files.

The small size of the metadata file (typically a few megabytes) allows the operating

system to cache it in memory, significantly reducing the load on the file system. The

default storage mechanism (i.e., one file for metadata and user data) results in files

with a size of multiple terabytes, which are too large to be cached.
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mapping of individual areas

In this chapter, we introduce a deep learning method for mapping individual cytoar-

chitectonic areas across complete series of brain sections. Instead of training a single

model to classify many areas across different brains, the proposed method follows

a divide-and-conquer approach to divide the brain mapping problem into easier-to-

solve subtasks. Each subtask involves the classification of a single brain area in a

local region of only one brain. One dedicated deep learning model is trained for each

subtask, allowing each model to focus on local characteristics of the respective area

and produce accurate predictions.

Models are trained on annotations created at approximately regular section inter-

vals (e.g., every 120th section), which can be obtained with acceptable effort using

the GLI-based brain mapping workflow (Section 2.1.4). Trained models are used to

create predictions for sections without annotations in-between annotated sections to

“fill the gaps”. The method aims to support neuroanatomists in cytoarchitectonic

brain mapping and make mapping of large section series practically feasible for the

first time.

We evaluate the method by quantitative and qualitative assessment of prediction

results for different areas and brain samples, partly with different tissue staining

protocols (Sections 5.2.1 to 5.2.4). We examine the performance of different model

architectures (Section 5.1.2), and investigate the interpretability of the trained mod-

els (Section 5.2.5). Finally, we demonstrate the practical benefit by creating high-

resolution 3D maps of cytoarchitectonic areas in the BigBrain dataset, and use them

to assess the anatomical consistency and plausibility of the obtained predictions (Sec-

tion 5.2.6).

The method is integrated into a HPC driven web application for visualization of

microscopic image data and creation of annotations (Section 5.2.7) to facilitate easy

use. The application enables users to train models and observe prediction results

without requiring advanced technical knowledge or expertise in deep learning.

The method reported in this chapter was published in the article “Convolutional

Neural Networks for Cytoarchitectonic Brain Mapping at Large Scale” (Schiffer et

al., 2021f). An analysis of features that are learned by the proposed method was
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published in “Deep Learning Networks Reflect Cytoarchitectonic Features Used in

Brain Mapping” (Kiwitz et al., 2020).

5.1 Methods

5.1.1 Local segmentation models

Supervised machine learning applications typically train a single model that aims

to generalize well to new samples from the considered data distribution. Using a

single model is practically convenient, as it can be directly applied to classify new

data. Spitzer et al. (2017) adapt this established approach to segment different

cytoarchitectonic areas from the visual system of multiple brains (Section 2.2.7).

While promising, the results obtained using this approach are not accurate enough

to support the mapping workflow in practice.

The limited performance achieved with existing approaches (Spitzer et al., 2017,

2018b) can be attributed to the high variability of the data and the complexity of

the patterns defining cytoarchitectonic areas. We can assume that collecting more

training data in form of annotated cytoarchitectonic areas (Section 3.3) would im-

prove the classification performance. However, collecting a large number of additional

annotations is time and labor-intensive.

Here, we instead aim to simplify the problem by subdividing it into easier-to-

solve subtasks, each comprising the classification of a single area in a few consecutive

sections of a single brain. The simplification is based on the following observations:

Limited variability in local regions Cytoarchitecture and processing-dependent fea-

tures (e.g., tissue staining) vary across brains, but the variability in spatially

restricted regions of a single brain (e.g., across a few consecutive sections) is

limited.

Focused classification The patterns defining cytoarchitectonic areas are complex

and ambiguous, but classifying a selected cytoarchitectonic area in a small

region of a brain can be achieved without taking all subtle variations into

account.

Exploiting local macroscopic landmarks Macroscopic features of the brain (e.g.,

cortical folding patterns) are generally not representative for cytoarchitecture

(Amunts et al., 2007a; Amunts et al., 2015). However, they may be used

as easily recognizable landmarks to aid cytoarchitecture classification in small

regions of a specific brain.

We introduce local segmentation models (LSMs) to solve the defined subtasks.

A LSM, denoted as LSMs
A
↔t
B , is a deep neural network that is trained on a pair of
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Figure 5.1: Illustration of the proposed LSM method for mapping large series of
histological brains sections. A series of n consecutive brain sections is subdivided into
intervals comprising d sections, where the outer sections of each interval (blue) are
annotated with an area A. After training one LSM per interval, sections in-between
the annotated sections can be mapped automatically.

spatially close training sections
{

SB

s, S
B

t

}

with available annotations for a target area

A. We hypothesize that a LSM trained on two spatially close training sections can

capture and exploit specific features of the respective region, enabling it to create

accurate predictions for all sections SB

s+1, · · · , S
B

t−1 in-between the training sections

(i.e., “fill the gaps”). Training annotations at approximately regular section inter-

vals (e.g., every 60th-120th section) can be obtained with acceptable effort using the

existing GLI-based brain mapping workflow (Sections 2.1.4 and 3.3). The larger the

distance between the training sections, the more sections can be mapped automati-

cally.

Multiple LSMs can be trained to apply the method to larger series of sections or

more areas (Figure 5.1). For example, the whole extent of an area A across a series

of sections SB

1, S
B

2, · · · , S
B

n can be captured by training a sequence of LSMs

LSM1
A
↔1+d

B ,LSM1+d
A
↔1+2d

B , · · · ,LSMn−2d
A
↔n−d

B ,LSMn−d
A
↔n

B ,

each of which can be used to segment A in a different section interval. Similarly,

other areas can be addressed by training a dedicated set of LSMs for each area.
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5.1.2 Dataset preparation

We model cytoarchitectonic mapping as a segmentation task: A model is tasked to

assign each pixel of an image to the respective brain area. As proposed by Spitzer et

al. (2017) (Section 2.2.7), segmentation is performed on image patches, as segmenting

an entire brain section image is technically infeasible. The procedure used to generate

image patches for training is detailed in the following.

Auxiliary segmentation classes

Each LSM aims to segment a specific cytoarchitectonic area A, so modelling the task

as a binary segmentation problem with a positive class “area A” and a negative class

“not area A” would be straight forward. However, as already pointed out by Spitzer

et al. (2017), the resulting negative class would encompass a mixture of different

cytoarchitectonic areas, other tissue classes (e.g., white matter), and the background

class (i.e., the microscopy slide). It is difficult to distinguish such a heterogeneous

negative class from the very specific positive class.

Spitzer et al. (2017) propose to address this issue by introducing auxiliary classes,

which further subdivide the heterogeneous negative class into semantically meaning-

ful subclasses. Using the auxiliary classes, the task becomes a four-way segmentation

problem with the classes “background” (microscopy slide), “white matter”, “gray

matter not belonging to A”, and “gray matter belonging to A”. The more distinct

classes of this extended segmentation task ease the training process and improve

overall performance (Spitzer et al., 2017).

Training with auxiliary classes requires segmentation masks, which we create using

the tissue segmentation workflow described in Section 3.2.

ROI-based training patch sampling

LSMs restrict training and prediction to local regions within a brain. A local region

is partly defined by the training section interval [s, t] on which a LSM is trained. In

addition, we restrict training and prediction to tissue that immediately surrounds

the area A.

During training, we define region of interests (ROIs) with radius r ∈ R
≥0 around

the annotations of A on the training sections (Figure 5.2). Centers for training image

patches are sampled from these ROIs. RB

s(A; r) denotes a ROI containing all pixels

within a radius r around area A on section s of brain B.

Since the training of a LSM is restricted to a ROI around an area A, good predic-

tion results can only be expected within equivalent ROIs on sections in-between the
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Figure 5.2: ROI computation for LSM training of area hOc1 (yellow). On the train-
ing sections (here 901 and 1021 of B20), ROIs are defined by including all pixels
within a specified radius (here r = 5 mm) around area A . Training ROIs are linearly
transformed to sections in-between (here 961) to estimate approximately correspond-
ing ROIs for prediction.

training sections. We compute approximately equivalent ROIs

R̃
B

u(A; r, s, t) = Φs→u

(

RB

s(A; er r)
)

∪ Φt→u

(

RB

t (A; er r)
)

. (5.65)

for sections s < u < t in-between the training sections s and t by linearly transforming

(Section 3.2) the known ROIs from the training sections onto u. The enlargement

factor er ∈ R
≥0 enlarges the ROIs before transforming them, which accounts for

potential inaccuracies in the transformation step. In our experiments, we use r =

5 mm and er = 1.05.

Balanced training patch sampling

Center points for training image patches are sampled from the ROIs defined on the

two training sections. The probability of a pixel to be selected as a patch center

is inversely proportional to the frequency of its assigned class (Figure 5.3). Conse-

quently, pixels belonging to a class that rarely occurs in the ROIs are selected more

often than pixels belonging to a more frequent class. This approach addresses the

class imbalance, which is a common issue in many machine learning applications.

When confronted with an imbalanced dataset, machine learning models tend to fo-

cus on frequent classes. This issue is particularly relevant for applications where

rare classes are of particular interest (e.g., detecting rare diseases). The balanced

sampling procedure corrects class imbalances by oversampling rare classes and thus

leads to improved performance in cases where the area A is small compared to the

surrounding ROI.
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Figure 5.3: Sampling probabilities for drawing training image patches on section
901 of B20. Left: Groundtruth segmentation mask within a ROI around hOc1 (black:
background, white: white matter, gray: gray matter, yellow: hOc1). Right: Sam-
pling probabilities for each pixel within a ROI around hOc1. Brighter pixel values
indicate a higher sampling probability for the respective pixel. This particular ROI
includes less gray matter than white matter, so we assign a higher sampling proba-
bility to pixels in the gray matter. The probability of sampling a pixel of a specific
class is identical for all classes (25%), resulting in a balanced training dataset.

5.1.3 Data augmentation

Before data augmentation operations are applied, image patches are rotated such

that their upper border points to the superior (upper) part of the brain. This nor-

malization is also applied during the prediction phase.

During training, images are randomly rotated by a small angle θ ∼ U
[

−π
4
,−π

4

]

.

Pixel intensities x ∈ [0, 1] of a patch are randomly augmented according to αxγ + β

with parameters α ∼ U [0.9, 1.1] , β ∼ U [−0.2, 0.2] and γ ∼ U [0.8, 1.214]. The

parameters of the intensity transformation are chosen to reflect natural variations

observed in the data.

5.1.4 Training parameters

Each LSM is trained for 3000 training iterations using categorical cross-entropy loss

(Equation 2.14). The terms of the loss are weighted inversely proportional to the

share of the respective class within the training ROIs (Section 5.1.2). Optimiza-

tion is performed using the SGD (Section 2.2.1) optimizer with Nesterov momen-

tum (Sutskever et al., 2013), momentum µ = 0.9, and a total batch size of b = 64 im-

age patches (16 image patches per GPU with 4 GPUs). A weight decay of ω = 0.0001

is applied to all non-bias parameters. The initial learning rate is set to λ = 0.04 and

halved after 1000, 1400, 1800, 2200, and 2600 training iterations. All LSMs are

trained using the same hyperparameters.
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Figure 5.4: Multi-resolution input image patches processed by the MS U-Net archi-
tecture. Left: High-resolution image patch with a size of 2025×2025 px2 at 2 µm/px,
which captures high-resolution image features down to the level of individual cells.
Right: Low-resolution image patch with a size of 628× 628 px2 at 16 µm/px , which
enables the model to capture macroscopic features like the folding pattern of the
brain surface. Area hOc2 is depicted in blue.

Training a LSM uses one compute node of the JURECA-DC supercomputer at JSC.

Training is distributed using data-parallel DDL. The training pipeline is implemented

using ATLaS (Section 4.2.2).

5.1.5 Network architectures

We evaluate different model architectures for the LSMs (Figure 5.5). We adopt the

modified U-Net (Ronneberger et al., 2015) model (Section 2.2.3) from Spitzer et al.

(2017) as a baseline. The model has shown to be well suited for cytoarchitecture seg-

mentation. Compared to the original U-Net proposed in Ronneberger et al. (2015)

(Section 2.2.3), this modified U-Net accounts for the large image patch size that is

required to capture detailed cytoarchitectonic features. The model uses two convo-

lutional layers and a pooling layer as additional initial layers. The first convolutional

layer has a large filter size of 5 × 5 with stride 4 to allow processing of large image

patches. No padding is used to avoid boundary artifacts. The model receives image

patches with a size of 2025 × 2025 px2 at 2 µm/px (4.05 × 4.05 mm2) and outputs

segmentations with a size of 64 × 64 px2 at 16 µm/px (1.024 × 1.024 mm2). We refer

to this architecture as high-resolution U-Net (HR U-Net), as it is designed to extract

high-resolution image features.
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Figure 5.5: Architectures for LSM models. The HR U-Net model receives high-
resolution image patches to capture fine details of cytoarchitecture. The LR U-Net
model receives larger image patches with a lower resolution that enable macroscopic
tissue features to be captured. The MS U-Net model combines the encoders of HR
U-Net and LR U-Net to exploit high-resolution and macroscopic image features si-
multaneously. Numbers in the blocks denote the number of filters in the respective
convolutional layer. The encircled “c” denotes concatenation along the feature di-
mension.
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LSMs can rely on macroscopic features (e.g., local folding patterns) to classify

cytoarchitectonic areas in local regions (Section 5.1.1). However, the image patches

processed by HR U-Net are too small to capture such macroscopic features. We

therefore propose the low-resolution U-Net (LR U-Net), a U-Net variant designed to

exploit macroscopic image features for cytoarchitecture segmentation. The LR U-

Net model receives image patches with a size of 756× 756 px2 at 16 µm/px (12.096×

12.096 mm2) and outputs segmentations with a size of 64×64 px2 at 16 µm/px (1.024×

1.024 mm2). The lower resolution and larger field of view enable LR U-Net to extract

macroscopic image features. LR U-Net uses dilated convolutional layers in all but

the first two layers of the encoder to increase the field of view.

Finally, we propose the multi-scale U-Net (MS U-Net) architecture, which combines

the advantages of both HR U-Net and LR U-Net using a multi-scale approach. The

MS U-Net is composed of two encoders, one for high-resolution image patches and one

for low-resolution image patches (Figure 5.4). The high-resolution encoder is struc-

turally equivalent to the encoder of the HR U-Net model, while the low-resolution

encoder is structurally equivalent to the encoder of the LR U-Net architecture. The

outputs of both encoders are merged using concatenation. Skip-connections transfer

feature maps from both encoders over to the decoder. The high-resolution encoder

receives image patches with a size of 2025 × 2025 px2 at 2 µm/px (4.05 × 4.05 mm2),

while the low-resolution encoder receives image patches with a size of 628 × 628 px2

at 16 µm/px (10.048× 10.048 mm2). MS U-Net outputs segmentations with a size of

64 × 64 px2 at 16 µm/px (1.024 × 1.024 mm2).

The architecture of the high-resolution encoders of HR U-Net and MS U-Net is

identical to the one used for the SSL task proposed in Spitzer et al. (2018b) (Sec-

tion 2.2.7). Spitzer et al. (2018b) demonstrate that pre-initializing the parameters

of a model for cytoarchitecture segmentation with parameters trained by their pro-

posed SSL task can improve segmentation performance. We therefore pre-initialize

the high-resolution encoders of HR U-Net and MS U-Net from weights trained with

the SSL method from Spitzer et al. (2018b).

5.2 Results

We evaluate the method’s performance for different cytoarchitectonic areas, brains,

model architectures, and training paradigms.

The GLI-based brain mapping workflow (Section 2.1.4) typically considers every

60th (1.2 mm distance) section of a brain (Section 3.3). Therefore, we use every

120th section (2.4 mm) for training a LSM (Figure 5.6). In most cases, this approach

leaves us with one annotated section centered between each pair of training sections.

The left-out evaluation sections are used for performance evaluation.
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5 Deep learning for accelerated mapping of individual areas

The AAHA dataset is comprised of thicker sections than B01 and B20 (50 µm vs.

20 µm). Here, we adapt the distance between the sections to ensure that the physical

distance between the training sections is similar for all brain samples.

Results are evaluated based on the F1-score for the respective area A (Equa-

tion 2.19). The auxiliary classes that are introduced to improve the training behavior

(Section 5.1.2) are not considered for the F1-score computation, as only the segmen-

tation of the area A is practically relevant. As described in Section 5.1.2, predictions

for an arbitrary section s < u < t are created within a ROI R̃
B

u(A; r, s, t) (Equa-

tion 5.65, Figure 5.2), which is computed based on a pair of surrounding training

sections s and t.

5.2.1 Local vs. global segmentation models

We evaluate the LSM models by comparing them to models that are trained on all

sections for which a specific brain area is annotated. We call these models global

segmentation models (GSMs). One GSM is trained on the union of all training

sections available for a specific area in a specific brain. Consequently, only one GSM

is trained per brain area, while multiple LSMs are trained per brain area. GSMs are

trained using the same training parameters as the LSMs (Section 5.1.4).

We compare the performance of LSMs and GSMs on B20. We consider visual

areas hOc1, hOc2, hOc3v and hOc5, frontal opercular areas OP5, OP6 and OP7, Broca’s

areas 44 and 45, areas hIP5, hIP6, hIP7 and hIP8 from the intraparietal sulcus,

supplementary motor area 6mp, pre-supplementary motor area 6ma, and premotor

areas 6d1, 6d2, and 6d3. Corresponding references for all areas are listed in Table 3.2.

We repeat all experiments in B20 using the HR U-Net, LR U-Net, and MS U-Net

model architectures (Section 5.1.5) and compare their performance with LSM and

GSM training.

Figure 5.7 shows median F1-scores obtained by LSMs, and GSMs for each of the

considered brain areas. Table 5.1 shows mean, median, and standard deviation of the

F1-scores across all brain areas. Statistics are computed across evaluation sections.

In both cases, results are broken down based on the training paradigm (LSM, GSM)

and the model architecture (HR U-Net, LR U-Net, MS U-Net).

The statistics in Table 5.1 show that LSMs generally outperform the correspond-

ing GSMs using the same model architecture. For both LSM and GSM training, LR

U-Net achieves higher median scores than HR U-Net, and MS U-Net achieves higher

median scores than LR U-Net. LSM models with either LR U-Net or MS U-Net ar-

chitecture show lower standard deviation, indicating more robust performance across

areas. Overall, best performance is achieved by the LSM models with MS U-Net

architecture.
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Figure 5.6: Training and evaluation sections used in our experiments. For each
area, the diagram indicates which sections are used for training (blue dots) and
evaluation (orange dots). A black line connecting two training sections indicates
that the respective interval was used to train a LSM. The number next to each area
name specifies the number of LSMs trained for the respective cytoarchitectonic area.
Experiments hOc3v∗ and hOc5∗ use a reduced distance between training sections
(Section 5.2.3). Note that the AAHA dataset uses a different section numbering
scheme, so section ranges for hOc1 and hOc2 do not align with B01 and B20.
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5 Deep learning for accelerated mapping of individual areas

Figure 5.7: Median F1-scores obtained by different model architectures (HR U-Net,
LR U-Net, MS U-Net) and training paradigms (LSM, GSM) per brain area in B20.
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5.2 Results

median mean std

GSM (HR) 0.566 0.582 0.217

GSM (LR) 0.602 0.574 0.220

GSM (MS) 0.670 0.648 0.211

LSM (HR) 0.658 0.619 0.214

LSM (LR) 0.708 0.696 0.181

LSM (MS) 0.718 0.710 0.187

Table 5.1: Median, mean and standard
deviation of F1-scores obtained by dif-
ferent model architectures (HR U-Net,
LR U-Net, MS U-Net) and training
paradigms (LSM, GSM) across all areas
in B20 (Figure 5.7).

Figure 5.8: Median F1-scores obtained by LSMs with MS U-Net architecture on
brains B20, B01, and the AAHA dataset.

The impact of the training paradigm and the model architecture varies between

areas. For example, LSM models with LR U-Net architecture achieve significantly

higher scores than GSM models with the same architecture for areas hOc1, hOc2,

hOc3v, and hOc5. For other areas (e.g., hIP5, hIP7, hIP8), the difference between

LSM and GSM training is small. In general, LSMs tend to outperform GSMs for

larger areas (i.e., areas that cover many sections), while their performance is com-

parable for smaller areas. Larger areas show a higher variation of macroscopic prop-

erties (e.g., cortical folding patterns). The results thus suggest that the subdivision

approach of LSMs allows them to better capture these macroscopic variations and

classify larger areas more reliably than GSMs.

5.2.2 Performance on different brains

The applicability of the method to different brain samples is evaluated by investigat-

ing the performance of LSMs for areas hOc1 and hOc2 in B01, B20, and in the AAHA
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Figure 5.9: Median F1-scores obtained by different model architectures (HR U-Net,
LR U-Net, MS U-Net) and training paradigms (LSM, GSM) for areas hOc3v and
hOc5 in B20. Models trained for experiments hOc3v and hOc5v use approximately
every 120th section for training, while models in experiments hOc3v∗ and hOc5v∗ use
approximately every 60th section for training.

dataset. Models trained in these experiments use the MS U-Net architecture. Brains

B01 and B20 have undergone similar histological processing protocols (Section 3.1),

while sections from the AAHA dataset were acquired using different processing steps

(most notably a different staining technique, Section 2.1.3). The experiments enable

us to assess the applicability of the method to new brain subjects and processing

protocols.

Figure 5.8 shows median F1-scores for areas hOc1 and hOc2 in brains B20, B01, and

AAHA. For both areas, the scores obtained in all three brains are on a comparable

level, with the performance of hOc1 being generally higher than for hOc2. The

comparable performance across differently prepared brains indicates that the method

is applicable to new brain samples without requiring specific tuning of the method’s

hyperparameters.

5.2.3 Influence of annotation density

The LSM training allows to adjust the distance between the training sections to

adaptively provide additional training annotations and thereby improve prediction

performance. We investigate the benefit of adding more annotations by conducting

experiments for areas hOc3v and hOc5 with a reduced distance of 60 sections (1.2 mm)

between training sections in B20. These experiments are indicated by hOc3v∗ and
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hOc5∗. To evaluate the prediction results, additional annotations for hOc3v and hOc5

on approximately every 30th section were collected1.

Figure 5.9 shows the median F1-scores for areas hOc3v and hOc5 in B20 obtained

using LSM and GSM training with different model architectures (HR U-Net, LR

U-Net, MS U-Net). Experiments are conducted with the default distance of 120

sections between training sections and a reduced distance of 60 sections.

For both LSM and GSM training, the performance improves when reducing the

training distance. For LSM models, this can be attributed to the reduced variability

in the data, while for GSM the larger number of available training sections explains

the improved performance. In comparison to the LR U-Net and MS U-Net archi-

tectures, the performance improvement with the HR U-Net architecture is relatively

small when reducing the distance between training sections. The results indicate that

reducing the distance between training sections is particularly useful for LR U-Net

and MS U-Net models, which can make use of macroscopic image features. In line

with the results for the other B20 areas (Section 5.2.1), LSM models with either LR

U-Net or MS U-Net architecture obtain the best performance.

5.2.4 Qualitative results

We assess the results by visual inspection of predictions on the validation sections.

A selection of representative image patches and corresponding segmentations from

each area in B20 is shown in Figure 5.10. The segmentations are obtained using

LSMs with MS U-Net architecture. Results for hOc3v and hOc5 are obtained from

experiments hOc3v∗ and hOc5∗ (Figure 5.6). The example patches are selected to

give a realistic impression of the results and typically encountered errors. They do

not necessarily represent the best segmentation obtained for the respective area.

The results show that the models correctly identify a large portion of each area.

Errors commonly occur at the border between areas, i.e., when one area transitions

into the respective adjacent area. This effect is expected, as boundaries between

adjacent areas can often not be localized with absolute certainty. It can thus be as-

sumed that both the model predictions and the reference annotations are less precise

close to areal borders.

Regions where the tissue is cut obliquely relative to the pial boundary (Sec-

tion 2.1.4) are another common problem (e.g., Figure 5.10 I,J,L,M,N,O,R). In these

regions, the laminar organization of the cortex is not completely visible, which of-

ten prevents the exact identification of cytoarchitectonic areas. The method handles

obliquely cut regions well in some cases (e.g., Figure 5.10 I,J,M,O,R), but fails in

1Thanks to Kai Kiwitz (Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine-
University Düsseldorf (HHU)) for providing annotations of areas hOc1, hOc2, hOc3v and hOc5

in B20 that were used to evaluate the method.
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Figure 5.10: Image patches and corresponding segmentations obtained by LSMs
with MS U-Net architecture from each considered brain area in B20. Colors indicate
correctly classified pixels (green), false positive predictions (red) and false negative
predictions (blue). Image patches are selected to give an overview of representative
results and typical error. Segmentations of hOc3v and hOc5 are obtained by models
trained with reduced training distance (hOc3v∗ and hOc5∗ in Figure 5.6)
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other cases (e.g., Figure 5.10 L,N). Since cytoarchitecture is only partially captured

in the shown examples, we assume that morphological features recognized by the

low-resolution encoder of the MS U-Net help to disambiguate some of the obliquely

cut regions.

Furthermore, we found that segmentation performance tends to be lower at the

extremal ends of an area (i.e., the first or last sections containing an area). This

problem is also known from GLI-based brain mapping (Section 2.1.4), where it be-

comes increasingly challenging (and sometimes impossible) to map the extremal ends

of certain brain areas. Challenges arise because the size of areas within the section-

ing plane shrinks towards the extremal ends, making them challenging to delineate

manually or algorithmically.

5.2.5 Model interpretability: What do models learn?

Understanding and interpreting how a trained deep neural network creates predic-

tions can be important to assess its performance, estimate generalization capabilities,

and identify shortcomings. Compared to some other machine learning methods (e.g.,

linear regression or decision trees), their hierarchical layer structure and large number

of parameters make deep neural networks more difficult to understand and interpret.

Some methods aim to understand the internal decision processes in trained deep

neural networks by visualizing extracted features (Zeiler et al., 2014; Springenberg

et al., 2015; Selvaraju et al., 2017) or model parameters (Bach et al., 2015).

To gain some intuition about how the MS U-Net architecture makes predictions,

we adopt a variant of the occlusion approach proposed in Zeiler et al. (2014). The

main idea is to investigate how the predictions of a model change when certain parts

of the input are occluded (e.g., by setting certain pixels to zero). This can help to

identify the parts of an image that are most relevant for a prediction. We adapt

this idea by occluding (i.e., set to zero) either the high- or low-resolution input

image of a LSM with MS U-Net architecture. This occludes the microanatomical

or macroanatomical information in the input signal, respectively. We compare the

results to those obtained when using intact inputs.

Figure 5.11 shows segmentations of hOc2 on section 1441 of B20 obtained by

LSM1381
hOc2
↔ 1501

B20 when using different combinations of input image patches. When re-

stricted to lower resolution image patches (LR only), the model only approximately

localizes the area, but fails to capture details. Similarly, the model fails to localize

the position of hOc2 when only higher resolution image patches (HR only) images

are provided. When both resolutions are available (LR & HR), the model accurately

segments the area.

One possible explanation for the observed behavior could be that the model approx-

imately localizes the area using lower resolution information and identifies detailed
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Figure 5.11: Segmentations of hOc2 on section 1441 of B20 obtained by

LSM1381
hOc2
↔ 1501

B20 when specific input resolutions are occluded (Zeiler et al., 2014). LR
only and HR only show the segmentation results when only the low- or the high-
resolution encoder of the MS U-Net architecture receive proper input images, while
the respective other encoder receives an image full of zeros. Area hOc2 is depicted in
blue.

borders using higher-resolution information. This would correspond with our motiva-

tion for the MS U-Net architecture. However, while this experiment provides insights

into one specific model, it does not necessarily allow general statements about the

decision mechanism of other models.

Kiwitz et al. (2020) performed a comprehensive study of the features that trained

LSM models learn to extract from image patches. They visually inspected the fea-

tures maps of several trained LSM models and grouped them into semantically similar

groups. They found that many learned features resemble cytoarchitectonic properties

that are used in GLI-based brain mapping (Section 2.1.4).

5.2.6 High-resolution 3D maps in the BigBrain dataset

We demonstrate the practical utility of the method by using it to compute high-

resolution 3D cytoarchitectonic maps (Figure 5.12) in the BigBrain (Amunts et al.,

2013) dataset. A 3D cytoarchitectonic map allows studying the 3D structure of an

area (e.g., its shape, volume, and surface area). For example, these structural prop-

erties can be used to study the variability of an area across different brains (Amunts

et al., 2000).

Creating a cytoarchitectonic map from histological brain sections requires annotat-

ing a contiguous series of sections and assembling a consistent 3D model from these

individual annotations. We use LSMs to segment areas hOc1, hOc2, hOc3v, and hOc5

in all sections of brain B20. We then reuse the existing reconstruction workflow of
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A B

C D

hOc1 hOc2
hOc3v hOc5

Figure 5.12: High-resolution 3D cytoarchitectonic maps of areas hOc1 (yellow), hOc2
(blue), hOc3v (red) and hOc5 (green) in the BigBrain (B20). The maps are created by
using LSM models to automatically segment the brain areas on all relevant sections
and assembling them into a consistent volume using the BigBrain reconstruction
workflow (Section 3.2). The coordinate system specifies the location in the BigBrain
space in mm. Letters indicate anatomical directions (L/R: left/right, P/A: poste-
rior/anterior, I/S: inferior/superior). Visualization created using ParaView (Ahrens
et al., 2005).

the BigBrain model (Section 2.1.3) to assemble high-resolution 3D maps from the

segmentations. In the following, we describe the workflow used to create the maps.

Quality control & generation of 3D cytoarchitectonic maps

We use the LSM approach with MS U-Net architecture to train a series of models for

each of the four considered brain areas. We apply them to create segmentations for

all sections without annotations. For areas hOc3v and hOc5, we use models trained

with reduced distance between training sections (hOc3v∗ and hOc5∗, Figure 5.6). In

total, we train 18 models for areas hOc1 and hOc2, 23 models for hOc3v, and 7 models

for hOc5. Areas hOc1 and hOc2 each cover 2461 sections, hOc3v covers 1441 sections,

and hOc5 covers 541 sections.

The quality of the resulting segmentation is checked to validate the consistency and

plausibility of the results and sort out sections with insufficient quality. In addition,

sections containing histological artifacts (e.g., resulting from long-term storage or

damaged tissue) are excluded from further processing. Between 8% (hOc3v) and
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A B

Figure 5.13: Illustration of the cleaning step applied to reconstructed cytoarchitec-
tonic maps by the example of hOc1. The removal of small connected components
suppresses small errors resulting from registration or prediction errors. Arrows mark
examples of small errors that are removed by the cleaning step. The coordinate sys-
tem specifies the location in the BigBrain space in mm. Letters indicate anatomical
directions (L/R: left/right, P/A: posterior/anterior, I/S: inferior/superior). Visual-
ization created using ParaView (Ahrens et al., 2005).

23% (hOc1) are excluded. Depending on the size of the respective area, the quality

control step takes between several hours and a few days.

All sections that pass the quality check step are transformed into the reconstructed

space of BigBrain (Section 3.2). Gaps in the series of transformed sections result-

ing from sections sorted out during quality control are filled by interpolating be-

tween available neighboring sections. Interpolation is performed based on Laplacian

fields (Schober et al., 2016). As a result of the interpolation step, we obtain an unin-

terrupted series of segmentations, which are assembled into a 3D volume with 20 µm

voxel resolution.

The obtained 3D volumes of each area are smoothed using a 3D median filter

with a size of 11 × 11 × 11 voxels. The size of the filter is chosen based on the

expected accuracy of annotation boundaries, which is estimated to be 100 µm (i.e.,

5 voxels in each direction at 20 µm voxel resolution). After smoothing, we perform

a connected component analysis and remove all components smaller than 27 mm3

(3 mm × 3 mm × 3 mm). This step removes small errors resulting from registration

or prediction errors (Figure 5.13). The resulting volume files have an uncompressed

size of 85 GB (hOc1 and hOc2), 50 GB (hOc3v), and 18 GB (hOc5). Preview files with

a reduced resolution of 100 µm per voxels are created by downscaling to enable easier

visualization. In a final step, the marching cubes algorithm (Lewiner et al., 2003) is

used to create surface meshes of all areas at full and preview resolution.

The location, orientation, and morphology of the reconstructed cytoarchitectonic

maps shown in Figure 5.12 are anatomically plausible and consistent. Their appear-

ance aligns well with reference descriptions of the areas hOc1, hOc2 (Amunts et al.,

2000), hOc3v (Rottschy et al., 2007), and hOc5v (Malikovic et al., 2016).
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Table 5.2: Volumes (in mm3) of 3D cytoarchitectonic maps of different areas in B20.
The reference mean µ and standard deviation σ are computed based on male subjects
from Amunts et al. (2007b). Volumes are corrected for tissue shrinkage (Section 3.2)
using a shrinkage correction factor of 1.931.

area volume corrected µ σ z-score
hOc1 9019.30 17416.27 18042.20 2464.39 -0.25
hOc2 6448.60 12452.26 12634.20 2862.84 -0.06
hOc3v 1974.76 3813.26 n.a. n.a. n.a.
hOc5 304.10 587.21 1144.40 406.53 -1.37

Volume and surface area computation

We compute the volume and the surface area of the created cytoarchitectonic maps

and compare them to reference values from the literature. This step allows us to

assess the anatomical plausibility of the created 3D cytoarchitectonic maps and the

underlying segmentation results of the LSM method.

We compute the volume by multiplying the number of voxels in the created maps

by the physical volume of each voxel (20 µm × 20 µm × 20 µm). The computation of

the surface area requires a more sophisticated approach. For cytoarchitectonic areas,

the surface area typically refers to the area at the brain surface. This area is smaller

than the total surface area of the created meshes. Thus, we need to identify those

vertices and triangles of the surface mesh that correspond to the pial surface (the

“outside”) to obtain comparable estimates of the surface area.

To determine the subset of triangles on the pial surface, we first estimate the

cortical depth within the cortex. The cortical depth specifies the distance of a voxel

within the cortex to the pial boundary. We estimate the cortical depth by applying

the procedure described in Leprince et al. (2015) to the cortical ribbon of the BigBrain

model (Lewis et al., 2014, Section 3.2). The result is a volumetric dataset that

specifies the cortical depth as a value between 0 and 1 for voxels in the cortex.

We use the cortical depth dataset to assign the respective cortical depth to each

vertex in the created surface meshes. Finally, we obtain the surface area of each

cytoarchitectonic map by summing up the area of all triangles with a cortical depth

below 0.25. The cortical depth of a triangle is determined by the maximum cortical

depth across its associated vertices.

We report the estimated volumes and surface areas of the created cytoarchitec-

tonic maps in Table 5.2 and Table 5.3, respectively. Volumes and surface areas are

corrected to account for shrinkage of the brain tissue during histological processing

(Section 3.2). To evaluate the anatomical plausibility of the created cytoarchitec-

tonic maps, we compare volume and surface areas to values reported in Amunts et

al. (2007b), who report shrinkage corrected volumes and surface areas for areas hOc1,
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Table 5.3: Surface areas (in mm2) of 3D cytoarchitectonic maps of different areas
in B20. The reference mean µ and standard deviation σ are computed based on male
subjects from Amunts et al. (2007b). Surface areas are corrected for tissue shrinkage

(Section 3.2) using a shrinkage correction factor of 1.551 (1.9312/3).

area surface corrected µ σ z-score
hOc1 6891.03 10685.76 12213.00 2225.55 -0.69
hOc2 6749.64 10466.52 10390.40 2925.37 0.03
hOc3v 2142.04 3321.62 n.a. n.a. n.a.
hOc5 319.79 495.89 450.20 135.92 0.34

hOc2, and hOc5 in ten postmortem brains (five male, five female). To ensure a fair

comparison, we compute mean and standard deviation across the five male subjects

reported in this study, as BigBrain was created from the brain of a male donor.

The estimated volumes and surface areas correspond well with the values reported

in Amunts et al. (2007b), indicating a high anatomical plausibility of the created

cytoarchitectonic maps. The surface areas for hOc1, hOc2, and hOc5, as well as the

volumes for hOc1 and hOc2 are largely confirmed with the reference values, while the

volume for hOc5 is smaller compared to the reference values.

5.2.7 Web application for interactive brain mapping

The method is designed to support neuroanatomists in cytoarchitectonic mapping

of large section series and thus make segmentation of complete cytoarchitectonic

areas practically feasible. However, applying the method involves several non-trivial

technical steps, including formatting and preparation of annotations, execution and

monitoring of jobs HPC jobs, and visualization of prediction results. Thus, it is

crucial to provide a user interface that enables users to annotate brain areas, define

training sections, start and monitor the training process, create predictions using

trained models, and investigate the prediction results.

We developed the web application ATLaSUI (Automatic Tissue Labeling System

- User Interface)2, which provides a user friendly interface to the ATLaS framework.

The application is implemented as an extension of the software Microdraw3, a web-

based viewer and annotation tool for high-resolution image data, which enables the

annotation of structures on large images. ATLaSUI makes use of the visualization

and annotation capabilities of Microdraw and extends it by the possibility to apply

LSMs.

2
https://jugit.fz-juelich.de/c.schiffer/atlasui

3
https://github.com/neuroanatomy/microdraw

102



5.2 Results

ATLaSUI components ATLaSUI work ow

web
interface

backend
service

submit/cancel jobs

monitor job status

retrieve predictions

de ne models

start/stop training

query predictions

http http over SSH

display images

annotate areas

de ne models

job control

website

user computer web server HPC system

RESTful API RESTful API

data storage

user management

job monitoring

job control

model training

prediction

computing
service

quality check

correction

result export

4

3 2

1

annotation

model de nition

con guration

monitoring

management

training

prediction

web interface

backend servicecomputing service

Figure 5.14: Left: Components of the ATLaSUI application for interactive brain
mapping with LSMs. The web interface allows users to view images, create anno-
tations, define models to train, and start the training process. The backend service
stores data used by the web interface and coordinates communication with the com-
puting service, which performs training and prediction on a HPC system. After
training, the backend service can retrieve created predictions from the computing
service to display them in the web interface. Right: Typical user workflow for AT-
LaSUI. Users annotate brain areas and define models using the web interface. The
backend service configures training jobs and submits training tasks by communicat-
ing with the computing service. After training and prediction are finished, users can
check, correct, or export the resulting predictions using the web interface.

ATLaSUI consists of three main components (Figure 5.14, left): A web interface,

a backend service, and a computing service.

The web interface is a graphical user interface that is embedded into the existing

user interface of Microdraw (Figure 5.15). It provides functions to specify which

annotations should be used for model training, start the training and prediction

processes, and inspect the prediction results obtained by trained models. In addition,

it provides import functionalities for interoperability with other annotation tools and

enables users to organize multiple models (e.g., multiple LSMs) in projects. The user

interface is implemented using the frontend frameworks Vue.js and Bootstrap.

The backend service provides a RESTful application programming interface (API)

that implements the backend logic of the web interface. It is implemented using

the Python web framework flask and uses a document-oriented MongoDB database

to store data. The API provides endpoints to store and retrieve information on

annotations and projects, forwards requests to the computing service, and provides

functions to query and visualize created predictions.
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Figure 5.15: ATLaSUI web application for cytoarchitectonic mapping supported by
deep learning. A: Microdraw allows displaying high-resolution images (here section
1021, B20) and annotating cytoarchitectonic areas (here hOc1, yellow). The blue
square marks the location of the closeup view (B). C: Users define training tasks
based on created annotations. One tasks corresponds to one deep neural network
training. Tasks are created using a wizard (D). E: HPC compute jobs for training
and prediction can be started and monitored from the interface. For the shown
example (hOc1, sections 901 to 1021), training and prediction for 121 sections took
12 min and 15 min, respectively. F: Prediction results (here for section 961) can be
inspected as semi-transparent overlay in Microdraw.
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The computing service is a RESTful service that runs on a HPC system (e.g.,

JURECA-DC at JSC). Like the backend service, the computing service is imple-

mented as a flask web service. It provides an API to submit, cancel, and query the

status of compute jobs on the HPC system. When a user initiates the training of

a model through the web interface, a request is sent to the backend service. The

backend service prepares a compute job definition and submits it to the computing

service. The same workflow is used to query the status of jobs or cancel running

jobs, enabling full control over training and prediction from the user interface. As

the HPC system running the computing service is typically not accessible through

web protocols (e.g., http), the machines running the backend and HPC services are

securely connected through a secure shell (SSH) tunnel.

ATLaSUI facilitates an interactive workflow for cytoarchitectonic brain mapping

supported by deep learning, which integrates well with the existing mapping work-

flow (Section 3.3). As soon as a user has mapped a specific cytoarchitectonic area

on two sections (Figure 5.15, A), ATLaSUI allows to define a training task (Fig-

ure 5.15, C, D) based on the created annotations and initiate the training process

(Figure 5.15, E). ATLaSUI schedules and monitors the training job running on the

underlying HPC system while the user continues annotating the next sections. When

training finishes, predictions are automatically created for sections in-between the an-

notated training sections, which can be inspected through ATLaSUI (Figure 5.15, F).

The user may then decide to add additional annotations to improve the segmentation

quality (Section 5.2.3) or to continue working on the next section interval or brain

area.

5.3 Summary

This chapter introduced a deep learning method for mapping of individual cytoar-

chitectonic areas in large series of brain sections. The developed LSM models trade

generalizability for accuracy by specializing in local brain regions and specific cy-

toarchitectonic areas. Using a specifically designed training procedure and model

architecture, LSMs achieve high segmentation performance and make mapping of

complete cytoarchitectonic areas across large sections series feasible for the first time.

The method performs well across different areas (Section 5.2.1) and brain sam-

ples (Section 5.2.2). It can be flexibly adapted to the characteristics of different

areas (Section 5.2.3), as it allows to adaptively provide additional annotated data

that is efficiently used to improve segmentation performance. This property makes

the method particularly well suited for interactive use. Interactive use is facilitated

by the implemented web application ATLaSUI (Section 5.2.7).
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We demonstrate the practical value of the method by creating high-resolution 3D

maps of four cytoarchitectonic areas in the BigBrain dataset (Section 5.2.6). The

reconstructed cytoarchitectonic maps represent the first high-resolution cytoarchitec-

tonic maps created from a full series of individual histological brain sections. They

enable the study of area-specific morphological and cytoarchitectonic features of the

brain with unprecedented detail. The maps are released as part of the multilevel

human brain atlas on EBRAINS4 (Schiffer et al., 2019a,b, 2020a,b).

Section 8.1 provides a comprehensive discussion of the presented method and re-

sults.

4
www.ebrains.eu

106



6 Large-scale cytoarchitectonic

mapping with contrastive learning

Spitzer et al. (2017, 2018b) (Section 2.2.7) demonstrated the feasibility and potential

of deep learning for classifying several cytoarchitectonic areas from the visual system.

We extend this existing work to a larger scale by systematically investigating the ap-

plicability of deep learning methods for classifying many areas from different brain

samples. Training deep neural networks for accurate classification of many cytoarchi-

tectonic areas represents an important next step towards automated cytoarchitecture

analysis at large scale.

We introduce a contrastive learning (Hadsell et al., 2006; Chen et al., 2020; Khosla

et al., 2020) method that learns visual representations (Section 2.2.5) for automated

cytoarchitecture classification from a large dataset of annotated cytoarchitectonic

areas. The method learns to capture the subtle differences between brain areas

through pairwise comparison of high-resolution image patches extracted from differ-

ent cytoarchitectonic areas. Chen et al. (2020) and Khosla et al. (2020) demonstrated

that self-supervised (Section 2.2.5) and supervised (Section 2.2.5) contrastive learning

methods are able to learn good visual representations from images, enabling accurate

image classification.

We first establish a baseline (Section 6.2.1) by training a model with categorical

cross-entropy loss, and compare the performance of the baseline to models trained

with contrastive learning. We examine the performance of the contrastive learn-

ing method when using different model architectures (Section 6.2.2), investigate its

transferability to unseen brain samples (Section 6.2.3) and brain areas (Section 6.2.4),

and its dependence on annotated training samples (Section 6.2.5). Finally, we study

robustness to common data variations (Section 6.2.6), conduct an exploratory anal-

ysis of learned feature representations (Section 6.2.7), and investigate the limitations

of self-supervised contrastive learning methods (Chen et al., 2020) for the given

task (Section 6.2.8).

The method reported in this chapter was published in the article “Contrastive

Representation Learning For Whole Brain Cytoarchitectonic Mapping In Histological

Human Brain Sections” (Schiffer et al., 2021a). This chapter extends the published

results by more model architectures, an analysis of the method’s behavior in different
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application scenarios, as well as an in-depth investigation of the learned feature

representations.

6.1 Methods

6.1.1 Supervised contrastive learning for brain mapping

We use contrastive learning (Section 2.2.5) to learn visual representations for auto-

mated cytoarchitecture classification. We use a variant of the supervised contrastive

loss proposed by Khosla et al. (2020) described in Section 2.2.5. Khosla et al. (2020)

perform contrastive learning by regarding two data samples as similar if they are

views (i.e., differently augmented versions) of the same source image or if they be-

long to the same class. In contrast to this, we do not use data augmentation to create

multiple views of images in each batch and thereby do not define similarity based on

data augmentation. Instead, we sample a batch of b image patches B = {X1, · · · , Xb}

and regard two samples as similar if and only if they share the same class label. We

discard the data augmentation-based similarity relationship because we found that

typical data augmentation operations are not sufficient to learn good visual features

for cytoarchitecture classification. A discussion of this behavior and accompanying

experimental studies are given in Section 6.2.8.

We adapt the supervised contrastive loss by Khosla et al. (2020) (Equation 2.59)

and propose the following formulation:

Lsup(B) =
1

b

b
∑

i=1

lsup(i) (6.66)

with lsup(i) = −
1

nci

b
∑

j=1

Ii 6=jIci=cj
log

exp
(

sim
(

zi, zj

)

/τ
)

∑b
k=1 Ii 6=k exp(sim(zi, zk) /τ)

, (6.67)

where ci is the class of the image with index i and nci
is the number of samples in

the batch belonging to ci. An encoder

fE(Xi) = hi ∈ R
dh (6.68)

maps an image Xi to a dh-dimensional feature space. A projection head

fP (hi) = zi ∈ R
dz (6.69)

then maps the feature vector hi ∈ R
dh to a dz-dimensional projection space, where

the contrastive loss is computed.
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The projection head is discarded after the contrastive pre-training stage. Following

the linear evaluation protocol, a linear classifier fC(hi) = ŷi is then trained using the

learned features (Figure 2.16).

For this method, we model cytoarchitectonic brain mapping as a classification

task. Given an image patch extracted from the approximate center of the cortex,

the model is tasked to predict the cytoarchitectonic area from which the patch was

extracted. In comparison, Spitzer et al. (2017, 2018b) and the LSMs in Chapter 5

model the task as a segmentation task (i.e., each pixel is assigned to the respective

cytoarchitectonic area it belongs). Using a classification approach instead enables us

to use contrastive learning methods without the need to adapt them for segmentation

problems. Image patches with a typical size (i.e., 2 × 2 mm2 to 4 × 4 mm2) typically

show only a single cytoarchitectonic area (i.e., all cortex pixels in the image belong

to the same class). As such, the additional technical and methodological efforts

associated with segmentation methods (e.g., memory demands, decoder design) are

not justified for the given task. If required, segmentation masks can be derived by

combining pointwise predictions with a cortex segmentation (e.g., by “coloring” each

cortex pixel based on the closest predicted point).

6.1.2 Dataset preparation

This section describes the creation of training and evaluation datasets from the mi-

croscopic image data described in Chapter 3. We consider a total of 113 cytoarchi-

tectonic areas. A list of these areas (Table 3.2) and details on available annotations

are given in Section 3.3. For the experiments presented in this chapter, we use data

from eight brains B = {B01, B03, B04, B05, B06, B07, B10, B12} (Table 3.1). We decide

to exclude B20 from these experiments, as the large number of sections in B20 requires

specific processing steps. However, the presented methods are generally compatible

with B20 or comparable datasets. Note that not all areas are mapped in every brain

(Figure 3.6).

All but one brain are used to create training and test samples. Training samples are

used to train the model. Test samples are used to evaluate the model’s transferability

to new samples from known brains1. The additional hold-out brain is used to examine

the transferability of trained models to unknown brains (i.e., to brains from which

no samples were seen during training). We refer to the hold-out brain Bh as transfer

brain. Section 6.2.3 presents experiments using different transfer brains. The set of

brains used for training and testing is referred to as Btt = B \ {Bh} (training and

testing).

1We use the terms known and unknown as synonyms for “seen during training” and “not seen
during training”, respectively.
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Figure 6.1: Image patches sampled from the cortex. Cytoarchitectonic areas are
annotated as contours on the brain section. Center points (colored dots) for im-
age patches are sampled uniformly along the midline of each annotation. Example
patches on the right represent typical image patches with a size of approximately
4 × 4 mm2.

Annotated sections belonging to brains in Btt are denoted as Stt. They are split

into training sections Str ⊂ Stt and test sections Ste = Stt \ Str. Sections are

split with an 80-20 ratio, so a fifth of the annotated sections are used to estimate

the performance on unknown sections. We sort sections according to their natural

ordering (i.e., their section number) and select every fifth section as a test section to

perform the split. This approach differs from the random splitting approach often

used in machine learning applications. We use the fixed split procedure to ensure

that test sections are distributed approximately uniform across brains and include

samples from all considered areas. Annotated sections from the transfer brain Bh

are denoted as Sh.

Image patches for training, testing, and transferability evaluation are extracted

from sections Str, Ste, and Sh, respectively, by uniformly sampling image patches

along the midline of the cortex (Figure 6.1). The midline of an annotation is com-

puted from its morphological skeleton. We uniformly sample points with a distance

of 1 mm along the midline of each annotation. Datasets for training, testing, and

transferability evaluation are created by extracting square image patches centered at

each of the sample points.

Cytoarchitectonic areas vary in size, so the number of image patches per area varies

as well. We counter the resulting class imbalance by resampling the training dataset

(with replacement) such that it contains a constant number of image patches from
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each area. Thus, some areas are undersampled (i.e., not all available image patches

are included in the training set), and some areas are oversampled (i.e., some image

patches are included multiple times in the training set).

We define the sampling rate ns as the number of image patches sampled per area

A ∈ A. We then define the sampling ratio rA = ns / n
t
A of an area A as the ratio of the

sampling rate ns and the total number of available image patches for that area nt
A.

Undersampled areas have a sampling ratio between 0 and 1, while oversampled areas

have a sampling ratio larger than one. We determine the sampling rate ns such that

the median sampling ratio r̄A = median A∈A rA across all considered cytoarchitectonic

areas is close to one to ensure that the number of samples is balanced between areas.

Using this strategy, we select a sampling rate of ns = 1200 image patches per area.

Therefore, the training dataset consists of 113 × 1200 = 135 600 image patches,

where 113 is the number of cytoarchitectonic areas considered. Datasets for testing

and transferability evaluation are not resampled.

6.1.3 Data augmentation

We apply data augmentation to reflect natural variations in the data and artificially

increase the amount of training data (Figure 6.2).

The center location of each image patch is randomly translated before it is ex-

tracted. The translation ensures that no image patch is extracted from the exact

same location multiple times. In practice, it cannot be expected that image patches

are extracted from the exact center of the cortex, so introducing small variations to

the patch placement improves robustness. The center of each patch is independently

translated into a random direction. The distance of the translation is sampled from

a uniform distribution d ∼ U [0, 200 µm].

Each image patch is rotated by a random angle θ ∈ U [−π,+π] and randomly

mirrored with a probability of 50%. These geometrical transformations account for

the fact that image patches can be rotated arbitrarily, mainly due to the convoluted

morphology of the cortex and the arbitrary orientation of histological sections on

the microscopy slides. Artificially applying these transformations during training

improves the robustness of the model and enables it to classify image patches with

arbitrary orientations.

Random intensity augmentation operations are applied to each image patch. They

reflect naturally observed intensity variations originating from the histological prepa-

ration (e.g., staining variations) and inter-individual differences. The intensities

x ∈ [0, 1] of all pixels in an image are augmented according to αxγ +β. The parame-

ters α ∼ U [0.9, 1.1], β ∈ U [−0.1,+0.1] and γ =
log(0.5+2

−0.5
Z)

log(0.5−2
−0.5

Z)
(Z ∼ U [−0.05,+0.05])

are randomly sampled for each image patch and then applied for all pixels of a patch.
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A B C D E

rotation θ π
4

−π
4

−π
8

π
8

-
translation d 200 µm −200 µm 141 µm 141 µm -
contrast α 0.9 1.1 1.05 0.95 1.02
brightness β -0.05 0.05 0.10 -0.10 -
gamma Z - -0.01 -0.02 0.01 0.05
blurring σ - - - 0.25 0.8
sharpening σ - - 0.25 - -

Figure 6.2: Example image patches with different data augmentation operations.
The left column shows three original image patches with a size of approximately
4× 4 mm2. Columns A to E show different augmented versions of the original image
patch in the respective row. Red rectangles show small image patches with higher
magnification to illustrate the effect of data augmentation at the cellular level. Aug-
mentation parameters are shown in the table.

The sampling procedure for the gamma augmentation (xγ) ensures that the operation

is unbiased (i.e., E [xγ] = x), as proposed by Pohlen et al. (2017).

We apply random Gaussian blurring and sharpening. Image patches are blurred

with an isotropic Gaussian kernel Gσ(x) (standard deviation σ ∼ U [0.125, 1.0]), or

sharpened according to x + δ(Gσ(x) − x) (σ ∼ U [0.125, 2.0], δ ∼ U [0.5, 1.5]) with

probability 25%, respectively. Blurring and sharpening mimic sharpness variations

introduced during image acquisition (e.g., focus variations of the microscopic scan-

ners).

Random data augmentation ensures that the exact same image patch is unlikely

to be encountered twice during training. This is important to consider given that the

class balancing procedure described in Section 6.1.2 can result in multiple instances
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of an image patch being included in the training dataset. Even if the same image

patch location is included multiple times within the dataset (or even within a single

training batch), the described data augmentation pipeline is likely to augment each

patch instance in very different ways, making all instances potentially valuable for

the training progress. Pre-training and finetuning use the same data augmentation

pipeline.

6.1.4 Training parameters

This section details the default training parameters for the experiments described

in Section 6.2. If not stated otherwise, these parameters are used for all presented

experiments.

The contrastive pre-training stage comprises training for 150 epochs (i.e., 150

passes through all image patches in the training dataset). The linear classifier in

the finetuning stage is trained for 30 epochs. The remaining training parameters are

identical for pre-training and finetuning if not stated otherwise.

Following Chen et al. (2020) and Khosla et al. (2020), optimization is performed

using the LARS optimizer (Section 2.2.1). The LARS optimizer is combined with

Nesterov momentum (Section 2.2.1, Sutskever et al., 2013) with momentum µ = 0.9

and weight decay ω = 0.0001 for all non-bias parameters. The trust parameter

of LARS is set to η = 0.02 (Equation 2.11). The temperature parameter for the

supervised contrastive loss (Equation 6.67) is set to τ = 0.07.

Contrastive learning methods rely on large batch sizes to provide sufficient negative

pairs for the loss computation (Chen et al., 2020). The batch size is set to b = 2048

image patches per batch. Depending on the experiment, the learning rate is set to

either 0.01 b
128

= 0.16 or 0.005 b
128

= 0.08. The learning rate is kept constant during

training. Expressing the learning rate depending on the batch size is common practice

to adapt it for larger or smaller batch sizes (e.g., due to memory constraints). If not

stated otherwise, brains Btt = {B01, B03, B04, B05, B06, B10, B12} are used for training

and testing, while Bh = B07 is used as transfer brain.

Training is implemented using the ATLaS framework (Section 4.2). The large

image patch size and the large batch size make distributed training across multiple

compute nodes of a HPC system mandatory to meet memory requirements and enable

training in practically feasible time frames (i.e., several hours). The contrastive pre-

training uses 16 compute nodes of JURECA-DC. Finetuning uses 4 compute nodes

of JURECA-DC. Table 6.1 gives an overview of the computational resources used for

training.

Training is distributed using data-parallel DDL (Section 2.2.6). The feature vectors

h are collected from all participating GPUs before computing the contrastive loss.

This synchronization ensures that negative pairs from the entire batch are available
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Table 6.1: Overview of compu-
tational resources used for pre-
training and finetuning in the pro-
posed contrastive learning work-
flow. Runtime estimates specify
the average time it takes to train a
model. Memory, CPU, and GPU
count are computed as the prod-
uct between node count and units
per node. CPU and GPU hours
are computed as the product be-
tween the runtime and the num-
ber of occupied CPUs and GPUs,
respectively.

pre-training finetune

# compute nodes 16 4

# CPU cores 2048 512

memory 8192 GB 2048 GB

# GPUs 64 16

GPU memory 2560 GB 640 GB

# epochs 150 30

data read (epoch) 1059.4 GB 1059.4 GB

data read (total) 155.2 TB 31.0 TB

training time 4 h 4 h

CPU hours 8192 h 2048 h

GPU hours 256 h 64 h

for the loss computation, even if the feature vectors are computed on different GPUs.

Batch normalization normalization statistics (Equations 2.27 and 2.28) are computed

across all GPUs.

Training is performed using automatic mixed precision (AMP). AMP automat-

ically identifies operations that can be safely performed using 16 Bit floating-point

precision (half precision) without risking significant precision loss or incorrect results.

It improves runtime performance and reduces memory requirements.

6.1.5 Network architectures

We investigate different architectures for the encoder fE. The architectures are shown

in Figure 6.3.

The base architecture is based on existing work for cytoarchitecture segmentation

by Spitzer et al. (2017, 2018b). It resembles the encoder of the modified U-Net

by Spitzer et al. (2017), which is equivalent to the HR U-Net (Figure 5.5) described

in Section 5.1.5.

ResNet18, ResNet50, and ResNet101 are based on the ResNet architecture (Sec-

tion 2.2.3) proposed by He et al. (2016a). DenseNet121 is based on the DenseNet

architecture proposed by Huang et al. (2017). We account for the large image patch

size used in our experiments by replacing the initial downsampling block (i.e., the first

two convolutional layers and the pooling layer) of these architectures with the down-

sampling block of the base architecture. Table 6.2 lists the number of parameters

for each of the used architectures.

The projection head fP , which maps the output of the encoder fE to a lower-

dimensional space where the contrastive loss is computed, is implemented by a MLP
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Figure 6.3: Model architectures used for contrastive learning. The base archi-
tecture closely follows the encoder of the modified U-Net architecture that Spitzer
et al. (2017) proposed for cytoarchitecture segmentation. ResNet18, ResNet50,
ResNet101 (He et al., 2016a), and DenseNet121 (Huang et al., 2017) are based on
common architectures for image classification, with a modified downsampling block
to account for the large image patch size. Numbers in the blocks denote the number
of filters in the respective convolutional layer. The encircled “+” and “c” denote
addition and concatenation along the feature dimension, respectively.

with two fully-connected layers and output dimensionality dz = 256. The first fully-

connected layer uses ReLU activation and batch normalization.

The total available GPU memory (2560 GB) is not sufficient to train the large

ResNet101 and DenseNet121 architectures. We therefore use gradient checkpointing

in combination with DDL to train these models (Section 2.2.6).

6.2 Results

We conduct experiments to study the benefit of contrastive learning for cytoarchi-

tecture classification. We use the macro F1-score (i.e., the average of F1-scores per

area, Equation 2.19) to quantify the performance of trained models. F1-scores are

computed on image patches that are not seen during training. Image patches are ex-
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Table 6.2: Number of model parame-
ters and output dimensionality dh of the
used architectures.

model # parameters dh
base 0.66M 128

ResNet18 11.16M 512

ResNet50 23.50M 2048

ResNet101 42.49M 2048

DenseNet121 6.85M 1020

tracted from test sections Ste in known brains Btt or from sections Sh in the transfer

brain Bh. We refer to the respective scores as test scores and transfer scores.

In Section 6.2.1, we establish a baseline model trained with categorical cross-

entropy as comparison for the contrastive learning method. The baseline also allows

investigating aspects of the method that are not specific to contrastive learning (e.g.,

the input image size).

The subsequent experiments aim to answer the following questions:

• How does contrastive learning affect performance in comparison to the baseline

model and using different model architectures? (Sections 6.2.1 and 6.2.2)

• How does a model trained with contrastive learning method transfer to unseen

brains? (Section 6.2.3)

• How well do learned features transfer to unseen brain areas? (Section 6.2.4)

• How does the number of training samples affect classification performance?

(Section 6.2.5)

• How robust are learned features under naturally occurring data variations?

(Section 6.2.6)

• What kind of features does the model learn? (Section 6.2.7)

We also investigate the limitations of self-supervised contrastive learning (i.e., Sim-

CLR) for cytoarchitecture classification in Section 6.2.8.

6.2.1 Baseline experiments with categorical cross-entropy loss

In this section, we establish a baseline model. If not stated otherwise, the training

parameters detailed in Section 6.1.4 are used. Training is performed for 180 epochs

(i.e., the sum of pre-training and finetuning epochs used during contrastive training)

using categorical cross-entropy loss. We train models using the base architecture

and the ResNet50 architecture. In addition, we evaluate how pre-initialization of

the base model with parameters pre-trained using the SSL method by Spitzer et al.

(2018b) affects performance for the given task (Section 2.2.7).
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Figure 6.4: Test F1-scores of baseline models trained with categorical cross-entropy.
Results are reported for the base architecture trained from scratch and pre-initialized
from the SSL task by Spitzer et al. (2018b), and for the ResNet50 architecture. For
each architecture, scores obtained with image patch size of approximately 1000 px
and 2000 px are reported.

We train each model with two different input patch sizes, which allows assessing

how the input size affects performance. Patch sizes are set to 1129 px or 2025 px

for the base architecture and to 1024 px or 2048 px for the ResNet50 architecture.

Image patches have a resolution of 2 µm/px, resulting in an approximate physical

patch size of 2 mm or 4 mm. We train each model with learning rates 0.01 b
128

= 0.16

and 0.005 b
128

= 0.08, and report scores of the respective best performing model2.

Scores obtained on the test sections (Ste) are reported in Figure 6.4. Models trained

with smaller image patches generally obtain lower scores. A plausible explanation

for this observation is that an image patch size of approximately 1000 px (∼ 2 mm)

is not always sufficient to cover the entire cortex, which has a thickness of 2 mm to

4 mm (Von Economo, 1925; Zilles et al., 2012).

There is no considerable performance difference between the base model trained

from scratch and the one pre-initialized from the SSL task (Spitzer et al., 2018b). The

pre-initialized model performs slightly better when using smaller image patches, but

the performance with larger image patches is almost identical. Pre-training using the

SSL task proposed by Spitzer et al. (2018b) thus seems not to improve performance

for the considered large-scale cytoarchitecture classification task.

2Learning rate 0.08 is used for base (scratch, 1129), base (SSL, 1129), base (SSL, 2025), and
ResNet50 (1024). Learning rate 0.16 is used for base (scratch, 2025) and ResNet50 (2048).
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Figure 6.5: F1-scores obtained using models trained with supervised contrastive
learning and different model architectures. Results are reported for test sections Ste

(i.e., unknown sections from brain used during training), and for the transfer brain
Bh = B07. R50-CE denotes the best performing model trained with categorical cross-
entropy (Figure 6.4). All models use an input image patch size of approximately
2000 px at 2 µm/px (∼ 4 mm).

The ResNet50 architecture outperforms the base architecture independently of the

image patch size. The overall best performance is obtained by ResNet50 with large

image patches.

Based on these experiments, we choose the ResNet50 model trained with categor-

ical cross-entropy loss and an image patch size of 2048 px at 2 µm/px as a baseline

for following experiments. We refer to the baseline model as R50-CE (ResNet50 with

categorical cross-entropy). As the results show that larger image patches improve

performance, all following experiments use an image patch size of approximately

2000 px at 2 µm/px.

6.2.2 Architectures for supervised contrastive learning

We investigate the performance of the proposed contrastive learning method (Sec-

tion 2.2.5). We assess the base, ResNet18, ResNet50, ResNet101, and DenseNet121

architectures. The base architecture uses an input size of 2025 px, the other archi-

tectures use an input size of 2048 px. All image patches have a resolution of 2 µm/px.
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We train each model with learning rates 0.01 b
128

= 0.16 and 0.005 b
128

= 0.08, and

report scores of the best performing model3.

Test and transfer F1-scores obtained with different architectures are reported

in Figure 6.5. The baseline results (Section 6.2.1) are represented by R50-CE.

We first focus our analysis on the test scores. The baseline model R50-CE is

outperformed by all models trained with contrastive learning, except for the base

model. When both methods use the ResNet50 architecture, the contrastive learning

model achieves considerably higher test scores than the baseline model.

The ResNet50 model obtains the highest test F1-scores. Despite its significantly

higher number of parameters (Table 6.2) and higher representational capacity, the

ResNet101 model performs slightly worse than ResNet50. The performance increases

with the model size only up to the size of ResNet50. This indicates that classification

performance does not improve beyond a certain saturation point in terms of model

size. It is interesting to note that the DenseNet121 achieves scores comparable to

those of ResNet50 and ResNet101, although it has significantly fewer parameters.

The transfer F1-scores are considerably lower than the test scores, which shows

that classification performance on unseen brains (here B07) is lower than on known

brains. Training with contrastive learning leads to notably increased transfer scores

compared to the baseline model. Transfer scores of the contrastive learning models

are comparable, with only slight improvements from smaller to larger models.

Based on the results, we chose ResNet50 trained with contrastive learning as the

default model for the next experiments. We refer to this model as R50-SCL (ResNet50

with supervised contrastive learning). DenseNet121 obtains comparable results with

significantly fewer parameters than ResNet50, but its densely connected architec-

ture makes it computationally expensive and thus less attractive from a practical

perspective.

In the following sections, we investigate the properties of the method to gain a

better understanding of its behavior in different application scenarios. In particular,

we study the observed reduced classification performance on unseen brains in Sec-

tion 6.2.3.

6.2.3 Classification performance on unseen brains

The results presented in Section 6.2.2 show a significant performance gap between

test and transfer F1-scores. This raises the question whether the observed behavior

is specific to the selected transfer brain (B07), or if the same effect also occurs for

different transfer brains. We aim to answer this question by conducting experiments

with different transfer brains.

3Learning rate 0.08 is used for ResNet50, ResNet101, and DenseNet121. Learning rate 0.16 is
used for base and ResNet18
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Figure 6.6: Test and transfer F1-scores obtained by models trained on different
sets of training brains. Each experiment uses a different transfer brain Bh. The
results show systematically decreased classification performance on the transfer brain
compared to sections from known brains.

We conduct eight experiments, each using one of the eight considered brains (B01,

B03-B07, B10, B12) as transfer brain Bh and the respective remaining brains as train-

ing and test brains Btt. We conduct the experiments using the R50-SCL model (Sec-

tion 6.2.2). Training, test, and transfer samples for each experiment are created using

the workflow described in Section 6.1.2.

Figure 6.6 shows the test and transfer F1-scores for different choices of the transfer

brain. The results show that the previously observed gap between test and transfer

F1-scores is consistently observed independently of the choice of the transfer brain.

All models perform worse on image patches sampled from an unseen brain. Note

that each model is trained on different brains, so test and transfer F1-scores are not

directly comparable among experiments.

The test scores obtained by different models are at a comparable level, indicating

that none of the brains is particularly “more difficult” to classify than others. Based

on this observation, we can assume that a model should be able to classify samples

from a brain if training data for that particular brain is available.

An interesting practical question is how much data is required to enable classifi-

cation of a particular brain, i.e., how many annotations from an unseen brain are

required to achieve satisfactory classification performance. To answer this question,

we conduct experiments that include additional training samples from the transfer

brain in the training process and observe the effect on the classification performance.
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The number of training samples in a brain can be quantified by the number of

annotated areas and by the number of samples per area (Section 6.1.2). However,

computational requirements prohibit an extensive evaluation along both of these

dimensions. For our experiments, we fix the number of samples per area and only

vary the number of annotated areas in the transfer brains. This scenario is practically

relevant, as areas are typically only partially annotated in each brain (Figure 3.6).

We conduct experiments with the default dataset, which considers B07 as transfer

brain. We split the annotated sections of B07 into training and test sections with a

ratio of 80% to 20%. The defined test sections are used to compute F1-scores in the

transfer brain. We vary the number of annotated areas in B07 by including random

subsets with 25%, 50%, and 75% of all areas in the training set. We repeat each

experiment with three random seeds and report the mean performance across runs

to account for the randomness of this step. For reference, we report the performance

of a model trained using all available areas (100%) and of a model that does not use

any data from B07 for training (0%). The latter scenario (i.e., using no training data

from the transfer brain) represents our default training protocol.

We sample 240 training samples per area from B07. We compute this sample

count from the average number of samples per area and brain in the default training

dataset. The samples from B07 are added to the training dataset. This approach

simulates the process of acquiring additional training data in an unseen brain.

Figure 6.7 shows the results. Test scores remain relatively stable. Transfer scores

increase when the proportion of training data from the transfer brain increases. Test

and transfer scores reach comparable values when training data from all (100%) of

the considered areas is provided in the transfer brain.

The results suggest that providing training examples for a small subset of areas

(e.g., less than 50% of the considered areas) from the transfer brain does not improve

classification performance. Providing training examples from the transfer brain for

more than 50% of the considered areas improves the classification performance on

the transfer brain. However, the transfer scores only reach the level of the test scores

when training data for all considered areas is provided in the transfer brain.

An extended discussion of the limited performance on unseen brains is given in

Section 8.2.

6.2.4 Transferability of learned features for unseen areas

The supervised contrastive learning method uses annotations of brain areas (113 in

our experiments) to learn features for cytoarchitecture classification. A practically

relevant question is if the learned features can be used to classify unseen areas, i.e.,

areas that are not used (or not yet known) when the feature extraction model is

trained.
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Figure 6.7: Test and transfer scores with increasing numbers of training patches
sampled from the transfer brain. The percentage indicates the proportion of areas
for which image patches from the transfer brain are included during training. In
the transfer brain, 240 image patches from each considered brain area are selected
for training. Experiments where only a subset of areas from the transfer brain is
considered (25%, 50%, 75%) are repeated three times with different random seeds,
and average scores across repetitions are reported. Performance on the transfer brain
is evaluated on sections from which no training samples are drawn.

This question cannot be answered directly, as “unseen areas” are, by definition,

not known when the feature encoder fE is trained. However, we can simulate the

mechanism of acquiring annotations for unseen areas: In the pre-training stage, we

randomly remove training samples for increasing proportions of brain areas. The

removed areas represent “unknown” areas, which the feature encoder cannot use for

learning. The linear classifier in the finetuning stage is trained using all training ex-

amples (i.e., including samples of previously removed areas), allowing us to estimate

how well the learned features predict unknown brain areas.

For our experiments, we randomly remove 25%, 50%, and 75% of the considered

brain areas from the training set of the feature encoder. We repeat each experiment

with three random seeds to account for the randomness in this step. The performance

is compared to a model trained on all available brain areas (100%), representing our

default training protocol.

Figure 6.8 shows test and transfer F1-scores when different subsets of brain areas

are used for the pre-training. Average scores across runs are reported for repeated

experiments.
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Figure 6.8: Test and transfer F1-scores obtained using different subsets of brain
areas for contrastive pre-training. Contrastive pre-training is performed with the
respective reduced set of brain areas. The following finetuning uses the full set of
brain areas.

Test scores decrease as the proportion of brain areas excluded from pre-training

increases. There is a noteworthy performance loss when reducing the proportion

of brain areas in the training set from 100% to 75% and from 50% to 25%. The

performance loss between 75% and 50% is relatively small. Models trained using

75% or 50% of all brain areas outperform the baseline model R50-CE, which is trained

with categorical cross-entropy and all considered brain areas (see Figure 6.4).

Compared to the test scores, there is only a moderate decrease in the transfer

scores. The number of considered brain areas shows no considerable effect on the

transferability to unseen brains.

The results show that features learned using contrastive learning are useful to

classify unseen brain areas. The observed performance loss is moderate regarding

the number of areas removed from the training set. Models trained with contrastive

learning outperform the baseline model, even when using a significantly reduced

number of training examples.

6.2.5 Classification performance with varying sample counts

We investigate how the number of training samples per cytoarchitectonic area af-

fects the prediction performance. Insights on the relationship between classification

performance and the number of training samples are important for practical applica-
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Figure 6.9: Test and transfer F1-scores obtained with a varying number of training
samples per area. The default dataset is represented by the experiment with 1200
training samples per brain area.

tions. They allow estimating how many annotations should be provided to achieve

satisfactory performance.

The default experimental setting includes ns = 1200 image patches from each

considered brain area (Section 6.1.2), corresponding to a median sampling ratio r̄A
close to 100% (i.e., areas are neither strongly over- nor undersampled). We vary

the sampling rate ns and investigate the performance with 300, 600, 800, 1600, and

2000 samples per area. These sample counts correspond to median sampling ratios

r̄A of 25%, 50%, 75%, 133%, and 166%, respectively. Figure 6.9 shows the test and

transfer F1-scores with varying numbers of training samples per area.

Test scores increase monotonically up to 1200 samples per area. Training with

1600 and 2000 samples per area results in moderately decreased and improved scores

compared to the default setting, respectively. Using more than 1200 samples per

area increases the median sampling ratio to more than 100%, thus introducing more

duplicated training samples. It is plausible that duplicating the training samples

does not lead to improved performance4. This suggests that determining the sample

count per area based on the median sampling ratio is reasonable.

Models trained with 600 or 800 samples per area achieve higher test scores than the

baseline model R50-CE (Figure 6.4), which is trained with categorical cross-entropy

on the full dataset (i.e., 1200 images per area).

4Including (more) duplicated training samples has a similar effect as training for more epochs.
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Figure 6.10: Randomly selected image patches from test sections Ste. Image patches
are used to investigate the robustness of trained models to input variations (Fig-
ure 6.11). The text in the lower left of each patch indicates the brain, the section
number, and the brain area from which the respective patch was extracted. Image
D shows an example of tissue that was damaged during histological preparation.

The transfer scores show minimal variations and remain mostly unaffected by the

change in training samples. This result indicates that providing more examples from

training brains does not improve the classification performance for unseen brains.

6.2.6 Robustness to input variations

Understanding how trained models react to variations in the input image patches

(e.g., rotation, blurring, intensity variations) helps to assess its robustness to natu-

rally occurring variations. It can also help to investigate potential reasons for the

limited applicability of trained models to unseen brains (Section 6.2.3), as transfor-

mations to which a model is invariant can be ruled out as potential problems.

We evaluate the robustness to input variations by measuring how the feature vec-

tors produced by the trained encoder fE of R50-SCL change when certain transfor-

mations are applied to input images. We randomly select six image patches from

the test sections (Figure 6.10). We compute the feature vector hi = fE(Xi) for each

image patch Xi. We then apply transformations with different parameters to each
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image patch, use the encoder to compute corresponding feature vectors, and com-

pute the cosine similarity between the feature vectors of unmodified and transformed

image patches. Transformations are chosen according to the data augmentation pa-

rameters (Section 6.1.3) used during training.

Figure 6.11 visualizes how different image transformations influence learned feature

representations. Each subplot shows the similarity between the feature vectors of

unmodified image patches (marked by red dots) and transformed images with varying

transformation parameters. Similarity scores close to one indicate that the feature

vectors of a transformed image and the respective unmodified image are similar

and consequently that the model is robust against the specific transformation. As

similarity scores alone are difficult to interpret, each subplot shows the maximum and

minimum similarity observed between any of the six considered image patches. They

illustrate which similarity scores can be expected for two distinct image patches,

thereby aiding the interpretation. The similarity matrix for the considered image

patches is shown in the bottom right subplot of Figure 6.11.

The results in Figure 6.11 show that the learned feature representations are robust

against translations of up to 500 mm in any direction, as well as to arbitrary rotations.

The model does not rely on image patches to be placed exactly in the center of the

cortex and does not require image patches to be rotated in a specific way. This result

is practically relevant, as it can be challenging to ensure consistent placement and

rotation of image patches.

Learned representations are also robust against brightness and contrast variations,

which is crucial to address staining differences (Figure 3.1). It indicates that the

model focuses on patterns in the data (e.g., the distribution of cells) rather than on

the specific intensity values.

Strongest variations are observed under blurring and sharpening. In particular,

blurring leads to significantly altered feature vectors as the standard deviation (i.e.,

the size of the Gaussian kernel used for blurring) increases. Strong blurring obstructs

the cellular composition and makes recognition of cytoarchitectonic area difficult.

Thus, the strong effect of blurring could indicate that the model learns to extract

fine-grained cytoarchitectonic patterns.

6.2.7 Feature space cluster analysis

Analyzing the feature space of trained deep neural networks can help to understand

their behavior and gain an impression of how models “see” the data. In this section,

we cluster and visualize feature vectors in the feature space and investigate if clusters

correspond to semantically meaningful concepts. Spitzer et al. (2018a) presented a

similar feature analysis for the SSL task presented in Spitzer et al. (2018b) (Sec-
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Figure 6.11: Similarity of feature vectors under different transformations of the
input images (Figure 6.10). The subplots show the similarity between the feature
vector of unmodified image patches and feature vectors of transformed images with
varying transformation parameters. The similarity between feature vectors is mea-
sured using the cosine similarity. Similarities close to one indicate robustness to the
respective transformation. Blue lines represent results for different image patches.
Red dots mark parameter configurations that do not modify an image patch (i.e.,
the unmodified images). The similarity matrix visualizes the similarity between the
six image patches (Figure 6.10). The minimum and maximum similarity from the
similarity matrix are shown in each plot (patch similarity (min/max)). They illus-
trate the similarity scores than can be expected for two distinct image patches and
aid with the interpretation of similarity scores under data transformation.
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Figure 6.12: Two-dimensional t-SNE (Van der Maaten et al., 2008) embedding of
feature vectors used by R50-SCL. Clusters computed using Ward hierarchical cluster-
ing (Ward Jr, 1963) are color-coded.

tion 2.2.7) and showed that the learned representations encode cytoarchitectonic

features.

We conduct the analysis based on example image patches from the test sections

Ste. We extract 50 image patches per cytoarchitectonic area, resulting in a total

of 5650 images. The encoder of R50-SCL is used to extract feature vectors from

the selected image patches. We use PCA to reduce the dimensionality of the feature

vectors from 2048 to 256, retaining a total explained variance of 93.6%. The resulting

feature vectors are clustered into ten clusters5 using the Ward hierarchical clustering

algorithm (Ward Jr, 1963). We analyze the composition of the clusters, in particular

the cytoarchitectonic areas to which samples in each cluster belong. The 60% most

frequent cytoarchitectonic areas in each cluster are listed in Table 6.3.

In addition to analyzing the cluster composition, visualizing the feature space can

help to better understand its structure. As the high-dimensional feature vectors can-

not be visualized directly, we employ the non-linear embedding method t-SNE (Van

der Maaten et al., 2008) to project the feature vectors into a two-dimensional embed-

ding space. Figure 6.12 visualizes the resulting embeddings with clusters encoded by

different colors.

Figure 6.13 additionally visualizes the composition of each cluster with respect

to the contained cytoarchitectonic areas. The plot shows the mean locations in the

5For visualization purposes, we use a relatively few clusters, but this can be freely adapted for
other analyses.
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Figure 6.13: Composition of feature space clusters with respect to the contained cy-
toarchitectonic areas visualized in a two-dimensional t-SNE (Van der Maaten et al.,
2008) embedding space. Each point corresponds to the mean position of a cytoar-
chitectonic area within the containing clusters. The point size visualizes the relative
share of each area within the respective cluster. Only the 60% most frequent cytoar-
chitectonic areas per cluster are shown.

t-SNE space for the 60% most frequent areas contained in each cluster (i.e., those

shown in Table 6.3). The size of the points in Figure 6.13 visualizes the relative share

of each area within the containing cluster.

The composition and position of the identified clusters align well with the un-

derlying anatomical principles and reveal several semantically meaningful patterns.

Clusters 7 and 9 both contain exclusively image patches from hOc1, the primary

visual cortex. Their position is almost identical and separated from the remaining

data points. A plausible explanation for this observation is that hOc1 shows clear

and strongly expressed cytoarchitectonic features (Figure 2.5). This hypothesis is

supported by the fact that clusters 7 and 9 are much denser than other clusters,

indicating that the features defining hOc1 show little variance.

Cluster 5, which lies closest to clusters 7 and 9 in the t-SNE space, primarily com-

prises areas from the visual system. Thus, the composition and location of the cluster

correspond well with the underlying anatomical concept. Similar effects can be ob-

served in several of the other clusters: Cluster 0 contains areas from the parietal lobe,

which is adjacent to the occipital lobe that contains the visual areas. Within cluster

0, we observe a gradient from areas located anatomically close to the occipital lobe

(e.g., hPO1, hIP7, PGp) to areas that are further away (e.g., 5ma, 7PC). Somatosensory

areas 3a and 3b at the border of cluster 0 are close to primary motor areas 4a and 4p
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Table 6.3: Frequency of cytoarchitectonic areas observed in different feature space
clusters. Only the 60% most frequent cytoarchitectonic areas per cluster are shown.

0 hIP8 (4.1%) pc1 (4.1%) mip (4.1%) hIP5 (4.0%)
5l (4.0%) 5ma (3.9%) 5mb (3.9%) pc2 (3.9%)
hIP6 (3.8%) 3b (3.8%) hIP7 (3.8%) hIP4 (3.8%)
3a (3.8%) eins (3.6%) hPO1 (3.3%) PGp (3.1%)

1 Te10 (4.0%) Te11 (4.0%) OP2 (4.0%) Te22 (4.0%)
Te12 (4.0%) TI1 (3.9%) Te21 (3.9%) Ig1 (3.8%)
Te3 (3.8%) TI2 (3.6%) Te5 (3.6%) OP3 (3.4%)
Te4 (2.9%) OP1 (2.8%) OP4 (2.6%) Ig3 (2.5%)
Op5 (2.5%) Id1 (2.5%)

2 s32 (8.8%) 11p (8.6%) pv24c (8.6%) pd24cd (8.4%)
pd24cv (8.2%) s24b (7.7%) 11a (7.7%) p24a (7.2%)

3 ifs4 (5.5%) ifs2 (5.5%) ifs1 (5.4%) ifj1 (5.2%)
ifs3 (5.2%) Fo4 (4.8%) Op9 (4.8%) Fo7 (4.7%)
Fo6 (4.6%) 45 (4.5%) Fo5 (4.5%) fms1 (3.9%)
mfg1 (3.6%)

4 25p (31.7%) 25a (28.5%)
5 hOc3v (8.1%) FG1 (8.0%) hOc4v (8.0%) hOc4lp (8.0%)

hOc4la (7.8%) FG2 (7.8%) hOc3d (7.5%) fg4 (7.3%)
6 presma (8.7%) sma (8.3%) 6v1 (8.1%) 4a (7.8%)

6d2 (7.8%) 6d3 (7.8%) 6v2 (7.6%) 4p (6.7%)
7 hOc1 (100.0%)
8 aIa (11.3%) Id3 (11.1%) aId3 (10.1%) aId2 (10.1%)

Id2 (8.5%) aId1 (7.7%) Ig2 (7.7%)
9 hOc1 (100.0%)

in cluster 6, which are located spatially close in the brain. Within cluster 6, premo-

tor (e.g., 6d2, 6d3, 6v1, 6v2) and supplementary motor areas (e.g., 6ma, 6mp) form

a sub-cluster. Cluster 1 contains a range of areas from the temporal lobe, cluster 3

contains frontal areas, cluster 8 contains areas from the insula, and clusters 2 and 4

contain areas from the limbic lobe. In many cases, the relative position of clusters

to each other and the average position of areas within the clusters correspond well

with structural brain organization.

6.2.8 Limitations of self-supervised contrastive learning for

cytoarchitectonic mapping

Self-supervised contrastive learning methods (Chen et al., 2020) can learn visual rep-

resentations from large image datasets without relying on supervision through class

labels (Section 2.2.5). In comparison, the supervised contrastive learning approach by
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Khosla et al. (2020) and our adapted supervised contrastive learning approach (Sec-

tion 6.1.1) rely on the availability of class labels to define the similarity between

image samples. Here, we provide the rationale behind the decision to use a super-

vised approach, despite its reliance on labeled training examples.

We investigate the self-supervised SimCLR (Section 2.2.5) for cytoarchitecture

classification. Training is performed as described in Section 6.1.4. The only difference

is the loss function, as we use the self-supervised contrastive loss (Equation 2.53,

Chen et al., 2020) rather than the supervised contrastive loss (Section 6.1.1). The

self-supervised contrastive loss considers views of the same image as similar. We use

the data augmentation operations described in Section 6.1.3 to create two views from

each image patch in a batch.

Self-supervised training converges quickly to low loss values, indicating that the

trained model finds a good solution to the posed pre-training task. However, in the

finetuning stage, the model achieves poor linear evaluation performance, often not

better than a random classifier that assigns labels by chance. Although the model

learns to solve the contrastive pre-training task (i.e., matching views of images), the

features learned in the process are not useful for the downstream task (i.e., classi-

fying cytoarchitectonic areas). We observe a similar behavior using the supervised

contrastive loss (Equation 2.59) by Khosla et al. (2020), which regards two views as

similar if they originate from the same source image or if they share the same class

label.

To understand the cause of the observed behavior, we investigate which images are

considered “similar” by the trained SimCLR model. The first column in Figure 6.14

shows three example image patches from the test sections Ste (A, B, C). For each

of these three reference patches, we identify the four image patches that the model

considers most similar to the respective reference patch, measured by the cosine

similarity between feature vectors.

The comparison suggests that the model defines similarity based on anatomical

landmarks and other macroscopic features:

• Row A: Several small microstructures (e.g., blood vessels), which appear as

white dots in the image.

• Row B: Tissue with a characteristic folding pattern.

• Row C: Relatively straight portion of the cortex without strong folding.

A comprehensive study of more example patches shows similar reoccurring patterns

in many image patches.

The results suggest that the SimCLR models exploit macroscopic rather than mi-

crostructural (i.e., cytoarchitectonic) features. These macroscopic features are suf-
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6 Large-scale cytoarchitectonic mapping with contrastive learning

Figure 6.14: Image patches from the cortex that are considered similar by a model
trained using SimCLR (Chen et al., 2020). Images in the left column represent
reference patches. Each row shows the patches that are most similar to the respective
patch in the first column. The similarity is measured by the cosine similarity between
the feature vectors of each image patch.

ficient to solve the contrastive pre-training task, but not useful for cytoarchitecture

classification.

An extended discussion of the role of self-supervised contrastive learning methods

for cytoarchitecture classification is given in Section 8.2.

6.3 Summary

In this chapter, we introduced a supervised contrastive learning method (Section 6.1.1)

for automated classification of many cytoarchitectonic areas across different brains.

The presented method builds upon earlier work on automated classification of visual

cytoarchitectonic areas (Spitzer et al., 2017, 2018b) and represents an important

improvement towards automated cytoarchitectonic mapping at a whole-brain scale.

Supervised contrastive learning outperforms baseline models trained with categori-

cal cross-entropy (Sections 6.2.1 and 6.2.2), while being more efficient with respect to

training data requirements (Sections 6.2.4 and 6.2.5). Features extracted by trained
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models are robust against natural variations in the data (Section 6.2.6) and encode

anatomically meaningful properties (Section 6.2.7).

We identified the limited applicability of trained models to unseen brains (Sec-

tion 6.2.4) as a major remaining challenge. Finally, our results on self-supervised

contrastive learning (Section 6.2.8) show that approaches that yield good results for

other image classification tasks (Chen et al., 2020) are not necessarily applicable for

cytoarchitecture classification.

A comprehensive discussion of the presented results is given in Section 8.2.
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mapping with graph neural

networks

This chapter introduces a method for automated cytoarchitecture classification using

GNNs, which enables the incorporation of contextual information into the classifi-

cation process. Existing approaches model brain mapping as segmentation (Spitzer

et al., 2017, 2018b, Chapter 5) or classification problem (Chapter 6) on individual

high-resolution image patches. High-resolution image patches allow extraction of

local cytoarchitectonic features, but they do not capture information on 3D brain

topology (i.e., the neighborhood relationship between image patches) or the 3D lo-

cation of image patches in the brain. Integrating such information is often crucial to

disambiguate and correctly classify cytoarchitectonic areas.

Here, we combine cytoarchitectonic features with 3D brain topology by formulating

cytoarchitecture classification as a node classification problem in a graph representing

the cortical brain surface (Section 7.1.1). We apply the contrastive learning method

presented in Chapter 6 to encode cytoarchitectonic features from high-resolution 2D

image patches into compact feature vectors. Created feature vectors are assigned to

nodes of a graph representing the 3D surface of the brain. This allows using GNNs

to integrate local cytoarchitectonic features from high-resolution image patches with

information on 3D brain topology encoded in the graph.

The workflow for constructing attributed graphs of the cortical brain surface is

described in Section 7.1.1. We investigate the performance of the proposed method

with different GNN architectures (Section 7.1.4) and compare it to the contrastive

learning method presented in Chapter 6 (Section 7.2.1). In addition, we examine

how the incorporation of additional neuroanatomical priors into the classification

framework affects the performance of the method (Section 7.2.2).

The method reported in this chapter was published in the article “2D Histol-

ogy Meets 3D Topology: Cytoarchitectonic Brain Mapping with Graph Neural Net-

works” (Schiffer et al., 2021c).
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7.1 Methods

7.1.1 Brain mapping as node classification problem

We model brain mapping as a node classification task in graphs that approximately

model the 3D topology of the brain surface. We compute such graphs by creat-

ing approximate midsurface meshes through the cortex. A midsurface mesh is a

representation of the cortical surface passing through the midpoints between pial

boundary and gray-white matter boundary, which is computed from an approximate

3D reconstruction of a brain.

The created mesh is interpreted as a graph consisting of nodes and connecting

edges, which we refer to as cortical midsurface graph. Using information from the 3D

reconstruction step, each node in the graph can be associated with a location in a

histological brain section, enabling the assignment of information from the 2D image

domain (e.g., cytoarchitectonic features) to graph nodes. The attributed midsurface

graphs encode 3D brain topology and 2D image features in a computationally efficient

data structure.

The following sections describe the workflow for constructing cortical midsurface

graphs from histological brain sections. It comprises the following steps:

• Approximate 3D reconstruction from histological brain sections (Section 7.1.1).

• Cortical midsurface graph extraction (Section 7.1.1).

• Identification of 3D graph nodes with 2D image locations (Section 7.1.1).

• Feature assignment to graph nodes (Section 7.1.1).

Approximate 3D brain reconstruction

We approximately recover the 3D structure of the brains to create midsurface graphs

through the cortex. We use a rigid alignment of consecutive brain sections (Sec-

tion 3.2) to assemble consistent 3D volumes from individual brain sections. The

rigid transformations enable us to approximately align each section to its respective

adjacent sections. For each brain, we define a base section in the center of the sec-

tion stack. All other sections of a brain are then aligned to the base section through

recursive application of the rigid transformations (Section 3.2). Limiting the align-

ment to rigid transformations (i.e., translation and rotation, but no scaling) avoids

strong deformations and distorted morphology of the resulting reconstructed brain

volumes (e.g., the “banana effect”, Malandain et al., 2004). Figure 7.1 shows the

result of the 3D reconstruction by the example of B03.
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Figure 7.1: Approximate 3D reconstruction of B03 created from aligned histologi-
cal brain sections. The coronal plane represents the original sectioning plane. The
horizontal and sagittal planes are virtual cross-sections through the reconstructed vol-
ume. The cross-sections show that the three-dimensional structure is approximately
recovered by the reconstruction. The lower right pane shows a volume rendering of
the reconstructed volume. Letters indicate anatomical directions (L/R: left/right,
P/A: posterior/anterior, I/S: inferior/superior). Resolution: 300 µm/vx (isotropic).

Cortical midsurface graph computation

Computing a cortical midsurface graph requires a cortex segmentation, i.e., a mask

indicating which voxels belong to the cortex. We create a cortex segmentation by

applying the described reconstruction pipeline to the tissue segmentation described

in Section 3.2. This reconstruction step results in one 3D segmentation volume per

brain, where each voxel is labeled as background (i.e., non-tissue), white matter, or

gray matter (Figure 7.2, A).

Reconstruction and post-processing of the segmentation volumes are performed

at an isotropic resolution of 300 µm/vx. Segmentation masks are downscaled using

nearest neighbor interpolation before reconstruction. The resolution is determined

by the availability of digitized histological sections, as typically every 15th brain

section is digitized (Section 3.2). Each sections has a thickness of 20 µm, resulting in

a resolution of 300 µm in the posterior-anterior direction. The resolution is sufficient

to accurately identify the cortex in the reconstructed segmentation volumes.

We clean created segmentation volumes to remove errors resulting from histolog-

ical artifacts, incorrect tissue segmentations, or imprecise alignment of consecutive

sections. Tissue defects are detected by smoothing the volume with a median fil-
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ter (size 3) along the posterior-anterior direction and computing the difference to

the input volume. Large connected components in the difference volume represent

large tissue defects, which are replaced by the result of the median filter. Correcting

large defects ensures a consistent morphology of the reconstructed cortex by “filling”

gaps. We then remove small parts of detached tissue by removing connected tissue

components smaller than 1% of the largest tissue component (Figure 7.1, B).

The tissue segmentation typically assigns subcortical gray matter and the cerebel-

lum to the cortex (Figure 7.2, B), which is expected because the tissue segmentation

is based on pixel intensities (Section 3.2). Since our analysis of cytoarchitectonic

areas is restricted to the cortex, excluding such incorrectly classified voxels improves

the quality of the created meshes. We use the software 3DSlicer (Kikinis et al., 2014)

to create masks of subcortical gray matter and the cerebellum. The software allows

drawing masks on a few cross-sections of a volume, which are then interpolated to

a full volumetric mask. This step requires approximately 30 min per brain. The

created masks are used to remove all gray matter voxels that do not belong to the

cortex (Figure 7.2, C).

In the next step, the cortical midsurface is computed from each prepared 3D seg-

mentation volume. The cortical midsurface is defined as the surface in the center

between pial boundary and gray-white matter boundary. Following the approach

presented in Leprince et al. (2015), we compute a Laplacian field in the cortex using

the software BrainVisa (Rivière et al., 2009). The Laplacian field approximates the

cortical depth (Figure 7.2, D). It takes a value of 0.0 at the pial boundary and lin-

early increases to 1.0 towards the gray-white matter boundary. We then apply the

marching cubes algorithm (Lewiner et al., 2003) to extract the 0.5-isosurface from

the Laplacian field. The extracted isosurface represents the midsurface through the

cortex.

We clean each midsurface mesh by removing small isolated connected components,

splitting brain hemispheres into separate meshes, fixing topological errors in the

mesh, and computing a Poisson surface reconstruction (Kazhdan et al., 2006) to

remove artifacts resulting from inaccuracies in the tissue segmentation or the recon-

struction step (Figure 7.1). We then apply isotropic explicit remeshing (Surazhsky et

al., 2003) to ensure that all triangles in a mesh have an edge length of approximately

300 µm. Remeshing reduces the number of triangles and ensures that connections be-

tween vertices in the mesh represent comparable distances. We use 300 µm as target

edge distance because it corresponds to the expected distance between two adjacent

sections (thickness: 20 µm) in a brain where every 15th section is scanned (Sec-

tion 3.2). Mesh processing is performed using the software MeshLab (Cignoni et al.,

2008).

We visually inspect the created meshes to assess their quality (Figure 7.3). Meshes

approximately recover the morphology of the brains and encode the neighborhood re-
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Figure 7.2: Cortical midsurface computation for a coronal cross-section through the
reconstructed segmentation volume of B03. All steps are performed in 3D, but only
a single cross-section is shown here for illustration purposes. A: Tissue segmentation
before cleaning (black: background, white: white matter, gray: gray matter). B: Tis-
sue segmentation after cleaning. C: Tissue segmentation after removal of subcortical
gray matter and the cerebellum. D: Laplacian field computed in the cortex, which
can be interpreted as the approximate cortical depth.

lationship between locations in the brain. The linear reconstruction workflow cannot

account for strongly deformed or damaged tissue, resulting in some smaller artifacts

like holes or “noses” that are visible in the meshes (Figure 7.3). Observed artifacts

represent defects or deformations that are present in the histological sections and

thus do not negatively affect the GNN method.

The meshes do not need to be anatomically highly plausible, as the relative relation-

ship between mesh vertices is more important than their precise absolute positioning.

They are thus not comparable to high-resolution 3D brain reconstructions like the

BigBrain model (Amunts et al., 2013), which aim to precisely recover a brain’s orig-

inal morphology. Using only approximate brain reconstructions enables us to use

simpler reconstruction workflows that are easily applicable in practice.
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Figure 7.3: Midsurface through the cortex of B03 from different perspectives. The
figure shows meshes of both brain hemispheres after cleaning, which involves remov-
ing isolated connected components, fixing topological errors, and Poisson surface
reconstruction (Kazhdan et al., 2006). The closeup in the bottom right pane shows
that the mesh is composed of triangles with an approximately identical edge length of
300 µm, which is ensured by isotropic explicit remeshing (Surazhsky et al., 2003). Let-
ters indicate anatomical directions (L/R: left/right, P/A: posterior/anterior, I/S: in-
ferior/superior). Visualization created using ParaView (Ahrens et al., 2005).

We interpret the created meshes as graphs. Mesh vertices are interpreted as graph

nodes, and the edges of triangles are interpreted as edges in the graphs. We denote

the graph representing the cortical midsurface of a brain B as GB = (VB, EB) with

nodes VB and edges EB
1.

Identifying 3D graph nodes with 2D image locations

We aim to assign features defined in the image domain (i.e., brain section images) to

corresponding nodes in the created midsurface graphs. This step allows combining

2D image features with 3D brain topology. We identify the corresponding location

in one of the brain section images for each node in a midsurface graph.

For each brain section, we determine a 2D plane that cuts through the midsurface

graph at the location of the respective brain section (Figure 7.4, left). The location

of the plane is obtained from the 3D reconstruction pipeline (Section 7.1.1). We

compute the intersection between the plane and the midsurface graph. This operation

1Technically, each brain results in one graph per hemisphere. However, for the sake of brevity,
we omit the dependence on the hemisphere from the notation and model each brain as a single
graph with multiple connected components.
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Figure 7.4: Correspondence between nodes in the midsurface graph of B03 (left)
and points in two histological brain sections (right). Colored lines indicate the loca-
tion of the two shown brain sections within the midsurface graph of the cortex. The
midsurface graph is virtually cut at the indicated positions to obtain corresponding
points in the sections shown on the right. Letters indicate anatomical directions
(L/R: left/right, P/A: posterior/anterior, I/S: inferior/superior). Visualization cre-
ated using ParaView (Ahrens et al., 2005).

can be interpreted as “virtually cutting” the reconstructed brain. The point set

resulting from the intersection is transformed back onto the given brain section by

inverting the 3D reconstruction workflow. The transformation step leaves us with

points defined on the brain section image. Each of the points can then be uniquely

identified with a node in the midsurface graph (Figure 7.4, right). This relationship is

used to compute features in the image domain and assign them to the corresponding

location in the midsurface graph.

The transformed points are not always located along the midline through the cor-

tex. These distortions result from smoothing and cleaning operations applied during

the reconstruction pipeline, which ensure the consistency of the created meshes. We

correct the positions of the points in a refinement step, which “pushes” points to-

wards the midline of the cortex. For each brain section, we compute the midline of

the cortex from the morphological skeleton of the cortex segmentation (Section 3.2).

We then compute a Laplacian field (Leprince et al., 2015) between the midline and

the pial boundary or gray-white matter boundary using successive over-relaxation.

We use a numerical solver for ordinary differential equations to integrate each point

through the gradient field of the Laplacian field. This step gradually moves each

point towards the midline of the cortex. Compared to simply moving each point
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Figure 7.5: Example node features assigned to the midsurface graph of the left
hemisphere of B01. Top left: Distribution of test sections on the midsurface graph.
Colors indicate the locations of sections that are used for testing. Top right: An-
notations of cytoarchitectonic areas. Annotations are encoded by different colors.
The availability of annotations in a sparse set of sections results in a visible stripe
pattern. Bottom left: Probabilistic maps of the primary motor area 4a located
on the precentral gyrus. Blue color indicates a high occurrence probability. Bot-

tom right: Canonical spatial coordinates defined in the MNI-Colin27 space. The
example shows the posterior-anterior component, which increases from low values
(dark) in the posterior part of the brain to high values (bright) in the anterior part.
Visualization created using ParaView (Ahrens et al., 2005).

to the respective closest point on the midline, this more elaborate approach better

preserves the spatial distribution of the points along the cortex and leads to better

results. We ensure that the correspondence between points in the brain sections and

the respective nodes in the midsurface graph is preserved by limiting the maximal

movement of each point to 2 mm (approximately half of the cortical thickness).

Despite this refinement step, some points are still located outside the tissue, for

example, when the tissue was damaged during histological processing. We identify

such points by extracting an image patch centered at each point from the tissue

segmentation mask (Section 3.2) and determine the share of tissue within the patch.

Points with a tissue share below 50% are considered outside the tissue. These points

are excluded from further processing (e.g., training).
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Assigning image features to graph nodes

The known correspondence between locations in the midsurface graph and the image

domain allows assigning features from the image domain to nodes of the midsurface

graphs and vice versa (Figure 7.5). We consider the following types of image features:

Deep cytoarchitectonic features Deep cytoarchitectonic features are computed

from high-resolution image patches using a deep neural network. We use the R50-SCL

model presented in Section 6.2.2, which maps square image patches with size 2048 px

at 2 µm/px to 2048-dimensional feature vectors. We showed in Chapter 6 that the

model learns to extract semantically meaningful cytoarchitectonic features, making

it well suited to provide node features for midsurface graphs. Deep cytoarchitectonic

node features for brain B are denoted as F cy
VB

=
{

x
cy
vi

∈ R
2048 | vi ∈ VB

}

.

Canonical coordinates The topology of the midsurface graph provides information

about the relationship between locations in the brain. However, the topology only

provides information on the relative relationship between nodes: A connection be-

tween two nodes indicates that the nodes are spatially close to each other2, but it

does not provide information about the absolute location of the nodes within the

brain. Access to the absolute position (e.g., whether a node is located in the front

or back of the brain) within the brain provides valuable additional information. In

existing GLI-based brain mapping workflows (Section 2.1.4), such information is used

by estimating the approximate location of a brain region based on the section number

or known anatomical landmarks.

We explicitly add coordinate vectors as node features to the midsurface, which

provide the approximate location of each node with respect to a common canonical

reference space. Coordinate vectors must refer to a common reference space to make

them comparable across brains and ensure that two nodes from different brains with

identical coordinate vectors can be identified as approximately corresponding loca-

tions in the reference space. We use the MNI-Colin27 space as a reference space.

As described in Section 3.2, we first project a coordinate grid from MNI-Colin27

space onto the histological sections. We then sample the projected coordinate grid

at the locations corresponding to nodes of the midsurface graphs and assign the 3D

coordinate vectors as node features. Canonical coordinates for nodes of brain B are

denoted as F co
VB

=
{

x
co
vi
∈ [−1,+1]3 | vi ∈ VB

}

.

Probabilistic maps Probabilistic maps (Section 2.1.3) encode the probability of a

particular brain area being present at a specific location in the brain (Amunts et al.,

2The isotropic explicit remeshing step described in Section 7.1.1 ensures that two connected nodes
have a distance of approximately 300 µm.
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2020). Spitzer et al. (2017) showed that incorporating probabilistic maps in form

of a probabilistic atlas prior can improve classification performance (Section 2.2.7).

We adopt this idea and provide probabilistic maps as additional node features in the

midsurface graphs.

The probabilistic atlas prior of Spitzer et al. (2017) only includes probabilistic

maps of areas that are considered for classification. However, other probabilistic

maps can also provide valuable information, for example, by indicating that another

area is likely to occur at a specific location. Thus, we use all available probabilistic

maps to create node features.

We use the workflow described in Section 3.2 to project 152 probabilistic maps

from Julich-Brain onto the histological brain sections. We then assign a 152-dimen-

sional vector representing the discrete probability distribution over 152 brain areas

to each node in the midsurface graph. Probabilistic node features for brain B are

denoted as Fpm
VB

=
{

x
pm
vi

∈ [0, 1]152 | vi ∈ VB

}

.

Annotations of cytoarchitectonic areas Annotations of cytoarchitectonic areas

(Section 3.3) can be interpreted as another kind of node feature. They are defined in

the image domain (e.g., in the form of contours or pixel-level segmentations), so they

can be assigned to the corresponding nodes in a midsurface graph. Compared to the

other mentioned features, which can be sampled at arbitrary locations in the cortex,

annotations of brain areas can only be sampled where they are annotated. Thus, only

a sparse set of nodes in a midsurface graph gets assigned a vector encoding to which

cytoarchitectonic area a respective node belongs, while the brain area of all other

nodes is considered unknown. Annotated nodes are used for supervised training of

GNNs. One-hot encoded annotations for cytoarchitectonic areas of nodes for brain

B are denoted as Fy

VB

=
{

yvi
∈ {0, 1}113 | vi ∈ VB

}

.

7.1.2 Dataset preparation

The dataset preparation follows the protocol used for the contrastive learning de-

scribed in Section 6.1.2. We consider 113 cytoarchitectonic areas (Table 3.2) and

eight brains B = {B01, B03, B04, B05, B06, B07, B10, B12} (Table 3.1). Brain B20 is

not included, but the method is also compatible with B20 or comparable datasets.

Midsurface graphs for each brain are created using the workflow described in Sec-

tion 7.1.1, resulting in a total of 16 graphs (one graph per hemisphere, i.e., two

graphs per brain). On average, each graph consists of 760 000 nodes and 4.5 million

edges, with an average node degree of 6. We assign deep cytoarchitectonic features

(F cy
VB

), canonical coordinates (F co
VB

), probabilistic maps (Fpm
VB

), and annotations of

cytoarchitectonic areas (Fy

VB

) to the nodes of each graph (Section 7.1.1).
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Following the approach described in Section 6.1.2, we define brains for training and

testing Btt = B \{Bh} with sections Stt, and a transfer brain Bh = B07 with sections

Sh. We split sections Stt into sections for training Str and testing Ste. Only graph

nodes corresponding to training sections are used for training. Nodes that correspond

to test sections are used to evaluate classification performance for unknown sections

of known brains (Section 7.1.1). Nodes from the transfer brain are used to evaluate

classification performance in unknown brains. We use the same split into training,

test, and transfer sections as in Chapter 6, and F1-scores for performance evaluation

(i.e., test and transfer F1-scores) are computed at the same locations as in Chapter 6.

This makes the results from this chapter comparable to those from Chapter 6 and

ensures that none of the data that was used to train the feature extraction model

R50-SCL is here used for testing.

7.1.3 Training parameters

We train each GNN for 100 epochs using categorical cross-entropy as loss function.

One epoch corresponds to one pass through all labeled training nodes. Training

is performed using the LARS optimizer (Section 2.2.1), Nesterov momentum (Sec-

tion 2.2.1, Sutskever et al., 2013) with µ = 0.9, and weight decay of ω = 0.0001 for

all non-bias parameters. The trust parameter of LARS is set to η = 0.02 (Equa-

tion 2.11).

We use a batch size of b = 2048 nodes per batch. For GNNs, the batch size

refers to the number of nodes for which an output (e.g., a classification) is com-

puted (Equation 2.44). However, the number of nodes that is processed per batch

can be considerably larger, as a GNN also considers the neighborhood of each node

in the batch (Figure 7.6). The learning rate is set to 0.001 b
256

= 0.008 and is kept

constant during training.

Training is implemented using ATLaS (Section 4.2). GNN training is implemented

using PyTorch-Geometric (Fey et al., 2019). The training of one GNN uses two

compute nodes of the JURECA-DC HPC system with a total of eight GPUs. Training

is distributed across GPUs using data-parallel DDL. Depending on the depth and

complexity of the used GNN layers, training takes between 20 min and 2 h. We use

AMP to reduce the memory footprint during training.

7.1.4 Network architectures

We train GNNs to classify the cytoarchitectonic area of each node in a cortical midsur-

face graph, resulting in a node classification task (Section 2.2.2). Nodes with available

annotations of cytoarchitectonic areas (Section 7.1.1, Fy

V ) are used to supervise the

training with categorical cross-entropy loss. We investigate GNN architectures com-
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7 Topology-aware cytoarchitectonic mapping with graph neural networks

Figure 7.6: Average number of nodes used by GNNs to compute output features for
a given node. The deeper the model, the more nodes are taken into account, i.e., the
more contextual information is available. Stochastic neighborhood sampling reduces
the number of nodes taken into account for feature computation. Models without
GNN layers (e.g., MLPs) use no neighborhood information.

posed of SAGE and GAT layers. In addition, we examine the performance of MLPs.

The comparison to MLPs enables us to assess how the availability of neighborhood

information affects performance.

We apply dropout with probability 0.5 to cytoarchitectonic features (F cy
V ) and

probabilistic maps (Fpm
V ), and add Gaussian white noise with standard deviation 0.1

to the canonical coordinates (F co
V ). All input features are passed through separate

fully-connected layers with 512 features, batch normalization, and ReLU activation.

If a model uses multiple input features, the results of this projection step are then

concatenated. The initial projection step ensures that the model can map the differ-

ent feature types into a space where concatenation is reasonable.

Depending on the specific model, we then apply a varying number of SAGE, GAT,

or fully-connected layers with 512 features, interleaved with batch normalization,

ReLU activation, and dropout with probability 0.25. SAGE layers use a neighbor-

hood sampling rate of three (half of the average node degree). GAT layers use

dropout with probability 0.5 on the attention coefficients (Equation 2.46). A final

linear classification layers maps extracted features to the considered classes (i.e.,

cytoarchitectonic areas).

The depth and neighborhood sampling strategy of a GNN determine the num-

ber of neighborhood nodes that are taken into account for feature computation and

classification. Figure 7.6 illustrates how many nodes from the graph are on average
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taken into account when computing the output of a given node in one of the cortical

midsurface graphs. For example, a GNN with 3 layers and a neighborhood sampling

rate of 3 uses 18 neighborhood nodes to create predictions for one node. A model

with 7 layers and the same sampling rate takes 93 neighboring nodes into account

(on average).

7.2 Results

We study the performance of GNNs for cytoarchitecture classification. In line with

Chapter 6, we assess the performance by computing the macro F1-score (Equa-

tion 2.19) on test and transfer sections that are not included during training. We

use the same split into training, test, and transfer sections as for the experiments in

Chapter 6, which ensures that results from Chapter 6 are comparable to the results

presented in this chapter.

7.2.1 Comparison of graph neural network architectures

We compare the performance of different GNN architectures (Section 7.1.4). We

use GNNs composed of SAGE and GAT layers. In addition, we compare the per-

formance of GNNs to the performance of MLPs with identical depth, and to the

linear evaluation performance of R50-SCL from Section 6.2.2. For each layer type,

we consider models with three, five, and seven layers. Models investigated in this

section only use cytoarchitectonic input features (Section 7.1.1, F cy
VB

). This makes

the results comparable to the results presented in Chapter 6, which also rely solely

on cytoarchitectonic features extracted from image patches.

Figure 7.7 shows the test F1-scores of the GNN and MLP models. The linear

evaluation performance of R50-SCL (Section 6.2.2) is shown for comparison (zero

layers).

The results show that GNNs obtain considerably improved classification perfor-

mance. All GNNs outperform the respective MLP with the same number of layers.

MLPs do not obtain improved performance compared to the linear model. This result

suggests that simply improving the depth of a model does not improve classification

performance. Instead, the improved performance of GNNs can be attributed to the

inclusion of 3D topological information provided by the graph structure.

GAT models obtain slightly higher scores than SAGE models. The performance

of SAGE models increases moderately with the number of layers. The performance

of GAT models is stable and mostly independent from depth. In general, the per-

formance of all considered GNN models is relatively similar. No single model stands

out as superior to other GNNs.
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Figure 7.7: Test F1-scores for different GNN architectures in comparison to a linear
classifier (zero layers) and MLPs. Model are composed of multiple fully-connected
layers or GNN layers, followed by a linear layer that maps extracted features to
classes. The linear evaluation performance of R50-SCL (Section 6.2.2) is given for
comparison.

The results show that GNNs obtain considerably improved performance over mod-

els that classify each node individually. The investigated GNNs clearly outperform

linear models and MLPs with equivalent depth. None of the GNNs models can be

identified as being superior to the other GNNs. This suggests that the different GNN

models are equally adequate to incorporate 3D context into the classification task.

In the following experiments, we use the GAT model with three layers as our default

model, denoted as GAT3-CY (GAT architecture with 3 layers and cytoarchitectonic

features).

7.2.2 Influence of node features

The results in Section 7.2.1 demonstrate that GNNs achieve better classification

performance than MLP models by combining deep cytoarchitectonic features (F cy
V )

with 3D topological information encoded in the midsurface graphs. In this section,

we investigate how the inclusion of additional node features in the form of canonical

coordinates (F co
V ) and probabilistic maps (Fpm

V ) affects performance. Based on the

findings from Section 7.2.1, we use GAT3-CY as basis for these experiments.

We conduct experiments using all possible combinations of input features and

investigate which features contribute most to performance. In addition, we train a

MLP with three layers for each combination of input features. The comparison to
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Figure 7.8: Test F1-scores obtained by three-layer MLPs and GNNs with GAT
architecture and different combinations of node features. Node features include deep
cytoarchitectonic features (CY, F cy

V ), probabilistic maps (PM, Fpm
V ), and canonical

spatial coordinates (CO, F co
V ).

MLPs allows us to assess how the additional features alone (i.e., without topological

information from the graph) affect the performance.

Figure 7.8 shows test F1-scores obtained using different combinations of node fea-

tures. When combined with cytoarchitecture features, the inclusion of canonical

spatial coordinates or probabilistic maps improves the test scores. The absolute per-

formance gain resulting from the incorporation of additional node features is com-

parable between MLPs and GNNs. However, since GNNs achieve higher baseline

scores, the overall best performance is obtained by the GNNs.

The inclusion of both canonical spatial coordinates and probabilistic maps im-

proves performance. Incorporating probabilistic maps leads to slightly higher abso-

lute performance. The highest scores are obtained when combining deep cytoarchi-

tectonic features, probabilistic maps, and canonical spatial coordinates. We denote

this model as GAT3-CY/PM/CO (GAT architecture with 3 layers, cytoarchitectonic

features, probabilistic maps, and canonical spatial coordinates).

The performance of models without access to cytoarchitectonic node features is

considerably lower. Among these models, the best performance is obtained when

using both probabilistic maps and canonical spatial coordinates. The significant

performance gap between MLPs and GNNs using only canonical spatial coordinates

indicates that the aggregation of features across multiple nodes plays an important

role in the efficient use of the provided node features.
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Figure 7.9: Test and transfer F1-scores obtained by a three-layer GNN with GAT
architecture with different combinations of node features. Node features include deep
cytoarchitectonic features (CY, F cy

V ), probabilistic maps (PM, Fpm
V ), and canonical

spatial coordinates (CO, F co
V ).

Figure 7.9 shows test and transfer F1-scores of three-layer GAT models using dif-

ferent combinations of node features. As in previous comparisons of test and transfer

performance, transfer scores turn out to be significantly lower than test scores, indi-

cating suboptimal transferability to unseen brains. Incorporating canonical spatial

coordinates or probabilistic maps in addition to cytoarchitectonic features consider-

ably increases the transfer scores. Interestingly, comparable transfer scores can be

observed when using no cytoarchitectonic features at all. This result is in line with

the previous observation (Section 6.2.3) that learned cytoarchitectonic features are

not yet well transferable to unseen brains.

In addition to the above quantitative analysis, we examine the prediction results

qualitatively. We visualize the predictions of GAT3-CY/PM/CO (the best performing

model) on the cortical midsurface graphs of the left hemispheres from brains B01

and B04 in Figure 7.10. Both hemispheres are shown from different perspectives, and

predictions are shown side-by-side with available annotations for comparison.

The visual comparison shows that the predictions largely align with the available

annotations. The shape and position of the predicted cytoarchitectonic areas are

generally anatomically plausible. In most cases, the predicted areas are continuous

and smooth, which is desired for a microstructural brain parcellation.

The results show that incorporating additional node features containing seman-

tically meaningful information about the brain improves classification performance

considerably. Providing additional node information to the GNN models results in
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Figure 7.10: Predictions for the left hemispheres of brains B01 and B04 created
by GAT3-CY/PM/CO. Results are shown from different perspectives. For each brain,
annotations and model predictions are shown side-by-side. Colors encode different
brain areas. The visible stripe pattern in the annotations results from the sparse
availability of annotations.

the best test classification performance observed so far. The results also confirm pre-

vious observations regarding the limited transferability of learned cytoarchitectonic

features of new brains.

7.3 Summary

In this chapter, we introduced a workflow (Section 7.1.1) to reformulate brain map-

ping as a node classification task in cortical midsurface graphs and address it us-

ing GNNs. The results of our experiments demonstrate that GNNs achieve better

performance than models that perform classification based on individual 2D image

patches (Section 7.2.1). The comparison of GNNs with MLPs of equal depth sug-

gests that the observed performance gains can be attributed to the incorporation of

neighborhood information through the use of GNNs.
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7 Topology-aware cytoarchitectonic mapping with graph neural networks

Results presented in Section 7.2.2 indicate that probabilistic maps and canoni-

cal spatial coordinates complement cytoarchitectonic features and further improve

the classification performance. Models that combine cytoarchitectonic features from

high-resolution 2D image patches with 3D brain topology, probabilistic atlas infor-

mation, and canonical spatial coordinates achieve the highest classification scores

observed so far.

Sections 8.3 and 8.4 provide comprehensive discussions of the presented results and

the role of 3D context for cytoarchitecture classification.
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This work addresses deep learning methods for large-scale automated cytoarchitec-

tonic mapping in digitized histological human brain sections. It builds upon previous

work (Spitzer et al., 2017, 2018b; Spitzer, 2020) that demonstrated the feasibility of

deep learning for classifying cytoarchitectonic areas from the visual system (Sec-

tion 2.2.7). The work presented in this thesis extends these foundational contribu-

tions in two ways:

The method described in Chapter 5 focuses on the practical application of deep

learning for supporting cytoarchitectonic mapping by providing an interactive tool

for cytoarchitectonic mapping in large series of brain sections. The method integrates

well with existing brain mapping workflows and thus allows cytoarchitectonic map-

ping at the whole-brain level for the first time. The creation of high-resolution 3D

cytoarchitectonic maps (Section 5.2.6) is an important example for an analysis work-

flow enabled by the method. The developed web application ATLaSUI makes the

method easily applicable without requiring advanced technical knowledge. Although

it requires some user interaction and is not fully automated, it efficiently addresses

existing practical challenges. The method thus represents an important contribution

to brain mapping.

The methods described in Chapters 6 and 7 address the classification of many cy-

toarchitectonic areas in different brains. The contrastive learning method presented

in Chapter 6 learns to extract cytoarchitectonic features from high-resolution image

patches, which provide the basis for cytoarchitecture classification. The GNN method

described in Chapter 7 integrates the learned features in a graph-based framework,

which efficiently combines cytoarchitectonic features from high-resolution 2D image

patches with 3D brain topology. Figure 8.1 summarize the performance of models

developed in Chapters 6 and 7. The scores illustrate the continuous improvement in

classification performance achieved by the presented methods. They demonstrate the

benefit of larger model architectures (base-CE vs. R50-CE), supervised contrastive

learning (R50-CE vs. R50-SCL), topological information (R50-SCL vs. GAT3-CY), and

prior neuroanatomical knowledge (GAT3-CY vs. GAT3-CY/PM/CO). The comprehen-

sive evaluations in Chapter 6 further provide valuable insights on label efficiency,

transferability, robustness, and semantics of learned features.
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Figure 8.1: Test and transfer F1-scores obtained using different deep learning mod-
els developed in Chapters 6 and 7. base-CE and R50-CE are trained using categorical
cross-entropy and use base and ResNet50 architectures, respectively (Section 6.2.1).
R50-SCL is trained using supervised contrastive learning and uses the ResNet50 ar-
chitecture. GAT3-CY is a three-layer GAT GNN model using deep cytoarchitectonic
features learned by R50-SCL (Section 7.2.1). GAT3-CY/PM/CO is a three-layer GAT
GNN model using deep cytoarchitectonic features, probabilistic maps, and canonical
spatial coordinates (Section 7.2.2).

Sections 8.1 to 8.6 provide a comprehensive discussion of the presented results

and their contribution to the development of automated brain mapping methods.

Section 8.7 discusses promising directions for future research.

8.1 Accelerating brain mapping with deep learning

Chapter 5 introduces a deep learning method to interactively support and accelerate

cytoarchitectonic mapping in large series of brain sections. The method subdivides

the overarching classification task into a series of smaller, easier-to-solve subtasks that

are addressed by specialized deep neural networks (LSMs). It differs from previously

proposed methods for automated cytoarchitecture classification (Spitzer et al., 2017,

2018b) that attempt to train a general model for classifying areas in different brains.

Their locality enables LSMs to exploit the limited variance of individual cytoar-

chitectonic areas in local brain regions and base predictions on morphological fea-

tures (e.g., folding patterns) that are not generally representative for cytoarchitec-

ture (Zilles et al., 2012). The distance between annotated training sections can be
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adjusted to account for areas with particularly simple or complex properties. This

makes the method particularly well suited for interactive application, as it allows

users to iteratively provide annotations until a satisfactory segmentation quality is

achieved. We demonstrate that reducing the annotation interval improves the seg-

mentation performance for areas hOc3v and hOc5. Similarly, areas with prominent

cytoarchitectonic properties (e.g., hOc1) could be segmented using fewer annotations.

It is also possible to adapt the annotation intervals for specific regions within an area

to improve the local segmentation performance or reduce the annotation effort. This

flexibility and the intuitive relationship between annotation effort and segmentation

quality contribute to the practical applicability of the method.

The method achieves comparable results for different brains with variable staining,

which shows that the method provides sufficient robustness against typical staining

variations. No hyperparameter adjustments are required to apply the method to

different cytoarchitectonic areas, local regions, and brains. This is an important

prerequisite for practical applications, since it does not require users to understand

technical aspects of deep learning parameters (e.g., learning rate, training iterations).

The web application ATLaSUI allows using the method without requiring advanced

technical knowledge. ATLaSUI has been successfully used in multiple projects con-

ducted at the INM-1, where it considerably reduced the time effort for mapping.

ATLaSUI made complete mapping of cytoarchitectonic areas practically feasible for

the first time. To illustrate this, we consider the example of area hOc1, which spans

2461 sections in the BigBrain model. Mapping an area on a single section using

the GLI-based workflow (Section 2.1.4) takes between 30 and 60 min. Consequently,

mapping hOc1 across its full extent would take approximately 150 workdays (assum-

ing 8 h per day). In comparison, mapping hOc1 with the proposed workflow relies

only on 18 annotated sections, which can be acquired in about one workday. Includ-

ing iterative refinement of results and quality control, mapping a large area like hOc1

can be achieved in 1-2 weeks.

We created 3D maps of areas hOc1, hOc2, hOc3v, and hOc5. They represent the

first high-resolution models of human cytoarchitectonic areas created from full series

of histological sections at cellular resolution. These maps represent an important

contribution for studying brain structure at microscopic resolution. The created maps

are precise and anatomically consistent. In combination with existing cortical layer

maps (Wagstyl et al., 2020) and segmentations of neuronal cells (Upschulte et al.,

2022), they enable the systematic analysis of layer- and area-specific organizational

principles (Von Economo, 1925).

Although primarily designed for segmentation of cortical areas, the method has

already been successfully applied for segmenting several subcortical nuclei, including

the six-layered lateral geniculate body (Brandstetter et al., 2021), the medial genic-

ulate body (Kiwitz et al., 2022), the nucleus ventralis intermedius (Devakuruparan
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et al., 2021), and several areas in the amygdala. For these studies, neuroanatomists

successfully used the developed ATLaSUI without notable support.

The use of multiple specialized LSMs rather than a single general-purpose model

provides the basis for the flexibility, improved performance, and practical applica-

bility of the method. However, the decision to use multiple models makes the de-

velopment and evaluation of the method more challenging. Each model is trained

on a different dataset, shows different training behavior, and has to be evaluated on

different evaluation data. Changes made to the method (e.g., the evaluation of a

new model architecture or a different learning rate) cannot be assessed by training

and evaluating a single model, but need to be evaluated for many different mod-

els (i.e., different brain areas, local regions, and brains). This process can lead to

contradictory results (e.g., when a change improves performance for one area but

decreases performance for another area). Thus, the development process is more

time-consuming, resource-intensive, and complicated compared to approaches that

rely on a single model.

8.2 Contrastive learning for large-scale brain mapping

Chapter 6 introduces a contrastive learning method for large-scale cytoarchitecture

classification. While the LSM approach uses multiple specialized models to support

the mapping of individual areas, this method uses a single general-purpose model

that aims to automate the mapping of different areas in multiple brains. Previous

work also proposed to use a general-purpose model to classify multiple areas (Spitzer

et al., 2017, 2018b). However, these works focus on a few areas of the visual system,

while we consider many areas from different parts of the brain.

The proposed method is inspired by the success of self-supervised contrastive learn-

ing methods for image classification (Hadsell et al., 2006; Chen et al., 2020; Khosla

et al., 2020). However, our experiments (Section 6.2.8) suggest that SimCLR (Chen

et al., 2020) and other SSL approaches (Caron et al., 2020; Grill et al., 2020; He et al.,

2020; Jain et al., 2020; Khosla et al., 2020; Chen et al., 2021) that base their training

objective on data augmentation are not suitable for cytoarchitecture classification.

An underlying assumption of these approaches is that data augmentation preserves

relevant features for the downstream task, while varying irrelevant features. While

the data augmentation operations we can reasonably use for the given task and

data (Section 6.1.3) vary many features that are not relevant for the downstream

task (e.g., intensity values or image orientation), some irrelevant features remain

unaffected. For example, geometrical and intensity transformations do not change

the presence of anatomical landmarks (e.g., blood vessels), the local morphology

of the tissue (e.g., folding patterns), or the presence of histological artifacts (e.g.,
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damaged tissue). Consequently, identifying differently augmented views of images

reduces to identifying transformation-invariant macroscopic features.

This issue could potentially be addressed by reducing the size of image patches,

which would prevent the model from recognizing certain macroscopic features (e.g.,

the folding patterns). However, our experiments (Section 6.2.1) and considerations

on cortical thickness (Von Economo, 1925; Zilles et al., 2012) suggest that a suffi-

ciently large image size is necessary to recognize cytoarchitectonic areas. It cannot

be expected that the task can be solved with considerably smaller image size.

Another possible approach would be to apply data augmentation operations that

vary the appearance or presence of irrelevant macroscopic features. Examples of

such transformations include random elastic deformations or masking of specific land-

marks. However, it is difficult to ensure that such transformations would not at the

same time change relevant cytoarchitectonic features. For example, elastic deforma-

tion might alter the relative thickness of cortical layers or the shape of neurons, which

are indicators for cytoarchitectonic areas (Section 2.1.4). Given the above considera-

tions, it is questionable if data augmentation-based approaches like SimCLR can be

feasibly applied for cytoarchitecture classification.

Our experiments on self-supervised contrastive learning show that approaches that

perform well for natural image classification (e.g., photos) are not necessarily effective

for cytoarchitecture classification. However, insights gained from these experiments

motivated the development of the proposed supervised contrastive learning approach.

The proposed contrastive learning method is supervised, as it relies on the avail-

ability of image patches with corresponding annotations. Thus, the requirement for

labeled training data does not differ from other commonly used training methods

(e.g., categorical cross-entropy). However, in our experiments, models trained with

supervised contrastive learning significantly outperform models trained with cate-

gorical cross-entropy using the same architecture and amount of training data. The

results further indicate that supervised contrastive learning makes more efficient use

of available training data (Section 6.2.5). This makes it well suited for cytoarchi-

tecture classification, where creating additional training data is costly. Furthermore,

our results suggest that learned features allow classifying areas that are not included

during pre-training, making them potentially useful for discovering or classifying new

cytoarchitectonic area (Section 6.2.4).

In contrast to categorical cross-entropy, which considers each training sample in

isolation (Equation 2.14), the contrastive loss (Equation 6.67) compares multiple

samples and learns to disentangle them. Thus, the contrastive loss could promote

the recognition of subtle cytoarchitectonic features that distinguish different areas.

Descriptions of cytoarchitectonic areas in the literature are also often phrased com-

paratively, i.e., by describing differences to adjacent areas. For example, Rottschy et

al. (2007) characterize the cytoarchitecture of area hOc3v by describing that cortical
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layer II is “distinctly less cell dense in area hOc3d than in hOc3v” and that “layer

IV is more cell sparse and has a better defined border to layer V”. This “descrip-

tion by comparison” is conceptually similar to principles underlying the supervised

contrastive loss.

The feature space analysis (Section 6.2.7) shows that learned features form clus-

ters with anatomically plausible compositions and arrangement in the analyzed t-

SNE space. Feature vectors encoding similar areas are located close to each other,

and the global structure of the feature space corresponds well with the anatomical

organization of the brain.

It should be noted that the training process does not explicitly promote this struc-

ture: The contrastive loss optimizes the similarity between feature vectors corre-

sponding to the same area. However, there is no mechanism ensuring that different

but structurally similar areas are also mapped to similar feature representations.

The observed correspondence between learned features and cytoarchitectonic organi-

zational principles thus indicates an inherent ability to learn meaningful cytoarchitec-

tonic feature representations. Analyzing the feature space helps to better understand

a model’s decision process. It further shows that performing clustering within the

feature space might be a reasonable method to identify new cytoarchitectonic areas,

which would provide a more data-driven way of describing human cytoarchitecture.

Applying trained models to “unseen” brains (i.e., brains that are not included

during training) remains a challenge. In our experiments, the effect is observed

systematically and independently of the selected transfer brain, indicating that it

does not originate from characteristics of a specific brain. This raises the question

why trained models show systematically decreased performance for unseen brain

samples.

The training uses many different samples from different brains with varying ap-

pearances. Data augmentation introduces additional variations into the data. The

conducted robustness analysis (Section 6.2.6) indicates that models are robust against

naturally occurring variations in the data (e.g., tissue staining) and variations result-

ing from the patch extraction procedure (e.g., translation, rotation). This suggests

that the transferability issues likely stem from other sources of variations (e.g., sig-

nificantly different cytoarchitectonic patterns).

Our experiments suggest that models require brain-specific and area-specific train-

ing samples to reliably identify an area in a given brain. In particular, models do

not seem to derive general brain-specific features from few provided training samples.

Simply speaking, a model needs to “see” how a certain brain area “looks like” in a

specific brain to reliably recognize and classify it in that brain.

Identifying and addressing the factors underlying the transferability limitations is

a crucial step towards automated brain mapping. In its current state, the presented

method is applicable to classify areas in brains for which some training data is avail-
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able. However, the method cannot reliably classify areas in entirely new brains, which

is an important requirement for automated cytoarchitecture analysis at large scale.

The characteristics of the underlying brain-specific differences between cytoar-

chitectonic areas are still unknown. There is no direct way to identify what kind

of features the models use, which is a known shortcoming of deep learning meth-

ods (Roscher et al., 2020). Learning more about the features that differentiate dif-

ferent brains thus represents an important direction for future research, both from a

methodological and neuroscientific perspective.

8.3 Providing 3D context for automated brain

mapping

Methods for automated cytoarchitectonic mapping with deep learning, including

those presented in this thesis (Chapters 5 and 6) and by Spitzer et al. (2017, 2018b),

model brain mapping as classification or segmentation problem on image patches

extracted from the cortex. Image patches allow handling of large images and are

thus often used when processing entire images is technically infeasible (Ronneberger

et al., 2015).

A drawback of patch-wise approaches is their lack of context information, which

can be crucial for determining the correct cytoarchitectonic area of an image patch.

This becomes evident from the approach neuroanatomists use for brain mapping:

Typically, they first roughly determine the location of an area by integrating knowl-

edge about the approximate location of a given section in the brain (e.g., based on the

section number or prominent anatomical landmarks) with a mental model of brain

anatomy. This step helps to rule out implausible hypotheses without investigating

cytoarchitectonic details. For example, a brain section from the frontal part of the

brain will never contain visual areas, as these are located in the occipital lobe at the

back of the brain.

After pre-localization, the tissue is examined at a higher magnification to ana-

lyze cytoarchitectonic properties. Here, neuroanatomists use context information to

classify a particular part of the cortex, while patch-wise classification approach are

restricted to use relatively small portions of the cortex. This context includes in-

formation from adjacent locations in the cortex within the same section or adjacent

sections. Including contextual information helps to disambiguate cytoarchitectonic

patterns and enables correct classification of cytoarchitectonic areas. In some cases,

it further enables classification of obliquely cut tissue (Section 2.1.4) or regions with

histological artifacts.

Classification of cytoarchitectonic areas based on isolated image patches is an ill-

posed problem. Mimicking existing brain mapping workflows to integrate contextual

159



8 Discussion

information with local texture analysis is a promising approach to improve classifi-

cation performance. However, while seemingly simple, integrating such contextual

information is technically challenging.

Contextual information within a brain section could be provided by increasing the

size of image patches. This approach is computationally expensive, as the memory

and computational requirements grow quadratically with the image patch size. In

addition, our results on the limitations of SSL for area classification (Section 6.2.8)

suggest that models tend to exploit irrelevant anatomical landmarks, if those land-

marks help to solve the task. Models trained on large image patches could also

exploit prominent macroscopic landmarks (e.g., cortical folding patterns) to mini-

mize the training loss without learning relevant cytoarchitectonic features.

The incorporation of contextual information across adjacent brain sections in-

troduces additional challenges. Extracting a three-dimensional cube (i.e., the three-

dimensional equivalent of an image patch) from the brain could provide the necessary

context. Deep neural network for segmenting 3D datasets (e.g., MRI or electron mi-

croscopy data) use such cubes (Chen et al., 2016a; Milletari et al., 2016), but the lack

of accurate 3D brain reconstructions prevents the application of these approaches to

histological brain sections. The reconstruction of a brain into a precise 3D model is

an elaborate process and cannot yet be routinely performed for many brains (Amunts

et al., 2013).

Even when precise 3D reconstruction workflows become available, the technical

requirements to process adequately sized cubes are immense. Image patches need to

cover the entire depth of the cortex (∼ 4 mm, e.g., ∼ 2000 px at 2 µm/px) to enable

cytoarchitecture classification (Section 6.2.2). A cube of size 2048 in each dimension

would require at least 8 GB of memory. We can use the computational requirements

in Table 6.11 to estimate that processing a single such cube would require 2.5 TB of

GPU memory. In light of these estimations, it remains doubtful if the processing of

three-dimensional data in this form will become technically feasible in the foreseeable

future.

8.4 Graph neural networks for brain mapping

Chapter 7 introduces a method for cytoarchitecture classification with GNNs. The

method mimics existing brain mapping workflows to integrate contextual information

into the classification process. Thus, it addresses the shortcomings of patch-wise

image classification discussed in Section 8.3. The formulation as node classification

12560GB GPU memory for 2048 image patches with size 2048 × 2048 px, i.e., approximately
1.25GB per image patch.
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8.5 The role of HPC for automated brain mapping

task in an attributed graph makes the method computationally efficient compared

to other approaches (Section 8.3).

Formulating brain mapping as node classification task in a graph relies on 3D

brain reconstructions. It is important to note that creating a precise 3D brain recon-

struction is a complicated process (Amunts et al., 2013) and cannot yet be routinely

performed. Thus, the workflow only assumes a coarse and relatively easy-to-compute

3D reconstruction.

The method enables computationally efficient integration of 3D information from

attributed cortical midsurface graphs into the classification process. Its ability to clas-

sify a location based on neighborhood information (e.g., from adjacent brain sections)

and contextual features that complement cytoarchitectonic features (i.e., canonical

spatial coordinates, probabilistic atlas information) resembles existing brain map-

ping workflows. The combination of topological and contextual information through

GNNs achieves the best classification performance so far.

The transferability of trained models to unseen brains remains limited. The in-

corporation of contextual information in addition to cytoarchitectonic features mit-

igates the effect to some degree, but there remains a considerable performance gap

between known and unknown brains. This confirms the limited transferability of

learned cytoarchitectonic features to unknown brains. Addressing this shortcoming

of the feature learning method (Chapter 6) can be expected to improve the transfer

performance of the GNN method.

In the current implementation, node features of input graphs are precomputed and

stored on disk for processing. The resulting graphs require relatively little memory

(i.e., in the order of a few gigabytes per graph), which makes the method compu-

tationally efficient. However, this approach prevents the application of data aug-

mentation to image patches used for cytoarchitectonic feature computation, since all

features are precomputed prior to GNN training. Data augmentation would increase

the variance in the training data and could potentially improve performance. Com-

puting cytoarchitectonic features from image patches during GNN training would

allow data augmentation, at the cost of increased computational requirements for

reading and processing image patches.

8.5 The role of HPC for automated brain mapping

The size of the used image data and the task’s characteristics make automated cy-

toarchitectonic mapping computationally demanding. Cytoarchitectonic areas are

defined by a combination of fine-grained cellular properties (e.g., the size and shape

of individual cells) and coarser organizational patterns (e.g., cortical layers). Au-

tomated cytoarchitecture classification thus relies on large, high-resolution image

161



8 Discussion

patches, which provide necessary details and a large field of view. This property sets

it apart from many other image classification tasks (Russakovsky et al., 2015) and

significantly increases the computational requirements.

The encountered computational challenges differ depending on the method: The

method introduced in Chapter 5 requires training of hundreds of different models, as

each model specializes on a specific brain area in a local region of a single brain. HPC

enables parallel training of these many models, which makes it practically feasible.

The supervised contrastive learning method (Chapter 6) relies on fewer models,

but uses large training datasets and model architectures. This makes the method

computationally expensive (Table 6.1). Despite the availability of HPC systems,

several challenges (Section 4.3.3) had to be addressed to meet the requirements of

the method.

In comparison, the GNN-based classification approach (Chapter 7) is computation-

ally less demanding, as it relies on precomputed node features. Here, HPC enables

the parallel evaluation of multiple models or parameter configurations and thus accel-

erates the development workflow. As discussed in Section 8.4, the proposed approach

could be extended to compute cytoarchitectonic features during GNN training rather

than precomputing them, which would allow data augmentation.

Addressing the computational requirements of the developed methods represents

an important aspect of this project (Chapter 4). The availability of HPC systems had

a huge impact on this work and played a crucial role in enabling most of the research

presented in this thesis. Insights gained from overcoming encountered challenges will

contribute to the development of future methods. In the future, it can be expected

that HPC will become even more important for structural human brain analysis.

8.6 Lessons learned for automated brain mapping

The experience gained from this project allows us to formulate several best practices

for automated brain mapping with deep learning.

Incorporating domain knowledge into the design of a method is often crucial to

apply it successfully. This insight has been a main driver for the development of the

presented methods:

• The limited local variability of cytoarchitectonic areas motivated the develop-

ment of LSMs.

• Literature on cytoarchitecture often describes brain areas by pointing out dif-

ferences to adjacent areas rather than explicitly describing the structure. This

inspired the use of contrastive learning, which learns to distinguish brain areas

by comparison.
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• Existing brain mapping workflows motivated the incorporation of topological

and contextual information for cytoarchitecture classification.

• Knowledge of typical cortical thickness and relevant cytoarchitectonic features

helped to determine appropriate sizes and resolutions of image patches.

We think that appropriate incorporation of domain knowledge is often more benefi-

cial than using sophisticated general-purpose methods (e.g., powerful deep learning

architectures).

The high computational requirements of the presented methods increase the im-

portance of economic and sustainable resources usage (e.g., time and computational

resources). The presented methods require significant computational resources (Ta-

ble 6.1) and are thus associated with considerable economic and ecological costs. It is

important to be aware of these costs and use available resources in a well-considered

way. For this, we follow several best practices:

• We use optimized software implementations (Chapter 4) to efficiently use avail-

able resources (e.g., memory, compute time, file storage). We pay particular

attention to computational requirements when adapting existing methods or

developing new methods.

• We estimate the potential benefits (e.g., performance gains or new insights) of

relevant experiments and prioritize experiments with higher potential impact.

In our experience, investigating major methodological changes (e.g., changing

from image-based to GNN-based classification) should typically have priority

over finetuning potentially less impactful hyperparameters.

• Along these lines, we prefer methods that use few hyperparameters and are

robust against hyperparameters changes. For example, Khosla et al. (2020)

demonstrate that supervised contrastive learning is more robust to hyperpa-

rameter changes than training with categorical cross-entropy. In Chapters 6

and 7, we further use a constant learning rate rather than complex learning

rate adaptation schemes (e.g.., stepwise or linear learning rate decay), which

reduces the number of hyperparameters.

We think that the described insights will be useful for future work on automated

brain mapping and related tasks.

8.7 Directions for future research

The results and insights gained from this thesis provide the foundation for future

work towards automated cytoarchitectonic mapping at a large scale. The following
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describes directions for future work that we believe could contribute most towards

this goal.

We described in Chapters 6 and 7 that trained models do not transfer well to unseen

brains. Although models are trained with data augmentation (Section 6.1.3) that

mimics naturally occurring variations in the data, the results suggest the existence

of additional differences between brains. Research on improved transferability might

thus not only improve performance, but could also deepen our understanding of inter-

individual variability in the human brain (Amunts et al., 2000). Methods from the

field of explainable AI (Hendricks et al., 2016; Barredo Arrieta et al., 2020; Roscher et

al., 2020) could prove beneficial to better understand how trained models “see” data

from different brains. Domain adaptation methods (Tzeng et al., 2014; Gadermayr

et al., 2018), which implicitly or explicitly model the shift between related data

distributions (e.g., image data from different brains), might also be able to address

the observed transferability issues.

We believe that unsupervised or self-supervised feature learning methods repre-

sent a promising future research direction, as they can learn semantically meaningful

visual features without relying on labeled training data. Although the results pre-

sented in Section 6.2.8 indicate that SSL methods based on data augmentation (e.g.,

SimCLR) are not suitable for brain mapping, it might be possible to develop ad-

equate methods to learn meaningful cytoarchitectonic features without relying on

annotations.

Such features have several interesting potential applications: Including microscopic

image data from newly acquired brains into the feature learning process could ad-

dress the transferability issues. In addition, the ability to learn cytoarchitectonic

features without annotations could enable data-driven examinations of microstruc-

tural human brain organization. A data-driven analysis workflow could encompass

the identification of completely new cytoarchitectonic areas through clustering, the

analysis of structural gradients, or the correlation of multi-modal measurements with

microstructurally defined features. The idea of characterizing microstructure using

a set of localized features was already described in 1925 by Constantin Freiherr von

Economo in his work on human cytoarchitecture. Von Economo (1925, p. 186) dis-

cusses an ideal brain map, consisting of well-defined microstructural features (e.g.,

local cell density or laminar composition) rather than distinct cytoarchitectonic ar-

eas defined by subjective human observers. Unsupervised feature learning has the

potential to provide such features and could therefore provide the basis for a new

generation of cytoarchitectonic human brain mapping.

Although pre-training with the self-supervised distance and location prediction

task proposed by Spitzer et al. (2018b) (Section 2.2.7) does not improve classifica-

tion performance in our experiments (Section 6.2.1), gaining deeper insights into its

strengths and limitations might provide a starting point for developing better self-
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supervised training objectives. For example, combining this task with approximate

3D reconstructions of multiple brains (Section 7.1.1) might enable self-supervised

learning of brain-agnostic features.

The methods presented in this work do not rely on precise 3D brain reconstruc-

tions. However, 3D brain reconstructions at cellular resolution are currently under

development and have the potential to address some challenges of image-based cy-

toarchitecture classification (e.g., obliquely cut tissue, Section 4.3.3). Future work

should investigate how the availability of precise 3D reconstructed brain volumes

could benefit cytoarchitecture classification.

It would be beneficial to quantify the uncertainty of predictions made by trained

deep learning models. Uncertainty estimation could point out for which kind of data

(e.g., from a specific brain, from specific regions, from specific cytoarchitectonic ar-

eas) a model is not confident about its predictions. Such information could prove

valuable for method development and the interpretation of results. Examining the

applicability of uncertainty estimation (Gal et al., 2016; Kendall et al., 2017) repre-

sents an interesting future research direction.

In the cytoarchitecture classification task, we generally have to expect that 1) the

data is incompletely annotated (Section 3.3) and that 2) the set of classes is in-

complete (i.e., there are cytoarchitectonic areas that are not yet known). These

challenges are inherent to the task and should be addressed in future work. Incom-

pletely annotated data (1) could be efficiently incorporated into the training process.

For example, the SMILE method (Petit et al., 2018) proposes a heuristic to identify

ambiguous annotations and prevent the propagation of incorrect or noisy information

during training. This approach could potentially also be applied for cytoarchitecture

classification. Approaches that have been successfully used in open world detec-

tion (Joseph et al., 2021; Mancini et al., 2021) might be used to address the problem

of incomplete class sets (2), as they can identify entities from unknown classes (i.e.,

images from unknown cytoarchitectonic areas) and incrementally learn to identify

such entities when annotations become available.

8.8 Conclusion

This work represents a step towards automated cytoarchitectonic mapping at a large

scale. It presents the first interactive method for accelerated cytoarchitectonic map-

ping, which enables the analysis of many histological brain sections and the creation

of high-resolution 3D cytoarchitectonic maps. Deep neural networks trained with

supervised contrastive learning extract meaningful cytoarchitectonic features and

accurately predict many cytoarchitectonic areas. The incorporation of topological

and contextual information using GNNs mimics existing mapping workflows and im-
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proves the classification performance. The results and insights obtained in this work

demonstrate the huge potential of deep learning for automated cytoarchitectonic

brain mapping and provide valuable foundations for future work.
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A Contributions to publications

presented in this thesis

The results and methods presented in this thesis were already partially published in

several peer-reviewed publications listed below. For all papers, I, Christian Schiffer,

am the first author and was responsible for designing and implementing the described

methods, evaluating results, and writing manuscripts. The method for interactive

mapping of individual brain areas described in Chapter 5 was conceptualized in

discussion with Dr. Hannah Spitzer and Prof. Timo Dickscheid. Publications that

were used in this thesis are briefly described below.

Convolutional Neural Networks for Cytoarchitectonic Brain Mapping at Large

Scale (Schiffer et al., 2021f)

Authors: Christian Schiffer, Hannah Spitzer, Kai Kiwitz, Nina Unger, Konrad

Wagstyl, Alan C. Evans, Stefan Harmeling, Katrin Amunts, Timo Dickscheid

This paper describes the method for interactive mapping of individual brain areas

described in Chapter 5, which exploits the limited local variability of individual brain

areas to achieve improved classification performance. The model architectures (Sec-

tion 5.1.5), training procedure (Section 5.1.2), and conducted experiments (Sec-

tion 5.2) largely follow Schiffer et al. (2021f). The results presented in this thesis

were obtained with slightly different hyperparameters (e.g., different learning rates

and data augmentation), resulting in different scores. Schiffer et al. (2021f) used

an older version of the ATLaS software based on TensorFlow (Abadi et al., 2016),

while the experiments presented in this thesis use a newer and more efficient version

based on PyTorch (Paszke et al., 2019). The 3D cytoarchitectonic maps described in

Section 5.2.6 use the segmentation results from Schiffer et al. (2021f), so the estima-

tions of surface area and volume of the reconstructed areas match those presented

in Schiffer et al. (2021f).
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Contrastive Representation Learning For Whole Brain Cytoarchitectonic

Mapping In Histological Human Brain Sections (Schiffer et al., 2021a)

Authors: Christian Schiffer, Katrin Amunts, Stefan Harmeling, Timo Dickscheid

This paper introduces the supervised contrastive learning method described in Chap-

ter 6. This thesis adopts the supervised contrastive learning method (Section 6.1.1)

using larger deep learning models and performs more extensive evaluation of the

method. In particular, this thesis establishes a stronger baseline based on cross-

entropy (Section 6.2.1), evaluates more and larger model architectures (Section 6.2.2),

extensively evaluates the performance of the method in different application scenar-

ios (Sections 6.2.3 to 6.2.5), examines learned features (Sections 6.2.6 and 6.2.7), and

investigates limitations of unsupervised contrastive learning for the given task (Sec-

tion 6.2.8). The feature analysis conducted in Section 6.2.7 is similar to that per-

formed in Schiffer et al. (2021a), but provides a more in-depth discussion of learned

features.

2D Histology Meets 3D Topology: Cytoarchitectonic Brain Mapping with

Graph Neural Networks (Schiffer et al., 2021c)

Authors: Christian Schiffer, Stefan Harmeling, Katrin Amunts, Timo Dickscheid

This paper describes the GNN-based classification approach described in Chapter 7.

The paper introduces a framework to reformulate cytoarchitectonic brain mapping

as a graph node classification task and investigates the influence of different GNN

architectures and additional contextual features. This thesis adopts the graph con-

struction workflow, with some adjustments to improve the quality of created graphs

(e.g., exclusion of subcortical gray matter and cleaning using Poisson reconstruction).

Experiments in Chapter 7 use cytoarchitectonic features from Chapter 6, which are

more expressive than the ones used in Schiffer et al. (2021c). Consequently, the per-

formance obtained using different architectures and node features differs from Schiffer

et al. (2021c).
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Related collaborative publications

The following publications are related to the work presented in this thesis, but did

not directly contribute to the here presented methods or results. My contributions

are specified for each publication.

Deep Learning Networks Reflect Cytoarchitectonic Features Used in Brain

Mapping (Kiwitz et al., 2020)

Authors: Kai Kiwitz, Christian Schiffer, Hannah Spitzer, Timo Dickscheid, Katrin

Amunts

This paper analyzes features learned by LSMs (Chapter 5) and studies their resem-

blance to features used during cytoarchitectonic brain mapping. For this, the paper

systematically examines feature maps of two LSMs, which were trained to identify

areas hOc1 and hOc2 in local regions of the BigBrain dataset. The results confirm

that trained models capture relevant cytoarchitectonic features, which provides an

important foundation for the practical use of the method. For this paper, I trained

the neural network models and computed the feature maps. Furthermore, I im-

plemented and performed the similarity computation between features maps, which

enabled identification of similar feature maps. For this, I developed a web application

for interactive investigation of feature maps.

Deep Learning-Supported Cytoarchitectonic Mapping of the Human Lateral

Geniculate Body in the BigBrain (Brandstetter et al., 2021)

Authors: Andrea Brandstetter, Najoua Bolakhrif, Christian Schiffer, Timo Dickscheid,

Hartmut Mohlberg, Katrin Amunts

This paper presents 3D cytoarchitectonic maps of the lateral geniculate body (LGB)

in the BigBrain dataset, a subcortical nucleus in the thalamus with a distinct six-

layered structure. The presented cytoarchitectonic maps were created using the

method described in Chapter 5. The six layers of the LGB were annotated and

automatically segmented using the ATLaSUI application described in Section 5.2.7.

The 3D cytoarchitectonic maps were then computed using the reconstruction work-

flow described in Section 5.2.6. For this paper, I provided technical support for the

use of ATLaSUI, performed the 3D reconstruction, computed the reported surface

areas and volumes for each layer of the LGB, and prepared the dataset for pub-

lication. The maps were released as part of the multilevel human brain atlas in

EBRAINS (www.ebrains.eu, Schiffer et al., 2021b).

Kiwitz et al. (2022) presents 3D cytoarchitectonic maps of the medial geniculate

body (MGB), which are also released in EBRAINS (Schiffer et al., 2021d). My
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contributions to this publication are comparable to Brandstetter et al. (2021). Other

publications that use the method from Chapter 5 to compute high-resolution 3D

cytoarchitectonic maps of different areas (e.g., subdivisions of the Amygdala) are

currently in preparation.

Learning to Predict Cutting Angles from Histological Human Brain

Sections (Schiffer et al., 2021e)

Authors: Christian Schiffer, Luisa Schuhmacher, Katrin Amunts, Timo Dickscheid

This paper proposes a deep learning method for automatic prediction of local cut-

ting angles in the cortex based on histological brain sections. It uses a modified

U-Net and is trained on data from the BigBrain model, where local cutting angles

can be estimated based on the available 3D reconstruction. As regions with oblique

cutting angles cannot be reliably classified (Section 2.1.4), identifying such regions

has the potential to inform and benefit the methods presented in this thesis. Ex-

periments presented in the paper were conducted by Luisa Schuhmacher during an

internship under my supervision. I supervised the work, computed the required train-

ing data, provided advice on technical and methodological questions, and wrote the

manuscript.
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B The role of reproducible science in

this work

The reproducibility of experiments and results is a crucial aspect of scientific work.

“Traditional” natural sciences have established best practices (e.g., using lab pro-

tocols) to ensure reproducibility of obtained results. However, comparably young

research disciplines like computer and data science have long suffered from a lack

of reproducibility. Method descriptions, experiments, and results were rarely ac-

companied by the used software, source code, or datasets that would enable other

researchers to reproduce and validate presented results. This lack of reproducibility

made it difficult to verify and fully trust many published results. In recent years, the

scientific community has fortunately started to attribute much-needed attention to

this issue. More and more conferences and journals have started to ask authors for

statements on the availability of source code and datasets, often in the form of stan-

dardized reproducibility surveys. The results of these surveys can be incorporated

into the review process to encourage reproducible research.

In line with these ongoing developments in the scientific community, the experi-

ments and results presented in this work were obtained with reproducibility in mind.

In the following, we describe workflows and best practices that we found to improve

the reproducibility of our work, some of which might prove useful for others as well.

We use open-source software for our experiments, with few necessary exceptions

(e.g., NCCL). Most notably, all research is conducted on Linux-based operating sys-

tems (e.g., Arch Linux, Ubuntu, or CentOS), most software and scripts are imple-

mented using Python or bash, and the majority of used software libraries (see also

Section 4.2) and other programs (e.g., ParaView (Ahrens et al., 2005) or mesh-

lab (Cignoni et al., 2008)) are open source as well. We found that using open-source

software generally had a positive impact on the development process. The ability to

read the source code of the involved software components often enabled us to identify

the source of encountered errors or issues. In some cases, it also allowed us to cus-

tomize existing software, for example, to fix unreported errors or extend the software’s

functionality. The active community around large actively maintained open-source

projects (e.g., PyTorch, Paszke et al., 2019) made troubleshooting easier. In line with

the design philosophy of the Unix ecosystem, we found that using well-established

tools with clearly defined functionality improved development speed, interoperability,
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extensibility, reproducibility, and robustness of developed workflows. In addition, the

deliberate decision to avoid non-free software wherever possible lowers the financial

requirements for reproducing experiments, making them more accessible.

One of the most important software tools we use for developing software, tracking

experiments, and writing this thesis is the version control system git1. We found

that the continuous use of version control for all projects (even for small scripts or

side projects) improved development speed and reproducibility in many ways. For

example, git provides a concise (and, if necessary, machine-readable) history of all

changes made to the tracked files. If used appropriately (e.g., with small commits and

descriptive commit messages), this history enables specific rollbacks to earlier versions

to reproduce previous results or allows to find out how certain files in the repository

were created. In combination with a central repository (e.g., GitHub or GitLab),

git enables collaboration, sharing, or transfer to other computers. We stored our

code in a central GitLab instance of the FZJ, which made it easy to share code with

colleagues or to publish code that enables the reproduction of scientific publications.

In addition, we used git to transfer code between computers used for development

(e.g., a personal workstation or a laptop) and systems on which computations are

performed (e.g., HPC systems). Compared to the alternative method of manually

copying all or specific files between used machines, we found that this more systematic

method prevents errors resulting from incorrectly or partially copied files.

While git or other version control systems have been widely adopted for software

development, datasets required to reproduce experiments are rarely treated in the

same way. Instead, datasets or results are often published in dedicated repositories,

without sufficient descriptions on what they contain or how they were created, or

not published at all. However, with the rising popularity of data-driven methods

like machine learning, considering research datasets as “first-class citizens” becomes

crucial to ensure reproducibility.

In this thesis, we use the software datalad2 (Halchenko et al., 2021) to address

this issue. Datalad is a distributed data management systems, which (among many

other features) enables the handling of large datasets within git repositories, as well

as provenance tracking to monitor how datasets or results are created. Using the

established functionality of git as backbone, datalad offers functions to track how

datasets are created, allowing easy reproducibility or recomputation of results. With

datalad, repeating one or multiple workflow steps (e.g., after a parameter change or

fixing a bug) can often be achieved using a single command. We found that the

consistent use of datalad to track the steps of processing workflows makes it easy

to comprehend how specific files are created, which is in many cases superior to a

1
https://git-scm.com

2
https://www.datalad.org
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traditional textual description of the conducted processing steps. In addition, datalad

builds upon git-annex 3 to enable the inclusion of large files, which integrates well with

the aforementioned provenance tracking capabilities. Using the decentral capabilities

of git-annex, datalad makes transferring datasets between machines easy. In general,

we found that the use of datalad can significantly improve the reproducibility of

workflows while inducing only little additional effort.

As a final note, we want to emphasize the role of automation and scripting for

reproducibility. Across all tasks related to the creation of this thesis, including

software development, data processing, experimentation, evaluation, and scientific

writing (including the writing of this thesis), we found that the automation of even

seemingly small processing steps can greatly improve reproducibility and develop-

ment efficiency. For example, we found it beneficial to store all commands that need

to be executed to perform a certain processing step (e.g., to process an image or

train a neural network) in a script with a descriptive name. Even if a step involves

only a few commands that could be easily typed out in a terminal, we prefer to store

the commands in a script and include it in the respective git repository. This way,

the steps are properly recorded in the project’s history, the script is easy to find, it

can include additional remarks (e.g., short descriptions or usage instructions), and it

can be easily changed and rerun. We found that the additional effort of creating a

script to automate a step usually pays off by reducing the effort for future repetitions

and by improving the reproducibility of results. To some degree, this approach also

influenced our choice of software, as we generally preferred command line software

or software that provides programming interfaces (e.g., ParaView or meshlab) over

software that can only be used via a graphical user interface.

Taking this idea a step further, we often used the workflow management system

snakemake4 (Mölder et al., 2021). Snakemake provides a Python-based workflow

description language, allowing users to define dependencies between different files,

including the necessary steps to create a specific output file from a range of input

files. Snakemake makes it easy to trace even complex dependencies between many

different files. We used snakemake to create most of the figures presented in this

thesis (e.g., by defining processing steps to create performance plots from prediction

results).

In conclusion, we found that being aware of reproducibility can greatly improve

the quality of a research project’s outcome. In many cases, doing so can also improve

the efficiency of workflows, be it during software development, experimentation, or

writing of scientific reports. Although many aspects can still be improved, we think

3
https://git-annex.branchable.com

4
https://snakemake.github.io
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that following the described practices has contributed to the reproducibility of our

work and consequently to the quality of this thesis.
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Glossary

Mathematical notation

R Real numbers

R
≥0 Real numbers greater or equal to zero

N Natural numbers

x A scalar value

x A column vector

x(i) Element i of vector x

M A matrix, image, or higher-dimensional tensor

I(i, j) Element at row i and column j in image I (analogue for higher-

dimensional tensors)

∗ Convolution

∇θ Nabla operator (partial derivatives with respect to parameter vector θ)

|| Concatenation operator

| Divisible operator (a | b ⇔ b mod a = 0)

〈x,y〉 Scalar product of vectors x and y

‖x‖2 Euclidean norm of vector x

A = {1, 2} Set containing elements 1 and 2

f(x; θ) Function with argument x, parameterized by θ

f ◦ g Composition of functions f and g

IA Indicator function (1 if condition A is true, 0 otherwise)

U [a, b] Uniform distribution over interval [a, b]

EX [x] Expected value of x with respect to a distribution X

Symbols & functions

f(x; θ) Deep neural network with input x and parameters θ. 19

θ ∈ Θ Parameters of a deep neural network from a parameter

space Θ. 19
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x Input vector for a deep neural network or a layer. 19

l(ŷ,y) Loss function measuring the disagreement between a pre-

diction ŷ and the expected groundtruth y. 19

ŷ Prediction of a deep neural network. 19

y Target value for a prediction (also referred to as

groundtruth or labels). 19

X Training dataset sampled from a data distribution X . 19

n Number of training examples in the training dataset X. 19

L(X; θ) Loss function measuring the prediction performance of a

deep neural network parameterized by θ with respect to a

dataset X. 19

∆θ(i+1) Parameter update in iteration i of gradient descent opti-

mization. 20

λ Learning rate for training with gradient descent or SGD. 20

B Batch of b training samples used by SGD. 21

b Number of training samples in a batch B. 21

µ Momentum factor for SGD with momentum. 22

ω Weight decay factor for optimization with L2 regularization.

23

η Trust factor used by the LARS optimizer. 23

c Number of classes for classification or segmentation tasks.

24

softmax Softmax function. 24

lCE Categorical cross-entropy loss function. 25

X
te Test dataset for performance evaluation. 25

CM Confusion matrix. Entry at row i and column j specifies

how many samples belonging to class i are classified as class

j. 26

accuracy Accuracy. Fraction of correctly classified samples. 26

precisionk Precision for class k. Measures how likely a sample belongs

to class k if a model predicts it belongs to class k. 26

recallk Recall for class k. Measures how likely a sample predicted

to belong to class k actually belongs to class k. 26

F1k F1-score for class k, computed as harmonic mean between

precision and recall. 27

F1 Macro F1-score, computed as average of class-specific F1-

scores. 27
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di Input dimension of a neural network layer. 28

FC(x;W, b) Fully-connected layer with input x, weight matrix W , and

bias vector b. 28

W ∈ R
do×di Weight matrix of a fully-connected layer with input dimen-

sion di and output dimension do. 28

b ∈ R
do Bias vector of a fully-connected layer with output dimension

do. 28

do Output dimension of a neural network layer (also referred

to as number of features). 28

σ Non-linear activation function. 28

sigmoid Sigmoid activation function. 29

ReLU ReLU activation function. 30

LeakyReLU Leaky ReLU activation function. 30

BN(x;γ, β) Batch normalization with input x and parameters γ and β.

30

µBN Mean for batch normalization. 30

σBN Standard deviation for batch normalization. 30

dropi(x; p) Dropout layer. Sets entry i of input vector x to zero with

probability p. 31

X ∈ R
h×w Input image for a deep neural network or a layer with height

h (number of rows) and width w (number of columns). 32

Y Output image of a deep neural network layer. 33

nK Number of filters of a convolutional layer. 33

K Set of nK filters of a convolutional layer. 33

Kk ∈ R
u×u×c Filter of a convolutional layer with size u and c input chan-

nels. 33

conv(X;K, b) Convolutional layer with input image X, filters K, and bias

vector b. 36

pool(X) Pooling layer with input image X. 37

G Graph with nodes V , edges E , and node features FV . 37

V Nodes of a graph. 37

vi A node in a graph. 37

nV Number of nodes in a graph 37

E Edges of a graph. 37

N (i) Neighborhood of a node vi. 37

Nk(i) k-hop neighborhood of a node vi. 38

A Adjacency matrix of a graph. 38

FV Node features of a graph. 38
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mp
(

xvi
; θmsg, θupd

)

Message passing function with input node features xvi
and

parameters θmsg and θupd. 39

msg
(

xvi
; θmsg

)

Message function of the GNN message passing framework

with input node features xvi
and parameters θmsg. 39

agg Aggregation function of the GNN message passing frame-

work. 39

upd Update function of the GNN message passing framework.

39

G(k) Graph produced by k message passing layers. 39

F (k)
V Node features of a graph produced by k message passing

layers. 39

BV Batch of nodes from a graph. 40

GB Subgraph created from a batch of nodes BV . 40

FVB
Node features of subgraph GB. 40

VB Nodes of subgraph GB. 40

EB Edges of subgraph GB. 40

aggSAGE

(

xvi

)

Aggregation function of a SAGE layer with input node fea-

tures xvi
. 41

updSAGE

(

xvi
;W, b

)

Update function of a SAGE layer with input node features

xvi
and parameters W ∈ R

do×2di and b ∈ R
do . 41

aggGAT

(

xvi

)

Aggregation function of a GAT layer with input node fea-

tures xvi
. 42

updGAT

(

xvi
;W, b

)

Update function of a GAT layer with input node features

xvi
and parameters W ∈ R

do×2di and b ∈ R
do . 42

X̃i View of an image Xi. 51

j(i) Index of corresponding other view in a batch B̃ for SimCLR

training. 51

B̃ Batch with 2b image views for SimCLR training. 52

Lssl
(

B̃

)

Contrastive loss function of batch B̃ for SimCLR training.

52

lssl(i) Contrastive loss function of sample i in B̃ for SimCLR train-

ing. 52

zi ∈ R
dz Projected feature vector used in contrastive learning. 52

dz Dimension of projected feature vector zi. 52

fE Encoder for contrastive learning. 52

hi ∈ R
dh Feature vector produced by contrastive learning encoder fE.

52
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dh Dimension of feature vector hi. 52

fP Projection head for contrastive learning. 52

sim(u,v) Cosine similarity between vectors u and v. 52

τ Temperature parameter for NT-Xent loss function. 52

fC Linear classifier for linear evaluation after contrastive learn-

ing. 53

Lssl+
(

B̃

)

Contrastive loss function of batch B̃ for supervised con-

trastive learning (Khosla et al., 2020). 54

lssl+(i) Contrastive loss function of sample i in B̃ for supervised

contrastive learning (Khosla et al., 2020). 54

ci Class of image at batch index i. 54

nci
Number of classes in a batch belonging to ci. 54

B Identifier of a brain (e.g., B01). 60

SB

s Microscopic image of a histological brain section with sec-

tion number s from brain B. 60

Φs→t Linear transformation aligning a section s to a section t. 64

P B

s Probabilistic map projected onto section s of brain B. 66

RB

s Canonical spatial coordinates from MNI-Colin27 space pro-

jected onto section s of brain B. 67

A Set of 113 considered cytoarchitectonic areas (Table 3.2).

68

A Placeholder for a cytoarchitectonic area from A. 68

LSMs
A
↔t
B LSM for segmenting area A, trained on a pair of sections s

and t from brain B. 82

RB

s(A; r) ROI for LSM training with radius r around area A on section

s from brain B. 84

R̃
B

u(A; r, s, t) Estimated ROI for LSM inference on section u from brain

B. 84

Lsup(B) Supervised contrastive loss function of batch B. 108

lsup(i) Supervised contrastive loss function of sample i in B. 108

B Brains used in Chapters 6 and 7. 109

Bh Brain for transferability evaluation (holdout brain). 109

Btt Brains for training and testing. 109

Stt Brain sections for training and testing. 109

Str Brain sections for training. 109

Ste Brain sections for testing. 109

Sh Brain sections for transferability evaluation. 109

ns Number of sampled image patches per area (sampling rate).

111
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rA Ratio between the sampling rate ns and total number of

samples nt
A available for an area A. 111

nt
A Total number of samples available for an area A. 111

r̄A Median sampling ratio across all areas in A. 111

GB Graph representing the cortical midsurface of brain B. 139

VB Nodes of graph GB. 139

EB Edges of graph GB. 139

F cy
VB

Cytoarchitectonic nodes features of graph GB. 143

F co
VB

Canonical spatial coordinates for nodes of graph GB. 143

Fpm
VB

Probabilistic node features of graph GB. 144

Fy

VB

Annotations for nodes of graph GB. 144

Abbreviations

AAHA Allen Adult Human Brain Atlas

API application programming interface

BDA Big Data Analytics

FZJ Forschungszentrum Jülich

GPU graphics processing unit

GSM global segmentation model

HHU Heinrich-Heine-University Düsseldorf

HPC high-performance computing

INM-1 Institute of Neuroscience and Medicine

JSC Jülich Supercomputing Centre

LSM local segmentation model

MNI Montréal Neurological Institute, McGill University

ROI region of interest

SSH secure shell
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Terms & definitions

allocortex

Cortical regions with variable laminar patterns (see also isocortex). 6

automatic mixed precision (AMP)

Memory and runtime efficient training of deep neural networks based on half-

precision computations. 114

anterior

Anatomical direction: Towards the front (see Figure 2.1, right). 6

base

CNN architecture resembling the encoder of the U-Net for cytoarchitecture

segmentation proposed in Spitzer et al. (2017). 115

architecture

Layer composition and connectivity of a deep neural network. 19

ATLaS

Software framework for large-scale analysis of microscopic images. 72

ATLaSUI

Web-based user interface for the ATLaS framework. 102, 103

receptor autoradiography

Imaging technique to visualize receptor densities in the brain. 7

backpropagation

Algorithm for gradient computation during deep neural network training. 18

base-CE

base model for large-scale cytoarchitecture classification trained with categor-

ical cross-entropy loss. 154

BigBrain

High-resolution 3D human brain atlas reconstructed from 7404 histological

brain sections (Amunts et al., 2013). viii, 10

batch normalization

Normalization strategy for deep neural network training (Ioffe et al., 2015). 30
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brainstem

Part of the human brain connecting the cerebrum to the spinal cord. 5

categorical cross-entropy

Loss function for multi-class classification tasks. 24

cerebellum

Heavily folded lower part of the brain containing the majority of nerve cells in

the brain. 5

cerebrum

Largest part of the human brain, consisting of two hemispheres with a highly

convoluted surface. 6

convolutional neural network (CNN)

Deep neural network architecture for processing of image data. 18

contrastive learning

Framework for feature learning from pairwise comparison of similar and dis-

similar data points. 2

corpus callosum

Bundle of nerve fibers connecting the two hemispheres of the cerebrum. 5

cortex

Outer layer of the cerebrum with a high density of neuronal cells. 6

cortical layer

Layers within the cortex. 6

computed tomography (CT)

Radiation-based imaging technique enabling in-vivo structural measurements

inside the body. 7

cytoarchitectonic area

Brain region with distinct cytoarchitectonic properties. 2

cytoarchitecture

Composition of neurons in the cortex, including cell distribution, size, orienta-

tion, and presence of certain cell types. 2
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distributed deep learning (DDL)

Techniques for distributed training of deep neural networks across multiple

GPUs. 55

deep learning

Machine learning technique for analyzing complex high-dimensional data (e.g.,

images). 1

deep neural network

Differentiable and parameterized function composed of smaller functional mod-

ules (layers). 19

densely connected networks (DenseNet)

Deep neural network architecture for image analysis using densely connected

layers. 32, 46

depth

Number of layers in a deep neural network. 19

diffusion weighted MRI (DWI)

Imaging technique that measures the diffusion of water molecules in the body.

10

ex-vivo

Outside of a living organism. 7

fully-connected layer

General purpose neural network layer composed of a linear transformation and

an activation function. 28

functional magnetic resonance imaging (fMRI)

Imaging technique enabling in-vivo measurements of functional activity in the

brain. 7

fusiform cell

Non-pyramidal cells with variable (polymorph) appearance. 12

global average pooling (GAP)

Pooling operation that reduces features into a vector. 37
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graph attention network (GAT)

GNN architecture using attention mechanisms for weighting node features (Veličković

et al., 2018). 41, 42

GAT3-CY

Three-layer GAT model using deep cytoarchitectonic features produced by

R50-SCL. 148

GAT3-CY/PM/CO

Three-layer GAT model using deep cytoarchitectonic features produced by

R50-SCL, probabilistic maps, and canonical spatial coordinates. 149

graph convolutional network (GCN)

Generalization of CNNs for graph structured data. 38

gradient descent

Iterative gradient-based optimization algorithm. 20

gray level index (GLI)

Intermediate image representation used in Schleicher et al. (1999) to measure

the volume fraction of neurons. 16, 17

graph neural network (GNN)

Deep neural network architecture for processing of graph structured data. 38

gradient checkpointing

Strategy for memory efficient training of deep neural networks using gradient

recalculation (Chen et al., 2016b). 56

General Parallel File System (GPFS)

Distributed file system by IBM. Used by JUST. 72

gray matter

Brain tissue with high neuron density (see cortex, subcortical gray matter). 5

gray-white matter boundary

Boundary between cortex and white matter. 6

gyrification

Folding pattern of the brain surface. 5
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gyrus

Outward fold of the brain surface. 6

HPST (High Performance Storage Tier)

High-performance storage layer of JUST based on flash storage. 72

high-resolution U-Net (HR U-Net)

U-Net architecture for cytoarchitecture segmentation based on high-resolution

image features. 87, 88

immunohistochemistry

Imaging technique to visualize different cell types. 7

in-vivo

Inside of a living organism. 7

inferior

Anatomical direction: Towards the bottom (see Figure 2.1, right). 6

isocortex

Cortical regions with a regular six-layered organization. 6

Julich-Brain

Probabilistic human brain atlas created from superimposed mappings of cy-

toarchitectonic areas from 23 brains (Amunts et al., 2020). 9

JURECA

Supercomputer system at JSC (Krause et al., 2018). Decommissioned at the

end of 2020. 71

JURECA-DC

Supercomputer system at JSC (Krause et al., 2018). Successor of JURECA.

71

JUST

Storage cluster at JSC. 71

layer-wise adaptive rate scaling (LARS)

Variant of SGD for training with large batch sizes. 23
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lateral

Anatomical direction: Towards the side/sideways (see Figure 2.1, right). 6

layer

Functional building block used to construct deep neural networks. 19

lobe

Anatomical subdivision of the brain based on anatomical landmarks. 6

loss function

Function measuring the difference between predictions of a model and a given

target value. 19

low-resolution U-Net (LR U-Net)

U-Net architecture for cytoarchitecture segmentation based on low-resolution

image features. 88, 89

medial

Anatomical direction: Towards the center (see Figure 2.1, right). 6

Microdraw

Web-application for visualization and annotation of high-resolution image data.

102

multi-layer perceptron (MLP)

General purpose neural network architecture composed of multiple fully-connected

layers. 29

MNI-Colin27

Single-subject reference space derived from MRI measurements (Holmes et al.,

1998). 65

Message Passing Interface (MPI)

Software standard for communication between processes in parallel applica-

tions. 73

magnetic resonance imaging (MRI)

Imaging technique enabling in-vivo measurements of tissue structures. 7
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multi-scale U-Net (MS U-Net)

U-Net architecture for cytoarchitecture classification combining low- and high-

resolution image features. 87–89

NVIDIA Collective Communication Library (NCCL)

Software library for collective communication between GPUs. 74

nerve fiber

Fibers connecting neurons to enable transmission of chemical and electrical

signals. 5

neuron

Nerve cell. 5

normalized temperature-scaled cross-entropy (NT-Xent)

Temperature-scaled variant of cross-entropy for contrastive learning. 52

nucleus

Structurally distinct cluster of neurons in the subcortical gray matter. 5

principal component analysis (PCA)

Dimensionality reduction technique based on eigenvector projection. 47

pial boundary

Boundary between cortex and the outside of the brain. 6

polarized light imaging (PLI)

Microscopic imaging technique enabling the measurement of nerve fiber direc-

tions in postmortem brain tissue. 7

posterior

Anatomical direction: Towards the back (see Figure 2.1, right). 6

granular cell

Round-shaped cell. 12

pyramidal cell

Approximately triangular shaped neuronal cell. 12
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RAS coordinate system

Coordinate convention for anatomical data. Coordinate axes correspond to left

to right, posterior to anterior, and inferior to superior directions, respectively.

67

rectified linear unit (ReLU)

Truncated linear activation function used in deep neural networks. 29, 30

R50-CE

ResNet50 model for cytoarchitecture classification trained with categorical cross-

entropy loss. 118

residual network (ResNet)

Deep neural network architecture for image analysis using residual connections.

32, 44

R50-SCL

ResNet50 model for cytoarchitecture classification trained with supervised con-

trastive learning. 119

SAGE

GCN layer that uses sampling and aggregation for learning on graphs (Hamilton

et al., 2017). 41

stochastic gradient descent

Computationally efficient variant of gradient descent that operates on batches

of data. 21

SimCLR

Self-supervised contrastive learning method that defines image similarity based

on data augmentation (Section 2.2.5, Chen et al., 2020). 51

softmax function

Activation function that normalizes a vector. 24

self-supervised learning (SSL)

Training paradigm for feature learning from auxiliary tasks. 48

subcortical gray matter

Regions of the gray matter inside of the cerebrum. 5
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sulcus

Inward fold of the brain surface. 6

superior

Anatomical direction: Towards the top (see Figure 2.1, right). 6

Hierarchical Data Format 5 (HDF5)

Hierarchical data format for storing array-like data (The HDF Group, 1997).

79

Tagged Image File Format (TIFF)

File format for storing image data. 76

training

In the context of deep learning, training describes the process of optimizing the

parameters of a deep neural network to make it solve a specific task. 19

U-Net

Deep neural network architecture for image segmentation (Ronneberger et al.,

2015). 32

weight decay

Regularization technique applied to prevent overfitting in deep neural networks.

23

white matter

Brain tissue with high nerve fiber density. 5
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