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Zusammenfassung 

 

Im täglichen Leben müssen wir oft zwischen Optionen unterschiedlichen Wertes 

entscheiden, um unsere individuellen Vorteile und Ressourcen zu maximieren. Diese 

Entscheidungen können uns auf verschiedene Art und Weise begegnen. In der 

vorliegenden Arbeit befassen wir uns mit zwei Arten von belohnungsbasierten 

Entscheidungen, patch-leaving decisions und value-guided choice. Ein Beispiel für 

eine patch-leaving decision aus dem täglichen Leben ist die Entscheidung, den 

Arbeitsplatz zu wechseln. Hierbei muss eingeschätzt werden, wie zufrieden ich mit 

meiner derzeitigen Position bin. Außerdem muss der Wert möglicher 

Alternativangebote abgewogen werden. Ein Arbeitsplatzwechsel kann mit Nachteilen 

verbunden sein, beispielsweise einem aufwändigen Umzug. Während einer patch-

leaving decision muss folglich bestimmt werden, ob die Ressourcen in der 

momentanen Umgebung zufriedenstellend sind, oder ob man durch einen 

Umgebungswechsel Vorteile erwarten kann, auch wenn dieser potentiell mit 

vorübergehenden notwendigen Investitionen verbunden ist. Bei der value-guided 

choice hingegen wählt der Handelnde zwischen aktuell verfügbaren Optionen. Als 

anknüpfendes Beispiel könnte man die Wahl einer neuen Wohnung nach einem 

Umzug betrachten. Hier muss aufgrund unterschiedlicher Faktoren, wie zum Beispiel 

der Lage und des Preises, bestimmt werden, welche die aktuell beste Option ist. Wie 

an diesem Beispiel zu sehen ist, setzt sich der Wert einer Option häufig aus 

verschiedenen Dimensionen zusammen, die integriert werden müssen, um den 

Gesamtwert zu bestimmen und die Optionen vergleichen zu können.  

Bisherige Forschungen legen nahe, dass das menschliche 

belohnungsorientierte Entscheidungsverhalten von verschiedenen Neurotransmitter-

systemen beeinflusst wird. In dieser Arbeit wird zunächst der Einfluss der 

exzitatorischen-inhibitorischen Balance (E/I Balance), bestimmt durch relative 

Konzentrationen des exzitatorischen Neurotransmitters Glutamat und des 

inhibitorischen Botenstoffes GABA, auf das Entscheidungsverhalten bei oben 

beschriebenen Entscheidungstypen betrachtet. Zweitens wird ein möglicher Einfluss 

des Dopamins auf das Verhalten in patch-leaving decisions diskutiert. Insgesamt 

deuten die präsentierten Ergebnisse auf einen Zusammenhang zwischen der E/I 

Balance im dorsalen anterioren cingulären Kortex beziehungsweise im ventromedialen 

präfrontalen Kortex mit interindividuellen Unterschieden im Verhalten bei patch-leaving 



 

 
 

decisions respektive der value-guided choice hin. Zudem legen wir anhand früherer 

Forschung dar, wie das dopaminerge System potentiell den Einfluss vorhandener 

Alternativoptionen auf die Entscheidungsfindung in patch-leaving decisions verändert. 

Unsere Ergebnisse deuten auf eine komplexe Modulation des belohnungsbasierten 

Entscheidungsverhaltens durch unterschiedliche Neurotransmittersysteme hin und 

zeigen zum ersten Mal einen empirischen Zusammenhang zwischen der E/I Balance 

und dem patch-leaving Verhalten im Menschen. 

 

  



 

 
 

Abstract 

 

Humans need to choose between options of different reward value on a regular basis 

to maximize individual gains. These decisions can be encountered in various ways. In 

the present work, we address two types of reward-based decisions, patch-leaving 

decisions, and value-guided choice. Patch-leaving decisions require humans to 

balance the benefits of staying in a current environment and leaving for a potential 

richer one even though leaving commonly comes with a cost. An example from 

everyday life would be the decision to change jobs. Here, one needs to assess how 

satisfied they are with their current position. In addition, the value of potential 

alternatives needs to be considered as well as potential costs associated with switching 

such as needing to move to another city. During value-guided choice, on the other 

hand, the agent chooses between currently available options. As an example, one 

could consider the choice of a new apartment after moving. Here, based on different 

factors, such as location and price, it must be determined which is best current option. 

As can be seen from the example, the overall value often is composed of different 

dimensions that need to be integrated to compare options during value-guided choice.  

Previous research suggests that many different neurotransmitters contribute to reward-

based decision-making. In this work, we first consider the influence of the excitation-

inhibition balance (E/I balance), determined by relative concentrations of the excitatory 

neurotransmitter glutamate and the inhibitory neurotransmitter GABA, on behaviour in 

both types of decisions. Second, we discuss a potential modulatory influence of 

dopamine on patch-leaving decisions. Overall, the results presented suggest 

dissociable contributions of the  E/I balance in the dorsal anterior cingulate cortex and 

ventromedial prefrontal cortex to interindividual differences in behavior during patch-

leaving decisions and value-guided choice, respectively. In addition, we outline how 

dopamine possibly affects the influence of alternative options on decision-making 

during patch-leaving based on earlier research. Our results suggest a complex 

modulation of reward-based decision-making behaviour by different neurotransmitter 

systems and show an empirical link between E/I balance and patch-leaving behaviour 

in humans for the first time. 
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1. Introduction 

Given limited resources, humans and other animals need to decide between 

options of different value to maximize individual rewards and ensure survival on a 

daily basis. To understand how humans make these reward-based decisions is a 

fundamental problem in many areas of research, such as machine-learning, 

economics and cognitive neuroscience (Sutton and Barto, 1998; Leiser and Azar, 

2008; Glimcher and Fehr, 2013).  

In this work, we focus on two classes of reward-based decisions, value-guided 

choice and patch-leaving decisions. In value-guided choice problems, decisions are 

made between current available options of differing value. The value of an option 

can be constituted of different dimensions that need to be integrated to a common 

value to decide advantageously. Moreover, we concentrate on patch-leaving 

decisions on when to leave a resource, or patch, of depleting value to start exploiting 

another option.  

Given the ubiquitous importance of efficient reward-based decision-making, 

understanding the neural basis of how values are processed and compared has a 

long history of investigation. When choosing between different options in the above-

described decision problems, representations of their respective value are reflected 

in neural activity across the brain (Boorman et al., 2009; Kolling et al., 2012; Hunt et 

al., 2013; Hikosaka et al., 2014). However, to understand whether this activity 

emerges as an actual reflection of the value comparison itself or as an 

epiphenomenon, recent research investigated possible mechanistic models 

underlying decision-making behaviour (Wang, 2002; Hunt et al., 2012; Le Heron et 

al., 2020). Various neurotransmitter systems have been discussed as possible 

candidate mechanisms influencing how values comparisons are conducted within 

the brain as well as affecting eventual choice behaviour (Wang, 2002; Hunt et al., 

2012; Jocham et al., 2012; Le Heron et al., 2020). The present work aims at 

contributing to previous research by investigating the role of neurochemical systems 

underlying and influencing value-guided choice and patch-leaving decisions. In the 

following introductory paragraph, I will give an overview of these decisions and 

highlight key empirical findings with respect to their potential neuronal correlates as 

well as possible influences of the neurotransmitters GABA, glutamate and dopamine.  
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1.1 Value-Guided Choice  

During value-guided choice, decision-makers need to find the current best 

available option to decide advantageously. Therefore, they need to identify the 

dimensions constituting the overall value of an option, integrate them and compare 

them against potential alternatives. As an example, if I want to make the best 

possible choice for today’s dinner, I have to decide among different places available 

in my neighbourhood. If I like pizza better than Sushi, but heard of someone having 

a bad experience at my nearby pizza place, I would need to integrate my love for 

pizza with the risk of a ruined dinner to compare both options.  

Empirical evidence suggests the ventromedial prefrontal cortex (vmPFC) as one 

key region reflecting value comparisons during value-guided choice (Hunt et al., 

2012). A system involved in guiding value comparisons would, at first, be expected 

to be influenced by the overall value of available options (Hunt et al., 2012; Strait et 

al., 2014). However, finding value correlates does not necessarily implicate that the 

respective region is guiding the value comparison process (Hunt et al., 2012). 

Intuitively, an array of different cognitive functions is assumed to be closely related 

to option values, such as value-dependent attentional allocation (Maunsell, 2004; 

Kunar et al., 2017) or the preparation of specific actions necessary to obtain the 

respective option value (Wunderlich et al., 2009). It is therefore difficult to determine 

whether the respective signals relate to value itself (O'Doherty, 2014), the choice 

process (Hunt et al., 2012) or if an explicit representation of value even exists in the 

brain (Yoo and Hayden, 2018). A seminal paper (Hunt et al., 2012) therefore 

investigated what activity is fundamental to the value comparison process by using 

a theoretical model of neural activity based on known neurobiology (Wang, 2002). 

In brief, their simulations predict an early reflection of overall value proceeding to a 

value-difference signal, the relative advantage of the chosen over the unchosen 

option, in regions implementing a value comparison process. A system implementing 

the value comparison process would therefore not only be expected to track the 

value of going out for pizza and sushi, but also their respective value difference (Hunt 

et al., 2012; Papageorgiou et al., 2017). Finally, at the end of the comparison process 

it is expected to covary with the value of the chosen option (Strait et al., 2014) 

suggesting that it serves to produce a choice. The authors report that activity in the 

vmPFC (and posterior superior parietal lobule) matches with model predictions in 
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early trials, highlighting their importance for value comparisons during value-guided 

choice (Hunt et al., 2012). Moreover, neural correlates of all of these key components 

were found in vmPFC activity previously. Option values covary with vmPFC activity 

when participants are asked to choose between concurrently presented options (Lim 

et al., 2011; Kolling et al., 2012). Additionally, vmPFC activity reflects the respective 

value difference (Boorman et al., 2009; Philiastides et al., 2010; Hunt et al., 2012; 

Jocham et al., 2014) between options and covaries positively with the value of the 

chosen option (Wunderlich et al., 2009, 2010; Kolling et al., 2012) as well as 

negatively with the value of the unchosen option (Boorman et al., 2009). Importantly, 

valuation signals in vmPFC can be found independent of the eventual motor action 

needed to obtain the respective choice (Wunderlich et al., 2009, 2010) and even 

when participants were not actively indicating their preferred option (Lebreton et al., 

2009; Levy et al., 2011). They have therefore been interpreted as signalling an 

abstract representation of a decision process between stimuli of different value (Hunt 

et al., 2013; Jocham et al., 2016). 

1.2 Patch-Leaving  

While it is important to understand how humans and other animals take 

comparative, binary value-guided decisions those are not the only types of choice 

we are faced with in everyday life. Additionally, they are probably not the only type 

of decision that have shaped our decision-making systems evolutionary (Stephens, 

2008; Adams et al., 2012; Pearson et al., 2014; Mattson, 2019). Hunter-gatherer 

cultures presumably rather rarely faced the luxury to choose which animal to hunt 

but rather whether the prospect of better hunting grounds elsewhere is worth the 

associated risk and resources of leaving their current environment. These decisions, 

where one needs to decide whether to leave their current resource (or patch), despite 

potential disadvantages, have been coined as patch-leaving decisions in the past 

(Charnov, 1976; Hayden et al., 2011; Wolfe, 2013).  

In order to decide advantageously in this class of choice-problems, one does not 

only need to consider currently available evidence, but also integrate evidence from 

the past. It would not be beneficial for the hunter to stay in their current hunting fields 

if they knew that they could find a herd elsewhere across the hill, whereas the 

decision might be different when surrounded by wasteland. Even though this 

example might sound contrived from a perspective of modern life, patch-leaving 
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decisions have been of high relevance now and then. The decision to change jobs 

requires to compare how content you are with your current job (based on previous 

evidence and your expectations for the future) and compare that to other jobs on the 

market while considering potential risks (of not getting the job) and costs (for 

example of moving to another city).  

Previous research suggests that activity in the dorsal anterior cingulate cortex 

(dACC) signals key information guiding patch-leaving decisions (Hayden et al., 2011; 

Kolling et al., 2016). Neural signalling in the dACC correlates with the average value 

of potential alternatives as well as the cost of leaving in humans (Kolling et al., 2012). 

Also in primates, neurons in the dACC signal the relative value of leaving a depleting 

patch for an alternative one and those signals are modulated by the respective travel 

time required to move between patches (Hayden et al., 2011). Furthermore, activity 

in the dACC tracks the reward history (Holroyd and Coles, 2008; Bernacchia et al., 

2011; Wittmann et al., 2016), an information necessary to judge the overall quality 

of the current environment. Activity in ACC does not only track the value of different 

choice options but is also predictive of whether those signals lead to behavioural 

change (Fouragnan et al., 2019) such as switching to an alternative option (Wittmann 

et al., 2016). In addition to that, activity in the dACC reflects discerned trends in the 

environment and could thereby allow an estimation of future reward availability within 

an environment (Wittmann et al., 2016).  

It is unclear whether the previously described neural correlates of value 

information reflect computations fundamental to the comparison of option values or 

emerge as an epiphenomenon. Just because activity in one region correlates with 

value difference or the relative value of leaving, this does not necessarily mean that 

this region is implementing the choice process itself. In analogy, if one registers a 

power failure after a defective fuse they would not assume that it is producing current 

because one knows about the underlying mechanisms where the fuse functions as 

an electrical safety device. With respect to decision-making, theoretical ideas on how 

values are compared can be captured in formalized theoretical models which 

generate artificial neuronal signals and make predictions on expected choice 

behaviour. Those predictions can then be compared to empirical data to test whether 

the observed signals match model predictions (Hunt et al., 2012) and confirm the 

assumed candidate mechanism. One of these mechanistic models assumes that 
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value comparisons crucially depend on the excitation-inhibition balance (E/I balance) 

within neural circuits (Wang, 2002; Hunt et al., 2012; Jocham et al., 2012; Kolling et 

al., 2016) which are consequently expected to affect the speed of value integration 

and the upcoming choice pattern in a predictable manner. In the current work, we 

empirically test whether individual relative concentrations of the excitatory 

neurotransmitter glutamate and the inhibitory neurotransmitter GABA contribute to 

behaviour during patch-leaving and value-guided choice. The mechanistic key 

predictions and previous empirical findings regarding the influence of the E/I balance 

on individual choice behaviour are highlighted in the following.  

1.3 Value-Guided Choice, Patch-Leaving and the E/I Balance 

 One theoretical mechanism assumed to underlie value comparisons is 

competition by mutual inhibition (Wang, 2002, 2008; Hunt et al., 2012; Strait et al., 

2014; Kolling et al., 2016). According to the assumptions of this model, neuronal 

pools representing choice options are excited according to their input value and 

possess recurrent excitation. Those neuronal pools engage in a mutual inhibition 

process until activity remains in the eventual “winning” pool and a choice for that 

option is being made (Wang, 2008; Hunt et al., 2012; Kolling et al., 2016). As an 

example, if I am to compare a highly valuable option A to a lower value option B, 

there will be a much greater excitement in neurons representing A, which can easily 

compete with the low excitement in pool B via inhibitory connections. By suppressing 

activity in pool B the model will converge to represent option A. It thereby predicts a 

progression of neural signals from reflecting the overall value of choice options to 

their respective difference (during the competition) (Hunt et al., 2012), the key 

information guiding value-guided choice .  

The theoretical assumptions of these models have previously been captured 

in a biophysically plausible neural network model to simulate artificial neural signals 

that would be expected from a system based on competition by mutual inhibition 

(Hunt et al., 2012). Functional magnetic resonance imaging (fMRI) and 

magnetoencephalography (MEG) signals in the vmPFC match predictions derived 

from competition by mutual inhibition (Jocham et al., 2012; Hunt et al., 2012). 

Furthermore, single-unit recordings from macaques vmPFC revealed activity 

consistent with mutual inhibition, such as anti-correlated tuning curves for different 

choice options as well as a progression towards signalling the chosen option (Strait 
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et al., 2014). Additionally, since this class of models relies on inhibitory and excitatory 

connections, testable hypotheses can be derived regarding the influence of 

excitatory to inhibitory neurotransmitters, such as glutamate and GABA, on value 

comparisons during value-guided choice (Jocham et al., 2012). If the overall 

recurrent excitation in the  network is high, it is expected that the model converges 

faster to a choice at the expense of accuracy in choosing the higher valued option 

(Hunt et al., 2012). Indeed, humans were found to be more reliable in selecting the 

higher valued option with a lower E/I balance in vmPFC (Jocham et al., 2012). The 

previous results support competition by mutual inhibition as a candidate mechanism 

underlying value comparisons during value-guided choice and thereby highlight the 

E/I balance as a potential variable underlying interindividual differences in decision-

making behaviour. 

Even though a similar mechanism is assumed as a candidate mechanism 

underlying other types of choice, such as patch-leaving decisions (Kolling et al., 

2016), supporting empirical evidence regarding the E/I balance in humans is still 

lacking. During patch-leaving, it is hypothesised that the value of potential alternative 

options is represented by a neuronal pool interacting with neurons reflecting the 

costs of leaving. In addition, the current patch value excites a neuronal population 

possessing self-excitation communicating with the alternative population via 

inhibitory neurotransmission (Kolling et al., 2016). Again, the account predicts that 

depending on the levels of excitation to inhibition, the network would eventually move 

to an attractor state in which neurons representing staying with the current status 

quo or leaving for an alternative are active and a choice for that option is being made 

(Kolling et al., 2016). Relationships between inhibitory and excitatory 

neurotransmission and the decision to switch away from the current course of action 

have been reported previously. In animals, inhibitory transmission contributes to 

behavioral adaptation in changing environments (Cho et al., 2020) as well as to the 

decision to leave or stay a current environment (Kvitsiani et al., 2013). While fMRI 

signals in humans match predictions from the model (Kolling et al., 2012; Kolling et 

al., 2016), an examination of the proposed relationships with E/I balance is still 

missing, and is an integral part of the present work. 

 Reward-based choices were shown to be influenced by many different 

neurotransmitter systems previously (Constantino et al., 2017; Burke et al., 2018) 
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and disentangling specific contributions is an important field of ongoing research. 

Given that neurotransmitters influence each other on multiple levels, the 

dopaminergic system has for instance been shown to directly modulate levels of 

cortical inhibition (Seamans et al., 2001; Gorelova et al., 2002; Winterer and 

Weinberger, 2004), complex neurophysiological interactions underlying choice 

behaviour are to be expected. The present work highlights a potential role of the 

dopaminergic system during patch-leaving decisions in addition to the role of the E/I 

balance in influencing choice behaviour. Previous research regarding this 

relationship is outlined in the following paragraph. 

1.4 Patch-Leaving and Dopamine 

 To decide whether or not to leave a current environment, it is essential to 

know which costs are associated with leaving and whether the expected value 

benefits in an alternative environment are worth paying that cost. Therefore, the 

current and alternative patch’s reward history as well as switch costs are essential 

to make an informed decision. The reward history potentially allows to extract trends 

within the environment to evaluate what to expect after leaving, which is the key 

information to decide whether to stay or to leave (Wittmann et al., 2016).  

The mesolimbic dopamine system plays a crucial role in signaling this kind of 

information. Dopamine has been found to be involved in overcoming costs in order 

to obtain rewards (Day et al., 2010). Additionally, dopamine is involved in tracking 

the average reward rate of the environment (Niv et al., 2007; Hamid et al., 2016), 

providing estimates of available future rewards (Day et al., 2010; Hamid et al., 2016) 

as well as in signaling the proximity and value of distant rewards (Howe et al., 2013). 

It is further involved in signaling the reward history (Bayer and Glimcher, 2005; 

Santesso et al., 2009; Bromberg-Martin et al., 2010). 

 The previous evidence suggests a role of dopaminergic signaling in patch-

leaving scenarios. Indeed, behaviour in a patch-foraging task is related to the 

medication status of Parkinson patients, a disease characterized by a depletion of 

dopamine (Höglinger et al., 2004). More specifically, unmedicated Parkinson 

patients stayed longer in their respective patch of diminishing returns as compared 

to control participants (Constantino et al., 2017) and dopamine replacement therapy 

alleviated this effect. Similarly, the dopamine agonist cabergoline affects behaviour 

in a patch foraging task. Dopamine agonism influences the weighting of background 
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reward rates, the reward rate of potential alternatives after leaving the current patch, 

on behaviour. Participants were shown to leave patches in poor environments earlier 

under cabergoline, suggesting an increased perceived richness of the environment 

following dopamine receptor stimulation (Constantino et al., 2017; Le Heron et al., 

2020).  

1.5 Objective and Hypotheses 

In the present work, we sought to investigate how different neurotransmitters 

relate to reward-based decision-making behaviour. Specifically, we asked how the 

ratio of excitatory glutamate to inhibitory GABA (E/I balance) relates to choice 

behaviour during value-guided choice and patch-leaving decisions. Building on 

previous work, we hypothesised dissociable contributions of the E/I balance in 

vmPFC and dACC on value-guided choice and patch-leaving, respectively. To the 

best of our knowledge, it has not been tested before whether the E/I balance relates 

to decision-making behaviour in a task combining different types of choice in a 

mechanistically plausible manner. Additionally, in a theoretical review, we highlight 

a potential role of dopamine in patch-leaving decisions, commenting on a recent 

publication (Le Heron et al., 2020). The key findings of the study are summarized, 

and we provide a discussion on the significance of the work based on previous 

evidence. 
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2. Methods 

The following section provides a short overview of the main methods that were 

used in the present work. The reader is invited to refer to our original publications 

(Kaiser et al., 2021; Marzecová et al., 2021) for a more technical and detailed 

description. 

2.1 Patch-Leaving and Value-Guided Choice Paradigm 

In the present work, we set out to design a task combining two choice 

problems. Firstly, participants were making a patch-leaving choice in every trial. 

Here, they were presented with two patches of different value. They always resided 

in one of two patches and moving was associated with a travel cost which was 

subtracted from participants current earnings as soon as they decided to leave their 

patch. Crucially, the value in the current patch depleted over time and the value 

available in the alternative patch replenished. Therefore, participants needed to 

evaluate whether they are content with the available resources in their current patch, 

or whether they wanted to switch to the other patch despite associated travel costs. 

In order to decide advantageously, agents needed to integrate evidence over time 

when they were willing to pay to move to another environment based on the reward 

history and expected reward trends in both patches. In a second stage of every trial, 

participants were asked to perform a value-guided choice. Here, the patch value 

available in the chosen patch was randomly divided to two different choice options 

and associated with random reward probabilities. The problem to solve during this 

phase is what option to choose based on the potential reward magnitude and the 

probability of winning. 

There are important differences in both classes of decisions since the relevant 

information is presented on different timescales. The patch-leaving choice crucially 

depends on the reward history. The agent needs to integrate evidence over time in 

this sequential decision-problem to decide when she would be better off in an 

alternative environment and is willing to accept associated switch costs. During 

value-guided choice, one has to decide based on currently available evidence what 

is the best available option. Additionally, the current patch choice directly affects the 

upcoming patch choices whereas the chosen option during value-guided choice 

does not affect upcoming available options. 
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2.2 Individual Choice Behaviour 

To characterise individual decision-making behaviour, we summarized key 

choice variables during patch-leaving and value guided choice in two variables, the 

patch-leaving advantage and the percentage of correct responses during value 

guided-choice. 

The patch-leaving advantage is defined as the average value difference 

between patches (value available in the alternative patch – value of the current patch 

– costs) across switch trials. The number of correct responses summarized how 

many times each participant chose the option with the higher expected value 

(defined by the product of reward probability and magnitude of each option) during 

value-guided choice. In addition, we estimated the influence of key reward 

information, such as the value difference between choice options, on trial-by-trial 

reaction times in multivariate regression analyses. 

2.3 Regression-Based Analyses 

 A multiple regression-based approach was employed to estimate the 

relationships of the individual E/I balance and choice behaviour. To limit the number 

of multiple comparisons, we proceeded along the following hierarchy. First, we only 

tested those decision-variables of interest for which we had a priori hypotheses. 

Second, we regressed the E/I balance in all voxels of interest to our main measures 

of interindividual choice behaviour (patch-leaving advantage and % of correct 

responses, compare 2.2 Individual Choice Behaviour above). If, and only if, one of 

the regions exhibited a significant contribution, we further detailed the analysis by 

assessing whether the effect of E/I balance was contributed to by GABA or glutamate 

concentrations. Third, only after we found significant relationships of the E/I balance 

with our broad measures of individual behaviour, we further detailed those analyses 

on a more fine-grained level. Therefore, the relationships of the E/I balance with the 

effects of key value parameters on reaction times as well as with model parameters 

were analysed. 

2.4 Computational Modelling 

We employed computational modelling to describe participants’ decision-

making behaviour in a more fine-grained manner. The idea of computational 

modelling is to capture theoretical accounts on how participants potentially make 
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decisions using mathematical models. These algorithms can then be compared to 

actual choice data to determine which theoretical model possibly underlies decision-

making behaviour (Wilson and Collins, 2019). The motivation for theoretical 

modelling was twofold. First, the comparison of a set of different models yields one 

candidate model which describes the data best and potentially explains observed 

behaviour in more detail. In the present study, participants needed to integrate 

reward probabilities and reward magnitudes to decide advantageously during value-

guided choice. One could assume that participants weigh reward probabilities 

differently than reward magnitudes. Additionally, they could, for example, combine 

the relevant reward information additively or multiplicatively to yield comparable 

values. If, for example, the choice data is best explained by a model combining 

reward information multiplicatively this suggests that participants may have 

employed this theoretically assumed algorithm in their choice process. Importantly, 

inferring a cognitive algorithm with certainty is impossible since there always is an 

infinite number of potential competing models that would fit the behaviour equally 

well but are not considered in the set of theoretical motivated models (Eckstein et 

al., 2021). Models incorporating different algorithmic assumptions can be used to 

generate choice probabilities dependent on the reward information presented as well 

as model-specific variables weighting and combining that information. Those model-

specific parameters are fitted to individual behaviour, meaning that they are selected 

in a way that the choice probabilities generated by the model maximize the likelihood 

of the observed choice data (Wilson and Collins, 2019). These fitted parameters can 

be used to understand cognitive functions in more detail and to discover potential 

associations with other variables of interest. One famous example is the association 

between the firing of dopamine signals and the model-derived reward prediction 

error (RPE) (Schultz, 1998; Bayer and Glimcher, 2005; Steinberg et al., 2013). The 

RPE can be thought of as a teaching signal that supports learning when reality does 

not match predictions and is one key concept in associative learning (Rescorla and 

Wagner, 1972). Crucially, the firing of dopamine neurons is highly correlated with the 

strength of the RPE (Schultz et al., 1997; Cohen et al., 2012). This important finding 

would not be evident from raw behavioural data and highlights the importance of 

computational modelling and latent variable analysis to understand decision-making 

processes in more detail. Also in the present work, the second motivation for using 
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computational modelling was to discover potential relationships of model parameters 

with neural data, such as the E/I balance.  

2.4.1 Choice Models  

In the present work, three different classes of models were fitted to explain 

behaviour during value-guided choice. The key value information presented here are 

reward probabilities and reward magnitudes. Together, these two properties 

constitute the overall value of an option. In one class of models, the overall value 

was derived by combining reward information additively. In the second class, reward 

information was combined multiplicatively. Finally, we used a hybrid version of both 

models which included additive and multiplicative components. This approach is 

based on a recently published fitting procedure (Farashahi et al., 2019). Model fits 

were compared with the Bayesian information criterion (BIC). The model with the 

lowest average BIC across all participants was considered as the most likely 

algorithmic explanation of the observed choice behaviour. 

Since it is known that participants do not weigh value information in a 

statistically optimal way but show systematic distortions (Hsu et al., 2009), we 

additionally fitted utility functions according to prospect theory (Kahneman and 

Tversky, 1979; Tversky and Kahneman, 1992). Those functions can account for the 

fact that participants potentially distort the influence of reward magnitudes or 

probabilities in general by applying non-linear transformations to the objective 

reward information. We fitted four variants of each model class (additive, 

multiplicative and hybrid), considering distortions in none of the reward parameters, 

reward probabilities, reward magnitudes or both.  

In order to estimate reliability and validity of computational models and the 

fitting procedure, it is necessary to generate choices for an artificial agent under 

different constellations of free parameters (Wilson and Collins, 2019). In this 

procedure, choice probabilities are generated based on the presented reward 

information and a random set of free parameters. A choice is then generated based 

on those probabilities. When those artificial data are used for model fitting, the fitted 

parameters should match the real parameters (“parameter recovery”) (Wilson and 

Collins, 2019; Blohm et al., 2020). If the parameters are not recoverable, this is an 

indication that the experiment is not suited to assess the model of interest which 
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makes the interpretation of the recovered parameters from real data impossible. We 

therefore included a model validation step in our analyses and report the correlations 

between the real parameters used for simulation and recovered parameters. 

2.4.2 Drift Diffusion Modelling 

We additionally fitted drift diffusion models (DDM) to the data to extract further 

latent variables, such as indices of evidence accumulation and response caution 

(Wiecki et al., 2013; Cavanagh et al., 2014), and elucidate their relationship with the 

E/I balance. In DDMs, each decision is defined by a respective decision threshold. 

Every choice is modelled as an accumulation of evidence until a threshold is reached 

at which timepoint the respective choice is executed. Predictions from the model 

crucially depend on the speed of evidence accumulation (drift rate), the respective 

response caution (height of the decision threshold) and an initial bias towards either 

boundary. The individual free parameters, such as drift rate, are fitted to choice and 

reaction times in a way that those predicted patterns match observed behaviour best. 

More specifically, we employed a hierarchical Bayesian DDM (Wiecki et al., 

2013). The fitting procedure is named “hierarchical” since individual parameters are 

constrained by group-level distributions (Wiecki et al., 2013). In addition to that, the 

modelled hierarchical Bayesian DDMs allows for an estimation of trial-by-trial 

regression models on choice parameters. As an example, one could assume that 

drift rate crucially depends on the value difference between options such that the 

drift towards the decision boundary is higher with greater value differences (easier 

decisions). We have incorporated the effects of value parameters on free choice 

variables, such as drift rate, in the decision models. The reader is referred to 

Publication I (Supplementary material) for an overview of all DDM models fitted. 

2.5 Magnetic Resonance Spectroscopy 

Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique to 

measure the concentrations of metabolites (Ding and Lanfermann, 2015). MRS 

makes use of the fact that certain atomic nuclei within molecules possess their own 

magnetic fields (Alger, 2009). The respective nuclei are arranged randomly under 

normal conditions (Haley and Knight-Scott, 2011). However, when nuclei are placed 

in an external magnetic field, they align along that field (Haley and Knight-Scott, 

2011) and their rotation frequency depends upon the strength of the external field 
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and the nature of the nucleus (Fayed et al., 2006). The external field in the current 

work was applied with a Magnetic Resonance Imaging (MRI) scanner with a field 

strength of 7 Tesla (Siemens Healthineers). When a time-varying radio-frequency 

field is additionally turned on at this particular frequency (Fayed et al., 2006), nuclei 

are excited (Haley and Knight-Scott, 2011; Gruber et al., 2018). As soon as this 

second externally applied field is turned off, MRS measures how nuclei return back 

to their original position in alignment with the external field (Chatham and Blackband, 

2001). This process generates distinct signals which can be detected with a physical 

coil (Alger, 2009). The detected signal is dependent upon the unique chemical 

environment around the nucleus which is specific for different metabolites allowing 

their concentrations to be quantified (Chatham and Blackband, 2001; Hwang and 

Choi, 2015; Tognarelli et al., 2015; Ford and Crewther, 2016).  

MRS measures were obtained in predefined localized regions of interest 

(voxels). In the present work, signals were measured from five voxels of interest: the 

dorsolateral prefrontal cortex (dlPFC), left M1, right M1, vmPFC and dACC. We used 

the dACC and vmPFC as regions of interest due to their above-described role in 

signaling decision variables during patch-leaving and value-guided choice. Since 

patch-leaving requires maintaining a representation of current patch values across 

trials, we selected the dlPFC because of its importance for working memory-related 

processes (Curtis and D'Esposito, 2003). The motor cortex was selected as a control 

region, where we did not expect a relationship with any decision variable.  

MRS signals are usually quite weak and exhibit a low signal to noise-ratio 

(Alger, 2009; Ligneul et al., 2021; Ip and Bridge, 2022). In the present work, MRS 

signals are therefore not time resolved but we worked with a single estimate of 

molecular concentrations within each voxel of interest. 

2.6 Theoretical Review  

 In our second publication we provide a review of a recently published article 

(Le Heron et al., 2020). A short overview of the article is provided as well as a 

description of the key results. We discuss the findings by the authors in the light of 

recent publications and provide a brief discussion on the significance of the paper. 
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3. Results 

3.1 Publication I: Dissociable Roles of Cortical Excitation-Inhibition Balance 

during Patch-Leaving versus Value-Guided Decisions 

The following chapter is based on our manuscript published in Nature 

Communications (see attachments): 

 

Kaiser, L. F., Gruendler, T. O., Speck, O., Luettgau, L., & Jocham, G. (2021). 

Dissociable roles of cortical excitation-inhibition balance during patch-leaving versus 

value-guided decisions. Nature communications, 12(1), 1-11. 

 

As described above, previous evidence suggests an influence of the E/I 

balance in vmPFC on value comparisons during comparative value-guided choice 

(Hunt et al., 2012; Jocham et al., 2012; Strait et al., 2014). However, even though a 

similar mechanism was hypothesised to influence patch-leaving behaviour in dACC 

(Kolling et al., 2016), to the best of our knowledge, this has not been empirically 

tested before in humans. We therefore sought to investigate the role of the cortical 

E/I balance in a task combining patch-leaving and value-guided choice. More 

specifically, interindividual differences in value-guided choice and patch-leaving 

behaviour were hypothesised to be influenced by E/I balance in vmPFC and dACC, 

respectively.  

In a novel decision-making task, participants (N = 29) first conducted a patch-

leaving choice followed by a value-guided choice. Participants were scanned with 

MEG during the behavioural paradigm (data not shown here). In a separate session, 

they were measured with MRS at 7 Tesla MRI. During the patch-leaving stage, 

participants decided whether they want to stay with their current patch or switch to 

an alternative. Switching to the alternative patch was associated with costs which 

were subtracted from their current earnings as soon as they decided to leave their 

current patch. The costs were displayed on screen and remained stable until 

participants decided to leave. Crucially, the value available in the current patch 

depleted over time whereas the value in the alternative patch replenished. In every 

trial, participants therefore needed to decide whether the relative patch-value 

available in the alternative patch (as well as its expected future dynamics) was worth 
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paying the costs associated with leaving. To capture individual differences in patch-

leaving behaviour, we assessed the average relative value benefits that participants 

needed to leave their current patch despite current costs (patch-leaving advantage). 

In the second stage of every trial the value available in the current patch was 

randomly allocated to two different choice options and associated with random 

reward probabilities which were displayed on screen. In order to decide 

advantageously, participants would therefore need to consider the reward probability 

and reward magnitude in their value-guided choice. Our main measure of interest 

during value-guided choice was how often participants chose the option with the 

higher expected value.  

We observed dissociable contributions of the E/I balance in different brain 

regions as a function of decision type. Participants considered the individual cost 

levels in their patch-leaving choices and left patches at higher relative value in the 

alternative patch (compared to their current patch value) when leaving was 

associated with greater costs. As expected, this indicates that participants needed a 

higher incentive, in the form of alternative patch value, to leave their current patch 

when leaving was associated with greater costs. With respect to the E/I balance, the 

patch-leaving advantage was significantly related to the E/I balance in dACC but not 

any other region investigated. This indicates that participants with a greater E/I 

balance in dACC left their current patch when the average evidence to leave was 

higher. Drift Diffusion modelling confirmed these findings by revealing a significant 

relationship of dACC E/I balance and drift rate indicating that participants with a 

greater dACC E/I balance show a higher drift towards stay decisions. Additionally, 

participants showed a trend to slow down their patch-leaving choices when leaving 

was associated with higher costs. The magnitude of this effect was again related to 

the E/I balance in dACC. 

During value-guided choice, we found that the E/I balance in vmPFC was 

significantly related to the individual percentage of correct choices, such that 

participants with a greater vmPFC E/I balance chose the option with the higher 

expected value less often. There were again no significant contributions of any other 

regions. We further detailed this analysis by assessing relationships of the E/I 

balance with effects of key value parameters on reaction times and computational 

modelling parameters. We found that participants responded slower in trials with low 
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value difference (harder trials). With respect to E/I balance, the magnitude of this 

effect was again lower with an increased E/I balance in vmPFC. This points towards 

an influence of vmPFC E/I balance on the speed of value integration. Computational 

modelling indicated that a model assuming multiplicative integration of reward 

magnitudes and probabilities with distortion in both value parameters explained 

participant’s choice data best. The degree of individual distortions was again 

significantly related to E/I balance in vmPFC, but not any of the other regions 

investigated.  

In sum our findings support our hypotheses. We report significant and 

dissociable contributions of the E/I balance in dACC and vmPFC to choice behaviour 

during patch-leaving and value-guided choice, respectively. Our findings further 

support models that implement competition by mutual inhibition as one candidate 

mechanism underlying behaviour during value-guided choice and provide evidence 

for an influence of the E/I balance in dACC on patch-leaving behaviour in humans 

for the first time. 

3.2 Publication II: Neuromodulation of Foraging Decisions: The Role of 

Dopamine 

The following section is based on our work published in Frontiers in 

Behavioral Neuroscience 

 

Marzecová, A., Kaiser, L.F., & Maddah A. (2021) Neuromodulation of foraging 

decisions: The role of dopamine. Frontiers in Behavioral Neuroscience. 15, 1-4. 

 

In this opinion piece, we discussed recent results on the role of dopamine in 

patch-leaving decisions (Le Heron et al., 2020). In the task created by the authors, 

participants were presented with patches that differed in their initial reward rates 

(low, medium and high yield) and were presented in rich or poor environments. Rich 

and poor environments differed by the proportions of high, medium and low yield 

patches such that the availability of high yield patches was greater in the rich 

background environment. The authors thereby separately manipulated the effects of 

foreground (patch reward rate) and the background reward rate (average reward in 

the environment). The reward rate available in the current patch decreased over time 

and participants could choose to leave their current patch whereas they were more 
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likely to transition to a high yield patch in the rich environment compared to the poor 

environment. Leaving one’s current patch incurred a cost in the form of a fixed travel 

time during which no rewards could be obtained.  

Evidence on neuromodulatory mechanisms underlying patch-leaving 

decisions remains scarce. The authors have filled this gap by assessing the role of 

the D2 agonist cabergoline on behaviour in the above-described decision-making 

task and reported a modulatory influence of cabergoline on the influence of 

background reward rates on behaviour. In Publication II we discussed the following 

background information on this important publication by Le Heron et al. (2020). 

Participants were administered with a 1 mg dose of cabergoline. The authors 

hypothesised that this would specifically modulate tonic DA levels, which have 

previously been suggested to signal the average background reward rate (Niv et al., 

2007; Beierholm et al., 2013) and should thereby influence the effects of background 

reward rate on choice behaviour in the current framework. However, it has been 

discussed before whether similar doses would more strongly affect phasic DA 

signalling (Frank and O'Reilly, 2006; Norbury et al., 2013) by influencing higher-

affinity presynaptic autoreceptors to a greater degree than postsynaptic receptors 

(Norbury et al., 2013). In the current design, there was no possibility to assess 

whether the neurochemical challenge affected pre- or postsynaptic receptors. The 

discussed study indeed only finds a significant interaction of background, and not 

foreground reward rate, with drug on behaviour, indicating a specific influence on the 

perception of environmental richness. However, this effect is due to drug effects in 

the poor environment only, such that participants left patches there earlier under 

cabergoline. This speaks against a general influence of the dopaminergic challenge 

on background reward rate. Disentangling potential contributions of tonic versus 

phasic dopaminergic signalling on how the value of a current state versus potential 

other states is estimated could be an interesting question for upcoming research. 

Additionally, the perceived interaction effects of drug and background reward 

rate could be due to two factors. One would be a drug-dependent increased 

perceived richness of the environment as already discussed (Le Heron et al., 2020). 

Another one would be a reduced threshold to overcome the inhibition of travel costs. 

There is extensive literature on the role of dopamine in cost-benefit decisions 

(Salamone et al., 1994; Beeler and Mourra, 2018). Here, the question is conceptually 
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similar as in the foraging paradigm: „Is my expected benefit worth the expected 

costs?” In the discussed study, travelling between patches incurred a fix time cost. 

During this time, no rewards could be collected. Missing out on rewards is worse in 

rich environments than in environments with a low reward density, or differently 

stated, the opportunity costs of time differ (Constantino and Daw, 2015; Constantino 

et al., 2017) and could thereby affect the weighting of travel times in rich versus poor 

environments differently. This could be reflected in an effect of background reward 

rate since costs are only incurred when participants decide to leave their current 

patch. Parkinson patients, diagnosed with a disease characterized by a depletion of 

dopamine (Höglinger et al., 2004), have indeed been shown to weigh the opportunity 

cost of time differently dependent on their status of dopamine replacement therapy 

(Constantino et al., 2017). Parkinson patients off medication were shown to stay 

longer with a depleting resource, again consistent with a decreased perceived 

richness of the environment in patients with dopamine deficiency. However, in this 

task the environmental richness was varied by changing travel times and not by 

different distributions of patch types in the environment (Le Heron et al., 2020). It 

would be of interest for future studies to explicitly vary travel costs (Constantino et 

al., 2017) and the average value available in the environment (Le Heron et al., 2020) 

to further the understanding of dopamine`s role in patch-leaving decisions. 
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4. General Discussion 

The present work aimed to investigate neurochemical underpinnings of 

reward-based decision-making in different frames of reference. Many earlier studies 

have examined potential anatomical structures involved in value comparisons 

(FitzGerald et al., 2009; Strait et al., 2015; Shapiro and Grafton, 2020), but research 

on potential underlying neurochemical mechanisms remains scarce. Here, we 

provide evidence for dissociable contributions of the E/I balance to patch-leaving and 

value-guided choice in dACC and vmPFC, respectively. 

Specifically, we found evidence for contributions of the E/I balance in dACC 

to behavioural parameters of patch-leaving behaviour. Participants with a greater E/I 

balance in dACC left their current patch when the relative value benefit (subtracted 

by current costs) in the alternative patch was higher. Additionally, the effect of patch-

leaving costs on reaction times was significantly related to E/I balance in dACC. 

These findings extend previous animal literature reporting an influence of inhibitory 

neurons in the decision on whether to stay or to leave (Kvitsiani et al., 2013). In 

addition, it has previously been suggested that a mechanism based on the E/I 

balance in dACC influences patch-leaving behaviour (Kolling et al., 2016). To the 

best of our knowledge, this is the first study testing that hypothesis empirically.  

There are many competing theories about the role of dACC in patch foraging 

decisions. On the one hand, many studies suggested a direct encoding of choice 

variables in dACC such as signalling the relative value of leaving (Hayden et al., 

2011) or the value of potential alternative options (Kolling et al., 2012). Additionally, 

recent work provides causal evidence for an active role of the ACC in strategy 

switching (Tervo et al., 2021) during foraging. One the other hand, the dACC has 

been suggested to signal more general factors, such as monitoring choice conflict 

and regulating cognitive control (Shenhav et al., 2013; Shenhav et al., 2014; 

Shenhav et al., 2016; Kane et al., 2021) or linking different contexts with task-related 

strategies (Heilbronner and Hayden, 2016), which would mediate the reported role 

in guiding patch-leaving behaviour. Rats with ACC inactivation, for example, still 

follow optimal foraging theory (Kane et al., 2021), questioning its direct role in guiding 

patch-leaving decisions.  Both accounts could –in theory– contribute to the observed 

influence of dACC E/I balance on patch-leaving behaviour. With the current task-

design we can only report an influence of E/I balance on overall patch-leaving 
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behaviour, but future research would be needed to further disentangle the more 

specific computations underlying this relationship. 

With respect to value-guided choice, we found a decreased choice accuracy 

with a higher E/I balance in vmPFC. Additionally, participants slowed down their 

reaction times in difficult trials with low value difference. This effect was less 

pronounced with a greater E/I balance in vmPFC. The presented findings match with 

model-predictions based on competition by mutual inhibition. Such a model would 

predict that decision-makers with stronger relative levels of excitation would make 

more mistakes (Wong and Wang, 2006; Hunt et al., 2012). Our findings are also 

consistent with earlier work reporting an increase in choice consistency with high 

levels of GABA and low levels of glutamate in vmPFC (Jocham et al., 2012). Taken 

together, our findings support dissociable contributions of the E/I balance in the 

dACC and vmPFC to individual behavioural differences during patch-leaving versus 

value-guided choice.  

Even though we find dissociable contributions of the E/I balance as a function 

of decision type, our findings do not argue for a modular perspective on choice which 

prescribes certain functions to specific, well-defined regions or neurotransmitter 

systems. In other words, the present work does not imply a clear one to one mapping 

from value-guided choice and patch-leaving to vmPFC and dACC activity, 

respectively. Earlier research implies no categorically distinct role of cortical brain 

regions during economic choice (Yoo and Hayden, 2018) and that the involvement 

of different cortical regions critically depends on task requirements. Signals of value 

comparisons can, for instance, be found in motor cortex (and not in vmPFC) when 

options are presented sequentially during value-guided choice and a response-delay 

is introduced (Hunt et al., 2013). With respect to patch-leaving several regions 

beyond dACC have been reported to carry important decision variables and 

contribute to computations during patch-leaving decisions (Barack et al., 2017; Kane 

et al., 2017; Hall-McMaster and Luyckx, 2019). This evidence suggests that reward-

based choice is distributed across many brain regions (Cisek, 2012; Hunt and 

Hayden, 2017; Yoo and Hayden, 2018; Maisson et al., 2021). Additionally, reward-

based decisions are influenced by a complex interplay of many different 

neurotransmitter systems (Takahashi et al., 2010; Scholl et al., 2014; Burke et al., 

2018). For example, in the current work we discuss the results of an important recent 
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article (Le Heron et al., 2020) describing a modulatory influence of dopamine on 

patch-leaving behaviour emphasizing the importance of other transmitter systems in 

understanding the neurochemical underpinnings of reward-based decision-making. 

Taken together, making decisions based on their value is a ubiquitous problem 

in everyday life. Providing mechanistic and biologically sound theories on how 

options of different value are potentially compared could be an important first step to 

elucidate when and how decision-makers do not choose the optimal course of action 

(Leiser and Azar, 2008; Sharp et al., 2012; Constantino and Daw, 2015; Kane et al., 

2019) that maximizes their individual gains. Understanding how reward-based 

decisions are modulated by different neurotransmitters therefore is an important 

endeavor in ongoing research and this work contributes to this question by 

highlighting certain neurochemical influences on reward-based decision-making.  
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5. Future Research 

The present work provides evidence for dissociable contributions of the E/I 

balance in dACC and vmPFC to patch-leaving and value-guided choice respectively. 

In future research, we will examine how the individual E/I balance affects time-

varying value-representations in MEG data, which has been measured during the 

above-described behavioural choice paradigm. Based on earlier research we expect 

a faster ramping of signals reflecting value comparisons with greater E/I balance 

(Jocham et al., 2012). Using MEG, it is possible to capture the temporal evolution of 

choice signals with greater temporal accuracy, an advantage over fMRI (Hall et al., 

2014) that has been used in earlier work (Jocham et al., 2012). We expect the 

ramping of choice signals to directly depend upon option value and therefore to 

exhibit temporal trial by trial variations. To capture this dynamic temporal evolution 

of the value comparison process, we use Hidden Markov Models allowing the 

detection of hidden states with different dynamics across trials (Vidaurre et al., 2018; 

Higgins, 2019). We expect a relationship between the distribution of hidden states 

and the E/I balance. 

Our findings in Publication I are in line with theoretical predictions based on 

mutual inhibition. As in previous research (Hunt et al., 2012), biophysically plausible 

network models can be used to simulate which activity would be expected from a 

mechanism based on competition by mutual inhibition. These artificial predictions 

can then be compared with actual data to estimate whether the observed pattern of 

results is fundamental to the computational process of value comparisons (Hunt et 

al., 2012). It would be a promising avenue for future research, to directly take the E/I 

balance into account during model simulations and estimate whether neural signals 

match with model predictions. 

Additionally, neuronal gamma oscillations are assumed to be influenced by the 

E/I balance (Muthukumaraswamy et al., 2009; Buzsáki and Wang, 2012; Bitzenhofer 

et al., 2021). Gamma-frequency oscillations have been shown previously to support 

evidence accumulation during value-based choice, whereas fronto-parietal 

synchronization was discovered as predictive for choice accuracy (Polanía et al., 

2014). In ongoing research, we therefore investigate how the measured E/I balance 

affects frequency-specific neuronal value correlates as well as their temporal 

dynamics. Furthermore, earlier research suggests frequency-specific interactions 
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between activity in the vmPFC and dorsomedial prefrontal cortex during the decision 

to switch from an ongoing strategy (Domenech et al., 2020). By analyzing the MEG 

data, we hope to uncover how the E/I balance influences evidence accumulation and 

interregional functional connectivity guiding the decision to switch away from a 

current patch. 

Recent work (Kaanders et al., 2021b; Kaanders et al., 2021a) provides a 

potential alternative explanation for the observed results. It has been suggested that 

pre-supplementary motor/dACC activity is reflective of how much information is 

sampled before committing to a choice. It could be of interest for future studies to 

disentangle whether the observed differences in switching behaviour are due to 

actual different leaving thresholds or to differential information sampling, since those 

factors are intertwined in the current task design.  

In the present work, we have discussed the findings of a recent paper (Le 

Heron et al., 2020) presenting a modulatory influence of dopamine on patch-leaving 

decisions. The firing of dopamine neurons has been extensively researched in 

decisions requiring to learn a link between stimulus and reward (Frank et al., 2004; 

Ersche et al., 2008; Cools et al., 2009; Jocham et al., 2011; Maes et al., 2020). 

However, the dopaminergic system emerges as a neural substrate influencing 

reward-based choice in many different ways. Dopamine has not only been shown to 

influence patch-leaving decisions (Le Heron et al., 2020) but also other factors 

affecting value-guided choice. Dopamine neurons encode reward probabilities and 

magnitudes (Tobler et al., 2005) and play a central role in the computation of 

subjective value computations during value-based choice (Burke et al., 2018). 

Dopamine is not only implicated in value coding but also a vast array of other 

functions such as, for example, movement control, action selection (Barter et al., 

2015; Howard et al., 2017; Da Silva et al., 2018) and in signaling the proximity to 

distant rewards (Howe et al., 2013). Current animal research deals with the question 

how these diverse functions are organized and encoded by dopaminergic neurons 

(Engelhard et al., 2019; Schwerdt et al., 2020). In human research, it has been 

shown that subtle manipulations in the timing of option presentation and the 

response scheme during value-guided choice affects whether option values are 

mainly encoded in prefrontal regions or motoric structures (Hunt et al., 2013). 

Building on this previous evidence, we are currently investigating whether a 
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dopaminergic challenge affects the encoding of value or motor related task features 

(or both) during value-guided choice. More specifically, we used a sequential value-

guided choice task to track the encoding of value and movement-preparation during 

the decision process. Participants performed this task under the dopamine precursor 

L-Dopa, the D2/D3 receptor dopamine antagonist amisulprid and a placebo. We 

measured the encoding of task related variables, such as option value and 

movement preparation, with MEG in high temporal resolution and are investigating 

whether they differ as a function of the dopaminergic challenge (in preparation). 
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6. Conclusion 

The present work focused on the neurochemical underpinnings of reward-based 

decision-making providing evidence for dissociable contributions of the E/I balance 

in dACC and vmPFC to patch-leaving versus value-guided choice. To the best of our 

knowledge, this is the first study assessing potential influences of GABA and 

glutamate concentrations on behaviour in a task combining both decision-problems. 

We additionally highlighted a potential role of dopamine in governing patch-leaving 

decisions, suggesting that the dopaminergic state affects the influence of potential 

alternative options on the decision to leave a current patch.  

Understanding the role of different neurotransmitter systems in guiding reward-

based choice is an important endeavor. Only if we learn how certain transmitter 

systems affect behaviour, we might help treating and understanding diseases which 

are associated with altered decision-making (Blanco et al., 2013; Gillan et al., 2014; 

Pushkarskaya et al., 2015; Albrecht et al., 2016; Constantino et al., 2017; Verharen 

et al., 2018; Cavanagh et al., 2020) and signaling in discussed neurotransmitter 

systems (Scatton et al., 1982; Pittenger et al., 2011; Belujon and Grace, 2017; Selten 

et al., 2018; McCutcheon et al., 2020). Apathy, a disorder of diminished motivation 

is, for example, associated with a disruption in dopaminergic signaling (Chong and 

Husain, 2016). The above discussed relationship between dopamine and 

background reward rate potentially leads to a state where the increased perceived 

richness of the environment is never worth the effort of switching (Le Heron et al., 

2018; Le Heron et al., 2020). Therefore, research on basal decision-making 

mechanisms, such as patch-leaving, can provide potential mechanistic explanations 

underlying the link how pathophysiology relates to symptomatic cognitive deficits in 

psychiatric conditions. Researching potential consequences of 

neuropharmacological manipulations on different types of everyday choices may 

additionally help to estimate potential treatment risks and could facilitate clinical 

monitoring. Dopaminergic medication, used to treat Parkinson’s disease, has, for 

instance, been reported to influence learning about rewards (Voon et al., 2010) and 

the results discussed in this work point towards additional expected modulatory 

influences on patch-leaving.  
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Overall, our work contributes to understand the various cognitive computations 

carried by certain neurotransmitter systems to elucidate how they potentially affect 

reward-based decision-making. Examining potential mechanisms underlying value 

comparisons is of high practical relevance given the pervasive importance to identify 

high valuable options and adapt behaviour accordingly in everyday life. 
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Dissociable roles of cortical excitation-inhibition
balance during patch-leaving versus value-guided
decisions
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Gerhard Jocham 1,2

In a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-

leaving decisions involve balancing the cost of moving against the gain expected from the

alternative patch. This contrasts with value-guided decisions that typically involve maximizing

reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-

leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas

competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to

underlie value-guided choice. Here, we show that the balance between cortical excitation and

inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays

a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to

E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in

vmPFC. These results support mechanistic accounts of value-guided choice and provide

evidence for a role of dACC E/I balance in patch-leaving decisions.
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In an ever-changing world with non-uniformly distributed
goods, organisms have to decide whether they want to accept
the resources provided by their current environment or switch

to an alternative course of action. These patch-leaving decisions
require balancing potential benefits in alternative environments
against costs associated with abandoning the current patch (or
current course of action). Patch-leaving decisions can be con-
trasted with value-guided choices, where agents often need to
integrate multiple attributes to select the option currently most
valuable. Consider for example a researcher working at a uni-
versity in a small town who considers moving to Munich (famous
in Germany for high cost of living). Initially, there is no benefit in
leaving: moving costs money and the cost for living is higher in
Munich. However, better career prospects and a higher salary
might, in the long run, overcompensate the financial and social
costs incurred. This constitutes a patch-leaving decision. In
Munich, our researcher may face a decision on where to live—
and attributes like the quality of different apartments, the rent,
and the distance from the office may contribute to how valuable
each flat is judged. Based on these attributes, our researcher
would simply select the one they judge more valuable altogether,
thus maximizing immediate reward. This kind of decision is
commonly referred to as a value-based decision.

Studies in animals and humans suggest a role of the dorsal
anterior cingulate cortex (dACC) in patch-leaving decisions1–4, as
well as signalling potential costs entailed by behavioural
adjustments2,3. Activity in the dACC has been reported to reflect
diminished rewards within the current environment2,5,6 as well as
the average value of potential alternatives3 suggesting an impor-
tant role in guiding behavioural adjustments7. In contrast, value-
guided decision-making has been linked to the ventromedial
prefrontal cortex (vmPFC)8–16. Activity in this region covaries
with the values of the available options, positively with the value
of the chosen option, and negatively with the value of the
unchosen option8–10,14. Both theoretical and experimental results
strongly suggest that a mechanism based on competition via
mutual inhibition in vmPFC supports value-guided choice9,15,17.
This competition is driven by the balance between GABAergic
inhibition and recurrent glutamatergic excitation. Concentrations
of the major excitatory and inhibitory neurotransmitters, gluta-
mate and GABA, have been shown to be related to both choice
performance and a vmPFC value comparison signal in a manner
that is consistent with biophysical models9,17. Animal studies2,4

suggest a similar role for the balance between glutamate and
GABA in patch-leaving decisions but in dACC rather than in
vmPFC18.

We hypothesized that patch-leaving behaviour is guided by the
balance between cortical excitation and inhibition (E/I balance) in
dACC. In contrast, we expected that value-guided decision-
making is governed by E/I balance in vmPFC. Healthy human
participants performed a decision-making task (Fig. 1a) com-
bining patch-leaving and value-based decision-making. We
measured GABA and glutamate concentrations using magnetic
resonance spectroscopy (MRS) at 7 T in five cortical areas of
interest: vmPFC, dACC, dorsolateral prefrontal cortex (dlPFC),
and bilateral primary motor cortex (M1). Specifically, we pre-
dicted that interindividual differences in how costs and patch
values influence behaviour relates to variations in E/I balance in
dACC2,4,18 over and above the effects of all other voxels of
interest. Further, we predicted that decision performance during
value-guided choice would depend on vmPFC E/I balance9,19.
Additionally, models based on competition by mutual inhibition
predict that the speed at which a decision unfolds is driven by the
available evidence, and the rate of this evidence accumulation is
again crucially dependent upon E/I balance9. We therefore fur-
ther predicted that the effect of the key decision variables on

response times would also be related to E/I balance in dACC and
vmPFC, respectively20.

We report contributions of E/I balance that are dissociable as a
function of decision type and cortical area. Patch-leaving behaviour
is related to E/I balance in dACC but not in any of the other regions
investigated. In contrast, value-guided decision-making is related to
E/I balance in vmPFC but not in any of the other cortical areas.

Results
Participants (N= 29) performed 320 trials of a behavioural task
combining patch-leaving and value-guided choice. Each trial of
the behavioural task consisted of a patch-leaving decision fol-
lowed by a value-guided choice (Fig. 1a). Importantly, the task
was designed such that the value-guided choice was explicitly
temporally separated from the choice to leave or stay in the
current patch. At the first stage, participants indicated by button
press whether they wanted to stay in their current patch or leave
for the alternative patch. Leaving was associated with a cost
(randomly drawn from the set {5, 10, 15, 20}), which was sub-
tracted from the participant’s current total earnings. Over trials,
the reward available in the current patch stochastically depleted
according to a decaying Gaussian Random Walk, whereas the
reward in the alternative patch replenished. The cost level was
displayed to participants and remained constant until a decision
to leave the patch was made, at which time a new cost level was
randomly selected. Thus participants needed to monitor, over
trials, the relative advantage of leaving for the alternative patch
and to compare this against the cost for leaving. No money could
be won at this stage. Following the patch decision stage, partici-
pants entered the value-guided choice. Here the reward available
in the patch chosen by the participant was randomly divided and
allocated to two choice options. Additionally, a probability with
which this reward could be obtained was randomly assigned to
each of these two options. This design feature ensured that the
value-guided choice was temporally decorrelated from the choice
to leave or stay in the current patch. While being in a rich patch
will, on average, lead to better choice options at the value-guided
choice stage, the exact options to choose from are not known to
participants when they make their patch choice. After choice,
participants received a feedback on whether their choice had been
rewarded. This was followed by the next trial. In a separate ses-
sion, 24–48 h after volunteers completed the behavioural task, we
obtained estimates of GABA and glutamate concentrations in five
cortical areas of interest (Fig. 1b and Supplementary Fig. 3) using
single-voxel MRS at 7 T (see Fig. 1c for an example spectrum from
one participant). We recorded from the dACC, the vmPFC, the
right dlPFC, and the bilateral primary motor cortices (M1). Note
that the vmPFC voxel is located in a rather dorsal position, cov-
ering parts of pregenual ACC. This location, which is also in line
with previous work9, was chosen based on methodological con-
siderations since obtaining MRS measurements in more ventral
positions is difficult due to field inhomogeneities. However, please
also note that value signals in vmPFC, while not centred on this
location, often extend to cover this region across a large swath of
the ventral to dorsal extent of the mesial prefrontal cortex9. In
addition to vmPFC and dACC, we selected the dlPFC because of
its importance for working memory-related processes21,22. Since
patch leaving requires carrying a representation of patch-leaving
value across trials, we reasoned that dlPFC E/I balance might play
a role in patch-leaving but not value-guided choice behaviour. The
motor cortex was selected as a control region, where we expected a
relationship with motor, but not task-specific parameters, neither
value nor patch leaving related.

We used multiple linear regression to test our hypotheses. In
order to limit the number of statistical comparisons, we proceeded
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along the following hierarchy: First, we only tested behavioural
variables, which we hypothesized to relate to E/I balance (see
above). Second, using a general linear model (GLM), we first pro-
jected E/I balance (ratio between glutamate and GABA) from all
five regions of interest onto main behavioural parameters from the
patch-leaving and value-guided choice phase. All of these analyses
were performed exclusively using the design matrix containing E/I
balance from all five regions. Third, if, and only if, this GLM yielded
a significant effect for one brain region, we followed this up by
asking whether glutamate, GABA, or both within that specific
region contributed to this effect of E/I balance. To this end, we then
computed partial correlations, regressing out the effects of all other
factors than the one currently of interest (see ‘Methods’). These
partial correlations can therefore be thought of as post hoc test,
further investigating the individual contributions of GABA and
glutamate to a main effect of E/I balance (if present).

Patch-leaving behaviour. Participants took costs and patch value
differences into account in guiding their patch-leaving choices.
On average, participants left their current patch on 20.55 ± 1.40
(mean ± SEM) out of 320 trials. We found that participants stayed
longer in their current patch when they had to pay higher switch
costs. The average (across-participants mean of the median per
cost level) patch value differences (alternative− current patch) at
which participants left their current patch increased with cost
level (repeated-measures analysis of variance (RM-ANOVA):
F3,81= 5.941, p= 0.001, η2= 0.063, significant positive linear
trend: t27= 3.961, p < 0.001, confidence interval (CI)95= [1.341–
4.223], Cohen’s U31 for one sample= 0.179; Fig. 2a). To quantify
how participants balanced patch values against cost, we computed
a patch-leaving advantage by subtracting, for every patch-leaving
trial, the switch costs from the relative benefit of leaving

(alternative− current patch value). These patch-leaving advan-
tages were then averaged across switch trials. The average patch-
leaving advantage across subjects was 19.39 ± 2.07 (mean ± SEM,
see Fig. 2b for an evolution of patch-leaving advantages across all
trials for one example participant).

To investigate the factors governing the speed of responding,
we set up a multiple linear regression model. Patch value
difference, patch-leaving trials, cost levels, trial number, switch
(left/right) of patch presentation (relative to the previous trial),
and wins in the previous trials were entered as independent
variables to predict (logarithmic) response times. Participants’
responses showed a trend of being slower when switching entailed
greater costs (t28= 1.844, p= 0.076, CI95= [−0.003 to 0.056],
U31= 0.345). Furthermore, they responded slower in switch trials
(t28= 3.683, p= 0.001, CI95= [0.040 to 0.138], U31= 0.276),
when they had received reward at the value-guided choice stage of
the previous trial (t28= 3.733, p= 0.001, CI95= [0.021 to 0.071],
U31= 0.207) and when there was a change in presentation sides
of patch values (t28= 3.952, p= 0.001, CI95= [0.026 to 0.082],
U31= 0.276). Further to this, participants’ responding became
significantly faster over the course of the experiment (t28=
−7.985, p < 0.001, CI95= [−0.317 to −0.188], U31= 0.897).
There was no significant effect of patch value difference (t28=
0.290, p= 0.774, CI95= [−0.034 to 0.045], U31= 0.517) on
reaction times in the patch-leaving phase. Similarly, trial-wise
patch-leaving advantages had no significant effect on reaction
times either (see Supplementary Notes 1).

Cortical E/I balance and patch-leaving behaviour. We com-
puted a patch-leaving advantage that indicates how participants
balance the relative benefit expected from leaving against the cost.
Regressing E/I balance against patch-leaving advantage revealed a
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Fig. 1 Behavioural task and MRS recordings. a Schematic of the task structure. Participants made a patch decision in the first stage of each trial. A white
outline indicated the location of the participant’s current patch. If they chose to switch, they had to pay a cost indicated by the size of a grey rectangle.
Following the choice, the values of both patches were revealed, indicated by the blue fillings. In the value-guided choice phase, the chosen patch value was
randomly divided between the two different options and reward probabilities were randomly assigned to them. Participants selected an option by pressing
a button, which was followed by feedback on both options. If they obtained a reward, the blue progress bar at the bottom of the screen grew in proportion
to this reward. b Example MRS voxel placement for one participant (Supplementary Fig. 3 for overlay of all participants). Spectroscopy voxels were placed
in right dlPFC (blue), bilateral primary motor cortex (pink and cyan), dACC (red) and vmPFC (green). c Spectrum obtained from dACC of one exemplary
participant.
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significant influence of E/I balance in dACC (t23= 2.643, p=
0.015, CI95= [0.111 to 0.908]; r= 0.483, p= 0.008, CI95= [0.141
to 0.722], Fig. 2c) but not in any other region of interest (all p >
0.199). This effect was, by trend, driven by GABA in dACC (r=
−0.323, p= 0.087, CI95= [−0.617 to 0.049]; Supplementary
Fig. 1) but not glutamate in dACC (r=−0.152, p= 0.431, CI95=
[−0.491 to 0.227]). In addition to this, a direct contrast showed
that the relationship between patch-leaving advantage and E/I
balance was stronger in dACC compared to both vmPFC (t23=
2.613, p= 0.016) and dlPFC E/I (t23= 2.087, p= 0.048). These
findings suggest that the manner in which the relative benefit of
leaving is balanced against travel costs is uniquely related to E/I
balance in dACC but not in any of the other areas investigated.

We next assessed how cortical E/I balance was related to patch
response speed and to how key task parameters affected response
speed. We did not find any significant effects on overall response
speed (all p > 0.198) but a specific effect of E/I balance in dACC
on the degree to which patch decision choices were slowed by
costs. Participants showed slowing of patch choices with higher
cost levels, and the magnitude of this effect was related to E/I
balance in dACC (t23= 2.187, p= 0.039, CI95= [0.025 to 0.900];
r= 0.415, p= 0.025, CI95= [0.057 to 0.678]; Fig. 2d).

Please note that the results displayed in Fig. 2c, d primarily
serve to illustrate the effects obtained in our main GLM.
Nevertheless, inspection of these panels reveals three data points
that appear further away from the remainder of the data.
Therefore, we have additionally analysed the same data (the
residuals of dACC E/I balance and behaviour) with a robust
regression analysis. This confirmed the pattern of results reported
above (Fig. 2c: t27= 2.665, p= 0.013, CI95= [0.120 to 0.924];
Fig. 2d: t27= 2.034, p= 0.052, CI95= [−0.004 to 0.810]). Thus

far, our results are consistent with our hypothesis. E/I balance in
dACC, but not in any of the other regions investigated, is related
both to how participants balance expected benefits against travel
costs and to how costs affect the speed at which patch decisions
are made.

Value-guided choice behaviour. Participants selected the objec-
tively correct option (higher expected value) in 81.85 % ± 1.52
(mean ± SEM) of all trials. We set up a logistic regression model
to investigate the factors that affected participants’ decisions
(right vs left option). Participants choices were strongly guided by
the differences (right minus left) in expected values between
options (t28= 6.422, p < 0.001, CI95= [3.184 to 6.166], U31= 0).
As expected, value sum had no significant effect on choice (t28=
−1.380, p= 0.179, CI95= [−0.268 to 0.052], U31= 0.621).
Additionally, there was a significant effect of no-brainer trials
(trials in which both probability and magnitude favoured one
option) on choice (t28= 5.983, p < 0.001, CI95= [0.196 to 0.400],
U31= 0.103), which is likely due to an increased occurrence of
no-brainer trials favouring the right option (see ‘Methods’). There
was no significant influence of either patch value difference,
switch costs, whether the current trial was a switch trial, the
current trial’s patch choice (left/right), the value-guided choice
from the previous trial, whether this choice had been rewarded,
and of trial number (all p > 0.486). This indicates that partici-
pants’ value-guided choices were guided by the key value-related
parameters, not by other aspects, such as whether a choice had
been rewarded on the previous trial.

To accumulate maximal returns, participants need to compute
the Pascalian expected values by multiplying reward probabilities
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Fig. 2 Patch-leaving behaviour and cortical E/I balance. a Participants left their current patch at higher value differences (alternative− current patch
value) when leaving was associated with higher costs (RM-ANOVA: F3,81= 5.941, p= 0.001, η2= 0.063, N= 28). Individual data points are overlaid as dot
plots. Bars represent across-participants mean of the median per cost level. Error bars indicate standard error of the mean. b Example timecourse of patch-
leaving advantages (PLA) for one example participant. PLA= [value alternative patch− value current patch− cost]. Green circles indicate patch-leaving
trials. c Participants with higher dACC E/I balance leave at higher average PLA (Pearson correlation on residuals (compare main text and methods):
r= 0.483, p= 0.008, CI95= [0.141–0.722], N= 29). d Participants’ patch-leaving decisions are slowed down with increasing cost levels, and this effect is
most pronounced in participants with high levels of dACC E/I balance (Pearson correlation on residuals: r= 0.415, p= 0.025, CI95= [0.057–0.678],
N= 29). Source data are provided as a Source data file.
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and reward magnitudes and then choose the option with the
higher expected value. However, humans do not weigh
probabilities and magnitudes in a statistically optimal way and
show systematic distortions8,23. We fitted several different models
to explain how participants combine reward probabilities and
magnitudes23. The models incorporated different utility functions
to represent distortions in the weighting of reward information
and assumed either multiplicative or additive strategies to
combine reward probabilities and magnitudes. We found that
choices were best explained by a model assuming multiplicative
value integration with non-linear probability and magnitude
weighting23.

V ¼ ωmult � ðuðmOÞ � wðpOÞÞ ð1Þ

w pOð Þ ¼ pO
γ

pOγ þ 1� pOð Þγð Þ1=γ ð2Þ

u mOð Þ ¼ mO
α ð3Þ

where mO and pO are the objective reward magnitudes and
probabilities that are transformed into subjective reward
magnitudes and probabilities, respectively, with the shape of the
functions governed by the free parameters α and γ. The
parameter ωmult scales the effect of value difference and thus
corresponds to a softmax inverse temperature. For model fitting,
we fixed ωmult at 6.62 (see ‘Methods’, Supplementary Table 6, and
Supplementary Information 4 for parameter recovery).

Finally, we investigated whether the same variables used to
predict choices have a significant effect on normalized (log)
response times. The only difference from the model used to
predict binary choice (of right option) is that we used absolute
expected value differences here (rather than right minus left
values), since we did not expect any effect conditional on side of
presentation. Participants exhibited faster responding with
greater value difference between options (t28=−5.928, p <
0.001, CI95= [−0.273 to −0.133], U31= 0.862). Value sum had
no significant effect (t28=−1.543, p= 0.134). Furthermore,
participants showed faster responding on trials with high patch
value difference (t28=−7.105, p < 0.001, CI95= [−0.156 to
−0.086], U31= 1), in no-brainer trials (t28=−14.344, p < 0.001,
CI95= [−0.369 to −0.277], U31= 1), and with increasing trial
number (t28=−8.119, p < 0.001, CI95= [−0.261 to −0.156],
U31= 0.931). Finally, we found significantly slower responses in
patch-leaving trials (t28= 4.590, p < 0.001, CI95= [0.026 to
0.067], U31= 0.276, Fig. 3a). Neither cost levels, the previous
trial’s value-guided choice, nor whether reward had been received
in theprevious trial had an effect on reaction times in the value-
guided choice phase (all p > 0.126). However, participants
responded more slowly during value-guided choice when they
had chosen the right patch during patch leaving (t28= 2.538, p=
0.017, CI95= [0.005 to 0.043], U31= 0.345).

Cortical E/I balance and value-guided choice behaviour. To
relate cortical neurochemistry to value-guided choice behaviour,
we used the same approach as above for the patch-leaving phase.
Similar to our previous work9, we found that E/I balance in
vmPFC was related to value-guided choice performance. Decision
accuracy (percentage of choices of the higher value option) was
negatively related to E/I balance in vmPFC (t22=−2.437, p=
0.023, CI95= [−0.947 to −0.076]; r=−0.461, p= 0.012, CI95=
[−0.708 to −0.114]; Fig. 3b) but not in any of the other regions
investigated (p > 0.406), indicating that subjects with higher
concentrations of GABA relative to glutamate were better at
selecting the higher value option. When we followed this up with
partial correlations, neither GABA (r= 0.234, p= 0.221) nor

glutamate alone (r=−0.225, p= 0.241) was significantly corre-
lated with decision accuracy. These findings indicate that parti-
cipants with higher concentrations of glutamate relative to GABA
in vmPFC indeed tend to exhibit less accuracy in their choice
behaviour. We found the same relationship with vmPFC E/I
balance when we used the regression coefficients for expected
value differences (that is, the degree to which participants’ choices
were guided by the value difference between options, see Supple-
mentary Notes 2) instead of percentage of correct choices.

To further investigate the relationship between E/I balance and
value-guided choice behaviour, we fitted a behavioural model
accounting for systematic deviations in the weighting of reward
information. We found that the extent to which participants
distort reward magnitudes in guiding their choices (model
parameter α) was significantly related to vmPFC E/I balance
(t22=−2.409, p= 0.025, CI95= [−0.945 to −0.071]; r=−0.457,
p= 0.013, CI95= [−0.705 to −0.109]; Fig. 3c), again without any
effect of the other four regions (p > 0.267). This effect showed a
trend of being influenced by GABA in vmPFC (r= 0.339, p=
0.073, CI95= [−0.032 to 0.627]). Additionally, we found a
significant relationship between γ and E/I balance in vmPFC
(t22= 2.144, p= 0.043, CI95= [0.015 to 0.878]; r= 0.416, p=
0.025, CI95= [0.058 to 0.679]) but not in any other region of
interest (all p > 0.327). The effects of α and γ potentially mediate
the influence of vmPFC E/I balance on choice accuracy. After
adding α and γ to the E/I design matrix, we did not find any
significant effect of vmPFC E/I balance on choice accuracy
anymore (t20= 0.361, p= 0.722). We found a similar effect
instead when using coefficients from our logistic regression
analysis, showing that a greater reliance on reward probabilities
compared to magnitudes was related to E/I balance in vmPFC
(Supplementary Notes 2).

Taken together, value-guided choice performance was related
to E/I balance in vmPFC but not in any of the other cortical
regions. Participants with high levels of GABA relative to
glutamate were most reliable at selecting the higher value options,
possibly due to a more optimal weighting of reward magnitudes.
Finally, we asked how value-guided response speed was related to
cortical E/I balance. Theoretical models predict that higher levels
of inhibition will lead to more pronounced slowing on difficult
decisions (trials with low value difference9). We first observed
that overall response times in the value-guided choice phase were
specifically related to dACC E/I balance (t22=−2.423, p= 0.024,
CI95= [−0.975 to −0.076]; r=−0.459, p= 0.012, CI95=
[−0.707 to −0.111], Supplementary Fig. 2B). This effect was
contributed by a positive effect of GABA (r= 0.452, p= 0.014,
CI95= [0.102 to 0.702], Supplementary Fig. 2C), with no
significant effect of glutamate (r= 0.052, p= 0.789). In contrast
to these general effects of dACC E/I balance on overall response
speed, we found a specific effect of vmPFC E/I balance on the
degree to which responses were speeded up by high value
difference. The effect of value difference on response times in the
value-guided choice phase was lowest in individuals with high
vmPFC E/I balance (t22= 2.877, p= 0.009, CI95= [0.158 to
0.972]; r= 0.523, p= 0.004, CI95= [0.193 to 0.746], Fig. 3d).
Specifically, GABA levels correlated negatively with this effect
(r=−0.357, p= 0.057, CI95= [−0.640 to 0.011]; Supplementary
Fig. 2A). These findings indicate that participants’ responses
slowed down on difficult trials with low value difference and that
this slowing was most pronounced in individuals with relatively
higher levels of GABA compared to glutamate. This pattern is
consistent with our previous findings showing that vmPFC
decision signals emerged more rapidly with higher concentrations
of glutamate and low levels of GABA9.

In conclusion, this pattern of results mirrors the findings from
the patch-leaving phase. Whereas patch-leaving behaviour was

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20875-w ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:904 | https://doi.org/10.1038/s41467-020-20875-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


specifically related to dACC E/I balance, key parameters of value-
guided choice behaviour were related to vmPFC E/I balance in a
consistent and mechanistically plausible manner.

Discussion
Knowing when to leave a depleting resource is a central problem
for decision makers in naturalistic environments. It requires the
agent to track the value of current resources, compare it to
potential alternatives, and balance the potential benefits of
moving against the cost incurred by moving. Within a given
environment, it is crucial to consider the various attributes that
jointly determine an option’s value—and then to select the most
valuable option in order to maximize rewards. Thus both patch-
leaving and value-guided decisions are key elements of adaptive
behaviour. Using a behavioural task and assessment of cortical E/I
balance by MRS quantification of GABA and glutamate con-
centrations, we have provided evidence for a double dissociation:
E/I balance in dACC, but not in any of the other regions inves-
tigated, was related to the manner in which participants balanced
potential benefits of leaving against costs during patch-leaving
decisions. In contrast, E/I balance in vmPFC was related to var-
ious aspects of value-guided choice.

Participants took costs into account in guiding their patch-
leaving choices, as evident from the finding that they waited for
higher advantages (higher value difference between current and
alternative patch) as cost levels increased, and participants who

required higher advantages compared to travel costs were char-
acterized by high dACC E/I balance. Similarly, these participants
also showed stronger slowing of patch response times with
increasing cost levels. An extensive literature has implicated
neural activity in dACC in behavioural adjustments24–28.
Recently, these patterns of activity have been recast in light of new
evidence suggesting that dACC may encode the evidence in
favour of switching away from a current default option11. Spe-
cifically, dACC activity contained information about the value of
searching the environment for better alternatives compared to the
currently available options3. In both primates and rodents, firing
of neurons in ACC ramps up just before the animal is about to
abandon its current patch and move elsewhere2,4 or when rats
abandoned current beliefs and explored alternative strategies29.
Similarly, ACC local field potentials in the gamma range have
been related to switching between exploratory and exploitative
modes of behaviour29–31. Since gamma oscillations are driven by
a balance between glutamatergic E/I by GABAergic inter-
neurons32–34, it was plausible for us to assume a role for cortical
E/I balance in patch-leaving decisions. We found that participants
with higher E/I balance (higher levels of glutamate relative to
GABA) required a higher patch-leaving advantage (a higher dif-
ference between the benefits and costs expected from leaving) and
showed more pronounced slowing of patch response times when
costs were high. The effect of E/I balance on patch-leaving
advantages was, as a trend, contributed to by GABA, but not by
glutamate levels. Our findings are in line with previous reports
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Fig. 3 Value-guided choice behaviour and cortical E/I balance. a Regression showing that participant’s reaction times are guided by value differences
between choice options (Vdiff; two-sided one-sample t test against zero: t28=−5.928, p < 0.001, CI95= [−0.273 to −0.133], U31= 0.862), patch value
differences (PVD; two-sided one-sample t test against zero: (t28=−7.105, p < 0.001, CI95= [−0.156 to −0.086], U31= 1), choices in the patch phase
(two-sided one-sample t test against zero: t28= 2.538, p= 0.017, CI95= [0.005 to 0.043], U31= 0.345), whether each trial is a no-brainer trial (NB; two-
sided one-sample t test against zero: t28=−14.344, p < 0.001, CI95= [−0.369 to −0.277], U31= 1), trial number (nTr; two-sided one-sample t test
against zero: t28=−8.119, p < 0.001, CI95= [−0.261 to −0.156], U31= 0.931) and whether each trial was a patch-leaving trial (Switch; two-sided one-
sample t test against zero: t28= 4.590, p < 0.001, CI95= [0.026 to 0.067], U31= 0.276). Individual data points are overlaid as dot plots. Bars represent
mean values across participants. Error bars indicate standard error of the mean. b Accuracy of value-guided choice is highest in participants with low levels
of E/I balance in vmPFC (Pearson correlation on residuals: r=−0.461, p= 0.012, CI95= [−0.708 to −0.114]). c Distortions in reward magnitude
weighting relate to E/I balance in vmPFC (Pearson correlation on residuals: r=−0.457, p= 0.013, CI95= [−0.705 to −0.109]). d Participants with high
levels of E/I balance in vmPFC exhibit less slowing in difficult trials (Val diff= value difference) during value-guided choice (Pearson correlation on
residuals: r= 0.523, p= 0.004, CI95= [0.193 to 0.746]). N= 29 in all figures. Source data are provided as a Source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20875-w

6 NATURE COMMUNICATIONS |          (2021) 12:904 | https://doi.org/10.1038/s41467-020-20875-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


showing a relationship between inhibitory neurotransmission in
the dACC and patch-leaving behaviour. Parvalbumin-positive
GABA interneurons in rodent anterior cingulate cortex have been
shown to ramp up their firing prior to the animal leaving its
current patch, and firing rates of these neurons represented the
animal’s stay duration in the patch4. Furthermore, interhemi-
spheric gamma synchronization driven by the same class of
GABAergic interneurons in medial prefrontal cortex has recently
been shown to enable mice to adaptively respond to changing
environments35. Together with our results, these findings suggest
that GABAergic activity in dACC may provide a signal for leaving
one’s current patch. Another study in primates found a similar
ramping pattern in dACC neurons2. While the cell type from
which these recordings were obtained is not known, it is likely
that they were predominantly obtained from glutamatergic pyr-
amidal cells36,37. This may appear contradictory at first glance but
could be easily reconciled when assuming that there is an
asymmetry in the proportion of neuronal pools whose activity
represents the value of leaving the current patch vs those that
represent the value of staying. Such an assumption is plausible
given that dACC has been shown to dominantly represent value
of switching away from a current strategy3,7,38. Under such a
scenario, in a recurrently connected network with GABAergic
feedback inhibition, a ramping of pyramidal cell firing would
recruit feedback inhibition, which would then further increase the
asymmetry between the neuronal pools, gradually favouring the
pools representing the value of switching. Thus increased levels of
GABAergic feedback inhibition would amplify the network
transition towards favouring the alternative option and conse-
quently bias the agent towards leaving the patch earlier. However,
unlike for value-guided choice (see below), while a hypothetical
model has been postulated18, to date there exist no biophysically
plausible mechanistic models for patch-leaving behaviour.

In contrast to patch-leaving decisions, value-guided choice was
specifically related to E/I balance in vmPFC: high vmPFC con-
centrations of GABA relative to glutamate were related to an
increased decision accuracy (selection of the higher value option)
and a more optimal weighting of reward magnitudes. Further-
more, vmPFC GABA concentrations were also related to how
participants slowed on difficult trials (choices with low value
difference), with participants with high GABA concentrations
again showing more pronounced slowing. These results are in line
both with mechanistic models of decision-making17,39 and our
own previous findings9. It is thought that decisions may be
generated by a mechanism that is based on competition via
mutual inhibition in recurrent cortical networks that exhibit
attractor dynamics39,40. In these models, a winner-take-all com-
petition is implemented, where (in the binary case) activity in
only one of the two pools representing the two options remains
(the chosen option), whereas activity in the other pool is sup-
pressed. One key prediction of these models is that increased
GABAergic feedback inhibition slows down the attractor
dynamics, allowing for more evidence to be accumulated9,17,20.
Thus increased GABAergic tone makes decisions slower but
more accurate. In our previous work, we showed that higher
concentrations of GABA and low concentrations of glutamate
were related to increased decision accuracy. Neurally, this was
accompanied by a slower but more stable ramping of a value
difference correlate in vmPFC, a neural signature of a deci-
sion9. Our present results match with this pattern. Choice
performance was highest in participants with high vmPFC
concentrations of GABA relative to glutamate, and these par-
ticipants also showed the most pronounced slowing on difficult
trials. Previously, we had reported a relationship between
vmPFC E/I balance and choice stochasticity9,19 whereas in the
current study we find a relationship with choice accuracy. This

discrepancy is likely due to differences in task structure. Pre-
viously9, reward magnitudes had been independent between
the two options and occupied a fixed range across participants.
In contrast, here, they are the result of the current patch value
(with the two options’ magnitudes summing up to the patch
value). This has two consequences. First, trials with low mag-
nitude difference are less likely to occur. Second, since the
range of magnitudes covered is dependent on each partici-
pant’s pattern of patch leaving, estimates of choice stochasticity
(softmax inverse temperature) are poorly comparable across
participants. Note that we also set the inverse temperature to a
fixed value for fitting the models.

We found task-specific effects for patch-leaving and value-
guided choice in dACC and vmPFC, respectively. However, while
participants were significantly influenced by value differences
between choice options during value-guided choice, we did not
find any significant influence of patch value difference on reaction
times during patch-leaving decisions. This discrepancy between
the two stages may appear surprising at first glance. However,
response times likely indicate rather different factors in the two
stages. In the patch stage, participants can already make up their
mind whether to switch or stay on the next trial immediately after
they observe the outcome of their patch choice. In contrast, at the
value-guided choice, participants cannot anticipate the options
they will encounter and instead have to compute option values on
the fly.

A notable aspect of our findings is that response times in each
phase were modulated by events from the respective other phase.
Participants’ value-guided choices speeded up as the value dif-
ference between the alternative and current patch increased on
trials leading up to a switch, but when participants chose to leave
their patch, the immediately subsequent value-guided choice was
slowed down. Conversely, patch-leaving decisions were slowed
when the previous trial’s value-guided choice had been rewarded.
The functional significance of these effects is not clear, but the
former might indicate that participants switch to a more cautious,
evaluative mode of value-guided choice upon entering the alter-
native patch. A recent modelling account38 suggests an interplay
between dorsomedial prefrontal cortex (including dACC) and
vmPFC in deciding when to switch away from ongoing behaviour,
based on reliability ratings of the current strategy41. In our task,
rewards are only obtained during value-guided choice. These
potentially serve as a feedback on the current strategy, which in
turn might mediate a switch from ongoing behaviour. This
explanation potentially also relates to the effects of dACC E/I
balance on reaction times during value-guided choice. It has been
suggested previously42 that increased glutamate levels in dACC
lead participants to exploit underlying task structure, whereas
increased GABA concentrations allow for learning a new model of
that task.

In summary, we have shown that cortical E/I balance, as
assessed by MRS quantification of baseline GABA and glutamate
concentrations, is related to both patch-leaving and value-guided
decision-making. We found a double dissociation, where E/I
balance in dACC is related to patch-leaving, but E/I balance in
vmPFC is related to value-guided choice. The pattern of results
further supports models that implement a competition via mutual
inhibition in recurrent cortical networks as a candidate
mechanism for value-guided choice. Importantly, we provide
evidence that relates dACC E/I balance to patch-leaving deci-
sions. The pattern of results suggests that elevated GABAergic
relative to glutamatergic tone in dACC may increase the pro-
pensity to switch away from a current policy. Understanding the
neurochemical mechanisms underlying different types of
decision-making is of potential clinical relevance, since alterations
in E/I balance have been described in a number of
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neuropsychiatric disorders43,44, which are characterized by
impaired decision-making behaviour45,46.

Methods
Participants. Thirty-three right-handed (Oldfield-Score47: 91.95 ± 1.89, mean ±
SEM) male participants (age: 26.18 ± 0.65 years, mean ± SEM, range: 22–36 years)
with normal (N= 16) or corrected to normal (N= 17) vision participated in this
experiment. Exclusion criteria comprised a history of neurological or psychiatric
illness, drug abuse, and use of psychoactive drugs or medication 24 h prior to
participation. Four subjects were excluded due to excessive noise in at least one of
the five spectroscopic measurements (see MR imaging (MRI) for criteria). All
reported results are from the remaining N= 29 subjects (mean age: 26.48 ± 0.72
years, range: 22–36 years; normal vision: N= 14; non-smoker: N= 22). Written
informed consent to the procedure was obtained from all subjects prior to the
experiment, which was approved by the local ethics committee of the Medical
Faculty of the Otto-von-Guericke-University, Magdeburg. Participants were com-
pensated for each session and received a bonus that depended on their perfor-
mance in the decision-making task.

General study procedure. Each participant took part in two sessions (average time
between sessions: 1.52 days). The first session always involved acquisition of the
decision-making task during scanning with magnetoencephalography (data not
presented here); the second session involved MRS acquisition. Practical limitations
prevented us from acquiring both behavioural and MRS data on the same day.
However, note that MRS measures of GABA and glutamate have been reported to
be stable over extended periods (weeks to months) and to be non-responsive to
current task demands. Therefore, they may reflect relatively stable, trait-like
properties48–51.

Decision-making task. Participants were asked to maximize their rewards in a
two-stage decision-making task consisting of 320 trials (Fig. 1a). They first com-
pleted 15 practice trials to familiarize themselves with the task before commencing
the experiment. Stimulus presentation was controlled by Psychtoolbox 352,53

running on Matlab 2012b (The Mathworks Company, Natick, MA). Each trial
started with presentation of the two patches (two grey squares). The patch in which
the participant currently resided was indicated by a grey frame around the patch.
At this stage, participants simply had to indicate by button press (with the index
finger of the left or right hand, respectively) whether they wanted to stay in their
current patch or switch to the alternative patch. If participants chose to leave their
patch, they had to pay a travel cost indicated by the size of a grey bar presented
centrally between the two patches. Travel costs were randomly drawn from the set
{5, 10, 15, 20 points} and remained constant until a participant chose to leave their
patch, at which stage a new cost was selected. The participant’s patch choice was
highlighted by a frame around the selected patch (400–600 ms, jittered). In trials
where participants chose to leave, the rectangular bar signalling travel costs turned
red and the costs were subtracted from a progress bar displayed below the patches
that indicated the participant’s total earnings. Presentation sides (left/right) of the
two patches were randomly selected on each trial. Therefore, while participants
could decide in advance whether they wanted to stay or leave their patch, this
prevented them from preparing the actual motor response before trial onset.
Afterwards, the values of the two patches (the reward available in each of them, as
indicated by the blue filling) were revealed (1800–2200 ms, jittered). Importantly,
the value of the participant’s current patch stochastically depleted over time,
whereas the alternative patch replenished. Therefore, participants were required to
continually accumulate evidence in favour of abandoning their current patch. On
each trial, values of the two patches were drawn from Gaussian distributions with
non-stationary means and variance= 3.5. The means μ of both patches were set to
50 points initially and then diffused according to a decaying Gaussian random walk
on each trial:

μtþ1 ¼ λμt þ 1� λð Þκþ ε ð4Þ
where λ is the decay rate that was set to 0.96, κ is the decay centre (1 for the chosen
patch, 100 for the unchosen patch), and ε is zero-mean Gaussian random noise
with a standard deviation= 1.2. Patch values were controlled to fall within an
interval of 10–90 points. After the value of the two patches was revealed, partici-
pants entered the second stage value-guided choice. The reward available in the
chosen patch was allocated to two choice options at a random ratio (ensuring that
none of the two options received <10% of the total patch value and excluding a 50%
split between options). Furthermore, both options were assigned a probability with
which this reward could be obtained, randomly sampled from the set {0.1, 0.2,…,
0.9}. Reward probabilities were independent of each other, such that, in any given
trial, either of the two options, both options, or neither of them could be rewarded.
Importantly, while higher patch values will, on average, lead to better choice
options, this procedure ensures that participants do not know the two choice
options when they make their patch decision, thereby explicitly decoupling the
patch choice from the value-guided choice. In trials where both the reward
probability and magnitude of one option was higher than that of the other option
(a ‘no-brainer trial’), we randomly flipped the reward magnitudes of the two
options in 50% of cases to control for task difficulty. Due to an error in our code,

however, this change was only applied to no-brainer trials in which the left option
had higher values than the right one. Therefore, no-brainer trials were more likely
to be presented on the right side of the screen and the average expected value for
the right option was also higher than for the left one (t18558=−20.915, p < 0.001).
Reward magnitudes were indicated by the height of a grey bar and reward prob-
abilities were presented as numbers (in percent) below each bar (Fig. 1a). Reward
magnitudes were displayed relative to an outline that corresponded to the overall
reward available in the current patch. Participants selected an option by pressing a
button with the right or left index finger, respectively. The chosen option was
highlighted by a rectangular frame and the outcome of both options was revealed
(800–1200 ms, jittered). The bar representing the reward magnitude turned green if
an option was rewarded in the current trial, or red otherwise. Even though par-
ticipants could not benefit from knowing whether the unchosen option would have
been rewarded, this procedure has proven useful to remind participants that even
low probability options are occasionally rewarded and that it is beneficial to
consider each option’s reward probability and magnitude. Every time participants
were rewarded, the progress bar grew (in proportion to the obtained magnitude)
towards a goal indicated by a gold target line to the right of the screen. Outcome
presentation was followed by an intertrial interval (1800–2200 ms, jittered) before
participants entered the patch decision stage of the next trial. A centrally located
fixation cross was present throughout the entire trial. See Supplementary Infor-
mation for further details on stimulus presentation.

Analysis of behavioural parameters. For the patch-leaving phase, we computed,
for each participant and each cost level separately, the median patch value dif-
ference (alternative− current patch) at which participants left their current patch.
These average patch value differences were compared across cost levels using an
RM-ANOVA. Additionally, linear trends along with a constant term were
regressed against cost-level-dependent switching behaviour to estimate whether the
median patch value difference increased linearly with cost level. In all cost-level-
dependent analyses, the data of N= 28 participants were analysed since one subject
was never presented with the highest cost level (cost levels were randomly assigned
after each switch). Furthermore, we defined a patch-leaving advantage by sub-
tracting travel costs from patch value differences at each patch-leaving decision.
These values were then averaged across switch trials per participant. We used patch
value differences from the previous trial for all analyses pertaining to the patch-
leaving phase since the updated patch values are only revealed following the patch
choice and hence are informative for the next trial.

For the value-guided choice phase, we computed the percentage of correct
responses as the percentage of trials in which subjects chose the option with higher
expected value divided by the number of trials with unequal expected value.
Regression coefficients were tested against zero with a t test for one sample (two
sided). The MEST toolbox was used to provide estimates for effect size measures
(η2 for RM-ANOVA and Cohen’s U31 for one sample to test regression coefficients
against 0)54.

Regression analyses. For each regression analysis, all variables were normalized
(z-scored) and a constant term was added to each design matrix. All regressions
were performed for each participant separately. Regression coefficients were tested
against zero using one-sample t tests (two tailed) and the MEST toolbox was used
to provide estimates for effect size measures (Cohen’s U31 for one sample)54,55.
Additionally, we report the 95% CI for the mean of each distribution of regression
coefficients across participants.

To analyse how key value parameters influence value-guided choice, we set up a
multiple logistic regression model with choice of the left vs right (0/1) option as
dependent variable. Differences and sums of expected values (the product of
probabilities and magnitudes for each option) as well as patch value differences and
travel costs were entered as independent variables. Here we used patch value
differences from the current trial since they are already known by the participant at
the time of their value-guided choice. Furthermore, we added the previous trial’s
value-guided choice, the current trial’s patch-leaving choice, a regressor coding for
whether the participant had been rewarded in the previous trial, a regressor coding
whether each trial was a no-brainer trial (where both probabilities and magnitudes
favour the same option), the trial number, and a regressor coding whether each
trial was a switch trial or not to the design matrix. We did not run a regression
model to explain choices during patch-leaving decisions, since, by design of the
task, the maximal patch value difference is always reached when the participants
decide to leave their current patch. The regression weights for the effects of value
differences would therefore merely reflect a participant’s consistency in their patch-
leaving behaviour.

To analyse how various task parameters influenced response speed both in the
patch-leaving and value-guided choice stage, we used multiple linear regressions
with normalized log response time as the dependent variable. As above for the
logistic regression, all variables were normalized, a constant was added to the
design matrix, and regressions were run for each participant separately. For the
patch stage, the design matrix included patch value differences from the previous
trial, a binary regressor indicating whether the current trial was a switch trial (one
in which the participant left their current patch), the travel cost, a regressor coding
for the linear effect of trial number, and two binary regressors indicating whether
the side (left/right) of patch presentation had changed with respect to the previous
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trial and whether the previous trial’s value-guided choice had been rewarded. We
used the patch value difference from the previous trial, because the outcome of the
(updated) patch values are only revealed after participants’ patch choice. For the
value-guided choice stage, the design matrix was the same as for the multiple
logistic regression model. The only differences between models was that we used a
linear link function and absolute value differences between choice options. For the
patch-leaving phase (Fig. 2c, d), we have additionally analysed the residuals of
dACC E/I balance and behaviour with a robust regression analyses with a bisquare
weight function (tuning constant= 4.685).

Behavioural modelling of value-guided decisions. To formally characterize
choice behaviour, we fitted several models that combined reward probabilities and
magnitudes multiplicatively, additively, or as a combination of both, similar to a
recently published approach23. All reward magnitudes were rescaled between 1 and
10 before fitting. Since it is known that humans do not weigh magnitudes and
probabilities in a statistically optimal way, we considered systematic distortions in
the weighting of reward information in our models (u(m) and w(p), for reward
magnitudes and probabilities, Eqs. (5) and (6), respectively)56.

w pOð Þ ¼ pO
γ

pOγ þ 1� pOð Þγð Þ1=γ ð5Þ

where pO are the objective reward probabilities and γ is a free parameter used to fit
subjective reward probabilities. Subjective magnitudes were estimated by:

u mOð Þ ¼ mO
α ð6Þ

where mO is the objective reward magnitude and α is a free parameter used to fit
the subjective magnitude. We tested not only models with distorted values but also
models where objective reward information is used. In models with objective
reward information α and γ= 1. In all additive models, values were computed
according to:

V ¼ ωm � u mOð Þ þ ωp � w pOð Þ ð7Þ
where ωm is a weighting factor for reward magnitudes, and ωp for reward prob-
abilities. In the multiplicative models, values were computed according to:

V ¼ ωmult � u mOð Þ � w pOð Þð Þ ð8Þ
We also estimated a model where we fixed ωmult to the median parameter across all
previously recovered parameters, since we found no sufficient recovery for ωmult as
well as a better model fit (Supplementary Table 6) with a fixed ωmult parameter.

Finally, we also estimated hybrid models as proposed earlier23. Here value is
computed according to:

V ¼ωsum � 1� ωmult

ωp þ ωm þ ωmult

 ! !
� ωm

ωpþωm

 !
� u mOð Þ

  

þ ωp

ωpþωm

 !
� w pOð Þ

!
þ ωmult

ωp þ ωm þ ωmult

 !
� u mOð Þ � w pOð Þð Þ

! ð9Þ

where ωsum = ωm þ ωp þ ωmult. We fitted each of the three different model families
(hybrid, additive, and multiplicative) with distorted values for probabilities and
magnitudes (SU models), with distorted values only for magnitudes but objective
reward probabilities (EU models), and with objective reward magnitudes but
subjective reward probabilities (EVPW models) and objective reward probabilities
and magnitudes (EV models)23. Choice probabilites were modelled with a softmax
rule based on option values. Parameters were optimized using custom-written
scripts in MATLAB R2019a (The Mathworks Company, Natick, MA) and
constrained non-linear optimization using MATLAB’s function fmincon was used
to minimize the negative log likelihood of the data given the parameters. In order
to decrease the probability of fitting local minima, we used 1000 random starting
points and report the combination of parameters with the lowest negative log
likelihood. The Bayesian information criterion was used to compare between
models. For the winning model, we simulated choices for a random set of 500
parameters for each participant and recovered parameters from these artificial
data57. Correlations between true and recovered parameters across participants can
be found in Supplementary Notes 4.

MRS data acquisition. MR data were acquired on a 7 T system (Siemens Heal-
thineers) equipped with a 32-channel array head coil (Nova Medical). First, a high-
resolution T1-weighted scan was acquired using an MPRAGE sequence (echo time
(TE)= 2.73 ms, repetition time (TR)= 2300 ms, inversion time= 1050ms, flip
angle= 5°, bandwidth= 150 Hz/pixel, acquisition matrix= 320 × 320 × 224, voxel
size= 0.8 mm3 isotropic) aligned with the anterior–posterior commissure
(AC–PC). This scan was used not only for the placement of MRS voxels but also
for tissue segmentation. We positioned voxels in five regions of interest, including
right dlPFC, bilateral primary motor cortices (rM1 and lM1), perigenual anterior
cingulate cortex within vmPFC (vmPFC/pgACC), and dACC. The dlPFC voxel was
placed on the right hemisphere within the middle frontal gyrus by using the
superior frontal sulcus and the inferior frontal sulcus as anatomical landmarks. We
positioned the voxel as far dorsally as possible when excluding the calvaria and all

extracalvarial structures. The average dlPFC voxel centroid across participants was
estimated at MNI x= 29.79 ± 0.85, y= 37.72 ± 1.38, z= 24.21 ± 1.51 (mean ±
SEM). Primary motor cortex voxels were placed on the hand knob structures,
identified by their omega-like shape on the central sulcus in axial slices. Average
M1 voxel centroids in standard space were estimated at MNI x=−28.97 ± 0.82,
y=−18.48 ± 0.92, z= 51.86 ± 0.59 and MNI x= 31.90 ± 0.71, y=−14.76 ± 1.06,
z= 49.76 ± 0.88 for lM1 and rM1, respectively. The vmPFC voxel was mediolat-
erally centred on the midline and dorsoventrally on the genu of the corpus cal-
losum, with its posterior boundary just rostral to the genu. The average voxel
centroid position across subjects was estimated at MNI x=−0.17 ± 0.15, y= 41.41
± 1.29, z= 7.00 ± 0.44. The dACC voxel was placed with reference to the corpus
callosum, the cingulate as well as surrounding sulci. We used the posterior border
of the genu of the corpus callosum perpendicular to AC–PC orientation to centre
the voxel (Fig. 1b)58. The average centroid voxel position across subjects was MNI
x=−0.07 ± 0.19, y= 24.14 ± 0.43, z= 29.69 ± 0.47 (Fig. 1b). For the MRS mea-
surements, region-specific shimming was performed. Voxel sizes were 10 × 20 ×
15 mm3 for the vmPFC voxel and 10 × 25 × 15mm3 for all other voxels of interest.
Afterwards, MR spectra were acquired using a stimulated echo acquisition mode
(STEAM VERSE) sequence (128 averages, TR= 3000 ms, TE= 20 ms, mixing
time= 10 ms, data size= 2048, bandwidth= 2800 Hz) from each voxel of
interest58.

MR data analysis. Spectral data were analysed using the LCModel59. Only
metabolite measurements with a Cramér–Rao lower bound <20%, full-width half-
maximum <25 Hz, and signal-to-noise ratio >8 were included. We analysed the
quality of each voxel measurement using LCModel immediately after acquisition of
the voxel. If one voxel did not meet the quality criteria, we repeated the acquisition
of this specific voxel. We had to repeat measurement of 1 of the 5 voxels in 13 of
our 29 subjects to obtain valid measurements for all 5 voxels of interest. SPM 12
(Wellcome Trust Centre for Neuroimaging, London, UK) was used to segment
participants’ T1-weighted anatomical images into grey matter (GM), white matter
(WM), cerebrospinal fluid, soft tissue, and air/background. Each voxel’s GABA and
glutamate concentrations were corrected for relative GM concentrations60 by
dividing their absolute concentrations by relative GM, based on the assumption
that GABA and glutamate are predominantly present in GM. As SPM 12 provides
tissue probability maps, we summed across probabilities for GM for each voxel in
the mask and divided by the total number of voxels within each mask to
approximate relative GM. Total creatine concentrations (creatine+ phosphocrea-
tine) were normalized by the relative amount of GM and WM within each voxel
((GM+WM)/number of voxelsmask) based on the assumption that creatine is
predominantly present in GM and WM. All GABA and glutamate concentrations
we report are normalized by total creatine concentrations. We defined E/I balance
as the ratio of (normalized) glutamate to GABA levels. Voxel masks were then
interpolated to individual MRI volumes with FieldTrip61. To estimate average voxel
centroid positions, we normalized individual volume data. More specifically, data
were registered to MNI space by using tissue probability maps (TPM.nii template
from SPM 12). Estimated average centroid positions were extracted from each
mask in MNI space.

Behavioural parameters and E/I balance. For each behavioural analysis, we
obtained a measure describing the individual influence of key value parameters on
behaviour (decision variable). To relate decision variables to cortical E/I balance,
we used multiple linear regression. In order to limit the number of comparisons, we
used the following hierarchy of testing: First, we only tested those decision variables
for their relationship with cortical neurochemistry (a) for which we had an a priori
hypothesis and (b) that had a significant effect on behaviour. Second, using a GLM,
we first projected E/I balance (ratio between glutamate and GABA) from all five
regions of interest against main behavioural parameters from the patch-leaving and
value-guided choice phase. All of these analyses were performed exclusively using
the design matrix containing E/I balance from all five regions. Third, if, and only if,
this GLM yielded a significant effect for one brain region, we followed this up by
asking whether this effect of E/I balance was contributed to by glutamate, GABA,
or both within that specific region. To this end, we then computed partial corre-
lations, regressing out the effects of all other factors than the one currently of
interest (see below). Fourth, when there was an effect of E/I balance on a decision
variable of interest, we followed this up by analysing in more detail what aspects of
a decision variable were related to E/I balance. Because of our clearly defined a
priori hypotheses regarding the role of dACC vs vmPFC, we did not apply cor-
rection for multiple comparison based on the number of brain regions tested in our
regression models.

We analysed the following decision variables: for the patch-leaving phase, we
considered the patch-leaving advantage as the key measure of interest that
describes how participants balance the expected advantage of leaving against the
travel cost. For the value-guided choice phase, overall decision performance,
measured as percentage of correct choices (choices of the option with higher
expected value) was the primary measure of interest. The latter relationship was
investigated in further detail by testing to what extent the relationship between E/I
balance and % correct was driven by the individual-specific distortions of reward
information as captured by the model-derived parameters α and γ. Finally, we
assessed how E/I balance was related to the effect of relevant reward information
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on reaction times. Here, for the patch-leaving phase, the effect of cost on response
speed was our key parameter of interest, whereas for the value-guide choice phase,
we focussed on the effect of value difference on reaction times. As a control, we also
included overall response times, independent of any task parameters
(Supplementary Tables 4 and 5 for an overview).

All of the E/I analyses were performed exclusively using the design matrix
containing balances from all five regions. The ratios of glutamate to GABA in all
voxels of interest were entered as regressors in a design matrix (along with a
constant term) to predict the contributions of E/I balance onto each decision
variable (one linear model per decision variable, all variables normalized). Only if
a significant influence of E/I balance in a specific region was identified, we
computed partial correlations. These partial correlations were first computed for
E/I balance in the target region (the one showing a significant effect in the main
GLM) by orthogonalizing (removing the effect of all other E/I balances) both from
the decision variable and from E/I balance in the target region. These partial
correlations (Pearson correlation between the residuals of decision variable and E/
I balance) are what is shown in Figs. 2c, d and 3b–d. To further investigate
whether a main effect of E/I balance in one region was driven by GABA or
glutamate (or both), we computed further partial correlations on the orthogonal
contribution of GABA and glutamate. To do so, we orthogonalized both the
decision variable and the neurotransmitter of interest (GABA or glutamate,
respectively) in the target area with respect to both the respective other
neurotransmitter in the same region and both GABA and glutamate in all other
voxels. As an example, if the GLM detected a main effect of E/I in dACC on patch-
leaving advantage, and we wanted to compute the orthogonal contribution of
dACC GABA to this effect, then we removed the effect of dACC glutamate and the
effects of both GABA and glutamate in the other four voxels from both the patch-
leaving advantage and from dACC GABA. Again, we computed Pearson
correlations between the residuals of the decision variable and the residuals of
GABA or glutamate, respectively. In the analysis of value-guided decisions, we also
controlled for the amount of no-brainer trials (mean ± SEM: 38.52% ± 0.01) as a
predictor variable of no interest. We report t and p values for each significant
regression coefficient (p < 0.05), testing for differences from zero, as well as r and p
values for the subsequent partial correlations (if applicable), both with their
respective 95% CIs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw MRS data that support the findings of this study are available from the
corresponding author upon reasonable request. Raw MRS data are not publicly available
due to them containing information that could compromise research participant privacy/
consent. The behavioural data and tables summarizing all MRS results are available
under www.github.com/luckyluc25/ei_exp. A reporting summary for this article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
Custom written code used to analyse the behavioural data of the current study is available
under www.github.com/luckyluc25/ei_exp.
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Supplementary Figure S1. Relationship between dACC GABA and patch-leaving. GABA 
contribution to the effect of E/I balance on patch-leaving shown in main figure 2C. Higher 
dACC concentrations of GABA are, by trend, associated with earlier patch leaving (lower 
average patch leaving advantages) (Pearson correlation on residuals (compare main text 
and methods): r = -0.323, p = 0.087, CI95 = [-0.617 – 0.049]; N = 29). Source data are 
provided as a Source Data file. 

 
 

 

Supplementary Figure S2. Additional analysis for the relationship between value-guided 
choice and cortical neurochemistry. A) GABA contribution to the effect of E/I balance shown 
in main figure 3D. Participants' responses slowed down on difficult trials (trials with low value 
difference). This effect was related to vmPFC GABA concentrations (Pearson correlation on 
residuals: r = -0.357, p = 0.057, CI95 = [-0.640 – 0.011]). Val diff = value difference.  B) dACC 
E/I balance relates to overall response speed during value guided choice (Pearson 
correlation on residuals: r = -0.459, p = 0.012, CI95 = [-0.707 – -0.111]). RT = Reaction Time.  
C) dACC GABA relates to overall response speed during value guided choice (Pearson 
correlation on residuals: r = 0.452, p = 0.014, CI95 = [0.102 – 0.702]). RT = Reaction Time. N 
= 29 in all figures. Source data are provided as a Source Data file. 
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Supplementary Figure S3. Overlay of voxel placements across all participants: 
Average locations of all regions of interest. Brighter colors indicate a greater overlap across 
participants. Left: Average placement of dlPFC voxel. Middle: Average location of M1 voxels. 
Right: Average location of vmPFC and dACC MRS voxel. N = 29. 
 

 
 

Supplementary Notes 
 

1) Reaction times in the patch leaving phase are not influenced by trial-wise patch 

leaving advantages  

We reran a regression model to analyze reaction times during patch-leaving decisions. Here, 

we included trial-wise patch leaving advantages instead of using costs and patch value 

differences as separate regressors. This analysis revealed no significant influence of PLA (t28 

= -0.118, p = 0.907, CI95 = [-0.042 – 0.038], U31 = 0.483). We again find a significant 

influence of whether each trial was a switch trial or not (t28 = 3.776, p = 0.001, CI95 = [0.042 – 

0.141], U31 = 0.310), of trial number (t28 = -8.039, p < 0.001, CI95 = [-0.310 – -0.184], U31 = 

0.897), of whether the presentation side of patch values changed with respect to the last trial 

(t28 = 3.844, p = 0.001, CI95 = [0.025 – 0.083], U31 = 0.276) and of whether the value-guided 

choice in the last trial had been rewarded (t28 = 3.689, p = 0.001, CI95 = [0.020 – 0.071], U31 = 

0.207). The finding that costs did influence reaction times whereas neither PLA nor patch 

value differences (analysis in main text) had an effect is likely related to the structure of the 

task. The cost of leaving is displayed on screen at the outset of each trial, whereas patch 

values have to be held in memory from the outcome of the last trial's patch choice. 
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2) vmPFC E/I balance relates to weighting of reward information during value-guided 

choice 

In the main text, we report a negative relationship of vmPFC E/I balance and choice 

accuracy. To further investigate this, we wanted to quantify the degree to which participants' 

choices were guided by the options' expected values. To this end, we used a logistic 

regression which is already reported in the main text. Similar to our relationship between E/I 

balance and choice accuracy reported in the main manuscript, we found that E/I balance in 

vmPFC was related to the degree to which participants' choices were governed by expected 

values. There was a significant negative relationship between vmPFC E/I balance and the 

effect of value difference on choice (t22 = -2.593, p = 0.017, CI95 = [-0.959 – 0.107]; r = -0.484, 

p = 0.008, CI95= [-0.722 – -0.143]). Thus, mirroring the effects on % correct choices, 

participants with higher levels of GABA relative to glutamate in vmPFC based their choices 

more strongly on the options' expected values. We further detailed this effect by re-running 

the regression with separate regressors for the differences in reward probabilities and 

magnitudes instead of one coding for difference in expected value. Participants used both 

reward probabilities (t28 = 11.708, p < 0.001, CI95 = [3.560 – 5.070], U31 = 0) and magnitudes 

(t28 = 14.431, p <0.001, CI95 = [2.806 – 3.734], U31 = 0) to guide their choices. Choices of 

participants with increased vmPFC E/I balance were more strongly influenced by reward 

probabilities compared to magnitudes (t22 = 2.736, p = 0.012, CI95 = [0.134 – 0.971]; r = 

0.504, p = 0.005, CI95= [0.169 – 0.735]). This pattern of results matches our findings reported 

in the main text and again indicates that participants with a greater E/I balance in vmPFC 

based their decisions less on objective differences in expected values. This effect is 

potentially mediated by a stronger reliance on reward probabilities than magnitudes. 

 
3) Simultaneous regression of all behavioural parameters of interest against E/I 

balance in dACC and vmPFC 

Some of our dependent variables may be correlated with each other across participants. This 

is expected since some of the tests investigate parameters that we assume to be driven by a 
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shared underlying mechanism1. For instance, consider the case for % correct choices on one 

hand and the effect of value difference on RT on the other. As can be seen from 

Supplementary Table 2, there is a negative correlation between these two variables, 

indicating that the (negative) effect of value difference on RT is most pronounced in 

participants with high percentage of correct choices. This, however, is exactly what would be 

mechanistically predicted from models using competition via mutual inhibition: Slowing the 

decision in the face of a lot of noise (a difficult trial with low value difference) allows for the 

choice to be dominated by the available evidence, while averaging out (neural) noise over 

time. To assess the orthogonal contributions of all the different behavioural parameters 

across both the patch-leaving and value-guided choice phase, we therefore included all of 

the parameters of interest from both phases (Supplementary Table 1 and 2) into one single 

regression model and now used either dACC or vmPFC E/I balance as the dependent 

variable. We still find a significant effect of patch leaving advantage on dACC E/I balance (t20 

= 3.013, p = 0.007, CI95 = [0.175 – 0.961]) but no significant effect of any other variable of 

interest (all p > 0.119). When regressing the same design matrix against vmPFC E/I balance, 

we find no significant effect of any behavioural parameter (all p > 0.151).  

4) Model Validation: Simulate and Recover  

To validate our model fitting routines 2,3, we generated and recovered data for the model with 

the lowest BIC (prospect model with andas free parameters). We generated 500 artificial 

data sets by randomly selecting  and  parameters in the range between 0 and 3. We then 

recovered these parameters from the artificial data with the same procedure as used for our 

real participants. We used 1000 random starting points to find the combination of free 

parameters yielding the minimal negative log likelihood across iterations. All fittings were 

done for each participant separately. The distance and correlations between recovered 

parameters and the ground truth parameters across subjects were estimated 

(Supplementary Figure S4) as well as the correlations between recovered parameters.  
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Supplementary Figure S4. Overview of Simulated and Recovered Model Parameters: A) 
Correlation between true and recovered parameters and a histogram of the difference 
between true and recovered parameters for our winning model (see methods for model 
details). B) Correlations between recovered parameters. Source data are provided as a 
Source Data file. 
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Supplementary Table 1: Correlations between behavioral variables of interest during 
the patch–leaving phase. Correlations > 0.4 are marked in red. PLA = Patch Leaving 
Advantage, RT = Reaction Time, Costs on RT =  regression weight of costs on reaction 
times. Source data are provided as a Source Data file. 

 PLA RT Cost effect on RT  

PLA 1 -0.08 0.13 

RT  -0.08 1 -0.35 

Cost effect on RT  0.13 -0.35 1 

 
 
Supplementary Table 2: Correlations between behavioral variables of interest during 
the value-guided choice phase. Correlations > 0.4 are marked in red. RT = Reaction Time, 
val diff RT =  regression weight of value difference on RT, parameter transforming 
objective to subjective magnitudes, parameter transforming objective probabilities to 
subjective probabilities. Source data are provided as a Source Data file. 
 
 % correct RT val diff RT   

% correct 1 0.42 -0.65 0.87 -0.64 

RT 0.42 1 -0.09 0.49 -0.03 

val diff RT -0.65 -0.09 1 -0.63 0.36 

 0.87 0.49 -0.63 1 -0.38 

 -0.64 -0.03 0.36 -0.38 1 

 
 
Supplementary Table 3: Correlation of E/I balance across cortical areas. Overview of 
correlations between E/I balances between all regions of interest. Correlations > 0.4 are 
marked in red. dlPFC = dorsolateral prefrontal cortex, vmPFC = ventromedial prefrontal 
cortex, dACC = dorsal anterior cingulate cortex. Source data are provided as a Source Data 
file. 
 
 dlPFC M1 left M1 right vmPFC dACC 

dlPFC 1 0.15 0.22 -0.09 0.11 

M1 left 0.15 1 0.18 -0.09 -0.22 

M1 right 0.22 0.18 1 -0.19 0.04 

vmPFC -0.09 -0.09 -0.19 1 -0.38 

dACC 0.11 -0.22 0.04 -0.38 1 
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Supplementary Table 4: Overview of neurochemical effects in all regression models. 
Neurochemical effects for all regression models conducted to analyze patch-leaving 
behavior. All regression models include all E/I balances (and an intercept) as dependent 
variables and the behavioural variable of interest as independent variable. T- and p- values 
indicate the test statistic for each coefficient in the regression model to test the null 
hypothesis that the coefficient is zero. Significant effects (p <= 0.05) are marked in red. 
Source data are provided as a Source Data file. 
 
 dlPFC E/I 

[t-stat, p-
value] 

M1 left E/I 
[t-stat, p-
value] 

M1 right E/I 
[t-stat, p-
value] 

vmPFC  
[t-stat, p-
value] 

dACC 
[t-stat, p-
value] 

PLA -0.39, 0.70 0.82, 0.42 1.32, 0.20 -0.20, 0.85 2.64, 0.02 

RT 0.15, 0.88 0.87, 0.39 0.00,1 -0.16, 0.87 -1.33, 0.20 

Effects of 
Cost on RT -0.53,0.60 1.00, 0.33 0.57, 0.57 0.46, 0.65 2.19, 0.04 

 

Supplementary Table 5: Overview of neurochemical effects in all regression models: 
Neurochemical effects for all regression models conducted to analyze value-guided choice 
behavior. All regression models include all E/I balances (and an intercept) as dependent 
variables and the behavioural variable of interest as independent variable. T- and p- values 
indicate the test statistic for each coefficient in the regression model to test the null 
hypothesis that the coefficient is zero. Significant effects (p <= 0.05) are marked in red. 
Source data are provided as a Source Data file. 
 
 dlPFC E/I 

[t-stat, p-
value] 

M1 left E/I 
[t-stat, p-
value] 

M1 right E/I 
[t-stat, p-
value] 

vmPFC  
[t-stat, p-
value] 

dACC 
[t-stat, p-
value] 

% correct -0.44, 0.67 -0.62, 0.54 -0.53, 0.60 -2.44, 0.02 -0.85, 0.41 

RT -0.24, 0.81 0.22, 0.83 -0.10, 0.92 -1.58, 0.13 -2.42, 0.02 

Effect of Val 
Diff on RT -0.41, 0.68 1.68, 0.11 0.53, 0.60 2.88, 0.01 1.28, 0.21 

 -0.29, 0.77 -0.55, 0.59 -0.47, 0.64 -2.41, 0.02 -1.14, 0.27 

 0.49, 0.63 1.00, 0.33 0.14, 0.89 2.14, 0.04 0.02, 0.98 

 

 
 

 



 
 

 
 

9

Supplementary Table 6: Parameter values and model fits for behavioural models. 
Overview of all recovered model parameters as well as their model fit (BIC = Bayesian 
Information Criterion). The model with the lowest BIC is bold. See Supplementary Analysis 4 
for model validation. EV models assume no distortions in value weighting. EU models 
assume distortions in reward magnitude weighting, EVPW in reward probabilities and SU in 
both reward probabilities and magnitudes. Additive (Add) models assume additive value 
integration, multiplicative (multi) models assume multiplicative value integration, and hybrid 
models a combination of both. Source data are provided as a Source Data file. 
 

Model 
ωmult

ωm+ωp+ωmult


ωm

ωm + ωp


ωp

ωm + ωp
 ωmult   BIC 

EV 
 
Add  0.08 ± 

0.01 
0.92 ± 
0.01   

182.78 ± 
6.47 

Multi    1.93 ± 
0.18   223.44 ± 

11.75 

Hybrid 0.27 ± 
0.05 

0.17 ± 
0.06 

0.83 ± 
0.06    166.45 ± 

7.16 

EU 
 
Add  0.66 ± 

0.06 
0.34 ± 
0.06  0.22 ± 

0.06  174.23 ± 
6.92 

Multi    5.54 ± 
0.73 

0.71 ± 
0.07  164.40 ± 

7.92 

Hybrid 0.54 ± 
0.06 

0.65 ± 
0.08 

0.35 ± 
0.08  0.59 ± 

0.08  165.61 ± 
7.51 

Fixωmult 
Multi     0.69 ± 

0.06  172.06 ± 
7.91 

EVPW 

Add  0.08 ± 
0.01 

0.92 ± 
0.01   1.03 ± 

0.04 
187.46 ± 
6.46 

Multi    3.11 ± 
0.27  1.79 ± 

0.15 
180.78 ± 
8.49 

Hybrid 0.38 ± 
0.07 

0.23 ± 
0.06 

0.77 ± 
0.06   1.23 ± 

0.09  
168.51 ± 
7.21 

Fixωmult 
Multi       1.84 ± 

0.15 
182.23 ± 
8.41 

SU 
 
Adi  0.65 ± 

0.06 
0.35 ± 
0.06  0.23 ± 

0.06  
1.03 ± 
0.04 

178.88 ± 
6.89 

Multi  
  10.04 ± 

1.80 
0.59 ± 
0.06 

0.83 ± 
0.07 

162.96 ± 
7.78 

Hybrid 0.58 ± 
0.06 

0.64 ± 
0.08 

0.36 ± 
0.08  0.65 ± 

0.08 
1.14 ± 
0.07 

168.99 ± 
7.50 

Fixωmult 
Multi 

 
   0.58 ± 

0.05 
0.88 ± 
0.05 

161.99 ± 
7.06 

Note: All values are mean values across participants ± standard error of the mean. N = 29. 
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Supplementary Note: Exploratory Findings - Relating current findings to own previous 

work 

In an earlier study, we have already reported relationships between vmPFC E/I balance and 

optimal choice behaviour4. In particular, we had reported that high levels of GABA, and low 

levels of glutamate, respectively, were related to participants' performance on difficult trials 

(those with low value difference), as measured by the softmax inverse temperature. This 

finding is exactly predicted by mechanistic models based on competition by mutual 

inhibition4. However, a recent study found that choices were more strongly guided by 

multiplicative as opposed to additive value computation after administration of the NMDA 

receptor agonist d-cycloserine to healthy volunteers5. Combining values multiplicatively is 

considered more optimal whereas an additive value integration is potentially less complex. In 

our own previous data, we found an effect of vmPFC E/I balance on softmax inverse 

temperature4. In this work, however, we had not compared between different models 

featuring multiplicative versus additive value construction, or a mixture of both. We have 

therefore reanalyzed our previous data with the same set of models as used in the current 

study. All magnitudes have been rescaled between 1 and 10 prior to model fitting. We find 

that a hybrid model with no distortions in value weighting fits the data best. Since the EV 

hybrid model fits our previous data best, we assessed the relationship between this model's 

free parameters and E/I balance. One participant had to be excluded because GABA and 

glutamate could not be successfully detected4. We don't find any significant relationship 

between vmPFC GABA (t21 = -1.559, p = 0.134) or glutamate (t21 = 0.421, p = 0.678) on the 

reliance of integrative versus additive value integration. When we compared the reliance on 

multiplicative versus additive value updating in our current data set (EV hybrid), we find, as 

expected, a greater reliance on multiplicative value integration with a lower vmPFC E/I 

balance (t22 = -2.423, p = 0.024) as well as a greater reliance on magnitude compared to 

probability values within the additive module (t22 = -2.711, p = 0.013). Neither the previous 

nor this study was primarily designed to study whether E/I balance measured with MRS 

relates to a multiplicative or additive value integration. It would be interesting for further 
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studies to analyze this question with a set of options where choices would explicitly 

dissociate multiplicative from additive value integration.  

 As reported in the main text, for our present study, we find that a multiplicative SU 

model fits the data best. However, we did not obtain sufficient model recovery for the choice 

stochasticity parameter and therefore decided to fix it at the median recovered vale. There 

are a number of possible reasons for this. First, in the 2012 data, the trials' combination of 

reward attributes had been specifically optimized (offline) for the value-guided choice task to 

allow a certain level of difficulty, to control for correlation between chosen and unchosen 

value, and to incorporate a certain range of no-brainer trials. In contrast, in the current task, 

reward magnitudes are generated from the chosen patch, a random fraction of which is 

allocated to the two patches. Small magnitude differences are therefore less likely to occur, 

which potentially prevents a reliable estimation of the choice stochasticity parameter. 

Secondly, in the current task the distortion of reward magnitudes becomes more important 

since magnitudes can potentially cover a wider range of values that depends on the current 

patch value, as opposed to a fixed minimum and maximum in the 2012 study.  
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Supplementary Table 7: Overview of model fitting to the data presented in Jocham et al. 
(2012)4. EV models assume no distortions in value weighting. EU models in reward 
magnitude weighting, EVPW in reward probabilities and SU in reward probabilities and 
magnitudes. Add models assume additive value integration, multi models multiplicative value 
integration and hybrid models a combination of both. Source data are provided as a Source 
Data file. 
 

Model 
ωmult

ωm+ωp+ωmult
 ωm

ωm + ωp
 ωp

ωm + ωp
 ωmult   BIC 

EV 

Add  0.07 ± 
0.00 

0.93 ± 
0.00   

237.05 ± 
8.16 

Multi  
  1.80 ± 

0.17   257.36 ± 
15.11 

Hybrid 0.19 ± 
0.04 

0.10 ± 
0.04 

0.90 ± 
0.04    224.69 ± 

9.56 

EU 

Add  0.44 ± 
0.06 

0.56 ± 
0.06  0.40 ± 

0.06  229.43 ± 
8.50 

Multi  
  3.70 ± 

0.47 
0.77 ± 
0.06  231.97 ± 

10.46 
Hybrid 0.27 ± 

0.05 
0.37 ± 
0.08 

0.63 ± 
0.08  0.69 ± 

0.06  227.20 ± 
9.43 

EVPW 

Add  0.07 ± 
0.00 

0.93 ± 
0.00   1.02 ± 

0.04 
241.89 ± 
8.02 

Multi  
  2.07 ± 

0.15  1.47 ± 
0.16 

243.44 ± 
11.62 

Hybrid 0.22 ± 
0.04 

0.06 ± 
0.01 

0.94 ± 
0.01   1.09 ± 

0.08 
228.48 ± 
9.43 

SU 
Add  0.44 ± 

0.06 
0.56 ± 
0.06  0.40 ± 

0.06 
1.00 ± 
0.04 

234.20 ± 
8.30 

Multi  
  8.74 ± 

1.06 
0.55 ± 
0.04 

0.67 ± 
0.03 

228.09 ± 
9.38 

Hybrid 0.29 ± 
0.06 

0.35 ± 
0.08 

0.65 ± 
0.08  0.70 ± 

0.05 
1.03 ± 
0.06 

231.60 ± 
9.29 

Note: All values are mean values across participants ± standard error of the mean. N = 25. 
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Supplementary Note: Exploratory Analysis - Drift Diffusion Modelling of Choice Data 

To obtain a formal characterization of the process of evidence accumulation across trials, we 

fitted a hierarchical drift diffusion model (DDM)6. In brief, DDM assume that choices between 

two alternatives depend upon accumulation of noisy evidence until a decision threshold is 

reached. The model thereby not only predicts choice probabilities but also response time 

(RT) distributions. The predicted choice probabilities and RTs critically depend upon three 

free parameters. First, the decision boundary a determines how much evidence needs to be 

accumulated. Second, the drift rate v captures the speed at which the evidence accumulation 

process approaches either boundary6. Third, RT is assumed not to solely depend on the 

choice process itself, but also on other non-decisional processes like stimulus perception and 

the execution of a motor response, which is reflected in the non-decision time (ndT)7. To 

account for across-trial variations8, we also tested the effects of variability in ndt (st) and v 

(sv).  

We used the Bayesian hierarchical drift diffusion modeling toolbox with default priors6 

in Python 2 to infer latent variables underlying response time distributions of patch leaving 

trials and correct vs. incorrect value - guided choices. The estimation of individual 

parameters is hierarchical since they are not assumed to be independent of one another but 

drawn from an underlying group distribution6. We estimated drift rate, boundary separation 

and non-decision time individually, but across-trial variability in drift rate and non-decision 

time on a group level9,10. For model comparisons, we included additional effects of bias 

towards one decision boundary (z) and variations in bias (sz) in patch leaving trials as well as 

linear regression models assessing the effect of reward information onto free DDM 

parameters. For regressions, all continuous variables were z-scored per participant before 

estimating regression coefficients. Cost levels were z-scored on a group level. Since our task 

does not involve a maximum response time, we excluded all trials with response times below 

0.3 or above 4 seconds before model fitting. Additionally, we specified 5 % of responses to 

be contaminants. The toolbox uses Markov-Chain Monte Carlo sampling for a Bayesian 

approximation of the posterior distribution of each model parameter. For every model, we ran 
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thirty separate Markov chains and report parameter estimates and posterior distributions of a 

concatenated model across all chains9. We generated 5000 samples for every chain and 

discarded one half of all samples as burn-in9. Every third sample was discarded for thinning, 

thereby reducing autocorrelations in the chains. To assess model convergence, we 

inspected the sampled posterior traces, their autocorrelation and the Gelman-Rubin ܴ 

statistics, which compares between and within chain variance6,11. ܴ for a group level 

parameter with a distance of > 0.02 from one were defined as non-converged models. To 

compare between models, we used the Deviance Information Criterion (DIC) where a lower 

DIC points towards a better fit.  Based on previous findings12–16, we predicted a relationship 

between E/I balance and the drift rate v and decision boundary a.  

 For the patch leaving phase we find that a drift diffusion model with a, v, ndt, z, st and 

sz fit the data best. When we assess the effects for individual model parameters for their 

relationship with E/I balance, we find a significant effect of dACC E/I balance on drift rate (t23 

= 2.011, p = 0.056, CI95 = [-0.012 – 0.837], r = 0.387, p = 0.038, CI95= [0.023 – 0.660]). This 

indicates that participants with a greater dACC E/I balance show a higher drift towards stay 

decisions and confirms our model free findings. There were no significant effects in any other 

region of interest (all p > 0.597) nor with decision boundary (all p > 0.269). We included E/I 

balances directly in the model rather than correlating E/I balances with individual slopes 

(after model fitting) since the latter might be biased towards the group mean. However, since 

the standard DDM without incorporating E/I balance fitted the patch-leaving data best, we ran 

the exploratory analysis reported above. 

 For the value guided choice phase, we find that a DDM incorporating a regression 

model on drift rate fits the accuracy-coded data best. While we do not find any main effect of 

vmPFC E/I on drift rate (highest posterior density interval (HPDI): [-0.279 – 0.052]), we find 

an interaction effect between vmPFC E/I and the effects of value difference on drift rate 

(HPDI: [0.032 – 0.124], <0.001 % of the posterior distribution below zero). Additionally, we 

find an overall greater drift rate with higher value difference between options (HPDI: [0.515 – 

0.627], <0.001% of distribution below zero) and in no brainer trials (HPDI: [1.843 – 2.117], 
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<0.001% of distribution below zero). This pattern of results matches our findings obtained in 

regression analyses and again points towards an influence of vmPFC E/I balance onto the 

speed of value integration. 

 

Supplementary Table 8: Overview of DDM models: Overview of HDDM model 
specifications. 
 
Free Parameters  Linear Model DIC Gelman -

Rubin 
Patch Leaving Phase 

a, v, ndt, sv, st  3145.12 yes 

a, v, ndt, z, sz, st  3104.46 yes 

a, v, ndt, z, st, sz v~1+costs+dacc+costs:dacc 4205.75 yes 

a, v, ndt, z, st, sz a~1+costs+dacc+costs:dacc 4189.73 no 

Value guided choice phase 

a, v, ndt, sv, st  15112.98 yes 

a, v, ndt, sv, st v~1+valdiff+NB+vmpfc+valdiff:vmpfc 11818.15 yes 

a, v, ndt, sv, st a~1+valdiff+NB+vmpfc+valdiff:vmpfc 14290.62 no 

 

 

Supplementary Methods 

Details of the behavioural task 

All stimuli were presented on a grey (RGB: 60, 60, 60) background with a contrast optimized 

for the MEG recording chamber on a screen in a distance of one meter from the sitting 

participants. Stimuli were displayed via a projector with a refresh rate of 75 Hz located 

outside the MEG recording chamber. During patch-leaving, participants were presented with 

two patches (RGB: 80, 80, 80) framed with a white outline indicating in which patch 

participants are currently staying. If participants chose to switch they had to pay a travelling 

cost indicated by the size of a grey bar (RGB: 160, 160, 160) presented between both 
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patches. In trials where participants chose to switch, the rectangular bar signaling switch 

costs turned red (RGB: 178, 70 70) and the respective costs were subtracted from the 

subjects total earnings up to this trial. Afterwards the current patch values were revealed. 

Patch Values were presented in blue (RGB: 69,102,174). In both stages of the experiment a 

blue progress bar (RGB: 65,105, 204) was shown at the bottom of the screen indicating 

subjects current score. Participants selected an option by means of a button press with the 

right or left index finger, respectively. After value-guided choice, participants received a 

feedback on both options. If an option was rewarded in the current trial, the bar presenting 

the reward magnitude turned green (RGB: 46, 139, 60) or red (RGB: 178, 70, 70) otherwise. 

Every time participants were rewarded, the progress bar grew proportional to the obtained 

magnitude towards a goal state indicated by a golden rectangle (RGB: 184, 134, 11). The 

goal in the experiment was to reach the goal state as often as possible. 
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When searching for food, animals need to decide whether they canmaximize rewards by harvesting
at a current resource, or whether they should instead leave for another foraging site. Humans face
similar types of problems when deciding whether to stay with their current job, or to move to a
new one with a prospect of better career opportunities. Such decisions to leave, often referred to as
patch-leaving decisions, require dynamically weighing the time and energy costs of leaving, as well
as the benefits of encountering more rewarding resources at new locations. How neuromodulators
are involved in patch-leaving decisions, especially in humans, is, at present, scarcely researched.
In their recent study, Le Heron et al. (2020) fill this gap by investigating how these decisions
are causally affected by dopaminergic state in an ecologically valid foraging scenario. In their
study, participants could choose between collecting reward (milk filling a bucket) at one location
(patch) or leaving for another patch which incurred a cost in the form of a fixed travel time.
As soon as participants started harvesting (collecting milk) from one patch, the reward per time
in that patch decreased exponentially, emulating a depleting resource. To maximize their reward
rate, participants were thus faced with the task of continuously comparing the rewards at current
location against potential rewards at other locations, whilst taking into account the time cost
for leaving.

The optimum solution to this foraging problem is given by the Marginal Value Theorem (MVT,
Charnov, 1976; Stephens and Krebs, 1986), which has been shown to predict foraging behavior in
many species (Cassini et al., 1993; Hayden et al., 2011). MVT states that the optimal time to leave
the current patch is when its marginal reward rate (“foreground”) drops below the average reward
rate in the environment (“background”). To separately manipulate background and foreground
reward rates, the authors created patches that differed in their (initial) reward rates (low, medium,
and high yield). These could be encountered in either a rich or poor environment. In the rich
environment, participants were most likely to transition to a high yield patch upon leaving the
current patch, whereas in the poor environment, encountering a low yield patch was most likely.
The reward obtained in the current patch thus constituted the foreground, whereas the proportion
of the different patch types determined the background reward rate. MVT predicts that optimally
behaving agents will.

H1: leave patches within an environment (i.e., equal background) at the same reward rate for all
patch types; therefore leave patches with lower initial foreground reward earlier than patches with
higher foreground reward.

H2: leave earlier in general when in rich compared to poor environments (high vs. low
background reward rate).

A main effect of background reward rate on patch leaving times was observed, supporting
H2. In contrast, pertaining to H1, participants left patches with lower foreground reward rate
earlier, but they seemed to exhibit a tendency to stay longer in high yield patches, in contrast with
the prediction that at leaving, the foreground rate is the same for all patch types. Additionally,
participants stayed in patches longer than optimal (“overharvested”) across all patch types, leading
to less reward obtained than predicted by MVT. Overharvesting is a phenomenon reported
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ubiquitously in the foraging literature (see e.g., Hayden et al.,
2011; Kane et al., 2019) and has been related to different factors,
including time preferences (Kane et al., 2019), and behavioral
variability (Cash-Padgett and Hayden, 2020).

Evidence on neuromodulatory mechanisms underlying value
comparisons in foraging environments remains scant. Tonic
dopamine (DA) levels have been previously suggested to scale
with the average background reward rate (average of prediction
errors) in the environment (Niv et al., 2007; Beierholm et al.,
2013) and could therefore be considered a key element in
signaling decisions to leave a patch (Constantino et al., 2017). Le
Heron et al. (2020) thus hypothesized that tonic DA levels would
modulate the impact of the background, but not the foreground
reward rate on patch-leaving decisions. To test this hypothesis, a
group of elderly participants was tested twice on the foraging task
under the influence of either placebo or the D2 receptor agonist
cabergoline. When “on” cabergoline, participants left patches
in the poor environment earlier. In contrast, cabergoline did
not modulate the effect of the foreground reward rate on patch
leaving. This pattern resonates well with the hypothesized role of
tonic DA in encoding the average background reward rate. Since
participants generally overharvested, this may also imply a shift
toward more optimal behavior.

A 1mg dose of cabergoline was hypothesized to specifically
influence the perceived background reward by increasing tonic
DA levels, acting via postsynaptic mechanisms (Brooks et al.,
1998). However, there have been discussions of whether similar
doses of D2 agonists would instead impact phasic rather than
tonic DA signaling (Santesso et al., 2009; Norbury et al., 2013)
through a modulation of presynaptic autoreceptors (Frank and
O’Reilly, 2006). Given that there has been no possibility to
assess pre- vs. post-synaptic medication effects in the current
study, one may not exclude the possibility that the cabergoline
dose resulted in a reduction of the phasic tone (Frank and
O’Reilly, 2006). A recent study has shown that a reduction of
phasic DA may lead to an increase in (random) exploration
(Cinotti et al., 2019), and could thus promote patch-leaving
behavior. Contributions of both the phasic and the tonic
mode in modulating perceived background reward rate may be
considered, bearing in mind it has recently been suggested that
the distinction between tonic and phasic DA release and its
relation to behavior may not be as clear-cut as previously thought
(Berke, 2018).

In another recent study, DA depletion associated with
Parkinson’s disease (PD), has been linked to a lower estimate
of background reward rates in a previous study. PD patients
overharvested to a larger extent than control participants when
“off” DA medication, while their performance was comparable
to controls when “on” medication (Constantino et al., 2017).
In that study, the richness of the environment varied due
to long and short travel costs. Notably, the difference in
leaving time between control and PD participants was more
pronounced in the richer (short travel) environment. This may
imply multiplicative effects on the perceived richness of the
environment, but contrasts with Le Heron et al. (2020) finding
of effects in poorer environments only. Since participants in
both studies discussed above can be assumed to differ with

respect to their baseline DA levels, and potential compensatory
changes to DA systems, different ceiling effects may have brought
about differing patterns of results. Noteworthy, Le Heron et al.
(2020) increased DA levels by targeting D2 receptors, while
the depletion of DA in PD is likely to affect both D1 and
D2 type receptors (Seeman and Niznik, 1990). However, D2
receptors, owing to their higher affinity for DA, may be still
sensitive to (subtle) variations in DA concentration in PD
patients. Additionally, whether the effects of DA manipulation
extend to younger healthy populations (with likely higher
baseline DA levels) is an open question. Future work should
seek to delineate under which specific circumstances DA
modulates the influence of perceived environmental richness
on behavior.

Importantly, the specific drug effects might potentially
be considered in relation to different manipulations of
environmental richness in the two studies. According to
MVT, the background reward rate is determined by the value
of potential alternatives as well as by costs of accessing these
options. During traveling, the net reward intake is zero,
therefore the agent needs to consider whether the potential
benefits in alternative patches are worth the invested cost
of time (i.e., the foregone reward while traveling). As in
Constantino et al. (2017) study, decreasing travel time costs
should lead to earlier patch leaving, since it translates into
an increased background reward rate. Travel times have been
previously found to influence the leaving threshold in patch
leaving tasks (Hayden et al., 2011; Wolfe, 2013; Ramakrishnan
et al., 2019). In the study by Le Heron et al. (2020), travel
costs were kept constant in both environments. However,
since the average expected reward rate is different in both
environments, the opportunity costs of time differ. The equal
travel times therefore potentially have a distinct effect in poor
and rich environments. While the relationship between DA
modulations and subjective travel cost estimates has been
scarcely addressed so far (Constantino et al., 2017), there
is a rich literature about the effects of DA on cost-benefit
decisions (Salamone et al., 1994; Beeler and Mourra, 2018). In
these paradigms, subjects usually decide whether a potential
outcome is worth a certain effort, which is a conceptually
similar question as in the reported foraging scenario: “Is my
investment worth the expected payoff?”. A potential route to
an increase in the subjective estimate of environmental richness
may be a decrease in the subjective estimate of the opportunity
costs of time. It would be interesting for further research to
explicitly vary travel time costs to assess the contribution of
costs to estimates of environmental richness. Combining the
experimental manipulations of travel time costs (Constantino
et al., 2017) and patch reward yield proportions determining
environmental richness (Le Heron et al., 2020) could thus
prove useful to further a comprehensive framework on how DA
modulates patch-leaving. To build a full picture of dopaminergic
control of patch-leaving behavior, future research should
systematically consider pharmacological effects of particular
drug manipulations, behavioral consequences of experimental
manipulations, and the extent to which learning takes place in
the task.
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Research on the role of other neuromodulators implicated
in patch-leaving decisions has started to emerge. The locus-
coeruleus (LC) noradrenaline system may be involved in patch-
leaving, as it promotes behavioral flexibility (Aston-Jones and
Cohen, 2005). A recent study reported that tonic LC stimulation
in rats led to an earlier patch leaving, which was related to
an increased decision noise (Kane et al., 2017). Conversely,
optogenetic stimulation of serotonergic cells in the dorsal raphe
nucleus led to later leaving times in a patch leaving task (Lottem
et al., 2018). Additionally, a recent whole-brain imaging evidence
showing that persistent serotonergic activity correlates with a
state of exploitation (Marques et al., 2020). Furthermore, GABA
and glutamate concentrations in the anterior cingulate cortex
have been shown to predict patch-leaving behavior in healthy
participants (Kaiser et al., 2021).

Understanding patch leaving decisions and their underlying
neurochemical mechanisms is of fundamental relevance to
understanding many neuropsychiatric disorders (Addicott et al.,
2015). Le Heron et al. (2020) and Constantino et al. (2017)
therefore provide new evidence of high practical importance by
exploring amodulatory role of DA in the encoding of background
reward rates in patch leaving decisions.
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