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Summary

English

Introduction

Breast cancer (BC) is the leading type of cancer in women and the biggest contributor

to cancer mortality. Analysis of tumor tissue (e.g., through biopsy) allows for valuable

insight into the spatial and temporal heterogeneity of the disease. Liquid biopsy enables

downstream analysis of tumor cells (or parts of them) through the patient blood. I co-

developed the peer-reviewed and published software ViBiBa (Virtual Bio Banking), which

helps multicenter trials with decentralized sample storage of special specimen like circu-

lating tumor cells (CTCs) [1]. Additionally I propose an NGS panel (ENDOpanel) for single

cell analysis and demonstrate its feasibility. At last, an Estrogen Receptor α (ERα/ESR1)

sequencing project aims to find novel ESR1 mutations on single cells to find novel causes

of endocrine resistance.

Methods

ViBiBa is a web platform built with PHP in the back end and MySQL as the database lan-

guage. The front end utilizes the open source bootstrap framework and some additional

plugins. Both the ESR1 sequencing project and the NGS panel work on single cells that

were identified with the CellSearch technology and isolated using the CellCelector. The

ENDOpanel is based on the SureSelectQXT platform and covers the exons of 12 proto-

oncogenes and the complete range of the tumor suppressor gene PTEN.

Results

ViBiBa is currently in use for the sample management of the DETECT trial group. The

platform automatically processes non-uniform data from multiple laboratories into a struc-

tured central database, accessible by all participating laboratories. The ENDOpanel cov-

ered all important ranges of the preselected genes and was successfully performed with

single cells. Additionally, I successfully conducted the ESR1 sequencing project including

CTCs from 25 metastatic breast cancer patients and identified 21 mutant CTCs.

Conclusions

My thesis covers three dimensions of breast cancer research: ViBiBa created new ways

for real world collaboration in clinical trials. The ENDOpanel could be established as a

novel gene panel in single cell analysis and its feasibility demonstrated. Lastly, the ESR1

sequencing project detected novel variants and the subsequent literature review and in

silico analysis offered new hypotheses for endocrine resistance.



German

Einleitung

Brustkrebs ist die häufigste maligne Erkrankung der Frau und verursacht die meisten

krebsbedingten Todesfälle. Analysen von Tumorgewebe (z.B. durch Biopsien) erlauben

einen wertvollen Einblick in die räumliche und zeitliche Heterogenität der Erkrankung. Ein

Teil meiner Arbeit basiert auf der mittlerweile peer-reviewten und publizierten Software

ViBiBa (Virtual Bio Banking), welche ich mitentwickelt habe [1]. Sie erlaubt Multicenter-

Studien eine dezentrale Lagerung und Verwaltung von raren Bioproben wie z.B. zirku-

lierenden Tumorzellen (CTCs). Zusätzlich zeige ich ein neues NGS Panel (ENDOpanel)

und demonstriere dessen Funktionalität bei der Analyse einzelner Zellen wie CTCs. Zu-

letzt habe ich ein Sequenzierprojekt auf CTCs für den Estrogenrezeptor α (ERα/ESR1)

durchgeführt, um neuartige Mutationen im ESR1-Gen und Hinweise auf neue Wege der

endokrinen Resistenz zu finden.

Methoden

ViBiBa ist eine Webplattform, welche serverseitig PHP als Skriptsprache und MySQL

als Datenbankdialekt nutzt. Die Nutzeroberfläche basiert auf dem quelloffenen Bootstrap

Gerüst und einigen zusätzlichen Plugins. Sowohl das ESR1-Sequenzierprojekt, als auch

das ENDOpanel fokussieren sich auf CTCs welche mittels der CellSearch Technologie

angereichert und gefärbt sowie mittels CellCelector isoliert wurden. Das ENDOpanel ba-

siert auf der SureSelect QXT Plattform und deckt den kodierenden Bereich von 12 Proto-

Onkogenen sowie den gesamten Bereich des Tumorsuppressorgens PTEN ab.

Ergebnisse

ViBiBa wird momentan für das Bioprobenmanagement der DETECT Studiengruppe ein-

gesetzt. Die Plattform prozessiert automatisch nicht uniforme Daten aus mehreren La-

boren und führt diese in eine strukturierte, durch alle teilnehmenden Labore erreichba-

re, Datenbank ein. Das ENDOpanel deckt ausreichende Teile der ausgewählten Gene

ab und konnte erfolgreich in Analysen einzelner Zellen angewandt werden. Im ERα-

Sequenzierprojekt konnten CTCs von 25 Patientinnen analysiert werden, darunter fan-

den sich 21 mutierte CTCs.

Fazit

Mit ViBiBa konnte ein reales Problem der Kollaboration in Multicenter-Studien angespro-

chen werden. Ebenso konnte ich das ENDOpanel etablieren sowie im ERα-Sequenzierprojekt

neue Mutationen mit möglicher klinischer Relevanz aufzeigen.
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Abbreviation Explanation

AF activation function
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1 Introduction

1.1 Epidemiology (Germany)

Breast cancer (BC) is the leading type of cancer in women, accounting for 69 thousand

new breast cancer cases and 6 thousand cases of in situ breast cancer each year [2].

Additionally, breast cancer causes 17.6% of cancer deaths, making it the greatest cause

of death among all cancer subtypes [2]. Nearly 30% of newly diagnosed women are under

55 years old [2]. With advancing treatment options, the mortality rate has been reduced

to a 10-year overall survival (OS) of 66% and adjusted (for cancer-related mortality) OS

of 82% [2].

1.2 Screening and Etiology (Germany)

The German government is currently running a screening program offering women above

the age of 30 regular screening visits with an additional biannual mammography screen-

ing for patients between 50 and 69 years [2]. A genetic component like BRCA 1/2 mu-

tations accounts for only 5 to 10% of breast cancers [3]. Other risk factors are mainly

associated with elevated hormonal levels, e.g., early menarche, late menopause, child-

lessness and a prolonged hormone replacement therapy [2].

1.3 Prognostic and Predictive Factors

While prognostic markers describe the prognosis of a patient independently of the fu-

ture treatment, predictive factors relate to the outcome of the patient dependent on fu-

ture therapy decisions. Traditional prognostic factors include lymph node invasion, tumor

size/grading and hormonal receptor status [4]. Newer biomarkers include gene panels

or mRNA real time polymerase chain reactions (RT-PCRs) such as Oncotype DX and

liquid biopsy (LB) approaches [4]. While some traditional prognostic markers are also

suitable as therapy predictors, e.g., the estrogen receptor (ER) expression status is used

to determine if a patient is suitable for endocrine therapy, they do not accurately predict

resistance to endocrine therapy [4]. Trials on the predictive value of DNA sequencing

(from LB specimens) are still ongoing [4]. Since a few decades, breast cancer is gener-

ally divided into multiple subtypes by a set of molecular markers first described by Perou

et al. and refined in the following years (Table 1). This classification allows distinguishing

hormonal positive (luminal) from non-luminal HER2+ and triple negative breast cancers

(TNBC). Based on this simple classification, therapy decisions and an initial prognosis

can be made.
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Table 1: Molecular Subtypes of Breast Cancer

Subtype ER/PR Status HER2-Status Ki-67

Luminal A positive negative low
Luminal B positive negative high
Luminal B positive positive any
Non luminal, HER2+ negative positive any
Triple negative negative negative any

Molecular subtyping of breast cancer currently used in the clinic [5].

1.4 Therapy

Like in all malignant diseases, the therapy regime depends heavily on the stage of the

breast cancer and the subtype of the primary tumor (PT). The therapeutic pathways

in breast cancer can be divided into at least four categories: chemotherapy, radiation,

surgery and endocrine therapy. Loco-regionally limited breast cancer is mainly treated

with early (breast-conserving) surgery, biopsy of the sentinel lymph node and adjuvant

radiation [6]. Higher grade and relapsing breast cancer patients are treated according to

their individual risk profile [6].

1.4.1 Endocrine Therapy

Endocrine therapy (ET) in hormone receptor-positive breast cancer patients has become

an integral part of the breast cancer therapy pathway. The roots of endocrine therapy

in breast cancer date back to the 19th century, when it was discovered that oophorec-

tomy leads to a response in breast cancer patients [7]. After the discovery of the ER, a

link between estrogen (E2) levels and cell proliferation in ER expressing cells could be

shown in numerous studies [8]. Endocrine treatment can rely on blocking the production

of E2 or its action on the estrogen receptor alpha (ERα). Blockage of E2 production

can be achieved for instance by aromatase inhibition (AI), surgery (oophorectomy) or

gonadotropin-releasing-hormone (GnRH) analogs. On the other hand, the action of E2

on ERα can be interfered with antiestrogens like selective estrogen receptor modulators

(SERMs) such as tamoxifen or with selective estrogen receptor degraders (SERDs) such

as fulvestrant. New recommendations suggest a need to routinely test hormone recep-

tors not only in invasive breast cancer patients but also in patients with ductal carcinoma

in situ (DCIS) [9]. This enables the prediction of endocrine responsiveness based on the

expression status of the estrogen receptor [10]. Extended endocrine therapy (e.g., up

to 10 years of adjuvant AI treatment) is currently recommended for all ER-positive and

node-positive breast cancer patients [11]. The German guidelines currently recommend

extending endocrine therapy until progress of the cancer [6]. In case of progression, the

endocrine therapy should be switched to another endocrine treatment [6].
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1.4.2 Chemotherapy

In case of a predicted higher relapse risk, chemotherapy might be indicated. According to

the current German guidelines, one of the following criteria should be fulfilled for adjuvant

chemotherapy [6]:

• ”HER2+ tumors (from pT1b, N0; pT1a, N0 without additional risk factors: G3,

ER/PR neg., Ki-67 high)” [translated]

• Triple-negative tumors

• ”Luminal-B-tumors with increased relapse risk (Ki-67 high, G3, high-risk multi-gene

assay, young age, lymphatic node involvement)” [translated]

In the metastatic setting chemotherapy is required when a quick tumor reduction is needed

as a result of critical organ infiltration (e.g., lung or liver) [6].

1.5 Endocrine Resistance

Unfortunately, after initial response to endocrine therapy many women with ER+ metastatic

breast cancer develop an acquired resistance. The mechanisms that lead to endocrine

resistance are currently under intense research and include coregulator proteins, al-

tered metabolism, growth factors (receptors), cell-cycle regulators, autophagy as well

as changes in key pathways like the activation of the PI3K/Akt/mTOR pathway [12, 13].

While SERMs, SERDs and AIs lead to the development of endocrine resistance, the

mechanisms seem to be different, as patients developing resistance after AI treatment

respond to treatment with a SERM/SERD [14]. A target for acquired mutations after

ET is the ligand-binding domain (LBD) of ERα, a hotspot for post-ET metastatic breast

cancer (MBC) patients [15]. Currently, mutational testing in the clinic is focused on a

few pre-established Estrogen Receptor 1 (ESR1) hotspot mutations such as Y537S or

D538G. These hotspots have been linked with a worse outcome in MBC patients [16].

Most ESR1 mutations develop as a response to endocrine treatment, which constitutes

a selection pressure on the heterogeneous cancer cell population [17]. The already es-

tablished hotspot mutations then lead to endocrine resistance as they enable ERα to be

activated even in the absence of a ligand [15, 18].

1.6 Formation of Metastases and Tumor Cell Dissemination

Tumor metastasis, like tumor proliferation, is a multi-step procedure [19]. While PTs (of

all cancer entities) account for only 10% of deaths caused by cancer, metastases lead to

90% of deaths in cancer patients [19]. Cancer cells have to transform in order to leave the

PT and spread throughout the body [19]. Often specific cancer entities prefer specific dis-

tant sites for metastases (e.g., breast cancer prefers to spread towards bones) [19]. The

processes are still not fully understood and are under intense research [19]. As normal
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breast tissue and breast cancer cells are epithelial cells, they have to break through the

basement membrane (BM) (separating the epithelial cells from the deeper stroma) [19].

Breast cancer that has not broken through the BM yet, like DCIS, is considered to be

mostly benign [19]. To enable motility and invasiveness the epithelial cells have to trans-

form from their epithelial phenotype to a mesenchymal one [19]. This process is called

epithelial-mesenchymal transition (EMT), which is not cancer specific as it can also occur

during wound healing and embryogenesis [19]. After breaking through the BM, cancer

cells can spread throughout the bordering stroma and gain access to blood and lymphatic

vessels [19]. Next, the cells need to enter these vessels, a process called intravasation,

which is still not well understood [19]. Once inside the vessels, the cells travel through the

body, during this time they are subject to the physical forces inside the blood stream and

at risk of tearing of the cell membrane and other hostile environmental factors [19]. These

cells are now called circulating tumor cells (CTCs). If they survive the hostile environment

in the blood, the CTCs get trapped in arterioles, e.g., in the lungs [19]. How CTCs reach

destinations after flowing through the lung is still debated [19]. Through the process of

extravasation the CTCs can invade new tissues and begin forming micrometastases [19].

The cumulative probability of a single cell surviving the whole process from PT to pro-

liferating distant metastasis is extremely low, the literature refers to this as metastatic

inefficiency [19]. In contrast to CTCs, tumor cells which disseminated into the bone mar-

row (DTCs) tend to accumulate [19].

1.7 Liquid Biopsy

The concept of LB tries to solve the problems derived from single time point tissue sam-

pling [20–23]. Typically tissue samples are taken from the PT or in some cases from

metastases. While the analysis of those specimens is helpful, it does not depict the

broader heterogeneity of the cancer, especially as it changes over time with every line of

treatment [24]. LB enables the detection of CTCs or parts of them (e.g., circulating tu-

mor DNA (ctDNA)) from the patient blood providing real-time information for researchers

and clinicians. Meanwhile, the enumeration of CTCs via the CellSearch system received

FDA approval as a new prognostic marker with a multitude of clinical trials demonstrating

CTC count as an effective marker for survival (both overall and progression-free survival

(PFS)) in nearly all stages of breast cancer (therapy) [25–28]. In contrast, CTCs have yet

to show a valuable predictive characteristic, e.g., in predicting the response/resistance

to endocrine therapy [29]. There is a multitude of hurdles that hamper quick progress

in CTC research. First of all, CTCs have to be processed in a timely manner, before a

degradation of the cells takes place and they can no longer be distinguished from the

debris around them. This leaves clinical trials with two options: either they use regular

blood collection tubes and process the samples on site or expensive proprietary collec-

tion tubes like the CellSave preservation tubes fitted with a fixation agent, and ship the

samples to a remote laboratory. CellSave preservation tubes enable processing times of
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up to 96 hours from blood withdrawal to CellSearch and downstream analysis [24]. The

fixation reagents in CellSave preservation tubes and similar products come at the cost of

viability, as the CTCs are fixated and subsequent analysis is limited to enumeration and

genomic analysis [24]. As CTC analysis requires very specialized equipment, most trials

have to rely on preservation tubes as the blood samples have to be shipped to a labora-

tory and the specimen spends a significant amount of time in transit [24]. Even with the

help of preservation tubes, the equipment for analysis is very sparse. This necessitates

decentralized processing and storage of CTCs and its byproducts [24]. New LB assays

are constantly being developed and are often based on gene sequencing approaches that

are already established in solid tumor biopsies [24]. One example is the MSK-ACCESS

panel for LB [30], which is based on the MSK-IMPACT panel [31] designed for solid tu-

mors. Of special interest are changes in CTC count over the course of multiple treatment

regimes, new mutations not found in the PT or a switch of protein expression. The DE-

TECT III trial is one current study that explores HER2 targeted therapies in patients with

a HER2 negative primary tumor and HER2 positive CTCs [32].

1.8 ENDOpanel

The ENDOpanel (Fig. 1) is a purpose-built next generation sequencing (NGS) library tar-

geting all exons from 12 genes encoding proto-oncogenes (in alphabetical order: AKT1,

AKT2, EIF4EBP1, ERBB2, ESR1, INPP4B, MTOR, PDL1, PDL2, PIK3CA, PIK3CB,

RPS6KB1) and the complete range of the tumor suppressor gene PTEN. These genes

were mainly selected in light of a suspected impact on endocrine resistance. While

the ENDOpanel is centered around the PI3K/Akt/mTOR pathway, some additional genes

(e.g., PDL1/2) were added to the NGS library to broaden the observed pathways.

1.9 PI3K/Akt/mTOR Pathway

As mentioned beforehand, the ENDOpanel focuses on the PI3K pathway with down-

stream targets like the Akt and mTOR proteins. The PI3K pathway is often altered in

breast cancer as roughly 18-40% demonstrate PIK3CA hyperactivity while 8% are Akt

overexpressed and 20-33% show a mutant or underexpressed PTEN [19]. Phosphatidyli-

nositol 3-kinases (PI3Ks) are a family of proteins. Their name giving feature is the phos-

phorylation of the 3’ hydroxyl residue of an inositol ring on a membrane-bound phos-

phatidylinositol [19]. The family is divided into three classes, which differ by their structure

and function [33]. As shown, the ENDOpanel focuses on the PIK3CA gene which en-

codes a class I PI3K (p110α). A multitude of upstream pathways is able to activate PI3K

(e.g., Ras, tyrosine kinases phosphorylation) [19, 33]. One of the main features of PI3K

is the conversion of PIP2 [PI(4, 5)P2] into PIP3 [PI(3, 4, 5)P3] [19]. Phosphatidylinositol

(bi-/tri-)phosphates like PIP2 and PIP3 are mainly found as additions to the hydrophilic

head groups of the lipid bilayers of the cell membrane [19]. The phosphorylated inositol

5



+

-++

+

+

PI3K

PI(4,5)P2 PI(3,4,5)P3

PTEN

Akt

mTOR

4E-BP1

PI(3,4)P2

Her2/neu

S6K1

+

INPP4B

+ ER+
P TF

Pro-
liferation

Autophagy 
inhibition

Translation 
inhibition

Figure 1: ENDOpanel Schematic

head group PIP3 plays a key role in the subsequent signaling, while tumor suppressor

genes like PTEN are able to revert PIP3 into PIP2 thereby reducing the PI3K downstream

signaling [19]. Another way to remove PIP3 is to transform it into another form of PIP2,

which is phosphorylated on atypical sites (PI(3, 4)P2) [34]. Further, PIP3 attracts proteins

with a pleckstrin homology domain (like the Akt kinase), which have a high affinity towards

PIP3 [19]. After docking to PIP3, Akt is phosphorylated on two sites by the kinases PDK1

and PDK2 which leads to activation of Akt [19]. Activated Akt then inactivates proteins

involved in apoptosis invocation and interacts with proteins that are involved in cell cycle

regulation and thus cell proliferation [19]. Further, AKT phosphorylates ERα (Ser-167)

which leads to increased ERα signaling [35]. Initially, mammalian target of rapamycin

(mTOR) was seen as a downstream target of Akt, while new evidence suggests that

mTOR is likely an upstream regulator of Akt [19]. Currently, two complexes of mTOR are

described: TORC1 or ”mTOR-Raptor complex” and TORC2 or ”mTOR-Rictor complex”.

TORC1 controls a variety of genes that are involved in translation through phosphoryla-

tion, e.g., 4E-BP1 and S6K1 (both included in the ENDOpanel) [19]. Additionally, S6K1

is known to induce apoptosis and inhibit proliferation and EMT [36].

1.10 Estrogen Receptor

The estrogen receptor (ER) family consists of ERα and ERβ, the corresponding genes

(ESR1 and ESR2) were discovered in 1985 and 1996 respectively [37]. While the two

proteins are not expressed equally in different tissues, they share a few common fea-

tures [37]. They are nuclear receptors as estrogen is a steroid and can pass freely

through the cell membrane [37]. Additionally, they have three domains: the DNA-binding

domain, the ligand-binding domain (LBD) and the N-terminal domain [37]. Further, two
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activation function (AF) domains are described: a ligand-independent activation func-

tion (AF1) inside the N-terminal domain and a ligand-dependent activation function (AF2)

inside the LBD [37]. Estrogen dependent activation of ERα is achieved through a confor-

mation change after ligand binding, as helix 12 shifts into an agonist conformation [38].

Certain mutations in the LBD can lead to a conformation change that leads to helix 12

being in the agonist conformation without a ligand. Currently, this mechanism is de-

scribed for the amino acids 536 to 538 and 380 [38, 39]. ERα and ERβ share 97% of the

amino acid sequence in the DNA-binding domain, which is capable of binding to estrogen-

responsive elements on the DNA, acting as a transcription factor [37]. The LBD/AF2, on

the other hand, only shares 59% of the amino acid sequence, explaining the different lig-

and affinities of the receptors [37]. As ERα is overexpressed in breast tumors, it is a viable

cancer therapy target, as discussed earlier. As reported in previous studies [17, 40, 41],

mutations in the ESR1 gene mainly appear in a few known hotspots coding for the LBD of

ERα. One study reports nearly as many patients with an ESR1 hotspot mutation as with

a non-hotspot mutation in the genomic DNA of their CTCs [40]. Since the mutations out-

side of the hotspots seem to be scattered throughout the ESR1 gene, their effect on the

receptor’s function is hard to predict especially when such mutations are only detected in

one or only a few CTCs. We currently lack a way to differentiate non-hotspot ESR1 muta-

tions into variants that confer resistance to ET from variants which are random passenger

mutations without effects. Some of the known ESR1 mutations influencing endocrine re-

sistance result in constitutive and ligand-independent activation of ERα. These mutations

are most often acquired under ET through selection pressure and correlate with a more

aggressive disease making ESR1 mutations a promising biomarker [16, 17, 42]. Since

ESR1 mutations are rarely present in the PT [17], the use of ESR1 as a biomarker is

limited. Obtaining tissue samples of metastatic sites is often limited due to inaccessibility

(e.g., brain metastases), thus limiting research in endocrine resistance and the use of

mutations as a predictive marker. With the ongoing development of LB, characterization

of the ESR1 gene on CTCs could allow for a timely evaluation of the mutation status in

precision medicine tumor boards [20, 21].

1.11 Ligand Tunnels

1.11.1 From the Lock-Key towards the Keyhole-Lock-Key Model

The interaction of ligands with proteins like enzymes and receptors is described in various

models [43]. One of the oldest and simpler models is the lock and key model proposed

by Fischer in 1894, where a lock (e.g., enzyme) and a key (ligand) fit perfectly into each

other [44, 45]. This model was later modified into the induced fit model, which takes

into account the flexibility of the 3D protein structure; the ligand induces a conformation

change in the protein that leads to a better fit [45]. Afterwards, buried ligand binding sites

led to the development of the keyhole-lock-key model, as the ligand needs to traverse

parts of the protein (keyhole) to reach its destination [43, 46]. The keyhole itself can dis-
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criminate different ligands based on chemical forces and 3D structure, this filter function

is thought to be as important as the fit of the ligand inside the LBD [46].

1.11.2 Tunnels in the Real World

Tunnel, channel and keyhole are terms that are often used interchangeably, this work

will focus on the term tunnel, which can be defined as ”a pathway connecting a protein

surface with an internal cavity” [46]. The keyhole-lock-key model has been pioneered in

the field of enzymes, but the existence of keyholes has already been shown in all protein

classes [46]. Proteins can have one or more tunnels that link the solvent around it with

a buried LBD [46]. Ligand tunnels increase the selectivity of the protein and are linked

with evolutional advantages, as new bottlenecks can dramatically change the selectivity

of the protein [46]. While the impact of mutations in the LBD can be explained more

easily, mutations outside of the LBD can lead to significant changes of the properties of

the protein and may be explained by ligand tunnel modifications [46].

1.11.3 Bottlenecks and Other Forms of Ligand Selectivity

Of particular interest are the tightest points of a tunnel (bottlenecks), as they play a major

role in ligand selectivity [46]. But not only the 3D structure of the tunnel determines its

ligand selectivity, as electrostatic, polar and hydrophobic forces change the accessibility

of the tunnel for certain ligands [46].

1.11.4 In Silico Tunnel Analysis

Modern computer technology enables the analysis of 3D protein structures that can be

obtained freely from the internet from sources like the protein data bank (rcsb.org). The

protein structures are generated from a wide range of methods, e.g., X-ray diffraction,

and saved in a standardized file format (.pdb). These files often contain additional infor-

mation like ligands or crystal waters, which need to be removed prior to computational

analysis [46]. The position of the ligand can be used as a starting point for tunnel calcu-

lations, as it conveniently denotes the buried LBD; otherwise a starting position has to be

estimated or manually defined [47]. Tools like Caver Web will output the geometry of all

possible tunnels through the protein, as well as their length, average width, bottlenecks

and tunnel profile [46, 47]. One of the main drawbacks is the static nature of this method,

as the protein is only observed at one time point. While molecular dynamic simulations

enable the modeling of protein movement and conformation changes over time, they are

much more computationally expensive and are therefore often not suitable for screening

applications [46, 47].
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1.12 Next Generation Sequencing

1.12.1 Whole Genome Amplification

When working with single cells, some unique challenges arise as the starting DNA is

extremely limited. To increase the amount of DNA whole genome amplification (WGA)

needs to be performed. WGA is not only useful for single cell analysis but can also be

found in the field of prenatal testing or forensics [48]. The main goal of WGA is balanced

and high genomic coverage of the complete human genome without loss of one or both

copies of a gene [48]. A multitude of WGA methods have been developed and most of

them rely on the polymerase chain reaction (PCR) [48]. As PCR is best suited for short

regions of amplification (amplicons), the complete human genome cannot be amplified

with a standard PCR [48]. Early approaches used primers with random sequences (de-

generate oligonucleotide primed PCR), while later methods rely on fragmentation of the

DNA and ligation of adaptors with a known sequence (ligation-mediated PCR) [48]. The

latter approach comes with the advantage of being deterministic, as no randomness is

induced with degenerate primers [48]. An advancement of the ligation-mediated PCR is

the single-cell comparative genomic hybridization, which utilizes the MSE1 restriction en-

donuclease that recognizes the 5’-TTAA-3’ pattern, which has an average spacing of 126

base pairs (bp) in the human genome [48, 49]. After the digestion of the DNA, specially

designed PCR-adaptor sequences are ligated at the end of the newly formed fragments,

their special design is optimized for single cells. The presented work utilizes Ampli1,

which is based on single-cell comparative genomic hybridization.

1.12.2 Library Preparation

To prepare the DNA for analysis, the DNA must be broken into fragments. There are

multiple ways to achieve this: physical, chemical or enzymatic fragmentation [50]. One

example of physical shearing is the Covaris system, which utilizes Adaptive Focused

Acoustics to create fragments in the 100 - 1500 bp range [51]. Enzymatic fragmentation,

on the other hand, can use restriction endonucleases or transposase based assays [50].

Chemical fragmentation does not play a major role in DNA analysis, as it is mostly used

to break long RNA fragments with induced chemical forces [50]. Afterwards, the quality of

the DNA (e.g., DNA concentration, fragmentation efficiency) has to be evaluated [50]. If

the sample is deemed to be of sufficient quality, end repair is performed and it is purified

using AMPure XP beads [50]. Depending on the kit used for library preparation a se-

lection of predefined genomic ranges is performed. One example is the SureSelectQXT

workflow, which uses a capture library that creates DNA library hybrids. These hybrids

can later be captured with streptavidin-coated magnetic beads. Next, adapters are added

through ligation on the 5’ and 3’ end of the DNA fragments, to guarantee that the frag-

ment can bind to the flow cell in the sequencing step [50]. Additional adapters can be

inserted to distinguish multiple samples from each other, this allows sequencing multiple
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samples at once [50]. After another purification step, the library needs to be validated

(e.g., through the Bioanalyzer platform) to assure its quality [50].

1.12.3 Sequencing by Synthesis

Actual sequencing of the DNA can be performed with various technologies. I will focus

on the technology of Illumina since my laboratory mainly uses the Illumina MiSeq, which

utilizes sequencing by synthesis (SBS) [50]. Afterwards, the library is loaded on to a flow

cell [50]. The flow cell contains DNA probes allowing the library to bind through hybridiza-

tion on to the glass [50, 52]. After hybridization the fragment is amplified, resulting in a

clonal cluster [50]. Finally, the sequencing cycles can begin. The flow cell is imaged

repeatedly as the single strands are replicated. Since fluorescently labeled nucleotides

are used, the emission wavelength and intensity can be used to deduce the current base

of every cluster simultaneously [50]. The sequence of DNA bases of a cluster is called a

read, this information is then stored in a text file [50].

1.12.4 Computer Analysis

The generated text file used for downstream in silico analysis is saved in the FASTQ

format, which stores the base sequences together with quality scores for each base [50].

Since the FASTQ files contain quality scores, we can generate a quality control (QC)

report to check for problems in the data before processing and modifying it [50]. If the

QC returns satisfactory results, we can proceed to the next stage. Alignment of the reads

gives us information about the location of the read in the genome. The demonstrated work

uses the Genome Reference Consortium Human Build 38 (GRCh38 or HG38). Sequence

alignment is performed by specialized algorithms that create an index file of the reference

genome for a faster alignment process [50, 53]. One such algorithm is the Burrows-

Wheeler Aligner (BWA) and its derivative BWA-MEM, which is ideal for sequence reads

from the Illumina platform [50, 53]. The alignment algorithm then generates files that

store the starting position of each read as well as mismatches with the reference genome

and some additional quality information [50]. From this information the sequencing depth

and coverage can be calculated. Both terms are only loosely defined and sometimes

used interchangeably in the literature [54]. For the purpose of this work, I have defined

depth for a specific base as the number of reads that include this base. Accordingly, I

have defined coverage as the percentage of bases that have a depth of n. If an exon

consists of 100 base pairs and 80 of them have a depth of 20 or more the exon gets a

coverage of 80%.

1.13 Aims of my Thesis

The aim of this thesis is to acquire a holistic view of endocrine resistance in BC and

present possible ways to predict endocrine resistance. To achieve this, the thesis is built
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on three pillars.

The online platform ViBiBa (short for Virtual Bio Banking)[1] tries to solve the problem of

low positivity rates in liquid biopsy trials. While leveraging the strength of decentralized

processing and storage of CTCs, ViBiBa maintains the advantages of a centralized sam-

ple bank.

The ENDOpanel, established for single cell NGS analysis, tries to get a broader view of

mutations in liquid biopsy samples that could lead to endocrine resistance. It is centered

around the PI3K/AKT/mTOR pathway and aims to cover all exons of 12 genes plus the

whole range of PTEN.

The ESR1 gene sequencing project on CTCs is focused on a simpler NGS approach,

making it financially feasible for a large-scale project. With preselected CTCs (without

hotspot mutations), I search for non-hotspot mutations and analyze them for possible ef-

fects on endocrine resistance.
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2 Material and Methods

2.1 Used Devices

Table 2: Used Devices

Device Manufacturer

Bioanalyzer 2100 Agilent, USA
CellCelector™ ALS, Germany
Celltracks Analyzer II® Menarini Silicon Biosystems, Italy
Celltracks® Autoprep® System Menarini Silicon Biosystems, Italy
Centrifuge: GS-15 Beckman Coulter, USA
Centrifuge: Megafuge 1.0 Heraeus, Germany
Centrifuge: Rotana Hettich, Germany
Centrifuge: RotoFix 32 A Hettich, Germany
Clean Bench Clean Air Products, USA
CO2-Incubator Function Line Heraeus, Germany
Freezing Container: Mr. Frosty Thermo Fisher Scientific™, USA
Microscope: AxioPlan 2 Zeiss, Germany
Microscope: DM IRB Leica, Germany
MiSeq Illumina, USA
Neubauer Counting Chamber Paul Marienfeld, Germany
Orbital Shaker: Köttermann 4010 Köttermann, Germany
Shaking Water Bath: GFL 1083 GFL®, Germany
Thermocycler: Life ECO Bioer, China
Thermocycler: T3000 Biometra, Germany
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2.2 Used Materials

Table 3: Used Materials

Material Manufacturer

Ampli1™ WGA Kit Menarini Silicon Biosystems, Italy
Bioanalyzer: DNA 1000 Kit Agilent, USA
Bioanalyzer: High Sensitivity DNA Kit Agilent, USA
Cell Culture Flask: T-25 Sarstedt, Germany
CellSave® Preservation Tubes Menarini Silicon Biosystems, Italy
CellSearch® Circulating Tumor Cell Kit Menarini Silicon Biosystems, Italy
Fetal Bovine Serum Thermo Fisher Scientific™, USA
HEPES Thermo Fisher Scientific™, USA
KAPA2G Fast Multiplex Mix Roche, Switzerland
Medium: RPMI 1640 Thermo Fisher Scientific™, USA
Microscope Slide Paul Marienfeld, Germany
Multiplicom MID Dx Agilent, USA
Penicillin/Streptomycin Thermo Fisher Scientific™, USA
Pipette: Eppendorf Eppendorf, Germany
Pipette: Stripette™ Thermo Fisher Scientific™, USA
Reaction Vessle: Safe-Lock Eppendorf Eppendorf, Germany
SureSelectQXT Agilent, USA

2.3 ViBiBa

2.3.1 User Interface

ViBiBa is designed with the CSS framework bootstrap (under MIT license) and some ad-

ditional plugins, which are also mainly under the MIT license. After the user has logged in,

the main application can be accessed. Login is possible through a classic user/password

method or through a single sign-on (SSO) module. The UI (user interface) of the main

application is divided into multiple sections. On the top, a static header displays the latest

notifications and shows the name of the current user. A menu on the left side allows the

user to navigate through the application. The site-specific content is displayed on the

right-hand side, which is subdivided as well. [1]

2.3.2 Basic Structure

ViBiBa utilizes MySQL as a database server and PHP as the back end processing lan-

guage. The default deployment method is via multiple docker containers united through

a docker-compose configuration. This allows the isolation of services and enhances both

maintainability and security [55]. ViBiBa creates a flow of data to transform non-uniform

data from a single laboratory into a common pool of standardized data of all available

samples (Fig. 3, Fig. 4). The data is processed in three steps. At first, raw data from
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Figure 2: ViBiBa: Screenshot with Sample Data
Taken from Asperger, Cieslik et al. [1]

a laboratory is uploaded through the web interface. The uploaded information is called

”input data” and forms a ”source”. Each source can be customized with a plugin script to

allow the laboratory to keep the original formatting of its data, thus increasing autonomy

of participating laboratories. After processing the ”input data” it is saved into a separate

uniform ”source table” with a predefined list of fields (Table 4). Multiple sources then get

merged into a single ”summary table”, which now contains multiple entries per sample,

each contributed by a specific laboratory. Those entries then get merged again to form a

”condensed summary table”, which only contains a single entry per sample. [1]

2.3.3 Organizational Units

Every user is assigned to an organizational unit (OU). An OU can be a laboratory or

any other entity, this naming scheme gives ViBiBa more flexibility when including non-

laboratory entities. The permissions are defined based on the OU membership. [1]

2.3.4 Sources and Inputs

ViBiBa only allows user manipulation at the first layer of data, the source layer. The

upload permissions are defined on a per OU basis, while all OUs can read the content of

every source. File upload is supported as .csv or .xlsx files with the option for excel files
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Figure 3: ViBiBa: Logistics in the DETECT trial program
Schematic of the basic (virtual) logistics between the participating DETECT laboratories. Taken

from Asperger, Cieslik et al. [1]

Table 4: ViBiBa: Exemplary Database Fields

Identification CellSearch Kit Shipment Single Cell Isolation Iso. Cells (Count) Storage

Lab Entry Date CS: Shipment Date of Isolation CD45-/EpCAM+ Serum Aliquots (ml)
Kit ID Determination Done CS: Date CellCelector CD45-/EpCAM- Serumbank (μl)
Patient ID Reason if no Determ. CS: Destination DEPArray CD45+/EpCAM- Box Position
Study Arm Determ. Date CS2: Shipment FACS No Cell Control Comment
[Origin] Time Till Determ. CS2: Date Manual Isolation Other (single cells)

Blood Volume (ml) CS2: Destination Isolated Cell Count
Cell Count EDTA: Shipment Buffer Water
HER2-negativ cells EDTA: Date Buffer PBS
HER2+ Cells + EDTA: Destination Deposition Format
HER2+ Cells ++ Cartr.: Shipment Count Deposition
HER2+ Cells +++ Cartr.: Date
Tumorcell count Cartr.: Destination

Excerpt of the database fields currently used in the DETECT production version of ViBiBa. The

fields are user defined and have to match a column type from Table 5. CS = Cellsave Preservative

Tubes; Cartr. = Cartridge; Iso. = Isolated; Taken from Asperger, Cieslik et al. [1]

with multiple worksheets. If a plugin is enabled and configured, it transforms the data

before saving it into a ”source table”. Otherwise the data is saved directly into the ”source

table”. [1]

2.3.5 Summary Table

The next layer in the data flow is the summary table. Multiple source tables are merged

to create a singular summary table. ViBiBa only allows for a single data entry per OU per

sample, so potentially conflicting data has to be handled. To achieve this ViBiBa assigns

a priority value to each source such that a higher priority source overwrites lower priority

sources. Afterwards a dataset with multiple entries per sample (one per OU) is saved in

the summary table. [1]
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Figure 4: ViBiBa: Architecture
Schematic of the internal data structure and processing. Taken from Asperger, Cieslik et al. [1]

2.3.6 Condensed Summary Table

Lastly, the highest layer in the data flow is the condensed summary table. This table

is mainly used when displaying data to the user. It is generated by merging all entries

for one sample from the summary table. This data transformation differs from the rest,

because data has to be consolidated into a single entry. To achieve this, ViBiBa follows

certain rules depending on the field type (Table 5). [1]
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Table 5: ViBiBa: Column Data Types

Type Behaviour on Condensation Example
OU 1 OU 2 OU 3 Condensed

Numeric Addition 2 5 1 8

Numeric
[multi-
dimensional]

Addition of the matching di-
mensions, afterwards concate-
nated to string

2/7/1 0/0/3 1/1/5 3/8/9

Boolean ”TRUE” if at least one entry
states ”TRUE”

FALSE TRUE FALSE TRUE

String/Text Concatenation of strings
[except identical entries]

”Text A” ”Text B” ”Text A” ”Text A, Text B”

Every column is assigned to a special type. Depending on the type the fields are treated differ-

ently while being processed. Taken from Asperger, Cieslik et al. [1]

2.4 Patients and Cells

2.4.1 ENDOpanel

The ENDOpanel was tested with spiked-in T47D cells, which were initially purchased from

ATCC (USA). As described previously by Asperger et al. [56]: ”Cells were maintained

in RPMI 1640 medium supplemented with 10% (v/v) fetal bovine serum, 100 units/mL

penicillin/streptomycin and 0.025 mol/L HEPES in a humidified incubator at 37°C with

5% CO2. Cells (passage number ≤ 25) were authenticated regularly by Microsynth AG

(Balgach, Switzerland) using STRS analysis. The last authentication was performed on

May 22, 2018.” Further, the subsequent processing is identical to the CTC detection and

isolation pipeline of the ESR1 sequencing project.

2.4.2 Estrogen Receptor Alpha Sequencing

Twenty-five patients with MBC, who had a PT of luminal subtype, were analyzed. The

cohort (HER2/neu-negative MBC; CTC-positive) was selected from the DETECT III (NCT

01619111) and DETECT IV (NCT 02035813) trials [57]. ”All patients gave their informed

consent for the use of their blood samples for CTC analysis and for translational research

projects. Patients’ characteristics were anonymized by using sample identifiers (ethical

approval MC-531 and MC-LKP-668).” [40]

A summary of the clinical patient data is shown in Table 6. Only patients without

ESR1-hotspot mutations were included. Prior sequencing of CTCs was performed in a

partnering laboratory.

2.5 Literature and Database Review

All mutations found in the ESR1 sequencing project were systematically reviewed. Pubmed

and Google Scholar were used to find literature while COSMIC, ClinVar and dbSNP were

utilized for database review. Search terms included mutation with three-letter codes, mu-

tation with one-letter code, position of the amino acid plus the terms ”ESR1”, ”ERα” or

”Estrogen Receptor Alpha”.
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Table 6: Clinical Patient Data (n = 25)

Tumor Size (TNM) Tumor staging
T1 3 I 1
T2 11 II 3
T3 7 III 6
T4 2 IV 6
TX 2 NA 9
Nodal Status (TNM) Age
N0 8 Mean 61.93
N+ 15 Minimum 42
NX 2 Maximum 89
Metastasis Status (TNM)
M0 15
M1 6
MX 4

The eighth edition of UICC TNM classification was used.

2.6 CTC Detection and Processing

2.6.1 Enrichment and Enumeration of CTCs

Patient samples were collected with CellSave Preservative Tubes and initially processed

in one of the participating DETECT laboratories within 96 hours. The CellSearch System

was used for enrichment and enumeration of CTCs. Utilizing the CellTracks AutoPrep

System with the CellSearch Circulating Tumor Cell Kit, a ferrofluid-based capture was

performed. This step is based on a ferrofluid containing antibodies against the epithelial

cell adhesion molecule (EpCAM), which is a transmembrane protein typically found on

epithelial cells. Next, automatic cell labeling was performed with three immunofluorescent

stainings: intracellular cytokeratins (CKs), 4’,6-diamidino-2-phenylindole (DAPI) as well

as CD45. CK is used to identify CTCs, while DAPI allows to check the nuclear integrity

and CD45 enables the exclusion of leukocytes [23]. Finally, the enriched samples were

transferred onto glass slides.

2.6.2 Isolation of CTCs and Other Single Cells

For the isolation of single cells the CellCelector was utilized, which is a combination of

an inverted fluorescence microscope and an automated microfluidic cell picking robot

[58]. The robotic arm transfers single cells via single-use high-precision glass capillar-

ies into separate tubes. Live imaging allows for immediate transfer control. To prevent

contamination the ALS Incubator FlowBox was used, which provides a stable and clean

environment around the CellCelector.
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2.6.3 Whole Genome Amplification

Before downstream analysis can be performed, the genomic DNA needs to be amplified.

To achieve this the Ampli1 WGA kit was used according to the manufacturer’s protocol.

The manufacturer rates the kit suitable for a ”balanced and complete amplification of the

total DNA content of a single cell” [59] and deems it suitable for SNP and CNA analysis.

Quality control was performed with the Ampli1 QC Kit, which consists of a PCR and the

subsequent analysis of bands through gel electrophoresis. The PCR is a multiplex PCR

with four markers, one of them is a primer for the KRAS fragment and the other three

are primers for three long MSE1 fragments [60]. This allows to calculate the proprietary

genome integrity index (GII) [60]. The GII is calculated by essentially counting the visible

bands on the gel. When no band is visible, the GII is denoted as zero. If only the KRAS

fragment is visible, a GII of one is achieved. A GII of two requires that one of the three

long MSE1 fragments is visible, while a GII of three requires that two of the three long

MSE1 fragments are detected [60]. Finally, a GII of four indicates that all three long MSE1

fragments are visible [60]. Cells with a GII of less than two were discarded.

2.6.4 Spike-In Experiment

The single cell workflow was validated with T47D cells (a breast cancer cell line) spiked

into donor blood. Afterwards, the blood was processed by the CellSearch for CTC en-

richment and labeling. Next, the cells were isolated with the CellCelector and the Ampli1

WGA and QC Kit used for whole genome amplification. Further, an ESR1 multiplex PCR

was performed to validate the existence of the spiked-in cells in the healthy blood. Finally,

the workflow was repeated multiple times with new T47D cells to perform the ENDOpanel.

2.6.5 ESR1 Sequencing

ESR1 DNA fragments were amplified and barcoded utilizing a multiplex PCR and se-

quenced using the Illumina MiSeq System as described previously [40]. In essence the

WGA product underwent a PCR with ESR1 specific primers. Afterwards, the PCR prod-

uct was processed in a second PCR, which applied sample-specific barcodes through

barcoding primers onto the DNA to allow the MiSeq to distinguish the samples. In a final

step, the samples were pooled and loaded onto the MiSeq sequencing platform.

2.6.6 NGS Library Preparation

The Agilent SureSelectQXT kit was utilized according to the manufacture’s protocol with

a custom library containing all exons from 12 genes (in alphabetical order: AKT1, AKT2,

EIF4EBP1, ERBB2, ESR1, INPP4B, MTOR, PDL1, PDL2, PIK3CA, PIK3CB, RPS6KB1)

and the complete range of PTEN. During the workflow, the samples were purified multiple

times utilizing AMPure XP beads. For the experiment described in section 3.2.6 the

recommended AMPure XP beads to DNA ratio was increased from 1:1 to 4:1.
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2.6.7 Fragment Detection

For quality control, the fragment distribution during library preparation was detected with

the Agilent 2100 Bioanalyzer. The distribution was detected twice: Once after MSE1

fragmentation and tagmentation using the Bioanalyzer DNA 1000 analysis kit. Once

more after hybridization, capture and indexing using the Agilent Bioanalyzer DNA High

Sensitivity kit.

2.7 In Silico Processing

Most tools described in this section were utilized using their respective version from Bio-

conda or the galaxy platform [61, 62].

2.7.1 Mapping and Variant Calling

For the following analysis, the human reference genome 38 (hg38) was used for genetic

mapping. Reads were aligned to hg38 with BWA-MEM (0.7.17.1) [53]. Mutations in the

aligned sequences were called using VarScan 2 [63] and annotated using SNPeff (Galaxy

Version 4.3) [62, 64]. The reference protein sequence used for ERα (unless stated other-

wise) is NP 000116.2. Sequence data was obtained from NCBI [65]. Statistical analysis

was performed using R [66].

2.7.2 Coverage Calculations With the Custom CoverageReporter

Coverage was calculated by generating a pileup file with SAMtools (1.13) [67] and sub-

sequent calculations with custom R scripts (CoverageReporter). The CoverageReporter

received genomic start and end positions of the target (e.g., exon or restriction enzyme

fragment) together with the pileup file as input. By iterating through each target area, the

CoverageReporter creates multiple output files. One file contains the mean coverage per

target:
end∑

i=start
coveragei

end− start+ 1

Another output file contains the ratio of positions above certain cutoffs per target:

end∑
i=start

g(i)

end− start+ 1

with g(i) as:

g(i) =

⎧⎨
⎩

0 coveragei < cutoff

1 coveragei ≥ cutoff
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2.7.3 Virtual Reconstruction of Restriction Enzyme Fragments

To determine the impact of DNA fragmentation during WGA on the coverage of the EN-

DOpanel, a virtual reconstruction of the restriction enzyme fragments was required. For

this purpose I programmed a custom R tool, which receives genomic ranges of targets

as input and outputs the genomic ranges of the fragments. In this case the restriction

enzyme is MSE1 and the targets are the exons of the ENDOpanel. The input is format-

ted as a .bed file, which consists of three required columns (chromosome, start and end

position) plus the name and strand orientation of the exon. After obtaining the reference

genome (hg38) and loading the .bed file containing the exon positions, the tool will iterate

through every exon and apply the fragment coordinates function.

The fragment coordinates function will extract the reference sequence for the given

genomic range and search for the given recognition pattern of the restriction enzyme,

creating a vector of points at which the DNA will be cut, this vector can be empty if no

recognition pattern is found inside the target area. Since in most cases, the first and

last fragment will begin or end outside of the target area, the function then searches the

first occurrence of the recognition pattern outside of the target area. These two points are

appended to the beginning and end of the points vector. Finally, the fragment coordinates

function ends by returning the points vector.

Afterwards, the points vector is converted by the fragment dataframe function into a

data frame. Each row in the new data frame contains information about one fragment with

chromosome, start/end position and name of the fragment. The name of the fragment

is generated automatically from gene and exon name followed by an ascending number

starting at zero. After each iteration, the fragment data frames are merged together.

When the loop is completed, the fragment lengths are calculated and a fragment ID

(based on fragment start and end position) is generated.

Next are two optional phases: deduplication and overhang cutting. Deduplication

is performed by removing all entries with the same fragment ID. A duplicate entry can

occur due to one fragment spanning more than one exon. Overhang cutting will trim the

fragment boundaries to align them with the genomic ranges of the exons. This step is

necessary as the coverage of a fragment can only be accessed inside the region that is

covered by the ENDOpanel. Finally, the resulting data frame is saved as a .csv file.

2.7.4 ESR1 Hotspots and Potential Damage Map

For visualization of the distribution of previously described ESR1 mutations various stud-

ies [68–75] were aggregated using cBioPortal [76, 77]. Next, a lollipop diagram was

created, illustrating the number of mutations per amino acid together with an overlay of

functional domains and other characteristics of ESR1 [76, 77]. To create the potential

impact heatmap (as seen in Fig. 17), every position from the FASTA reference sequence

was extracted. A file containing every possible amino acid exchange was then created

using a custom R Script. The variant list was then processed in batch by PolyPhen2 [78].
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Table 7: Tunnel Profile Overview

ID max. bottleneck radius [Å] avg. length [Å] avg. curvature avg. throughput

1 1.07 23.83 1.43 0.54

2 1.03 12.37 1.21 0.53

3 1.01 22.10 1.71 0.44

4 0.92 13.56 1.23 0.42

5 0.92 17.52 1.36 0.40
Tunnels analyzed in ERα. Tunnels with an average throughput of less than 0.4 were discarded.

The amino acid exchanges and their predicted effect were plotted with ggplot2 [79].

2.7.5 Structure Files

The reference 3D models were obtained from the Protein Data Bank (PDB) [80] under

the accession number 1QKU [81], 2R6Y [82] and 3ERT [38]. Mutant structures were

created with ChimeraX [83] using the Dunbrack rotamere library [84]. Structure files for

estradiol (DB00783), tamoxifen (DB00675), 4-hydroxytamoxifen (DB04468) and ralox-

ifene (DB00481) were obtained from drugbank.ca [85].

2.7.6 Ligand Tunnel Analysis

Tunnel analysis was performed via CAVER Analyst 2.0 [86] and CAVER Web 1.0 [47].

Analysis of the ligand transport was performed with CaverDock [87]. Bound ligands were

removed in the 3D models to enable unobstructed path finding into the LBD. Ligand tun-

nels calculated for the wild type (1QKU) are shown in Table 7, subsequent analysis was

performed on tunnel 1. Calculations on mutated structures of 1QKU were done on the

same tunnel based on location, since the tunnel numeration is based on the estimated

throughput the nomenclature could change when a mutation affects the selected tunnel.

A longitudinal section through the tunnel was obtained and the profile of the tunnel in the

wild type and R394S mutant structure overlaid. Transport analysis was performed with

estradiol, 4-hydroxytamoxifen and raloxifene. Ligand binding forces were calculated from

the outside to the inside (LBD) of the tunnel, a distance of 0Å denotes the outside edge

of the tunnel. CAVER Web 1.0 can estimate two energy profiles by calculating upper-

and lower-bound trajectories [47]. The lower-bound trajectory is generated by convert-

ing the tunnel in a set of consequent discs and calculating the ligand binding forces at

each of these discs [47, 87]. However, this approach can lead to a ”flip” of the ligand,

as the discs may skip over bottlenecks [47, 87]. On the other hand, upper-bound trajec-

tories are generated as a contiguous trajectory where each calculation depends on the

results of the previous disc [47, 87]. Since initial calculations of upper- and lower-bound

forces showed no major discrepancies in the WT, subsequent calculations only included

lower-bound values, as computational cost increases exponentially with upper-bound tra-

jectories while a ”flip” of the ligand is unlikely in this case.
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2.7.7 Receptor-Ligand Forces, Bonds and Predicted Structural Changes

For calculation of the receptor-ligand forces, BIOVIA Discovery Studio was used. The

structure files were obtained from PDB as described above. The change in polarity is

based on the hydropathy index [88].
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3 Results

3.1 ViBiBa

3.1.1 Declaration on Own Contribution

ViBiBa was developed in collaboration with Hannah Asperger. We share the first au-

thorship in the peer-reviewed publication about ViBiBa [1]. The workload for software

development, project planning and manuscript writing was equally distributed between

us.

The source code can be accessed online: https://github.com/asperciesl/vibiba

3.1.2 Definition of Requirements

The work on ViBiBa began after a literature and web review as the DETECT trial group

was searching for a viable solution for its decentralized sample management. A catalog of

requirements was created for an ideal software. First of all, the software should be able to

merge sample databases together. Additionally, an overview of all available material per

patient or per sample (when it is shipped between laboratories) should be generated. The

ideal software should be able to perform the data transformation gracefully, e.g., allowing

different upload formats and adjustments for laboratory-specific variants in notation. One

real-life example is the notation of the sample identifier, e.g., the DETECT III kit with the ID

5000 can be written as DIII-5000, DETECT3-5000 or any other combination with different

characters between the trial arm and ID (e.g., a space instead of a dash). This would

require some kind of plugin support that allows to customize the upload process for each

input file. In terms of security, there should be a right management system to control the

data editing permissions. From a data protection perspective, the application should be

self-hosted and, if possible, published as open source to allow for code inspection and

adjustments. [1]

3.1.3 Design of ViBiBa’s Functionality

ViBiBa is split into multiple modules, each built to process different user requests (Fig. 5).

The user is mainly interested in the overview of samples and the detail view of individual

specimens, which are read from the summary tables. To get to this point ViBiBa must first

generate the data. Through the data insertion module, the user can upload new data,

which is later processed in the core module of ViBiBa. One of the main goals during

development was the seamless experience of browsing through ViBiBa. The user should

not notice that different tables are required to process a request and always receive a

readable output. [1]
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Figure 5: ViBiBa: Workflow of Selected Processes
The data flow when retrieving and manipulating information in ViBiBa.

Taken from Asperger, Cieslik et al. [1]

3.1.4 Exploring Data

After logging in, the user is greeted with the main overview of ViBiBa. Mainly, the ”con-

densed summary table” is fetched and output to the user. This data shows one entry per

sample. Each sample can be expanded into a detailed view, which is then fetched from

the ”summary table” and displays one entry per OU that has information on the selected

sample. Allowing to identify where parts of the sample are stored and trace where down-

stream analysis has already been performed. The displayed data can be downloaded,

e.g., as an excel file. However, ViBiBa does not store the detailed results of downstream

analysis (e.g., sequencing data) to maintain the autonomy of the participating laborato-

ries. [1]

3.1.5 Searching Samples

A more advanced query can be performed using the ViBiBa basic or advanced search.

The search form allows to select the fields of interest and create a custom filter with math-

ematical operators (<,>,=). When more than one filter is created, they are automatically

linked via an AND operation. After the search query is submitted, ViBiBa retrieves all

matching results from the ”condensed summary table”. The results can be downloaded

similarly to the process already mentioned. Further, the user can also put all or some

samples from the search results onto the wish list, a function described below. [1]

3.1.6 Requesting Physical Samples

Multicenter trials with decentralized sample storage make translational experiments harder,

as samples need to be exchanged between laboratories to study a cohort of interest.
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ViBiBa has a sample ordering module to facilitate easier sample exchange. Users can

put a specimen on a ”wish list” at the click of a button, which is similar to the shopping

cart on modern internet stores. After selecting all desired samples, the user can go to

the ”check out” process where a priority and comment may be added. Lastly, the request

can be submitted. This request can be approved automatically or a board of people can

be notified to decide on the request. The option to regulate the flow of samples can be

important to protect valuable samples of specific subgroups of patients. After approval of

the request, the participating laboratories that store parts of the requested specimen are

notified by email and they can see a list of requested samples together with the comment

of the requesting user and a shipping address. [1]

3.1.7 Automatic Flagging

As mentioned previously, ViBiBa tries to improve the creation of viable cohorts for trans-

lational research. ViBiBa supports custom filters that automatically assign a sample to a

specific cohort. The filtered samples will be marked by a flag icon and a description of

the cohort. As during most single cell analyses the cell is destroyed in the process, this

will help to preserve valuable specimens. [1]

3.1.8 Harmonization

ViBiBa allows for a greater comparability between laboratories by harmonization of data

and enforcing standardized notation. This is more than just a side effect of the database,

as the active processing of various data sources paves the way to a common standard-

ized dataset in the trial group. Most traditional values like clinical blood parameters or

date/time values are already highly standardized. In contrast, the notation and storage of

WGA QC data is not standardized and every laboratory utilizes a different data storage

approach. As mentioned before, ViBiBa deploys custom plugin scripts for its data sources

to create a standardized dataset.

3.1.9 Administration

Right management is one of the key features of ViBiBa. Write permissions are assigned

on a per-OU basis to restrict data modification to the dataset contributed by the OU.

To increase transparency, all data sources can be viewed by every user in ”read only”

mode. While a dedicated administrative interface is currently under development, the

default way of managing ViBiBa is via a direct interaction with the MySQL database.

The MySQL tables are commented and changes on configuration tables like the ”field

list” (specifying all available columns and their properties) are automatically propagated

to the auto-generated tables like the summary tables. ViBiBa allows the deployment of

multiple separated databases, which makes it possible to share server resources and only

requires one set of login credentials per user for an unlimited number of databases/trials.
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The default docker configuration comes with a bundled phpMyAdmin instance to allow the

administrators an easy initial overview over the internal MySQL structure. For production

deployment the phpMyAdmin instance is disabled for security reasons, to prevent access

to the database with the default credentials through a browser.

3.1.10 Data Protection

At the moment ViBiBa is designed to only store information about biological specimens

with a patient and sample ID without attached clinical data about the patient. This design

choice is intentional as data security for potential patient identifying data is much stricter.

To comply with general data protection regulations, ViBiBa eliminates all patient data ex-

cept for the pseudonymized ID. In future updates inclusion of patient data is planned, but

an assessment of the required data security has to be performed first. As mentioned in

the methods section, ViBiBa’s default deployment method is via docker containers, which

allows a separation of the application services and the host environment. As ViBiBa is an

open source software, the deployment methods are not restricted and together with the

SSO capabilities they enable a modern security approach. The default installation uses

only the default HTTP protocol without SSL security, as it is expected that the end user

deploys own certificates with a reverse proxy like NGINX or other solutions which then

encrypt the web traffic.
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3.2 ENDOpanel

3.2.1 Overall Coverage

To validate if the ENDOpanel covers the expected genomic ranges, the coverage per

position had to be calculated. The required depth for the subsequent analysis was set

to ≥ 10 reads. Other authors describe a reliable SNP detection above a coverage of

four to six reads [89, 90], but as this work focuses on single cell analysis, a higher depth

was chosen to be less susceptible to artifacts. As seen in Fig. 6, the ENDOpanel covers

74% of positions with a depth of ≥ 10 reads. Further analysis was required to validate

if all known cancer hotspots are covered and to generate a hypothesis for the missing

coverage.

3.2.2 Coverage per Exon

To get a better understanding of the regions with a worse coverage, I calculated the

mean coverage per exon. 166 of 220 (75%) observed exons displayed a coverage of

≥ 50% (Fig. 7 a), while 12 exons were not covered at all. There is a direct positive

relationship between exon length and coverage (Spearman’s rank correlation: ρ = 0.33,

p < 0.001). This indicates that longer exons have a higher probability to get good

coverage. There is a drop of coverage for exons that are shorter than 60 bp, dropping

from 73% above 60 bp to 48% (Fig. 7 b).
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Figure 6: ENDOpanel Overview
a) Coverage report b) Gene and exon coverage heatmap
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ρ = 0.33, p = 4.3e−07
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Figure 7: Exon Length Analysis
a) Correlation of exon length and coverage (depth ≥ 10 reads)

b) Coverage (depth ≥ 10 reads) of exon length bins

3.2.3 Coverage of Known Mutational Hotspots
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Figure 8: Panel Coverage of Known
SNP Hotspots (Depth ≥ 10)

To validate the ENDOpanel for real world us-

age, I calculated the coverage of already

known SNP hotspots [91]. The method counts

a hotspot as covered when a depth of at least

10 reads is reached. In total, 256 genomic po-

sitions were observed (one SNP hotspot can

include up to three genomic positions) (Fig. 8).

A total of 88% of known hotspots are covered

at least once in the six tested samples, while

only 30% of hotspots were covered in all tested

samples. The genomic hotspot positions not

covered at all were mainly on the first exon of

PIK3CA and the first exon of ESR1.

3.2.4 Coverage per MSE1 Fragment

As the DNA of the CTCs was amplified using the Ampli1 WGA Kit, it is enzymatically

fragmented by the MSE1 restriction enzyme. MSE1 has the DNA recognition pattern

5’-TTAA-3’. Since the recognition pattern is not distributed equally, fragments of different

sizes are created. One hypothesis is that the coverage of the ENDOpanel is associated

with the size of the MSE1 fragments. Subsequently, the mean coverage per MSE1 frag-

ment was calculated. 185 of 287 (64%) observed MSE1 fragments displayed a coverage

of ≥ 50% (Fig. 9 a). 19 MSE1 fragments were not covered at all. Spearman’s rank
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correlation shows a positive relationship between MSE1 fragment length and coverage

(ρ = 0.37, p < 0.001). Longer fragments thus have a significantly higher probability to get

good coverage. Fragments below 150 bp show a steep drop in coverage from 71% to

45% (Fig. 9 b).

3.2.5 Exon and MSE1 Fragment Length

ρ = 0.024, p = 0.68
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Figure 11: Exon Length Against
MSE1 Fragment Length

Both exon length and the length of MSE1

fragments correlate with coverage of the EN-

DOpanel. Next, a possible confounding of

the two variables needs to be checked. The

distribution of the exon lengths resembles a

Gaussian bell curve (Fig. 10 a). In con-

trast, the MSE1 fragment lengths accumulate

at the lower end with a long trail, resembling

an inverse or reciprocal function (Fig. 10 b).

Subsequently, a Spearman correlation con-

taining every MSE1 fragment with its length

and the length of the associated exon length

was calculated. Spearman correlation does

not show a significant relationship (Fig. 11

ρ = 0.024, p = 0.68).

ρ = 0.37, p = 8.1e−11
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Figure 9: MSE1 Fragment Analysis
a) Correlation of MSE1 fragment length and the coverage (depth ≥ 10 reads)

b) Coverage (depth ≥ 10 reads) of MSE1 fragment length bins
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Figure 10: Exon and MSE1 Fragment Histograms
a) Histogram of exon length b) Histogram of MSE1 fragment length

3.2.6 Increasing Magnetic Beads Volume During DNA Purification

Another hypothesis is that the coverage of short fragments depends on the amount of

AMPure XP beads used during the purification steps. At first, I purified a DNA ladder with

different ratios of AMPure XP beads. Afterwards, the purified sample was analyzed with

the Agilent Bioanalyzer using the DNA 1000 analysis kit as described in the methods

section. As the beads to DNA ratio increased, shorter fragments were captured more

often (Fig. 12). To further test the hypothesis, the manufacturer’s protocol was altered

to compare the original 1:1 beads to DNA ratio with a 4:1 ratio. The following compar-

1:1 (Beads:DNA) 2:1 (Beads:DNA)

3:1 (Beads:DNA) 4:1 (Beads:DNA)

Figure 12: Fragment Recovery with Different AMPure XP Beads to DNA Ratios
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ison was performed using three samples. During the two quality control steps (on the

Bioanalyzer platform) shorter fragments were detected more often in the batch with the

4:1 ratio (Fig. 13 a,b). In contrast, the total DNA amount was not significantly altered af-

ter tagmentation (Fig. 13 a). Further, the DNA amount was significantly decreased after

the hybridization, capture and indexing steps (Fig. 13 b; p < 0.05). After sequencing,

the coverage per MSE1 fragment was significantly lower than in the matched samples

(Fig. 13 c). While the first synthetic comparisons demonstrated a theoretical benefit of

a higher beads to DNA ratio (Fig. 12), this could not be reproduced in the real work-

flow (Fig. 13 c).
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Figure 13: ENDOpanel Performance with Different AMPure XP Beads to DNA
Ratios

a) Fragment size distribution after tagmentation b) Fragment size distribution after capture

c) Correlation of MSE1 fragment length and coverage (depth ≥ 20 reads)
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3.3 Estrogen Receptor Alpha Sequencing

3.3.1 Patient Characteristics

In this study the ESR1 mutation status of CTCs (enriched via CellSearch and isolated with

the CellCelector) obtained from the blood of 25 MBC patients was analyzed. PTs of all

patients enrolled in this study were ER positive. All of them received endocrine therapy:

76% of the patients were treated with an AI or SERM, 24% of the patients received

GnRH analogs. CellSearch analysis of blood samples revealed CTC counts between 2

and approximately 517 CTCs per 7.5 ml of blood. The median CTC count per 7.5 ml of

blood was 43. The characteristics of the patient cohort can be found as described in the

methods sections (Table 6).

3.3.2 CTC Count Correlates With ESR1 Mutational Burden

As it is already known that the CTC count correlates with the clinical outcome, it is spec-

ulated that an increased CTC count would also increase the ratio of ESR1-mutant CTCs,

as this could potentially lead to endocrine resistance. Since not all CTCs collected from

the cohort were sequenced (as some patients exhibited more than 500 CTCs), the ra-

tio of ESR1-mutant CTCs that were sequenced per patient was determined (Fig. 14).

Subsequently, I correlated the CTC count from the CellSearch with the ESR1 muta-

tional burden on the analyzed CTCs. A positive correlation (Spearman’s rank correlation:

ρ = 0.52, p < 0.01) between measured CTC count and ratio of ESR1-mutant CTCs could

be shown (Fig. 14).

ρ = 0.62, p = 0.0013
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Figure 14: CTC Count against CTC ESR1 Mutational Burden
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Table 8: ESR1 Mutations, Literature Review & Amino Acid Characteristics

Wild Type Mutant
Polarity Hydropathy I. Polarity Hydropathy I.

M176I Nonpolar 1.9 Nonpolar 4.5

Y195H Polar -1.3 Basic polar -3.2

C205R [92] Nonpolar 2.5 Basic polar -4.5

P222Q [93] Nonpolar -1.6 Polar -3.5

L242I [94] Nonpolar 3.8 Nonpolar 4.5

M250I [95] Nonpolar 1.9 Nonpolar 4.5

S294R [96] Polar -0.8 Basic polar -4.5

A307D [97] Nonpolar 1.8 Acidic polar -3.5

H356Y [98] Basic polar -3.2 Polar -1.3

Q375K Polar -3.5 Basic polar -3.9

W383R [95] Nonpolar -0.9 Basic polar -4.5

R394S [99–103] Basic polar -4.5 Polar -0.8

K492R Basic polar -3.9 Basic polar -4.5

M528T [95] Nonpolar 1.9 Polar -0.7

Q565R [95] Polar -3.5 Basic polar -4.5

L568F Nonpolar 3.8 Nonpolar 2.8

A593S [104] Nonpolar 1.8 Polar -0.8
Detected ESR1 mutations present on at least one CTC, but not in germline.

Hydropathy Index: A positive value indicates a hydrophobic amino acid [88]

3.3.3 (Novel) ESR1 Mutations on CTCs

The isolated CTCs’ genomic DNA was amplified via Ampli1 WGA and sequenced with a

previously validated approach by Franken et al. [40]. I successfully identified 17 different

somatic ESR1 SNPs (not present in germline) in 10 patients (Fig. 15 & Table 8). Twenty-

one CTCs harbored ESR1 mutations; One SNP (H356Y) could be detected in two pa-

tients in a total of five CTCs. Two mutations (R394S and W383R) affected ”critical amino

acids” involved in ligand binding [105]. Additionally, R394 is involved in a hydrogen bond

between ERα and its ligand estradiol. To determine the functional relevance of the point

mutations I performed a literature and database review (e.g., through COSMIC [106]). I

included direct matches (identical amino acid exchange) and indirect matches (same po-

sition in the amino acid sequence but different or no amino acid exchange). Additionally,

I included matches from non-breast cancer patients in the review. In four cases I found a

direct match (M250I, S294R, W383R, R394S); in eight cases only indirect matches were

found (C205R, P222Q, L242I, A307D, H356Y, M528T, Q565R, A593S). In a total of five

mutations, I could not find any previous mention of the point mutation (M176I, Y195H,

Q375K, K492R, L568F; last review July 2021). As seen in Fig. 16, ESR1 does not seem

to have a broader clustered region of higher mutational burden. Instead, a few already

known oncogenic mutations create singular peaks while the rest of the SNPs are evenly

scattered throughout the gene. To better visualize potential areas of interest, I created

an ERα mutation impact map and highlighted mutations detected in the study (Fig. 17).
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The mutations detected in the cohort seem to follow the clusters of ”probably damag-

ing” regions in ERα. Partly, those regions coincide with the zinc finger domain and the

hormone-binding region.

3.3.4 R394S May Alter ERα LBD Cavity

After initial evaluation of the found mutations, I selected some for further in silico analysis

to demonstrate a possible impact on endocrine resistance. In this step, I focused on the

amino acid exchange R394S (arginine to serine). This SNP was found in a CTC from a

patient who was previously treated with tamoxifen and subsequently with an AI. To bet-

ter illustrate the possible effects of the amino acid exchange, I created a hydrogen bond

analysis of ERα in complex with estradiol. The residue R394 creates a hydrogen bond

with the estrogen ligand (as previously described) (Fig. 18 a). This hydrogen bond does

not exist in the R394S mutant (not shown). Further, I theorized that the residue may be

involved in the ligand transport into the buried LBD of ERα. To examine this hypothesis, I

calculated possible ligand tunnels (Table 7). Subsequent tunnel analysis was performed

on the tunnel with the highest throughput. Next, I created a plot of the diameter of the tun-

nel to detect possible bottlenecks that may change with residue mutation (Fig. 18 b). In

comparison to the wild type, the R394S mutant displays a wider tunnel with a bottleneck

radius of 2 Å instead of 1 Å (Fig. 18 b). To better visualize the difference of the SNP on

the profile of the tunnel, I created a virtual cross section through the tunnel at the position

of residue R394 (Fig. 18 c). In this figure one can observe the impact of the amino acid

exchange on position 394 as the tunnel widens (Fig. 18 c). Finally, I computed a ligand

transport analysis for estradiol, 4-hydroxytamoxifen (the active metabolite of tamoxifen)

and raloxifene with the wild type and R394S-mutant ERα structure (Fig. 18 d). The ser-

ine residue reduces the calculated energy that is required for estradiol to traverse the

tunnel from 44.2 kcal/mol to 3.4 kcal/mol. Similarly, the peak energy for the transport of

tamoxifen is reduced from 48.2 kcal/mol to 15.1 kcal/mol. This means that in comparison,

the required energy for estradiol is reduced by a factor of 13 while the energy barrier for

tamoxifen is only reduced by a factor of 3.2. Additionally, SERMs are known to traverse

through a different tunnel, which allows them to exert their inhibitory effect on helix 12 of

ERα [38].
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Figure 15: 3D Structure of ERα with Mutational Annotations
Mutated residues found in the cohort are colored in purple.

The ligand (estradiol) is colored in red.
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Figure 18: ESR1 R394S Computational Analysis
a) Interaction diagram of ERα in complex with estradiol. b) Longitudinal section profile of a ligand

tunnel in WT and mutant ERα c) Cross section profile of a ligand tunnel in WT and mutant ERα

d) Ligand transport analysis for estradiol, 4-hydroxytamoxifen and raloxifene in WT and mutant

ERα
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3.3.5 W383R, M528T May Alter Tamoxifen Interaction With ERα

While evaluating the 3D positioning of W383 and M528, I found that both mutations are

positioned around the ”tail” of bound 4-hydroxytamoxifen in crystallization studies (see

Fig. 19 a,b). Since this part of 4-hydroxytamoxifen is of special interest, as it confers

the selective inhibiting effect of tamoxifen on ERα, I further investigated these two SNPs.

In both cases, the amino acid exchange introduced a polar amino acid into the protein,

implying an additional positive charge in physiologic pH. Tamoxifen has a formal neutral

charge but the active metabolite 4-hydroxytamoxifen is predicted to have a positive charge

of one at physiological pH levels (Fig. 19 c). It can be speculated that the subsequent

change in forces alters the interaction of tamoxifen with ERα, as the effect of tamoxifen

is described to heavily rely on the physical obstruction of helix 12 [38]. Furthermore,

I calculated receptor-ligand forces using BIOVIA Discovery Studio, as described in the

methods section above. I found that in the wild type protein neither W383 nor M528 exert

a force on tamoxifen, which is unsurprising as both amino acids are nonpolar.

(a) (b)

(c)

Figure 19: ESR1 W383 Computational Analysis
a) ERα in complex with 4-hydroxytamoxifen: Interaction Diagram

b) 3D structure of ERα in complex with 4-hydroxytamoxifen - colored in purple are two mutant

residues in the cohort

c) Calculated charge of 4-hydroxytamoxifen. Indicating a positive charge under physiologic con-

ditions [107].
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4 Discussion

4.1 The Importance of Data Science in Cancer Research

With the advancement of high-throughput technologies like NGS, data science has be-

come an integral part of everyday cancer research. Especially the analysis of single

cells produces immense amounts of data, which requires special tools for thorough anal-

ysis. Sequencing of single cells comes with unique problems, as the loss of data is

more prominent than in bulk sequencing approaches. Not only the type of amplification

(through WGA or lack thereof) influences results of genomic sequencing, but also does

every other downstream step have a great impact on the end result compared with bulk

sequencing with proportionally higher DNA amounts. These biases need to be addressed

with biological and computational means. Although variant calling of SNP in single cells

can be challenging, emerging tools like Monovar take advantage of multiple sequenced

single cells and utilize the additional data by comparing the coverage and minor allele

frequencies between cells thus reducing false positive and negative rates [108]. Another

field made possible by single cell genomic sequencing is phylogenomics which describes

the evolutional tree of cancer cells and brings different samples into relation. Further-

more, studies like the recent multi-parametric analysis from my working group (coau-

thored by me) by Franken et al., evaluate CTC and biopsy specimens and places the

cells into relation. In this study, we utilized the tool Cloe which deduces information about

sub-clones from the frequency of mutations [109, 110]. Studies like ours cast a positive

outlook on the upcoming years, as we could theoretically track the evolution of cancer in

real time and adjust the therapy regimen accordingly. Lähnemann et al. describe eleven

challenges in singe cell data science, a main point is focused on the current difficulties in

phylogenomics [111]. In essence, they point out that big data volumes overwhelm current

algorithms and that different sources (SNP, CNV, ...) of data cannot be reliably combined

into a single model [111].

Another emerging field of cancer research is the investigation and integration of clini-

cal data with high throughput and image data. Platforms like cBioPortal publish significant

amounts of data and make them accessible to every researcher in the world [76]. Fur-

thermore, as electronic patient surveys and modern sensors become more advanced,

the data we can analyze is more diverse than ever before. This leads to data sets of

high dimensionality, which may contain insights to an equally complex disease. The ad-

vent of open science repositories promises to accelerate research in key areas, but it is

too early to know if significant clinical benefit is generated by them. Recently open sci-

ence has received a boost in attention, as open research and exchange of big data sets

became essential during the Covid-19 pandemic and funding for open platforms grew

rapidly [112].
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4.2 ViBiBa

While LB analysis is not new, it is still a challenge to obtain relevant numbers of CTCs

and ctDNA for translational research. Even though CTCs are getting more attention as

possible independent predictors of therapy response, we suffer from limited knowledge

due to low availability. In contrast to classic clinical cancer trials where blood or tissue

specimens are analyzed, CTCs create an increased logistical overhead. The analysis of

CTCs is time-sensitive and requires advanced equipment, which is not readily available

at every clinic. This creates the need to ship patient samples to capable laboratories.

A further hurdle is the low positivity rate in entities like breast cancer, as many patients

do not display CTCs at all or only a low count of CTCs. Translational research on CTCs

requires access to a big pool of CTCs, ideally with multiple samples from the same pa-

tient. Modern CTC trials like DETECT [32] are designed to be decentralized multicenter

studies. In this setting, every specimen is sent to a random laboratory, often separating

samples from the same patient. [1]

While clinically established parameters like CTC count and immunohistochemistry re-

sults are reported directly into clinical trial management systems (CTMS), newer CTC

downstream analysis (that may not be standardized yet) is not centrally reported. This

leads to a loss of data, as none of the participating laboratories knows to which extent

samples are available and in which form these specimens have already been processed.

Previous studies like the European Human Frozen Tumor Tissue Bank (TuBaFrost) [113]

have shown that the adoption of a common database can be hindered by a complex

upload process. Thus ViBiBa tries to minimize the effort a participating laboratory must

undertake to an absolute minimum. The upload procedure of ViBiBa allows for a ”drag

and drop” import of excel or csv files without changing the file structure at all. ViBiBa fa-

cilitates sufficient cohort sizes, which enables translational research like the ENDOpanel

or the ESR1 sequencing project. The functionality of ViBiBa is not limited to multicenter

applications, as recent findings suggest that keeping track of samples is challenging even

in single center studies [114].

ViBiBa is not the first virtual biobanking solution. One predecessor is TuBaFrost from

2006 [115]. While TuBaFrost shares the general idea of decentralized storage, it relies

heavily on standardized data input, which ultimately led to the termination of the project

as participation was low [113]. The European bone tumors network (EuroBoNeT) [113] is

the direct successor to TuBaFrost and broadened the range of stored sample types, but

ultimately did not reach widespread adoption. [1]

ViBiBa fulfills all previously defined requirements for the DETECT trial group. It is

capable of building a standardized database from multiple inhomogeneous data sources,

while making it easy for the user to upload and explore data. Previous applications failed

in the long run due to low adoption rates. In contrast, the experience with ViBiBa in the

DETECT trial group gives a positive outlook, while the long-term adoption still remains to

be seen. Our application tries to avoid known pitfalls by simplifying the process as much

as possible. [1]
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4.3 LB: Perspectives and Recent Advancements

4.3.1 Precision Medicine (LB) Tumor Boards

Molecular tumor boards, also referred to as precision medicine tumor boards, are slowly

getting traction in clinical care. With the approval of targeted therapies, companion di-

agnostic tests in breast cancer and an increase in general complexity of treatment al-

gorithms, a dedicated group of experts is required to decide upon the best care for a

patient. One example is the recently FDA-approved drug alpelisib, a PI3K inhibitor which

can be utilized in combination with fulvestrant in HR-positive HER2-negative patients with

a PIK3CA mutation [116]. This mutation can be detected with the therascreen com-

panion diagnostic kit on genomic DNA from solid tumor tissue or ctDNA [116]. Further

therapies that molecular tumor boards have to consider are PARP inhibitors in patients

with BRCA1/2 mutations, resistance against AI in ESR1 mutant patients and PD-1 in-

hibitor pembrolizumab in patients with microsatellite instability [117]. Such molecular

tumor boards can extend regular breast cancer tumor boards which mainly consist of

gynecologists, oncologists, pathologists and radiologists. Additional positions in preci-

sion medicine tumor boards include bioinformaticians, genetic counselors and molecular

pathologists [117]. A molecular tumor board described by Sultova et al. ordered NGS

tests on all 95 patients included in the tumor board and performed NGS analysis more

than once on four patients [117]. In this population Sultova et al. found 41 patients with

actionable mutations and recommended 15 diagnostic tests and 49 treatment plans [117].

Some patients received more than one possible treatment plan, as the NGS testing re-

vealed more than one actionable target. Further, only 9 treatment plans were pursued,

resulting in an actual impact on treatment in less than one tenth of patients [117]. The

concept of precision medicine tumor boards was also tested in the randomized, open-

label, multicenter SHIVA trial [118]. In this French study by Le Tourneau et al. patients

with a metastatic cancer not responding to primary treatment were included. Subse-

quently, 741 patients were screened and 195 randomized into experimental (molecular

tumor board) and control (physician’s choice) groups. Unfortunately, no significant differ-

ence in PFS could be demonstrated (p = 0.41) [118]. While results from the SHIVA trial

may look discouraging at first glance, they rather point towards the remaining research

that has to be performed prior to routine NGS screenings of cancer patients. Further-

more, the study was also criticized for its design, which allowed for the usage of therapies

with unknown performance for a given target, thus undermining the aspect of targeted

therapies [119]. Medications inside their respective indication for targeted therapy (e.g.,

alpelisib) lead to a better outcome in patients [116]. Consequently, off-label use of tar-

geted therapies based on NGS or other molecular profiling should be reserved for clinical

trials and not incorporated into tumor boards. A recent review by Larson et al. analyzed

14 published studies of molecular tumor boards and over 3,000 patients [119]. In their

review, they found heterogenous data and subsequently were not able to perform a meta-

analysis. One of the reviewed studies focused on breast cancer and found that none of
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the 43 patients shared identical abnormality profiles [120]. Parker et al. demonstrated a

mean latency of 23 days between availability of results and the recommendation of the

molecular tumor board [120]. Further, the authors found that 40% of patients received the

recommended treatment. Moreover, when comparing patients who received a matching

targeted therapy with patients who did not, the authors found a beneficial PFS increase

of 5.1 vs. 2.4 months respectively (p = 0.029) [120].

4.3.2 LB Diagnostic Tests

The first FDA approved LB diagnostic test is the CellSearch system which received ap-

proval in 2004 for clinical usage of CTC enumeration in MBC patients [121]. In the fol-

lowing decade, the CellSearch system expanded its approval towards the monitoring of

colorectal and prostate cancer, without significant alteration of the test itself [121]. In

2016 the FDA granted the cobas EGFR Mutation Test v2 clearance for EGFR mutational

testing in cfDNA to guide therapy decisions in non-small cell lung cancer [122]. A leading

example for CTC diagnostics is the detection of the AR-V7 splice variant in metastatic

castration-resistant prostate cancer. The splice variant confers ligand independent acti-

vation of the androgen receptor and is linked to a worse outcome [24]. As the detection

of this splice site variant currently requires mRNA or protein measurement, it cannot be

performed with cfDNA [24]. Potential new tests include new pan-cancer LB approaches,

which cover a broad spectrum of genes to streamline the analysis of LB specimens in-

dependently of tumor entities. Recently the first pan-cancer LB genetic test got FDA

approval. Guardant360 CDx is a cfDNA NGS test targeting 55 genes, copy number al-

terations in two genes and four fusion genes [123]. Further, the test is approved as a

companion diagnostic test in non-small cell lung cancer as the detection of EGFR muta-

tions, insertions and deletions allows to identify patients who may benefit from the novel

drugs osimertinib and amivantamab [123].

4.3.3 Detection of CTCs and Associated Biases

Further, a possible hurdle is the reliable detection of CTCs. As the gold standard for CTC

enrichment is based on the EpCAM marker, the subsequent analysis relies on the expres-

sion of the epithelial cell adhesion molecule. It is speculated that EpCAM positive CTCs

themselves are not the relevant cells behind metastasis and only function as a surrogate

marker for other CTCs with metastatic potential [124]. This hypothesis is built upon the

EMT paradigm (as described in section 1.6). As carcinomas (e.g., breast cancer) are

derived from epithelial cells, they have to undergo EMT and acquire mesenchymal char-

acteristics to break through the basement membrane to invade neighboring tissues [19,

125]. Similarly, CTCs that suppress epithelial markers like EpCAM are thought to be

more aggressive while remaining undetected by the CellSearch technology [124]. Re-

search into these EpCAMlow cells yields mixed results, as some trials find no correlation

between number of EpCAMlow CTCs with survival [126]. In non-small cell lung cancer,
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a combined approach for CTC enrichment via EpCAM, EGFR and HER3 antibodies has

been developed [127]. Utilizing this antibody cocktail, the authors were able to enrich

more CTCs but stopped short of demonstrating benefits from the detection of additional

CTCs [127].

4.3.4 CTC Count and Image Analysis

One of the contributing factors of uncertainty in CTC detection is the subjectivity of image-

based detection, as human operators have to judge if an image of a cell displays a CTC

or not. In a trial by Zeune et al. 15 trained reviewers were tasked to evaluate 100 ob-

jects. Only once all 15 reviewers agreed that a particle constitutes a CTC. Moreover, the

agreement of the reviewer (measured as Fleiss’ κ with 0 = no agreement and 1 = perfect

agreement) was measured as κ = 0.38, demonstrating a moderate agreement between

the reviewers [128]. Image analysis driven by artificial intelligence and predefined se-

lection criteria as tested in the ACCEPT software is the first step to a more objective

classification of CTCs and could subsequently improve the utility and reliability of CTC

NGS approaches [129].

4.3.5 Prospects of Genomic Analysis in LB

Genomic analysis of LB is one of the stepping stones towards precision medicine. Even

mutations in rare sub-clones of the solid tumor are detectable in CTCs. Heitzer et al.

define ”private CTC mutations” as mutations that are only present on CTCs without de-

tection in tumor material. In their study Heitzer et al. find that after ultra deep sequencing

85% of ”private CTC mutations” are found in tumor material in frequencies as low as

2% [130]. For sequencing of CTCs the single cells need to be isolated, requiring spe-

cialized machinery, time and trained operators. Additionally, the isolation of single cells

comes with the risk of losing cells in the process. As most patients harbor a very small

number of CTCs, the loss of a rare cell is detrimental for downstream analysis [131].

Moreover, CTCs can be analyzed for copy number alterations with Carter et al. success-

fully predicting chemosensitivity based on CTC CNV analysis of small cell lung cancer in

83% of patients and demonstrating a significant difference in PFS (n=31) [132].

4.4 ENDOpanel

The central aim of the ENDOpanel is getting a broader picture of the mutational (en-

docrine resistance) landscape in single cells. In this work, the ENDOpanel could be

established as a reliable method for single cell analysis. While the ENDOpanel does not

cover 100% of all targeted positions, I could identify potential hurdles in the workflow that

lead to worse results when using WGA products.
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4.4.1 Coverage

The coverage analysis demonstrated that 74% of all positions could be sufficiently cov-

ered, whereas 13 exons were not detected by the ENDOpanel at all. To test if the EN-

DOpanel could be used in real-world scenarios, I calculated the coverage of known can-

cer hotspots. Since 88% of hotspots were covered at least in one sample, a broad range

of potential regions can be detected. The data shows good initial coverage which can

certainly be improved. A comparison to other LB NGS panels can be found below (sec-

tion 4.4.4).

4.4.2 DNA Fragments

Utilizing significant evidence, I propose that shorter DNA fragments experience less cov-

erage in the final sequencing result. The DNA fragments are created by the MSE1 frag-

mentation during the WGA of CTCs, making this pitfall especially interesting in single

cell analysis. Since the recognition pattern of MSE1 is not scattered evenly throughout

the human genome, the resulting fragments are of varying length. This could be due

to insufficient DNA capture, e.g., during purification steps. During the single cell work-

flow, the DNA is cut multiple times: once during the Ampli1 WGA utilizing the MSE1

restriction enzyme and once more during the SureSelectQXT library preparation utiliz-

ing a transposase-mediated DNA fragmentation. While I could enhance the capture rate

of short fragments in synthetic tests, this effect could not be recreated in the real work-

flow. One possibility is that more off-target DNA and other byproducts were captured

by the increased magnetic beads volume. An additional indicator for worse coverage

is the significantly lower DNA amount when utilizing more magnetic beads. Ultimately,

the ENDOpanel could perform better when using non-WGA (pooled DNA) products or

when utilizing a different library preparation like the SureSelectXT, which relies on physi-

cal shearing (using the Covaris system), as this could potentially lessen the ratio of short

fragments. While enzymatic fragmentation relies on the distribution of DNA recognition

patterns (which are mostly random), physical shearing leads to fragments of roughly

equal length.

4.4.3 CTC Versus ctDNA Sequencing

To bring the results of the ENDOpanel into context, they need to be compared against

other LB sequencing approaches. When comparing gene panels, the quantity and quality

of the initial DNA need to be taken into account as well. Sequencing of single cells comes

with the inherent need for WGA, which subsequently involves the risk of allelic dropouts.

On the other hand, ctDNA cannot be analyzed on its own, as it forms only a fraction

of the cell-free DNA (cfDNA) inside blood samples. Additionally, the fraction of tumor

DNA inside cfDNA varies in the range of 0.1% to 90%, creating a high background noise

when analyzing cfDNA with low tumor DNA load [133]. Consequently, methods with
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high sensitivity for singular mutations, without broader coverage are utilized in cfDNA

(e.g., BEAMing), while NGS approaches are currently only possible and interpretable in

patients with higher ctDNA loads [133]. In comparison, single cell analysis has no natural

background noise from other cells. These drawbacks have limited the clinical utility of

CTCs and ctDNA to detection of residual disease, while precision medicine capabilities

are slowly emerging [133]. Furthermore, ctDNA is naturally fragmented while the degree

of fragmentation can vary by entity and tumor load [134].

4.4.4 Other LB Gene Panels

One example in the field of ctDNA is the 180-gene PredicinePLUS panel as demonstrated

by Davis et al. [135]. PredicinePLUS covers 565 kb of genomic sequences with a target

sequence depth over 20,000 [135]. Unfortunately, the study does not report a mean

sequencing depth. Instead, it states that 40 of 43 samples reach a depth of over 3,000

reads on 90% of the target genomic range. The study finds a similar correlation between

ESR1 mutational burden in LB and CTC count (p = 0.0017) as shown in Fig. 14. A

more targeted approach with a smaller genomic range of 5995 bases was demonstrated

by Forshew et al. producing an average sequencing depth of 3000 reads in solid tumor

biopsy specimens and a mean depth of 650 in cfDNA [136]. Another example is the

TruSight Oncology 500 kit from Illumina, a hybrid based approach targeting 523 cancer

genes [137, 138]. In an exhaustive study Liu et al. compared CTC NGS analysis in fixed

and fresh cells with different pre-processing steps [139]. The authors utilized the Qiagen

GeneRead DNAseq Colorectal Cancer Panel and compared two WGA kits: REPLI-g and

WGA4 [139]. Liu et al. defined a target sequencing depth of ≥ 10 reads. The target

was reached by 97.7% of genomic positions from the fresh cells batch with REPLI-g

WGA [139]. The coverage dropped to 89.7% for fixed cells with REPLI-g WGA and only

reached 48.2% on fixed cells with the WGA4 kit [139]. In comparison, the ENDOpanel

achieved an overall coverage of 74% with the same depth of ≥ 10 reads. The lower

coverage could be explained by the different WGA (Ampli1) used by the ENDOpanel

as the resulting fragmentation of the DNA could lead to a worse coverage, as already

discussed. When compared with other panels, the ENDOpanel offers a viable approach

towards single cell NGS analysis. Possible improvements of the ENDOpanel coverage

are discussed below.

4.4.5 Choice of WGA Kit

As already described in section 1.12.1, numerous WGA methods are currently on the

market. In a recent review, Biezuner et al. compare seven kits for single cell WGA which

are commercially available [140]. One of the tested kits (Ampli1) was also utilized for the

ENDOpanel and the ESR1 sequencing. Conveniently, the reviewers also isolated single

cells with the CellCelector, similarly to the presented workflow of the ENDOpanel [140].

To measure the performance of the different kits, the authors only considered amplicons
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on the X chromosome to avoid confounding through allelic dropouts and had to elimi-

nate amplicons containing the MSE1 recognition pattern. The observed metrics were

genome coverage, reproducibility and error rate [140]. Ampli1 showed superior coverage

with a median of 1095.5 (out of 1585) amplicons covered with the closest competitor be-

ing REPLI-g with a median of 918 amplicons [140]. Although Ampli1 has the strongest

overall coverage, it also demonstrates variability with coverage in some cells dropping

well below 200 amplicons [140]. Further, the authors analyze reproducibility by calculat-

ing the number of intersecting amplicons in all cell pairs [140]. In this analysis Ampli1

once again showed the best performance, but the authors also found that every WGA kit

induced a systematic bias in amplicons that are covered [140]. At last, Biezuner et al.

determined the error rate which resembles the frequency of mutations during the in vitro

amplification [140]. As anticipated by the authors, the kits based on isothermal multiple

displacement amplification (e.g., REPLI-g) produce a lower error rate in contrast to the

Ampli1 kit which utilizes a linker adapter PCR [140]. In my working group, we decided to

utilize Ampli1 for single cell genomic DNA amplification, as it results in the highest cov-

erage [140]. While REPLI-g generates fewer errors, it also sometimes fails to amplify the

genome at all and results in a lower, less reliable coverage [140].

4.4.6 Possible Enhancements of the ENDOpanel

Independently of the utilized NGS approach, the user can reduce PCR biases and er-

rors with molecular barcodes, which label individual DNA fragments with unique adapter

sequences. Multiple studies could show a better detection limit when utilizing molecu-

lar barcodes in LB. Masunaga et al. demonstrated an improvement of the detection limit

from 1% minor allele frequency to 0.1% in ESR1 sequencing in cfDNA [141]. Moreover,

De Luca et al. demonstrated the use of molecular barcodes in a WGA free approach on

CTC pools of 2 to 5 cells with a nearly perfect recall ratio of 35 of 37 CTC pools and no

false positive mutations [142]. Such a pre-processing step could be integrated into the

ENDOpanel and similar NGS panels as it promises to improve the clinical utility of such

a panel. Molecular barcodes in a WGA free approach could eliminate the inherent down-

sides of WGA in CTC sequencing. On the other hand, this method requires the pooling

of CTCs while decreasing the spatial resolution of the sequencing results. Another way

to improve the coverage without utilizing molecular barcodes, would be through bulk se-

quencing of CTCs. To capture a high enough number of CTCs for sequencing without

WGA, a novel approach such as diagnostic leukapheresis (DLA) is required. Leukaphere-

sis typically targets mononuclear cells while the blood of the patient flows continuously

through an extracorporeal centrifuge [143]. Moreover, this method can be used to enrich

CTCs as they have a similar density as mononuclear cells [143]. The patient’s veins are

punctured on both arms, blood is withdrawn from the one arm and returned through the

other puncture site [143]. Crucially, this method allows to screen a higher blood volume of

the patients when compared to CellSave tubes, which are normally in use for CTC anal-

ysis. A recent single center study demonstrated a 200 fold estimated increase in CTC
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capture rate. The authors estimated a median screened blood volume of 2,770 ml and

reported no severe adverse events [143]. Further, the ENDOpanel could benefit from a

switch from the SureSelectQXT platform to the SureSelectXT platform as this could cre-

ate an equal distribution of fragments without the risk of loss of short fragments.

4.5 Estrogen Receptor Alpha Sequencing

4.5.1 ESR1 as a Predictive Marker

ERα is a well-described target for endocrine breast cancer therapy. Likewise, mutations

in ERα are a heavily researched cause for resistance to endocrine therapy. This was

not always the case, they were initially not associated with clinical significance, as ESR1

mutations are rare in the primary tumor [144]. Moreover, LB specimen is known to be

rare in early stages of breast cancer, further reducing the chance of ESR1 mutation

detection [144]. A study by Takeshita et al. found an increase in ESR1 mutations in

cfDNA in later treatment lines without a significant difference in time to treatment failure

in ESR1 mutant patients [145]. Another study found that both overall and progression-

free survival are reduced in patients harboring ESR1 mutations [144]. In a recent meta-

analysis, both ctDNA levels and ESR1 mutation burden were found to be associated

with survival, prompting the question how the two predictors influence each other [144].

Furthermore, clinical trials begin to perform LB tests with as little as 15 days of latency

after treatment onset, raising the question if a rapid switch in treatment regimes should

be performed as a response to an arising resistant sub-clone [144, 146]. As described

by Carausu et al. the evidence for the predictive value of ESR1 in LB is sparse due to

the limitations of LB trials, e.g., small positivity rate [144]. This hurdle is a core aspect of

ViBiBa, as already described.

Currently, ESR1 mutational analysis is focused on hotspot regions (e.g., Y537 and

D538) as most of the mutations inside the hotspot regions display promising preclinical

data for sensitivity to fulvestrant (an SERD) [41]. Moreover, some studies find significant

evidence for ESR1 mutations, conferring resistance against AI therapy through ligand-

independent activation [144]. In contrast, SERM usage in ESR1 mutant cancers yields

mixed results while SERDs like fulvestrant appear to still be able to degrade mutant ERα

(e.g., D538G) [144]. While the correlation between the pure presence of ESR1 mutations

and CTC count is already known [147], I could show that the frequency of non-hotspot

ESR1 mutations is also significantly correlated with the CTC count. This links our un-

derstanding between two independent prognostic markers, CTC count and the ESR1

mutational burden (including non-hotspot regions) [148].

Many studies focus on methods like digital droplet PCR (ddPCR) which cover only a

narrow genomic range often targeting already known hotspot mutations. This may lead to

an under-representation of non-hotspot mutations in ESR1. Since treatment naive PTs

are known to harbor less ESR1 mutations than cancer tissue under endocrine therapy

(e.g., metastases) [18] and big public repositories like TCGA focus on the PTs, further

49



under-reporting of ESR1 non-hotspot mutations can be expected. To utilize ESR1 as a

predictive marker outside of hotspot regions, it is paramount to establish a workflow to

evaluate their potential effects on endocrine resistance development. This will become

eminently important if only one or a few CTCs with functionally unclear ESR1 mutations

are detected.

4.5.2 Other ESR1 LB Studies

Other studies focused mainly on cfDNA and subsequent in vitro analysis via mutant cell

culture experiments [149, 150]. A recent work on cfDNA by Jeannot et al. utilized ddPCR

for ESR1 mutation detection in LB [150]. Their study detects mutations only in the codons

380, 536, 537, and 538 accounting for 12 DNA bases of the 6327 coding base pairs [150].

As the study focused on cfDNA, a low limit of detection is required to find rare sub-clones

in patients with a low ctDNA fraction inside the cfDNA sample. The limit of detection

calculated by Jeannot et al. is as low as 0.07 % minor allele frequency. In contrast, this

level of precision is not required when analyzing single cells, as the minor allele frequency

does not reach such low levels when only two alleles are inspected.

4.5.3 Novel Resistance Mechanisms

In this study I analyzed three selected mutations in more depth with in silico methods.

The keyhole-lock-key model describes the ligand tunnel as a filter for the ligand in front

of the LBD [43]. This opens up new possibilities for research of (endocrine) treatment

resistance. Mutations in the ligand tunnels of ERα are not widely studied and may be

under-reported in light of infrequent sequencing outside of ESR1-hotspot regions. Fur-

ther, in other proteins, it was already demonstrated that a mutation of a tunnel forming

residue can lead to a different protein-ligand kinetic [151–153]. Modern tools allow us

to calculate tunnels through the protein and to discover residues at tunnel bottlenecks,

which may be critical determinants in ligand transport [47, 86, 87]. Contrary to other

protein-ligand complexes, there is no clear path in ERα that a ligand would take to reach

the deep-buried LBD [154]. I identified R394 as a potential bottleneck, whose mutation to

serine alters the radius of the ligand tunnel. Knowing that the patient received tamoxifen

allows us to perform simulations of the interactions with the (mutated) ERα. The data

points towards a change in the keyhole-lock-key behavior of ERα when interacting with

tamoxifen and estradiol. While the affinity towards estradiol increased tenfold, only a mild

increase in affinity was noted for tamoxifen. This change may result in an observed lower

efficacy of tamoxifen in R394S mutant cells and could therefore represent a novel mech-

anism of endocrine resistance. Further in the W383R and M528T mutants, I hypothesize

that the interaction between tamoxifen and ERα could be altered. Activation of ERα is in-

duced by conformation change of helix 12, which can be physically inhibited, e.g., by the

tail of bound tamoxifen [38]. According to the physicochemical properties of the mutated

residues (positively charged receptor residue with a positively charged tamoxifen ligand)

50



this repelling force could hamper ligand interaction and thus possibly confer tamoxifen

resistance [155, 156]. Additionally, while I did not attempt any in silico calculations for the

H356Y SNP, this novel mutation occurred in two patients in a total of five cells.

The mutation impact heatmap is a first approach on mapping all possible ESR1 mu-

tations. With the discovery of new in silico predictions, the heatmap can certainly be

fine-tuned more accurately by iterating through simulations targeted on specific mutated

protein structures and specific drugs. In future studies, the aim should be to expand our

knowledge on possible treatment resistance mechanisms in ERα that can be modeled

in silico and used to create a simple mutation and drug-specific chart on ESR1 mutation

significance.

4.5.4 Limitations of In Silico Approaches

Currently, in silico analysis is limited by our understanding of proteins and their behav-

ior/folding on a molecular level and limited data availability for model systems (e.g., pro-

tein spectrometry data). The protein model chosen for the demonstrated calculations

is deducted from the ligand-bound form. An apo-protein spectrometry version would be

more fitting, but high-resolution data is still lacking in this field.

4.5.5 Precision Medicine: Timely Evaluation of Novel Mutations

The presented work focuses on CTCs and in silico methods to determine a possible

impact of SNPs on endocrine treatment response. Although in vitro approaches offer a

broad spectrum of analysis, they are also associated with a high investment of time. In

the clinical setting, a novel mutation has to be assessed in a timely manner to evaluate

treatment options for the patient. One advantage of the presented method is that the

current treatment regime of the patient can be directly fed into the in silico workflow. This

enables us to perform targeted bioinformatic analysis with the mutant ERα amino acid

and the (potentially) affected drugs.

4.6 Conclusion

ViBiBa was successfully launched inside the DETECT trial program and the source code

published under an open source license. It is in daily usage at the time of writing and

maintained with regular updates. User engagement is adequate and a few sample trans-

fers have already been completed through ViBiBa.

The ENDOpanel could be utilized as a viable approach for CTC analysis. While it

displays some shortcomings, I produced multiple hypotheses for the loss of coverage.

These hypotheses were analyzed in detail and some of them demonstrated evidence

for possible improvement. A major hurdle will be future cost reductions of competing

technologies like whole exome sequencing, which will allow to sequence all genes without

a specific focus a priori.
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In the ESR1 sequencing project, I selected a patient cohort with an already estab-

lished lack of ESR1-hotspot mutations. CTCs from this cohort were analyzed via NGS of

the coding ESR1 genomic range to access for possible (novel) ESR1 mutations. I demon-

strated the feasibility of this targeted sequencing of ESR1 and illustrated how some of the

described mutations may impact endocrine resistance in breast cancer. This work gener-

ated new hypotheses for endocrine resistance mechanisms utilizing in silico approaches

and showed how these approaches can be personalized for a specific patient with a spe-

cific treatment, making it an option for individual analyses while remaining cost efficient.
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