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Summary 
Cytoarchitectonic maps provide important microanatomy based parcellations of the 

brain. The current state-of-the-art approach for cytoarchitectonic brain mapping 

involves image analysis techniques quantifying cytoarchitecture by extracting cortical 

profiles orthogonal to the cortical surface. Despite continuous improvements, this 

profile-based approach remains limited in throughput and is only applicable to cortical 

areas. We therefore investigated the quality and anatomical plausibility of a revised 

deep-learning based brain mapping approach in the BigBrain – a high-resolution 3D 

histological model of the human brain. In a first study, four visual cortical areas were 

mapped using the profile-based approach to train and apply the revised deep-learning 

approach to dense series of histological sections in the BigBrain. A second study 

expanded the use of the deep-learning based approach to a nucleus of the 

metathalamus to evaluate its subcortical applicability. Additionally, cytoarchitectonic 

probabilistic maps of the metathalamic nuclei were computed based on mappings in 

ten postmortem brains as part of the Julich-Brain atlas. In a third study, an evaluation 

of the operational mode of the revised deep-learning approach was performed by 

analyzing its internal structure with regards to representations of cytoarchitectonic 

features. An additional comparison to cytoarchitectonic features and borders positions 

reflected by the profile-based approach aimed at providing an independent verification 

of the deep-learning approach’s validity. 

The revised deep-learning approach was able to consistently map the four cortical 

visual areas as well as the subcortical metathalamic nucleus. Throughout their whole 

extent in the BigBrain, the maps showed a high degree of quality and anatomical 

plausibility with regards to topography and extent. Detected borders of cortical areas 

were co-localized to borders found by the profile-based approach and reproduced 

findings from subcortical maps in microscopic histological atlases, respectively. The 

analysis of the internal structure of the revised deep-learning approach revealed 

cytoarchitectonic feature representations especially on the laminar level. At the same 

time the new approach allowed mapping of large series of histological sections.  

Our analyses demonstrate the potential to overcome limitations of the profile-based 

approach and provide a first step towards using deep-learning based brain mapping 

on a routine basis in high-resolution brain models like the BigBrain dataset. The 

generated maps are publicly available and will help future investigators to integrate the 

interoperable BigBrain with high-resolution neuroimaging data as well as to develop 

better and more realistic human brain models.  
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Zusammenfassung 
Zytoarchitektonische Karten liefern wichtige mikroanatomische Parzellierungen des 
Gehirns. Die derzeitige Methode zytoarchitektonischer Parzellierung beruht auf 
Bildanalysetechniken, welche die Zytoarchitektur anhand orthogonal zur kortikalen 
Oberfläche extrahierter Profile quantifizieren. Trotz ständiger Verbesserungen ist 
dieser Ansatz in seiner Verarbeitungsmenge begrenzt und nur auf kortikale Bereiche 
anwendbar. Hier wird daher die Qualität und die anatomische Plausibilität eines Deep-
Learning-basierten Hirnkartierungsverfahrens im BigBrain - einem hochaufgelösten 
histologischen 3D-Modell des menschlichen Gehirns - untersucht. In einer ersten 
Studie wurden vier visuelle kortikale Areale mit Hilfe des profilbasierten Ansatzes 
kartiert, um einen adaptieren Deep-Learning-Ansatz zur Hirnkartierung auf dichten 
Serien histologischer Schnitten im BigBrain zu trainieren und anzuwenden. In einer 
zweiten Studie wurde die Anwendung des Deep-Learning-Ansatzes auf einen Kern 
des Metathalamus ausgedehnt, um die subkortikale Anwendbarkeit zu bewerten. 
Zusätzlich wurden probabilistische zytoarchitektonische Karten metathalamischer 
Kerne auf der Grundlage von Kartierungen in zehn post-mortem Gehirnen als Teil des 
Julich-Brain-Atlas berechnet. In einer dritten Studie wurde die Funktionsweise des 
Deep-Learning-Ansatzes evaluiert, indem die interne Struktur auf widergespiegelte 
zytoarchitektonische Merkmale hin analysiert wurde. Ein zusätzlicher Vergleich mit 
widergespiegelten zytoarchitektonischen Merkmalen und Grenzpositionen des 
profilbasierten Ansatzes ermöglichte eine unabhängige Überprüfung der Validität des 
Deep-Learning-Ansatzes. 

Der adaptierte Deep-Learning-Ansatz war in der Lage, die vier kortikalen visuellen 
Areale sowie den subkortikalen metathalamischen Kern konsistent zu kartieren. Die 
Karten wiesen über ihre gesamte Ausdehnung im BigBrain ein hohes Maß an Qualität 
und anatomischer Plausibilität in Bezug auf Topographie und Ausdehnung auf. Die 
ermittelten Grenzen der kortikalen Areale waren mit den durch den profilbasierten 
Ansatz gefundenen Grenzen ko-lokalisiert und reproduzierten die Befunde 
subkortikaler Karten in histologischen Atlanten. Die Analyse der internen Struktur des 
adaptierten Deep-Learning-Ansatzes zeigte zytoarchitektonische 
Merkmalsrepräsentationen insbesondere auf der laminaren Ebene auf. Gleichzeitig 
ermöglichte der neue Ansatz die Kartierung großer Serien histologischer Schnitte.  

Unsere Analysen zeigen das Potenzial auf, die Einschränkungen des profilbasierten 
Ansatzes zu überwinden und stellen einen ersten Schritt zur routinemäßigen 
Anwendung von Deep-Learning-basierter Hirnkartierung in hochaufgelösten 
Gehirnmodellen wie dem BigBrain-Datensatz dar. Die generierten Karten sind 
öffentlich zugänglich und werden zukünftigen Forschern helfen, das interoperable 
BigBrain mit hochauflösenden Bildgebungsdaten zu integrieren sowie bessere und 
realistischere menschliche Gehirnmodelle zu entwickeln.  
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1 Introduction 
1.1 Cytoarchitecture of the Human Brain 

Since the second half of the 19th century the microscopic architecture of the 

human brain has been studied. Differentiating and defining the architecture of 

cells in the cerebral cortex (cytoarchitecture) is strongly linked to the advent of 

histology. In his famous work from 1872 (Meynert, 1872a), Viennese 

psychiatrist Theodor Meynert already described regional differences in the 

cellular architecture of cerebral grey matter in cell-stained brain sections – 

establishing the scientific field of cytoarchitectonics.  Following Meynert’s 

observations an early faction of neuroanatomists (Campbell, 1904; Flechsig, 

1898; Smith, 1907) parcellated the cerebral cortex into distinct areas in the 

following years. Above all stands Korbinian Brodmann’s famous 

characterization of 43 cortical areas of the human brain (Brodmann, 1909). As 

a student and employee of Cecile and Oskar Vogt in Berlin, he developed the 

still to this date used nomenclature of the Brodmann Areas (BAs). In the first 

half of the 20th century Brodmann’s work inspired others to further develop the 

cytoarchitectonic parcellation of the human brain, especially the monumental 

work of v. Economo and Koskinas (Economo and Koskinas, 1925) and the 

upcoming Russian school (Sarkisov et al., 1949). The early histological works 

mainly focused on the cytoarchitecture of the cortex. It was only later that 

subcortical structures like the thalamus gained attention (Grünthal, 1934; Vogt 

and Vogt, 1941) resulting in subcortical parcellations half a century later than 

the cortical parcellations (Hassler, 1959). 

1.1.1 Early Cytoarchitectonic Maps: Strengths and Limitations 

Especially the early works of Brodmann (1909) still have a great impact on 

contemporary neuroscientific work. They have paved the way for analyzing  

structure-function relations of the human brain and comparative multimodal 

neuroanatomical studies (Zilles and Amunts, 2010). A reflection of this impact 

is the still used nomenclature of the Brodmann areas as topographic 

descriptors for brain areas. Brodmann’s map and his methodology did not 

remain uncriticized though. Bailey and Bonin (1951) were among the first to 
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address the inherent lack of observer-independency and reproducibility with 

respect to Brodmann’s parcellations. Another major drawback constituted 

interindividual differences in cytoarchitecture that remained neglected in 

Brodmann’s single subject map (Lashley and Clark, 1946). Both aspects also 

apply to the works of Brodmann’s followers who provided more detailed maps 

that yet shared the same limitations (Economo and Koskinas, 1925; Sarkisov et 

al., 1949). Furthermore, the focus on the cytoarchitecture of the cortex in the 

early works also impeded to study possible structure-function relationships of 

subcortical structures. 

The advent of modern neuroimaging in the 1980s and the need for anatomical 

reference spaces and atlases has renewed the interest in the early works once 

more. Along with this development new, more observer-independent 

quantitative image analysis methodologies (Wree et al., 1982; Zilles et al., 

1978) were developed to support the renewed interest in cytoarchitectonic 

brain mapping that led to the current state-of-the-art approach for 

cytoarchitectonic brain mapping (Amunts et al., 2020; Schleicher et al., 1999; 

Zilles et al., 2002). This approach helped to overcome the inherent drawbacks 

of missing objectivity and single subject maps. Yet, the creation of new high-

resolution anatomical reference spaces and the inability to quantitatively map 

subcortical nuclei challenge currently used methodologies once more and have 

prompted the first implementations of deep-learning based solutions (Spitzer et 

al., 2018; Spitzer et al., 2017) whose scrutiny and application is explored in this 

thesis.  

The remainder of this introduction gives an overview of principles of 

cytoarchitectonic organizations (chapter 1.1.2) before introducing 

cytoarchitectonic maps in the context of atlas concepts for neuroimaging 

(chapter 1.2). Current approaches for cortical and subcortical cytoarchitectonic 

brain mapping are reviewed in chapter 1.3.1 and 1.3.2 before introducing deep-

learning based approaches as a potential candidate to overcome limitations of 

the currently applied approaches (chapter 1.3.3). Chapter 1.4 argues to assess 

the scrutiny and applicability of a revised deep-learning based approach based 

on the well- studied visual cortical areas and subcortical metathalamic 

structures which constitutes the motivation behind this thesis work. 
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1.1.2 Principles of Cytoarchitectonic Organization 

The cerebral cortex (from here on called cortex) constitutes the 

phylogenetically youngest part of the human brain. It forms the outer layer of 

neural tissue of the cerebrum (grey matter) and can be classified into the six-

layered isocortex and the three- to eleven-layered allocortex (Strominger et al., 

2012; Zilles and Amunts, 2012). Neocortical layers stretch from the pia mater 

on the brain’s surface to the underlying white matter and are numbered from I 

to VI forming a cortical thickness of the isocortex of roughly 1.8 to 3.8 mm 

(Economo and Koskinas, 1925). The horizontal organization of the estimated 

16 billion neurons in the human cortex (Herculano-Houzel, 2009) into layers is 

accompanied by cortical columns and minicolumns that form an additional 

radial organizational principle (Figure 1). Analyzing the cellular composition of 

cortical layers reveals a characteristic distribution of neurons and their 

connections to other cortical and subcortical areas (Figure 1). 
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Figure 1: Schematic overview of cortical layers. The schematic representation of a cell-body 
stained image on the left shows the 6-layered neocortex with an accompanying fiber stained 
image in the middle showing vertical and horizontal axonal connections within the cortex 
(adapted and modified with permission from Amunts et al. (2010) © 2010 Springer and 
modified after Vogt and Vogt (1919)). Images on the right show the characteristic cellular 
composition of the cortical layers of the primary (BA 17) and secondary (BA 18) visual cortex 
on cell-body stained brain sections (adapted and modified after Kiwitz et al. (2020)). The 
secondary visual cortex shows clearly visible vertically-oriented cortical columns (layer III-V) 
in comparison to the primary visual cortex.  
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Differences in the cellular composition and laminar differentiation have led to 

the definition of cytoarchitectonic features including laminar thickness, laminar 

arrangement, as well as cell size, cell density, cellular clustering and the 

sharpness of the white matter/grey matter border that characterize the  

cytoarchitectonic appearance of a specific cortical region (Campbell, 1904; 

Economo and Koskinas, 1925; Flechsig, 1898; Smith, 1907). Due to the mostly 

missing laminar organization of subcortical nuclei, their delineation on cell-body 

stained sections mostly relies on cellular features like cell sizes and cell 

densities, as well as differences in cell morphology and the sharpness of 

borders to other subcortical nuclei. 

1.2 Atlas Concepts for Neuroimaging  

With the advent of modern neuroimaging it became possible to study the 

structural and functional organization of the living human brain. Along with the 

development of more and more advanced imaging techniques, milestone 

achievements regarding human cognition (Owen et al., 2005; Saxe and 

Kanwisher, 2003), neurodegenerative (Stoessl et al., 2011) and psychiatric 

diseases (Gong et al., 2019; Pantelis et al., 2003) as well as healthy brain 

function and development (Giedd et al., 1999; Raichle and Snyder, 2007) have 

been made.  

From the beginning of modern neuroimaging on, the need for an anatomically 

plausible anchoring of imaging data increased the interest in the early 

cytoarchitectonic maps once more. To integrate structural and functional 

neuroimaging data, a common reference space was needed - of which the 

Talairach space was the first (Talairach and Tournoux, 1988). It incorporated a 

3D-representation of Brodmann’s map of cytoarchitectonic areas. The MRI-

based MNI space (Evans et al., 2012) subsequently largely replaced the 

Talairach space. Other atlas concepts incorporated Brodmann’s maps as well 

and helped to localize and quantify PET imaging data (Seitz et al., 1998; Seitz 

et al., 1990). Today, averaged reference spaces like the MNI ICBM 152 2009c 

nonlinear asymmetric space encompass interindividual variations (Evans et al., 

2012), while disease- and ethnicity-specific reference spaces (Thompson et al., 
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2001; Wang et al., 2013; Xiao et al., 2017) consider specific pathologies and 

populations. 

1.2.1 Probabilistic Brain Mapping – The Julich-Brain 

To overcome missing interindividual variations in existing atlases, advances in 

histological cytoarchitectonic brain mapping in the last 30 years have led to 

creating probabilistic atlases (Amunts et al., 2020; Amunts and Zilles, 2015; 

Eickhoff et al., 2005a; Mazziotta and Toga, 2002; Schleicher et al., 1999). The 

Julich-Brain (Amunts et al., 2020) for example constitutes a dynamic three-

dimensional atlas of the brain’s cortical and subcortical cytoarchitecture that 

incorporates probabilistic cytoarchitectonic maps of currently more than 200 

areas. It also emphasizes the role of image analysis workflows to generate 

maps on a statistically reliable foundation. The integration into the MNI 

reference space makes the Julich-Brain interoperable with other brain atlases 

and resources. The cytoarchitectonic maps of the Julich-Brain are also included 

in frequently used toolboxes like SPM (Eickhoff et al., 2005b) and FSL 

(Jenkinson et al., 2012), as well as the EBRAINS multilevel human brain atlas 

(Amunts et al., 2022). This integration enables the neuroimaging community to 

link molecular, genomic, connectivity-based, and functional aspects of brain 

organization to the underlying cytoarchitectonic maps – contributing to the 

development of multimodal brain atlases (Amunts et al., 2020; Amunts and 

Zilles, 2015; Glasser et al., 2016; Toga et al., 2006).  

1.2.2 Overview of Subcortical Atlases of the Brain’s Microstructure 

For subcortical structures the earliest implementation of histologically-derived 

maps into a reference space came from Schaltenbrand and Bailey (1959) who 

included the thalamic maps of Hassler (1959). Similar to Schaltenbrand and 

Bailey (1959), Mai et al. (2016) used fiber architectonic stainings to provide 

illustrations of the thalamus and basal ganglia, which was expanded by the 

stereotaxic atlas of Morel (2007) by additional staining procedures to define 

boundaries of thalamic nuclei normalized to the MNI space. Recently, Ding et 

al. (2016) provided an atlas that summarizes the contemporary knowledge 

regarding the microanatomy of subcortical nuclei. Unfortunately, similar to the 

first cortical maps, histological atlases of subcortical nuclei are often created on 
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the basis of a limited sample size (Ding et al., 2016; Mai et al., 2016; Morel, 

2007).  

The histologically-defined cytoarchitectonic parcellations of the Julich-Brain 

atlas and the aforementioned subcortical histological atlases constitute gold-

standard references providing anatomical anchors for neuroimaging (Amunts et 

al., 2020; Pijnenburg et al., 2021), deep-brain stimulation (Chakravarty et al., 

2006; Horn et al., 2019) and probabilistic in vivo MRI atlases (García-Gomar et 

al., 2019; Pauli et al., 2018; Saranathan et al., 2021). Yet, their integration into 

the MNI space relies on careful 3D-reconstructions (Amunts et al., 2020) and 

normalization is challenged by the limited anatomical detail of the MNI space, 

especially when anchoring small subcortical nuclei.   

1.2.3 The BigBrain as a High-Resolution Anatomical Model and 
Reference Space 

At the same time the spatial resolution of ultra-highfield functional MRI has 

increased to the submillimeter range in recent years, allowing for more and 

more detailed functional studies (Martino et al., 2018; van der Zwaag et al., 

2016). This imposes further new challenges to link such data with the limited 

spatial resolution and anatomical details of the MNI space. For data integration 

on the level of cortical layers and columns, as well as small subcortical nuclei, a 

histological reference space that provides microscopic resolution is necessary. 

The BigBrain dataset based on its 7404 sections cell-body stained and 3D-

reconstructed sections fulfils such requirements and provides an isotropic 

spatial resolution of 20 micrometers (Amunts et al., 2013). As such, it has 

previously been used to validate MRI based models of brain connectivity 

(Paquola et al., 2020b; Wei et al., 2019), functional and structural gradients 

(Paquola et al., 2019; Royer et al., 2020), as well as default mode network 

components (Paquola et al., 2019) by linking MRI-based measurements with 

the underlying microanatomy. Available transformations to the MNI space make 

it an interoperable high-resolution histological reference space for the 

neuroscientific community.  
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1.3 Methods for Cytoarchitectonic Brain Mapping 

1.3.1 Visual Inspections and First Quantitative Methods 

Brodmann (1909) and the other early 20th century neuroanatomists mainly used 

light-microscopy to delineate the cortex based on its cytoarchitectonic 

appearance. This procedure imposes a degree of subjectivity to the early 

cytoarchitectonic works – well reflected by the diverging numbers of delineated 

areas and their topography (Brodmann, 1909; Campbell, 1904; Smith, 1907; 

Zilles and Amunts, 2010). The subsequent analysis of the monumental work by 

Economo and Koskinas (1925) added quantitative criteria like mean cell sizes 

and densities for each cortical layer including their variability, as well as laminar 

and cortical thickness measurements to denote differences between cortical 

areas. The Economo atlas represents a whole-brain cytometric reference 

therein that is still used today to provide anatomical references for 

neuroimaging (Pijnenburg et al., 2021; Scholtens et al., 2015) and parameters 

for brain modelling (Pronold et al., 2018). Analyzing the microarchitecture of the 

brain using light-microscopy is nowadays accompanied by modern high-

resolution tissue scanning technologies which enable the digitization of whole 

brain series of sections. Visual inspections using digitized sections and 

microscopes, as well as quantitative measures like cell counts and cell-

densities remain important neuroanatomical tools to denote differences 

between brain areas. This is especially the case for subcortical areas for which 

a more observer-independent approach has not been established yet. 

1.3.2 Profile-based Image Analysis for Cortical Mapping 

On the cortical level, computerized image analysis workflows have enabled a 

more objective and reproducible identification of borders between cortical areas 

in the last 30 years (Schleicher et al., 2005; Schleicher et al., 1999; Schmitt et 

al., 2003; Zilles et al., 2002) – building the statistically reliable foundation of the 

Julich-Brain (Amunts et al., 2020). The current state-of-the-art method for 

quantitative cytoarchitectonic analysis uses a measure of the volume fraction of 

cell bodies – the grey level index (GLI) – extracted along profile traverses 

(Schleicher et al., 1999). The definition of the profiles follows the Laplacian field 

from the cortical layer I/layer II border to the white matter border on the GLI 
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images (Schleicher et al., 2005; Schleicher et al., 2000; Zilles et al., 2002) 

reflecting the cytoarchitecture of the analyzed region. Feature vectors of the 

profiles’ shape functions are then extracted to analyze changes in 

cytoarchitecture. They contain the mean GLI value, the first four central 

moments about the mean: mean, standard deviation, skewness and kurtosis, 

as well as values of the feature vectors’ first differential quotients (Schleicher et 

al., 1999; Zilles et al., 2002). A sliding-windows approach finally captures 

borders between cortical areas by calculating multivariate difference functions 

of the feature vectors while moving across the cortical ribbon (Schleicher et al., 

1999).  

Other profile-based approaches use excess mass functionals in the feature 

vectors to establish a relation to differences in cortical lamination in consecutive 

profiles (Schmitt et al., 2003) or wavelet analyses (Annese et al., 2004). The 

former reduces the complex shape of the profile to the number of local peaks 

and their differences, the later bundles profile data in large wavelet coefficients. 

Both have been applied in only a small number of applications. 

A commonly shared drawback of the profile-based approach is that the 

extracted profiles only partly reflect traditional cytoarchitectonic criteria. It 

focuses more on statistical image criteria by relating the central moment 

parameters of profiles to aspects of cytoarchitecture, e.g., mean cell packing or 

differences in cell density between cortical layers (Schleicher et al., 2000; Zilles 

et al., 2002). Such a reasoning cannot be made unequivocally though, since 

one and the same profile can result from a higher density of small neurons or a 

lower density of large neurons (Schleicher et al., 2000). The conception to 

detect laminar differences in the cellular pattern also restricts the profile-based 

approach to analyzing the cytoarchitecture of the cortex – prohibiting a 

quantitative analysis of subcortical nuclei. Recent developments of high-

resolution models like the BigBrain furthermore challenge the throughput of the 

labor- and time-intensive profile-based approach for future studies. This 

emphasizes the need for a more automatic, yet biologically valid alternative. 



10 
 

1.3.3 Deep-learning Based Approaches 

Recently deep learning techniques have shown to be a new and promising 

alternative in the dynamically evolving field of medical image analysis (Komura 

and Ishikawa, 2018; Litjens et al., 2017; Madabhushi and Lee, 2016; Shen et 

al., 2017; Xing and Yang, 2016) to potentially overcome the limitations of the 

current profile-based approach. Adaptations for segmenting cortical areas of 

our group have demonstrated that deep-learning approaches generate more 

automatic, consistent segmentations across sections that are transferable to 

other brains with high throughput (Spitzer et al., 2018; Spitzer et al., 2017). 

These preliminary works nevertheless also showed that the existing methods 

are not yet accurate enough to effectively produce anatomically plausible 

segmentations (Figure 2). It is also unclear in how far they incorporate 

traditional cytoarchitectonic features and compare to the current profile-based 

approach. A more automatic classification of cytoarchitectonic areas remains 

challenging therefore and revised approaches to assist neuroanatomists with 

the time and labor intensive cytoarchitectonic mapping work are needed. 
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Figure 2: Comparing cytoarchitectonic brain mapping of visual cortical areas using 
profile-based and deep-learning based approaches. (a) upper image: excerpt from cell-body 
stained brain section of the left occipital lobe (adapted and modified with permission from 
Spitzer et al. (2017) © 2017 IEEE) of a postmortem brain that is part of the Julich-Brain (B1, 
section 1141 (Amunts et al., 2020)). The dashed box indicates the ventral part of the visual 
system with major sulci annotated (cs = calcarine sulcus, ligs = lingual sulcus, cols = collateral 
sulcus); middle image: statistically significant borders (cyan profiles) between the primary 
(yellow profiles), secondary (blue profiles) and ventrally adjacent (green profiles) visual cortex 
determined using the profile-based approach; bottom image: segmentations of seven visual 
cortical areas using a deep-learning based approach (Spitzer et al., 2017) with superimposed 
borders from the middle image. The depicted brain is part of the Julich-Brain   (b) and (c) 
magnified excerpts from a) covering the secondary and ventrally adjacent (b) as well as 
primary and secondary (c) visual cortex (upper images) with borders determined by the profile-
based approach (middle images) and segmentations of the deep-learning based approach 
(bottom images). The bottom images show that the deep-learning based segmentations do not 
match the border positions detected in (b) and misrepresent the topographic relation of the 
adjacent primary (yellow) and secondary (blue) visual cortex. 
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1.4 Target Areas for Studying Deep-Learning Based 
Approaches  

1.4.1 The Visual Cortex 

Studying the use of revised deep-learning approaches inevitably raises the 

question of target areas to test their performance and applicability on. As one of 

the most intensively studied parts of the mammalian brain (Espinosa and 

Stryker, 2012; Hubel and Wiesel, 1962; Tootell et al., 1988), the visual cortex 

constitutes a possible candidate to test and apply such new cytoarchitectonic 

mapping approaches.  

The human visual cortex covers almost all of the occipital lobe of the brain and 

can be differentiated into a striate area (primary visual) mostly located inside 

the Calcarine sulcus (Figure 2a, upper image) and several extrastriate areas 

(Gennari, 1782; Meynert, 1872b). Like other parts of the cortex involved in 

sensory information processing, the visual cortex is characterized by its high 

granularity, i.e. a very pronounced layer II and IV (Orban et al., 2004). Layer IV 

of the primary visual cortex is further subdivided into multiple sublayers (Figure 
1) and characterized by a “tremendous abundance of granular cells” (Economo 

and Koskinas, 1925), which contributes significantly to its striate appearance. 

The latter is especially apparent for sublayer IVc where visual information 

coming from the lateral geniculate body (LGB) of the metathalamus enters the 

cortex. Fiber-stained sections underline the special laminar characteristics by 

showing a distinct fiber bundle in sublayer IVb contemporaneously described 

by Francesco Gennari (Gennari, 1782) and Félix Vicq d’Azyr (Vicq-d’Azyr, 

1786) from whose works the term striate cortex derives. The adjacent visual 

cortex maintains the clear laminar appearance by showing a very cell-sparse 

layer V in comparison to the cell-dense cortical layers IV and VI on cell-body 

stained sections (Amunts et al., 2000; Economo and Koskinas, 1925).  

Retinotopically aligned information from the LGB enters layer IVc of the primary 

visual cortex with the horizontal meridian of the visual field represented in the 

fundus of the calcarine sulcus and the vertical meridian represented at the 

border to the secondary visual cortex (Abdollahi et al., 2014). The functional 

separation in the primary visual cortex including ocular dominance columns, 
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orientation columns as well as blob and inter-blob regions (Ts'o et al., 2009) 

has provided insights into the structural-function organization of early visual 

processing. These organizational principles build the foundation for higher 

visual processing in adjacent visual areas of the ventral and dorsal visual 

streams included in movement perception (Kolster et al., 2010; Malikovic et al., 

2007), color perception (Nasr et al., 2016) as well as object and face 

recognition (Kanwisher et al., 1997; Weiner and Zilles, 2016). Early 

cytoarchitectonic works of Brodmann (1909) and Economo and Koskinas 

(1925) already established a widely accepted structural framework for visual 

information processing starting in the primary visual cortex (BA17 or OC after 

Economo and Koskinas’ nomenclature) that transmits information via the 

dorsally and ventrally surrounding area BA18/OB to BA19/OA. This classical 

parcellation has been confirmed for BA17 and BA18 (Amunts et al., 2000) and 

more recent studies (Kujovic et al., 2013; Malikovic et al., 2016; Malikovic et al., 

2007; Rottschy et al., 2007) have shown an even more differentiated 

parcellation of higher visual cortical areas than assumed in the classical works. 

Studies investigating connectivity among visual cortical areas (Burkhalter and 

Bernardo, 1989; Caspers et al., 2015; Markov et al., 2014), have further 

shaped our understanding of the visual system -  making it a holistically studied 

model system on a structural and functional level. The well-studied 

characteristics of the visual cortex have just recently been used to generate 

biologically-valid models of the macaque visual system (Schmidt et al., 2018) 

and create multimodal atlases of the human visual system (Rosenke et al., 

2017). Especially the distinct cytoarchitectonic features of the early visual areas 

make it a suitable candidate system for scrutinizing the applicability of novel 

deep-learning based approaches for cytoarchitectonic brain mapping.  

1.4.2 The Metathalamus 

Before visual and auditory information enters the cortex, it is passed through 

the metathalamus. Its function as a subcortical relay station for visual and 

auditory information, makes it a target to expand the assessment of deep-

learning based approaches to subcortical nuclei. The human metathalamus 

consists of two major nuclei: the lateral geniculate body (LGB) and the medial 
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geniculate body (MGB), which are located caudoventrally of the main body of 

the thalamus. The LGB receives visual information from axons of retinal 

ganglion cells covering the contralateral visual field via the optic tract. Afferents 

from layer 6 of the visual cortex and the reticular nucleus of the thalamus 

contribute information as well, modulating the retinogeniculate transmission 

(Sherman and Guillery, 2002). The human LGB has 6 layers, with 2 

magnocellular and 4 parvocellular layers processing the functionally distinct 

magnocellular and parvocellular pathways from the retina separately for each 

eye. The most prominent efferent connection of the LGB constitutes the optic 

radiation which projects to the primary visual cortex. The LGB can be 

considered a visual relay station involved in sensory gating the thalamic output 

to the visual cortex (McCormick and Bal, 1994).  

The MGB serves similar purposes for the auditory domain. It has previously 

been subdivided according to its cytoarchitecture into three major 

compartments: the ventral, dorsal and medial subdivisions (Ramón y Cajal, 

1909; Winer, 1984). Evidence from studies in mammals support the notion that 

the ventral MGB receives ascending tonotopically-aligned projections via the 

medial lemniscus and inhibitory projections from the inferior colliculus (Caspary 

and Llano, 2017; Peruzzi et al., 1997; Saint Marie et al., 1997), whereas the 

dorsal and medial MGB receive input from the inferior colliculus, as well as 

feedback from the auditory cortex (Calford and Aitkin, 1983; Llano and 

Sherman, 2008). The ventral MGB has also been interpreted as a first-order 

sensory nucleus of the thalamus since it shows major projections to the 

auditory cortex (Malmierca et al., 2015; Winer et al., 2005). From a functional 

perspective, the MGB transforms the ascending sensory information and gates 

its saliency for its major output: the auditory cortex (Caspary and Llano, 2017; 

Winer et al., 1999).  

Due to their importance for subcortical sensory information processing the LGB 

and MGB have previously been mapped as part of several subcortical atlases 

of the human brain (Ding et al., 2016; Mai et al., 2016; Morel, 2007; 

Schaltenbrand and Bailey, 1959). Recent efforts have been made to create in 

vivo subcortical atlases of the human thalamus (García-Gomar et al., 2019; 

Iglesias et al., 2018; Najdenovska et al., 2018) in combination with histological 
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maps (Ewert et al., 2018; Iglesias et al., 2018). Following this line, we sought to 

expand and scrutinize the applicability of deep-learning based approaches for 

cytoarchitectonic brain mapping with the MGB as a subcortical target area.  

1.5 Aim of the Studies 

The current state-of-the-art approach for cytoarchitectonic brain mapping has 

benefitted the field for the last 30 years by providing a statistically reliable 

image analysis framework. However, it is limited in throughput, which impedes 

brain mapping in high-resolution reference spaces like the BigBrain. 

Furthermore, its application is not transferable to subcortical nuclei – 

emphasizing the need for an additional verification to perform such a task. 

Although contemporary deep-learning based cytoarchitectonic brain mapping 

approaches show first promising results to overcome throughput limitations, 

they are limited by two factors: They still lack sufficient anatomical plausibility to 

produce accurate cytoarchitectonic maps. Furthermore, it is unclear in how far 

they incorporate traditional cytoarchitectonic features and compare to 

resemblances of cytoarchitectonic features and border positions of the current 

profile-based approach.   

Hence the first aim of this thesis was to provide an evaluation of the quality, 

plausibility and consistency of a revised deep-learning based brain mapping 

approach in the BigBrain targeting a broad range of visual cortical areas with 

different architecture in Study 1. Building up on previous deep-learning based 

approaches for mapping visual cortices (Spitzer et al., 2018; Spitzer et al., 

2017), the evaluation was performed on automatically generated maps of four 

cortical visual areas including the primary and secondary visual cortex in the 

BigBrain model. Therefore, a few single sections were mapped using the 

profile-based approach, while remaining sections were filled using the deep 

learning approach to create high-resolution 3D reconstructions of the 

structures. The revised deep-learning based mapping approach was then 

expanded to the metathalamus, a subcortical nucleus of the diencephalon, in 

Study 2, to evaluate its applicability to mapping subcortical nuclei. In particular, 

the MGB was studied in complete histological sections resulting in high-

resolution maps in the BigBrain that supplement already existing maps of the 
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lateral geniculate body (Brandstetter et al., 2021). Furthermore, 

cytoarchitectonic probabilistic maps of both nuclei of the metathalamus were 

computed based on their mappings in ten postmortem brain as part of Julich-

Brain. 

As a next step we evaluated in how far the revised deep-learning approach 

reflects traditional cytoarchitectonic features in Study 3. To do so, the internal 

structure of the revised deep-learning based approach was analyzed by using 

an application of the approach for identifying the primary and secondary visual 

cortex in the BigBrain from Study 1. Hereby we used the learned internal 

feature representations of the approach and compared them with the 

underlying histology. An additional comparison between the laminar and 

cellular features reflected by the current profile-based approach and the 

learned features of the deep-learning approach allowed for an independent 

verification and validity assessment. Taken together the performed studies 

aimed at evaluating the applicability of a revised deep-learning based approach 

on the basis of its quality, anatomical plausibility and validity in comparison to 

the current profile-based approach. All studies are covered by a vote (#4863) of 

the ethics committee of the Medical Faculty of the Heinrich Heine University 

Düsseldorf. 
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4 Discussion 
The revised deep-learning based approach was able to generate accurate 

high-quality cortical and subcortical maps in the BigBrain. An analysis of the 

internal structure including a comparison to the profile-based approach 

provided further arguments for the validity of the approach. Our analyses 

therefore provide a first use-case demonstrating the potential of the revised 

deep-learning approach for cytoarchitectonic mapping in large series of 

sections in the BigBrain on a routine basis. 

4.1 Accuracy and Quality of Deep-Learning Based Brain 
Mapping 

First evidence for the accuracy of the revised deep-learning approach in the 

BigBrain is provided by Study 1. Herein, the methodology was able to reliably 

detect four cortical areas of the visual system, i.e. the primary visual cortex, 

area hOc1 (Amunts et al., 2000), the secondary visual cortex, hOc2 (Amunts et 

al., 2000), as well as higher visual areas hO3v (Rottschy et al., 2007) and hOc5 

(Malikovic et al., 2007) on a large number of serial sections with high accuracy 

and consistency (Schiffer et al., 2021). Detected borders obtained by the 

current profile-based mapping approach corresponded well to the 

segmentations of the revised deep-learning approach (Kiwitz et al., 2020; 

Schiffer et al., 2021). At the same time, 3D volume and surface reconstructions 

of visual cortical areas hOc1, hOc2 and hOc5 matched previous reference 

values based on multiple brains (Amunts et al., 2007) – emphasizing the high 

quality of the maps (Schiffer et al., 2021). On top of that, the 3D- 

reconstructions were more anatomically consistent than interpolating 2D maps 

generated with the profile-based approach while the necessary manual 

annotation effort was the same (Schiffer et al., 2021).  

The revised deep-learning approach was also able to increase the accuracy of 

the maps in comparison to earlier deep-learning implementations (Spitzer et al., 

2018; Spitzer et al., 2017). The results now show anatomically plausible 

segmentations of the primary and secondary visual cortex with outlines 

corresponding to significant borders as detected by the current profile-based 

approach (Figure 3). Incorrectly segmented pixels mostly appeared at cortical 
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regions with a highly oblique cutting angle (Schiffer et al., 2021) – a limitation 

that is shared with the profile-based approach (Schleicher et al., 1999).  

 
Figure 3: Accuracy of the revised deep-learning approach . The images in (a) show cortical 
maps of the primary (yellow) and secondary (blue) visual cortex on section 0961 of the 
BigBrain dataset generated using the profile-based approach. The dashed box indicates the 
magnified crop of the border region on the right. Images in (b) show the respective maps 
generated by the revised-deep-learning based approach on an adjacent section (section 0991) 
with matching area outlines (adapted and modified after Kiwitz et al. (2020)). Note that the 
slight shifts in outline are caused by the more rostral sectioning position in comparison to a). (c) 
shows an excerpt from Figure 2 demonstrating the segmentation performance of an earlier 
deep-learning implementation for cytoarchitectonic mapping (adapted and modified with 
permission from Spitzer et al. (2017) © 2017 IEEE) with cortical borders defined by the 
profile-based approach depicted in cyan.  
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An extension of the use of the revised deep-learning approach to assess its 

applicability and quality regarding subcortical areas in Study 2 revealed similar 

results. Here, the revised deep-learning approach generated high-quality maps 

of the three subdivisions of the human MGB (Kiwitz et al., 2022). The maps 

follow previous microscopic analyses of cytoarchitectonic features of the MGB 

subdivisions (Winer, 1984) and resemble histological maps (Figure 4) of Morel 

(2007) and Ding et al. (2016). The illustration of the BigBrain MGB maps in 

Figure 4 was chosen to approximately match the sectioning position of the 

illustrations adapted from Morel (2007) and Ding et al. (2016).  

 

Figure 4. Subdivisions of the BigBrain MGB in comparison to previous histological maps. 
Four schematic illustrations of the MGB are shown alongside histologically cell-stained images 
from previous works. The nomenclature follows the original works with MGB (medial 
geniculate body), MGN (medial geniculate nucleus), MG (medial geniculate) and Gm 
(Geniculatum mediale) being equivalent in meaning. The maps of Morel (Morel (2007), 
reproduced with permission of The Licensor through PLSclear), Ding et al. (adapted and 
modified with permission from Ding et al. (2016) © 2016 WILEY) and van Buren & Borke 
(adapted and modified with permission from van Buren and Borke (1972) © 1972 Springer) 
have been re-colored to match the color scheme of the BigBrain MGB map (section 3282) of  
Kiwitz et al. (2022). Same-colored subdivisions show cytoarchitectonically equivalent 
subdivisions. The tripartism of the BigBrain MGB follows Morel (2007) and Ding et al. (2016) 
except for the limitans nucleus (dark red) previously described by Hassler (1959) mostly based 
on fiber stainings. The map of van Buren and Borke (1972) is representative for early works 
dividing the MGB into a parvocellular (pc) and magnocellular (mc) division (Clark, 1933). The 
striped pc division in illustrates the subdivision into a dorsal and a ventral part (Hassler, 1959). 
Note that the MGB BigBrain map has been mirrored to match the other left-hemispheric 
illustrations. The cell-body stained images have been edited to ensure a similar image contrast.  
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The topography of the dorsal subdivision is similar across the maps and 

unambiguously characterizes the dorsal subdivisions as a cap of the MGB 

(Figure 4). The size and topography of the medial and ventral subdivisions 

differs across the maps with an increased lateral expansion of the medial 

subdivision in the BigBrain (Figure 4). Our observations in the BigBrain 

showed a decrease in size of the ventral subdivision from caudal to more 

rostral sections accompanied by a lateral shift of the border with the medial 

subdivision – allowing the medial subdivision to occupy more volume. Despite 

these differences, our analyses further manifest the ventromedial location of 

the magnocellular medial subdivision (Mai and Majtanik, 2018), which has 

previously also been located ventrolaterally (Amunts et al. (2012).  

The BigBrain MGB maps generated using the revised deep-learning based 

approach provide insight into the topography of the MGB on a full series of 

histological sections. The three subdivisions of the MGB could be identified on 

132 sections of the left and 165 sections of the right hemisphere (Kiwitz et al., 

2022), which surpasses the less than 10 visually inspected sections reported 

by Ding et al. (2016) and Morel (2007). Our maps therefore provide an 

additional level of confidence regarding the cytoarchitectonic characterization 

and reliability of the methodological approach. Together with the previously 

published maps of the LGB layers in the BigBrain (Brandstetter et al., 2021), 

the MGB maps form a high-resolution reference of the human metathalamus.  

All generated cortical and subcortical maps, as well as the associated 

reference annotations have been made publicly available via the EBRAINS 

Knowledge Graph (https://kg.ebrains.eu/). The high accuracy and quality of the 

maps provide first evidence for deep-learning based brain mapping to be used 

as a semi-automatic alternative to map cortical as well as subcortical areas in 

the BigBrain on a routine basis.  

4.2 The Internal Structure of Deep-Learning Based Brain 
Mapping Approaches 

Despite this promising proof-of-principle demonstration it still remained 

unknown in how far and to what extent the revised deep-learning approach 

actually operates on criteria that resemble traditional cytoarchitectonic features. 
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At the same time, it was not clear as to what extent a relation to the current 

quantitative image analysis of the profile- approach could be established – 

bringing an evaluation of how the deep-learning approach actually operates 

into focus.   

4.2.1 Resemblances to Traditional Cytoarchitectonic Features 

Following this line of thought, Study 3 revealed resemblances of the revised 

deep-learning approach to cytoarchitectonic features used by neuroanatomists. 

The resemblances included cellular, laminar as well as whole area related 

features (Kiwitz et al., 2020). It became apparent that the revised deep-learning 

approach developed different sets of feature representations depending on 

which cortical area it was trained to segment. Differences of these subsets 

especially corresponded to cytoarchitectonic differences on the laminar level. 

When trained to segment the primary visual cortex, a distinct set of feature 

representations to cell-dense cortical layers were found. Since the primary 

visual cortex receives massive input from the LGB, the broad and cell-dense 

input layer IVc may have caused the developed of such a preference (Kiwitz et 

al., 2020). In contrast to this, when trained to segment the secondary visual 

cortex, two distinct sets of feature representations to cell-dense as well as cell-

sparse cortical layers appeared. The former stays in accordance to the cell-

dense and prominent layer IV of the secondary visual cortex which constitutes 

an important cytoarchitectonic feature that is used to distinguish it from the 

adjoining area hOc3v (Amunts et al., 2000; Rottschy et al., 2007). The latter 

can be explained in two was alike: Firstly, the clarity of the columnar 

arrangement – mainly visible in the more cell-sparse cortical layers III, V and VI 

(Economo and Koskinas, 1925; Figure 1) -  increases between the primary and 

secondary visual cortex (Amunts et al., 2000). Secondly, the cytoarchitectonic 

features of the cells sparse cortical layer V constitute an important 

characteristic to distinguish the secondary visual cortex from the ventrally and 

dorsally adjoining cortical areas (Kiwitz et al., 2020; Kujovic et al., 2013; 

Rottschy et al., 2007). The adjacent areas also show a diminished increase in 

cell-size in cortical layer III  (Rottschy et al., 2007) and a lower cell-density in 

the upper part of cortical layer III (Kujovic et al., 2013) – further emphasizing 

the importance of the cell-sparse layers as a distinguishing factor for the deep-
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learning approach to consider when segmenting the secondary visual cortex. In 

general, these observations support the notion that the revised deep-learning 

approach captures traditional cytoarchitectonic features of cortical areas with a 

special emphasis on cortical layers.  

4.2.2 Comparisons to Profile-based Image Analysis 

At the same time, the learned internal feature representations compared well to 

the profile shapes and statistically defined borders of the profile-based 

approach (Kiwitz et al., 2020). Whereas the profiles mostly reflect the vertical 

architecture of the cortex in the form of cortical columns along their trajectory 

from the white matter to the pial surface, the revised deep-learning approach 

complements this by having developed internal representations of cortical 

layers in the horizontal direction. Together with the cell-related and area-related 

feature representations, they form an internal representation of cortical 

cytoarchitecture at different spatial resolutions - a circumstance that the current 

profile-based approach does not mimic (Kiwitz et al., 2020). Such a multi-scale 

representation is of special importance to capture the multi-scale organization 

of the cortex (Amunts and Zilles, 2015). A further more concrete difference 

between the two approaches constitutes the possibility to directly assess the 

incorporated cytoarchitectonic features, which the current profile-based 

approach is not capable of unambiguously (Schleicher et al., 2000; Schmitt et 

al., 2003).  

When comparing both approaches it should be taken into consideration 

however, that they operate on different data. While the revised deep-learning 

approach operates directly on patches of histological sections (Schiffer et al., 

2021), the profile-based approach operates on lower dimensional thresholded 

GLI images (Schleicher et al., 1999; Schleicher and Zilles, 1990; Zilles et al., 

2002). It cannot be ruled out that this difference may have an impact on the 

approaches’ performance. A detailed analysis of cortical area-related internal 

representations of the revised deep-learning approach in Study 3 for example, 

has shown that assumed internal border representation between the primary 

and secondary visual cortex is slightly shifted (Kiwitz et al., 2020). The border 

between the primary and secondary visual cortex hosts various locally 
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restricted changes of cytoarchitecture in the form of transition areas (Economo 

and Koskinas, 1925; Sanides and Vitzthum, 1965). Such local peculiarities of 

cytoarchitecture may have a greater impact on the revised deep-learning 

approach due to its more direct operation on the histological data. The profile-

based approach on the other side may just be too insensitive to detect these 

local changes in cytoarchitecture. A comparison between both approaches has 

to be undertaken with care therefore.  

An additional limitation results from the inability to link the learned internal 

cytoarchitectonic feature representations to the actual segmentations. Despite 

having developed distinct sets of internal feature representations, the revised 

deep-learning based approach, although highly improbable, may not have used 

this information at all to produce anatomically plausible segmentations in the 

end. Other studies have used rather abstract mathematical descriptions to 

produce reproducible descriptions of borders without representing traditional 

architectonic features directly (Annese et al., 2004; Schmitt et al., 2003; Schmitt 

and Böhme, 2002). The direct incorporation of cytoarchitectonic features does 

not seem to be a necessary nor a sufficient condition for successfully 

segmenting cortical areas therefore (Kiwitz et al., 2020). Analyzing the internal 

feature representations of the revised deep-learning based approach provides 

another level of confidence in so far, as it reproduces what neuroanatomical 

experts see to a certain degree. The deep-learning approach may have indeed 

developed additional more non-intuitive features representing other (yet) 

unknown aspects of cortical cytoarchitecture. Studying such relationships in 

more detail in the future will allow us to assess the relevance of individual 

features for the actual segmentation performance in a more reliable fashion 

(Kiwitz et al., 2020). 

However, the sheer abundance of internal cytoarchitectonic feature 

representations and their nature across different cortical areas suggests that 

they are advantageous for mapping cytoarchitectonic areas. In combination 

with the correspondences to the profile-based approach, these insights into the 

internal structure therefore provide important arguments for the validity of deep-

learning based brain mapping. 
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4.3 Advantages of Deep-Learning Assisted Brain Mapping 

4.3.1 Time Efficiency  

While cytoarchitectonic analyses in cortical mapping studies have benefited 

significantly from the profile-based approach, recent developments of high-

throughput tissue scanners challenge the throughput for future studies. This is 

especially relevant for the 3D-reconstructed BigBrain dataset with its more than 

7400 stained histological sections (Amunts et al., 2013) at 20-micron isotropic 

resolution. Recent experience of our research group has shown that mapping a 

cortical area on every section in the BigBrain dataset would require roughly 1 

year per area when applying the profile-based approach. Taken together the 

time for generating reference delineations, computing and quality checks, the 

revised deep-learning approach narrows down the mapping time of a large 

cortical area like the primary visual cortex to roughly 1-2 weeks (Schiffer et al., 

2021). At the same time the approach is able to handle common mechanical 

damages like ruptures and tears resulting from histological processing of the 

tissue that impedes an application of the profile-based approach (Schiffer et al., 

2021). This constitutes a major increase in efficiency and enables mapping in 

full histological series of the BigBrain in a reasonable amount of time.  

4.3.2 Mapping of Subcortical Nuclei 

Since up to today no quantitative image analysis approach for cytoarchitectonic 

mapping of subcortical structures exists, it relies on careful visual analysis – 

imposing a possible threat to objectivity. This threat is partially reflected by the 

diverging numbers of subdivisions of the MGB and their topography (Figure 4) 

among different investigators reported during the last 60 years (Harrison and 

Howe, 1974; Hassler, 1959; Morel, 2007; Morest, 1964; Winer, 1984). The 

high-resolution maps of the MGB generated in the BigBrain in Study 2 provide 

an additional level of confidence since the revised deep-learning approach has 

helped to identify the subdivisions continuously throughout the whole extent of 

the metathalamus in the BigBrain. However, the existence of valid 

segmentations does not prove the approach to be valid for mapping subcortical 

nuclei per se. As demonstrated for cortical areas, the internal feature 

representations seemed to focus mainly on laminar differences. Further studies 
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evaluating internal feature representations on a subcortical level where laminar 

organization principles are mostly not abundant are needed to estimate the 

validity in this regard. For now, the revised deep-learning approach extends the 

current methodological options by providing additional verifications of 

anatomical plausibility on top of (subjective) visual analyses. This is useful for 

generating high-resolution maps but still requires neuroanatomical experts to 

carefully interpret and check the resulting maps.   

4.4 Current and Future Relevance of High-Resolution 
Brain Maps in the 3D – BigBrain  

4.4.1 Linking BigBrain Histology with Neuroimaging 

Recent improvements of spatial resolution of modern neuroimaging have made 

it possible to measure laminar brain activity (Huber et al., 2018; Jia et al., 2021) 

and identify functional subdivisions of subcortical structures (Rijk et al., 2021), 

as well as functionally homogenous cortical columns in the auditory and visual 

cortex (Martino et al., 2015; Nasr et al., 2016). The spatial resolution of such 

submillimeter measurements requires a similarly high level of anatomical detail 

of a reference space. The interoperability and its anatomical detail make 

cytoarchitectonic maps in the BigBrain (Amunts et al., 2013) an important 

histological reference in this regard to support the physiologically driven MRI 

measurements with the underlying cellular architecture. This becomes 

especially apparent when comparing the BigBrain to the limited anatomical 

detail of the MNI space.  

The BigBrain has been used to integrate histological data and neuroimaging 

data before. Most of the studies conducted comparisons of structural and 

functional correlations on a whole brain scale (Paquola et al., 2020b; Wei et al., 

2019), or specific parts of cortical lobes (Paquola et al., 2019; Royer et al., 

2020). During this thesis work generated maps provide more specific 

anatomical regions of interest in the BigBrain including visual cortical areas and 

subcortical nuclei of the metathalamus. The combination of whole-brain 

coverage in the BigBrain and a high level of detail, e.g. detailed subdivisions of 

the MGN, represents an advantage in comparison to other subcortical 

histological atlases (Ding et al., 2016; Krauth et al., 2010; Morel, 2007; Sadikot 
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et al., 2011) as well as probabilistic cytoarchitectonic atlases like the Julich-

Brain (Amunts et al., 2020).  

Current efforts of our research group incorporate the high anatomical detail of 

the BigBrain and combine it with deep-learning based cell-segmentations 

(Upschulte et al., 2022) and 3D cell-reconstructions (Dickscheid et al., 2019) to 

advance the options for extracting region-specific information from the BigBrain 

at the cellular level (Behuet et al., 2021; Dickscheid et al., 2019). High-

resolution maps play an important role in this regard since they provide more 

specific targeting spaces for region-of-interest analyses. This allows the maps 

to be an important bridge between macroscale connectivity and local 

microscale circuitry. One future candidate analysis in this regard is the 

transition region between the primary and secondary visual cortex which hosts 

several locally restricted cytoarchitectonic phenomena (Amunts et al., 2000; 

Economo and Koskinas, 1925; Kiwitz et al., 2020) that are partly involved in 

interhemispheric transmission of visual information covering the vertical 

meridian of the visual field (Caspers et al., 2015; Clarke and Miklossy, 1990). 

Discovering these cytoarchitectonic peculiarities bears the potential to reveal 

new structural-functional insights that will help to further understand information 

processing in the visual system.  

At the same time the single-subject character of the BigBrain shares the 

drawback of missing interindividual variability, much like Brodmann’s first map 

(Brodmann, 1909). Probabilistic atlases are therefore still important to consider 

when linking neuroimaging data with a reference space. We acknowledged this 

circumstance by having calculated additional probabilistic maps of the human  

metathalamus utilizing the well-established atlas framework of the Julich-Brain 

(Amunts et al., 2020). Despite modern neuroimaging being able to generate in-

vivo probabilistic maps of cortical (Glasser et al., 2016; Wang et al., 2015) and 

subcortical structures (García-Gomar et al., 2019; Iglesias et al., 2018; 

Najdenovska et al., 2018; Pauli et al., 2018; Saranathan et al., 2021), as well 

as functional probabilistic maps of neural networks (Dworetsky et al., 2021; 

Hermosillo et al., 2022), the unique advantage of the Julich-Brain constitutes its 

direct resemblance of the human brain’s microanatomy at cellular resolution. 

MRI-based mapping on the other hand is technically restricted to lower spatial 
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resolutions and usually requires the aid of histological atlases to overcome the 

still limited discernibility - resulting in an often limited fit between the reference 

space and the atlas information (Ewert et al., 2018). The interoperability of the 

Julich-Brain further enables its cytoarchitectonic brain maps to be an important 

building block of multimodal atlases (Fischl and Sereno, 2018; Glasser et al., 

2016; Toga et al., 2006) – already envisioned by the Vogts who thought to 

combine Brodmann’s cytoarchitectonic parcellations with their fiber 

architectonic parcellations (Zilles and Amunts, 2010).  

4.4.2 Brain Simulation and Modelling 

The benefit of reference spaces and atlases like the Julich-Brain and the 

BigBrain is not limited to neuroimaging data integration though. Besides 

studying structure-function relationships in the human brain, the BigBrain 

especially can be used to develop better and more realistic human brain 

models. Incorporating cytoarchitectonic parameters has recently led to the 

development of biologically valid models of the macaque visual system 

including cortical areas of different architectural types (Schmidt et al., 2018), as 

well as models of the human cerebellar granular layer (Florimbi et al., 2021) 

and first models of the human visual system (Pronold et al., 2018). However, 

such models usually lack quantitative thalamic input parameters, requiring them 

to be indirectly estimated (Schmidt et al., 2018). High-resolution subcortical 

maps in the BigBrain can enrich such brain modelling approaches directly by 

providing such cellular-level information (Kiwitz et al., 2022).  

A crucial point in establishing realistic models is the incorporation of 

connectivity data. Recent advances in reconstructing the white matter fiber 

architecture from Nissl-stained glia cells (Schurr and Mezer, 2021) could allow 

the histology of the BigBrain to be complemented by connectivity data of 

cortical and subcortical areas (Kiwitz et al., 2022). Others have already used 

PLI to detect target sites for transcallosal fibers in the visual cortex of the 

BigBrain (Caspers et al., 2015) and cortex-like canonical circuits in the avian 

forebrain (Stacho et al., 2020). Combining such information with the 

cytoarchitecture can increase the biological validity of mechanistic models of 

the human sensory systems (Vecchi et al., 2021) and enable more detailed 
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models of thalamic gating phenomena (Xiong et al., 2020) on a systems level. 

By providing high-resolution topographical information, the BigBrain maps 

further contribute to improve personalized brain models of specific neurological 

pathologies like epilepsy in the Virtual BigBrain (Bernard and Jirsa, 2016; 

Triebkorn et al., 2021, unpublished results).  

All mentioned areas of usage depend on the feasibility to integrate data into 

and out of the BigBrain reference space. Recent advances in image registration 

procedures have led to improved registrations to other reference spaces (Xiao 

et al., 2019), as well as the publicly available BigBrainWarp toolbox (Paquola et 

al., 2021) and the EBRAINS VoluBA toolbox for spatial anchoring in the 

BigBrain space (https://ebrains.eu/service/voluba/). As the BigBrain dataset is 

continuously expanded by cortical and subcortical cytoarchitectonic maps, as 

well as intracortical surface models (DeKraker et al., 2020; Paquola et al., 

2020a; Wagstyl et al., 2020), it provides an increasingly rich resource for such 

integrative approaches (Kiwitz et al., 2022). The scrutiny and application of 

deep-learning based methods for cortical and subcortical brain mapping in the 

BigBrain contributes to this development. 

4.4.3 Conclusion 

This thesis work provides a first use-case for using deep-learning based 

cytoarchitectonic brain mapping for cortical and subcortical structures in the 

BigBrain on a routine basis. The application of the revised deep-learning based 

approach has provided maps of visual cortical areas and the subcortical MGB 

which correspond to cortical delineations based on the current profile-based 

approach as well as subcortical histological atlases. On top of the high 

accuracy and quality of the maps, the revised deep-learning approach 

incorporated traditional cytoarchitectonic features with a special emphasis on 

laminar features. The learned internal feature representations also compared 

well to profile shapes and border positions of the profile-based approach. Yet, 

further studies are still needed to analyze in how far cytoarchitectonic features 

of subcortical nuclei are represented and in how far such feature 

representations are actually used to segment brain areas. The use of the 

revised deep-learning based approach significantly increases the throughput 
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for mapping purposes in the BigBrain in comparison to the profile-based 

approach. Additionally, it enables an independent verification of subcortical 

nuclei maps beyond sole visual inspection. High-resolution cortical and 

subcortical maps enable the interoperable BigBrain to be used as a histological 

reference space that surpasses commonly used reference spaces like MNI in 

anatomical detail. This will allow future investigators to integrate the maps with 

high-resolution neuroimaging data as well as to develop better and more 

realistic human brain models.  
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