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Summary

Cytoarchitectonic maps provide important microanatomy based parcellations of the
brain. The current state-of-the-art approach for cytoarchitectonic brain mapping
involves image analysis techniques quantifying cytoarchitecture by extracting cortical
profiles orthogonal to the cortical surface. Despite continuous improvements, this
profile-based approach remains limited in throughput and is only applicable to cortical
areas. We therefore investigated the quality and anatomical plausibility of a revised
deep-learning based brain mapping approach in the BigBrain — a high-resolution 3D
histological model of the human brain. In a first study, four visual cortical areas were
mapped using the profile-based approach to train and apply the revised deep-learning
approach to dense series of histological sections in the BigBrain. A second study
expanded the use of the deep-learning based approach to a nucleus of the
metathalamus to evaluate its subcortical applicability. Additionally, cytoarchitectonic
probabilistic maps of the metathalamic nuclei were computed based on mappings in
ten postmortem brains as part of the Julich-Brain atlas. In a third study, an evaluation
of the operational mode of the revised deep-learning approach was performed by
analyzing its internal structure with regards to representations of cytoarchitectonic
features. An additional comparison to cytoarchitectonic features and borders positions
reflected by the profile-based approach aimed at providing an independent verification

of the deep-learning approach’s validity.

The revised deep-learning approach was able to consistently map the four cortical
visual areas as well as the subcortical metathalamic nucleus. Throughout their whole
extent in the BigBrain, the maps showed a high degree of quality and anatomical
plausibility with regards to topography and extent. Detected borders of cortical areas
were co-localized to borders found by the profile-based approach and reproduced
findings from subcortical maps in microscopic histological atlases, respectively. The
analysis of the internal structure of the revised deep-learning approach revealed
cytoarchitectonic feature representations especially on the laminar level. At the same

time the new approach allowed mapping of large series of histological sections.

Our analyses demonstrate the potential to overcome limitations of the profile-based
approach and provide a first step towards using deep-learning based brain mapping
on a routine basis in high-resolution brain models like the BigBrain dataset. The
generated maps are publicly available and will help future investigators to integrate the
interoperable BigBrain with high-resolution neuroimaging data as well as to develop

better and more realistic human brain models.



Zusammenfassung

Zytoarchitektonische Karten liefern wichtige mikroanatomische Parzellierungen des
Gehirns. Die derzeitige Methode zytoarchitektonischer Parzellierung beruht auf
Bildanalysetechniken, welche die Zytoarchitektur anhand orthogonal zur kortikalen
Oberflache extrahierter Profile quantifizieren. Trotz standiger Verbesserungen ist
dieser Ansatz in seiner Verarbeitungsmenge begrenzt und nur auf kortikale Bereiche
anwendbar. Hier wird daher die Qualitat und die anatomische Plausibilitat eines Deep-
Learning-basierten Hirnkartierungsverfahrens im BigBrain - einem hochaufgeldsten
histologischen 3D-Modell des menschlichen Gehirns - untersucht. In einer ersten
Studie wurden vier visuelle kortikale Areale mit Hilfe des profilbasierten Ansatzes
kartiert, um einen adaptieren Deep-Learning-Ansatz zur Hirnkartierung auf dichten
Serien histologischer Schnitten im BigBrain zu trainieren und anzuwenden. In einer
zweiten Studie wurde die Anwendung des Deep-Learning-Ansatzes auf einen Kern
des Metathalamus ausgedehnt, um die subkortikale Anwendbarkeit zu bewerten.
Zusatzlich wurden probabilistische zytoarchitektonische Karten metathalamischer
Kerne auf der Grundlage von Kartierungen in zehn post-mortem Gehirnen als Teil des
Julich-Brain-Atlas berechnet. In einer dritten Studie wurde die Funktionsweise des
Deep-Learning-Ansatzes evaluiert, indem die interne Struktur auf widergespiegelte
zytoarchitektonische Merkmale hin analysiert wurde. Ein zusatzlicher Vergleich mit
widergespiegelten zytoarchitektonischen Merkmalen und Grenzpositionen des
profilbasierten Ansatzes ermdglichte eine unabhangige Uberpriifung der Validitat des
Deep-Learning-Ansatzes.

Der adaptierte Deep-Learning-Ansatz war in der Lage, die vier kortikalen visuellen
Areale sowie den subkortikalen metathalamischen Kern konsistent zu kartieren. Die
Karten wiesen Uber ihre gesamte Ausdehnung im BigBrain ein hohes Mal} an Qualitat
und anatomischer Plausibilitat in Bezug auf Topographie und Ausdehnung auf. Die
ermittelten Grenzen der kortikalen Areale waren mit den durch den profilbasierten
Ansatz gefundenen Grenzen ko-lokalisiert und reproduzierten die Befunde
subkortikaler Karten in histologischen Atlanten. Die Analyse der internen Struktur des
adaptierten Deep-Learning-Ansatzes zeigte zytoarchitektonische
Merkmalsreprasentationen insbesondere auf der laminaren Ebene auf. Gleichzeitig
ermdglichte der neue Ansatz die Kartierung grofRer Serien histologischer Schnitte.

Unsere Analysen zeigen das Potenzial auf, die Einschrankungen des profilbasierten
Ansatzes zu Uberwinden und stellen einen ersten Schritt zur routinemaRigen
Anwendung von Deep-Learning-basierter Hirnkartierung in hochaufgelésten
Gehirnmodellen wie dem BigBrain-Datensatz dar. Die generierten Karten sind
offentlich zuganglich und werden zuklnftigen Forschern helfen, das interoperable
BigBrain mit hochauflésenden Bildgebungsdaten zu integrieren sowie bessere und
realistischere menschliche Gehirnmodelle zu entwickeln.
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1 Introduction

1.1 Cytoarchitecture of the Human Brain

Since the second half of the 19" century the microscopic architecture of the
human brain has been studied. Differentiating and defining the architecture of
cells in the cerebral cortex (cytoarchitecture) is strongly linked to the advent of
histology. In his famous work from 1872 (Meynert, 1872a), Viennese
psychiatrist Theodor Meynert already described regional differences in the
cellular architecture of cerebral grey matter in cell-stained brain sections —
establishing the scientific field of cytoarchitectonics. Following Meynert's
observations an early faction of neuroanatomists (Campbell, 1904; Flechsig,
1898; Smith, 1907) parcellated the cerebral cortex into distinct areas in the
following years. Above all stands Korbinian Brodmann’s famous
characterization of 43 cortical areas of the human brain (Brodmann, 1909). As
a student and employee of Cecile and Oskar Vogt in Berlin, he developed the
still to this date used nomenclature of the Brodmann Areas (BAs). In the first
half of the 20" century Brodmann’s work inspired others to further develop the
cytoarchitectonic parcellation of the human brain, especially the monumental
work of v. Economo and Koskinas (Economo and Koskinas, 1925) and the
upcoming Russian school (Sarkisov et al., 1949). The early histological works
mainly focused on the cytoarchitecture of the cortex. It was only later that
subcortical structures like the thalamus gained attention (Grunthal, 1934; Vogt
and Vogt, 1941) resulting in subcortical parcellations half a century later than

the cortical parcellations (Hassler, 1959).

1.1.1 Early Cytoarchitectonic Maps: Strengths and Limitations

Especially the early works of Brodmann (1909) still have a great impact on
contemporary neuroscientific work. They have paved the way for analyzing
structure-function relations of the human brain and comparative multimodal
neuroanatomical studies (Zilles and Amunts, 2010). A reflection of this impact
is the still used nomenclature of the Brodmann areas as topographic
descriptors for brain areas. Brodmann’s map and his methodology did not

remain uncriticized though. Bailey and Bonin (1951) were among the first to



address the inherent lack of observer-independency and reproducibility with
respect to Brodmann’s parcellations. Another major drawback constituted
interindividual differences in cytoarchitecture that remained neglected in
Brodmann'’s single subject map (Lashley and Clark, 1946). Both aspects also
apply to the works of Brodmann’s followers who provided more detailed maps
that yet shared the same limitations (Economo and Koskinas, 1925; Sarkisov et
al., 1949). Furthermore, the focus on the cytoarchitecture of the cortex in the
early works also impeded to study possible structure-function relationships of

subcortical structures.

The advent of modern neuroimaging in the 1980s and the need for anatomical
reference spaces and atlases has renewed the interest in the early works once
more. Along with this development new, more observer-independent
quantitative image analysis methodologies (Wree et al., 1982; Zilles et al.,
1978) were developed to support the renewed interest in cytoarchitectonic
brain mapping that led to the current state-of-the-art approach for
cytoarchitectonic brain mapping (Amunts et al., 2020; Schleicher et al., 1999;
Zilles et al., 2002). This approach helped to overcome the inherent drawbacks
of missing objectivity and single subject maps. Yet, the creation of new high-
resolution anatomical reference spaces and the inability to quantitatively map
subcortical nuclei challenge currently used methodologies once more and have
prompted the first implementations of deep-learning based solutions (Spitzer et
al., 2018; Spitzer et al., 2017) whose scrutiny and application is explored in this

thesis.

The remainder of this introduction gives an overview of principles of
cytoarchitectonic organizations (chapter 1.1.2) before introducing
cytoarchitectonic maps in the context of atlas concepts for neuroimaging
(chapter 1.2). Current approaches for cortical and subcortical cytoarchitectonic
brain mapping are reviewed in chapter 1.3.1 and 1.3.2 before introducing deep-
learning based approaches as a potential candidate to overcome limitations of
the currently applied approaches (chapter 1.3.3). Chapter 1.4 argues to assess
the scrutiny and applicability of a revised deep-learning based approach based
on the well- studied visual cortical areas and subcortical metathalamic

structures which constitutes the motivation behind this thesis work.



1.1.2 Principles of Cytoarchitectonic Organization

The cerebral cortex (from here on called cortex) constitutes the
phylogenetically youngest part of the human brain. It forms the outer layer of
neural tissue of the cerebrum (grey matter) and can be classified into the six-
layered isocortex and the three- to eleven-layered allocortex (Strominger et al.,
2012; Zilles and Amunts, 2012). Neocortical layers stretch from the pia mater
on the brain’s surface to the underlying white matter and are numbered from |
to VI forming a cortical thickness of the isocortex of roughly 1.8 to 3.8 mm
(Economo and Koskinas, 1925). The horizontal organization of the estimated
16 billion neurons in the human cortex (Herculano-Houzel, 2009) into layers is
accompanied by cortical columns and minicolumns that form an additional
radial organizational principle (Figure 1). Analyzing the cellular composition of
cortical layers reveals a characteristic distribution of neurons and their

connections to other cortical and subcortical areas (Figure 1).
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Figure 1: Schematic overview of cortical layers. The schematic representation of a cell-body
stained image on the left shows the 6-layered neocortex with an accompanying fiber stained
image in the middle showing vertical and horizontal axonal connections within the cortex
(adapted and modified with permission from Amunts et al. (2010) © 2010 Springer and
modified after Vogt and Vogt (1919)). Images on the right show the characteristic cellular
composition of the cortical layers of the primary (BA 17) and secondary (BA 18) visual cortex
on cell-body stained brain sections (adapted and modified after Kiwitz et al. (2020)). The
secondary visual cortex shows clearly visible vertically-oriented cortical columns (layer I1I-V)
in comparison to the primary visual cortex.



Differences in the cellular composition and laminar differentiation have led to
the definition of cytoarchitectonic features including laminar thickness, laminar
arrangement, as well as cell size, cell density, cellular clustering and the
sharpness of the white matter/grey matter border that characterize the
cytoarchitectonic appearance of a specific cortical region (Campbell, 1904;
Economo and Koskinas, 1925; Flechsig, 1898; Smith, 1907). Due to the mostly
missing laminar organization of subcortical nuclei, their delineation on cell-body
stained sections mostly relies on cellular features like cell sizes and cell
densities, as well as differences in cell morphology and the sharpness of

borders to other subcortical nuclei.

1.2 Atlas Concepts for Neuroimaging

With the advent of modern neuroimaging it became possible to study the
structural and functional organization of the living human brain. Along with the
development of more and more advanced imaging techniques, milestone
achievements regarding human cognition (Owen et al., 2005; Saxe and
Kanwisher, 2003), neurodegenerative (Stoessl et al., 2011) and psychiatric
diseases (Gong et al., 2019; Pantelis et al., 2003) as well as healthy brain
function and development (Giedd et al., 1999; Raichle and Snyder, 2007) have

been made.

From the beginning of modern neuroimaging on, the need for an anatomically
plausible anchoring of imaging data increased the interest in the early
cytoarchitectonic maps once more. To integrate structural and functional
neuroimaging data, a common reference space was needed - of which the
Talairach space was the first (Talairach and Tournoux, 1988). It incorporated a
3D-representation of Brodmann’s map of cytoarchitectonic areas. The MRI-
based MNI space (Evans et al., 2012) subsequently largely replaced the
Talairach space. Other atlas concepts incorporated Brodmann’s maps as well
and helped to localize and quantify PET imaging data (Seitz et al., 1998; Seitz
et al., 1990). Today, averaged reference spaces like the MNI ICBM 152 2009c
nonlinear asymmetric space encompass interindividual variations (Evans et al.,

2012), while disease- and ethnicity-specific reference spaces (Thompson et al.,



2001; Wang et al., 2013; Xiao et al., 2017) consider specific pathologies and

populations.

1.2.1 Probabilistic Brain Mapping — The Julich-Brain

To overcome missing interindividual variations in existing atlases, advances in
histological cytoarchitectonic brain mapping in the last 30 years have led to
creating probabilistic atlases (Amunts et al., 2020; Amunts and Zilles, 2015;
Eickhoff et al., 2005a; Mazziotta and Toga, 2002; Schleicher et al., 1999). The
Julich-Brain (Amunts et al., 2020) for example constitutes a dynamic three-
dimensional atlas of the brain’s cortical and subcortical cytoarchitecture that
incorporates probabilistic cytoarchitectonic maps of currently more than 200
areas. It also emphasizes the role of image analysis workflows to generate
maps on a statistically reliable foundation. The integration into the MNI
reference space makes the Julich-Brain interoperable with other brain atlases
and resources. The cytoarchitectonic maps of the Julich-Brain are also included
in frequently used toolboxes like SPM (Eickhoff et al., 2005b) and FSL
(Jenkinson et al., 2012), as well as the EBRAINS multilevel human brain atlas
(Amunts et al., 2022). This integration enables the neuroimaging community to
link molecular, genomic, connectivity-based, and functional aspects of brain
organization to the underlying cytoarchitectonic maps — contributing to the
development of multimodal brain atlases (Amunts et al., 2020; Amunts and
Zilles, 2015; Glasser et al., 2016; Toga et al., 2006).

1.2.2 Overview of Subcortical Atlases of the Brain’s Microstructure

For subcortical structures the earliest implementation of histologically-derived
maps into a reference space came from Schaltenbrand and Bailey (1959) who
included the thalamic maps of Hassler (1959). Similar to Schaltenbrand and
Bailey (1959), Mai et al. (2016) used fiber architectonic stainings to provide
illustrations of the thalamus and basal ganglia, which was expanded by the
stereotaxic atlas of Morel (2007) by additional staining procedures to define
boundaries of thalamic nuclei normalized to the MNI space. Recently, Ding et
al. (2016) provided an atlas that summarizes the contemporary knowledge
regarding the microanatomy of subcortical nuclei. Unfortunately, similar to the

first cortical maps, histological atlases of subcortical nuclei are often created on



the basis of a limited sample size (Ding et al., 2016; Mai et al., 2016; Morel,
2007).

The histologically-defined cytoarchitectonic parcellations of the Julich-Brain
atlas and the aforementioned subcortical histological atlases constitute gold-
standard references providing anatomical anchors for neuroimaging (Amunts et
al., 2020; Pijnenburg et al., 2021), deep-brain stimulation (Chakravarty et al.,
2006; Horn et al., 2019) and probabilistic in vivo MRI atlases (Garcia-Gomar et
al., 2019; Pauli et al., 2018; Saranathan et al., 2021). Yet, their integration into
the MNI space relies on careful 3D-reconstructions (Amunts et al., 2020) and
normalization is challenged by the limited anatomical detail of the MNI space,

especially when anchoring small subcortical nuclei.

1.2.3 The BigBrain as a High-Resolution Anatomical Model and
Reference Space

At the same time the spatial resolution of ultra-highfield functional MRI has
increased to the submillimeter range in recent years, allowing for more and
more detailed functional studies (Martino et al., 2018; van der Zwaag et al.,
2016). This imposes further new challenges to link such data with the limited
spatial resolution and anatomical details of the MNI space. For data integration
on the level of cortical layers and columns, as well as small subcortical nuclei, a
histological reference space that provides microscopic resolution is necessary.
The BigBrain dataset based on its 7404 sections cell-body stained and 3D-
reconstructed sections fulfils such requirements and provides an isotropic
spatial resolution of 20 micrometers (Amunts et al., 2013). As such, it has
previously been used to validate MRI based models of brain connectivity
(Paquola et al., 2020b; Wei et al., 2019), functional and structural gradients
(Paquola et al., 2019; Royer et al., 2020), as well as default mode network
components (Paquola et al., 2019) by linking MRI-based measurements with
the underlying microanatomy. Available transformations to the MNI space make
it an interoperable high-resolution histological reference space for the

neuroscientific community.



1.3 Methods for Cytoarchitectonic Brain Mapping

1.3.1 Visual Inspections and First Quantitative Methods

Brodmann (1909) and the other early 20" century neuroanatomists mainly used
light-microscopy to delineate the cortex based on its cytoarchitectonic
appearance. This procedure imposes a degree of subjectivity to the early
cytoarchitectonic works — well reflected by the diverging numbers of delineated
areas and their topography (Brodmann, 1909; Campbell, 1904; Smith, 1907,
Zilles and Amunts, 2010). The subsequent analysis of the monumental work by
Economo and Koskinas (1925) added quantitative criteria like mean cell sizes
and densities for each cortical layer including their variability, as well as laminar
and cortical thickness measurements to denote differences between cortical
areas. The Economo atlas represents a whole-brain cytometric reference
therein that is still used today to provide anatomical references for
neuroimaging (Pijnenburg et al., 2021; Scholtens et al., 2015) and parameters
for brain modelling (Pronold et al., 2018). Analyzing the microarchitecture of the
brain using light-microscopy is nowadays accompanied by modern high-
resolution tissue scanning technologies which enable the digitization of whole
brain series of sections. Visual inspections using digitized sections and
microscopes, as well as quantitative measures like cell counts and cell-
densities remain important neuroanatomical tools to denote differences
between brain areas. This is especially the case for subcortical areas for which

a more observer-independent approach has not been established yet.

1.3.2 Profile-based Image Analysis for Cortical Mapping

On the cortical level, computerized image analysis workflows have enabled a
more objective and reproducible identification of borders between cortical areas
in the last 30 years (Schleicher et al., 2005; Schleicher et al., 1999; Schmitt et
al., 2003; Zilles et al., 2002) — building the statistically reliable foundation of the
Julich-Brain (Amunts et al., 2020). The current state-of-the-art method for
quantitative cytoarchitectonic analysis uses a measure of the volume fraction of
cell bodies — the grey level index (GLI) — extracted along profile traverses
(Schleicher et al., 1999). The definition of the profiles follows the Laplacian field

from the cortical layer l/layer Il border to the white matter border on the GLI



images (Schleicher et al., 2005; Schleicher et al., 2000; Zilles et al., 2002)
reflecting the cytoarchitecture of the analyzed region. Feature vectors of the
profiles’ shape functions are then extracted to analyze changes in
cytoarchitecture. They contain the mean GLI value, the first four central
moments about the mean: mean, standard deviation, skewness and kurtosis,
as well as values of the feature vectors’ first differential quotients (Schleicher et
al., 1999; Zilles et al., 2002). A sliding-windows approach finally captures
borders between cortical areas by calculating multivariate difference functions
of the feature vectors while moving across the cortical ribbon (Schleicher et al.,
1999).

Other profile-based approaches use excess mass functionals in the feature
vectors to establish a relation to differences in cortical lamination in consecutive
profiles (Schmitt et al., 2003) or wavelet analyses (Annese et al., 2004). The
former reduces the complex shape of the profile to the number of local peaks
and their differences, the later bundles profile data in large wavelet coefficients.

Both have been applied in only a small number of applications.

A commonly shared drawback of the profile-based approach is that the
extracted profiles only partly reflect traditional cytoarchitectonic criteria. It
focuses more on statistical image criteria by relating the central moment
parameters of profiles to aspects of cytoarchitecture, e.g., mean cell packing or
differences in cell density between cortical layers (Schleicher et al., 2000; Zilles
et al., 2002). Such a reasoning cannot be made unequivocally though, since
one and the same profile can result from a higher density of small neurons or a
lower density of large neurons (Schleicher et al., 2000). The conception to
detect laminar differences in the cellular pattern also restricts the profile-based
approach to analyzing the cytoarchitecture of the cortex — prohibiting a
quantitative analysis of subcortical nuclei. Recent developments of high-
resolution models like the BigBrain furthermore challenge the throughput of the
labor- and time-intensive profile-based approach for future studies. This

emphasizes the need for a more automatic, yet biologically valid alternative.
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1.3.3 Deep-learning Based Approaches

Recently deep learning techniques have shown to be a new and promising
alternative in the dynamically evolving field of medical image analysis (Komura
and Ishikawa, 2018; Litjens et al., 2017; Madabhushi and Lee, 2016; Shen et
al., 2017; Xing and Yang, 2016) to potentially overcome the limitations of the
current profile-based approach. Adaptations for segmenting cortical areas of
our group have demonstrated that deep-learning approaches generate more
automatic, consistent segmentations across sections that are transferable to
other brains with high throughput (Spitzer et al., 2018; Spitzer et al., 2017).
These preliminary works nevertheless also showed that the existing methods
are not yet accurate enough to effectively produce anatomically plausible
segmentations (Figure 2). It is also unclear in how far they incorporate
traditional cytoarchitectonic features and compare to the current profile-based
approach. A more automatic classification of cytoarchitectonic areas remains
challenging therefore and revised approaches to assist neuroanatomists with

the time and labor intensive cytoarchitectonic mapping work are needed.
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Figure 2: Comparing cytoarchitectonic brain mapping of visual cortical areas using
profile-based and deep-learning based approaches. (a) upper image: excerpt from cell-body
stained brain section of the left occipital lobe (adapted and modified with permission from
Spitzer et al. (2017) © 2017 IEEE) of a postmortem brain that is part of the Julich-Brain (B1,
section 1141 (Amunts et al., 2020)). The dashed box indicates the ventral part of the visual
system with major sulci annotated (cs = calcarine sulcus, ligs = lingual sulcus, cols = collateral
sulcus); middle image: statistically significant borders (cyan profiles) between the primary
(yellow profiles), secondary (blue profiles) and ventrally adjacent (green profiles) visual cortex
determined using the profile-based approach; bottom image: segmentations of seven visual
cortical areas using a deep-learning based approach (Spitzer et al., 2017) with superimposed
borders from the middle image. The depicted brain is part of the Julich-Brain (b) and (c)
magnified excerpts from a) covering the secondary and ventrally adjacent (b) as well as
primary and secondary (c) visual cortex (upper images) with borders determined by the profile-
based approach (middle images) and segmentations of the deep-learning based approach
(bottom images). The bottom images show that the deep-learning based segmentations do not
match the border positions detected in (b) and misrepresent the topographic relation of the
adjacent primary (yellow) and secondary (blue) visual cortex.
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1.4 Target Areas for Studying Deep-Learning Based
Approaches

1.4.1 The Visual Cortex

Studying the use of revised deep-learning approaches inevitably raises the
question of target areas to test their performance and applicability on. As one of
the most intensively studied parts of the mammalian brain (Espinosa and
Stryker, 2012; Hubel and Wiesel, 1962; Tootell et al., 1988), the visual cortex
constitutes a possible candidate to test and apply such new cytoarchitectonic

mapping approaches.

The human visual cortex covers almost all of the occipital lobe of the brain and
can be differentiated into a striate area (primary visual) mostly located inside
the Calcarine sulcus (Figure 2a, upper image) and several extrastriate areas
(Gennari, 1782; Meynert, 1872b). Like other parts of the cortex involved in
sensory information processing, the visual cortex is characterized by its high
granularity, i.e. a very pronounced layer |l and IV (Orban et al., 2004). Layer IV
of the primary visual cortex is further subdivided into multiple sublayers (Figure
1) and characterized by a “tremendous abundance of granular cells” (Economo
and Koskinas, 1925), which contributes significantly to its striate appearance.
The latter is especially apparent for sublayer IVc where visual information
coming from the lateral geniculate body (LGB) of the metathalamus enters the
cortex. Fiber-stained sections underline the special laminar characteristics by
showing a distinct fiber bundle in sublayer IVb contemporaneously described
by Francesco Gennari (Gennari, 1782) and Félix Vicq d’Azyr (Vicg-d’Azyr,
1786) from whose works the term striate cortex derives. The adjacent visual
cortex maintains the clear laminar appearance by showing a very cell-sparse
layer V in comparison to the cell-dense cortical layers IV and VI on cell-body

stained sections (Amunts et al., 2000; Economo and Koskinas, 1925).

Retinotopically aligned information from the LGB enters layer I\Vc of the primary
visual cortex with the horizontal meridian of the visual field represented in the
fundus of the calcarine sulcus and the vertical meridian represented at the
border to the secondary visual cortex (Abdollahi et al., 2014). The functional

separation in the primary visual cortex including ocular dominance columns,
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orientation columns as well as blob and inter-blob regions (Ts'o et al., 2009)
has provided insights into the structural-function organization of early visual
processing. These organizational principles build the foundation for higher
visual processing in adjacent visual areas of the ventral and dorsal visual
streams included in movement perception (Kolster et al., 2010; Malikovic et al.,
2007), color perception (Nasr et al., 2016) as well as object and face
recognition (Kanwisher et al., 1997; Weiner and Zilles, 2016). Early
cytoarchitectonic works of Brodmann (1909) and Economo and Koskinas
(1925) already established a widely accepted structural framework for visual
information processing starting in the primary visual cortex (BA17 or OC after
Economo and Koskinas’ nomenclature) that transmits information via the
dorsally and ventrally surrounding area BA18/0OB to BA19/OA. This classical
parcellation has been confirmed for BA17 and BA18 (Amunts et al., 2000) and
more recent studies (Kujovic et al., 2013; Malikovic et al., 2016; Malikovic et al.,
2007; Rottschy et al., 2007) have shown an even more differentiated

parcellation of higher visual cortical areas than assumed in the classical works.

Studies investigating connectivity among visual cortical areas (Burkhalter and
Bernardo, 1989; Caspers et al., 2015; Markov et al., 2014), have further
shaped our understanding of the visual system - making it a holistically studied
model system on a structural and functional level. The well-studied
characteristics of the visual cortex have just recently been used to generate
biologically-valid models of the macaque visual system (Schmidt et al., 2018)
and create multimodal atlases of the human visual system (Rosenke et al.,
2017). Especially the distinct cytoarchitectonic features of the early visual areas
make it a suitable candidate system for scrutinizing the applicability of novel

deep-learning based approaches for cytoarchitectonic brain mapping.

1.4.2 The Metathalamus

Before visual and auditory information enters the cortex, it is passed through
the metathalamus. Its function as a subcortical relay station for visual and
auditory information, makes it a target to expand the assessment of deep-
learning based approaches to subcortical nuclei. The human metathalamus

consists of two major nuclei: the lateral geniculate body (LGB) and the medial
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geniculate body (MGB), which are located caudoventrally of the main body of
the thalamus. The LGB receives visual information from axons of retinal
ganglion cells covering the contralateral visual field via the optic tract. Afferents
from layer 6 of the visual cortex and the reticular nucleus of the thalamus
contribute information as well, modulating the retinogeniculate transmission
(Sherman and Guillery, 2002). The human LGB has 6 layers, with 2
magnocellular and 4 parvocellular layers processing the functionally distinct
magnocellular and parvocellular pathways from the retina separately for each
eye. The most prominent efferent connection of the LGB constitutes the optic
radiation which projects to the primary visual cortex. The LGB can be
considered a visual relay station involved in sensory gating the thalamic output
to the visual cortex (McCormick and Bal, 1994).

The MGB serves similar purposes for the auditory domain. It has previously
been subdivided according to its cytoarchitecture into three major
compartments: the ventral, dorsal and medial subdivisions (Ramoén y Cajal,
1909; Winer, 1984). Evidence from studies in mammals support the notion that
the ventral MGB receives ascending tonotopically-aligned projections via the
medial lemniscus and inhibitory projections from the inferior colliculus (Caspary
and Llano, 2017; Peruzzi et al., 1997; Saint Marie et al., 1997), whereas the
dorsal and medial MGB receive input from the inferior colliculus, as well as
feedback from the auditory cortex (Calford and Aitkin, 1983; Llano and
Sherman, 2008). The ventral MGB has also been interpreted as a first-order
sensory nucleus of the thalamus since it shows major projections to the
auditory cortex (Malmierca et al., 2015; Winer et al., 2005). From a functional
perspective, the MGB transforms the ascending sensory information and gates
its saliency for its major output: the auditory cortex (Caspary and Llano, 2017;
Winer et al., 1999).

Due to their importance for subcortical sensory information processing the LGB
and MGB have previously been mapped as part of several subcortical atlases
of the human brain (Ding et al., 2016; Mai et al., 2016; Morel, 2007;
Schaltenbrand and Bailey, 1959). Recent efforts have been made to create in
vivo subcortical atlases of the human thalamus (Garcia-Gomar et al., 2019;

Iglesias et al., 2018; Najdenovska et al., 2018) in combination with histological
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maps (Ewert et al., 2018; Iglesias et al., 2018). Following this line, we sought to
expand and scrutinize the applicability of deep-learning based approaches for

cytoarchitectonic brain mapping with the MGB as a subcortical target area.

1.5 Aim of the Studies

The current state-of-the-art approach for cytoarchitectonic brain mapping has
benefitted the field for the last 30 years by providing a statistically reliable
image analysis framework. However, it is limited in throughput, which impedes
brain mapping in high-resolution reference spaces like the BigBrain.
Furthermore, its application is not transferable to subcortical nuclei —
emphasizing the need for an additional verification to perform such a task.
Although contemporary deep-learning based cytoarchitectonic brain mapping
approaches show first promising results to overcome throughput limitations,
they are limited by two factors: They still lack sufficient anatomical plausibility to
produce accurate cytoarchitectonic maps. Furthermore, it is unclear in how far
they incorporate traditional cytoarchitectonic features and compare to
resemblances of cytoarchitectonic features and border positions of the current

profile-based approach.

Hence the first aim of this thesis was to provide an evaluation of the quality,
plausibility and consistency of a revised deep-learning based brain mapping
approach in the BigBrain targeting a broad range of visual cortical areas with
different architecture in Study 1. Building up on previous deep-learning based
approaches for mapping visual cortices (Spitzer et al., 2018; Spitzer et al.,
2017), the evaluation was performed on automatically generated maps of four
cortical visual areas including the primary and secondary visual cortex in the
BigBrain model. Therefore, a few single sections were mapped using the
profile-based approach, while remaining sections were filled using the deep
learning approach to create high-resolution 3D reconstructions of the
structures. The revised deep-learning based mapping approach was then
expanded to the metathalamus, a subcortical nucleus of the diencephalon, in
Study 2, to evaluate its applicability to mapping subcortical nuclei. In particular,
the MGB was studied in complete histological sections resulting in high-

resolution maps in the BigBrain that supplement already existing maps of the
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lateral geniculate body (Brandstetter et al., 2021). Furthermore,
cytoarchitectonic probabilistic maps of both nuclei of the metathalamus were
computed based on their mappings in ten postmortem brain as part of Julich-

Brain.

As a next step we evaluated in how far the revised deep-learning approach
reflects traditional cytoarchitectonic features in Study 3. To do so, the internal
structure of the revised deep-learning based approach was analyzed by using
an application of the approach for identifying the primary and secondary visual
cortex in the BigBrain from Study 1. Hereby we used the learned internal
feature representations of the approach and compared them with the
underlying histology. An additional comparison between the laminar and
cellular features reflected by the current profile-based approach and the
learned features of the deep-learning approach allowed for an independent
verification and validity assessment. Taken together the performed studies
aimed at evaluating the applicability of a revised deep-learning based approach
on the basis of its quality, anatomical plausibility and validity in comparison to
the current profile-based approach. All studies are covered by a vote (#4863) of
the ethics committee of the Medical Faculty of the Heinrich Heine University

Dusseldorf.
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ARTICLE INFO ABSTRACT

Keywords: Human brain atlases provide spatial reference systems for data characterizing brain organization at different
Cytoarchitecture levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization
Deep learning of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of
;eifzi‘;mn changes in connectivity and function. Automated scanning procedures and observer-independent methods are

Human brain prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation.

Brain mapping Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput

Cortex scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic
areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep
Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a
large number of un-annotated sections in between. The model learns to create all missing annotations in between
with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new
workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts.
It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated
into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep
neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain
areas, introducing CNNs to identify borders of brain areas.

1. Introduction

Human brain atlases provide a spatial framework for localizing in-
formation retrieved from neuroscientific studies of different brains, ad-
dressing brain organization from different angles and including different
data modalities. The cerebral cortex of the brain is organized into corti-
cal areas, which each have a specific functional role. They can be iden-
tified in cell body stained sections based on cytoarchitecture. Regional
differences in the spatial arrangement and composition of the cells co-
vary with changes in connectivity and function Goulas et al. (2018).
Cytoarchitectonic borders can be identified in microscopic scans of his-
tological brain sections, based on the analysis of the arrangement and
distribution of cells, their different morphology and size, as well as
differences in the appearance and relative thickness of cortical lay-

ers. Such criteria have been formulated for the first time more than a
century ago to map the cerebral cortex, and still serve as guidelines
for cytoarchitectonic analysis Amunts and Zilles (2015). Different ap-
proaches have been proposed in the past to identify positions of bor-
ders in a reliable manner Annese et al. {2004); Schleicher et al. {1999);
Schmitt and Béhme (2002). The de-facto standard for identifying bor-
ders of cytoarchitectonic areas in the human cerebral cortex is a method
based on multivariate statistical image analysis Schleicher et al. (1999),
which has been applied for the identification of more than 200 areas to
date Amunts et al. (2020). To map the whole extent of an area in both
hemispheres, and to capture its intersubject variability through stud-
ies in large samples, however, is extremely time- and labor-intensive:
Cytoarchitectonic maps need to aggregate properties across many histo-
logical sections and multiple brains. To address this challenge, mapping
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includes a subset of histological sections {every 15-60ths section, i.e.
0.3 mm to 1.2mm distance between sections) of ten human postmortem
brains resulting in analyses of several hundred sections per area, which
corresponds to a workload in the order of one or even several person
years per area Amunts et al. (2020).

Recent high-throughput scanning devices and powerful compute re-
sources enable a much higher degree of automation in digitalization
and analysis of whole human brain sections at microscopical resolution.
Technological progress has made it possible to 3D-reconstruct a com-
plete postmortem brain at 20 micron spatial resolution with more than
7000 sections - the BigBrain Amunts et al. (2013). This high-resolution
brain model opens the possibility to produce complete maps of cytoar-
chitectonic areas at full microscopic resolution, and to cover large image
stacks with brain areas extending across thousands of sections. Hereby,
each section image has up to 120,000 x 80,000 pixels image size each.
In order to address these challenges, a method is required, which

1. automatically classifies brain areas based on cytoarchitectonic crite-

ria,

2. handles series with thousands of 2D images of histological sections
with data in the Giga- to Terabyte range,

. is robust against histological artefacts, which are inevitable in large
section series,

. provides stable results independently of the cutting plane, e.g. when
changes in the cutting direction relative to the brain tissue prevents
analysis of the 6-layered structure of the cerebral cortex (in the fol-
lowing referred to as obligue cuts), and

. can be operated and supervised by neuroscience experts without re-
quiring advanced computer science skills.

w
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Previous experience in cytoarchitectonic mapping has shown that
the identification of brain areas considers multiple parameters. This is
true for traditional visual inspection using a light microscope, as well
as for automated mapping approaches. It involves complex multi-scale
texture patterns, from the level of neurons up to a level of cortical layers
and areas. However, several parameters that can be used for identifica-
tion of cortical areas heavily depend on the cutting plane of the histo-
logical sections with respect to the orientation of cortical columns. The
highly folded cerebral cortex of the human brain hereby poses particu-
lar challenges, since brain areas may appear in a very different way in
dependence on the cutting angle. Thus, brain mapping needs to operate
in a variable data space, where no restrictions should be made on the
orientation of the cutting plane relative to the course of cortical layers
and the brain surface. In addition, automated brain mapping needs to
consider variation in tissue quality and staining, as well as histological
artefacts. Finally, automated mapping methods must take into account
variations in cytoarchitecture between different brains and lead to iden-
tical parcellations, even if interindividual differences in cytoarchitecture
are large.

Previous work on automated cytoarchitectonic area segmenta-
tion (Spitzer et al., 2017; 2018) proposes to use Convolutional Neural
Networkss (CNNss) for automatic segmentation of multiple cytoarchi-
tectonic areas across multiple human brains. This is a remarkably chal-
lenging task, as the model needs to be robust against the considerable
interindividual variability of the human brain, inevitable histological
artefacts, variations in staining, and oblique cuts, to name only a few of
the constraints. At the same time, it has to be highly sensitive to varia-
tions of cytoarchitecture in different brain areas, which may be subtle.
This may result in a need for large amounts of training data, which is
difficult to cover. Consequently, such generalized segmentation models
are still subject to active research.

‘We here propose a new workflow for cytoarchitectonic mapping of
a target area across large or complete series of histological human brain
sections with a high degree of automation. The workflow is illustrated
in Fig. 1. Following a “divide & conquer” approach, the full extent of a
target brain area « is subdivided into intervals of sections, which are en-
closed by annotations created at approximately regular section intervals.

Neurolmage 240 (2021) 118327

Separate CNNss are then trained for each interval, using the enclosing
annotations as training data. This results in a set of local segmentation
models, each specialized to automatically map only the tissue sections
which fall into the corresponding interval. By training local models for
each interval of target area 4, an interactive workflow is obtained that
allows an expert to label cytoarchitectonic areas in full stacks of histo-
logical sections with minimal manual annotation, aided by Deep Learn-
ing, and at a speed that matches high throughput image acquisition.
In this work, we

-

. introduce a method to automatically map cytoarchitectonic brain

areas across large series of histological human brain sections

{Section 2),

evaluate its precision on 18 cytoarchitectonic areas from the Big-

Brain dataset Amunts et al. {2013) to investigate its applicability to

a wide range of different brain areas,

assess its precision for two areas in three brains with variable stain-

ing protocols Amunts et al. (2013, 2000); Ding et al. (2016) to in-

vestigate robustness against interindividual differences and different

staining procedures, and

. create highly detailed and complete 3D maps of four areas in the
BigBrain dataset! and evaluate their anatomical plausibility.?
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2. Materials and methods

2.1. GLI-based mapping of cytoarchitectonic areas for training and
validation

Our proposed method requires annotations of the target area at
roughly regular intervals in approximately 1% of sections in the stack.
Such annotations consist of localizations of areal borders in the section,
and are defined using the well-established GLI-based mapping proce-
dure described in Schleicher et al. {1999). This approach starts by scan-
ning the histological images and by building a Gray Level Index (GLI)
image Schleicher et al. {1999). The GLIis a measure of the volume frac-
tion of cell bodies Wree et al. {1982). In a next step, profiles extending
from the cortical surface to the white matter border are extracted along
Laplacians, which reflect laminar changes in the volume fraction of cell
bodies, and thus encode cytoarchitecture. These Laplacians reflect an
important feature of cortical cytoarchitecture, i.e. its columnar struc-
ture Schleicher et al. (2000). The cortical surface and the white mat-
ter border are manually identified. Using a sliding window procedure
across the cortical ribbon, the similarity of blocks of profiles is being es-
timated by the Mahalanobis distance, a multi-variate distance measure,
at each position, that is combined with a Hotelling’s t-test for checking
significance. Borders between areas are indicated by significant peaks
in the Mahalanobis distance function. The positions of borders are then
labeled in the image. These borders are then used as a basis for the
network training and validation.

2.2. Datasets

The datasets used in this study comprise image series of histological
sections of three human brains, which have been stained for neuronal
cell bodies Amunts et al. (2020); Ding et al. (2016). The brains vary in
terms of cytoarchitecture and folding pattern, as well as staining proper-
ties, presence of histological artifacts and other features (Fig. 2). Areas
have been mapped in the past {cf. Section 2.1) using at least every 60th
section of the series. These maps provide the basis to train the neural
network models and to perform automatic segmentation in previously
unseen, close by sections.

! https://www.bigbrainproject.org
2 The maps are released in the public domain as part of the multilevel human
brain atlas in the EBRAINS platformhttps://www.ebrains.eu
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Fig. 1. Setup of our workflow. Images of histological sections are depicted as thin vertical bars, neural network models are depicted as colored boxes. The full extent
of sections containing a target brain area a (sections : to j, bottom row) is subdivided into section intervals, which are defined by annotations at regular intervals

(blue squares, m, n, k,...). One local segmentation model f[fn n]

is trained for each interval enclosed by a pair of annotations [m, »]. After training, each model is applied

to automatically map sections falling into the corresponding interval. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. Example images of cell body stained histological human brain sections
taken from datasets B20(A), BO1(B) and AAHB (C). All sections were sampled
from a comparable region of the occipital lobe. Differences arise from inter-
subject variability and variations in staining and histological processing proto-
cols. Locations of detail views (2mm x 2 mm) are marked with red squares. For
B20and BO1, only the right hemisphere is shown. AAHB only includes a sin-
gle hemisphere. Cerebellum was removed from B20and AAHB for visualization.
Scale bar: 1em (same for all three sections). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

The first dataset - denoted as B20- is based on the original his-
tological sections of the publicly available microscopic 3D model
BigBrain {Amunts et al., 2013). The dataset consists of images of
7404 coronal sections with a thickness of 20 pm. A modified Merker
stain Merker (1983) was used to stain cell bodies. A subset of sec-
tions was scanned at 1 pm resolution using a high-throughput light-
microscopic scanner (TissueScope HS, Huron Digital Pathology Inc.).
Annotations based on the GLI-based method (Section 2.1) at an interval
of approximately 60 sections (= 1.2 mm) were obtained for 18 cortical
areas, belonging to different functional systems:

1. Visual areas #Ocl, #0c2 {(Amunts et al., 2000),
hOc3v (Rottschy et al., 2007) and A20c5 (Malikovic et al., 2007).
Additional annotations at an interval of approximately 30 (0.6 mm)
sections were created for #0c5, as well as on a small set of sections
containing £0c3v (Kiwitz et al., 201%a; 2019b; 2020a; 2020b).

. Areas of the frontal operculum Op5, Op6 and Op7 Unger et al.
{2020a, 2020b, 2020c).

. Areas 44 and 45 of Broca’s region {(Amunts et al., 1999; 2004) in the
inferior frontal gyrus.

. Areas KT P5, hIP6, AT P7 and I P8 (Richter et al., 2019) in the in-
traparietal sulcus.
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5. Supplementary motor area S3 4 and pre-supplementary motor area
preSM A Ruan et al. (2018).

6. Premotor areas 641, 642 and 643 Sigl (2018); Sigl et al. {2019,
2019b, 2019c).

The BigBrain dataset has been fully reconstructed at
20 um Amunts et al. (2013) and therefore opens the possibility to
investigate the 3D consistency of the computed maps after transforma-
tion into the reconstructed space.

Brain areas differ in cytoarchitecture, as well as in size and in how
much the morphology of an area changes across a series of consecutive
brain sections. This has implications for the amount of annotations re-
quired to capture the relevant properties of certain areas. For example,
#Oc1 is large and shows only moderate changes across consecutive sec-
tions. In comparison, 20¢5 is considerably smaller, and 20¢3v changes
considerably across consecutive sections {see Fig. 10, C-F), resulting in
a need for more annotations to capture their structure.

The second dataset - B01- has also been used for mapping in the
past, whereby every 15th section of the whole series of sections was
stained and digitized. This brain was 3D reconstructed with a spatial
resolution of 1 mm isotropic Amunts et al. {2020). Annotations for vi-
sual areas 2Ocl and 2Oc2 at an interval of approximately every 60th
section (Amunts et al., 2000) in a subset of sections have been used.
This dataset serves to investigate robustness against intersubject vari-
ability, while the lab protocol is similar to the one used for B20.

The third dataset - AAHB-, comes from the Allen Adult Human Brain
Adas Ding et al. (2016). It includes 106 unevenly spaced, publicly avail-
able sections. In contrast to the first two series of images, it differs in
thickness {50 um), and the staining method (Nissl staining). Annota-
tions are provided for cortical and subcortical gray matter according to a
modified Brodmann scheme on one hemisphere (cf. (Ding et al., 2016)).
This dataset is used to investigate robustness of the proposed method
against variable lab protocols and delineation criteria with respect to
areas 1Ocl and 20c2, which correspond to “primary visual cortex (striate
cortex, area V1/17)” (identifier 10269) and “parastriate cortex (area V2,
area 18)” (identifier 10271), respectively, in the Allen ontology.

2.3. Local segmentation models

Annotations of cytoarchitectonic areas based on GLI mapping
{Section 2.1) were used to train CNNss, which we refer to as local seg-
mentation models. Each local segmentation model f[‘; 5] was trained on

1552,
two sections s, and s, (the training sections) with available annotations
for a target area ¢. Trained local segmentation models were then applied
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Fig. 3. Training and test sections from available annotations across stacks of histological sections. Consecutive pairs of training sections (blue squares) induce one
local segmentation model. For example, model f[fgz?;g‘ﬁc‘ was trained on sections 181 and 301 of dataset B20, segments area #0¢! in the full interval [182,300],
and was tested on Section 2.1. N,, denotes the number of trained local segmentation models. + marks experiments performed with a smaller training interval. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to “fill the gaps”, i.e. to automatically segment the target area in sections
enclosed by the respective training sections s; and s, (Fig. 1). The focus
on a single target area and a spatially restricted stack of consecutive sec-
tions reduces cytoarchitectonic and morphological variations that need
to be captured by the respective models, which we expect to result in
improved performance compared to training models for multiple areas
or a wider range of sections as proposed in Spitzer et al. (2017).

‘We trained local segmentation models for 18 cytoarchitectonic areas
in B20and two areas in each of BQland AAHB. Fig. 3 gives an overview
of sections used for the individual areas. Most local segmentation mod-
els were trained on two training sections with annotations at ~ 2.4mm
distance, corresponding to ~ 120 sections for B20 and BO1 and 48 sec-
tions for AAHB. Additional local segmentation models with a reduced
interval size of 60 sections {1.2mm) were trained for areas r0c3v and
#0c5 to account for highly variable morphology (:0c3v, see Fig. 10,
C-F) and small area size (40c5). For B0land AAHB, local segmentation
models were trained only for ranges of sections where annotations were
available at the required interval. Segmentations of the outer most parts
of cytoarchitectonic areas which were not enclosed by training sections
(i.e. Sections 1 to 181 for 20c¢1 in B20) were processed using the closest

B20—hOel was

available local segmentation model. For example, model fisra0m

also applied to the section interval [1, 181].
2.4. Neural network architecture

For local segmentation models, the modified U-Net architec-
ture {(Ronneberger et al., 2015) proposed by Spitzer et al. (2017) was
extended into a multi-scale neural network model (Fig. 5, C). U-Nets
have proven to be very powerful for many applications in biomedical
image segmentation (e.g. {Cicek et al., 2016; Milletari et al., 2016)).
They consist of an encoder and decoder branch, which are linked
by skip-connections between layers of corresponding spatial resolu-
tion to allow recovery of fine-grained details during upsampling. Com-
pared to the U-Net {Ronneberger et al., 2015), the modified architec-
ture {Spitzer et al., 2017) employs additional encoder layers and a dif-
ferent number of filters to make processing of large image patches com-
putationally tractable. To show the benefit of using a multi-scale variant
of U-Nets, three network variants were used: A high-resolution encoder
network (HR), a low-resolution network (LR), and a combined multi-
scale architecture {MS).
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Fig. 4. Typical input patches for the proposed MSarchitecture. A high-
resolution image patch (A, 2 um per pixel) resolves fine-grained microstructural
texture, while a lower resolution image patch (B, 16 um per pixel) provides
more information on macroanatomical context. The black rectangle indicates
the position of patch (A) inside patch (B). Expert annotations of area 410c2 are
overlayed in blue. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

High-resoluion encoder architecurre ( HR )

The architecture proposed in Spitzer et al. (2017) was used as base
architecture (Fig. 5, A). A high-resolution encoder Ey receives high-
resolution input patches with a size of 2025 x 2023 pixels at 2 um pixel
resolution (4.05 x 4.05 mm?, Fig. 4, A) and enables recognition of fine-
grained microstructural textures. It consists of six convolutional blocks,
with the number of filters set to | 16,32,64,64, 128, 128) respectively. All
but the last block are followed by a max-pooling operation with pool
size 2 and stride 2. The first layer of the first block in Egy uses a fil-
ter size of 5 and a stride of 4, which increases the receptive field while
keeping memory consumption and computational effort tangible. All re-
maining convolutional layers of Eyy use a kernel size of 3 and stride 1.
Following (Spitzer ct al., 2018), we initialize £, from a network that
has been pre-trained on a self-supervised task, specifically on predicting
the geodesic distance along the brain surface between image patches
from the BigBrain dataset. This auxiliary task has been shown to pro-
mote extraction of distinctive cytoarchitectonic features. The decoder
consists of four convolutional blocks with the number of filters sct to
{128,64,64, 32} respectively. Each block is preceded by an upsampling
block, which consists of a nearest neighbor upsampling with kernel size
2 and stride 2, followed by a zero-padded convolutional layer with ker-
nel size 2 and stride 1. All convolutional operations in the network are
followed by batch normalization loffe and Szegedy (2015) and Reetified
Linear Unit (ReLU) non-lincarity.

Multi-scale network architecture { MS )

The multi-scale network architecture was obtained by attaching a
low-resolution encoder k. as a second branch to HR, which receives
lower resolution image patches with a size of 682 x 682 pixels at 16 um
pixel resolution (10.912 x 10.912 mm?), centered at the same location as
Ky g patches (Fig. 4). This branch allows to learn features at the scale
of local cortical folding patterns. Although such macroscopic features
are not generally representative of cytoarchitecture in human brains, as
they vary largely between individuals (Amunts and Zilles, 2015), they
arc appropriate in the present setting duc to the locality of the network
models. K g is based on K ;p, and composed of six convolutional blocks
with the same number of filters as 4 .. All convolutional filters use a
filter size of 3 and a stride of 1. Convolutional layers in the first block
use a dilation rate of 1, while all other convolutional layers within ¥, 5
use a dilation rate of 2 to enlarge the receptive field.

Low-resolution encoder architecture { LR )

The third architecture is based on HR, but replaces the encoder Kz
with E , (Fig. 5, B). By design, this model can only recognize macro-
scopic tissue features, and no detailed cytoarchitectonic properties at
the level of cell bodies.
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2.5. Training strategy

Stochastic  gradient  descent with Nesterov
tum {Sutskever ot al., 2013) was used as optimizer for training
the neural network models. Training was performed for 3000 iter-
ations. The learning rate was initially set to 0.01 and decreased by
a factor of 0.5 after 1000, 1400, 1800, 2200 and 2600 itcrations.
Momentum was set to 0.9. Categorical cross-entropy with a weight
decay of 0.0001 was used as loss function.

Background class labels

Spitzer et al. (2017) reported convergence problems when training
models with a single background class that includes both white and gray
matter components, resulting in a mix of tissue parts with very high
and very low similarity to the target area under the same classification
label. Thus, the general background class was split into separate labels
for gray matter (¢or) and white matter (s2m), resulting in a semantic
segmentation problem with the four classes bg, wm, cor, and the target
area a. For splitting the background class into wim and cor, different
strategies were used for each dataset:

momen-

1. For B20, a volumetric tissue classification presented
in Lewis ct al. (2014) was projected onto the 2D histolog-
ical sections using transformations provided by the authors
of Amunts et al. (2013).

2. For BO1, the gray white matter segmentation described in
Spitzer et al. (2017) was used.

3. For AAHB, the respeetive delineations available from the Allen on-
tology Ding ct al. (2016) were used.

Patchwise training

The full resolution scans of the whole-brain sections are by far too
large to be used for training. Thus, a patchwise training procedure
as also proposed in Ronneberger et al. (2015), Spitzer et al. (2017,
2018) was employed. However, due to the locality of local segmenta-
tion models, patches were sampled only in the direct proximity of the
target brain area o, to effectively teach the models to distinguish a from
its immediate surroundings. Only pixels with a distance of 5 mm or less
to any pixel annotated as a were considercd as potential center points
for training patches.

Date augmentation

The following data augmentations were employed to simulate most
frequently observed variations in the data: Both at test and training time,
images were rotated by multiples of 90 degrees so that the y axis of
coronal sections matches approximately the cranial direction. Random
rotation by an angle sampled from a uniform distribution with support
[—43,45] were applied to account for small differences in rotation angle.
Intensity variations were addressed by random pixel intensity augmen-
tation with the function f(x) = ax? + . The same intensity transforma-
tion is applied to all pixels of a training patch. Parameters were chosen
from uniform distributions with @ ~ U[0.9, 1.1}, § ~ U[-0.2,+0.2] and
y ~ U[0.8,1.214]. The range of cach parameter was empirically chosen
to reflect natural variations occurring in the data.

Implementation

Training was performed on the supercomputer JURECA® at
the Jiilich Supercomputing Centre at Research Centre Hilich
(JSC) Krause and Thérnig (2018). Lach compute node was equipped
with four NVidia K80 GPUs with 12 Gigabyte of VRAM, 2 Intel Xeon
15-2680 v3 Haswell CPUs (12 2.5 GHz cores with hyperthreading
cach) and 128 Gigabyte of RAM (Krausc and Thornig, 2018). Training
of one model occupied one GPU node, using all 4 GPUs and all 48
threads. Of the available 48 threads, 4 were assigned to one GPU cach
to coordinate the training process, while the remaining 44 threads
read training patches from disk in a streaming fashion, applied data

3 https://www.fz-juclich.de/fas/jsc/TN/Fxpertise/Supercamputers/ JURTCA/
JURECA nade.html
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Fig. 5. Ilustration of investigated neural network architectures. A: High-resolution architecture (HR) from (Spitzer et al., 2017), which can capture fine-grained
microstructural textures. B: Low-resolution architecture (LR), which can capture macroscopic tissue features. C: Proposed multi-scale architecture (MS) to capture
both fine and coarse grained tissue features. E is pre-initialized with weights of the self-supervised network proposed in Spitzer et al. (2018). Numbers at the top
of each block denote the number of filters used in the convolutional layers of this block. Numbers at the bottom denote the physical output spacing in pm per pixel

for layers which change the physical spacing of the features.

augmentation and sent data to the training threads. Inter-process
communication was implemented based on Message Passing Interface
(MPI) using mpidpy (Dalcin et al., 2011). Training was implemented
using TensorFlow (Abadi et al., 2016). Distributed training was per-
formed using Horovod {Sergeev and Del Balso, 2018) and synchronous
distributed stochastic gradient descent. Batch size was set to 16 image
patches per GPU, resulting in a total effective batch size of 64 patches
per iteration. The linear learning rate scaling rule for distributed
training proposed in Goyal et al. (2017) was employed, scaling the
learning rate by the number of GPUs.* Batch normalization statistics
were computed independently for each GPU and not averaged during
training. Software code is publicly available ®

2.6. Web-based interactive workflow for efficient cytoarchitectonic
mapping

The proposed workflow was implemented as an interactive web ap-
plication (Fig. 6) to provide direct user control over the segmentation
workflow through a web browser.® The application allows entering an-
notations in a sparse set of reference sections, controlling the training
workflow on a remote cluster, and efficiently inspecting predicted seg-
mentations in the complete stack of histological sections. It does not re-
quire in-depth expertise in Deep Learning and/or batch computations.

4 Since we use a relatively small number of employed GPUs how-
ever, we do not apply the initial learning rate warm up phase described
in Goyal et al. (2017).

5 Code available at https://jugit. fz-juelich.de/c.schiffer/atlas

6 Code available at https: //jugit. fz-juelich.de/c.schiffer/atlasui

web browser

Quality check
Correction
Result export

Annotation

Task definition

(1)

Job configuration
Training
Data preparation
Prediction
Monitoring (\
2
HPC cluster backend service =

Fig. 6. Overview of the mapping workflow. The user starts by creating anno-
tations (1) of a brain area « using the web-based annotation tool microdraw,
and defines training tasks by specifying which annotations should be used to
train local segmentation models (Section 2.5). Annotations and task definitions
are then submitted to a backend web service (2) which prepares the data for
training and submits a job to a HPC cluster. Training and subsequent prediction
are performed on the HPC system (3). Obtained results can be viewed directly
in microdraw for quality control (4). The user may decide to export results of
sufficient quality for subsequent processing steps (e.g. 3D reconstruction), man-
ually refine the predictions directly in microdraw, or repeat the workflow with
additional annotations to improve performance.
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Technically, it is designed as an extension of the web based annotation
tool microdraw 7, combined with a novel backend service that controls
data exchange and job supervision on an ssh-accessible compute clus-
ter. We used the workflow on the JURECA supercomputer at the Jiilich
Supercomputing Center (JSC). It uses common and freely available soft-
ware components, and is portable to other sites, potentially requiring
site-specific adjustments to account for differences in the software stack,
scheduling system and data access.
The workflow typically iterates through the following steps:

-

. The user enters annotations for a target brain area « in two tissue
sections s; and s,, enclosing a local stack interval of = 100 sections
using microdraw, and this way defines a local segmentation model
f[“sl‘sz] {Section 2.3).

. A training task for the local segmentation model is submitted as a
job to a GPU cluster at the push of a button, using default parameters
{Section 2.5). It does not require any further configuration. Training
typically takes 70 min on one compute node of the JURECA super-
computer. Multiple jobs can be submitted in parallel, if the cluster
allows.

. After training, predictions for all sections in the interval are automat-
ically generated. For a large area like #0c1, this takes approximately
30 min for 120 sections. Computed segmentations are automatically
displayed in the web frontend once they become available. Data syn-
chronization between the web server and compute nodes is handled
by the backend service.

. After inspecting the segmentation quality, the user can choose to
enter additional training data, either reducing the size of the current
interval or initiating the next interval in the stack.

N

w

IS

2.7. Vadlidation framework and strategy

Additional sections with annotations in between the training sections
were used for validating performance of local segmentation models on
sections that were not seen during training (orange diamonds in Fig. 1).
Segmentations of these test sections were quantitatively evaluated using
the F1 score {also known as Dice score or Sprensen-Dice index), com-
puted as the harmonic mean of precision of recall. Auxiliary labels added
to ensure convergence {Section 2.5) were excluded from F1 score cal-
culation, as the focus lies on segmentation performance for target area
a.

Similar to the proximity sampling strategy employed for training
{Section 2.5), segmentations on sections not seen during training were
only created and evaluated in the approximate region containing ¢ on
the respective sections. These approximate regions were determined by
projection of the closest reference annotations for ¢ to the image in ques-
tion using conventional linear image registration based on robust image
features as in Dickscheid et al. {2019).

The benefit of a multi-scale architecture was investigated by train-
ing separate local segmentation models with neural network architec-
tures HR, LR and MS for all areas in B20. For HRand MS, the high-
resolution encoder E  was initialized with the weights of the network
from Spitzer et al. (2018). Furthermore, the performance of multiple lo-
cal segmentation models, each trained on a local subset of sections as
described in Section 2.3, was compared to the performance of one sin-
gle model trained on all annotations available for a target area ¢ in the
following way: For each target area in the B20 dataset, one model was
trained using the union of all training sections of the local segmentation
models (blue squares in Fig. 1), using the same training strategy as for
local segmentation models. We conducted these experiments using HR,
LR and MS architectures, and denote models trained on the whole stack
as HR {aLL), LR {aLL)and MS (ALL), respectively, again pre-initializing
the high-resolution encoder Ey; z with weights from Spitzer et al. {2018)

7 http://microdraw.pasteur.fr
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The robustness of the proposed method against intersubject variabil-
ity in brain structure and differences in staining protocols was investi-
gated by training local segmentations models (with MS architecture) for
areas #0c1 and %£Oc2 in datasets BO1 and AAHB. To better understand
the roles of the low and high-resolution branches (E;z and Egy) in
the MSarchitecture, an experiment similar to occlusion sensitivity anal-
ysis {Zeiler and Fergus, 2014) was performed: Using model f[hggizwm
which implements the MSarchitecture, we investigated how predictions
change when we set the input patch for either £, or E to zero, ef-
fectively preventing information extraction using the respective branch.

2.8. Generating high-resolution 3D cytoarchitectonic maps in the BigBrain
dataset

Non-linear transformations described in Amunts et al. {2013);
Omidyeganeh et al. (2020) from 2D histological sections
into 3D reconstructed space available for the BigBrain
dataset Amunts et al. (2013) were used to generate 3D maps for
areas kOcl, k02, hOc3v and 20cS from 2D segmentations produced
by our method. Segmentations were obtained using the workflow
described in Section 2.3 and checked for quality by an expert (e.g.
plausibility and consistency across consecutive sections). For areas
AOc3vand ROcS, results of segmentation models trained with a training
interval size of 1.2mm were used for reconstruction (marked with *
in Fig. 3). Between 8% {h0c3v) and 23% (%Ocl) of sections contain-
ing the investigated areas were not used for reconstruction due to
histological artifacts {e.g. resulting from long-term storage or staining
inhomogeneities). Segmentations that passed the quality check were
transformed into the 3D reconstructed space. Excluded sections were
replaced by interpolations from neighboring sections, using Laplacian
fields as proposed in Schober et al. (2016).

Resulting 3D maps were smoothed using a median filter with ker-
nel size 1111 x 11 pixel to compensate for small artefacts. The size
of the filter was chosen to match the expected precision of annotations
at boundaries (not higher than 100 pm), translating to 5 voxels at the
target resolution of 20 pm. Furthermore, connected component analy-
sis on the smoothed volume was performed to determine and remove
spurious false positive predictions outside the target area, relying on
the assumption that cytoarchitectonic areas are continuous in 3D. Only
components with a minimum volume of 27 mm® (3 mm X 3 mm X 3mm)
were kept. Effects of median filtering and connected component filtering
are illustrated in Fig. 7.

To assess the improvement in 3D consistency and anatomical plau-
sibility gained by the proposed workflow, a reference reconstruction of
area 20cl was computed, which performs a direct 3D interpolation be-
tween reference annotations obtained by GLI mapping. This reference
reconstruction does not use the local segmentation models, and relies
only on reference annotations and 3D reconstruction. It was computed
by transforming the annotations of the training sections (blue squares in
Fig. 3) into the 3D reconstructed space, and filling the gaps by Laplacian
field interpolation (Schober et al., 2016).

The anatomical consistency of 3D reconstructed maps was further
evaluated by computing their volume and surface area, which were then
compared to reference values from Amunts et al. (2000). The volume of
each area was computed by counting the total number of labeled voxels
and multiplying the result by the physical size of each voxel.

The surface area was computed by first extracting a closed
surface mesh of each area wusing the marching cubes algo-
rithm Lewiner et al. (2003). The subset of mesh vertices lying on
the pial surface was then determined by including all triangles where
the cortical depth Bok (1929) was smaller than 0.25. To obtain
the cortical depth of each mesh vertex, the procedure described
in Leprince et al. (2015) was applied to the cortical ribbon defined by
the gray and white matter segmentation provided with the BigBrain
model (Lewis et al., 2014). The result was a volumetric dataset with
voxels in the white matter labelled 1, voxels outside the brain labelled
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Fig. 7. [ffccts of median filtering and connected component filtering using the example of Ae1. Median filtering smooths the volume and removed small errors
originating from registration errors or incorrect predictions (blue arrows). Filtering of small connected components removed small clusters of false positives from
the volume (green arrows). Axes x, y and » correspond (o left-to-right, posterior-to-anterior and ventral-to-dorsal directions, respectively. Axis labels are specified in

mm and correspond to positions in the 3D reconstructed BigBrain space. See Fig. 14 for more images of AQOc1 from different viewing angles. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

0, and voxcls inside the isocortex labelled with values between 0 and
1, representing their cortical depth according to the equivolumetric
model (Bok, 1929). Cortical depths of mesh vertices were then looked
up in this volume. Finally, the surface area of the pial surface for each
cytoarchitectonic area was computed by summing up the area of all
triangles associated to the pial surface.

Both volume and surface area measurements were corrected for tis-
sue shrinkage Amunts et al. (2000). The volume-based shrinkage factor
for B20has been determined in Amunts et al. (2005) based on the fresh
weight and the volume after histological processing as f- = 1.921. From
this, an area-based (2D) shrinkage factor of /4 = = 1.551 was de-
rived.

3. Results

Differences in performance were observed depending on the network
architecture (HR, LR, MS), the training sctting (global vs. local segmen-
tation models), the considered brain area, as well as the distance be-
tween annotated brain sections.

All architectures cxeept for LR (ALL) show comparably good per-
formance for hGcl. For most areas however, LR and MS achieved
higher performance than other investigated models. For areas hQe3o
and hOc5, where additional models were trained with reduced distance
between training sections (indicated by = in Fig. 8), performance of
LRand MSincreased when reducing the distance between training see-
tions, while only minor improvements were observed for the remaining
architectures.

Representative image patches segmented by the MSarchitecture for
each investigated area extracted from test sections of B20are shown in
Fig. 9. True positive, false positive and false negative predictions are in-
dicated in green, red and blue, respectively. A large share of incorrectly
classified pixels belonged to cortical regions with highly oblique cut-
ting angles (Fig. 10 B, C). While large rifts tended to be excluded from
the prediction (Fig. 10, A), smaller rifts or tissue foldings were correctly
segmented as surrounding area (Fig. 9, A, D, E, G, O).

Scores obtained for arcas AQcl and hOcZ were overall consistent
across different brain samples (Fig. 11). In all three cases, scores ob-
tained for hOe2 were lower compared to AO¢ 1. Lowest median K1 score
for 70¢2 was obtained for B20, along with an increased variance. Ex-
ample patches showing the border between A0cl and AQc2 on test sec-
tions extracted from approximately identical brain regions in the three
datasets are shown in Fig. 12.

Models trained on all sections (HR (ALL), LR (ALL), MS (ALL)) ob-
tained lower mean and median F1 scores than their locally trained coun-
terparts HR, LR, and MS (Table 1). LR (ALL) and HR. (ALL) showed com-
parable performance, MS (ALL) performed slightly better. The lowest

Table 1

F1 score statistics computed across all ar-
cas and test sections in the B20dataset
obtained by the different networlk ar-
chitectures HR, LRand MS(trained on
local intervals), as well as HR (ALL),
LR (acL)and MS (ALL)(trained on all
annotated sections per area). Higher
mean/median values and lower standard
deviation mean better performance.

model median mean std

HR(all) 0.5319 0.5680 0.2075
LRCall) 0.5648 0.5533 0.1723

MS(all) 0.5869 0.6020 0.1973
HR 0.6294 0.6130 02105
LR 0.7439 0.70386 0.1865
MS 0.7469 0.7200 0.1825

scoring local model HR performs better than the highest scoring global
madel MS (ALL). Both LR and MS resulted in higher mean and median
F1 scores than HR, with lower standard deviations. Highest mean and
median performance was obtained by MS (Table 1, Fig. 8.

Setting the input patch of cither £ x or Ey» to zero provides indica-
tion on the influence of different scales in the proposed MSarchitecture
(Fig. 13): Having access to only low-resolution image information, the
model still identifies the approximate location of area #QO¢2, but with
poorly defined borders. Using only high-resolution information, the
model captures finer details, but has difficultics localizing the arca cor-
rectly. When the model has a to both high- and low-resolution in-
formation, this results in better agreement with the reference annota-

tions.

Locations, orientations and shapes of reconstructed 3D maps (com-
puted using steps deseribed in Section 2.8) were anatornically plausible
and consistent (Fig. 14). The 3D map of k()¢S showed partially missing
extremal ends along the posterior anterior axis. Volume and surfa i-
mates from the 3D maps reported in Table 2 corresponded well with the
numbers reported in Amunts et al. (2000). Surface areas of AQc1, hOc2
and h(yeS were largely confirmed with the reference values, as well as
the volumes derived from automatic segmentations of areas hGcl and
h0c2. The reconstructed volume of area 20¢5 stood out by being con-
siderably smaller than the reference volume.

Comparison of corresponding 3D reconstructions of area Akl
(Fig. 14 E vs. F) showed that the proposed approach provided anatom-
ically more consistent results than direct spatial interpolation of GLI-
based annotations, while both build on the same annotation effort. 3D
interpolation produced abrupt transitions in anterior-posterior direction
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Fig. 8. Median F1 scores for HR (ALL), LR (ALL), MS (ALL), HR, LRand MS per investigated brain area in dataset B20. N, denotes the number of test sections for
which F1 scores were computed for a particular area. + indicates where training of local segmentation models was performed with reduced distance between training

sections. Higher values denote better performance.

2 mm

N True positives
I False positives.
N False negatives

Fig. 9. Example image patches and corresponding model predictions extracted from test sections of B20segmented using the proposed MSarchitecture. One image
patch is shown for each investigated cytoarchitectanic area. Colors green, red and blue indicate true positive, false positive and false negative predictions, respectively.
{For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

{Fig. 14, F, 1) and only captured structures already contained in the
reference annotations, leading to inconsistencies near fine-grained mor-
phological structures (e.g. Fig. 14 F, 2 and 3). The proposed method
often produced reasonable segmentations for sections outside the train-
ing interval (Fig. 14, E, 1), which interpolation cannot provide by
definition.

4. Discussion

In this work, we proposed a novel Deep Learning based workflow to
create segmentations of cytoarchitectonic areas in large series of histo-
logical human brain sections using only a limited set of manually cre-
ated annotations. We evaluated this approach across different cytoar-
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Fig. 10. Image patches cxtracted from
B20showing common challenges encoun-
tered during manual and automated cytoar-
chitectonie mapping. A: Mechanical dam-
ages resulting from histological process-
ing. Prediction for 10¢1 shown in yellow
demonstrate handling of larger mechani-
cal damages. B: Region where the eutting
angle is highly ablique, leading to partial
or full occlusion of cortical layer strue-
ture (oblique cuts). C: Mechanically dam-
aged and obliquely cut tissue. C-F: Exam-
ple illustrating highly variable morphology
of area hOc3v (highlighted in red) across
120 histological sections in B20. (For inter-
prelation of the relerences 1o color in this
figure legend, the reader is referred to the
‘web version of this article.)

o +—{H
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Fig. 11. F1 scores for segmentations of i0¢1 and AO¢2 obtained by the MSarchitecture on test sections of datasets B20, BO1 and AAIIB. N, denctes the number of

test sections for which F1 scores were computed for a particular area.

Fig. 12. Example patches and lypical segmentation resulls exiracled from Lesi sections in datasets B20 (A), BO1 (B} and AAHB (C). All three patches show the
segmentation of 202 obtained by a local segmentation model with MSarchitecture. Patches were extracted at the border between i1 and #O¢2 and in comparable
regions ol the respective brain. Colors green, red and blue indicate true positive, false positive and [alse negative predictions, respectively (see also legend in Fig. 9).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

chitectonic arcas, brain samples and staining protocols. As a concrete
use case, we then applied it to create high-resolution 3D maps of areas
ROc1, hOc2, ROc3e and KOS in the BigBrain Amunts ct al. (2013).

4.1. Quality of derived 3D maps in the BigBrain
The proposed method produced 3D maps with a high degree of

anatomical consistency and identified cytoarchitectonic areas precisely
in the histological brain sections. Partially missing extremal ends re-

main a challenge, as seen in anterior-posterior direction of AOc5. Such
parts are often difficult to identify even using manual methods. There-
fore, training data for such extremal ends is difficult to obtain. The seg-
mentation of extremal encls could potentially be addressed by providing
additional GLI-based mappings (at the cost of additional annotation ef-
fort), or by an cxplicit shape-based inference step on top of the pixel
segmentation. The 3D map of AQc1 created with the proposed method
is superior to the map obtained by direct spatial interpolation between
GLI-based annotations. Methods based on 3D interpolation inherit any
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LAnosations Ry WYL &

Fig. 13. Relerence annolalions and prediclions ol area /10c2 (blue) for an example palch [rom section 961 of the B20dalasel. Prediclions were oblained by using
both low- and high-resolution information (LR & HR), only low-resolution (LR. only), and only high-resolution information (HR. only). The input image
palch for E,, and E,, was sel Lo zero Lo invesligale the role of low- and high-resolution image information, respectively. Predictions were crealed with model
f;ﬁf]u, : using the MSarchitecture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

hOc1 [glelsciY]
jglell hOC5

Fig. 14. 3D maps of visual cytoarchitectonic areas hOc1 (yellow), 20c2 (blue), hde3n (red) and h(QeS (green), obtained by transforming the independent 21
segmentations generated by the proposed method into the 3D reconsiructed space of the B20dataset. A+ 8: Spatial embedding of reconstructed areas into the
3D reconstructed BigBrain volume. €+ D: Detailed view ol reconstructed cyloarchitecionic areas. E+ F: Comparison of #Oc1 reconstructed based on our proposed
method (E) and based on an interpolation between annotations in the reconstructed space, using Laplacian fields as proposed in Schober cf al. (2016) (F). Arrows
in F) mark example locations demonstrating shortcomings of the interpolation based reconstruction. Axes x, y and z correspond to left-to-right, posterior-to-anterior
and ventral-to-dorsal directions, respectively. Axis labels are specified in mm and correspond to positions in the 3D reconstructed BigBrain space. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2

Estimated volumes (in mm?) and surface areas (in mm?) of brain
areas derived from the full 3D maps in the 3D reconstructed space
of the B20 dataset. Reference mean yx and standard deviation
o were computed based on male subjects from (Amunts et al.,
2000). Shrinkage corrected of volumes and surface areas was per-
formed using correction factors f, = 1.931 and f, = 1.551 respec-
tively (Amunts et al., 2005).

area volume corrected W o Z-score
hGel 9019.30 17416.27 18042.2 2464.39 -0.25
hGe2 6448.60 12452.26 12634.2 2862.84 —0.06
plelxiy 1974.76 3813.26 n.a. na na.
BGeS 304.10 587.21 1144.4 406.53 -1.37
area surface  corrected - z-score
hGel 6891.03 10685.76 12213.0 2225.55 —0.69
ACe2 6749.64 10466.52 10390.4 2925.37 0.03
hOc3v 2142.04 3321.62 na na. fa.
BGeS 319.79 495.89 450.2 135.92 0.34

error in the alignment of consecutive sections, making them inappro-
priate for stacks with only linear or no 3D reconstruction. The proposed
method does not assume any prior 3D reconstruction - in fact its outputs
might be used to guide image registration with landmarks.

4.2. Practical usefulness of the implemented workflow

The presented method showed good robustness against intersubject
variability and different histological processing protocols. Thus it largely
overcomes the need for brain or area specific parameter adjustments,
which makes it well suited to be used as a self-contained tool for neuro-
scientists. Consequently, it was possible to implement it into a web ap-
plication that provides a practical mapping workflow for end users from
different disciplines. The web application is currently used by five neu-
roscientists in our institute for their research projects, without requiring
support from a computer scientist. The interactive workflow enables effi-
cient mapping of brain areas across full series of histological sections, en
par with high throughput microscopy. Such efficiency of mapping was
previously impossible in our experience. To give a concrete example, we
consider that a trained expert typically needs 30-60 min to identify cy-
toarchitectonic borders for one cortical area on a single tissue section.
Using the established GLI-based mapping approach (see Section 2.1},
this would translate to an approximate effort of 150 work days (8 h
per day) to map #0Ocl across the whole stack of 2461 sections. In com-
parison, the proposed method required annotation of only 18 sections
to generate precise segmentations of the complete stack, corresponding
to approximately 9 working hours. Altogether, including quality checks
and computations, the presented workflow allows precise mapping of a
large brain area in the order of 1-2 weeks - a task that would require
almost a year of work with previously established methods.

Although the workflow provides a high degree of automation, we
still recommend final inspection of results by an expert to ensure optimal
quality. The interactive web application presented in Section 2.6 assists
users with such quality control, by displaying predictions and allowing
immediate correction of remaining errors with significantly less effort
than annotating images from scratch. Of course, the typical amount of
necessary manual corrections is an important indicator for the useful-
ness of the tool in practice. In our experience from mapping a whole
range of different human brain regions, quality control and manual cor-
rections typically take in the order of few hours per brain area, which
may include several thousand sections.

Nevertheless, the need for manual supervision could be further re-
duced by investigating into methods for identifying prediction errors.
Such methods could directly inform the user where additional anno-
tations could help to further optimize the results, thereby realizing an
active learning (Settles, 2009) scheme.
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4.3. Ability to distinguish higher associative areas

In contrast to primary areas such as the primary visual cortex z20cl,
so called higher associative areas have a less distinct cytoarchitecture,
and less prominently differ from their neighbouring areas. Such obser-
vation lead Bailey and von Bonin to the conclusion that it is almost
impossible to reliably distinguish such areas from each other, and to
define borders between them (Bailey and von Bonin, 1951). This view
is not supported any more due to the possibility to identify cytoarchi-
tectonic borders in a reliable and reproducible way (for an overview
see (Zilles and Amunts, 2010)). However, the fact that intersubject dif-
ferences between identical areas of different brains may exceed cytoar-
chitectonic differences between two neighboring areas in one and the
same brain creates challenges for modern brain mapping (Amunts et al.,
1999).

Atzeni et al. {2018) also addressed automated mapping of his-
tology. They segmented brain structures in a serial stack of human
brain sections from the Allen Human Brain Atlas (Ding et al., 2016)
{dataset AAHB used in our experiments). They used annotations from
Ding et al. (2016) on a small set of sections at regular intervals, in or-
der to train a probabilistic model that combines multi-atlas segmenta-
tion with a CNNs to segment the remaining sections. Compared to the
present work however, their approach is restricted to brain structures
that can be recognized at a resolution of 250 ym. The authors confirm
in their paper that more subtle classes, in particular subdivisions of the
isocortex, introduce excessive noise with their approach. The method
presented here segmented both £0¢1 and £0¢2 in the same dataset with
high accuracy by including more fine-grained texture features into the
models, thus going clearly beyond this restriction.

4.4. Effect of the local segmentation models

Previous work on automatic cytoarchitectonic brain mapping
using machine learning emphasized the importance of strategies
for efficient exploitation of available training data and prior in-
formation. This includes incorporating probabilistic priors from
brain atlases Spitzer et al. (2017) and self-supervised learn-
ing Spitzer et al. (2018). The key idea of the present paper is to
use multiple local segmentation models, each of which focuses on a
spatially restricted subset of sections in one specific brain area. In order
to maximize practical benefit, we make an explicit design decision not
to aim for a general classification model of multiple brain areas and
brains. The benefit of such local segmentations models is confirmed by
our experiments, which showed significantly improved performance of
HR, LR, and MS compared to their globally trained counterparts HR
{aLL), LR {ALL)and MS (aLL).

A major advantage of the local segmentation models is the ability
to flexibly adjust the distance between training sections to account for
regions with particularly simple or complex properties. This has been
demonstrated for the challenging areas 20c5 and 20c3v, where a re-
duction of the distance between training sections from 120 (2.4 mm) to
60 (1.2 mm) improved precision to a satisfactory level while keeping the
annotation effort tractable.

Distance reduction results in major performance gains when using
local segmentation models LRor MS, but only minor gains when using
globally trained models LR {ALL) or MS (ALL). This suggests that local
segmentation models make more efficient use of the additional training
data.

In a similar fashion, larger areas or areas with distinct cytoarchitec-
tonic features {e.g. #Ocl) can be segmented with a coarser set of training
sections, in this case reducing annotation effort.

The availability of expert annotations limits our ability to evaluate
the effect of reducing distance between annotated sections. The results
of our experiments for areas #0c3v and #Oc5 suggest, that the optimal
distance between annotated sections depends on the cytoarchitectural
and morphological complexity of a brain area. The proposed interactive
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workflow allows users to add annotations incrementally until satisfied
with the segmentation.

On the downside of local models, hyperparameter assessment {e.g.
for learning rate or model architecture) is not straightforward when
training multiple models on different training sets and evaluating them
on individual test sets. Model performance needs to be evaluated across
several areas, sections and brains, which can be computationally expen-
sive and lead to a slow development process.

4.5. Effect of the multi-scale model architecture

Macroscopic features of the cerebral cortex {e.g. folding patterns)
vary between individual brains. While the location of gyri and sulci
can provide guidance for localizing brain areas, such coarse landmarks
cannot generally be used to precisely predict cytoarchitectonic bor-
ders (Amunts and Zilles, 2015; Fischl et al., 2008; Im and Grant, 2019;
Lebenberg et al., 2018). Consequently, established methods for identi-
fying cytoarchitectonic areas rely on high-resolution microscopic infor-
mation Schleicher et al. (1999); Spitzer et al. {2017, 2018). In contrast,
the proposed local segmentation models are able to exploit macroscopic
features for improving segmentation performance, thanks to their spe-
cialization on only a part of a specific brain area from one individual
brain. This can be seen from the higher scores produced by the LR and
MS architectures for local segmentations models {Table 1), and by the
lack of such an effect for models trained on all sections of a brain area
{HR {aLL), LR {aLL), MS {aLL)). Microscopic resolution features fur-
ther contribute to the performance of the local segmentation models,
as verified by a Wilcoxon signed-rank test {Wilcoxon, 1945) (p = 0011)
which confirms that the multi-scale approach of MS further improves the
performance compared to LR. However, this is a relatively small effect
compared to the improvement between HR and MS. We can therefore
assume that macroscopic information is more relevant than microscopic
information in the strictly local setting.

For further understanding the influence of the two scales in the
model, it is helpful to compare predictions obtained when occluding
(i.e. setting to zero) either the microscopic or macroscopic inputs in a
MS model: Using only low-resolution inputs, the model is still able to ap-
proximately locate the area, but fails to capture the fine details. On the
other hand, a model restricted to see only high-resolution inputs strug-
gles to correctly locate the area. This confirms our assumption that the
MS model mostly uses low-resolution inputs for localization and high-
resolution inputs for local refinement. While the results of this experi-
ment cover only a specific setting (e.g. model, area and input location),
they give us some confidence that the model works as expected.

4.6. Failure mode analysis

The predictions produced by the proposed model typically include
some remaining errors (Figs. 9, 12), which require careful interpreta-
tion.

Close to brain region boundaries, it must be noted that the GLI-based
reference annotations enforce straight lines to model the border, which
reflects the vertical arrangement of neurons in columns as a major prin-
ciple in cortical organization (Schleicher et al., 2000; 1999). This may
lead to discrepancies with the present segmentations, that do not en-
force such constraints (see for example Fig. 12). In fact the location of
the boundary is not determined down to the single pixel, and as a conse-
quence, pixel-level metrics have a somewhat limited significance there.

Many of the remaining classification errors further coincide
with highly oblique cutting angles of the tissue. As also reported
in (Schleicher et al., 1999; Spitzer et al., 2017; 2018), identification
of cortical areas is almost impossible at such angles, because the lami-
nar composition of the cortex is then almost invisible in the 2D section.
In such cases, experts would consult adjacent sections to identify ar-
eas, which the proposed method cannot do. An extension of the method
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considering multiple adjacent sections for classification might be able
to overcome this issue.

‘Whether or not remaining segmentation errors are critical in prac-
tice depends on the availability of postprocessing methods for correcting
them. In the experiments that we carried out, the precise 3D reconstruc-
tion of the BigBrain dataset could be used for removing spurious errors
{Section 2.8). However, if no precise 3D reconstruction is available, the
manual effort for quality control of predictions and any necessary error
corrections increases. For such settings, it would be beneficial to develop
additional heuristics to identify errors, e.g. for detecting inter-section in-
consistencies from only approximate section alignments.

5. Conclusion

A novel method based on Convolutional Neural Networks {CNNss)
was introduced for automated mapping of cytoarchitectonic areas in
large series of histological human brain sections. Segmentation mod-
els were trained for segmentation of different cytoarchitectonic areas in
histological stacks obtained from three different brain samples. A key
idea is to train separate local segmentation models based on annota-
tions of one specific target area in only two training sections, to focus
the learning process on microscopic and macroscopic tissue features
close to the training sections. Local segmentation models enable ex-
ploitation of low-resolution macroscopic information and significantly
improve performance over globally trained models. After training, local
segmentation models were able to accurately segment sections in be-
tween their respective training sections. By concatenating results from
multiple local segmentation models, segmentations for complete brain
areas can be obtained. The proposed method opens up new possibil-
ities to map complete stacks of histological human brain sections in
a highly automated fashion, and thus provides an important basis for
building high-resolution human brain maps for datasets like BigBrain.
To the best of our knowledge, the maps of areas 20cl, 20c2, AOc3v
and #0c¢5 computed for the BigBrain model using this method are the
first high-resolution 3D maps of human cytoarchitectonic areas created
from full stacks of histological sections at cellular resolution. These maps
enable precise studies of area-specific morphological and columnar fea-
tures at microscopic resolution, and in combination with existing corti-
cal layer maps (Wagstyl et al., 2020) an investigation into layer-specific
aspects of each region. Dense maps further enable straightforward map-
ping from the volume to the whole brain mesh surface, which in tum
facilitates comparison with other modalities, especially in-vivo imag-
ing. They represent an important contribution for using BigBrain as a
microscopic resolution reference space, since they provide direct links
to probabilistic cytoarchitectonic reference parcellations at the macro-
scopic scale (Amunts et al., 2020) that are widely used in neuroimaging
studies. As such, our work makes an important contribution to linking
neuroscientific findings across spatial scales.
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The human metathalamus plays an important role in processing visual and auditory
information. Understanding its layers and subdivisions is important to gain insights in
its function as a subcortical relay station and involvement in various pathologies. Yet,
detailed histological references of the microanatomy in 3D space are still missing. We
therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB)
and its subdivisions in the BigBrain — a high-resolution 3D-reconstructed histological
model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB
and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem
brains were studied. Three MGB subdivisions (MGBy, MGBd, MGBm) were identified on
every 5th BigBrain section, and a deep-learning based tool was applied to map them
on every remaining section. The maps were 3D-reconstructed to show the shape and
extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were
additionally identified in nine other postmortemn brains. Probabillistic cytoarchitectonic
maps in the MNI “Colin27" and MNI ICBM152 reference spaces were computed which
reveal an overall low interindividual variability in topography and extent. The probabilistic
maps were included into the Julich-Brain atlas, and are freely available, They can
be linked to other 3D data of human brain organization and serve as an anatomical
reference for diagnostic, prognostic and therapeutic neurcimaging studies of healthy
brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a
basis for data integration, brain modeling and simulation to bridge the larger scale
involvement of thalamocortical and local subcottical circuits.

Keywords: metathalamus, BigBrain, cytoarchitectonic maps, lateral geniculate body, medial geniculate body,
human, 3D histology

INTRODUCTION

The human metathalamus, located caudoventrally of the main body of the thalamus, plays an
important role in processing visual and auditory information. Visual and auditory processing is
encoded separately in the two major nuclei of the metathalamus, ie., the lateral geniculate body
(LGB) and the medial geniculate body (MGB). The LGB is a 6-layered structure, innervated by
optic tract fibers covering the contralateral visual field. Its two magnocellular and four parvocellular
layers process functionally distinct retinal pathways. The MGB on the other hand receives input
from ascending tonotopically organized projections via the medial lemniscus, as well as projections
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from the inferior colliculus and the auditory cortex (Peruzzi
et al, 1997; Saint Marie et al., 1997; Llano and Sherman,
2008; Caspary and Llano, 2017). It can cytoarchitectonically
be subdivided into three major compartments: the ventral,
dorsal and medial subdivisions (Winer, 1984). Both nuclei have
prominent projections to cortical areas and serve as subcortical
relay stations.

Investigating the structural-functional relationship of the
MGB and LGB including its subdivisions and layers is also
relevant froma clinical perspective, e.g., to understand the MGB’s
involvement in tinnitus (Llinas et al., 2002; Rauschecker et al.,
20105 Leaver et al,, 2011; Ridder et al., 2015; Caspary and Llano,
20175 Berlot et al., 2020), speech recognition (Mihai et al., 2019),
and developmental dyslexia (Diaz et al., 2012) as well as the
LGB role in glaucoma (Wang et al, 2015 Stein et al., 2021),
multiple sclerosis (Korsholm et al., 2007; Papadopoulou et al,
2019), Parkinson’s (Lee et al., 2016), and psychiatric diseases
(Butler and Javitt, 2005; Selemon and Begovic, 2007).

Since the spatial resolution of ultra-highfield fMRI has
increased to the submillimeter range in recent years, more
detailed studies have been become feasible including the
possibility to measure laminar brain activity (Huber et al., 2018;
Jia et al., 2021) as well as identifying functional subdivisions of
subcortical (Rijk et al., 2021) and cortical (Martino et al., 2015;
Nasr et al., 2016) structures.

However, existing histological maps of the human thalamus
do not include subdivisions of the MGB and/or layers of
the LGB or do not cover the metathalamus over its whole
extent (Morel, 2007; Krauth et al,, 2010; Ding et al.,, 2016; Mai
et al.,, 2016). The same holds true for MRI based probabilistic
atlases of the thalamus (Iglesias et al., 2018; Najdenovska et al.,
20185 Garcfa-Gomar et al., 2019). Furthermore, no probabilistic
histologically based reference maps of the metathalamus exist
so far, which make it difficult to account for individual
variability in topography and volume, as well as to compare
histological maps with findings from neuroimaging. More
detailed maps of subdivisions and layers of the MGB and
LGB could provide micro-anatomical reference data for high-
field MRI investigations, to inform mneuroimaging studies,
and to provide reference data for biologically realistic brain
modeling and simulation.

The BigBrain model based on its 7404 cell-body stained
and 3D-reconstructed sections constitutes an anatomical brain
model at a spatial resolution of 20 micrometers isotropic in this
regard (Amunts et al,, 2013). It has been used, for example, to
interpret MRI based models of brain connectivity (Wei et al.,
20195 Paquola et al., 2020b), functional and structural gradients
(Paquola et al., 2019; Royer et al., 2020), as well as default mode
network components (Margulies et al., 2016; Paquola et al., 2019).

In the present study, we aimed to create a cytoarchitectonic
map of the MGB and its subdivisions in the BigBrain model
and supplement previously published maps of the LGB with
its six layers (Brandstetter et al., 2021). To construct a high-
resolution map of the MGB, a novel deep-learning based
cytoarchitectonic mapping tool was applied (Schiffer et al,
2021¢c). Secondly, the MGB and LGB were identified in
histological sections of ten postmortem brains and volumes, as

well as probabilistic cytoarchitectonic maps were computed to
address the intersubject variability of the two nuclei.

MATERIALS AND METHODS

Processing of Postmortem Brains
Cytoarchitectonic mapping was performed in serial histological
sections of ten human brains from body donors (5 female, age 59—
85 years, 5 male, 30-75 years, Table 1). The brains were obtained
in accordance to legal and ethical regulations and guidelines as
part of the body donor program of the Department of Anatomy
of the Heinrich Heine University Diisseldorf. Body donors gave
written informed consent for the general use of brain tissue for
aims of research and education. All usage in this work is covered
by a vote of the ethics committee of the Medical Faculty of the
Heinrich Heine University Diisseldorf (#4863). The postmortem
delay did not exceed 24-36 h. The list of brains also included the
BigBrain dataset (Amunts et al., 2013).

The procedure of processing the brain tissue was described
in detail in Amunts et al. (2020). In short, the brains were
fixed in 4% buffered formalin (pH 7.4) or Bodian’s fixative for
at least 3 months. All brains underwent magnetic resonance
imaging using a T1-weighted 3D FLASH sequence (flip angle
40°, repetition time TR 40 ms, echo time TE 5 ms). MR
images were used as an undistorted spatial reference for the 3D-
reconstruction of the histological sections. After scanning, the
brains were embedded in paraffin and serially sectioned in the
coronal plane on a large-scale microtome (20 pm thickness),
whereby series of blockface images of the paraffin-embedded
brains were obtained. Every 15th section (every section in case of
the BigBrain) was stained for cell bodies using a silver staining
technique (Merker, 1983), and digitized using tissue scanners
(1 pm in-plane resolution).

Cytoarchitectonic Probability Maps

To create probability maps of the MGB and LGB, both nuclei
were delineated and traced over their whole extent on every
15% section (distance between sections: 300 pm) in all 10

TABLE 1| List of postmartem brains used for cytoarchitectonic
mapping and analysis.

Brain ID Gender Age Cause of death Fresh weight
(Years) (@)
pm 1 Fernale 79 Carcinoma of the bladder 1,350
pm 4 Male 75 Necrotizing glomerulonephritis 1,349
pm 5 Fernale 59 Cardiorespiratory insufficiency 1,142
pm 7 Male 37 Acute right heart failure/cardiac 1,437
arrest
pm 8 Fernale T2 Renal failure/renal arrest 1,216
pm @ Fernale 79 Cardiorespiratory insufficiency 1,110
pm 10 Fernale 85 Mesenteric infarction 1,046
pm 13 Male 39 Drowning 1,234
pm 20 Male a5 Cardiorespiratory insufficiency 1,392
pm 21 Male 30 Bronchopneumonia 1,409
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brains using an in-house software (Online Section Tracer). The
MGB was identified based on previous microscopical studies
and its characteristic topography (Kuhlenbeck, 1954; Winer,
1984). Delineation criteria for the LGB were adapted from the
literature (Clark, 1932; Brandstetter et al., 2021). The delineations
of the MGB and LGB in the left and the right hemisphere
were 3D-reconstructed. Hereby, spatial transformations of the
whole-brain histological datasets were used that were earlier
computed based on the MR-images and the blockface images
of the paraffin-embedded brains. The delineated nuclei were
then spatially normalized and transferred to the T1-weighted
single-subject template of the Montreal Neurological Institute
(MNI), “Colin27”, as well as the MNI ICBM152 2009¢ non-linear
asymmetric reference space (Evans et al., 2012). The individual
maps of the MGB and the LGB were superimposed in beth
templates to calculate probabilistic maps. Values from 0to 100%
overlap were calculated to indicate the probability for each voxel
of the reference brain to contain either the MGB or the LGB at a
certain position (Amunts et al., 2020).

Volumetric Analysis

Volumes were calculated and corrected for shrinkage based on
the delineations of the MGB and LGB in histological sections
based on Cavalieris principle (Amunts et al., 2007). A volume
normalization was applied by calculating the proportion of the
volume of the structures and the total brain volume to make
the results comparable (Bludau et al., 2014). Differences in
volume proportions were tested for significant effects caused by
hemisphere (left vs. right) and sex (male vs. female) with pair-
wise permutation tests. For each of these tests, the corresponding
values (male/female; left/right hemisphere) were grouped and
a contrast estimate was calculated between the means of these
groups. The null distribution was estimated by a Monte-Carlo
simulation. All values were randomly redistributed into two
groups, calculating the same contrast with a repetition of
1,000,000 iterations. Differences were considered statistically
significant if the contrast estimate of the true comparison
was larger than 95% of the values under the mull distribution
(p < 0.05). Differences in mean volumes between the MGB and
LGB were analyzed using a paired two-sided f-test with an o
error-rate set to 0.05.

High-Resolution Cytoarchitectonic Brain
Mapping in the BigBrain

In addition, the MGB and its subdivisions were delineated on
every 5th section of the BigBrain dataset (Amunts et al., 2013)
using the high-resolution digitized scans. The range of sections
covered a distance of 3.20 mm in the left and 3.08 mm in
the right hemisphere. To map the three subdivisions on every
section, a deep-learning based brain mapping tool designed to
map cytoarchitectonic structures in full stacks (Schiffer et al,
2021¢) was applied. The deep-learning network architecture has
shown to resemble cytoarchitectonic criteria (Kiwitz et al., 2020)
and has successfully been used to generate whole-stack maps
of several cytoarchitectonic areas (Schiffer et al., 2021c). The
method was trained on 57 delineated sections containing the

MGB and its subdivisions. Training was performed remotely viz a
web-based interface (Schiffer et al., 2021¢) on the supercomputer
JURECA at Jilich Supercomputing Centre (Krause and Thornig,
2018). Automatically created maps were subsequently controlled
to exclude falsely qualified sections, which were manually
corrected via the tool’s web-based interface. The annotations
were transformed into the 3D-reconstructed BigBrain space
by applying a non-linear registration of the high-resolution
digitized sections (Omidyeganeh et al., 2020) and available
transformations for the BigBrain (Amunts et al., 2013) to generate
a volume for each MGB subdivision. The total number of volume
voxels, their physical size and a shrinkage factor of 1.931 for the
BigBrain (Bludau et al., 2014) were subsequently used to calculate
the volume of the MGB and its subdivisions. The total volume of
the subdivisions of this straight-forward approach was compared
to the estimated MGB volume based on Cavalieri’s principle as
described above.

3D-surface meshes of the subdivisions were generated using
the marching cube algorithm (Lewiner et al, 2003). The
3D reconstruction directly followed the protocol described in
Schiffer et al. (2021c). Rough edges on the mesh surfaces
were subsequently smoothed locally using normalized curvature
operators in the normal direction preserving their specific
structure. Surface meshes of the LGB have been generated and
3D-reconstructed in a similar manner based on publicly available
whole brain maps of the LGB and its layers in the BigBrain
(Brandstetter et al., 2021; Schiffer et al., 2021a).

RESULTS

Localization of the Medial and Lateral

Geniculate Bodies

The MGB and LGB followed a consistent topography in
all analyzed postmortem brains. The LGB was located
ventrolaterally of the pulvinar of the thalamus. It showed
the typical 6-layered pattern with sharp bends. The MGB was
always located medially to the LGB. Its caudal pole protruded
from the caudal extremity of the diencephalon. The caudal pole
itself was located caudoventrally of the posterior nuclear complex
(i.e., the compact limitans, suprageniculate and posterior nucleus
of the thalamus) and medially of the inferior pulvinar nucleus
of the thalamus (Figure 1). The caudal surface of the pretectum
formed the dorsomedial flank of the MGB.

Probabilistic Cytoarchitectonic Maps of
the Medial and Lateral Geniculate Bodies
Delineations of the MGB and LGB in the sample of 10
postmortem brains were transferred to the MNI Colin 27 and
MNI ICBM152 2009¢ non-linear asymmetric reference spaces.
The probability maps of the two nuclei show their paired
arrangement caudoventrally of the main body of the thalamus.
The LGB is located dorsally of the hippocampal formation along
its whole extent with the MGB adjoining it medially (Figure 2).
Center of mass coordinates in the Colin 27 and MNI ICBM152
2009¢ non-linear asymmetric spaces (in parentheses) constituted
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FIGURE 1 | Topography of the MCB and LGE. {A) Cell bedy stained scction (number 3860, caudal MGB;) from the left hemisphere of postmartem brain pm 21, The
dashed Box indicalas he localion of Ihe Ihalamus magnilisd in panel (B, (B) Magnified crap rom panel () showing (he lopagraphy of the MGEB and LGB icyan and
red} in comparison to putative locations af other thalamic nuclel. {C) Magnified crap fiom panel (B) depicting the layered structure of the LGB {cyan, left side) and the
subdivisions of lhe: MGB [rad, righl side). Romean nurmerals indicale layars of he LGB; LGB, lalerd ganiculals body: MGB, medial ganiculale body; MGBv, venlral
subdivision of the MGE; MGEd, dorsal subdivision; MGEm, medial subdivision; Po, posterior nucleus; SGMN, suprageniculate nuclevs: Lim, compact limitans
nuelaus; Pul. pulvinar; MO, mediodorsal nuelaus: | R aleral poslaior nucleus

100 % 100 %

LGB probability
MGB probability

10 % 10 %%

FIGURE 2 | Frobabilily maps ol [he MG and | GR in Ihe single-subject lemplle ol MNI "Goln? 7 (Fuans el al, 2012) Coronal slices rom rostral iy — —17) 12 caudal
fy = =21} show the prcbability maps color-coded in blue (LGE) and red [MGE) in the MNI “Colin27" coardinate space. Celor gradients on the lower right indicate the:
100%: al ten braingl; LGB, lateral geniculate bady; MGE, medial geniculate bady.

aoverlap across the ten postmortem hraing for a specific voxel (104 anly ane brain:

x = —24, y = =24, z = —10 {—24, —25, —9) for he left LGB, wellas 14,y = =27,z = —9 (15, —26, —8) for the right MGB.
X =22, y=—24, z = =10 (23, =24, —9) for the right LGB, The y-coordinates of the center of masses demonstrate the more
x=—16,y=-27z=—-8(-15 —27, —=7) [or the le[l MGB, as  roslral location of the LGB (y = —24) in comparison (o thc MGB

Frontiers in Neurmanatomy  wee frontiersin.org 4 March 2022 | Volume 18 | Arlicle 837485

37



Kiwitz et al

Metathalamic Maps in 3D Space

TABLE 2 | Mean volumes, standard deviations (SD) as well as minimal and
maximal values of the shrinkage-corrected mean volumes of the MGB and LGB in
ten postrortem brains for both hernispheres measured in mm?

Nucleus Statistic Left hemisphere Right hemisphere Sum
MGB Mean 1243 134.4 258.7

Min 91.9 89.0

Max 164.2 209.3

sD 27.4 363 58.2
LGB Mean 166.9 165.5 332.4

Min 163 120.4

Max 220.8 218.3

sD 286 266 54.6

MGB, medial geniculate body; LGB, lateral geniculate body:

(y = —27) as shown in Figure 2. The color-coded probability
maps of both nuclei (Figure 2) show a central peak with a steady
decrease when moving away from the center of mass in all three
dimensions — emphasizing the central location of the two nuclei
within the probability maps in both hemispheres.

Volumetric Analysis of the Metathalamus
Results of the volumetric analysis of the ten postmortem brains
are shown in Table 2. Shrinkage-corrected mean volumes of the
MGB (Mean = 258.7 mm?, SD = 59.2 mm®) were significantly
smaller than the LGB (Mean = 3324 mm?, SD = 54.6 mm?>)
volumes (#(9) = —7.0, p < 0.001, two-sided test). Permutation
tests did not reveal any significant effects of hemisphere and sex
as well as their interaction on the shrinkage-corrected volumes
for each nucleus (p > 0.05).

Cytoarchitecture of the Medial

Geniculate Body

Three subdivisions of the MGB were identifled and delineated in
the BigBrain (Figure 3): The ventral subdivision (MGBv) formed
the ventrolateral part of the MGB and was mainly comprised
of small and medium sized perikarya, some of which formed
row-like clusters as described previously (Winer, 1984). These
contributed to a layer-like appearance of the ventral subdivision
(Figure 3B). The MGBv was flanked by white matter that
extended ventrally to the lateral border of the cerebral peduncle
and ringed the free surface of the caudal pole of the MGB
(Figure 3G). It could easily be separated from the medial and
dorsal subdivisions by cell-sparse zones (Figure 3H), as well
as differences in cell-density, size and composition. Similar to
observations by Winer (1984), we found a small cluster of larger
cells in the ventrolateral part of the ventral subdivision on some
sections (Figure 3E).

The dorsal subdivision (MGBd) covered the whole caudo-
rostral extent of the MGB forming a cap on top of the ventral
and medial subdivisions. It showed a reduced cell-density in
comparison to the ventral subdivision (Figure 3C). The largest
cells in the dorsal subdivision could be found on the medial and
ventromedial limb, right at the border to the medial subdivision
(Figure 3F). They marked the border to the medial subdivision.
The border to the medial subdivision was also characterized

by a fine cell-sparse zone, which was more profound in rostral
sections (Figure 3F).

The medial subdivision (MGBm) formed the ventromedial
part of the MGB and, on average, contained the largest perikarya
of all subdivisions (Figure 3D). The MGBm showed a caudo-
rostral gradient of increasing cell size which facilitated the
separation from the ventral subdivision in rostral sections. At
the same time, the increase in cell size impeded the separation
from the dorsal subdivision with its especially large somata at the
border to the medial subdivision (Figure 3F).

High-Resolution 3D-Reconstructions of
the Medial Geniculate Body in the
BigBrain
The deep-learning based brain mapping tool allowed to identify
delineations of the three subdivisions of the MGB on 132
sections of the left and 165 sections of the right hemisphere in
the BigBrain. Combined 3D-reconstructions of the MGB and
LGB (Brandstetter et al., 2021) with its subdivisions and layers
in the BigBrain are shown in Figure 4 (see Supplementary
Video) and demonstrate the paired arrangement of the two
nuclei in proximity of the hippocampal formation ventrolaterally
(Figure 4C). The MGBd forms a cap across the whole extent of
the MGB. The ventral and medial subdivisions share the lower
half of the MGB. On rostral sections, MGBd and MGBm are
flanked by white matter and parts of the ventrobasal complex
of the thalamus (Figure 4C). Here, the darkly stained substantia
nigra of the mesencephalon can be seen ventromedially of the
MGB (Figure 4C). Caudally, the MGBd and MGBm border
the posterior nuclear complex along their dorsomedial surface,
whereas the MGBd and MGBv border the most caudal tip of the
inferior pulvinar nucleus (see Figures 1B, C for an illustration).
Shrinkage-corrected volumes of MGBv and MGBm were
larger in the left hemisphere, whereas the MGBd subdivision
showed a similar size in both hemispheres (Table 3). The sum
of all three subdivisional volume measurements corresponds
to the mean MGB volume calculated based on mappings on
every 15th section in postmortem brain pm20 (BigBrain). The
latter fits within 0.8 standard deviations of the left and 1.3
standard deviations of the right hemisphere of the mean volume
measurements based on all ten postmortem brains (Table 2).

DISCUSSION

The present study introduces high-resolution 3D brain maps of
the human MGB and its subdivisions in the BigBrain utilizing
a novel deep-learning based brain mapping tool. Together with
the recently published LGB layer maps (Brandstetter et al., 2021)
they provide a high-resolution whole-brain histological reference
of the metathalamus at 20 micrometer resolution. Additionally,
probabilistic cytoarchitectonic maps of the MGB and LGB were
caleulated in a sample of ten brains, with a spatial resclution
of 1 mm. They have been aligned with two commonly used
reference spaces (MNI “Colin27” and MNI ICBM152 2009¢
non-linear asymmetric) and are part the Julich-Brain atlas
(Amunts et al., 2020). All datasets are publicly available on
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FIGURE 3 | Gytoarchitecture of the MGE. (A) Histological cell body stained section from the left hemisphere of the BigBrain (section 3280, rostral level of the MGE]
displaying the three subdivisions. Dashed boxes with falic lstiars (g-h) indicats magnified excerpts, (B} Cyloarchitscture of MGDw showing row-like clusters of
medium-sized cells (yelow;: (C) cyicarchitecture of MGEd showing a cell-sparse pattern. (D) Cytoarchitecture of MGEM showing perikarya (vellow) which were
lzrger than in the other subdivisions. (E) Magnified excerpts from the ventrolateral quadrant of MGDy showing the putative hurman homologous region of the feling
wentrolateral nucleus (Winer, 1954} {F) Magnified excerpts of the border between MGBd and MGEm. lHed arrows indicate a cell-sparse zone defining the borderline.
Brownish colored cells carsspond 1o the previously described suprageniculate and posteror Imitans nuclel of MGB (Winer, 1984) and are of similar size as the
reduish golored gels ot MGREM. (G) Magnified excerpts from the ventrolataral part of MGBY showing & capsiilie of nelrepil iysliow) fanking MGy, (H) Magnified
axcerpts of the border betwsan MGBv and MGBm highlighting a cell-sparse zone that defines the borderling; MGE, medial geniculata body; MGBy, ventral
subdiision of the MGH: MEHY, dorsal suodiision; MGBm, medial subdivision
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TABLE 3 | Volumes af the MGB subdivisions in the BigBrain for both hemispherss,

Volume in mm?

MGB subdivision Left hemisphere Right hemisphere
MGBv 1587 131
MGBd 44.8 45.3
MGHm 9.6 316
Sum of subdivisions 103.1 80.0

Measurements show  shinkage-carrected valumes  obltained from the 3D-
reconstructod surfaco moshas of the MGE subdivisions (MOBy, MOEd, and
MGEm]; MGH. madial ganiculate body; MGy, venfral subdfivision of the MGL!
WMCBd, dorsal subdivision, MCBM, modial subdivisicn.

EBRAINS (Kiwitz et al., 2021b; Schiffer et al, 2021b) and the
multi-level atlas of the Human Brain Project.!

Comparison With Previous Histological
Studies and Atlases

The overall characterization of three distinet subdivisions of
the MGB in the BigBrain is in accordance lo hislological
studies in human (Hassler, 1959; Winer, 1984; Morel, 2007;
Ding et al, 2016; Mai et al, 2016) and animal brains (Morest,
1964; Clerici and Coleman, 1990). The topography of the three
MGB subdivisions in the BigBrain resembles that shown by
Morel (2007), Hassler (1959), and Winer (1992), Following
their localization of the subdivisions, our analysis consolidates
the notion for the ventromedial location of the magnocellular
subdivision MGBn1. This subdivision has previously also been
reported to be located more ventrolateral by Amunts et al. (2012).
The cytoarchitectonic features in our Investigation correspond

Uhitpss/finteractive- viewer.apps.hbp ewf

LGB lavers
\ MGB subdivisions [IINTGERN MGEaT ISIGEIN

FIGURE 4 | 3D reconstructions of the MGB and LGB in the left hernisphere of the BigBrain. (A) llustration of the BigBrain surface model, laters caudal view (cutting
plane correspends to coronal section number 3280, rostral MGE}. {B} Cut through the BigBrain volume at section position 3280 showing the subdivisions of the

WCE iMCBv, MCBd, and MCEBm) and layers of the LGB {-VI). {C) Magnificd viow of the LGE (lcft) and MGEB {right] showing their location at the ventral surface of the
BigBrain; MGB, medial geniculate bedy; LGB, lateral geniculate body: MGBy, ventral subdivision of the MGB; MGBd, dorsal subdivision; MGBm, medial subdivision.

S,
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well with these found by Winer (1984), with the exception
of the described size of perikarya in MGBm. In the BigBrain,
MGBm still contains the largest perikarya of all subdivisions,
yet the size difference seems to be not as distinet as previously
deseribed  (Winer, 1984). Although we were able 1o delect
some corvespondences to even finer subparcellations, ie., the
suprageniculate and posterior limitans nuclei of the dorsal
subdivision (Figure 3F) and a cell cluster possibly corresponding
to the feline ventrolateral nucleus (Strick and Sterling, 1974;
Winer, 1984), further subdivisions found in human (Winer, 1954)
and animal studies (Morest, 1964; Harrison and Howe, 1974)
could not reliably be replicated in the BigBrain,

Intersubject Variability of Volumes
Currently  available  histological — atlases  mostly
metathalamic structures based on single brains {Ding et al.,
2016) with the exception of Morel (2007), who compared
the topography of structures to a previously published atlas
using a different postmorlem brain. The present analysis
addresses intersubject variability in a larger sample, The here
provided shrinkage-corrected mean volumes of the MGB add
to the limited literature of histological volume measurements
(Glendenning and Masterton, 1998; Rademacher et al., 2002;
Sitek et al, 2019). The interindividual variability in MGB
volume resembles data of @ more than wolold variability
reported earlier (Rademacher et al, 2002). The same is
true for the LGB volumes and their approximately twofold
interindividual variation (Zvorykin, 1980; Andrews et al,
1997). Similar lo previous histological investigalions, we found
no significant hemispheric asymmetries of MGB and 1GB
volumes (Eidelberg and (Galaburda, 1982; Andrews et al., 1997;
Rademacher et al., 2002).

contain
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At the same time, volume measurements derived from
MRI-based measurements differ to a varying degree from our
histological volumes. Comparable MGB volumes have been
reported using postmortem MRI (Sitek et al., 2019) and structural
in vivo MRI (Kitajima et al., 2015; Amaral et al., 2016). At the
same time higher MGB, as well as higher and lower LGB volumes
have been reported using functional and structural i vivo MR
measurements {Li et al.,, 2012; Garcia-Gomar et al.,, 2019; Jonak
et al., 2020).

These inconsistencies may reflect the inherent difficulty of
manually segmenting small subcortical nuclei in MR-images.
A direct localization of the LGB in structural MR images under
low field strengths (1.5 Tesla) requires prior enhancerment and
co-registration to anatomical surroundings (Li et al., 2012). At
3 Tesla, the LGB has been delineated indirectly using prior
masking (Wang et al., 2015; Cecchetti et al, 2016). A more
direct segmentation of the LGB and MGB using structural
and diffusion-weighted imaging becomes feasible at higher (7
Tesla) field strengths (Garcfa-Gomar et al, 2019). Although
the MGB becomes detectable at such field strengths, a clear
segmentation has only been reported for postmortem structural
MR (Sitek et al., 2019). Yet, even under high field strengths
a histological validation still seems to be needed to rule out
possible confounds such as low diffusion anisotropy due to
crossing fibers, as well as to assist investigators with anatomical
landmark information when creating segmentations (Garcia-
Gomar et al., 2019). The task difficulty of perceiving the LGB
and MGB in MR images is significantly impacted by the
image acquisition procedure (Kitajima et al., 2015) - imposing
a threat to the objectivity of such segmentations. Therefore,
in vivo segmentations of metathalamic nuclei in particular
for the MGB remains challenging due to the nuceis small
size and low contrast - confirming the notion for a more
precise histologically derived reference that our probability maps
provide.

The new maps constitute a probabilistic representation of
the MGB and LGB in the general population and include
five female and five male donors with a wide age range
including brains from older body donors. The older age of
some body donors may raise the question of possible structural
changes of the MGB in the context of age-related hearing loss.
Several studies indicate age-related changes of the subcortical
auditory system with regards to neurotransmitter and calcium-
binding protein expression (reviewed in Caspary and Llano,
2019). Both for normal aging and pathological conditions
such as deafness, structural changes have been reported for
the temporal cortex including the primary auditory cortex
(Lin et al., 2014; Wong et al,, 2014; Qian et al,, 2017), but
not for the MGB (Stanton and Harrison, 2000; Butler and
Lomber, 2013; Caspary and Llano, 2019). Other pathologies like
Alzheimers disease and Leber’s hereditary disease have shown
to alter human MGB volumes (Jonak et al., 2020; Bernstein
et al, 2021). The clinical records of the body donors did
not include any information of such pathologies, and did not
mention any changes in hearing abilities. Therefore, the here
presented volumes seem to represent mean volumes of the
investigated age range.

Neuroscientific and Clinical Relevance

The maps are part of the Julich-Brain (Amunts et al., 2020),
an atlas that is part of the multilevel atlas of the Human
Brain Project and its research infrastructure EBRAINS.” This
way, the maps may provide a reference to localize findings
from neuroimaging and serve as seed regions for functional
connectivity and diffusion weighted imaging analyses. In this
regard, they can be used to study brain disorders and functional
impairments, including the LGB’ involvement in visual field and
eye movement deficits (Dai et al., 20115 Pasu et al., 2015; Usrey
and Alitto, 2015 Wang et al., 2015), multiple sclerosis (Sepulcre
et al., 2009; Hickman et al.,, 2014; Papadopoulou et al., 2019),
Parkinson’s disease (Lee et al., 2016), psychiatric disorders (Mai
et al., 1993; Selemon and Begovic, 2007; Dorph-Petersen et al.,
2009), as well as the MGB’s involvement in tinnitus (Llinas et al.,
2002; Rauschecker et al., 2010; Leaver et al., 2011; Ridder et al,,
2015; Caspary and Llano, 2017; Berlot et al., 2020), and both
structures’ involvement in Leber’s hereditary optic neuropathy
(Jonak et al, 2020). In tinnitus patients, the maps have the
potential to aid future neurosurgical planning for deep-brain
stimulation (Smit et al., 2016; van Zwieten et al., 2021). The latter
already benefits from the development of multimodal deep-brain
stimulation atlases (Ewert et al., 2018) to which our metathalamic
probability maps can contribute.

The high-resolution MGB BigBrain maps show the
topography of the three subdivisions at nearly cellular resolution,
and are interoperable with any reference space used in the
neuroimaging community. This way, they can be used to bridge
the microscale histology of the metathalamic BigBrain maps with
macroscale functional measurements. Evidence from ultrahigh-
field-fMRI studies for example shows a mirror-symmetric
tonotopic gradient in the ventral MGB (Moerel et al., 2015),
which is well reflected by the row-like cell clusters (Winer, 1984;
Moerel et al., 2015) that were also detected in the BigBrain
(Figure 3B). At the same time, the MGB and its ascending and
descending connections seem to be involved in a tinnitus-related
network (Rauschecker et al., 2010; Leaver et al., 20113 Caspary
and Llano, 2017). Modulation of the ventral MGB is also
behaviorally relevant for speech recognition (Mihai et al,, 2019)
explaining the MGB’s involvement in developmental dyslexia
(Diaz et al., 2012). The MGB BigBrain maps may facilitate studies
of these larger scale involvements of thalamocortical circuits and
local subcortical circuits.

Together with the already published LGB BigBrain maps
(Brandstetter et al., 2021), the MGB maps provide a subcortical
target space for neuroimaging data integration and comparative
histological approaches at the level of specific subdivisions and
layers of the metathalamus. Several studies have already used
the 20-micron isotropic resolution of the BigBrain dataset for
such integrative approaches (Paquola et al., 2020a; Royer et al.,
2020) including subcortical structures of the auditory system
(Sitek et al.,, 2019). The BigBrainWarp toolbox (Paquola et al.,
2021, preprint) and the EBRAINS VoluBA toolbox for spatial
anchoring in the BigBrain space’ enable such an integration.

*https://ebrains.eu/
*https://ebrains.eu/service/voluba/
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Such a relationship is not only relevant to support MR
measurements with the cellular architecture, but also to develop
better and more realistic human brain models. The incorporation
of cytoarchitectonic parameters has recently led to more
biologically valid models of the macaque visual system including
cortical areas of different architectural types (Schmidt et al.,
2018), as well as models of the human cerebellar granular
layer (Florimbi et al,, 2021). However, such models usually lack
quantitative metathalamic input parameters, forcing them to be
estimated indirectly based on other network parameters (Schmidt
et al., 2018). Following this line of arguments, the metathalamic
maps in the BigBrain can enrich current brain meodeling
approaches by directly extracting cytoarchitectonic features from
the BigBrain (Paquola et al., 2020a; Dickscheid, 2021) at the
cellular level (Dickscheid et al., 2019; Behuet et al., 2021). Recent
advances in recenstructing the white matter fiber architecture
from Nissl-stained glia cells (Schurr and Mezer, 2021) could allow
to complement such features with sample specific connectivity
data of layers and subdivisions of the metathalamus.

As the BigBrain dataset is continuously expanded by
cortical and subcortical cytoarchitectonic parcellations, as
well as intracortical surface models (DeKraker et al., 2020;
Paquola et al, 2020a; Wagstyl et al, 2020), it provides an
increasingly rich resource for such integrative approaches. The
here provided high-resolution maps of the MGB contribute to
this development.
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Deep learning networks reflect
cytoarchitectonic features used
in brain mapping

Kai Kiwitz}*™, Christian Schiffer’, Hannah Spitzer*, Timo Dickscheid® & Katrin Amunts-23

The distribution of neurons in the cortex (cytoarchitecture) differs between cortical areas and
constitutes the basis for structural maps of the human brain. Deep learning approaches provide

a promising alternative to overcome throughput limitations of currently used cytoarchitectonic
mapping methods, but typically lack insight as to what extent they follow cytoarchitectonic
principles. We therefore investigated in how far the internal structure of deep convolutional neural
networks trained for cytoarchitectonic brain mapping reflect traditional cytoarchitectonic features,
and compared them to features of the current grey level index (GLI) profile approach. The networks
consisted of a 10-block deep convelutional architecture trained to segment the primary and secondary
visual cortex. Filter activations of the networks served to analyse resemblances to traditional
cytoarchitectonic features and comparisons to the GLI profile approach. Our analysis revealed
resemblances to cellular, laminar- as well as cortical area related cytoarchitectonic features. The
networks learned filter activations that reflect the distinct cytoarchitecture of the segmented cortical
areas with special regard to their laminar organization and compared well to statistical criteria of the
GLI profile approach. These results confirm an incorporation of relevant cytoarchitectonic features

in the deep convolutional neural networks and mark them as a valid support for high-throughput
cytoarchitectonic mapping workflows.

The human brain is not only target of the application of artificial neural networks (ANNs) to study its organiza-
tion, it also represents a natural network of enormous complexity and power, which inspired their development.
This has created a unique, bi-directional relationship throughout the last decades between research on brain
organization and the application and development of ANNs'~/. Trying to understand the details of how modern
ANNG internally operate is an ongoing endeavour and prerequisite to explain their results®”, and led to the emerg-
ing research field of explainable Al Due to the special relationship between brain organization and ANNs, such
insights are of special interest when applying ANNs to study brain organization itself.

"The brain contains neuronal networks formed by axons and dendrites, which connect neurons in different
brain regions. Neurons of the cerebral cortex are organized inlayers and columns'’. The distribution, arrange-
ment and presence of neurons (cytoarchitecture) differs between brain regions and is associated with connectivity
and functional differences' . Cytoarchitecture can be studied in histological sections stained for cell bodies"’.
Traditional cytoarchitectonic features include cell size, cell density, laminar thickness and arrangement, colum-
nar arrangement of cells, cellular clustering, cortical thickness, as well as the sharpness of the white matter/grey
matter border'*!1%-1%, Figure 1 illustrates the cytoarchitecture of the primary visual cortex (Brodmann Area 17,
hOcl, or V1, from here on called hOcl), the secondary visual cortex (hOc2, Brodmann Area 18, or V2, from
here on called hO<2), and the ventrally adjoining area hOc3v'®!, which are part of a complex biological network
for processing visual information'®, While all three areas show the typical 6-layer structure of the isocortex, they
differ with respect to their cytoarchitecture and role in information processing.

Previous studies of our own group have analysed the cytoarchitecture of areas hOcl, hOc2'° and hOc3v'".
Borders between the areas were identified based on computerized image analysis and statistical tests'®”. Such
methods based on quantitative measures enable a reproducible identification of borders'*~*. The current state-
of-the-art method for quantitative cytoarchitectonic analysis is based on the grey level index (GLI) as a measure
of the volume fraction of cell bodies extracted along traverses'. The latter are defined along the Laplacian field
from the cortical layer I/layer IT border to the white matter border on GLI images”*!?. The resulting GLI profiles
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Dsseldorf, Germany. *Max Planck School of Cognition, Stephanstrasse la, Leipzig, Germany. Jlnstitute of
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Figure 1. Cytoarchitecture of cortical areas of the visual system. (a) Histological cell-body stained section
(section 901) from the occipital lobe of the BigBrain dataset with cortical areas hOcl (yellow), hOe2 (blue) and
hOc3v (brown}'®'7, (b} Cytoarchilecture of cortical arcas hOc1, hOc2 and hOe3v extracted from (a). Roman
numerals indicate cortical layers. Area hOc1 is characterized by a prominent cortical layer TV, subdivided into
sublayers TVa, TVb and TVe. Sublayer TVe shows the highest cell-density and constitutes the cortical input layer
for visual information from the thalamus™. Cortical layer 111 and V contain small cells with the cell-sparse
layer V being easily distinguishable from cortical layer V', Tn area hOc2, the size of pyramidal cells in
cortical layer 111 steadily increases from upper to lower levels of the layer. Cortical layer IV is thinner than in
arca hOcl and the contrast in density between cortical layer V and V1is not as high. The overall clarity of a
columnar arrangement also appears increased'. Neighbouring arca hOc3v has a moderate cell-density'®!”. The
three cortical areas show distinet structural-functional relationships revealed by neuroscientific investigations,
including topographic organization® *, columnar organization® * and interhemispheric connectivity®

reflect the cytoarchitecture and feature vectors are extracted to analyse changes in cytoarchitecture while moving
across the cortical ribbon. The feature vectors contain the mean GLI value and the first four central moments
about the mean: mean, standard deviation, skewness and kurtosis, as well as values of the differential quotient of
the profile’®?!. A sliding-window approach captures borders between cortical areas based on multivariate differ-
ence functions of the feature vectors™, This approach has allowed to identify areas in serial histological sections,
Lo 31> reconstruct their extent, and Lo compule probabilistic maps as part of the julich-Brain atlas'** %, [t has
been applied for more than 100 areas.

Alternative approaches have been proposed for cortical mapping, e.g. excess mass functionals in the feature
vectors Lo establish a relation (o diflerences in cortical lamination in consccutive profiles™. 'This reduces the
complex shape of the profile to the number of local peaks and their differences?, Others have applied wavelet
analysis to bundle profile data in large wavelet coefficients”. However, it is not always straightforward to interpret
such transformations of the extracted profiles with respect Lo the original histological data since it is necessary
to determine which features of a wavelet transform should be analysed in a second step?. Additionally, wavelet
analysis represents profile descriptions at an abstract level that can hardly be related to underlying cytoarchitec-
Lonic properties of the histological tissue,

All approaches have in common that the extracted profile features only partly reflect traditional cytoarchi-
tectonic criteria, but focus on statistical image criteria to detect laminar differences in the cellular pattern. The
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feature vector for statistical analysis in the current GLI profile approach allows to interpret them with respect
to cytoarchitecture, e.g., mean cell packing density (mean GLI feature), or differences in cell density between
supra- and infragranular cortical layers (e.g., skewness feature)’”. However, such a reasoning cannot be made
unequivocally since one and the same GLI value can result from alower numerical density of large neurons and
ahigher density of small neurons®’. While cytoarchitectonic analyses in mapping studies have benefited signifi-
cantly from the GLI profile approach, recent developments of high-resolution models like the BigBrain dataset
with more than 7400 stained histological sections”” challenge the throughput for future studies.

Deep learning techniques constitute a new and promising alternative in the dynamically evolving field of
medical image analysis?*~*, which potentially enable the segmentation of cortical areas in more sections as com-
pared to the GLI profile approach. Deep ANNs have already led to robust and accurate results for cell detection
in histopathological images****-*%, The U-Net architecture® is highly effective for biomedical image segmentation
in this regard by using a deep convolutional neural network (CNN) approach, which we adapted for segment-
ing cortical areas on histological data in our own lab. It showed that the approach generates spatially consistent
segmentations across sections that are transferable to other brains with high throughput® .

To further evaluate whether this approach is adequate to support cytoarchitectonic brain mapping, an in-
depth comparison between the current GLI profile approach and deep learning-based mapping is required. We
therefore analysed the internal structure of deep CNNs trained to segment different cortical areas in images
of cell-body stained histological sections of the human brain. This included to evaluate in how far the internal
structure of the trained networks reflect traditional cytoarchitectonic features on the cellular and laminar level
of cortical areas. In addition, the laminar and cellular features reflected by the current GLI profile approach
were compared to the features learned by the networks, and correspondences and dissimilarities between map-
ping results were analysed in regions of interest. The study was performed in the visual cortex of the BigBrain
dataset—a frequently used, high-resolution brain model, for which all sections were histologically processed,
stained, imaged and 3D-reconstructed”®.

Methods

Cytoarchitectonic mapping based on GLI profiles.  Cytoarchitectonic analysis was performed on his-
tological sections of the BigBrain dataset’®. This dataset consists of 7404 coronal, 20 um thick, cell-body stained
sections of a complete paraffin-embedded human brain’®. The brain was originally obtained in accordance to
legal and ethical regulations and guidelines as part of the body donor program of the Department of Anatomy of
the Heinrich Heine University Diisseldorf. The body donor (65 years old, male) gave written informed consent
for the general use of post-mortem tissue for aims of research and education. All usage in this work is covered by
a vote of the ethics committee of the Medical Faculty of the Heinrich Heine University Diisseldorf (#4863). The
numbering of the dataset starts at the occipital pole (section 1) and ends at the frontal pole (section 7404). For
cytoarchitectonic analysis, a region of interest covering the primary visual cortex (hOcl) with its distinct cyto-
architecture, and the surrounding secondary visual cortex (hOc¢2) was chosen (Fig. 1). Both areas reach from
the occipital pole to the parieto-occipital sulcus'® and are located between sections 1 and 2461 in the BigBrain
dataset. The 3D-reconstructed BigBrain dataset and annotations of the areas are available online (https://inter
active-viewer.apps.hbp.eu/).

"The GLI profile approach was performed on three digitized sections (section 0961, 1021 and 1081) covering a
distance of 2.4 mm. They represent the centre of the designated region of interest in the BigBrain dataset. Mean
profile shapes have been extracted and borders between hOcl and hOc2, as well as to ventrally and dorsally
neighbouring areas hOc3v"” and hOc3d™ have been identified (Fig. 2). The resulting mappings on sections 0961
and 1081 served for training the deep CNNs. Mappings on section 1021 constituted a reference for analysing the
CNN¥ internal structure and validating their segmentation performance.

CNN based cytoarchitectonic mapping. Two CNNs were trained to segment cortical areas hOcl and
hOc2 on all 119 sections in between the training sections. The network architecture of the CNNs consisted of
10 blocks with 24 network layers modelled after the well-established U-Net architecture®, including modifica-
tions proposed which have been shown to work well for the task of cytoarchitectonic area segmentation®*".
We trained two separate instances of the same CNN architecture for cortical areas hOcl and hOc2 by using the
mappings on the training sections as well as classified volume information of the BigBrain dataset in its 2015 ver-
ston (https://bigbrainloris.ca/main.php?)*, incduding grey matter, white matter and background classifications.
Other than conventional U-Nets, each instance comprised a high- and a low-resolution contracting branch with
alarger field of view connected to a single expanding branch (Fig. 3), allowing the model to efficiently capture
fine-grained cytoarchitectonic features, as well as coarse-grained morphological properties of the surround-
ing tissue. All branches consisted of 864 network units leading to a total of 2592 units per CNN. As the use of
fine-tuned weights from a pre-trained network has shown to be beneficial in comparison to the use of random
initialized weights®, we adopted weights from a successful auxiliary deep learning model developed in our lab,
which has proven to boost segmentation performance among visual cortices™. In each training iteration the
CNNs were shown patches sampled equally from white matter, background, the cortical area of interest (hOc1
orhOc2) and other cortex to assure a balanced training. The high-resolution contracting branches of the CNNs
were shown a 4.05x 4.05 mm patch (2025 %2025 pixels at 2 micron per pixel) capturing fine-grained cytoarchi-
tectonic features; the low-resolution contracting branches were shown a 17.97 x 17.97 mm patch (1123 1123

pixels at 16 micron per pixel) to capture coarse-grained morphological properties of the surrounding tissue®.

Feature visvalizations and feature identification. In response to being presented with the validation
section, each unit of the two CNNs generated an activation (filfer activation). For an analysis of the internal

Scientific Reports |

(2020) 10:2203g | https://doi.org/10.1038/541598-020-78638-y natureresearch

49



50

www.nature.com/scientificreports/

d
8
c
£
2
T
a0
o
°
c
.
©
=
©
=

m

Window size

- N w OO

B < a(f ()

£ 18 my(f(x)) a = mean amplitude
Y g P
- 10 —— 3 mj(f(x)) m, = standard deviation
i \ Y= a(f'(x)) | my= skewness
E- 6 falx) m(f'(x)) | Mg kurtosis
] N—— my(f'(x))

0 10 20 30 40 50 60 70 80 90 100 ma(f'(x))

Cortical depth (%) my(f'(x))

24
22
20
18
16
14

0 10 20 30 40 50 60 70 80 90
Profile Position

eeeecceeeee

0 10 20 30

40 50 60 70 80

Profile Position

Figure2. Hlustration of the GLI profile approach for cytoarchitectonic analysis'®*"**". (a) shows profiles

(19 yellow and 19 blue) around a target profile (red, number 33} on a GLI image of a region of interest in the
occipital lobe of the BigBrain dataset™. The graph in (b) depicts mean profiles from each of the 19 profiles

from (a). () shows the feature vector used to quantify the shape of the mean profiles in {b) by interpreting
them as frequency distributions. 'Lhe feature vector consists of the mean amplitude of the distribution, the

first 4 central moments as well as the first derivatives of the later. (d) illustrates the multivariate Mahalanobis
distance metric between feature vectors generated from a sliding window approach with window size 19. It
indicates a significant global maximum of differences between feature vectors at profile position 33. Significant
global maxima for different window sizes in (e} confirm the detection of a border at position 33. (f) shows the
detected border (red bar) displayed on the histological section used in (a). Reman numerals indicate cortical
layers. Superimpositions of the profiles from (b) reveal correspondences to cytearchitectonic features and reflect
difterences in lamination and cellular composition between cortical area hOc1 on the left and hOc2 on the right
side of the detected border™. These include a clear differentiation of cortical layer IV reflected by differences in
GLI profile shapes, as well as differences in the excess of the profile shapes at cortical depths relating to cortical
layer TV to V1 in area hOcl and TV to VT in area hOc2. In area hOc1, the broad and cell-dense cortical layer TVe
contrasts the cell-sparse layer V which in return can easily be distinguished from the darkly stained layer V1.
Whereas in area hOc2 the thinner cortical layer IV does not stand out from the less distinguishable layer V and
VTto the same amount in the GLI profile shapes.

structure of the CNNs, these filter activations were calculated by using the Rectified Linear Unit (ReLU) outputs
within the high-resolution contracting and expanding branches of the hOc¢l and hOc2 CNNs. 1o reduce dif-
ferences among oulpul values, a normalizalion Lo an interval of (0.0, 1.0] was applied with the smallest value
larger than 0 serving as the lower bound. Thus, each filter activation constitutes a whole image whose resolution
is defined by the network layer is was calculated from. ‘Lhis resulted in 2592 filter activations for each of the
hOcl and hOc2 CNNs (5184 in Lolal} on the validation section. Since the number of dimensions {118.383.390
pixels on the validation section) exceeded the number of data points (2592 filter activations) by a factor of over
10,000, dimensionality reducing methods like a principal component analysis are not suited to categorize similar
components among the filter activations. 'Lherefore, a three-step categorization workdlow was applied to evalu-
ate whether the internal structure of the CNNs reflect traditional cytoarchitectonic features: (i) identification of
groups of similar filter activations across each CNN; (ii) identification of characteristic filter activations for each
layer of a CNN and {iii} identification of cyloarchilectonically relevant features among the characteristic (lter
activations. In detail:
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Figure 3. Scheme of the used CNN architecture inspired by the U-Net®’. The blocks in the contracting
branches consist of two convolutional layers and a pooling layer. The output of each convolution is parsed
through a batch normalization and a rectified linear unit (ReLU). Each block in the expanding branch consists
of an up-convolutional and two convolutional layers, each followed by a batch normalization and a ReLU. High
resolution activations from the contracting path are combined with the outputs of the up-convolutional layers
in the expanding branch. Numbers in boxes indicate the number of network units in a respective layer. All
branches consist of 864 network units leading to a total of 2592 units per CNN.

(i) Mutual Information served as a metric to identify similar filter activations for each CNN. We adopted the
idea from medial image registration techniques that make use of mutual information of images***. In our case,
the normalized activation interval [0.0, 1.0] of the ReLUs of two filter activations were used and transformed
into one-dimensional and two-dimensional histograms with a binning frequency of 255 to calculate the mutual
information of two filter activations. The joint histogram was determined using

1 i i+ 1 (i i+1
o= 1 <X = 1 <y <
Py =N (256 =¥ 8 )* (256 =y 256>

xeX ye¥

relative to the size of the filter activation maps (N = |X| = |Y|) with an indicator function (1). This step was
repeated for every combination of the 2592 filter activations of each CNN.

(ii) To identify characteristic filter activations for each layer of a CNN, a pairwise mutual information matrix
for all filter activations was generated for each CNN. Compilations of twelve filter activations with the highest
pairwise mutual information for each filter activation of a CNN served to identify characteristic filter activations.

The compilations were analysed at a location within the validation section belonging to cortical area hO«cl
or hOc2. Due to the increasingly lower resolution of the filter activations in deeper network layers (>layer 12)
the whole section was analysed for the respective network layers. Filter activations were colour-coded for the
analysis with a colour map that emphasizes lightness changes over changes in hue-a principle adopted from
human colour perception®. As expected, filter activations with high mutual information exhibit very similar
characteristics, justifying the choice of mutual information as a similarity metric (Fig. 4a). When a filter activa-
tion appeared similar to at least three other filter activations of the same network layer, it was determined to be
characteristic for that network layer (Fig. 4b-d). This threshold was set to account for the different numbers of
network units per network layer. A higher threshold prevents finding characteristic filter activations on superficial
network layers with a small number of network units; whereas a lower threshold leads to a very high number of
characteristic filter activations in deeper network layers with more units.

(iii) In a final step, the cytoarchitectonically relevant features among the characteristic filter activations were
identified. Therefore, three categories of cytoarchitectonic features in accordance to traditional cytoarchitectonic
features'”'* were defined:

® first level features, which are related to different shapes of cell bodies

second level features, which are related to differences in thickness and composition of cortical layers

*  ihird level features, which are related to differences at the level of cortical areas including their borders and
extent.
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Figure 4. Mutual information compilations (a) and identification of characteristic filter activations (b-d) of
network layer four from the hOcl CNN. The two left images in (a) show the region of interest on the validation
section (section 1021) in which the filter activations are visualized. Images on the right show two compilations
of filter activations containing the lowest (upper right) and highest (bottom right) mutual information
compared to reference filter activations (central images) across all network layers. (b-d) illustrate compilations
of highest mutual information compared to different reference filter activations (central images). (b) contains
two compilations with no characteristic filter activation in the middle since the criterion for similar appearance
is not met. {¢) contains two compilations with characteristic filter activations with all criteria met. Green
asterisks mark similar-appearing filter activations. (d) contains compilations that appear similar to the reference
but do not meet the criterion of at least three filter activations from the same network layer (green asterisks).
Most similar-appearing filter activations belong to other network layers (red asterisks).

‘When a characteristic filter activation fit into one of the three categories, it was identified to be cytoarchitec-
tonically relevant and labelled a first, second or third level filter activation. The identification was performed by
a neuroanatomical expert, who compared the characteristic filter activation to the three categories of traditional
cytoarchitectonic features. Superimpositions of characteristic filter activations on the validation section enabled
the identification of cytoarchitectonically relevant features among them. The size of the validation section alone
constituted 15.1 Gigabyte with pixel dimensions of 94,321 x 80,326 (8-bit greyscale). To enable an analysis of
such large datasets, we used the MicroDraw software®, due to its capability of displaying the superimpositions
onlarge image data.

Comparison of feature visualizations to the GLI profile approach. First, second and third level
filter activations were compared to cytoarchitectonic features as revealed by the GLI profile approach!'®***°, The
analysis included comparisons to cellular and laminar features reflected by the GLI profile approach, as well as
mapping results of the border detection. The former was achieved by comparing first level filter activations to
cell-related structures in a GLI image of the validation section. A comparison of second level filter activations to
mean GLI profile shapes was used for a comparison of laminar features. Profile shapes were calculated from 25
profiles of the GLI image of the validation section. Locations of borders on the validation section detected by the
GLI profile approach constituted a reference for comparing third level filter activations.

Results

The analysis of the internal structure revealed a similar distribution of cytoarchitectonically relevant features
among both CNN trained to segment cortical areas hOcl and hOc2. We detected first, second and third level
filter activations in the hOc1 and hOc2 CNN. Firstlevel filter activations were found on superficial network lay-
ers in the hOc1 and hOc2 CNN, followed by second level filter activations on intermediate and third level filter
activations in deeper network layers (Table 1). Thus, filter activations appeared in a similar successive manner
within both CNNs. The most striking difference between the hOc1 and hOc2 CNNs constituted the internetwork
quality of second level filter activations, which is described in more detail in the following sections.

Cytoarchitectonic features of cortical areas on the cellular and laminar level.  First level filter
activations were found on network layers one to six in the contracting branches of the hOcl and hOc2 CNNs.
In total, we found ten of them in the hOcl CNN and 19 in the hOc2 CNN. They mainly responded to cell bod-
ies in the cortex. When comparing the first level filter activations to the histologically stained validation section
(Fig. 5a), cell-related properties of the histological image appear reflected in the filter activations. Examples for
such correspondences are the cell-dense cortical layer IVc of area hOcl (Fig. 5a) and large pyramidal cells in
cortical layer ITlc of area hOc2 (Fig. 5b). In general, the first level filter activations did not show consistent vari-
ations.

Second level filter activations occurred on network layers five to ten in the contracting branch of the hOc1
CNN, as well as five, seven, eight, nine and ten of the hOc2 CNN. In total, we found 45 in the hOcl and 17 in the
hOc2 CNN. A superimposition of a second level filter activation from the hOcl CNN on histological data shows
locally restricted activations within bounds of cell-densely packed cortical layers ITI, IVa, IVc and VI (Fig. 6a). In
general, the 45 filter activations revealed only little variations in the strength of activations in cortical layer III.
Cell-dense cortical layers IVa, IVc and VI showed consistently high activations. No second level filter activations
responding to cell-sparse layers of the cortex were found in the hOcl CNN.

Two different classes of second level filter activations occurred in the hOc2 CNN. The two classes constituted
17 second level filter activations showing activations to cell-dense cortical layers I and IV and four responding
to the more cell-sparse cortical layers IIT and V. Figure 6b presents a superimposition of a second level filter
activation from the hOc2 CNN which stays within bounds of cell-sparse cortical layers IIT and V. In general, the
second level filter activations of the hOc2 CNN showed varying strengths of activations related to cortical layer
1, the background as well as the white matter.

Comparisonstocellularandlaminarfeaturesreflected by the currentGLIprofileapproach. The
firstlevel filter activations ofthe hO<1 and hOc2 CNNs revealed correspondences to cell- related structures in GLI
images of the validation section. Examples constitute the dense cortical layer IVc in area hOcl which appears as
a dense white band in the GLI image (Fig. 5a) and big pyramidal cells in area hO«c2 reflected by grossly-grained
white dots in the GLI image (Fig. 5b). Note, that Fig. 5b depicts a part of cortical area hOc2 where the presence
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Distribution of first, second and third level filter activations in both networks

First level filter activations | Second level filter activations | Third level filter activations
hOc1 CNN | hOc2 CNN | hOcl CNN hOc2 CNN | hOc1 CNN hOc2 CNN

Layer 1 X

Layer2 X

Layer3 X

Layer4
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Layer 6

Layer7

Layer§

Layer 9
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Layer 10

Layer11

Layer12

Layer13
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Layer 16

Layer17

Layer18

Layer 19
Layer 20

Layer 21
Layer 22
Layer23 X X
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Layer 24 X X

Table 1. Distribution of first, second and third level filter activations among the network layers of the two
CNNs. The requirements for a filter activation to be classified as a first, second or third level filter activation
are described in the methods section. Crossmarks indicate the existence of first, second or third level filter
activations among the characteristic filter activations of a specific network layer.

of big pyramidal cells in cortical layer [1lc alternates (left side: present; right side: non-present). This special cyto-
architectonic feature of cortical area hO¢2'¢ is also reflected in the displayed filter activation and the GLI image.

Additionally, second level filter activations revealed correspondences to GLI profile shapes. Local maxima
of the profile shapes reflect second level filter activations that respond to cell-densely packed cortical layers [Vc
and VI in area hOcl (Fig. 6a). On the contrary, minima of the GLI profile shape correspond to the low filter
activations of cell-sparse cortical layers IVa and V (Fig. 6a). The overall high respondence to cortical layer III
also compares to the overall high GLI values in this layer. In area hOc2, local minima of the GLI profile shapes
reflect second level filter activations responding to cell-sparse cortical layers ITl and V (Fig. 6b). High GLI values
andlocal maxima of the profile shapes correspond to low filter activations in cell-dense cortical layers [Tand [V
as well as the darkly stained cortical layer VI (Fig. 6b).

Comparisons of deep learning based mappings to the GLI profile approach. Third level filter
activations are related to cortical areas and occurred in deeper layers 13 to 24 in the hOcl and hOc2 CNNs
(except for network layer 15 of the hOc2 CNN). Inthe hOc1 CNN, 123 of the third level filter activations showed
clear cut activations labelling the extent of area hOcl, while ten filter activations showed consistent activations
to the cortex surrounding area hOcl. The hOc2 CNN contained 41 third level filter activations labelling the
extent of area hO«¢2, while 7 activations marked the surrounding cortex. When comparing the third level filter
activations to the validation section, resemblances to the border position defined by the GLI profile approach
become visible (Fig. 7). The superimpositions of two contrasting third level filter activations of the hOc1 and
hOc2 CNNs are shown in Fig. 7a,c together with magnified images of the filter activations’ outer boundaries.
Combined superimpositions of the filter activations show resemblances to the border positions defined by the
GLI profile approach. In general, third level filter activations appeared more clear-cut inthe hOcl CNN than in
the hOc2 CNN.

Prediction precision. The two CNNs recognized areas hOcl and hOc2 on all 119 unseen sections in-
between the two training sections of the BigBrain dataset’. The predictions were anatomically plausible with
regards to topography and neighbouring cortical areas'’. Figure 8 shows that the pixel-wise predictions for corti-
calarea hOcl and hOc2 resemble the reference labels on the training sections. Single patches of falsely predicted
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Figure 5. Lirst level filter activations from network layer four of the h¢1 (a) and network layer one of the
hOc2 CNN (b}. 'Lhe images on the left show the region of interest on the validation section (section 1021), The
four images in the middle and right show microscopically magnificd regions of interest of cortical area hOc1
(a) and hOc2 (b) depicted by dashed lines on the section on the left. In the middle, magnified histological
cell-body stained images of the regions are displayed over the corresponding GLI images. Images on the right
show the magnified characteristic {ilter activations (upper images) superimposed on cell-body stained images
(lower images). Cortical sublayers with notable first level cytoarchitectonic features that are visible in the filter
activations and the GLI images are marked by roman numerals.

pixels occurred, but were not connected to the accumulation of correctly predicted pixels that reflect cortical
arcas hOcl and hO¢2.

Discussion

Cytoarchitectonic brain mapping has repeatedly profited from milestone achievements in computerized image
analysis in the last 30 years'® 2247 Deep learning-based approaches have the potential to build workflows with
a higher degree of automatization and hence increase the limited throughput of these techniques while at the
same time providing independent verification of mapping results. Yet, profound insights in how far such tech-
niques operate on criteria that resemble cytoarchitectonic features used by human experts are still lacking. ‘This
motivated the present study of deep CNNs, in which we investigated the learned network features for reflected
cytoarchitectonic features and compared the internal network structure to statistical image properties used by
the current GLI profile approach.

Qur analysis confirmed that cytoarchitectonic features are indeed reflected in the internal structure of the
deep CNNs and characterize different levels of erganization, from cells to their arrangement in cortical layers,
and entire cortical areas. Interestingly, the networks seemed to be more sensitive to capture the horizontal cortical
organization in layers and sublayers, while the vertical arrangement in colummnar structures did not seem Lo play
a role. They inherently incerporate the interdependencies among the three types of features of cortical cyto-
architecture by representing their increasing complexity in an orderly manner from more superficial to deeper
network layers. This is most likely due Lo the hierarchical structure of the convelutional network architecture,
reflecting more and more complex features in deeper network layers.

A closer look on these representations revealed the existence of different subsets of filter activations depend-
ing on the cortical area. The hOcl CNN [or example contained only one set of {iller aclivations that responded
1o cell-densc cortical layers on intermediate network layers. Arca hOcl receives massive input from the lateral
geniculate nucleus of the thalamus, resulting in a very broad and cell-dense sublayer 1Vc'", In contrast layer V
is cell-sparse (Vig. 1). These unique cytoarchitectonic features may have led the hOcl CNN to develap a single
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GLI [in %]

Figure 6. Second level filter activations from network layer 5 of the hOc1 (a) and network layer eight of the
hOc2 (v} CNN. Big images on the right show the microscopically magnified regions of interest for cortical
arca hOcl (a) and hQOc2 (b} depicted by boxes on the left images (section 1021). They display cell-body stained
histological images with the corresponding GLI profiles generated at this position. Roman numerals T to VT
indicate cortical layers. Arabic letters indicate cortical sublayers. Superimposed characteristic filter activations
show specific activations to cell-dense cortical layers of cortical area hOcl (a) and cell-sparse cortical layers of
cortical area hOc2 (b).

set of filter activations that resembles cell-dense cortical layers. Similarly, the hOc2 CNN contains a feature set
for cell-dense cortical layers as well. This is not surprising, since a prominent cortical layer IV (although not
subdivided into sublayers) constitutes an important cytoarchitectonic feature of area hOc2 as well. Furthermore,
layer IV helps to distinguish area hOc2 from area hOc3v which follows ventrally'®”. On the other hand, the
hOc2 CNN contains one additional set of filter activations resembling cell-sparse cortical layers on intermediate
network layers. The development of such a second set for cell-sparse cortical layers [T and V stresses the reflec-
tion of cytoarchitectonic features in the hOc2 CNN in two ways alike. First, the clarity of the columnar patterns
increases between cortical area hOcl and hOc2' and represents a cyloarchitectonic feature for differentiating
the adjacent ventrally and dorsally located area Since the columnar arrangement can mainly be observed
in cortical layers III, V and V1'%, a feature set for the cell-sparse layers IIT and V may help to incorporate this
information. Secondly, the need for a second set is also underlined by the marked cell sparsencess of cortical layer
V compared to the ventrally adjoining area and the lack of big pyramidal cells in cortical layer V compared to
the dorsally adjoining area. These adjacent areas also show a diminished increase in cell-size in cortical layer
1 and a lower cell-densily in the upper part of cortical layer T11*% In general, these observations support the
notion that the CNINs are capable to capture distinct cytoarchitectonic features of cortical areas. They seem to
be able to develop distinct representations of traditional cytoarchitectonic features on the cellular and laminar
level of cortical arcas.

Tn addition te the representations of traditional cytoarchitectonic features, the deep CNNs revealed corre-
spondences to statistical image properties of the GLI profile approach. These include detailed correspondences
between filter activations and GLI profile shapes, which constitule the essential measurement of the GLI profile
approach. In addition, filter activations of the deep CNNs also correspond to cell-related features, whereas the
GLI profile approach mostly focuses on laminar differences in the cellular pattern. This potentially enables the
CNNs Lo encompass informalion aboul the columnar arrangement of cell bodies which conslilutes an important
cytoarchitectonic feature™. Filter activations from decper network layers even reveal the possibility for the CNNs
to have access to border positions as defined by the GLI profile approach (Fig. 7). These comparisons reveal that
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Figure 7. Third level filter activations of the hOcl (ab) and hOc2 {c.d) CNN. Images in (a) and (c) show
two contrasting third level filter activations from network layer 23 of the hOc1 (a) and hOc2 (¢) CNNs on the
validation section (section 1021). The images in (b} and (d) compare the border detection result of the GLI
profile approach (left) with the combined overlays of the two contrasting third level filter activations (right).

the learned internal feature representations of the CNNs compare well to the descriptive GLI profile shapes as
well as Lo stalistically defined borders of the GLI profile approach. Such correspondences Lo a well-established
method provide further evidence for the CNNs' potential in cytoarchitectonic brain mapping approaches.

While the two approaches show many correspondences, they do not share the same data basis. The deep
CNNs operale directly on image palches extracted from cell-body stained sections. The GLI profile approach on
the other hand, operates on GLI images, which estimate the volume fraction of cell bodies in small measuring
fields of 20x 20 microns by thresholding the original image intensitics and summarizing foreground pixels in
cach field resulling in a lower dimensional image. For this reason, both approaches are likely to deal with locally
restricled changes of cyloarchitecture differently. Ilere, such locally restricted cyloarchitectonic phenomena
can be found in transition regions at the border of cortical area hOc1 and hOc2. These transitions regions have
previously been described in myeloarchitectonic works as border tufl (“i.e. Grenzbiischel™) and fringe area “ie.
“Randsaum”)!544°, Right al the beginning ol area hO¢2, close Lo the border, the border tufl region hosts a distinct
set of large pyramidal cells'™* in layer 171, accompanicd by a very cell-sparse cortical layer V', On the other
side of the border, in area hOc1, the fringe areq is cytoarchitectonically characlerized by increased cell densities
in corlical layers IVb, V and V1'%, Additionally, cell sizes in cortical layer 111 of area hOc¢2 allernate!™5#*, These
complex changes at a cytoarchitectonic border'' may explain the slight shifts of the assumed internal border
representations within the CNNs (Fig. 7). Slight activations to the background and white matter in some of the
filter activalions may originale [rom diflerenl parameler sensilivilies of the CNNs in comparison (o the GLI
profile approach. A comparison of both approaches should be considered with care therefore, although the deep
CNNs seemingly incorporate traditional cytoarchitectonic features.

A deep understanding of internal network structure is mandatory Lo accepl deep learning-based brain map-
ping as a valid support in future cytoarchileclonic mapping approaches. The present study provides first argu-
ments for introducing deep learning-based brain mapping on a routine basis. First of all, it enables a direct
assessment of incorporated cytoarchitectonic features via filter activation analysis. This constitules an advantage
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Figure 8. Segmentations ol the hOc1 (a) and hOc2 (b) CNNs on three seclions of the BigBrain datasel in comparison Lo borders
detected by the GLI profile approach. Enlarged images of the training section (section 1081) in (a) show borders between cortical areas
hOc1 (yellow) and hOC2 (blue). Enlarged images of the Lraining section (section 0961 in (b) show borders helween cortical area hOc2
(blue), hOc3d (white) and hOc3v (brown). Borders were detecled using the GLI profile approach. The segmentations on three of the

119 sections (seclion 0891, 14:36, 1066 from Lop Lo boltomn) in-between the training sections are shown on the right in (a) for cortical
area hOcl (yellow) and in (b) for cortical area hOc2 (blue) for a comparison.
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in comparison to the feature vector of the GLI profile approach. Secondly, the analysis of the internal structure
also revealed different spatial resolutions from cell-related to cortical layer-related to area-related features. This
is especially important to capture the multi-scale organization of the cortex''—a circumstance that the current
GLI profile approach does not mimic. It captures different spatial resclutions only indirectly in the direction of
cortical columns by incorporating central moments like the mean and skewness ina profile shape’s feature vector.

A disadvantage is that the segmentation performance cannot be explained by the reflected cytoarchitectonic
features per se. In fact, although highly improbable, the internal features that we identified to resemble cyto-
architectonic principles might not contribute to the final segmentation result at all. However, the resemblances
of cytoarchitectonic principles is not a necessary nor a sufficient condition for successfully segmenting cortical
areas. Several studies have been published in the past that were based on mathematical descriptions that were
rather abstract, or tuned to detect architectonic gradients rather than to characterize the architecture itself.
This resulted in reproducible and testable descriptions of borders without resembling traditional architectonic
features directly”*”". The here applied CNNs are interesting in so far, as they reproduce what experts see toa
certain degree, which introduces another level of confidence. It is possible that the CNNs may have developed
non-intuitive features representing other (yet) unknown aspects of cortical cytoarchitecture. Such relationships
have to be systematically studied in more detail in the future. Future advances in explainable image segmentation
networks might allow us to assess the relevance of individual features for the actual segmentation outputs in a
more reliable fashion. Additionally, analyses of more cortical regions with distinct cytoarchitectonic features
would help to solve the question in how far the features detected by the hOc1 and hOc2 CNNs can be generalized
to other areas, e.g., motor and higher association areas, or allocortical areas which contain a different number of
cortical layers. This would go beyond the scope of this work, and remains a project of future research.

However, the amount of filter activations reflecting cytoarchitectonic features and the existence of different
subsets suggests that deep learning with convolutional networks is able to capture cytoarchitectonic features. This
is especially the case for cortical layer information. Such information is worth considering for future improve-
ments of the deep learning approach. One possible option in this case is the explicit inclusion of information
about laminar surfaces itself, which have recently been published for the BigBrain dataset*""%. Other incorpora-
tions of prior information, such as feeding in projected probabilistic maps® or pre-training with an auxiliary
task® have already shown to improve the performance. Following this line, the present analysis gives valuable
insights for such future considerations and provides strong evidence that deep convolutional networks are valid
and suitable tools for high-throughput mapping wotkflows.

Data availability
The datasets generated and analysed during the current study are available in the EBRAINS repository [https://
kg.ebrains.eu/search/instances/Dataset/78801754-16c1-4df2-9b2e-1b10c28a10c2].
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4 Discussion

The revised deep-learning based approach was able to generate accurate
high-quality cortical and subcortical maps in the BigBrain. An analysis of the
internal structure including a comparison to the profile-based approach
provided further arguments for the validity of the approach. Our analyses
therefore provide a first use-case demonstrating the potential of the revised
deep-learning approach for cytoarchitectonic mapping in large series of

sections in the BigBrain on a routine basis.

4.1 Accuracy and Quality of Deep-Learning Based Brain
Mapping

First evidence for the accuracy of the revised deep-learning approach in the
BigBrain is provided by Study 1. Herein, the methodology was able to reliably
detect four cortical areas of the visual system, i.e. the primary visual cortex,
area hOc1 (Amunts et al., 2000), the secondary visual cortex, hOc2 (Amunts et
al., 2000), as well as higher visual areas hO3v (Rottschy et al., 2007) and hOc5
(Malikovic et al., 2007) on a large number of serial sections with high accuracy
and consistency (Schiffer et al., 2021). Detected borders obtained by the
current profile-based mapping approach corresponded well to the
segmentations of the revised deep-learning approach (Kiwitz et al., 2020;
Schiffer et al., 2021). At the same time, 3D volume and surface reconstructions
of visual cortical areas hOc1, hOc2 and hOc5 matched previous reference
values based on multiple brains (Amunts et al., 2007) — emphasizing the high
quality of the maps (Schiffer et al., 2021). On top of that, the 3D-
reconstructions were more anatomically consistent than interpolating 2D maps
generated with the profile-based approach while the necessary manual
annotation effort was the same (Schiffer et al., 2021).

The revised deep-learning approach was also able to increase the accuracy of
the maps in comparison to earlier deep-learning implementations (Spitzer et al.,
2018; Spitzer et al., 2017). The results now show anatomically plausible
segmentations of the primary and secondary visual cortex with outlines
corresponding to significant borders as detected by the current profile-based

approach (Figure 3). Incorrectly segmented pixels mostly appeared at cortical
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regions with a highly oblique cutting angle (Schiffer et al., 2021) — a limitation
that is shared with the profile-based approach (Schleicher et al., 1999).

10 mm

Figure 3: Accuracy of the revised deep-learning approach . The images in (a) show cortical
maps of the primary (yellow) and secondary (blue) visual cortex on section 0961 of the
BigBrain dataset generated using the profile-based approach. The dashed box indicates the
magnified crop of the border region on the right. Images in (b) show the respective maps
generated by the revised-deep-learning based approach on an adjacent section (section 0991)
with matching area outlines (adapted and modified after Kiwitz et al. (2020)). Note that the
slight shifts in outline are caused by the more rostral sectioning position in comparison to a). (c)
shows an excerpt from Figure 2 demonstrating the segmentation performance of an earlier
deep-learning implementation for cytoarchitectonic mapping (adapted and modified with
permission from Spitzer et al. (2017) © 2017 IEEE) with cortical borders defined by the
profile-based approach depicted in cyan.
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An extension of the use of the revised deep-learning approach to assess its
applicability and quality regarding subcortical areas in Study 2 revealed similar
results. Here, the revised deep-learning approach generated high-quality maps
of the three subdivisions of the human MGB (Kiwitz et al., 2022). The maps
follow previous microscopic analyses of cytoarchitectonic features of the MGB
subdivisions (Winer, 1984) and resemble histological maps (Figure 4) of Morel
(2007) and Ding et al. (2016). The illustration of the BigBrain MGB maps in
Figure 4 was chosen to approximately match the sectioning position of the
illustrations adapted from Morel (2007) and Ding et al. (2016).

- dorsal

T—» lateral

MGBm

Kiwitz et al. 2022 Morel 2007

Gm mc

~
|
3

, Van Buren & Borke 1972

Ding et al. 2016

Figure 4. Subdivisions of the BigBrain MGB in comparison to previous histological maps.
Four schematic illustrations of the MGB are shown alongside histologically cell-stained images
from previous works. The nomenclature follows the original works with MGB (medial
geniculate body), MGN (medial geniculate nucleus), MG (medial geniculate) and Gm
(Geniculatum mediale) being equivalent in meaning. The maps of Morel (Morel (2007),
reproduced with permission of The Licensor through PLSclear), Ding et al. (adapted and
modified with permission from Ding et al. (2016) © 2016 WILEY') and van Buren & Borke
(adapted and modified with permission from van Buren and Borke (1972) © 1972 Springer)
have been re-colored to match the color scheme of the BigBrain MGB map (section 3282) of
Kiwitz et al. (2022). Same-colored subdivisions show cytoarchitectonically equivalent
subdivisions. The tripartism of the BigBrain MGB follows Morel (2007) and Ding et al. (2016)
except for the limitans nucleus (dark red) previously described by Hassler (1959) mostly based
on fiber stainings. The map of van Buren and Borke (1972) is representative for early works
dividing the MGB into a parvocellular (pc) and magnocellular (mc) division (Clark, 1933). The
striped pc division in illustrates the subdivision into a dorsal and a ventral part (Hassler, 1959).
Note that the MGB BigBrain map has been mirrored to match the other left-hemispheric
illustrations. The cell-body stained images have been edited to ensure a similar image contrast.
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The topography of the dorsal subdivision is similar across the maps and
unambiguously characterizes the dorsal subdivisions as a cap of the MGB
(Figure 4). The size and topography of the medial and ventral subdivisions
differs across the maps with an increased lateral expansion of the medial
subdivision in the BigBrain (Figure 4). Our observations in the BigBrain
showed a decrease in size of the ventral subdivision from caudal to more
rostral sections accompanied by a lateral shift of the border with the medial
subdivision — allowing the medial subdivision to occupy more volume. Despite
these differences, our analyses further manifest the ventromedial location of
the magnocellular medial subdivision (Mai and Majtanik, 2018), which has

previously also been located ventrolaterally (Amunts et al. (2012).

The BigBrain MGB maps generated using the revised deep-learning based
approach provide insight into the topography of the MGB on a full series of
histological sections. The three subdivisions of the MGB could be identified on
132 sections of the left and 165 sections of the right hemisphere (Kiwitz et al.,
2022), which surpasses the less than 10 visually inspected sections reported
by Ding et al. (2016) and Morel (2007). Our maps therefore provide an
additional level of confidence regarding the cytoarchitectonic characterization
and reliability of the methodological approach. Together with the previously
published maps of the LGB layers in the BigBrain (Brandstetter et al., 2021),

the MGB maps form a high-resolution reference of the human metathalamus.

All generated cortical and subcortical maps, as well as the associated
reference annotations have been made publicly available via the EBRAINS

Knowledge Graph (https://kg.ebrains.eu/). The high accuracy and quality of the

maps provide first evidence for deep-learning based brain mapping to be used
as a semi-automatic alternative to map cortical as well as subcortical areas in

the BigBrain on a routine basis.

4.2 The Internal Structure of Deep-Learning Based Brain
Mapping Approaches

Despite this promising proof-of-principle demonstration it still remained
unknown in how far and to what extent the revised deep-learning approach

actually operates on criteria that resemble traditional cytoarchitectonic features.
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At the same time, it was not clear as to what extent a relation to the current
quantitative image analysis of the profile- approach could be established —
bringing an evaluation of how the deep-learning approach actually operates

into focus.

4.2.1 Resemblances to Traditional Cytoarchitectonic Features

Following this line of thought, Study 3 revealed resemblances of the revised
deep-learning approach to cytoarchitectonic features used by neuroanatomists.
The resemblances included cellular, laminar as well as whole area related
features (Kiwitz et al., 2020). It became apparent that the revised deep-learning
approach developed different sets of feature representations depending on
which cortical area it was trained to segment. Differences of these subsets
especially corresponded to cytoarchitectonic differences on the laminar level.
When trained to segment the primary visual cortex, a distinct set of feature
representations to cell-dense cortical layers were found. Since the primary
visual cortex receives massive input from the LGB, the broad and cell-dense
input layer IVc may have caused the developed of such a preference (Kiwitz et
al., 2020). In contrast to this, when trained to segment the secondary visual
cortex, two distinct sets of feature representations to cell-dense as well as cell-
sparse cortical layers appeared. The former stays in accordance to the cell-
dense and prominent layer IV of the secondary visual cortex which constitutes
an important cytoarchitectonic feature that is used to distinguish it from the
adjoining area hOc3v (Amunts et al., 2000; Rottschy et al., 2007). The latter
can be explained in two was alike: Firstly, the clarity of the columnar
arrangement — mainly visible in the more cell-sparse cortical layers Ill, V and VI
(Economo and Koskinas, 1925; Figure 1) - increases between the primary and
secondary visual cortex (Amunts et al., 2000). Secondly, the cytoarchitectonic
features of the cells sparse cortical layer V constitute an important
characteristic to distinguish the secondary visual cortex from the ventrally and
dorsally adjoining cortical areas (Kiwitz et al., 2020; Kujovic et al., 2013;
Rottschy et al., 2007). The adjacent areas also show a diminished increase in
cell-size in cortical layer Ill (Rottschy et al., 2007) and a lower cell-density in
the upper part of cortical layer Il (Kujovic et al., 2013) — further emphasizing

the importance of the cell-sparse layers as a distinguishing factor for the deep-
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learning approach to consider when segmenting the secondary visual cortex. In
general, these observations support the notion that the revised deep-learning
approach captures traditional cytoarchitectonic features of cortical areas with a
special emphasis on cortical layers.

4.2.2 Comparisons to Profile-based Image Analysis

At the same time, the learned internal feature representations compared well to
the profile shapes and statistically defined borders of the profile-based
approach (Kiwitz et al., 2020). Whereas the profiles mostly reflect the vertical
architecture of the cortex in the form of cortical columns along their trajectory
from the white matter to the pial surface, the revised deep-learning approach
complements this by having developed internal representations of cortical
layers in the horizontal direction. Together with the cell-related and area-related
feature representations, they form an internal representation of cortical
cytoarchitecture at different spatial resolutions - a circumstance that the current
profile-based approach does not mimic (Kiwitz et al., 2020). Such a multi-scale
representation is of special importance to capture the multi-scale organization
of the cortex (Amunts and Zilles, 2015). A further more concrete difference
between the two approaches constitutes the possibility to directly assess the
incorporated cytoarchitectonic features, which the current profile-based
approach is not capable of unambiguously (Schleicher et al., 2000; Schmitt et
al., 2003).

When comparing both approaches it should be taken into consideration
however, that they operate on different data. While the revised deep-learning
approach operates directly on patches of histological sections (Schiffer et al.,
2021), the profile-based approach operates on lower dimensional thresholded
GLI images (Schleicher et al., 1999; Schleicher and Zilles, 1990; Zilles et al.,
2002). It cannot be ruled out that this difference may have an impact on the
approaches’ performance. A detailed analysis of cortical area-related internal
representations of the revised deep-learning approach in Study 3 for example,
has shown that assumed internal border representation between the primary
and secondary visual cortex is slightly shifted (Kiwitz et al., 2020). The border

between the primary and secondary visual cortex hosts various locally
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restricted changes of cytoarchitecture in the form of transition areas (Economo
and Koskinas, 1925; Sanides and Vitzthum, 1965). Such local peculiarities of
cytoarchitecture may have a greater impact on the revised deep-learning
approach due to its more direct operation on the histological data. The profile-
based approach on the other side may just be too insensitive to detect these
local changes in cytoarchitecture. A comparison between both approaches has

to be undertaken with care therefore.

An additional limitation results from the inability to link the learned internal
cytoarchitectonic feature representations to the actual segmentations. Despite
having developed distinct sets of internal feature representations, the revised
deep-learning based approach, although highly improbable, may not have used
this information at all to produce anatomically plausible segmentations in the
end. Other studies have used rather abstract mathematical descriptions to
produce reproducible descriptions of borders without representing traditional
architectonic features directly (Annese et al., 2004; Schmitt et al., 2003; Schmitt
and Béhme, 2002). The direct incorporation of cytoarchitectonic features does
not seem to be a necessary nor a sufficient condition for successfully
segmenting cortical areas therefore (Kiwitz et al., 2020). Analyzing the internal
feature representations of the revised deep-learning based approach provides
another level of confidence in so far, as it reproduces what neuroanatomical
experts see to a certain degree. The deep-learning approach may have indeed
developed additional more non-intuitive features representing other (yet)
unknown aspects of cortical cytoarchitecture. Studying such relationships in
more detail in the future will allow us to assess the relevance of individual
features for the actual segmentation performance in a more reliable fashion
(Kiwitz et al., 2020).

However, the sheer abundance of internal cytoarchitectonic feature
representations and their nature across different cortical areas suggests that
they are advantageous for mapping cytoarchitectonic areas. In combination
with the correspondences to the profile-based approach, these insights into the
internal structure therefore provide important arguments for the validity of deep-

learning based brain mapping.



69

4.3 Advantages of Deep-Learning Assisted Brain Mapping
4.3.1 Time Efficiency

While cytoarchitectonic analyses in cortical mapping studies have benefited
significantly from the profile-based approach, recent developments of high-
throughput tissue scanners challenge the throughput for future studies. This is
especially relevant for the 3D-reconstructed BigBrain dataset with its more than
7400 stained histological sections (Amunts et al., 2013) at 20-micron isotropic
resolution. Recent experience of our research group has shown that mapping a
cortical area on every section in the BigBrain dataset would require roughly 1
year per area when applying the profile-based approach. Taken together the
time for generating reference delineations, computing and quality checks, the
revised deep-learning approach narrows down the mapping time of a large
cortical area like the primary visual cortex to roughly 1-2 weeks (Schiffer et al.,
2021). At the same time the approach is able to handle common mechanical
damages like ruptures and tears resulting from histological processing of the
tissue that impedes an application of the profile-based approach (Schiffer et al.,
2021). This constitutes a major increase in efficiency and enables mapping in

full histological series of the BigBrain in a reasonable amount of time.

4.3.2 Mapping of Subcortical Nuclei

Since up to today no quantitative image analysis approach for cytoarchitectonic
mapping of subcortical structures exists, it relies on careful visual analysis —
imposing a possible threat to objectivity. This threat is partially reflected by the
diverging numbers of subdivisions of the MGB and their topography (Figure 4)
among different investigators reported during the last 60 years (Harrison and
Howe, 1974; Hassler, 1959; Morel, 2007; Morest, 1964; Winer, 1984). The
high-resolution maps of the MGB generated in the BigBrain in Study 2 provide
an additional level of confidence since the revised deep-learning approach has
helped to identify the subdivisions continuously throughout the whole extent of
the metathalamus in the BigBrain. However, the existence of valid
segmentations does not prove the approach to be valid for mapping subcortical
nuclei per se. As demonstrated for cortical areas, the internal feature

representations seemed to focus mainly on laminar differences. Further studies
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evaluating internal feature representations on a subcortical level where laminar
organization principles are mostly not abundant are needed to estimate the
validity in this regard. For now, the revised deep-learning approach extends the
current methodological options by providing additional verifications of
anatomical plausibility on top of (subjective) visual analyses. This is useful for
generating high-resolution maps but still requires neuroanatomical experts to

carefully interpret and check the resulting maps.

4.4 Current and Future Relevance of High-Resolution
Brain Maps in the 3D — BigBrain

4.4.1 Linking BigBrain Histology with Neuroimaging

Recent improvements of spatial resolution of modern neuroimaging have made
it possible to measure laminar brain activity (Huber et al., 2018; Jia et al., 2021)
and identify functional subdivisions of subcortical structures (Rijk et al., 2021),
as well as functionally homogenous cortical columns in the auditory and visual
cortex (Martino et al., 2015; Nasr et al., 2016). The spatial resolution of such
submillimeter measurements requires a similarly high level of anatomical detail
of a reference space. The interoperability and its anatomical detail make
cytoarchitectonic maps in the BigBrain (Amunts et al., 2013) an important
histological reference in this regard to support the physiologically driven MRI
measurements with the underlying cellular architecture. This becomes
especially apparent when comparing the BigBrain to the limited anatomical

detail of the MNI space.

The BigBrain has been used to integrate histological data and neuroimaging
data before. Most of the studies conducted comparisons of structural and
functional correlations on a whole brain scale (Paquola et al., 2020b; Wei et al.,
2019), or specific parts of cortical lobes (Paquola et al., 2019; Royer et al.,
2020). During this thesis work generated maps provide more specific
anatomical regions of interest in the BigBrain including visual cortical areas and
subcortical nuclei of the metathalamus. The combination of whole-brain
coverage in the BigBrain and a high level of detail, e.g. detailed subdivisions of
the MGN, represents an advantage in comparison to other subcortical
histological atlases (Ding et al., 2016; Krauth et al., 2010; Morel, 2007; Sadikot
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et al., 2011) as well as probabilistic cytoarchitectonic atlases like the Julich-
Brain (Amunts et al., 2020).

Current efforts of our research group incorporate the high anatomical detail of
the BigBrain and combine it with deep-learning based cell-segmentations
(Upschulte et al., 2022) and 3D cell-reconstructions (Dickscheid et al., 2019) to
advance the options for extracting region-specific information from the BigBrain
at the cellular level (Behuet et al., 2021; Dickscheid et al., 2019). High-
resolution maps play an important role in this regard since they provide more
specific targeting spaces for region-of-interest analyses. This allows the maps
to be an important bridge between macroscale connectivity and local
microscale circuitry. One future candidate analysis in this regard is the
transition region between the primary and secondary visual cortex which hosts
several locally restricted cytoarchitectonic phenomena (Amunts et al., 2000;
Economo and Koskinas, 1925; Kiwitz et al., 2020) that are partly involved in
interhemispheric transmission of visual information covering the vertical
meridian of the visual field (Caspers et al., 2015; Clarke and Miklossy, 1990).
Discovering these cytoarchitectonic peculiarities bears the potential to reveal
new structural-functional insights that will help to further understand information

processing in the visual system.

At the same time the single-subject character of the BigBrain shares the
drawback of missing interindividual variability, much like Brodmann’s first map
(Brodmann, 1909). Probabilistic atlases are therefore still important to consider
when linking neuroimaging data with a reference space. We acknowledged this
circumstance by having calculated additional probabilistic maps of the human
metathalamus utilizing the well-established atlas framework of the Julich-Brain
(Amunts et al., 2020). Despite modern neuroimaging being able to generate in-
vivo probabilistic maps of cortical (Glasser et al., 2016; Wang et al., 2015) and
subcortical structures (Garcia-Gomar et al., 2019; Iglesias et al., 2018;
Najdenovska et al., 2018; Pauli et al., 2018; Saranathan et al., 2021), as well
as functional probabilistic maps of neural networks (Dworetsky et al., 2021;
Hermosillo et al., 2022), the unique advantage of the Julich-Brain constitutes its
direct resemblance of the human brain’s microanatomy at cellular resolution.

MRI-based mapping on the other hand is technically restricted to lower spatial
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resolutions and usually requires the aid of histological atlases to overcome the
still limited discernibility - resulting in an often limited fit between the reference
space and the atlas information (Ewert et al., 2018). The interoperability of the
Julich-Brain further enables its cytoarchitectonic brain maps to be an important
building block of multimodal atlases (Fischl and Sereno, 2018; Glasser et al.,
2016; Toga et al., 2006) — already envisioned by the Vogts who thought to
combine Brodmann’s cytoarchitectonic parcellations with their fiber

architectonic parcellations (Zilles and Amunts, 2010).

4.4.2 Brain Simulation and Modelling

The benefit of reference spaces and atlases like the Julich-Brain and the
BigBrain is not limited to neuroimaging data integration though. Besides
studying structure-function relationships in the human brain, the BigBrain
especially can be used to develop better and more realistic human brain
models. Incorporating cytoarchitectonic parameters has recently led to the
development of biologically valid models of the macaque visual system
including cortical areas of different architectural types (Schmidt et al., 2018), as
well as models of the human cerebellar granular layer (Florimbi et al., 2021)
and first models of the human visual system (Pronold et al., 2018). However,
such models usually lack quantitative thalamic input parameters, requiring them
to be indirectly estimated (Schmidt et al., 2018). High-resolution subcortical
maps in the BigBrain can enrich such brain modelling approaches directly by

providing such cellular-level information (Kiwitz et al., 2022).

A crucial point in establishing realistic models is the incorporation of
connectivity data. Recent advances in reconstructing the white matter fiber
architecture from Nissl-stained glia cells (Schurr and Mezer, 2021) could allow
the histology of the BigBrain to be complemented by connectivity data of
cortical and subcortical areas (Kiwitz et al., 2022). Others have already used
PLI to detect target sites for transcallosal fibers in the visual cortex of the
BigBrain (Caspers et al., 2015) and cortex-like canonical circuits in the avian
forebrain (Stacho et al., 2020). Combining such information with the
cytoarchitecture can increase the biological validity of mechanistic models of

the human sensory systems (Vecchi et al., 2021) and enable more detailed
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models of thalamic gating phenomena (Xiong et al., 2020) on a systems level.
By providing high-resolution topographical information, the BigBrain maps
further contribute to improve personalized brain models of specific neurological
pathologies like epilepsy in the Virtual BigBrain (Bernard and Jirsa, 2016;
Triebkorn et al., 2021, unpublished results).

All mentioned areas of usage depend on the feasibility to integrate data into
and out of the BigBrain reference space. Recent advances in image registration
procedures have led to improved registrations to other reference spaces (Xiao
et al., 2019), as well as the publicly available BigBrainWarp toolbox (Paquola et
al., 2021) and the EBRAINS VoluBA toolbox for spatial anchoring in the

BigBrain space (https://ebrains.eu/service/voluba/). As the BigBrain dataset is

continuously expanded by cortical and subcortical cytoarchitectonic maps, as
well as intracortical surface models (DeKraker et al., 2020; Paquola et al.,
2020a; Wagstyl et al., 2020), it provides an increasingly rich resource for such
integrative approaches (Kiwitz et al., 2022). The scrutiny and application of
deep-learning based methods for cortical and subcortical brain mapping in the

BigBrain contributes to this development.

4.4.3 Conclusion

This thesis work provides a first use-case for using deep-learning based
cytoarchitectonic brain mapping for cortical and subcortical structures in the
BigBrain on a routine basis. The application of the revised deep-learning based
approach has provided maps of visual cortical areas and the subcortical MGB
which correspond to cortical delineations based on the current profile-based
approach as well as subcortical histological atlases. On top of the high
accuracy and quality of the maps, the revised deep-learning approach
incorporated traditional cytoarchitectonic features with a special emphasis on
laminar features. The learned internal feature representations also compared
well to profile shapes and border positions of the profile-based approach. Yet,
further studies are still needed to analyze in how far cytoarchitectonic features
of subcortical nuclei are represented and in how far such feature
representations are actually used to segment brain areas. The use of the

revised deep-learning based approach significantly increases the throughput
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for mapping purposes in the BigBrain in comparison to the profile-based
approach. Additionally, it enables an independent verification of subcortical
nuclei maps beyond sole visual inspection. High-resolution cortical and
subcortical maps enable the interoperable BigBrain to be used as a histological
reference space that surpasses commonly used reference spaces like MNI in
anatomical detail. This will allow future investigators to integrate the maps with
high-resolution neuroimaging data as well as to develop better and more

realistic human brain models.
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