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Summary

1. Summary

Improvements in breeding were responsible for crop productivity increase over the last century.

Nevertheless, it is nowadays still crucial to further increase the crop productivity to meet the

demands of the growing world population. This likewise requires proceeding improvements

in breeding, e.g. a better understanding of the genetic background information to accelerate

breeding cycles as well as to develop improved crop varieties. Therefore, a further character-

ization of genomic variation including the examination of new genetic markers can lead to an

improvement in breeding programs.

The detection of various sequence variants used as genetic markers in complex crop genomes

became considerably simpler due to the development of next generation sequencing (NGS).

However, for the detection of sequence variants based on NGS, high quality reference sequences

need to be available. I therefore used a combination of NGS technologies to create a high qual-

ity reference sequence for a potato clone derived from an elite variety and observed a high

divergence between the new reference sequence and that of other potato varieties. Additionally,

I evaluated the usefulness of this new reference sequence for various genomic approaches and

illustrated the high potential to use it for breeding applications.

A genomic layer which was suggested to contribute to phenotypic variation of agronomic im-

portance in barley was presence/absence variation (PAV). Thus, a multi-tissue mRNA sequenc-

ing approach was used to examine the genomic and expression PAV, as well as the transcrip-

tomic variation in 23 spring barley inbreds which were selected from a panel of a world-wide

collection and which are the parents of a new resource for joint linkage and association map-

ping, the double round robin population. Examining expression PAV data, I observed that more

than 50% of all genes were not expressed in the 23 barley inbreds. Furthermore, an approach

was developed to detect genomic PAV based on the identification of expression PAV.

Because of these promising results, the interest arose to systematically explore structural vari-

ants (SV) in the barley and potato genomes. For both crops, only single SV have been identified

and associated with qualitative phenotypic traits. I therefore evaluated different SV detection

algorithms using computer simulations on short-read and linked-read sequencing considering

various technical and genomic features as the SV type, SV length, as well as the sequencing
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Summary

coverage to find the best combination of algorithms and sequencing approaches to detect SV in

the barley and potato genomes. Based on the simulation scenarios, the best combination of SV

callers reached a sensitivity > 70% and precision > 95% for all combinations of SV types and

SV lengths in the barley genome. Even higher sensitivity and precision values were observed

using linked-read sequencing in the potato genome. Additionally, the simulation scenarios in

the potato genome illustrated the respective strengths of linked- and short-read sequencing sig-

nals for SV detection, which are the determination of the SV length of large insertions due to the

usage of long-range molecule signals and the detection of short SV by considering short-read

signals.

The optimal combination of SV callers were then used to study the occurrence and distribution

of SV in the barley genome. The SV detected by a DNA sequencing approach were associ-

ated with genome-wide gene and gene-specific gene expression. Further, SV, expression PAV,

and gene expression data detected in barley showed additional genetic information compared to

single nucleotide variants (SNV) and were therefore used to predict different phenotypic traits

and showed an increased prediction ability compared to the classical approach using a SNV

array. These findings suggest the usefulness of exploiting SV information when fine mapping

and cloning the causal gene underlying quantitative traits as well as the high potential of us-

ing SV, expression PAV, and gene expression data for the prediction of phenotypes in diverse

germplasm sets.
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2. Zusammenfassung

Fortschritte in der Züchtung waren für eine Produktionssteigerung von Nutzpflanzen während

des letzten Jahrhunderts verantwortlich. Dennoch ist es auch in der heutigen Zeit notwendig

eine weitere Produktionssteigerung von Nutzpflanzen zu erzielen, um die Bedürfnisse einer

wachsenden Weltbevölkerung zu decken. Ein Teil dieser Produktionssteigerung muss auch

heutzutage durch Züchtung erzielt werden, beispielsweise durch ein besseres Verständnis der

genetischen Information von Nutzpflanzen, wodurch Züchtungszyklen beschleunigt werden

können und verbesserte Nutzpflanzensorten gezüchtet werden können. Deshalb kann eine

fortschreitende Charakterisierung der genomischen Variation einschließlich der Analyse von

neuen genetischen Markern zu einem Fortschritt in Züchtungsprogrammen führen.

Mit der Erfindung der Hochdurchsatzsequenzierung wurde die Identifikation von verschiedenen

Sequenzvarianten, welche als genetische Marker in Nutzpflanzen benutzt werden, wesentlich

erleichtert. Allerdings werden für die Identifizierung von Sequenzvarianten basierend auf der

Hochdurchsatzsequenzierung hoch qualitative Referenzsequenzen benötigt. Deshalb nutzte ich

eine Kombination aus Hochdurchsatzsequenzierungstechnologien, um eine hoch qualitative

Referenzsequenz des Kartoffelgenoms einer Züchtungselitesorte zu erstellen und beobachtete

eine hohe Diversität zwischen der neuen Referenz und denen der bereits vorhandenen Kartof-

felsorten. Die Nutzung dieser neuen Referenzsequenz wurde für verschiedene genomische

Methoden evaluiert, wodurch sich ein hohes Potential zur Nutzung in züchtungs-relevanten

Anwendungen zeigte.

Eine genomische Eigenschaft, die zu phänotypischer Variation von agronomischer Bedeutung

in Gerste beitragen soll, sind Anwesenheit/Abwesenheit Variationen (PAV). Daher wurde

mRNA-Sequenzierung verschiedener Gewebe verwendet, um genomische und transkriptomis-

che PAV, sowie trankriptomische Variation in 23 Sommergersten-Inzuchtlinien, die aus einer

weltweiten Sammlung stammen und die die Eltern einer neuen Ressource für Kopplungs- und

Assoziationskartierung sind, zu untersuchen. Durch die Analyse der transkriptomischen PAV

zeigte sich, dass mehr als 50% aller Gene nicht in allen 23 Gersten-Inzuchtlinien expremiert

waren. Des Weiteren wurde eine Methode entwickelt, wie trankriptomische PAV basierend auf

der Identifizierung von genomischen PAV ermittelt werden können.

3



Zusammenfassung

Aufgrund dieser vielversprechenden Ergebnisse entstand ein Interesse, strukturelle Varianten

(SV) im Gersten- und Kartoffelgenom systematisch zu untersuchen. In Gerste und Kartoffel

wurden bisher nur einzelne SV mit qualitativen phänotypischen Merkmalen assoziiert. Deshalb

evaluierte ich verschiedene Algorithmen, die SV identifizieren, basierend auf Computer-

Simulationen und zwei verschiedenen Ansätzen der Hochdurchsatzsequenzierung, unter der

Berücksichtigung von verschiedenen technischen und genomischen Charakteristika wie den

SV-Typ, die SV-Länge und die Sequenziertiefe, um die beste Kombination aus Algorithmen

und Sequenziertechniken zu finden, um SV im Gersten- und Kartoffelgenom zu bestimmen.

Anhand der Simulationen wurde gezeigt, dass die beste Kombination aus Algorithmen eine

Sensitivität > 70% und eine Präzision > 95% für alle Kombinationen von SV-Typen und

SV-Längen im Gerstengenom aufwies. Im Kartoffelgenom wurden noch höhere Sensitivitäts-

und Präzisionswerte beobachtet. Des Weiteren zeigten die Simulationen im Kartoffelgenom

die jeweiligen Stärken zweier Hochdurchsatzsequenzierungsansätze zur Bestimmung von SV,

welche die Bestimmung der SV-Länge langer Insertionen durch linked-read Sequenzierung

und die Identifizierung kurzer SV durch short-read Signale sind.

Die optimale Kombination aus Algorithmen wurde dann verwendet, um das Auftauchen und

die Verteilung von SV im Gerstengenom zu untersuchen. DNA-Sequenzierung wurde genutzt,

um SV zu identifizieren, welche mit genom-weiter und gen-spezifischer Genexpression

assoziiert wurden. Des Weiteren zeigte sich, dass transkriptomische PAV, SV und Genex-

pressionsdaten, die in den Gersten-Inzuchtlinien bestimmt wurden, zusätzliche genetische

Informationen verglichen zu Einzelnukleotid-Varianten (SNV) beinhalten. Deshalb wurden

diese für die Vorhersage von verschiedenen phänotypischen Merkmalen verwendet, bei der

eine höhere Vorhersage-Genauigkeit verglichen zu der klassischen Nutzung eines SNV arrays

aufgewiesen wurde. Diese Ergebnisse zeigen sowohl den Nutzen, SV Informationen zu

berücksichtigen, wenn Genloci kodierend für quantitative Merkmale identifiziert wurden und

das zugrundeliegende Gen analysiert wird, als auch das große Potential, SV, transkriptomische

PAV und Genexpressionsdaten für die Vorhersage der Phänotypen in Datensätzen mit hoher

genetischer Vielfalt zu nutzen.
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3. Introduction

To meet the demands of the growing world population, one of the most important issues of

modern agriculture is to increase the productivity of crops (Frona et al., 2019). The limitation

of cultivated land and water (Beddington et al., 2012) makes it crucial to increase the yield of

crops. Additionally, due to the climate change and corresponding increased temperatures, crops

in breeding programs need to be more resistant against stress factors as heat or drought (Abber-

ton et al., 2016).

Barley (Hordeum vulgare L.) and potato (Solanum tubersosum L.) are two of the most important

crops with a world-wide production of 144 and 370 million metrics tons (FAO, 2019), respec-

tively. Barley was firstly cultivated in the Fertile Crescent 10,000 years ago (Zohary et al.,

2012). Today, it is cultivated all over the world and is mainly used for human nutrition, animal

feed, and malting (Newton et al., 2011). The cultivation of barley is fundamental in the future

due to its high potential to adapt to difficult conditions e.g. drought (Ceccarelli et al., 2007).

In addition, it has also become an important model cereal species for research, partly because

its tolerance to stress surpasses that of other major crops including wheat and rice (Nevo et al.,

2012).

Potato was domesticated about 8,000 years ago in the Andes from diploid wild potatoes and

became a staple food of indigenous American communities (Spooner et al., 2005). The first

record of cultivated potato in Europe was on the Canary Islands in 1567 (Ríos et al., 2007) and

in Spain in 1573 (Hawkes and Francisco-Ortega, 1992). Afterwards, it was adopted as a major

food crop throughout Europe (Ames and Spooner, 2008). It is mainly cultivated as human food

because it is important due to its high proportion of nutritional values (Jansky et al., 2019).

Breeding is responsible for 50% of crop productivity increase over the last century (Duvick,

2005; Edgerton, 2009). Therefore, breeding also needs to contribute to reach the aim of an

increase of crop productivity in the future. Recent breeding applications such as genome edit-

ing (Altpeter et al., 2016) or genomic prediction (GP) (Stich and Van Inghelandt, 2018) have

the potential to achieve an increase in the gain of selection. However, for both approaches, a

high quality genome sequence of germplasm relevant to breeding needs to be available which

is true for barley whereas for potato, a reference sequence of an European cultivar is missing.
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Furthermore, in order to efficiently apply GP, a detailed understanding of genomic variation in

crop genomes is fundamental. The availability of high quality genome sequences and the char-

acterization of genomic variation can be realized due to the developments and improvements of

next generation sequencing (NGS).

3.1 Improvements to sequencing technologies

In 1953, the DNA structure was discovered by Watson and Crick and from there on researchers

focused on the decoding of genome sequences. Around 25 years later, the first DNA sequencing

technology, also called first generation sequencing, was developed by Frederick Sanger (Sanger

et al., 1977) where a read length of 1,000 bp with an accuracy of 99.99% can be obtained (Cao

et al., 2017). Using this sequencing by synthesis approach, the first genomes such as that of

Escherichia coli or yeast were sequenced (Goffeau et al., 1996; Blattner et al., 1997). Addi-

tionally, genomes of higher organisms as of Arabidopsis thaliana as first plant species (The

Arabidopsis Genome Initiative, 2000) and the human genome (Craig Venter et al., 2001) could

be sequenced using sequencing by synthesis.

In 2006, NGS, at that time developed by 454 and Illumina, also called second generation se-

quencing, became available and revolutionized genome research (Koboldt et al., 2013). The

read length is with up to 700 bp shorter and the error rate with ∼1% higher than for Sanger se-

quencing, but the sequencing costs decreased dramatically due to the parallelism of sequencing

(Tucker et al., 2009). The human genome could now be sequenced in a few days and for less

than 1,000$ compared to years and billions of dollars using Sanger sequencing during the hu-

man genome project (Goodwin et al., 2016). Further advantages of NGS compared to traditional

sequencing methods are e.g. sample multiplexing and higher sensitivity to detect low-frequency

variants (Zhong et al., 2020).

Recently, the field of NGS was enlarged by linked-read sequencing offered by BGI (Wang

et al., 2019) or formerly 10x Genomics (Weisenfeld et al., 2017). The idea behind linked-read

sequencing is that paired-end short reads are derived from 50 - 100 kb DNA molecules. Ten of

these molecules are partitioned into droplets and are split to smaller fragments (500 bp) where

each is tagged with a 16 bp long barcode. Based on these barcoded fragments, short-read se-
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quencing is performed (Elyanow et al., 2018). These short reads provide long-range information

regarding to the original DNA molecule. Due to the random partition of molecules, the likeli-

hood of assigning two molecules with the same barcode from nearby regions in the genome is

very low (Elyanow et al., 2018).

Using third generation sequencing, known as long-read sequencing developed by PacBio

(Wenger et al., 2019) or Oxford Nanopore (Jain et al., 2016), longer sequencing reads (10 kb

- 1 Mb) can be achieved. However, this is in turn associated with high operational costs and

large DNA input (PacBio) as well as high error rates (Oxford Nanopore) compared to short-

and linked-read sequencing (Amarasinghe et al., 2020). This makes it less affordable for many

research groups when many individuals should be sequenced. However, for the usage of single

individuals, e.g. for de novo assemblies of new reference sequences, it is an appropriate method

(Amarasinghe et al., 2020).

3.2 Crop genome assembling

In the year 2000, the first complete sequence of a plant genome, Arabidopsis thaliana, became

available (The Arabidopsis Genome Initiative, 2000). Due to the development of NGS, the

genomes of more than 100 plant species have been sequenced until the end of 2015 (Michael

and VanBuren, 2015). However, many of these genome sequences are highly fragmented due

to technical limitations to that time (Pham et al., 2020). Further, especially the complex nature

and architecture of crop genomes characterized by polyploidy and corresponding heterozygos-

ity (Zhang et al., 2019), a high content of transposable elements and repeats, as well as a large

genome size (Mascher et al., 2017) made it difficult to assemble those genomes. However,

the rapid development of new sequencing technologies such as long reads, linked reads, and

proximity-ligation improved the quality of genome assembling significantly and allowed to re-

place established reference genome sequences by improved versions of the respective crop (Jiao

and Schneeberger, 2017; Pham et al., 2020).

Despite the diploid (2n) and highly homozygous genome of barley, assembling the barley

genome is a difficult challenge because of the large genome size of 5.5 Gb and the high pro-

portion of repetitive elements (Mascher et al., 2017). However, the barley reference sequence
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was first published in 2012, and was recently updated using PacBio circular consensus reads

(Mascher et al., 2021). Due to the availability of this reference genome, different types of se-

quence variants of 23 spring barley inbreds selected from a world-wide collection (Haseneyer

et al., 2010) which are the parents of a new resource for joint linkage and association mapping,

the double round robin population (Casale et al., 2021), could be characterized in this thesis.

In contrast to barley, most of the available potato cultivars are tetraploid (2n = 4x = 48) with a

high level of heterozygosity (Zhang et al., 2019). These genomic features make it difficult to as-

semble the genome of potato varieties. Therefore, the current potato reference sequence is that

of a doubled monoploid clone from the cultivar group Phureja (Pham et al., 2020). Recently,

other potato reference genomes were published, where Phureja is the pedigree (Zhou et al.,

2020) or the Phureja genome sequence was used for scaffolding (van Lieshout et al., 2020).

However, the cultivar group Phureja has tremendous phenotypic differences compared to the

commercially established variety group Tuberosum of tetraploid cultivars (Xu et al., 2011).

Additionally, preliminary comparisons between potato cultivars have shown large genomic re-

arrangements between them (Xu et al., 2011; Uitdewilligen et al., 2013). However, the usage

of several breeding applications such as genome editing (Altpeter et al., 2016) or GP (Stich and

Van Inghelandt, 2018) is facilitated by the availability of the sequence of a variety which is

more related to germplasm of modern potato cultivars. Therefore, one goal of this thesis was to

create a consensus reference sequence for S. tuberosum group Tuberosum.

3.3 Occurrence of sequence variants in crop genomes

Phenotypic variation of quantitative traits are caused by environmental and genomic factors as

well as their interactions (Kearsey and Farquhar, 1998). Around the year 2000, it has been

started that genetic markers such as single sequence repeats (SRR), amplified fragment length

polymorphisms (AFLP), or single nucleotide variants (SNV) were examined e.g. to identify

quantitative trait loci (QTL) (Kearsey and Farquhar, 1998) i.e. to identify the genomic factors

underlying phenotypic variation, or to associate them with phenotypic variation (for review see

Rafalski, 2010) in crop genomes. However, to that time, only a limited number, in the range of

hundreds, of genetic markers could be examined (cf. Bohuon et al., 1998; Stich et al., 2006).
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With the development of NGS, genomic sequencing analyses could be rendered with millions

of SNV markers to study population structure and to provide a resource for phenotypic variation

e.g. in Arabidopsis thaliana (Alonso-Blanco et al., 2016).

Beside the aforementioned genetic markers, larger genomic rearrangements have been known

for a long time in the human genome, e.g. the abnormal number of chromosomes which was

discovered by karyotyping (Jacobs and Strong, 1959). In crops e.g. in maize, also other mi-

croscopic genomic features such as alien chromosomes were detected by fluorescence in situ

hybridization (Schwarzacher et al., 1992). Today, these larger genomic rearrangements, com-

prising of deletions, insertions, inversions, duplications, as well as translocations, are commonly

defined as structural variants (SV) which are larger than 49 bp responsible for changes in the

genome relative to a reference sequence or between haplotypes of a genome. These genome

changes induce e.g. loss of genes, different orientation, and translocation of sequence regions

(Fuentes et al., 2019). Due to those genomic characteristics, SV are supposed to play an impor-

tant role contributing to phenotypic variation in crops.

Though, five years ago, genome-wide SV detection in many individuals using whole genome

sequencing (WGS) was associated with high operational costs, especially for barley consider-

ing the large genome size. Thus, as an alternative to WGS and corresponding SV detection,

cost-efficient mRNA sequencing could be used to examine presence/absence variation of genes

what is known as dispensable transcriptome or genome (Lai et al., 2010; Hirsch et al., 2014;

Jin et al., 2016). It has been accepted that a significant proportion of genes are not expressed,

called expression presence/absence variation (ePAV), or are even physical absent, called ge-

nomic presence/absence variation (gPAV), in a subset of individuals of a species. In this thesis,

an approach was developed where the identification of ePAV in multiple tissues could be used

to determine the proportion of gPAV in the barley genome and indicated that larger regions of

the genome sequence are physically absent between barley inbreds as it has been reported for

maize and rice (Swanson-Wagner et al., 2006; Springer et al., 2009; Lai et al., 2010; Hirsch

et al., 2014; Jin et al., 2016; Sun et al., 2018; Zhao et al., 2018).

Due to the detection of gPAV, further technical improvements, and the corresponding reduced

operational costs of WGS, the genome-wide SV detection in the barley and potato genome be-

came another objective of this thesis. Apart from the detection of presence/absence variation,

9



Introduction

the distribution and frequency of SV in crop genomes were recently determined in rice and

maize (Wang et al., 2018a; Yang et al., 2019; Kou et al., 2020). Despite the importance of

barley and potato for human nutrition, the knowledge about the characterization of SV in these

genomes is limited. In barley, a genome-wide study on SV was performed where the focus

laid on the detection of large SV on 20 barley accessions (Jayakodi et al., 2020). In potato,

SV could be extracted by the comparison of different genome assemblies (Freire et al., 2021)

to detect SV between single potato clones, but, to my knowledge, only one genome-wide SV

study is available where only three potato clones were examined (Lihodeevskiy and Shanina,

2021). The importance to determine the occurrence of SV in the genome has been illustrated in

humans, where it has been described that SV could have an up to ∼50fold stronger influence on

gene expression than SNV (Chiang et al., 2017). This is in agreement with results for different

crop genomes as cucumber (Zhang et al., 2015), maize (Yang et al., 2019), tomato (Alonge

et al., 2020), and soybean (Liu et al., 2020a). However, the role and frequency of SV in gene

regulatory mechanisms in small grain cereals is widely unexplored.

Detected SV in crop genomes could not only be associated with changes in gene expression but

also with different phenotypic traits (for review see Saxena et al., 2014) illustrating that pheno-

typic variation is more likely caused by SV than by SNV which was also reported for humans

(Alkan et al., 2011; Baker, 2012; Sudmant et al., 2015). Studies of discovering and association

of single SV with phenotypic variation became available in crop genomes as in wheat, where

single SV could be associated with traits such as flowering time (Diaz et al., 2020) or heading

date (Nishida et al., 2013). Additionally, in rice, it could be associated with disease resistance

and domestication (Xu et al., 2012) and in maize, it could be associated with Aluminium tol-

erance (Maron et al., 2013). Further, single SV could also be associated with phenotypic traits

in barley such as boron toxicity tolerance (Sutton et al., 2007) as well as disease resistance

(Muñoz-Amatriaín et al., 2013) and in potato, individual SV were associated with traits related

to growth and development (Iovene et al., 2013). However, in these studies, only single SV

were identified and associated with qualitative phenotypic traits, e.g. at the cytological level us-

ing a flurescence in situ hybridization based copy number variation survey (Iovene et al., 2013).

Therefore, I used the SV information to examine the ability to predict quantitatively inherited

phenotypic traits. Furthermore, the characterization of these SV will allow the association with
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gene expression and the identification of candidate genes which underlay QTL in the barley

double round robin population (Casale et al., 2021).

3.4 Benchmarking SV callers based on short-read and

linked-read sequencing using computer simulations

For genome-wide SV detection, different approaches have been proposed for NGS data:

genome assembling, long-read sequencing, and short-read (including linked-read) sequenc-

ing (Mahmoud et al., 2019). The genome assembly approach is a tough challenge for crop

genomes, especially for barley and potato, due to the large genome size and high proportion of

repetitive elements in barley (Mascher et al., 2017) or the highly heterozygous and tetraploid

potato genome (Zhang et al., 2019). Additionally, due to the pairwise comparison of genome

assemblies, SV between two individuals can be identified, but the time for assembling and

the cost for sequencing will explode when many individuals should be assembled with a high

quality. The latter is also true for long-read sequencing where the costs for sequencing are dra-

matically higher compared to short-read sequencing which makes it less affordable for many

research groups. In contrast, short-read sequencing is a well-established tool to detect SV in

human genomics (Cameron et al., 2019; Kosugi et al., 2019) and was recently considered in

plant research studies (Göktay et al., 2020; Guan et al., 2021). Several signals of short-read

sequencing, namely read-pair orientation, split reads, read depth, and local assembling of short

reads are used to detect SV of an individual compared to a reference sequence. A described

disadvantage of SV detection based on short-read sequencing is a lower mapping quality of

short reads in repetitive regions (Fang et al., 2019) which were often associated with the oc-

currence of SV (Hu et al., 2021). This could be compensated by using linked-read sequencing

where short-read sequencing is combined with long-range information. Beside using short-read

sequencing signals, criteria as the density and overlap of barcodes, split molecule signals, and

discrepancies in molecule coverage are used by linked-read sequencing based algorithms (Ho

et al., 2020).

Due to the relatively young history of linked-read sequencing, less approaches to detect SV

based on linked-read sequencing have been developed until now (for review see Ho et al., 2020),

11



Introduction

which were mainly evaluated in the human genome. Despite the well-evaluated detection of SV

based on short-read sequencing in human genomics, there are less studies available where dif-

ferent SV callers were evaluated in plant genomes as in rice, Arabidopsis thaliana, and pear

(Fuentes et al., 2019; Göktay et al., 2020; Liu et al., 2020b). Additionally, it is worthwhile to

evaluate SV callers with data for the specific crop, because the performance can depend on the

tremendous genomic differences between crops as the genome size, repeat content, or ploidy.

Therefore, in this thesis, I evaluated the performance of SV callers based on short-read and

linked-read sequencing for the detection of SV in the barley and potato genome using computer

simulations.

3.5 Prediction of phenotypic variation using different se-

quence variants as genetic markers

GP has become a powerful tool to improve the gain of selection for complex traits in animal

and plant breeding programs (Meuwissen et al., 2001; Desta and Ortiz, 2014). GP works based

on the usage of genetic markers to predict the breeding values of genotyped individuals. To do

this, marker effects are estimated across the whole genome of those individuals based on the

GP model which is trained by similar or related genotyped and phenotyped individuals of a so

called training population (Desta and Ortiz, 2014). Hence, the genotyped individuals can be

preselect before their phenotypes are measured in the field (Wu et al., 2022). This procedure

accelerates the breeding cycle as well as reduces the cost of phenotyping (Xu et al., 2020).

In breeding programs, the classical approach is to use SNV arrays for GP (Guo et al., 2016;

Crossa et al., 2017; Li et al., 2019). However, it has been reported that the genetic variance of

complex traits can not be directly captured by SNV information e.g. due to high-order epistatic

effects (Taylor and Ehrenreich, 2015; Wang et al., 2018b; Li et al., 2019). Thus, the prediction

of complex quantitative traits could be improved by the usage of other genomic layer as larger

genomic rearrangements, ePAV, or other types of sequence variants which could close the gap

between genotypes and phenotypes and may even capture higher-order epistatic interactions for

the prediction of phenotypic variation (Schrag et al., 2018; Hu et al., 2019; Wu et al., 2022).

Thus, it is worthwhile to evaluate GP based on different sequence variants to predict different

12
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phenotypic traits which are important for the increase of the gain of selection in the specific

crop. To do this, the characterization of the barley transcriptome based on mRNA sequencing

has the advantage to extract not only SNV information, but also gPAV, ePAV, and gene expres-

sion data can be examined to reduced costs compared to DNA sequencing. In contrast, DNA

sequencing can be used to extract SV for GP. Therefore, in this thesis, I have evaluated the pre-

diction of important phenotypic traits based on several sequence variants extracted from DNA

and mRNA sequencing. These phenotypic traits, namely leaf angle, heading date, plant height,

seed area, seed length, seed width, and thousand grain weight, are related to an increase of yield

in barley.

13
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3.6 Objectives of this thesis

The objective of my thesis was to examine the diversity and structure in the barley and potato

genomes by identifying different types of sequence variants and benchmark the detection of SV

in those genomes. In particular, the objectives were to

1. create a high-quality consensus reference sequence across the two haplotypes of a diploid

potato clone derived from a tetraploid elite variety

2. assess sequence divergence from the available potato genome assemblies as well as

among the two haplotypes

3. characterize genomic and transcriptomic variation in the barley genome using multi-tissue

mRNA sequencing

4. assess the proportion of ePAV that are due to gPAV in barley

5. benchmark SV callers using simulated linked-read sequencing data in the potato genome

considering different sequencing coverages, SV types, SV lengths, and haplotype inci-

dences

6. improve SV discovery by benchmarking SV callers and their combinations with respect

to their sensitivity and precision to detect SV in the barley genome

7. characterize the occurrence and distribution of SV in the genomes of 23 barley inbreds

that are the parents of a resource for mapping quantitative traits, the double round robin

population

8. quantify the association of SV with transcript abundance in barley

9. assess the prediction ability for quantitative phenotypic traits in barley using different

sequence variants

14
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Stefanie Hartje,3 Katja Muders,4 Bernd Truberg,4 Arne Rosen,4 Vanessa Prigge,5 Julien Bruckmüller ,6 Jens Lübeck,6 and
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Abstract

Potato (Solanum tuberosum L.) is one of the most important crops with a worldwide production of 370 million metric tons. The objectives
of this study were (1) to create a high-quality consensus sequence across the two haplotypes of a diploid clone derived from a tetraploid
elite variety and assess the sequence divergence from the available potato genome assemblies, as well as among the two haplotypes; (2)
to evaluate the new assembly’s usefulness for various genomic methods; and (3) to assess the performance of phasing in diploid and tetra-
ploid clones, using linked-read sequencing technology. We used PacBio long reads coupled with 10x Genomics reads and proximity liga-
tion scaffolding to create the dAg1_v1.0 reference genome sequence. With a final assembly size of 812Mb, where 750Mb are anchored
to 12 chromosomes, our assembly is larger than other available potato reference sequences and high proportions of properly paired reads
were observed for clones unrelated by pedigree to dAg1. Comparisons of the new dAg1_v1.0 sequence to other potato genome sequen-
ces point out the high divergence between the different potato varieties and illustrate the potential of using dAg1_v1.0 sequence in breed-
ing applications.

Keywords: reference sequence; elite potato variety; chromosome-scale; genome divergence; intragenomic diversity

Introduction

Potato (Solanum tuberosum L.) was domesticated about 8000years

ago in the Andes from diploid wild potatoes and became a staple

food of indigenous American communities (Spooner et al. 2005).

Because of its high nutritional value (Jansky et al. 2019), the potato

is nowadays one of the most important crops for humanity and its

global production exceeds 370 millionmetric tons (FAO 2019).

The number of potato cultivars is in the thousands (FAO 2008),

most of which are tetraploid (2n ¼ 4� ¼ 48), with a high level of het-

erozygosity and strong inbreeding depression (Zhang et al. 2019).

With the steady rise of the human population, and growing fears of

food insecurity (Beddington 2010), it is crucial to increase potato

productivity. Inter alia, considerable increases are expected to be

contributed by plant breeding (Lenaerts et al. 2019). Modern breed-

ing tools such as genome editing (Altpeter et al. 2016) and genomic

selection (Stich and Van Inghelandt 2018) have the potential to en-

hance the gain of selection in potato. However, to utilize the full po-

tential of these tools, high-quality reference genomes of germplasm

relevant to breeding are required.

The current S. tuberosum reference genome is that of a doubled

monoploid clone from the cultivar group Phureja (Xu et al. 2011;

Sharma et al. 2013; Pham et al. 2020). However, group Phureja has

considerable genome and phenotype differences compared to the

commercially established group Tuberosum of tetraploid culti-

vars (Xu et al. 2011), which makes it presumably not ideal as a ref-

erence for the latter. Furthermore, preliminary comparisons

between cultivars indicated substantial sequence and structural

variations (SV; Xu et al. 2011; Uitdewilligen et al. 2013), which calls

for cultivar-specific genome assemblies as to optimally exploit

genomic tools for potato breeding.

Assembling potato genomes is challenging because of their

high levels of heterozygosity. Mixed heterozygous and homozy-

gous regions make it difficult for algorithms to find a single

unique path of overlapping reads, leading to more fragmented as-

semblies and a requirement of higher sequencing coverage

(Pryszcz and Gabaldón 2016). If heterozygosity is very high, the al-

ternative haplotype contigs are assumed to be separate regions of

the genome, a phenomenon called undercollapsed heterozygos-

ity (Matthews et al. 2018). This effect is more pronounced in
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tetraploid genomes, since they have more alternative haplotype

versions of the same region. Long-read sequencing technologies

such as PacBio (Shearman et al. 2020; Vollger et al. 2020) and

Nanopore (Kuderna et al. 2019; Low et al. 2019; Kinkar et al. 2021)

aim to overcome the problem of heterozygosity, allowing more

space for overlaps during assembly (Jiao and Schneeberger 2017).

Further sequencing technologies such as proximity ligation and

optical mapping help resolving areas that are difficult to assem-

ble (Field et al. 2020).

In recent years, potato genome assemblies of wild diploid po-

tato relatives Solanum commersonii (Aversano et al. 2015) and

Solanum chacoense (M6; Leisner et al. 2018) have become available.

Exploiting the latest sequencing technological advances, Zhou

et al. (2020) assembled the phased genome sequence of RH89-039-

16 (RH89), a diploid clone derived from a cross between S. tubero-

sum dihaploid and a diploid clone, which in turn was generated

from a cross between two S. tuberosum group Phureja hybrids (Xu

et al. 2011). Finally, the first non-Phureja S. tuberosum assembly

has been recently published (Solyntus_v1.1; van Lieshout et al.

2020). For the latter, however, the Phureja genome (DM_v4.03)

has been used for reference-based scaffolding. Therefore, to our

knowledge, no genome sequence of an elite variety is available

nor any pure chromosome-level assembly of S. tuberosum group

Tuberosum.

The objectives of this study were (1) to create a high-quality

consensus sequence across the two haplotypes of a diploid clone

derived from a tetraploid elite variety and assess the sequence di-

vergence from the available potato genome assemblies as well as

among the two haplotypes; (2) to evaluate the new assembly’s

usefulness for various genomic methods; and (3) to assess the

performance of phasing in diploid and tetraploid clones using

linked-read sequencing technology.

Materials andmethods
Genetic material, DNA, and RNA extraction
Three gynogenic dihaploid S. tuberosum clones (dAg1, dAg2, and

dAg3) were created from S. tuberosum group Tuberosum tetra-

ploid cv. Agria (tAg). The haploid inducer was S. tuberosum group

Phureja IVP06-153. Besides tAg, its parental clones tPa1 and tPa2

as well as five tetraploid elite potato clones (tV1–tV5) were in-

cluded in this study. DNA was extracted from the leaves of all

clones according to Mayjonade et al. (2016). For RNA sequencing,

10 tubers of tAg were grown in a cultivation chamber set to 25�C

during day (6–22h) and 20�C during night. The light intensity was

about 300 lmol/m2s in the leaf canopy. Samples of leaves, sto-

lons, and flowers were harvested at 15 (leaves and stolons) and

45 (flowers) days after planting. Total RNA was extracted using

RNeasy Plant MiniKit (Qiagen, Hilden, Germany) following the

manufacturer’s instructions. RNA was pooled to equal concen-

tration for the following library preparation.

Preparation of libraries and sequencing
For all clones, 10x Genomics (10xG; Pleasanton, CA, USA) libraries

were prepared (Supplementary Table S1) following the manufac-

turer’s recommendations, using 1ng of DNA input, where size se-

lection was performed before library preparation on BluePippin

(SAGE Sciences, Beverly, MA, USA) with a high-pass protocol

allowing a size selection start at 40 kb. The quantity and quality

control of size-selected DNA were performed with Qubit

(Thermo) and with a Genomic tape (Agilent TapeStation).

Sequencing of 10xG libraries was performed on an Illumina (San

Diego, CA, USA) HiSeq3000 in paired-end read mode.

For dAg1, SMRTbell libraries were prepared as recommended

by Pacific Biosciences (Menlo Park, CA, USA, SMRTbell Template

Prep Kit 1.0-SPv3), including a final size selection on Blue Pippin

to remove fragments lower than 10kb. Sequencing was per-

formed on a PacBio Sequel I with Binding Kit 2.0 and Sequencing

chemistry 2.0 for 10h or Binding Kit 3.0 and Sequencing chemis-

try 3.0 for 20h, as recommended by Pacific Biosciences.

Proximity ligation (Hi-C) data were generated for dAg1 by

Dovetail (Boston, MA, USA), following the protocol of Lieberman-

Aiden et al. (2009). A total of 129 � 106 2 � 150 bp Hi-C reads were

sequenced.

Pooled RNA from leaves, stolons, and flowers was used to pre-

pare an Iso-Seq library following manufacturer instructions.

Sequencing was performed on the PacBio Sequel II using the

Sequel II Sequencing Kit 2.0 chemistry. Iso-seq v3 pipeline

(https://github.com/PacificBiosciences/IsoSeq) was used to gener-

ate final RNA sequencing data.

Genome assembly
Our objective was to create one contiguous consensus assembly

across the two haplotypes of dAg1 and phase the existing intrage-

nomic variants for diploid and tetraploid clones in a second step.

We have evaluated two different assembly strategies to obtain

the dAg1_v1.0 genome sequence (Supplementary Figure S1), but

in this manuscript, only the final assembly strategy and results

are presented.

Final assembly strategy: PacBio assembly as
backbone
All PacBio reads that had �200� coverage, an error rate <15% af-

ter error correction, and a length �1000bp were assembled with

Canu v1.8 (Koren et al. 2017). Parallelly, the same reads were also

assembled using Falcon and Falcon-unzip (Chin et al. 2016). To

deal with the higher error rate of PacBio reads, both assemblies

were polished using Pilon (v1.22; Walker et al. 2014) with the less

error-prone 10xG linked reads, where mapping was performed

with longranger align (v2.2.2) (Zheng et al. 2016). Furthermore,

the polished Canu assembly was filtered with Purge Haplotigs

(Roach et al. 2018) to avoid undercollapsed heterozygosity

(Matthews et al. 2018) by discarding alternative haplotigs.

A hybrid assembly was created using quickmerge (v0.3;

Chakraborty et al. 2016), where the polished Falcon assembly was

used as reference and the polished and deduplicated Canu as-

sembly as query. This was followed by a second round of Pilon

polishing with mapped 10xG linked reads. These mapped reads

were additionally used to correct misassemblies using Tigmint

(Jackman et al. 2018) and the assembly was filtered with Purge

Haplotigs. Arcs (v1.0.6; Yeo et al. 2018) and Links (v1.8.7; Warren

et al. 2015) were used to scaffold contigs of the polished, cor-

rected, deduplicated quickmerge assembly with the 10xG library

1, lowering the minimum aligned reads to 3 instead of 5 (-c 3) and

using k-mers of size 20 (-k 20). Thereafter, the step was iterated

with 10xG library 2. Finally, a last round of polishing with Pilon

and filtering with Purge Haplotigs was performed.

Hi-C scaffolding
The reads of the Hi-C library were mapped against the scaffolded

hybrid assembly in two steps with different software. In the first

step, we used BWA-MEM (v0.7.15; Li and Durbin 2010) for map-

ping and Salsa (Ghurye et al. 2017) for scaffolding, with misas-

sembly correction activated (-m yes). In the second step, Juicer

was used for mapping (Durand et al. 2016) and 3D-DNA

(Dudchenko et al. 2017, 2018) for scaffolding. Contigs smaller
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than 12.5 kb were ignored during scaffolding and the repeat cov-

erage misjoin threshold (–editor-repeat-coverage) was set to 3.

The resulting contact maps were visualized using Juicebox

(Durand et al. 2016; Dudchenko et al. 2017, 2018) and a final man-

ual curation and scaffolding were performed.

Evaluation of assemblies
A custom python script was used at all steps of the assembly to

obtain several statistics, namely the N50, N90, L50, L90, number

of Ns per 100 kb, as well as scaffold number, and total sequence

length. Benchmarking Universal Single-Copy Orthologs (BUSCO;

Sim~ao et al. 2015) were used to assess gene completeness com-

pared to the Solanaceae gene set (odb10; Kriventseva et al. 2019).

Whole-genome alignments of the final dAg1_v1.0 assembly

and the four assemblies DM_v4.04, DM_v6.1, RH89, and

Solyntus_v1.1 were performed with nucmer (-l 1000 -c 1000 -d 10)

from the MUMMER package (v4.0.0beta2; Marçais et al. 2018).

Additionally, for dAg1_v1.0 vs Solyntus_v1.1, a second alignment

was performed using a lower minimum length of single exact

matches (-l 100) and of a cluster of matches (-c 100) to visualize

the alignment.

In order to evaluate our final assembly, mapping of 10xG

linked reads from various diploid and tetraploid clones against

our and the existing potato reference assemblies (dAg1_v1.0,

DM_v4.04, DM_v6.1, RH89, M6, and Solyntus_v1.1) was performed

using longranger align. Illumina sequencing data of the diploid

wild potato species (Solanum bukasovii, dW; Kyriakidou et al. 2020)

were downloaded from the SRA database and mapped against

the six genomes using BWA-MEM. Samtools (v1.10; Li et al. 2009)

was used to calculate the proportion of mapped reads and prop-

erly paired reads (Thankaswamy-Kosalai et al. 2017).

Gene annotation
The MAKER pipeline (Campbell et al. 2014) was used to annotate

genes. A custom repeat library was created with Repeatmodeler

(Smit et al. 2013) and Mite Hunter (Han and Wessler 2010) accord-

ing to Campbell et al. (2014). Repeatmasker (Smit et al. 2013) was

then used to mask these repeat regions in the genome. The Iso-

seq RNA data generated for tAg in this project as well as pub-

lished mRNA reads (SRX4882701; Caruana et al. 2019) from tAg,

assembled into a transcriptome with Trinity (v2.11.0) (Haas et al.

2013), were used as EST evidences. Protein evidences were

UniProt proteins of Solanum (The UniProt Consortium 2019).

Snap (Korf 2004) and Augustus (Stanke et al. 2008) were used as

gene predictors. Orthologous analysis with UniProt proteins of

Solanum was done with Orthofinder (Emms and Kelly 2019).

Iso-seq RNA analysis
High-quality RNA reads obtained with Iso-seq version 3 pipeline

(https://github.com/PacificBiosciences/IsoSeq) for tAg were

mapped against dAg1_v1.0, DM_v4.04, DM_v6.1, RH89, M6, and

Solyntus_v1.1 genomes using Minimap2 (Li 2018). Mapped reads

against dAg1_v1.0, DM_v6.1, and RH89 were then filtered for

alignments with �99% coverage and �95% identity. Redundant

isoforms were removed using cDNA-Cupcake pipeline (http://

github.com/Magdoll/cDNA_Cupcake). Collapsed isoforms were

categorized according to dAg1_v1.0, DM_v6.1, and RH89 annota-

tions by using SQANTI3 (Tardaguila et al. 2018). Alternative splic-

ing was investigated with SUPPA2 (Trincado et al. 2018).

Variant calling, phasing, and annotation
The dAg1_v1.0 assembly was used as reference to call single nu-

cleotide variants (SNV), and small insertions and deletions

(indels, <50bp) for all potato clones. The corresponding 10xG

linked reads of the diploid clones dAg1, dAg2, and dAg3 were

aligned with longranger wgs (v2.2.2), and phased SNV and indels

were called using freebayes (v1.3.2-40; Garrison and Marth 2012).

10xG linked reads of the three tetraploid clones tAg, tPa1, and

tPa2 were mapped against the dAg1_v1.0 assembly using long-

ranger align (v2.2.2) and variants were called by freebayes.

Variants of the samples dAg1, dAg2, dAg3, tAg, tPa1, and tPa2

were filtered for a minimum depth of 10. The variants of the

clones were phased with whatshap polyphase (Schrinner et al.

2020). The allele profiles of regions for which phase information

was available for the offspring (dAg1, dAg2, dAg3, and tAg) were

compared with that of the respective parents (tAg, tPa1, and

tPa2). The proportion of regions with correctly phased allele pro-

files in the offspring compared to the allele profiles of the paren-

tal clones was calculated.

Sorting Intolerant From Tolerant 4G (SIFT4G, v2.4) was used to

annotate tolerant (score >0.05) and deleterious (score�0.05) variants

based on the conversion of amino acid sequences (Vaser et al. 2016).

The SIFT4G database was built using SIFT4_Create_Genomic_DB

with the uniref90 database, the dAg1_v1.0 sequence, and its corre-

sponding predicted genes and proteins. The number of genes with at

least one putative deleterious variant was estimated.

Pericentromeric regions of the potato chromosomes of

DM_v4.03 were determined based on the recombination rates

reported for the DRH population (Manrique-Carpintero et al.

2016). Thereafter, we determined the pericentromeric regions in

the dAg1_v1.0 sequence based on the coordinates of the whole-

genome alignment between dAg1_v1.0 and DM_v4.03 using

show-coords from the MUMMER package. We then used a t-test

to examine the difference of the proportion of genes with at least

one deleterious variant between 1dAg1-3 and 1Pa1-2 in pericen-

tromeric to subtelomeric regions for its statistical significance.

Additionally, a t-test was used to test for a mean difference of the

proportion of genes with at least one deleterious variant, calcu-

lated in 1-Mb windows across the genome, between diploid

(1dAg1-3) and tetraploid clones (1tPa1-2).

SV between the two haplotypes of dAg1 were identified from

PacBio reads, using the CuteSV algorithm (v1.0.8; Jiang et al. 2020)

after mapping the reads with Minimap2. Sequence divergence be-

tween the assembly sequences was estimated as the proportion

of the number of bp affected by SV, where the latter was

extracted from the whole-genome alignments (-l 1000 -c 1000 -d

10), including all final primary scaffolds of the four potato

genomes using show-diff from the MUMMER package.

Results and discussion
Genome assembly
Two PacBio assemblies were created for the final assembly strat-

egy: the first with Canu comprising 14,037 contigs and the second

with Falcon comprising 2,109 contigs. The Canu assembly had a

larger than expected assembly size and the BUSCO analysis indi-

cated a high proportion of duplications, both signs of undercol-

lapsed heterozygosity. In addition, the N50 value of the Falcon

assembly (0.618Mb) was higher than that of the Canu assembly

(0.203Mb). Consequently, the Falcon assembly was used as refer-

ence and the Canu assembly as query in creating the hybrid as-

sembly. The resulting hybrid assembly had a reduced number of

contigs (1,592) and the N50 increased to 0.865Mb. After two

rounds of 10xG scaffolding, the number of scaffolds decreased to

704 and the N50 increased to 1.656Mb, where, for the Solanaceae

gene set, a BUSCO statistic of 95% was observed.
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This assembly strategy based on PacBio long reads as back-

bone resulted in a more contiguous assembly with a closer-to-

expected assembly size and a lower number of Ns (Table 1) com-

pared to another strategy with 10xG linked reads as backbone

(Supplementary Text and Table S2). Therefore, this former as-

sembly was used for further scaffolding using Hi-C data. The two

Hi-C scaffolding approaches led to drastically increased N50 val-

ues up to 57.4Mb and a slight decrease in BUSCO statistics. The

latter phenomenon was already observed by Kadota et al. (2020)

and might be due to misassembly over-correction and/or imper-

fect manual curation at the last stage.

The unscaffolded minor contigs were concatenated as ChrUn

(65.88Mb), which represents 8.3% of the genome and hosts 2,124

(4.7%) of the annotated genes. When ignoring Ns and including

ChrUn, the final assembly size of the dAg1_v1.0 genome was

812Mb, which is in a similar range compared to 731, 807, and

1,674Mb (diploid genome size) for DM_v6.1, M6, and RH89, re-

spectively (Supplementary Table S3). Considering only the 12 fi-

nal scaffolds as chromosomes, the genome size of 744Mb is

larger than in M6, Solyntus_v1.1, and DM_v6.1 (499, 716, and

731Mb).

Evaluation of dAg1_v1.0 genome sequence
The visual inspection of the Hi-C contact maps of the dAg1_v1.0

sequence suggested the presence of clear contact areas between

the ends of all chromosomes (Figure 1A). This has been observed

earlier for plant genome (Liu and Weigel 2015; Liu et al. 2017) and

supports the quality of our assembly. As additional quality con-

trol, especially to evaluate the successful purging of the second

haplotype from the consensus assembly, we have evaluated the

genome-wide distribution of the read depth. Only a few coverage

spikes were observed for the final assembly (Supplementary

Figure S2). A first analysis of these regions with particularly high

coverage suggests that they are related to repetitive sequences.

These attributes indicate that our assembly has a high quality.

Visual inspections of the dot plots of whole-genome align-

ments between dAg1_v1.0 vs DM_v6.1 and between dAg1_v1.0 vs

RH89 (Figure 1, B and C) suggested a high level of correspondence

between dAg1_v1.0 and the other two potato genomes. A reduc-

tion of the minimum length of a single exact alignment match

from 1,000 to 100bp was necessary to visualize the whole-ge-

nome alignment of dAg1_v1.0 and Solyntus_v1.1 (Figure 1D)

which suggests a lower level of correspondence, which might be

explained by misassemblies in the Solyntus_v1.1 genome scaf-

folded by DM_v4.03 (DM_v4.04 without unscaffolded contigs).

This previous Phureja genome presumably included misassem-

blies and sequencing errors due to the limited sequencing

resources available in 2011 when the genome was assembled

(Pham et al. 2020). This explanation is supported by the observa-

tion of similar differences in the whole-genome alignment be-

tween dAg1_v1.0 and DM_v4.04 (Supplementary Figure S3) but

not between dAg1_v1.0 and DM_v6.1.

The reason for larger gaps in the abovementioned whole-ge-

nome alignments might be a lower assembly quality in these

regions, especially in the pericentromeric regions. The latter

regions are characterized by high repeat frequencies which are

difficult to assemble.

Visual inspections of the dot plots of whole-genome align-

ments of RH89 vs dAg1_v1.0 and of RH89 vs DM_v6.1

(Supplementary Figure S4) suggested that the RH89 and DM_v6.1

genomes are more similar than the RH89 and dAg1_v1.0

genomes. This visual impression is supported by the observation

of a lower sequence divergence of �8.5% between RH89 and

DM_v6.1 compared to �10.8% between RH89 and dAg_v1.0, cal-

culated based on the sequence differences due to SV. This finding

is in agreement with the RH89 pedigree, which implies a higher

relatedness between RH89 and DM than between RH89 and dAg.

The sequence divergence between dAg_v1.0 and DM_v6.1 and

Solyntus_v1.1 was 8.2% and 8.6%, respectively.

To assess the completeness and correctness of the dAg1_v1.0

sequence relative to other potato sequences, we mapped 10xG

linked reads of various potato varieties (tV1–tV5) and one wild

species (dW) to dAg1_v1.0, DM_v4.04, DM_v6.1, RH89,

Solyntus_v1.1, and M6 genome sequences. The percentage of

mapped reads of all examined clones was higher against S. tubero-

sum reference sequences than against M6 (Figure 2A). The pro-

portion of mapped reads against dAg1_v1.0 was high and similar

to the other S. tuberosum genomes. However, the proportion of

properly paired reads, considered to be a more accurate quality

measure (Thankaswamy-Kosalai et al. 2017), was on average

across all examined clones the highest for the dAg1_v1.0 genome

(Figure 2B). PacBio and Iso-seq reads from diploid and tetraploid

Agria were also mapped against the reference assemblies and

high percentages of reads were mapped in all cases (Figure 3).

These observations together indicated the high completeness

and especially the correctness of the dAg1_v1.0 genome assem-

bly, which will therefore be highly useful for genome-assisted

breeding applications in potato and the basis for many future re-

search projects on diploid and tetraploid potato.

Transcript analysis
To illustrate further the usefulness of the dAg1_v1.0 genome

for research on tetraploid potatoes, a transcript analysis was

performed. High-quality Iso-seq reads of tAg were mapped

Table 1 Assembly statistics of different steps of our final genome assembly strategy for dAg1

Assembly step No. of con-

tigs

Assembly

size (Mb)

Largest

contig

(Mb)

N50

(Mb)

N90

(Mb)

L50 L90 Ns per

100kb

BUSCO

(%)

Assembling
Canu 14,037 1,343.9 4.559 0.203 0.035 1,643 7,787 0 95
Falcon 2,109 845.7 4.904 0.618 0.206 393 1,315 0 95
quickmerge 1,592 889.7 10.609 0.865 0.276 267 974 0 95
Arcs 1� 1,055 895.9 13.589 1.440 0.407 176 635 757 95
Arcs 2� 704 788.1 13.585 1.656 0.548 136 445 977 95

Hi-C scaffolding
Hi-C Salsa 385 788.4 29.219 5.059 1.007 41 175 1,006 95
Hi-C 3D-DNA 12 (þ614) 812.2 89.719 57.412 52.458 6 12 994 94

For details see Materials and Methods.
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against dAg1_v1.0, DM_v6.1, and RH89 genomes. After collaps-

ing the mapped reads, unique transcripts were compared with

the dAg1_v1.0 annotation set as well as those published for

DM_v6.1 and RH89 (Pham et al. 2020; Zhou et al. 2020).

SQANTI3 analyses showed a higher ratio of transcripts associ-

ated with annotated genes compared to novel genes in

dAg1_v1.0 and a higher number of annotated genes in

dAg1_v1.0 compared to the other genomes (Supplementary

Figure S5A). Though this finding may be biased by the fact that

Iso-seq reads were used as evidences in obtaining gene models

in dAg1_v1.0, the results of SQANTI3 suggest a good quality of

annotation for dAg1_v1.0.

Iso-seq reads were obtained from an RNA bulk of leaves, sto-

lons, and flowers. So a broad representation of genes should be

expected. Nevertheless, some tissues, like tubers, are not present

in Iso-seq reads. To assess whether dAg_v1.0 annotation presents

some bias, an orthologous analysis was done between dAg_v1.0

genes and Solanum proteins from the UniProt database. Up to

90% of the tuber proteins have an orthologous in dAg_v1.0 genes,

the same proportion found in RH89 and DM_v6.1. So, despite the

absence of tuber Iso-seq reads, no clear bias was found in

dAg_v1.0 annotated genes.

The proportion of genes with more than one isoform was

greater than the number of genes with only one isoform
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Figure 1 Hi-C contact map of dAg1_v1.0 sequence (A). Dot plots of whole-genome alignments of dAg1_v1.0 (vertical) vs DM_v6.1 (B), RH89 (C), and
Solyntus_v1.1 (D) genomes (horizontal). Each dot indicates an alignment with a length of �1000 bp between the two genomes (�100 bp for D). Forward
and reverse alignments are represented as blue and red dots, respectively.
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(Supplementary Figure S6). This illustrates the importance of al-

ternative splicing and polyadenylation (Supplementary Figure

S5B). The detailed analyses of these aspects using SQANTI3 did

not reveal any systematic differences (Supplementary Figure S7)

compared to that described for other plants (Abdel-Ghany et al.

2016; Wang et al. 2020) and are therefore not discussed further in

detail.

Intragenomic diversity
We detected across the dAg1 genome 7,829,534 heterozygous

SNV and indels which resulted in a sequence diversity between

haplotypes of �1% (Table 2). A similar amount of heterozygous

variants was identified for the two other diploid Agria clones

dAg2 and dAg3. These values are in the range of what was

reported previously for diploid wild species S. commersonii (1.49%;

Aversano et al. 2015) and M6 (0.68%; Leisner et al. 2018). In addi-

tion, 32,028 SV were detected between the two dAg1 haplotypes

which are in the similar range of what was reported for RH89

(Zhou et al. 2020). For the three tetraploid clones tAg, tPa1, and

tPa2, the frequency of heterozygous variants was with 3.1%,

3.6%, and 3.3%, respectively, about thrice higher than for the dip-

loid ones. This is due to the fact that in tetraploid clones, more

variants between haplotypes can occur compared to diploid

clones, as more haplotypes are present. These results are in ac-

cordance with those of Hardigan et al. (2017), who found a similar

relation between the variant frequencies of diploid and tetraploid

clones which were 1.05% for diploid landraces and 2.73% for tet-

raploid cultivars.

The number of genes with at least one deleterious variant was

assessed in our study. This number was for the diploid clones

with values between 13,287 and 16,766 considerably higher than

the deleterious mutations in 10,642 annotated genes described by

Zhou et al. (2020) for the RH89 genome. This finding might be due

to the usage of different approaches to detect deleterious muta-

tions. In our study, short reads were mapped against the

dAg1_v1.0 sequence, whereas Zhou et al. (2020) aligned the as-

sembled chromosomes of RH89 to the DM_v4.03 sequence.

The number of genes with at least one deleterious variant ob-

served for the tetraploid clones (tPa1 and tPa2) was with values of

27,927 and 28,357 about twice as high as for the diploid clones.

Hence, the proportion of genes with at least one deleterious vari-

ant in 1-Mb windows across the genome is higher for tetraploids

than for diploids (Figure 4). This might be due to that in tetraploid

clones deleterious alleles can be more easily masked by non-dele-

terious alleles due to the higher number of alleles per gene. This

explanation is supported by the higher number of genes with at

Figure 2 Percentage of 10xG linked reads of different potato clones mapped to different potato assemblies (A) and percentage of 10xG linked reads
properly paired in mapping against different potato assemblies (B).

Figure 3 Percentage of dAg1 PacBio reads (A), tAg PacBio reads (B), and tAg high-quality Iso-seq RNA reads (C) mapped to different potato assemblies.
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least one homozygous deleterious variant for diploids (dAg2:

1,838; dAg3: 1,436) than for tetraploids (tPa1: 669; tPa2: 1,060). A

similar number of genes with homozygous deleterious variants

(1,753) was observed by Zhou et al. (2020). These findings indicate

the higher masking potential of deleterious alleles in tetraploids,

compared to diploids. Furthermore, our observation illustrates

the high efforts that will be required to breed potato as a diploid

hybrid crop. This is especially true as the proportion of the num-

ber of genes with at least one deleterious variant between 1tPa1-

2 and 1dAg1-3 was significantly (P< 0.001, t-test, sample size:

Figure 4 Distribution of genomic features across the potato genome. The outermost circle denotes the chromosome number and the physical position.
The next inner circles report the distributions of genes (black), repeats (green) measured as percentage of masked bp, and structural variations (blue).
The four most inner circles illustrate the proportion of genes with at least one deleterious variant in 1dAg1-3 (black) and 1tPa1-2 (orange), and
heterozygous variants in dAg1, dAg2, and dAg3 in 1-Mb windows, respectively. The gray bars mark the pericentromeric regions, whereas the yellow
bars mark the regions where the highest difference between the proportion of genes with at least one deleterious variant of 1dAg1-3 and 1tPa1-2 was
identified.

Table 2 Number of variants (SNV and indels) and genes with at least one deleterious variant among the haplotypes of a potato clone

Clone Number of variants Number of genes (del. variant)

Total Heterozygous Homozygous Total Homozygous

dAg1 7,829,534 7,829,534 — 13,287 —
dAg2 9,790,584 7,710,744 2,079,840 16,365 1,838
dAg3 9,461,662 7,975,910 1,485,752 16,766 1,436
tAg 25,559,532 25,495,186 64,346 26,134 25
tPa1 30,680,341 29,831,031 849,310 28,357 669
tPa2 28,666,770 27,156,995 1,509,775 27,927 1,060
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863) higher in pericentromeric regions, compared to subtelomeric

regions. In the former, a purging of alleles is considerably more

difficult due to the reduced recombination.

In addition to the frequency of sequence variants, the phas-

ing of alleles is relevant to evaluate the possibilities of combin-

ing or separating alleles at neighboring loci by recombination.

Recently, methods have been proposed for phasing that rely on

long-read sequencing (e.g., Schrinner et al. 2020). We have eval-

uated the use of linked-read sequencing for phasing the het-

erozygous variants for diploid and tetraploid clones. The

resulting blocks of phased regions across the genomes had a

median length of 116 bp for tPa2 and 6,824 bp for dAg1

(Table 3). The figures are discouraging with respect to the use

of phasing information e.g., in the context of genomic selection

approaches (Stich and Van Inghelandt 2018). Nevertheless,

these lengths are in accordance to the results of Yang et al.

(2017) who phased the hexaploid sweet potato genome and

obtained 542,361 phased regions, which covered about 30% of

the genome.

Despite the short block length, the phased regions of paren-

tal and offspring clones were compared to each other with re-

spect to the present alleles. In only 2.0–2.3% of the cases, the

haplotypes (i.e., phased variants) observed in the three diploid

clones were not observed in tAg (Table 4). For the grandparents

tPa1&2, these figures were with 2.1–3.3% slightly higher but

still indicating a good phasing accuracy. More than 50% of all

haplotypes of tAg were also observed in the four haplotypes of

the parental clones tPa1&2. It was expected that two haplo-

types of tAg would occur in tPa1 and the other two in tPa2.

However, an in-depth evaluation of the phasing accuracy of

tetraploids using 10xG linked reads was not possible due to the

short phased regions.

Conclusions

In this study, we have created a chromosome-scale consensus se-

quence across the two haplotypes of a diploid clone derived from a

tetraploid elite potato variety. This de novo assembly was performed

with an optimal combination of today’s sequencing technologies,

comprising 10xG linked reads, PacBio long reads, and Hi-C reads.

Comparisons of the new dAg1_v1.0 sequence to other potato ge-

nome assemblies pointed out the high divergence between the dif-

ferent potato clones and illustrated the potential of using dAg1_v1.0

sequence in breeding applications. The high amount of heterozy-

gous SNV and indels, SV, and genes with at least one deleterious

variant highlights the intragenomic diversity of the dAg1_v1.0 ge-

nome. Finally, in this study, we have shown that sequence variants

of diploid potato clones could be phased using cost-efficient 10xG

linked reads and the dAg1_v1.0 sequence. However, further

improvements are needed to enlarge the phased regions to enable

this approach in a breeding-related context.

Data availability

Supplementary File_S1 contains Supplementary Tables S1–S3 and

Figures S1–S7. Supplementary Table S1 contains statistics of the

sequencing technology data used in this study, including potato

clones, data type, number of reads, median, Q5, Q95, and raw cov-

erage. Supplementary Table S2 contains assembly statistics,

namely number of contigs, assembly size, largest contig, N50, N90,

L50, L90, Ns per 100kb, and percentage of BUSCO genes, for an al-

ternative assembly strategy. Supplementary Table S3 contains sta-

tistics of the different published potato assemblies with number of

scaffolds, assembly size, assembly size considering only 12 chro-

mosomes, scaffold N50, and Ns per 100kb for 12 chromosomes.

Supplementary Figure S1 shows the pipeline of the two different

assembly strategies evaluated in this study. Supplementary Figure

S2 shows the read depth and the percentage of masked bp in win-

dows across all potato chromosomes. Supplementary Figure S3

depicts the alignment dot plot of dAg1_v1.0 and DM_v4.04

genomes. Supplementary Figure S4 represents the alignment dot

plot of RH89 and DM_v6.1 genomes. Supplementary Figure S5

depicts the number of transcripts assigned to annotated and novel

genes and alternative splicing events. Supplementary Figure S6

shows the number of isoforms per gene. Supplementary Figure S7

indicates the frequency distribution of Full Splice Match (FSM)

transcripts. The Supplementary material is available via figshare

repository (doi.org/10.6084/m9.figshare.14729943). Raw sequenc-

ing data of dAg1, dAg2, dAg3, and tAg have been deposited into

the NCBI Sequence Read Archive (SRA) under the accession

PRJNA729250. The genome sequence of dAg1_v1.0 and the corre-

sponding annotation files are available via figshare repository

(doi.org/10.6084/m9.figshare.14604780).
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Table 3 Q95, median, and Q5 of the block length in bp of phased
variants

Clone Q95 (bp) Median (bp) Q5 (bp)

dAg1 626,568 6,824 6
dAg2 341,204 267 2
dAg3 251,607 301 2
tAg 1,207 188 16
tPa1 872 131 11
tPa2 822 116 9

Table 4 Percentage of phased blocks for which the haplotypes of
progenies occurred in 0 to multiple copies in the parental clones

Samples dAg1 dAg2 dAg3 tAg

0/1/2 (%) 0/1/2/3/4 (%)
tAg 2.3/9.5/

88.2
2.0/10.8/

87.2
2.1/9.2/

88.7
–

tPa1 2.1/11.8/
86.1

2.9/11.2/
85.9

3.3/11.2/
85.5

1.8/5.0/14.5/
23.7/55.0

tPa2 2.1/11.4/
86.5

2.2/10.9/
86.9

2.9/11.2/
85.9

1.6/4.9/14.7/
24.9/53.9
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Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, et al.

2018. MUMmer4: a fast and versatile genome alignment system.

PLoS Comput Biol. 14:e1005944.

Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, et

al. 2018. Improved reference genome of Aedes aegypti informs ar-

bovirus vector control. Nature. 563:501–507.

Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, et al. 2016.

Extraction of high-molecular-weight genomic DNA for long-read se-

quencing of singlemolecules. Biotechniques. 61:203–205.

Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, et al. 2020.

Construction of a chromosome-scale long-read reference ge-

nome assembly for potato. GigaScience. 9:1–11.

Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for

highly heterozygous genomes. Nucleic Acids Res. 44:e113.

Roach MJ, Schmidt SA, Borneman AR. 2018. Purge haplotigs: allelic

contig reassignment for third-gen diploid genome assemblies.

BMC Bioinformatics. 19:460.

Schrinner S, Mari RS, Ebler J, Rautiainen M, Seillier L, et al. 2020.

Haplotype threading: accurate polyploid phasing from long

reads. Genome Biol. 21:252.

Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, et al. 2013.

Construction of reference chromosome-scale pseudomolecules

for potato: integrating the potato genome with genetic and physi-

cal maps. G3 (Bethesda). 3:2031–2047.

Shearman JR, Sonthirod C, Naktang C, Sangsrakru D, Yoocha T, et al.

2020. Assembly of the durian chloroplast genome using long

PacBio reads. Sci Rep. 10:15980.

Sim~ao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.

2015. BUSCO: assessing genome assembly and annotation com-

pleteness with single-copy orthologs. Bioinformatics. 31:3210–3212.

Smit A, Hubley R, Green P. 2013. RepeatMasker Open-4.0. 2013–2015.

<http://www.repeatmasker.org>

Spooner DM, McLean K, Ramsay G,Waugh R, Bryan GJ. 2005. A single

domestication for potato based onmultilocus amplified fragment

length polymorphism genotyping. Proc Natl Acad Sci U S A. 102:

14694–14699.

Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native

and syntenically mapped cDNA alignments to improve de novo

gene finding. Bioinformatics. 24:637–644.

Stich B, Van Inghelandt D. 2018. Prospects and potential uses of ge-

nomic prediction of key performance traits in tetraploid potato.

Front Plant Sci. 9:159.

Tardaguila M, De La Fuente L, Marti C, Pereira C, Pardo-Palacios FJ,

et al. 2018. SQANTI: extensive characterization of long-read

transcript sequences for quality control in full-length tran-

scriptome identification and quantification. Genome Res. 28:

369–411.

Thankaswamy-Kosalai S, Sen P, Nookaew I. 2017. Evaluation and as-

sessment of read-mapping by multiple next-generation sequenc-

ing aligners based on genome-wide characteristics. Genomics.

109:186–191.

The UniProt Consortium 2019. UniProt: a worldwide hub of protein

knowledge. Nucleic Acids Res. 47:D506–D515.

Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, et al. 2018.

SUPPA2: fast, accurate, and uncertainty-aware differential

splicing analysis across multiple conditions. Genome Biol.

19:40.

Uitdewilligen JG, Wolters AM, D’hoop BB, Borm TJ, Visser RG, et al.

2013. A next-generation sequencing method for genotyping-

by-sequencing of highly heterozygous autotetraploid potato.

PLoS One. 8:e62355.

van Lieshout N, van der Burgt A, de Vries ME, ter Maat M, Eickholt D,

Esselink D, et al. 2020. Solyntus, the new highly contiguous refer-

ence genome for potato (Solanum tuberosum). G3 (Bethesda). 10:

3489–3495.

Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. 2016. SIFT missense

predictions for genomes. Nat Protoc. 11:1–9.

Vollger MR, Logsdon GA, Audano PA, Sulovari A, Porubsky D, et al.

2020. Improved assembly and variant detection of a haploid hu-

man genome using single-molecule, high-fidelity long reads. Ann

HumGenet. 84:125–140.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014.

Pilon: an integrated tool for comprehensive microbial vari-

ant detection and genome assembly improvement. PLoS

One. 9:e112963.

Wang B, Tseng E, Baybayan P, Eng K, Regulski M, et al. 2020. Variant

phasing and haplotypic expression from long-read sequencing in

maize. Commun Biol. 3:78.

Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, et al. 2015.

LINKS: scalable, alignment-free scaffolding of draft genomes

with long reads. Gigascience. 4:35.

Xu X, Pan S, Cheng S, Zhang B, Mu D, et al.; Potato Genome

Sequencing Consortium. 2011. Genome sequence and analysis of

the tuber crop potato. Nature. 475:189–195.

Yang J, Moeinzadeh MH, Hu F, Boerno S, Sun Z, et al. 2017.

Haplotype-resolved sweet potato genome traces back its hexa-

ploidization history. Nat Plants. 3:696–703.

Yeo S, Coombe L, Warren RL, Chu J, Birol I. 2018. ARCS: scaffolding

genome drafts with linked reads. Bioinformatics. 34:725–731.

Zhang C, Wang P, Tang D, Yang Z, Lu F, et al. 2019. The genetic

basis of inbreeding depression in potato. Nat Genet. 51:

374–378.

Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, et al. 2016.

Haplotyping germline and cancer genomes with high-throughput

linked-read sequencing. Nat Biotechnol. 34:303–311.

Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, et al. 2020.

Haplotype-resolved genome analyses of a heterozygous diploid

potato. Nat Genet. 52:1018–1023.

Communicating editor: G. Morris

10 | G3, 2021, Vol. 11, No. 12

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
s
://a

c
a

d
e

m
ic

.o
u

p
.c

o
m

/g
3
jo

u
rn

a
l/a

rtic
le

/1
1

/1
2

/jk
a

b
3

3
0

/6
3

7
1

8
7

1
 b

y
 U

n
iv

e
rs

ita
e

ts
- u

n
d

 L
a

n
d

e
s
b

ib
lio

th
e

k
 D

u
e

s
s
e

ld
o

rf u
s
e

r o
n

 3
0

 D
e

c
e

m
b

e
r 2

0
2

1
Chromosome-scale reference genome assembly of a diploid potato clone derived from an elite

variety

35



SUPPLEMENTARY INFORMATION

10xG assembly as backbone

Two 10xG libraries (1 and 2) of dAg1 were used for de novo assemblies using supernova

(v2.1.1) (Weisenfeld et al., 2017) to generate pseudo-haploid assemblies. Based on the raw

assembly statistics, we decided to use the assembly of the 10xG library 2 for the next

steps. PacBio reads were used to scaffold the 10xG assembly using SSPACE-LongRead

(v1.1) (Boetzer and Pirovano, 2014) in four iterations.

This assembly strategy has as backbone a 10xG assembly with 59,831 scaffolds and an

N50 of 0.306 Mb (Supplementary Table S2). This assembly was scaffolded in four rounds

with SSPACE-LongRead (v1.1) (Boetzer and Pirovano, 2014) and PacBio reads. After

the fourth round, N50 had triplicated to 0.901 Mb and the number of contigs decreased to

15,034. The proportion of complete gene orthologs from the Solanaceae set, in the following

designated as BUSCO statistics, improved slightly from 93% of the 10xG assembly to 94%

after scaffolding.
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Table S1: Potato clones and sequencing data used in this study.

Clone Data type # reads [M] Median [bp] Q95 [bp] Q5 [bp] Raw coverage

dAg1 PacBio 13.9 9,671 16,896 431 142x

dAg1 10xG library1 157.1 2x150 - - 56x

dAg1 10xG library2 318.6 2x150 - - 114x

dAg1 Hi-C 129.4 2x150 - - 45x

dAg2 10xG library1 182.6 2x150 - - 60x

dAg3 10xG library1 168.7 2x150 - - 57x

tAg Iso-seq 0.212 2,895 4,753 1,385 -

tAg PacBio 7.3 7,242 28,213 339 85x

tAg 10xG library1 195.3 2x150 - - 66x

tAg 10xG library2 58.02 2x150 - - 20x

tAg 10xG library2b 265.9 2x150 - - 90x

tAg 10xG library3 190.5 2x150 - - 65x

tPa1 10xG library1 161.7 2x150 - - 55x

tPa1 10xG library2 183.9 2x150 - - 62x

tPa2 10xG library1 187.9 2x150 - - 64x

tPa2 10xG library2 184.7 2x150 - - 63x

tV1 10xG library1 538.4 2x150 - - 184x

tV2 10xG library1 555.1 2x150 - - 190x

tV3 10xG library1 551.3 2x150 - - 188x

tV4 10xG library1 352.5 2x150 - - 120x

tV5 10xG library1 743.0 2x150 - - 254x

dW1 Illumina 157.1 2x150 - - 57x

1Kyriakidou et al. (2020)
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Table S3: Comparison of the assembly statistics of different potato genomes.

Genome #Scaffolds Assembly size [Mp]
Assembly size

(12 Chromosomes) [Mb] Scaffold N50 [Mb]
Ns per 100kb

(12 Chromosomes)

dAg1 v1.0 12+614 812.070 750.058 57.412 788

DM v4.041 12+14,841 884.168 725.017 1.345 12,527

DM v6.11 12+276 741.585 731.288 59.671 11

Solyntus v1.12 12 716.171 716.171 63.702 1

RH89∗,3 24+3,125 1695.610 1664.030 1.743 1,278

M64 12+8,258 825.768 499.048 0.714 2,510

∗Diploid data,1Pham et al. (2020), 2van Lieshout et al. (2020), 3Zhou et al. (2020),

4Leisner et al. (2018)
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Fig. S1: Graphical illustration of the evaluated genome assembly strategy.
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Abstract

Background: Barley is the world’s fourth most cultivated cereal and is an important crop model for genetic studies.

One layer of genomic information that remains poorly explored in barley is presence/absence variation (PAV), which

has been suggested to contribute to phenotypic variation of agronomic importance in various crops.

Results: An mRNA sequencing approach was used to study genomic PAV and transcriptomic variation in 23 spring

barley inbreds. 1502 new genes identified here were physically absent from the Morex reference sequence, and

11,523 previously unannotated genes were not expressed in Morex. The procedure applied to detect expression PAV

revealed that more than 50% of all genes of our data set are not expressed in all inbreds. Interestingly, expression PAV

were not in strong linkage disequilibrium with neighboring sequence variants (SV), and therefore provided an

additional layer of genetic information. Optimal combinations of expression PAV, SV, and gene abundance data could

enhance the prediction accuracy of predicting three different agronomic traits.

Conclusions: Our results highlight the advantage of mRNA sequencing for genomic prediction over other

technologies, as it allows extracting multiple layers of genomic data from a single sequencing experiment. Finally, we

propose low coverage mRNA sequencing based characterization of breeding material harvested as seedlings in petri

dishes as a powerful and cost efficient approach to replace current single nucleotide polymorphism (SNP) based

characterizations.

Keywords: Barley, Multi-tissue transcriptomics, Presence/absence variation, ∗Omic prediction, Genomic selection

Background
A priority of modern agriculture is to increase the produc-

tivity of crops to meet the demands of a growing human

population. The urge of achieving significant yield gains

is amplified by the current context of climate change,

competition for land, and limited natural resources [1].

Plant genetics and breeding are considered among the

disciplines that have the highest potential to tackle this
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challenge. One of the major approaches used in plant

breeding to increment yield gains is to exploit the natural

genetic variation present in the crop species’ gene pool.

Barley was domesticated more than 10,000 years ago in

the fertile crescent [2]. Its cultivation area has progres-

sively expanded to a wide range of latitudes, and it is now

the fourth most important cereal in the world [3]. Bar-

ley has also become an important model cereal species for

research, partly because its tolerance to stress surpasses

that of other major crops including wheat and rice [4].

Moreover, the diploid genome of barley facilitates genetics

studies.

To exploit the natural genetic variation present in

the gene pool of barley, genomic tools such as single

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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nucleotide polymorphism (SNP) arrays have been devel-

oped [5]. The availability of a reference genome sequence

facilitates the use of next generation sequencing technolo-

gies for the discovery of novel sequence variants [6]. This

allowed e.g. to characterize most of the barley accessions

of the German ex situ genebank using a genotyping by

sequencing approach [7].

Genome wide quantification of gene expression has

also been accessible in barley since many years through

the development of gene expression arrays [8]. This

technology allowed addressing how the barley transcrip-

tome varied between tissues [9], and how it responded

to pathogens and to environmental cues such as ver-

nalization and heat [10–13]. eQTL studies with these

arrays further revealed a complex pattern of genome-

wide regulation of barley genes [14], and described how

limited pleiotropy acted on gene expression in a tis-

sue dependent manner [15]. With the release of a high

quality reference sequence, resequencing technologies are

successfully providing novel information on the barley

genome and transcriptome that had remained inaccessible

[16–18].

It is now accepted that a significant proportion of the

genes of plant genomes are not expressed (expression

presence/absence variation; ePAV) or are even completely

absent (genomic PAV; gPAV) in subsets of genotypes, and

make up what is known as the dispensable transcrip-

tome or genome [19–21]. The occurrence of PAV in crops

has extensively been reported for maize and rice [19–25].

However, up to now, little information is available con-

cerning the extent and distribution of PAV in the barley

genome [18, 26].

Prediction of phenotypic variation in the context of

genomic selection, which is nowadays an essential com-

ponent of plant breeding programs, is performed based

on SNP genotyping profiles. Previous studies on the use

of metabolome and lipidome variation to predict pheno-

typic traits of maize revealed high but lower prediction

accuracies compared to SNP information [27, 28]. Only

the use of microarray based transcriptome information

for prediction of phenotypic traits in maize resulted for

a subset of the traits in increased prediction accuracies

especially when combined with SNP genotyping informa-

tion [29]. However, the transcriptomic characterization of

genotypes by mRNA sequencing has the advantage that

also SNP information can be extracted from such a data

set. In addition, the cost of characterizing genetic mate-

rial by mRNA sequencing can be influenced by modifying

the sequencing depth. Despite these advantages, no earlier

study examined the prediction accuracies of predictors

extracted frommRNA sequencing data sets. Furthermore,

an evaluation of the prediction accuracy of PAV has to

our knowledge not yet been performed, despite that sin-

gle PAV have been shown to contribute to phenotypic

variation of selected traits in various crops (for review see

Gabur et al. [30]).

In this study, we explored the genomic and transcrip-

tomic landscape of 23 spring barley landraces and cul-

tivars which were selected based on their genetic and

phenotypic diversity as parents of a joint linkage and asso-

ciation mapping population. The objectives of our study

were to (i) characterize genomic and transcriptomic vari-

ation in the barley genome using multi-tissue mRNA

sequencing, (ii) assess the proportion of ePAV that are

due to gPAV, (iii) examine how accurately the different

layers of genomic and transcriptomic variation predict

phenotypic variation of various agronomic traits.

Results
To study genomic diversity in spring barley inbreds, we

first selected 23 inbreds from a panel of 224 repre-

senting a broad range of origins [31] (Additional file 1:

Table S1). mRNA was extracted from seedlings and

leaves of all of these 23 inbreds, and from apex of

a subset of six inbreds (Additional file 1: Table S1).

Gene expression was determined for each individual

sample by sequencing the mRNA. Out of the 73,187

expressed genes across seedlings, leaves, and apex sam-

ples, 11,523 genes mapped to regions of the Morex

reference genome where no gene had previously been

annotated (Additional file 1: Figure S1). We considered

a gene as newly annotated gene if it was detected in

at least two samples. A total of 3,482 genes mapped

to the unknown chromosome of the Morex reference

sequence, where 581 of these were newly annotated genes.

The average length of the newly annotated genes was

5,470 bp.

We additionally identified 1,502 new contigs, with an

average gene length of 494 bp, that did not map to any of

the seven barley chromosomes. These contigs were desig-

nated in the following as newly identified genes, although

a portion of these contigs might not actually be protein

coding genes, if they were expressed in at least two sam-

ples, and if they showed homology to at least one gene of

one out of eight plant species. In total, 96% of the homol-

ogous genes were found in other cereals of the Triticacea

tribe but not in more distantly related species (Fig. 1A),

indicating that they were not conserved across the plant

kingdom but might fulfill functions specific to barley and

closely related species. In addition, only 280 of the newly

identified genes had an unknown gene annotation com-

pared to the eight plant species. Altogether, 67% of the

newly identified genes were expressed in all three tissues

(Fig. 1B), making it unlikely that they are due to techni-

cal artifacts. We next tested if the newly identified genes

were found predominantly in isolated inbreds, or if their

presence was common across our set of spring barley

accessions. This analysis revealed that about 25% of newly
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Fig. 1 Characterization of the contigs established by a de novo transcriptome assembly of unmapped reads across all 23 inbreds. a Number of newly

identified genes which had based on BLASTn searches homology to at least one of eight different plant species. b Expression of 1,502 newly

identified genes in the three different tissues. c Number of inbred lines in which the contigs of the de novo transcriptome assembly were expressed.

Gray bar shows the contigs detected in only one sample. The 1502 genes, which were expressed in at least two samples, were marked in black and

were designated as newly identified genes
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multi-tissue mRNA sequencing and their power to predict phenotypic traits

50



Weisweiler et al. BMC Genomics          (2019) 20:787 Page 4 of 15

identified genes were expressed in isolated inbreds, and

another 25% in all inbreds (except Morex, Fig. 1C).

The high number of genes absent in Morex inspired

us to systematically explore ePAV among the 23 inbreds.

ePAV were defined as genes whose expression was

detected/not detected in at least two inbreds. A total

of 38,810 barley genes were detected as ePAV, of which

28,340 had previously been annotated in the refer-

ence genome (Additional file 1: Table S2). ePAV were

enriched in genes implicated in very diverse biologi-

cal processes (Additional file 1: Table S3). The aver-

age length of ePAV (4162 bp) was significantly shorter

than that of non-ePAV genes (9458 bp). In contrast,

the average coding sequence length of ePAV (411 bp)

was longer than that of non-ePAV genes (282 bp). Non-

ePAV genes only rarely corresponded to newly identified

genes or newly annotated genes (Fig. 2), and in fact,

80.6% of the newly annotated genes and 78.8% of the

newly identified genes were also detected as ePAV

(Additional file 1: Table S2). ePAV were significantly (P

<0.05) unevenly distributed along the chromosomes, with

the highest frequency of occurrence close to the cen-

tromers (Fig. 3).

The robustness of our ePAV detection procedure

was evaluated using a resampling simulation. In 50

replications, 20% of the gene length of each gene was

used for transcript calling and ePAV detection. Across

the 50 replications, the average number of genes as well

Fig. 2 Gene expression of all inbreds. Presence and absence of the 73,187 genes across all inbreds. Genes were sorted according to their presence

across all inbreds (top to bottom). Presence of a gene is highlighted as colored and absence as white bar. The last column illustrates the three

different gene categories as white (IBSC), blue (newly annotated), and red (newly identified) bars
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Fig. 3 Distribution of expression presence/absence variation (ePAV) across the physical map of the barley chromosomes. Proportion of ePAV among

all genes within sliding windows of 20 Mb is given on the y-axis. The green line shows the average proportion of ePAV among all genes of a

chromosome and the P value indicates, if the distribution deviates significantly from an uniform distribution. The yellow line illustrates the

centromeric region

as the number of detected ePAV was about 67,000 and

35,400, respectively, only slightly lower than the 73,187

and 38,810 detected when considering the entire gene

length (Additional file 1: Table S2).

Information on the proportion of ePAV that are due

to gPAV is generally scarce. In order to estimate it,

we used SNP genotyping profiles of segregating pop-

ulations. The 23 inbreds had previously been crossed

following a double round robin design [32] to gener-

ate a joint linkage and association mapping population.

SNP genotyping profiles obtained with a 50K SNP array

were available for these 45 populations. We searched

for SNP for which missing data were segregating as a

monogenic character, and used this pattern to assign pres-

ence/absence calls to the parental inbreds. Using such

SNP located within genes, which we refer to as gPAV-

SNP, we calculated the proportion of gPAV-SNP that were

also detected by our procedure as ePAV, and consid-

ered this value as an estimation of the power to detect

gPAV by our ePAV detection procedure (Additional file 1:

Figure S2).

Based on the criterion that a gene is considered an

ePAV if it has a present and an absent call in at least

two inbreds, the power of gPAV detection was 34.6%

(Table 1). This means that out of all gPAV, which we

detected based on gPAV-SNP from the SNP array data,

we identified 34.6% of it as ePAV in our mRNA sequenc-

ing data. It could be possible that parts of genes are still

expressed even though a small fragment of their sequence

was deleted. In this case, the genes would have a pres-

ence call though the region around the gPAV-SNP were

Table 1 Detection procedure of presence/absence variation

Expression Expression

of gene of ±5bp genic SNP

Tissue t 1-β∗ α∗ o 1-β∗ α∗ o

Leaf&Seedling&Apex 1 45.0 88.8 88.6 64.2 90.8 85.3

2 34.6 87.5 81.8 53.0 90.1 81.8

3 30.1 86.7 79.5 44.8 90.0 79.5

4 25.1 87.0 77.3 38.4 89.8 77.3

5 21.4 86.5 77.3 32.7 89.7 77.3

Leaf&Seedling 2 35.2 87.5 81.8 52.4 90.3 79.5

Leaf 2 34.0 89.0 73.8 45.9 91.2 72.2

Seedling 2 28.1 86.7 76.7 45.9 90.5 76.2

Statistical power (1 − β∗) and the empirical type I error rate (α∗) to detect

genomic presence/absence variation (gPAV) by expression PAV (ePAV), where t is

the minimum number of inbreds that must have a present and absent call for a

gene, o the percentage of common presence/absence values across all inbreds

between ePAV and the genic PAV-SNP. We considered two scenarios: (i) the

expression across the entire gene or (ii) the expression determined in a 10 bp

window around the genic SNP was used to determine ePAV.
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not covered by reads. For this reason, we also calculated

the power of our procedure when detecting ePAV exclu-

sively based on the 10bp sequence window surrounding

the gPAV-SNP instead of using FPKM-values for the entire

gene sequences. In this case, the power increased to 53%.

The empirical type I error rate, defined as the propor-

tion of ePAV that are not gPAV, was about 90%. Finally,

the similarity between presence/absence patterns in the

23 inbreds of ePAV and gPAV-SNP was very high, ranging

from 70% to 90%.

We were interested in knowing how independent the

detected ePAV are from the local genomic pattern. First,

the mRNA sequencing data was used to call sequence

variants (SV) within exon sequences. A total of 133,566 SV

were detected. We then determined the extent of linkage

disequilibrium (LD) between each ePAV and neighboring

SV located within 100 kb. Only 17.5% of all ePAV have at

least one SV within 100 kb that has an r2 ≥ 0.4 (Table 2).

This figure is even lower than for SV that are located out-

side the 100 kb window. In contrast, more than 85% of

SV that are neighboring an ePAV show an r2 ≥ 0.4 with

another SV within 100 kb. Therefore, ePAV provide an

additional layer of genetic information compared to SV.

This idea was confirmed by comparing principal compo-

nent analyses (PCA) performed based on SV and ePAV.

Both PCA revealed the existence of two clusters of inbreds

defined by the row type of the inbreds (Additional file 1:

Figure S3). Principal components 1 from both PCAs were

significantly correlated with each other (r2 = 0.4928709,

p= 0.0002706), and a similar result was observed for prin-

cipal components 2 (r2 = 0.3980411, p = 0.001643). How-

ever, these analyses also reveal that the relationship of the

inbreds within clusters differs between the two sources of

molecular variation. A similar trend was observed when

comparing the transcriptomic variation (T) with that of

ePAV and SV. Mantel tests of distance matrices calcu-

lated from T, SV, and ePAV data indicated only significant

correlations between the seedling transcriptome and SV

(r = 0.2581, p = 0.03969).

Table 2 Linkage disequilibrium between expression

presence/absence variation (ePAV) and sequence variants (SV)

r2 [1.0,0.8] (0.8,0.6] (0.6,0.4] (0.4,0.2] (0.2,0]

Percentage of r2max between ePAV and SV

linked 0.0 0.0 17.5 49.9 31.1

unlinked 0.0 0.1 23.4 54.0 22.1

Percentage of r2max between closest SV beside ePAV and SV

linked 0.0 34.1 52.9 12.9 0.0

unlinked 0.0 21.1 52.7 25.2 0.0

Percentage of expression presence/absence variant or its closest neighboring

sequence variant that show a maximum linkage disequilibrium estimate r2max to the

SV 100 kb up and downstreams of it (linked) or outside that interval (unlinked) for

five r2 classes.

Therefore, we examined the prediction accuracy that

can be obtained when predicting the traits leaf angle,

heading date, and plant height, for which h2 values

between 0.69 and 0.76 were observed. In order to obtain

unbiased estimates of the prediction accuracy, we ran-

domly subdivided in 1000 cross-validation runs the 23

inbreds in training and validation set. Prediction accura-

cies of SV, T, and ePAV were compared to the prediction

accuracy of the SNParray data set that we used as the

baseline predictor. Themedian prediction accuracy across

1000 cross-validation runs observed for the SNParray data

set ranged from -0.49 for heading date to 0.70 for leaf

angle (Additional file 1: Figure S4).We observed across the

three traits a slightly higher prediction accuracy for the SV

extracted from the mRNA sequencing data set compared

to the SNParray. An even higher prediction accuracy was

observed when using ePAV as predictor. The seedling

transcriptome (Ts) resulted across the three traits in the

highest median of prediction accuracy of all the examined

single predictors.

We also evaluated the pairwise combinations of sin-

gle predictors and observed for all traits an increase of

the prediction accuracy compared to using Ts. There-

fore, a grid search in which the relative weights of the

relationship matrices of two or three predictors varied in

increments of 0.1 prior to summing them up, was used

to identify those combinations of SV, ePAV, and Ts that

resulted in the highest prediction accuracies. For all three

traits, the highest median of the prediction accuracy was

observed when using more than one predictor (Fig. 4).

Furthermore, a common trend was that the optimal

weight of Ts, i.e. the weight that maximizes the prediction

accuracy, was at least 40%, whereas the optimal weight

of ePAV and SV differed among traits. We examined the

prediction accuracy of single predictors as well as opti-

mal combinations of predictors determined from seedling

samples sequenced at different depths. Across all traits,

we observed that the prediction accuracies decreased for

decreasing sequencing depth (Fig. 5). However, the extent

of reduction differed between the different predictors and

was most pronounced for the SV. The prediction accura-

cies observed for the optimal combinations of predictors

reduced for the three traits only slightly with decreas-

ing sequencing depth. Even with a sequencing depth that

corresponds to 0.5% of that of our study, prediction accu-

racies higher than that of the prediction with the SNParray

data set were obtained. However, the variability of the

prediction accuracy across the different runs of the resam-

pling simulations increases with a reduced sequencing

depth.

Discussion
Transcriptomic variation in barley

Across the 23 inbreds of our study, we have identi-
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Fig. 4 Prediction accuracy for three different traits. Prediction accuracy for the barley inbreds for leaf angle, heading date, and plant height, for 66

cases which differ in their weights for the predictors sequence variants (SV), expression presence/absence variation (ePAV), and gene expression in

seedlings (Ts). Their corresponding relationship matrices were joined with weights varying from 0 to 1 in increments of 0.1. Weights for SV and ePAV

are shown at the respective scales; weights for gene expression are = 1 - weight of SV - weight of ePAV. Plotted values represent medians of

prediction accuracy across 1,000 cross-validation runs. Heat color schemes differ for the three traits ranging from white, indicating the respective

highest value, to red for the respective lowest value

fied 11,523 previously unannotated genes that are not

expressed in Morex. Furthermore, we assembled 1,502

newly identified genes that are physically absent from the

Morex genome, and are therefore part of barley’s dispens-

able genome. Both numbers are in the range of what was

previously reported for barley [17, 18] as well as maize

[20, 21]. These genes were added to the standard

International Barley Sequencing Consortium (IBSC) gene

list and the resulting list was the basis for all following

analyses.

Across the three tissues, we observed that about 53%

of the total number of genes were detected as ePAV

(Additional file 1: Table S2). Despite our lower sample

size and the use of three tissues, which both reduce
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Fig. 5 Prediction accuracy for reduced number of mRNA sequencing reads. Prediction accuracy for the barley inbreds for leaf angle, heading date,

and plant height of single predictors as well as the optimal combination identified in a grid search (Opt) using the original number of reads of the

seedling sample as well as using data sets for which the number of reads was randomly reduced to 10, 5, 1, and 0.5% of the original number of reads

per seedling sample. The number of variants gives the mean number of features available for predictions in each scenario or for the combined

predictors the weight of sequence variants (SVs)/expression presence/absence variation (ePAVs)/gene expression (Ts) resulting in the highest

prediction accuracy. The median prediction accuracy is given above each column
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the number of detected ePAV, this figure is consider-

ably higher than the maximum 30% that were observed

for maize [20, 21]. Because the proportion of ePAV

detected here is consistent with other studies in bar-

ley [18], the discrepancy of our results and those from

maize possibly imply that the proportion of ePAV within

a pan-transcriptome is species specific. Due to the unique

domestication histories of every crop, selective pres-

sures may have acted differently on dispensable genomes

and transcriptomes, especially in cases where PAV vari-

ation provided benefits [30]. It is also possible that large

genomes rich in repetitive sequences and transposable

elements such as the genome of barley contain higher

numbers of non-essential genes, whose loss of function

has no major impact on plant physiology and can be

tolerated by the organism.

We observed that ePAV genes were significantly shorter

than an average barley gene. A similar observation was

made by Bush et al. [33] in Arabidopsis thaliana. Tan et al.

[34] described the same trend, although in this case the

authors reported variations in gene size (200 bp) that were

much smaller than the variations between PAV and non-

PAV genes detected by us (5 kb) and by others (1.5 kb)

[33]. Another feature that we observed for ePAV genes

is that the likelihood that a gene is an ePAV is signifi-

cantly (P <0.05) unequally distributed across the genome.

We observed the highest proportion of ePAV among the

present genes in centromeric regions (Fig. 3). This might

be explained thereby that selection is less efficient in

lowly recombining regions of the chromosome compared

to highly recombining pericentromeric regions to purge

presence/absence variation that was created by evolution-

ary processes during plant polyploidization and specia-

tion [30]. gPAV and ePAV were shown to be enriched in

genes implicated in disease resistance and stress responses

[18, 26, 34–36]. However, the gene ontology (GO) term

analysis of the ePAV detected here did not reveal an

enrichment of genes implicated in these processes, nei-

ther in any other process that could be related to crop

performance or adaptation (Additional file 1: Table S3).

Further research is required to understand the reason for

this difference.

Detecting gPAV bymRNA sequencing

The absence of a gene in a genotype, i.e. the gene is an

ePAV, has two possible causes: either the corresponding

gene is transcriptionally inactive or it is physically absent

from the genome, i.e. it is a gPAV. We were interested

in estimating the proportion of ePAV that are due to

gPAV. In order to do so, we detected in analogy to Gabur

et al. [37] gPAV from the segregation of missing data in

biparental populations. This allowed us to estimate that

by characterizing the expression of genes in one tissue,

we are able to detect about 30% of the existing gPAV.

However, a SNP for which a systematic segregation of

missing data was observed and that was designated as a

gPAV does not necessarily mean that the entire gene in

which the SNP is located is missing and therefore not

expressed. Instead, the gPAV can be also caused by partial

insertion/deletions of the corresponding gene. Therefore,

we also examined the power to detect gPAV (1-β∗) for

a scenario in which only the gene expression in a win-

dow of 10 bp around the SNP was considered. In this

case of using a single tissue to detect gPAV, the propor-

tion of gPAV that are detected by our ePAV procedure

increases to about 46% (Table 1). These findings indicated

that our ePAV detection procedure is therefore powerful

in detecting gPAV. Furthermore, we observed that 1-β∗

can be increased even more, if multiple tissues were stud-

ied. However, this increase was not of such a size that it

justifies the additional resources.

In addition to estimating the power of gPAV detection

1-β∗, we were also interested in estimating the proportion

of ePAV that are not due to gPAV α∗. α∗ was approxi-

mately 90% in our data set (Table 1), meaning that 10% of

the ePAV are caused by the physical absence of the gene

and not by impairment of its transcription. This propor-

tion is considerably higher than the 1% reported in maize

[21]. An explanation for this finding might be that dele-

tions of entire genes and perhaps of even larger segments

of DNA are better tolerated in barley than maize. There

is not enough available information on structural varia-

tion in the barley genome to be able to compare deletion

sizes and frequencies between barley and maize, but it is

possible that the presence of long stretches of repetitive

elements in barley may have an influence on this pro-

cess. Another explanation could be the differences in the

methodologies between both studies. Jin et al. [21] had

used resequencing data to detect gPAV, where our pro-

cedure based on patterns of missing data in segregating

populations could be more sensitive.

Number of dispensable genes in the barley genome

We can estimate from the above described estimates of

1-β∗ and α∗ that about 10% of the about 38,000 ePAV,

i.e. 3,800, are gPAV. With a power 1-β∗ of about 50% of

our ePAV procedure to detect gPAV, the total number of

gPAV is expected to be around 7,600 for barley. Therefore,

our results suggest that more than 10% of the barley genes

show PAV on a genomic level. This figure is similar to what

was observed in the analysis of 80 Arabidopsis accessions

(9%) [34], but was higher compared to other cereal

species. Springer et al. [23] estimated that 8.6% of all genes

were gPAV in maize. However, their set of analyzed geno-

types included, in addition to 19 maize inbreds, 14 wild

ancestors, and therefore encompassed a higher genetic

diversity compared to our study. As this increases the

proportion of detected gPAV, it suggests that cultivated
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maize might have a lower gPAV diversity than barley.

Consistently, a study in rice also including cultivars and

wild relatives estimated to 10% the proportion of gPAV

[35], suggesting that rice may also have a lower gPAV

diversity than barley. But beyond the proportion of gPAV

that a species may contain comes the question of what

impact on plant physiology and performance this vari-

ation might have. Despite clear examples of gPAV con-

trolling agronomic traits in different species, it has been

proposed that most gPAV are not essential and are recent

additions to plant genomes [33]. Further data will be

necessary to elucidate why enrichment of functional cat-

egories occur in certain data sets and not in others, and

whether PAV variation has played a more important role

in the evolution of crops compared to non-crop species as

studies so far seem to suggest [30, 33].

Genomic and transcriptomic prediction

Genomic prediction is becoming a standard tool for plant

breeders to increase the gain of selection [38]. The current

implementation of genomic selection is mainly based on

the use of SNP markers assessed by SNP arrays or geno-

typing by sequencing methods (for review see Crossa et al.

[39]). However, we have observed considerable variation

of T as well as ePAV and, very importantly, this variation

was largely independent from the variation explained by

neighboring SNP (Table 2). Therefore, the accuracy of T

and ePAV to predict phenotypic traits was assessed.

We have observed that for all three examined traits both

types of information that were extracted from the mRNA

sequencing data set, the SV as well as the ePAV, resulted in

higher prediction accuracy when using GBLUP compared

to the classically used SNP data generated with a 50K

SNParray (Additional file 1: Figure S4). For SV, that might

be explained by the higher number of features compared

to the SNParray information, which in turn increases the

extent of LD between the SNP and theQTL [40]. However,

for the ePAV this was not the case. Instead, the superior-

ity of the ePAV information compared to the SNParray for

the prediction of phenotypic traits might be due to that

ePAV are only caused to 10% by gPAV but cover also gene

expression differences. The transcriptome T is expected

to incorporate gene expression and physiological epista-

sis [41] and therefore has a considerably higher prediction

accuracy compared to SV or SNParray (Additional file 1:

Figure S4), even when modelling statistical epistasis.

However, we also observed differences in the predic-

tion accuracy of T depending on the tissue that was used

for mRNA extraction. The prediction accuracies were

on average across the three examined traits considerably

higher for Ts compared to Tl data set. This finding might

be explained either by the fact that the number of cell

types that were included for mRNA extraction were more

diverse for the former than the latter and thereby increases

the number of features from 60,888 to 67,844. Another

non mutually exclusive possible explanation is that the

time of heterogenous environmental factors to influ-

ence the genotypes was lower for the seedling samples

compared to the leaf samples. And in the set-up used in

our study of unreplicated plants for sample collection such

heterogenous environmental factors cause together with

genotype*environment interaction a reduction of the pre-

cision of the measurement of the predictor. This in turn is

expected to reduce the prediction accuracy. Our finding

indicated that the transcriptome of seedlings grown on fil-

ter paper is a good proxy of the gene activity for a broad

range of developmental stage of plants grown in a diverse

set of environments.

Schrag et al. [29] derived from a comparison of pairs

of single predictors with their combinations the following

two conclusions. First, combining the best single predictor

for a certain trait with another predictor did not improve

predictions and in some cases rather impaired predictive

ability. Second, combinations that did not comprise the

best single predictor tended to be superior to both com-

ponents individually. Both of them were not in agreement

with our findings. Instead, we have observed a comple-

mentarity between the best single predictor Ts and SV and

even between Ts and ePAV (Additional file 1: Figure S4).

Therefore, a grid search was used to identify those

combinations of SV, ePAV, and Ts that maximize the pre-

diction accuracy. For all three traits, the highest median

of the prediction accuracy was observed when using more

than one predictor (Fig. 4). In contrast to the results of

Schrag et al. [29] and Xu et al. [35], we have observed

rather small differences between the optimal weight of the

three predictors across the three examined traits, despite

that these were assessed at completely different develop-

mental stages. The likely explanation for this difference

is that, in contrast to Schrag et al. [29] and Xu et al.

[35], we focused on genetic and transcriptional predictors

and did not include features derived from metabolome

analyses, which represent a completely different level of

information.

Application in breeding

In the above described grid search, the SV and ePAV

data sets were extracted from the mRNA sequencing data

of multiple tissues. A cost efficient integration of our

approach in practical breeding programs would require

that all data sets are extracted from the sequence exper-

iment of one tissue. Due to the above described quan-

titative genetic advantage of the seedling sample but

also the logistical advantages of using seedling sam-

ples that are generated on filter paper in petri dishes:

they require a much lower amount of space, person-

nel and material resources, allow a season indepen-

dent cultivation, as well as can be generated faster
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as the turn over time is shorter, they were studied

in detail.

The prediction accuracy of the original sequencing

depth was not influenced by predicting the phenotypic

traits from SV and ePAV features extracted from the

seedling sample instead from the three tissues. This can

be explained by the fact that the SVs can be adequately

assessed also with one tissue and differences between

ePAVs and ePAV are compensated for by Ts. The pre-

diction accuracy observed for this scenario is consider-

ably higher compared to using the SNParray information.

However, the cost of genotyping one sample with the bar-

ley 50K SNParray is with about 50 Euro [42] also less

than the mRNA sequencing analysis. When generating it

newly with latest protocols and sequencing chemistry one

could expect that the mRNA sequencing of one sample

would cost about 2 Euro for themRNA library preparation

[43] as well as 60 Euro for 20 million 2x150 bp reads. In

addition, breeding companies use for their routine geno-

typing in many cases smaller SNP arrays than the

one used in our study. This would reduce the costs

even more, but will decrease the prediction accu-

racy, especially, if diverse genetic material is used

[44] as in our study. Therefore, we performed down-

sampling simulations to examine the reduction of

the prediction accuracy if the sequencing depth is

reduced.

The prediction accuracies observed for the optimal

combinations of single predictors reduced for the three

traits only slightly with a decreasing sequencing depth.

The main limitation to reducing the sequencing depth

to values below 1% of that of our study, i.e. about 2x105

2x150 bp reads, is not the reduction of the median of

the prediction accuracy but the increasing standard devi-

ation (Fig. 5). This increase is caused by the increasing

sampling variance of the low depth sequencing. How-

ever, our results indicate that down to 5% of our data

set, i.e. about 1x106 2x150 bp reads, the obtained predic-

tion accuracy was in more than 95% of the resampling

runs higher than that obtained with the SNParray data set.

Such a transcriptomic characterization would cost about

5 Euro and is therefore also less expensive than current

GBS approaches with the advantage of higher prediction

accuracies. Therefore, we consider mRNA sequencing

based characterizations of breeding material harvested

as seedlings in petri dishes as a powerful and cost effi-

cient approach to replace current SNP based character-

ization. For species that are bred in breeding categories

other than inbred lines, the phenotypic evaluation is

even more expensive [45] than for species bred as inbred

lines. Therefore, an approach as suggested above will

increase the gain of selection for such species even more,

as the cost advantage is higher than in species bred as

inbred lines.

Conclusion

We have used mRNA sequencing as an approach to

explore the dispensable genome and transcriptome of bar-

ley in 23 spring barley inbreds, and estimate that 53% of

genes are ePAV. Our analyses suggest that about 10% of

ePAV in barley are due to the physical absence of a gene in

an inbred (gPAV). We have observed that the omic varia-

tion that was extracted from the mRNA sequencing data

set, the sequence variants (SV), the ePAV, as well as the

transcriptome (T) resulted individually in higher predic-

tion accuracies compared to the classically used SNParray

data set. This superiority was even more pronounced

when using optimal combinations of SV, ePAV, and T to

predict phenotypic traits. Finally our results suggest that

low coveragemRNA sequencing based characterization of

breeding material harvested as seedlings in petri dishes is

a powerful and cost efficient approach to replace current

SNP based characterization.

Methods
Plant material

Our analyses were based 23 spring barley inbreds that

were selected out of a worldwide collection of 224 inbreds

[31] (Additional file 1: Table S1) using the MSTRAT

algorithm [46]. For these inbreds, the maximal combined

genotypic and phenotypic richness index was observed.

Seeds of the 23 spring barley inbreds were sown in con-

trolled greenhouse conditions with 16 hours light and

eight hours dark at 22 °C. A fragment of the youngest fully

developed leaf from two different plants was collected

for each inbred. The collection of all samples was done

within one hour tominimize the variation due to circadian

rhythms. For a total of six inbreds, apices were harvested

at stage 47 of the Zadoks scale [47]. Young seedlings were

harvested in an independent experiment. Seeds were sur-

face sterilized with 1% bleach and rinsed with sterile water.

Eight seeds per inbred were placed between two layers

of sterile filter paper soaked with 5 mL of sterile water.

The petri dishes were placed in the greenhouse with the

above described environmental conditions. Five days after

germination, two seedlings were sampled for each inbred.

All collected samples were immediately flash frozen in

liquid nitrogen. The above described experiments were

performed in accordance to the experimental design of

related studies [20, 21] with one biological replicate only,

as the replication of alleles is provided among genotypes.

For the assessment of phenotypic traits under field

conditions, the 23 spring barley inbreds were planted

as replicated check genotypes in an experiment with

other entries which was layed out as an augmented

row column design. This experiment was performed in

three environments (Cologne 2017 and 2018 and Mech-

ernich 2018) as single row plots with 10 plants/plot as

well as in a fourth environment (Quedlinburg 2018) as
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double row plots with 40 plants/plot. At each of the

four agro-ecologically diverse environments in Germany,

the 23 barley inbreds were replicated 21, 20, 19, and

19 times, respectively. For each experimental plot, three

traits were assessed. The leaf angle of about four weeks

old plants was scored on a scale from 1 to 9, where 1

indicates erect leaves and 9 prostrate leaves. The head-

ing date was assessed as number of days after planting.

Furthermore, the plant height in cm was assessed after

heading.

SNP genotyping and quantification of gene expression

An Illumina 50K barley SNP array [5] was used to geno-

type the 23 inbreds. This data set is designated in the fol-

lowing as SNParray. The same array was used to genotype

between 35 and 146 F5 progenies of 45 segregation popu-

lations which were derived from double-chain crosses [32]

of the 23 inbreds (Casale et al. in preparation).

mRNA was extracted from leaf, seedling, and apex

samples (cf. Digel et al. [16]). A total of 52 polyA

enriched mRNA libraries were prepared. The 150 bp

paired-end Illumina sequencing libraries with individu-

ally barcoded samples were sequenced on an Illumina

HiSeq2000 sequencer (Illumina, Inc., San Diego, CA

USA). Reads were trimmed using trim_galore and then

mapped against the unmasked barley reference sequence

[6] using HISAT2 [48]. Trinity was used to perform a de

novo assembly of the unmapped reads of all inbreds [49].

The assembled contigs that were expressed in at least two

tissue samples were BLASTn-searched against a human

and viral database, to exclude contigs that are due to con-

taminations (e-value ≤1e-5, identity ≥95.0%). Then, the

contigs were searched against a barley database to remove,

based on the same thresholds, genes which are too similar

compared to barley reference genes. All contigs that had

a homology (e-value ≤1e-5, identity ≥98.0%) to an anno-

tated protein in at least one of the species Arabidopsis

thaliana, Brachypodium distachyon, Sorghum bicolor,

Zea mays, Oryza sativa, Triticum aevisticum, Triticum

dicoccum, and Secale cereale were retained. The contig

with the maximum coverage was chosen as representative

contig for each gene [6]. These contigs were designated as

newly identified genes.

Transcript calling was performed with StringTie [50]

using a gene annotation file that comprised low and high

confidence genes of transcripts defined in the barley ref-

erence genome [6] and the newly identified genes of the

de novo assembly.

Genes which mapped to the reference sequence and were

expressed in at least two samples, but which were not

available in the IBSC-reference annotation file were des-

ignated in the following as newly annotated genes. The

gene expression quantified as fragments per kilobase of

exon model per million fragments mapped (FPKM) is

designated in the following as T, where the indexes l,

s, a were used to separate the tissues leaf, seedling,

and apex.

Identification of ePAV

For each tissue, a presence call was made for each inbred-

gene combination in the matrix of presence/absence calls,

if T >0 and an absence call if T = 0. No call was made

for the inbreds with 0< T <10% of the maximum value

of T for a gene-tissue combination (cf. Jin et al. [21]).

Tissue specific ePAV calls were combined to an across

tissue ePAV call as follows: If the presence/absence call

made for all tissues of one inbred-gene combination was

identical, this call was kept. For all inbred-gene com-

binations with a presence call for at least one tissue, a

presence call was kept in the across tissue matrix of pres-

ence/absence calls. An absent call was kept in the across

tissue matrix of presence/absence calls for all inbred-gene

combinations with only no or absent calls across tissues.

These genes were designated in the following as ePAV

which have an across tissue ePAV call of present and

absent each for at least two inbreds (cf. Jin et al. [21]).

We used in analogy to Gabur et al. [30] the segregation

of missing data in biparental populations to determine

the percentage of ePAV that are due to gPAV. For the

SNP from the SNParray dataset for which no missing data

was observed, the Q90 of the major allele frequency was

calculated per population to consider random deviations

from an allele frequency of 0.5. For each population, each

SNP was assigned to one of three categories based on the

proportion of missing data: A: [0, Q90), B: [Q90,1-Q90], C:

(1-Q90, 1]. Category A to C can be interpreted as both

parental inbreds have a present call, one parental inbred

has a present and one an absent call, both parental inbreds

have an absent call, respectively. A parental inbred was

assigned an absent call at a SNP, if all populations derived

from that parent were of category B or C. A parental

inbred was assigned a present call at a SNP, if all pop-

ulations derived from that parent were of category A or

B. These 1,972 SNP that have a present and absent each

for at least one inbred were designated in the following as

gPAV-SNP (Additional file 1: Figure S2). A total of 14,843

barley genes comprised in their coding sequence one SNP

from the SNParray and were designated in the following as

genic SNP.

The 1,105 gPAV-SNP that were genic SNP and that were

not within 30 bp of an insertion were designated as genic

PAV-SNP.

The statistical power (1-β∗) to detect gPAV by mRNA

sequencing was calculated as the percentage of genic

PAV-SNP that were located within the coding sequence

of ePAV. Furthermore, the empirical type I error (α∗) of

our ePAV procedure was estimated as the proportion of

genes that comprised a genic SNP, no genic PAV-SNP, but
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were detected as ePAV out of the total number of detected

ePAV. In addition, we calculated the proportion of cor-

rect allele assignments (o) as the proportion of common

presence/absence ePAV calls and presence/absence calls

at genic PAV-SNP across all 23 inbreds. We estimated 1-

β∗ and α∗ firstly for ePAV determined based on T of the

entire gene as well as based on T calculated for 10 bp large

windows surrounding the genic SNP.

A resampling procedure was used to determine the

robustness of our ePAV detection procedure. For each

gene, randomly 20% of the entire gene length were

selected and transcript calling and ePAV detection were

performed. This was repeated 50 times and the average of

number and proportion of detected ePAV was calculated.

The null hypothesis of a uniform distribution of ePAV

across the genome and chromosomes was tested by a per-

mutation procedure. The difference of mean gene length

of ePAV and non-ePAV was tested for its statistical sig-

nificance using a t-test. GO term enrichment analysis of

ePAV was performed using the R-package topGO [51].

GO terms of newly annotated genes and newly identi-

fied genes were defined based on those available from the

agriGO-database of homologous genes as described by

Mascher et al. [6].

Population genetic analyses

Variant calling was performed with samtools and bcftools.

Sequence variants “SV” with mapping quality < 55 were

removed from the analysis. If the sequencing depth of a

SV was smaller than 5, the allele call was set to “NA”. SV

with a heterozygosity >10% were discarded and the alle-

les at remaining heterozygous sequence variants were set

to “NA” for the corresponding inbreds. Biallelic sequence

variants with a maximum of 20% missing information

were retained. If the allele call was different between

the tissues of the same inbred, the call with the higher

sequencing depth was retained. Missing values in the

matrices of SV and ePAV were mean imputed.

Associations among inbreds based on SV, ePAV, as well

as T were revealed with a principal component analysis

[52]. Pearson’s correlation coefficients were calculated

between euclidean distance matrices of SV, ePAV, and T.

Linkage disequilibriummeasured as r2 [53] was calculated

between ePAV and linked/unlinked SV.

Genomic prediction

Each of the three phenotypic traits leaf angle, heading

date, and plant height was analyzed across the four envi-

ronments using mixed models. This allowed to estimate

adjusted entry means as well as the heritability on an entry

mean basis.

The adjusted entry mean of each barley inbred for

each trait was predicted using genomic best linear unbi-

ased prediction (GBLUP) [54–57]. GBLUP was used as

implemented in the R-package sommer [58], where only

additive effects were modeled and the residuals were

assumed to be normally distributed with mean 0 and vari-

ance σ 2
e .

The performance of the barley inbreds was predicted

using different predictors: (i) SNParray, (ii) SV, (iii) ePAV,

(iv) Tl, (v) Ts. W is a matrix of feature measurements for

the respective predictors. The dimension of W is deter-

mined by the number of barley inbreds and the number

of features in the corresponding predictor (mSNParray =

44,045 mSV = 133,566, mePAV = 38,810, mTl = 60,888,

mTs = 67,844). The columns in W were centered and

standardized to unit variance. For each predictor, an addi-

tive relationship matrix G was calculated according to

VanRaden [59]. The matrices G of two or three predictors

were weighted and summed up, resulting in one joined

weighted relationship matrix [29]. A grid search, varying

the relative weights in increments of 0.1, resulted in 66

different joined weighted relationship matrices. We calcu-

lated the prediction accuracy [ r(ĝ, g)] for each examined

scenario.

The standard scheme for validation of genomic predic-

tion was five-fold cross-validation. For this purpose, the

23 inbreds were randomly subdivided into five disjoint

subsets. One subset was left out for validation, whereas

the other four subsets were used as training set. This pro-

cedure was replicated 200 times, yielding a total of 1000

cross-validation runs. The median of the prediction accu-

racy across the 1,000 cross-validation runs was calculated.

From the original data set of seedling samples, the number

of reads was randomly reduced to 10, 5, 1, and 0.5% of the

original number of reads per inbred. This procedure was

replicated 30 times. For these subsets of reads, the above

described work flow of read mapping, determination of

gene expression, expression presence/absence variation,

and sequence variant calling was performed. The predic-

tion accuracy for the single predictors SVs, ePAVs, and Ts

and the combination of these predictors, was calculated

for leaf angle, heading date, and plant height as average

across the 30 replications.
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Table S1: Inbred lines included in this study, their country of origin (CoO), row type, year of

release, and the sequenced tissues.

RNA sequencing

Inbred name BCC code CoO Row type Year of release Leaf Seedling Apex

HOR1842 HOR1842 AFG 6 1935 x x

HOR383 BCC1561 BGR 6 unknown x x

Sanalta BCC929 CAN 2 1930 1 1

ItuNative BCC502 CHN 6 unknown x x

Sissy BCC1413 GER 2 1990 x x x

Georgie BCC1381 GBR 2 1975 x x

SprattArcher BCC1415 GBR 2 1943 x x x

Lakhan BCC533 IND 6 unknown x x

Kharsila HOR11403 IND 6 before 1911 x x

W23829/803911 HOR11374 ISR 2 unknown x x x

Namhaebori BCC667 KOR 6 unknown x x

IG128216 BCC118 LBY 6 1983 x 1

IG128104 BCC173 PAK 6 1974 x x

K10693 BCC1491 RUS 6 unknown x x

IG31424 BCC190 SYR 2 1981 x x

HOR12830 HOR12830 SYR 6 unknown x x

HOR7985 HOR7985 TUR 2 before 1969 x x x

K10877 BCC1503 TKM 6 unknown x x x

HOR8160 HOR8160 TUR 2 before 1969 x x

Ancap2 BCC807 URY 6 1950 x x

CM67 BCC846 USA 6 1983 x x

Kombyne BCC893 USA 6 1975 1 x

Unumli-Arpa BCC1470 UZB 2 unknown x x x

1 Samples were removed during the data cleaning process
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Table S2: Number of expression presence/absence variation (ePAV) observed for our

detection procedure.

Data set #ePAV #Genes ePAV [%]

Barley, All 38,810 73,187 53.0

Barley, IBSC 28,340 60,162 47.1

Barley, newly annotated 9,286 11,523 80.6

Barley, newly identified 1,184 1,502 78.8
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Fig. S2: Overview of the process to estimate the statistical power (1-β∗) and the

empirical type I error rate (α∗) to detect genomic presence/absence variation (gPAV)

by expression presence/absence variation (ePAV).
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ABSTRACT

Structural variants (SV) are a potentially important source of phenotypic variation. The

objectives of our study were to i) compare the performance of SV callers based on linked-

read sequencing to short-read sequencing, ii) examine the influence of SV type, SV length,

haplotype incidence (HI), as well as sequencing coverage on the SV calling performance

in the tetraploid potato genome, and iii) evaluate the accuracy of detecting insertions by

linked-read compared to short-read sequencing. Six linked-read and one short-read SV

callers were evaluated based on linked-read sequencing with respect to their precision,

sensitivity, and F1-score to detect different SV types with different SV lengths and HIs

in the tetraploid potato genome using computer simulations. We observed that Manta

and LEVIATHAN reached the maximum precision of SV detection with the highest break

point resolution of ≤ 10 bp across all examined SV length categories, whereas LongRanger

and VALOR2 showed the lowest. For short SV, high F1-scores averaged across the four

HIs were observed for Manta and LinkedSV, whereas for large SV, high F1-scores were

observed for the linked-read SV callers. When exploiting linked-read sequencing for SV

detection, the vicinity of SV break points provides more signals due to the longer anchor

sequences provided by the molecule signals, thereby it is less influenced by the sequencing

coverage than using short-read sequencing. Our observations highlighted the importance

of short-read signals exploited by Manta and LinkedSV to detect short SV, whereas Manta

and NAIBR performed well for detecting larger deletions, inversions, and duplications.

Furthermore, insertions can be assembled by Novel-X using linked-read sequencing and,

thus, it is superior compared to the detection of insertions based on short-read sequencing.
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INTRODUCTION

Structural variants (SV) are commonly defined as genomic rearrangements between indi-

viduals or haplotypes that are larger than 49 bp (Ho et al., 2020). SV occur as deletions,

insertions, duplications, inversions, or translocations in the genome. In human, SV were

tightlier associated with gene expression variation compared to single nucleotide variants

(SNV) (Chiang et al., 2017). Additionally, SV were associated with phenotypic variation

in several plant species such as wheat and rice (Xu et al., 2012; Li et al., 2012; Nishida

et al., 2013). In potato, copy number variation at a limited number of loci was associated

with the level of gene expression (Iovene et al., 2013).

Due to the technical improvements of DNA sequencing and novel algorithms (Ho et al.,

2020), it is nowadays possible to detect and characterize SV on a genome-wide level. SV

detection based on short-read sequencing is well established in human genomics (Cameron

et al., 2019; Kosugi et al., 2019) and was also evaluated and used recently for plant genomes

(Fuentes et al., 2019; Göktay et al., 2020). However, the reliable detection of SV based on

short-read sequencing is challenging due to the necessity of confidently mapped read-pairs

(Fang et al., 2019). Additionally, repetitive regions are associated with the occurrence of

SV (Hu et al., 2021), where split and paired-end reads can have a low mapping quality

due to multi-mapping (Fang et al., 2019). These issues can be avoided by using long-read

sequencing (Dierckxsens et al., 2021). However, this approach in turn is associated with

high costs and, thus, it is not affordable for many research groups.

Recently, linked-read sequencing was proposed (Weisenfeld et al., 2017; Wang et al., 2019).

For linked-read sequencing, paired-end short reads are derived from 50 - 100 kb DNA

molecules (Elyanow et al., 2018), which is considerably longer than the read length of most

long-read sequencing approaches (cf. Wenger et al., 2019). During the library preparation

process, around ten molecules are partitioned into droplets where each DNA fragment (500

bp) derived from these molecules is tagged with a 16 bp long barcode. Due to the random

partition of molecules, the likelihood of assigning the same barcode to two molecules from

nearby regions in the genome is very low (Elyanow et al., 2018). Therewith, linked-read

sequencing provides long-range information as long-read sequencing (Ho et al., 2020) and

has the advantages of a high accuracy and low costs as short-read sequencing (Weisenfeld
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et al., 2017). However, compared to the established SV detection based on short-read se-

quencing, less approaches have been described for linked-read based SV calling.

To the best of our knowledge, eight linked-read SV callers were described until today,

namely LongRanger (Zheng et al., 2016), GROC-SVs (Spies et al., 2017), NAIBR (Elyanow

et al., 2018), ZoomX (Xia et al., 2018), LinkedSV (Fang et al., 2019), Novel-X (Meleshko

et al., 2019), VALOR2 (Karaoǧlanoǧlu et al., 2020), and LEVIATHAN (Morisse et al.,

2021a). LongRanger identifies paired-end reads with overlapping barcodes between distant

loci. GROC-SVS works similarly to LongRanger with the addition of SV reconstruction

using local assemblies. NAIBR exploits discordant paired-end read and split molecule sig-

nals in a probabilistic model. ZoomX uses molecule coverage to identify large genomic

rearrangements in the human genome. LinkedSV uses short-read signals as read depth,

discordance of paired-end reads, and local assembly to detect small deletions. In addition,

this tools uses fragments with shared barcodes between two genomic locations and enriched

fragment endpoints near break points to detect larger SV (Fang et al., 2019). Novel-X as-

sembles unmapped reads associated with barcodes and maps the resulting contigs to the

reference sequence. VALOR2 identifies submolecules using split molecule signals based

on barcode information and filters SV candidates using read depth and paired-end read

signals. LEVIATHAN identifies a number of shared barcodes in specific regions and sec-

ondly, discordant paired-end and split read signals are then used to filter SV candidates

(for review see Ho et al., 2020).

With the exception of LEVIATHAN, all of the above mentioned SV callers were up to

now only evaluated for SV detection in the human genome. LEVIATHAN was also eval-

uated for SV detection in the butterfly (H. numata) genome (Morisse et al., 2021a). To

our knowledge, no study is available where SV detection using linked-read sequencing is

evaluated for plant species despite the differences between the plant and human genome

with respect to genome size, repeat content, or ploidy. Furthermore, to our knowledge, it

is also the first study where SV calling is evaluated for a polyploid genome.

Therefore, the objectives of our study were to i) compare the performance of SV callers

based on linked-read sequencing to short-read sequencing, ii) examine the influence of SV

type, SV length, haplotype incidence (HI), as well as sequencing coverage on the SV calling

performance in the tetraploid potato genome, and iii) evaluate the accuracy of detecting
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insertions by linked-read compared to short-read sequencing.
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MATERIAL AND METHODS

Simulation preparation and genome mutation

We used Mutation-Simulator (version 2.0.3) (Kühl et al., 2021) to simulate deletions, du-

plications, inversions, and insertions in the first and second chromosome of the dAg1 v1.0

potato reference sequence (Freire et al., 2021) which is a consensus sequence of the two hap-

lotypes of a diploid clone derived from the commercially important potato variety Agria.

We considered five SV length categories for each of the above mentioned SV types (A: 50 -

300 bp; B: 0.3 - 5 kb; C: 5 - 50 kb; D: 50 - 250 kb; E: 0.25 - 1 Mb). Mutation-Simulator was

used with the mutation rates of 7.0x10−6 (∼ 800 - 1000 SV) for the SV length categories

A - C, 7.0x10−7 (∼ 90 SV) for D, and 3.5x10−7 (∼ 45 SV) for E.

In a first step, simulations on a homozygous level were performed where the SV were

present in all four haplotypes (4/4) of the simulated potato genome. In addition to the

homozygous level, we simulated heterozygous SV with HIs of one to three (if SV occurs

in one, two, or three haplotypes). To do this, a custom python script was used to prepare

heterozygous SV for simulations, where the SV was only present in one of the four haplo-

types (1/4). Which of the four haplotypes received the SV was randomly determined for

each SV. The same procedure was used to simulate SV in two out of four (2/4) as well as

three out of four (3/4) haplotypes. For each heterozygous SV simulation, the total number

of simulated SV corresponded to that of the above described homozygous simulation of

the specific SV type and SV length category combination. The identification of the correct

HI by the SV callers was not possible because polyploid genotyping algorithms were not

implemented in these SV callers. Simulations for each SV type* SV length category* HI

combination were replicated five times.

In addition to the simple simulations explained above, where the SV types, SV length

categories, and HIs were simulated separately, we performed complex simulations (Fig. 1).

In these complex simulations, different SV types, SV length categories, and HIs were simu-

lated together to mimic more closely experimental potato genome sequences. Additionally,

80,000 single nucleotide variants (SNV) and 600 small insertions and deletions (INDELs, 2
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- 49 bp) were included. The numbers of SV for each SV type (464 deletions, 464 insertions,

124 duplications, 108 inversions) and SV length category were chosen based on the average

number of SV observed in experimental data for 100 tetraploid potato clones (Weisweiler

and Baig et al., in preparation). For each SV type and SV length category, 25% of SV

were simulated for each of the four different HIs. The complex simulations were replicated

20 times.

Linked-read simulation and mapping

LRSim (version 1.0) (Luo et al., 2017) was used to simulate linked reads (-f 50 -t 20 -m 10)

with a sequencing coverage of 45x, 90x, 135x, and 180x resulting in a sequencing coverage

per haplotype of about 11x, 22x, 34x, and 45x, respectively. The mean molecule size was

set to 50 kb, the molecules per partition to 10 and the number of partitions to 20,000 as

it was recommended by Luo et al. (2017) for Arabidopsis thaliana which have a similar

genome size as the first two chromosomes of the dAg1 v1.0 reference sequence (Freire et al.,

2021). Linked reads were mapped against the non-mutated dAg1 v1.0 reference sequence

with LongRanger wgs (version 2.2.2).

SV calling and filtering

LRez (version 2.2.2) (Morisse et al., 2021b) was used to index bam files for LEVIATHAN.

Sonic (version 1.2) (https://github.com/calkan/sonic/) was used to create the sonic

file for VALOR2. The simulated SV were called using Manta (version 1.6) (Chen et al.,

2016) as benchmark short-read SV caller. In addition, LEVIATHAN (-v 50, version 1.0.1),

LinkedSV (--wgs --germline mode, gap regions, version 1.0.1), VALOR2 (sonic file, -p 4, -c

2, version 2.1.5), LongRanger wgs (version 2.2.2), Novel-X (version 0.3) (Meleshko et al.,

2019), and NAIBR (Elyanow et al., 2018) were evaluated as linked-read SV callers (Table

1). Additionally, LinkedSV and LongRanger can detect small deletions based on short-

read sequencing signals. This was indicated in the following as LinkedSV (short) and

LongRanger (short). All SV callers, independent from the usage of short-read or linked-
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read signals, were evaluated based on simulated linked-read sequencing data. The workflow

described above was implemented in Snakemake (version 5.10.0) (Köster et al., 2021) and

is available via github (https://github.com/mw-qggp/SV simulation potato).

In the next step, the detected SV were filtered. A SV call was only kept if it passed the

built-in filters of the respective SV caller. SV calls which were annotated as ”BND” were

filtered out. SV calls which covered regions in the reference sequence consisting of N’s were

filtered out as well. Additionally, for some SV callers additional filter criteria were applied:

for LongRanger, SV calls with the annotation ”UNK”, which is defined as unknown SV

type, were not considered. Additionally, for LinkedSV and Manta where each inversion was

called twice, only one inversion entry was kept to avoid incorrect statistics. For NAIBR,

the orientation of novel adjacencies was used as SV type annotation.

Evaluation of SV calling

We calculated the sensitivity (1), precision (2), and the F1-score (harmonic average of the

precision and sensitivity) (3) as

Sensitivity = TP/(TP + FN) (1)

Precision = TP/(TP + FP ) (2)

F1− score = 2 ∗ (Precision ∗ Sensitivity/Precision+ Sensitivity) (3)

for all combinations of SV types* SV callers* HIs, where TP was the number of true

positive SV, FP the number of false positive SV, and FN the number of false negative SV.

Before calculating the above described evaluation criteria, the break point resolution (BPR)

for each SV length category was estimated for all SV callers based on 135x sequencing

coverage for all SV types. Based on this analysis, the following BPR thresholds were

chosen to allow a fair comparison between the SV callers (Supplementary Table S1). For

SV length category A, a TP SV had break points that did not differ more than 10 bp from

those of the simulated SV and the SV length did not differ by more than 10 bp. For the

SV length category B, a TP SV had break points and length differences compared to the

simulated SV of ≤ 50 bp. For the SV length category C, a TP SV had break points and
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length differences compared to the simulated SV of ≤ 160 bp. For duplications of the SV

length categories D and E, a TP SV had break points and length differences compared to

the simulated SV of ≤ 250 bp. For deletions and inversions of the SV length category D,

≤ 550 bp and ≤ 800 bp were chosen as threshold, respectively. For deletions and inversions

of the SV length category E, ≤ 250 and ≤ 550 bp were used, respectively. For insertions,

the start of a TP insertion had a break point that did differ ≤ 10 bp from the start of

the simulated insertion to allow a fair comparison between Manta and Novel-X due to

the absence of an insertion length for Manta. Additionally, for Novel-X, called insertions

were also evaluated considering two break points as it was done for deletions to determine

the precision of the detected insertion length. The sequence similarity between detected

and simulated insertions was evaluated. This was realized by pairwise alignments using

stretcher from the EMBOSS package (version 6.6.0.0) (Rice et al., 2000).

For each TP SV, the called SV had to be annotated as the considered SV type. For deletions

and duplications called by LEVIATHAN, the SV type annotation was ignored in a second

evaluation (LEVIATHAN (IG)), because pre-simulations have shown that a bug in the

algorithm of LEVIATHAN makes it difficult to differ between deletions and duplications.

To determine the final sensitivity and precision values, as well as the final F1-scores for

the simple and complex simulation scenarios, the median across the five (simple) as well

as 20 (complex) replications was calculated. We only evaluated the performance of SV

callers for the SV length categories C - E for the complex simulations. For the detection

of insertions in the complex simulations, all SV length categories were evaluated together

because detected insertions could not be separated by the SV length category for Manta.
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RESULTS

Six linked-read and one short-read SV callers (Table 1) were evaluated based on linked-read

sequencing with respect to their precision, sensitivity, and F1-score to detect different SV

types with different SV lengths and HIs in the tetraploid potato genome using computer

simulations.

BPR of SV callers

In a first step, the BPR of each SV caller was determined for the detection of homozy-

gous (4/4) deletions (insertions for Novel-X) for each SV length category based on a 135x

sequencing coverage. Deletions have been chosen as SV type and 135x as sequencing cov-

erage, because all SV callers, except VALOR2 and LEVIATHAN, have been developed to

detect deletions of all SV length categories.

We observed considerable differences among the BPR of the different SV callers (Fig. 2).

Across all examined SV length categories, Manta and LEVIATHAN reached the maximum

precision of SV detection with the highest BPR of ≤ 10 bp. In contrast, the BPR of Lon-

gRanger and VALOR2 were the lowest.

The trends of the BPR observed for the other SV types corresponded well to those observed

for deletions (Supplementary Fig. S1, S2). The main exception was VALOR2, where BPR

were observed for large inversions that were even lower than the BPR of deletions.

SV detection for different SV length categories

First, we focused on the detection of SV based on a sequencing coverage of 135x which

corresponds to that of an experimental study with about 100 tetraploid potato clones

(Weisweiler and Baig et al. in preparation).

All SV callers, except Novel-X, were able to detect deletions for at least one SV length cat-

egory. For the SV length categories A and B, the highest F1-scores averaged across the four

HIs (hereafter designated as average F1-score) were observed for Manta with 98.3% (for A
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and B) followed closely by LinkedSV (short) (95.9%, 95.6%, Fig. 3III), and with a consid-

erable difference by LongRanger (short) (23.4%, 22.5%). Linked-read SV callers without

an implemented short-read algorithm were not able to detect deletions of the SV length

category A and B (Supplementary Table S2, S3). Larger deletions could be identified by

linked-read SV callers (Supplementary Table S4, S5, S6). However, for the SV length cate-

gory C, the average F1-scores of Manta with 98.2% and LinkedSV (short) with 92.6% were

still higher compared to those of the SV callers without an implemented short-read algo-

rithm. The highest F1-score of a linked-read SV caller was observed for LEVIATHAN (IG)

with an average F1-score of 88.0%. For the SV length categories D, increased average F1-

scores were observed for the linked-read SV callers as for NAIBR (92.9%) and Longranger

(linked) (87.3%), whereas a decreased average F1-score was observed for LinkedSV (short)

(43.1%). For the SV length category E, a similar figure was observed, where Manta (89.6%)

and NAIBR (88.5%) showed the highest average F1-scores.

The performance of detecting inversions showed a similar trend as it was observed for

deletions. For the SV length categories A and B, the short-read SV caller Manta per-

formed well with high average F1-scores (90.0%, 98.9%) (Fig. 4III, Supplementary Table

S7, S8), whereas linked-read SV callers, especially LEVIATHAN (91.4%), showed high av-

erage F1-scores for larger inversions of the SV length category C. Additionally, the average

precision values were very high for LinkedSV (99.4%) and NAIBR (98.3%) (Supplemen-

tary Table S9). An even better performance of linked-read SV callers was observed for the

SV length categories D and E (Supplementary Table S10, S11), especially for NAIBR and

LEVIATHAN.

With the exception of VALOR2, the same SV callers which could detect inversions were

able to detect duplications. As it was observed for deletions and inversions, Manta was

the best SV caller to identify duplications for the SV length categories A with an aver-

age F1-score of 66.2% (Fig. 5III) which was considerably lower compared to those values

for calling deletions (98.3%) and inversions (90.0%). This is caused by a low sensitivity

(58.6%) rather than by a low precision (82.2%) (Supplementary Table S12). LEVIATHAN

(IG) was the only linked-read SV caller which could detect duplications of the SV length

category B, but the average F1-score, sensitivity, and precision values were with 6.4%,

3.5%, and 52.6%, respectively, considerably lower compared to those values observed for
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Manta (97.7%, 95.7%, 99.8%) (Supplementary Table S13). For the SV length category

C, Manta performed well with an average F1-score of 97.2%, followed by LEVIATHAN

(IG) (84.4%). LongRanger showed a considerably lower F1-score of 34.4% because of the

low sensitivity (21.8%) (Supplementary Table S14). In contrast to the SV length category

C, NAIBR and LinkedSV were able to detect duplications of the SV length category D

(Supplementary Table S15). Manta, NAIBR, and LongRanger performed well with average

F1-scores ranging from 88.9 to 92.6%. For the SV length category E (Supplementary Table

S16), the highest average F1-scores were observed for Manta (85.2%) and NAIBR (85.3%).

Manta and Novel-X were the only two SV callers that were able to detect insertions.

Manta as short-read SV caller could detect the break point of the insertion start position

but could not assemble the inserted sequence. Therefore, the performance of Manta and

Novel-X was compared based on one break point at the insertion start position. For the

SV length category A, Manta showed considerably higher F1-scores (94.5 - 99.5%) for all

four HIs compared to Novel-X (45.7 - 87.6%) (Fig. 6III). The precision of Novel-X to

detect insertions of the SV length category A was with values between 98.2 and 98.9%

high, but the sensitivity was low (29.6 - 78.7%) (Supplementary Table S17). For the SV

length categories B and C, Novel-X performed with F1-scores between 97.3 and 98.6%

better than Manta (86.7 - 99.2%) for almost all four HIs. In addition to the comparison

of Manta and Novel-X, the performance of Novel-X was also evaluated as it was done be-

fore for the other SV types to determine the precision to assemble the inserted sequence.

With exception of the SV length category E, the evaluation of Novel-X based on two break

points has shown similar F1-scores compared to the evaluation based on only one break

point (Supplementary Tables S18 - S21).

SV detection based on different sequencing coverages

Apart from the influence of the SV type and SV length on the SV calling performance,

we examined the influence of the sequencing coverage. To do so, four different sequencing

coverages, namely 45x, 90x, 135x, and 180x were considered.

The performance to detect deletions of the short-read SV callers increased with increasing

sequencing coverage (Fig. 3, Supplementary Tables S2 - S6). This was especially true for
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the detection of deletions of the SV length category A and B. The F1-score of Manta e.g.

increased from 81.1% (45x) to 98.1% (180x) for the detection of deletions of the SV length

category A and the HI 1/4. Even higher was the difference for this simulation for LinkedSV

(short) with an increase of 50.3%. This strong influence of the sequencing coverage on the

F1-score was not observed for the detection of inversions and duplications of the SV length

categories A and B.

Linked-read SV callers, especially NAIBR and LinkedSV (linked) performed more inde-

pendently from the sequencing coverage than short-read SV callers (Fig. 3 - 5). The only

exception was the detection of insertions. The average F1-scores of Novel-X increased

considerably with an increasing coverage (Fig. 6).

SV detection using different HIs

We also examined the role of HIs on the performance of SV detection. In most of the

simulation scenarios, a higher F1-score was observed for the simulations of the HI 1/4

and 4/4 compared to 2/4 and 3/4 scenarios. This was especially true for the SV length

categories D and E for all SV types and for the SV callers Manta and NAIBR. Exceptions

of this trend were the performance of LinkedSV (linked) and LEVIATHAN (IG) for the

detection of deletions and duplications of the HI 1/4 and NAIBR for the detection of

deletions and inversions of the SV length category C. Further, Novel-X showed a higher

F1-score to detect insertions of the SV length category A for the HI 2/4 and 4/4 compared

to 1/4 and 3/4. Interestingly, the performance of VALOR2 was more independent from

the HI compared to the other SV callers.

Evaluation of SV detection using complex simulations

In addition to the simple simulations, where the combinations of SV types, SV length

categories, as well as HIs were simulated separately, we performed complex simulations

including all features of the simple simulations together to mimic experimental potato

genome sequencing data.
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In general, the F1-scores observed in the complex simulations showed a high accordance to

the results of the simple simulations. For the detection of the different SV types, Manta

and NAIBR showed sensitivity and precision values up to 100.0% for most of the SV length

categories for all sequencing coverages (Tables 2 - 5). In contrast to the simple simulations,

LongRanger (linked) showed lower sensitivity values for the detection of larger deletions.
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DISCUSSION

Due to tremendous improvements of sequencing technologies and bioinformatic tools, geno-

me-wide SV detection became possible in the last years (Ho et al., 2020). Algorithms based

on short-read and long-read sequencing were developed to detect SV. However, despite well

established SV detection based on short-read sequencing in the human genome (Cameron

et al., 2019; Kosugi et al., 2019), low precision and a lack of detecting large SV as well

as assembling insertions were reported (Chaisson et al., 2015; Huddleston and Eichler,

2016; Meleshko et al., 2019; Ho et al., 2020). In contrast, SV calling based on long-

read sequencing overcomes these issues but higher operational costs, large DNA input

requirement, as well as lower sample throughput (Ho et al., 2020) are the consequences.

We therefore benchmarked in a plant genome context SV callers which were developed to

detect SV based on linked-read sequencing, as the latter has the potential to exploit signals

of short-read sequencing and long-range information. Two previously described linked-read

SV callers were not considered in our study, due to discontinued support (GROC-SVs)

(Spies et al., 2017) or the restriction to human genomes (ZoomX) (Xia et al., 2018).

Simple vs. complex simulations

In general, the high sensitivity and precision values observed in the simple simulations

(Figures 3 - 6, Supplementary Tables S2 - S21) could be confirmed in the complex simu-

lations (Tables 2 - 5). Therefore, only the results of the simple simulations were discussed

in the following. In both simulation scenarios, maximum precision values of 100% were

frequently observed for all SV types and SV length categories. This finding suggests that

the different SV types and SV lengths have no negative influence on the detection of each

other and, thus, the high precision values observed in our complex simulations can be also

expected in experimental data of tetraploid potato varieties.
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SV detection based on short-read vs. linked-read signals

The linked-read sequencing data simulated in our study can be used to evaluate SV detec-

tion based on short-read and linked-read signals. The linked-read signals are, except for

the mapping of the reads, simply not considered by the short-read SV callers to call SV.

We observed high precision and sensitivity values for the SV detection using the short-read

algorithms implemented in Manta and LinkedSV (short) (Fig. 3, Supplementary Tables

S2 - S6). Our observations are supported by recent comprehensive SV calling evaluation

studies in humans (Cameron et al., 2019; Kosugi et al., 2019). However, our figures are

in contrast to the low precision of around 15% and sensitivity values between 30 and 70%

which have been frequently reported for the detection of SV based on short-read sequencing

in the context of the human genome (English et al., 2015; Sudmant et al., 2015; Sedlazeck

et al., 2018; Sethi et al., 2020). One reason might be that the latter studies evaluated SV

callers that have been developed ten years ago such as Pindel (Chen et al., 2009) or Break-

Dancer (Abyzov et al., 2011). These SV callers only exploit one single short-read signal

whereas the nowadays available tools use a combination of read depth, paired-end reads,

and split reads to increase the sensitivity and precision (Weisweiler et al. 2022 in review).

An additional reason for the high precision and sensitivity observed in our study might

be the improved accuracy of read mapping by considering the linked-read information for

that step of the analysis (Marks et al., 2019).

In our study, the F1-score of the short-read SV caller Manta was always equal or higher

compared to that of the linked-read SV callers NAIBR or LinkedSV (Fig. 3 - 6), whereas

in Fang et al. (2019), these linked-read SV callers showed higher F1-scores than those of

the short-read SV callers Lumpy (Layer et al., 2014) and Delly (Rausch et al., 2012). This

observation can be explained thereby that Manta showed a better performance to detect

SV in human (Cameron et al., 2019; Kosugi et al., 2019) and barley (Weisweiler et al. 2022

in review) compared to Delly and Lumpy. The lower F1-score of linked-read SV callers is

caused by a lower sensitivity of the linked-read SV callers compared to Manta. In contrast,

the precision was high for short- and linked-read SV callers (Supplementary Tables S2 -

S21). The high precision of linked-read SV callers can be explained by the usage of short-

read signals and barcode information which was also previously reported in human data
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sets (Sethi et al., 2020). Due to the usage of additional information provided by linked-read

sequencing, linked-read SV callers should be able to increase the sensitivity. However, the

lower sensitivity of linked-read SV callers compared to Manta indicates that linked-read

SV callers cannot use all information provided by linked-read sequencing. A reason for

this might be the relatively recent history and the corresponding low level of elaboration

of linked-read compared to short-read SV calling algorithms (Sethi et al., 2020).

Our finding indicates that further improvements are possible for linked-read SV callers.

Furthermore, the combination of short-read signals and long-range information based on

molecule signals is expected to increase the precision of SV detection. Therefore, until

improved linked-read SV callers are available, we suggest the combined usage of both,

short-read and linked-read SV callers, based on linked-read sequencing data to maximize

the sensitivity but retaining a high precision.

Influence of SV length on SV detection and performance of SV callers

In order to being able to interpret properly the observed numbers of detected SV of different

SV lengths and SV types in experimental studies, detailed knowledge about the sensitivity

and precision of SV callers for different SV length categories is required.

Except for insertions, linked-read SV callers were not able to detect SV of the SV length

category A (50 - 300 bp) and B (0.3 - 5 kb) or the performance was on a low level (e.g.

LEVIATHAN) (Fig. 3, 4, 5). In contrast, Manta as short-read SV caller as well as the

short-read algorithm of LinkedSV performed well for these SV length categories. The

linked-read SV callers were developed for the detection of large SV (≥ 10 kb) (Zheng et al.,

2016; Fang et al., 2019) and the focus did not lay on the detection of small SV. However,

NAIBR and LEVIATHAN were able to detect SV between 1 - 5 kb in the human genome,

even though showing a low sensitivity (Elyanow et al., 2018; Morisse et al., 2021a) which

is in agreement wih our results for LEVIATHAN. The reason for the discrepancy of SV

detection by NAIBR remains elusive. An obvious reason for the low performance of linked-

read SV callers to detect short SV in our study is that the principle of SV detection based

on linked-read barcode information is not suitable here. The specific signals of linked-read

SV calling as overlapping barcodes or split molecules cannot be used because of the short
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distance between the two break points of a short SV. Therefore, these SV can only be

detected based on short-read signals as discordant paired-end reads, split reads, or unusual

read depth.

The sensitivity and precision of the linked-read SV callers to detect SV of the SV length

categories C - E (5 kb - 1 Mb) for all SV types was considerably higher compared to

the SV length category A and B (Supplementary Tables S2 - S21). In addition, Manta

performed also well for large SV for all SV types. Our results were supported by a previous

study in human, where a high precision of NAIBR and LinkedSV and a considerably

lower precision of LongRanger was reported for the detection of large SV (Fang et al.,

2019). The high precision to detect large deletions and inversions in the human genome

reported for VALOR2 (Karaoǧlanoǧlu et al., 2020) could be supported by our results as

well (Supplementary Tables S5, S6, S10, S11). However, these come together with the

costs of a lower sensitivity and a considerably lower BPR compared to that of the other

SV callers (Fig. 2, Supplementary Fig. S1, S2).

Influence of sequencing coverage on SV detection

First, we assessed the influence of the sequencing coverage on the performance of short-

read algorithms based on linked-read sequencing. The strongest differences were observed

for calling deletions of the SV length category A (Fig. 3, Supplementary Table S2) when

increasing the sequencing coverage from 45x (∼11x per haplotype in potato) to 90x (∼22x

per haplotype), where the sensitivity increased by 23.3% for Manta and 45.6% for LinkedSV

(short). This trend was also observed for the other SV length categories albeit in alleviated

terms. Further, the performance of short-read algorithms increased only marginally when

increasing the sequencing coverage to 135x and 180x, respectively. Our observations are

in accordance with results of Cameron et al. (2019) who reported a higher sensitivity for

short-read SV callers using higher levels of sequencing coverage. These findings can be ex-

plained by the fact that short-read sequencing with higher coverage results in an increased

number of short-read signals such as discordant paired-end and split reads (Kosugi et al.,

2019). This in turn results in a higher sensitivity.

In contrast to the SV detection based on short-read signals, the influence of sequencing
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coverage on the performance of linked-read SV callers was marginal (Fig. 3 - 5). The good

performance of linked-read SV callers independent from the sequencing coverage can be

explained by additional signals comprised in linked-read sequencing data sets which are

created during the library preparation process. When exploiting linked-read sequencing

for SV detection, the vicinity of SV break points provides more signals due to the longer

anchor sequences provided by the molecule signals. In contrast, for short-read sequencing,

only reads can be considered for the SV detection where the sequence covered the break

points. Therefore, the reduction of the sequencing coverage results in less short-read signals

which has more severe consequences for the SV detection compared to linked-read signals.

In contrast to the above described trend for linked-read SV callers, we have observed two

exceptions where the sequencing coverage influenced the SV detection for linked-read SV

callers. First, detecting insertions by Novel-X was strongly influenced by the sequencing

coverage (Fig. 6). An insufficient coverage leads to difficulties in reassembling the anchor

sequences for the detected insertions and, thus, the break points of the insertions cannot

be determined (Meleshko et al., 2019). Second, SV detection for the SV length category

C of the HI 1/4 scenario by LEVIATHAN (IG) was strongly influenced by the sequenc-

ing coverage e.g. for deletions (40.1%) (Supplementary Table S4) or inversions (20.4%)

(Supplementary Table S9). An explanation for the weak performance of LEVIATHAN

(IG) for calling SV for the HI 1/4 scenario on 45x sequencing coverage could be that after

considering the barcode information, short-read signals such as discordant paired-end or

split reads are used to process candidate SV (Morisse et al., 2021a). However, as explained

above, short-read signals are strongly influenced by sequencing.

Influence of HI on SV detection in a tetraploid genome

We examined the performance of SV callers using different HIs for the tetraploid potato

genome. As expected, the performance of all SV callers was better for simulation scenarios

with a HI 4/4 than for the other HI scenarios. However, the observed performance for the

HIs 2/4 and 3/4 was worse compared to those for the HI 1/4 (Fig. 3 - 6). The reason for

this observation remains elusive and additional research is needed in the field of polyploid

SV calling.
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We observed that the different HI scenarios influenced the performance of the SV callers,

but we were not able to evaluate the correct identification of the HI by the SV callers

due to a lack of implemented genotyping algorithms. Approaches for SV genotyping based

on short-read sequencing have been described for diploid genomes (Hickey et al., 2020)

even though it is more complex (Cameron et al., 2017) compared to well established SNV

genotyping based on read depth signals (Poplin et al., 2017). Recently, it has been shown

that SNV genotyping is more error-prone for polyploid than for diploid genomes with the

request of attention interpreting polyploid genotype calls and a need for further improve-

ments (Cooke et al., 2022). Considering the need of improvements of diploid SV genotyping

(Chander et al., 2019; Khayat et al., 2021) and the issues of polyploid SNV genotyping

(Cooke et al., 2022), polyploid SV genotyping will be one of the big challenges in crop

research.

Assembling insertions using linked-read sequencing

An obvious drawback of SV calling using short-read sequencing is the lack of detecting

larger insertions (≥ 0.3 kb) (Rizk et al., 2014; Holtgrewe et al., 2015; Kehr et al., 2016;

Kavak et al., 2017) caused by the limited anchor size due to the small insert size of the

sequencing library and the corresponding incapacity to span over larger repetitive regions

in the genome (Meleshko et al., 2019). Manta is able to determine the length for insertions

up to ∼1 kb. SV calling using linked-read sequencing can principally raise this threshold.

However, up to date, only one algorithm (Novel-X) was developed for the detection of

insertions using linked-read sequencing data.

As this algorithm revealed high sensitivity and precision values to detect insertions (Fig.

6, Supplementary Tables S17 - S21), we evaluated the assembled length of the insertions.

Considering both break points to determine the length of the insertions, high sensitivity

and precision values were observed for Novel-X. Furthermore, we observed sequencing

similarities of 100% between five simulated and detected insertions for each SV length

category. This observation was in accordance to Meleshko et al. (2019) who reported

similar values for the human genome. These observations illustrate the potential of linked-

reads and especially of Novel-X to detect and assemble insertions.
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Computational performance of SV callers

To compare the computational performance of the different SV callers, we examined the

resources needed by SV callers in the case of 180x sequencing coverage in the complex

simulations (Table 6). We have observed a short CPU time and low memory require-

ment for Manta compared to the considerably higher values for the linked-read SV callers.

High memory peaks as observed for LEVIATHAN could lead to issues when SV calling is

examined on a whole genome level for species with large genomes.

Conclusion

We observed high precision and sensitivity values for SV detection in the potato genome.

Our observations highlighted the importance of short-read signals exploited by Manta and

LinkedSV to detect short SV, whereas Manta and NAIBR performed well for detecting

larger deletions, inversions, and duplications. Furthermore, we illustrated that large inser-

tions can be assembled by Novel-X using linked-read sequencing and, thus, it is superior

compared to the detection of insertions based on short-read sequencing. The BPR was

similar for the different SV types, where we observed the highest BPR for Manta and

LEVIATHAN. The HI influenced the performance of all SV callers, where for the HI 4/4

and 1/4 scenarios, the highest precision and sensitivity values were observed. Finally, the

short-read algorithms were more strongly influenced by the sequencing coverage than the

linked-read SV callers, except Novel-X, where at least a sequencing coverage of 90x should

be used to detect insertions.
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Kavak P, Lin YY, Numanagić I, Asghari H, Güngör T, Alkan C, Hach F (2017), Discovery

and genotyping of novel sequence insertions in many sequenced individuals. Bioinfor-

matics 33:i161–i169
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Table 1: Properties of structural variant (SV) callers.

Detection of

SV caller Detection mode Deletions Insertions Inversions Duplications

Manta short x x x x

LinkedSV short + linked x x (≥ 10kb) x (≥ 20kb)

LongRanger short + linked x x (≥ 30kb) x (≥ 30kb)

VALOR2 linked x (≥100kb) x (≥ 80kb)

NAIBR linked x x x

LEVIATHAN linked x (≥ 1kb) x (≥ 1kb) x (≥ 1kb)

Novel-X linked x
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Table 2: Sensitivity/precision (%) of structural variant (SV) callers

to detect deletions of the SV length categories C (5 - 50 kb), D (50 -

250 kb), and E (0.25 - 1 Mb) in complex simulations.

Sequencing coverage

SV caller 45x 90x 135x 180x

SV length category C (5 - 50 kb)

Manta 95.0/100.0 96.9/100.0 96.3/100.0 96.9/100.0

LinkedSV (short) 66.3/100.0 82.5/100.0 86.3/100.0 86.9/100.0

LinkedSV (linked) 66.3/96.6 66.3/98.2 63.1/97.9 55.0/97.9

LongRanger (short) 20.0/100.0 1.3/100.0 0.0/0.0 0.0/0.0

LongRanger (linked) 26.3/86.4 26.3/82.4 26.3/82.6 27.5/81.5

VALOR2 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

NAIBR 90.0/98.7 88.1/100.0 82.5/100.0 82.5/100.0

LEVIATHAN 31.3/68.3 44.4/73.2 45.0/73.8 43.8/73.5

SV length category D (50 - 250 kb)

Manta 95.0/100.0 95.0/100.0 95.0/100.0 95.0/100.0

LinkedSV (short) 25.0/100.0 32.5/100.0 32.5/100.0 30.0/100.0

LinkedSV (linked) 60.0/100.0 65.0/93.7 62.5/100.0 50.0/100.0

LongRanger (short) 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LongRanger (linked) 25.0/63.6 20.0/66.7 20.0/66.7 20.0/75.0

VALOR2 42.5/89.4 40.0/91.3 40.0/96.2 40.0/90.0

NAIBR 97.5/100.0 100.0/100.0 100.0/100.0 95.0/100.0

LEVIATHAN 20.0/52.3 32.5/46.6 37.5/46.8 35.0/45.3

SV length category E (0.25 - 1 Mb)

Manta 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LinkedSV (short) 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LinkedSV (linked) 50.0/100.0 50.0/100.0 50.0/100.0 50.0/100.0

LongRanger (short) 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LongRanger (linked) 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

VALOR2 0.0/0.0 0.0/0.0 25.0/100.0 25.0/100.0

NAIBR 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LEVIATHAN 25.0/66.67 50.0/66.67 25.0/50.0 50.0/100.0
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Table 3: Sensitivity/precision (%) of structural variant (SV) callers to

detect inversions of the SV length categories C (5 - 50 kb), D (50 - 250

kb), and E (0.25 - 1 Mb) in complex simulations.

Sequencing coverage

SV caller 45x 90x 135x 180x

SV length category C (5 - 50 kb)

Manta 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LinkedSV 34.4/100.0 40.6/100.0 25.0/100.0 18.8/100.0

LongRanger 18.8/100.0 18.8/100.0 18.8/100.0 25.0/100.0

VALOR2 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

NAIBR 56.3/100.0 50.0/100.0 37.5/100.0 31.3/100.0

LEVIATHAN 71.9/90.5 81.3/84.0 81.3/82.8 80.6/81.3

SV length category D (50 - 250 kb)

Manta 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LinkedSV 62.5/100.0 68.75/100.0 50.0/100.0 37.5/100.0

LongRanger 25.0/66.7 25.0/100.0 37.5/100.0 37.5/100.0

VALOR2 37.5/24.3 43.8/26.1 37.5/26.7 37.5/25.0

NAIBR 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LEVIATHAN 62.5/100.0 75.0/82.9 87.5/87.5 87.5/82.9

SV length category E (0.25 - 1 Mb)

Manta 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LinkedSV 68.8/100.0 75.0/100.0 62.5/100.0 37.5/100.0

LongRanger 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

VALOR2 37.5/43.7 62.5/83.3 62.5/81.7 68.8/84.5

NAIBR 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LEVIATHAN 68.8/100.0 87.5/100.0 87.5/100.0 87.5/100.0
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Table 4: Sensitivity/precision (%) of structural variant (SV) callers to

detect duplications of the SV length categories C (5 - 50 kb), D (50 -

250 kb), and E (0.25 - 1 Mb) in complex simulations.

Sequencing coverage

SV caller 45x 90x 135x 180x

SV length category C (5 - 50 kb)

Manta 95.8/100.0 95.8/100.0 95.8/100.0 95.8/100.0

LinkedSV 8.3/100.0 8.3/100.0 0.0/0.0 0.0/0.0

LongRanger 12.5/100.0 8.3/100.0 12.5/100.0 12.5/100.0

NAIBR 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LEVIATHAN 22.9/18.0 37.5/22.0 37.5/23.8 33.3/21.1

SV length category D (50 - 250 kb)

Manta 90.0/100.0 95.0/100.0 95.0/100.0 95.0/100.0

LinkedSV 40.0/100.0 50.0/100.0 50.0/100.0 50.0/100.0

LongRanger 40.0/80.0 45.0/77.8 50.0/80.0 60.0/83.3

NAIBR 85.0/100.0 80.0/100.0 80.0/100.0 75.0/100.0

LEVIATHAN 15.0/44.4 30.0/46.2 25.0/37.5 25.0/42.9

SV length category E (0.25 - 1 Mb)

Manta 75.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LinkedSV 25.0/100.0 50.0/100.0 50.0/100.0 37.5/100.0

LongRanger 0.0/0.0 25.0/100.0 25.0/100.0 50.0/100.0

NAIBR 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

LEVIATHAN 0.0/0.0 25.0/50.0 25.0/50.0 25.0/50.0
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Table 5: Sensitivity/precision (%) of structural variant (SV) callers to

detect insertions of the SV length categories A-E (50 bp - 1Mb) in com-

plex simulations.

Sequencing coverage

SV caller 45x 90x 135x 180x

SV length categories A-E (50 bp - 1 Mb)

Manta 91.6/98.5 94.6/98.2 94.4/97.6 93.4/97.3

Novel-X 18.6/98.3 74.5/98.5 82.1/98.5 86.3/98.5

Novel-X (2 BND)1 9.1/47.9 72.2/95.8 81.6/98.0 86.0/98.4

1Start and end break points were considered for evaluation
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Table 6: Resources used by SV callers in the case of 180x sequencing coverage and in complex simu-

lations. For details see material and methods.

SV caller Walltime (h) CPU time (h) MEM (GB) VMEM (GB) Number of CPU used

Manta 00:05:05 00:09:02 0.11 1.83 2

LinkedSV 03:01:44 09:50:53 4.77 12.45 4

LongRanger1 - - - - -

VALOR2 00:10:05 00:09:10 5.35 6.32 1

NAIBR 05:54:32 05:54:08 14.06 15.21 1

LEVIATHAN 09:59:03 19:32:14 32.31 28.23 2

Novel-X 09:14:34 33:11:24 7.39 8.88 4

1SV calling during LongRanger wgs mapping
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Fig. 1: Overview of the simple (left) and complex (right) simulations.
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Fig. 2: Break point resolution in bp of the different SV callers for five structural variant (SV) length categories:

A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D (50 - 250 kb), E (0.25 - 1 Mb) based on the detection of

homozygous (4/4) deletions using a linked-read sequencing coverage of 135x.
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Fig. 3: F1-score, which is the harmonic mean of the precision and sensitivity, observed in the simple simulations, for the

detection of deletions of five structural variant (SV) length categories: A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D

(50 - 250 kb), E (0.25 - 1 Mb) and four haplotype incidences (1/4, 2/4, 3/4, 4/4) using different SV callers (for details see

Material & Methods) based on 45x (I), 90x (II), 135x (III), and 180x (IV) coverage of linked-read sequencing.
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Fig. 4: F1-score, which is the harmonic mean of the precision and sensitivity, observed in the simple simulations, for the

detection of inversions of five structural variant (SV) length categories: A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D

(50 - 250 kb), E (0.25 - 1 Mb) and four haplotype incidences (1/4, 2/4, 3/4, 4/4) using different SV callers (for details see

Material & Methods) based on 45x (I), 90x (II), 135x (III), and 180x (IV) coverage of linked-read sequencing.
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Fig. 5: F1-score, which is the harmonic mean of the precision and sensitivity, observed in the simple simulations, for the

detection of duplications of five structural variant (SV) length categories: A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D

(50 - 250 kb), E (0.25 - 1 Mb) and four haplotype incidences (1/4, 2/4, 3/4, 4/4) using different SV callers (for details see

Material & Methods) based on 45x (I), 90x (II), 135x (III), and 180x (IV) coverage of linked-read sequencing.
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Fig. 6: F1-score, which is the harmonic mean of the precision and sensitivity, observed in the simple simulations,

for the detection of insertions of five structural variant (SV) length categories: A (50 - 300 bp), B (0.3 - 5

kb), C (5 - 50 kb), D (50 - 250 kb), E (0.25 - 1 Mb) and four haplotype incidences (1/4, 2/4, 3/4, 4/4) using

different SV callers (for details see Material & Methods) based on 45x (I), 90x (II), 135x (III), and 180x (IV)

coverage of linked-read sequencing.
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SUPPLEMENTARY INFORMATION
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Table S1: Break point resolution in bp allowed to determine the detected structural variants (SV) as true

positive SV for the different SV types and SV length categories.

SV type A (50 - 300 bp) B (0.3 - 5 kb) C (5 - 50 kb) D (50 - 250 kb) E (0.25 - 1 Mb)

Deletions ≤ 10 bp ≤ 50 bp ≤ 160 bp ≤ 550 bp ≤ 250 bp

Inversions ≤ 10 bp ≤ 50 bp ≤ 160 bp ≤ 800 bp ≤ 550 bp

Duplications ≤ 10 bp ≤ 50 bp ≤ 160 bp ≤ 250 bp ≤ 250 bp

Insertions (2 BND)1 ≤ 10 bp ≤ 50 bp ≤ 160 bp ≤ 550 bp ≤ 250 bp

Insertions ≤ 10 bp ≤ 10 bp ≤ 10 bp ≤ 10 bp ≤ 10 bp

1Start and end break points were considered for evaluation
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Table S2: Sensitivity/precision (%) of structural variant (SV)

callers to detect deletions of the SV length category A (50 - 300

bp) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four

sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 68.6/99.7 95.6/99.7 82.5/99.6 97.6/99.7

LinkedSV (short) 29.6/100.0 77.1/99.6 60.9/99.7 94.3/99.7

LongRanger (short) 0.1/100.0 0.4/69.1 0.8/87.5 95.7/99.7

LEVIATHAN 1.0/52.0 0.9/46.6 1.0/51.0 0.1/100.0

LEVIATHAN (IG) 2.0/100.0 1.6/88.2 2.1/97.1 0.1/100.0

90x sequence coverage

Manta 91.9/99.7 98.0/99.6 95.0/99.6 97.9/99.5

LinkedSV (short) 75.2/99.6 93.5/99.7 84.1/99.8 94.9/99.5

LongRanger (short) 0.2/75.0 0.7/84.6 1.2/85.7 89.8/99.6

LEVIATHAN 0.4/38.5 0.3/37.5 0.5/41.7 0.2/50.0

LEVIATHAN (IG) 0.8/80.0 0.2/76.9 1.0/83.3 1.0/83.3

135x sequence coverage

Manta 95.0/99.6 98.0/99.6 96.8/99.5 98.0/99.5

LinkedSV (short) 88.4/99.7 94.5/99.7 91.6/99.7 94.9/99.6

LongRanger (short) 0.1/75.0 0.8/80.0 1.2/92.3 81.7/99.5

LEVIATHAN 0.3/27.3 0.3/42.9 0.2/39.6 0.1/33.3

LEVIATHAN (IG) 0.8/72.7 0.4/74.2 0.2/66.7 0.2/66.7

180x sequence coverage

Manta 96.6/99.7 98.1/99.6 97.3/99.6 98.0/99.5

LinkedSV (short) 92.5/99.7 94.4/99.6 93.3/99.7 94.9/99.4

LongRanger (short) 0.2/58.3 0.9/83.3 1.3/86.7 72.4/99.3

LEVIATHAN 0.2/41.7 0.1/25.0 0.2/58.3 0.2/33.3

LEVIATHAN (IG) 0.3/66.7 0.2/50.0 0.2/0.0 0.3/50.0
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Table S3: Sensitivity/precision (%) of structural variant (SV)

callers to detect deletions of the SV length category B (0.3 - 5

kb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four

sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 83.9/100.0 96.8/99.9 91.4/100.0 97.1/99.7

LinkedSV (short) 27.8/100.0 75.5/100.0 59.9/99.8 93.4/98.8

LongRanger (short) 5.1/74.6 20.9/80.7 21.7/83.7 68.2/92.0

LEVIATHAN 0.5/33.3 1.9/37.5 2.0/37.7 0.4/16.7

LEVIATHAN (IG) 0.7/53.9 3.8/78.4 3.8/78.4 4.5/83.0

90x sequence coverage

Manta 94.1/100.0 97.7/99.6 95.7/99.8 97.5/99.6

LinkedSV (short) 72.7/100.0 92.8/100.0 83.5/100.0 94.03/99.8

LongRanger (short) 0.2/41.7 1.9/76.9 2.0/80.0 34.74/97.2

LEVIATHAN 0.7/26.9 0.4/12.5 0.6/20.7 1.0/26.5

LEVIATHAN (IG) 1.1/48.3 0.9/31.0 0.9/31.0 1.3/40.5

135x sequence coverage

Manta 96.3/99.9 97.7/99.6 96.8/99.7 97.4/99.5

LinkedSV (short) 88.6/100.0 93.3/100.0 91.1/100.0 93.9/99.8

LongRanger (short) 0.1/100.0 0.3/75.0 47.4/99.0 24.8/98.7

LEVIATHAN 0.9/27.3 1.0/25.6 1.1/28.2 1.4/27.2

LEVIATHAN (IG) 1.5/50.0 2.1/48.7 2.1/48.7 1.7/47.2

180x sequence coverage

Manta 96.2/99.9 97.7/99.6 97.0/99.6 97.5/99.6

LinkedSV (short) 92.0/100.0 93.5/100.0 92.7/99.9 93.8/99.6

LongRanger (short) 0.1/50.0 0.4/90.0 0.5/92.9 18.2/98.8

LEVIATHAN 0.9/28.1 1.4/27.3 0.8/20.0 1.5/22.9

LEVIATHAN (IG) 1.5/43.9 2.1/46.0 1.8/43.6 3.3/48.5
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Table S4: Sensitivity/precision (%) of structural vari-

ant (SV) callers to detect deletions of the SV length

category C (5 - 50 kb) for four haplotype incidences

(1/4, 2/4, 3/4, 4/4) and four sequencing coverages

(45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 88.4/100.0 96.7/100.0 92.9/100.0 97.0/100.0

LinkedSV (short) 29.3/100.0 73.0/99.8 58.5/99.8 89.3/99.9

LinkedSV (linked) 1.6/100.0 77.1/98.1 45.2/97.0 78.5/90.6

LongRanger (short) 5.8/98.3 17.0/99.3 15.3/99.3 36.1/100.0

LongRanger (linked) 40.8/91.8 42.3/79.1 41.7/73.3 42.0/68.6

NAIBR 38.7/98.3 83.9/97.0 62.6/97.0 88.2/99.1

LEVIATHAN 12.9/56.9 24.9/54.1 27.6/57.0 46.6/52.9

LEVIATHAN (IG) 22.3/99.2 45.6/99.2 49.9/99.2 85.2/98.6

90x sequence coverage

Manta 94.3/100.0 96.8/100.0 95.9/100.0 96.6/100.0

LinkedSV (short) 69.9/100.0 86.6/99.9 79.0/99.9 89.3/99.9

LinkedSV (linked) 2.9/100.0 78.3/97.5 45.0/97.3 76.4/93.9

LongRanger (short) 0.7/95.5 1.1/100.0 1.1/100.0 5.4/95.7

LongRanger (linked) 41.8/93.9 42.5/79.9 42.6/75.1 42.0/67.3

NAIBR 37.1/99.1 84.4/97.4 62.4/97.2 87.2/98.7

LEVIATHAN 31.1/52.8 41.2/52.5 37.8/53.1 44.2/50.8

LEVIATHAN (IG) 62.4/99.1 80.8/98.9 69.5/98.4 86.0/98.6

135x sequence coverage

Manta 95.6/100.0 96.8/100.0 96.8/100.0 97.0/100.0

LinkedSV (short) 83.8/100.0 87.0/99.9 85.7/99.9 89.1/99.9

LinkedSV (linked) 1.3/100.0 72.2/99.0 43.1/98.3 75.1/94.3

LongRanger (short) 0.1/100.0 0.1/100.0 0.1/50.0 0.2/66.7

LongRanger (linked) 41.6/94.7 42.6/80.0 42.6/74.0 41.7/67.8

NAIBR 36.4/99.1 84.7/97.2 61.6/97.3 86.5/98.8

LEVIATHAN 35.1/52.1 45.8/52.7 43.0/53.1 43.8/49.2

LEVIATHAN (IG) 65.8/98.8 86.4/98.8 80.4/98.9 86.7/98.2

180x sequence coverage

Manta 95.8/100.0 97.0/100.0 96.6/100.0 97.2/100.0

LinkedSV (short) 0.2/83.3 87.2/99.9 86.5/99.9 74.1/95.1

LinkedSV (linked) 86.5/99.9 54.6/99.2 40.2/98.6 89.3/99.9

LongRanger (short) 0.0/0.0 0.1/50.0 0.1/100.0 0.2/50.0

LongRanger (linked) 40.5/96.0 42.3/81.5 41.6/73.6 41.5/68.2

NAIBR 33.5/99.3 85.1/97.2 59.5/97.0 86.2/98.9

LEVIATHAN 37.7/52.6 46.1/52.5 44.0/52.5 45.7/50.7

LEVIATHAN (IG) 70.2/98.8 86.1/98.9 82.1/99.1 86.5/97.9
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Table S5: Sensitivity/precision (%) of structural vari-

ant (SV) callers to detect deletions of the SV length

category D (50 - 250 kb) for four haplotype incidences

(1/4, 2/4, 3/4, 4/4) and four sequencing coverages

(45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 89.0/100.0 91.2/85.0 87.8/83.7 95.6/100.0

LinkedSV (short) 10.0/100.0 19.4/89.5 16.7/76.9 31.8/100.0

LinkedSV (linked) 1.7/100.0 65.9/92.7 40.9/89.7 90.1/98.7

LongRanger (linked) 91.2/87.0 89.3/73.3 89.3/74.1 94.4/91.4

VALOR2 42.9/86.7 44.1/77.4 43.3/75.6 50.5/94.1

NAIBR 95.6/95.6 93.4/81.7 92.5/81.9 97.8/96.7

LEVIATHAN 0.0/0.0 3.3/60.0 12.2/50.0 50.5/52.8

LEVIATHAN (IG) 0.0/0.0 5.6/100.0 26.4/90.0 95.6/100

90x sequence coverage

Manta 94.5/100.0 92.5/84.3 91.4/83.3 96.7/100.0

LinkedSV (short) 21.6/100.0 24.4/84.9 24.7/84.9 31.8/100.0

LinkedSV (linked) 1.7/100.0 69.3/93.0 38.7/83.7 90.1/98.8

LongRanger (linked) 93.4/88.4 88.9/72.2 89.3/74.1 94.4/93.3

VALOR2 49.5/93.9 46.2/81.1 47.3/84.6 50.5/92.2

NAIBR 97.8/97.8 93.4/82.2 92.5/81.9 97.8/98.9

LEVIATHAN 0.0/0.0 15.4/45.2 12.2/50.0 50.0/50.0

LEVIATHAN (IG) 0.0/0.0 29.7/91.7 26.4/90.0 96.7/98.9

135x sequence coverage

Manta 95.6/100.0 92.5/84.3 91.4/83.3 96.7/100.0

LinkedSV (short) 30.0/100.0 25.8/82.8 25.8/85.7 31.8/100.0

LinkedSV (linked) 1.1/100.0 65.6/91.0 38.9/87.5 88.6/98.6

LongRanger (linked) 92.2/90.4 89.3/72.7 89.3/75.7 95.6/93.7

VALOR2 49.5/95.7 46.2/79.6 47.3/83.3 51.6/94.0

NAIBR 97.8/98.9 93.4/83.0 93.4/82.5 98.4/98.3

LEVIATHAN 0.0/0.0 33.0/50.9 19.7/39.8 52.8/53.3

LEVIATHAN (IG) 1.1/25.0 64.4/93.9 44.1/86.2 96.7/100.0

180x sequence coverage

Manta 95.6/100.0 92.5/84.3 92.5/83.7 96.7/100.0

LinkedSV (short) 30.0/100.0 25.8/82.8 25.8/85.7 30.7/100.0

LinkedSV (linked) 0.0/0.0 38.6/93.3 34.4/89.2 85.2/98.7

LongRanger (linked) 94.5/86.9 90.0/75.4 89.3/76.4 92.2/92.2

VALOR2 49.5/95.7 46.2/80.8 46.2/81.1 49.5/87.8

NAIBR 96.7/97.9 92.5/80.7 90.1/83.0 97.8/98.9

LEVIATHAN 1.1/100.0 38.9/50.0 21.1/44.2 48.9/50.6

LEVIATHAN (IG) 1.1/100.0 72.7/92.3 43.3/84.8 97.8/100.0
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Table S6: Sensitivity/precision (%) of structural variant

(SV) callers to detect deletions of the SV length category

E (250 - 1 Mb) for four haplotype incidences (1/4, 2/4,

3/4, 4/4) and four sequencing coverages (45x, 90x, 135x,

180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 85.7/100.0 82.5/76.1 82.5/73.3 95.5/100.0

LinkedSV (linked) 17.5/100.0 43.6/88.0 40.0/76.2 93.18/100.0

LongRanger (linked) 29.6/46.2 25.0/41.9 27.5/36.7 29.55/92.3

VALOR2 2.6/9.1 0.0/0.0 3.5/10.7 2.5/5.9

NAIBR 95.5/95.2 90.0/63.2 87.5/71.4 95.5/95.1

LEVIATHAN 0.0/0.0 10.2/53.1 11.4/44.4 56.8/59.5

LEVIATHAN (IG) 0.0/0.0 18.2/100.0 25.0/83.3 95.0/100.0

90x sequence coverage

Manta 90.9/100.0 87.5/75.0 87.5/74.5 95.5/100.0

LinkedSV (linked) 25.0/100.0 46.2/78.3 38.6/70.0 90.9/97.5

LongRanger (linked) 27.3/38.7 29.6/41.4 25.0/37.0 31.8/92.9

VALOR2 11.4/39.4 7.5/23.1 9.5/28.6 2.6/8.3

NAIBR 95.5/90.7 90.0/69.8 90.0/69.2 95.5/97.4

LEVIATHAN 0.0/0.0 29.6/40.5 20.5/37.5 48.7/48.7

LEVIATHAN (IG) 0.0/0.0 50.0/77.8 38.6/70.8 95.5/100.0

135x sequence coverage

Manta 93.2/100.0 87.5/73.5 87.5/75.0 95.5/100.0

LinkedSV (linked) 15.0/100.0 43.6/81.0 35.0/73.7 88.6/100.0

LongRanger (linked) 28.4/39.0 27.5/48.0 25.0/30.3 29.6/92.3

VALOR2 26.2/90.0 20.5/75.0 21.4/75.0 33.3/90.9

NAIBR 95.2/97.6 90.0/69.2 88.6/73.5 95.5/97.7

LEVIATHAN 7.5/100.0 27.3/38.6 22.7/38.5 45.5/46.5

LEVIATHAN (IG) 7.5/100.0 52.3/92.0 45.0/78.3 95.5/100.0

180x sequence coverage

Manta 92.9/100.0 87.5/73.5 87.5/75.0 95.5/100.0

LinkedSV (linked) 0.0/0.0 17.5/87.5 29.6/78.6 85.7/100.0

LongRanger (linked) 28.6/41.7 27.5/45.8 27.3/33.3 31.8/86.7

VALOR2 29.6/100.0 25.0/69.2 22.7/71.4 33.3/100.0

NAIBR 94.9/95.1 90.0/67.9 90.0/72.6 95.5/97.4

LEVIATHAN 10.0/80.0 31.8/48.2 28.2/33.3 52.4/53.9

LEVIATHAN (IG) 7.4/100.0 57.5/88.9 50.0/73.1 95.6/100.0
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Table S7: Sensitivity/precision (%) of Manta to detect in-

versions of the structural variant length category A (50 -

300 bp) for four haplotype incidences (1/4, 2/4, 3/4, 4/4)

and four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 86.9/93.9 93.7/90.3 90.3/91.4 91.1/86.9

90x sequence coverage

Manta 91.7/91.1 94.2/87.7 94.1/88.6 92.4/85.1

135x sequence coverage

Manta 93.3/89.7 94.6/86.4 93.1/86.9 93.0/83.3

180x sequence coverage

Manta 94.0/88.0 94.3/84.8 93.9/86.0 93.4/82.6
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Table S8: Sensitivity/precision (%) of structural variant (SV)

callers to detect inversions of the SV length category B (0.3 - 5

kb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four

sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 95.4/99.8 98.2/99.6 97.3/99.8 98.5/99.2

LEVIATHAN 3.16/56.1 7.4/71.4 7.6/77.7 21.1/86.1

90x sequence coverage

Manta 97.8/99.8 98.4/99.6 98.1/99.4 98.4/99.5

LEVIATHAN 2.7/42.2 4.4/55.4 5.1/58.8 14.2/75.9

135x sequence coverage

Manta 98.2/99.7 98.3/99.5 98.1/99.6 98.4/99.4

LEVIATHAN 2.8/47.2 4.5/55.7 4.6/52.4 12.1/71.0

180x sequence coverage

Manta 98.0/99.7 98.5/99.4 98.3/99.5 98.4/99.3

LEVIATHAN 2.1/32.4 3.6/44.8 4.5/50.0 11.2/64.2
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Table S9: Sensitivity/precision (%) of structural variant

(SV) callers to detect inversions of the SV length category C

(5 - 50 kb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4)

and four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 95.6/99.9 97.6/99.4 96.8/99.6 97.5/99.4

LinkedSV 6.6/98.4 43.4/98.6 31.2/98.9 57.0/98.6

LongRanger 40.9/95.9 41.5/73.4 41.1/66.2 42.0/56.0

NAIBR 20.9/96.3 32.3/96.3 30.9/97.2 45.3/96.3

LEVIATHAN 60.0/98.4 86.2/98.0 74.3/98.3 90.8/97.9

90x sequence coverage

Manta 97.4/99.4 97.5/99.5 97.1/99.6 97.3/99.5

LinkedSV 11.6/100.0 43.5/99.2 32.7/99.3 56.7/99.2

LongRanger 40.0/95.9 41.7/72.0 40.7/64.1 41.7/54.9

NAIBR 20.0/97.4 31.1/98.0 28.9/97.5 43.9/98.0

LEVIATHAN 80.4/97.8 87.0/98.0 83.5/97.7 90.3/97.0

135x sequence coverage

Manta 97.0/99.6 97.4/99.5 97.5/99.4 97.5/99.3

LinkedSV 6.6/100.0 36.9/99.4 26.9/99.6 49.8/98.8

LongRanger 39.5/95.0 41.7/70.2 41.3/63.7 41.9/54.4

NAIBR 16.9/98.7 30.0/98.1 26.9/98.3 42.9/98.3

LEVIATHAN 82.9/97.9 87.0/96.7 85.3/97.0 90.3/96.7

180x sequence coverage

Manta 97.6/99.5 97.4/99.8 97.5/99.5 97.2/98.9

LinkedSV 0.5/100.0 26.9/99.5 19.2/98.8 38.2/99.1

LongRanger 39.8/95.4 41.5/69.4 40.7/63.1 42.2/54.0

NAIBR 12.1/99.0 29.9/98.4 24.4/98.7 41.9/98.0

LEVIATHAN 84.0/97.1 87.0/97.0 85.2/97.4 90.4/95.9
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Table S10: Sensitivity/precision (%) of structural variant

(SV) callers to detect inversions of the SV length category

D (50 - 250 kb) for four haplotype incidences (1/4, 2/4, 3/4,

4/4) and four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 97.9/100.0 88.3/76.0 85.9/83.7 97.8/98.9

LinkedSV 19.2/100.0 70.7/82.3 52.3/84.5 87.8/98.8

LongRanger 93.6/95.6 83.7/67.2 82.6/68.5 91.9/65.1

VALOR2 45.2/94.0 47.3/78.6 43.2/73.1 48.9/81.1

NAIBR 97.9/97.8 90.4/76.0 85.9/77.5 97.8/96.7

LEVIATHAN 2.2/87.5 64.1/89.3 43.5/79.6 98.4/96.8

90x sequence coverage

Manta 97.9/100.0 89.4/76.0 85.9/81.3 97.8/98.9

LinkedSV 43.5/100.0 70.7/83.5 51.6/82.5 64.9/98.5

LongRanger 92.6/97.8 84.0/69.3 82.6/73.8 91.4/70.7

VALOR2 48.9/95.7 50.5/78.7 47.9/79.0 55.4/92.7

NAIBR 97.9/98.9 90.4/76.0 85.9/80.6 97.9/96.8

LEVIATHAN 53.8/97.6 79.3/80.4 63.6/80.0 97.9/94.8

135x sequence coverage

Manta 97.9/100.0 89.4/76.7 85.9/83.2 96.8/97.9

LinkedSV 24.7/100.0 60.9/85.1 40.9/84.2 50.0/100.0

LongRanger 90.4/98.8 86.2/69.3 82.6/73.1 92.4/75.2

VALOR2 53.3/93.8 49.5/72.1 49.5/77.6 56.0/90.7

NAIBR 97.8/97.8 90.4/75.2 85.9/78.6 97.9/96.7

LEVIATHAN 67.0/98.3 83.7/78.6 75.0/77.5 97.9/95.6

180x sequence coverage

Manta 97.9/100.0 90.4/78.2 88.6/83.7 96.8/98.9

LinkedSV 1.6/100.0 44.6/90.9 23.9/85.6 43.0/100.0

LongRanger 85.1/98.7 85.1/70.2 84.9/77.4 92.4/72.6

VALOR2 53.3/95.8 50.9/70.9 47.0/80.7 0.0/0.0

NAIBR 96.8/98.8 90.4/76.9 86.5/81.7 97.9/97.3

LEVIATHAN 72.7/98.3 83.0/78.0 76.8/81.6 97.9/94.6
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Table S11: Sensitivity/precision (%) of structural variant

(SV) callers to detect inversions of the SV length category E

(0.25 - 1 Mb) for four haplotype incidences (1/4, 2/4, 3/4,

4/4) and four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 97.4/100.0 67.6/63.9 73.0/71.7 95.0/100.0

LinkedSV 18.4/100.0 54.1/67.7 48.8/69.0 86.5/100.0

LongRanger 29.7/91.7 16.2/43.3 18.9/50.0 29.7/91.7

VALOR2 43.2/65.5 63.4/96.2 63.4/93.1 60.0/92.9

NAIBR 97.5/94.9 67.6/60.0 73.0/62.2 97.5/94.9

LEVIATHAN 6.7/100.0 60.0/63.2 48.7/62.2 97.5/100.0

90x sequence coverage

Manta 97.5/100.0 67.6/63.9 73.0/71.1 97.5/100.0

LinkedSV 45.0/100.0 54.1/65.5 55.3/71.4 54.1/100.0

LongRanger 24.3/92.3 16.2/43.3 18.9/47.1 29.7/92.3

VALOR2 63.4/96.2 50.7/65.6 51.4/63.6 50.6/61.9

NAIBR 97.5/97.4 67.6/61.5 73.0/67.4 97.5/94.9

LEVIATHAN 48.7/100.0 62.2/62.2 73.0/68.9 97.5/100.0

135x sequence coverage

Manta 97.5/100.0 67.6/63.9 77.7/71.4 95.0/100.0

LinkedSV 23.7/100.0 46.0/61.5 46.1/69.2 48.7/100.0

LongRanger 25.7/95.8 16.2/43.3 19.2/50.0 29.7/92.9

VALOR2 63.4/93.1 50.0/62.5 54.6/70.3 54.1/73.5

NAIBR 97.5/95.1 67.6/61.5 77.7/69.5 97.5/92.9

LEVIATHAN 65.8/100.0 65.9/60.5 74.3/69.4 97.5/97.2

180x sequence coverage

Manta 97.5/100.0 67.6/62.2 73.0/69.6 97.5/100.0

LinkedSV 5.4/100.0 35.1/72.2 27.0/68.8 43.2/95.0

LongRanger 23.7/100.0 13.2/42.4 18.9/43.8 29.7/91.7

VALOR2 60.0/92.9 47.4/72.0 62.0/86.2 63.2/86.2

NAIBR 97.3/100.0 67.6/62.2 73.0/64.7 97.5/97.2

LEVIATHAN 64.9/100.0 67.6/60.5 76.5/69.1 97.3/97.4
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Table S12: Sensitivity/precision (%) of Manta to detect du-

plications of the structural variant length category A (50 -

300 bp) for four haplotype incidences (1/4, 2/4, 3/4, 4/4)

and four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 13.4/87.1 50.0/89.6 43.5/92.3 80.9/89.0

90x sequence coverage

Manta 20.3/77.0 66.7/86.6 51.7/87.0 86.7/87.8

135x sequence coverage

Manta 22.7/71.3 71.7/86.0 53.2/84.7 86.8/86.6

180x sequence coverage

Manta 24.8/71.3 74.2/85.4 54.2/83.0 87.4/85.9
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Table S13: Sensitivity/precision (%) of structural variant (SV) callers

to detect duplications of the SV length category B (0.3 - 5 kb) for four

haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing coverages

(45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 80.9/100.0 96.3/99.8 89.4/100.0 96.0/99.8

LEVIATHAN 3.8/39.2 4.7/43.4 5.1/42.7 11.4/41.3

LEVIATHAN (IG) 9.2/94.2 9.7/89.6 10.2/86.3 25.5/92.9

90x sequence coverage

Manta 90.3/100.0 96.8/99.9 94.0/99.9 97.2/99.7

LEVIATHAN 1.0/25.0 1.4/24.1 1.7/32.2 4.2/39.4

LEVIATHAN (IG) 2.0/56.1 3.5/58.6 3.6/60.4 9.0/75.0

135x sequence coverage

Manta 92.9/100.0 97.2/99.8 95.7/99.9 97.2/99.6

LEVIATHAN 0.6/15.6 1.5/24.6 1.8/33.3 2.7/29.7

LEVIATHAN (IG) 1.7/40.5 2.6/46.9 3.6/58.3 6.0/64.8

180x sequence coverage

Manta 94.5/100.0 97.2/99.8 95.8/99.9 97.0/99.7

LEVIATHAN 0.8/18.2 1.2/23.5 1.4/25.9 2.3/26.6

LEVIATHAN (IG) 1.8/41.2 2.4/46.9 3.0/53.7 5.1/59.5
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Table S14: Sensitivity/precision (%) of structural variant (SV)

callers to detect duplications of the SV length category C (5 -

50 kb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and

four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 78.3/100.0 95.8/100.0 86.8/100.0 96.1/99.9

LinkedSV 0.0/0.0 0.5/100.0 2.7/100.0 9.8/98.8

LongRanger 15.1/96.7 34.1/96.8 29.9/95.6 40.3/96.8

NAIBR 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LEVIATHAN 15.3/40.5 21.5/45.7 25.6/44.0 37.4/44.3

LEVIATHAN (IG) 36.8/98.1 46.3/98.3 56.4/98.6 81.9/98.6

90x sequence coverage

Manta 89.3/100.0 96.4/100.0 92.5/100.0 96.6/99.9

LinkedSV 0.1/100.0 2.4/100.0 4.3/100.0 10.8/98.8

LongRanger 12.0/96.1 28.4/97.2 22.7/97.1 39.0/97.4

NAIBR 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LEVIATHAN 26.1/43.7 37.4/45.8 31.2/43.7 40.2/46.6

LEVIATHAN (IG) 56.8/98.8 79.3/98.8 70.1/98.5 84.9/98.5

135x sequence coverage

Manta 92.4/100.0 96.4/99.9 93.5/100.0 96.6/99.9

LinkedSV 0.0/0.0 0.2/100.0 0.4/100.0 1.0/91.7

LongRanger 7.6/95.6 23.2/97.2 19.2/96.6 37.3/97.2

NAIBR 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LEVIATHAN 28.3/43.8 39.1/46.4 32.3/44.7 40.9/48.0

LEVIATHAN (IG) 59.5/98.0 82.5/98.5 71.9/98.5 85.1/98.4

180x sequence coverage

Manta 93.44/100.0 96.6/99.9 94.6/100.0 96.7/99.6

LinkedSV 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LongRanger 28.6/45.1 18.7/97.5 15.0/96.1 32.6/96.8

NAIBR 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

LEVIATHAN 28.6/45.1 39.8/47.3 33.8/45.3 40.3/46.9

LEVIATHAN (IG) 62.7/98.2 83.2/98.3 73.0/98.1 84.8/98.3
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Table S15: Sensitivity/precision (%) of structural variant (SV)

callers to detect duplications of the SV length category D (50 -

250 kb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and

four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 75.6/100.0 90.3/81.4 85.0/83.7 94.7/100.0

LinkedSV 0.0/0.0 1.1/86.7 12.9/87.0 64.5/96.7

LongRanger 88.5/95.4 90.4/75.7 90.0/80.4 93.6/93.3

NAIBR 88.9/96.2 91.5/78.9 90.8/82.4 92.6/96.7

LEVIATHAN 0.0/0.0 1.2/50.0 7.8/40.0 40.4/44.4

LEVIATHAN (IG) 0.0/0.0 2.3/100.0 13.3/90.0 93.1/97.8

90x sequence coverage

Manta 87.4/100.0 92.2/81.7 90.3/85.6 96.8/100.0

LinkedSV 1.2/100.0 19.2/92.9 24.4/88.0 70.1/95.7

LongRanger 91.1/95.4 90.3/76.4 90.3/82.4 93.6/94.3

NAIBR 93.3/97.7 92.6/77.7 91.5/81.9 93.1/96.6

LEVIATHAN 0.0/0.0 24.5/45.3 17.2/37.8 43.3/43.8

LEVIATHAN (IG) 0.0/0.0 48.9/97.2 38.3/85.7 97.8/100.0

135x sequence coverage

Manta 92.6/100.0 93.6/80.7 91.1/85.4 96.8/100.0

LinkedSV 1.1/100.0 31.9/96.8 24.7/89.3 66.2/96.1

LongRanger 90.0/96.6 91.1/77.3 88.2/82.8 93.6/95.4

NAIBR 91.1/98.8 91.5/78.6 88.9/82.2 92.6/97.8

LEVIATHAN 0.0/0.0 28.9/44.4 17.8/35.6 46.7/48.3

LEVIATHAN (IG) 0.0/0.0 61.3/96.2 39.4/84.4 96.6/98.8

180x sequence coverage

Manta 92.5/100 93.3/80.5 93.3/85.6 96.8/100.0

LinkedSV 0.0/0.0 20.0/94.7 22.2/95.8 68.8/98.5

LongRanger 88.3/96.5 88.9/77.3 88.2/81.1 92.6/94.6

NAIBR 84.4/98.7 90.4/80.2 87.2/84.0 92.2/97.6

LEVIATHAN 0.0/0.0 26.6/38.2 19.5/38.6 44.4/46.0

LEVIATHAN (IG) 0.0/0.0 62.1/95.2 38.7/86.1 94.4/96.7
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Table S16: Sensitivity/precision (%) of structural variant (SV)

callers to detect duplications of the SV length category B (0.25

- 1 Mb) for four haplotype incidences (1/4, 2/4, 3/4, 4/4) and

four sequencing coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 76.7/100.0 73.2/66.7 73.7/73.1 97.6/100.0

LinkedSV 0.0/0.0 13.6/75.0 9.8/57.1 18.2/100.0

LongRanger 31.7/91.7 27.3/41.4 27.1/33.3 31.8/92.3

NAIBR 95.0/97.4 78.1/66.0 79.9/70.7 97.7/95.5

LEVIATHAN 0.0/0.0 11.6/28.2 10.4/33.6 42.5/46.0

LEVIATHAN (IG) 0.0/0.0 14.2/66.7 17.3/68.6 90.7/100.0

90x sequence coverage

Manta 90.2/100.0 78.1/69.2 75.6/73.5 97.6/100.0

LinkedSV 0.0/0.0 15.1/64.9 11.6/75.0 45.5/100.0

LongRanger 31.8/100.0 27.3/37.5 26.8/40.0 31.8/92.3

NAIBR 97.7/97.7 78.1/65.1 78.1/68.9 97.7/94.9

LEVIATHAN 0.0/0.0 22.5/21.4 22.6/40.0 48.8/47.7

LEVIATHAN (IG) 0.0/0.0 53.5/72.0 35.9/70.0 100.0/100.0

135x sequence coverage

Manta 90.2/100.0 77.0/68.0 78.1/72.7 97.6/100.0

LinkedSV 0.0/0.0 18.3/78.0 14.0/66.7 47.5/100.0

LongRanger 30.8/93.8 27.7/50.0 26.8/40.0 33.3/92.9

NAIBR 95.4/97.6 78./66.6 78.1/72.1 97.4/97.6

LEVIATHAN 0.0/0.0 32.1/34.8 14.0/27.5 48.7/50.0

LEVIATHAN (IG) 0.0/0.0 62.9/73.0 37.2/68.8 97.7/97.6

180x sequence coverage

Manta 92.7/100.0 78.1/67.4 78.1/72.7 97.4/100.0

LinkedSV 0.0/0.0 12.2/100.0 12.2/66.7 43.9/100.0

LongRanger 30.8/92.3 27.3/38.7 26.8/41.4 33.3/93.3

NAIBR 93.0/100.0 75.6/64.8 73.2/71.1 95.4/95.2

LEVIATHAN 0.0/0.0 25.3/33.4 19.0/35.1 54.6/54.6

LEVIATHAN (IG) 0.0/0.0 58.1/69.4 35.7/73.0 97.6/100.0
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Table S17: Sensitivity/precision (%) of structural variant (SV) callers

to detect insertions of the SV length category A (50 - 300 bp) for

four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing

coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequencing coverage

Manta 79.3/100 95.7/100.0 87.2/100.0 94.1/100.0

Novel-X 0.0/0.0 0.7/100.0 2.8/100.0 50.9/98.5

Novel-X (2 BND)1 0.0/0.0 0.7/83.3 2.3/79.3 50.3/97.3

90x sequencing coverage

Manta 89.89/100 98.8/100.0 94.6/100.0 94.5/100.0

Novel-X 7.21/100 39.4/98.4 35.3/98.6 76.0/99.1

Novel-X (2 BND)1 6.81/95.8 38.8/97.5 34.9/97.7 75.28/98.0

135x sequencing coverage

Manta 89.5/100 99.0/100.0 94.7/100.0 94.3/100.0

Novel-X 29.6/98.7 63.6/98.9 53.4/98.2 78.7/98.9

Novel-X (2 BND)1 29.5/97.0 62.7/97.5 53.1/97.4 78.1/97.5

180x sequencing coverage

Manta 89.1/100 98.8/100.0 94.4/100.0 94.2/100.0

Novel-X 47.6/99.4 72.3/98.1 63.9/98.0 79.0/98.6

Novel-X (2 BND)1 47.2/98.3 71.9/97.1 63.3/97.2 77.9/97.4

1Start and end break points were considered for evaluation
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Table S18: Sensitivity/precision (%) of structural variant (SV) callers

to detect insertions of the SV length category B (0.3 - 5 kb) for

four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing

coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequencing coverage

Manta 74.5/100.0 96.0/100.0 83.8/100.0 86.3/100.0

Novel-X 4.2/100.0 14.3/99.3 14.7/99.3 96.8/99.0

Novel-X (2 BND)1 3.6/90.7 12.2/84.7 11.4/75.3 95.8/97.7

90x sequencing coverage

Manta 80.3/100.0 98.6/100.0 88.7/100.0 85.3/100.0

Novel-X 83.0/99.2 97.0/98.9 90.7/98.7 97.2/99.6

Novel-X (2 BND)1 81.6/97.6 95.8/97.1 89.2/97.1 95.9/98.3

135x sequencing coverage

Manta 76.5/100.0 98.5/100.0 88.3/100.0 83.9/100.0

Novel-X 95.6/99.3 97.6/99.2 96.5/99.3 97.7/99.5

Novel-X (2 BND)1 94.0/97.9 96.2/97.7 95.2/98.0 96.4/98.2

180x sequencing coverage

Manta 74.6/100.0 98.7/100.0 87.5/100.0 82.9/100.0

Novel-X 96.8/99.3 97.5/99.0 97.2/99.0 95.4/99.4

Novel-X (2 BND)1 95.3/97.7 96.5/97.5 95.9/97.7 93.8/97.9

1Start and end break points were considered for evaluation
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Table S19: Sensitivity/precision (%) of structural variant (SV) callers

to detect deletions of the SV length category C (5 - 50 kb) for four

haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing cover-

ages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequence coverage

Manta 72.9/100.0 93.8/100.0 83.0/100.0 86.5/100.0

Novel-X 9.0/98.9 11.6/99.1 12.8/98.4 96.1/99.2

Novel-X (2 BND)1 2.4/26.8 2.7/23.6 2.9/21.5 95.7/98.7

90x sequence coverage

Manta 80.7/100.0 97.7/100.0 89.0/100.0 86.0/100.0

Novel-X 93.1/98.6 97.5/98.0 94.9/97.3 96.2/99.6

Novel-X (2 BND)1 86.6/91.5 95.0/95.5 90.9/93.2 96.0/99.0

135x sequence coverage

Manta 76.7/100.0 97.7/100.0 88.2/100.0 83.7/100.0

Novel-X 96.2/98.9 97.1/98.5 96.7/98.7 96.4/99.3

Novel-X (2 BND)1 94.7/97.8 96.5/97.7 95.9/97.9 96.1/98.9

180x sequence coverage

Manta 73.3/100.0 98.1/100.0 87.2/100.0 82.2/100.0

Novel-X 96.2/99.1 96.9/98.9 96.7/98.8 96.2/99.3

Novel-X (2 BND)1 95.5/98.6 96.5/98.4 96.1/98.3 95.5/99.0

1Start and end break points were considered for evaluation
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Table S20: Sensitivity/precision (%) of structural variant (SV) callers

to detect insertions of the SV length category D (50 - 250 kb) for

four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing

coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequencing coverage

Manta 73.7/100.0 84.9/76.5 74.8/79.6 88.9/100.0

Novel-X 11.1/100.0 30.3/85.4 23.2/79.3 96.0/99.0

Novel-X (2 BND)1 0.0/0.0 0.0/0.0 1.0/2.5 96.0/99.0

90x sequencing coverage

Manta 79.8/100.0 83.8/76.2 85.9/81.5 84.9/100.0

Novel-X 96.0/97.9 75.8/75.8 79.8/80.6 96.0/99.0

Novel-X (2 BND)1 44.4/46.3 59.6/59.6 47.5/47.5 96.0/97.9

135x sequencing coverage

Manta 75.8/100.0 80.8/76.0 77.8/78.7 82.8/100.0

Novel-X 96.0/99.0 80.8/80.8 87.9/87.0 95.0/98.9

Novel-X (2 BND)1 88.9/90.7 76.8/76.0 83.8/85.0 93.9/97.9

180x sequencing coverage

Manta 71.7/100.0 83.8/76.9 75.8/79.8 78.8/100.0

Novel-X 96.0/99.0 80.8/81.6 87.9/87.0 92.9/98.9

Novel-X (2 BND)1 96.0/99.0 80.8/81.6 87.9/87.0 91.9/97.9

1Start and end break points were considered for evaluation
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Table S21: Sensitivity/precision (%) of structural variant (SV) callers

to detect insertions of the SV length category E (0.25 - 1 Mb) for

four haplotype incidences (1/4, 2/4, 3/4, 4/4) and four sequencing

coverages (45x, 90x, 135x, 180x).

Haplotype incidence

SV caller 1/4 2/4 3/4 4/4

45x sequencing coverage

Manta 65.3/100.0 71.4/72.9 73.5/80.0 89.8/100.0

Novel-X 10.2/100.0 20.4/69.7 20.4/69.8 93.9/98.0

Novel-X (2 BND)1 0.0/0.0 0.0/0.0 0.0/0.0 24.5/24.4

90x sequencing coverage

Manta 79.6/100.0 85.7/75.0 81.6/79.3 81.6/100.0

Novel-X 95.9/97.9 79.6/75.0 83.7/80.4 98.0/98.0

Novel-X (2 BND)1 4.1/4.3 10.2/9.6 17.3/17.3 71.4/70.0

135x sequencing coverage

Manta 79.6/100.0 81.6/72.4 73.5/78.3 81.6/100.0

Novel-X 93.9/96.0 77.6/74.5 77.6/77.6 98.0/100.0

Novel-X (2 BND)1 67.4/66.7 59.2/55.6 63.3/66.0 91.8/91.8

180x sequencing coverage

Manta 67.4/100.0 83.7/74.1 77.6/78.4 77.6/100.0

Novel-X 95.9/97.8 77.6/75.0 81.6/80.0 89.8/97.9

Novel-X (2 BND)1 89.8/91.8 71.4/72.2 71.4/70.0 87.8/95.7

1Start and end break points were considered for evaluation
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Fig. S1: Break point resolution in bp of the different SV callers for five structural variant (SV) length categories:

A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D (50 - 250 kb), E (0.25 - 1 Mb) based on the detection of

homozygous (4/4) inversions using a linked-read sequencing coverage of 135x.
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Fig. S2: Break point resolution in bp of the different SV callers for five structural variant (SV) length categories:

A (50 - 300 bp), B (0.3 - 5 kb), C (5 - 50 kb), D (50 - 250 kb), E (0.25 - 1 Mb) based on the detection of

homozygous (4/4) duplications using a linked-read sequencing coverage of 135x.
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ABSTRACT

In human genetics, several studies have shown that phenotypic variation is more likely to

be caused by structural variants (SV) than by single nucleotide variants (SNV). However,

accurate while cost-efficient discovery of SV in complex genomes remains challenging. The

objectives of our study were to (i) improve SV discovery by benchmarking SV callers

and their combinations with respect to their sensitivity and precision to detect SV in

the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the

genomes of 23 barley inbreds that are the parents of a resource for mapping quantitative

traits, the double round robin population, (iii) quantify the association of SV clusters

with transcript abundance, and (iv) evaluate the use of SV clusters for the prediction of

phenotypic traits. In our computer simulations based on a sequencing coverage of 25x,

a sensitivity > 70% and precision > 95% was observed for all combinations of SV types

and SV length categories if the best combination of SV callers was used. We observed a

significant (P < 0.05) association of gene-associated SV clusters with global gene-specific

gene expression. Furthermore, about 9% of all SV clusters that were within 5kb of a gene

were significantly (P < 0.05) associated with the gene expression of the corresponding

gene. The prediction ability of SV clusters was higher compared to using data from single

nucleotide polymorphism array across the seven studied phenotypic traits. These findings

suggest the usefulness of exploiting SV information when fine mapping and cloning the

causal genes underlying quantitative traits as well as the high potential of using SV clusters

for the prediction of phenotypes in diverse germplasm sets.
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AUTHOR SUMMARY

Larger genomic rearrangements are defined as structural variants (SV) which cover at least

50bp, including deletions, insertions, inversions, duplications, and translocations. These

SV are a leading cause for phenotypic variation. Due to the development of new sequencing

technologies and corresponding bioinformatic algorithms, it is now possible to detect SV

in complex cereal genomes in addition to examine single nucleotide variants. Therefore,

we investigated based on computer simulations the sensitivity and precision to detect SV

using short-read sequencing technology and used the best combination of SV callers to

detect SV in the barley genome. Further, we could associate SV with gene expression and

observed for the SV high abilities to predict important agronomic traits. Our findings have

the potential to lead to increased efficiency of prediction-based breeding programs.
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INTRODUCTION

Researchers began to study genomic rearrangements and structural variants (SV) about

60 years ago. These studies investigated somatic chromosomes, biopsies, and cell cultures

from lymphomas to understand the role of abnormal chromosome numbers as well as SV

for the development of cancer (Jacobs and Strong, 1959; Nowell and Hungerford, 1960;

Manolov and Manolov, 1972; Craig-Holmes et al., 1973; Mitelman et al., 1979).

The development of sequencing by synthesis pioneered by Frederick Sanger (Sanger et al.,

1977) enabled in the following years the first sequenced genomes of prokaryotes (e.g. Es-

cherichia coli) and eukaryotes (e.g. yeast) (Goffeau et al., 1996; Blattner et al., 1997).

Next milestones of sequencing by synthesis were the sequenced genomes of Arabidopsis

thaliana as first plant species (The Arabidopsis Genome Initiative, 2000) and of human

(Craig Venter et al., 2001). Due to the development of next-generation sequencing (NGS)

platforms such as 454 and Illumina, studies aiming for genome-wide variant detection in

100s or 1000s of samples as in the 1000 genome project (Altshuler et al., 2012) became

possible.

Three different approaches have been proposed to detect SV based on NGS data: assem-

bling, long-read sequencing, and short-read sequencing (Mahmoud et al., 2019). For crop

and especially for cereal species, the assembly approach is a tough challenge because of the

large genome size and the high proportion of repetitive elements in the genomes (Neale

et al., 2014; Mascher et al., 2017). Long-read mapping requires Pacbio or Nanopore data

which results in high costs if many accessions should be sequenced and, thus, is not af-

fordable for many research groups. In contrast, short-read sequencing is well-established

for SV detection in the human genome (Chaisson et al., 2019; Ebert et al., 2021). Various

software tools have been developed to detect SV from short-read sequencing data and were

benchmarked based on human genomes (Cameron et al., 2019; Kosugi et al., 2019).

More recently there is also an increased interest in using such approaches for SV detection

in plant genomes (Fuentes et al., 2019; Zhou et al., 2019; Guan et al., 2021). Fuentes et al.

(2019) evaluated several SV callers to detect SV in the rice genome. However, no study

evaluated the performance of SV callers for transposon-rich complex cereal genomes.

Several studies have examined the distribution and frequency of SV in the genomes of rice
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and maize (Wang et al., 2018; Yang et al., 2019; Kou et al., 2020). Despite the importance

of cereals for human nutrition, only Jayakodi et al. (2020) performed a genome-wide study

on SV in barley, with a focus on large SV in 20 barley accessions.

In humans, SV have been described to have an up to ∼50fold stronger influence on gene

expression than single nucleotide variants (SNV) (Chiang et al., 2017). SV also have been

associated with changes in transcript abundance in plants such as in cucumber (Zhang

et al., 2015), maize (Yang et al., 2019), tomato (Alonge et al., 2020), and soybean (Liu

et al., 2020a). However, the role and frequency of SV in gene regulatory mechanisms in

small grain cereals is widely unexplored.

In humans, several studies have shown that phenotypic variation is more likely to be

caused by SV than by SNV (Alkan et al., 2011; Baker, 2012; Sudmant et al., 2015; Schüle

et al., 2017; McColgan and Tabrizi, 2018). In plants, individual SV have been associated

with traits such as Aluminium tolerance in maize (Maron et al., 2013), disease resistance

and domestication in rice (Xu et al., 2012), or plant height (Li et al., 2012) and head-

ing date (Nishida et al., 2013) in wheat. In barley, individual SV have been associated

with traits such as Boron toxicity tolerance (Sutton et al., 2007) and disease resistance

(Muñoz-Amatriáın et al., 2013). However, few studies have examined the ability to predict

quantitatively inherited phenotypic traits using SV in comparison to SNV.

The objectives of our study were to (i) improve SV discovery by benchmarking SV callers

and their combinations with respect to their sensitivity and precision to detect SV in

the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the

genomes of 23 barley inbreds that are the parents of a resource for mapping quantitative

traits, the double round robin population (Casale et al., 2021), (iii) quantify the association

of SV clusters with transcript abundance, and (iv) evaluate the use of SV clusters for the

prediction of quantitative phenotypic traits.
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RESULTS

Precision and sensitivity of SV callers

Six tools (Table 1) which call SV based on short-read sequencing data were evaluated

with respect to their precision and sensitivity to detect five SV types (deletions, insertions,

duplications, inversions, and translocations) in five SV length categories (A: 50 - 300bp;

B: 0.3 - 5kb; C: 5 - 50kb; D: 50 - 250kb; E: 0.25 - 1Mb) using computer simulations.

The precision of Delly, Manta, GRIDSS, and Pindel to detect deletions of all five SV

length categories based on 25x sequencing coverage ranged from 97.8 - 100.0%, whereas

the precision of Lumpy and NGSEP was lower with values between 75.0 and 89.8% (Table

2). The sensitivity of NGSEP was with 78.6 - 87.5% the highest but that of Manta was

with 79.7 - 81.1% only slightly lower. We evaluated various combinations of SV callers and

observed for the combination of Manta | GRIDSS | Pindel | Delly | (Lumpy & NGSEP)

an increase of the sensitivity to detect deletions compared to the single SV callers up to a

final of 89.0% without decreasing the precision considerably (99.1%).

Manta was the only SV caller which allowed the detection of insertions of all SV length

categories with precision values as high as 99.8 to 100.0%. The combination of Manta |

GRIDSS | Delly for the SV length category A has shown a high sensitivity (88.4%) and

precision (99.8%). This combination was therefore used for the detection of insertions of

SV length category A in further analyses.

The sensitivity of the SV callers Delly, Manta, Lumpy, and GRIDSS to detect duplications

of the SV length category A was with values from 28.2 to 39.4% very low. In contrast,

Pindel could detect these duplications with a sensitivity of 75.7%. For the other SV length

categories, the combination of Manta | GRIDSS | Pindel could increase the sensitivity to

detect duplications by 2 to 7% compared to using a single SV caller while the precision

ranged between 97.6 and 99.3%.

The performance of Lumpy and NGSEP to detect inversions reached precision values of

81.5 - 98.5% and sensitivity values of 66.1 - 80.0% that were on the same low level as for

deletions. Delly performed well for detecting inversions in SV length categories B to D, but

for E and especially for A, the performance was lower compared to that of the other SV
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callers. Overall, Pindel was the only SV caller with a combination of both, high precision

and sensitivity to detect inversions. These precision and sensitivity values could be further

improved across all SV length categories by combining the calls of Pindel with that of

Manta | GRIDSS (Table 2).

The combination of GRIDSS | Pindel | GATK increased the sensitivity to detect small

insertions and deletions (2 - 49bp, INDELs) by 3% compared to using the single SV callers

(Table 3). With 6%, an even higher difference for the sensitivity to detect translocations

was observed between the combination of Manta | GRIDSS | (Delly & Lumpy) and single

SV callers.

As a next step, 65x sequencing coverage was simulated and the performance of the best

combination of SV callers for each of the SV types was compared to their performance

with 25x sequencing coverage (Fig. 1). For deletions, the F1-score, which is harmonic

mean of the precision and sensitivity, for 65x sequencing coverage was ∼2% higher than for

25x sequencing coverage. Only marginal differences were observed between the F1-score of

65x or 25x sequencing coverage for calling duplications and inversions. Interestingly, the

F1-score for calling translocations and insertions was with 2% and 9%, respectively, higher

in the scenario with 25x than with 65x sequencing coverage. Finally, the performance of

our pipeline to detect SV was evaluated based on 14x and 25x linked-read sequencing data.

For all SV types and SV length categories, with the exception of deletions and duplications

in SV length category D and A, respectively, the F1-score was 2 to 7% higher based on

Illumina sequencing data than based on linked-read sequencing data.

SV clusters across the 23 parental inbreds of the double round robin

population

Across the 23 barley inbreds, we detected 629,974 SV clusters using the best combination

of SV callers (Table 4). These comprised 313,061 deletions, 70,674 insertions, 96,541 du-

plications, 6,876 inversions, and 142,822 translocations. Additionally, 13,932,338 INDELs

were detected across the seven chromosomes. The proportion of SV clusters which were

annotated as transposable elements varied from 0.4% for inversions to 53.3% for translo-

cations.
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We performed a PCR based validation for detected deletions and insertions (Supplementary

Table S1, Supplementary Fig. S1). Six out of six deletions and five out of five insertions up

to 0.3kb could be validated (Supplementary Fig. S2). Additionally, we could validate 11

out of 14 deletions between 0.3kb and 460kb (Supplementary Fig. S3), where for the three

not validated deletions, the expected fragments were not observed in the non-reference

parental inbred.

The number of SV clusters present per inbred ranged from less than 50,000 to more than

100,000 (Fig. 2A). We observed a significant (P < 0.05) positive correlation (r = 0.43)

between the sequencing coverage, calculated based on mapped reads, of each inbred as

well as the number of detected SV clusters in the corresponding inbred. A two-sided t-test

resulted in no significant (P < 0.05) association between the number of SV clusters of an

inbred and the spike morphology as well as the landrace vs. variety status of the inbreds.

In contrast, principal component analyses based on presence/absence matrices of the SV

clusters revealed a clustering of inbreds by spike morphology, geographical origin, and lan-

drace vs. variety status (Supplementary Fig. S4).

Out of the 629,974 SV clusters, 56% (353,278) appeared in only one of the 23 inbreds,

whereas 17% (105,157) were detected in at least five inbreds (Fig. 2B, Supplementary Fig.

S5). Additional analyses revealed a significant although weak correlation (r = 0.0369, P

= 1.16x10−136) between the length of a SV cluster and its minor allele frequency (MAF).

The average MAF of SV clusters with a length of 250kb to 1Mb was 0.09, while that of

SV clusters with a length of 50 - 250kb or 50bp - 50kb was 0.10 and 0.12, respectively

(Fig. 3). SV clusters annotated as transposable elements had a shorter average length of

4,622bp and a higher MAF of 0.17 compared to SV clusters that were not annotated as

transposable elements (7,310bp, 0.14). The average MAF of the individual SV types was

the highest for insertions with 0.16, followed by deletions, inversions, duplications, and

translocations with values of 0.14, 0.10, 0.10, and 0.09, respectively.

Characterization of the SV clusters

After examining the length of the detected SV clusters and their presence in the 23 barley

inbreds, we investigated the distribution of the SV clusters across the barley genome. We
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observed a significant correlation (r = 0.5375, P < 1x10−15) of nucleotide diversity (π) of

SV clusters and SNV, measured in 100kb windows along the seven chromosomes. The SV

clusters were predominantly present distal of pericentromeric regions. In contrast to SNV,

the frequency of all SV types, and especially that of duplications, increased in centromeric

regions (Fig. 4). For all centromeres, a significantly (P < 5.38x10−20) higher number of SV

clusters was observed compared to what is expected based on a poisson distribution and,

thus, were designated as SV hotspots. The proportion of SV clusters in pericentromeric

regions was with 14.1% considerably lower compared to what is expected based on the

physical length of these regions (25.6%). Only 1.4% of all detected SV hotspots were

observed in pericentromeric regions. Compared to the five SV types, the genome-wide

distribution of INDELs was more equal. Their occurrences peaked not only within, but

also distal to pericentromeric and centromeric regions.

We also examined if SV clusters provide additional genetic information compared to that

of closely linked SNV. To do so, we determined the extent of linkage disequilibrium (LD)

between each SV cluster and SNV located within 1kb and compared this with the extent

of LD between the closest SNV to the SV cluster and the SNV within 1kb. Across the

different SV types, 32.7-79.6% have at least one SNV within 1kb that showed an r2 ≥ 0.6

(Table 5). In contrast, 83.2-90.8% of SNV that are closest to the SV cluster showed an r2

≥ 0.6 to another SNV within 1kb.

In the next step, we examined the presence of SV clusters relative to the position of genes.

The highest proportion of SV clusters (63%) was located in intergenic regions of the genome

(Fig. 5). The second largest fraction (27%) of SV clusters was present in the 5kb up- or

downstream regions of genes, which is considerably higher compared to that of INDELs

(15%) and SNV (7%). Within the group of ”5kb up- or downstream to genes”- SV clusters,

a particularly high fraction were inversions. On average across all SV types, about 10% of

SV clusters were located in introns and exons, with inversions being the exception again,

showing a considerably higher rate.

The enrichment of SV clusters proximal to genes lead us to assess their physical distance

relative to the transcription start site (TSS) of the closest genes and compare this to SNV.

The number of SV clusters at the TSS was approximately 15% lower than 5kb upstream of

the TSS (Fig. 6). A similar trend was observed for the 5kb downstream regions (∼ 10%).
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In comparison, the absolute number of SNV around the TSS was more than ten times

lower than the number of SV clusters. With the exception of a distinct peak at position

two downstream of the TSS, the number of SNV around the TSS followed the same trends

as described for the SV clusters above.

Selection on SV clusters

For landraces, as well as cultivars, significant (P < 0.05) leftward shifts of the unfolded site

frequency spectrum (SFS) for all SV types compared to synonymous SNV were observed

(Fig. 7A, 7B). A particularly high fraction (∼30-40%) of duplications and translocations

showed a low derived allele frequency. To quantify the strength of selection that acts on

the different types of variants, we estimated their fitness effects based on the SFS and with

synonymous SNV used as neutral control. For more than 80% of insertions, duplications,

inversions, and translocations a fitness effect of < −100 and, thus, a sign of selection, was

observed in landraces as well as in cultivars. Interestingly, the proportion of deletions with

fitness effects < −1 was higher for cultivars than for landraces.

Association of SV clusters with gene expression

We evaluated the strength of the association of the allele distribution at SV clusters with

gene expression variation across the 23 inbreds. As a first step, a principal component

analysis of the gene expression matrix, which included all genes and inbreds, was performed.

The loadings of all 23 inbreds on principal component (PC) 1 explained 19.7% of the gene

expression variation and were correlated with the presence/absence status of all inbreds

for each gene-associated SV cluster. The average absolute correlation coefficient of gene-

associated SV clusters and the PC1 of gene expression was 0.17 and higher than the Q95

of the coefficient observed for randomized presence/absence pattern and the PC1 (Fig.

8, Supplementary Fig. S6). Similar observations were made for the association of gene-

associated SV clusters with PC2 and PC3 of 0.17 and 0.19, respectively, for the above-

mentioned gene expression matrix (Supplementary Fig. S7). In addition, we investigated
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a possible association between SV clusters and gene expression on an individual gene

basis. For a total of 2,546 out of 30,156 gene-associated SV clusters a significant (P <

0.05) association with the gene expression of the associated gene was observed (Fig. 9).

The mean Tajima’s D for gene-associated SV clusters that were significantly associated

with gene expression was with 1.111 slightly higher than those for which no significant

association with gene expression was observed (1.099). Both values were considerably

higher compared to those means of intergenic SV clusters (-0.258).

Prediction of phenotypic variation from SV clusters

The prediction ability of seven quantitative phenotypic traits using SV clusters as well as

SNV from a single nucleotide polymorhpism (SNP) array, genome-wide gene expression

information, SNV and INDELs (SNV&INDELs) were examined as predictors through five-

fold cross-validation. The median prediction ability across all traits ranged from 0.509 to

0.637. The SV clusters had the highest prediction power, followed by SNV&INDELs, SNP

array, and gene expression in decreasing order (Fig. 10). Compared to these differences,

those among the median prediction abilities of the different SV types were small. The

highest ability was observed for insertions and the lowest for translocations. We also

evaluated the possibility to combine SNV and INDELs with gene expression and SV cluster

information using different weights to increase the prediction ability (Supplementary Fig.

S8). The mean of the optimal weight across the seven traits was highest for gene expression

(0.41) and lowest for SV clusters (0.21) (Table 6).
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DISCUSSION

The improvements to sequencing technologies made SV detection in large genomes pos-

sible (Della Coletta et al., 2021). Despite these advances, the relative high cost of third

compared to second generation sequencing makes the former less affordable and scalable

for many research groups. This fact is exaggerated if many inbreds with large and com-

plex genomes have to be analyzed. We therefore used computer simulations to study the

precision and sensitivity of SV detection based on different sequencing coverages of short-

read sequencing data in the model cereal barley. We also evaluated whether linked-read

sequencing offered by BGI (Wang et al., 2019) or formerly 10x Genomics (Weisenfeld et al.,

2017) is advantageous for SV detection compared to classical Illumina sequencing.

Precision and sensitivity to detect SV in complex cereal genomes using

short-read sequencing data

The costs for creating linked-read sequencing libraries are considerably higher compared

to those of classical Illumina libraries. Taking this cost difference into account, a fair

comparison of precision and sensitivity to detect SV is between 25x Illumina and 14x

linked-reads. However, even when directly compared at equal (25x) sequencing coverage,

the F1-score, which is the harmonic mean of the precision and sensitivity, on average

across all SV types and SV length categories was higher for Illumina compared to linked-

reads (Fig. 1). One reason might be that the SV callers used in our study do not fully

exploit linked-read data. Indeed, in our study linked-read information was only used to

improve the mapping against the reference genome (Marks et al., 2019). More recently, SV

callers have been described that exploit linked information of linked-read data as VALOR2

(Karaoǧlanoǧlu et al., 2020) or LEVIATHAN (Morisse et al., 2021). However, the SV

callers that were available at the time the simulations were performed had a very limited

spectrum of SV types and SV length categories they could detect e.g. LongRanger wgs

(Zheng et al., 2016) and NAIBR (Elyanow et al., 2018). In addition, we have observed

for these SV callers in first pilot simulations considerably lower values for precision and
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sensitivity to detect SV compared to the classical short-read SV callers. Therefore, only

short-read SV callers were evaluated in detail.

One further aspect that we examined was the influence of the sequencing coverage on

sensitivity and precision of SV detection. Only a marginal difference between the F1-

scores of the best combination of SV callers for a 25x vs. 65x Illumina sequencing coverage

was observed (Fig. 1). In addition, for some SV length categories, the F1-score for 25x

compared to 65x sequencing coverage was actually higher. A possible explanation for this

observation may be that a higher sequencing coverage can lead to an increased number

of spuriously aligned reads (Kosugi et al., 2019). These reads can lead to an increased

rate of false positive SV detection (Gong et al., 2021). Our result suggests that for more

homozygous genomes, Illumina short-read sequencing coverage of 25x is sufficient to detect

SV with a high precision and sensitivity. We therefore made use of this sequencing coverage

not only for further simulations but also to re-sequence the 23 barley inbreds of our study.

The SV callers evaluated here were chosen based on former benchmarking studies in human

(Cameron et al., 2019; Chaisson et al., 2019; Kosugi et al., 2019) as well as rice (Fuentes

et al., 2019) and pear (Liu et al., 2020b). Across all SV types and SV length categories, we

observed the highest precision and sensitivity for Manta and GRIDSS followed by Pindel

with only marginally lower values (Table 2). This finding is in accordance with results of

Cameron et al. (2019) for humans. In comparison to the results of Fuentes et al. (2019),

we observed a considerably lower sensitivity and precision for Lumpy and NGSEP (Table

2). This difference in performance of the SV callers in rice and barley might be explained

by the difference in genome length as well as the high proportion of repetitive elements in

the barley genome (Mascher et al., 2017).

Despite the high sensitivity and precision observed for some SV callers, we observed even

higher values when using them in combination (Table 2). This can be explained by the

different detection principles such as paired-end reads, split reads, read depth, and local

assembling that are underlying the different SV callers. Our observation indicates that a

combined use of different short-read SV callers is highly recommended. This approach was

then used for SV detection in the set of 23 spring barley inbreds.
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Validation of SV in the barley genome

In a first step, we explored whether known SV can be recovered in our data set. Taketa

et al. (2008) discovered a 17kb deletion harboring an ethylene response factor gene on

chromosome 7H that caused naked caryopses in barley. In our study, two parental inbreds,

namely Kharsila and IG128104, are naked barley. For both inbreds, the SV calls revealed

the same 17kb deletion on chromosome 7H. In contrast, the deletion was absent in the 21

other parental inbreds.

In the next step, a PCR based approach was used to validate a subset of all detected SV. In

accordance with earlier studies (Zhang et al., 2015; Yang et al., 2019; Guan et al., 2021),

we evaluated the agreement between the detected SV and PCR results (Supplementary

Fig. S1) for deletions and insertions up to 0.3kb (Supplementary Fig. S2). For eleven out

of the eleven SV, we observed a perfect correspondence.

Our PCR results further suggested that the SV callers were able to detect eleven out of

14 deletions between 0.3kb and 460kb (Supplementary Fig. S3) based on the short-read

sequencing of the non-reference parental inbred Unumli-Arpa. In four of the eleven PCR

reactions, however, more than one band was observed. This was true three times for the

non-reference genotype Unumli-Arpa and one time for Morex (Supplementary Fig. S3B).

In two of the four cases, PCR indicated the presence of both SV states in one genome.

This was true for Morex as well as Unumli-Arpa and might be due to the complexity of

the barley genome which increases the potential for off-target amplification.

In three additional cases, we verified the absence of the predicted deletion sequence in

the non-reference genotype but found no evidence of the presence of the same sequence

in Morex (Supplementary Fig. S3A). This could be explained by an error in that version

of the reference sequence v2 (Monat et al., 2019) that was used for our analyses. BLAST

results for these three SV using the recently released Morex reference sequence v3 (Mascher

et al., 2021) support our PCR results and suggest that by chance we had selected SV where

the reference sequence v3 had corrected an error of v2.

In conclusion, for 22 of the 25 tested SV (Supplementary Table S1), the SV detected in

the non-reference parental inbred by the SV callers was also validated by PCR. This high

validation rate implies in addition to the high precision and sensitivity values observed for
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SV detection in the computer simulations that the SV detected in the experimental data

of the 23 barley inbreds can be interpreted.

Characteristics of SV clusters in the barley gene pool

Across the 23 spring barley inbreds that have been selected out of a world-wide diversity

set to maximize phenotypic and genotypic diversity (Weisweiler et al., 2019), we have

identified 629,974 SV clusters (Table 4). This corresponds to 1 SV cluster every 6,769

bp and corresponds to what was observed by Jayakodi et al. (2020). This number is

considerably higher than the number of SV clusters detected for cucumber (9,788 bp−1)

(Zhang et al., 2015) or peach (8,621 bp−1) (Guan et al., 2021). The lower number of

SV clusters detected in cucumber and peach might be explained by the usage of a lower

number of SV callers (cf Zhang et al., 2015) and the focus on heterozygous SV clusters in

the case of the peach study (cf Guan et al., 2021). Other studies have revealed a higher

number of SV clusters than observed in our study. This might be due to the considerably

higher number of re-sequenced accessions in rice (214 bp−1) (Fuentes et al., 2019), tomato

(3,291 bp−1) (Alonge et al., 2020), and grapevine (1,260 bp−1) (Zhou et al., 2019).

The highest proportion of SV clusters detected in our study were deletions, followed in

decreasing order by translocations, duplications, insertions, and inversions (Table 4). This

is in disagreement with earlier studies where the frequency of duplications was considerably

lower compared to that of insertions (Zhang et al., 2015; Zhou et al., 2019; Guan et al.,

2021). Barley’s high proportion of duplications compared to other crops may be due to its

high extent of repetitive elements (Mascher et al., 2017). This explanation is supported by

the observation of a considerably higher frequency of duplications in repeat regions (8,929

bp−1) compared to the rest of the genome (54,322 bp−1).

In contrast to earlier studies in grapevine and peach (e.g. Zhou et al., 2019; Guan et al.,

2021) we observed a strong non-uniform distribution of SV clusters across the genome. Only

14.1% of the SV clusters were located in pericentromeric regions, which make up 25.6% of

the genome, whereas the rest was located distal of the pericentromeric regions (Fig. 4).

This pattern was even more pronounced for SV hotspots, i.e. regions with a significant

higher amount of SV clusters than expected by the average genome-wide distribution.
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Almost all SV hotspots (98.4%) were located distal of the pericentromeric regions (74.4%

of the genome) where higher recombination rates are observed. Our observation indicates

that the majority of SV clusters in barley is caused by mutational mechanisms related

to DNA recombination-, replication-, and/or repair-associated processes which has been

discussed in the human genetic context (Carvalho and Lupski, 2016) and is only to a low

extent due to the activity of transposable elements. This is supported by the observation

that, with the exception of translocations, only 0.4 to 25.7% of SV clusters were located

in genome regions annotated as transposable elements (Table 4). Similar results were

observed in rice (Fuentes et al., 2019).

To complement our genome-wide analysis of SV clusters in barley, we also examined their

occurrence relative to genes and their association with gene expression.

Association of SV clusters with transcript abundance

About 63% of the SV clusters were detected in the intergenic space (Fig. 5). The remaining

SV clusters were gene-associated and detected in regions either 5kb up- or downstream of

genes (∼27%) while ∼10% were detected in introns and exons (Fig. 5). These values are

in the range of those previously reported for rice (∼75%, NA, exons: ∼6%) (Fuentes et al.,

2019), potato (∼37%, ∼37%, ∼26%) (Freire et al., 2021), and peach (∼52%, ∼27%, ∼21%)

(Guan et al., 2021). The higher proportion of SV clusters in genic regions in potato and

peach compared to the cereal genomes might suggest that SV clusters are more frequently

associated with gene expression in clonally than in sexually propagated species. A possible

explanation for this observation could be the degree of heterozygosity in clonal species,

which is considerably higher compared to that in selfing species such as rice and barley.

Hence, it is plausible that they better tolerate SV clusters close to genes.

We observed that the average absolute correlation coefficient of gene-associated SV clus-

ters and global gene expression measured as loadings on the principal components was with

0.17 significantly (P < 0.05) different from 0 (Fig. 8). In addition, 1,448 gene-associated

SV clusters were individually associated (P < 0.05) with genome-wide gene expression. A

further 2,546 alleles of gene-associated SV clusters were significantly (P < 0.05) associated

with the expression of the corresponding 2,097 genes (Fig. 9). Additional support is given
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by the observation that despite that SV clusters have a similar distribution across the

genome as SNV, SV clusters covered more positions (in bp) of promoter regions than SNV

(Fig. 6). These figures of significantly gene-associated SV clusters are in agreement with

earlier figures for tomato (Alonge et al., 2020) and soybean (Liu et al., 2020a) and highlight

the high potential of SV clusters to be associated with phenotypic traits. Gene-associated

SV clusters had a higher average Tajima’s D (1.111) compared to intergenic SV clusters

(-0.258). This indicated the importance of balancing selection for the former SV clusters.

We examined in detail the genes for which SV clusters were significantly associated with

gene expression and a particularly high Tajima’s D value was observed. The genes involved

in resistance against or expressed in response to infection of powdery mildrew (Zimmer-

mann et al., 2006; Li et al., 2013; Koch et al., 2017; Kumar et al., 2018; Galli et al., 2021;

Velásquez-Zapata et al., 2021) were over-represented among them. The reason for this

finding remains elusive.

Genomic prediction

Because of the limited number of inbreds included in this study, the power to identify

causal links between SV clusters and phenotypes is low when considering only the 23 in-

breds. However, the inbred lines included in our study are the parents of a new resource

for joint linkage and association mapping in barley, the double round robin population

(Casale et al., 2021). The detailed characterization of the SV pattern of the parental in-

breds, presented in this study, will therefore be an important information for the ongoing

identification of candidate genes that underlay quantitative trait loci.

However, instead of examining the association of individual SV clusters with phenotypic

traits, we evaluated their potential to predict seven phenotypic traits in comparison to

various other molecular features which is expected to provide reasonable information also

with a limited sample size (Weisweiler et al., 2019).

We observed that the ability to predict these seven traits was higher for SV clusters com-

pared to the benchmark data from a SNP array (Fig. 10). This might be explained by

the considerably higher number of SV clusters than variants included in the SNP array.

However, we observed the same trend when comparing the prediction ability of SV clusters
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to that of the much more abundant SNV&INDELs. This indicates that the SV clusters

comprise genetic information that is not comprised by SNV&INDELs. Our result is sup-

ported by the observation that when examining the combination of SNV and INDELs with

gene expression and SV clusters to predict phenotypic traits, an increase of the prediction

ability was observed compared to the ability observed for the individual predictors (Table

6). Furthermore, our observation of a different prediction ability between SV clusters and

SNV&INDELs can be explained by a lower extent of LD between SV clusters and linked

SNV compared to that between SNV and linked SNV (Table 5). These findings together

illustrate the high potential of using SV clusters for the prediction of phenotypes in diverse

germplasm sets. Such type of applications might be used also in commercial plant breeding

programs. From a cost perspective such approaches will be realistic if SV detection is pos-

sible from low coverage sequencing. This might be possible when comprehensive reference

sets of SV per species are available as was e.g. generated in our study for barley. However,

this requires further research.
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METHODS

Benchmarking of variant callers for detecting SV and INDELs in the barley

genome

Computer simulations: We used Mutation-Simulator (version 2.0.3) (Kühl et al., 2021)

to simulate INDELs, deletions, duplications, inversions, insertions, and translocations in

the first chromosome of the Morex reference sequence v2 (Monat et al., 2019). In accordance

with Fuentes et al. (2019), we considered five SV length categories for each of the above

mentioned SV types (except translocations) (A: 50 - 300bp; B: 0.3 - 5kb; C: 5 - 50kb;

D: 50 - 250kb; E: 0.25 - 1Mb) plus INDELs (2-49bp). Translocations were simulated for

50bp - 1Mb (ABCDE). We simulated SV with a mutation rate of 1.9x10−6 for the SV

length categories A-C and INDELs, whereas mutation rates of 3.8x10−6 and 1.9x10−7 were

assumed for SV length categories D and E, respectively. For each type of SV, we used

BBMap’s randomreads.sh (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/)

to simulate 2x150bp Illumina reads with a sequencing coverage of 25x and 65x as well as

LRSim (version 1.0) (Luo et al., 2017) to simulate linked-reads with a sequencing coverage

of 14x and 25x. Illumina- and linked-reads were simulated with a minimum, average, and

maximum base quality of 25, 35, and 40, respectively.

SV detection: The simulated Illumina reads were mapped to the first chromosome of the

Morex reference sequence v2 using BWA-MEM (version 0.7.15) whereas longranger align

(version 2.2.2) was used for the simulated linked-reads. The SV callers Pindel (version

0.2.5b9) (Ye et al., 2009), Delly (version 0.8.1) (Rausch et al., 2012), GRIDSS (version

2.8.3) (Cameron et al., 2017), Manta (version 1.6.0) (Chen et al., 2016), Lumpy (smoove

version 0.2.5) (Layer et al., 2014), and NGSEP (version 3.3.2) (Duitama et al., 2014) were

used to identify SV based on the mapped reads. GATK’s HaplotypeCaller (4.1.6.0) (Poplin

et al., 2017) was used to detect INDELs. The workflow was implemented in Snakemake

(version 5.10.0) (Köster et al., 2021). A SV call was only kept if it passed the built-in filter

of the corresponding SV caller. We calculated the sensitivity (1), precision (2), and the

F1-score (3) as

Sensitvity = TP/(TP+FN) (1)
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Precision = TP/(TP+FP) (2)

F1-score = 2*(Precision*Sensitivity/Precision+Sensitivity) (3)

for all combinations of SV types*SV callers, where TP was the number of true positives,

FP the number of false positives, and FN the number of false negatives. For INDELs, a TP

INDEL had break points that did differ ≤ 2bp from those of the simulated INDEL and the

length did differ by ≤ 5bp. For SV length category A, a TP SV had break points that did

differ ≤ 10bp from those of the simulated SV and the SV length did differ by ≤ 20bp. For

the other SV length categories, a TP SV had break points and length differences compared

to the simulated SV of ≤ 50bp. For insertions where no SV length was detected, the start

of a TP insertion had a break point that did differ ≤ 10bp from this of the simulated

insertion. For translocations, a TP translocation had break points that did differ ≤ 50bp

from those of the simulated translocation.

We also evaluated combinations of SV callers for their precision and sensitivity to detect

SV. The following procedure was used to decide for the combinations that were examined:

First, for those SV callers, which have shown a precision ≥ 95% for all SV length categories

for a particular SV type, SV calls were combined via logical or (”|”). Second, for those SV

callers with a precision ≤ 95% in at least one SV length category, SV calls were combined

with a logical and (”&”). If the precision of the combinations of the second step increased

to ≥ 95% in all SV length categories, SV calls of this combinations were kept for the

particular SV type and were combined with a logical or with those of the first step.

The threshold of ≥ 95% precision was used to reduce the number of FP SV calls to a

reasonable level.

Detection of SV, SNV, and INDELs in the barley genome

Genetic material and sequencing: Our study was based on 23 spring barley inbreds

(Weisweiler et al., 2019) that were selected out of a worldwide collection of 224 inbreds

(Haseneyer et al., 2010) (Supplementary Table S2) using the MSTRAT algorithm (Goues-

nard, 2001). These inbreds are the parents of the double round robin population (Casale et

al. 2021). Paired-end sequencing libraries with an insert size of 425bp were sequenced to
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a ∼25x coverage on the Illumina HiSeqX platform by Novogene Corporation Inc. (Sacra-

mento, USA).

SV, INDELs, and SNV detection: The quality of the raw reads was checked by fastqc.

Reads were adapter- and quality-trimmed using Trimmomatic (version 0.39) (Bolger et al.,

2014). The trimmed reads were mapped to the Morex reference sequence v2 (Monat et al.,

2019) using BWA-MEM. PCR-duplicates were removed using PICARD (version 2.22.0).

Based on the results of the benchmarking of different SV callers using simulated data,

results of specific SV callers were combined as explained above. The final set of deletions

for each inbred were those that were identified by Manta | GRIDSS | Pindel | Delly |

(Lumpy & NGSEP) where homozygous-reference (0/0) and heterozygous allele (0/1) calls

were removed. In analogy, the duplications were identified by Manta | GRIDSS | Pindel

| (Delly & Lumpy). Insertions of the SV length category A were identified by Manta |

GRIDSS | Delly, where insertions of the SV length categories B-E were called using Manta.

Inversions were identified by Manta | GRIDSS | Pindel. Translocations were called from

pairs of break points identified by Manta | GRIDSS | (Delly & Lumpy). INDELs were

detected by GATK’s HaplotypeCaller | GRIDSS | Pindel. SV which were located in a

region of the reference sequence, where the sequence only consists of N’s, were excluded.

For genome regions, where break points of different SV overlapped or were inconsistent

in the same inbred, only the shortest SV was considered. The SV of the 23 inbreds were

grouped together to SV clusters based on the similarity of sizes and the position in the

genome according to the following procedure. The distance from a SV to the next SV in

such a SV cluster had to be smaller than 50bp and the difference of the two break points

had to be smaller than 50bp as described above. SV with a larger difference between break

points were kept as separate SV and SV clustering was pursuing. Each SV cluster was

genotyped across the examined 23 barley inbreds.

SNV were called using GATK. First, GATK’s HaplotypeCaller was used in single sample

GVCF mode, afterwards GATK’s CombineGVCFs was used to combine the SNV across

the 23 inbreds. Combined SNV were genotyped using GATK’s GenotypeGVCFs. SNV

were filtered using GATK’s VariantFiltration (QD < 2.0; QUAL < 30.0; SOR > 3.0; FS

> 60.0; MQ < 40.0; MQRankSum < -12.5; ReadPosRankSum < -8.0).

PCR validation of SV: A total of 25 of the detected SV were targeted for validation by
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PCR amplification of genome regions of and around the SV in Morex and Unumli-Arpa.

This included six SV length category A deletions, five SV length category A insertions, six

SV length category B deletions and eight SV length category C-E deletions. In order to

determine the SV allele, we required the amplification of two differently sized fragments in

the two inbreds. For each SV, a regular primer pair was created with the position defined

by the validation strategy (Supplementary Fig. S1). If needed, a second right primer was

added to the PCR reaction. The primers were designed using Primer3 (Untergasser et al.,

2012) and Blast+ (Camacho et al., 2009).

Plant material was sampled for the PCR validation from adult plants and seedlings grown

under controlled conditions. DNA was extracted from 100 mg frozen plant material using

the DNeasy Plant Mini Kit (Qiagen, Germany) according to the manufacturer’s instruc-

tions. The PCR reaction mixture contained in a final volume of 20 µL: 0.2 mM dNTP,

Fw/Rev Primer 0.5 µM, 50 ng DNA, 1.5 U/µL DreamTaq DNA Polymerase (Thermo

Fischer Scientific, USA), Polymerase-Buffer 1X and water. Amplified fragments were sep-

arated by gel electrophoresis and the validation success was determined by comparing the

PCR product sizes with the calculated values based on the SV detection.

Location of SV clusters: SV clusters were classified and annotated based on their loca-

tion in the genome, their distance relative to genes, or other genomic features. SV clusters

were grouped into four gene-associated and one intergenic SV cluster categories: 5kb up-

stream/downstream gene-associated SV clusters were located in the 5kb region from the

3′- or 5′- end of a gene. Intron and exon gene-associated SV clusters were located in the

gene sequence, where the genic sequence was separated into intronic and exonic sequences.

SV clusters which were not located in the four gene-associated SV cluster categories were

determined as intergenic SV clusters. A gene-associated SV cluster could be classified in

more than one category if its sequence covers several genomic features.

To check if the detected SV clusters were transposable elements, the genomic positions

of SV clusters were compared to the transposable elements annotation file of the Morex

reference sequence v2 (Monat et al., 2019). Deletions, duplications, inversions, INDELs,

and insertions with known length were annotated as transposable elements if the reciprocal

overlap was ≥ 80% (Fuentes et al., 2019). Insertions with unknown length were classified as

transposable elements if the detected break point of the insertion was inside the transpos-
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able element sequence. Translocations were classified as transposable element, if at least

one of the two break points was located inside a transposable element sequence.

SV hotspots were identified using the following procedure: The average number of SV

clusters in non-overlapping 1Mb windows across each of the seven chromosomes was deter-

mined. Using this number, we calculated for each window based on the poisson distribution

the expected number of SV clusters. Windows with more SV clusters than the Q99 of the

expected poisson distribution were designated as SV hotspots (Guan et al., 2021).

SNV annotation: SIFT4G (version 2.4) was used to annotate and predict synonymous,

non-synonymous (score > 0.05), and deleterious (score ≤ 0.05) SNV based on the conver-

sion of amino acid sequences (Vaser et al., 2016). The SIFT4G database was built using

SIFT4 Create Genomic DB with the uniref90 database, the Morex reference sequence v2,

and its corresponding predicted genes and proteins.

Population genetic analyses: LD measured as r2 (Hill and Robertson, 1968) was cal-

culated between each SV type and linked SNV. Nucleotide diversity (π) was calculated in

100kb windows along the seven chromosomes separately for SV clusters and SNV using

bcftools (version 1.10.2) (Danecek et al., 2021).

SFS of synonymous, non-synonymous, deleterious SNV, and all SV types was calculated

for cultivars and landraces using three Hordeum vulgare subsp. spontaneum accessions (Li

et al., 2020) as outgroup. For landraces and cultivars, the population size was reduced to

ten, because of computational reasons, where those genotypes with the highest sequencing

coverage have been selected. The distribution of fitness effects (DFE) was determined by

polyDFE (version 2.0) (Tataru et al., 2017) using 500 iterations and the model A, based

on the SFS for the SV types, non-synonymous, and deleterious SNV while those of the

synonymous SNV were considered as neutral control. The results were presented with 95%

confidence intervals obtained from 100 bootstrap runs. Tajima’s D was calculated using

vcftools (version 0.1.13) (Danecek et al., 2011) for each SV cluster as well as various sub-

sets.

SV clusters and gene expression: SV clusters which were assigned into one of the

gene-associated SV categories, namely 5kb up- or downstream, introns, and exons, were

associated with the genome-wide gene expression of the 23 barley inbreds. Gene expression

for the seedling tissue measured as fragments per kilobase of exon model per million frag-
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ments mapped was available for all inbreds from an earlier study (Weisweiler et al., 2019).

This information was the basis of a principal component analysis. For all gene-associated

SV clusters with a MAF > 0.15, Pearson’s correlation coefficient with the first three prin-

cipal components was estimated, where presence and absence of SV clusters were used as

metric character. A permutation procedure with 1,000 iterations was used to test the mean

absolute values of the correlations for their significance. In addition to this evaluation of the

effect of SV clusters on the genome-wide gene expression level, we also examined the signif-

icance of the effect of gene-associated SV clusters with a MAF > 0.15 on the expression of

individual genes. In order to do so, the mixed linear model with population structure and

kinship matrix (PK model) (Stich et al., 2008) was used. The population structure matrix

consisted of the first two principal components calculated from 133,566 SNV and INDELs

derived from mRNA sequencing (Weisweiler et al., 2019). From the same information, the

kinship matrix was calculated as described by Endelman and Jannink (2012).

Assessment of phenotypic traits: For the assessment of phenotypic traits under field

conditions, the 23 inbreds were planted as replicated checks in an experiment laid out as an

augmented row-column design. The experiment was performed in seven agro-ecologically

diverse environments (Cologne from 2017 to 2019, Mechernich and Quedlinburg from 2018

to 2019) in Germany in which the checks were replicated multiple times per environment.

For each environment, seven phenotypic traits were assessed. Heading time (HT) was

recorded as days after planting, leaf angle (LA) was scored on a scale from 1 (erect) to 9

(very flat) on four-week-old plants, and plant height (PH, cm) was measured after head-

ing in Cologne and Mechernich. Seed area (SA, mm2), seed length (SL, mm), seed width

(SW, mm), and thousand grain weight (TGW, g) were measured based on full-filled grains

from Cologne (2017-2019) and Quedlinburg (2018) by using MARVIN seed analyzer (GTA

Sensorik, Neubrandenburg, Germany).

Prediction of phenotypes: Each of the phenotypic traits was analyzed across the envi-

ronments using the following mixed model:

yijk = µ+ Ej +Gi + (G× E)ij + εijk, (4)

where yijk was the observed phenotypic value for the ith genotype at the jth environment

within the kth replication; µ the general mean, Gi the effect of the i
th inbred, Ej the effect

of the jth environment, (G× E)ij the interaction between the ith inbred and the jth envi-
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ronment, and εijk the random error. This allowed to estimate adjusted entry means for all

inbreds.

The performance to predict the adjusted entry means of each barley inbred for each trait

using different types of predictors: (1) SNP array, which was generated by genotyping the

23 inbreds using the Illumina 50K barley SNP array (Bayer et al., 2017), (2) gene ex-

pression (3) SNV&INDELs, (3a) SNV, (3b) INDELs, (4) SV clusters, (4a) deletions, (4b)

duplications, (4c) insertions, (4d) inversions, (4e) translocations, was compared based on

genomic best linear unbiased prediction (GBLUP) (VanRaden, 2008).

For each predictor, the monomorphic features and the features with missing rates > 0.2

and identical information were discarded. W was defined as a matrix of feature measure-

ment for the respective predictor. The dimensions of W were the number of barley inbreds

(n = 23) times the number of features in the corresponding predictor (m) (mSNP array =

38, 025, mgene expression = 67, 844, mSNV&INDELs = 3, 110, 041, mSNV = 2, 373, 586,

mINDELs = 736, 455, mSV clusters = 629, 535, mdeletions = 312, 704, mduplications = 96, 521,

minsertions = 70, 618, minversions = 6, 874, mtranslocations = 142, 818). The additive re-

lationship matrix G was defined as G = W
∗
W

∗T

m
, where W∗ was a matrix of feature

measurement for the respective predictor, whose columns are centered and standardized to

unit variance of W, and W∗
T

was the transpose of W∗.

Furthermore, to investigate the performance of a joined weighted relationship matrix

(Schrag et al., 2018) to predict phenotypic variation, the threeGmatrices in GBLUP model

of the three predictors, SNV&INDELs, gene expression, and SV clusters, were weighted

and summed up to one joined weighted relationship matrix. A grid search, varying any

weight (w) from 0 to 1 in increments of 0.1, resulted in 66 different combinations of joined

weighted relationship matrix, where the summation of three weights in each combination

must be equal to 1.

Five-fold cross-validation was used to assess the model performance. Prediction abilities

were obtained by calculating Pearson’s correlations between observed (y) and predicted

(ŷ) adjusted entry means in the validation set of each fold. The median prediction ability

across the five folds within each replicate was calculated and the median of the median

across the 200 replicates was used for further analyses.
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(2021), Chromosome-scale reference genome assembly of a diploid potato clone derived

from an elite variety. G3 Genes|Genomes|Genetics 11:jkab330

Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, Wing RA,

et al. (2019), Structural variants in 3000 rice genomes. Genome Research 29:870–880

Galli M, Martiny E, Imani J, Kumar N, Koch A, Steinbrenner J, Kogel KH (2021),

CRISPR/SpCas9-mediated double knockout of barley Microrchidia MORC1 and

MORC6a reveals their strong involvement in plant immunity, transcriptional gene silenc-

ing and plant growth. Plant Biotechnology Journal https://doi.org/10.1111/pbi.13697

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, et al.

(1996), Life with 6000 genes. Science 274:546–567

Gong T, Hayes VM, Chan EK (2021), Detection of somatic structural variants from short-

read next-generation sequencing data. Briefings in bioinformatics 22:1–15

Gouesnard B (2001), MSTRAT: An algorithm for building germ plasm core collections by

maximizing allelic or phenotypic richness. Journal of Heredity 92:93–94

Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q (2021), Genome structure

variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion

for fruit shape. Genome Biology 22:13

Haseneyer G, Stracke S, Paul C, Einfeldt C, Broda A, Piepho HP, Graner A, Geiger HH

(2010), Population structure and phenotypic variation of a spring barley world collection

set up for association studies. Plant Breeding 129:271–279

Structural variants in the barley gene pool: precision and sensitivity to detect them using

short-read sequencing and their association with gene expression and phenotypic variation

166



REFERENCES

Hill WG, Robertson A (1968), Linkage disequilibrium among neutral genes in finite popu-

lations. Theoretical and Applied Genetics 38:226–231

Jacobs PA, Strong JA (1959), A case of human intersexuality having a possible XXY

sex-determining mechanism. Nature 183:302–303

Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, et al.

(2020), The barley pan-genome reveals the hidden legacy of mutation breeding. Nature

588:284–289
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Table 2: Sensitivity/precision (%) of structural variant (SV) callers and combinations of

them (for details see Material & Methods) to detect deletions, insertions, duplications,

and inversions of the SV length categories A (50 - 300bp), B (0.3 - 5kb), C (5 - 50kb),

D (50 - 250kb), and E (0.25 - 1Mb).

SV length category

SV caller A B C D E

Deletions

Delly 58.1/97.8 76.2/99.4 72.5/99.3 72.4/100.0 75.0/100.0

Manta 79.7/100.0 81.1/99.8 79.9/99.6 79.7/99.4 81.0/100.0

Lumpy 60.0/78.1 70.5/86.5 66.8/85.6 62.5/79.0 64.3/80.6

GRIDSS 79.0/99.5 80.7/99.9 77.8/99.9 78.1/100.0 77.4/100.0

Pindel 87.4/99.9 68.4/99.7 83.6/99.4 80.2/100.0 67.9/100.0

NGSEP 84.1/87.3 83.1/83.4 83.5/82.2 87.5/89.8 78.6/75.0

Combination 89.0/99.1 86.9/99.4 86.7/99.2 86.5/99.4 86.9/100.0

Insertions

Delly 3.4/100.0

Manta 88.4/99.8 74.1/100.0 72.1/100.0 72.5/100.0 75.0/100.0

GRIDSS 45.5/100.0

Pindel 6.6/93.0

NGSEP 64.1/59.2 26.8/29.6 35.5/40.5 30.5/32.1 26.0/26.5

Combination 88.4/99.8 74.1/100.0 72.1/100.0 72.5/100.0 75.0/100.0

Duplications

Delly 28.2/99.0 75.1/96.8 74.7/95.4 75.3/97.2 71.7/91.7

Manta 39.0/99.5 80.5/99.8 82.7/99.8 83.9/98.7 82.6/97.4

Lumpy 31.5/98.4 67.9/84.8 67.7/82.6 68.3/81.9 65.2/80.0

GRIDSS 39.4/99.8 80.0/100.0 80.0/100.0 83.3/100.0 79.4/100.0

Pindel 75.7/98.1 57.8/99.0 88.1/99.8 83.9/99.4 73.9/100.0

Combination 75.8/98.1 87.3/99.1 90.8/99.3 89.8/98.2 89.1/97.6

Inversions

Delly 49.7/70.4 84.6/99.2 85.5/99.4 82.6/99.4 78.2/98.6

Manta 77.0/99.0 87.0/99.9 87.3/99.9 90.0/100.0 82.8/100.0

Lumpy 66.1/88.5 76.8/96.2 75.3/97.4 77.4/94.8 74.7/98.5

GRIDSS 76.9/99.1 86.9/99.8 85.2/99.9 87.9/100.0 82.8/100.0

Pindel 83.5/99.2 90.7/99.9 90.2/99.9 89.0/100.0 77.0/100.0

NGSEP 0.0/0.0 75.7/87.9 75.3/81.5 80.0/85.4 77.0/88.2

Combination 88.4/98.1 91.5/99.8 90.9/99.8 93.2/100.0 85.1/100.0
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Table 3: Sensitivity/precision (%) of structural variant (SV) callers and combinations of

them (for details see Material & Methods) to identify small insertions and deletions (2 -

49bp, INDELs) and translocations (50bp - 1Mb).

SV caller Deletions (2 - 49bp) Insertions (2 - 49bp) Translocations (50bp - 1Mb)

Delly 85.6/76.0

Manta 89.4/100.0

Lumpy 83.2/82.4

GRIDSS 68.0/99.3 64.6/98.9 87.2/100.0

Pindel 92.4/97.9 87.5/98.7

GATK 92.3/97.6 94.6/98.7

Combination 95.5/98.9 94.8/98.7 95.4/99.8
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Table 4: Summary of detected structural variants (SV) and small insertions and deletions (2

- 49bp, INDELs) across 23 diverse barley inbreds, where MAF was the minor allele frequency,

and TE were SV clusters which were annotated as transposable elements in the Morex reference

sequence v2.

SV type Number of SV calls Number of SV clusters

MAF > 0.05 TE

Deletions 1,042,134 313,061 166,920 10,691

Insertions 242,915 70,674 40,945 287 (18,173)1

Duplications 212,435 96,541 37,292 5,705

Inversions 15,955 6,876 2,572 30

Translocations 297,660 142,822 52,986 0 (74,621)1

INDELs 63,367,764 13,932,338 8,904,504 35

1Because of missing endpoint information no reciprocal overlap criterion applied
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Table 5: Percentage of structural variant (SV) clusters or their closest neighboring single nucleotide variant

(SNV) that show a maximum linkage disequilibrium (LD) estimate r2max to all SNV 1kb up and downstream

of it. LD was calculated for three categories of minor allele frequencies (MAF) for SV clusters and the

corresponding closest SNV.

MAF

Proportion [%]

of r2max r2 [0,0.2) [0.2,0.4) [0.4,0.5) [0,0.2) [0.2,0.4) [0.4,0.5)

Between SV cluster and SNV Between closest SNV to SV cluster and SNV

Deletions

[1.0,0.8] 0.00 0.89 60.96 0.00 2.3 76.38

(0.8,0.6] 47.18 70.74 13.34 89.50 87.80 12.84

(0.6,0.4] 6.71 11.79 12.30 10.50 9.90 10.73

(0.4,0.2] 36.52 8.21 7.54 0.00 0.00 0.00

(0.2,0] 9.59 8.37 5.87 0.00 0.00 0.00

Insertions

[1.0,0.8] 0.00 0.89 59.57 0.00 2.16 76.76

(0.8,0.6] 42.97 66.85 13.16 90.41 88.51 12.66

(0.6,0.4] 8.02 12.83 12.57 9.59 9.33 10.51

(0.4,0.2] 38.59 9.25 8.05 0.00 0.00 0.00

(0.2,0] 10.42 10.18 6.65 0.00 0.00 0.00

Duplications

[1.0,0.8] 0.00 1.72 52.17 0.00 4.62 65.21

(0.8,0.6] 32.68 60.81 14.13 83.32 78.84 16.31

(0.6,0.4] 5.00 14.64 15.18 16.68 16.54 18.24

(0.4,0.2] 50.08 11.24 10.54 0.00 0.00 0.00

(0.2,0] 12.25 11.59 7.97 0.00 0.00 0.00

Inversions

[1.0,0.8] 0.00 1.47 48.32 0.00 3.18 66.14

(0.8,0.6] 34.05 61.29 15.18 85.21 80.77 14.54

(0.6,0.4] 6.15 15.96 15.89 14.79 16.05 19.19

(0.4,0.2] 50.72 11.51 12.08 0.00 0.00 0.00

(0.2,0] 9.08 9.78 8.52 0.00 0.00 0.00
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Table 6: The optimal weights of the three predictors single nucleotide variants (SNV) and

small insertions and deletions (2 - 49bp, INDELs, SNV&INDELs), structural variant (SV)

clusters and gene expression that resulted in the highest prediction abilities for the seven

traits heading time (HT), leaf angle (LA), plant height (PH), seed area (SA), seed length

(SL), seed width (SW), and thousand grain weight (TGW).

Traits SNV&INDELs SV clusters Gene expression Prediction ability

HT 0.0 0.1 0.9 0.63

LA 0.0 0.4 0.8 0.79

PH 0.1 0.0 0.9 0.54

SA 0.9 0.0 0.1 0.74

SL 0.5 0.1 0.4 0.70

SW 0.1 0.9 0.0 0.75

TGW 1.0 0.0 0.0 0.86

Mean (median) 0.37 (0.1) 0.21 (0.1) 0.41 (0.4)
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Fig. 1: F1-score, which is the harmonic mean of the precision and sensitivity, for the detection of deletions, dupli-

cations, insertions, inversions, and translocations of five structural variant (SV) length categories: A (50 - 300bp),

B (0.3 - 5kb), C (5 - 50kb), D (50 - 250kb), E (0.25 - 1Mb) using the best combination of SV callers (for details

see Material & Methods) based on 25x and 65x Illumina short-read sequencing as well as based on 14x and 25x

linked-read sequencing coverage.
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Fig. 2: Stacked bar graph of the number of different types of structural variant (SV) clusters detected in the 23

inbreds (A) and SV clusters which were detected in at least the given number of the inbreds (B).

Structural variants in the barley gene pool: precision and sensitivity to detect them using

short-read sequencing and their association with gene expression and phenotypic variation

180



10
0

10
1

10
2

10
3

10
4

10
5

0 25 50 75 100

Detection frequency (%)

N
u
m

b
e
r 

o
f 
S

V
 c

lu
s
te

rs SV length categories

A (50−300 bp)

B (301−5000 bp)

C (5−50 kb)

D (50−250 kb)

E (0.25−1 Mb)

Unknown
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barley inbreds.
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Fig. 4: Distribution of genomic variants among 23 barley inbreds across the seven chromosomes. The outermost

circle denotes the chromosome number, the physical position, and as gray bar the peri-centromeric regions (Casale

et al. 2021) plus the centromeres (black) according to the Morex reference sequence v2. The next inner circles

report the SV cluster hotspots (black bars), frequencies of single nucleotide variants (red), small insertions and

deletions (2 - 49bp, INDELs, purple), deletions (blue), insertions (green), duplications (orange), and inversions

(yellow) which were detected among the 23 inbreds. Interchromosomal translocations that were observed in at

least twelve inbreds are represented in the middle of the circle as colored lines connecting the two genomic regions.
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Fig. 5: The occurrence of deletions (A), insertions (B), duplications (C), inversions (D), small insertions and

deletions (2 - 49bp, INDELs, E), and single nucleotide variants (SNV) (F) in five genomic regions.
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✹

Fig. 6: Distribution of structural variant (SV) clusters (black) and single nucleotide variants (SNV, red)

among 23 barley inbreds relative to the transcription start site (TSS) of a gene (x-axis). SV clusters and

SNV were counted for every position from 5kb up- and downstream around the TSS of all genes (y-axes). As

third y-axis, the proportion difference relative to the maximum number of SV clusters/SNV is illustrated.
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Fig. 7: Unfolded site frequency spectrum of deletions (DEL), duplications (DUP), insertions (INS), inversions (INV),

and translocations (TRA) compared to synonymous single nucleotide variants (sSNV), non-synonymous SNV (nsSNV),

and deleterious SNV (dSNV) for ten cultivars (A) and ten landraces (B) where three Hordeum spontaneum accessions

were used as outgroup. Inferred distribution of fitness effects (NeS ) for the different types of SV and SNV in cultivars

(C) and landraces (D) based on 100 bootstrap runs. Error bars indicate the 95% confidence interval.
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Fig. 9: Association of gene-associated (for details see Material & Methods) deletions (A), insertions (B), duplications

(C), and inversions (D) with a minor allele frequency > 0.15 with the expression of individual genes assessed using the

PK mixed linear model. The gene-associated structural variant (SV) clusters were classified based on their occurrence

relative to genes in 5kb up- or downstream, introns, and exons. Values of SV clusters with the same coordinates are

illustrated as points with edges, where each edge represents one SV cluster.
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Fig. 10: Boxplot of the median prediction abilities across the seven traits heading time (HT), leaf angle

(LA), plant height (PH), seed area (SA), seed length (SL), seed width (SW), thousand grain weight (TGW)

based on 23 inbreds using different predictors. The points in each box represent the medians of 200 five-fold

cross-validation runs for each trait. The predictors were: features from SNP array, gene expression, single

nucleotide variants (SNV) and small insertions and deletions (2 - 49bp, INDELs), as well as structural variant

(SV) clusters individually as well as combined together.
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Table S1: Predicted structural variants (SV) for PCR validation. Listed are all

SV that were PCR validated including the names, sizes, primer positions, and the

expected amplicon sizes. All sizes are given in bp.

Primer position relative to SV start Expected amplicon size

SV names left right 2nd right SV size Morex Unumli-Arpa

Del A 1 -263 321 57 584 527

Del A 2 -158 293 64 451 387

Del A 3 -110 324 53 434 381

Del A 4 -229 424 124 653 529

Del A 5 -216 265 55 481 426

Del A 6 -277 155 59 432 373

Ins A 1 -167 243 57 353 410

Ins A 2 -238 191 76 353 429

Ins A 3 -234 258 91 401 492

Ins A 4 -288 126 52 362 414

Ins A 5 -266 239 57 448 505

Del B 1 -391 2,704 1,937 3,095 1,158

Del B 2 -891 1,699 1,303 2,590 1,287

Del B 3 -462 4,446 4,144 4,908 764

Del B 4 -374 3,687 2,940 4,061 1,121

Del B 5 -797 2,529 2,263 3,326 1,063

Del B 6 -459 2,273 1,393 2,732 1,339

Del C 1 -364 316 11,313 10,778 680 899

Del C 2 -103 280 5,692 5,355 383 440

Del C 3 -231 375 28,406 27,937 606 700

Del D 1 -262 120 287,036 286,558 382 740

Del D 2 -361 371 91,956 91,411 732 906

Del D 3 -248 224 54,918 54,481 472 685

Del E 1 -169 348 460,621 460,240 517 550

Del E 2 -279 239 405,578 405,029 518 828
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Table S2: Inbred lines included in this study, their country of origin (CoO), row type, and year of

release.

Genome sequencing coverage

Inbred name BCC code CoO Row type Year of release seq seq-trimmed mapped

HOR1842 HOR1842 AFG 6 1935 27.4 26.6 25.7

HOR383 BCC1561 BGR 6 unknown 24.8 24.1 22.5

Sanalta BCC929 CAN 2 1930 27.5 26.6 25.4

ItuNative BCC502 CHN 6 unknown 23.6 23.0 21.3

Sissy BCC1413 GER 2 1990 24.0 23.3 22.2

Georgie BCC1381 GBR 2 1975 25.1 24.4 23.6

SprattArcher BCC1415 GBR 2 1943 23.1 22.4 22.0

Lakhan BCC533 IND 6 unknown 21.6 21.0 20.1

Kharsila HOR11403 IND 6 before 1911 26.7 25.9 24.0

W23829/803911 HOR11374 ISR 2 unknown 23.6 23.0 22.2

Namhaebori BCC667 KOR 6 unknown 22.3 22.0 21.5

IG128216 BCC118 LBY 6 1983 21.2 21.0 20.8

IG128104 BCC173 PAK 6 1974 23.8 23.2 22.3

K10693 BCC1491 RUS 6 unknown 21.0 20.5 19.8

IG31424 BCC190 SYR 2 1981 23.5 22.8 21.7

HOR12830 HOR12830 SYR 6 unknown 25.8 25.0 23.4

HOR7985 HOR7985 TUR 2 before 1969 23.3 22.5 21.9

K10877 BCC1503 TKM 6 unknown 25.5 24.8 23.7

HOR8160 HOR8160 TUR 2 before 1969 24.4 23.8 22.7

Ancap2 BCC807 URY 6 1950 27.0 26.2 24.5

CM67 BCC846 USA 6 1983 23.8 23.1 22.2

Kombyne BCC893 USA 6 1975 21.5 20.9 20.0

Unumli-Arpa BCC1470 UZB 2 unknown 23.5 22.9 21.8
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up to 5kb

PCR result

1
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A

Large deletions
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PCR result
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Fig. S1: Graphical illustration of the primer design strategy created to validate

structural variant (SV) predictions in the reference genome Morex and Unumli-

Arpa. The primer design strategy had to be adjusted depending on the size of the

SV. Smaller deletions (A) and insertions (up to ∼5kb) were validated with a pair

of two primers (blue/red arrow) flanking the SV (gray box). Larger deletions (B)

were validated either by primer 1 (blue) and primer 2 (red) in case of presence or

by primer 1 (blue) and primer 3 (green) in case of absence. The predicted PCR

results, the absence (1) and presence (2) of the SV sequence in the PCR fragment,

are shown on the right.
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Fig. S2: PCR validation results for small structural variants (SV) as documented after the

gel electrophoresis. PCR amplified fragments are shown separated by size for the reference

genotype Morex (M) and the genotype Unumli-Arpa (UA). Predicted fragment size based on

the SV predictions are illustrated by numbers. The numbers are colored based on the validation

success. Fragment size agreement between PCR and prediction (green) or disagreement (red).

Results are shown for six small deletions (A) and six small insertions (B) of the SV length

category A (50 - 300bp). DNA ladder used: GeneRuler 100bp Plus, Thermo Fisher (LA 1).
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Fig. S4: Principal component analyses of the barley inbred lines considered in our study based on deletions (A),

duplicatons (B), insertions (C), inversions (D), and translocations (E). PC 1 and PC 2 are the first and second

principal component, respectively, and number in parentheses refer to the proportion of variance explained by the

principal components. Symbols identify landrace and cultivar inbreds and colors their row number.
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Fig. S8: Prediction ability for the seven phenotypic traits heading time (HT), leaf angle (LA), plant height (PH), seed

area (SA), seed length (SL), seed width (SW), and thousand grain weight (TGW) from 23 inbreds for 66 combinations

of the joined weighted matrices which differ in the weights of three predictors single nucleotide variants (SNV) and

small insertions and deletions (2 - 49bp, INDELs, SNV&INDELs, x-axis), structural variant (SV) clusters (y-axis), and

gene expression. Plotted values represent medians across 200 cross-validation runs.
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